
High Speed DSP Implemented in Run-time

Partially Reconfigurable FPGAs

by

Justin D. McBride

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

February 3, 2003

 2003 Justin D. McBride. All rights reserved

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author__
 Department of Electrical Engineering and Computer Science
 February 3, 2003

Certified by__

 Sean Adam
 Teradyne Thesis Supervisor

Certified by__

 Dr. Christopher Terman
 Thesis Supervisor

Accepted by___

 Arthur C. Smith
 Chairman, Department Committee on Graduate Theses

 2

High Speed DSP Implemented in Run-time

Partially Reconfigurable FPGAs

by

Justin D. McBride

Submitted to the
Department of Electrical Engineering and Computer Science

February 3, 2003

In Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science
and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

This thesis investigates the feasibility of utilizing a run-time partially reconfigurable
FPGA to implement a sequence of high-speed digital signal processing filters. Rather
than reconfiguring the entire device to modify part of a configuration, a modular
architecture is designed to allow smaller segments of the device to be individually
reconfigured while the remainder of the device continues to operate. This document
describes the design, implementation, simulation, and benchmarking of a five-socket
modular DSP architecture and compares the results to the performance of alternative
digital signal processing methods, particularly that of software DSP subroutines run on a
PowerPC processor. The result is a highly flexible architecture that supports the use of
timing verified hardware subroutines that could be partially reconfigured onto the FPGA
within 3ms. The highly parallel processing power of the FPGA design yields a
performance of 5.825 billion multiply and accumulate operations per second while
simulated running at 72.8MHz, more than 76 times faster than similar calculations
measured on a MPC7410 processor.

Thesis Supervisor: Dr. Christopher Terman
Title: Senior Lecturer, Department of Electrical Engineering and Computer Science

Thesis Supervisor: Sean Adam
Title: Hardware Engineering Manager, Teradyne

 3

Acknowledgements

I would like to acknowledge the guidance and support of a number of supervisors and
friends that kept me on course to complete this thesis. First, I would like to recognize
Teradyne and specifically my supervisors Sean Adam and Dag Lundstrom. Sean was
instrumental in building my interest in digital design and focusing my attention on
finding a suitable project that benefited both Teradyne and M.I.T. In addition to serving
as the origin of the idea for my thesis project, Dag continued to assist me in developing
the project, finding useful informational contacts outside Teradyne, and finalizing this
document. At M.I.T., Dr. Christopher Terman gave me the motivation and guidance I
needed to focus on the relevant design strategies and presentation techniques that
culminated in the creation of this thesis. I would also like to recognize the VI-A
Internship program for allowing me to work on this project with Teradyne.

As much as the guidance of my three supervisors was paramount in working on the
technical side of the project, I must thank Tiffany for her diligence in keeping me happy
and focused on the goal of finishing this thesis in a timely manner. Also, my friends
Andy, Larry, Gordon, and others at Phi Beta Epsilon helped me maintain a healthy
balance between work and play. Finally and most importantly, I would like to thank my
parents Jennifer and Jim along with Grandpa Don and Debbie for pushing me get into
M.I.T. in the first place and helping me squeak my way thru these last four and a half
years.

 4

Contents

1. Introduction... 8
1.1. Background ... 8
1.2. Challenge .. 10
1.3. Solution... 11
1.4. Outline... 14

2. FPGA and Partial Reconfiguration Background ... 16
2.1. FPGA Background .. 16
2.2. Existing Research.. 21
2.3. Current Capabilities .. 23

2.3.1. JBits... 23
2.3.2. PARBIT .. 24
2.3.3. Modular Design... 24

3. DSP Algorithms .. 26
3.1. FIR .. 27
3.2. Quadrature Mixer .. 28
3.3. Time-varying Coefficient FIR .. 29

4. Design Decisions ... 31
4.1. Device Constraints .. 31
4.2. Design Flow Constraints ... 33
4.3. Decision Matrix... 35

5. Device Architecture .. 37
5.1. Design Overview... 37
5.2. Fixed_Logic Architecture ... 38

5.2.1. Data_Input_Control .. 39
5.2.2. Data_FIFO .. 40
5.2.3. Data_Output_Control.. 41
5.2.4. Next_Configuration and Next_Configuration_Flag 42
5.2.5. Current_Configuration.. 42
5.2.6. Reconfiguration_Control .. 43
5.2.7. Parameter_Control .. 45

5.3. DSP Modules .. 49
5.3.1. Empty Module ... 50
5.3.2. FIR .. 51
5.3.3. Quadrature Mixer .. 55
5.3.4. Time-varying Coefficient FIR .. 56

5.4. End_Logic Module ... 58
5.5. Bus Macros and Partially Reconfigurable Socket Architecture 58

6. Design Implementation Process.. 62
6.1. Initial Budgeting Phase ... 62
6.2. Active Module Implementation Phase .. 63
6.3. Final Assembly Phase ... 68

7. Simulation... 77
7.1. Module- level Simulation .. 78
7.2. Device- level Simulation.. 80

 5

8. Benchmarking ... 85
9. Conclusion .. 92
10. Future Work .. 96

 6

List of Figures

Figure 1 - Socket-based Architecture.. 11
Figure 2 - Dynamic Reconfiguration.. 12
Figure 3 - CLB Schematic .. 17
Figure 4 - Slice Schematic .. 17
Figure 5 - Interconnected CLBs.. 18
Figure 6 - Xilinx Virtex-II 3000 FPGA .. 19
Figure 7 - Column-based Reconfiguration ... 20
Figure 8 - Sample DSP Filter Series ... 26
Figure 9 - Even Symmetry FIR Filter ... 27
Figure 10 - Quadrature Mixer with NCO ... 29
Figure 11 – Time-varying Coefficient FIR... 30
Figure 12 - Socket-based Architecture without Column Restraints 31
Figure 13 - Dynamic Relocation Restriction .. 32
Figure 14 - Bus Macro .. 34
Figure 15 - Chip Layout.. 37
Figure 16 - Fixed Logic .. 39
Figure 17 - Reconfiguration_Control FSM... 44
Figure 18 - Parameter_Control FSM .. 47
Figure 19 - 32-tap FIR Implementation.. 52
Figure 20 - 64-tap Two-filter Operation... 54
Figure 21 - Two Time-varying Coefficient FIR Operation .. 58
Figure 22 - Module Placement.. 59
Figure 23 - Sample Bus Macro Placement Across a Module Boundary 60
Figure 24 - Overall Bus Macro Placement ... 61
Figure 25 - Sample Module Resizing ... 67
Figure 26 - Top_2 Configuration.. 70
Figure 27 - Top_3 Configuration.. 71
Figure 28 - Connected Module Delays ... 73
Figure 29 - Bus Macro Location Modification... 75
Figure 30 - Improper 64-tap Shifting.. 83
Figure 31 - Proper 64-tap Shifting .. 83
Figure 32 - G4 in DSP Module ... 85
Figure 33 - PolyFIR_1 to G4 Comparison.. 88
Figure 34 - PolyFIR_1 Reparameterization to G4 Comparison 89
Figure 35 - Top_3 to G4 Comparison... 90
Figure 36 - Top_3 Reparameterization to G4 Comparison .. 90

 7

List of Tables

Table 1 - Design Decision Matrix... 36
Table 2 - FIR Comparison .. 66
Table 3 - DSP Module Timing.. 68
Table 4 - FPGA to G4 Performance Comparison... 86
Table 5 - Partial Reconfiguration Times (ms) .. 87

 8

1. Introduction
1.1. Background

Teradyne, the leading producer of automated test equipment (ATE) for digital,

analog, and mixed signal testing, uses a complex array of digital signal processing

(DSP) tools for a range of testing applications. A common mixed-signal

application includes an analog signal capture, some digital hardware based and

subsequently some software based signal conditioning and processing. Signal

processing needs can vary greatly depending on the nature of the device under

test, demanding a computationally intensive process of parameter estimation and

other waveform characterization. As the devices in test become faster and more

complex, these DSP capabilities must likewise progress with greater speed,

complexity, and flexibility. Available DSP tools have improved drastically in the

past decade, with many processing chains primarily composed of application

specific integrated circuits (ASICs). ASICs, while optimized to provide the

desired processing speed, are also subject to costly and time consuming

development processes due to the overhead of design revisions and the

inflexibility of the devices after development. The cost constraints of designing

new ASICs can render this approach impractical, especially in low part volume

situations commonly confronted in the design and construction of large automated

testers.1

Ready-made ASICs with basic signal processing stages, digital filters, mixers, and

oscillators provide another often-utilized processing avenue. While these

programmable DSP devices do exploit highly parallel processing and are

optimized for common processing tasks, the accommodation of a wide range of

DSP algorithms increases the number of devices needed. This increase in device

count places additional burden on board designers to both fit the devices into the

space available and devise a bus architecture to support the devices, rendering this

method too complex and too space consuming.

 9

The utilization of general-purpose microprocessors (CPUs) for DSP purposes, on

the other hand, offers a more flexible and powerful processing solution. The wide

range of processing capabilities provided by CPUs coupled with software

development efforts allows systems relying on CPUs to be easily revised during

and after development. Unfortunately, CPUs appear unable to meet certain DSP

demands anticipated by Teradyne due to the lack of specialization and hardware

optimization.

In recent years, FPGAs have drastically improved in terms of size, speed, and

features, making the devices suitable cand idates for signal processing needs.

Given that DSP algorithms typically rely on large-scale parallel multiplication,

accumulation, and comparison, FPGA features such as embedded multipliers as

well as the configurable logic aspect fit well with DSP requirements. The

maturation of FPGA technology means that DSP systems could be designed to

approach the processing speed and complexity of an ASIC-based solution, which

avoiding recurring engineering development costs. In a 1995 study performed at

Brigham Young University to quantitatively compare FPGA performance against

DSP processors and ASICs, FPGAs were found to nearly match and in many

benchmarks exceed the performance of both alternatives due to the ability of an

FPGA to utilize extensive specialization and concurrency. 2 Furthermore, the

ability to reconfigure an entire FPGA while in-system offers the capability to

optimize the device for a particular processing task, matching the flexibility

offered by CPUs while surpassing its processing ability. 3

For most applications, once an FPGA design is tested and verified, it’s seldom

changed.4 In addition to recent improvements in DSP implemented with FPGA

technology, an additional capability for run-time partial reconfiguration of an

FPGA offers an even more flexible and enticing alternative to both ASIC and

CPU based processing. Using a partially reconfigurable FPGA, a device could be

theoretically designed such that only a portion of the device would be

reconfigured rather than reloading the entire device, a feature that allows for

 10

interchangeability of code modules as well as smaller reconfiguration overhead.

This feature would combine the versatility of a programmable solution with the

performance of dedicated hardware in a single package, giving the FPGA a

noticeable advantage over the use of multiple alternative processing solutions and

will therefore be the goal of this project.5

Additionally, a run-time aspect would allow for a portion of the device to be

reconfigured and optimized for an upcoming task while the rest continues to

operate. The scenario is best described as adding a temporal floorplanning aspect

to an FPGA, which by definition already utilizes spatial floorplanning in the

creation of designs.6 Given that most DSP applications are configured into a

chain of sequential processing operations, DSP algorithms could therefore be

designed into a modularized architecture of connected processing blocks and are

well suited for partial reconfiguration applications. These processing blocks

could be loaded with hardware subroutines representing various DSP algorithms

as specified by the signal processing needs of the device under test. From the

user’s functional perspective, these pre-compiled and timing verified DSP

modules loaded onto the FPGA would behave identically to fast software modules

executed on a CPU while simultaneously providing a supplementary processing

speed advantage.

1.2. Challenge

A high-speed digital signal processing design implemented as a run-time partially

reconfigurable FPGA will be presented in this thesis as a feasibility study for

future Teradyne applications. Also, the design will utilize an architecture

allowing for the replacement of DSP modules. This feasibility study is made

possible using a suit of configurations consisting of three separate signal

processing algorithms with each offering the capability to enable or bypass the

processing chain. All verification results are based on simulation because

physical prototype board testing would add additional overhead to the project and

is therefore outside of the scope of this thesis. Finally, benchmark results

comparing the design implemented to both the current signal processing

 11

performance of a G4 processor as they are used in Teradyne’s current

IntegraFLEX tester will be presented in this thesis.

1.3. Solution

After researching currently available devices and design methods, this system will

be designed as a socket-based modular architecture realized on a single FPGA as

seen in Figure 1. Each socket will be capable of holding a range of DSP

algorithms designed to interconnect through a standard interface protocol. The

standardization of each module’s interface will give much greater flexibility in

dynamically relocating DSP modules while greatly decreasing the complexity

associated with interconnecting these modules. Unfortunately the interface

protocol does add inflexibility to the type of module usable by limiting the

specialization of the interface. Certain applications, for example, might require

additional features such as extra status signals while others might require larger

data busses. As will be described later in the thesis, the interface chosen allows

for flexibility in the primary data bus width as well as secondary data and control

pathways.

Figure 1 - Socket-based Architecture

 12

As previously stated, when the system requires that a particular DSP algorithm is

desired in a particular socket in the DSP chain, that DSP module may be partially

reconfigured into the device without requiring the reconfiguration of the

remainder of the FPGA. Figure 2 illustrates this reconfiguration process. Partial

reconfiguration in an often-reloaded application is desirable as it decreases the

reconfiguration time needed to make the chosen modification. Run-time partial

reconfiguration is used here to denote that the remainder of the FPGA can

continue processing data or operating while the reconfiguration of other sections

of the device is in progress. The run-time aspect is realized using a FIFO for

temporary storage of incoming data within the FPGA while DSP module(s) are

being partially reconfigured. Likewise, the system is capable of modifying the

parameters or coefficients contained within the DSP algorithm modules while the

system continues to operate.

Figure 2 - Dynamic Reconfiguration

Teradyne’s automated test equipment is designed to sequentially test a large

number of devices for manufacturing verification purposes. As the tester utilizing

this DSP FPGA switches between devices under test, the FPGA will utilize this

 13

pause in data flow to empty out internal queues and process all data. Given the

goal of operating the FPGA at 100MHz and a data queue that can hold up to 16K

data points, a test pause of 164microseconds would be sufficient for the device to

process all stored data. This desired speed of 100MHz and the associated data

FIFO size implies that reconfiguration time must be less than the time needed to

fill the FIFO. Whether or not this allowable queuing time is sufficient will be

determined later in this document. The control system in the FPGA will manage

reconfiguration and reparameterization scheduling to ensure that all data is

processed by the FPGA, as the configuration existed when the data entered the

device.

A Xilinx Virtex-II FPGA will be used for this thesis due to its physical support

for run-time partial reconfiguration as well as Xilinx’s recent efforts to provide

support for this capability in its ISE design tool set. Additionally, the Virtex-II

series FPGA also boasts advanced features including embedded multipliers and

dedicated dual-port RAM blocks. As will be shown in chapter 6, these features

will significantly decrease the gate-count necessary to attain the desired features

and speed in the FPGA.

The design of this system is not without a number of design concessions due to

constraints imposed by both the physical device as well as design tools. While

the Xilinx Virtex-II is unique at the time this thesis began in supporting run-time

partial reconfiguration in a commercially available part, this reconfiguration is

column-based, which eliminates the ability of the designer to route signals

through the area of the device undergoing partial reconfiguration. 7 Also, there is

currently no support for dynamic module relocation, meaning that a separate

version of each DSP algorithm must be created for each possible socket location

of the DSP module. While the process of creating copies of each DSP module for

all five sockets could be automated, timing may not be consistent among all five

modules and some socket-module combinations may require attention. As will be

described later in this thesis, the use of strict timing constraints on various

 14

elements of module timing can alleviate these module replication timing issues.

Likewise, Xilinx’s ISE development suite does offer rudimentary native support

for the design of a partially reconfigurable system, however there are no

commercially available tools supporting the simulation of a complete run-time

partially reconfigurable system. Rather, each permutation of the system must be

independently simulated as static designs without the capability of simulating the

actual reconfiguration process. These constraints will be elaborated upon in

Chapter 4 of this thesis.

Despite these constraints, the design will be able to achieve the intended goal of

operating as a run-time partially reconfigurable DSP processor although not quite

capable of operating at the desired speed of 100MHz. If successful and cost-

effective, Teradyne is likely to further explore this technology to enable the end

user to configure and utilize an assortment of pre-compiled DSP algorithms that

could be configured into the FPGA architecture’s sockets. This dynamically

reconfigurable system will effectively give the customer the ‘virtual circuitry’ it

requires on demand with minimal reconfiguration times and little to no

interruption in data processing. 8

As this technology continues to mature, the physical and design tool constraints

should disappear, giving the designer even greater flexibility in creating such a

system. The potential problems associated with designing a complete system

without the capability of verifying the reconfiguration process will hopefully be

alleviated with advancements in design tool capability.

1.4. Outline

Following this chapter, this thesis will first consider past and present research

involving the use of FPGAs in partial reconfiguration applications along with a

detailed description of current FPGA features and capabilities. Chapter 3 will

detail the three sample DSP filters chosen for this thesis, namely a 32-tap even-

symmetry FIR, a Quadrature Mixer with a built- in NCO, and a 32-tap Time-

varying Coefficient even-symmetry FIR filter. This chapter will concentrate on

 15

the functionality of the filters, but will leave implementation-specific details for a

later chapter. Next, Chapter 4 will examine the design constraints, both hardware

and software, encountered during the design and implementation process. This

chapter will close with a comparison of the possible design pathways and the

features considered in making the decision to utilize the chosen device and design

environment.

Chapter 5 will serve as a design specification for the architecture, starting with a

high- level description of the intended design along with a detailed description of

every facet of the target design. Starting with the fixed logic elements present in

all permutations of the design, this chapter will then move into an

implementation-specific description of the DSP filters first presented in Chapter

3. Following this specification, Chapter 6 will explain the actual implementation

process, beginning with the top-level initial budgeting phase, moving then to the

active module implementation phase, and concluding with the final assembly

phase that brings all the pieces together into various design permutations. Next,

Chapter 7 will detail the simulation process undertaken to verify the functionality

and performance of the design, both at the individual module and overall device

levels. Once a few versions of the design have been completely constructed and

verified in a simulation environment, Chapter 8 will describe the performance

benchmarks derived from these designs and compare them to other processing

options, particularly the use of a G4 PowerPC processor to perform similar

computations. In addition to detailing the raw processing power of each option,

considerations are made for the time needed to partial reconfigure some or all of

the FPGA and how this relates to the type of data set analyzed. In the penultimate

chapter, this thesis will conclude with a summary of the work performed and

knowledge gained in the process. Finally, Chapter 10 will contain a discussion of

possible future work to build upon this thesis project.

 16

2. FPGA and Partial Reconfiguration Background
2.1. FPGA Background

The SRAM-based field programmable gate array, or FPGA, was first

commercially introduced by Xilinx in 1985.9 The general purpose of a

programmable logic device such as an FPGA is to allow designers to create a

physical logic design and produce a finished product without the overhead

associated with designing a custom IC. Furthermore, the devices could be

reprogrammed with new configurations; a feature most often utilized during the

design process, but one that can also be used to customize the device for the given

operation. Initially, offerings from Xilinx consisted of a few thousand gates and

could only operate at speeds of under 5MHz.10 Since then, FPGAs have improved

in size and speed to over 10 million gates at speeds approaching 300MHz while

also incorporating additional features such as embedded multipliers and dedicated

SRAM blocks.

The modern SRAM-based FPGA consists of a number of configurable logic

blocks (CLBs) that are linked through a series of programmable wire

interconnects. In the case of the Xilinx Virtex-II FPGA used, each CLB contains

four slices, as seen in Figure 3.11 Slice logic, as seen in the half slice schematic in

Figure 4, is contained within look-up tables (LUTs), each designed as a multi-

input, single output SRAM block. Coupled with storage registers, multiplexors,

and various other logical mechanisms, each slice can perform a large range of

logically operations. The four slices of a single CLB, when combined with

neighboring CLBs, can perform almost any logical operation. Like the logic

functions themselves, the switch matrix interconnects within and between CLBs

are also determined by configuration data stored in SRAM cells, as seen in Figure

5.

 17

Figure 3 - CLB Schematic

Figure 4 - Slice Schematic

 18

Figure 5 - Interconnected CLBs

The Xilinx Virtex-II FPGA used for this thesis uses an “island-style” architecture

characterized by a fine-grained array of logic cells surrounded by a collection of

prefabricated routing segments interconnected by programmable switches.12

Specifically, this project will target the XC2V3000 Virtex-II FPGA, a device

containing three million usable system gates. As seen in Figure 6, the device is

organized as a 64x56 array of CLBs, each connected to a switching matrix used to

interconnected neighboring CLBs. Moreover, each CLB consists of two tri-state

buffers and four slices, each of which containing two function generators, two

storage elements, and assorted multiplexors, arithmetic logic gates, and cascading

chains. The device also includes six columns of 16 embedded 18x18 unsigned

multipliers, which will be heavily utilized by the DSP algorithm implemented in

this thesis. Each embedded multiplier borders a dedicated 18Kb block of SRAM

that will be used to queue data and store coefficients within each module. The

internal logic of the device is surrounded by IOB input/output buffers used to

connect the device to its host board. Along with a set of multiple clock

distribution systems, the FPGA offers a formidable array of capabilities.

 19

Figure 6 - Xilinx Virtex-II 3000 FPGA

If used as a traditional FPGA, all of these resources may be used for a design and

a reasonably optimized mapping, placement, and routing of the design would be

determined using standard design tools. In the case of a partially reconfigurable

design, however, CLB logic placement and routing must be confined within

specific internal boundaries in a manner that allows individual modules to be

reloaded without effecting unrelated logic and routing. The partial

reconfiguration support offered by the Virtex-II is column-based, meaning that

the granularity of reconfiguration is limited to a module that is four slices wide

and ranging the full height of the device.13 As exhibited in Figure 7, this four-

 20

slice minimum width restriction is based on the number of tri-state buffers

necessary to create a bus macro barrier between modules, a concept that will be

detailed later in this document. The full column restriction is based on the

architecture’s reliance on a full column as the finest granularity of bitstream

loading available. This finest grain reconfigurable area consists of all CLB logic

resources within the space as well as all non-clocking routing resources and IOB

input/output buffers along the perimeter of the device that border the

reconfigurable area. Partial reconfiguration bitstreams may be loaded through the

standard reconfiguration interface such as the SelectMAP interface and will only

affect the logic and routing within the confines of the target area. As mentioned,

this area of the device may be partially reconfigured while the remainder of the

device continues to operate. The designer, however, must be privy to contention

issues that may arise if the remainder of the device attempts to communicate with

portions undergoing run-time partial reconfiguration.

slice
X16Y127

slice
X16Y126

slice
X17Y127

slice
X17Y126

slice
X18Y127

slice
X18Y126

slice
X19Y127

slice
X19Y126

slice
X16Y125

slice
X16Y124

slice
X17Y125

slice
X17Y124

slice
X18Y125

slice
X18Y124

slice
X19Y125

slice
X19Y124

slice
X16Y1

slice
X16Y0

slice
X17Y1

slice
X17Y0

slice
X18Y1

slice
X18Y0

slice
X19Y1

slice
X19Y0

CLB Column 9 CLB Column 10

Figure 7 - Column-based Reconfiguration

 21

2.2. Existing Research

In the past decade, a number of research efforts have been undertaken to explore

and exploit partial reconfiguration in FPGAs. Partial reconfiguration is defined as

any instance where only a portion of the device is undergoing a configuration

change, as opposed to the entire device. Support for partial reconfiguration

implies that specific regions of the device can be addressed and modified by a

reconfiguration bitstream without modifying or disabling unchanged portions of

the configuration. As a result, partial reconfiguration applications require special

attention to logic and routing resource allocation in order to prevent contention.

A number of FPGAs were developed with the capability for partial

reconfiguration, such as the Xilinx XC3090 and XC6200 series as well as parts

from Atmel and National Semiconductor.14 While research efforts vary from

developing place and routing tools to creating simulation environments, research

projects generally fell into one of two categories: partial reconfiguration using

dynamically compiled configurations and partial reconfiguration using pre-

compiled designs.

The first category of dynamic compilation-based schemes has been primarily

targeted towards dynamically recompiling a configuration to create optimized

solutions in run-time. The RRANN and RRANN2 projects attempted to create a

run-time reconfigurable artificial neural network on an FPGA with the capability

to recompile and reconfigure itself as it effectively learned how to process data.15

This project also considered creating partial reconfiguration bitstreams such that

only the differences between two consecutive configurations are defined in the

bitstream, which would decrease the size of the bitstream and reduce

reconfiguration time. As this thesis project requires reconfiguration sockets to be

loaded with any of a large library of DSP modules, it would be prudent to simply

store each possible bitstream rather than create differential bitstreams to convert

between each possible combination of configuration changes. More recent work

such as Xilinx’s Jbits tool also attempts to create a real-time redesign capability

by leveraging core libraries to quickly map, place, and route designs onto a

 22

device.16 This project, however, does not attempt to tackle the problem of real-

time design compilation and reconfiguration, predominantly due to the lack of

commercially available tools to support this endeavor.

A larger effort has been made to develop the design and verification tools

necessary to create designs allowing for partial reconfiguration using pre-

compiled bitstreams. The DYNASTY project created by Milan Vasilko attempts

to create a CAD framework that supports not only the typical spatial

floorplanning of an FPGA design but also a temporal floorplanning aspect as

well, enabling the designer to visualize the layout of tasks on the FPGA over

time.1718 While this design tool capability would be ideal for this project, the

newer and more powerful Xilinx FPGAs are not supported under the design

environment. On other projects, researchers have attempted to create module-

based designs similar to this project. Gordon Brebner, with his concept of

Swappable Logic Units, for example, created an architecture supporting the

partial reconfiguration of small logic blocks within a defined interface for a Xilinx

XC6200 device.19 Unlike this thesis, however, Brebner’s work attempts to

modify the configuration on a much smaller scale than the larger DSP algorithm

modules created for this design.

While some research has set out to create design implementation tools and

architectures supporting partial reconfiguration, another group of projects have set

out to create simulation and verification environments with this same support. As

will be evident later in this thesis, the lack of compatible simulation tools

drastically hinders the ability of designers to verify partially reconfigurable

designs created with standard design tools. The Dynamic Circuit Switching

(DCS) CAD framework enables the implementation and verification of partial

reconfiguration designs by converting dynamic designs into multiple static

designs for verification, and then back to single dynamic system.20 Dynamic

circuitry is defined as any logic or routing resources designed to be modified

during partial reconfiguration. This capability of the simulator to model static

 23

circuitry while simultaneously modeling the replacement of dynamic circuitry,

however, is not available for use in this thesis and therefore necessitated the

manual simulation of each separate design permutation without the ability to

simulate the partial reconfiguration process.

2.3. Current Capabilities

While each of the research projects mentioned in the previous section has made

academic progress in the field of dynamically reconfigurable FPGAs, much work

remains. Current academic and commercial development efforts have attempted

to bridge the gap by creating tools that support partial reconfiguration in modern-

day architectures such as the Virtex and Virtex-II platform FPGA families.

2.3.1. JBits

Being the leading designer and producer of FPGAs, Xilinx has an inherent

interest in providing the design tools necessary to allow for run-time partial

reconfiguration. JBits evolved from earlier internal partial reconfiguration

tool into a Java-based API supporting the reading, manipulation, and writing

of configuration bitstreams for Virtex FPGAs.21 The tool generally operates

at a lower level, allowing fine-grained bitstream and logic manipulation and

the ability to draw on automated core generation capabilities. The JBits tool

also includes JRoute, which provides access to routing resources in dynamic

compilation situations.22 VirtexDS, perhaps the most significant and useful

member of the JBits toolset, allows for device- level simulation of run-time

reconfiguration designs by running simulations directly against bitstreams

generated with JBits.23

While this toolset may seem like the optimal design environment for this

thesis, the JBits toolset currently only supports Virtex and older XC4000

series FPGAs and is not compatible with the Virtex-II platform FPGA utilized

in this thesis. Since the embedded multipliers intrinsic to the Virtex-II and

absent in the Virtex are vital for the DSP application targeted, JBits will not

be considered for the remainder of this project. It is important to note,

 24

however, that this project would have greatly benefited from the dynamic

simulation features available in VirtexDS.

2.3.2. PARBIT

In a project similar to the run-time partial reconfiguration architecture

designed for this thesis, an effort is underway to design a reconfigurable ATM

switch architecture called RECATS that utilizes dynamic hardware plugins

designed to fit with specific regions of an FPGA. 24 Based on the Xilinx

Virtex-E architecture, these dynamic hardware plugins are designed to fit

within interface gaskets present on the FPGA. To accomplish the task of

creating full column partial bitstreams, PARBIT was created to allow for

dynamic hardware plugin bitstreams to be combined with a bitstream

representing the default configuration to create valid column-length

bitstreams. While this bitstream generation feature may have been useful for

this project, the tool is also not compatible with the Virtex-II FPGA family.

Additionally, the ability to circumvent some of the routing constraints

confronted by both the dynamic hardware plugin project and this project have

been accommodated by Xilinx’s Modular Design tool and the creation of a

native partial reconfiguration design flow.

2.3.3. Modular Design

While academic research projects and experimental tools might be useful for

the general advancement of reconfigurable computing technology, the

technology is commercially useless unless a viable application or product is

derived. To complement the partial reconfiguration support inherent in the

Virtex-II FPGA, Xilinx recently augmented their ISE development toolset

with a modular design tool, which enables the synthesis, translation, mapping,

placing and routing of an individual modules within a larger design. The

modular design tool is intended to allow large FPGA designs to be partitioned

among multiple engineers as multiple modules that can be synthesized,

translated, mapped, placed and routed, timing can be verified, and the

modules can be combined into a final design. In order to prevent resource

contention, the modular design tool allows a designer to initially budget

 25

individual modules into specific regions of chip and automatically prevent

logic and routing from straying beyond those boundaries.25 This feature

solves many of the manual routing issues encountered by earlier research

projects.

While designers previously had the ability to specifically place individual

logic components, the added ability to control routing gives the modular

design tool the ability to create a complete bitstream for a partially

reconfigurable module by eliminating resource overlap. Xilinx formalized

this capability with the release of application note XAPP290 detailing the

steps necessary to creating a partially reconfigurable design using Xilinx’s

ISE development suite with the modular design add-on. 26 While modular

design allowed the creation of complete individual modules, XAPP290

introduced a bus macro scheme utilizing tri-state buffers to bridge the gap

between interconnected modules and prevent signal failure during

reconfiguration. Although severely lacking in the ability to simulate a

partially reconfigurable environment, the modular design tool with partial

reconfiguration support does create the capability to design a partially

reconfigurable system using standard design tools and a commercially

available FPGA. Therefore, this thesis will be performed using this toolset

along with a thorough analysis of the advantages and disadvantages of this

design flow.

 26

3. DSP Algorithms
Teradyne’s DSP requirements are as diverse as the devices under test. In many

applications, digitized data must pass through a series of standard processing

functions, including an equalizer, a numerically controlled oscillator, quadrature

mixers, resamplers, and other filters. A typical processing sequence is given in

Figure 8. Without the use of an FPGA, this series of algorithms could exis t as a static

ASIC chain, however the flexibility of the DSP chips is limited and would necessitate

the use of a G4 CPU for additional custom processing. Given that the purpose of this

project is to prove that an FPGA-based dynamically reconfigurable processing

solution can compare in speed and capabilities to both ASIC and CPU based

processing, three demonstration filters will be created for this thesis. Therefore, an

equalizer will be designed as a 32-tap even symmetry FIR filter, a numerically

controlled oscillator (NCO) that feeds into a quadrature mixer with dual outputs will

be implemented, and an interpolator/resampler will be implemented using a 32-tap

time-varying coefficient even symmetry FIR filter. The resampler differs from the

equalizer by using an addressable array of coefficient values for each tap rather than a

single value. All filters will be designed to operate at 100MHz on 16-bit data with no

less than 16-bit internal resolution.

Data from A/D
Equalizer

(64 Tap FIR)

In Phase
Resampler

(Polyphase FIR)

Numerically
Controlled
Oscillator/

Quadrature Mixer

Quadrature
Resampler

(Polyphase FIR)

FIR Integer
Decimation Filter

FIR Integer
Decimation Filter

A/D Clock

Figure 8 - Sample DSP Filter Series

 27

3.1. FIR

The purpose of the FIR filter is to equalize the digitized signal to compensate for

imperfections in the instrument receiver response. Each delayed incoming data is

multiplied by a coefficient, summing the results of all 32 taps, and outputting the

resulting sum to the next stage of data processing. Linear phase is assumed and

the multipliers can be reused according to the symmetry condition, which reduces

the number of multipliers needed, as illustrated by Equation 1. Figure 9 gives a

simplified 4-tap version of the design. The 32-tap even symmetry FIR filter will

be designed to operate on 16-bit signed data with 16-bit coefficients to produce

32-bit products and sums internally, which will then be rounded down to a 16-bit

signed output. Coefficients will not be hard-wired into the design and can be

reloaded at any time without having to reconfigure any logic.

Equation 1 - 32 tap Even-symmetry FIR Filter

)(_ 33

16

1
ii

i
i taptapcoeffoutData −

=

+×= ∑

Figure 9 - Even Symmetry FIR Filter

 28

As an added feature, the system will be designed such that two neighboring 32-tap

even symmetry FIR filters can be joined to form a single 64-tap even symmetry

FIR filter. Data tap interconnects will be provided between modules along with a

32-bit intermediate sum output from the first to second filters in the sequence.

The resulting sum of all 64-taps will then be rounded down to a 16-bit value for

outputting.

3.2. Quadrature Mixer

The quadrature mixer/downconverter will be implemented with a built- in

numerically controlled oscillator, or NCO, that is designed to digitally synthesize

a discrete sine and cosine based on the supplied period parameter. The

synthesized signals are fed into two multipliers together with the incoming data

stream. The NCO portion of this filter will consist of a phase accumulator used to

address sine and cosine lookup tables in order generate deterministic waveforms.

As seen in Figure 10, the 32-bit phase accumulator is augmented by a 32- bit

assignable phase increment register, with the output rounded down to a 16-bit

phase angle used to address the lookup tables. The sine and cosine lookup will

then output a set of 16-bit discrete output values, which will then be individua lly

multiplied by the 16-bit data input to create discrete output values. In order to

minimize lookup table memory requirements, quarter wave symmetry will be

utilized, meaning that only one quarter of the sine waveform must actually be

stored and that the quadrant designated by the phase angle can be used to

determine the sign and value of the output. The 16-bit rounded in-phase and

quadrature values will each then be outputted to the next processing module.

 29

Phase
Register
(32-bits)

Round to 16-bits

Round to
14-bits

Frequency Tuning
Register (32-bits)

SIN/COS Lookup
Table 16Kx16-bits

SIN

COS

Round to 16-bits

In-phase Output

Quadrature Output

Data

Figure 10 - Quadrature Mixer with NCO

3.3. Time-varying Coefficient FIR

The time-varying coefficient FIR filter will be implemented as a 32-tap even

symmetry FIR filter with time-varying coefficients. The even symmetric tap

accumulators, multipliers, and sum accumulation structure is identical to the 32-

tap even symmetry FIR filter detailed above. Rather than a single coefficient for

each multiplier, however, a memory of 1Kx16-bit coefficients is connected to

each multiplier. As seen in Figure 11, all 16 sets of 1K memories are addressed

by an accumulator that increments the address using an assignable 32-bit delta

value and taking only the rounded 10 most significant bits as the coefficient

address. The coefficients and delta can be chosen to give a range of filtering

capabilities. Like the other filters, all coefficients and the delta can be reloaded

once the filter has been configured onto the FPGA. While the capability of

combining two 32-tap time-varying coefficient FIRs into a single 64-tap time-

varying coefficient FIR will be not supported for this thesis, two neighboring 32-

tap time-varying coefficient FIRs can be configured to pass thru the necessary

data values and sums to allow for simultaneous in-phase and quadrature filtering.

 30

Figure 11 – Time-varying Coefficient FIR

 31

4. Design Decisions
4.1. Device Constraints

The Xilinx Virtex-II FPGA, while physically capable of partial reconfiguration, is

not without limitations. It is possible to address and dynamically reconfigure

specific portions of the device, but this dynamic reconfiguration must correspond

to a column-based bitstream-reloading scheme. As mentioned in Chapter 2, the

smallest portion of the device that can be dynamically reconfigured consists of an

area four slices wide by the full column height of the device. Any area to be

reconfigured must therefore be an integer multiple of a region this size. This

limitation has the effect of heavily constraining the type of reconfigurable

architectures and designs supportable on the Xilinx Virtex-II. Using this device,

it would not be possible to create a socket-based architecture consisting of a grid

of interconnected modules, as seen in Figure 12. The PARBIT project currently

in progress intends to create a gasket-based modular architecture along with a

bitstream modification tool capable of combining multiple bitstreams to create

valid full column bitstreams.27

Figure 12 - Socket-based Architecture without Column Restraints

 32

While the PARBIT tool might solve the problem of allowing the partial

reconfiguration of modules that do not extend the full height of the device, the

routing constraints of the Virtex-II continue to pose a formidable hurdle to

unrestricted module design. Since all non-clocking routing resources are

designated by the reconfiguration bitstream, all routing resources within a

partially reconfiguring module are not available during reconfiguration. In the

case that a partial reconfiguration is altering a set of columns in the middle of the

device, this restriction thus prevents signals from passing between the left and

right sides of the device without making use of external pin connections. This

routing restriction limits the ability to freely route signals inside the device,

leading to the design of a chained module architecture in which modules can

communicate with their immediate neighbors, but cannot directly send or receive

to more distant modules, a scheme resembling that given in Figure 1.

Finally, while the internal structure of the Xilinx Virtex-II FPGA is standardized

and uniform with the sole exception of embedded multiplier and block RAM

columns, the device does not support the ability to dynamically relocate modules

to different locations on the device. For example, while areas A and B of Figure

13 are identical in size, logic and routing resources, inclusion of embedded

multipliers and block RAM, and access to IOB resources, it would not be possible

to create single bitstream that could be loaded into either location. Rather, a

separate version of the bitstream would need to be built for each possible location.

Figure 13 - Dynamic Relocation Restriction

 33

Despite being the most advanced commercially FPGA architecture available at

the time of this project, the Xilinx Virtex-II’s device constraints drastically curtail

the types of reconfigurable designs currently possible. As a result of these

restrictions, the architecture described in the next chapter consists of a socket-

based architecture that includes five full column-height modules in a chain from

left to right on the device. These sockets are connected to their immediate

neighbors via bus-macro routing protocols, which make use of tri-state buffers to

communicate across module boundaries in accordance with a standard interface

scheme. Additionally, since a single DSP module can be instantiated in all five of

the sockets, five versions of the module bitstream must be created to support all

possible locations.

4.2. Design Flow Constraints

Although one of a few manufacturers claiming to support partial reconfiguration

of its devices, Xilinx is unique in its initial support for partial reconfiguration

using standard design tools and methodologies. As mentioned in Section 2.2.3,

Xilinx’s ISE framework with the modular design tool does give the user the

ability to create a partially reconfigurable design, but a number of roadblocks

remain to prevent the more effective design and proper verification of such a

design. On a superficial ease-of-design level, the framework does not offer a

temporal floorplanning capability that allows designer to visualize configuration

change over time. It is therefore necessary to design modules separately and

manually combine them to create complete permutations of the design. This flaw

in the design flow, however, is minor compared to others and will likely be

corrected in future design flows as the demand for such features increases.

Along with the partial reconfiguration design flow, Xilinx has included a bus

macro that enables the simple creation of boundary connections between partially

reconfigurable modules. Figure 14 shows that each bus macro consists of four tri-

state buffer bits that can be driven and read from either side of the module

boundary.28 Each 4-bit bus macro is one CLB in height and four CLBs wide -

 34

two on each side of the module boundary. While the functionality of this macro

could have been manually created, Xilinx has also encoded placement and routing

directives into the macro for use by the ISE place and route tool. These

placement and routing directives ensure that signals from both connecting DSP

sockets interconnect at a single defined location. Without the use of these bus

macros, it would not currently be possible to constrain signals to specific routing

locations for interconnect purposes. Each of the 189 bus macros used in this

design must be manually fixed to a specific location on the device, as will be

illustrated in Chapters 5 and 6. Unfortunately, the design flow documentation

only recommends for the bus macros to be uni-directional within the design to

prevent signal contention, which eliminates the possibility of designing a bi-

directional network or bus for routing signals between connecting modules.

Figure 14 - Bus Macro

It should be reiterated that, while cumbersome, the design flow does allow for the

effective creation of a partially reconfigurable design. Verification, however,

cannot be properly accomplished because no commercially available simulator

supporting partial reconfiguration currently exists. Like any standard FPGA

design, a single assembled static permutation of the partially reconfigurable

design can be verified for functionality and timing using a standard testbench. As

 35

will be explained in later chapters, a permutation for this design would consist of

the initial Fixed_Logic module, all five sockets filled with a DSP module, and the

End_Logic module. Limited to this methodology, however, it is not possible to

actually simulate the process of partially reconfiguring the device or to simulate

the functionality of the FPGA in an in-system use situation. Since the available

time and scope of this thesis forbids prototype board testing that would confirm

the validity of this design in a real world scenario, the simulation of multiple

static permutations of the design will have to suffice for both benchmarking and

conclusion-drawing purposes. Information on reconfiguration times and the

performance of the FPGA during partial reconfiguration must be extrapolated

from information provided in Xilinx’s data book as well as observed simulation

results, which will be presented in Chapter 8.

4.3. Decision Matrix

While the decision to proceed with the project using the Xilinx Virtex-II FPGA

along with Xilinx’s ISE and modular design tool may seem obvious given the

overall design tool capabilities and device features, it seems important to quantify

that decision with a decision matrix. Table 1 details the three design routes under

consideration at the commencement of this thesis project along with itemized

features, allowing for a quantification of the advantages and disadvantages of

each design path. Not all features are weighted equally, as indicated by the

subjective scaling factor on the far right of the table. The chosen scaling factors

reflect both information garnered during the research of previous projects and the

recommendations of fellow engineers or supervisors.

 36

Table 1 - Design Decision Matrix

Using either the Xilinx Virtex or Virtex-E, for example, would have eliminated

the ability to take advantage of the Virtex-II’s size, speed, and embedded

multiplier features. The Java-based JBits tool may support partial

reconfiguration, but the design flow did not permit for simple and reliable design

creation or verification and would have also carried with it the added overhead of

requiring extensive experience with both standard FPGA design and Java

programming. The PARBIT tool does present attractive features such as the

added flexibility of dynamic module relocation and fewer module shape

limitations, but is also inhibited by design flow concerns, validation, and tool

support concerns. Utilizing the Xilinx ISE with the modular design tool offered

the most attractive design pathway despite dramatic limitations in dynamic

module relocatability and strict module shape limitations. In all cases, simulation

support for dynamic partial reconfiguration was not available and therefore this

factor was not taken into account in the decision matrix.

 37

5. Device Architecture
5.1. Design Overview

Although aspects of the device architecture have been described or alluded to on

an introductory level prior to now, this chapter will detail the exact specification

of the design. The architecture, as illustrated by Figure 15 consists of seven

distinct modules arranged left to right across the Xilinx Virtex-II 3000 series

FPGA and separated by bus macro boundary interconnects. The first and last

modules, referred to as Fixed_Logic and End_Logic respectively, exist in all

permutations of the device and act as the interface connecting the internal DSP

structure to the external interface. The five interior modules are the DSP sockets

into which DSP modules can be loaded, referred to as sockets 1 thru 5. Between

each module, a series of tri-state buffer bus macros has been placed to act as an

interface, which is intended to prevent signal contention during reconfiguration.

In this scheme, modules can only communicate with their immediate neighboring

modules. Data and status signals therefore propagate through the system in order

to reach their destinations. If the End_Logic module is ready for data, for

example, that signal will propagate through the five sockets in reverse order until

it reaches the Fixed_Logic module.

1 2 3 4 5Fixed

clk

bi
ts

tr
ea

m
_a

dd
r

5

bi
ts

tre
am

_i
ni

t

bi
ts

tr
ea

m
_d

on
e

parameters1 6

32 3 2 32 3 2 32
data_outdata_next

data_in
1 6

data_ready_next

rfd_next

source_id

parameter_ready

rfd

reconfig_busy

module_id2

3
socket_loc

mode2

reconfig_strobe

module_set

next

prev

1 6

1 6

16

16

1 6

1 6

16

16

1 6

1 6

16

16

dest_id

aux_addr

aux_data

3

15

16

aux_en

module_status

3

2

new_parameters

new_data

parameter_strobe

parameter_busy

current_config_out
1 0

1 5
parameter_addr

parameter_error

tri_ena

re
se

t_
1

re
se

t_
2

re
se

t_
3

re
se

t_
4

re
se

t_
5

re
se

t_
6

3 2

reset_all

data_ready_out

ready_for_data_out
E

m
pt

y

Figure 15 - Chip Layout

 38

In order to make this device less dependent on outside micromanagement, the

Fixed_Logic module orchestrates all data flow, parameter loading, and partial

reconfiguration control. Data is then processed through the DSP modules in a

left-to-right fashion to be transmitted externally via the End_Logic module.

While the data bus and auxiliary parameter loading bus, which consists of the

aux_addr, aux_data, dest_id, and aux_en signals and is referred to as aux_bus,

travels rightward across the device, a few status signals communicate leftward to

facilitate Fixed_Logic module operation. The details surrounding each intra-

module and inter-module signal will be expounded upon in the following sections.

5.2. Fixed_Logic Architecture

The Fixed_Logic module essentially acts as the brain of the FPGA design -

controlling data flow, parameter loading, and maintaining the operational state of

the device. In the process of facilitating the intended operation of this run-time

partially reconfigurable design, the current operational state of the device must

constantly be monitored and coordinated with any attempts to either modify the

configuration or load any new parameters or coefficients into any of the existing

DSP modules, a process referred to as reparameterization. If either a

reconfiguration or reparameterization is desired, a finite state machine sequence is

followed to ensure that all necessary DSP modules are disabled prior to said

modifications. Likewise, the affected DSP must also be re-enabled post

reconfiguration or reparameterization so that the device may resume operation.

Any data entering the data_FIFO prior to either a reconfiguration or

reparameterization initialization signal must be processed with the old

configuration before any changes occur. Similarly, any data input to the device

after the initialization signals must be processed with the new configuration. In

order to simplify the description of this fixed logic module, Figure 16 exhibits the

internal compartmentalization of this module into coherent operational sub-

modules. The operation and construction of each of these sub-modules will be

described in the following sections.

 39

2

2

data_in

reconfig_busy

module_set

3socket_loc

ready_for_data

clk

Parameter Control

mode

current
config

module_id

Reconfiguration
Control

next
config
flag

2

parameters
16

parameter_ready

Data
Input

Control

16

reconfig_strobe

10

5

5

next
config

3

reconfig_done

reconfig_busy

dest_id
3

aux_addr15

aux_data16

aux_en

reset_all

bi
ts

tre
am

_a
dd

r
5

data_next
16

data_ready_next

ready_for_data_next
Data_FIFO

din

full

wr_en

dout

rd_en

empty

Data
Output
Control

17 17

active_fifo

source_id3

module_status

new_data

new_parameters

10

parameter_strobe

2

next_config

cu
rr

en
t_

co
nf

ig

current_config_out
10

parameter_busy

pa
ra

m
et

er
_b

us
y

next_in

next_out

16

16

tr
i_

en
a

parameter_error

pa
ra

m
et

er
_e

rr
or

15parameter_addr

reconfig_socket_loc

reconfig_module_id

be
gi

n_
re

co
nf

ig

pr
ev

_f
ifo

_e
m

pt
y

fif
o_

ou
tp

ut
tin

g

bi
ts

tr
ea

m
_i

ni
t

bi
ts

tre
am

_d
on

e

5

Figure 16 - Fixed Logic

Preceding the descriptions of each sub-module, a number of general-purpose

input signals should be detailed. Like all other regions of the FPGA, the fixed

logic module runs synchronously with the rising edge of the input clock signal,

referred to as clk. The reset_all signal, with a single exemption in the current

configuration register, effectively resets the device to a default operational state.

The mode input defines the current operational mode of the device and can be

externally set to stop, run, partial reconfiguration, or reparameterization modes.

5.2.1. Data_Input_Control

The Data_Input_Control sub-module essentially handles the loading of 16-bit

data into the data_FIFO based on a number of input control signals sent to the

device, acting as the first step in the data flow management process. In simple

 40

terms, if Data_Input_Control is ready for data and new data is present on the

data input bus, Data_Input_Control will load this data into the data_FIFO.

This loading process, however, must be coordinated with both external signals

and internal signals asserted by other sub-modules. When in run mode,

Data_Input_Control will manage data entering the data_FIFO by tracking the

reconfig_strobe and parameter_strobe signals. These signals instruct the

FPGA to initiate the reconfiguration or reparameterization processes,

respectively. In the case that either strobe signal is asserted,

Data_Input_Control must differentiate between pre-strobe and post-strobe

data by adding an extra data bit to each 16-bit data input word, enabling the

17-bit data_FIFO to virtually act as two separate 16-bit data_FIFOs. For

example, after a system reset, data entering the system will have a 0x0 set as

the 17th data_FIFO bit to indicate that the data occupies the first virtual FIFO.

After a reconfig_strobe or parameter_strobe signal, however, 0x1 will be

appended as the 17th bit to indicate that this new data belongs in the second

virtual FIFO. This distinction between old and new data will allow the system

to process all old data before changing the system. If another strobe signal

occurs after the configuration change is made, the 17th bit will toggle back to

0x0 and the process will repeat. The active_fifo signal will reflect which

virtual FIFO is currently in use. In order to prevent subsequent

reconfig_strobe or parameter_strobe signals from confusing the

Data_Input_Control by beginning an illegal FIFO toggle operation, the

reconfig_busy and parameter_busy signal asserted by other sub-modules are

checked. Finally, Data_Input_Control can be returned to a default state if the

reset_all signal is asserted.

5.2.2. Data_FIFO

In order to enable the run-time aspect to this FPGA design, data is stored in

data_FIFO queue during either reconfiguration or reparameterization. The

goal of this feature is to decrease the overhead of reconfiguration or

reparameterization by allowing Teradyne’s tester to continuously transmitting

digitized waveforms into the FPGA. The system will rely of the FPGA’s

 41

ability to process the data with multiple separate configurations. The FPGA

would then utilize pauses in input data flow to complete processing of current

data and empty out the data_FIFO. The data_FIFO queue is implemented as a

16Kx17-bit FIFO, with the 17th bit acting to distinguish between two virtual

16-bit FIFOs. On the input side of the FIFO, the fifo_full signal will be used

by Data_Input_Control to determine whether the FPGA is ready for data.

Also, the new data input to Data_Input_Control will be used to assert the

fifo_wr_en signal that enables the writing of data to the FIFO. Likewise, the

fifo_empty signal is used by Data_Output_Control to determine whether

data_ready_next can be asserted. Finally, the ready_for_data_next signal sent

to Data_Output_Control by DSP Socket_1 dictates whether fifo_rd_en is

asserted to read data from the FIFO.

5.2.3. Data_Output_Control

When in run mode, the Data_Output_Control sub-module acts as the final

stage of data flow control within the Fixed_Logic module, reading data from

the data_FIFO and sending the output data to DSP Socket_1 as long as the

data_FIFO is not empty and DSP Socket_1 is ready for data. The complexity

of this sub-module arises from determining which of the two virtual FIFOs is

active and transmitting the appropriate output data. While the active_fifo

signal emitted by Data_Input_Control conveys the current active FIFO to

Data_Output_Control, older data may still exist in the data_FIFO that must be

transmitted to DSP Socket_1 prior to any FPGA configuration or parameter

modifications. Therefore, once active_fifo changes from its previous value,

Data_Output_Control will continue to output the previous FIFOs data from

data_FIFO until the 17th data bit matches active_fifo, indicating that all old

FIFO data has been flushed. At this time, Data_Output_Control will assert the

prev_fifo_empty bit to notify the Parameter_ Control sub-module that it may

begin reconfiguration or reparameterization. Data_Output_Control will then

monitor the fifo_outputting signal asserted by the Parameter_ Control sub-

module and, when fifo_outputting matches active_fifo, Data_Output_Control

resumes the transmission of data from data_FIFO to the first DSP socket.

 42

5.2.4. Next_Configuration and Next_Configuration_Flag

The next_config and next_config_flag registers are the first stages related to

the partial reconfiguration of the system. Prior to a reconfig_strobe signal

initiating partial reconfiguration, the system must be informed of which DSP

modules are to be loaded into the DSP sockets. The next_config registers

perform this function based on the mode, socket_loc, module_id, and

module_set input signals. The next_config registers consist of five 2-bit

registers, one for each of the five DSP sockets. As will be described later in

this chapter, four DSP modules have been designed for this feasibility study,

each corresponding to a 2-bit value. If in either run mode or partial

reconfiguration mode, the external assertion of module_set will result in the

value of module_id being stored in the next_config register indicated by

socket_loc. Values of socket_loc outside of the range of one through five

inclusive are invalid and are ignored by the Fixed_Logic module. Since

multiple configuration changes can be initiated by a single reconfig_strobe

signal, any or all of the next_config registers can be modified prior to

reconfiguration. In the case of a reset signal, the values of next_config will

default to the current configuration of the system, as indicated by the

current_config registers.

The next_config_flag registers exist as a 5-bit array that informs the

Reconfiguration_Control sub-module as to which next_config registers have

been modified. This information is then used to determine which DSP sockets

are to be reloaded with next DSP modules during partial reconfiguration. In

the case that only DSP Socket_1 is to be reconfigured, for instance,

next_config_flag[1] will be asserted while the other bits remain constant.

Once the Reconfiguration_Control sub-module has made the necessary

reconfigurations, it will de-assert the affected next_config_flag bits.

5.2.5. Current_Configuration

Identical in size to the next_config registers, the current_config registers

reflect the current configuration loaded into the five DSP sockets. In addition

 43

to being used internally by the Parameter_ Control sub-module, these five 2-

bit values are also routed to output buffers allowing externally connected

devices to monitor the internal configuration of this FPGA. Only the

Reconfiguration_Control sub-module can modify the current_config registers,

reflecting any configuration changes made to the system. Like the

next_config register loading mechanism, the value of reconfig_module_id will

be loaded into the appropriate current_config register as dictated by

reconfig_socket_loc and the reconfig_done strobe. Unlike all other sub-

modules of the Fixed_Logic module, a reset signal while in run mode will not

change the current_config registers as they must continue to accurately reflect

which DSP modules are loaded into each of the five DSP sockets. Only a

reset signal asserted while in stop mode can override this safeguard.

5.2.6. Reconfiguration_Control

While the previously mentioned sub-modules have not been especially

complex in functionality, the Reconfiguration_Control sub-module is more

convoluted as it must accurately coordinate the reconfiguration process based

on a vast array of input status signals and registers. Simply, the

Reconfiguration_Control sub-module, when instructed via reconfig_strobe,

must determine which sockets are to be reloaded with new DSP modules,

coordinate the disabling and re-enabling of any affected DSP sockets with the

Parameter_Control sub-module, and output the necessary bitstream control

signals to facilitate partial reconfiguration. The following paragraph will

more accurately define this operation in greater detail, in accordance with

Figure 17.

 44

RCstate1 - Check Flags
reconfig_done=0
if index<=5
 if next_config_flag[index]
 RCstate=2
 else
 reconfig_socket_loc=0
 index++, RCstate=1
else
 RCstate=5

RCstate0 - Default
if reconfig_strobe
 reconfig_busy=1
 index=1
 RCstate=1

RCstate2 - Initiate Reconfiguration
reconfig_socket_loc=index
reconfig_module_id=next_config[index]
bitstream_addr=((index-1)*4)+(next_config[index]+2)
bitstream_init=1
RCstate=3

RCstate3 - Wait
bitstream_init=0
if bitstream_done
 RCstate=4

RCstate4 - Repeat
if ~bitstream_done
 bitstream_addr=0
 reconfig_done=1
 RCstate=1

RCstate5 - Wait
if ParameterControllerState=17
 RCstate=6

RCstate6 - Finished
reconfig_busy=0
RCstate=0

Figure 17 - Reconfiguration_Control FSM

As cited, the partial reconfiguration process is commenced by the assertion of

the reconfig_strobe signal while in the appropriate mode, resulting in the

immediate activation of the reconfig_busy signal. At this time, the

Reconfiguration_Control sub-module must wait for the Parameter_Control

sub-module to properly deactivate the affected DSP sockets, a process that

will be explained in the next section. Once this deactivation process is

completed, as indicated by the begin_reconfig signal declared by the

Parameter_Control sub-module, Reconfiguration_Control will utilize

next_config_flag to determine which DSP socket to begin reconfiguring. In

the case that multiple DSP sockets are to be reconfigured,

Reconfiguration_Control will start with the leftmost socket. As each socket is

undergoing reconfiguration, the socket location will be reflected in the

reconfig_socket_loc signal. This reconfig_socket_loc signal in conjunction

 45

with reconfig_busy will prevent any other operations from interfering with

partial reconfiguration.

Along with internally coordinating this reconfiguration process,

Reconfiguration_Control must also output the appropriate bitstream address

and initialization signals, which will instruct an external bitstream storage

device to load a particular bitstream. For this feasibility study, each of the

four sample DSP modules has a separate bitstream address for each of the five

DSP sockets. Once the bitstream has been loaded into the appropriate socket,

the bitstream_done signal will inform reconfiguration control that it may

proceed with the next stage of the reconfiguration process.

Reconfiguration_Control then asserts the reconfig_done signal and, if

necessary, repeats the process by triggering the partial reconfiguration of

another DSP socket. Once all desired reconfiguration changes have been

completed, Reconfiguration_Control will wait for the Parameter_Control sub-

module to reactivate the appropriate DSP sockets, terminate the reconfig_busy

signal, and return to a default state.

5.2.7. Parameter_Control

By far the largest and most complex facet of the fixed logic module, the

Parameter_Control sub-module revolves primarily around a 41-state finite

state machine that control the operational status of all five DSP sockets in

combination with both reconfiguration and reparameterization operations.

Figure 18 illustrates this mechanism. In the case of either a reconfig_strobe or

parameter_strobe, this module first initiates a shutdown sequence designed to

involve all sockets to the left of the rightmost DSP socket targeted by the

respective operation. The rightmost-targeted DSP socket would be defined as

the most significant next_config_flag bit asserted in the case of

reconfiguration or the value of source_id in the case of reparameterization.

Using the aux_bus as a transmission medium, this module will send signals

instructing these target sockets to finish processing all pre-strobe data. After

Data_Output_Control notifies Parameter_Control that the previous FIFO is

 46

empty, Parameter_Control will then wait for the necessary sockets to return a

status signal indicating that the socket is finished processing data and ready

for reconfiguration or reparameterization. This status signal is returned via

the module_status and source_id signals, also collectively known as

status_bus, which indicate the type of status message and the socket source of

the message, respectively. For example, take the case that DSP Socket_3 was

to be reloaded with a new DSP module. Sockets 1, 2, and 3 would all be

instructed to finish processing and send the appropriate deactivation

notification back to Parameter_Control. After prev_fifo_empty is asserted

and all three status signals are received, Parameter_Control would then

instruct Reconfiguration_Control to begin reconfiguration. In the case of a

parameter loading operation, the shutdown and notification sequence would

be identical except that the sequence would be followed by parameter loading

rather than partial reconfiguration.

 47

PCstate7 - Disable_1
if ((next_config_flag[1] and
status_bus=socket_1 empty) or
~next_config_flag[1])
 PCstate=8

PCstate0 - Default
if reconfig_strobe
 PCstate=1
if parameter_strobe
 parameter_busy=1
 PCstate=33

PCstate1 - Warn_5
if next_config_flag[5]
 aux_bus = warn socket_5
PCstate=2

PCstate2 - Warn_4
if next_config_flag[4]
 aux_bus = warn socket_4
PCstate=3

PCstate3 - Warn_3
if next_config_flag[3]
 aux_bus = warn socket_3
PCstate=4

PCstate4 - Warn_2
if next_config_flag[2]
 aux_bus = warn socket_2
PCstate=5

PCstate5 - Warn_1
if next_config_flag[1]
 aux_bus = warn socket_1
PCstate=6

PCstate11 - Disable_5
if ((next_config_flag[5] and
status_bus=socket_5 empty) or
~next_config_flag[5])
 PCstate=12

PCstate10 - Disable_4
if ((next_config_flag[4] and
status_bus=socket_4 empty) or
~next_config_flag[4])
 PCstate=11

PCstate9 - Disable_3
if ((next_config_flag[3] and
status_bus=socket_3 empty) or
~next_config_flag[3])
 PCstate=10

PCstate8 - Disable_2
if ((next_config_flag[2] and
status_bus=socket_2 empty) or
~next_config_flag[2])
 PCstate=9

PCstate6 - FIFO Empty
if prev_fifo_empty
 PCstate=7

PCstate12 - Start Reconfig
begin_reconfig=1
PCstate=13

PCstate13 - Socket_1
if (reconfig_socket_loc=1 and
reconfig_done)
 PCstate=14
if (reconfig_socket_loc!=1 and
RCstate=5)
 PCstate=15

PCstate14 - Reactivate_1
aux_bus = reactivate socket_1
PCstate=15

PCstate15 - Socket_2
if (reconfig_socket_loc=2 and
reconfig_done)
 PCstate=16
if (reconfig_socket_loc!=2 and
RCstate=5)
 PCstate=17

PCstate16 - Reactivate_2
aux_bus = reactivate socket_2
PCstate=17

PCstate17 - Socket_3
if (reconfig_socket_loc=3 and
reconfig_done)
 PCstate=18
if (reconfig_socket_loc!=3 and
RCstate=5)
 PCstate=19

PCstate21 - Socket_5
if (reconfig_socket_loc=5 and
reconfig_done)
 PCstate=22
if (reconfig_socket_loc!=5 and
RCstate=5)
 PCstate=23

PCstate19 - Socket_4
if (reconfig_socket_loc=4 and
reconfig_done)
 PCstate=20
if (reconfig_socket_loc!=3 and
RCstate=5)
 PCstate=21

PCstate33 - Warn_5
parameter_ready=0
if socket_loc>=5
 aux_bus = warn socket_5
 PCstate=34

PCstate43 - Disable_5
if ((socket_loc>=5 and
status_bus=socket_5 empty) or
socket_loc<5)
 PCstate=44

PCstate42 - Disable_4
if ((socket_loc>=4 and
status_bus=socket_4 empty) or
socket_loc<4)
 PCstate=43

PCstate41 - Disable_3
if ((socket_loc>=3 and
status_bus=socket_3 empty) or
socket_loc<3)
 PCstate=42

PCstate40 - Disable_2
if ((socket_loc>=2 and
status_bus=socket_2 empty) or
socket_loc<2)
 PCstate=41

PCstate39 - Disable_1
if ((socket_loc>=1 and
status_bus=socket_1 empty) or
socket_loc<1)
 PCstate=40

PCstate38 - FIFO Empty
if prev_fifo_empty
 PCstate=39

PCstate45 - Reactivate_1
parameter_error=0
fifo_outputtijg = ~fifo_outputting
aux_bus = reactivate socket_1
PCstate=46

PCstate46 - Reactivate_2
aux_bus = reactivate socket_2
PCstate=47

PCstate47 - Reactivate_3
aux_bus = reactivate socket_3
PCstate=48

PCstate48 - Reactivate_4
aux_bus = reactivate socket_4
PCstate=49

PCstate49 - Reactivate_5
parameter_busy=0
parameter_ready=0
aux_bus = reactivate socket_5
PCstate=0

PCstate34 - Warn_4
if socket_loc>=4
 aux_bus = warn socket_4
 PCstate=35

PCstate35 - Warn_3
if socket_loc>=3
 aux_bus = warn socket_3
 PCstate=36

PCstate36 - Warn_2
if socket_loc>=2
 aux_bus = warn socket_2
 PCstate=37

PCstate37 - Warn_1
if socket_loc>=1
 aux_bus = warn socket_1
 PCstate=38

PCstate23 - Reconfig Done
fifo_outputtijg = ~fifo_outputting
aux_bus = filter_tuning
PCstate=0

PCstate18 - Reactivate_3
aux_bus = reactivate socket_3
PCstate=19

PCstate20 - Reactivate_4
aux_bus = reactivate socket_4
PCstate=21

PCstate22 - Reactivate_5
aux_bus = reactivate socket_5
PCstate=23

PCstate44 - Parameters
parameter_ready=1
if (new_parameters and
1<socket_loc<5)
 if (parameter_addr in range for
 current_config[socket_loc])
 aux_bus = parameters
 parameter_error=0
 else
 parameter_error=1
if socket_loc=0
 PCstate=45

Figure 18 - Parameter_Control FSM

The aux_bus used to transmit both instruction and parameters to the DSP

sockets consists of four separate signals. The 3-bit dest_id signal designates

which DSP socket should receive the signal. While each DSP socket will

forward the aux_bus signals to the next socket, each socket is responsible for

whether or not to heed the command or parameter. A dest_id value of 0x7

will be received and acted upon by all five DSP sockets. The 16-bit aux_data

signal will reflect either parameter data or command data depending on the

 48

situation. The 15-bit aux_addr signal allows the DSP sockets to differentiate

between commands and parameters. The address space for both

circumstances will be described later in this chapter. Finally the assertion of

aux_en will inform the DSP sockets that valid data is present on the aux_bus.

In the instance of a parameter loading operation, the parameter_busy signal

would be immediately triggered to both notify external devices and prevent

multiple parameter_strobe signals from illegally disturbing

Data_Input_Control. Once the necessary socket shutdown sequence has been

completed as indicated by source_id, parameter control will then assert the

parameter_ready signal to indicate that parameters can now be loaded. The

16-bit parameters signal is used for data, the 15-bit parameter_addr bus used

to address specific memory locations within a DSP socket, source_id indicates

the target DSP socket, and new_parameters indicates that this data is available

for transmission to the DSP sockets. If parameters are to be loaded into

multiple DSP sockets as indicated by source_loc, they must be loaded into the

rightmost socket first. During this parameter loading process, parameter

control will compare the parameter_addr and source_loc of each parameter to

current_config to confirm that it is within the acceptable address space of the

target DSP module. If an illegal address is entered, the parameter will be

ignored and the parameter_error signal will be triggered. Once all parameters

have been loaded, externally asserting source_loc to 0x0 will allow

Parameter_Control to reactivate the affected sockets and continue data

processing operation. While dest_id will reflect source_loc, aux_data reflects

parameters, and aux_en reflects new_parameters, respectively, aux_addr does

not merely forward parameter_addr, as the address space for each type of DSP

module is unique. Again, the particulars of this address transformation will be

described in the DSP Modules section.

If reconfiguration is occurring, Parameter_Control will assert begin_reconfig

to command Reconfiguration_Control to begin the reconfiguration process.

 49

During this process, Parameter_Control will monitor both reconfig_done and

reconfig_busy to determine when it may proceed with the next stage, as

described below.

Once either the parameter loading or partial reconfiguration processes have

been completed by the respective control elements, Parameter_Control must

reactivate the necessary DSP sockets in preparation for resumed data flow.

Beginning with DSP Socket_1, each necessary socket will be instructed via

the aux_bus to reactivate itself. In addition to the previously stated uses of the

current_config registers, the type of DSP module in each location is also used

by Parameter_Control to construct filter_tuning information. In the case that a

FIR filter is loaded into only DSP Socket_1, for instance, it will be given a

filter_tuning value of 0x1, instructing it to act as a single 32-tap FIR filter and

transmit its truncated sum output to the next DSP socket. In the case that two

FIR filters are placed in neighboring DSP sockets, however,

Parameter_Control notices this characteristic and modifies the filter tuning

such that the first FIR is given a filter_tuning of 0x2 and the second a

filter_tuning of 0x3, indicating that the filters should operate as the first of two

and second of two filters, respectively. As the current design stands, if two

32-tap FIR filters are placed adjacent to one another, they will automatically

be combined into a single 64-tap FIR. After all necessary DSP sockets have

been reactivated, Parameter_Control calculates the 2-bit filter_tuning of each

of the five DSP sockets and transmits the resulting 10-bit filter_tuning word

via the aux_bus with a dest_id of 7, which instructs all DSP sockets to heed

the data. The particulars of each filter_tuning value for each DSP module

type will be specified in the following section. Once the filter_tuning word

has been transmitted to the DSP sockets, Parameter_Control will return to a

default state and await the next reconfig_strobe or parameter_strobe signal.

5.3. DSP Modules

The three separate DSP algorithms detailed in Chapter 3 have been implemented

for this thesis project. As part of the flexible socket architecture designed, each

 50

module conforms to a defined and standardized interface that allows each to

communicate with neighboring modules. In order to simplify both the design and

verification processes, a fourth Empty module has been implemented that

contains a basic module skeleton on which all DSP filters are built. The next

section will outline the Empty module, followed by implementation-specific

details for each of the three remaining DSP modules.

5.3.1. Empty Module

The Empty module contains all of the components necessary to act as a

template on which DSP filters can be built. First, the Empty module contains

all of the connections necessary to interface with the bus macro boundaries

between DSP sockets. The primary rightward-moving data flow elements

consist of 32-bit data inputs and outputs along with the corresponding

data_ready and ready_for_data status signals. Next, the Empty module

accepts aux_bus inputs on the left side of the module and forwards those

signals unaltered to the next DSP socket. In the opposite direction, the

module accepts status bus signals from the right side of the module and routes

those signals leftward towards the Fixed_Logic module. Also, the module

contains 16-bit data busses traveling to and from both the previous and next

module. While unused for the Empty module, these secondary data pathways

are used to connect identical neighboring filters, such as in the creation of a

64-tap FIR filter by automatically combining two neighboring 32-tap FIR

filters, as dictated by the filter_tuning registers. Besides the obligatory reset

signal connected independently to each module, the Empty module also

contains tri-state signals used to enable and disable bus macro interconnects

on both sides of the module. These tri-state enabling signals are disengaged

prior to reconfiguration in order to prevent signal contention.

In addition to the standard interconnects, the Empty module also contains a

logical frame that controls the module status as dictated by the Fixed_Logic

module via the aux_bus. A series of internal registers track the current status

of the module along with the both the previous module’s status and the next

 51

module’s status. In the case that reconfiguration or reparameterization is

occurring, the internal module status can be altered to instruct the module to

finish processing all old data if an aux_addr of ‘h0002 accompanies and

aux_data value of ‘h0001 and a matching dest_id. Both the previous and next

modules will also note this data on the aux_bus. Once the module finishes

processing old data, it will send a notification signal to the Fixed_Logic

module via the status_bus while simultaneously notifying the next module of

the change via the aux_bus. In the case of impending reconfiguration, the tri-

state enable signals are disengaged after the aforementioned notifications have

been transmitted. Other than the finite state machine that controls these

module status interactions, the Empty module also contains logic to read

filter_tuning information transmitted from the Fixed_Logic module via the

aux_bus and make that filter_tuning information available to any DSP filter

built on top of the Empty module.

While the logic described can be used in any of the modules, the Empty

module also contains simple routing to simply forward data from left to right

without alteration as long as the next module is ready for data and the

previous module has data ready to transmit. Likewise, the next and previous

secondary data busses are connected to zero, as they have no purpose in an

Empty module.

5.3.2. FIR

The 32-tap even symmetry FIR filter has been implemented to match the

description given in Chapter 3. As seen in Figure 19, the least significant 16-

bits of the 32-bit data input are entered into a tap shifting mechanism that,

given a single operation filter_tuning, shifts the data along until all 32 taps are

filled. Once this process is completed, the signed 16-bit data values of each

tap pair are summed to produce a 16-bit signed tap value that is then

multiplied by the 16-bit signed coefficient value connected to each multiplier.

Rather than use a multiplier constructed using standard FPGA logic resources,

the 18-bit fast, embedded multipliers inherent in the FPGA fabric are utilized.

 52

The 32-bit signed output values of each multiplier are then summed using a

series of two-entry 32-bit signed adders until a single 32-bit signed sum is

ready for truncation to 16-bits and transmission to the next module.

D

D

c1

D

D

c2

D

D

c3

D

D

c4

D

D

c5

D

D

c6

D

D

c7

D

D

c8

16

16

32

D

D

c9

D

D

c10

D

D

c11

D

D

c12

D

D

c13

D

D

c14

D

D

c15

D

D

c16

16

16

16

16

32

sum
input

data
output

data
output

data
input

64-tap
sum

32

data
input

sum
output

32

Figure 19 - 32-tap FIR Implementation

In addition to the mathematical aspect of this FIR filter, data flow control has

been designed to speed the processing of data in the FPGA. When all 32 taps

are empty, the filter will emit a ready for data signal to the previous module

regardless of whether or not the next module is ready for data. Once the taps

are full, however, the ready_for_data signal sent to the previous module will

correspond to the ready_for_data signal emanating from the next module. The

data_ready_next signal, which indicates to the next module that new data is

present on the data_out bus, is delayed by seven cycles to allow for the

computational delay in preparing the final sum output value. In the single

filter_tuning configuration, the next and previous secondary data busses are

not utilized.

 53

When two 32-tap FIR filters are combined into a single 64-tap FIR filter, the

default configuration when two 32-tap FIR filters neighbor each other and as

determined by the filter_tuning value sent from the Fixed_Logic module, the

tap shifting mechanism is altered to permit proper sum computation. Figure

20 illustrates the method described below. For the first filter in a two-filter

configuration, data is shifted from tap_1 toward tap_16 in a normal manner.

Rather than shifting the value from tap_16 to tap_17, however, the tap_16

value is sent along the 16-bit next_out bus to be used by the second filter.

Correspondingly, the tap_17 value is read off of the 16-bit next_in bus and

shifted towards tap_32. Once all of the first filter’s 32 taps are filled, the filter

will compute a 32-bit sum value and transmit the entire non-truncated value to

the second filter in the sequence using the data_out bus. In this configuration,

the data_ready_next signal relates to the presence of data on the next_out bus

rather than data_out bus. The internal shift register that tracks whether or not

all taps are full accounts for the full 64-tap design and delays the output of

sum data accordingly.

 54

FIR 1 of 2

coeff1tap1 tap32

coeff2tap2 tap31

coeff3tap3 tap30

coeff4tap4 tap29

coeff5tap5 tap28

coeff6tap6 tap27

coeff7tap7 tap26

coeff8tap8 tap25

coeff9tap9 tap24

coeff10tap10 tap23

coeff11tap11 tap22

coeff12tap12 tap21

coeff13tap13 tap20

coeff14tap14 tap19

coeff15tap15 tap18

coeff16tap16 tap17

FIR 2 of 2

coeff1tap1 tap32

coeff2tap2 tap31

coeff3tap3 tap30

coeff4tap4 tap29

coeff5tap5 tap28

coeff6tap6 tap27

coeff7tap7 tap26

coeff8tap8 tap25

coeff9tap9 tap24

coeff10tap10 tap23

coeff11tap11 tap22

coeff12tap12 tap21

coeff13tap13 tap20

coeff14tap14 tap19

coeff15tap15 tap18

coeff16tap16 tap17

16

next_out

32

16 16

next_in

data_out

3
2

16

Figure 20 - 64-tap Two-filter Operation

The second filter of the two-filter sequence shifts data through its 32 tap

registers as it typically would. In accordance with the scheme described in the

previous paragraph, data is read off of the prev_in bus and written to tap_1.

Likewise, data is read from tap_32 and written to the prev_out bus. When the

taps are full and the second filter begins receiving 32-bit sum output values

from the first filter, the second filter will add this value to the internally

computed 32-bit sum value and output the truncated 16-bits as the final 64-tap

output value.

The 16-bit coefficient values used in this tap filter are loaded as parameters

via the aux_bus. Using the reparameterization process described previously,

any or all of these values can independently be modified at any time without

requiring reconfiguration. The sixteen coefficient values correspond in order

to aux_addr values of ‘h4000 through ‘h400F, which correspond to

 55

parameter_addr values of ‘h0000 through ‘h0000F, respectively. The

modification of the 15th bit is performed by the Fixed_Logic module’s

Parameter_Control sub-module in order to both simplify the external interface

and complement the address space requirements of other DSP filters,

particularly the Time-varying Coefficient FIR filter.

5.3.3. Quadrature Mixer

The Quadrature Mixer, which only operates in a single filter_tuning

configuration is designed to produce 16-bit sine and cosine values using a

built- in numerically controlled oscillator, independently multiply both values

by the incoming 16-bit input data, and truncate the 32-bit results down to 16-

bits each for output to the next processing stage. In order to ease the

implementation of this filter, a Direct Digital Synthesizer IP core provided by

Xilinx will be used as the numerically controlled oscillator. Using a 32-bit

phase increment value that can be set as a parameter via the aux_bus, the

NCO will cycle through the phase accumulator address space used by the sine

and cosine lookup tables. Using quarter wave symmetry, which adds 2-bits

worth of lookup table addressing accuracy, and the 16K entry BlockRAM

capacity of the DSP socket, which is addressed by 14-bits of the phase

accumulator value, 16-bit sine and cosine values can be derived from the

NCO. Two embedded multipliers are then used to create separate 32-bit in-

phase and quadrature output values. Given the data output bandwidth

limitation of 32-bits, each 32-bit value is then truncated down to 16-bits for

output. In order to accommodate the three-cycle latency of the NCO, the data

input values are pipelined accordingly.

The data control characteristics of this filter are quite basic as the

ready_for_data_prev signa l simply reflects the ready_for_data_next signal.

The data_ready_next signal accounts for the computational latency of the

NCO and multipliers when data_ready_prev is active. This filter does not use

either the next or previous data busses. Finally, the 32-bit phase increment

value is loaded as two separate 16-bit parameters due to the data bandwidth

 56

limitation of the aux_bus. A parameter_addr value of ‘h4000, which

translates to ‘h3FFE on aux_addr, will write the lower 16-bits of the delta

value while a parameter_addr value of ‘h4001, translating on aux_addr to

‘h3FFF, will write the upper 16-bits. The parameter addresses ranging from

‘h0000 to ‘h3FFF were originally allocated to sine and cosine lookup table

values, but were not needed due to the utilization of the Xilinx IP core for the

NCO.

5.3.4. Time-varying Coefficient FIR

The computational elements of the Time-varying Coefficient 32-tap even

symmetry FIR filter is constructed identically to the previously described FIR

filter with the primary exception of the coefficient storage system. Like the

regular FIR filter in single-filter operation, the Time-varying Coefficient FIR

will shift data until its 32-taps are filled and then compute the output sum

value. The ready_for_data and data_ready status signals operate like the

regular FIR filter and the 32-bit sum output value will also be truncated down

to 16-bits.

Instead of a single 16-bit coefficient register connected to each embedded

multiplier, each multiplier is linked to the data output of a 1K-entry

coefficient storing BlockRAM, referred to as coeffRAMs. These 16-bit

coefficients are also loaded via the aux_bus albeit with a significantly larger

address space. Parameter_addr values of ‘h0000 through ‘h3FFF are

translated in the Fixed_Logic module to correspond to aux_addr values of

‘h4000 through ‘h7FFF. Parameter addresses from ‘h0000 to ‘h03FF

correspond to the coeffRAM_1, addresses from ‘h0400 to ‘h07FF correspond

to coeffRAM_2, and so forth. Like the phase accumulator present in the

Quadrature Mixer’s NCO, a 32-bit delta value loadable through the same

parameter addresses is used to increment a 32-bit address accumulator, the

most significant 10-bits of which are used to address all sixteen coeffRAMs in

unison.

 57

Rather than support the capability of combining two 32-tap Time-varying

Coefficient FIR filters into a single 64-tap Time-varying Coefficient FIR, this

filter is designed with a distinctly different filter combination scheme, as

dictated by the filter_tuning register. As a single filter, the Time-varying

Coefficient FIR will take the lower 16-bits of the input data, perform the

necessary processing, and output the truncated sum as the lower 16-bits of

data_out. As an additional feature, if a Quadrature Mixer filter is followed by

two adjacent Time-varying Coefficient FIR filters, the two Time-varying

Coefficient FIRs will be automatically set by filter_tuning to work

concurrently to independently process both in-phase and quadrature data. As

seen in Figure 21 below, the first of two Time-varying Coefficient FIR filters

will utilize the lower 16-bits of data_in, process the data through the filtering

mechanism, and output the truncated output sum via data_out.

Simultaneously, the first filter will also immediately make the upper 16-bits

available to the second filter by way of the next_out secondary data bus.

Meanwhile, the second filter will accept this data from the first filter through

the prev_in bus and process this data through its 32-tap Time-varying

Coefficient FIR filter apparatus. Since both filters operate concurrently, the

16-bit sum output of the first filter will be computed in time with the 16-bit

sum output of the second filter. The second filter will then combine both

values and output the two 16-bit sums using the 32-bit data_out bus.

 58

[1
5:

0]

polyphase FIR 1 of 2

[31:16]

coeff1tap1 tap32

coeff2tap2 tap31

coeff3tap3 tap30

coeff4tap4 tap29

coeff5tap5 tap28

coeff6tap6 tap27

coeff7tap7 tap26

coeff8tap8 tap25

coeff9tap9 tap24

coeff10tap10 tap23

coeff11tap11 tap22

coeff12tap12 tap21

coeff13tap13 tap20

coeff14tap14 tap19

coeff15tap15 tap18

coeff16tap16 tap17

16

polyphase FIR 2 of 2

coeff1tap1 tap32

coeff2tap2 tap31

coeff3tap3 tap30

coeff4tap4 tap29

coeff5tap5 tap28

coeff6tap6 tap27

coeff7tap7 tap26

coeff8tap8 tap25

coeff9tap9 tap24

coeff10tap10 tap23

coeff11tap11 tap22

coeff12tap12 tap21

coeff13tap13 tap20

coeff14tap14 tap19

coeff15tap15 tap18

coeff16tap16 tap17
[31:16]

1
6

[15:0]
32

32

next_out

data_out

Figure 21 - Two Time-varying Coefficient FIR Operation

5.4. End_Logic Module

As the final stage of the DSP architecture of the FPGA, the End_Logic module is

responsible for the simple task of making the data output of the DSP Socket_5

available externally. As long as the End_Logic module receives an external

ready_for_data signal along with a data_ready signal from DSP Socket_5, output

data will be conveyed on each cycle. This module also serves as the termination

point of the aux_bus and the source of module status bus.

5.5. Bus Macros and Partially Reconfigurable Socket Architecture

The FPGA specifically chosen for this project, the XC2V3000-FG676-6, was

used because its size and embedded feature set was well suited to the types of

filters desired for this project. In addition to the three million usable system gates,

the XC2V3000 contains six separate columns of 16 embedded multipliers and 16

18Kbit BlockRAMs each. Given that both FIR filters conveniently require 16

 59

multipliers, the Time-varying Coefficient FIR requires 16 separate coefficient

memories, and the Fixed_Logic module requires extensive data queue storage,

this device offered an excellent embedded feature set while also offering more

than adequate programmable logic and routing resources. Figure 22 shows that

the sizing of each module was chosen such that the Fixed_Logic module and each

of the five DSP sockets each contain a column of embedded multipliers and

BlockRAMs. Due to the previously mentioned partially reconfigurable module

sizing constraints, each of the DSP sockets must also be an even number of CLBs

wide. Because the number of CLBs between each embedded multiplier column is

not uniform, the DSP sockets are not all equal in size. As a result, the fifth DSP

socket is ten CLB columns wide compared to eight CLB columns for the first four

sockets.

D
S

P
 S

oc
ke

t_
5

D
S

P
 S

oc
ke

t_
4

D
S

P
 S

oc
ke

t_
2

D
S

P
 S

oc
ke

t_
3

D
S

P
 S

oc
ke

t_
1

F
ix

ed
 L

og
ic

E
nd

 L
og

ic

0:23 24:39 40:55 56:71 72:87 88:107

108:111

Embedded Multipliers & BlockRAM Columns

Figure 22 - Module Placement

 60

Physically, each bus macro utilizes four tri-state buffers on each side of the

module boundary and occupies an area one CLB high by four CLBs wide. For

example, as seen in Figure 23, since the boundary between the Fixed_Logic

module and the first DSP socket is between CLB columns 12 and 13, a bus macro

across this boundary will occupy CLB columns 11 through 14 for that given CLB

row.

column 11 column 12 column 13 column 14

row x

Figure 23 - Sample Bus Macro Placement Across a Module Boundary

Once the architecture is assembled, it becomes obvious that a large number of bus

macros will be needed in between each module to satisfy the design’s large data

and status bus requirements. For this design, each bus macro boundary therefore

consists of 106-bits of data, addressing, or status bits constructed using 28

separate bus macro instantiations. Additionally, each of these bus macros must be

manually constrained to a specific location early in the design process. This

manual location constraint has dramatic and noticeable effects on place and route

performance and will be elaborated upon later in this document. An exception to

this requirement for 28 bus macros occurs between the fifth DSP socket and the

End_Logic module. Because these bus macro placements are at the rightmost

possible location on the FPGA, physical limitations of the transmission lines used

by the tri-state buffers limits each bus macro to 2-bits of usable rightward moving

signal compared to the usual 4-bits. This limitation results in the use of 49 bus

macros rather than 28. Since the device used contains a 64 CLB high array of

logic and each 4-bit bus macro requires only one CLB row, the device is limited

to a maximum of 64 bus macros in a single column, which can typically carry

256-bits, although not in the rightmost or leftmost physical locations. Also, in the

 61

case of the 6th bus macro column, the bus macros simply bridge over 6th

embedded multiplier and BlockRAM column to link the two rightmost CLB

columns of DSP Socket_5 with the two CLB columns of the End_Logic module.

Figure 24 illustrates the placement of each bus macro in the design. Now that the

specification of the intended design has been described, the following chapter will

elaborate on the implementation process.

D
S

P
 S

oc
ke

t_
5

D
S

P
 S

oc
ke

t_
4

D
S

P
 S

oc
ke

t_
2

D
S

P
 S

oc
ke

t_
3

D
S

P
 S

oc
ke

t_
1

F
ix

ed
 L

og
ic

1_1
1_2
1_3
1_4
1_5
1_6
1_7
1_8

1_9a
1_9b

1_10

1_11
1_12
1_13
1_14

1_15
1_16
1_17
1_18

1_19

1_20
1_21
1_22
1_23

1_24
1_25
1_26
1_27

2_1
2_2
2_3
2_4
2_5
2_6
2_7
2_8

2_9a
2_9b

2_10

2_11
2_12
2_13
2_14

2_15
2_16
2_17
2_18

2_19

2_20
2_21
2_22
2_23

2_24
2_25
2_26
2_27

3_1
3_2
3_3
3_4
3_5
3_6
3_7
3_8

3_9a
3_9b

3_10

3_11
3_12
3_13
3_14

3_15
3_16
3_17
3_18

3_19

3_20
3_21
3_22
3_23

3_24
3_25
3_26
3_27

4_1
4_2
4_3
4_4
4_5
4_6
4_7
4_8

4_9a
4_9b

4_10

4_11
4_12
4_13
4_14

4_15
4_16
4_17
4_18

4_19

4_20
4_21
4_22
4_23

4_24
4_25
4_26
4_27

5_1
5_2
5_3
5_4
5_5
5_6
5_7
5_8

5_9a
5_9b

5_10

5_11
5_12
5_13
5_14

5_15
5_16
5_17
5_18

5_19

5_20
5_21
5_22
5_23

5_24
5_25
5_26
5_27

6_1
6_2
6_3
6_4
6_5
6_6
6_7
6_8
6_9
6_10
6_11
6_12
6_13
6_14
6_15
6_16

6_17a
6_17b

6_18

6_19
6_20
6_21
6_22

6_23
6_24
6_25
6_26
6_27
6_28
6_29
6_30

6_32

6_40

6_41
6_42
6_43

6_31

6_45
6_46
6_47
6_48

6_44

6_35
6_36
6_37
6_38
6_39

6_33
6_34

Figure 24 - Overall Bus Macro Placement

 62

6. Design Implementation Process
The three-stage design flow process detailed below is the primary feature of the

modular design flow as provided by Xilinx. The initial budgeting stage defines the

top-level modular framework for the design. Next, the active module implementation

stage allows each module, regardless of whether reconfigurable or fixed, to be fully

designed and built to the extent that a module bitstream can be derived from the

design. Thirdly, the final assembly stage incorporates the individually created

modules into one or more assembled design permutations for both simulation and

bitstream generation purposes. For all stages of this design, the requirement to meet a

10ns clock period and run at 100MHz is the only timing constraint. Simulation of the

design, which will be discussed in the next chapter, can be performed during both the

active module implementation and final assembly stages.

6.1. Initial Budgeting Phase

The partially reconfigurable design implementation process begins with the initial

budgeting phase. The process starts with the usual verilog top- level module

instantiation followed by the module instantiations for the Fixed_Logic,

End_Logic, and DSP modules. Each interconnection between modules is

accomplished in 4-bit increments using the bus macros. Unlike a typical FPGA

design, however, the top- level design must also include manually placed

constraints to fix the location and size of each module. Likewise, the embedded

multipliers and BlockRAMs available for each module must also be confined.

Using Xilinx’s constraint file, or UCF, the placement constraints are defined

according to the x-axis and y-axis slice coordinates of the module boundaries.

Beyond module location, the bus macro boundaries between modules must also

be manually placed in the UCF file. As each of the 189 bus macros used in the

design occupies an area four CLBs wide, the location of the macro is defined by

the leftmost slice occupied. These macros must also symmetrically straddle the

module boundaries. Finally, the location of all external pin connections must be

constrained such that each exists within the appropriate target module’s margins.

 63

If this were a typical FPGA design, the usual synthesis, translation, mapping,

placement, and routing tools would be utilized in a rather automated fashion to

build the final FPGA design. At this stage of development in this partially

reconfigurable situation, however, only the top- level modules and interconnects

are defined without any lower- level logic. As a result, special synthesis and

translation commands must be used to prevent the tools from attempting to

physically synthesize and model any internal logic. The build files created in this

translation stage will be used in the active module implementation stage described

below. Lastly, the use of mapping, placement, and routing tools at this stage

offers the designer a glimpse at module locations, but does not offer any

significant value since they do not account for any actual logic placement or

related timing information.

6.2. Active Module Implementation Phase

The active module implementation phase occupies the bulk of the design cycle as

it is in this stage that all fixed and partially reconfigurable modules are built.

Each module must be constructed in its own project and directory structure to

prevent overlap with other modules. This project structure starts with a copy of

the top- level UCF file along with the translation build file, or NGO, created in the

initial budgeting phase. The use of these files along with specific active module

implementation commands conveys to the design tools that the module must be

designed within the aforementioned location and timing constraints. While the

Fixed_Logic and End_Logic modules each required only a single module version,

each of the four DSP filters had to be implemented in each of the five possible

DSP socket locations. To simplify the process, each DSP filter was created as a

Socket_1 version with the intent of later replicating the design for sockets two

through five.

Starting with the Fixed_Logic module, a moderate learning curve was

encountered and surmounted in dealing with the Xilinx design tools, specifically

in regard to the modular design flow. At first, only the top- level constraints were

used without the addition of any module-specific timing constraints. The design

 64

was entirely manually coded verilog with the exception of the use of a Xilinx IP

core for the 16K-entry 17-bit data FIFO. After the expected debugging steps, the

design placed and routed surpassing the required 10ns minimum clock period

with a resulting minimum clock period of 8.821ns, or 113.3MHz. The module

also utilized far fewer CLB logic resources than expected, requiring only 110 of

the 768, or 14.3%, of the CLBs allotted, which amounts to only 3% of the total 3

million system gates available on the FPGA. If not for the timing and scope

limitation of this thesis, it would have been prudent to resize the Fixed_Logic

module to waste fewer resources. Fortunately, the Fixed_Logic module utilized

all 16 of its allotted embedded BlockRAMs for use in the 16K-entry data FIFO.

As indicated by the total equivalent gate count of 1.06 million gates and an actual

utilization of less than 100,000 gates, the use of BlockRAMs rather than

distributed RAM for the data_FIFO resulted in a dramatic system gate utilization

savings.

Post placing and routing, a verilog model including back-annotated timing

information of this module was derived for simulation and verification purposes.

As will be discussed in the next chapter, it was quickly discovered through

analysis of both the synthesized and placed and routed design that synthesis fan-

out restrictions have a dramatic effect on whether or no t the resulting built model

actually operates. The End_Logic module, which does not contain any significant

logic, was built in a similar manner and also easily satisfied the timing

requirements while using only 13 of the 128 CLBs allotted. Due to the physical

placement limitations of the bus macros with respect to the edge of the device,

however, shrinking the size of the End_Logic module to better employ logic

resources was not an option.

Next, the DSP modules were implemented beginning with the Empty module.

The decision to completely build and verify this module before moving onto the

more elaborate DSP filters greatly decreased backtracking and debugging time.

The DSP Socket_1 version of the Empty module placed and routed to run at over

 65

150MHz, aga in exceeding the then-specified timing requirements. The simple

design required only 26 of 512 allocated CLB logic blocks with an equivalent

gate count of only 1,599 gates. While testing the performance limitations of this

module, it was found that the module could successfully place and route up to

almost 200MHz. The synthesis, mapping, placing, and routing decisions made by

the Xilinx tools to achieve this general timing specification, however, would have

an adverse effect on the timing of a few important signals, as will be discovered in

the final assembly stages of the design.

Unlike the Empty module, the FIR filter required additional design iterations in

order to meet the timing requirements. First, a simple version of the FIR

containing only the multiplier and accumulator structure along with basic 32 tap

shifting mechanism was constructed to weigh the benefits of utilizing the

embedded multipliers. Clearly, as seen in Table 2, the 79% savings in CLB

utilization along with the 45% increase in speed realized with the use of

embedded multipliers is especially promising for this design. After constructing

the final version of the FIR filter, including the proper tap shifting and status

signal mechanisms, the module employed 302 out of 512 CLBs available,

resulting in a more respectable 59% logic utilization. Still, the multiplication and

addition structures needed to be further optimized to achieve the 100MHz goal.

After modifying the 16-bit and 32-bit adders to register only output data and not

input data, the design began approaching specifications. Using the timing

analyzer tool provided with the Xilinx ISE toolset, it was discovered that the fan-

outs of some signals, particularly the reset and tri-state enabling signals, was far

too high, resulting in a larger than desired delay. Unfortunately, as will be

discussed in the verification phase, setting the fan-out synthesis guide

significantly lower effectively disrupts the operation of the filter. Once an

appropriate middle ground was determined, however, the FIR filter in DSP

Socket_1 placed and routed to run at 102.8MHz.

 66

Table 2 - FIR Comparison

 Embedded Multipliers LUT-based Multipliers
CLB use 186 888
Logic levels 5 20
Max speed 83.7MHz 57.7MHz

Next, the Quadrature Mixer module was constructed fairly quickly due to the use

of the Xilinx IP core Numerically Controlled Oscillator. With only minor

optimization, the Quadrature Mixer placed and routed to run at 103.4MHz while

exploiting only 73 of the 512 CLBs available. Again, this low 14.3% utilization

of module CLBs results heavily from the use of 14 of the 16 embedded

BlockRAMs for sine and cosine data storage along with two embedded

multipliers for mixing, an equivalent gate count of 932,000 system gates.

Without the embedded features of the Virtex-II FPGA, this filter would have

required a module twice the size as the one apportioned.

Lastly, the Time-varying Coefficient FIR filter was implemented building off of

the regular FIR with major modifications to filter tuning-related functionality, tap

shifting mechanisms, and coefficient storage system. Starting with the

optimizations made for the original FIR filter, the coefficient storage memories

were created using 16-sets of a Xilinx IP core 1Kx16-bits single-port RAM. As

these coeffRAMs and the associated accumulator addressing system operated

faster than the computational components of the module, the Time-varying

Coefficient FIR in Socket_1 placed and routed to run at 101.7MHz. Even with

the use of all 16 embedded multipliers and BlockRAMs within the module, this

filter required 332 of 512 available CLBs, resulting in 64.8% logic utilization and

an equivalent gate count of 1,144,000 gates.

As the logic utilization data suggests, an average CLB utilization of only 46% for

the three DSP filter indicates that there is definitely room for more elaborate

filters within the given architecture. While moving to a smaller FPGA is an

option if higher CLB utilization is desired, that move would also come at the cost

of fewer embedded multipliers and BlockRAMs. Furthermore, limited gains

 67

would be realized from resizing the module boundaries since each of the five DSP

sockets and the Fixed_Logic module require an embedded multiplier and

BlockRAM column. Given the space between the 3rd and 6th embedded columns

and the requirement that modules be an even number of CLBs wide, for example,

it would not be possible to increase the size of all sockets to ten CLBs wide, as

seen in Figure 25.

D
S

P
 S

oc
ke

t_
5

D
S

P
 S

oc
ke

t_
4

D
S

P
 S

oc
ke

t_
2

D
S

P
 S

oc
ke

t_
3

D
S

P
 S

oc
ke

t_
1

F
ix

ed
 L

og
ic

E
nd

 L
og

ic

0:7 8:27 28:47 48:67 68:87 88:107

108:111

Embedded Multipliers & BlockRAM Columns

Figure 25 - Sample Module Resizing

Once all four DSP modules were constructed, each needed to be replicated to

create a copy for each of the five DSP sockets. Quickly, it became apparent that

any changes in socket layout, such as the placement of the embedded multiplier

and BlockRAM column within the DSP socket, could have an adverse effect on

placed and routed timing. In the case of the FIR filter, modules for DSP sockets

1, 3, 4, and 5 met the 100MHz requirement while DSP Socket_2 failed by 2MHz.

 68

While the problem was easily corrected by modifying the structure of the

mechanism that detected when all 32 taps were filled, the experience does raise a

significant concern about socket layout regularity. In the case that a larger library

of DSP filters were designed for this architecture, a suitable timing buffer

accounting for layout irregularity must be created to differentiate between the

actual desired speed of the device and the speed at which the first socket will

place and route. Given the proximity of the rightmost embedded multiplier and

BlockRAM column to the edge of DSP Socket_5, it was expected that routing

issues could be encountered in the place and routing of a filter into that socket.

Since all 16 embedded multipliers and BlockRAMs are used for the Time-varying

Coefficient FIR filter, for example, it was incorrectly anticipated that the

switching matrices connected to this embedded column would not have enough

bandwidth to connect to the rest of Socket_5. This, however, was not the case

and all twenty DSP module-socket combinations placed and routed to meet the

100MHz specification. Table 3 shows the final place and route maximum clock

rates generated.

Table 3 - DSP Module Timing

 Socket_1 Socket_2 Socket_3 Socket_4 Socket_5
Empty 159.1 138.2 152.5 159.5 182.6
FIR 102.8 101.9 100.2 102.5 102.5
Quadrature 103.4 104.1 104.4 104.5 103.4
Polyphase FIR 101.6 100.9 102.5 103.1 102.2

6.3. Final Assembly Phase

After completely implementing each of the individual modules, the task turned to

creating various permutations of the final design for verification and

benchmarking purposes. Due to the time constraints of the thesis project, only

three different permutations were created. The first version, referred to as Top_1,

consists of the standard Fixed_Logic and End_Logic modules along with five

Empty modules filling the five DSP sockets. Top_1 provided a platform on

which the general operation of overall architecture could be observed without the

added complexity of functioning DSP. The implementation process benefited

 69

from a feature of the modular design flow enabling the design tools to build on

the place and routing work performed during active module implementation when

creating an assembled build. Rather than placing and routing the entire design

from scratch, the toolset would utilize the place and route output files of each

individual module and simple interconnect the routing and generate the necessary

timing analysis. Once combined, Top_1 mapped out to use only 230 of the 3,584

CLBs, or 6.4% logic utilization, and an equivalent gate count of 1.06 million

system gates due to the BlockRAM data_FIFO. While this low utilization was

not surprising since this design does not contain any DSP functionality, the place

and route timing result of 80.9MHz was both unexpected and discouraging.

Unfortunately, an unforeseen timing issue related to the tri-state buffer

interconnects became apparent during this final assembly process. At the onset of

the design process, the requirement to run at 100MHz was the only timing

constraint considered. Each module was explicitly designed with all output

signals stored in registers. As each module met this simple 100MHz requirement

in the active module implementation phase, it was incorrectly assumed that

connecting these modules would not have any significant effect on timing. Due

predominantly to the unexpectedly significant tri-state buffer delay of 3.593 ns,

the total delay from the output of one module to the input registers of the next

reached a maximum of 12.366ns. Given that this is the simplest assembled

permutation of the architecture, the speed of the Top_2 and Top_3 was now

expected to be even worse. These larger than desired routing delays, however,

may be correctable through the employment of additional stringent timing

constraints at the module level and some redesign of the internal logic.

Regrettably, the remaining time available for the completion of this project does

not allow for further timing-based optimization, leading to the concession that the

design will not operate at the expected 100MHz, despite using the fastest grade

part available.

 70

The second assembled permutation, called Top_2, consists of the following

sequence of filters filling the DSP sockets: FIR_1, FIR_2, NCO_3, polyFIR_4,

and polyFIR_5. Filter_tuning generated in the Fixed_Logic module will instruct

the both sets of matching FIR and polyFIR filters to operate in conjunction.

Figure 26 shows that the result is a DSP processor that processes data through a

64-tap even symmetry FIR filter, running the result through the Quadrature

Mixer, and then sending both the in-phase and quadrature data independently

through 32-tap even symmetry Time-varying Coefficient FIR filters to generate

two 16-bit output values. When mapped, the resulting design used 1,380 of 3,584

CLB blocks, or 38.5% utilization, while also using 66 of 96 embedded multipliers

and 62 of 96 BlockRAMs, resulting in an equivalent gate count of 4.47 million

system gates. Unfortunately, the design placed and routed to reach a maximum

frequency of only 68.7MHz due principally to extraordinarily long delays in

addressing and writing coefficients into the FIR filters. The tri-state buffers

provided the same delay as the Top_1 configuration which, when added to

aux_addr and aux_data delays in reaching the 16-bit coefficient registers, resulted

in a total delay of 14.553ns.

FIR_1 FIR_2
NCO_3

polyFIR_5polyFIR_4

16 16

16

16

16

16

16

64tap FIR

data_in

32

16

tap shifting

temp sum

sum_out

in_phase

quadrature

sum_out

sum_out

32tap polyFIR 32tap polyFIR

Figure 26 - Top_2 Configuration

As an experiment, an additional timing constraint was added to the FIR filters and

the filters were individually rebuilt, followed by a rebuilding of the Top_2

configuration. The timing requirement that the FIR filters must have a minimum

delay between inputs and registers of 8ns resulting in an 818ps improvement in

the Top_2 configuration’s critical delay path. Now, the Top_2 configuration is

able to run at 72.8MHz. While still not close to the desired 100MHz target speed,

 71

the experiment does indicate that modest improvements in speed can be realized

with increased timing constraints. Further improvement could possibly be

realized through the use of additional pipeline stages, specifically for the

aux_addr and aux_data signals since they often must fan-out to all 16 sets of

embedded multipliers or BlockRAMs.

The third and final design permutation, called Top_3, consists of the following

filters: NCO_1, polyFIR_2, polyFIR_3, polyFIR_4, and polyFIR_5. Illustrated in

Figure 27, the desired functionality of this configuration is a Quadrature Mixer

followed by two independent 32-tap even symmetry Time-varying Coefficient

FIRs, with each of the two data paths going independently into separate 32-tap

even symmetry FIR filters. As designed, however, two neighboring 32-tap FIR

filters would combine into a single 64-tap even symmetry FIR due to the

filter_tuning options implemented. Rather, Time-varying Coefficient FIR filters

can be used in place of the FIR filters if the accumulator delta value is set to 0x0

and only the first location in each coeffRAM is used. When built, Top_3 uses

1,376 of 3,584 of the available CLBs, or 38.4% utilization, along with 66 of 96

embedded multipliers and 94 of 96 BlockRAMs, resulting in an equivalent gate

count of 6.57 million system gates. This powerful display of the usefulness of

embedded components in reconfigurable logic, when placed and routed, runs at

78.1MHz without the luxury of additional module-level timing constraints. If

timing constraints similar to those employed in the FIR filters were utilized, the

expected 800ps reduction in delay would result in a speed of over 83.3MHz.

NCO_1
polyFIR_2 polyFIR_3 polyFIR_5polyFIR_4

16

16 16

data_in

sum_out

sum_out16

16

1616

in_phase

quadrature

32tap polyFIR 32tap polyFIR 32tap FIR 32tap FIR

Figure 27 - Top_3 Configuration

 72

The operational speed of this FPGA, however, cannot be dependent on the

configuration currently loaded. As a result, the device can only be expected to

run as fast as the slowest possible assembled permutation, which is expected to be

five FIR filters. If this architecture were to be deployed, rigorous timing

constraints would be required at both module- level and device- level to ensure

proper operation at 100MHz. For example, since the tri-state buffer delay

between modules is approximately 3ns, both the flip-flop to output and input to

flip-flop delays would need to be limited in a manner that meets this 10ns

requirement.

More importantly, the essential reason for this undesired delay cannot be

overlooked: the modular nature of the partially reconfigurable architecture

inherently adds a significant amount of delay to the design. The signals within

each DSP module must be routed within the eight CLB-wide module boundaries,

which can be very inefficient compared to a design where module location and

separation is not restricted. Furthermore, bus macro interconnects between

modules are manually placed with utter disregard for the optimal location for each

signal, fostering an even more inefficient assembled design. Figure 28 illustrates

a likely scenario, as interpolated from timing analysis data from the Top_3

configuration. The aux_bus signals are factors in the worst critical path delays as

they may be routed to any portion of the DSP module while being required to pass

through the location-confined bus macro interconnects. In the example given,

coefficient information on the aux_data bus may be routed to the first BlockRAM

of the rightmost socket, which would result in a lengthy routing delay that can

approach 10ns. Again, additional pipeline stages would be appropriate to

alleviate this delay.

 73

B
us

 M
ac

ro
aux_data

tri_ena

3.593ns 10.099ns

co
ef

fR
A

M
s

Figure 28 - Connected Module Delays

The costs associated with using a partially reconfigurable design rather than a

conventional design are quantifiable with the following results. The design

described was rebuilt using a conventional FPGA design methodology to fit onto

the same Xilinx Virtex-II 3000 FPGA without pre-defined module locations or

bus macro boundaries. The CLB logic overhead associated with the use of the

partially reconfigurable architecture given is surprisingly small, requiring an

average of only 3.4% more CLBs than a conventional FPGA design. The speed

advantages of a non-partially reconfigurable design, however, were more

pronounced. The Top_2 configuration that required a period of 13.735ns for a

partially reconfigurable design is capable of running at 10.008ns using a

conventional flow. The tri-state buffer and extensive routing delays are

eliminated. Likewise, the Top_3 configuration that ran on a 12.812ns period now

runs at 9.790ns. So while roughly the same size device can be used for both

design flows, a conventional design can make use of a slower grade part to realize

 74

the same performance as a partially reconfigurable design targeted towards a

high-speed part.

Given the current design flow, however, the bus macros are absolutely necessary

to ensure proper signal connection within the partially reconfigurable framework.

In addition to making sure that tri-state signals are only driven when the source

module is active, the tri-state buffers contain specific placement and routing

directives that both connecting DSP sockets communicate through a common

routing node. A similarly constrained connection node between modules cannot

currently be replicated manually using the standard design flow process and

would require manual manipulation of the place and route tool using proprietary

Xilinx methods.

As an experiment to find possible improvements in timing performance, the

locations of bus macro columns one through five were relocated as indicated in

Figure 29. When the Top_3 configuration was rebuilt under these new

constraints, performance actually slowed down from the previous 78.1MHz to

76.3MHz. Clearly, the placement of such a large number of signals is a delicate

procedure that can have consequences on the overall performance of the design.

 75

D
S

P
 S

oc
ke

t_
5

D
S

P
 S

oc
ke

t_
4

D
S

P
 S

oc
ke

t_
2

D
S

P
 S

oc
ke

t_
3

D
S

P
 S

oc
ke

t_
1

Fi
xe

d
Lo

gi
c

1_1
1_2
1_3
1_4
1_5
1_6
1_7
1_8

1_9a
1_9b
1_10
1_11
1_12
1_13
1_14
1_15
1_16
1_17
1_18
1_19
1_20
1_21
1_22
1_23
1_24
1_25
1_26
1_27

2_1
2_2
2_3
2_4
2_5
2_6
2_7
2_8

2_9a
2_9b
2_10
2_11
2_12
2_13
2_14
2_15
2_16
2_17
2_18
2_19
2_20
2_21
2_22
2_23
2_24
2_25
2_26
2_27

3_1
3_2
3_3
3_4
3_5
3_6
3_7
3_8

3_9a
3_9b
3_10
3_11
3_12
3_13
3_14
3_15
3_16
3_17
3_18
3_19
3_20
3_21
3_22
3_23
3_24
3_25
3_26
3_27

4_1
4_2
4_3
4_4
4_5
4_6
4_7
4_8

4_9a
4_9b
4_10
4_11
4_12
4_13
4_14
4_15
4_16
4_17
4_18
4_19
4_20
4_21
4_22
4_23
4_24
4_25
4_26
4_27

5_1
5_2
5_3
5_4
5_5
5_6
5_7
5_8

5_9a
5_9b
5_10
5_11
5_12
5_13
5_14
5_15
5_16
5_17
5_18
5_19
5_20
5_21
5_22
5_23
5_24
5_25
5_26
5_27

6_1
6_2
6_3
6_4
6_5
6_6
6_7
6_8
6_9

6_10
6_11
6_12
6_13
6_14
6_15
6_16

6_17a
6_17b

6_18

6_19
6_20
6_21
6_22

6_23
6_24
6_25
6_26
6_27
6_28
6_29
6_30

6_32

6_40

6_41
6_42
6_43

6_31

6_45
6_46
6_47
6_48

6_44

6_35
6_36
6_37
6_38
6_39

6_33
6_34

Figure 29 - Bus Macro Location Modification

Xilinx’s partial reconfiguration design flow using modular design would be

greatly improved if the toolset had the capability to automatically optimize the

location of module interconnects based on a library of all possible assembled

permutations. Given the set of the four DSP modules implemented for this study,

for example, it may be best for the aux_addr signal between the Fixed_Logic

module and Socket_1 to be in a row X while the same signal between Socket_1

an Socket_2 may be better suited to row Y. Whichever optimal placement is

chosen, the results would need to be applied consistently to all DSP sockets to

ensure identical placement and guarantee functionality. Along with the

prerequisite temporal floorplanning aspect, this feature would greatly enhance the

ability of a designer to create a stable modular architecture without the added

concern of delays associated with unexpected assembled design permutations.

Beyond the inflexibility of the interconnect mentioned in the first chapter, the

logical and routing resource limitations within each module can strangle the

 76

ability of the toolset to refine the design. These limitations, however, must be

tolerated as the ability to dynamically resize DSP sockets greatly increases the

complexity of the design process and architecture to unmanageable levels.

 77

7. Simulation
During the design implementation process described in the previous chapter, each

module must be simulated to verify proper functionality. The verilog modules can be

directly simulated in Verilog-XL using a simple testbench structure that effectively

acts as a virtual fixture in which the module can tested by stimulating and reading the

appropriate inputs and outputs, respectively. While this method will allow for

verification of basic functionality, it fails to take into account any device-specific

timing characteristics. Therefore, the back-annotated timing-based verilog modules

generated from a placed and routed design allows for the most complete verification

available at the simulation level. In order to expedite the debugging process,

testbenches are initially run repeatedly against the raw verilog modules in order to

correct as many detectable functional faults as possible before the Xilinx ISE building

process is started. Since a single place and route task requires anywhere from two to

nine hours of CPU compilation time, avoiding unnecessary rebuilds was definitely

desired. As any changes were made to the modules later in the design process at

either the module or device level, both the regular and back-annotated testbenches

were rechecked. Each module type and location was independently simulated

followed by the larger-scale simulation of entire assembled designs.

Before the process is described in detail, however, it should be emphasized that self-

verifying a design can be both difficult and incomplete due to the plethora of

assumptions, preconceptions, and expectations of the designer. After designing a

module, for instance, the designer will create a verification environment that

transmits a series of expected signals and detects expected outputs. To verify that

illegal operations do not occur to adversely effect the operation of the system, the

designer may also create a series of such situations. Without an independent audit of

the design, however, it is extremely difficult to postulate unexpected operational

scenarios. The number of previously overlooked module bugs detected during the

device- level simulation phase reinforces this argument.

 78

7.1. Module-level Simulation

Beginning with the Fixed_Logic module, a testbench was constructed to interface

with all input and output signals of the module, including all signals passing to

and from the first bus macro boundary. The testbench consists of a series of test

sequences targeted towards various aspects of the design. The first, for example,

tests a simple data flow scenario passing through the Data_Input_Control,

data_FIFO, and Data_Output_Control sub-modules. After a stream of data is

loaded into the data_FIFO, the output ready signals are activated to flush the

FIFO. In a second test, the reading and writing operations are performed

simultaneously to ensure that the data_FIFO is capable of such functionality.

Next, the operation of the next_config and next_config_flag registers was

simulated in a variety of sequences, followed by much more elaborate partial

reconfiguration loading tests.

This testbench can only directly verify that the Fixed_Logic module generates the

appropriate aux_bus and bitstream status signals, so it becomes necessary to

manually inspect the finite state machines using the SignalScan tool during the

testbench design process. For example, during an early partial reconfiguration

test, a deadlock situation occurred in which the module and testbench both ceased

to operate, a scenario difficult to debug without any insight into the internal state

of the module. Using SignalScan, the failing Parameter_Control sub-module state

was quickly detected and corrected. During reconfiguration or reparameterization

socket shutdown sequences, the aux_bus and bitstream output signals needed to

be carefully monitored and coordinated with the appropriate module status or

parameter input signals. After all conceivable working scenarios were exhausted,

a series of illegal operation tests were introduced to ensure that the complex

Fixed_Logic module would not fail once incorporated into the larger assembled

designs.

After a quick confirmation that the End_Logic module functioned, the DSP

modules were systematically attacked with the opening salvo assailing the empty

 79

module. Since all other DSP modules were based on the status signal and state

machine framework of the Empty module, thorough interrogation of this design

resulted in a significant reduction in overall verification time. Like other DSP

modules, the Empty module testbench for Socket_1 was designed for easily

replication to other socket locations. Moreover, the setup time of signals asserted

in the testbench was designed to mimic the clock-to-output delay time of signals

exiting the Fixed_Logic module. Most tests for the Empty module revolved

around the proper forwarding, creation, and use of aux_bus and status_bus

signals, especially in regard to module shutdown to activation directives. If a

module in Socket_2 were to be deactivated, for example, it would further monitor

the aux_bus to determine when previous modules have finished processing data

so that it may finish its tasks and transmit a confirmation signal on both aux_bus

and status_bus. Lastly, the proper operation of the tri-state enabling signal is

paramount to preventing signal contention during partial reconfiguration.

Next, the FIR filter testbench built in the tests encompassed in the Empty module

testbench. Rather than the verification of simple data flow, however, this

testbench needed to mimic the operation of the full 32-tap even symmetry FIR

filter to ensure that all tap shifting, addition, and multiplication operations

proceeded correctly. Given that all 16-bit and 32-bit internal values are signed,

the process of generating the appropriate output sums was daunting. The pipeline

latency of the post-multiplication adder tree needed to be accounted for in the

assertion of the data_ready_next status output. In addition to a data input stream

scenario, an intermittent data input situation was also simulated. In all cases,

coefficients were first loaded via the aux_bus using a reparameterization process.

While the verification of the full 32-tap design may itself seem complex, the

testbench also simulated combined 64-tap operation by verifying filter operation

in both the first and second positions. In accordance, the appropriate intermediate

signals on the secondary data bus needed to be generated and observed where

applicable. While this verification phase concluded that the FIR filter operated

correctly, the upcoming device- level simulation section will refute this claim.

 80

In contrast to the FIR simulations, complete coverage of the Quadrature Mixer

was more difficult to achieve due to the nature of the numerically controlled

oscillator. In one test, input data remained at a constant value while the NCO

cycled through the range of sine and cosine output values, which were then

captured from the simulation log file and confirmed using an spreadsheet. Due to

the range of possible data input, phase increment, sine, and cosine values,

however, it was not possible to verify every possible corner case within the time

available for this thesis. The extent of the verification performed will have to

suffice. Finally, since this filter can only operate in a single module

configuration, it was not necessary to simulate any multi- filter situations.

Lastly, the Time-varying Coefficient FIR module testbench requires a series of

tests very similar to that of the original FIR filter with the addition of more

complex coefficient loading. In addition to the larger addressable size of the

coefficient storage memories, the coeffRAMs add an additional cycle of latency

that must be accounted for in the tap shifting mechanism. Once the coefficients

are loaded along with an addressing delta value, the operation of a single 32-tap

Time-varying Coefficient FIR filter is similar to previous FIR tests. Simulating

the operation of two Time-varying Coefficient FIRs working in conjunction,

however, is another matter. In either the first or second filter position, it is vital

both filters require the same latency to process data so that both sets of 16-bit

sums are output in the same clock cycle. Precise reproduction of the appropriate

intermediate signals in both steady and intermittent data flow situations resulted

in satisfactory confirmation that the modules work.

7.2. Device-level Simulation

Once the individual modules were acceptably tested, the mission changed to

verifying the coordinated operation of permutations of the DSP modules in an

assembled design. While verification coverage for the aux_bus, status_bus, and

data bus signals was thought to have been adequate during the module- level

simulation stages, this was quickly determined to not be the case when the Top_1

 81

configuration was initially tested. After reversing the polarity of the tri-state

enabling signals to the correct orientation, it was determined that the bus macros

were being deactivated earlier than necessary to facilitate proper aux_bus and

status_bus signal forwarding. These issues, along with some other minor issues

with data bus status signals, should have been detected at the module level, which

serves to illustrate the difficulties associated with achieving adequate certification

in testing one’s own design.

The testing process included not only checking the flow of data through the five-

socket sequence, but also mimicking as much of the reconfiguration process as

possible given the simulation environment. As previously highlighted, currently

available simulation environments due not support the ability to physically

modify the design logic as is required during partial reconfiguration. Therefore, it

is impossible to ascertain whether the bus macro-based module boundaries

actually prevent signal contention during reconfiguration. The partial

reconfiguration sequence of deactivating one or more modules, requesting the

loading of appropriate bitstreams, and reactivating the affected modules can be

simulated, but only without any actual change to the contents of the DSP sockets.

Since the next_config and current_config registers contain default values of 0x0,

indicating the presence of Empty modules, the Top_1 was testbench was written

to call for the reconfiguration of the sockets with various other module types. As

observed through SignalScan, the internal state of each of the five Empty modules

responded correctly to aux_bus signals emitted by the Fixed_Logic module.

Similarly, although the Empty modules do not actually contain any loadable

parameters, the reparameterization process was emulated to confirm proper

operation of that aspect of the design as well. Errors detected during the

verification of Top_1 were reflected in all other DSP modules, where appropriate.

Since the speed at which the back-annotated code could run varied as

optimizations were made in the place and routing process, simulations were run at

50MHz to avoid complications.

 82

While Top_1 verification problems centered predominantly on general module

interaction and interconnection issues, the verification of the Top_2 configuration

involved a number of problems related to two-filter combinations. Some of the

problems probably should have been detected during module level simulation, but

again such complex multi-module interactions are difficult to envision in a single

module environment. The first test in the Top_2 testbench entails loading the

next_config registers values reflecting that actual modules existing in the DSP

sockets. Once the reconfiguration process was emulated and the appropriate

coefficients loaded, it became apparent that the FIR filters loaded in the first two

DSP sockets failed to operate properly. For instance, the second filter had been

designed to wait until it detected a data_ready signal from the first filter before it

would start accepting data from the secondary data bus and shift the data taps.

Unfortunately, the first filter would not assert its data_ready_next signal until it

was ready to actually output an intermediate sum value on the data_out bus. This

problem was corrected by changing the nature of the data_ready signal to reflect

the availability of data on the secondary data bus. Since the second filter still

needed to know when all 64-taps were filled and intermediate sum data was

available, a 64-bit shift register was enacted to keep track of how many taps were

actually filled. The first filter in the sequence keeps track of all 64-bits while the

second filter tracks 48-bits since it is oblivious to the first 16 taps of the first filter.

A second problem with the interaction of the two FIR filters involved the actual

64-tap shifting process, as depicted in Figure 30. As designed, the first filter

would shift the value of tap_16 onto the next_out bus, making it available to the

second filter. On the next clock cycle, the second filter would read this value and

shift it into its tap_1. The process was repeated in shifting tap_32 of filter two

into tap_17 of filter one. Because of two one-cycle delays across the bus macro

boundary, the combined 64-taps would not contain 64 consecutive values but

rather 64 of 66 consecutive values, with the 17th and 50th values in-transit on the

secondary data bus. To correct this error, the value of the first filter’s next_out

bus would be derived from tap_15 with a similar method employed using tap_31

 83

of the second filter. Figure 31 shows how the modification fixes the problem,

enabling proper operation of the circuit.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34

17

50

FIR 1/2 FIR 2/2

Figure 30 - Improper 64-tap Shifting

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

49

16
FIR 1/2 FIR 2/2

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 3364 63 62 61 60 59 58 57 56 55 54 53 52 51 50

48

Figure 31 - Proper 64-tap Shifting

After confirming that the Quadrature Mixer in Socket_3 operated properly,

another interconnect problem was detected between the Time-varying Coefficient

FIR filters occupying the fourth and fifth sockets. The implementation section on

the Time-varying Coefficient FIR filter shows how, in two-filter operation, the

lower 16-bits of data are to be processed in the first filter while the upper 16-bits

are bypassed to the second filter. The results are then combined in the second

filter and transmitted on to the next stage. As designed, the first filter would

accurately shift the lower 16-bits into the Time-varying Coefficient FIR sequence,

but would not forward any values from the upper 16-bits of data_in until it had

computed the 32-tap Time-varying Coefficient FIR sum and attempted to transmit

that value on the data_out bus. In the process, a number of data values intended

for the second filter were wrongly discarded. Like the original FIR problem, the

upper 16-bit value on the data_in bus was immediately forwarded on the

secondary data bus along with the corresponding data_ready_next signal. The

second Time-varying Coefficient FIR filter would then utilize this value to

compute the resulting FIR value, which would be combined with the first filter’s

output value to create a pair of 16-bit sum values. A 32-bit version of the shift

register incorporated into the FIR filter was implemented in the Time-varying

Coefficient FIR to better track the presence of data in the 32-taps. Once these

 84

interconnection issues were corrected, the Top_2 configuration operated as

expected.

The verification of the Top_3 configuration took advantage of corrections made

during Top_2 verification, resulting in a much more efficient authentication

process. Since the two-module interconnection issues were no longer present, no

problems were detected in this verification phase, thus completing the verification

process as required for this thesis project.

 85

8. Benchmarking
Now that the three permutations of the design architecture have been created and

verified, this chapter will contain an analysis of whether the architecture succeeds in

surpassing the performance of DSP running on a G4 CPU, as currently implemented

for a Teradyne application. Since the critical path of the architecture’s operation

involves signals passing between two interconnected FIR filters, as detected in the

Top_2 configuration, the maximum operational speed of the FPGA design will be set

at 72.8MHz. The G4 PowerPC 7410 processor, on the other hand, will be operating

at 400MHz and will be connected to a 128MB SDRAM via an intermediate FPGA

using a 64-bit 100MHz memory bus. Additionally, the G4 will also be directly

connected to a 2MB SDRAM cache via a 64-bit 160MHz dedicated bus, as indicated

by Figure 32.

Golden Gate
FPGA

MPC7410

64-bit @
100MHz

2MB
SDRAM

64-bit @
160MHz

128MB
SDRAM

64-bit @
100MHz

MoveBus

Figure 32 - G4 in DSP Module

Initially, consider a scenario where a single 32-tap even-symmetry FIR filter exists on

the FPGA connected to four Empty modules. In the case of a long uninterrupted

stream of data, a single FIR module will be able to process 16 16-bit additions, 16

multiplications, and 15 32-bit additions in a single cycle. For comparison purposes,

simplify this situation to state that the FIR can perform 16 multiply and accumulate,

or MAC, operations per cycle. Given the clock speed of 72.8MHz, this simplified

FIR filter can perform 1.165 billion MACs, or 1.165 GigaMACs, per second. If all

 86

five sockets were loaded with FIR or Time-varying Coefficient FIR filters, the

architecture could support a maximum throughput of 5.825 GigaMACs/second.

Since the Top_2 and Top_3 configuration both contain four FIR or Time-varying

Coefficient FIR filters, the simulated FPGA produces a throughput of 4.660

GigaMACs/second.

As a benchmark, internal Teradyne testing produced the following performance

numbers using the PowerPC 7410 G4 processor running at 400MHz. To produce

bulk data processing numbers, 4096 MAC operations were run on the G4 to simulate

a 4096-tap constant coefficient FIR filter. Due to the serial processing nature of this

test, which in this example does not utilize the vector processing ALU present on the

G4, this operation took an average of 102.9µs, or 25.11ns per MAC. This results in

an effective throughput of 39.82 MegaMACs. In a separate 4096-tap time-varying

coefficient FIR filter test, the G4 required an average of 53.52µs to perform the

calculation, or 13.07ns per MAC, resulting in an effective throughput of 76.53

MegaMACs. It is suspected that the manner in which the time varying coefficients

were generated and stored in the cache resulted in an increase in coefficient fetch and

subsequent overall processing speeds over the constant coefficient version. As

evident in Table 4, the FPGA architecture provides a significant processing speed

advantage over this G4 in the case of a long, uninterrupted data stream.

Table 4 - FPGA to G4 Performance Comparison

 MegaMACs/second Performance Advantage
Single FIR 1,165 15.22x
Top_2 4,660 60.89x FPGA
Maximum 5,825 76.11x
G4 76.53

Since the FPGA is designed as a run-time partially reconfigurable architecture,

however, DSP module-reloading times must be considered in order to fully compare

the true performance of the FPGA. On the G4 processor, the time required to call a

subroutine from the instruction cache is negligible compared to data and coefficient

bus access and processing time requirements. For the FPGA, on the other hand,

module reconfiguration times are significant compared to processing speeds. Using

 87

the Virtex-II’s 8-bit SelectMAP configuration loading interface running at 66MHz,

the following loading times can be achieved, as given in Table 5. The partial

reconfiguration of all five sockets, for example, would require 13.62ms.

Table 5 - Partial Reconfiguration Times (ms)

Sockets 1-4 2.59
Socket_5 3.24
All Sockets 13.62

It quickly becomes apparent that the 16Kx17-bit data_FIFO is not sufficiently large

enough to hold all of the required data. Running at 72.8MHz, the data_FIFO would

need to be increased to 992Kx17-bits in order to accommodate all the data.

Effectively, in order for the existing data_FIFO to be sufficiently large enough to hold

all incoming data during a five-socket reconfiguration, the system could only run at

1.2MHz. This FPGA architecture would be better implemented with an external

SRAM data_FIFO connected to a memory controller embedded in the Fixed_Logic

module. To simplify this viability study, however, utilizing an embedded data_FIFO

reduced the complexity of the design and simplified the verification of the design as

well.

Aside from the data_FIFO issue, the size of the data stream to be processed with a

given configuration can determine whether or not using the partially reconfiguration

FPGA architecture is a better option than a G4. For the following scenario, assume

the G4 memory architecture is designed such that larger data sets do not adversely

affect processing speed. Also, assume again that that Time-varying Coefficient FIR

filter performs 16 MACs per second. Consider a stream of 10 million data points

running through a single Time-varying Coefficient FIR loaded into Socket_1 on the

FPGA. Running at 72.8MHz, the device would only require 137.4ms to process all

10 million data points. Even if the 2.59ms partial reconfiguration time is included,

the device still only needs 140ms to process the data. At the previously given speed

of 13.07ns per MAC, a 16-tap time varying coefficient FIR filter implemented on a

G4 would 2.09 seconds to accomplish the same task. If the data stream length is only

1,000 data points, on the other hand, the picture drastically changes. The FPGA

 88

processing time of only 13.74µs is overshadowed by the constant 2.59ms partial

reconfiguration time for that module. Meanwhile, the G4 processor provides superior

performance by completing the task in 209µs. As displayed in Figure 33, the

crossover point between FPGA and G4 processing advantage occurs at 13,256 data

samples in this case. In the case that Time-varying Coefficient FIR is already loaded

into Socket_1 and reparameterization does not occur, the FPGA will surpass the G4

in all instances. Finally, in the case of a full reparameterization of all 16K

coefficients present in the filter, which requires approximately 225.1µs, the FPGA is

superior as long as the data stream is longer than 1,152 data points, as seen in Figure

34.

PolyFIR_1 to G4 Comparison

1.00E-07

1.00E-06
1.00E-05

1.00E-04
1.00E-03

1.00E-02
1.00E-01

1.00E+00
1.00E+01

1.00E+02

1.
E

+0
0

1.
E

+0
1

1.
E

+0
2

1.
E

+0
3

1.
E

+0
4

1.
E

+0
5

1.
E

+0
6

1.
E

+0
7

1.
E

+0
8

Data Samples

P
ro

ce
ss

in
g

 t
im

es
 (

se
c)

FPGA

G4

Figure 33 - PolyFIR_1 to G4 Comparison

 89

PolyFIR_1 Reparameterization to G4 Comparison

1.00E-07

1.00E-06
1.00E-05

1.00E-04
1.00E-03

1.00E-02
1.00E-01

1.00E+00
1.00E+01

1.00E+02

1.
E

+0
0

1.
E

+0
1

1.
E

+0
2

1.
E

+0
3

1.
E

+0
4

1.
E

+0
5

1.
E

+0
6

1.
E

+0
7

1.
E

+0
8

Data Samples

P
ro

ce
ss

in
g

 t
im

es
 (

se
c)

FPGA

G4

Figure 34 - PolyFIR_1 Reparameterization to G4 Comparison

Now, consider the Top_3 configuration, as described in previous chapters, along with

a full five-socket partial reconfiguration. While the processing speed remains the

same, the partial reconfiguration time increases to 13.62ms and becomes an even

larger component of overall processing times. On the G4, even without considering

the Quadrature Mixer, a set of four 16-tap time-varying coefficient FIRs would

require 836µs per sample to process. As a result, as seen in Figure 35, the

performance crossover occurs at 16,554 samples. In the separate case that the five

sockets are already loaded and only the parameters are being adjusted, Figure 36

shows that the crossover is reduced to 548 samples.

 90

Top_3 to G4 Comparison

1.00E-07

1.00E-06
1.00E-05

1.00E-04
1.00E-03

1.00E-02
1.00E-01

1.00E+00
1.00E+01

1.00E+02

1.
E

+0
0

1.
E

+0
1

1.
E

+0
2

1.
E

+0
3

1.
E

+0
4

1.
E

+0
5

1.
E

+0
6

1.
E

+0
7

1.
E

+0
8

Data Samples

P
ro

ce
ss

in
g

 t
im

es
 (

se
c)

FPGA

G4

Figure 35 - Top_3 to G4 Comparison

Top_3 Reparameterization to G4 Comparison

1.00E-07

1.00E-06
1.00E-05

1.00E-04
1.00E-03

1.00E-02
1.00E-01

1.00E+00
1.00E+01

1.00E+02

1.
E

+0
0

1.
E

+0
1

1.
E

+0
2

1.
E

+0
3

1.
E

+0
4

1.
E

+0
5

1.
E

+0
6

1.
E

+0
7

1.
E

+0
8

Data Samples

P
ro

ce
ss

in
g

 t
im

es
 (

se
c)

FPGA

G4

Figure 36 - Top_3 Reparameterization to G4 Comparison

Clearly, the processing scenario can contribute greatly in determining which

processing solution is most applicable. In the case that a single configuration is

repeatedly used in the testing of a batch of devices, the run-time partially

reconfigurable FPGA solution is always superior to a G4 given that processing chain

can be fit within the FPGA architecture. In the case that a single device under test

 91

must be run through multiple processing configurations, the FPGA maintains its

advantage as long as the data set is sufficient. Since the data set length can vary from

under one hundred to over a one million samples based on the users requirements, the

system should designed to be able to select the optimal processing method of either

the FPGA or G4. Effectively, the test program would need to select between either

hardware or software subroutines, respectively.

 92

9. Conclusion
All things considered, the goal of implementing a high-speed DSP architecture within

a run-time partially reconfigurable FPGA was achieved. While the device as

designed will only operate at 72.8MHz, the five-socket modular architecture will

support a wide range of DSP algorithms that can make use of the advanced embedded

features of the Xilinx Virtex-II FPGA. If a desired processing algorithm is too large

for a single DSP socket, the architecture compensates by allowing multiple

neighboring sockets to work together in a coordinated manner. The resulting large-

scale parallel computational ability reigns superior to a serial processing solution

given the available processing speeds and the fact that the G4’s vector processing

ALU was not utilized. Additionally, secondary considerations such as ease of

instrument design, ease of system design, field upgradability, and thermal properties

also lean in favor of utilizing an FPGA running at 100MHz rather than a series of

ASICs or a G4 running at 400MHz.

The result, from the user’s perspective, is in an architecture that can support a library

of timing-verified and guaranteed hardware subroutines that could be utilized in a fast

and flexible FPGA architecture just as a software subroutine could be processed on a

CPU. A programming interface could just as easily run through a sequence of run-

time partial reconfigurations as desired by the application while enjoying the parallel

processing speed advantages offered by the FPGA. While the same processing

algorithms could be realized by using a vast array of interconnected programmable

DSP devices or ASICs, a single FPGA could duplicate this functionality with a

fraction of the power consumption and footprint.

Additionally, the exact specifications of the design implemented were based on the

parameters desired for this feasibility study. The Xilinx Virtex-II 3000 FPGA was

chosen because it features six columns each with 16 embedded multipliers and

BlockRAMs, which easily supported a partially reconfigurable five-socket

architecture. Each DSP Module would receive a set of 16 embedded blocks, a

 93

convenient number to work with given the desired FIR-based filters and the storage

requirements of the desired NCO. Within the architecture, the data and secondary

bus sizes were arbitrarily chosen for the given DSP modules, but could be increased if

desired. Since the embedded multipliers and BlockRAMs are 18-bits wide, all

computational, storage, and bus elements could have been increased to this size.

Furthermore, the number of supportable DSP modules could easily be increased from

its current value of four, which again was arbitrarily chosen for this feasibility study.

There were, as expected, a number of concessions made in the design process as

dictated by constraints present in either the available hardware, supporting software,

or the scope of this project. While a workaround was found and utilized, the column-

based reconfiguration scheme present in the Xilinx Virtex-II devices presents a

significant design hurdle. A FPGA without this constraint could be used to design a

much more flexible and less wasteful architecture. For example, since the FIR filter

implemented required less than 40% of the CLB resources allocated, reducing the

size of the DSP module by half would result in a corresponding reduction in partial

reconfiguration time.

Furthermore, the removal of this column-based constraint would also greatly simplify

the control scheme designed into the Fixed_Logic module. As described, shutdown

notifications and directives must propagate through intermediate modules in order to

reach the target module. This process is complicated by the fact that module

undergoing partial reconfiguration temporarily disrupts this communication method.

Preferably, the Fixed_Logic module would directly connect to each DSP Module

either through independent channels or through a central uninterrupted bus.

Along these lines, the utilization of a flexible data bus could also increase the

flexibility and efficiency of both the architecture itself and specifically the partial

reconfiguration process. Referring back to Figure 12, consider an architecture devoid

of column-based restrictions in which a number of specific DSP modules are loaded.

Consider the scenario in which a partial reconfiguration is desired to remove a single

 94

DSP module from the processing chain. Rather than reloading the affected socket

with an Empty module, which would require a couple milliseconds depending on the

size of the module, the same processing chain modification could be utilized by a

simple parameter change that altered data routing through a central bus. The ability

to specifically target a routing change rather than a larger-scale logical change would

significantly reduce effective partial reconfiguration time and make the FPGA

architecture an even more desired processing solution.

The software constraints are similarly difficult to work around, leaving much room

for future improvements in the design process. As stated, a temporal floorplanning-

based design environment would again greatly simplify the design process by

removing a great deal of complexity that for now must be dealt with manually. DSP

modules were created in separate design environments and continually checked to

ensure that they operated within the scope of the architecture. Any major

modification to the architecture would require the designer to scour through a number

of design environments and implementation stages to propagate the desired changes.

Verification alone presents an obstacle that simply cannot be completely overcome

given the current design process. Modules can independently be verified to a

satisfactory degree, but the combined design can only be confirmed at the

rudimentary level. Like the design process itself, various permutation of the design

must be verified separately without the much-needed ability to verify the run-time

partially reconfigurable aspect of the design. If this degree over coverage were

available, it would be possible to construct a simulation suite that included a number

of partial reconfigurations, which could be more directly compared to the G4

processor’s ability to sequentially process a chain of subroutines.

Finally, the time constraints and scope of this thesis limited the extent to which this

architecture could be explored. The design, implementation, and simulation of the

architecture were deemed sufficient for this thesis. It would be desirable, however, to

delve into a physical prototype scenario in which the run-time partially reconfigurable

 95

design was tested in a real-world situation. The following chapter outlines potential

future work using this architecture and technology.

 96

10. Future Work
Given the opportunity to continue work on this project, a number of challenges would

be undertaken to refine the current architecture, physically test the architecture, and

find adapt this architecture to suit other potential applications. Clearly, there are a

few issues for which additional work would yield a superior final product than the

one presented in this thesis. First, further optimization of the module timing

requirements should lead to reductions in bus macro interconnect delay and result in

improvements in overall system speed. Also, an external version of the Fixed_Logic

module’s data_FIFO would result in a more appropriately sized data storage

capability. To accomplish this, for example, the Data_Input_Control and

Data_Output_Control sub-modules could remain in the Fixed_Logic module while

connected through external pins to a separate SRAM device. In the case that the

SRAM device is designed to act as self-addressing FIFO, the data and control

connections would be quite simple. On the other hand, if a regular SRAM memory

were used, the Fixed_Logic module would need to contain the addressing mechanism

and either a single memory bus or dual-port memory access scheme would be

required.

Prototype testing of the device architecture using either a Xilinx prototyping board or

an in-system configuration would result in a more comprehensive glimpse at the final

product. Although this degree of testing would have also resulted in a significantly

longer development timeline, data collected from an actual run-time partial

reconfiguration could reveal certain power drain, stability, or other physical- level

issues that are undetectable in simulation.

On a separate topic, the issue of the variable latency of the FPGA architecture was not

considered until the final phases of this project.29 Despite the fact that every module

runs on the same clock, depending on the configuration loaded into the device, the

raw data input to processed data output latency can range from ten cycles for the

Top_1 configuration to 28 cycles for the Top_3 configuration. As designed, the

 97

device reading data from the End_Logic module would simply wait until the

data_ready_out status signal indicated available data. Given the complex pipeline

timing required for Teradyne testing system or any other comparably complex

system, additional process latency information may be required from the FPGA. This

design enhancement would not be complicated and given that the Fixed_Logic

module already tracks the current configuration and filter_tuning of the device, it

would only be a matter of adding an additional output bus to communicate this

process latency.

In addition to the designated application, this run-time partially reconfigurable

architecture could be adapted to serve other signal processing purposes for other

applications. While this version was designed to act as an alternative to the use of

software processing in a CPU, this FPGA could also be used to serve as a dedicated

co-processor to the CPU. This modification could simplify the design process by

allowing the control scheme and external interface of the FPGA, as dictated by the

software on the CPU, to be modified along with the FPGA’s contents.

Furthermore, rather than reserving this technology for larger systems, the same

architecture could be adapted for use in portable digital devices. A similar

architecture would be well suited for use in a software radio application, for instance.

As encoding schemes and processing requirements change not only with

advancements in technology but also the region of use, the ability to reprogram the

DSP capability of a phone over the air could be extremely useful.30 It is unreasonably

burdensome to prepare for a number of configuration or processing possibilities by

placing more DSP devices into small portable devices, especially when newer, faster,

and more capable FPGAs excel at the same sequential signal processing tasks.31

Advancements in design methodologies to make partially reconfigurable modules on

an FPGA more analogous to hardware subroutines, such as object oriented

reconfigurable processing work currently underway at Jet Propulsion Laboratories,

could make the design of similar time-multiplexed processing architectures more

efficient.32

 98

Overall, the utilization of the run-time partially reconfigurable aspect of current

FPGAs opens up a wealth of design opportunities for applications unavailable to

designers only a few years ago. This design capability is of course nicely

complimented by the increasing logical and memory potential of FPGAs, which now

includes PowerPC cores embedded in the fabric of the Xilinx Virtex-II Pro FPGA.

As emphasized, however, there remains much need for improvement in design tool

features and capability, but this improvement should occur swiftly as the demand for

such capability increases.

 99

References

1 Bradly Fawcett and John Watson, “Reconfigurable Processing with Field Programmable Gate Arrays”,
1996 International Conference on Application-Specific Systems, Architectures, and Processors, August
1996, pg. 293.
2 Russell Petersen and Brad L. Hutchings, “An Assessment of the Suitability of FPGA -Based Systems for
use in Digital Signal Processing”, 5th International Workshop on Field-Programmable Logic and
Applications, Oxford, England, August 1995., pg. 293-302.
3 Russell Tessier and Wayne Burleson, “Reconfigurable Computing for Digital Signal Processing: A
Survey”, Journal of VLSI Signal Processing 28, July 27, 2001, pg. 9-10.
4 Scott McMillan and Steven A. Guccione, “Partial Run-Time Recongfiguration Using JRTR”, Proceedings
of the 10th International Workshop on Field-Programmable Applicatins, Lecture Notes in Computer
Science 1896, 2000.
5 Bradly K Fawcett and John Watson, “Reconfigurable Processing with Field Programmable Gate Arrays”,
1996 International Conference on Application-Specific Systems, Architectures, and Processors, August
1996, pg. 293.
6 Milan Vasilko, “DYNASTY: A Temporal Floorplanning Based CAD Framework for Dynamically
Reconfigurable Logic Systems”, Field-Programmable Logic and Applications, LNCS 1673, Springer-
Verlag, 1999, pg. 124-133.
7 Xilinx, “Virtex-II Platform FPGA Handbook”, Xilinx, Inc., 2001.
8 Gordon Brebner and Adam Donlin, “Runtime Reconfigurable Routing”, Proceedings of the
Reconfigurable Architectures Workshop, March 30, 1998, pg. 25-30.
9 Xilinx, www.xilinx.com, Xilinx, Inc., 2002.
10 Xilinx, “The Programmable Logic Data Book 1999”, Xilinx, Inc., 1999.
11 Xilinx, “Virtex-II Platform FPGA Handbook”, Xilinx, Inc., 2001, pg. 56.
12 Russel G Tessier, “Fast Place and Route Approaches for FPGAs”, Ph.D. thesis, Department of Electrical
Engineering and Computer Science, MIT, February 1999.
13 Davin Lim and Mike Peattie, “Two Flow for Partial Reconfiguration: Module Based or Small Bit
Manipulation”, Xilinx, Inc., May 17, 2002.
14 Katherine Compton, James Cooley, Stephen Knol, and Scott Hauck, “Configuration Relocation and
Defragmentation for Reconfigurable Computing”, IEEE Symposium on Field-Programmable Custom
Computing Machines, April 2000, pg. 279.
15 J.D. Hadley and B.L. Hutchings, “Design Methodologies for Partially Reconfigurable Systems”,
Proceedings of the IEEE Workshop on FPGAs for Custom Computing Machines, 1996, pg 78-84.
16 Philip James-Roxby and Steven A. Guccione, “Automated Extraction of Run-Time Parameterisable
Cores from Programmable Device Configuration”, IEEE Workshop on Field Programmable Custom
Computing Machines, April 2000, pg. 153-161.
17 Milan Vasilko, “DYNASTY: A Temporal Floorplanning Based CAD Framework for Dynamically
Reconfigurable Logic Systems”, Field-Programmable Logic and Applications, LNCS 1673, Springer-
Verlag, 1999, pg. 124-133.
18 Ian Robertson, James Irvine, Patrick Lysaght, and David Robinson, “Timing Verification of Dynamically
Reconfigurable Logic for the Xilinx Virtex FPGA Series”, ACM International Symposium on Field-
Programmable Gate Arrays, 2002, pg. 127-135.
19 Gordon Brebner, “Automatic Identification of Swappable Logic Units in XC6200 Circuitry”,
Proceedings of the 7th International Workshop on Field-Programmable Logic and Applications, September
1997, pg. 173-182.
20 John Stockwood and Patrick Lysaght, “A Simulation Tool for Dynamically Reconfigurable Field
Programmable Gate Arrays”, IEEE Transactions on VLSI Systems, September 1996, Vol. 4, No. 3, pg 381-
390.
21 Philip James-Roxby and Steven A. Guccione, “Automated Extraction of Run-Time Parameterisable
Cores from Programmable Device Configuration”, IEEE Workshop on Field Programmable Custom
Computing Machines, April 2000, pg. 153-161.
22 Eric Keller, “JRoute: A Run-Time Routing API for FPGA Hardware”, 7th Reconfigurable Architectures
Workshop, May 2000.

 100

23 Scott P. McMillan, Brandon J. Blodget, and Steven A. Guccione, “VirtexDS: A Virtex Device
Simulator”, SPIE, November, 2000.
24 Edson Horta, John Lockwood, David E. Taylor, and David Parlour, “Dynamic Hardware Plugins in an
FPGA with Partial Run-time Reconfiguration”, Design Automation Conference, June 10-14 2002.
25 Xilinx, “Development System Reference Guide: Modular Design”, Xilinx, Inc., 2002.
26 Davin Lim and Mike Peattie, “Two Flow for Partial Reconfiguration: Module Based or Small Bit
Manipulation”, Xilinx, Inc., May 17, 2002.
27 Edson L. Horta and John W. Lockwood, “PARBIT: A Tool to Transform Bitfiles to Implement Partial
Reconfiguration of Field Programmable Gate Arrays (FPGAs)”, Department of Computer Science, Applied
Research Lab, Washington University, July 6, 2001.
28 Davin Lim and Mike Peattie, “Two Flow for Partial Reconfiguration: Module Based or Small Bit
Manipulation”, Xilinx, Inc., May 17, 2002.
29 D. Lund, B. Honary, and M. Darnell, “A New Development System For Reconfigurable Digital Signal
Processing”, IEE 3G Mobile Communication Technologies, Conference Publication No. 471, March 2000.
30 Hiroyuki Shiba, Takashi Shono, Kazuhiro Uehara, and Shuji Kubota, “Design and Evaluation of
Software Radio Prototype with Over-the-Air Download Function”, NTT Network Innovation Laboratories,
2001.
31 Mark Cummings and Shinichiro Haruyama, “FPGA in the Software Radio”, IEEE Communications
Magazine, February 1999, pg. 108-112.
32 Andrew A. Gray, Clement Lee, Payman Arabshahi, and Jeffrey Srinivasan, “Object-Oriented
Reconfigurable Processing for Wireless Networks”, Proceedings of the IEEE ICC 2002, April 28-May2,
2002.

