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Abstract

An efficient and reliable method for the prediction of outputs of interest of partial differential
equations with affine parameter dependence is presented. To achieve efficiency we employ
the reduced-basis method: a weighted residual Galerkin-type method, where the solution is
projected onto low-dimensional spaces with certain problem-specific approximation proper-
ties. Reliability is obtained by a posteriori error estimation methods — relaxations of the
standard error-residual equation that provide inexpensive but sharp and rigorous bounds for
the error in outputs of interest. Special affine parameter dependence of the differential opera-
tor is exploited to develop a two-stage off-line/on-line blackbox computational procedure. In
the on-line stage, for every new parameter value, we calculate the output of interest and an
associated error bound. The computational complexity of the on-line stage of the procedure
scales only with the dimension of the reduced-basis space and the parametric complexity
of the partial differential operator; the method is thus ideally suited for the repeated and
rapid evaluations required in the context of parameter estimation, design, optimization, and
real-time control.

The theory and corroborating numerical results are presented for: symmetric coercive
problems (e.g. problems in conduction heat transfer), parabolic problems (e.g. unsteady
heat transfer), noncoercive problems (e.g. the reduced-wave, or Helmholtz, equation), the
Stokes problem (e.g flow of highly viscous fluids), and certain nonlinear equations (e.g.
eigenvalue problems).

Thesis Supervisor: Anthony T. Patera
Title: Professor of Mechanical Engineering





Acknowledgments

This thesis would not have been possible without the help and contributions of many people.

First, I would like to thank my thesis advisor Prof. Anthony T. Patera. He taught me many

things, including but by no means limited to numerical analysis and the ways of research.

He provided me with guidance and support, and opened up for me new areas of thinking.

His insights as well as his humor were very much appreciated. To him I owe more, both

intellectually and humanly than I can ever repay.

My sincere thanks to Professors Robert A. Brown, Bora Mikic and Jaime Peraire for

serving on my thesis committee, and for their careful criticisms and comments regarding

this thesis. I would also like to thank Prof. Yvon Maday, for hosting me for six months

in the University of Paris VI, and for providing a stimulating working environment. Many

thanks should go also to Dr. Luc Machiels and Prof. Einar Rønquist, for the significant help

they provided when I was starting with my research, and for their friendship.

I am also grateful to the other “GAP” members: Alex, Christophe, Ivan, Karen, Thomas

and Yuri. I will never forget the long discussions about science, “life, the universe and

everything” — thank you for the time we spent together. Also Mrs. Debra Blanchard,

whose supportive and encouraging attitude made our work a more pleasant experience.

Surviving in this “brave new world” would not have been easy without a few good friends.

I would like to thank all the people here in Boston, that supported me through the bad times

and shared the good times. Also my many friends back in Greece, that I so much missed

during the last four years.

Last but not least, I would like to express my love and gratitude to my parents, Vasilis and

Kassiani, and my brother Panagiotis for believing in me and accepting the long separation.

Without their support, love and encouragement, I would not have been able to pursue my

dreams. This work is dedicated to them. . .



6



Contents

1 Introduction 15

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Input-Output relationship . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.2 Computational Method . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.3 Discretization — Finite Element Method . . . . . . . . . . . . . . . . 20

1.2.4 Reduced-Basis Method . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.5 Output Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.6 Design Exercise — Pareto curve . . . . . . . . . . . . . . . . . . . . . 27

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Background 29

2.1 Earlier Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Model-Order Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.2 A posteriori error estimation . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Coercive Problems 39

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Abstract Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Particular Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7



3.2 Reduced-Basis Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Reduced-Basis Approximation . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 A Priori Convergence Theory . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3 Computational Procedure . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 A Posteriori Error Estimation: Output Bounds . . . . . . . . . . . . . . . . 46

3.3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Computational Procedure . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Noncompliant Outputs and

Nonsymmetric Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Reduced-Basis Approximation . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Method I A Posteriori Error Estimators . . . . . . . . . . . . . . . . 53

3.4.3 Blackbox Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.1 Thermal fin — Shape optimization . . . . . . . . . . . . . . . . . . . 58

4 Parabolic Problems 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Reduced-basis Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 A posteriori error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Time Discretization —

Discontinuous Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Noncoercive Problems 87

5.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.2 Inf-sup supremizers and infimizers . . . . . . . . . . . . . . . . . . . 88

5.2 Reduced-basis output bound formulation . . . . . . . . . . . . . . . . . . . . 91

8



5.2.1 Approximation spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.2 Output Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.3 Error bound prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.1 A priori theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 A posteriori theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.3 The discrete inf-sup parameter . . . . . . . . . . . . . . . . . . . . . . 102

5.3.4 The choice VN = Y,WN = W 1
N — Method 1 . . . . . . . . . . . . . . 102

5.3.5 The Choice VN = Y, WN = W 0
N — Method 2 . . . . . . . . . . . . . 105

5.3.6 The Choice VN = W 1
N , WN = W 1

N — Method 3 . . . . . . . . . . . . 106

5.3.7 The Choice VN = W 0
N , WN = W 0

N — Method 4 . . . . . . . . . . . . 108

5.3.8 The Choice VN = ZN(µ), WN = W 1
N — Method 5 . . . . . . . . . . . 109

5.4 Computational procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 An algebraic representation . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.2 Blackbox approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 The Helmholtz problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5.1 1-d Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5.2 2-d Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Stokes Problem 137

6.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1.2 Abstract Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 139

6.1.3 Inf-sup supremizers and infimizers . . . . . . . . . . . . . . . . . . . . 141

6.2 Reduced-Basis Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.1 Approximation Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.2 Reduced-Basis Problems . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3 Computational Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3.1 Output Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4 Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9



6.4.1 A Posteriori Error Analysis . . . . . . . . . . . . . . . . . . . . . . . 153

6.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7 Eigenvalue Problems 167

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2 The Reduced-Basis Approximation . . . . . . . . . . . . . . . . . . . . . . . 168

7.3 Bound Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.4 Computational approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.5 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8 Concluding Discussion 175

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.2 Suggestions for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A Parabolic Problem — Computational Procedure 179

A.1 Discontinuous Galerkin — Case q=0 . . . . . . . . . . . . . . . . . . . . . . 179

A.1.1 Reduced-basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.1.2 Output Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.2 Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

10



List of Figures

1-1 Input-Output relationship. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1-2 Two-dimensional thermal fin . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1-3 Finite element mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1-4 Low-dimensional manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1-5 Basis functions for WN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1-6 Pareto efficient frontier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3-1 Two-Dimensional Thermal Fin. . . . . . . . . . . . . . . . . . . . . . . . . . 41

3-2 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4-1 Two-dimensional thermal fin . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4-2 Convergence of the bound gap as a function of N(=M), for the point µt. . . . 84

4-3 Effectivity as a function of N(=M) for the point µt. . . . . . . . . . . . . . . 84

5-1 The discrete inf-sup parameter for Methods 1, 2, 3, and 4 as a function of k2

(see text for legend). The symbol × denotes the exact value of β. . . . . . . 125

5-2 The ratio of the discrete inf-sup parameter to the exact inf–sup parameter for

Methods 1, 2, 3, and 4, as a function of k2 (see text for legend). The thick

line denotes the “sufficient” limit: if βN < 1.1β, bounds are guaranteed. . . . 125

5-3 The normalized bound gap ∆i
N/|s| for Methods i =1 and i =3 as a function

of k2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5-4 Geometrical configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5-5 Lcrack = 0.5 and ω = 10.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5-6 Lcrack = 0.5 and ω = 11.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

11



5-7 Lcrack = 0.5 and ω = 12.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5-8 Lcrack = 0.5 and ω = 13.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5-9 Lcrack = 0.5 and ω = 14.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5-10 Lcrack = 0.5 and ω = 15.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5-11 Lcrack = 0.5 and ω = 16.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5-12 Lcrack = 0.5 and ω = 17.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5-13 Lcrack = 0.5 and ω = 18.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5-14 Lcrack = 0.5 and ω = 19.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5-15 Lcrack = 0.3 and ω = 19.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5-16 Lcrack = 0.7 and ω = 19.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5-17 Output convergence for Lcrack = 0.4 and ω = 13.5. . . . . . . . . . . . . . . . 133

5-18 Output convergence for Lcrack = 0.4 and ω = 18.0. . . . . . . . . . . . . . . . 133

5-19 Effectivity for Lcrack = 0.4 and ω = 13.5. . . . . . . . . . . . . . . . . . . . . 135

5-20 Effectivity for Lcrack = 0.4 and ω = 18.0. . . . . . . . . . . . . . . . . . . . . 135

6-1 Square Obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6-2 FEM Solution for α = 0.671 and β = 0.212 . . . . . . . . . . . . . . . . . . . 162

6-3 FEM Solution for α = 0.590 and β = 0.404 . . . . . . . . . . . . . . . . . . . 162

6-4 Relative error as a function of Npr
u , for different Npr

p , for µ = {0.5, 0.5}. . . . 164

6-5 Relative error as a function of Npr
u , for different Npr

p , for µ = {0.2, 0.1}. . . . 164

6-6 Convergence of the relative error in the output as a function of Npr
u = Npr

p

(α = 0.2,β = 0.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12



List of Tables

3.1 Error, error bound, and effectivity as a function of N , at a particular represen-

tative point µ ∈ D, for the two-dimensional thermal fin problem (compliant

output). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Shape Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Relative error by the reduced-basis prediction of the outputs of interest for

different values of N = M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Bound gap and effectivities for the two outputs of interest, for different choices

of N = dimW pr
N and M = dimW du

M (N+M=120). . . . . . . . . . . . . . . . 83

5.1 The error βiN −β for Methods i =1, 2, 3, and 4, for k2 = 11, as a function of M .126

5.2 The bound gap for Methods i = 1 and i = 3, for k2 = 11, as a function of M . 127

5.3 The bound gap and effectivity at µ = (11, 17), as a function of M , for Methods

i = 1 and i = 3, for the two-dimensional parameter space D = ]1, 20[× ]1, 20[. 128

6.1 Relative error βK(µ)−β(µ)
β(µ)

for different µ ∈ D (K = 50) . . . . . . . . . . . . . 166

7.1 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

13



14



Chapter 1

Introduction

1.1 Overview

In engineering and science, numerical simulation has an increasingly important role. The

systems or components in consideration are often modeled using a set of partial differential

equations and related boundary conditions; then, a discrete form of the mathematical prob-

lem is derived and a solution is obtained by numerical solution methods. As the physical

problems become more complicated and the mathematical models more involved, current

computational resources prove inadequate.

Especially in the field of optimization or design, where the evaluation of many different

possible configurations is required — corresponding to different choices of the design pa-

rameters, — even for modest-complexity problems, the computational cost is unacceptably

high. Especially for design problems we resort to more traditional approaches: the design

goals and constraints are prescribed, and then empirical or semi-empirical approaches are

employed to solve the design problem. Numerical simulation is used at the final stages only,

as a validation tool. In this case, the results are oftentimes less than satisfactory, relying on

crude assumptions, intuition or even luck. To more efficiently utilize the existing computa-

tional resources, reliable methods that reduce the complexity of the problem while at the

same time preserve all relevant information, are becoming very important.
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1.1.1 Input-Output relationship

Central to every design, optimization, or control problem is the evaluation of an “input-

output” relationship. The set of input parameters µ, which we will collectively denote as

“inputs,” identify a particular configuration of the system or component. These inputs

may represent design or decision variables, such as geometry or physical properties — for

example, in optimization studies; control variables, such as actuator power — for example

in real-time applications; or characterization variables, such as physical properties — for

example in inverse problems. The output parameters s(µ), which we’ll collectively denote

as “outputs,” are performance indices for the particular input µ — for example maximum

temperatures, stresses, flow rates. These outputs are typically expressed as functionals

of field variables associated with a set of parametrized partial differential equations which

describe the physical behavior of the system or component. Then we are interested in

calculating the outputs s(µ) = F(µ), for many different inputs/configurations µ chosen from

a parameter space D ⊂ RP (P is the number of input parameters). Here, F encompasses

the mathematical description of the physical problem.

µ s(µ)

BlackBox

F(µ)

Figure 1-1: Input-Output relationship.

For the evaluation of F the underlying equations have to be solved. Usually, an analyt-

ical solution is not easy to obtain, rather a discretization procedure like the finite-element

method, is used; then F is replaced by Fh, a discrete form amenable to numerical solution.

The basic premise, is that as the discretization “length” h → 0, then Fh → F , and conse-

quently sh(µ) → s(µ), ∀µ ∈ D but as h→ 0 the cost of evaluating Fh becomes prohibitive.

Especially in the context of design, control, or parameter identification where “real-time”

response or many “input-output” evaluations are required, a balance between computational

cost and accuracy/certainty is essential.
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1.1.2 Computational Method

Identifying the problem in the high dimensionality of the discrete problems, model-order

reduction techniques have been developed. The critical observation is that instead of using

projection spaces with general approximation properties — like in finite-element or wavelet

methods — we choose problem-specific approximation spaces and use these for the dis-

cretization of the original problem. Using such spaces, we can hope to construct a model

that represents with sufficient accuracy the physical problem of interest using a significantly

smaller number of degrees of freedom. Depending on the choice of the global approximation

spaces many possible reductions are available.

The computational methods developed in this work permit, for a restricted but important

class of problems, rapid and reliable evaluation of this partial-differential-equation-induced

input-output relationship in the limit of many queries — that is, in the design, optimization,

control, and characterization contexts. In designing new methods, certain qualities must be

considered:

• Efficiency is crucial for the problems in consideration. To achieve efficiency, we shall

pursue the reduced-basis method; a weighted-residual Galerkin-type method, where

the solution is projected onto low-dimensional spaces with certain problem-specific

approximation properties.

• Relevance. Usually in a design or optimization procedure we are not interested in

the field solution or norms of it, but rather in certain design measures such as the

drag coefficient in the case of flow past a bluff body, or the average temperature on a

surface in the case of heat conduction. The methods developed as part of this work

give accurate approximations to these outputs of interest, defined as functional outputs

of the field solution.

• Reliability. To quantify the error introduced by the reduced-basis method, a posteriori

error analysis techniques must be invoked. A crucial part of this work is the develop-

ment of procedures for obtaining rigorous and sharp upper and lower bounds directly

for the outputs of interest.
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1.2 Model Problem

To motivate and illustrate the various aspects of our method we consider the problem of

steady-state heat conduction in a thermal fin. In this section, using the model problem, we

present the main ingredients of the method, compare with more traditional approaches, and

present some indicative results.

1.2.1 Problem Description

Consider the thermal fin, shown in Figure

β

α

Γroot

Ω0

Bi

Ω4

Ω3

Ω2

Ω1k1

k2

k3

k4

Figure 1-2: Two-dimensional thermal fin

1-2, designed to effectively remove heat from

a surface. The two-dimensional fin consists

of a vertical central “post” and four horizon-

tal “subfins”; the fin conducts heat from a

prescribed uniform flux “source” at the root,

Γroot, through the large-surface-area subfins

to surrounding flowing air.

The fin is characterized by a seven com-

ponent parameter vector or “input”, µ =

(µ1, µ2, . . . , µ7), where µi = ki, i = 1, . . . , 4,

µ5 = Bi, µ6 = α, and µ7 = β; µ may take on any value in a specified design space D ⊂ R7.

Here ki is the thermal conductivity of the ith subfin (normalized relative to the post con-

ductivity ki ≡ 1); Bi is the Biot number, a non-dimensional heat transfer coefficient re-

flecting convective transport to the air at the fin surfaces; and α and β are the thick-

ness and length of the subfins (normalized relative to the post width). The total height

of the fin is fixed H = 4 (relative to the post width). For our parameter space we choose

D = [0.1, 10.0]4 × [0.01, 1.0]× [0.1, 0.5]× [2.0× 3.0], that is, 0.1 ≤ ki ≤ 10.0, i = 1, . . . , 4 for

the conductivities, 0.01 ≤ Bi ≤ 1.0 for the Biot number, and 0.1 ≤ α ≤ 0.5, 2.0 ≤ β ≤ 3.0

for the geometric parameters.

We consider two quantities of interest or “outputs”. The first output is Troot, the average

temperature at the root of the fin normalized by the prescribed heat flux into the fin root. The
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particular output relates directly to the cooling efficiency of the fin — lower values of Troot

imply better performance. The second output is the volume of the fin, V , which represents

weight and material cost — lower values are preferred. In general, better performance —

lower temperature — requires larger fin volume (e.g., larger α) or materials with higher

conductivity; in both cases the production cost of the fin would increase accordingly. Hence

there are design trade-offs that must be investigated.

1.2.2 Governing Equations

The temperature distribution u(µ), is obtained by solution of the following elliptic partial

differential equation:

−ki ∇2ui(µ) = 0 in Ωi, i = 0, . . . , 4, (1.1)

where ∇2 is the Laplacian operator, and ui(µ) ≡ u(µ)|Ωi
refers to the restriction of u(µ)

to Ωi. Here Ωi is the region of the fin with conductivity ki, i = 0, . . . , 4: Ω0 is thus

the central post, and Ωi, i = 1, . . . , 4, corresponds to the four subfins. We must also

ensure continuity of temperature and heat flux at the conductivity-discontinuity interfaces

Γi ≡ ∂Ω0 ∩ ∂Ωi, i = 1, . . . , 4, where ∂Ωi denotes the boundary of Ωi:

u0(µ) = ui(µ)

−(∇u0(µ) · n̂i) = −ki(∇ui(µ) · n̂i)

 on Γi, i = 1, . . . , 4;

here n̂i is the outward normal on ∂Ωi. Finally, we introduce a Neumann boundary condition

on the fin root:

−(∇u0(µ) · n̂o) = −1 on Γroot,

which models the heat source; and a Robin boundary condition:

−ki(∇ui(µ) · n̂i) = Bi ui(µ) on Γext i, i = 0, . . . , 4,

which models the convective heat losses. Here Γext i is that part of the boundary of Ωi

exposed to the fluid.
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For every choice of the design parameter-vector µ — which determines the ki, Bi, and also

the fin geometry through α and β — solution of the equations above yields the temperature

distribution u(µ). The average temperature at the root, Troot, can then be obtained from

s(µ) ≡ Troot = `O(u(µ)), where

`O(v) =

∫
Γroot

v, (1.2)

(recall Γroot is of length unity). The volume, V , can be calculated using a simple algebraic

relationship V (µ) = 4 + 8αβ.

The thermal fin problem exercises many aspects of our methods as there is a relatively

large number of input parameters that appear in the problem equations and boundary condi-

tions. The variations in geometry are treated in an indirect way by mapping the parameter-

dependent solution domain Ω to a fixed reference domain Ω̂. The geometry variations enter

then in the problem as parameter-dependent effective orthotropic conductivities. The output

or the inhomogeneities in the equations above are not parameter-dependent, by the choice

of our non-dimensional variables — this will simplify the presentation and the notation,

without loss of generality.

1.2.3 Discretization — Finite Element Method

Finite Element Mesh

Obtaining a solution to the continuous problem (1.1) using analytical techniques, is not

easy. Instead, the finite-element method — among many other possible choices — is used

to obtain numerically an accurate approximation the exact solution. The point of departure

for the finite-element method is an integral re-statement of the equations, called the weak

form. The weak form has several advantages: it allows for more general solution spaces, the

boundary and continuity conditions are integrated in the problem formulation; see [107] for

more details. The problem can then be written as: find u(µ) ∈ Y the solution of

A(µ)u(µ) = F ; (1.3)
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with A a linear (distributional) operator, and F a linear functional. The precise definition

of Y , A and F are alluded to the following chapters.

Figure 1-3: Finite element mesh.

For the solution of (1.3), a triangulation Th of the computational domain is introduced,

as in Figure 1-3. We assume that the triangles, also referred to as elements, cover the

computational domain Ω̂ ,
¯̂
Ω = ∪Th∈Th

T̄h (T̄h is the closure Th) and that each of the elements

do not overlap, T ih ∩ T
j
h = 0, ∀T ih, T

j
h ∈ Th. The subscript h denotes the diameter of the

triangulation defined as:

h = sup
Th∈Th

sup
x,y∈Th

|x− y|; (1.4)

here | · | is the Euclidean norm.

Discrete Problem

Using then the triangulation Th, we define the space Yh as the space of continuous functions

which are piecewise linear over each of the elements Th ∈ Th:

Yh = {v ∈ C0(Ω̂)|v|Th
∈ P1(Th), ∀Th ∈ Th}. (1.5)

If N is the number of nodes in the triangulation, we introduce the functions ϕi ∈ Yh , such

that ϕi(xj) = δi j, i = 1, . . . ,N , where xj are the coordinates of node j, and δi i = 1 if i = j,

or δi j = 0 if i 6= j . Each function ϕi has compact support over the region defined by the

elements surrounding node i (shaded area on Figure 1-3). Then, it is not hard to see, that
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these functions form a complete basis for the finite element space Yh. And Yh can also be

defined in terms of this basis:

Yh = span{ϕi, i = 1, . . . ,N}. (1.6)

Since ϕi is a basis for Yh, any function vh ∈ Yh can then be written as vh =
∑N

i=1 vh iϕi,

where vh i = vh(xi) the value of vh at the node i. From this last expression, we see that we

need N values at the nodes of the triangulation to define each function in Vh. Therefore

Vh is a finite-dimensional space with dimVh = N . Different choices for the finite-element

spaces are possible, for example we can choose to approximate the function using higher

order polynomials over each of the elements; these and other choices are discussed in [20].

Using a Galerkin projection in the space spanned by the ϕi, we compute an approximation

uh ∈ Yh to the solution u ∈ Y , from:

Ah(µ)uh(µ) = F h; (1.7)

here Ah is an N ×N matrix, and uh(µ) a vector for which uh i(µ) = uh(xi;µ), with xi the

coordinates of the node i. Solving the linear system above, we obtain the nodal values uh(µ),

and therefore uh(µ) =
∑N

i=1 uh i(µ)ϕi. The output approximation sh(µ) can then be easily

computed from:

sh(µ) = `O(uh(µ)). (1.8)

Computational Complexity

We see that the original problem has been replaced by a finite-dimensional one. The a priori

convergence theory for this type of finite-elements and assuming sufficient regularity of the

solution u(µ), suggests that the error in the output |s(µ)− sh(µ)| will converge as h2, where

h is defined in (1.4). Moreover as h→ 0, we get uh(µ) → u(µ) and sh(µ) → s(µ). The above

a priori result suggests also, that to decrease the error in the output by a factor C > 0, we

need to increase the number of elements and therefore N roughly by the same factor. We

see that as the requirements for accuracy increase or the geometric complexity increases, we
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need higher N to obtain accurate and reliable results (to ascertain the accuracy we need a

posteriori error estimators). Moreover, in the presence of singularities or boundary layers,

local refinement is essential, further increasing the required degrees of freedom.

The discussion above suggests that even for relatively simple problems, N can be large.

For the thermal fin problem, N ∼ O(103), but it is not uncommon for N to be O(106) or

higher. We also see the difficulty, as N increases, so does the size of the linear system (1.7),

that has to be inverted. By virtue of the compact support of ϕi, the matrix Ah is sparse and

therefore iterative solvers can be used to obtain a solution. The computational complexity

scales as O(N a), where a depends on the condition number of the problem (which increases

quadratically with 1/h). Especially in contexts where repeated solution of (1.7) is required,

the computational requirements soon become unacceptably large.

1.2.4 Reduced-Basis Method

Low-dimensional approximation

Identifying the problem in the high dimen-

u(µ2)

Y

u(µ1)

u(µ3)

Figure 1-4: Low-dimensional manifold

sionality of the finite-element spaces, we look for

ways to further reduce the computational com-

plexity. The large number of degrees of free-

dom required in the case of finite-element meth-

ods, is attributed to the particular choice of ba-

sis functions, which have general approximation

properties for functions in Y . To further re-

duce the computational complexity we look for

spaces with approximation properties specific to

the problem of interest.

Our method of choice is the reduced-basis method, first introduced in [74]. The crit-

ical observation is that the solution and the output evolve in a low-dimensional manifold

induced by the parametric dependence of the problem. Central to reduced-basis methods,

is constructing an approximation to this manifold. In our approach, slightly different from
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earlier approaches, we construct linear reduced-basis spaces comprising of solutions to (1.3)

at different parameter points. We then use these spaces to find an approximation uN(µ) to

the exact solution.

Earlier approaches viewed the reduced-basis method as a combined projection and con-

tinuation method. A different view, suitable for our purposes, is that of multi-dimensional

parameter-space interpolation. The required interpolation weights are obtained by solv-

ing suitably defined low-dimensional problems chosen to minimize the approximation error

measured in problem-specific energy norms.

Reduced-basis space

Figure 1-5: Basis functions for WN

To construct the reduced-basis space we choose N points — N is small, typically O(10)

— µi ∈ D, i = 1, . . . , N . We then compute the solution of (1.3) for each of these points and

construct the reduced basis space WN :

WN = span {u(µi), i = 1, . . . , N} ≡ span {ζi, i = 1, . . . , N} ; (1.9)
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the ζi form a basis for the space WN . By the construction above, and assuming linear

independence of the basis functions, the dimension of WN will be dimWN = N . Then using

a Galerkin projection we compute uN(µ), the solution of:

AN(µ)uN(µ) = FN ; (1.10)

note that, uN(µ) can be understood as the interpolation weights mentioned above. The

reduced-basis approximation to solution can then be computed from uN(µ) =
∑N

i=1 uN iζi,

and for the output sN(µ) = `O(uN(µ)).

The a priori convergence theory, and extensive numerical tests, suggest that the conver-

gence of the reduced-basis approximation to the exact will be very fast. In fact, exponential

convergence is observed in all the numerical tests. This suggests that even with a very mod-

est N , we can hope to achieve good accuracy. The linear system above can be formed and

solved very efficiently in the case where the operator depends affinely on the parameters. In

this case we can separate the computational steps into two stages:

• The off-line stage, in which the reduced-basis space is constructed and some prepro-

cessing is performed. This is an expensive step, that needs to be performed only once,

requiring solutions of finite-element problems.

• The on-line stage, in which for each new parameter value, the reduced-basis approxi-

mation for the output of interest is calculated.

The on-line stage is “blackbox” in the sense that there is no longer any reference to the

original problem formulation: the computational complexity of this stage scales only with

the dimension of the reduced-basis space and the parametric complexity of the partial dif-

ferential operator. The “blackbox” nature of the on-line component of the procedure has

other advantages. In particular, the on-line code is simple, non-proprietary, and completely

decoupled from the (often complicated) off-line “truth” code. This is particularly important

in multidisciplinary design optimization, in which various models and approximations must

be integrated.
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1.2.5 Output Bounds

The computational relaxation introduced in the previous section, allows us to compute very

efficiently accurate approximations to the solution and the output of interest. Thanks to

the expected rapid convergence N could, in theory, be chosen quite small. However, in

practice we do not know how small N should be: this will depend of the desired accuracy,

the choice of µi in the construction of the reduced-basis spaces, the output of interest and

the particular problem in question; in some cases N = 5 may suffice, while in other cases

N = 100 may still be insufficient. In the face of this uncertainty, either too many or too

few basis functions will be retained: the former results in computational inefficiency; the

later in unacceptable uncertainty. For the successful application of reduced-basis methods

it is therefore critical that we can ascertain the accuracy of our predictions; we develop in

the next chapters, rigorous error-estimation approaches, directly for outputs of interest, to

a posteriori validate the accuracy of our predictions.

We prove that these estimators s+
N(µ) and s−N(µ) are upper and lower bounds, respectively,

to the “true” output sh(µ) that would be obtained by solution of the expensive finite-element

problem:

s+
N(µ) ≤ sh(µ) ≤ s−N(µ). (1.11)

Unlike the exact value, these error estimators can be computed inexpensively — with a

complexity that scales only with the dimension of the reduced-basis space.

In reality the error in the output has two components:

|s(µ)− sN(µ)| ≤ |s(µ)− sh(µ)|+ |sh(µ)− sN(µ)|;

the first related to the discretization error (see in Section 2.1.2); and the second to the

reduced-basis error. In practice, both of these errors have to be estimated for reliability

in our predictions. Estimation of the discretization error has been treated extensively in

the literature; see [87] for a review. For our purposes, we assume that h is chosen very

conservatively such that sh(µ) ≈ s(µ) and the dominant error is due to the reduced-basis

approximation.
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Figure 1-6: Pareto efficient frontier.

1.2.6 Design Exercise — Pareto curve

We close this section with a more applied example. We fix all parameters except α and

β so that D = [2.0, 3.0] × [0.1, 0.5]. As a “design exercise” we construct the achievable

set — all those (V (µ), s(µ)) pairs associated with some (α, β) in D; the result, based on

many evaluations of (V (µ), s+
N(µ)) for different values of (α, β) ∈ D, is shown in Figure

1-6. We present the results in terms of s+
N(µ) rather than sN(µ) to ensure that the actual

temperature sh(µ) will always be lower than our predictions (that is, conservative); and we

choose N such that s+
N(µ) is always within 0.1% of sh(µ) to ensure that the design process

is not misled by inaccurate predictions. Given the obvious preferences of lower volume and

lower temperature, the designer will be most interested in the lower left boundary of the

achievable set — the Pareto efficient frontier; although this boundary can of course be found

without constructing the entire achievable set, many evaluations of the outputs will still be

required. As regards computational cost, the calculation of s+
N(µ) is roughly 24 times faster
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than direct calculation of sh(µ). The computational savings are quite modest; for more

complex problems, savings of the O(100) or even O(1000) should be expected.

1.3 Outline

The discussion above suggests that for design, optimization and control problems reduced-

basis output bound methods are attractive alternatives to more traditional approaches. In

the following chapters we develop rigorously and with more details these methods. More

specifically: first, we investigate what the definition of the reduced-basis spaces and the

projection operator should be, and how these choices affect the accuracy and stability of our

approximations; second, we develop error estimation procedures, directly for the outputs

of interest; and finally, corroborating numerical results are presented. In all cases, we give

computational complexity estimates and implementation details.

The issues above are investigated in conjunction with the mathematical properties of the

underlying partial differential operator. In our presentation, we consider the following classes

of problems: coercive — for example, heat conduction problems; elliptic non-coercive — for

example problems in acoustics; parabolic problems — for example unsteady heat conduction;

eigenvalue problems; and Stokes problems — for example, highly viscous fluid flow.

In the next chapter, we review some of the earlier work related to model-order reduction

and in particular to reduced-basis methods; also, we give a few mathematical preliminaries

required in the following. Then we develop the reduced-basis method for the different classes

of problems: in Chapter 3 for coercive problems; in Chapter 4 for parabolic problems; in

Chapter 5 for non-coercive problems, like the reduced-wave (Helmholtz) equation; in Chapter

6 for the Stokes problem; and in Chapter 7 for eigenvalue problems. We conclude in Chapter

8, with some suggestions for future work.
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Chapter 2

Background

Before we proceed with the development of reduced-basis output bound methods, we give in

this chapter some relevant background information. The issue of reducing complexity while

preserving all relevant information, has been a very active research area in many disciplines.

A characteristic of systems whose behavior is governed by partial differential equations is

that the resulting state models, obtained by a discretization procedure, are of very high-

dimension. Therefore some of the existing methods developed, for example in control systems

theory, are not directly applicable. We summarize in Section 2.1, recent developments and

relevant approaches. The references provided in the following and additional references at

the end of this thesis, although by no means exhaustive, should cover most of the recent

work. As model-order reduction methods are by definition pre-asymptotic, validation of the

obtained results has been recognized to be a critical ingredient. Even though residual-based

error measures have been suggested, no rigorous a posteriori error estimation procedures have

been developed. In other contexts, like estimation of the discretization error in finite-element

analysis, a plethora of a posteriori error estimation methods exist. Some of these methods

are relevant for our problems; we discuss in section 2.1.2 the connection and differences

between them. Finally, we review in section 2.2 some mathematical concepts that will be

used extensively in the following.

29



2.1 Earlier Work

2.1.1 Model-Order Reduction

Proper Orthogonal Decomposition

We start our discussion with the proper orthogonal decomposition method, probably the

most popular model-order reduction technique. Underlying this method is the solution of

the following approximation problem [44]: given a (possibly large) set of vectors, identify

the best approximating N -dimensional plane (subspace) such that the root-mean square L2-

projection error is minimized. A solution to this problem can be obtained using the singular

value (or Karhunen-Loève) decomposition [48, 59]. The proper orthogonal decomposition

has been applied and (re-)discovered in many different areas: system dynamics, stochastic

processes, image processing, to name a few.

For reduction of physical systems, it has been extensively applied to time-dependent

problems. In this case, time is considered as the varying parameter, and “snapshots” of the

field variable (e.g. temperature, displacement) at different times — parameter points — are

obtained using numerical or experimental procedures. The optimal N -dimensional approxi-

mation space (for N small) is constructed by applying the singular-value decomposition to

these vectors, and keeping only the N singular vectors corresponding to the largest singular

values. As the singular values are related to the total “energy” of the approximation, these

modes can be identified as the ones preserving most of the energy. The reduced model is

then obtained by using a Galerkin projection to the space spanned by these vectors.

The optimality property and generality of these ideas, has led to the successful application

of the method in many areas: turbulent flows [60], fluid structure-interaction [22], non-linear

structural mechanics [51], turbo-machinery flows [115]. Extension of these methods to general

multi-parameter problems has been quite limited. The problem is that the singular values

are not system invariants as they depend on the choice of “snapshots” and the particular

configuration in consideration. It has been observed that reduced-order models obtained for

one configuration were not optimal for other configurations; using such models often lead

to inaccurate or, even worse, incorrect results. It has been suggested in [19] to give more
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weight or preselect some of the vectors in the starting basis, leading to “weighted-POD”

or “predefined-POD” methods, but the selection of the required weights is not automatic

limiting the generality of such approaches.

An analysis of the model-truncation error suggests that the error can be attributed to

two sources: first in the inability of the low-order model to reproduce the exact loading; and

second, for the approximated loading, in the inability of the low-order model to recover the

exact solution [49]; see also [90] for similar ideas. Using terms from control-systems theory,

the first error is related to the controllability (primal) and the second to the observability

(dual) of the low-order model. In a similar manner, for our methods, we use a combined

primal-dual approach to estimate both of these errors. The notion that a truncation of

the model should balance both of these errors, led to balanced-truncation methods [72].

For high-dimensional systems, computation of the required observability and controllability

grammians is very expensive. A number of methodologies combining the proper orthogonal

decomposition and the balanced-truncation method have been constructed [55, 115].

Reduced-Basis Methods

We turn now to reduced-basis approaches, upon which our method is also based. The

reduced-basis method has been proposed in [6, 74] for the non-linear analysis of structures.

In these approaches, only single-parameter problems were considered and the method was

viewed as a continuation procedure. The method has been further investigated and extended

by Noor [75, 76, 77, 78, 79, 80, 81, 82], where it was realized that the method could be

applied for general multi-parameter problems. Much of the earlier work focused: first, on

the selection and efficient computation of basis functions; and second, on validation of the

efficiency and accuracy of reduced-basis approaches in a number of test problems.

As was mentioned in the introduction the reduced-basis method recognizes that the field

variable is not, in fact, some arbitrary member of the infinite-dimensional solution space

associated with the partial differential equation; rather, it resides, or “evolves,” on a much

lower-dimensional manifold induced by the parametric dependence. In these earlier ap-

proaches, the approximation spaces for the low-dimensional manifold were typically defined
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“locally” — relative to a particular parameter point. Fink and Rheinboldt [33] placed the

method in this geometric setting and carried out an error analysis for a general class of single-

parameter problems. Porsching [91] considered Lagrangian, Taylor and discrete least squares

approximation spaces, and extended some of the a priori analysis. In [34] a general local

error estimation theory for single-parameter problems was developed containing the earlier

estimates as special cases. The extension of the error analysis to multi-parameter problems

was presented in [101]. Finally, evaluation of the constants that appear on the error bounds

was considered in [14]. The a priori theory as developed in the works above concludes that,

close to the parameter point selected for the construction of the reduced-basis spaces, the

error converges to zero exponentially fast with the number of basis functions used.

Reduced-basis approaches have been subsequently developed in many other areas. Pe-

terson [89] applied it to fluid flow problems and the Navier-Stokes equations, and in [41, 40]

it was used for control of fluid problems. Also an analysis was carried out for ordinary

differential equations [92], and differential algebraic equations [56]. The reduced-basis ap-

proach as earlier articulated was local in parameter space in both practice and theory. As

a result, the computational improvements — relative to conventional (say) finite-element

approximation — were often quite modest [91]. Balmes [12], was the first to consider general

multi-parameter problems. In his approach, similar to the one developed below, he suggests

choosing the basis functions by sampling globally in parameter space. Finally, in [70] a

combined reduced-basis domain-decomposition approach is proposed for the treatment of

geometric parameters. Even though the importance of error estimation is emphasized in the

literature, no rigorous validation methods have been developed.

The work here differs from these earlier efforts in several important ways: first, we

develop (in some cases, provably [69]) global approximation spaces; second, we introduce

rigorous a posteriori error estimators; and third, we exploit off-line/on-line computational

decompositions (see [12] for an earlier application of this strategy within the reduced-basis

context). These three ingredients allow us — for the restricted but important class of

“parameter-affine” problems — to reliably decouple the generation and projection stages

of reduced-basis approximation, thereby effecting computational economies of several orders

of magnitude [94].

32



Other Methods

Krylov-subspace techniques like the Arnoldi or the Lanczos methods and their variants,

have traditionally been used for the calculation of a small set of the extremal eigenvalues

and eigenvectors for large-scale eigenproblems. But these are precisely the eigenvalues and

eigenvectors of interest for model reduction. Many reduction approaches based on Krylov-

subspace techniques have been developed; for an overview see [7, 45] and the references

contained therein. The iterative nature of the algorithms, makes it difficult to develop error

bounds; moreover, the stability of the reduced-order problem is not always guaranteed.

Finally, for the sake of completeness we mention that a number of other approaches —

not based on model-order reduction — for the efficient and reliable evaluation of “input-

output” relationships are available: from “fast loads” (e.g., [18, 30]) to matrix pertubation

theories (e.g., [4, 116]) to continuation methods (e.g., [5, 100].)

2.1.2 A posteriori error estimation

The issue of a posteriori error estimation and, more generally, validation of the numerical

predictions has received considerable attention in the finite-element literature. The problem

of interest there is related to the choice of mesh to be used for the definition of the finite-

element spaces. Following the discussion on Section 1.2.3, it is understood that there are

certain trade-offs associated with the choice of the finite-element mesh: on one hand, a con-

servative choice, ensures high accuracy but also the computational costs become formidable;

on the other hand, the choice of a relatively coarse mesh ensures efficiency but the accuracy

is dubious. More to that, for a specific choice of mesh, the obtained accuracy is not easy to

calculate as it depends on the topology of the mesh, the particular problem in consideration,

the choice of finite-element spaces, or even the way we choose to measure the error. We can

also relate a number of other problems like, for example, the choice of elements to be refined

in adaptive refinement or, more generally the choice of “optimal” meshes (i.e. meshes which

for a given accuracy minimize computational cost). For all these problems, the ability to

estimate and therefore control, the discretization error is critical.

The extensive a priori theory can not be used as the provided error bounds depend
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on norms of the exact solution which, in general, is not known. Rather, the a posteriori

error estimators give bounds which depend on computable quantities, like residuals. The

study of these types of error estimators started in the 70s with the first paper by Babuska

and Rheinboldt [10], and since then the literature has grown appreciably; a review can be

found in [3]. Most error estimators developed give bounds for abstract norms of the error.

Relevant to this thesis are a posteriori error estimators directly for outputs of interest; see

for example [87, 88] for relevant work.

The parallel with the discussion in Section 1.2.5 for the reduced-basis method should be

clear: instead of the finite-element mesh and the discretization error, we have the parameter

space “discretization” (in the sense, of the choice of µi in (1.9)), and the reduced-basis

approximation error; refinement of the mesh, corresponds to adding more basis-functions

in the definition of WN (1.9). But there are also differences, the most important being the

parameter-dependence of the operator, consideration of which is not required in the finite-

element case. Even though the methodologies are distinctively different; some of the general

ideas [88] for a posteriori error estimation are common.

2.2 Mathematical Preliminaries

In this section, we introduce some notation and review some basic definitions that will be

used extensively in the following. To start, let Ω ⊂ Rd, d = 1, . . . , 3 be an open domain with

Lipschitz-continuous boundary. The following function spaces can be defined:

Spaces of Continuous Functions.

Definition 1. Choose k a non-negative integer, and define Ck(Ω̄) as:

Ck(Ω̄) = {v| Dαv is bounded and uniformly continuous on Ω, 0 ≤ |α| ≤ k} ; (2.1)

where α is a multi-index and

Dα =
∂|α|

∂α1
x1 · · · ∂αd

xd

, α = (α1, . . . , αd), |α| =
d∑
i=1

αi.
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Then Ck(Ω̄) is a Banach space (i.e. a complete normed linear space), with a norm:

‖v‖Ck(Ω̄) = max
0≤|α|≤k

sup
x∈Ω

|Dαv(x)|.

Also, recall that C∞
0 (Ω) is the space of continuous, infinitely differentiable functions with

compact support, i.e. vanishing outside a bounded open set Ω′ ⊂ Ω. In general, we will use

the subscript 0 to indicate spaces with functions of compact support.

Lebesgue Spaces

Definition 2. We choose 1 ≤ p ≤ ∞, and define Lp(Ω) as:

Lp(Ω) =


{
v|
∫

Ω

|v|p dx <∞
}
, 1 ≤ p <∞{

v| ess sup
x∈Ω

|v(x)| ≤ ∞
}
, p = ∞

; (2.2)

these spaces are also Banach spaces, with an associated norm:

‖v‖Lp(Ω) =

(∫
Ω

|v|p dx
) 1

p

, 1 ≤ p <∞

‖v‖L∞(Ω) = ess sup
x∈Ω

|v(x)|, p = ∞

We assume here (and in the following) that
∫

Ω
is the Lebesgue integral. Also, in theory,

v is not a function but rather an (equivalence) class of functions that differ over a set of

measure zero. The essential supremum in the definitions above is the greatest lower bound

C ′ of the set of all constants C, such that |v(x)| ≤ C almost everywhere on Ω.

Sobolev Spaces

Definition 3. Choose k a non-negative integer, and 1 ≤ p ≤ ∞, the Sobolev spaces W k,p(Ω)

are then defined:

W k,p(Ω) =

 {v| Dαv ∈ Lp(Ω), ∀α : |α| ≤ k} , 1 ≤ p <∞

{v| Dαv ∈ L∞(Ω), ∀α : |α| ≤ k} , p = ∞,
(2.3)

35



these spaces are Banach spaces with an associated norm:

‖v‖Wk,p(Ω) =

∑
|α|≤k

∫
Ω

|Dαv|p dx

 1
p

, 1 ≤ p <∞

‖v‖Wk,∞(Ω) = max
|α|≤k

ess sup
x∈Ω

|Dαv(x)|, p = ∞.

The Sobolev spaces are the natural setting for the variational formulation of partial

differential equations. The derivatives here should be interpreted in the proper distributional

sense [39]. Choosing k = 0 we see that W 0,p(Ω) ≡ Lp(Ω), and the Lebesgue spaces, are

included in the Sobolev Spaces. Of particular interest in the following, is also the choice

p = 2 which is a family of Hilbert Spaces.

Hilbert Spaces

Definition 4. Choose k a non-negative integer, then the Hilbert Spaces Hk(Ω) are defined:

Hk(Ω) =
{
v| Dαv ∈ L2(Ω), ∀α : |α| ≤ k

}
; (2.4)

these spaces are Hilbert spaces with a norm:

‖v‖Hk(Ω) =

∑
|α|≤k

∫
Ω

|Dαv|2 dx

 1
2

,

which is induced by the following inner product:

(w, v)Hk(Ω) =
∑
|α|≤k

∫
Ω

Dαw ·Dαv dx.

The Hilbert spaces will be used extensively in the following, note that from the Lebesgue

spaces only L2(Ω) is a Hilbert space. Hilbert spaces is the natural generalization of Euclidean

spaces in the functional setting. The fact that the norm is induced by an inner-product,
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implies that the Cauchy-Schwarz inequality holds:

|(w, v)Hk(Ω)| ≤ ‖w‖Hk(Ω)‖v‖Hk(Ω).

Dual Hilbert Spaces

For a general Hilbert space Z, we denote the associated inner product and induced norm by

(·, ·)Z and ‖ · ‖Z respectively; we identify the corresponding dual space Z ′, with norm || · ‖Z′

given by:

‖f‖Z′ = sup
v∈Z

f(v)

‖v‖z
.

The dual space Z ′ comprises of all the functionals f : Z → R for which the norm ‖f‖Z′ is

bounded. This space is also a Hilbert space and if Z = Hk(Ω) we will denote the dual (and

for good reasons) Z ′ = H−k(Ω). In general:

Hk(Ω) ⊂ · · · ⊂ H1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω) ⊂ · · · ⊂ H−k(Ω).

From the Riesz representation theorem we know that for every f ∈ Z ′ there exists a ρZf ∈ Z

such that

(ρZf , v)Z = f(v), ∀v ∈ Z.

It is then readily deduced that

ρZf = arg sup
v∈Z

f(v)

‖v‖Z
,

and

‖f‖Z′ = ‖ρZf ‖Z ,

which we will use repeatedly in what follows.

The duality pairing between members of Z ′ and Z will be denoted by Z′ 〈·, ·〉 Z , and unless

no confusion arises we will write 〈·, ·〉.
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Time-Dependent Spaces

Definition 5. Let T > 0 we then define, for 1 ≤ q <∞

Lq(0, T ;W k,p(Ω)) =

{
v : (0, T ) → W k,p(Ω)|v is measurable and

∫ T

0

‖v(t)‖Wk,p(Ω) dt <∞
}

(2.5)

with the norm:

‖v‖Lq(0,T ;Wk,p(Ω)) =

(∫ T

0

‖v(t)‖q
Wk,p(Ω)

dt

) 1
q

.

In a similar fashion we can define C0([0, T ];W k,p(Ω)) and more generally the Sobolev

spaces W k,p(0, T ;W s,q(Ω)); see [57] for more details.
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Chapter 3

Coercive Problems

We start our presentation with the case of coercive elliptic problems. In Section 3.1, we

introduce an abstract problem formulation and an illustrative instantiation for the model

problem of Section 1.2. In Section 3.2 we describe, for coercive symmetric problems and

“compliant” outputs, the reduced-basis approximation; and in Section 3.3 we present the

associated a posteriori error estimation procedure. In Section 3.4 we consider the extension

of our approach to noncompliant outputs and nonsymmetric operators, and finally in Section

3.5 we give some numerical results.

3.1 Problem Statement

3.1.1 Abstract Formulation

We consider a suitably regular domain Ω ⊂ Rd, d = 1, 2, or 3, and associated function space

H1
0 (Ω) ⊂ Y ⊂ H1(Ω). The inner product and norm associated with Y are given by (·, ·)Y

and ‖ · ‖Y = (·, ·)1/2, respectively. We also define a parameter set D ∈ RP , a particular point

in which will be denoted µ. Note that Ω does not depend on the parameter.

We then introduce a bilinear form a : Y × Y × D → R, and linear forms f : Y → R,

` : Y → R. We shall assume that a is continuous,

a(w, v;µ) ≤ γ(µ)‖w‖Y ‖v‖Y ≤ γ0‖w‖Y ‖v‖Y , ∀µ ∈ D; (3.1)
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furthermore, we asume that a is coercive: there exists α(µ) > 0 such that

0 < α0 ≤ α(µ) = inf
w∈Y

a(w,w;µ)

‖w‖2
Y

, ∀µ ∈ D, (3.2)

and symmetric, a(w, v;µ) = a(v, w;µ), ∀w, v ∈ Y 2, ∀µ ∈ D. We also require that the linear

forms f and ` be bounded; in Sections 3.2 and 3.3 we additionally assume a “compliant”

output, f(v) = `O(v), ∀v ∈ Y .

We shall also make certain assumptions on the parametric dependence of a, f , and `O.

In particular, we shall suppose that, for some finite (preferably small) integer Q, a may be

expressed as

a(w, v;µ) =

Q∑
q=1

σq(µ) aq(w, v), ∀w, v ∈ Y 2, ∀µ ∈ D, (3.3)

for some σq : D → R and aq : Y × Y → R, q = 1, . . . , Q. This “separability,” or “affine,”

assumption on the parameter dependence is crucial to computational efficiency; however,

certain relaxations are possible — see in [106]. For simplicity of exposition, we assume that

f and `O do not depend on µ; in actual practice, affine dependence is readily admitted.

Our abstract problem statement is then: for any µ ∈ D, find s(µ) ∈ R given by

s(µ) = `O(u(µ)), (3.4)

where u(µ) ∈ Y is the solution of

a(u(µ), v;µ) = f(v), ∀v ∈ Y. (3.5)

In the language of the introduction, a is our partial differential equation (in weak form), µ is

our parameter, u(µ) is our field variable, and s(µ) is our output. For simplicity of exposition,

we may on occasion suppress the explicit dependence on µ.

40



Bi

Ω0 α

β

Γroot

k4

k3

k2

k1

Ω4

Ω3

Ω2

Ω1

Figure 3-1: Two-Dimensional Thermal Fin.

3.1.2 Particular Instantiation

Thermal Fin

In this example we consider the two-dimensional thermal fin problem, discussed extensively

in Section 1.2 — see also, Figure 3-1. The physical model is simple conduction, and the

strong form of the governing equations was given in 1.2.2. The starting point for variational

solution methods is the weak form: the (non-dimensional) temperature field in the fin, u,

satisfies
4∑
i=0

∫
Ω̃i

ki∇̃ũ · ∇̃ṽ +

∫
∂Ω̃\Γroot

Bi ũṽ =

∫
Γroot

ṽ, ∀ ṽ ∈ H1(Ω̃), (3.6)

where Ω̃i is that part of the domain with conductivity k̃i, and ∂Ω̃ denotes the boundary of Ω̃.

We now apply a continuous piecewise-affine transformation from Ω̃ to a fixed (µ-independent)

reference domain Ω (dashed and solid lines on Figure 3-1, respectively). The abstract problem

statement (3.5) is then recovered. Recall that here µ = {k1, k2, k3, k4, Bi, α, β}, and µ ∈

D ⊂ RP=7; with k1, . . . , k4 the thermal conductivities of the “subfins” relative to the thermal

conductivity of the fin base; Bi the non-dimensional form of the heat transfer coefficient; and,

α, β the length and thickness of each of the “subfins” relative to the length of the fin root.

It is readily verified that the bilinear form a is continuous, coercive, and symmetric; and

that the “affine” assumption (3.3) obtains for Q = 16 (two-dimensional case). Note that

the geometric variations are reflected, via the mapping, in the σq(µ). For our output of
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interest, s(µ), we consider the non-dimensional average temperature at the root of the fin.

This output may be expressed as s(µ) = `O(u(µ)), where `O(v) =
∫

Γroot
v. It is readily shown

that this output functional is bounded and also “compliant”: `O(v) = f(v), ∀v ∈ Y .

3.2 Reduced-Basis Approach

We recall that in this section, as well as in Section 3.3, we assume that a is continuous,

coercive, symmetric, and affine in µ — see (3.3); and that `O(v) = f(v), which we denote

“compliance.”

3.2.1 Reduced-Basis Approximation

We first introduce a sample in parameter space, SN = {µ1, . . . , µN}, where µi ∈ D, i =

1, . . . , N ; see Section 3.2.2 for a brief discussion of point distribution. We then define our La-

grangian [91] reduced-basis approximation space as WN = span{ζn ≡ u(µn), n = 1, . . . , N},

where u(µn) ∈ Y is the solution to (3.5) for µ = µn. In actual practice, u(µn) is replaced by

an appropriate finite-element approximation on a suitably fine truth mesh; we shall discuss

the associated computational implications in Section 3.2.3. Our reduced-basis approxima-

tion is then: for any µ ∈ D, find sN(µ) = `(uN(µ)), where uN(µ) ∈ WN is the solution of

a(uN(µ), v;µ) = `(v), ∀ v ∈ WN . (3.7)

Non-Galerkin projections are also possible, they will be discussed in Chapter 5.

3.2.2 A Priori Convergence Theory

Optimality

We consider here the convergence rate of uN(µ) → u(µ) and sN(µ) → s(µ) as N → ∞. To

begin, it is standard to demonstrate optimality of uN(µ) in the sense that

‖u(µ)− uN(µ)‖Y ≤

√
γ(µ)

α(µ)
inf

wN∈WN

‖u(µ)− wN‖Y . (3.8)
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(We note that, in the coercive case, stability of our (“conforming”) discrete approximation is

not an issue; the noncoercive case is decidedly more delicate (see Chapter 5).) Furthermore,

for our compliance output,

s(µ) = sN(µ) + `(u− uN) = sN(µ) + a(u, u− uN ;µ)

= sN(µ) + a(u− uN , u− uN ;µ)
(3.9)

from symmetry and Galerkin orthogonality. It follows from (3.8) that

s(µ)− sN(µ) ≤ c inf
wN∈WN

‖u(µ)− wN‖2
Y

and the error in the output converges as the square of the error in the best approximation.

Also from coercivity, we notice that sN(µ) is a lower bound for s(µ), sN(µ) ≤ s(µ).

Best Approximation

Regarding the dependence of the error in the best approximation as a function of N , the

analysis presented in [69] applies. The theory is restricted to the case in which P = 1,

D = [0, µmax] and suggests (under weak assumptions), that for N > Ncrit(lnµmax),

inf
wN∈WN

‖u(µ)− wN(µ)‖X ≤ c1 exp

{
−(N − 1)

c2

}
, ∀µ ∈ D; (3.10)

for the precise definitions of Ncrit and c1, c2, see [69]. The important thing to notice is that

exponential convergence is proved, uniformly (globally) for all µ in D, with only very weak

(logarithmic) dependence on the range of the parameter (µmax).

The proof exploits a parameter-space (non-polynomial) interpolant as a surrogate for

the Galerkin approximation. As a result, the bound is not always “sharp”: in practice,

we observe many cases in which the Galerkin projection is considerably better than the

associated interpolant; optimality (3.8) chooses to “illuminate” only certain points µn, auto-

matically selecting a best “sub-approximation” amongst all possibilities — we thus see why

reduced-basis state-space approximation of s(µ) via u(µ) is preferred to simple parameter-

space interpolation of s(µ) via (µn, s(µn)) pairs. We note, however, that the logarithmic
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N
|s(µ)− sN(µ)|

s(µ)

∆N(µ)

s(µ)
ηN(µ)

10 1.29× 10−2 8.60× 10−2 2.85
20 1.29× 10−3 9.36× 10−3 2.76
30 5.37× 10−4 4.25× 10−3 2.68
40 8.00× 10−5 5.30× 10−4 2.86
50 3.97× 10−5 2.97× 10−4 2.72
60 1.34× 10−5 1.27× 10−4 2.54
70 8.10× 10−6 7.72× 10−5 2.53
80 2.56× 10−6 2.24× 10−5 2.59

Table 3.1: Error, error bound, and effectivity as a function ofN , at a particular representative
point µ ∈ D, for the two-dimensional thermal fin problem (compliant output).

point distribution implicated by the interpolant-based arguments is not simply an artifact of

the proof: in numerous numerical tests, the logarithmic distribution performs considerably

(and in many cases, provably) better than other more obvious candidates, in particular for

large ranges of the parameter.

Similar exponential behavior is observed for more general problems. Consider for exam-

ple the thermal fin problem. We present in Table 3.1 the error |s(µ) − sN(µ)|/s(µ) as a

function of N , at a particular representative point µ in D. The µn for the construction of

the reduced-basis space are chosen “log-randomly” over D: we sample from a multivariate

uniform probability density on log(µ). We observe that, the error is remarkably small even

for very small N ; and that, in both cases, very rapid convergence obtains as N →∞.

3.2.3 Computational Procedure

The theoretical and empirical results of Sections 3.2.1 and 3.2.2 suggest that N may, indeed,

be chosen very small. We now develop off-line/on-line computational procedures that exploit

this dimension reduction.

We first express uN(µ) as

uN(µ) =
N∑
j=1

uN j(µ) ζj = (uN(µ))T ζ, (3.11)
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where uN(µ) ∈ RN ; we then choose for test functions v = ζi, i = 1, . . . , N . Inserting these

representations into (3.7) yields the desired algebraic equations for uN(µ) ∈ RN ,

AN(µ)uN(µ) = FN , (3.12)

in terms of which the output can then be evaluated as sN(µ) = F T
NuN(µ). Here AN(µ) ∈

RN×N is the SPD matrix with entries AN i,j(µ) ≡ a(ζj, ζi;µ), 1 ≤ i, j ≤ N , and FN ∈ RN is

the “load” (and “output”) vector with entries FN i ≡ f(ζi), i = 1, . . . , N .

We now invoke (3.3) to write

AN i,j(µ) = a(ζj, ζi;µ) =

Q∑
q=1

σq(µ)aq(ζj, ζi), (3.13)

or

AN(µ) =

Q∑
q=1

σq(µ)AqN ,

where the AN ∈ RN×N are given by AqN i,j = aq(ζj, ζi), i ≤ i, j ≤ N , 1 ≤ q ≤ Q. The off-

line/on-line decomposition should be clear. In the off-line stage, we compute the u(µn) and

form the AqN and FN : this requires N (expensive) “a” finite-element solutions and O(QN2)

finite-element-vector inner products. In the on-line stage, for any given new µ, we first form

AN from (3.13), then solve (3.12) for uN(µ), and finally evaluate sN(µ) = F T
NuN(µ): this

requires O(QN2) +O(2
3
N3) operations and O(QN2) storage.

Thus, as required, the incremental, or marginal, cost to evaluate sN(µ) for any given new

µ — as proposed in a design, optimization, or inverse-problem context — is very small: first,

because N is very small, typically O(10) — thanks to the good convergence properties of

WN ; and second, because (3.12) can be very rapidly assembled and inverted — thanks to the

off-line/on-line decomposition (see [12] for an earlier application of this strategy within the

reduced-basis context). For the problems discussed in this thesis, the resulting computational

savings relative to standard (well-designed) finite-element approaches are significant — at

least O(10), typically O(100), and often O(1000) or more.
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3.3 A Posteriori Error Estimation: Output Bounds

From Section 3.2 we know that, in theory, we can obtain sN(µ) very inexpensively: the

on-line computational effort scales as O(2
3
N3) +O(QN2); and N can, in theory, be chosen

quite small. However, in practice, we do not know how small N can be chosen. Surprisingly,

a posteriori error estimation has received relatively little attention within the reduced-basis

framework [79], even though reduced-basis methods are particularly in need of accuracy

assessment: the spaces are ad hoc and pre-asymptotic, thus admitting relatively little intu-

ition, “rules of thumb,” or standard approximation notions. Recall that, in this section, we

continue to assume that a is coercive and symmetric, and that ` is “compliant.”

The approach described in this section is a particular instance of a general “variational”

framework for a posteriori error estimation of outputs of interest. However, the reduced-basis

instantiation described here differs significantly from earlier applications to finite-element

discretization error [67, 65] and iterative solution error [85] both in the choice of (energy)

relaxation and in the associated computational artifice.

3.3.1 Formulation

We assume that we are given a positive function g(µ) : D → R+, and a continuous, coercive,

symmetric (µ-independent) bilinear form â : Y × Y → R, such that

c‖v‖2
Y ≤ g(µ)â(v, v) ≤ a(v, v;µ), ∀v ∈ Y, ∀µ ∈ D (3.14)

for some positive real constant c. We then find ê(µ) ∈ Y such that

g(µ)â(ê(µ), v) = R(v;uN(µ);µ), ∀v ∈ Y, (3.15)

where for a given w ∈ Y , R(v;w;µ) = `(v)−a(w, v;µ) is the weak form of the residual. Our

lower and upper output estimators are then evaluated as

s−N(µ) ≡ sN(µ), and s+
N(µ) ≡ sN(µ) + ∆N(µ), (3.16)
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respectively, where

∆N(µ) ≡ g(µ)â(ê(µ), ê(µ)) (3.17)

is the estimator gap.

3.3.2 Properties

We shall prove in this section that s−N(µ) ≤ s(µ) ≤ s+
N(µ), and hence that |s(µ)− sN(µ)| =

s(µ) − sN(µ) ≤ ∆N(µ). Our lower and upper output estimators are thus lower and upper

output bounds ; and our output estimator gap is thus an output bound gap — a rigorous

bound for the error in the output of interest. It is also critical that ∆N(µ) be a relatively

sharp bound for the true error: a poor (overly large) bound will encourage us to refine an

approximation which is, in fact, already adequate — with a corresponding (unnecessary)

increase in off-line and on-line computational effort. We shall prove in this section that

∆N(µ) ≤ γ0
c
(s(µ)− sN(µ)), where γ0 and c are defined in (3.1) and (3.14), respectively. Our

two results of this section can thus be summarized as

1 ≤ ηN(µ) ≤ C, ∀N, ∀µ ∈ D (3.18)

where

ηN(µ) =
∆N(µ)

s(µ)− sN(µ)
(3.19)

is the effectivity, and C is a constant independent of N or µ ∈ D. We shall denote the

left (bounding property) and right (sharpness property) inequalities of (3.18) as the lower

effectivity and upper effectivity inequalities, respectively.

We first prove the lower effectivity inequality (bounding property):

Lemma 3.3.1. For s−N(µ) and s+
N(µ) defined in (3.16),

s−N(µ) ≤ s(µ) ≤ s+
N(µ), ∀µ ∈ D,

Proof. The lower bound property follows directly from the discussion in Section 3.2.2. To
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prove the upper bound property, we first observe that

R(v;uN ;µ) = a(u(µ)− uN(µ), v;µ) = a(e(µ), v;µ),

where e(µ) ≡ u(µ)− uN(µ); we may thus rewrite (3.15) as

g(µ)â(ê(µ), v) = a(e(µ), v;µ), ∀v ∈ Y.

We thus obtain

g(µ)â(ê, ê) = g(µ)â(ê− e, ê− e) + 2g(µ)â(ê, e)− g(µ)â(e, e)

= g(µ)â(ê− e, ê− e) + (a(e, e;µ)− g(µ)â(e, e)) + a(e, e;µ)

≥ a(e, e;µ) (3.20)

where g(µ)â(ê(µ) − e(µ), ê(µ) − e(µ)) ≥ 0, and a(e(µ), e(µ);µ) − g(µ)â(e(µ), e(µ)) ≥ 0

from (3.14). Invoking (3.9) and (3.20), we then obtain

s(µ)− sN(µ) = a(e(µ), e(µ);µ) ≤ g(µ)â(ê(µ), ê(µ));

and thus s(µ) ≤ sN(µ) + g(µ)â(ê(µ), ê(µ)) ≡ s+
N(µ), as desired.

We next prove the upper effectivity inequality (sharpness property):

Lemma 3.3.2. For the effectivity ηN(µ), defined in (3.19),

ηN(µ) =
∆N(µ)

s(µ)− sN(µ)
≤ γ0

c
, ∀N, ∀µ ∈ D.

Proof. To begin, we appeal to a-continuity and g(µ)â-coercivity to obtain

a(ê(µ), ê(µ);µ) ≤ γ0g(µ)

c
â(ê(µ), ê(µ)). (3.21)
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But from the modified error equation (3.15) we know that

g(µ)â(ê(µ), ê(µ)) = R(ê(µ);µ) = a(e(µ), ê(µ);µ).

Invoking the Cauchy-Schwartz inequality, we obtain

g(µ)â(ê, ê) = a(e, ê;µ) ≤ (a(ê, ê;µ))1/2(a(e, e;µ))1/2

≤
(γ0

c

)1/2

(g(µ)â(ê, ê))1/2(a(e, e;µ))1/2;

the desired result then directly follows from (3.9) and (3.17).

We now provide empirical evidence for (3.18). In particular, we present in Table 3.1 the

bound gap and effectivities for the thermal fin example. Clearly ηN(µ) is always greater than

unity for any N , and bounded — indeed, quite close to unity — as N →∞.

3.3.3 Computational Procedure

Finally, we turn to the computational artifice by which we can efficiently compute ∆N(µ) in

the on-line stage of our procedure. We again exploit the affine parameter dependence, but

now in a less transparent fashion. To begin, we rewrite the “modified” error equation, (3.15),

as

â(ê(µ), v) =
1

g(µ)

(
`(v)−

Q∑
q=1

N∑
j=1

σq(µ)uN j(µ)aq(ζj, v)

)
, ∀v ∈ X,

where we have appealed to our reduced-basis approximation (3.11) and the affine decompo-

sition (3.3). It is immediately clear from linear superposition that we can express ê(µ) ∈ Y

as

ê(µ) =
1

g(µ)

(
ẑ0 +

Q∑
q=1

N∑
j=1

σq(µ)uN j(µ)ẑqj

)
, (3.22)

where ẑ0 ∈ Y satisfies â(ẑ0, v) = `(v), ∀ v ∈ Y, and ẑqj ∈ Y, j = 1, . . . , N , q = 1, . . . , Q,

satisfies â(ẑqj , v) = −aq(ζj, v), ∀ v ∈ Y. Inserting (3.22) into our expression for the upper
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bound, s+
N(µ) = sN(µ) + g(µ)â(ê(µ), ê(µ)), we obtain

s+
N(µ) = sN(µ)+

1

g(µ)

(
c0 + 2

Q∑
q=1

N∑
j=1

σq(µ)uN j(µ)Λq
j +

Q∑
q=1

Q∑
q′=1

N∑
j=1

N∑
j′=1

σq(µ)σq
′
(µ)uN j(µ)uN j′(µ)Γqq

′

jj′

)
(3.23)

where c0 = â(ẑ0, ẑ0), Λq
j = â(ẑ0, ẑ

q
j ), and Γqq′jj′ = â(ẑqj , ẑ

q′
j′).

The off-line/on-line decomposition should now be clear. In the off-line stage we compute

ẑ0 and ẑqj , j = 1, . . . , N , q = 1, . . . , Q, and then form c0,Λ
q
j , and Γqq

′

jj′ : this requires QN + 1

(expensive) “â” finite element solutions, and O(Q2N2) finite-element-vector inner products.

In the on-line stage, for any given new µ, we evaluate s+
N as expressed in (3.23): this requires

O(Q2N2) operations and O(Q2N2) storage (for c0, Λq
j , and Γqq

′

jj′). As for the computation of

sN(µ), the marginal cost for the computation of s±N(µ) for any given new µ is quite small —

in particular, it is independent of the dimension of the truth finite element approximation

space Y .

There are a variety of ways in which the off-line/on-line decomposition and output error

bounds can be exploited. A particularly attractive mode incorporates the error bounds into

an on-line adaptive process, in which we successively approximate sN(µ) on a sequence of

approximation spaces WN ′
j
⊂ WN , N

′
j = N02

j — for example, WN ′
j

may contain the N ′
j

sample points of SN closest to the new µ of interest — until ∆N ′
j

is less than a specified

error tolerance. This procedure both minimizes the on-line computational effort and reduces

conditioning problems — while simultaneously ensuring accuracy and certainty.

The essential advantage of the approach described in this section is the guarantee of

rigorous bounds. There are, however, certain disadvantages related to the choice of g(µ)

and â. In many cases, simple inspection suffices: for example, in our thermal fin problem

of Section 3.1.2, g(µ) = minq=1,...,Q σq(µ) and â(w, v) =
∑Q

q=1 aq(w, v) yields the very

good effectivities summarized in Table 3.1. In other cases, however, there is no self-evident

(or readily computed [68]) good choice. For example when g(µ) is very small, then the

effectivities will be unacceptably large. The remedy in these cases, is to replace condition
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(3.14) with a more general spectral condition. The development of these spectral conditions,

and “bound conditioners” satisfying such conditions, is given in [113].

3.4 Noncompliant Outputs and

Nonsymmetric Operators

In Sections 3.2 and 3.3 we formulated the reduced-basis method and associated error estima-

tion procedure for the case of compliant outputs, `(v) = f(v), ∀v ∈ Y . We describe here the

formulation and theory for more general linear bounded output functionals; moreover, the

assumption of symmetry (but not yet coercivity) is relaxed, permitting treatment of a wider

class of problems — a representative example is the convection-diffusion equation, in which

the presence of the convective term renders the operator nonsymmetric. We first present the

reduced-basis approximation, now involving a dual or adjoint problem; we then formulate

the associated a posteriori error estimators; and we conclude with a few illustrative results.

As a preliminary, we first generalize the abstract formulation of Section 3.1.1. As before,

we define the “primal” problem as in (3.5), however we of course no longer require symmetry.

But we also introduce an associated adjoint or “dual” problem: for any µ ∈ X, find ψ(µ) ∈ X

such that

a(v, ψ(µ);µ) = −`O(v), ∀v ∈ X; (3.24)

recall that `O(v) is our output functional.

3.4.1 Reduced-Basis Approximation

To develop the reduced-basis space, we first choose — randomly or log-randomly as described

in Section 3.2.2 — a sample set in parameter space, SN/2 = {µ1, . . . , µN/2}, where µi ∈ D, i =

1, . . . , N/2 (N even); we next define an “integrated” Lagrangian reduced-basis approximation

space, WN = span{(u(µn), ψ(µn)), n = 1, . . . , N/2}.

For any µ ∈ D, our reduced basis approximation is then obtained by standard Galerkin

projection onto WN (though for highly nonsymmetric operators minimum residual and
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Petrov-Galerkin projections are attractive — stabler — alternatives). To wit, for the primal

problem, we find uN(µ) ∈ WN such that

a(uN(µ), v;µ) = f(v), ∀v ∈ WN ;

and for the adjoint problem, we define ψN(µ) ∈ WN such that

a(v, ψN(µ);µ) = −`O(v), ∀v ∈ WN .

The reduced-basis output approximation is then calculated from sN(µ) = `O(uN(µ)).

Turning now to the a priori theory, it follows from standard arguments that uN(µ) and

ψN(µ) are “optimal” in the sense that

‖u(µ)− uN(µ)‖Y ≤
(

1 +
γ(µ)

α(µ)

)
inf

wN∈WN

‖u(µ)− wN‖Y ,

‖ψ(µ)− ψN(µ)‖Y ≤
(

1 +
γ(µ)

α(µ)

)
inf

wN∈WN

‖ψ(µ)− wN‖Y .

The best approximation analysis is then similar to that presented in Section 3.2.2. As regards

our output, we now have

|s(µ)− sN(µ)| = |`O(u(µ))− `O(uN(µ))| = |a(u− uN , ψ;µ)|

= |a(u− uN , ψ − ψN ;µ)|

≤ γ0‖u− uN‖X‖ψ − ψN‖Y

(3.25)

from Galerkin orthogonality, the definition of the primal and the adjoint problems, and the

Cauchy-Schwartz inequality. We now understand why we include the ψ(µn) in WN : to ensure

that ‖ψ(µ)− ψN(µ)‖Y is small. We thus recover the “square” effect in the convergence rate

of the output, albeit (and unlike the symmetric case) at the expense of some additional

computational effort — the inclusion of the ψ(µn) in WN ; typically, even for the very rapidly

convergent reduced-basis approximation, the “fixed error-minimum cost” criterion favors the

adjoint enrichment.

For simplicity of exposition (and to a certain extent, implementation), we present here
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the “integrated” primal-dual approximation space. However, there are significant computa-

tional and conditioning advantages associated with a “non-integrated” approach, in which

we introduce separate primal (u(µn)) and dual (ψ(µn)) approximation spaces for u(µ) and

ψ(µ), respectively. Note in the “non-integrated” case we are obliged to compute ψN(µ), since

to preserve the output error “square effect” we must modify our predictor with a residual

correction, f(ψN(µ))−a(uN(µ), ψN(µ);µ) — see the next chapters for more details. Both the

“integrated” and “non-integrated” approaches admit an off-line/on-line decomposition sim-

ilar to that described in Section 3.2.3 for the compliant, symmetric problem; as before, the

on-line complexity and storage are independent of the dimension of the very fine (“truth”)

finite element approximation.

3.4.2 Method I A Posteriori Error Estimators

We extend here the method developed in Section 3.3.2 to the more general case of noncom-

pliant and nonsymmetric problems. We begin with the formulation.

We first find êpr(µ) ∈ Y such that

g(µ)â(êpr(µ), v) = Rpr(v;uN(µ);µ), ∀ v ∈ Y,

where Rpr(v;w;µ) ≡ f(v)− a(w, v;µ), ∀v ∈ X; and êdu(µ) ∈ Y such that

g(µ)â(êdu(µ), v) = Rdu(v;ψN(µ);µ), ∀ v ∈ Y,

where Rdu(v;w;µ) ≡ −`(v)− a(v, w;µ), ∀v ∈ Y . We then define

s̄N(µ) = sN(µ)− g(µ)

2
â(êpr(µ), êdu(µ)), and (3.26)

∆N(µ) =
g(µ)

2
[â(êpr(µ), êpr(µ))]

1
2
[
â(êdu(µ), êdu(µ))

] 1
2 . (3.27)

Finally, we evaluate our lower and upper estimators as

s±N(µ) = s̄N(µ)±∆N(µ). (3.28)
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Note that, as before, g(µ) and â still satisfy (3.14); and that, furthermore, (3.14) will only

involve the symmetric part of a. We define the effectivity as

ηN(µ) =
∆N(µ)

|s(µ)− sN(µ)|
; (3.29)

note that s(µ)− sN(µ) now has no definite sign.

We now prove that our error estimators are bounds (the lower effectivity inequality):

Proposition 1. For s−N(µ) and s+
N(µ) defined in (3.28) then

s−N(µ) ≤ s(µ) ≤ s+
N(µ), ∀N, ∀µ ∈ D.

Proof. To begin, we define ê±(µ) = êpr(µ) ∓ 1
κ
êdu(µ), and note that, from the coercivity of

â,

κg(µ)â(epr − 1

2
ê±, epr − 1

2
ê±) = κg(µ)â(epr, epr) +

κg(µ)

4
â(ê±, ê±)− κg(µ)â(ê±, epr) ≥ 0,

(3.30)

where epr(µ) = u(µ)−uN(µ), edu(µ) = ψ(µ)−ψN(µ), and κ is a positive real number. From

the definition of ê±(µ) and êpr(µ), êdu(µ), we can express the “cross-term” as

g(µ)â(ê±, epr) = Rpr(epr;uN ;µ)∓ 1

κ
Rdu(epr;ψN ;µ)

= a(epr, epr;µ)∓ 1

κ
a(epr, edu;µ)

= a(epr, epr;µ)± 1

κ
(s(µ)− sN(µ)),

(3.31)

since

Rpr(epr;uN ;µ) = a(u, epr;µ)− a(uN , e
pr;µ) = a(epr, epr;µ),

Rdu(epr;ψN ;µ) = a(epr, ψ;µ)− a(epr, ψN ;µ) = a(epr, edu;µ),
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and

`O(µ)− `O(uN) = −a(u− uN , ψ;µ)

= −a(u− uN , ψ − ψN ;µ) (using Galerkin orthogonality)

= −a(epr, edu;µ).

We then substitute (3.31) into (3.30) to obtain

±(s(µ)− sN(µ)) ≤ −κ (a(epr, epr;µ)− g(µ)â(epr, epr)) +
κg(µ)

4
â(ê±, ê±)

≤ κg(µ)

4
â(ê±, ê±),

since κ > 0 and a(epr(µ), epr(µ);µ)− g(µ)â(epr(µ), epr(µ)) ≥ 0 from (3.14).

Expanding ê±(µ) = êpr(µ)∓ 1
κ
êdu(µ) then gives

±(s(µ)− sN(µ)) ≤ g(µ)

4

[
κâ(êpr, êpr) +

1

κ
â(êdu, êdu)∓ 2â(êpr, êdu)

]
,

or

±
(
s(µ)− (sN(µ)− g(µ)

2
â(êpr, êdu))

)
≤ κg(µ)

4
â(êpr, êpr) +

g(µ)

4κ
â(êdu, êdu). (3.32)

We now choose κ(µ) as

κ(µ) =

(
â(êdu(µ), êdu(µ))

â(êpr(µ), êpr(µ))

) 1
2

so as to minimize the right-hand side (3.32); we then obtain

|s(µ)− s̄N(µ)| ≤ ∆N(µ), (3.33)

and hence s−N(µ) ≤ s(µ) ≤ s+
N(µ).

We now turn to the upper effectivity inequality (sharpness property). If the primal and

dual errors are a-orthogonal, or become increasingly orthogonal as N increases, then the

effectivity will not, in fact, be bounded as N → ∞. However, if we make the (plausible)
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hypothesis that |s(µ)−sN(µ)| ≥ C‖epr(µ)‖Y ‖edu(µ)‖Y , then it is simple to demonstrate that

ηN(µ) ≤ γ2
0

2Cc
. (3.34)

In particular, it is an easy matter to demonstrate that

g1/2(µ) (â (êpr(µ), êpr(µ)))1/2 ≤ γ0

c1/2
‖epr(µ)‖Y

(note we lose a factor of γ
1/2
0 relative to the symmetric case); similarly,

g1/2(µ)
(
â
(
êdu(µ), êdu(µ)

))1/2 ≤ γ0

c1/2
‖edu(µ)‖Y .

The desired result then directly follows from the definition of ∆N(µ) and our hypothesis on

|s(µ)− sN(µ)|.

3.4.3 Blackbox Method

Finally, turning to computational issues, we note that the off-line/on-line decomposition

described in Sections 3.2.3 and 3.3.3 for compliant symmetric problems directly extends to

the noncompliant, nonsymmetric case — except that we must compute the norm of both the

primal and dual “modified errors,” with a concomitant doubling of computational effort. The

details of the blackbox technique follow. For convenience we define N as the set {1, . . . , N},

and Q as the set {1, . . . , Q}.

Off-line Stage

1. Calculate u(µi) and ψ(µi), i = 1, . . . , N/2, to form WN .

2. Compute Aq ∈ RN×N as Aqij = aq(ζj, ζi),∀i, j ∈ N 2 and ∀q ∈ Q.

3. Solve for ẑ0 pr ∈ Y and ẑ0 du ∈ Y from â(ẑ0 pr, v) = f(v), ∀v ∈ Y , and â(ẑ0 du, v) =

−`O(v), ∀v ∈ Y , respectively. Also, compute ẑqj ∈ Y from â(ẑqj , v) = −aq(ζj, v), ∀v ∈ Y ,

∀j ∈ N and ∀q ∈ Q.

4. Calculate and store cpr
0 = â(ẑ0 pr, ẑ0 pr); cdu

0 = â(ẑ0 du, ẑ0 du); cprdu
0 = â(ẑ0 pr, ẑ0 du); F pr

N,j =
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f(ζj) and F du
N,j = `O(ζj), ∀j ∈ N ; Λq pr

j = â(ẑ0 pr, ẑqj ) and Λq du
j = â(ẑ0 du, ẑqj ), ∀j ∈

N and ∀q ∈ Q; Γpqij = â(ẑpi , ẑ
q
j ), ∀i, j ∈ N 2 and ∀p, q ∈ Q2.

This stage requires (NQ+N+2) Y -linear system solves; (N2Q2+2NQ+3) â-inner products;

and 2N evaluations of linear functionals.

On-line Stage

For each new desired design point µ ∈ D we then compute the reduced-basis prediction and

error bound based on the quantities computed in the off-line stage.

1. Form AN =
∑Q

q=1 σ
q(µ)Aq and solve for uN ≡ uN(µ) ∈ RN and ψ

N
≡ ψ

N
(µ) ∈ RN from

AN uN = F pr
N and ATN ψ

N
= −F du

N , respectively.

2. Evaluate the bound average and bound gap as

s̄N = (F du
N )TuN−

1

2g(µ)
(
N∑
i=1

N∑
j=1

Q∑
p=1

Q∑
q=1

uN iψN jσ
p(µ)σq(µ)Γpqij +

N∑
j=1

Q∑
q=1

ψN jσ
q(µ)Λq pr

j +

N∑
j=1

Q∑
q=1

uN jσ
q(µ)Λq du

j + cprdu
0 ),

and

∆N(µ) =
1

2 g(µ)
×

(
N∑
i=1

N∑
j=1

Q∑
p=1

Q∑
q=1

uN iuN jσ
p(µ)σq(µ)Γpqij + 2

N∑
j=1

Q∑
q=1

uN jσ
q(µ)Λq pr

j + cpr
0 )

1
2×

(
N∑
i=1

N∑
j=1

Q∑
p=1

Q∑
q=1

ψN iψN jσ
p(µ)σq(µ)Γpqij + 2

N∑
j=1

Q∑
q=1

ψN jσ
q(µ)Λq du

j + cdu
0 )

1
2 .

respectively.

For each µ, O(N2Q2 +N3) operations are required to obtain the reduced-basis solution and

the bounds. Since dim(WN) � dim(Y ), the cost to compute sN(µ), sN(µ), and ∆N(µ)

in the on-line stage will typically be much less than the cost to directly evaluate u(µ) and

s(µ) = `O(u(µ)).
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3.5 Numerical Results

We presented in Table 3.1 for the thermal fin example, the behavior of the relative error,

the bound gap, and the effectivities as a function of N . We see that even for small N , the

accuracy is very good; furthermore, convergence with N is quite rapid. This is particularly

noteworthy given the high-dimensional parameter space; even with N = 50 points we have

less than two points (effectively) in each parameter coordinate. We also note that the

effectivity remains roughly constant with increasing N : the estimators are not only bounds,

but relatively sharp bounds — good predictors when N is “large enough.” The behavior we

observe at this particular value of µ is representative of most points in (a random sample

over) D, however there can certainly be points where the effectivity is larger.

3.5.1 Thermal fin — Shape optimization

We conclude this Section with a more practical application: suppose we wish to find the

configuration which yields a base (e.g., chip) temperature of s∗ (say 1.8) to within ε = .01

by varying only the height α of the radiators. To start, we choose a relatively large number

of basis functions in the design space D defined above, and perform the off-line stage of the

blackbox method. For efficiency in the on-line stage, we then enlist only a subset of these

basis functions — those which are closer in the design space to the desired evaluation point

— and refine when higher accuracy is required. A binary chop algorithm, summarized 3-2,

is implemented to effect the coupled approximation-optimization; we assume monotonicity

for simplicity of exposition.

In the particular test case shown in Table 3.2, we begin with N = 10 points and set N+ =

10 as well; we initialize αl = 0.1 and αr = 0.5. During the optimization process, refinement

is effected twice, such that a total of N = 30 basis functions are invoked (considerably less

than the 50 available). The savings are significant, yet we are still ensured, thanks to the

bounds, that our design requirement is met to the desired tolerance of ε = .01. One can also

apply a dynamic adaptation strategy in which only a minimal number of basis functions are

generated (initially) in the off-line stage: if these prove inadequate, we return to the off-line

stage for additional basis functions and also revision of the necessary matrices and inner
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for i = 1:max iterations do
Choose α := (αl + αr)/2
Blackbox for α⇒ s+

N , s
−
N

d1 := max (|s∗ − s+
N |, |s∗ − s−N |)

d2 := min (|s∗ − s+
N |, |s∗ − s−N |)

if d2 > ε then
if s+

N > s∗ and s−N > s∗ then
αl := α

else if s+
N < s∗ and s−N < s∗ then

αr := α
else
N := N +N+

end if
end if
if d1 < ε then

Stop.
else
N := N +N+

end if
end for

Figure 3-2: Optimization Algorithm

products.

i ᾱ s+
N s−N αl αr

1 0.3 1.683 1.753 0.1 0.5
2 0.2 1.716 2.056 0.1 0.3
3 0.2 1.766 1.807 0.1 0.3
4 0.2 1.771 1.778 0.1 0.3
5 0.15 1.817 1.840 0.1 0.2
6 0.175 1.792 1.806 .15 0.2

Table 3.2: Shape Optimization

If we choose a tighter tolerance ε, or if we wish to investigate many different set points

s∗, or if we perform the optimization permitting all 7 design parameters to vary, we would

of course greatly increase the number of output predictions required — and hence greatly

increase the efficiency of the reduced-basis blackbox technique relative to conventional ap-

proaches.
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Chapter 4

Parabolic Problems

4.1 Introduction

In this Chapter, we consider the extension of reduced-basis output bound methods, to prob-

lems described by parabolic partial differential equations. The essential new ingredient in the

parabolic case is the presence of time in the formulation and solution of the problem. For

the parametrization of the problem, time is considered as an additional parameter, albeit

a special one as we will see in the development to follow. For the numerical solution of

the problem the finite-element method is employed for the spatial discretization. For the

temporal discretization the discontinuous Galerkin method [42, 109] is used; although not

the only choice, the variational origin of the discontinuous Galerkin is desirable for the de-

velopment and proof of the bounding properties. A procedure to efficiently calculate upper

and lower estimators to the outputs of interest is developed. We prove that these estimators

are bounds to the exact value for the output. These bounds can be calculated efficiently by

assuming an (often-satisfied) form for the partial differential operator [66].

4.2 Problem Statement

To start, consider a bounded open domain Ω ⊂ Rd, d = 1, 2, 3 with Lipschitz-continuous

boundary; if T > 0 is the final time and I = (0, T ) (Ī = [0, T ]) the time interval of interest,
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we define the “space-time” domain QT = I × Ω. Furthermore, let V be a closed linear

subspace of H1(Ω), such that H1
0 (Ω) ⊂ V ⊂ H1(Ω). The space L2(I;V ) can be defined as in

Section 2.2. Similarly, we define C0(Ī;L2(Ω)) the set of functions which are continuous (and

therefore bounded) in time, and L2(Ω) in space for t ∈ Ī; also, we will use in the following

L2(QT ) ≡ L2(I;L2(Ω)), and H ≡ L2(I;V ) ∩ C0(Ī;L2(Ω)) [57, 97]. For the parametric

dependence, let P be the number of input parameters and D ⊂ RP the set of allowed

configurations; a particular configuration will be denoted by µ ∈ D.

Let f(·;µ) ∈ L2(QT ) and u0(µ) ∈ L2(Ω) be known functions which depend on the

parameter µ. The problem we are interested in solving is: given a µ ∈ D, find the solution

u(·;µ) ∈ H to the equation:

(∂tu(t;µ), v) + a(u(t;µ), v;µ) = (f(t;µ), v), ∀v ∈ V, (4.1)

u(0;µ) = u0(µ);

here (·, ·) denotes the L2(Ω)-inner product and a(·, ·;µ) : V × V → R is a continuous and

coercive-in-V bilinear form, uniformly in µ ∈ D. Equation (4.1) has to be understood in

the proper distributional sense for t ∈ I. Under the assumptions above the problem is

parabolic and a unique solution u(·;µ) ∈ H exists for all µ ∈ D [97]. We should also mention

that a solution to (4.1) exists under weaker assumptions than the ones presented above

(e.g. f(·;µ) ∈ L2(I;V ′), with V ′ the dual of V ) — this generality is not required for our

presentation. Also to keep the notation minimal, we assume that the L2(Ω)-inner product

and the bilinear form a(·, ·;µ) do not depend on time.

As was mentioned in Section 1.2, in practical applications the solution field u(·;µ) is less

important than relevant outputs of interest. We consider here the output of interest which

is obtained from s(µ) ≡ S(u(·;µ)), with S : H → R a linear functional

S(v) =

∫
I

(
`O(t), v(t)

)
dt+ (gO, v(T−));

with v(t±) = lims→0+ v(t± s). Here `O(·) ∈ L2(QT ) (or more generally, `O ∈ L2(I;V ′)) and

gO ∈ L2(Ω) do not depend on µ — a parametric dependence of the output can be readily
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treated.

It will be useful in the following to replace (4.1), with a space-time weak formulation:

given µ ∈ D, find u(·;µ) ∈ H such that

∫
I

(∂tu(t;µ), v(t)) dt+

∫
I

a(u(t;µ), v(t);µ) dt+ (u(0+;µ), v(0+)) =∫
I

(f(t;µ), v(t)) dt+ (u0(µ), v(0+)), (4.2)

∀v ∈ H. It is obvious that if u(·;µ) is the solution of (4.1) then it is also a solution of (4.2).

We can readily prove the following:

Lemma 4.2.1. The problem in (4.2) is stable, and therefore u(·;µ) ∈ H is the unique weak

solution to (4.2).

Proof. Stability and therefore uniqueness, follows from the coercivity of the bilinear form

a(·, ·;µ),

∃c > 0 such that c‖v‖H1(Ω) ≤ a(v, v;µ),∀v ∈ V, ∀µ ∈ D;

which implies that

∫
I

(∂tv(t), v(t)) dt+

∫
I

a(v(t), v(t);µ) dt+ (v(0+), v(0+)) =

1

2
(v(T−), v(T−)) +

1

2
(v(0+), v(0+)) +

∫
I

a(v(t), v(t);µ) dt ≥ c‖v‖2
L2(I;H1), ∀v ∈ H, v 6= 0.

We will also require in the following ψ(·;µ) ∈ H which is the solution of the following

dual problem:

−
∫
I

(∂tψ(t;µ), v(t)) dt+

∫
I

a(v(t), ψ(t;µ);µ) dt+ (ψ(T−;µ), v(T−)) =

−
∫
I

(
`O(t), v(t)

)
dt− (gO, v(T−)), ∀v ∈ H; (4.3)

the importance of the dual problem will become clear in the analysis that follows. Notice

that if we define τ = T − t, (4.3) becomes parabolic — the dual problem evolves backward
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in time. Therefore, under the requirements above for the primal problem a unique weak

solution ψ(·;µ) to (4.3) will exist.

In practice, for the solution of (4.2) and (4.3), we replace V by a finite but high-

dimensional finite-element space Vh, so that Vh ≈ V (dimVh = N ). Given an input config-

uration µ, solution of the resulting system of ordinary differential equations (and relatedly,

calculation of the output of interest), can be very expensive. We develop in the next section,

a reduced-basis approach to significantly reduce the complexity of this problem.

4.3 Reduced-basis Approximation

We define µ̃ = (t, µ) ∈ D̃ ≡ I × D, and introduce the following sample sets Spr
N =

{µ̃pr
1 , . . . , µ̃

pr
N} and Sdu

M = {µ̃du
1 , . . . , µ̃

du
M}. In general, N 6= M and µ̃pr

i 6= µ̃du
j , i = 1, . . . , N ,

j = 1, . . . ,M . We then compute the solution of (4.2) for all {µ ∈ I | ∃t : (t, µ) ∈ Spr
N }, and

of (4.3) for all
{
µ ∈ I

∣∣ ∃t : (t, µ) ∈ Sdu
M

}
. Using these solutions we define the Lagrangian

reduced-basis approximation spaces, as follows:

W pr
N = span{ζi ≡ u(µ̃pr

i ), i = 1, . . . , N}, W du
M = span{ξi ≡ ψ(µ̃du

i ), i = 1, . . . ,M},

where dimW pr
N = N, and dimW du

M = M ; by construction W pr
N , W

du
M ⊂ V . We can then

define the following spaces,

Hpr
N ≡ L2(I;W pr

N ) ∩ C0(Ī;L2(Ω)), and Hdu
M ≡ L2(I;W du

M ) ∩ C0(Ī;L2(Ω)).

In the construction of the reduced-basis spaces the choice of µi ∈ D (and consequently µ̃i)

for the sample sets Spr
N and Sdu

M is critical. Both the a priori theory [69] (in the context

of elliptic problems) and extensive numerical tests [94] suggest that the points should be

chosen “log-randomly” over D: we sample from a multivariate uniform probability density

on log(D). Especially for large ranges of the input parameters, this logarithmic distribution

performs considerably better than other obvious candidates.

The reduced-basis approximation uN(·;µ) to u(·;µ) is obtained by a standard Galerkin
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projection: given a µ ∈ D, find uN(·;µ) ∈ Hpr
N , such that

∫
I

(∂tuN(t;µ), v(t)) dt+

∫
I

a(uN(t;µ), v(t);µ) dt+ (uN(0+;µ), v(0+)) =∫
I

(f(t;µ), v(t)) dt+ (u0(µ), v(0+)),∀v ∈ Hpr
N . (4.4)

The error to the approximation of u(·;µ) by uN(·;µ) is epr(t;µ) ≡ u(t;µ) − uN(t;µ), and

relatedly Rpr(v;µ) is the residual for the primal problem:

Rpr(v;µ) =

∫
I

(f(t;µ), v(t)) dt−
∫
I

(∂tuN(t;µ), v(t)) dt

−
∫
I

a(uN(t;µ), v(t);µ) dt−
(
uN(0+;µ)− u0(µ), v(0+)

)
=

∫
I

(∂te
pr(t;µ), v(t)) dt+

∫
I

a(epr(t;µ), v(t);µ) dt+
(
epr(0+;µ), v(0+)

)
;

(4.5)

the last line above follows from (4.2). Similarly, for the dual variable, we obtain an approx-

imation ψM(·;µ) ∈ Hdu
M to ψ(·;µ) ∈ H from:

−
∫
I

(∂tψM(t;µ), v(t)) dt+

∫
I

a(v(t), ψM(t;µ);µ) dt+ (ψM(T−;µ), v(T−)) =

−
∫
I

(
`O(t), v(t)

)
dt− (gO, v(T−)),∀v ∈ Hdu

M . (4.6)

The residual for the dual problem Rdu(v;µ) is then:

Rdu(v;µ) = −
∫
I

(
`O(t), v(t)

)
dt+

∫
I

(∂tψM(t;µ), v(t)) dt

−
∫
I

a(v(t), ψM(t;µ);µ) dt−
(
ψM(T−;µ) + gO, v(T−)

)
= −

∫
I

(
∂te

du(t;µ), v(t)
)
dt+

∫
I

a(v(t), edu(t;µ);µ) dt+
(
edu(T−;µ), v(T−)

)
;

(4.7)

from (4.3) and defining edu(t;µ) = ψ(t;µ)− ψM(t;µ).

Using now the reduced-basis solutions to the primal and dual problems, we can obtain
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an approximation to the output of interest sN(µ) from:

sN(µ) ≡ S(uN(·;µ))−Rpr(ψM(·;µ);µ)

=

∫
I

(
`O(t), uN(t;µ)

)
dt+ (gO, uN(T−;µ))−Rpr(ψM(·;µ);µ).

(4.8)

Regarding the convergence of the output approximation (4.8), we have the following:

Lemma 4.3.1. Let

εdu
M = inf

χM∈Hdu
M

{[
‖epr‖L∞(I;L2) + ‖epr‖L2(I;H1)

]
×
[
‖ψ − χM‖L∞(I;L2) + ‖ψ − χM‖L2(I;H1)

]
+‖epr‖L2(I;L2)‖ψ − χM‖H1(I;L2)

}
,

then

|s(µ)− sN(µ)| ≤ C
[
‖epr‖L∞(I;L2) + ‖epr‖L2(I;H1)

]
×
[
‖edu‖L∞(I;L2) + ‖edu‖L2(I;H1)

]
+ Cεdu

M .

(4.9)

Proof. We start with an auxiliary result that will also be required below,

s(µ)− sN(µ) =

∫
I

(
`O, u

)
dt+ (gO, u(T−))

−
∫
I

(
`O, uN

)
dt− (gO, uN(T−)) +Rpr(ψM ;µ)

=

∫
I

(
`O, epr

)
dt+ (gO, epr(T−)) +Rpr(ψM ;µ)

=

∫
I

(∂tψ, e
pr) dt−

∫
I

a(epr, ψ;µ) dt− (ψ(T−), epr(T−)) +Rpr(ψM ;µ)

= −
∫
I

(∂te
pr, ψ) dt−

∫
I

a(epr, ψ;µ) dt− (epr(0+), ψ(0+)) +Rpr(ψM ;µ)

= −Rpr(edu;µ); (4.10)

using (4.3), integration by parts, (4.5) and linearity of the primal residual. From (4.10)

|s(µ)− sN(µ)| =
∣∣∣∣∫
I

(
∂te

pr, edu
)
dt+

∫
I

a(epr, edu;µ) dt+ (epr(0+), edu(0+))

∣∣∣∣ ; (4.11)
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we look at each of the terms on the right-hand side separately. Let χM(·) ∈ Hdu
M , with

χM(0+) = ψM(0+). Then∣∣∣∣∫
I

(
∂te

pr, edu
)
dt

∣∣∣∣ =

∣∣∣∣∫
I

(∂te
pr, ψ − χM + χM − ψM) dt

∣∣∣∣
≤

∣∣∣∣∫
I

(∂te
pr, ψ − χM) dt

∣∣∣∣+ ∣∣∣∣∫
I

(∂te
pr, ψM − χM) dt

∣∣∣∣ .
For the first term above we use integration by parts to get:∣∣∣∣∫

I

(∂te
pr, ψ − χM) dt

∣∣∣∣ ≤ C
[
‖epr‖L∞(I;L2)‖ψ − χM‖L∞(I;L2) + ‖epr‖L2(I;L2)‖ψ − χM‖H1(I;L2)

]
;

and for the second term from (4.5) and using the Galerkin orthogonality property (since

ψM(t)− χM(t) ∈ W du
M ), we get:

∣∣∣∣∫
I

(∂te
pr, ψM − χM) dt

∣∣∣∣ =

∣∣∣∣∣∣
∫
I

a(epr, ψM − χM ;µ) dt+ (epr(0+), ψM(0+)− χM(0+)︸ ︷︷ ︸
=0

)

∣∣∣∣∣∣
≤ γ‖epr‖L2(I;H1)‖ψM − ψ + ψ − χM‖L2(I;H1)

≤ γ‖epr‖L2(I;H1)

(
‖ψM − ψ‖L2(I;H1) + ‖ψ − χM‖L2(I;H1)

)
,

with γ the continuity constant of a(·, ·;µ). Combining the expressions above:∣∣∣∣∫
I

(
∂te

pr, edu
)
dt

∣∣∣∣ ≤ γ‖epr‖L2(I;H1)‖edu‖L2(I;H1) + Cεdu
M . (4.12)

The second and third terms in (4.11) can be bounded using the continuity of the bilinear

form a and the Cauchy-Schwartz inequality, giving

|s(µ)− sN(µ)| ≤
∣∣∣∣∫
I

(
∂te

pr, edu
)
dt

∣∣∣∣+ γ‖epr‖L2(I;H1)‖edu‖L2(I;H1) + ‖epr‖L∞(I;L2)‖edu‖L∞(I;L2).

(4.13)

The desired result follows directly from (4.12) and (4.13).

The previous lemma gives an a priori bound on the convergence of the output approxi-

mation, defined in (4.8), to its exact value; as we see from (4.9), a term appears involving εdu
M
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— a measure of how well members of the reduced-basis space Hdu
M approximate the solution

to the adjoint problem — as well as norms of the error to the dual problem edu. Had we used

S(uN(·;µ)) instead of (4.8) to calculate the output approximation, the corresponding bound

would depend on norms of the primal error epr only. As M increases, the term involving

the dual errors will become smaller and, given the approximation properties of W du
M , will

converge to zero; this suggests faster convergence of the adjoint-corrected output and use of

(4.8) is justified.

In the calculation above we have, in effect, replaced V (or Vh) with W pr
N for the primal

and W du
M for the dual problem. These reduced-basis spaces have approximation properties

specific to the problem of interest, so only a small number of basis functions need to be

retained to accurately represent the solution. Significant computational savings are affected,

since the computational complexity scales as N(= dimW pr
N ) and M(= dimW du

M ) instead of

N (= dimVh), and N, M will be small — typically O(10) — and independent of N . As

N, M → ∞, and given the specific choice of the approximation spaces, uN(·;µ) → u(·;µ),

ψM(·;µ) → ψ(·;µ), and sN(µ) → s(µ) will converge to the exact values very fast.

4.4 A posteriori error estimation

The computational relaxation introduced in the previous section, allows us to compute very

efficiently accurate approximations to the solution and the output of interest. Thanks to the

expected rapid convergence N and M could, in theory, be chosen quite small. However, in

practice we do not know how small N and M can be: this will depend of the desired accuracy,

the choice of µ̃i in the construction of the reduced-basis spaces, the output of interest and

the particular problem in question; in some cases N, M = 5 may suffice, while in other cases

N, M = 100 may still be insufficient. In the face of this uncertainty, either too many or

too few basis functions will be retained: the former results in computational inefficiency; the

later in unacceptable uncertainty. It is therefore critical that we can ascertain the accuracy of

our predictions; we develop next, a rigorous error-estimation approach, directly for outputs

of interest, to a posteriori validate the accuracy of our predictions.

To begin assume that we may find a function g(µ) : D → R+, and a symmetric, continuous
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and coercive bilinear form â : V × V → R such that

c‖v‖1 ≤ g(µ)â(v, v) ≤ a(v, v;µ), ∀v ∈ V, ∀µ ∈ D; (4.14)

we understand g(µ) as a lower bound to the â-coercivity constant.

We then compute the “reconstructed” errors êpr(·;µ) ∈ H and êdu(·;µ) ∈ H such that

g(µ)

∫
I

â(êpr(t;µ), v(t)) dt = Rpr(v;µ), ∀v ∈ H, and

g(µ)

∫
I

â(êdu(t;µ), v(t)) dt = Rdu(v;µ), ∀v ∈ H. (4.15)

Note that a unique solution exists for problems (4.15), by an application of the Riesz-Frechet

representation theorem since Rpr and Rdu are continuous linear functionals on the Hilbert

space L2(I;V ′) and
∫
I
â(·, ·) dt is a scalar product in L2(I;V ). An estimate for the output

is then computed, sB(µ):

sB(µ) = sN(µ)− g(µ)

2

∫
I

â(êpr(t;µ), êdu(t;µ)) dt; (4.16)

and a bound gap ∆(µ):

∆(µ) =
g(µ)

2

[∫
I

â(êpr(t;µ), êpr(t;µ)) dt

] 1
2
[∫

I

â(êdu(t;µ), êdu(t;µ)) dt

] 1
2

. (4.17)

Finally, upper and lower output estimators can be calculated from s±(µ) = sB(µ) ± ∆(µ).

We now prove that these estimators s±(µ) are always rigorous bounds to the true output s(µ).

In the proof that follows, unless it is essential, we will not explicitly indicate dependence on

the variables t and µ.

Proposition 2. Let sB(µ) be the output approximation, defined in (4.16), and ∆(µ) the

bound gap, defined in (4.17). If we then define s±(µ) = sB(µ)±∆(µ) then

s−(µ) ≤ s(µ) ≤ s+(µ), ∀µ ∈ D;
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that is, s+(µ) and s−(µ) are rigorous upper and lower bounds to the true output s(µ).

Proof. To start, notice that Rpr(edu;µ) = Rdu(epr;µ) since:

Rpr(edu;µ) =

∫
I

(
∂te

pr, edu
)
dt+

∫
I

a(epr, edu;µ) dt+
(
epr(0+), edu(0+)

)
= −

∫
I

(
∂te

du, epr
)
dt+

∫
I

a(epr, edu;µ) dt+
(
epr(T−), edu(T−)

)
= Rdu(epr;µ);

using integration by parts, and the definition of the primal (4.5) and dual (4.7) residuals.

Therefore from (4.10),

−Rdu(epr;µ) = s(µ)− sN(µ). (4.18)

We can now start the proof of the bounding property, and define ê± = êpr∓ 1
κ
êdu, with κ > 0.

From the coercivity of â, we have:

κg(µ)

∫
I

â(epr − 1

2
ê±, epr − 1

2
ê±) =

κg(µ)

∫
I

â(epr, epr) + κ
g(µ)

4

∫
I

â(ê±, ê±)− κg(µ)

∫
I

â(ê±, epr) ≥ 0. (4.19)

Since ê± = êpr ∓ 1
κ
êdu, and using (4.15) we get:

g(µ)

∫
I

â(ê±, epr) dt = Rpr(epr;µ)∓ 1

κ
Rdu(epr;µ). (4.20)

But:

Rpr(epr;µ) =

∫
I

(∂te
pr, epr) dt+

∫
I

a(epr, epr;µ) dt+
(
epr(0+), epr(0+)

)
≥ 1

2
(epr(T−), epr(T−))︸ ︷︷ ︸

>0

+
1

2
(epr(0+), epr(0+))︸ ︷︷ ︸

>0

+

∫
I

a(epr, epr;µ) dt

≥ g(µ)

∫
I

â(epr, epr) dt,

since from (4.14) we have
∫
I
a(epr, epr;µ) dt ≥ g(µ)

∫
I
â(epr, epr) dt. Replacing in (4.20) for
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Rpr(epr;µ) the expression we just obtained, and (4.18) for Rdu(epr;µ), we have:

−κg(µ)

∫
I

â(ê±, epr) dt ≤ −κg(µ)

∫
I

â(epr, epr) dt∓ (s(µ)− sN(µ)). (4.21)

Combining now (4.19) and (4.21), we get

±(s(µ)− sN(µ)) ≤ κg(µ)

4

∫
I

â(ê±, ê±) dt.

Expanding ê± = êpr ∓ 1
κ
êdu we have

±(s(µ)− sN(µ)) ≤ g(µ)

4

[
κ

∫
I

â(êpr, êpr) dt+
1

κ

∫
I

â(êdu, êdu) dt∓ 2

∫
I

â(êpr, êdu) dt

]

and from the definition of sB(µ) = sN(µ)− g(µ)
2

∫
I
â(êpr, êdu) dt,

±(s(µ)− sB(µ)) ≤ κg(µ)

4

∫
I

â(êpr, êpr) dt+
g(µ)

4κ

∫
I

â(êdu, êdu) dt. (4.22)

Since κ is an arbitrary positive constant, we choose it as:

κ =

(∫
I
â(êdu, êdu) dt∫
I
â(êpr, êpr) dt

) 1
2

,

so that the right-hand side in (4.22) is minimized. Then

±(s(µ)− sB(µ)) ≤ g(µ)

2

[∫
I

â(êpr, êpr) dt

] 1
2
[∫

I

â(êdu, êdu) dt

] 1
2

;

which from the definition of ∆(µ) becomes ±(s(µ)− sB(µ)) ≤ ∆(µ), or

s−(µ) ≡ sB(µ)−∆(µ) ≤ s(µ) ≤ sB(µ) + ∆(µ) ≡ s+(µ).

So following the previous proposition, instead of using the exact value for the output

s(µ), we can use the output prediction sB(µ) and the bound gap ∆(µ). The basic premise
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is that these two quantities can be computed more efficiently than the exact output. This is

indeed the case when a certain decomposition exists for all the parameter-dependent linear

and bilinear forms [61]. More specifically, assume that for t ∈ I, µ ∈ D and for Qa, f, u ∈ N

the following “affine” decomposition exists:

a(w, v;µ) =

Qa∑
q=1

σqa(µ)aq(w, v), ∀w, v ∈ V 2, f(t;µ) =

Qf∑
q=1

σqf (t;µ)f q, u0(µ) =

Qu∑
q=1

σqu(µ)uq0;

(4.23)

with σqa, f, u functions which depend on µ and t, whereas the aq, f q, and uq0 do not. For

a large class of problems such a decomposition exists; certain relaxations are possible for

locally non-affine problems [94].

Using (4.23) and following the same steps as in [66], a two-stage computational procedure

can be developed: Off-line the reduced-basis space is formed and a database with certain

auxiliary quantities is created; this is a relatively expensive preprocessing step which needs

to be performed only once. On-line, for each new µ, using the database: the reduced-basis

problem is formed and solved; the reduced-basis solution is used to compute the output

approximation; and finally, the output bounds are calculated. The incremental cost for each

on-line step is minimal and scales only with the dimension N, M of the reduced-basis spaces

and the parametric complexity Qa, f, u of the linear and bilinear forms.

The definition of the reduced-basis spaces comprising of snapshots to the solution at

different parameter points is not the only possibility. An alternative approach is to construct

the reduced-basis spaces by using the entire time-dependent solution at certain parameter

values. A space-time Galerkin projection can then be used to obtain the reduced-basis

problems. Moreover the a posteriori error estimator, defined above, could be easily adapted

to this case. There are certain advantages in this alternative approach; for example, instead

of solving the low-dimensional parabolic problems (4.4) and (4.6), one has to solve linear

systems of small dimension. Also, there is some simplification in the computation of the error

estimator. On the other hand, during the preprocessing/off-line stage the computational cost

and required memory storage become much higher, making overall this second approach less

attractive.
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4.5 Time Discretization —

Discontinuous Galerkin Method

In the previous section we presented the general theory without any reference to the time-

discretization procedure. Here we consider one possible time-discretization method, the

discontinuous Galerkin method. The discontinuous Galerkin method was first introduced in

the context of time-dependent problems by Jamet [42], and was further analyzed [71, 103].

The variational origin of the discontinuous Galerkin method, will allow us to extend the a

posteriori error estimation method developed in the previous section for the discrete-in-time

approximation.

Consider a set of L + 1 points in Ī = [0, T ] such that t0 ≡ 0 < t1 < t2 < . . . <

tL ≡ T is a partition I of I in intervals Il = (tl−1, tl), l ∈ L ≡ {1, . . . , L}. The diam-

eter for each Il will be ∆τ l = tl − tl−1, l ∈ L. We then define the spaces Pq(Il;V ) =

{v : Il → V | v(t) =
∑q

s=0 vst
s, vs ∈ V } ⊂ L2(Il;V ) ∩ C0(Īl;L

2(Ω)),∀l ∈ L, and V q(I;V ) =

{v ∈ L2(I;V ) | v|Il ∈ Pq(Il;V ), ∀Il ∈ I}. Obviously, if v ∈ V q(I;V ) then the function can

be discontinuous at the points tl, l ∈ L. We further define the jump at these points as

[v]l = v(t+l )− v(t−l ), l ∈ {0, . . . , L}, with v(t±l ) = lims→0+ v(tl ± s). The problem is then to

compute using the discontinuous Galerkin method a solution uq(·;µ) ∈ V q(I;V ) — which

is a discontinuous approximation to u(·;µ) of (4.2) — from:

∫
I

(∂tu
q(t;µ), v(t)) dt+

∫
I

a(uq(t;µ), v(t);µ) dt+
∑
l∈L

([uq(·;µ)]l−1, v(t
+
l−1)) =∫

I

(f(t;µ), v(t)) dt, (4.24)

∀v ∈ V q(I;V ); with [uq(·;µ)]0 = uq(0+;µ)− u0(µ) (or uq(0−;µ) = u0(µ)). In (4.24) we can

solve separately for each Il; continuity is imposed only weakly due to the presence of the

additional jump terms. For the dual problem, we can compute a solution ψq(·;µ) ∈ V q(I;V )
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from:

−
∫
I

(∂tψ
q(t;µ), v(t)) dt+

∫
I

a(v(t), ψq(t;µ);µ) dt−
∑
l∈L

([ψq(·;µ)]l, v(t
−
l )) =

−
∫
I

(
`O(t), v(t)

)
dt, (4.25)

∀v ∈ V q(I;V ); with [ψq(·;µ)]L = −gO − ψq(T−;µ) (or ψq(T+;µ) = −gO). The output of

interest sq(µ) can then be calculated using uq(·;µ), from:

sq(µ) =

∫
I

(
`O(t), uq(t;µ)

)
dt+(gO, uq(T−;µ)) =

∑
l∈L

∫
Il

(
`O(t), uq(t;µ)

)
dt+(gO, uq(T−;µ)).

(4.26)

The reduced-basis spaces are formed similarly to the continuous case, by obtaining “snap-

shots”of the solution to the primal and dual problems for all points in the sets Spr
N and Sdu

M

respectively:

W pr
N = span{ζi ≡ uq(µ̃pr

i ), i = 1, . . . , N, µ̃pr
i ∈ S

pr
N },

W du
M = span{ξi ≡ ψq(µ̃du

i ), i = 1, . . . ,M, µ̃du
i ∈ Sdu

M }.

The reduced-basis approximation to uq(t;µ) can be obtained by a standard Galerkin projec-

tion: for a given µ ∈ D, find uqN(·;µ) ∈ V q(I;W pr
N ), such that

∫
I

(∂tu
q
N(t;µ), v(t)) dt+

∫
I

a(uqN(t;µ), v(t);µ)dt+([uqN(·;µ)]l−1, v(t
+
l−1)) =

∫
I

(f(t;µ), v(t)) dt,

∀v ∈ V q(I;W pr
N ) with [uqN(·;µ)]0 = uqN(0+;µ) − u0(µ); similarly, we define the dual prob-

lem and obtain ψqM(·;µ) ∈ V q(I;W du
M ). The primal and dual residuals are defined as:

Rpr q(v;µ) =
∑

l∈LR
pr q
l (v;µ) with Rpr q

l (v;µ) the residual for the primal problem in the

74



time interval Il:

Rpr q
l (v;µ) =

∫
Il

(f(t;µ), v(t)) dt−
∫
Il

(∂tu
q
N(t;µ), v(t)) dt

−
∫
Il

a(uqN(t;µ), v(t);µ)dt− ([uqN(·;µ)]l−1, v(t
+
l−1))

=

∫
Il

(∂te
pr q(t;µ), v(t)) dt+

∫
Il

a(epr q(t;µ), v(t);µ) dt+ ([epr q(·;µ)]l−1, v(t
+
l−1));

where epr q(t;µ) ≡ uq(t;µ) − uqN(t;µ), the error in the primal variable. The residual for the

dual problem Rdu q
l (v;µ) is defined as:

Rdu q
l (v;µ) = −

∫
Il

(
`O(t), v(t)

)
dt+

∫
Il

(∂tψ
q
M(t;µ), v(t)) dt

−
∫
il

a(v(t), ψqM(t;µ);µ)dt+ ([ψqM(·;µ)]l, v(t
−
l ))

= −
∫
Il

(
∂te

du q(t;µ), v(t)
)
dt+

∫
Il

a(v(t), edu q(t;µ);µ) dt− ([edu q(·;µ)]l, v(t
−
l ));

from (4.25) and defining edu q(t;µ) = ψq(t;µ)− ψqM(t;µ), the error in the dual variable. An

approximation to the output of interest sqN(µ) can then be obtained from:

sqN(µ) =
∑
l∈L

[∫
Il

(
`O(t), uqN(t;µ)

)
dt−Rpr q

l (ψqM(·;µ);µ)

]
+ (gO, uqN(T−;µ)). (4.27)

Turning now to the a posteriori error estimator, we compute “representations” of the

error êpr q(·;µ) ∈ V q(I;V ) with êpr q
l (·;µ) ≡ êpr q(·;µ)|Il , and êdu q(·;µ) ∈ V q(I;V ) with

êdu q
l (·;µ) ≡ êdu q(·;µ)|Il such that:

g(µ)

∫
Il

â(êpr q
l (t;µ), v(t)) dt = Rpr q

l (v;µ), ∀v ∈ Pq(Il;V ), ∀Il ∈ I and

g(µ)

∫
Il

â(êdu q
l (t;µ), v(t)) dt = Rdu q

l (v;µ), ∀v ∈ Pq(Il;V ), ∀Il ∈ I. (4.28)

For the error estimator we first calculate the output approximation, sqB(µ):

sqB(µ) = sqN(µ)− g(µ)

2

∑
l∈L

∫
Il

â(êpr q
l (t;µ), êdu q

l (t;µ)) dt; (4.29)
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and the bound gap ∆q(µ) is defined as:

∆q(µ) =
g(µ)

2

[∑
l∈L

∫
Il

â(êpr q
l (t;µ), êpr q

l (t;µ)) dt

] 1
2
[∑
l∈L

∫
Il

â(êdu q
l (t;µ), êdu q

l (t;µ)) dt

] 1
2

.

(4.30)

Finally, as before, symmetric upper and lower output estimators can be calculated from

s± q(µ) = sqB(µ)±∆q(µ). We can then prove the following:

Proposition 3. Let sq(µ) be the exact value of the output for the semi-discrete problem,

defined in (4.26). If we define sqB(µ) and ∆q(µ) as in (4.29) and (4.30), respectively, then

s± q(µ) = sqB(µ)±∆q(µ) are upper and lower bounds to the true output:

s− q(µ) ≤ sq(µ) ≤ s+ q(µ),∀µ ∈ D.

Proof. We first obtain some results for
∑

l∈LR
pr q
l (epr q;µ) and

∑
l∈LR

du q
l (epr q;µ) that will

be required in the following. First we look in the error for the output, which from the

definition of sq(µ) (4.26) and sqN(µ) (4.27) becomes:

sq(µ)− sqN(µ) =
∑
l∈L

[
−
∫
Il

(∂te
pr q, ψq) dt−

∫
Il

a(epr q, ψq;µ) dt+Rpr q
l (ψqM(·;µ);µ)

]
+ I1;

using (4.25) and integration by parts. The additional terms I1 can be simplified, as follows:

I1 =
∑
l∈L

[
([ψq]l, e

pr q(t−l )) + (ψq(t−l ), epr q(t−l ))− (ψq(t+l−1), e
pr q(t+l−1))

]
+ (gO(µ), epr q(T−))

=
∑
l∈L

[
(ψq(t+l ), epr q(t−l ))− (ψq(t+l−1), e

pr q(t−l−1))− (ψq(t+l−1), [e
pr q]l−1)

]
+(gO(µ), epr q(T−))

= (gO(µ), epr q(T−)) + (ψq(T+)︸ ︷︷ ︸
−gO(µ)

, epr q(T−))− (ψq(0+), epr q(0−)︸ ︷︷ ︸
0

)−
∑
l∈L

([epr q]l−1, ψ
q(t+l−1));

using in the second line the definition of the jump operator epr q(t+l−1) = [epr q]l−1 + epr q(t−l−1);
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and in the last line, ψq(T+;µ) = −gO and epr q(0−;µ) = 0. Therefore,

sq(µ)− sqN(µ) =
∑
l∈L

[
−
∫
Il

(∂te
pr q, ψq) dt

−
∫
Il

a(epr q, ψq;µ) dt− ([epr q]l−1, ψ
q(t+l−1)) +Rpr q

l (ψqM(·;µ);µ);

]
= −

∑
l∈L

Rpr q
l (edu q;µ).

(4.31)

But
∑

l∈LR
pr q
l (edu q;µ) =

∑
l∈LR

du q
l (epr q;µ), since

∑
l∈L

Rpr q
l (edu q;µ) =

∑
l∈L

[∫
Il

(
∂te

pr q, edu q
)
dt+

∫
Il

a(epr q, edu q;µ) dt (4.32)

+([epr q]l−1, e
du q(t+l−1))

]
=
∑
l∈L

[
−
∫
Il

(
∂te

du q, epr q
)
dt+

∫
Il

a(epr q, edu q;µ) dt

]
+ I2

=
∑
l∈L

[
−
∫
Il

(
∂te

du q, epr q
)
dt+

∫
Il

a(epr q, edu q;µ) dt− ([edu q]l, e
pr q(t−l ))

]
=
∑
l∈L

Rdu q
l (epr q;µ); (4.33)

from integration by parts and the definitions of the primal and dual residuals. The additional

terms I2 are calculated below:

I2 =
∑
l∈L

[
(epr q(t−l ), edu q(t−l ))− (epr q(t+l−1), e

du q(t+l−1)) + (epr q(t+l−1)− epr q(t−l−1), e
du q(t+l−1))

]
=
∑
l∈L

[
−(epr q(t−l ), [edu q]l) + (epr q(t−l ), edu q(t+l ))− (epr q(t−l−1), e

du q(t+l−1))
]

=−
∑
l∈L

([edu q]l, e
pr q(t−l ));

again the definition of the jump operator has been used, and epr q(0−) = edu q(T+) = 0.

Combining (4.31) and (4.32) we obtain:

−
∑
l∈L

Rdu q
l (epr q;µ) = (sq(µ)− sqN(µ)) . (4.34)
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Turning now to
∑

l∈LR
pr q
l (epr q;µ), we first compute I3

I3 =
∑
l∈L

[
1

2
(epr q(t−l ), epr q(t−l ))− 1

2
(epr q(t+l−1), e

pr q(t+l−1))

+(epr q(t+l−1)− epr q(t−l−1), e
pr q(t+l−1))

]
=

∑
l∈L

1

2
‖ [epr q(tl−1)] ‖2

L2(Ω) +
1

2
(epr q(T−), epr q(T−))− 1

2
(epr q(0−)︸ ︷︷ ︸

0

, epr q(0−));

as before we used here the definition of the jump operator and simple algebraic manipulations.

But then,

∑
l∈L

Rpr q
l (epr q;µ) =

∑
l∈L

[∫
Il

(∂te
pr q, epr q) dt+

∫
Il

a(epr q, epr q;µ) dt+ ([epr q]l−1, e
pr q (t+l−1))

]
= I3 +

∑
l∈L

∫
Il

a(epr q, epr q;µ) dt ≥ g(µ)

∫
I

â(epr q, epr q) dt (4.35)

since I3 is the sum of non-negative terms, and also using (4.14). We turn now to the proof

of the bounding properties, and as before, for κ > 0 we define ê± q = êpr q ∓ 1
κ
êdu q. From the

coercivity of â,

κg(µ)

∫
I

â(epr q − 1

2
ê± q, epr q − 1

2
ê± q) dt ≥ 0

κg(µ)

∫
I

â(epr q, epr q) dt+
κg(µ)

4

∫ T

0

â(ê± q, ê± q) dt− κg(µ)

∫
I

â(ê± q, epr q) dt ≥ 0.

(4.36)

From the definition of ê± q, êpr q, and êdu q we have:

g(µ)

∫
I

â(ê± q, epr q) dt =
∑
l∈L

Rpr q
l (epr q;µ)∓ 1

κ

∑
l∈L

Rdu q
l (epr q;µ).

Using (4.35) to replace
∑

l∈LR
pr q
l (epr q;µ), and (4.34) to replace

∑
l∈LR

du q
l (epr q;µ), we get

−κg(µ)

∫
I

â(ê± q, epr q) dt ≤ −κg(µ)

∫
I

â(epr q, epr q) dt∓ (sq(µ)− sqN(µ)) . (4.37)
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Replacing now (4.37) in (4.36), we get

± (sq(µ)− sqN(µ)) ≤ κg(µ)

4

∫
I

â(ê± q, ê± q) dt.

The rest of the proof follows similarly to that of the continuous case.

To measure the quality of the computed bounds, we define the a posteriori effectivity

index η(µ), as the ratio of the computed error over the true error in the output prediction

η(µ) =
∆q(µ)

|sq(µ)− sqB(µ)|
.

The previous Proposition suggests that the prediction of the error in the output will over-

estimate the true error and therefore the effectivity will always be larger than one, η(µ) ≥

1, ∀µ ∈ D. Large effectivities indicate that the computed error bound largely overestimates

the true error and therefore the bounds obtained are not sharp. This implies that for a given

accuracy, the error estimator suggests the use of a higher number of basis functions than are

actually required and the computational cost will be unnecessarily high. For efficiency, it is

therefore desired that the effectivities will be as close to one as possible. The choice of â and

g(µ) is critical to obtain good effectivities; for a discussion see [94]. For better effectivities,

it is possible to choose different â and g(µ) which satisfy (4.14) only in subregions of the

parameter domain. Also the more general bound conditioners, developed in [113] for elliptic

coercive problems, can also be extended to the parabolic case.

4.6 Results

We consider the problem of designing the thermal fin of Figure 4-1 to cool (say) an

electronic component at the fin base, Γroot; the description of the problem is given in the

introduction.

Initially, the non-dimensional temperature is u0(µ) = 0. A uniform heat flux is applied at

the root of the fin at t = 0 and remains on until the final time t = T ≡ 3. The temperature

increases until it reaches the final value u(T−;µ). On the original domain the bilinear form
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is given by, â(w, v;µ) =
∫

Ω̂0
∇w · ∇v +

∑4
i=1 ki

∫
Ω̂i
∇w · ∇v + Bi

∫
∂Ω̂\Γroot

wv; with Ω̂0 the fin

central-post domain, and Ω̂i the ith radiator domain. We then map the original domain Ω̂

to a reference geometry Ω, shown by solid lines in Figure 4-1. The original bilinear form

â(w, v;µ) is replaced by a(w, v;µ) defined in the fixed domain Ω — the variable geometry

appears as domain-dependent effective orthotropic conductivities and Bi numbers. Similarly,

the L2-inner product (w, v)L2(Ω̂) is replaced by (w, v)L2(Ω) ≡ b(w, v;µ), defined on the fixed

domain — the variable geometry also makes the L2-inner product parameter-dependent. We

consider two outputs: the first, is the mean temperature of the base Γroot averaged over the

time interval (0, T ):

s1(µ) ≡ s1(u(·;µ)) =
1

T

∫
I

∫
Γroot

u(t;µ) dS dt;

the second, is the mean temperature in the shaded region Ωout (with area AΩout) at the final

time t = T :

s2(µ) ≡ s2(u(·;µ)) =
1

AΩout

∫
Ωout

u(T−;µ) dS.

Both outputs are, to a certain extent, indicators of the cooling performance of the fin.

Taking advantage of the natural domain decom- Bi

k4

k3

k0

k2

k1

Ωout

Γroot

β

α

Figure 4-1: Two-dimensional ther-

mal fin

position afforded by our mapping, it is not difficult to

cast the problem such that the affine decomposition

assumption is verified:

a(w, v;µ) =

Qa∑
q=1

σqa(µ)aq(w, v), ∀w, v ∈ V 2, and

b(w, v;µ) =

Qb∑
q=1

σqb (µ)bq(w, v), ∀w, v ∈ L2(Ω);

with Qa = 16 and Qb = 3. Choosing â(w, v) =∑Qa

q=1 a
q(w, v) =

∫
Ω
∇w·∇v+

∫
∂Ω\Γroot

wv, and g(µ) =

minq∈{1,...,Qa} σ
q
a(µ) (the σqa(µ) are all bounded below

by a positive constant), we are able to verify (4.14).
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Thus all the requirements are honored, and the bound

method can be applied.

We choose the total (non-dimensional) height of the thermal fin Ĥ = 4, and the length

and height of the radiators α̂ = 2.5 and β̂ = 0.25 respectively; the reference geometry Ω̂ is

thus completely defined. To obtain the “exact” solution: first, for the spatial discretization,

we introduce a very fine triangulation Th and define the finite-element space V ≈ Vh = {v ∈

H1(Ω̂)|v|Th
∈ P1,∀Th ∈ Th} with piecewise linear polynomials over each of the elements Th;

and second, for the temporal discretization, the discontinuous Galerkin method is used with

q = 0 and the time interval Ī = [0, 3] is partitioned into L = 30 intervals of uniform length

∆τ l ≡ ∆τ = 0.1, ∀l ∈ L. (The same parameters are used for the reduced-basis problems.)

Next in the definition of our problem, is the specification of the ranges for each of the

input parameters. We choose a parameter space as follows: D = [0.01, 100.0]4×[0.001, 10.0]×

[0.2, 0.6]×[2.3, 2.8], that is 0.01 ≤ k1,2,3,4 ≤ 100.0, 0.001 ≤ Bi ≤ 10.0, 0.2 ≤ α ≤ 0.6 and 2.3 ≤

β ≤ 2.8. Points in this parameter space — for example, for the construction of the sample

sets Spr
N and Sdu

M — are obtained by sampling “log-randomly” (see Section 4.3). A point

µ ∈ D, describes a particular configuration. For example, µt = {0.4, 0.6, 0.8, 1.2, 0.1, 0.3, 2.8}

represents a thermal fin with k1 = 0.4, k2 = 0.6, k3 = 0.8, k4 = 1.2, Bi = 0.1, α = 0.3,

and β = 2.8; this particular configuration will be used as a test point µt in the following

numerical experiments.

For the construction of the primal reduced-basis space we sample D and obtain a num-

ber of points µpr
i . For each of these points the primal problem is solved and the reduced-

basis vectors are obtained by taking “snapshots” of the solution at different times. The

sampling times or the number of snapshots can vary arbitrarily from one configuration

to the next; in the following, for each configuration, four “snapshots” were obtained at

t = 1∆τ, 10∆τ, 20∆τ, and 30∆τ . For example if N = 20, five different configurations

were considered, each giving four basis vectors for the construction of the reduced-basis

space. For the dual reduced-basis space the same procedure is followed, solving the dual

problem for a different set of parameter points and taking “snapshots” of the solution at

t = 29∆τ, 20∆τ, 10∆τ, and 0∆τ .

As a first test, we study the convergence of the reduced-basis solution to the exact one.
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N = M
|s1
N(µt)− s1(µt)|

s1(µt)

|s2
N(µt)− s2(µt)|

s2(µt)
8 1.22e− 01 2.03e− 01
20 3.15e− 03 6.41e− 03
40 1.18e− 04 4.61e− 04
60 3.91e− 05 3.02e− 05
80 1.16e− 06 2.56e− 06
100 7.42e− 07 1.22e− 06
120 1.74e− 08 2.46e− 07

Table 4.1: Relative error by the reduced-basis prediction of the outputs of interest for dif-
ferent values of N = M .

For this, we sample log-randomly the parameter space D and construct reduced-basis spaces

of increasing dimension N = M . Using these spaces we compute, for the test point µt,

the reduced-basis solution and the two outputs of interest. In Table 4.1, the error in the

prediction of the adjoint-corrected output relative to the exact value, is shown for increasing

values of N . We can see that, for both outputs, the output prediction converges very fast to

the exact value, albeit at a different rate for each output. If, for example, a 1% accuracy is

required — which is sufficient in many engineering applications, — then only N = 20 basis

functions would be sufficient. This implies that the incremental cost for each new output

evaluation is very small; depending on the dimension of the space Vh, the computational

savings can be of several orders of magnitude. For sufficiently large values of N , M the

vectors that comprise the reduced basis spaces are closely related and this leads to ill-

conditioning problems. Indeed in our case increasing N , M above 120, ill-conditioning leads

first to deterioration of the convergence rate and eventually to incorrect results. The issue

of ill-conditioning in the reduced-basis context is very important, but an analysis will not

be further pursued; first, because we are usually interested in the pre-asymptotic region

(small values of N); and second, because even for the conservative triangulation used here,

the discretization error is of the same order of magnitude as the reduced-basis error when

N = M = 80 — using higher values for N is not relevant except, maybe, for testing the

convergence rate.

The choice of the sample set Spr
N , is critical for the approximation properties of W pr

N . For
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N 20 40 60 80 100
M 100 80 60 40 20

∆1(µt) 1.10e− 03 7.62e− 04 8.39e− 04 1.22e− 03 9.98e− 04
∆2(µt) 2.78e− 03 2.10e− 03 2.33e− 03 3.25e− 03 3.47e− 03
η1(µt) 34.2 53.0 13.7 41.7 106.1
η2(µt) 184.8 22.3 16.5 33.1 88.2

Table 4.2: Bound gap and effectivities for the two outputs of interest, for different choices
of N = dimW pr

N and M = dimW du
M (N+M=120).

the same N , different choices for Spr
N can give different reduced-basis spaces and consequently

different output approximations; relatedly the approximation error can vary significantly for

different test points µ ∈ D. Moreover, even for the same sample set Spr
N , the error for different

outputs can be quite different. For example, in Table 4.1, for N = 40 and the particular

point µt, the error in the prediction of the second output is four times larger compared

to the error in the first output. Ascertaining the accuracy of our predictions without, of

course, computing the exact solution, is therefore critical for the successful application of

the reduced-basis method; the importance of efficient and reliable methods to a posteriori

estimate the error in our predictions should be clear.

We turn now to the a posteriori error estimator procedure and investigate its behavior

in the context of the model problem. To calculate the bounds, we need to solve using the

reduced-basis method both the primal problem of dimension N , and the dual problem of

dimension M . These dimensions determine the accuracy of the approximation to each of

the problems and can, in principle, be chosen independently. To understand how this choice

affects the accuracy of the predictions, we fix the total dimension N +M = 120 and choose

different combinations for N and M . In Table 4.2, for the particular point µt and the two

outputs of interest, the bound gap ∆(µt) and the effectivity η(µt) are presented for different

choices of N and M .

To understand the behavior the bound gap, recall that it is defined (4.30) as the product

of norms of representations to the primal êpr and dual errors êdu — which are directly

related to the true errors. As N increases the error in the primal solution becomes smaller,

while at the same time, M is decreasing and the error in the dual solution becomes larger.
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Therefore, as we can verify from Table 4.2, the bound gap does not change appreciably for

the different N and M . The small variations can also be attributed to the different selection

of basis functions in the formation of the reduced-basis spaces. On the other hand, the dual

correction term in the output approximation (4.27), ensures that the output will be more

accurate when either N or M are large. In these cases the error in the output is small

and given that the bound gap does not change significantly, justifies the higher effectivities.

The discussion above suggests that, for a given accuracy — as dictated by the bound gap

∆(µ), — we can choose N or M arbitrarily, such that the total number of basis functions

is constant. On one side, we have the case M = 0 (N = 0), which corresponds to a pure

primal (dual) problem; on the other, we can have a mixed approach with N = M . The

computational cost for the second case is roughly two times smaller in the off-line stage and

four times smaller in the on-line. The use of both the primal and the adjoint problems is

thus dictated by computational efficiency considerations.

10−2

10−1
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Figure 4-2: Convergence of the bound gap
as a function of N(=M), for the point µt.
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Figure 4-3: Effectivity as a function of
N(=M) for the point µt.

As a final test, we choose N = M and for the test point µt, we vary the dimension of

the reduced-basis spaces. The behavior of the bound gap as a function of N = M is shown

in Figure 4-2, and of the effectivity in Figure 4-3. Despite the relatively high dimension

of the parameter space, we observe the good accuracy and rapid convergence of the bound

gap. Also, given that the effectivity remains bounded for all values of N , we conclude that

the bound gap converges at the same rate as the true error in the output. This suggests
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that instead of using the high-dimensional model to evaluate outputs for different parameter

points, we can replace it with a reduced-basis model. Due to the rapid convergence only a

few basis functions are required and therefore we can obtain high efficiency. In addition, we

recover certainty as the error bounds validate the accuracy of the reduced-basis predictions.

In terms of computational effort, the off-line stage requires, typically, a few hundred solutions

of the continuous problem — depending on the number of basis functions and the parametric

complexity of the bilinear forms. But then the on-line cost, for each new configuration µ ∈ D

is typically more than a hundred or a thousand times smaller — depending on the dimension

of Vh. The computational advantages in the limit of many evaluations, should be obvious.

More realistic applications, as well as integration of these components in an optimization or

design framework will be addressed in a future paper.

85



86



Chapter 5

Noncoercive Problems

5.1 Problem description

5.1.1 Problem statement

Given a Hilbert space Y of dimension N (possibly infinite), a linear functional ` ∈ Y ′, and

a parameter µ in a set D ⊂ RP , we look for u(µ) ∈ Y such that

a(u(µ), v;µ) = `(v), ∀v ∈ Y, (5.1)

where a(·, ·;µ) is a bilinear form the assumptions on which are detailed below. We further

prescribe an output functional `O ∈ Y ′, in terms of which we can evaluate our output of

interest s(µ) as

s(µ) = `O(u(µ)). (5.2)

We also introduce a dual, or adjoint, problem associated with `O: find ψ(µ) ∈ Y such that

a(v, ψ(µ);µ) = −`O(v), ∀v ∈ Y.

The relevance of this dual problem will become clear in what follows. It is relatively simple

to permit µ-dependence in ` and `O as well, however for clarity of exposition we do not

consider this here.
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We shall assume (though this is essential for only some of our arguments) that a is

symmetric,

a(w, v;µ) = a(v, w;µ), ∀w, v ∈ Y 2, ∀µ ∈ D.

We further assume that a(w, v;µ) is uniformly continuous,

|a(w, v;µ)| ≤ γ‖w‖Y ‖v‖Y , ∀w, v ∈ Y 2, ∀µ ∈ D,

and that a(w, v;µ) satisfies a uniform inf-sup condition,

0 < β0 ≤ β(µ) = inf
w∈Y

sup
v∈Y

a(w, v;µ)

‖w‖Y ‖v‖Y
= inf

w∈Y

‖a(w, ·;µ)‖Y ′
‖w‖Y

, ∀µ ∈ D; (5.3)

it is classical that these latter two conditions are required for the well-posedness of our primal

and dual problems. Finally, we shall make the assumption that our bilinear form a is affine

in the parameter µ in the sense that, for some finite integer Q,

a(w, v;µ) =

Q∑
q=1

σq(µ)aq(w, v), ∀w, v ∈ Y 2, (5.4)

where the aq are bilinear forms. The assumption (5.4) permits our blackbox approach; non-

blackbox variants of the methods described here — in which (5.4) is relaxed — can also be

developed.

5.1.2 Inf-sup supremizers and infimizers

We can rephrase (5.3) as: for every w ∈ Y , there exists an element Tµw in Y , such that

β(µ)‖w‖Y ‖Tµw‖Y ≤ a(w, Tµw;µ), (5.5)

where Tµw is the supremizer associated with ‖a(w, ·;µ)‖Y ′ . It follows from Section 2.2 that

Tµw = ρYa(w,·;µ), that is,

(Tµw, v)Y = a(w, v;µ), ∀v ∈ Y.
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It is thus clear that Tµ : Y → Y is a linear operator; we can also readily show that Tµ is

symmetric (since a is symmetric); furthermore, Tµ is bounded, since

‖Tµw‖2
Y = a(w, Tµw;µ) ≤ γ‖w‖Y ‖Tµw‖Y ,

and hence
‖Tµw‖Y
‖w‖Y

≤ γ. (5.6)

Finally, we can now express our inf-sup parameter in terms of Tµ as:

β(µ) = inf
w∈Y

‖Tµw‖Y
‖w‖Y

=
‖Tµχ(µ)‖Y
‖χ(µ)‖Y

,

where

χ(µ) = arg inf
w∈Y

‖Tµw‖Y
‖w‖Y

is our infimizer ; we thus also have

β(µ) =
a(χ(µ), Tµχ(µ))

‖χ(µ)‖Y ‖Tµχ(µ)‖Y
.

It will be useful in the subsequent analysis to recognize that β(µ) and χ(µ) are related

to the minimum eigenvalue and associated eigenfunction of a symmetric positive-definite

eigenproblem. In particular we look for (θ(µ), λ(µ)) ∈ (Y × R) solution of

A(θ(µ), v;µ) = λ(µ)(θ(µ), v)Y , ∀v ∈ Y, and ‖θ(µ)‖Y = 1, (5.7)

where

A(w, v;µ) = (Tµw, Tµv)Y , ∀w, v ∈ Y 2; (5.8)

we denote the resulting eigenpairs as (θi(µ), λi(µ)), i = 1, . . ., with λmin ≡ λ1 ≤ λ2 ≤ · · · .

It follows immediately from Rayleigh quotient arguments that

λmin(µ) = min
w∈Y

A(w,w;µ)

(w,w)Y
= min

w∈Y

‖Tµw‖2
Y

‖w‖2
Y

= β2(µ),
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and thus β(µ) =
√
λmin(µ) and θmin(µ) ≡ θ1(µ) = χ(µ).

To further understand the relationship between the infimizers and supremizers, we con-

sider a second symmetric positive-definite eigenproblem: find (Υ× ω) ∈ (Y × R) such that

2γ(Υ(µ), v)Y = ω(µ)B(Υ(µ), v;µ), ∀v ∈ Y (5.9)

where

B(w, v;µ) = 2γ(w, v)Y − a(w, v;µ);

note that B is symmetric and coercive. By the usual arguments (and appropriate normaliza-

tion), 2γ(Υi,Υj)Y = ωiB(Υi,Υj) = ωiδij, with 0 < ω1 ≤ ω2 ≤ · · · ; here δij is the Kronecker

delta symbol, and (Υi, ωi) refers to the ith eigenpair associated with (5.9). We can then write

(Tµw, v)Y = 2γ(w, v)Y − B(w, v;µ),

expand

w =
N∑
i=1

ciΥi,

and exploit orthogonality to deduce that

Tµw =
N∑
i=1

diΥi

for di = 2γci(ωi − 1)/ωi. Thus

‖Tµw‖2
Y

‖w‖2
Y

=

4γ2

N∑
i=1

∣∣∣∣ωi(µ)− 1

ωi(µ)

∣∣∣∣2 ωi(µ)c2i

N∑
i=1

ωi(µ)c2i

,

again by orthogonality. We conclude that

β(µ) = 2γ

∣∣∣∣ωi∗(µ)(µ)− 1

ωi∗(µ)(µ)

∣∣∣∣ ,
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and χ(µ) = ci∗(µ)Υi∗(µ), where

i∗(µ) = arg min
i∈{1,...,N}

∣∣∣∣ωi(µ)− 1

ωi(µ)

∣∣∣∣ . (5.10)

We thus observe that

Tµχ = 2γ

(
ωi∗(µ)(µ)− 1

ωi∗(µ)(µ)

)
χ,

which states that Tµχ and χ are collinear ; in general, Tµw and w will be linearly dependent

only if w is proportional to a single eigenfunction Υi.

5.2 Reduced-basis output bound formulation

5.2.1 Approximation spaces

Infimizing spaces WN

We select M1 points in our parameter set D, µm ∈ D, m = 1, . . . ,M1, the collection of which

we denote

SM1 = {µ1, . . . , µM1}.

We then introduce the “Lagrangian” space [91],

W u
M1

= span{u(µm), ∀µm ∈ SM1}. (5.11)

Similarly, we choose M2 points in D, possibly different from the ones above, and define SM2

and

Wψ
M2

= span{ψ(µm), ∀µm ∈ SM2}; (5.12)

and also M3 points in D to define SM3 and

W χ
M3

= span{χ(µm), ∀µm ∈ SM3}. (5.13)
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These three spaces are associated with our primal solutions, dual solutions, and infimizers,

respectively.

We shall consider two approximation spaces WN . In the first, we set N = M1 +M2 and

choose WN = W 0
N , where

W 0
N = W u

M1
+Wψ

M2

= span{u(µi), ψ(µj), ∀µi ∈ SM1 , ∀µj ∈ SM2} (5.14)

≡ span{ζ1, . . . , ζN}.

In the second case we set N = M1 +M2 +M3 and choose WN = W 1
N , where

W 1
N = W u

M1
+Wψ

M2
+W χ

M3

= span{u(µi), ψ(µj), χ(µk), ∀µi ∈ SM1 , ∀µj ∈ SM2 , ∀µk ∈ SM3} (5.15)

≡ span{ζ1, . . . , ζN}.

(Obviously the ζN — the reduced-basis functions — take different meanings in the two cases.)

The role of each of the components of the WN shall become clear later in our development.

Remark 5.2.1. Compliance. In the case in which `O = `, then ψ(µ) = −u(µ); if SM1 ∩

SM2 6=Ø we need to redefine W 0
N and WN

1 to remove any linearly-dependent vectors. This

will of course result in computational savings. Note that if `O is close to ` and SM1∩SM2 6=Ø

then W 0
N of (5.14) and W 1

N of (5.15) can lead to ill-conditioned systems.

We shall see shortly that the WN will play the role of the infimizing space.

Supremizing spaces VN

We will also need supremizing spaces. To that end, we introduce VN ⊆ Y , with (·, ·)VN
=

(·, ·)Y and hence ‖ · ‖VN
= ‖ · ‖Y . To define the supremizing space, we compute zn,q ≡ ρYaq(ζn,·)

for 1 ≤ n ≤ N , and 1 ≤ q ≤ Q (where Q and aq are defined in (5.4)); more specifically we

compute

(zn,q, v)Y = aq(ζn, v), ∀v ∈ Y, 1 ≤ q ≤ Q, 1 ≤ n ≤ N. (5.16)
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Our first choice for the supremizing space is then VN = ZN(µ), with

ZN(µ) ≡ span{
Q∑
q=1

σq(µ)zn,q, n = 1, . . . , N}. (5.17)

We make a few observations: first, notice that the supremizing space is related to infimizing

space (through the choice of ζi); second, unlike earlier definitions of reduced-basis spaces,

the supremizing space is now parameter dependent — this will require modifications is the

computational procedure; and third, we notice that even though we need NQ functions, the

zn,q, the supremizing space has dimension N . The definition above might not seem very

motivated at this point, it should become clear in the following sections.

We shall also consider two other possibilities, in particular: VN = WN (= W 0
N or W 1

N),

and hence of dimension N ; and VN = Y , and hence of dimension N .

5.2.2 Output Prediction

We next define, for all wN ∈ WN and ϕN ∈ WN , the primal and dual residuals, Rpr(·;wN ;µ) ∈

Y ′ and Rdu(·;ϕN ;µ) ∈ Y ′, respectively:

Rpr(v;wN ;µ) ≡ `(v)− a(wN , v;µ), ∀v ∈ Y,

Rdu(v;ϕN ;µ) ≡ −`O(v)− a(v, ϕN ;µ), ∀v ∈ Y.

It follows from our primal and dual problem statements that

Rpr(v;wN ;µ) = a(u− wN , v;µ), (5.18)

Rdu(v;ϕN ;µ) = a(v, ψ − ϕN ;µ),

which is the standard residual-error relation evoked in most a posteriori frameworks.

We then look for uN(µ) ∈ WN , ψN(µ) ∈ WN , such that

uN(µ) = arg inf
wN∈WN

‖Rpr(·;wN ;µ)‖(VN )′ = arg inf
wN∈WN

sup
v∈VN

Rpr(v;wN ;µ)

‖v‖Y
, (5.19)
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and

ψN(µ) = arg inf
ϕN∈WN

‖Rdu(·;ϕN ;µ)‖(VN )′ = arg inf
ϕN∈WN

sup
v∈VN

Rdu(v;ϕN ;µ)

‖v‖Y
, (5.20)

which is a minimum-residual (or least-squares) projection; see also [14] for discussion of

various projections within the reduced-basis context.

Our output approximation is then given by:

sN(µ) = `O(uN(µ))−Rpr(ψN(µ);uN(µ);µ); (5.21)

the additional adjoint terms will improve the accuracy [64, 85, 90].

It will be convenient to express our minimum-residual approximation in terms of affine

supremizing operators PN
µ : WN → VN , D

N
µ : WN → VN , defined by

PN
µ wN = ρVN

Rpr(·;wN ;µ),

DN
µ wN = ρVN

Rdu(·;wN ;µ)
,

that is

(PN
µ wN , v)Y = Rpr(v;wN ;µ), ∀v ∈ VN , (5.22)

(DN
µ wN , v)Y = Rdu(v;wN ;µ), ∀v ∈ VN , (5.23)

for any wN ∈ WN . In particular, it follows from Section 2.2 that we can now write

uN(µ) = arg inf
wN∈WN

‖PN
µ wN‖Y , ψN(µ) = arg inf

ϕN∈WN

‖DN
µ ϕN‖Y ; (5.24)

the µ-dependence is through PN
µ and DN

µ .

5.2.3 Error bound prediction

We first define βN(µ) ∈ R as

βN(µ) = inf
wN∈WN

sup
v∈VN

a(wN , v;µ)

‖wN‖Y ‖v‖Y
= inf

wN∈WN

‖a(wN ; ·;µ)‖(VN )′

‖wN‖Y
. (5.25)
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We can rephrase (5.25) as: for any wN ∈ WN , there exists an element TNµ wN in VN , such

that

βN(µ)‖wN‖Y ‖TNµ wN‖Y ≤ a(wN , T
N
µ wN ;µ), ∀wN ∈ WN , (5.26)

where TNµ wN is the supremizer associated with ‖a(wN , ·;µ)‖(VN )′ . It follows from Section 2.2

that TNµ : WN → VN is given by ρVN

a(wN ,·;µ), or more explicitly,

(TNµ wN , v)Y = a(wN , v;µ), ∀v ∈ VN ,

for any wN ∈ WN . We can now express βN(µ) as

βN(µ) = inf
wN∈WN

‖TNµ wN‖Y
‖wN‖Y

=
‖TNµ χN(µ)‖Y
‖χN(µ)‖Y

,

where

χN(µ) = arg inf
wN∈WN

‖TNµ wN‖Y
‖wN‖Y

is our infimizer over WN ; we thus also have

βN(µ) =
a(χN(µ), TNµ χN(µ))

‖χN(µ)||Y ‖TNµ χN(µ)‖Y
.

Then, given uN(µ), ψN(µ), and a real constant σ, 0 < σ < 1, we compute

∆N(µ) =
1

σβN(µ)
‖Rpr(·;uN(µ);µ)‖Y ′‖Rdu(·;ψN(µ);µ)‖Y ′ , (5.27)

which will serve as our a posteriori error bound for |(s− sN)(µ)|.

Remark 5.2.2. Output Bounds. We can of course translate our error bound ∆N(µ) into

(symmetric) upper and lower bounds for s(µ), s+
N(µ) = sN(µ) + ∆N(µ), s−N(µ) = sN(µ) −

∆N(µ). For coercive problems the output bounds are in fact nonsymmetric — due to a shift

which also effectively reduces the bound gap by a factor of two relative to the noncoercive

case.
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5.3 Error analysis

In Section 5.3.1 we analyze the accuracy of our reduced-basis output prediction sN(µ), and

in Section 5.3.2 we consider the properties of our error estimator ∆N(µ). In both Section

5.3.1 and 5.3.2 we make certain hypotheses about βN(µ) that we then discuss in Section

5.3.3. Note that, for convenience of exposition, we shall not always explicitly indicate the µ

dependence of all quantities.

5.3.1 A priori theory

We first prove that our discrete approximation is well-defined, as summarized in

Lemma 5.3.1. If βN(µ) ≥ β̃0 > 0, ∀µ ∈ D, then the discrete problems (5.19) and (5.20)

are well-posed.

Proof. We consider the primal problem (5.19); analysis of the dual problem (5.20) is similar.

To begin, we recall that ρVN
` ∈ VN satisfies

(ρVN
` , v)Y = `(v), ∀v ∈ VN .

It thus follows that, for any wN ∈ WN ,

PN
µ wN = ρVN

` − TNµ wN ;

from our minimum-residual statement (5.24) we then know that uN ∈ WN satisfies

(TNµ uN , T
N
µ v)Y = `(TNµ v), ∀v ∈ WN . (5.28)

We now choose v = uN in (5.28) and note that, since TNµ uN is the supremizer over VN

associated with uN ,

(TNµ uN , T
N
µ uN)Y = a(uN , T

N
µ uN ;µ) ≥ βN‖uN‖Y ‖TNµ uN‖Y ,
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and thus

‖uN‖Y ≤
1

βN
‖`‖Y ′ ≤

1

β̃0

‖`‖Y ′ .

We have thus proven stability; uniqueness follows in the usual way by considering two can-

didate solutions.

The following lemma, connects minimum-residual with more standard Galerkin or Petrov-

Galerkin methods:

Lemma 5.3.2. If βN(µ) ≥ β̃0 > 0 and VN = ZN(µ), the minimum-residual statement is

equivalent to a standard Petrov-Galerkin approximation: uN(µ) = uPG
N (µ), where uPG

N (µ) ∈

WN satisfies

Rpr(v;uPG
N (µ);µ) = 0, ∀v ∈ ZN(µ); (5.29)

an analogous result applies for the dual.

Proof. For VN = ZN(µ) and from standard arguments we know that, if βN(µ) ≥ β̃0 >

0, the Petrov-Galerkin approximation (5.29) admits a unique solution uPG
N (µ). But since

‖PN
µ u

PG
N ‖Y = 0, uPG

N must be the (unique) residual minimizer, and hence uN = uPG
N .

Remark 5.3.3. Using the same argument we can prove that for VN = WN , then uN(µ) =

uGal
N (µ), where uGal

N (µ) ∈ WN satisfies

Rpr(v;uGal
N (µ);µ) = 0, ∀v ∈ WN . (5.30)

So, for specific choices of VN , we recover from the minimum-residual statement the Galerkin

and Petrov-Galerkin as special cases. We can then prove that uN(µ), ψN(µ) are optimal.

Indeed, we have

Lemma 5.3.4. If βN(µ) ≥ β̃0 > 0, ∀µ ∈ D, then

‖u(µ)− uN(µ)‖Y ≤
(

1 +
2γ

β̃0

)
inf

wN∈WN

‖u(µ)− wN‖Y ,

with an analogous result for the dual.
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Proof. Since for any wN ∈ WN , wN − uN is an element of WN , we have from (5.26) that

βN‖wN − uN‖Y ‖TNµ (wN − uN)‖Y

≤ a(wN − uN , T
N
µ (wN − uN);µ)

= a(wN − u+ u− uN , T
N
µ (wN − uN);µ)

≤ |a(wN − u, TNµ (wN − uN);µ)|+ |a(u− uN , T
N
µ (wN − uN);µ|

= |Rpr(TNµ (wN − uN);wN ;µ)|+ |Rpr(TNµ (wN − uN);uN ;µ)|

≤ (‖PN
µ wN‖Y + ‖PN

µ uN‖Y ) ‖TNµ (wN − uN)‖Y

≤ 2‖PN
µ wN‖Y ‖TNµ (wN − uN)‖Y ,

(5.31)

where the last three steps follow from (5.18), (5.22), and (5.24), respectively. We now take

v = PN
µ wN ∈ VN in (5.22) and apply (5.18) and continuity to obtain

‖PN
µ wN‖Y ≤ γ‖u− wN‖Y , (5.32)

which then yields, with (5.31),

‖wN − uN‖Y ≤
2γ

βN
‖u− wN‖Y , ∀wN ∈ WN . (5.33)

The desired result then follows by expressing ‖u − uN‖Y as ‖u − wN + wN − uN‖Y and

applying the triangle inequality, (5.33), and our hypothesis on βN(µ).

Remark 5.3.5. In the case of (Petrov-)Galerkin we can show an improved result:

‖u(µ)− uN(µ)‖Y ≤
(

1 +
γ

β̃0

)
inf

wN∈WN

‖u(µ)− wN‖Y .

Finally, we prove that our output prediction is optimal in the following Proposition:

Proposition 4. If βN(µ) ≥ β̃0 > 0, ∀µ ∈ D,

|(s− sN)(µ)| ≤ γ‖u− uN‖Y ‖ψ − ψN‖Y ;
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if furthermore VN ⊇ WN , which is satisfied for the choices VN = Y or VN = WN , we show

that:

|(s− sN)(µ)| ≤ γ

(
1 +

4γ

β̃0

)
inf

wN∈WN

‖u− wN‖Y inf
ϕN∈WN

‖ψ − ϕN‖Y .

Proof. We have that

|(s− sN)(µ)| = |`O(u)− `O(uN) + `(ψN)− a(uN , ψN ;µ)|

= | − a(u− uN , ψ;µ) + a(u− uN , ψN ;µ)|

= |a(u− uN , ψ − ψN ;µ)| (5.34)

≤ γ‖u− uN‖Y ‖ψ − ψN‖Y ,

which proves the first result.

We also know that, for all ϕN ∈ WN , wN ∈ WN ,

|a(u− uN , ψ − ψN ;µ)|

= |a(u− uN , ψ − ϕN + ϕN − ψN ;µ)|

≤ |a(u− uN , ψ − ϕN ;µ)|+ |a(u− uN , ϕN − ψN ;µ)|

≤ γ‖u− uN‖Y ‖ψ − ϕN‖Y + |Rpr(ϕN − ψN ;uN ;µ)|

≤ γ

(
1 +

2γ

β̃0

)
‖u− wN‖Y ‖ψ − ϕN‖Y + ‖ϕN − ψN‖Y sup

v∈VN

Rpr(v;uN ;µ)

‖v‖Y
,

(5.35)

where we have evoked continuity, (5.18), Lemma 5.3.4, and WN ⊆ VN . But from (5.22),

(5.24), (5.32), and the dual version of (5.33)

sup
v∈VN

Rpr(v;uN ;µ)

‖v‖Y
‖ϕN − ψN‖Y ≤ ‖PN

µ uN‖Y
2γ

β̃0

‖ψ − ϕN‖Y

≤ γ‖u− wN‖Y
2γ

β̃0

‖ψ − ϕN‖Y ,

which with (5.34) and (5.35) proves the second result.
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Remark 5.3.6. In the case of (Petrov-)Galerkin we can show the following improved result:

|(s− sN)(µ)| ≤ γ

(
1 +

γ

β̃0

)
inf

wN∈WN

‖u− wN‖Y inf
ϕN∈WN

‖ψ − ϕN‖Y .

Notice that in the previous estimates only the infimizing space WN appears. As we will

see in Section 5.3.3 the choice of the supremizing space VN is related to stability, whereas as

we see here the choice of infimizing space WN is related to approximation.

Proposition 4 indicates in what sense reduced-basis methods yield optimal interpola-

tions in parameter space. We could of course predict s(µ) at some new value of µ as some

interpolant or fit to the s(µm),m = 1, . . . ,M ; however, it is not clear how to choose, or

whether one has chosen, the best combination of the s(µm), in particular in higher dimen-

sional parameter spaces. In contrast, Proposition 4 states that, by predicting s(µ) via a

state space (WN), and by ensuring stability (β̃0 > 0 independent of N), we obtain in some

sense a best approximation — the correct weights for each of the reduced-basis components.

With sufficient smoothness, this best approximation will converge very rapidly with increas-

ing N [33, 91] (see also Section 5.3.3). Note the importance of Wψ
M2

in WN in ensuring

that infϕN∈WN
‖ψ − ϕN‖Y is small — had we included only W u

M1
in WN , this would not be

the case, since reduced-basis spaces have no general approximation properties (that is, for

arbitrary functions in Y ).

Of course, Proposition 4 only tells us that we are doing as well as possible; it does not

tell us how well we are doing — our a posteriori estimators are required for that purpose.

5.3.2 A posteriori theory

We can directly show that, under certain hypotheses, our error estimators are indeed error

bounds.

Proposition 5. If βN → β as N →∞, then there exists an N∗(µ) such that, ∀N ≥ N∗(µ),

|(s− sN)(µ)| ≤ ∆N(µ),

for ∆N(µ) as given in (5.27).
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Proof. We first note, evoking symmetry and our inf-sup condition (5.5), that

β(µ)‖ψ − ψN‖Y ‖Tµ(ψ − ψN)‖Y ≤ a(Tµ(ψ − ψN), ψ − ψN ;µ)

= Rdu(Tµ(ψ − ψN);ψN ;µ)

≤ ‖Rdu(·;ψN ;µ)‖Y ′‖Tµ(ψ − ψN)‖Y ,

or

‖ψ − ψN‖Y ≤
1

β(µ)
‖Rdu(·;ψN ;µ)‖Y ′ .

We then write, from (5.34) of Proposition 4,

|(s− sN)(µ)| = |a(u− uN , ψ − ψN ;µ)|

= |Rpr(ψ − ψN ;uN ;µ)|

≤ ‖Rpr(·;uN ;µ)‖Y ′‖ψ − ψN‖Y

≤ 1

β(µ)
‖Rpr(·;uN ;µ)‖Y ′‖Rdu(·;ψN ;µ)‖Y ′ .

The result then directly follows: for σ < 1, we have from our hypothesis on βN that σβN(µ) ≤

β(µ) for N sufficiently large, say N ≥ N∗(µ), and thus

|(s− sN)(µ)| ≤ 1

β(µ)
‖Rpr(·;uN ;µ)‖Y ′‖Rdu(·;ψN ;µ)‖Y ′

≤ 1

σβN(µ)
‖Rpr(·;uN ;µ)‖Y ′‖Rdu(·;ψN ;µ)‖Y ′

= ∆N(µ),

for N ≥ N∗(µ).

It is not only important to determine that ∆N(µ) is a bound for the error, but also that

it is a good bound. As a measure of bound quality, we introduce the usual a posteriori

effectivity,

ηN(µ) =
∆N(µ)

|s(µ)− sN(µ)|
. (5.36)

Under the hypothesis of Proposition 5 we know that ηN(µ) ≥ 1 as N → ∞, providing us
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with the desired bounds; to ensure that the bound is tight, we would also like to verify that

ηN(µ) ≤ Const (independent of N) as N → ∞. We have no proof for this result, but it is

certainly plausible given the demonstration of Proposition 5, and is in fact confirmed by the

numerical experiments of Section 5.5.

5.3.3 The discrete inf-sup parameter

It should be clear that good behavior of the discrete inf-sup parameter is the essential

hypothesis of Propositions 4 and 5. If βN(µ) vanishes, or becomes very small relative to

β(µ), Propositions 4 and 5 indicate we risk that |(s− sN)(µ)| and ∆N(µ) will both become

very large: accuracy of our predictions thus requires βN(µ) ≥ β̃0 > 0. However, too much

stability is not desirable, either. If βN(µ) is large compared to β(µ) as N →∞, Proposition

5 indicates we risk that ∆N(µ) will not bound |(s − sN)(µ)|: certainty in our predictions

thus requires βN(µ) close to β(µ). It is clear that the best behavior is βN → β from above

as N →∞.

We now discuss several possible choices for VN ,WN , and the extent to which each —

either provably or intuitively — meets our desiderata.

5.3.4 The choice VN = Y,WN = W 1
N — Method 1

It is simple in this case to prove stability:

Lemma 5.3.7. For VN = Y (and any space WN ⊂ Y ),

βN(µ) ≥ β(µ) ≥ β0 > 0,

for all µ ∈ D.

Proof. We have

βN(µ) = inf
wN∈WN

‖TNµ wN‖Y
‖wN‖Y

= inf
wN∈WN

‖TµwN‖Y
‖wN‖Y

≥ inf
w∈Y

‖Tµw‖Y
‖w‖Y

= β(µ) ≥ β0 > 0,

as desired.
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Thus, for VN = Y , the hypothesis of Proposition 4 is satisfied with β̃0 = β0; we are guaranteed

stability. To ensure accuracy of the inf-sup parameter — and hence asymptotic error bounds

from Proposition 5 — we shall first need

Lemma 5.3.8. If SM3 is chosen such that for µm ∈ SM3

sup
µ∈D

inf
m∈{1,...,M}

‖µ− µm‖ → 0

as M →∞, and if χ(µ) is sufficiently smooth in the sense that

‖ sup
µ∈D

‖∇µχ‖ ‖Y <∞,

then

inf
wN∈W 1

N

‖χ(µ)− wN‖Y → 0, ∀µ ∈ D, (5.37)

as M3 (and hence N)→∞. Note ‖ · ‖ refers to the usual Euclidean norm.

Proof. Recalling that χ(µ), the infimizer, is defined in (5.7), we next introduce χ̃N(µ) ∈ W 1
N

as

χ̃N(µ) = χ(µm∗(µ)), m
∗(µ) = arg min

m∈{1,...,M}
|µ− µm|.

Thus

‖χ(µ)− χ̃N(µ)‖Y ≤ ( inf
m∈{1,...,M}

‖µ− µm‖) ‖ sup
µ∈D

‖∇µχ‖ ‖Y

≤ (sup
µ∈D

inf
m∈{1,...,M}

‖µ− µm‖)‖ sup
µ∈D

‖∇µχ‖ ‖Y , ∀µ ∈ D,

and therefore for all µ ∈ D,

inf
wN∈WN

‖χ(µ)− wN‖Y ≤ ‖χ(µ)− χ̃N(µ)‖Y

≤ (sup
µ∈D

inf
m∈{1,...,M}

‖µ− µm‖) ‖ sup
µ∈D

‖∇µχ‖ ‖Y ,

which tends to zero as M3 (and hence N) tends to infinity from our hypotheses on SM3 and

the smoothness of χ(µ).
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Clearly, with sufficient smoothness, we can develop higher order interpolants [91], suggesting

correspondingly higher rates of convergence. For our purposes here, (5.37) suffices; the

method itself will choose a best approximation, typically much closer to χ(µ) than our

simple candidate above. The essential point is the inclusion of W χ
M3

in W 1
N , which provides

the necessary approximation properties within our reduced-basis space. We can now prove

that, for VN = Y, WN = W 1
N , βN(µ) is an accurate approximation to β(µ).

Proposition 6. For VN = Y, WN = W 1
N ,

βN(µm) = β(µm), m = 1, . . . ,M3, µm ∈ SM3 . (5.38)

Furthermore, under the hypotheses of Lemma 5.3.8, there exists a C independent of N and

an N∗∗(µ) such that

|β(µ)− βN(µ)| ≤ C
γ2

2β(µ)
inf

wN∈WN

‖χ(µ)− wN‖2
Y , ∀N ≥ N∗∗(µ), (5.39)

and thus from Lemma 5.3.8,

βN(µ) → β(µ) as N →∞, ∀µ ∈ D. (5.40)

Proof. To prove (5.38), we note that, since χ(µm) ∈ WN ,

βN(µm) = inf
wN∈WN

‖TµmwN‖Y
‖wN‖Y

≤ ‖Tµmχ(µm)‖Y
‖χ(µm)‖Y

= β(µm);

but βN(µm) ≥ β(µm) from Lemma 5.3.7, and thus βN(µm) = β(µm). To prove (5.39), we

introduce the discrete eigenproblem analogous to (5.7): find (θN , λN) ∈ (W 1
N ×R) such that

A(θN(µ), v;µ) = λN(µ)(θN(µ), v)Y , ∀v ∈ W 1
N , ‖θN(µ)‖Y = 1;

by arguments similar to those of Section 5.1.2 it is simple to show that βN(µ) =
√
λN min(µ).

We can now apply the standard theory for Galerkin approximation of symmetric positive-

definite eigenproblems. To wit, from Theorem 9 of [9] and (5.37) of our Lemma 5.3.8, there
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exists an N∗∗(µ) such that, ∀N ≥ N∗∗(µ),

|λmin(µ)− λN min(µ)| ≤ CA(θmin − wN , θmin − wN ;µ), ∀wN ∈ WN ,

for C independent of N . (One can in fact show that C may be taken as (1 + 2β3)2.)

But from (5.6) and (5.8) of Section 5.1.2, we know that

A(θmin − wN , θmin − wN ;µ) = ‖Tµ(θmin − wN)‖2
Y ≤ γ2‖θmin − wN‖2

Y .

The result (5.39) then follows by recalling that θmin = χ, (βN)2 = λN min, (β)2 = λmin, and

noting that

|(βN)2 − β2| = |(βN − β)| |(βN + β)| ≥ |(βN − β)|2β

since βN ≥ β from Lemma 5.3.7.

The hypothesis of Proposition 5 is thus verified for the case VN = Y, WN = W 1
N . The

quadratic convergence of βN(µ) is very important: it suggests an accurate prediction for

β(µ) — and hence bounds — even if WN is rather marginal.

5.3.5 The Choice VN = Y, WN = W 0
N — Method 2

In this case the χ(µm),m = 1, . . . ,M , are no longer members of WN . We see that Lemma

5.3.7 still obtains, and thus the method is stable — in fact, always at least as stable as

WN = W 1
N . Furthermore, since W 0

N still contains W u
M1

and Wψ
M2

, we expect ‖u− uN‖Y and

‖ψ − ψN‖Y to be small, and hence from Proposition4 |(s − sN)(µ)| should also be small.

There is no difficulty at the level of stability or accuracy of our output.

However, Lemma 5.3.8 can no longer be proven. Thus not only is (5.38) of Proposition 6

obviously not applicable, but — and even more importantly — (5.40) no longer obtains: we

can not expect βN(µ) to tend to β(µ) as N → ∞. In short, the scheme may be too stable,

βN(µ) may be too large, and hence for any fixed σ < 1 we may not obtain bounds even as

N → ∞. In short, in contrast to the choice WN = W 1
N , the choice WN = W 0

N no longer

ensures that βN(µ) is sufficiently accurate.
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In practice, however, βN(µ) may be sufficiently close to β(µ) that σβN(µ) ≤ β(µ) for

some suitably small σ. To understand why, we observe that, in terms of our eigenpairs

(Υi, ωi) of Section 5.1.2,

u(µm) =
N∑
i=1

`(Υi)

ωi(µm)− 1
Υi. (5.41)

For “generic” `, u(µm) will thus contain a significant component of Υi∗(µm) and hence χ(µm).

It is possible to construct ` such that `(Υi∗) = 0, and hence we cannot in general count

on χ(µm) being predominantly present in W 0
N ; however, in practice, ` will typically be

broadband, and thusWN = W 0
N may sometimes be sufficient. Obviously, for greater certainty

that our error bound is, indeed, a bound, WN = W 1
N is unambiguously preferred over

WN = W 0
N .

5.3.6 The Choice VN = W 1
N , WN = W 1

N — Method 3

We know from Remark 5.3.3 that this case corresponds to Galerkin approximation, but with

W χ
M3

present in our spaces. We first note that not only does Lemma 5.3.7 not apply, but

unfortunately we can prove that for µm ∈ SM3 , βN(µm) ≤ β(µm), m = 1, . . . ,M :

β(µm) = sup
v∈Y

a(χ(µm), v;µm)

‖χ(µm)‖Y ‖v‖Y
≥ sup

v∈W 1
N

a(χ(µm), v;µm)

‖χ(µm)‖Y ‖v‖Y
≥ inf

w∈W 1
N

sup
v∈W 1

N

a(w, v;µm)

‖w‖Y ‖v‖Y
= βN(µm),

(5.42)

since χ(µm) ∈ W 1
N ⊂ Y . Stability and accuracy of the output could thus be an issue, though

not necessarily so if βN(µ) is close to β(µ). As regards the accuracy of βN(µ), Lemma 5.3.8

still applies, however (5.38), (5.39) (and hence (5.40)) of Proposition 6 can no longer be

readily proven.

Nevertheless, in practice, βN(µ) may be quite close to β(µ). To understand why, we recall

from Section 5.1.2 that χ(µm) is not only our infimizer, but also proportional to Tµmχ(µm).

It follows that if χ(µm) is the most dangerous mode in the sense that

sup
v∈W 1

N

a(χ(µm), v;µm)

‖χ(µm)‖Y ‖v‖Y
≤ sup

v∈W 1
N

a(w, v;µm)

‖w‖Y ‖v‖Y
, ∀w ∈ W 1

N , (5.43)
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then

βN(µm) = sup
v∈W 1

N

a(χ(µm), v;µm)

‖χ(µm)‖Y ‖v‖Y
≥ a(χ(µm), Tµmχ(µm);µm)

‖χ(µm)‖Y ‖Tµmχ(µm)‖Y
= β(µm),

since both χ(µm) and Tµmχ(µm) are in W 1
N ; note that (5.43) is a conjecture, since the

supremizing space here is W 1
N , not Y as in Section 5.1.2. Under our assumption (5.43) we

thus conclude from (5.42) that

βN(µm) = β(µm). (5.44)

By similar arguments we might expect βN(µ) to be quite accurate even for general µ ∈ D,

as both χ(µ) and Tµχ are well represented in the basis. (From this discussion we infer that

a Petrov-Galerkin formulation is desirable — see Section 5.3.8.) The above arguments are

clearly speculative. In order to more rigorously guide our choice of VN , we can prove an

illustrative relationship between the Galerkin VN = W 1
N , WN = W 1

N (superscript “Gal”)

and minimum residual VN = Y, WN = W 1
N (superscript “MR”) approximations:

Proposition 7. For all µ ∈ D,

∆MR
N (µ) ≤ ∆Gal

N (µ), (5.45)

where ∆MR
N (µ) and ∆Gal

N (µ) refer to (5.27) for the minimum-residual and Galerkin cases,

respectively.

Proof. We first note that

βGal
N (µ) = inf

w∈W 1
N

sup
v∈W 1

N

a(w, v;µ)

‖w‖Y ‖v‖Y
≤ inf

w∈W 1
N

sup
v∈Y

a(w, v;µ)

‖w‖Y ‖v‖Y
= βMR

N (µ), (5.46)

for all µ ∈ D. We then note from (5.24) that

∆MR
N ≡ 1

σβMR
N

‖Rpr(·;uMR
N ;µ)‖Y ′‖Rdu(·;ψMR

N ;µ)‖Y ′

=
1

σβMR
N

‖PN
µ u

MR
N ‖Y ‖DN

µ ψ
MR
N ‖Y

≤ 1

σβMR
N

‖PN
µ wN‖Y ‖DN

µ ϕN‖Y , ∀wN ∈ W 1
N , ∀ϕN ∈ W 1

N ,
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where PN
µ : W 1

N → Y and DN
µ : W 1

N → Y are here defined for VN = Y . Thus

∆MR
N (µ) ≤ 1

σβMR
N

‖PN
µ u

Gal
N ‖Y ‖DN

µ ψ
Gal
N ‖Y

=
1

σβMR
N

‖Rpr(·;uGal
N ;µ)‖Y ′‖Rdu(·;ψGal

N ;µ)‖Y ′

≤ 1

σβGal
N

‖Rpr(·;uGal
N ;µ)‖Y ′‖Rdu(·;ψGal

N ;µ)‖Y ′ = ∆Gal
N (µ),

where the last step follows from (5.46).

We thus see that, in general, VN = Y will provide sharper error estimates: minimum residual

is in fact equivalent to minimum error bound. Conversely, we might expect the Galerkin

approximation to be more conservative, providing bounds even when the minimum-residual

approach may not (e.g. for N very small).

The Galerkin method with WN = W 1
N thus has some redeeming features. However, there

is the possibility of a loss of accuracy in both sN(µ) and ∆N(µ), reflected in (5.45) and (5.46)

of Proposition 7.

5.3.7 The Choice VN = W 0
N , WN = W 0

N — Method 4

This case corresponds to Galerkin approximation, but now with W χ
M3

absent. Here (5.42)

no longer applies: βN(µ) may be greater or less than β(µ). Furthermore, accuracy of βN(µ)

now relies on two fortuitous events — the “selective amplification” of (5.41) and the “most

dangerous mode” of (5.43). Again, in practice, the method may perform well, but it is now

more likely that either βN(µ) will be too small and hence (s− sN)(µ) and ∆N(µ) too large,

or βN(µ) will be too large and hence ηN(µ) < 1 (no bounds).

We are able to prove a result analogous to Proposition 7, but now comparing VN =

Y, WN = W 0
N to VN = W 0

N , WN = W 0
N : the βN(µ) (respectively ∆N(µ)) for the former will

be larger (respectively smaller) than the corresponding quantities for the latter. We thus

expect that VN = W 0
N , WN = W 0

N will yield rather poor accuracy.
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5.3.8 The Choice VN = ZN(µ), WN = W 1
N — Method 5

Following Lemma 5.3.2, we see that this choice of infimizing and supremizing spaces corre-

sponds to a Petrov-Galerkin approximation, with the infimizers included. In the following

we use the superscript “PG” to specify Petrov-Galerkin approximations. Regarding stability

we have the following

Proposition 8. For VN = ZN(µ) and WN = W 1
N

βMR
N (µ) = βPG

N (µ), (5.47)

for all µ ∈ D.

Proof. To start recall that for wN ∈ W 1
N , TµwN ∈ Y is obtained from:

(TµwN , v)Y = a(wN , v;µ), ∀v ∈ Y.

Since wN ∈ W 1
N , we write wN =

∑N
i=1 ciζi, and using the affine decomposition assumption

(5.4) we have

(TµwN , v)Y =

Q∑
q=1

σq(µ)aq(wN , v)

=

Q∑
q=1

N∑
i=1

σq(µ)cia
q(ζi, v)

=
N∑
i=1

ci(

Q∑
q=1

σq(µ)zn,q, v)Y ;

from the definition of zn,q, (5.16). Therefore,

TµwN =
N∑
i=1

ci(

Q∑
q=1

σq(µ)zn,q), (5.48)

and from the definition of VN = ZN(µ) we see that TµwN ∈ VN . Therefore for TNµ wN defined:

(TNµ wN , v)Y = a(wN , v;µ), ∀v ∈ ZN(µ),
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we conclude that TNµ wN = TµwN . We then have for the inf-sup parameter:

βPG
N (µ) = inf

wN∈W 1
N

‖TNµ wN‖Y
‖wN‖Y

= inf
wN∈W 1

N

‖TµwN‖Y
‖wN‖Y

= βMR
N (µ).

Unlike the minimum-residual, the construction of (5.16) ensures stability only for mem-

bers of WN . The results of Lemma 5.3.8 and Proposition 6, as well as the comparisons for

stability with the other methods, apply here — in terms of stability, minimum-residual and

Petrov-Galerkin are identical. Also, for the choice WN = W 0
N , the method presented here is

similar to Method 2.

Remark 5.3.9. The critical ingredient in the previous Proposition is to ensure that TµwN ∈

VN . The discussion in Section 5.1.2 suggests that, the infimizers χ(µm) are also parallel to

the supremizers Tµmχ(µm), ∀µm ∈ SM3. Thus, instead of computing the zn,q for the members

of W χ
M3

, we can directly include W χ
M3

in ZN(µ). It is then easy to see that Proposition 8 will

still be true. For this choice, significant savings in storage and computational effort should

be expected.

Regarding the solution and the error estimator we have the following:

Proposition 9. For all µ ∈ D,

uMR
N (µ) = uPG

N (µ), ψMR
N (µ) = ψPG

N (µ), and

∆MR
N (µ) = ∆PG

N (µ).
(5.49)

Proof. We first prove that uMR
N (µ) = uPG

N (µ); the proof for the dual solution is similar. From

the minimum-residual statement, uMR
N (µ), can be obtained as the solution of the following

problem:

(Tµu
MR
N , TµwN)Y = `(TµwN), ∀wN ∈ WN ;

where Tµ is defined as

(TµwN , v)Y = a(wN , v;µ), ∀v ∈ Y.
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From the stability and continuity of a, it is simple to establish that the mapping between

wN → TµwN is a bijection and therefore since WN is an N -dimensional space, then TµWN

will also be an N -dimensional space. Moreover, we showed in Proposition 8, that for all

wN ∈ WN , then TµwN ∈ ZN(µ). Since ZN(µ) is an N -dimensional space, we thus conclude

that TµWN ≡ ZN(µ).

Therefore combining the equations above we have that uMR
N (µ) satisfies:

a(uMR
N , TµwN) = `(TµwN), ∀wN ∈ WN ⇒

a(uMR
N , vN) = `(vN), ∀vN ∈ ZN(µ) ⇒

Rpr(vN ;uMR
N ;µ) = 0, ∀vN ∈ ZN(µ);

(5.50)

which is nothing more than the definition of the Petrov-Galerkin approximation. Since the

solution is unique (it is simple to prove stability), we conclude that uMR
N (µ) ≡ uPG

N (µ).

For the bound gap we have from the preceding proof and (5.47) that:

∆MR
N (µ) =

1

σβMR
N (µ)

= ‖Rpr(·;uMR
N ;µ)‖Y ′‖Rdu(·;ψMR

N ;µ)‖Y ′

=
1

σβPG
N (µ)

= ‖Rpr(·;uPG
N ;µ)‖Y ′‖Rdu(·;ψPG

N ;µ)‖Y ′

= ∆PG
N (µ).

We therefore conclude that Method 1 and Method 5 are, in fact, different interpreta-

tions/descriptions of the same method. Even though the minimum-residual interpretation

is more intuitive, there are certain important advantages to the Petrov-Galerkin approach.

First, it is possible to develop more general bound-conditioner-based a posteriori error esti-

mation procedures [113]. This will lead to uniform (for all N) rather than asymptotic bounds

(for N > N∗(µ)), and also improved bound gaps and effectivities. This development will be

considered in a future paper. Second, this method will also be used in the next chapter for

the Stokes problem — there the minimum-residual interpretation is not possible.
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5.4 Computational procedure

For clarity we shall present the details for the most “rigorous” and general schemes, VN =

Y, WN = W 1
N (Method 1 of Section 5.3.3) and VN = ZN(µ), WN = W 1

N (Method 5 of

Section 5.3.3). The computational procedure — as should be expected — is the same for

both interpretations. As we proceed, we indicate simplifications for the other schemes, and

at the conclusion we give a comparison of computational complexity.

5.4.1 An algebraic representation

Preliminaries

We assume here that Y is finite dimensional, with associated basis ξi, i = 1, . . . ,N . We

also recall that WN can be expressed as WN = span{ζi, i = 1, . . . , N}; we implicitly assume

independence of the reduced-basis functions. A member w ∈ Y is expressed as wtξ, w ∈ RN ;

a member w ∈ WN is expressed as wtζ, w ∈ RN . Here t denotes the transpose.

We next introduce the matrices AY,Y ∈ RN×N , AWN ,WN ∈ RN×N , AY,WN ∈ RN×N ,

BY,Y ∈ RN×N , BWN ,WN ∈ RN×N , given by

AY,Yi,j (µ) = a(ξj, ξi;µ), 1 ≤ i, j ≤ N ,

AWN ,WN
i,j (µ) = a(ζj, ζi;µ), 1 ≤ i, j ≤ N,

AY,WN
i,j (µ) = a(ζj, ξi;µ), 1 ≤ i ≤ N , 1 ≤ j ≤ N,

BY,Y
i,j (µ) = (ξj, ξi)Y , 1 ≤ i, j ≤ N ,

BWN ,WN
i,j (µ) = (ζj, ζi)Y , 1 ≤ i, j ≤ N.

From these matrices we can derive four further matrices, ZY,Y ∈ RN×N , ZWN ,Y ∈ RN×N ,
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SY,Y ∈ RN×N , SWN ,WN ∈ RN×N , as

ZY,Y (µ) = AY,Y (µ)(BY,Y )−1,

ZWN ,Y (µ) = (AY,WN (µ))t(BY,Y )−1,

SY,Y (µ) = (AY,Y (µ))t(BY,Y )−1AY,Y (µ),

SWN ,WN (µ) = (AY,WN (µ))t(BY,Y )−1AY,WN (µ),

where t denotes matrix transpose. These matrices are representations — in terms of our

bases — of the operators introduced earlier. For example, if w ∈ Y and v ∈ Y are expressed

as wtξ and vtξ, then vtBY,Y w is (w, v)Y ; (ZY,Y (µ))t is our representation of Tµ; and for

w ∈ Y expressed as wtξ, wt SY,Y (µ)w is (Tµw, Tµw)Y . It follows that

(β(µ))2 = min
w∈RN

wtSY,Y (µ)w

wtBY,Yw
. (5.51)

Similarly, for w ∈ WN expressed as wtζ, wt SWN ,WNw is (TNµ w, T
N
µ w), and

(βN(µ))2 = min
w∈RN

wtSWN ,WN (µ)w

wtBWN ,WNw
. (5.52)

Note SWN ,WN (µ) represents the normal equations associated with the least-squares approach,

and βN(µ) is the “generalized” smallest singular value of AY,WN ; see [14] for an earlier

discussion of singular values and stability in the reduced-basis context. Finally, we shall

need the vectors Lpr,Y ∈ RN , Ldu,Y ∈ RN , Lpr,WN ∈ RN , Ldu,WN ∈ RN , defined by

Lpr,Y
i = `(ξi), 1 ≤ i ≤ N , Ldu,Y

i = `O(ξi), 1 ≤ i ≤ N ,

Lpr,WN
i = `(ζi), 1 ≤ i ≤ N, Ldu,WN

i = `O(ζi), 1 ≤ i ≤ N,

which are the obvious representations of our primal and dual linear functionals.
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Reduced basis

We first find, for m = 1, . . . ,M , um ∈ RN , ψ
m
∈ RN , solution of

AY,Y (µm)um = Lpr,Y (or SY,Y (µm)um = ZY,YLpr,Y ), (5.53)

AY,Y (µm)ψ
m

= −Ldu,Y (or SY,Y (µm)ψ
m

= −ZY,YLdu,Y ). (5.54)

We further obtain (χ
m
, κm min) as the first eigenpair (θ, κ) ∈ (RN × R) of the symmetric

positive-definite problem

SY,Y (µm)θ = κBY,Y θ, θtBY,Y θ = 1. (5.55)

(Note that in some cases it may be preferable to find χ
m

by considering the (·, ·)Y −B(·, ·;µ)

eigenproblem of Section 2.3; an inverse iteration with shift (of unity, initially) may work

well.) It can then readily be shown that u(µm), ψ(µm), χ(µm), m = 1, . . . ,M , of (5.11),

(5.12), and (5.13) are given by

u(µm) =
N∑
j=1

um jξj ≡ (um)tξ,

ψ(µm) =
N∑
j=1

ψm jξj ≡ (ψ
m

)tξ,

χ(µm) =
N∑
j=1

χm jξj ≡ (χ
m

)tξ,

where this last result can be readily motivated from (5.51); furthermore, κmmin = (β(µm))2,

though we shall not have direct need of this result in the construction of WN . Note that

for WN = W 0
N (Methods 2 and 4) we may omit (5.55); this constitutes significant “off-line”

savings see Section 5.4.2 below.
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Output prediction

We first find, for given µ ∈ D, uN(µ) ∈ RN , ψ
N

(µ) ∈ RN , solution of

SWN ,WN (µ)uN(µ) = ZWN ,YLpr,Y

SWN ,WN (µ)ψ
N

(µ) = −ZWN ,YLdu,Y ;
(5.56)

it is readily shown that uN(µ) and ψN(µ) of (5.19) and (5.20) of Section 5.2 are given by

uN(µ) =
N∑
j=1

uN j(µ)ζj

ψN(µ) =
N∑
j=1

ψN j(µ)ζj.

We can then evaluate sN(µ) of (5.21) as

sN(µ) = (uN(µ))tLdu,WN − (ψ
N

(µ))t(Lpr,WN − AWN ,WN (µ)uN(µ)). (5.57)

Note that for the Galerkin formulations, VN = WN , we may replace (5.56) with AWN ,WNuN =

Lpr,WN ; but since we will need SWN ,WN in the error prediction step below, this is not a

significant simplification.

Error bound prediction

We first calculate βN(µ) =
√
κN min(µ), where κN min(µ) is the eigenvalue associated with

the first eigenpair (θN(µ), κN(µ)) ∈ (RN × R) of

SWN ,WN (µ)θN(µ) = κN(µ)BWN ,WN θN(µ), (θN(µ))tBWN ,WN θN(µ) = 1, (5.58)

as motivated by (5.52) above. Note in this “integrated formulation” that the same reduced-

basis matrix, SWN ,WN , serves to determine uN , ψN , and βN .
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We next compute τpr(µ) ∈ RN , τdu(µ) ∈ RN , solution of

BY,Y τpr(µ) = Lpr,Y − AY,WN (µ)uN(µ) (5.59)

BY,Y τdu(µ) = −Ldu,Y − AY,WN (µ)ψ
N

(µ). (5.60)

It can be readily shown that PN
µ uN(µ), DN

µ ψN(µ) as defined by (5.22) and (5.23) of Section

5.3 (for VN = Y ) are given by

PN
µ uN(µ) =

N∑
j=1

τpr
j (µ)ξj ≡ (τpr(µ))tξ

DN
µ ψN(µ) =

N∑
j=1

τdu
j (µ)ξj ≡ (τdu(µ))tξ,

respectively. Note that these calculations (5.59), (5.60) are required even for the Galerkin

approach: we must compute the Y ′ norm of the residual to estimate the error.

Lastly, it then follows that ∆N(µ) of (5.27) can be evaluated as

∆N(µ) =
1

σβN(µ)
((τpr(µ))tBY,Y τpr(µ))1/2((τdu(µ))tBY,Y τdu(µ))1/2, (5.61)

which completes the procedure.

5.4.2 Blackbox approach

Preliminaries

To describe the blackbox procedure, and demonstrate the N -independence of the on-line

stage, we shall need a few additional definitions. First, we recognize that the ζi, i = 1, . . . , N ,

can be represented in terms of the ξj, which we express as

ζi = ztiξ,
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where zi ∈ RN , i = 1, . . . , N . Second, we need to introduce the matrices AY,Yq ∈ RN×N , q =

1, . . . , Q, given by

(AY,Yq )i,j = aq(ξj, ξi), 1 ≤ i, j ≤ N ,

where the aq(·, ·) are defined (implicitly) in (5.4).

We shall summarize the computational effort in the off-line stage in terms of AY,Y -solves,

SY,Y -eigensolves, BY,Y -solves, AY,Y -actions (matrix vector products), BY,Y -actions, and Y -

inner products (inner products between two N -vectors). Note for simplicity we assume

that AY,Yq -actions are roughly equivalent to AY,Y -actions. In many problems of interest,

in particular in which there is underlying sparsity in AY,Y , S-eigensolves will be the most

expensive, then A-solves, then BY,Y -solves (less costly because the equations are symmetric

positive-definite), and then the “actions” (often only O(N )) and Y -inner products.

We shall summarize the on-line computational effort directly in terms of N and Q (albeit

somewhat imprecisely, sometimes considering a multiplication and an addition as a single

operation). Note that in the on-line stage we are not compelled to exploit all N basis

functions computed in the off-line stage, and thus N in the on-line stage may be replaced

with Nused(µ), with the error bound ∆N(µ) guiding the choice of minimal Nused; this can

significantly reduce the cost of the on-line predictions.

As regards storage, we shall report, in the off-line stage, both Temporary Storage (re-

quired just during the off-line stage) and Permanent Storage (quantities passed by the off-line

stage to the on-line stage). All quantities stored in the on-line stage originate in the off-line

stage. The simplifications to the procedure in the case of “compliance” should be clear.

Off-line stage

1. Compute reduced-basis vectors: um ∈ RN , ψ
m
∈ RN , χ

m
∈ RN ,m = 1, . . . ,M , from

(5.53), (5.54), and (5.55). Recall that the χ
m

are not needed for WN = W 0
N .

Complexity: 2M AY,Y -solves, M SY,Y -eigensolves.
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2. Compute BWN ,WN ∈ RN×N as

BWN ,WN
i,j = (ζj, ζi)Y ,

or

BWN ,WN
i,j = ztiB

Y,Y zj.

Complexity: NBY,Y -actions, N2 Y -inner products.

Temporary Storage: NN .

Permanent Storage: N2.

3. Compute U qi ∈ RN , 1 ≤ q ≤ Q, 1 ≤ i ≤ N , where

(Uqi)k = aq(ζi, ξk), 1 ≤ k ≤ N ,

or

U qi = AY,Yq zi.

Complexity: NQ AY,Y -actions.

Temporary Storage: NQN .

4. Compute Vqi ∈ RN , 1 ≤ q ≤ Q, 1 ≤ i ≤ N , and Vpr
0 ∈ RN ,Vdu

0 ∈ RN , solutions of

BY,Y Vqi = U qi, BY,Y Vpr
0 = Lpr,Y , BY,Y Vdu

0 = Ldu,Y .

Complexity: (NQ+ 2) BY,Y -solves.

Temporary Storage: (NQ+ 2)N .

5. Compute Γqq′ii′(= Γq′qi′i), 1 ≤ q, q′ ≤ Q, 1 ≤ i, i′ ≤ N , as

Γqq′ii′ = U tqiVq′i′ .
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Complexity: N2Q2 Y -inner products.

Permanent Storage: N2Q2.

6. Compute Λpr
qi ,Λ

du
qi , 1 ≤ q ≤ Q, 1 ≤ i ≤ N , as

Λpr
qi = U tqiV

pr
0 ,Λ

du
qi = U tqiVdu

0 .

Complexity: 2NQ Y -inner products.

Permanent Storage: 2NQ.

7. Compute cpr
0 ∈ R, cdu

0 ∈ R, as

cpr
0 = (Lpr,Y )tVpr

0 , c
du
0 = (Ldu,Y )tVdu

0 .

Complexity: 2 Y -inner products.

Permanent Storage: 2.

8. Compute Lpr,WN ∈ RN , Ldu,WN ∈ RN , as

Lpr,WN
i = (Lpr,Y )tzi, L

du,WN
i = (Ldu,Y )tzi, i = 1, . . . , N.

Complexity: 2N Y -inner products.

Permanent Storage: 2N .

9. Compute Ξqii′ , 1 ≤ q ≤ Q, 1 ≤ i ≤ N , as

Ξqii′ = aq(ζi, ζi′)

= zti′U qi.

Complexity: N2Q Y -inner products.

Permanent Storage: N2Q.
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On-line stage

Given a new value of the parameter µ ∈ D:

1. Form SWN ,WN (µ) ∈ RN×N as

SWN ,WN

i,i′ =

Q∑
q=1

Q∑
q′=1

σq(µ)σq
′
(µ)Γqq′ii′ , 1 ≤ i, i′ ≤ N.

Complexity: N2Q2.

2. Form the necessary “right-hand” sides:

N∑
j=1

ZWN ,Y
i,j Lpr,Y

j =

Q∑
q=1

σq(µ)Λpr
qi , 1 ≤ i ≤ N,

N∑
j=1

ZWN ,Y
i,j Ldu,Y

j =

Q∑
q=1

σq(µ)Λdu
qi , 1 ≤ i ≤ N.

Complexity: 2NQ.

3. Find uN(µ) ∈ RN , ψ
N

(µ) ∈ RN , βN(µ) ∈ R solution of (5.56) and (5.58).

Complexity: O(N3).

4. Compute sN(µ) of (5.57) as

sN(µ) = (Ldu,WN )tuN(µ)− (Lpr,WN )tψ
N

(µ)

+

Q∑
q=1

N∑
i=1

N∑
i′=1

σq(µ)uN i(µ)ψN i′(µ)Ξqii′ .

Complexity: 2N +N2Q.
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5. Compute ∆N(µ) of (5.61) as

∆N(µ) =
1

σβN(µ)

[
cpr
0 − 2

Q∑
q=1

N∑
i=1

σq(µ)uN i(µ)Λpr
qi

+

Q∑
q=1

Q∑
q′=1

N∑
i=1

N∑
i′=1

σq(µ)σq
′
(µ)uN i(µ)uN i′(µ)Γqq′ii′

]1/2
×

[
cdu
0 + 2

Q∑
q=1

N∑
i=1

σq(µ)ψN i(µ)Λdu
qi

+

Q∑
q=1

Q∑
q′=1

N∑
i=1

N∑
i′=1

σq(µ)σq
′
(µ)ψN i(µ)ψN i′(µ)Γqq′ii′

]1/2
.

Complexity: 2(N2Q2 +NQ+ 1).

We now briefly discuss the computational complexity of the different schemes. The

first comparison is between minimum-residual (VN = Y ) (or VN = ZN(µ)) and Galerkin

(VN = WN) approaches. The important point to note is that the quantity — Γqq′ii′ —

required by Method 1 (VN = Y, WN = W 1
N) (or Method 5, VN = ZN(µ), WN = W 1

N) to

form the projection matrix SWN ,WN (µ) is the same quantity required by all the methods

to compute the error bound ∆N(µ); in both capacities, Γqq′ii′ represents the calculation of

the necessary Y ′ norm. In this sense (see Proposition 7 and Lemma 9) the arguably better

scheme VN = Y , and somewhat riskier scheme VN = WN , have similar complexity, and we

contend that VN = Y is thus preferred. The second comparison is between W 0
N and W 1

N .

For the on-line component, the difference is not large — N = 3M vs. N = 2M ; however, for

the off-line component, the calculations of χ(µm) can indeed be onerous, and its omission

thus welcome. However, there is a corresponding rather significant loss of security, since the

accuracy of βN is no longer controlled.
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5.5 The Helmholtz problem

5.5.1 1-d Example

Formulation

We take here Y = H1
0 (Ω), where Ω is a suitably smooth domain in Rd, d = 1, 2, or 3, with

inner product (·, ·)Y and norm ‖ · ‖Y . It is important to remark that we may substitute for

(·, ·)Y any inner product which induces a norm equivalent to the H1(Ω)-norm — for example,

a good preconditioner. The latter will of course greatly reduce the off-line computational

cost, as BY,Y -solves will now be much less expensive.

For our bilinear form we take

a(w, v;µ) =

∫
Ω

∇w · ∇v − g(x;µ)wv ,

where we assume that g(x;µ) satisfies

|g(x;µ)| ≤ gmax, ∀x ∈ Ω, ∀µ ∈ D,

and furthermore can be expressed as

g(x;µ) =

Q∑
q=1

σq(µ)Gq(x), (5.62)

where Gq ∈ L∞(Ω), q = 1, . . . , Q. The difficult case, on which we focus here, is of course

when g(x;µ) is positive, as in the reduced-wave (Helmholtz) equation.

The decomposition (5.62) is, in fact, reasonably general. We shall consider the situation

in which P = 2 with parameter µ = (k1, k2), Q = 2, σ1(µ) = k2
1, σ

2(µ) = k2
2, and

G1(x) =

 1 x ∈ Ω1

0 x ∈ Ω2

,

G2(x) =

 0 x ∈ Ω1

1 x ∈ Ω2

,
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where Ω = Ω1 ∪ Ω2; this represents variable “frequencies” in two subdomains. It can be

shown that the regularity of χ required in Lemma 5.3.8 follows from the smoothness of the

σq(µ) and the interpretation of χ as θmin of (5.7).

It is simple to see that our requirement (5.4) is readily satisfied for Q = 3: with σq(µ), q =

1, 2 as defined above, and σ3(µ) = 1, with aq(w, v) = −
∫

Ω
Gq(x)wv, q = 1, 2, and a3(w, v) =∫

Ω
∇w · ∇v. It is similarly easy to show that a is symmetric, and also uniformly continuous

with (say) γ = 1 + gmax. The inf-sup condition will be satisfied so long as we exclude from

D neighborhoods of points µ for which there exists a w such that a(w, v;µ) = 0, ∀v ∈ Y . In

general, if the inf-sup condition (5.3) is thus satisfied, and ` and `O are any bounded linear

functionals, then our theoretical results of Section 5.3.3 will obtain.

We make two points of a more practical nature. First, in practice, we will of course not

know where resonances occur, and thus we will typically posit a parameter domain which

does indeed contain several points at which the inf-sup condition does not hold. However,

unless driven to such a point by a design or optimization process, it is unlikely that a

particular µ will coincide exactly with an eigenvalue, and thus for some sufficiently small β0

our hypotheses will be “in practice” satisfied. (Obviously the physical model may also be

made more elaborate, for example by including damping that will regularize the resonances.)

Second, in practice, we choose not Y = H1
0 (Ω), but rather Y = XN , a suitably fine (say finite

element) approximation of finite (albeit very large) dimension N . As we are more and more

conservative in defining this “truth” approximation, that is, as we increase N , the off-line

computational effort will of course increase; however, thanks to the blackbox formulation,

the on-line computational effort is independent of the dimension N .

Numerical Results

We take here d = 1 and Ω = ]0, 1[ (though obviously the computational savings provided

by the reduced-basis approach will only be realized for more complicated multidimensional

(d > 1) problems). Our truth space XN is a linear finite element approximation with 200

elements. We consider the two-parameter Helmholtz equation defined in Section 5.5.1, with
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Ω1 = ]0, 0.5[ and Ω2 = ]0.5, 1.0[ . For simplicity, we present a “compliance” case in which

`(v) = `O(v) =

∫ 0.55

0.45

v,

corresponding to an imposed (oscillatory) distributed force for the input and an associated

average displacement amplitude measurement for the output.

In the below we shall consider the four methods associated with the four choices of

spaces of Sections 5.3.4, 5.3.5, 5.3.6, and 5.3.7. Note that, following the discussion on

Section 5.3.8, we will make no distinction between the choices VN = Y, WN = W 1
N and

VN = ZN(µ), WN = W 1
N — both of these will be denoted as Method 1 in the following.

Throughout this section we take σ = (1.1)−1: it follows from Proposition 5 that a sufficient

(though not necessary) condition for bounds is that βN be within 10% of β. For most of the

results of this section, we choose an effectively one–dimensional parameter space D which

is the subset of D′ = ]11, 11[ × ]1, 20[ in which neighborhoods of the two resonance points

µ ≡ (k1, k2) = (11, 7.5) and µ ≡ (k1, k2) = (11, 14.4) have been excised such that β0 = 0.02.

(Of course, in practice, we would not know the location of these resonance points, and we

would thus consider D = D′ — which would only satisfy our inf-sup stability condition, “in

practice,” as discussed in the previous section.)

To begin, we fix M = 3, and hence N = 2M = 6 since we are in “compliance,” with

µ1 = (11, 2), µ2 = (11, 8) and thus µ3 = (11, 14), and thus SM = {µ1, µ2, µ3}; we shall denote

this the “M = 3” case. We first investigate the behavior of the discrete inf-sup parameter,

the accuracy of which is critical for both the accuracy and bounding properties of our output

prediction. In Figures 5-1 and 5-2 we plot the discrete inf-sup parameter βiN , i = 1, . . . , 4,

and the ratio βiN/β, i = 1, . . . , 4, respectively, as a function of k2 for fixed k1 (see Section

5.5.1); recall that the index i refers to the method under consideration. We first confirm

those aspects of the behavior that we have previously demonstrated. First, β1
N and β2

N are

never less than βN , as shown in Lemma 5.3.7 and Section 5.3.5, respectively; and β2
N ≥ β1

N ,

as must be the case since the inf space is smaller. The choice VN = Y ensures stability.

Second, we see that β1
N ≥ β3

N and β2
N ≥ β4

N , as demonstrated in (5.46) and Section 5.3.7

respectively; the methods with smaller supremizing spaces are perforce less stable. Third,
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we see (by closer inspection of the numerical values) that β3
N is never greater than β at the

sample points, consistent with (5.42); in fact, we observe that equality obtains at the sample

points, (5.44), and hence at least in this particular case the conjecture (5.43) appears valid.

Fourth, we notice that β4
N can be either below or above β, and is clearly the least “controlled”

of the four approximations. (Indeed, for other parameter values we observe near zero values

of β4
N at points quite far away from the true resonances of the system.)
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Figure 5-1: The discrete inf-sup parameter
for Methods 1, 2, 3, and 4 as a function of k2

(see text for legend). The symbol × denotes
the exact value of β.
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Figure 5-2: The ratio of the discrete inf-sup
parameter to the exact inf–sup parameter for
Methods 1, 2, 3, and 4, as a function of k2

(see text for legend). The thick line denotes
the “sufficient” limit: if βN < 1.1β, bounds
are guaranteed.

It is clear from Figures 5-1 and 5-2 that βiN is indeed a very accurate predictor of β

over most of D for Methods 1 and 3; we anticipated this result in Proposition 6 and the

discussion of Section 5.3.6. We now study the convergence of βiN to β as N increases. For

this test we consider a sample SM = {µm, m = 1, . . . ,M}, with the µm randomly drawn

from D; the particular parameter points selected are given in the second column of Table

5.1. (Note that for a given M , indicated in the first column of Table 5.1, SM consists of

all µm,m = 1, . . . ,M .) We present in Table 5.1 the values of βiN − β for Methods i =1, 2,

3, and 4 for k2 = 11 (and hence µ = (11, 11)). We note that, indeed, βiN converges very

rapidly for i = 1 and i = 3 — the two methods in which we include the infimizers in VN

— whereas for i = 2 and i = 4 we do not obtain convergence — not surprising given the
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βiN − β
M µM i = 1 i = 2 i = 3 i = 4
1 (11, 4.7351) 1.81e− 01 2.92e+ 00 −1.88e− 01 1.08e+ 00
2 (11,19.0928) 1.70e− 01 4.28e− 01 −2.03e− 01 4.14e− 01
3 (11,11.4848) 3.52e− 04 2.76e− 01 −1.24e− 04 −9.85e− 02
4 (11,13.6038) 9.25e− 06 5.76e− 02 3.99e− 06 5.31e− 02
5 (11, 1.4975) 6.57e− 09 4.91e− 02 2.43e− 09 4.13e− 02
6 (11, 2.6998) 1.90e− 11 4.81e− 02 4.49e− 08 3.83e− 02

Table 5.1: The error βiN − β for Methods i =1, 2, 3, and 4, for k2 = 11, as a function of M .

discussion of Section 5.3.3. Note also that whereas the convergence of Method 1 is (and must

be) monotonic, this is not necessarily the case for Method 3.

We conclude that Method 2 and in particular Method 4 are not very reliable: we can

certainly not guarantee asymptotic bounds for any given fixed σ < 1; for this reason we

do not recommend these techniques, and we focus primarily on Methods 1 and 3 in the

remainder of this section. However, in practice, all four methods may perform reasonably

well for some smaller σ, in particular since the accuracy of the inf-sup parameter is only a

sufficient and not a necessary condition for bounds. Indeed, for our M = 3 case of Figures

5-1 and 5-2, Methods 1, 2, and 4 produce bounds for all k2 less than approximately 18 and

Method 3 in fact produces bounds for all k2 in D; consistent with Proposition 5, bounds are

always obtained for all methods so long as σβN ≤ β. The breakdown of bounds for Method

1 (which in fact directly correlates with σβ1
N > β) is due to the poor infimizer approximation

properties of W 1
N for larger k2; if we include an additional sample point, µ4 = (11, 20), we

recover bounds for all D. (In fact, even for lower k2 the infimizer approximation is not overly

good; but thanks to the quadratic convergence proven in Proposition 6 the inf-sup parameter

remains quite accurate.)

The fact that Method 3 produces bounds over the entire range is consistent with the

“less stable” arguments of Section 5.3.6. However, by these same arguments, in particular

Proposition 7, we expect that the bound gap — the controllable error in the output prediction

— will be larger for Method 3 than for Method 1. To demonstrate this empirically, we plot

in Figure 5-3 ∆i
N/|s|, i = 1 and i = 3, as a function of k2, for the M = 3 case of Figures 5-1

and 5-2. We observe that, indeed, the bound gap is significantly smaller for Method 1 than
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Figure 5-3: The normalized bound gap ∆i
N/|s| for Methods i =1 and i =3 as a function of

k2.

∆i
N

M µM i = 1 i = 3
1 (11, 4.7351) 2.23e− 04 1.73e− 01
2 (11, 19.0928) 2.13e− 04 6.21e− 01
3 (11, 11.4848) 5.37e− 06 2.68e− 05
4 (11, 13.6038) 4.01e− 08 5.80e− 08
5 (11, 1.4975) 6.43e− 11 6.50e− 11
6 (11, 2.6998) 1.65e− 14 1.62e− 14

Table 5.2: The bound gap for Methods i = 1 and i = 3, for k2 = 11, as a function of M .

for Method 3. Note also that the normalized bound gap is quite large for the k2 at which

we no longer obtain bounds for Method 1; no doubt these predictions would be rejected

as overly inaccurate and requiring further expansion of the reduced–basis space (thus also

recovering the inf-sup parameter accuracy and hence bounds).

As regards the convergence of the bound gap, we present in Table 5.2 convergence results

for ∆i
N , i = 1 and i = 3, for k2 = 11 (and hence µ = (11, 11)), as a function of M (analogous

to Table 5.1 for the inf-sup parameter). (Note for Methods 2 and 4 the convergence is

slower, with the bound gap typically an order of magnitude larger than for Methods 1 and

3; this suggests that the inclusion of the infimizers can, in fact, reduce the approximation

error — as might be anticipated from (5.41).) We observe that the differences between
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M µM ∆1
N η1

N ∆3
N η3

N

1 (7.5388, 14.2564) 1.30e− 04 24.20 6.09e− 04 12.18
2 (2.9571, 7.1526) 1.22e− 04 3.51 3.05e− 04 11.88
3 (4.2387, 9.0533) 5.82e− 05 1.08 8.77e− 05 1.49
4 (17.7486, 15.9503) 1.10e− 05 2.56 1.24e− 05 3.42
5 (9.7456, 14.0523) 2.99e− 08 3.47 3.07e− 08 3.71
6 (3.8279, 16.3388) 2.81e− 08 3.71 2.88e− 08 3.97
7 (11.2113, 8.0970) 5.40e− 12 3.78 5.44e− 12 3.85

Table 5.3: The bound gap and effectivity at µ = (11, 17), as a function of M , for Methods
i = 1 and i = 3, for the two-dimensional parameter space D = ]1, 20[× ]1, 20[.

Methods 1 and 3 become smaller as M increases; however it is precisely for smaller M that

reduced-basis methods are most interesting. We conclude — given that the two methods

are of comparable cost – that Method 1 is perhaps preferred, in particular because we can

also better guarantee the behavior of the inf-sup parameter. Note that the difference in the

true error for Methods 1 and 3 is much smaller than the difference in the error bound for

the two methods; this is expected, since the inf-sup parameters do not differ appreciably. It

follows that the effectivity (defined in (5.36)) of Method 1 is lower (and hence better) than

the effectivity of Method 3; this is not surprising, since for Method 1 the approximation is

designed to minimize the bound gap.

We close by considering a second set of numerical results included to demonstrate the

rapid convergence of the reduced–basis prediction as N increases even in higher dimensional

parameter spaces: we now consider D = ]1, 20[ × ]1, 20[ (without excision of resonances,

and hence satisfying our inf-sup condition only “in practice”). In particular we repeat,

the convergence scenario of Table 5.2, but now choose our random sample from the two–

dimensional space D = ]1, 20[ × ]1, 20[ ; we present, in Table 5.5.1, the bound gap and

effectivity (defined in (5.36)) for Methods 1 and 3 for a particular “new” parameter point

µ = (11, 17). We observe, first, that we obtain bounds in all cases (ηN ≥ 1) — indicative

of an accurate inf-sup parameter prediction; second, that the error (true and estimated)

tends to zero very rapidly with increasing M , even in this two–dimensional parameter space;

and third, that Method 1 again provides smaller bound gaps (and lower effectivities) than

Method 3, consistent with Proposition 7 — though the difference is only significant for very
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small M . Note that u and the output s are order 10−3, so the relative errors are roughly

1000 times larger than the absolute errors in the table. Results similar to those reported in

Table 5.5.1 are also obtained if we consider the error over a random ensemble of test points

µ rather than a single test point.

5.5.2 2-d Example

Formulation

1.5
1.

0

0.
2

L
c
ra

ck0.
1

0.325

0.1
Ω1

Ω2

Figure 5-4: Geometrical configuration

To further test our methods we consider here a more realistic two-dimensional example.

We restrict in this case our attention only to Method 1 (or the equivalent Method 5). To

start, consider the domain Ω shown in Figure 5-4. As before we take Y = H1
0 (Ω) with inner

product (·, ·)Y and norm ‖·‖Y . The problem we are interested in solving is the reduced-wave

(Helmholtz) equation:

∫
Ω

∇u · ∇v dΩ− ω2

∫
Ω

uv dΩ =

∫
Ω1

v dΩ, ∀v ∈ Y. (5.63)

The right-hand side can be understood as an excitation of frequency ω over the domain Ω1.

The resulting solution gives the amplitude, for the given frequency ω, at each point of the

domain Ω. In addition, we assume that there is a crack of length Lcrack which disrupts the
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Figure 5-5: Lcrack = 0.5 and ω = 10.0
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Figure 5-6: Lcrack = 0.5 and ω = 11.0
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Figure 5-7: Lcrack = 0.5 and ω = 12.0
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Figure 5-8: Lcrack = 0.5 and ω = 13.0
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Figure 5-9: Lcrack = 0.5 and ω = 14.0
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Figure 5-10: Lcrack = 0.5 and ω = 15.0
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Figure 5-11: Lcrack = 0.5 and ω = 16.0
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Figure 5-12: Lcrack = 0.5 and ω = 17.0
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Figure 5-13: Lcrack = 0.5 and ω = 18.0
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Figure 5-14: Lcrack = 0.5 and ω = 19.0
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Figure 5-15: Lcrack = 0.3 and ω = 19.0
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Figure 5-16: Lcrack = 0.7 and ω = 19.0
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continuity of the domain Ω. For the parametrization of the problem we therefore choose

P = 2 and µ = {ω,Lcrack}. For the output we are interested in measuring the response over

the small patch Ω2, and therefore s(µ) is:

s(µ) = `O(u(µ)) =

∫
Ω2

u(µ) dΩ. (5.64)

The problem above although rather simple in terms of the geometric configuration, is rather

interesting in the case of non-destructive evaluation. For example, we could place a sound

source over the domain Ω1 and a sensor on the domain Ω2. In practice, the signature of the

crack is measured (for varying frequencies). Comparing with a database of signatures, we

can identify the size of the crack Lcrack (or more generally even the position of the crack).

Here, a reduced-basis model can be used instead of the database (which is rather costly to

build), to efficiently and accurately match the measured signature.

To account for geometry variations (due to the varying crack length), we apply a con-

tinuous piecewise-affine transformation from Ω to a fixed reference domain Ω̂. The abstract

problem statement of (5.1) is thus recovered. It is readily verified that the affine decomposi-

tion is obtained for Q = 8. We set allowable ranges for the input parameters, 1.0 ≤ ω ≤ 20.0

for the frequency and 0.3 ≤ Lcrack ≤ 0.7 for the crack size; therefore D = [1.0, 20.0]×[0.3, 0.7]

(as before we do not excise resonances, and our inf-sup condition is satisfied only “in prac-

tice”). We give in Figures 5-5–5-16, solutions for different choices of the input parameters.

As we can see even for small variations in the input parameters the solution (and therefore

the output) changes appreciably.

Numerical Results

The current example exercises all aspects of our framework. Notice that, since `(v) 6= `O(v),

we are no longer in compliance and therefore we need both the solution of the primal and

the dual problem. For the construction of the reduced-basis spaces, we choose M1 = M3

and SM1 = SM3 ; also we choose M2 points different from the previous ones to form SM2 . We

then construct the reduced-basis space WN = W 1
N defined in (5.15).

First, we present in Figures 5-17 and 5-18, the error in the reduced-basis approximation
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Figure 5-17: Output convergence for Lcrack = 0.4 and ω = 13.5.
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Figure 5-18: Output convergence for Lcrack = 0.4 and ω = 18.0.
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of the output, for increasing values of M1 and M2. In the following numerical tests, we will

present the results for two different test points µ1
t = {0.4, 13.5} and µ2

t = {0.4, 18.0}. We

see that initially, for small values of M1 or M2, the error is significant and is not reduced by

increasing the number of basis functions included in the reduced-basis space. This can be

attributed to the sensitivity of the solution in variations of the input parameters. Initially, for

small values of M1 and M2 the basis functions included in the definition of the reduced-basis

space, have no approximation properties for the solution at the test point. As we further

increase M1 (or M2) we see that the output approximation converges to the exact value. In

fact, for M1 = M2 = 90 and for the test point µ1
t , we see that the relative error is less that

10−4 — quite acceptable for all practical purposes. For the two different test points we see

different convergence rates. Again, this depends on the construction of the reduced-basis

space and its ability to approximate a solution at the particular test point. As we can not a

priori predict the error, the importance of the a posteriori error estimator should be clear.

Turning now to the error estimator we give in Figures 5-19 and 5-20 the a posteriori

effectivity, for the two test points µ1
t and µ2

t . In the computation of the bound gap, we

choose σ = 0.5 and thus a sufficient condition for bounds is that βN is within 100% of β.

We first notice that in both cases the effectivities are always larger than one, and therefore

bounds are always obtained. Furthermore, we see that the effectivity is usually between

10 and 100, which is relatively large given also the convergence of the true error. These

effectivities can be further improved by developing more appropriate bound conditioners —

this development will be considered in a future paper.
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Figure 5-19: Effectivity for Lcrack = 0.4 and ω = 13.5.
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Figure 5-20: Effectivity for Lcrack = 0.4 and ω = 18.0.
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Chapter 6

Stokes Problem

We develop in this Chapter the reduced-basis output bound method for the Stokes problem,

considered as a representative example for the class of constrained minimization problems

(with equality constraints). The essential new ingredient is the presence of the incom-

pressibility constraint, and relatedly of the pressure which plays the role of the Lagrange

multiplier. In addition the fact that the solution variable is a vector will slightly complicate

the notation and the treatment.

Our presentation here follows as in the previous chapters: in Section 6.1 we state the

problem and provide with some general definitions; then in Section 6.2 we develop the

reduced-basis method, and consider issues like stability and accuracy; and, finally, in Section

6.3 we develop an a posteriori error estimation framework. The underlying ideas here are

similar to the ones for the non-coercive problems, described in the previous Chapter, so we

will refer to these as appropriate.

6.1 Problem Description

The system of Stokes equations are of special interest as they model the incompressible flow of

highly-viscous fluids. From the numerical point of view, the presence of the incompressibility

constraint poses significant problems in stability and special study is required. Moreover,

although the Stokes problem is a means by itself, it is also the first (main) step for the
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solution of the more general Navier-Stokes equations.

6.1.1 Introduction

To start, consider a Lipschitz-continuous polygonal domain Ω ⊂ Rd, with a boundary ∂Ω.

Let u ∈ X a vector with components u = {u1, . . . , ud}, where the ui are functions defined

on Ω. The non-dimensional strong form for the Stokes equations is:

− ∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
+
∂p

∂xi
= fi, (6.1)

∂ui
∂xi

= 0;

where summation over repeated indices is assumed. Here, p is the pressure which plays

the role of a Langrange multiplier in enforcing the incompressibility constraint, and u is

the velocity vector. We need to augment the system of equations above with appropriate

boundary conditions.

Using the incompressibility constraint we can obtain the simpler — and more familiar —

form of the equations:

− ∂ui
∂xj ∂xj

+
∂p

∂xi
= fi,

∂ui
∂xi

= 0. (6.2)

Using either of these forms we can develop a variational statement, which will be the point

of departure for the finite-element method. The reason why we mention both approaches is

that the first formulation is more general, allowing to include in the variational formulation

complex Neumann boundary conditions like, for example, stress boundary conditions, surface

tension, etc. On the other hand, the second can only be applied with simple boundary

conditions but is appealing due to its simplicity. In general the two formulations will yield

discrete problems which, due to the weak imposition of the incompressibility constraint, will

give different solutions. Our abstract problem statement given below, encompasses both of

these formulations. For the simple example that we will consider in Section 6.5, we prefer
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(6.2).

6.1.2 Abstract Problem Statement

To start, let V a closed linear subspace of H1(Ω) such that H1
0 (Ω) ⊂ V ⊂ H1(Ω), and define

X = (V )d; X will be used for the velocity components. Also, for the pressure, we will require

M = L2(Ω) or L2
0(Ω), where

L2
0(Ω) =

{
q ∈ L2(Ω)|

∫
Ω

q dΩ = 0

}
;

the second choice is mandated in the case of all-Dirichlet boundary conditions, since then the

pressure is defined uniquely up to an additive constant. Finally we will require the product

space Y = X ×M . The norms and inner products for these spaces are defined in the usual

way; for example if v ∈ X then ‖v‖2
H1(Ω) = ‖v1‖2

H1(Ω) + . . .+ ‖vd‖2
H1(Ω).

Suppose also that we are given a parameter µ chosen from a set D ⊂ RP . The parameters

of interest for the Stokes problem reflect geometry variations (cf. example in Section 6.5),

which makes all the forms parameter-dependent — our presentation below should reflect

this. We then look for [u(µ), p(µ)] ∈ Y such that

a(u(µ), v;µ) + b(v, p(µ);µ) = `(v;µ), ∀v ∈ X,

b(u(µ), q;µ) = 0, ∀q ∈M ;
(6.3)

where a : X × X × D → R, b : X ×M × D → R are bilinear forms, and b is non-square.

Furthermore, `(·) ∈ X ′ is a bounded linear functional. We can write the equation above

more succinctly as

a(u(µ), v;µ) + b(v, p(µ);µ) + b(u(µ), q;µ) = `(v;µ), ∀[v, q] ∈ Y.

Finally, as it typical in engineering practice, we assume that we are not interested in

calculating the solution or abstract norms of it. Rather we are interested in obtaining

performance measures that characterize the particular configuration µ ∈ D and have physical

importance like, for example, the flow-rate, lifts or drags. Given the solution [u(µ), p(µ)] to
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(6.3), the output of interest is obtained from

s(µ) = `O([u(µ), p(µ)];µ) = `Ou (u(µ);µ) + `Op (p(µ);µ); (6.4)

with `Ou (·;µ) ∈ X ′, ∀µ ∈ D and `Op (·;µ) ∈ M ′, ∀µ ∈ D (notice that M ′ = M here), which

implies that `O(·;µ) ∈ Y ′, ∀µ ∈ D is a bounded linear functional. We also require in the

following a dual, or adjoint, problem associated with `O(·;µ): find [ψ(µ), λ(µ)] ∈ Y such

that

a(v, ψ(µ);µ) + b(v, λ(µ);µ) = −`Ou (v;µ), ∀v ∈ X,

b(ψ(µ), q;µ) = −`Op (q;µ), ∀q ∈M.
(6.5)

We note that a is symmetric

a(w, v;µ) = a(v, w;µ), ∀w, v ∈ X2, ∀µ ∈ D.

Also we assume that the bilinear forms a and b are:

i) Continuous : there exist γa(µ) > 0 and γb(µ) > 0 such that

a(w, v;µ) ≤ γa(µ)‖w‖X‖v‖X , ∀w, v ∈ X2, ∀µ ∈ D,

b(w, q;µ) ≤ γb(µ)‖w‖X‖q‖M , ∀w ∈ X, ∀q ∈M, ∀µ ∈ D.
(6.6)

ii) Stable: there exist α(µ) ≥ α̃0 > 0 and β(µ) > β̃0 > 0, such that

0 < α̃0 ≤ α(µ) = inf
v∈X

a(v, v;µ)

‖v‖2
X

, ∀µ ∈ D,

0 < β̃0 ≤ β(µ) = inf
q∈M

sup
v∈X

b(v, q;µ)

‖v‖X‖q‖M
= inf

q∈M

‖b(·, q;µ)‖X′

‖q‖M
,∀µ ∈ D.

(6.7)

The conditions above are sufficient to ensure existence and uniqueness [97] of the solutions to

problems (6.3) and (6.5). Finally, we make the assumption of affine parameter dependence
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for all the linear and bilinear forms:

a(w, v;µ) =

Qa∑
q=1

σqa(µ)aq(w, v), b(w, q) =

Qb∑
q=1

σqb (µ)bq(w, q),

`(w;µ) =

Qf∑
q=1

σqf (µ)`qf (w), `O([w, q];µ) =

QO∑
q=1

σqO(µ)`qO([w, q]), (6.8)

∀w, v ∈ X, ∀q ∈M ; where Q. are integers that depend on the problem in consideration.

For the finite-element solution, Y = X × M is usually replaced by Yh = Xh × Mh,

where Xh and Mh are appropriately defined finite-element spaces. To ensure stability we

need to verify that the constants αh(µ) and βh(µ) — obtained from (6.7) by replacing X

with Xh, and M with Mh — are positive. In fact, even when they are close to zero, the a

priori theory [97] suggests that we should expect large approximation errors. For conforming

velocity approximation spaces it is easy to verify that αh(µ) ≥ α(µ). Ensuring that βh(µ) is

non-zero requires careful selection both of the velocity and pressure approximation spaces.

Here we choose to approximate velocity and pressure using P2 and P1 triangular elements,

respectively. These elements belong to the Taylor-Hood family of elements and satisfy all

the requirements above.

6.1.3 Inf-sup supremizers and infimizers

Similar, to Section 5.1.2 we define the supremizer Tµq ∈ X associated with ‖b(·, q;µ)‖X′ .

This supremizer can be calculated from

(Tµq, v)X = b(v, q;µ), ∀v ∈ X. (6.9)

We can then express our inf-sup parameter as:

β(µ) = inf
q∈M

sup
v∈X

b(v, q;µ)

‖v‖X‖q‖M
= inf

q∈M

‖Tµq‖X
‖q‖M

=
‖Tµχ‖X
‖χ‖M

, (6.10)

where

χ(µ) = arg inf
q∈M

‖Tµq‖X
‖q‖M

. (6.11)
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Unfortunately, unlike the non-coercive case, it is no longer true that the infimizer χ(µ) and

the supremizer Tµχ will be collinear. It is useful to recognize that similar to (5.7) and (5.8),

β(µ) and χ(µ) can be related to the minimum eigenvalue and associated eigenfunction, of an

appropriately defined symmetric positive-definite eigenproblem; see Section 5.1.2 for more

details.

6.2 Reduced-Basis Approximation

6.2.1 Approximation Spaces

We next define our primal and dual reduced-basis approximation spaces. To wit, for the

primal (resp. dual) problem we choose N (resp. M) points µi, i = 1, . . . , N (resp. µi, i =

1, . . . ,M not necessarily the same as for the primal problem) in our parameter set D, the

collection of which we denote:

Spr
N = {µ1, . . . , µN} , (resp. Sdu

M = {µ1, . . . , µM}).

We then compute [u(µi), p(µi)] ∈ Y (resp. [ψ(µi), λ(µi)] ∈ Y ), the solutions of (6.3) (resp.

(6.5)), for all µi ∈ Spr
N (resp. µi ∈ Sdu

M ), and also zpr q,n ∈ X, (resp. zdu q,n ∈ X) q = 1, . . . , Qb,

and n = 1, . . . N (resp. n = 1, . . . ,M) which satisfy

(zpr q,n, v)X = bq(v, p(µn)), ∀v ∈ X, q = 1, . . . , Qb, n = 1, . . . , N

(resp.
(
zdu q,n, v

)
X

= bq(v, λ(µn)), ∀v ∈ X, q = 1, . . . , Qb, n = 1, . . . ,M).
(6.12)

We then define the primal and dual “pressure” approximation spaces Mpr
N and Mdu

M

Mpr
N = span {p(µi), i = 1, . . . , N} ≡ span {ξpr

i , i = 1, . . . , N} ,

Mdu
M = span {λ(µi), i = 1, . . . ,M} ≡ span

{
ξdu
i , i = 1, . . . ,M

}
;

(6.13)
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and the “velocity” approximation spaces Xpr
N (µ) and Xdu

M (µ)

Xpr
N (µ) = span

{
u(µi),

Qb∑
q=1

σqb (µ)zpr q,i, i = 1, . . . , N

}
≡ span {ζpr

i , i = 1, . . . , 2N} ,

Xdu
M (µ) = span

{
ψ(µi),

Qb∑
q=1

σqb (µ)zdu q,i, i = 1, . . . ,M

}
≡ span

{
ζdu
i , i = 1, . . . , 2M

}
;

(6.14)

with dimensions dimMpr
N = N , dimXpr

N (µ) = 2N , dimMdu
M = M , and dimXdu

M (µ) = 2M .

The product spaces Y pr
N (µ) = Xpr

N (µ)×Mpr
N and Y du

M (µ) = Xdu
M (µ)×Mdu

M will also be useful

in the following.

If an approximation to the inf-sup parameter is required, we form SχK by choosing K

points µi ∈ D, and compute the infimizers χ(µi), by solving the implied eigenvalue problem

of (6.11), for all µi ∈ SχK . In addition, we compute zχ q,n ∈ X for q = 1, . . . , Qb, and

n = 1, . . . K, which satisfy:

(zχ q,n, v)X = bq(v, χ(µn)), ∀v ∈ X, q = 1, . . . , Qb, n = 1, . . . , K; (6.15)

and define Mχ
K and Xχ

K(µ)

Mχ
K = span {χ(µi), i = 1, . . . , K} ≡ span {ξχi , i = 1, . . . , K} ,

Xχ
K(µ) = span

{
Qb∑
q=1

σqb (µ)zχ q,i, i = 1, . . . , K

}
≡ span {ζχi , i = 1, . . . , 2K} ;

(6.16)

with dimension dimMχ
K = dimXχ

K(µ) = K.

6.2.2 Reduced-Basis Problems

Output Approximation

Using the problem-specific approximation spaces of Section 6.2.1, we can define the reduced-

basis problems. We look for [uN(µ), pN(µ)] ∈ Y pr
N (µ) and [ψM(µ), λM(µ)] ∈ Y du

M (µ), such
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that:

a(uN(µ);µ) + b(v, pN(µ);µ) = `(v;µ), ∀v ∈ Xpr
N (µ),

b(uN(µ), q;µ) = 0, ∀q ∈Mpr
N ,

(6.17)

and,

a(v, ψM(µ);µ) + b(v, λM(µ);µ) = −`Ou (v;µ), ∀v ∈ Xdu
M (µ),

b(ψM(µ), q;µ) = −`Op (q;µ), ∀q ∈Mdu
M ,

(6.18)

respectively. If [uN , pN ] ∈ Y pr
N (µ) and, [epr

u , e
pr
p ](µ) ≡ [u − uN , p − pM ](µ) is the error, the

residual Rpr
u (·; [uN , pN ];µ) ∈ X ′ is defined

Rpr
u (v; [uN , pN ];µ) = `(v;µ)− a(uN(µ), v;µ)− b(v, pN(µ);µ),

= a(epr
u (µ), v;µ) + b(v, epr

p (µ));
(6.19)

where the second line follows from equation (6.3). Similarly the residual related to the

incompressibility constraint Rpr
p (·; [uN , pN ];µ) ∈M ′ is

Rpr
p (q; [uN , pN ];µ) = −b(uN(µ), q;µ)

= b(epr
u (µ), q;µ).

(6.20)

We can the define the primal residual Rpr(·; [uN , pN ];µ) ∈ Y ′, from

Rpr([w, q]; [uN , pN ];µ) = Rpr
u (w; [uN , pN ];µ) +Rpr

p (q; [uN , pN ];µ)

= a(epr
u (µ), v;µ) + b(v, epr

p (µ)) + b(epr
u (µ), q;µ).

(6.21)

For the dual problem, if [ψM , λM ] ∈ Y du
M (µ) and, [edu

u , e
du
p ](µ) ≡ [ψ−ψM , λ−λM ](µ) is the er-

ror, we define in a similar way the residuals Rdu
u (·; [ψM , λM ];µ) ∈ X ′ and Rdu

p (·; [ψM , λM ];µ) ∈

M ′:

Rdu
u (v; [ψM , λM ];µ) = −`Ou (v;µ)− a(v, ψM(µ);µ)− b(v, λM(µ);µ),

= a(edu
u (µ), v;µ) + b(v, edu

p (µ));
(6.22)
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and

Rdu
p (q; [ψM , λM ];µ) = −`Op (q;µ)− b(ψM(µ), q;µ)

= b(edu
u (µ), q;µ).

(6.23)

The dual residual is then Rdu(·; [wM , qM ];µ) ∈ Y ′ is then

Rdu([w, q]; [ψM , λM ];µ) = Rdu
u (w; [ψM , λM ];µ) +Rdu

p (q; [ψM , λM ];µ)

= a(v, edu
u (µ);µ) + b(v, edu

p (µ)) + b(edu
u (µ), q;µ).

(6.24)

Regarding the stability of the discrete problems (6.17) and (6.18), we have the coercivity

constant α
pr {du}
N {M} (µ)

α
pr {du}
N {M} (µ) = inf

wN {M}∈X
pr {du}
N {M}

a(wN {M}, wN {M};µ)

‖wN {M}‖2
X

; (6.25)

and the inf-sup parameter β
pr {du}
N {M} (µ):

β
pr {du}
N {M} (µ) = inf

qN {M}∈M
pr {du}
N {M}

sup
wN {M}∈X

pr {du}
N {M}

b(wN {M}, qN {M};µ)

‖wN {M}‖X‖qN {M}‖M
; (6.26)

where inside the braces are the modifications of these definitions for the dual problem. For

stability of the reduced-basis problems, it is required that these constants are strictly positive;

we further discuss stability in Lemma 6.2.1.

The output approximation is then obtained from

sN(µ) = `O([uN , pN ](µ);µ)−Rpr([ψM , λM ](µ); [uN , pN ](µ);µ); (6.27)

the adjoint correction helps improve the accuracy.

Regarding the stability of the reduced-basis problems, we have the following result:

Lemma 6.2.1. For the discrete coercivity constant αpr
N (µ), defined in (6.25) we have:

αpr
N (µ) ≥ α(µ), ∀µ ∈ D, (6.28)
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and for the inf-sup parameter βpr
N (µ), defined in (6.26) we have:

βpr
N (µ) ≥ β(µ), ∀µ ∈ D. (6.29)

Similar results apply for the dual problem, and also for the inf-sup parameter approximation

described in the following section.

Proof. We discuss here only the primal problem. Regarding the coercivity constant since,

by definition Xpr
N (µ) ⊂ X, we have that

αpr
N (µ) = inf

wN∈Xpr
N (µ)

a(wN , wN ;µ)

‖wN‖2
X

≥ inf
w∈X

a(w,w;µ)

‖w‖2
X

= α(µ), ∀µ ∈ D.

For the inf-sup condition, we notice that any member qN ∈ Mpr
N can be written qN =∑N

i=1 qN iξ
pr
i . Therefore the supremizer, defined in (6.9), can be computed:

(TµqN , v)X = b(v, qN ;µ), ∀v ∈ X. (6.30)

Using now the affine decomposition assumption we notice that:

(TµqN , v)X =

Qb∑
q=1

σqb (µ)bq(v, qN)

=

Qb∑
q=1

N∑
i=1

σqb (µ)qN ib
q(v, ξpr

i )

=
N∑
i=1

qN i

(
Qb∑
q=1

σqb (µ)zpr q,i, v

)
X

;

the definition of Xpr
N (µ), (6.14), implies then that TµqN(µ) ∈ Xpr

N (µ). Now notice that if we

define TNµ qN(µ) ∈ Xpr
N (µ) the supremizer over Xpr

N (µ):

(TNµ qN , v)X = b(v, qN ;µ), ∀v ∈ Xpr
N (µ),

146



and subtracting from the equation above Equation (6.30), we have that for qN ∈Mpr
N ,

(TNµ qN − TµqN , v)X = 0, ∀v ∈ Xpr
N .

Therefore choosing v = TNµ qN − TµqN ∈ Xpr
N (from the argument above), we have that

‖TNµ qN−TµqN‖X = 0 and therefore TNµ qN = TµqN , ∀qN ∈Mpr
N . Therefore we conclude that:

β(µ) = inf
qN∈M

‖TµqN‖X
‖qN‖M

≤ inf
qN∈Mpr

N

‖TµqN‖X
‖qN‖M

= inf
qN∈Mpr

N

‖TNµ qN‖X
‖qN‖M

= βpr
N (µ),

as desired.

Remark 6.2.2. In the construction of the reduced-basis spaces, we do not necessarily need

to choose an equal number of pressure and velocity modes. We can choose Npr
u velocity

basis functions for Xpr
N (µ), and Npr

p basis functions for the for Mpr
p . Following the previous

Lemma, for stability, we need to augment Xpr
N (µ) with Npr

p basis functions — and therefore

dimXpr
N (µ) = Npr

u +Npr
p . We discuss how different possible choices affect the accuracy of our

predictions in Section 6.5.

Inf-Sup Parameter Approximation

If also an approximation βK(µ) to the exact inf-sup parameter β(µ) is also required, we

use the reduced-basis spaces Xχ
K(µ) and Mχ

K . The inf-sup parameter approximation is then

obtained from

βK(µ) = inf
wK∈Xχ

K(µ)
sup

qK∈Mχ
K

b(wk, qk;µ)

‖wK‖X‖qK‖M
= inf

wK∈Xχ
K(µ)

‖TKµ qK‖X
‖qK‖M

; (6.31)

where for qk ∈Mχ
K , TKµ qk ∈ X

χ
K(µ), is the solution of

(TKµ qk, v) = b(v, qk;µ), ∀v ∈ Xχ
K(µ).
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The infimizer for (6.31), can be obtained by solution of an appropriately defined symmetric

positive-definite eigenvalue problem

(TKµ θ(µ), TKµ q)X = ρ(µ)(θ(µ), q)M , ∀q ∈Mχ
K ; (6.32)

the inf-sup parameter is then βK(µ) =
√
ρmin(µ), where ρmin(µ) is the minimum eigenvalue

of (6.32). The discussion in Section 5.3.3, regarding the convergence of βK(µ) to β(µ) also

applies here.

6.3 Computational Procedure

The parametric dependence assumed in (6.8) permits us to decouple the computation in

two stages: the off-line stage, in which (i) the reduced basis is constructed and (ii), some

preprocessing is performed; and the on-line stage, in which for each new desired value µ ∈ D,

we compute sN(µ). The details of the blackbox technique follow.

6.3.1 Output Prediction

The presentation follows the procedure and the notation introduced in Section 5.4.2.

Off-line Stage

1) Choose Spr
N and Sdu

M . For all µi ∈ Spr
N , calculate [u(µi), p(µi)] ≡ [ζpr

i , ξ
pr
i ] ∈ Y , i = 1, . . . , N ,

the solution of (6.3). Similarly for the dual, for all µi ∈ Sdu
M , calculate [ψ(µi), λ(µi)] ≡

[ζdu
i , ξ

du
i ] ∈ Y , i = 1, . . . ,M , the solution of (6.5).

2) Compute zpr q,i ∈ X, q = 1, . . . , Qb, i = 1, . . . , N and zdu q,n ∈ X, q = 1, . . . , Qb j =

1, . . . ,M , as in (6.12).

3) Compute Apr 11
q ∈ RN×N , Adu 11

q ∈ RM×M and Aprdu 11
q ∈ RM×N for q = 1, . . . , Qa, where

Apr 11
q i,j = aq(ζpr

j , ζ
pr
i ), 1 ≤ i, j ≤ N, Adu 11

q i,j = aq(ζdu
j , ζ

du
i ), 1 ≤ i, j ≤M,

Aprdu 11
q i,j = aq(ζpr

j , ζ
du
i ), 1 ≤ i ≤M, 1 ≤ j ≤ N ;
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also, Apr 12
q,q′ ∈ RN×N , Adu 12

q,q′ ∈ RM×M , Aprdu 12
q,q′ ∈ RM×N and Adu 21

q,q′ ∈ RM×N , q = 1, . . . , Qa,

q′ = 1, . . . , Qb, as

Apr 12
q,q′ i,j = aq(zpr q′,j, ζpr

i ), 1 ≤ i, j ≤ N, Adu 12
q,q′ i,j = aq(zdu q′,j, ζdu

i ), 1 ≤ i, j ≤M,

Aprdu 12
q,q′ i,j = aq(zpr q′,j, ζdu

i ), Aprdu 21
q,q′ i,j = aq(ζpr

j , z
du q′,i), 1 ≤ i ≤M, 1 ≤ j ≤ N ;

and Apr 22
q,q′,q′′ ∈ RN×N , Adu 22

q,q′,q′′ ∈ RM×M and Aprdu 22
q,q′,q′′ ∈ RM×N , for q = 1, . . . , Qa and q′, q′′ =

1, . . . , Qb, such that

Apr 22
q,q′,q′′ i,j = aq(zpr q′,j, zpr q′′,i), 1 ≤ i, j ≤ N, Adu 22

q,q′,q′′ i,j = aq(zdu q′,j, zdu q′′,i), 1 ≤ i, j ≤M,

Aprdu 22
q,q′,q′′ i,j = aq(zpr q′,j, zdu q′′,i), 1 ≤ i ≤M, 1 ≤ j ≤ N.

4) Compute Bpr 1
q ∈ RN×N , Bdu 1

q ∈ RM×M , 1Bprdu 1
q ∈ RM×N and 2Bprdu 1

q ∈ RN×M , for

q = 1, . . . , Qb

Bpr 1
q i,j = bq(ζpr

j , ξ
pr
i ), 1 ≤ i, j ≤ N, Bdu 1

q i,j = bq(ζdu
j , ξ

du
i ), 1 ≤ i, j ≤M,

1Bprdu 1
q i,j = bq(ζpr

j , ξ
du
i ), 2Bprdu 1

q i,j = bq(ζdu
j , ξ

pr
i ), 1 ≤ i ≤M, 1 ≤ j ≤ N ;

and also Bpr 2
q,q′ ∈ RN×N , Bdu 2

q,q′ ∈ RM×M , 1Bprdu 2
q,q′ ∈ RM×N and 2Bprdu 2

q,q′ ∈ RM×N , for q, q′ =

1, . . . , Qb, as

Bpr 2
q,q′ i,j = bq(zpr q′,j, ξpr

i ), 1 ≤ i, j ≤ N, Bdu 2
q,q′ i,j = bq(zdu q′,j, ξdu

i ), 1 ≤ i, j ≤ N,

1Bprdu 2
q,q′ i,j = bq(zpr q′,j, ξdu

i ), 2Bprdu 2
q,q′ i,j = bq(zdu q′,j, ξpr

i ), 1 ≤ i ≤M, 1 ≤ j ≤ N.

5) Compute F pr 1
q ∈ RN , and F du 1

q ∈ RM , for q = 1, . . . , Qf as

F pr 1
q i = `qf (ζ

pr
i ), 1 ≤ i ≤ N, F du 1

q j = `qf (ζ
du
j ), 1 ≤ j ≤M ;

and also F pr 2
q,q′ ∈ RN and F du 2

q,q′ ∈ RM , for q = 1, . . . , Qf , q
′ = 1, . . . Qb, as

F pr 2
q,q′ i = `qf (z

pr q′,i), 1 ≤ i ≤ N, F du 2
q,q′ j = `qf (z

du q′,j), 1 ≤ j ≤M.
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6) Compute Lpr 1
q ∈ RN , and Ldu 1

q ∈ RM , for q = 1, . . . , QO as

Lpr 1
q i = `qO([ζpr

i , 0]), 1 ≤ i ≤ N, F du 1
q j = `qO([ζdu

j , 0]), 1 ≤ j ≤M ;

also Lpr 2
q,q′ ∈ RN and Ldu 2

q,q′ ∈ RM , for q = 1, . . . , QO, q′ = 1, . . . Qb, as

Lpr 2
q,q′ i = `qO([zpr q′,i, 0]), 1 ≤ i ≤ N, Ldu 2

q,q′ j = `qO([zdu q′,j, 0]), 1 ≤ j ≤M ;

and also Lpr 3
q ∈ RN , and Ldu 3

q ∈ RM , for q = 1, . . . , QO as

Lpr 3
q i = `qO([0, ξpr

i ]), 1 ≤ i ≤ N, F du 1
q j = `qO([0, ξdu

j ]), 1 ≤ j ≤M.

On-line Stage

Given a new value of the parameter µ ∈ D:

1) We form the matrices Apr(µ) ∈ R2N×2N , Adu(µ) ∈ R2M×2M and Aprdu(µ) ∈ R2M×2N

Apr(µ) =



Qa∑
q=1

σqa(µ)Apr 11
q︸ ︷︷ ︸

Apr 11(µ)

Qa∑
q=1

Qb∑
q′=1

σqa(µ)σq
′

b (µ)Apr 12
q,q′︸ ︷︷ ︸

Apr 12(µ)(
Apr 12(µ)

)T Qa∑
q=1

Qb∑
q′,q′′=1

σqa(µ)σq
′

b (µ)σq
′′

b (µ)Apr 22
q,q′,q′′︸ ︷︷ ︸

Apr 22(µ)



Adu(µ) =



Qa∑
q=1

σqa(µ)Adu 11
q︸ ︷︷ ︸

Adu 11(µ)

Qa∑
q=1

Qb∑
q′=1

σqa(µ)σq
′

b (µ)Adu 12
q,q′︸ ︷︷ ︸

Adu 12(µ)(
Adu 12(µ)

)T Qa∑
q=1

Qb∑
q′,q′′=1

σqa(µ)σq
′

b (µ)σq
′′

b (µ)Adu 22
q,q′,q′′︸ ︷︷ ︸

Adu 22(µ)


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Aprdu(µ) =



Qa∑
q=1

σqa(µ)Aprdu 11
q︸ ︷︷ ︸

Aprdu 11(µ)

Qa∑
q=1

Qb∑
q′=1

σqa(µ)σq
′

b (µ)Aprdu 12
q,q′︸ ︷︷ ︸

Aprdu 12(µ)
Qa∑
q=1

Qb∑
q′=1

σqa(µ)σq
′

b (µ)Aprdu 21
q,q′︸ ︷︷ ︸

Aprdu 21(µ)

Qa∑
q=1

Qb∑
q′,q′′=1

σqa(µ)σq
′

b (µ)σq
′′

b (µ)Aprdu 22
q,q′,q′′︸ ︷︷ ︸

Aprdu 22(µ)


2) We form the matrices Bpr(µ) ∈ RN×2N , Bdu(µ) ∈ RM×2M , 1Bprdu ∈ RM×2N and 2Bprdu ∈

RN×2M , as

Bpr(µ) =
(∑Qb

q=1 σ
q
b (µ)Bpr 1

q

∑Qb

q,q′=1 σ
q
b (µ)σq

′

b (µ)Bpr 2
q,q′

)
Bdu(µ) =

(∑Qb

q=1 σ
q
b (µ)Bdu 1

q

∑Qb

q,q′=1 σ
q
b (µ)σq

′

b (µ)Bdu 2
q,q′

)
1Bprdu(µ) =

(∑Qb

q=1 σ
q
b (µ)1Bprdu 1

q

∑Qb

q,q′=1 σ
q
b (µ)σq

′

b (µ)1Bprdu 2
q,q′

)
2Bprdu(µ) =

(∑Qb

q=1 σ
q
b (µ)2Bprdu 1

q

∑Qb

q,q′=1 σ
q
b (µ)σq

′

b (µ)2Bprdu 2
q,q′

)
3) Form the vectors F pr(µ) ∈ R3N and F du(µ) ∈ R3M as:

F pr(µ) =


∑Qf

q=1 σ
q
f (µ)F pr 1

q∑Qf

q=1

∑Qb

q′=1 σ
q
f (µ)σq

′

b (µ)F pr 2
q,q′

0N

 , F du(µ) =


∑Qf

q=1 σ
q
f (µ)F du 1

q∑Qf

q=1

∑Qb

q′=1 σ
q
f (µ)σq

′

b (µ)F du 2
q,q′

0M

 ;

where 0N , 0M is the N and M -dimensional vector of zeros.

4) Form the vectors Lpr(µ) ∈ R3N and Ldu(µ) ∈ R3M as:

Lpr(µ) =


∑QO

q=1 σ
q
O(µ)Lpr 1

q∑QO

q=1

∑Qb

q′=1 σ
q
O(µ)σq

′

b (µ)Lpr 2
q,q′∑QO

q=1 σ
q
O(µ)Lpr 3

q

 , Ldu(µ) =


∑Qf

q=1 σ
q
O(µ)Ldu 1

q∑Qf

q=1

∑Qb

q′=1 σ
q
O(µ)σq

′

b (µ)Ldu 2
q,q′∑Qf

q=1 σ
q
O(µ)Ldu 3

q

 .

5) Compute [uN , pN ](µ) ∈ R2N×RN the reduced-basis solution for the primal problem (6.17):

Apr(µ) (Bpr(µ))T

Bpr(µ) 0N×N

uN(µ)

p
N

(µ)

 = F pr(µ);
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and [ψ
M

(µ), λM ](µ) ∈ R2M × RM the reduced-basis solution for the dual problem (6.18):

Adu(µ)
(
Bdu(µ)

)T
Bdu(µ) 0M×M

ψM(µ)

λM(µ)

 = −Ldu(µ);

6) The output can then be calculated from:

sN(µ) =
(
(uN(µ))T (p

N
(µ))T

)
Lpr(µ)

−(ψ
M

(µ))T
[
F du(µ)− Aprdu(µ)uN(µ)− (2Bprdu(µ))Tp

N
(µ)
]
−(λM(µ))T

(
1Bprdu(µ)uN(µ)

)

Computational Complexity

We don’t present with details for the computation of the inf-sup parameter. Following the

discussion in Section 5.4 and 6.3.1, the development of a similar off-line/on-line procedure,

should be straightforward. As in the previous chapters, the off-line step needs to be per-

formed only once. For the computation of the primal and dual basis functions, a total of

N +M Stokes problems need to be solved using an iterative method like, for example, the

Uzawa algorithm. In addition, (N +M)Qb Y -solves are required for the calculation of zn,q.

Finally, a number of matrix-vector and inner products are required for the formation of a

number of auxiliary quantities. The important thing to note it that once the expensive and

memory intensive off-line part is completed, a database with O((N2 + M2)QaQ
2
b) quanti-

ties, is created. In the on-line part, for each new µ ∈ D, and using this database: first,

O((N2 +M2)QaQ
2
b) operations are required to form the reduced-basis problems; and second

O(N3 +M3) operations are required to invert the resulting linear systems and compute the

output approximation. The important thing to note is that no explicit reference is made to

the continuous (or, in practice, finite-element) problem. As N and M will typically small,

significant computational savings are expected.
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6.4 Error Estimation

To start, define λ1
X to be the minimum eigenvalue of a(θ, v;µ) = λ(µ)(θ, v)X , ∀v ∈ X. A

lower bound for this eigenvalue is required by the output bound procedure: we assume that

a g(µ) and a c(µ) > 0 is known such that

g(µ)(v, v)X ≤ a(v, v;µ) ≤ c(µ)(v, v)X , ∀v ∈ X and ∀µ ∈ D. (6.33)

It is also possible to include approximation of λ1
X(µ) as part of the reduced basis approxi-

mation.

Remark 6.4.1. In the following, the more general class of bound conditioners, developed in

[113], can also be used. In this case condition (6.33), is replaced by a spectral condition

1 ≤ a(v, v;µ)

c(v, v)
≤ ρ,∀v ∈ X;

with ρ ≥ 1 a positive number — preferably close to 1 — and c is a parameter-independent

symmetric positive-definite form. The development of bound-conditioner-based error estima-

tion procedures will be addressed in a future paper.

6.4.1 A Posteriori Error Analysis

Let [u, p](µ) ∈ X the exact solution for the primal problem (6.3), and [uN , pN ](µ) ∈ YN

the reduced-basis approximation obtained by solving (6.17). Subtracting (6.3) and (6.17),

the error [epr
u , e

pr
p ](µ) ≡ [u − uN , p − pN ] ∈ Y to the primal problem satisfies the following

equation:

a(epr
u (µ), v;µ) + b(v, epr

p (µ)) = Rpr
u (v; [uN , pN ](µ);µ), ∀v ∈ X,

b(epr
u (µ), q;µ) = Rpr

p (q; [uN , pN ](µ);µ), ∀q ∈M ;
(6.34)

with similar equation valid for the dual error [edu
u , e

du
p ](µ) ≡ [ψ − ψM , λ− pM ](µ) ∈ Y .

We need a few auxiliary results :
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Lemma 6.4.2. Assume that there exists a constant κ such that

b(w, q;µ) =

Qb∑
q=1

σqb (µ)bq(w, v) ≤ κFb(µ)b̂(w, q), ∀w ∈ X, ∀q ∈M ; (6.35)

with b̂(w, q) =
∫

Ω
divw q dΩ, and Fb(µ) = maxq=1,...,Qb

|σqb (µ)|. If d is the number of dimen-

sions for the physical domain (d = 2 for two-dimensional, and d = 3 for three-dimensional

domains), then:

|b(w, q;µ)| ≤ κ
√
dFb(µ)‖w‖X‖q‖M , ∀w ∈ X, ∀q ∈M. (6.36)

Proof. Starting from (6.35), we notice that:

|b(w, q;µ)| ≤ κFb(µ)|b̂(w, q)| ≤ κ‖divw‖M‖q‖M ≤ κ
√
d‖w‖X‖q‖M ;

where we used ‖divw‖M ≤
√
d‖w‖X — see [36] for a proof.

Remark 6.4.3. In the case where we separate the domain in many smaller non-overlapping

subdomains and apply affine geometric transformations, it is easy to see that the assumption

is true for κ = 1. In the case of overlapping domains and affine geometry transformations,

κ is equal to the maximum number of overlapping domains at any point of the computational

domain.

We now construct a bound for epr
p (µ) in terms of the residuals and other computable

quantities:

Lemma 6.4.4. We define C1
p(µ) = κc(µ)2

√
d

β(µ)2g(µ)
Fb(µ) and C2

p(µ) = c(µ)2

β(µ)2
, then a bound for the

error in the pressure ‖epr
p (µ)‖M is obtained from:

‖epr
p (µ)‖M ≤ C1

p(µ)‖Rpr
u (·; [uN , pN ](µ);µ)‖X′ + C2

p(µ)‖Rpr
p (·; [uN , pN ](µ);µ)‖M ′ ; (6.37)

with an analogous result for the dual error edu
p (µ).

Proof. We start by obtaining an equation for epr
p (µ). To this end we define T bµe

pr
p (µ) ∈ X,
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the solution of

a(T bµe
pr
p (µ), v;µ) = b(v, epr

p (µ);µ), ∀v ∈ X; (6.38)

similarly define ϕR
pr
u (µ) ∈ X from

a(ϕR
pr
u (µ), v;µ) = Rpr

u (v; [uN , pN ](µ);µ), ∀v ∈ X; (6.39)

from (6.7) a unique solution to both of these problems will exist. From the error equation

(6.34) and the coercivity of a, we see that epr
u (µ) = ϕR

pr
u (µ) − T bµe

pr
p (µ). Replacing this last

expression in the second equation of (6.34) we get:

b(T bµe
pr
p (µ), q;µ) = b(ϕR

pr
u (µ), q;µ)−Rpr

p (q; [uN , pN ](µ);µ), ∀q ∈M ; (6.40)

note that b(T bµ·, ·;µ) is called the Uzawa operator. We now examine each of the terms in

(6.40). First, notice that from Lemma 6.4.2,

|b(ϕR
pr
u (µ), q;µ)| ≤ κ

√
dFb(µ)‖ϕR

pr
u (µ)‖X‖q‖M

≤ κ
√
dFb(µ) sup

v∈X

‖v‖X
a(v, v;µ)1/2

a(ϕR
pr
u (µ), ϕR

pr
u (µ);µ)1/2‖q‖M .

But from (6.33),

sup
v∈X

‖v‖X
a(v, v;µ)1/2

=
1

inf
v∈X

a(v, v;µ)1/2

‖v‖X

≤ 1√
g(µ)

;

and also from the Riesz theorem, and (6.33):

a(ϕR
pr
u (µ), ϕR

pr
u (µ);µ)1/2 = sup

v∈X

Rpr
u (v; [uN , pN ](µ);µ)

a(v, v;µ)1/2

≤ 1√
g(µ)

sup
v∈X

Rpr
u (v; [uN , pN ](µ);µ)

‖v‖X

=
1√
g(µ)

‖Rpr
u (·; [uN , pN ](µ);µ)‖X′ .

Therefore

|b(ϕR
pr
u (µ), q;µ)| ≤ κ

√
d

g(µ)
Fb(µ)‖Rpr

u (·; [uN , pN ](µ);µ)‖X′‖q‖M . (6.41)
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Also notice that:

|Rpr
p (q; [uN , pN ](µ);µ)| ≤ sup

q∈M

Rpr
p (q; [uN , pN ](µ);µ)

‖q‖M
‖q‖M

= ‖Rpr
p (·; [uN , pN ](µ);µ)‖M ′‖q‖M

(6.42)

Combining (6.40), (6.41) and (6.42) we obtain:

|b(T bµepr
p (µ), q;µ)|
‖q‖M

≤ κ
√
d

g(µ)
Fb(µ)‖Rpr

u (·; [uN , pN ](µ);µ)‖X′+‖Rpr
p (·; [uN , pN ](µ);µ)‖M ′ ,∀q ∈M.

(6.43)

We now choose q = epr
p (µ) and notice that from (6.38):

b(T bµe
pr
p (µ), epr

p (µ);µ) = a(T bµe
pr
p (µ), T bµe

pr
p (µ);µ)

=

(
sup
v∈X

b(v, epr
p (µ);µ)

a(v, v;µ)1/2

)2

,

where the second line follows from the Riesz representation theorem. We now choose v =

Tµe
pr
p (µ) which is obtained from:

(Tµe
pr
p (µ), v)X = b(v, epr;µ), ∀v ∈ X.

Then

b(T bµe
pr
p (µ), epr

p (µ);µ) ≥
(

b(Tµe
pr
p (µ), epr

p (µ);µ)

a(Tµe
pr
p (µ), Tµe

pr
p (µ))1/2

)2

≥
(
β(µ)‖Tµepr

p (µ)‖X‖epr
p (µ)‖M

a(Tµe
pr
p (µ), Tµe

pr
p (µ))1/2

)2

≥
(
β(µ)‖epr

p (µ)‖M inf
v∈X

‖v‖X
a(v, v;µ)1/2

)2

≥
(
β(µ)

c(µ)

)2

‖epr
p (µ)‖2

M ; (6.44)

where the second line follows from the definition of the inf-sup parameter, and the last line

from the right-hand side of (6.33). Combining now, (6.44) and (6.43) we obtain the desired

result. A bound for the dual error edu
p (µ) can be obtained similarly.
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We now develop a similar bound for the error in the velocity epr
u (µ)

Lemma 6.4.5. We define the µ-dependent constants C1
u(µ) = (1 + κ

√
dFb(µ)C1

p(µ))/g(µ)

and C2
u(µ) = κ

√
dFb(µ)C2

p(µ)/g(µ), then a bound for the error in the velocity ‖epr
u (µ)‖X is

obtained from:

‖epr
u (µ)‖X ≤ C1

u(µ)‖Rpr
u (·; [uN , pN ](µ);µ)‖X′ + C2

u(µ)‖Rpr
p (·; [uN , pN ](µ);µ)‖M ′ ; (6.45)

with an analogous result for the dual error edu
u (µ) ∈ X.

Proof. We start from the first equation of (6.34)

a(epr
u (µ), v;µ) + b(v, epr

p (µ)) = Rpr
u (v; [uN , pN ](µ);µ), ∀v ∈ X.

Choosing v = epr
u (µ) in the equation above, we have:

g(µ)‖epr
u ‖2

X ≤ a(epr
u (µ), epr

u (µ);µ)

≤ |Rpr
u (epr

u (µ); [uN , pN ](µ);µ)|+ |b(epr
u (µ), epr

p (µ))|

≤ sup
v∈X

Rpr
u (v; [uN , pN ](µ);µ)

‖v‖X
‖epr

u (µ)‖X + κ
√
dFb(µ)‖epr

u (µ)‖X‖epr
p (µ)‖M

≤
(
‖Rpr

u (·; [uN , pN ](µ);µ)‖X′ + κ
√
dFb(µ)‖epr

p (µ)‖M
)
‖epr

u (µ)‖X ;

where we used (6.33), Lemma 6.4.2 and the definition of the dual residual. The desired result

follows directly from this last expression, replacing ‖epr
u (µ)‖M with the results from Lemma

6.4.4.

Using now the two previous Lemmas, we give the a posteriori error estimator for the output:

Proposition 10. Defining:

δpr(µ) =
(
‖Rpr

u (·; [ψM , λM ](µ);µ)‖X′ ‖Rpr
p (·; [ψM , λM ](µ);µ)‖M ′

)T
,

δdu(µ) =
(
‖Rdu

u (·; [ψM , λM ](µ);µ)‖X′ ‖Rdu
p (·; [ψM , λM ](µ);µ)‖M ′

)T (6.46)
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and

C(µ) =

1 + κ2c(µ)2dFb(µ)2

σβK(µ)2g(µ)2
κ
√
dFb(µ)c(µ)2

σβK(µ)2g(µ)

κc(µ)2
√
dFb(µ)

σβK(µ)2g(µ)
c(µ)2

σβK(µ)2
.

 (6.47)

If the reduced basis approximation βK(µ) → β(µ) as K →∞ then there exists a K∗(µ) such

that ∀K ≥ K∗(µ),

|s(µ)− sN(µ)| ≤ δdu(µ)TC(µ)δpr(µ). (6.48)

Proof. From (6.4) and (6.27) the error in the output is given by

s(µ)− sN(µ) = `Ou (u(µ);µ) + `Op (p(µ);µ)

− `Ou (u(µ);µ)− `Op (p(µ);µ) +Rpr([ψM , λM ](µ); [uN , pN ](µ);µ)

= `Ou (epr
u (µ);µ) + `Op (epr

p (µ);µ) +Rpr([ψM , λM ](µ); [uN , pN ](µ);µ).

Which from the definition of the adjoint problem (6.5) and the primal residual (6.21) can be

written as

s(µ)− sN(µ) = −a(epr
u (µ), ψ(µ);µ)− b(epr

u (µ), λ(µ);µ)− b(ψ(µ), epr
p (µ);µ)

+ a(epr
u (µ), ψM(µ);µ) + b(epr

u (µ), λM(µ);µ) + b(ψM(µ), epr
u (µ);µ)

= −a(epr
u (µ), edu

u (µ);µ)− b(epr
u (µ), edu

p (µ);µ)− b(edu
u (µ), epr

u (µ);µ)

= −Rdu
u (epr

u ; [ψM , λM ](µ);µ)−Rdu
p (epr

p (µ); [ψM , λM ](µ);µ);

here the definitions for the primal and dual residuals have been used, equations (6.21) and

(6.24), respectively. We then have that:

|s(µ)− sN(µ)| ≤ sup
v∈X

Rdu
u (v; [ψM , λM ](µ);µ)

‖v‖X
‖epr

u (µ)‖X + sup
q∈M

Rdu
p (q; [ψM , λM ];µ)

‖q‖M
‖epr

p (µ)‖M

= ‖Rdu
u (·; [ψM , λM ](µ);µ)‖X′‖epr

u (µ)‖X + ‖Rdu
p (·; [ψM , λM ];µ)‖M ′‖epr

p (µ)‖M .

which using Lemmas 6.4.4, 6.4.5, and the definitions in (6.46) can be written as

|s(µ)− sN(µ)| ≤ δdu(µ)T

C1
u(µ) C2

u(µ)

C1
p(µ) C2

p(µ)

 δpr(µ). (6.49)
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For σ < 1, we have from our hypothesis on βK(µ) that σβK(µ) ≤ β(µ), for K sufficiently

large, say K ≥ K∗(µ). From σβK(µ) ≤ β(µ) and (6.49) the desired result, equation (6.48),

directly follows.

The bound obtained in Proposition 10 is easily computable. First, for C(µ), we need

βK(µ) which is obtained by solving a reduced-basis problem. Second, for δdu(µ) and δpr(µ),

the dual norms for the primal and dual residuals are required. Following the discussion in

Section 6.3 and 5.4.2, an off-line/on-line decomposition can be developed for the efficient

calculation of the relevant norms. In the following Section, we will not present numerical

results for the a posteriori error estimation procedure developed here — these along with

the development of bound conditioners, will be presented in a future paper.

6.5 Numerical Results

6.5.1 Problem Statement

1.5

β

α

1.
0

Ω̂

Γo

Γd

Γd

Figure 6-1: Square Obstacle

To illustrate our methods we study the incompressible flow of a highly-viscous fluid in an

infinite duct with periodic square obstacles. Assuming a constant pressure gradient applied

on the fluid, our interest is to study the effect that the size of the obstacle has to the flow-

rate. To compute the velocity and pressure distribution the Stokes equations, (6.1), have to
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be solved. For this periodically repeating configuration, we only need consider the domain

around one of the obstacles, shown in Figure 6-1, and use periodic boundary conditions for

the velocity in the inflow and outflow boundaries. In addition, for the duct Γd and obstacle

solid walls Γo, a no-slip boundary condition is applied.

The basic (non-dimensionalized) geometric dimensions are shown in Figure 6-1. For the

parameterization of the problem we are interested in two geometric parameters: the length

α and height β of the obstacle — µ = (α, β) ∈ RP=2. We choose allowable ranges for these

parameters 0.1 ≤ α ≤ 1.0, and 0.1 ≤ β ≤ 0.8; that is D = [0.1, 1.0]× [0.1× 0.8] ⊂ R2. Then

for a given µ ∈ D, we compute the solution [u(µ), p(µ)] and from this we obtain the flow-rate

— output of interest — s(µ), from:

s(µ) = `O([u(µ), p(µ)];µ) =
2

3

∫
Ω̂

u1 dΩ; (6.50)

recall that u1 is the x-component of the velocity vector.

To account for the geometry variations we map the parameter-dependent domain Ω̂ to a

fixed domain Ω, by using affine geometric transformations. Then geometry variations appear

as parameter-dependent properties over the fixed domain Ω. We thus obtain an equation

of the form (6.3), with X = V 2, where H1
0 (Ω) ⊂ V ⊂ H1(Ω) satisfies the aforementioned

boundary conditions. Also, since there is no interaction with the environment, the pressure

is defined up to an additive constant. To eliminate this uncontrollable mode we choose

M = L2
0(Ω) for the pressure. Under these assumptions a unique solution [u(µ), p(µ)] will

exist for (6.3). It is easy to verify that a decomposition of the form (6.8), with Qa = 6,

Qb = 4 and Qc = QO = 3, exists for the linear and bilinear forms. In practice for the

solution of (6.3), X and M are replaced by Xh and Mh, suitably chosen finite-dimensional

approximation spaces. Here, we use the Taylor-Hood family of elements, where:

Xh =
{
v ∈ X ∩ C0(Ω)|v|Th

∈ P2(Th), ∀Th ∈ Th
}
, and,

Mh =
{
q ∈M ∩ C0(Ω)|q|Th

∈ P1(Th), ∀Th ∈ Th
}

;

with Th a suitably fine triangulation of the domain Ω. This choice, ensures discrete stability
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[36], and the discrete problems have a unique solution obtained by using the Uzawa algorithm.

6.5.2 Results

The calculations can be simplified by noticing that, for our problem `0([v, q];µ) = c`([v, q];µ)

with c a constant — here, c = 2/3. Given the symmetry of the Stokes operator, and choosing

N = M , and Spr
N ≡ Sdu

M we see that the resulting primal and dual reduced-basis spaces will

coincide. As a consequence the primal and dual solutions at each µ ∈ D will be co-linear; for

this specific case, denoted as “compliance,” the computational procedure can be simplified.

More specifically, for the particular case in consideration, the adjoint correction term of

(6.27) will vanish by virtue of the Galerkin orthogonality. This suggests that we only need

consider the primal problem. The disadvantage over the segregated primal-dual approach

(with Spr
N 6= Sdu

M ) is an increase — for a given accuracy — roughly by a factor of two to four

of the off-line and on-line computational complexity. A discussion on how the relative choice

of basis functions for the primal and dual problem affects the accuracy and computational

cost, was given in the previous chapters — the same conclusions apply here.

Here we focus on a different problem, which is the relative selection of basis functions

used for the approximation of the velocity and the pressure. Following Remark 6.2.2, we

can choose independently Npr
p , the number of pressure basis functions, and Npr

u the number

of velocity basis functions. Recall, that to ensure stability of the reduced-basis problems,

we need to augment the velocity (supremizing-) space with Npr
p parameter-dependent basis

functions. The velocity approximation-space has then total dimension Npr
u +Npr

p .

To form the reduced-basis space we define Npr = max{Npr
u , N

pr
p }, and select Npr points

µi ∈ D to form the sample set Spr
N = {µi, i = 1, . . . , Npr}. We then compute the solution

of (6.3) [u(µ), p(µ)] for all µ ∈ Spr
N using the finite-element method; representative solutions

are shown in Figure 6-3. To form the pressure reduced-basis space Mpr
N we pick the first Npr

p

pressure basis-functions. We then compute the related supremizing functions from (6.15).

For the velocity reduced-basis space Xpr
N , we include the first Npr

u velocity basis functions,

and in addition the parameter-dependent functions of (6.14). For the efficient calculation

of the reduced-basis predictions, the off-line/on-line computational procedure presented in
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Figure 6-2: FEM Solution for α = 0.671 and β = 0.212
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Figure 6-3: FEM Solution for α = 0.590 and β = 0.404
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Section 6.3 can be utilized.

Test 1: Output Approximation

As a first test, we investigate the accuracy of the reduced-basis predictions as a function of

Npr
u and Npr

p . In Figures 6.5.2 and 6-4 the relative error in the output is plotted as a function

of Npr
u , for two test points µ1 = {0.5, 0.5} and µ2 = {0.2, 0.1}, respectively. It should be

clear that the size of Npr
u and Npr

p is directly related to the approximation properties of the

velocity and pressure spaces.

As Npr
u is increasing and for a fixed value of Npr

p , say Npr
p = 10, we see that initially the

error is decreasing very rapidly, and after some point it remains constant. The a priori error

analysis states that

|s(µ)− sN(µ)| ≤ c1 inf
wN∈Xpr

N

‖u(µ)− wN‖2
X + c2 inf

qN∈Mpr
N

‖p(µ)− qN‖2
M ; (6.51)

where c1 and c2, depend on the continuity and stability constants of the bilinear forms a and

b. This suggests that the accuracy in the output depends both in the approximation of the

pressure as well as the velocity — this is confirmed by these plots.

Initially, for Npr
u small, the velocity approximation error dominates over the pressure ap-

proximation error. As we increase Npr
u , the velocity reduced-basis space becomes richer, and

therefore the error in the velocity and consequently in the output is reduced. At some point

(as determined by the size of Npr
p ), the velocity approximation error becomes smaller than

the pressure approximation error. Therefore, further increasing Npr
u no longer contributes

to the accuracy of the output, as then the dominant error is now due to the inaccurate

approximation of the pressure. Even though for the particular output — the flowrate —

only the velocity appears explicitly in (6.50), the discussion above suggests that a balancing

of the pressure and velocity errors is essential for the accurate approximation of the output.

A choice like Npr
u = Npr

p , suggested in Section 6.2.1 is desirable for good convergence in the

output. For this particular choice, the convergence of the relative error in the output, is

shown in Figure 6-6.

Regarding the convergence rate we notice, following any of the curves in 6.5.2, that the
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Figure 6-4: Relative error as a function of Npr
u , for different Npr

p , for µ = {0.5, 0.5}.
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Figure 6-5: Relative error as a function of Npr
u , for different Npr

p , for µ = {0.2, 0.1}.
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Figure 6-6: Convergence of the relative error in the output as a function of Npr
u = Npr

p

(α = 0.2,β = 0.1).

error in the velocity converges to zero at an exponential rate. Indirectly, comparing the

different curves in Figure 6.5.2, a similar conclusion can be reached for the error in the

pressure. In both cases, for an increase of Npr
u (or Npr

p ) by ten, the approximation error goes

down roughly by an order of magnitude (for the output given the quadratic convergence —

expected from (6.51) — it goes down by roughly two orders of magnitude). The deterioration

in this convergence rate as Npr
u or Npr

p become large can be attributed to ill-conditioning, as

the basis functions become close to linearly dependent. Regarding the computational cost,

the evaluation of sN(µ) for Npr
u = Npr

p = 25 is roughly 1000 times faster, compared to the

solution of the finite-element problem for the evaluation of s(µ); the output is predicted

with an error less than 10−6 (as we can see from Figure 6-6) which is acceptable for many

applications. Of course, these savings are realized only in the limit of many evaluations,

after the off-line cost is offset.

Test 2: Inf-Sup Parameter Approximation

If an approximation to the inf-sup parameter is required (for example in the case of a

posteriori error estimation frameworks), the methodology described in 6.2.2, can be used.

To wit, we choose K = 50 and form the reduced-basis spaces Xχ
Kand Mχ

k . Using these

reduced-basis spaces we can compute an approximation βK(µ) to the exact inf-sup parameter

β(µ). It should be mentioned that for the efficient computation of βK(µ), an off-line/on-line
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β \ α 0.1000 0.3250 0.5500 0.7750 1.0000
0.100 1.13e-06 3.06e-07 1.37e-07 2.97e-07 6.58e-07
0.275 3.73e-08 2.11e-08 3.99e-07 2.20e-07 3.45e-05
0.450 6.92e-07 7.10e-07 4.33e-06 1.94e-05 5.35e-04
0.625 2.34e-07 4.65e-07 1.55e-05 2.36e-04 2.07e-03
0.800 4.18e-04 1.45e-04 4.46e-05 6.68e-04 5.59e-03

Table 6.1: Relative error βK(µ)−β(µ)
β(µ)

for different µ ∈ D (K = 50)

procedure can be developed, under the same assumptions as for the output prediction (i.e.

affine parameter dependence).

We present in Table 6.5.2, the relative error in the prediction of the inf-sup parameter

βK(µ)−β(µ)
β(µ)

, for different µ = {α, β} ∈ D. Consistent with Lemma 6.2.1, we notice that βK(µ)

is always larger than the exact inf-sup parameter. In addition, we notice that the prediction

is very accurate for all the test points. The relatively larger errors for α and β large can,

at least partially, be attributed to the choice of basis functions for the construction of the

reduced-basis spaces.
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Chapter 7

Eigenvalue Problems

7.1 Introduction

Given two Hilbert spaces X and Y satisfying Y ⊂ X, we consider the symmetric eigenvalue

problem : find (u(µ), λ(µ)) ∈ Y × R such that

a(u(µ), v;µ) = λ(µ)m(u(µ), v), ∀v ∈ Y, (7.1)

with the normalization condition

m(u(µ), u(µ)) = 1;

where µ ∈ D ⊂ RP is a multi-parameter, and, for any fixed µ in D, a(v, w;µ) and m(v, w)

are symmetric bilinear forms such that a(·, ·;µ) is uniformly continuous in Y , and m(·, ·) is

continuous and coercive in X. We further require the existence of a positive function g(µ)

and a symmetric coercive continuous bilinear form â(v, w) such that, for a positive constant

c > 0,

c||v||2Y ≤ g(µ)â(v, v) ≤ a(v, v;µ), ∀v ∈ Y, ∀µ ∈ D. (7.2)

We focus here on the situation, common in engineering design and optimization, in which

we wish to evaluate λ(µ) at many points µ in the parameter space D.
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7.2 The Reduced-Basis Approximation

In what follows, 0 < λ1(µ) ≤ λ2(µ) ≤ · · · and u1(µ), u2(µ), . . . denote respectively the

eigenvalues and eigenfunctions of (7.1) at a given point µ ∈ D. We suppose that our output

of interest is the first eigenvalue λ1(µ); we will further assume that λ1(µ) < λ2(µ). Note that

m(uj(µ), uk(µ)) = δjk and hence a(uj(µ), uk(µ);µ) = λj(µ)δjk, where δjk is the Kronecker

symbol.

We start by constructing the reduced basis : we select the sample set SN = {µ1, . . . , µN/2}

(suppose N even), and compute u1(µi) and u2(µi), i = 1, . . . , N/2. We then define the

reduced-basis space:

WN = span{ζ1, . . . , ζN} = span{u1(µ1), u
2(µ1), . . . , u

1(µN/2), u
2(µN/2)}.

We then consider, for any value µ of interest, the approximate solution: find (uN(µ), λN(µ)) ∈

WN × R such that

a(uN(µ), vN ;µ) = λN(µ)m(uN(µ), vN), ∀vN ∈ WN , and

m(uN(µ), uN(µ)) = 1.
(7.3)

As we recall below in Lemma 7.3.1, λ1
N(µ), the first discrete eigenvalue, is larger than

λ1(µ); we now construct a lower bound for λ1(µ). We first introduce a reconstructed error

ê(µ), in Y , solution of

g(µ)â(ê(µ), v) = 2[λ1
Nm(u1

N(µ), v)− a(u1
N(µ), v;µ)], ∀v ∈ Y. (7.4)

For any positive γ such that β(µ) = 1 − γ − λ1
N (µ)

λ2
N (µ)

is positive, the proposed lower bound is

then

λ−N(µ) = λ1
N(µ)− g(µ)

4β(µ)
â(ê(µ), ê(µ)).

We shall explain in Section 7.4 how to compute efficiently the solutions of (7.3) and

(7.4): we exploit (i) a decomposition of the bilinear form a, (ii) linear superposition, and

(iii) certain a priori estimates for the eigenvalue problem. In particular, the reduced-basis
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and µ-independent functions are pre-computed (for a similar idea, see [84]); the complexity

of the real-time reduced-basis and bound calculations is thus independent of the dimension

of the underlying expensive space Y . Before discussing the computational considerations, we

derive and analyze a bound error expression, and prove the asymptotic bounding properties

and optimal convergence rate of the bound gap.

7.3 Bound Properties

First, we recall the classical result, where e(µ) = u1(µ)− u1
N(µ)

Lemma 7.3.1. We have

a(e(µ), e(µ);µ)− λ1(µ)m(e(µ), e(µ)) = λ1
N(µ)− λ1(µ) > 0, (7.5)

and also, if m(e(µ), e(µ)) is small enough,

a(e(µ), e(µ);µ)− λ1
N(µ)m(e(µ), e(µ)) = (1−m(e(µ), e(µ)))(λ1

N(µ)− λ1(µ)) > 0. (7.6)

Proof. For (7.5) see Lemma 9.1 and Equation (8.42) in [9]; (7.6) then immediately follows.

Second, we prove the following error expression

Lemma 7.3.2. The bound satisfies

λ−N(µ) = λ1(µ)− g(µ)

2
â

(√
2β(µ)e(µ)− ê(µ)√

2β(µ)
,
√

2β(µ)e(µ)− ê(µ)√
2β(µ)

)
− {[a(e(µ), e(µ);µ)− β(µ)g(µ)â(e(µ), e(µ))]− λ1

N(µ)m(e(µ), e(µ))}.

(7.7)

Proof. We take v = e(µ) in (7.4) and add two times a(u1(µ), e(µ);µ)−λ1(µ)m(u1(µ), e(µ)) =

0 to the right-hand side; from m(u1(µ), u1(µ)) = m(u1
N(µ), u1

N(µ)) = 1 and Lemma 7.3.1 we

are then able to derive that

g(µ)â(ê(µ), e(µ)) = a(e(µ), e(µ);µ)− λ1
N(µ)m(e(µ), e(µ)) + λ1

N(µ)− λ1(µ). (7.8)
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We complete the proof by expanding the second term of the right-hand side of (7.7), and

then evoking the definition of λ−N(µ) and the equality (7.8).

Note that (7.6) and (7.7) states already that, for β(µ) small enough, λ−N(µ) is a lower

bound for λ1(µ). The following inequalities make that statement more precise.

Lemma 7.3.3. We have

λ1(µ)m(e(µ), e(µ)) ≤ 1

4λ1(µ)
a(e(µ), e(µ);µ)2

(
1− λ1(µ)

λ2(µ)

)
+
λ1(µ)

λ2(µ)
a(e(µ), e(µ);µ); (7.9)

furthermore, if we suppose a(e(µ), e(µ);µ) is sufficiently small,

a(e(µ), e(µ);µ) ≤ (λ1
N(µ)− λ1(µ))

(
1− λ1(µ)

λ2(µ)

)−1

+O[(λ1
N(µ)− λ1(µ))2]. (7.10)

Proof. We expand e(µ) =
∑∞

j=1 α
juj and write, as in the proof of Theorem 9.1 in [9],

a(e(µ), e(µ);µ) = λ1(α1)2 +
∞∑
j=2

λj(αj)2 = λ1(α1)2 +
∞∑
j=2

λj(αj)2

(
1− λ1

λj

)(
1− λ1

λj

)−1

≤ λ1(α1)2 + [a(e(µ), e(µ);µ)− λ1m(e, e)]

(
1− λ1

λ2

)−1

,

where we have evoked our normalizations m(uj, uk) = δjk, a(u
j, uk) = λjδjk. We now

note that α1 = 1
λ1a(e, u

1;µ) = 1 − 1
λ1a(u

1
N , u

1;µ) ≤ 1
2λ1a(u

1, u1;µ) + 1
2λ1a(u

1
N , u

1
N ;µ) −

1
λ1a(u

1
N , u

1;µ), hence α1 ≤ 1
2λ1a(e, e;µ), where we have evoked λ1

N ≥ λ1 from (7.5). This,

together with the fact that α1 = m(e, u1) = m(e,e)
2

≥ 0 (again from m(uj, uk) = δjk), directly

yields (7.9).

From (7.5) and (7.9) we obtain 1
4λ1a(e, e;µ)2−a(e, e;µ)+(λ1

N −λ1)
(
1− λ1

λ2

)−1

≥ 0; then

a(e, e;µ) ≤ 2λ1

{
1−

√
1− (λ1

N − λ1)

λ1
(1− λ1λ2)−1

}
,

for a(e, e;µ) sufficiently small; (7.10) follows from expanding the square root.

Finally, we prove
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Proposition 11. Assume our reduced-basis approximation is convergent in the sense that

a(e(µ), e(µ);µ) → 0, λ1
N(µ) → λ1(µ), and λ2

N(µ) → λ2(µ) as N → ∞. Then there exist an

N∗(µ) such that, for N ≥ N∗(µ),

λ−N(µ) ≤ λ1(µ)− γa(e(µ), e(µ);µ) +O[(λ1
N(µ)− λ1(µ))2 + (λ2

N(µ)− λ2(µ))(λ1
N(µ)− λ1(µ))],

(7.11)

and hence an N∗∗(µ) such that λ−N(µ) ≤ λ1(µ) for N ≥ N∗∗(µ). Furthermore, the rate

of convergence of the bound gap ∆N = λ1
N(µ) − λ−N(µ) is optimal in the sense that ∆N ≤

C‖e(µ)‖2
Y .

Proof. We write, for N > N∗(µ) such that (7.10) is satisfied,

[a(e, e;µ)− βg(µ)â(e, e)]− λ1
Nm(e, e) (7.12)

≥
(

1− β − λ1

λ2

)
a(e, e;µ)− 1

4λ1
a(e, e;µ)2

(
1− λ1

λ2

)
− (λ1

N − λ1)m(e, e) (7.13)

≥
(

1− β − λ1

λ2
N

)
a(e, e;µ) +

(
λ1

λ2
N

− λ1

λ2

)
a(e, e;µ) +O[(λ1

N − λ1)2] (7.14)

≥ γa(e, e;µ) +O[(λ1
N − λ1)2 + (λ2

N − λ2)(λ1
N − λ1)], (7.15)

where we have used (7.2) and (7.9) in the first inequality, (7.5) and (7.10) in the second

inequality, and (7.10) and our choice of β(µ) (see Section 7.2) in the final inequality. Finally,

(7.7) and (7.2) together with the previous inequality yield (7.11), and (7.5) then ensures the

existence of N∗∗(µ).

To prove the optimality of the bound gap, we add 2[a(u1, v;µ)− λ1m(u1, v)] = 0 to the

right-hand side of (7.4) to obtain g(µ)â(ê, v) = 2[a(e, v;µ)−λ1
Nm(e, v)]+2(λ1

N−λ1)m(u1, v).

We then take v = ê(µ) and use (7.2) and the continuity of a and m to show ‖ê‖Y ≤

C[‖e‖Y + (λ1
N − λ1)]. We conclude the proof by noting that λ1

N − λ1 ≤ C‖e‖2
Y , which is a

consequence of (7.5), and thus the bound gap ∆N(µ) = g(µ)
4β
â(ê, ê) ≤ C1‖ê‖2

Y ≤ C2‖e‖2
Y .

Note that our hypothesis that λ2
N(µ) is a sufficiently good approximation of λ2(µ) is

realistic, since we have included the second eigenfunctions in the reduced-basis. Before

illustrating our method with numerical results, we describe, under some realistic hypotheses,
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ways to evaluate efficiently both the discrete solution and the bounds.

7.4 Computational approach

We henceforth assume that a can be decomposed as a(v, w;µ) =
∑Q−1

q=1 σ
q(µ)aq(v, w), where

the σq are mappings from D into R, and the aq are bilinear forms. We presume that the

dimension of Y , dimY , is large, and that for any (v, w) in Y 2, a(v, w;µ), m(v, w), and â(v, w)

require O(dimY )α operations to evaluate, where α is a positive real number (typically 1, and

at most 2).

As an example, we consider Y = {v ∈ H1
0 (]0, 1[)| v|Th

∈ P1(Th), ∀Th ∈ Th}, where Th is a

triangulation of ]0, 1[, and X = L2(]0, 1[). We take a(v, w;µ) = ν1

∫ ω
0
vxwx + ν2

∫ 1

ω
vxwx and

m(v, w) =
∫ 1

0
vw, where 0 < ω < 1; the parameter µ = (ν1, ν2) lies in the set D = [1, 10]2.

For this problem, Q = 3, σ1(µ) = ν1, σ
2(µ) = ν2, a

1(v, w) =
∫ ω

0
vxwx, a

2(v, w) =
∫ 1

ω
vxwx,

â(v, w) =
∫ 1

0
vxwx, and g(µ) = min(ν1, ν2).

The procedure has two distinct stages: the pre-processing stage and the real-time model.

Step 1 — Off-line Step

After computing the reduced basis, we compute, for q = 1, . . . , Q and n = 1, . . . , N , the

functions zqn ∈ Y , solutions of

â(zqn, v) = −aq(ζn, v), ∀v ∈ Y, 1 ≤ q ≤ Q− 1, and

â(zQn , v) = −m(ζn, v);
(7.16)

we then assemble the matrices Aq ∈ RN×N , q = 1, . . . , Q − 1,M ∈ RN×N , and Γ ∈

RN×N×Q×Q, defined by Aqmn = aq(ζm, ζn), q = 1, . . . , Q− 1, Mmn = m(ζm, ζn), and Γmnpq =

â(zpn, z
q
m).

Step 2 — On-line Step

Given µ ∈ D, in order to solve the discrete problem (7.3), we compute (ηi(µ), λiN(µ)) ∈

RN × R, i = 1, 2, the first two eigenpairs of the problem AN(µ)η = λNMNη, η
TMη = 1.
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Here AN(µ) =
∑Q−1

q=1 σ
q(µ)Aq, and ηT denotes the transpose of the vector η ∈ RN ; note that

u1
N(µ) =

∑N
n=1 η

1
nζn. Then, by linear superposition, we can evaluate our lower bound as

λ−N(µ) = λ1
N(µ)− 1

βg(µ)

N∑
m=1

N∑
n=1

Q∑
p=1

Q∑
q=1

η1
m(µ)η1

n(µ)σp(µ)σq(µ)Γmnpq, (7.17)

where σQ(µ) = −λ1
N(µ); note that ê defined in (7.4) verifies ê = 2

g(µ)

∑N
n=1

∑Q
q=1 σ

q(µ)η1
nz

q
n.

Computational Complexity

The off-line step requires N eigensolves and the inversion of NQ symmetric positive-definite

linear systems (with identical operators) in the expensive space Y ; the matrices Aq, M ,

and Γ are constructed in less than O[(N2Q2)(dimY )α] operations. In contrast, the real-

time model in Step 2 is inexpensive — the operation count (and storage) is independent of

dimY : for each new point µ ∈ D, λN(µ) and λ−N(µ) are obtained in less than O(N3 +N2Q2)

operations; the first term accounts for the eigenvalue solve, and the second term for the

assembly of AN(µ) (in fact, N2Q operations) and the calculation of the sum in (7.16).

7.5 Numerical Example

We consider the problem defined by σ1(µ) = 1, σ2(µ) = µ, a1(v, w) =
∫

Ω1 ∇v ·∇w, a2(v, w) =∫
Ω2 ∇v ·∇w, and m(v, w) =

∫
Ω
vw, where Ω =]0, 1[×]0, 1[, Ω2 =]0, 0.5[×]0, 0.5[, Ω1 = Ω−Ω2,

and µ ∈ D = [1, 9]. We take â(v, w) =
∫

Ω
∇v · ∇w, and g(µ) = 1. Our Hilbert space Y

is the finite element space Y = {v ∈ H1(Ω) ∩ C0(Ω)| v|Th
∈ P1(Th), ∀Th ∈ Th, v|ΓD

= 0},

where Th is a fine triangulation of the domain Ω; the homogeneous Dirichlet boundary ΓD

is defined as ΓD = {(x, 1), 0 ≤ x ≤ 1} ∪ {(1, y), 0 ≤ y ≤ 1}. Our sample set is defined by

SN = {µ1, . . . , µN/2} = {1, 3, 5, . . . , N − 1} for N ≤ 8 — this is certainly not optimal since

our target value is µ = 9 (extrapolation), however it serves well to illustrate the technique.

We define ηN = ∆N(µ)/(λ1
N(µ) − λ1(µ)) as the effectivity index. We observe in Table

7.1 exponential convergence of λ1
N(µ) and λ2

N(µ) towards λ1(µ) and λ2(µ), respectively, as

we increase N . The effectivities show that bounds (λ1
N(µ) ≥ λ1(µ) ≥ λ−N(µ)) are indeed
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obtained for each case, ηN(µ) ≥ 1 (hence N∗∗ = 2), and also demonstrate the efficiency and

optimality of the method, as ηN(µ) is at most 6.3, and thus the error bars are tight.

N (λ1
N − λ1)/λ1 (λ2

N − λ2)/λ2 ∆N(µ)/λ1(µ) ηN(µ)
2 1.3× 10−1 2.1× 100 8.3× 10−1 6.3
4 5.2× 10−3 2.1× 10−1 2.4× 10−2 4.7
6 7.3× 10−6 3.2× 10−4 3.6× 10−5 4.9
8 1.0× 10−9 1.4× 10−8 5.6× 10−9 5.2

Table 7.1: Numerical Results
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Chapter 8

Concluding Discussion

8.1 Summary

The focus of this thesis has been the development of reduced-basis output bound methods

for different classes of parameter-dependent partial differential equations. The essential

ingredients are model-order reduction and the development of relevant a posteriori error

estimators for outputs of interest.

The issue of model-order reduction has received considerable attention in the literature.

Much of the earlier work has focused on the reduction of time-dependent non-linear systems,

with the goal of minimizing computational complexity. The case of parameter-dependence

has been considered in the context of reduced-basis methods but most of the earlier work has

been local both in theory and practice. Our choice of global approximation spaces ensures

good approximation properties for wide ranges of the input parameters. Thus instead of

creating a reduced-order model for a particular system, we create a model valid for general

parametric families of systems — of special interest in the contexts of design, optimization

and control.

From the numerical point of view, we studied how different projection methods affect

the accuracy and stability of the reduced-basis problems. For coercive-elliptic and parabolic

problems, it was found that a Galerkin projection is sufficient for stability. For other prob-

lems, like non-coercive elliptic and the Stokes problem, it was found that a Galerkin projec-

175



tion (on spaces spanned by solution vectors for different parameter points) did not preserve

stability. The remedy in the case of non-coercive problems has been the use of minimum-

residual instead of Galerkin, or alternatively a Petrov-Galerkin projection method were the

supremizing space was augmented by problem-specific functions which help ensure stability.

Similarly, for the Stokes problem, to ensure stability we also had to augment the veloc-

ity space with pressure-dependent basis functions. Moreover, ensuring optimal convergence

rates for the output prediction, required solving a dual problem associated with the output

of interest. For this primal-dual procedure, we developed relevant a priori error bounds

directly for outputs of interest.

More importantly, a critical ingredient for the successful application of these methods, is

the development of a posteriori error estimation procedures, directly for outputs of interest.

It is understood that the error incurred by the model-order reduction depends on a number

of factors: the choice of reduced-basis functions, the problem in consideration, even the

output of interest — to name a few. Our approach is based on evaluating appropriate dual

norms of the residuals to the primal and dual problems. We prove that these estimators are

bounds to the true error, and thereby uncertainty in our predictions is greatly reduced.

On a more practical side, integration of the aforementioned components, required a care-

fully developed computational procedure (specific to each particular class of problems). The

assumption of affine parameter dependence for all the linear and bilinear forms, permitted

the decoupling of the computation in two stages: an expensive preprocessing step that needs

to be performed only once, and an inexpensive on-line step which needs to be performed for

each new set of input parameters.

Finally, corroborating results were presented for each class of problems. On one hand,

their purpose has been to verify the theoretical claims. On the other hand, to better under-

stand practical implementation issues like, for example, the relative choice of dimensions for

the primal and dual spaces.

8.2 Suggestions for future work

We conclude this section by giving some suggestions for future work:
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• On certain cases the a posteriori effectivity index has been rather high, suggesting

that the error estimator largely overestimates the true error. To improve the situation,

more general bound conditioner procedures have to be developed, following the ideas

presented in [113]. The main difficulty there is to construct these conditioners such

that a specific spectral condition is satisfied. See [111] for more details.

• In this thesis, the only non-linear problems considered were eigenvalue problems. The

extension to the Burgers equation and the Navier-Stokes equation should be possible.

The ingredients presented for the Stokes problem, will also be required there. The

extension to problems with general non-quadratic nonlinearities, at present, seems

difficult.

• The issue of ill-conditioning arising when the basis functions are close to linearly depen-

dent has not been discussed. A proposed way would be to use the proper orthogonal

decomposition to compute the “most energetic” modes. Then a bound for the L2 trun-

cation error can be obtained in terms of the singular values of a correlation matrix.

The theory presented in [93] (originally, for L∞ error bounds) can be adapted.

• The assumption of affine dependence is critical for computational efficiency, but also

rather limiting for certain problems (esp. when considering complex geometric vari-

ations). Procedures for — at least partially — relaxing this requirement should be

possible to develop. See [106] for more details.

• Of importance is also the integration of these methods in optimization, inverse design

or control frameworks, and their use for realistic problems.

• If a system comprises of many connected components, and for each of those component

a reduced-order model exists, it is interesting to develop error estimation procedures

for the whole system. A related problem is the presence of uncertainties on the input

parameters. Some of the theory in [93] should be relevant.

• Finally a more theoretical issue is the convergence of the error with the number of basis

functions used. In [101] a local result was established for multi-parameter problems;

177



in [69], the exponential convergence has been proven globally for single-parameter

problems. A global theory for multi-parameter problems, does not exist, even though

the numerical results presented here suggest that this conjecture might be true.
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Appendix A

Parabolic Problem — Computational

Procedure

A.1 Discontinuous Galerkin — Case q=0

From the definition of Pq(Il;V ) for q = 0, P0(Il;V ) = {v : Il 7→ V | v(t) = vs, vs ∈ V } — for

each time interval Il the functions will be constant. Defining u(t;µ) = ul(µ) ∈ V, t ∈ Il,∀l ∈

L and ψl(µ) = ψ(t;µ) ∈ V, t ∈ Il,∀l ∈ L equations (4.24), (4.25) simplify for the case q = 0

to: find ul(µ) ∈ V, ψl(µ) ∈ V, ∀l ∈ L, from:

b(ul(µ), v;µ) + ∆τ la(ul(µ), v;µ) = ∆τ lf(v) + b(ul−1(µ), v;µ), ∀v ∈ V, ∀l ∈ L.

b(ψl(µ), v;µ) + ∆τ la(v, ψl(µ);µ) = −∆τ l`O(v) + b(ψl+1(µ), v;µ), ∀v ∈ V, ∀l ∈ L; (A.1)

with u0(µ) = u0 ∈ X and ψL+1(µ) = −gO ∈ X; here b(w, v;µ) ≡ (w, v) as the L2 inner

product will also be assumed to be parameter-dependent. The output is then obtained from,

s(µ) =
∑
l∈L

∆τ l`O(ul(µ)) + b(gO, uL(µ);µ)

=
∑
l∈L

∆τ lf(ψl(µ)) + b(u0, ψ
1(µ);µ). (A.2)
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A.1.1 Reduced-basis

We first form the reduced-basis spaces W pr
N , W

du
M by solution of (A.1). The reduced-basis

approximations ulN(µ), ψlM(µ) to ul(µ), ψl(µ) can be written as

ulN(µ) =
N∑
j=1

ulN jζj = (ulN)T ζ, and ψlM(µ) =
M∑
j=1

ψlM jξj = (ψl
M

)T ξ; (A.3)

with ulN(µ) ∈ RN and ψl
M

(µ) ∈ RM . Using the expressions above, the reduced-basis problem

for the primal variable becomes:

b(ulN(µ), v;µ) + ∆τ la(ulN(µ), v;µ) = ∆τ lf(v) + b(ul−1
N (µ), v;µ), ∀v ∈ W pr

N , ∀l ∈ L(
Bpr(µ) + ∆τ lApr(µ)

)
ulN(µ) = ∆τ lf + rpr,l−1, ∀l ∈ L; (A.4)

here Apr(µ) ∈ RN×N is the matrix with entries Apr
ij = a(ζj, ζi;µ), 1 ≤ i, j ≤ N ; Bpr(µ) ∈

RN×N has entries Bpr
ij = b(ζj, ζi;µ); f ∈ RN is the vector defined by fi = f(ζi); and rpr,l ∈ RN

is: for ` = 0, equal to rpr,0
i = b(u0, ζi;µ), and for ` ∈ L, rpr,l = Bpr(µ)ulN(µ). The reduced-

basis problem for the dual variable is:

b(ψlM(µ), v;µ) + ∆τ la(v, ψlM(µ);µ) = −∆τ l`O(v) + b(ψl+1
M (µ), v;µ), ∀v ∈ W du

M , ∀l ∈ L,(
Bdu(µ) + ∆τ lAdu(µ)

)
ψl
M

(µ) = −∆τ l`O + rdu,l+1, ∀l ∈ L; (A.5)

here Adu(µ) ∈ RM×M is the matrix with entries Adu
ij = a(ξi, ξj;µ), 1 ≤ i, j ≤ M ; Bdu(µ) ∈

RM×M has entries Bdu
ij = b(ξj, ξi;µ); `O ∈ RM is the vector defined by `Oi = `O(ξi); and rdu,l ∈

RM is: for ` = L + 1, equal to rdu,L+1
i = −b(gO, ξi;µ), and for ` ∈ L, rdu,l = Bdu(µ)ψl

M
(µ).

The output can be calculated from,

sN(µ) =
∑
l∈L

∆τ l`O(ulN(µ)) + b(gO, uLN(µ);µ) =
∑
l∈L

∆τ lLTNu
l
N(µ) +GN(µ)TuLN(µ); (A.6)

with LN ∈ RN , with entries LN i = `O(ζi), for 1 ≤ i ≤ N ; also, GN(µ) ∈ RN with GN i(µ) =

b(gO, ζi;µ).

Assuming that all the parameter-dependent operators, depend affinely on the parameter,
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we can write:

Apr
ij (µ) = a(ζj, ζi;µ) =

Qa∑
q=1

σqa(µ)aq(ζj, ζi) → Apr(µ) =

Qa∑
q=1

σqa(µ)Apr q

Bpr
ij (µ) = b(ζj, ζi;µ) =

Qb∑
q=1

σqb (µ)bq(ζj, ζi) → Bpr(µ) =

Qb∑
q=1

σqb (µ)Bpr q

rpr,0
i = b(u0, ζi;µ) =

Qb∑
q=1

σqb (µ)bq(u0, ζi) → rpr,0 =

Qb∑
q=1

σqb (µ)rpr,0 q;

with 1 ≤ i, j ≤ N ; for the dual we can similarly form Adu q, Bdu q, rdu,L+1 q; and for the

output GN i(µ) = b(gO, ζi;µ) =
∑Qb

q=1 σ
q
b (µ)bq(gO, ζi) → GN(µ) =

∑Qb

q=1 σ
q
b (µ)Gq.

The off-line/on-line decomposition should be clear. In the off-line stage, we first compute

from (A.1) the reduced-basis vectors ζi, i = 1, . . . , N, and ξi = 1, . . . ,M . We then compute

and store the µ-independent quantities A{pr,du} q, B{pr,du} q, rpr,0 q, rdu,L+1 q, f , `O, Gq. The

computational cost is then (N+M)L V-solves, and O((N2+M2)(Qa+Qb)) V -inner products.

The storage requirements are: O((N2 +M2)(Qa +Qb)) for all the µ-independent quantities.

In the on-line stage, for each new µ ∈ D, we form using the precomputed information, all

the required vectors and matrices; this requires O((N2 + M2)(Qa + Qb)) operations. We

then solve (A.4) for uN(t;µ), and (A.5) for ψM(t;µ). The systems are dense so a direct

solver can be used and the cost is O((N3 +M3)L); in the special case of constant time-step

∆τ , we can factor the matrices using LU (or Cholesky) factorization and the cost reduces

to O(N3 +M3 + L(N2 +M2)). Finally, from (A.6) we compute the output approximation

sN(µ).

Thus as required, the incremental or marginal cost to evaluate, sN(µ) for any given new

µ — as proposed in a design, optimization, or inverse-problem context — is very small:

first, because N, M are very small, typically O(10); and second, because the reduced-

order problems can be very rapidly assembled and inverted thanks to the off-line/on-line

decomposition.
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A.1.2 Output Bounds

The second step is the computation of the output bounds; following (4.29) and (4.30),

we need to compute the following quantities: I4 = (g(µ))2
∫ T

0
â(êpr(µ), êpr(µ)) dt, I5 =

(g(µ))2
∫ T

0
â(êpr(µ), êdu(µ))dt, I6 =

∑
l∈LR

pr
l (ψM(t;µ);µ), I7 = (g(µ))2

∫ T
0
â(êdu(µ), êdu(µ))dt.

To efficiently calculate the bounds, we develop next a two-stage computational procedure;

the essential enabler, as before, is the affine decomposition assumption.

Since êpr(t;µ), êdu(t;µ) ∈ V q(I;V ), we define êpr l(µ) ≡ êpr(t;µ), t ∈ Il, ∀l ∈ L and

êdu l(µ) ≡ êdu(t;µ), t ∈ Il, ∀l ∈ L. Following (4.28), the representations of the error

êpr(t;µ), êdu(t;µ) can be obtained from:

g(µ)â(êpr l(µ), v) = f(v)− 1

∆τ l
b(ulN(µ)− ul−1

N (µ), v;µ)− a(ulN(µ), v;µ), and

g(µ)â(êdu l(µ), v) = −`O(v)− 1

∆τ l
b(ψlM(µ)− ψl+1

M (µ), v;µ)− a(ψlM(µ), v;µ);

∀v ∈ V, ∀l ∈ L. Using the affine decomposition assumption, we get (∀v ∈ V, ∀l ∈ L):

g(µ)â(êpr l(µ), v) = f(v)− 1

∆τ l

Qb∑
q=1

N∑
j=1

σqb (µ)
(
ulN j(µ)− (1− δl 1)u

l−1
N j(µ)

)
bq(ζj, v)

− δl 1
∆τ l

Qb∑
q=1

Qu∑
j=1

σqb (µ)σju(µ)bq(uj0, v)−
Qa∑
q=1

N∑
j=1

σqa(µ)ulN j(µ)aq(ζj, v);

with δij the Kronecker delta which δij = 1 is i = j and δij = 0 otherwise. During the off-line

stage, we compute: ẑpr
0 ∈ V from â(ẑpr

0 , v) = f(v), ∀v ∈ V ; ẑq pr
a j ∈ V for j = 1, . . . , N

and q = 1, . . . , Qa from â(ẑq pr
a j , v) = −aq(ζj, v), ∀v ∈ V ; ẑq pr

b j ∈ V for j = 1, . . . , N and

q = 1, . . . , Qb from â(ẑq pr
b j , v) = −bq(ζj, v), ∀v ∈ V ; and ẑq pr

u j ∈ V for j = 1, . . . , Qu and

q = 1, . . . , Qb from â(ẑq pr
u j , v) = −bq(uj0, v), ∀v ∈ V . Then êpr l(µ) can be computed from:

êpr l(µ) =
1

g(µ)

[
ẑpr
0 +

1

∆τ l

Qb∑
q=1

N∑
j=1

σqb (µ)
(
ulN j(µ)− (1− δl 1)u

l−1
N j(µ)

)
ẑq pr
b j

+
δl 1
∆τ l

Qb∑
q=1

Qu∑
j=1

σqb (µ)σju(µ)ẑq pr
u j +

Qa∑
q=1

N∑
j=1

σqa(µ)ulN j(µ)ẑq pr
a j

]
, ∀l ∈ L. (A.7)
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Similarly for the computation of êdu l(µ) we have that (∀v ∈ V, ∀l ∈ L):

g(µ)â(êdu l(µ), v) = −`O(v)− 1

∆τ l

Qb∑
q=1

M∑
j=1

σqb (µ)
(
ψlM j(µ)− (1− δl L)ψl+1

M j(µ)
)
bq(ξj, v)

− δl L
∆τ l

Qb∑
q=1

Qg∑
j=1

σqb (µ)σjg(µ)bq(gOj , v)−
Qa∑
q=1

M∑
j=1

σqa(µ)ψlM j(µ)aq(ξj, v).

During the off-line stage, we compute: ẑdu
0 ∈ V from â(ẑdu

0 , v) = −`O(v), ∀v ∈ V ; ẑq du
a j ∈ V

for j = 1, . . . ,M and q = 1, . . . , Qa from â(ẑq du
a j , v) = −aq(ξj, v), ∀v ∈ V ; ẑq du

b j ∈ V for

j = 1, . . . ,M and q = 1, . . . , Qb from â(ẑq du
b j , v) = −bq(ξj, v), ∀v ∈ V ; and ẑq du

g j ∈ V for

j = 1, . . . , Qg and q = 1, . . . , Qb from â(ẑq du
g j , v) = −bq(gOj , v), ∀v ∈ V . Then êdu l(µ) can be

computed from:

êdu l(µ) =
1

g(µ)

[
ẑdu
0 +

1

∆τ l

Qb∑
q=1

M∑
j=1

σqb (µ)
(
ψlM j(µ)− (1− δl L)ψl+1

M j(µ)
)
ẑq du
b j

+
δl L
∆τ l

Qb∑
q=1

Qg∑
j=1

σqb (µ)σjg(µ)ẑq du
g j +

Qa∑
q=1

M∑
j=1

σqa(µ)ψlM j(µ)ẑq du
a j

]
, ∀l ∈ L. (A.8)

In (A.7) and (A.8) the parameter dependence enters only through the coefficients σq(µ) and

the primal and dual solutions to the reduced-basis problems.

In the equations above, ẑpr
0 , ẑ

q pr
b j , ẑ

q pr
u j , ẑ

q pr
a j and ẑdu

0 , ẑq du
b j , ẑ

q du
g j , ẑ

q du
a j , do not depend on

the parameter µ or time. They need only be computed once, and then from (A.7) and (A.8),

êpr(µ) or êdu(µ) can be computed for different parameters µ; the parameter dependence

enters only through the coefficients and the primal and dual solutions to the reduced-basis

problems. We can go one step further; since we are not interested on êpr(µ) or êdu(µ),

but rather on I4, I4, I6, and I7, we can insert (A.7) and (A.8) in the definition of those

quantities. The (quite long) expanded forms are shown in appendix A.2, Equations (A.9),

(A.10), (A.11), and (A.12).

In the off-line stage, we compute the µ-independent error components ẑ; this requires

O((Qa+Qb)(N+M)+(Qu+Qg)Qb) V linear systems solves. Then, using these error compo-

nents, we compute and store the µ-independent quantities required in (A.9), (A.10), (A.11)
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and (A.12); for example in (A.9), we compute and store â(ẑq pr
b j , ẑ

q′ pr
b j′ ), for j, j′ = 1, . . . , N

and q, q′ = 1, . . . , Qb. If Q = max{Qa, Qb, Qu, Qu}, then for the computation of those

auxiliary quantities we need O((N2 + M2)Q) V inner products. The storage requirements

are then O((N2+M2)Q) for the storage of auxiliary quantities. In the on-line stage, for each

new parameter point µ, we compute I4(µ), I5(µ), I6(µ) and I7(µ) from (A.9), (A.10), (A.11)

and (A.12). The operations required are O((N2 +M2)Q) and independent of the dimension

of space V .

The upper and lower bounds s±(µ) can then be computed from:

sB(µ) = sN(µ)− 1

2g(µ)
I5(µ)− I6(µ),

∆(µ) =
1

2g(µ)

√
I4(µ)I7(µ);

and s±(µ) = sB(µ)±∆(µ).
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A.2 Formulas

We give below explicit expressions for the calculation of the output bounds. Recall that I4 =

(g(µ))2
∫ T

0
â(êpr(µ), êpr(µ)), I5 = (g(µ))2

∫ T
0
â(êpr(µ), êdu(µ)), I6 =

∑
l∈LR

pr
l (ψM(t;µ);µ),

and I7 = (g(µ))2
∫ T

0
â(êdu(µ), êdu(µ)).

I4= (g(µ))2

∫ T

0

â(êpr(t;µ), êpr(t;µ)) = (g(µ))2
∑
l∈L

∆τ lâ(êpr l(µ), êpr l(µ))

=
∑
l∈L

Qb∑
q,q′=1

N∑
j,j′=1

σqb (µ)σq
′

b (µ)

∆τ l
(
ulN j(µ)− (1− δl 1)u

l−1
N j(µ)

)
(
ulN j′(µ)− (1− δl 1)u

l−1
N j′(µ)

)
â(ẑq pr

b j , ẑ
q′ pr
b j′ )

+T â(ẑpr
0 , ẑ

pr
0 ) +

∑
l∈L

Qb∑
q,q′=1

Qu∑
j,j′=1

δl 1
∆τ l

σqb (µ)σq
′

b (µ)σju(µ)σj
′

u (µ)â(ẑq pr
u j , ẑ

q′ pr
u j′ )

+
∑
l∈L

Qa∑
q,q′=1

N∑
j,j′=1

∆τ lσqa(µ)σq
′

a (µ)ulN j(µ)ulN j′(µ)â(ẑq pr
a j , ẑ

q′ pr
a j′ )

+
∑
l∈L

Qb∑
q=1

Qu∑
j=1

2δl 1σ
q
b (µ)σju(µ)â(ẑpr

0 , ẑ
q pr
u j )

+
∑
l∈L

Qb∑
q=1

N∑
j=1

2σqb (µ)
(
ulN j(µ)− (1− δl 1)u

l−1
N j(µ)

)
â(ẑpr

0 , ẑ
q pr
b j )

+
∑
l∈L

Qa∑
q=1

N∑
j=1

2∆τ lσqa(µ)ulN j(µ)â(ẑpr
0 , ẑ

q pr
a j )

+
∑
l∈L

Qb∑
q,q′=1

N∑
j=1

Qu∑
j′=1

2δl 1
∆τ l

σqb (µ)σq
′

b (µ)σj
′

u (µ)
(
ulN j(µ)− (1− δl 1)u

l−1
N j(µ)

)
â(ẑq pr

b j , ẑ
q′ pr
u j′ )

+
∑
l∈L

Qb∑
q=1

N∑
j,j′=1

Qa∑
q′=1

2σq
′

a (µ)σqb (µ)
(
ulN j(µ)− (1− δl 1)u

l−1
N j(µ)

)
ulN j′(µ)â(ẑq pr

b j , ẑ
q′ pr
a j′ )

+
∑
l∈L

Qb∑
q=1

Qu∑
j=1

Qa∑
q′=1

N∑
j′=1

2δl 1σ
q
b (µ)σju(µ)σq

′

a (µ)ulN j′(µ)â(ẑq pr
u j , ẑ

q′ pr
a j′ ). (A.9)
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I5= (g(µ))2

∫ T

0

â(êpr(t;µ), êdu(t;µ)) = (g(µ))2
∑
l∈L

∆τ lâ(êpr l(µ), êdu l(µ))

=
∑
l∈L

Qb∑
q,q′=1

N∑
j=1

M∑
j′=1

σqb (µ)σq
′

b (µ)

∆τ l
(
ulN j(µ)− (1− δl 1)u

l−1
N j(µ)

)
(
ψlM j′(µ)− (1− δl L)ψl+1

M j′(µ)
)
â(ẑq pr

b j , ẑ
q′ du
b j′ )

+T â(ẑpr
0 , ẑ

du
0 ) +

∑
l∈L

Qb∑
q,q′=1

Qu∑
j=1

Qg∑
j′=1

δl 1δl L
∆τ l

σqb (µ)σq
′

b (µ)σju(µ)σj
′

g (µ)â(ẑq pr
u j , ẑ

q′ du
g j′ )

+
∑
l∈L

Qa∑
q,q′=1

N∑
j=1

M∑
j′=1

∆τ lσqa(µ)σq
′

a (µ)ulN j(µ)ψlM j′(µ)â(ẑq pr
a j , ẑ

q′ du
a j′ )

+
∑
l∈L

Qb∑
q=1

Qu∑
j=1

δl 1σ
q
b (µ)σju(µ)â(ẑdu

0 , ẑq pr
u j ) +

∑
l∈L

Qb∑
q=1

Qg∑
j=1

δl Lσ
q
b (µ)σjg(µ)â(ẑpr

0 , ẑ
q du
g j )

+
∑
l∈L

Qb∑
q=1

N∑
j=1

σqb (µ)
(
ulN j(µ)− (1− δl 1)u

l−1
N j(µ)

)
â(ẑdu

0 , ẑq pr
b j )

+
∑
l∈L

Qb∑
q=1

M∑
j=1

σqb (µ)
(
ψlM j(µ)− (1− δl L)ψl+1

M j(µ)
)
â(ẑpr

0 , ẑ
q du
b j )

+
∑
l∈L

Qa∑
q=1

N∑
j=1

∆τ lσqa(µ)ulN j(µ)â(ẑdu
0 , ẑq pr

a j ) +
∑
l∈L

Qa∑
q=1

M∑
j=1

∆τ lσqa(µ)ψlM j(µ)â(ẑpr
0 , ẑ

q du
a j )

+
∑
l∈L

Qb∑
q,q′=1

N∑
j=1

Qg∑
j′=1

δl L
∆τ l

σqb (µ)σq
′

b (µ)σj
′

g (µ)
(
ulN j(µ)− (1− δl 1)u

l−1
N j(µ)

)
â(ẑq pr

b j , ẑ
q′ du
g j′ )

+
∑
l∈L

Qb∑
q,q′=1

M∑
j=1

Qu∑
j′=1

δl 1
∆τ l

σqb (µ)σq
′

b (µ)σj
′

u (µ)
(
ψlM j(µ)− (1− δl L)ψl+1

M j(µ)
)
â(ẑq du

b j , ẑ
q′ pr
u j′ )

+

Qb∑
q=1

N∑
j=1

M∑
j′=1

Qa∑
q′=1

σq
′

a (µ)σqb (µ)
(
ulN j(µ)− (1− δl 1)u

l−1
N j(µ)

)
ψlM j′(µ)â(ẑq pr

b j , ẑ
q′ du
a j′ )

+

Qb∑
q=1

M∑
j=1

N∑
j′=1

Qa∑
q′=1

σq
′

a (µ)σqb (µ)
(
ψlM j(µ)− (1− δl L)ψl+1

M j(µ)
)
ulN j′(µ)â(ẑq du

b j , ẑ
q′ pr
a j′ )

+

Qb∑
q=1

Qu∑
j=1

Qa∑
q′=1

M∑
j′=1

δl 1σ
q
b (µ)σju(µ)σq

′

a (µ)ψlM j′(µ)â(ẑq pr
u j , ẑ

q′ du
a j′ )

+

Qb∑
q=1

Qg∑
j=1

Qa∑
q′=1

N∑
j′=1

δl Lσ
q
b (µ)σjg(µ)σq

′

a (µ)ulN j′(µ)â(ẑq du
g j , ẑ

q′ pr
a j′ ). (A.10)
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I6=
∑
l∈L

Rpr
l (ψM(t;µ);µ) = g(µ)

∑
l∈L

â(ψlM(µ);µ)

= g(µ)
∑
l∈L

[
M∑
j=1

ψlM j(µ)f(ξj)

−
Qb∑
q=1

N∑
j=1

M∑
j′=1

σqb (µ)

∆τ l
(
ulN j(µ)− (1− δl 1)u

l−1
N j(µ)

)
ψlM j′(µ)bq(ζj, ξj′)

−
Qb∑
q=1

Qu∑
j=1

M∑
j′=1

δl 1
∆τ l

σqb (µ)σju(µ)ψlM j′(µ)bq(uj0, ξj′)

−
Qa∑
q=1

N∑
j=1

M∑
j′=1

σqa(µ)ulN j(µ)ψlM j′(µ)aq(ζj, ξj′)

]
. (A.11)
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I7= (g(µ))2

∫ T

0

â(êdu(t;µ), êdu(t;µ)) = (g(µ))2
∑
l∈L

∆τ lâ(êdu l(µ), êdu l(µ))

=
∑
l∈L

Qb∑
q,q′=1

M∑
j,j′=1

σqb (µ)σq
′

b (µ)

∆τ l
(
ψlM j(µ)− (1− δl L)ψl+1

M j(µ)
)

(
ψlM j′(µ)− (1− δl L)ψl+1

M j′(µ)
)
â(ẑq du

b j , ẑ
q′ du
b j′ )

+T â(ẑdu
0 , ẑdu

0 ) +
∑
l∈L

Qb∑
q,q′=1

Qg∑
j,j′=1

δl L
∆τ l

σqb (µ)σq
′

b (µ)σjg(µ)σj
′

g (µ)â(ẑq du
g j , ẑ

q′ du
g j′ )

+
∑
l∈L

Qa∑
q,q′=1

M∑
j,j′=1

∆τ lσqa(µ)σq
′

a (µ)ψlM j(µ)ψlM j′(µ)â(ẑq du
a j , ẑ

q′ du
a j′ )

+
∑
l∈L

Qb∑
q=1

Qg∑
j=1

2δl Lσ
q
b (µ)σjg(µ)â(ẑdu

0 , ẑq du
g j )

+
∑
l∈L

Qb∑
q=1

M∑
j=1

2σqb (µ)
(
ψlM j(µ)− (1− δl L)ψl+1

M j(µ)
)
â(ẑdu

0 , ẑq du
b j )

+
∑
l∈L

Qa∑
q=1

M∑
j=1

2∆τ lσqa(µ)ψlM j(µ)â(ẑdu
0 , ẑq du

a j )

+
∑
l∈L

Qb∑
q,q′=1

M∑
j=1

Qg∑
j′=1

2δl L
∆τ l

σqb (µ)σq
′

b (µ)σj
′

g (µ)
(
ψlM j(µ)− (1− δl L)ψl+1

M j(µ)
)
â(ẑq du

b j , ẑ
q′ du
g j′ )

+
∑
l∈L

Qb∑
q=1

M∑
j,j′=1

Qa∑
q′=1

2σq
′

a (µ)σqb (µ)
(
ψlM j(µ)− (1− δl L)ψl+1

M j(µ)
)
ψlM j′(µ)â(ẑq du

b j , ẑ
q′ du
a j′ )

+
∑
l∈L

Qb∑
q=1

Qg∑
j=1

Qa∑
q′=1

M∑
j′=1

2δl Lσ
q
b (µ)σjg(µ)σq

′

a (µ)ψlM j′(µ)â(ẑq du
g j , ẑ

q′ du
a j′ ). (A.12)

188



Bibliography

[1] R. A. Adams. Sobolev Spaces. Academic Press, 1975.

[2] M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element analysis.

Comp. Meth. Appl. Mech. Engrg., 142:1–88, 1997.

[3] M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element

Analysis. Wiley-Interscience, 2000.

[4] M. A. Akgun, J. H. Garcelon, and R. T. Haftka. Fast exact linear and non-linear

structural reanalysis and the Sherman-Morrison-Woodbury formulas. International

Journal for Numerical Methods in Engineering, 50(7):1587–1606, March 2001.

[5] E. Allgower and K. Georg. Simplicial and continuation methods for approximating

fixed-points and solutions to systems of equations. SIAM Review, 22(1):28–85, 1980.

[6] B. O. Almroth, P. Stern, and F. A. Brogan. Automatic choice of global shape functions

in structural analysis. AIAA Journal, 16:525–528, May 1978.

[7] A.C Antoulas and D.C. Sorensen. Approximation of large-scale dynamical systems:

An overview. Technical report, Rice University, 2001.

[8] J. A. Atwell and B. B. King. Proper orthogonal decomposition for reduced basis

feedback controllers for parabolic equations. Mathematical and Computer Modelling,

33(1-3):1–19, Jan-Feb 2001.

[9] I. Babuska and J. Osborn. Eigenvalue problems. In Handbook of numerical analysis,

volume II, pages 641–787. Elsevier, 1991.

189



[10] I. Babuska and W.C. Rheinboldt. A posteriori error estimates for the finite-element

method. Int. J. Num. Meth. Engrg., 18:736–754, 1978.

[11] Gareth A. Baker, James H. Bramble, and Vidar Thomee. Single step galerkin ap-

proximations for parabolic problems. Mathematics of Computation, 31(140):818–847,

October 1977.

[12] E. Balmes. Parametric families of reduced finite element models. theory and applica-

tions. Mechanical Systems and Signal Processing, 10(4):381–394, 1996.

[13] R. E. Bank and A. Weiser. Some a posteriori error estimators for elliptic partial

differential equations. Math. Comput., 44(170):283–301, 1985.

[14] A. Barrett and G. Reddien. On the reduced basis method. Z. Angew. Math. Mech.,

75(7):543–549, 1995.

[15] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method

for the numerical solution of the compressible navier-stokes equations. Journal of

Computational Physics, 131:267–279, 1997.

[16] F. Brezzi, G. Manzini, D. Marini, P. Pietra, and A. Russo. Discontinuous galerkin

approximations for elliptic problems. Numerical Methods for Partial Differential Equa-

tions, 16(4):365–378, Jul 2000.

[17] Paul Castillo, Bernardo Cockburn, Ilara Perugia, and Dominik Schötzau. An a priori
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