
Scheduling Algorithms to Improve Utilization in

Toroidal-Interconnected Systems

by

Elie Krevat

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2003

c© Elie Krevat, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 21, 2003

Certified by. .
José E. Moreira

Research Staff Member, IBM T.J. Watson Research Center
Thesis Supervisor

Certified by. .
Madhu Sudan

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

2

Scheduling Algorithms to Improve Utilization in

Toroidal-Interconnected Systems

by

Elie Krevat

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 2003, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

BlueGene/L is a massively parallel cellular architecture system with a toroidal inter-
connect, currently being developed at the IBM T.J. Watson Research Center. Cellular
architectures with a toroidal interconnect are effective at producing highly scalable
computing systems, but typically require job partitions to be both rectangular and
contiguous. These restrictions introduce fragmentation issues that affect the utiliza-
tion of the system and the wait time and slowdown of queued jobs. To solve these
fragmentation problems, this thesis presents the analysis and application of scheduling
algorithms that augment a baseline first come first serve (FCFS) scheduler. Restrict-
ing ourselves to space-sharing techniques, which constitute a simpler solution to the
requirements of cellular computing, we present simulation results for migration and
backfilling techniques on BlueGene/L. These techniques are explored individually and
jointly to determine their impact on the system. We develop an efficient Projection
Of Partitions (POP) algorithm for determining the size of the largest free rectangular
partition in a toroidal system, a basic operation that is the computational bottle-
neck for our scheduling algorithms. Our results demonstrate that migration may be
effective for a pure FCFS scheduler but that backfilling produces even more bene-
fits. We also show that migration may be combined with backfilling to produce more
opportunities to better utilize a parallel machine.

Thesis Supervisor: José E. Moreira
Title: Research Staff Member, IBM T.J. Watson Research Center

Thesis Supervisor: Madhu Sudan
Title: Associate Professor

3

4

Acknowledgments

The work presented in this thesis is the largest research project which I undertook
during my cooperative internship at IBM T.J. Watson Research Center. A research
note containing the major results of my work was published in Euro-Par [3], while a
more complete version was published in the 8th Workshop on Job Scheduling Strate-
gies for Parallel Processing, held in conjunction with HPDC11 [14].

I am indebted to many people at IBM for their support during my research. First
and foremost, José Moreira, my manager, mentor, and friend. José is far and away
the best manager anyone could hope for. From the daily meetings at the start of the
project, to making himself available even during one of his many incredibly busy days,
to traveling with me to Edinburgh so I could present our research - José helped shape
my research direction through his guidance. José Castaños also provided important
feedback and ideas, specifically for the Projection of Partitions algorithm. He is also a
treasure chest of technical information. Gheorghe Almasi, thanks for the working with
me on the MPI research - perhaps one day we will also publish something together. I
must also thank Professor Madhu Sudan for agreeing to be my MIT thesis supervisor
and spending the time to go over my work, even though the thesis topic had little
connection to coding theory and probabilistically checkable proofs!

Then there are the people at IBM who entertained me during breaks and after
work, whose camaraderie and support were always welcome. Joseph Gagliano missed
my first summer at IBM, but he was the one constant factor during the rest of my
time, even during the changing of the Brazilian mafia - thanks for the golf and the
sushi. Manu Sridharan was always great to be around, whether we were exploring
the cultural offerings of New York City or deliberating the merits of sketch comedy.
The entity known only as “Luis and Karin”, your scripts let me batch hundreds of
simulations at a time on the cluster, but how can I forget the pizza and chip runs.
José Brunheroto, thanks for the cheerful stories and the coffee breaks. Then there’s
Chris Erway for the goofy insights, Pedro and Bapi for teaching me the essentials of
Portuguese, Mike Arnold for the humorous poetry and letting me dunk over you on
the basketball courts, Ann Fornof for the ultimate frisbee and the friendly face in
the corridor, and Mart́in Casado for sparking my interest in systems, networks, and
security, designing the perfect CryptoSphere, the juggling, and always being around
that first summer for a good laugh. While I do not have space to thank them all
individually, I am grateful to the many other interns and co-workers who have made
IBM such a great place to work.

Finally, I cannot conclude these acknowledgements without thanking my family.
Dad, Mom, Ariela and Rina - thanks for being you.

5

6

Contents

1 Introduction 13

2 Scheduling Algorithms 17

3 Projection of Partitions (POP) Algorithm 23

4 Experiments 27

4.1 BlueGene/L Scheduling Abstractions 27

4.2 The Simulation Environment . 28

4.3 Workload characteristics . 29

5 Simulation Results 33

6 Related and Future Work 41

7 Conclusions 43

7

8

List of Figures

1-1 BlueGene/L architecture, with expected speed when utilizing 1 or 2

processors on each chip for computation 14

2-1 FCFS policy without (a) and with (b) backfilling. Job numbers corre-

spond to their position in the priority queue. 19

3-1 2-dimensional POP Algorithm applied to Base Location (1,2): Ad-

jacent 1-dimensional columns are projected onto each other as X̃ is

incremented. 24

4-1 Job sizes and total workload for NASA Ames iPSC/860((a) and (c))

and San Diego Supercomputer Center (SDSC) IBM RS/6000 SP((b)

and (d)). 31

5-1 Mean job wait time vs utilization for (a) NASA and (b) SDSC logs. . 33

5-2 Mean job bounded slowdown vs utilization for (a) NASA and (b) SDSC

logs. 34

5-3 Mean job bounded slowdown vs utilization for the NASA and SDSC

logs, comparing toroidal and flat machines. 35

5-4 Number of total, successful, and maximum possible successful migra-

tions vs utilization ((a) and (b)), and average time between migrations

vs utilization ((c) and (d)). 36

5-5 Mean job wait time vs utilization for the NASA and SDSC logs, com-

paring the standard migration policy to a full migration policy that

always attempts to migrate. 37

9

5-6 Capacity utilized, lost, and unused as a fraction of the total system

capacity. 38

5-7 Capacity utilized, lost, and unused as a fraction of the total system

capacity, with increased workload constant c = 1.2. 39

10

List of Tables

4.1 Statistics for 10,000-job NASA and SDSC logs. 30

11

12

Chapter 1

Introduction

BlueGene/L (BG/L) is a massively parallel cellular architecture system. Each node

consists of two PowerPC r© embedded cores using system-on-a-chip technology, and

256 MB of DRAM. 65,536 of these self-contained computing nodes, or cells, are inter-

connected in a highly dense three-dimensional toroidal pattern [21]. In that pattern,

each cell is directly connected to its six nearest neighbors, two each along the x, y, and

z axes. Three-dimensional toroidal interconnects are simple, modular, and scalable,

particularly when compared with systems that have a separate, typically multistage,

interconnection network [15]. Examples of successful toroidal-interconnected parallel

systems include the Cray T3D and T3E machines [12].

There is, however, a price to pay with toroidal interconnects. We cannot view the

system as a simple fully-connected interconnection network of nodes that are equidis-

tant to each other (i.e., a flat network). In particular, we lose an important feature of

systems like the IBM RS/6000 SP, which lets us pick any set of nodes for execution of

a parallel job, irrespective of their physical location in the machine [1]. In a toroidal-

interconnected system, the spatial allocation of nodes to jobs is of critical importance.

In most toroidal systems, including BG/L, job partitions must be both rectangular

(in a multidimensional sense) and contiguous. It has been shown by Feitelson and

Jette [8] that, because of these restrictions, significant machine fragmentation occurs

in a toroidal system. Fragmentation results in low system utilization and high wait

time for queued jobs.

13

 ��

Figure 1-1: BlueGene/L architecture, with expected speed when utilizing 1 or 2
processors on each chip for computation

We may limit the system fragmentation in a few ways. By restricting the sizes

of jobs that can be initialized (e.g., only powers of 2), jobs can pack more efficiently

in the torus. However, this method does not eliminate fragmentation and such re-

strictions need not be imposed on the end user. By employing more space-efficient

scheduling algorithms, we can have an even greater impact on fragmentation and

system utilization. These scheduling algorithms generally fall into two categories:

time-sharing and space-sharing techniques. Time-sharing techniques, such as gang-

scheduling, have been shown to be very effective at reducing fragmentation on the

Cray T3D [8]. However, these types of schedulers require more memory and operating

system involvement than is practically available in a cellular computing environment,

where processors are dedicated to only one active job at a time. Space-sharing tech-

niques, which are better suited to the goals of cellular computing, have been shown to

be effective on other architectures that do not have a toroidal interconnect [9, 16, 19].

In this thesis, we analyze a set of strictly space-sharing scheduling techniques to

improve system utilization and reduce the wait time of jobs for BG/L. We analyze

14

the two techniques of backfilling [9, 16, 19] and migration [4, 22] in the context of a

toroidal-interconnected system. Backfilling is a technique that moves lower priority

jobs ahead of other higher priority jobs, as long as execution of the higher priority

jobs is not delayed. Migration moves jobs around the toroidal machine, performing

on-the-fly defragmentation to create larger contiguous free space for waiting jobs.

We conduct a simulation-based study of the impact of our scheduling algorithms

on the system performance of BG/L. Using actual job logs from supercomputing

centers, we measure the impact of migration and backfilling as enhancements to a

first-come first-serve (FCFS) job scheduling policy. Migration is shown to be effective

in improving maximum system utilization while enforcing a strict FCFS policy. We

also find that backfilling, which bypasses the FCFS order, can lead to even higher

utilization and lower wait times. Finally, we show that there is a small benefit from

combining backfilling and migration.

While experimenting with these scheduling algorithms, we also developed an effi-

cient new algorithm to determine the size of the largest available rectangular partition

in a given three-dimensional torus. This algorithm computes projections of adjacent

partitions and uses dynamic programming techniques. Since this basic operation is

the computational bottleneck for all of our schedulers, implementing this algorithm

reduced the average computation time required to schedule a job by a factor of 2 to

4 times.

The rest of this thesis is organized as follows. Chapter 2 discusses the schedul-

ing algorithms used to improve job scheduling on a toroidal-interconnected parallel

system. Chapter 3 presents the Projection Of Partitions (POP) algorithm for de-

termining the size of the largest free partition in a torus. Chapter 4 describes the

simulation procedure to evaluate these algorithms. Chapter 5 presents our simula-

tion results. Chapter 6 describes related work and suggests future work opportunities.

Finally, Chapter 7 presents the conclusions.

15

16

Chapter 2

Scheduling Algorithms

System utilization and average job wait time in a parallel system may be improved

through better job scheduling algorithms [5, 6, 8, 10, 11, 13, 16, 17, 18, 19, 23, 24, 28].

The opportunity for improvement over a simple first-come first-serve (FCFS) sched-

uler is much greater for toroidal interconnected systems because of the fragmentation

issues discussed in Chapter 1. The following chapter describes four job scheduling

algorithms that we evaluate in the context of BG/L. In all algorithms, arriving jobs

are first placed in a queue of waiting jobs, prioritized according to the order of arrival.

The scheduler is invoked for every job arrival and job termination event in order to

schedule new jobs for execution.

The first algorithm is a straightforward FCFS scheduler that serves as a base

reference. The second scheduler uses backfilling to bypass higher-priority jobs in the

queue. The third scheduler maintains strict FCFS order, but migrates jobs around

the torus to free up larger contiguous blocks of space so that more jobs may begin

execution. Finally, the fourth and last scheduler uses a combination of migration and

backfilling to further improve system performance.

Scheduler 1: First Come First Serve (FCFS). For FCFS, we adopt the heuris-

tic of traversing the waiting queue in order and scheduling each job in a way that

maximizes the largest free rectangular partition remaining in the torus. This heuristic

will make local greedy decisions based only on the size of each job in an attempt to

17

maximize the chances of scheduling the next job, prioritized by arrival time, in the

waiting queue. For each job of size p, we try all the possible rectangular shapes of

size p that fit in the torus. For each shape, we try all the legal allocations in the torus

that do not conflict with running jobs. Finally, we select the shape and allocation

that results in the maximal free rectangular partition remaining after allocation of

this job. We stop when we find the first job in the queue that cannot be scheduled.

A valid rectangular partition does not always exist for a job. There are job

sizes which are always impossible for the torus, such as prime numbers greater than

the largest dimension size. Because job sizes are known at job arrival time, before

execution, jobs with impossible sizes are modified to request the next largest possible

size. Additionally, there are legal job sizes that cannot be scheduled because of the

current state of the torus. Therefore, if a particular job of size p cannot be scheduled,

but some free partition of size q > p exists, the job will be increased in size by

the minimum amount required to schedule it. For example, consider a 4 × 4 (two-

dimensional) torus with a single free partition of size 2 × 2. If a user submits a job

requesting 3 nodes, that job cannot be run. The scheduler increases the job size by

one, to 4, and successfully schedules the job.

An FCFS scheduler that searches the torus in a predictable incremental fashion,

implements the maximal partition heuristic, and modifies job sizes when necessary

is the simplest algorithm considered, against which more sophisticated algorithms

are compared. Determining the size of the largest rectangular partition in a given

three-dimensional torus is the most time-intensive operation required to implement

the maximal partition heuristic. When considering a torus of shape M ×M ×M ,

a straightforward exhaustive search of all possible partitions takes O(M 9) time. We

have developed a more efficient algorithm that computes incremental projections of

planes and uses dynamic programming techniques. This projection algorithm has

complexity O(M 5) and is described in Chapter 3.

Scheduler 2: FCFS With Backfilling. Backfilling is a space-sharing optimiza-

tion technique that bypasses the priority order imposed by the job queuing policy. A

18

backfilling policy estimates the start time of the highest priority job j in the waiting

queue and uses this estimate as a reservation time for that job. The reservation time

guarantees that the job will be scheduled no later than that time, and this schedule

time may improve if some jobs complete earlier than expected. Then, a weak back-

filling algorithm will allow a lower priority job i to be scheduled before j as long as

the reservation time of j is not delayed. A strong backfilling algorithm will make a

reservation time for all jobs in the queue and will only schedule a lower priority job

i out of order if none of the reservation times of jobs with higher priority than i are

delayed. We use a weak backfilling strategy that sacrifices a small amount of fairness

for a much larger expected gain in utilization. A weak backfilling strategy is the min-

imum required to ensure that no job starvation will occur, since a reservation time is

always made for the highest priority job. However, it is possible that the execution of

lower priority jobs will be delayed. Backfilling is used in conjunction with the FCFS

scheduler and is only invoked when there are jobs in the waiting queue and FCFS

halts because it could not schedule the highest priority job.

The effect of backfilling a particular workload for a one-dimensional machine is

depicted in Figure 2-1. Suppose we are asked to schedule five jobs, numbered from 1

to 5 in order of arrival. Figure 2-1(a) shows the schedule that would be produced by

a FCFS policy without backfilling. Note the empty space between times T1 and T2,

while job 3 waits for job 2 to finish. Figure 2-1(b) shows the schedule that would be

produced by a FCFS policy with backfilling. The empty space was filled with job 5,

which may be executed before job 3 without delaying it.

time

space

-

6

1

2

3

4

5

T1 T2
time

space

-

6

1

2

3

45

T1 T2
(a) (b)

Figure 2-1: FCFS policy without (a) and with (b) backfilling. Job numbers corre-
spond to their position in the priority queue.

19

The backfilling algorithm requires an estimation of job execution times, which

is usually not very accurate. However, previous work [9, 20, 25] has shown that

overestimating execution times does not significantly affect backfilling results. This

algorithm is most effective when the waiting job queue contains many small jobs

of short execution time interspersed among the larger and more time-intensive jobs.

Backfilling has been shown to increase system utilization in a fair manner on the IBM

RS/6000 SP [9, 25].

Just as the FCFS scheduler dynamically increases the size of jobs that cannot

be scheduled with their current size, similar situations may arise during backfilling.

Unlike FCFS, however, the size increase is performed more conservatively during

backfilling because there are other jobs in the queue which may better utilize the free

nodes of the torus. Therefore, a parameter I specifies the maximum size by which

the scheduler will increase a job. For example, by setting I = 1 (our default value),

backfilling increases a job size by at most one node. This parameter is used only

during the backfilling phase of scheduling; the FCFS phase will always increase the

size of the first job in the queue to successfully schedule it.

Scheduler 3: FCFS With Migration. The migration algorithm rearranges the

running jobs in the torus in order to increase the size of the maximal contiguous

rectangular free partition. Migration in a toroidal-interconnected system compacts

the running jobs and counteracts the effects of fragmentation. Additionally, migration

does not sacrifice any amount of fairness when achieving higher utilization levels.

While migration does not require any more information than FCFS to execute,

it may require additional hardware and software functionality. This paper does not

attempt to quantify the overhead of that functionality. However, accepting that this

overhead exists, migration is only undertaken when the expected benefits are deemed

substantial. The decision to migrate is therefore based on two parameters: FNtor, the

ratio of free nodes in the system compared to the size of the torus, and FNmax, the

fraction of free nodes contained in the maximal free partition. In order for migration

to establish a significantly larger maximal free partition, FNtor must be sufficiently

20

high and FNmax must be sufficiently low. Chapter 5 contains further analysis of these

parameters.

The migration process is undertaken immediately after the FCFS phase fails to

schedule a job in the waiting queue. Jobs already running in the torus are organized

in a queue of migrating jobs sorted by size, from largest to smallest. Each job is then

reassigned a new partition, using the same algorithm as FCFS and starting with an

empty torus. After migration, FCFS is performed again in an attempt to start more

jobs in the rearranged torus.

In order to ensure that all jobs fit in the torus after migration, job sizes are not

increased if a reassignment requires a larger size to fit in the torus. Instead, the job

is removed from the queue of migrating jobs, remaining in its original partition, and

reassignment begins again for all remaining jobs in the queue. If the maximal free

partition size after migration is worse than the original assignment, which is possible

but generally infrequent under the current scheduling heuristics, migration is not

performed.

Scheduler 4: FCFS with Backfilling and Migration. Backfilling and migration

are independent scheduling concepts and a scheduler may implement both of these

functions simultaneously. First, we schedule as many jobs as possible via FCFS. Next,

we rearrange the torus through migration to minimize fragmentation and then repeat

FCFS. Finally, the backfilling algorithm from Scheduler 2 is performed to make a

reservation time for the highest-priority job and attempt to schedule jobs with lower

priority so long as they do not conflict with the reservation. The combination of these

policies should lead to an even more efficient utilization of the torus. For simplicity,

we call this scheduling technique, that combines backfilling and migration, B+M.

21

22

Chapter 3

Projection of Partitions (POP)

Algorithm

In a given three-dimensional torus of shape M × M × M where some nodes have

been allocated for jobs, the POP algorithm provides a O(M 5) time algorithm for

determining the size of the largest free rectangular partition. This algorithm is a

substantial improvement over an exhaustive search algorithm that takes O(M 9) time.

Let FREEPART = {〈B, S〉 | B is a base location (i, j, k) and S is a partition

size (a, b, c) such that ∀ x, y, z, i ≤ x < (i + a), j ≤ y < (j + b), k ≤ z < (k + c),

node (x mod M, y mod M, z mod M) is free}. POP narrows the scope of the prob-

lem by determining the largest rectangular partition P ∈ FREEPART rooted at each

of the M 3 possible base locations and then deriving a global maximum. Given a base

location, POP works by finding the largest partition first in one dimension, then by

projecting adjacent one-dimensional columns onto each other to find the largest par-

tition in two dimensions, and iteratively projecting adjacent two-dimensional planes

onto each other to find the largest partition in three dimensions.

First, a partition table of the largest one-dimensional partitions P ∈ FREEPART

is pre-computed for all three dimensions and at every possible base location in O(M 4)

time. This is done by iterating through each partition and whenever an allocated node

is reached, all entries for the current “row” may be filled in from a counter value, where

the counter is incremented for each adjacent free node and reset to zero whenever an

23

additional allocated node is reached.

X = 2 X = 3 X = 4~ ~ ~ ~X = 11 2 3 4

4

3

2

1

Y

X

Figure 3-1: 2-dimensional POP Algorithm applied to Base Location (1,2): Adjacent
1-dimensional columns are projected onto each other as X̃ is incremented.

For a given base location (i, j, k), we fix one dimension (e.g., k), start a counter

X̃ = 1 in the next dimension, and multiply X̃ by the minimum partition table entry

of the third dimension for (x mod M, j, k), where x varies as i ≤ x ≤ (i+ X̃ −1) and

X̃ varies as 1 ≤ X̃ ≤ M . As the example in Figure 3-1 shows, when X̃ = 1 for some

fixed k at base location (1, 2, k), the partition table entry in the Y dimension will

equal 3 since there are 3 consecutive free nodes, and our largest possible partition

size is initially set to (X̃×3) = 3. When X̃ increases to 2, the minimum table entry

becomes 2 because of the allocated node at location (2, 4, k) and the largest possible

partition size is increased to (X̃×2) = 4. When X̃ = 3, we calculate a new largest

possible partition size of (X̃×2) = 6. Finally, when we come across a partition table

entry in the Y dimension of 0, because of the allocated node at location (4, 2, k), we

stop incrementing X̃.

This same idea is extended to work for 3 dimensions. Given a similar base loca-

tion (i, j, k), we start a counter Z̃ in the Z dimension and calculate the maximum

two-dimensional partition. Then we project adjacent two-dimensional planes by incre-

menting Z̃ and forming a new minimum partition table of the X and Y dimensions

for (i, j, z mod M), where z varies as k ≤ z ≤ (k+ Z̃ −1) and Z̃ varies as 1 ≤ Z̃

≤ M . Then, we calculate the largest two-dimensional partition using the projected

minimum partition table.

Using the initial partition table, it takes O(M) time to calculate a projection for

24

two adjacent planes and to determine the largest two-dimensional partition. Since

there are O(M) projections required for O(M 3) base locations, our final algorithm

runs in O(M 5) time.

When we implemented this algorithm in our scheduling simulator, we achieved

a significant speed improvement. For the original NASA log, scheduling time for

our B+M scheduler improved from an average of 0.51 seconds for every successfully

scheduled job to 0.16 seconds, while the SDSC log improved from an average of

0.125 seconds to 0.063 seconds. The longest time to successfully schedule a job also

improved from 38 seconds to 8.3 seconds in the NASA log, and from 50 seconds to

8.5 seconds in the SDSC log.

25

26

Chapter 4

Experiments

We use a simulation-based approach to perform quantitative measurements of the

efficiency of the proposed scheduling algorithms. An event-driven simulator was de-

veloped to process actual job logs from supercomputing centers. The results of sim-

ulations for all four schedulers were then studied to determine the impact of their

respective algorithms.

We begin this chapter with a short overview of our scheduling abstractions for

the BG/L system. We then describe our simulation environment and conclude with

a discussion of the workload characteristics for the two simulated job logs.

4.1 BlueGene/L Scheduling Abstractions

The BG/L system is organized as a 32 × 32 × 64 three-dimensional torus of nodes.

Each node contains processors, memory, and links for interconnecting to its six neigh-

bors, with full hardware routing capability. The unit of allocation for job execution in

BG/L is a 512-node ensemble organized in an 8×8×8 configuration. This allocation

unit is the smallest granularity whereby any contiguous rectangular partition of these

units can be electrically partitioned into a toroidal topology. Electrical partitioning

isolates a job and prevents other jobs from interfering with its communication pat-

terns. Therefore, BG/L behaves as a 4× 4× 8 torus of these supernodes. We use this

supernode abstraction when scheduling jobs.

27

4.2 The Simulation Environment

The simulation environment models a torus of 128 (super)nodes in a three-dimensional

4 × 4 × 8 configuration. The event-driven simulator receives as input a job log and

the type of scheduler to simulate (FCFS, Backfill, Migration, or B+M). There are

four primary events in the simulator:

• An arrival event occurs when a job is first submitted for execution and placed

in the scheduler’s waiting queue

• A schedule event occurs when a job is allocated on the torus

• A start event occurs after a standard delay of one second following a schedule

event, at which time a job begins to run

• A complete event occurs upon completion of a job, at which point the job is

deallocated from the torus. The scheduler is invoked at the conclusion of every

event that affects the states of the torus or the waiting queue (i.e., the arrival

and complete events).

A job log contains information on the arrival time, execution time, and size of all

jobs. Given a torus of size N , and for each job j the arrival time ta
j , execution time tej

and size sj, the simulation produces values for the start time ts
j and finish time t

f
j of

each job. These results are analyzed to determine the following parameters for each

job:

• wait time twj = tsj − taj

• response time trj = t
f
j − taj

• bounded slowdown tbsj =
max (tr

j
,Γ)

max(te
j
,Γ)

for Γ = 10 seconds. The Γ term appears ac-

cording to recommendations in [9], because some jobs have very short execution

time, which may distort the slowdown.

28

Global system statistics are also determined. Let the simulation time span be

T = max∀j (t
f
j) − min∀k (t

a
k). We then define system utilization (also called capacity

utilized) as

wutil =
∑
∀j

sjt
e
j

TN
. (4.1)

Similarly, let f(t) denote the number of free nodes in the torus at time t and q(t)

denote the total number of nodes requested by jobs in the waiting queue at time t.

Then, the total amount of unused capacity in the system, wunused, is defined as:

wunused =
∫ max (tf

j
)

min (ta
j
)

max (0, f(t)− q(t))

TN
dt. (4.2)

This parameter is a measure of the work unused by the system because there is a

lack of jobs requesting free nodes. The max term is included because the amount

of unused work cannot be less than zero. The balance of the system capacity is lost

despite the presence of jobs that could have used it. The measure of lost capacity in

the system, which includes capacity lost because of the inability to schedule jobs and

the delay before a scheduled job begins, is then derived as:

wlost = 1− wutil − wunused (4.3)

4.3 Workload characteristics

We performed experiments on a 10,000-job span of two job logs obtained from the Par-

allel Workloads Archive [7]. The first log is from NASA Ames’s 128-node iPSC/860

machine (from the year 1993). The second log is from the San Diego Supercomputer

Center’s (SDSC) 128-node IBM RS/6000 SP (from the years 1998-2000). For our

purposes, we will treat each node in those two systems as representing one supern-

ode (512-node unit) of BG/L. This is equivalent to scaling all job sizes in the log by

512, which is the ratio of the number of nodes in BG/L to the number of nodes in

these 128-node machines. Table 4.1 presents the workload statistics and Figure 4-1

summarizes the distribution of job sizes and the contribution of each job size to the

29

total workload of the system. Using these two logs as a basis, we generate logs of

varying workloads by multiplying the execution time of each job by a coefficient c,

mostly varying c from 0.7 to 1.4 in increments of 0.05. Simulations are performed for

all scheduler types on each of the logs. With these modified logs, we plot wait time

and bounded slowdown as a function of system utilization.

Table 4.1: Statistics for 10,000-job NASA and SDSC logs.

NASA Ames iPSC/860 log SDSC IBM RS/6000 SP log

Number of nodes: 128 128
Job size restrictions: powers of 2 none
Job size (nodes)

Mean: 6.3 9.7
Standard deviation: 14.4 14.8

Workload(node-seconds)
Mean: 0.881× 106 7.1× 106

Standard deviation: 5.41× 106 25.5× 106

30

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

6000

7000
Histogram of job sizes

N
um

be
r o

f j
ob

s

Size of job (number of nodes)
0 20 40 60 80 100 120 140

0

500

1000

1500

2000

2500

3000

3500
Histogram of job sizes

N
um

be
r o

f j
ob

s

Size of job (number of nodes)

(a) NASA Ames iPSC/860 (b) SDSC RS/6000 SP

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 107 Workload (runtime * number of nodes) vs Size of job

Size of job (number of nodes)

W
or

kl
oa

d
(n

od
e−

se
co

nd
s)

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

18
x 107 Workload (runtime * number of nodes) vs Size of job

Size of job (number of nodes)

W
or

kl
oa

d
(n

od
e−

se
co

nd
s)

(c) NASA Ames iPSC/860 (d) SDSC RS/6000 SP

Figure 4-1: Job sizes and total workload for NASA Ames iPSC/860((a) and (c)) and
San Diego Supercomputer Center (SDSC) IBM RS/6000 SP((b) and (d)).

31

32

Chapter 5

Simulation Results

Figures 5-1 and 5-2 present plots of average job wait time (tw
j) and average job

bounded slowdown (tbsj), respectively, vs system utilization (wutil) for each of the four

schedulers considered and each of the two job logs. We observe that the overall shapes

of the curves for wait time and bounded slowdown are similar.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

2000

4000

6000

8000

10000

12000

Mean job wait time vs Utilization

M
e
a
n
 jo

b
 w

a
it

tim
e
 (

se
co

n
d
s)

Utilization

FCFS
Backfill
Migration
B+M

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

1

2

3

4

5

6

7

8

9

10
x 104 Mean job wait time vs Utilization

M
ea

n
jo

b
w

ai
t t

im
e

(s
ec

on
ds

)

Utilization

FCFS
Backfill
Migration
B+M

(a) NASA iPSC/860 (b) SDSC RS/6000 SP

Figure 5-1: Mean job wait time vs utilization for (a) NASA and (b) SDSC logs.

The most significant performance improvement is attained through backfilling, for

both the NASA and SDSC logs. Also, for both logs, there is a certain benefit from

migration, whether combined with backfilling or not. We analyze the results from

each log separately.

33

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

50

100

150

200

250

300

350

400
Mean job bounded slowdown vs Utilization

M
ea

n
jo

b
bo

un
de

d
sl

ow
do

w
n

Utilization

FCFS
Backfill
Migration
B+M

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

50

100

150

200

250

300

350

400
Mean job bounded slowdown vs Utilization

M
e
a
n
 jo

b
 b

o
u
n
d
e
d
 s

lo
w

d
o
w

n

Utilization

FCFS
Backfill
Migration
B+M

(a) NASA iPSC/860 (b) SDSC RS/6000 SP

Figure 5-2: Mean job bounded slowdown vs utilization for (a) NASA and (b) SDSC
logs.

NASA log: All four schedulers provide similar average job wait time and average

job bounded slowdown for utilizations up to 65%. The FCFS scheduler saturates

at about 77% utilization, whereas the Migration scheduler saturates at about 80%

utilization. Backfilling (with or without migration) allows utilizations above 80% and

saturates closer to 90% (the saturation region for these schedulers is shown here by

plotting values of c > 1.4). We note that migration provides only a small improve-

ment in wait time and bounded slowdown for most of the utilization range, and the

additional benefits of migration with backfilling becomes unpredictable for utilization

values close to the saturation region. In the NASA log, all jobs are of sizes that are

powers of two, which results in a good packing of the torus. Therefore, the benefits

of migration are limited.

SDSC log: With the SDSC log, the FCFS scheduler saturates at 63%, while the

stand-alone Migration scheduler saturates at 73%. In this log, with jobs of more

varied sizes, fragmentation occurs more frequently. Therefore, migration has a much

bigger impact on FCFS, significantly improving the range of utilizations at which the

system can operate. However, we note that when backfilling is used there is again only

a small additional benefit from migration, more noticeable for utilizations between

75 and 85%. Utilization above 85% can be achieved, but only with exponentially

34

growing wait time and bounded slowdown, independent of performing migrations.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

50

100

150

200

250

300

350

400
Mean job bounded slowdown vs Utilization

M
ea

n
jo

b
bo

un
de

d
sl

ow
do

w
n

Utilization

FCFS
Backfill
Migration
B+M
Flat FCFS
Flat Backfill

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

50

100

150

200

250

300

350

400
Mean job bounded slowdown vs Utilization

M
e
a
n
 jo

b
 b

o
u
n
d
e
d
 s

lo
w

d
o
w

n

Utilization

FCFS
Backfill
Migration
B+M
Flat FCFS
Flat Backfill

(a) NASA iPSC/860 (b) SDSC RS/6000 SP
Figure 5-3: Mean job bounded slowdown vs utilization for the NASA and SDSC logs,
comparing toroidal and flat machines.

Figure 5-3 presents a plot of average job bounded slowdown (tbs
j) vs system uti-

lization (wutil) for each of the four schedulers considered and each of the two job logs.

We also include results from the simulation of a fully-connected (flat) machine, with

and without backfilling. Since a fully-connected machine does not suffer from frag-

mentation, this allows us to assess the effectiveness of our schedulers in overcoming

the difficulties imposed by a toroidal interconnect. The overall shapes of the curves

for wait time are similar to those for bounded slowdown.

Migration by itself cannot make the results for a toroidal machine as good as those

for a fully connected machine. For the SDSC log, in particular, a fully connected

machine saturates at about 80% utilization with just the FCFS scheduler. For the

NASA log, results for backfilling with or without migration in the toroidal machine are

just as good as the backfilling results in the fully connected machine. For utilizations

above 85% in the SDSC log, not even a combination of backfilling and migration will

perform as well as backfilling on a fully connected machine.

Figure 5-4 plots the number of migrations performed and the average time between

migrations vs system utilization for both workloads. We show results for the number

of total migrations attempted, the number of successful migrations, and the maximum

35

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

500

1000

1500

2000

2500
Number of migrations vs Utilization

N
u
m

b
e
r

o
f
m

ig
ra

tio
n
s

Utilization

Migration (total)
Migration (successful)
Migration (max successful)
B+M (total)
B+M (successful)
B+M (max successful)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

500

1000

1500

2000

2500

3000

3500

4000
Number of migrations vs Utilization

N
u
m

b
e
r

o
f
m

ig
ra

tio
n
s

Utilization

Migration (total)
Migration (successful)
Migration (max successful)
B+M (total)
B+M (successful)
B+M (max successful)

(a) NASA iPSC/860 (b) SDSC RS/6000 SP

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

1000

2000

3000

4000

5000

6000
Avg. Time Between Migrations vs Utilization

A
vg

.
T

im
e
 B

e
tw

e
e
n
 M

ig
ra

tio
n
s

(s
e
co

n
d
s)

Utilization

Migration (total)
Migration (successful)
B+M (total)
B+M (successful)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Avg. Time Between Migrations vs Utilization

A
vg

.
T

im
e
 B

e
tw

e
e
n
 M

ig
ra

tio
n
s

(s
e
co

n
d
s)

Utilization

Migration (total)
Migration (successful)
B+M (total)
B+M (successful)

(c) NASA iPSC/860 (d) SDSC RS/6000 SP
Figure 5-4: Number of total, successful, and maximum possible successful migrations
vs utilization ((a) and (b)), and average time between migrations vs utilization ((c)
and (d)).

possible number of successful migrations (max successful). As described in Chapter 2,

the parameters which determine if a migration should be attempted are FNtor, the

ratio of free nodes in the system compared to the size of the torus, and FNmax,

the fraction of free nodes contained in the maximal free partition. According to

our standard migration policy, a migration is only attempted when FNtor ≥ 0.1

and FNmax ≤ 0.7. A successful migration is defined as a migration attempt that

improves the maximal free partition size. The max successful value is the number of

migrations that are successful when a migration is always attempted (i.e., FNtor ≥ 0.0

36

and FNmax ≤ 1.0).

Almost all migration attempts were successful for the NASA log. This property

of the NASA log is a reflection of the better packing caused by having jobs that

are exclusively power of two in size. For the SDSC log, we notice that many more

total attempts are made while about 80% of them are successful. If we always try

to migrate every time the state of the torus is modified, no more than 20% of these

migrations are successful, and usually much less.

For the NASA log, the number of migrations increases linearly while the average

time between these migrations varies from about 90 to 30 minutes, depending on

the utilization level and its effect on the amount of fragmentation in the torus. In

contrast to the NASA log, the number of migrations in the SDSC log do not increase

linearly as utilization levels increase. Instead, the relationship is closer to an elongated

bell curve. As utilization levels increase, at first migration attempts and successes

also increase slightly to a fairly steady level. Around the first signs of saturation

the migrations tend to decrease (i.e., at around 70% utilization for the Migration

scheduler and 77% for B+M). Even though the number of successful migrations is

greater for the SDSC log, the average time between migrations is still longer as a

result of the larger average job execution time.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Mean job wait time vs Utilization

M
e
a
n
 jo

b
 w

a
it

tim
e
 (

se
co

n
d
s)

Utilization

Migration (standard migration)
Migration (full migration)
B+M (standard migration)
B+M (full migration)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

1

2

3

4

5

6

7

8

9

10
x 104 Mean job wait time vs Utilization

M
ea

n
jo

b
w

ai
t t

im
e

(s
ec

on
ds

)

Utilization

Migration (standard migration)
Migration (full migration)
B+M (standard migration)
B+M (full migration)

(a) NASA iPSC/860 (b) SDSC RS/6000 SP
Figure 5-5: Mean job wait time vs utilization for the NASA and SDSC logs, comparing
the standard migration policy to a full migration policy that always attempts to
migrate.

37

Most of the benefit of migration is achieved when we only perform migration

according to our parameters. Applying these parameters has three main advantages:

we reduce the frequency of migration attempts so as not to always suffer the required

overhead of migration, we increase the percentage of migration attempts that are

successful, and additionally we increase the average benefits of a successful migration.

This third advantage is apparent when we compare the mean job wait time results for

our standard FNtor and FNmax settings to that of the scheduler that always attempts

to migrate. Even though the maximum possible number of successful migrations is

sometimes twice as many as our actual number of successes, Figure 5-5 reveals that

the additional benefit of these successful migrations is very small.

FCFS Backfilling Migration B+M
0

0.2

0.4

0.6

0.8

1

System capacity statistics − baseline workload

Scheduler type

F
ra

ct
io

n
of

 to
ta

l s
ys

te
m

 c
ap

ac
ity

Capacity unused
Capacity lost
Capacity utilized

FCFS Backfilling Migration B+M
0

0.2

0.4

0.6

0.8

1

System capacity statistics − baseline workload

Scheduler type

F
ra

ct
io

n
of

 to
ta

l s
ys

te
m

 c
ap

ac
ity

Capacity unused
Capacity lost
Capacity utilized

(a) NASA iPSC/860 (b) SDSC RS/6000 SP
Figure 5-6: Capacity utilized, lost, and unused as a fraction of the total system
capacity.

We complete this chapter with an analysis of the results for system capacity

utilized, unused capacity, and lost capacity. The results for each scheduler type

and both standard job logs, with c = 1.0, are plotted in Figure 5-6. The utilization

improvements for the NASA log are barely noticeable. The SDSC log, however,

shows the greatest improvement when using B+M over FCFS, with a 15% increase in

capacity utilized and a 54% decrease in the amount of capacity lost. By themselves,

the Backfill and Migration schedulers each increase capacity utilization by 15% and

13%, respectively, while decreasing capacity loss by 44% and 32%. These results show

38

that B+M is significantly more effective at transforming lost capacity into unused

capacity. Under the right circumstances, it should be possible to utilize this unused

capacity more effectively.

FCFS Backfilling Migration B+M
0

0.2

0.4

0.6

0.8

1

System capacity statistics − baseline workload

Scheduler type

F
ra

ct
io

n
of

 to
ta

l s
ys

te
m

 c
ap

ac
ity

Capacity unused
Capacity lost
Capacity utilized

FCFS Backfilling Migration B+M
0

0.2

0.4

0.6

0.8

1

System capacity statistics − baseline workload

Scheduler type
F

ra
ct

io
n

of
 to

ta
l s

ys
te

m
 c

ap
ac

ity

Capacity unused
Capacity lost
Capacity utilized

(a) NASA iPSC/860 (b) SDSC RS/6000 SP
Figure 5-7: Capacity utilized, lost, and unused as a fraction of the total system
capacity, with increased workload constant c = 1.2.

When we increase the workload by setting c = 1.2 and examine the system capac-

ity results, as in Figure 5-7, it is apparent that the SDSC log has already reached the

saturation region since essentially none of the capacity is unused. The performance

gain for our space-sharing schedulers is also much larger, as the Backfill and B+M

schedulers achieve greater than 84% capacity utilization, an improvement over the

FCFS scheduler of 34%. The Migration scheduler achieves approximately half of this

utilization increase with an improvement of 14%. In contrast, the NASA log is be-

ginning to show only small signs of lost capacity, and our scheduling algorithms have

minimal effect when so much of the capacity is unused. This is due to a combination

of the job size restrictions that allow jobs to fill the torus more compactly, and also

because the initial average NASA workload is 12% of the average SDSC workload.

39

40

Chapter 6

Related and Future Work

The topics of our work have been the subject of extensive previous research, much

which has already been previously sited. In particular, [9, 16, 19] have shown that

backfilling on a flat machine like the IBM RS/6000 SP is an effective means of im-

proving quality of service. The benefits of combining migration and gang-scheduling

have been demonstrated both for flat machines [26, 27] and toroidal machines like the

Cray T3D [8]. The results in [8] are particularly remarkable, as system utilization was

improved from 33%, with a pure space-sharing approach, to 96% with a combination

of migration and gang-scheduling. The work in [23] discusses techniques to optimize

spatial allocation of jobs in mesh-connected multicomputers, including changing the

job size, and how to combine spatial- and time-sharing scheduling algorithms. An

efficient job scheduling technique for a three-dimensional torus is described in [2].

This paper, therefore, builds on this previous research by applying a combination of

backfilling and migration algorithms, exclusively through space-sharing techniques,

to improve system performance on a toroidal-interconnected system.

Future work opportunities can further build on the results of this paper. The

impact of different FCFS scheduling heuristics for a torus, besides the largest free

partition heuristic currently used, can be studied. It is also important to identify

how the current heuristic relates to the optimal solution in different cases. Addi-

tional study of the parameters I, FNtor, and FNmax may determine further tradeoffs

associated with partition size increases and more or less frequent migration attempts.

41

Finally, while we do not attempt to implement complex time-sharing schedulers such

as those used in gang-scheduling, a more limited time-sharing feature may be benefi-

cial. Preemption, for example, allows for the suspension of a job until it is resumed at

a later time. These time-sharing techniques may provide the means to further enhance

the B+M scheduler and make the system performance of a toroidal-interconnected

machine more similar to that of a flat machine.

42

Chapter 7

Conclusions

We have investigated the behavior of various scheduling algorithms to determine

their ability to increase processor utilization and decrease job wait time in a toroidal-

interconnected system. We have shown that a scheduler which uses only a back-

filling algorithm performs better than a scheduler which uses only a migration algo-

rithm, while migration is particularly effective under a workload that produces a large

amount of fragmentation (i.e., when many small to mid-sized jobs of varied sizes rep-

resent much of the workload). Migration has a significant implementation overhead

but it does not require any additional information besides what is required by the

FCFS scheduler. Using a selective migration policy based on a few key parameters,

we can decrease the overhead of a migration policy and achieve similar results as a

full migration policy by only attempting to migrate when the expected benefits of

that migration attempt is sufficiently high. Furthermore, a migration scheduler does

not sacrifice any measure of fairness. Backfilling, on the other hand, does not have

a significant implementation overhead but requires additional information pertaining

to the execution time of jobs. By sacrificing a small amount of fairness, the expected

benefits of a pure backfilling strategy are usually much greater than a migration

scheduler.

Simulations of FCFS, backfilling, and migration space-sharing scheduling algo-

rithms have shown that B+M, a scheduler which implements all of these algorithms,

shows a small performance improvement over just FCFS and backfilling. However,

43

B+M can convert significantly more lost capacity into unused capacity than back-

filling alone. Additional enhancements to the B+M scheduler may harness this un-

used capacity to provide further system improvements. Even with the performance

enhancements of backfilling and migration techniques, a toroidal-interconnected ma-

chine such as BG/L can only approximate the job scheduling efficiency of a fully

connected machine in which all nodes are equidistant.

44

Bibliography

[1] T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias, and M. Snir.

SP2 system architecture. IBM Systems Journal, 34(2):152–184, 1995.

[2] H. Choo, S.-M. Yoo, and H. Y. Youn. Processor Scheduling and Allocation

for 3D Torus Multicomputer Systems. IEEE Transactions on Parallel and

Distributed Systems, 11(5):475–484, May 2000.

[3] J. E. Moreira E. Krevat, J. G. Castanos. Job Scheduling for the BlueGene/L

System. In Proceedings of the 8th International Euro-Par Conference (Research

Note), pages 207–211, August 2002. LNCS 2400.

[4] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A world-

wide flock of Condors: Load sharing among workstation clusters. Future

Generation Computer Systems, 12(1):53–65, May 1996.

[5] D. G. Feitelson. A Survey of Scheduling in Multiprogrammed Parallel

Systems. Technical Report RC 19790 (87657), IBM T. J. Watson Research

Center, October 1994.

[6] D. G. Feitelson. Packing schemes for gang scheduling. In Job Scheduling

Strategies for Parallel Processing, IPPS’96 Workshop, volume 1162 of Lecture

Notes in Computer Science, pages 89–110, Berlin, March 1996. Springer-Verlag.

[7] D. G. Feitelson. Parallel Workloads Archive. URL:

http://www.cs.huji.ac.il/labs/parallel/workload/index.html, 2001.

45

[8] D. G. Feitelson and M. A. Jette. Improved Utilization and Responsiveness

with Gang Scheduling. In IPPS’97 Workshop on Job Scheduling Strategies for

Parallel Processing, volume 1291 of Lecture Notes in Computer Science, pages

238–261. Springer-Verlag, April 1997.

[9] D. G. Feitelson and A. M. Weil. Utilization and predictability in scheduling

the IBM SP2 with backfilling. In 12th International Parallel Processing

Symposium, pages 542–546, April 1998.

[10] H. Franke, J. Jann, J. E. Moreira, and P. Pattnaik. An Evaluation of Parallel

Job Scheduling for ASCI Blue-Pacific. In Proceedings of SC99, Portland,

OR, November 1999. IBM Research Report RC21559.

[11] B. Gorda and R. Wolski. Time Sharing Massively Parallel Machines.

In International Conference on Parallel Processing, volume II, pages 214–217,

August 1995.

[12] D. Hyatt. A Beginner’s Guide to the Cray T3D/T3E. URL:

http://www.jics.utk.edu/SUPER COMPS/T3D/T3D guide/T3D guideJul97.html,

July 1997.

[13] H. D. Karatza. A Simulation-Based Performance Analysis of Gang

Scheduling in a Distributed System. In Proceedings 32nd Annual Simu-

lation Symposium, pages 26–33, San Diego, CA, April 11-15 1999.

[14] E. Krevat, J. G. Castanos, and J. E. Moreira. Job Scheduling for the Blue-

Gene/L System. In Job Scheduling Strategies for Parallel Processing, 8th In-

ternational Workshop, pages 38–54, July 2002. LNCS 2537.

[15] D. H. Lawrie. Access and Alignment of Data in an Array Processor.

IEEE Transactions on Computers, 24(12):1145–1155, December 1975.

[16] D. Lifka. The ANL/IBM SP scheduling system. In IPPS’95 Workshop on

Job Scheduling Strategies for Parallel Processing, volume 949 of Lecture Notes in

Computer Science, pages 295–303. Springer-Verlag, April 1995.

46

[17] J. E. Moreira, W. Chan, L. L. Fong, H. Franke, and M. A. Jette. An Infras-

tructure for Efficient Parallel Job Execution in Terascale Computing

Environments. In Proceedings of SC98, Orlando, FL, November 1998.

[18] U. Schwiegelshohn and R. Yahyapour. Improving First-Come-First-Serve

Job Scheduling by Gang Scheduling. In IPPS’98 Workshop on Job Schedul-

ing Strategies for Parallel Processing, March 1998.

[19] J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY-LoadLeveler API

project. In IPPS’96 Workshop on Job Scheduling Strategies for Parallel Process-

ing, volume 1162 of Lecture Notes in Computer Science, pages 41–47. Springer-

Verlag, April 1996.

[20] W. Smith, V. Taylor, and I. Foster. Using Run-Time Predictions to Es-

timate Queue Wait Times and Improve Scheduler Performance. In

Proceedings of the 5th Annual Workshop on Job Scheduling Strategies for Paral-

lel Processing, April 1999. In conjunction with IPPS/SPDP’99, Condado Plaza

Hotel & Casino, San Juan, Puerto Rico.

[21] H. S. Stone. High-Performance Computer Architecture. Addison-Wesley,

1993.

[22] C. Z. Xu and F. C. M. Lau. Load Balancing in Parallel Computers: Theory

and Practice. Kluwer Academic Publishers, Boston, MA, 1996.

[23] B. S. Yoo and C. R. Das. Processor Management Techniques for Mesh-

Connected Multiprocessors. In Proceedings of the International Conference

on Parallel Processing (ICPP’95), volume 2, pages 105–112, August 1995.

[24] K. K. Yue and D. J. Lilja. Comparing Processor Allocation Strategies in

Multiprogrammed Shared-Memory Multiprocessors. Journal of Parallel

and Distributed Computing, 49(2):245–258, March 1998.

47

[25] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam. Improving Par-

allel Job Scheduling by Combining Gang Scheduling and Backfilling

Techniques. In Proceedings of IPDPS 2000, Cancun, Mexico, May 2000.

[26] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam. The Impact of

Migration on Parallel Job Scheduling for Distributed Systems. In Pro-

ceedings of the 6th International Euro-Par Conference, pages 242–251, August

29 - September 1 2000.

[27] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam. An Integrated

Approach to Parallel Scheduling Using Gang-Scheduling, Backfilling,

and Migration. In Job Scheduling Strategies for Parallel Processing, 7th Inter-

national Workshop, pages 133–158, June 2001.

[28] B. B. Zhou, R. P. Brent, C. W. Jonhson, and D. Walsh. Job Re-packing

for Enhancing the Performance of Gang Scheduling. In Job Scheduling

Strategies for Parallel Processing, IPPS’99 Workshop, pages 129–143, April 1999.

LNCS 1659.

48

