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ABSTRACT 
 
This thesis investigates the feasibility of utilizing a run-time partially reconfigurable 
FPGA to implement a sequence of high-speed digital signal processing filters.  Rather 
than reconfiguring the entire device to modify part of a configuration, a modular 
architecture is designed to allow smaller segments of the device to be individually 
reconfigured while the remainder of the device continues to operate.  This document 
describes the design, implementation, simulation, and benchmarking of a five-socket 
modular DSP architecture and compares the results to the performance of alternative 
digital signal processing methods, particularly that of software DSP subroutines run on a 
PowerPC processor.  The result is a highly flexible architecture that supports the use of 
timing verified hardware subroutines that could be partially reconfigured onto the FPGA 
within 3ms.  The highly parallel processing power of the FPGA design yields a 
performance of 5.825 billion multiply and accumulate operations per second while 
simulated running at 72.8MHz, more than 76 times faster than similar calculations 
measured on a MPC7410 processor. 
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1. Introduction 
1.1. Background 

Teradyne, the leading producer of automated test equipment (ATE) for digital, 

analog, and mixed signal testing, uses a complex array of digital signal processing 

(DSP) tools for a range of testing applications.  A common mixed-signal 

application includes an analog signal capture, some digital hardware based and 

subsequently some software based signal conditioning and processing.  Signal 

processing needs can vary greatly depending on the nature of the device under 

test, demanding a computationally intensive process of parameter estimation and 

other waveform characterization.  As the devices in test become faster and more 

complex, these DSP capabilities must likewise progress with greater speed, 

complexity, and flexibility.  Available DSP tools have improved drastically in the 

past decade, with many processing chains primarily composed of application 

specific integrated circuits (ASICs).  ASICs, while optimized to provide the 

desired processing speed, are also subject to costly and time consuming 

development processes due to the overhead of design revisions and the 

inflexibility of the devices after development.  The cost constraints of designing 

new ASICs can render this approach impractical, especially in low part volume 

situations commonly confronted in the design and construction of large automated 

testers.1 

 

Ready-made ASICs with basic signal processing stages, digital filters, mixers, and 

oscillators provide another often-utilized processing avenue.  While these 

programmable DSP devices do exploit highly parallel processing and are 

optimized for common processing tasks, the accommodation of a wide range of 

DSP algorithms increases the number of devices needed.  This increase in device 

count places additional burden on board designers to both fit the devices into the 

space available and devise a bus architecture to support the devices, rendering this 

method too complex and too space consuming. 
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The utilization of general-purpose microprocessors (CPUs) for DSP purposes, on 

the other hand, offers a more flexible and powerful processing solution.  The wide 

range of processing capabilities provided by CPUs coupled with software 

development efforts allows systems relying on CPUs to be easily revised during 

and after development.  Unfortunately, CPUs appear unable to meet certain DSP 

demands anticipated by Teradyne due to the lack of specialization and hardware 

optimization.  

 

In recent years, FPGAs have drastically improved in terms of size, speed, and 

features, making the devices suitable cand idates for signal processing needs.  

Given that DSP algorithms typically rely on large-scale parallel multiplication, 

accumulation, and comparison, FPGA features such as embedded multipliers as 

well as the configurable logic aspect fit well with DSP requirements.  The 

maturation of FPGA technology means that DSP systems could be designed to 

approach the processing speed and complexity of an ASIC-based solution, which 

avoiding recurring engineering development costs.  In a 1995 study performed at 

Brigham Young University to quantitatively compare FPGA performance against 

DSP processors and ASICs, FPGAs were found to nearly match and in many 

benchmarks exceed the performance of both alternatives due to the ability of an 

FPGA to utilize extensive specialization and concurrency. 2  Furthermore, the 

ability to reconfigure an entire FPGA while in-system offers the capability to 

optimize the device for a particular processing task, matching the flexibility 

offered by CPUs while surpassing its processing ability. 3 

  

For most applications, once an FPGA design is tested and verified, it’s seldom 

changed.4  In addition to recent improvements in DSP implemented with FPGA 

technology, an additional capability for run-time partial reconfiguration of an 

FPGA offers an even more flexible and enticing alternative to both ASIC and 

CPU based processing.  Using a partially reconfigurable FPGA, a device could be 

theoretically designed such that only a portion of the device would be 

reconfigured rather than reloading the entire device, a feature that allows for 
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interchangeability of code modules as well as smaller reconfiguration overhead.  

This feature would combine the versatility of a programmable solution with the 

performance of dedicated hardware in a single package, giving the FPGA a 

noticeable advantage over the use of multiple alternative processing solutions and 

will therefore be the goal of this project.5 

 

Additionally, a run-time aspect would allow for a portion of the device to be 

reconfigured and optimized for an upcoming task while the rest continues to 

operate.  The scenario is best described as adding a temporal floorplanning aspect 

to an FPGA, which by definition already utilizes spatial floorplanning in the 

creation of designs.6  Given that most DSP applications are configured into a 

chain of sequential processing operations, DSP algorithms could therefore be 

designed into a modularized architecture of connected processing blocks and are 

well suited for partial reconfiguration applications.  These processing blocks 

could be loaded with hardware subroutines representing various DSP algorithms 

as specified by the signal processing needs of the device under test.  From the 

user’s functional perspective, these pre-compiled and timing verified DSP 

modules loaded onto the FPGA would behave identically to fast software modules 

executed on a CPU while simultaneously providing a supplementary processing 

speed advantage.     

1.2. Challenge 

A high-speed digital signal processing design implemented as a run-time partially 

reconfigurable FPGA will be presented in this thesis as a feasibility study for 

future Teradyne applications.  Also, the design will utilize an architecture 

allowing for the replacement of DSP modules.  This feasibility study is made 

possible using a suit of configurations consisting of three separate signal 

processing algorithms with each offering the capability to enable or bypass the 

processing chain.  All verification results are based on simulation because 

physical prototype board testing would add additional overhead to the project and 

is therefore outside of the scope of this thesis.  Finally, benchmark results 

comparing the design implemented to both the current signal processing 
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performance of a G4 processor as they are used in Teradyne’s current 

IntegraFLEX tester will be presented in this thesis.   

1.3. Solution 

After researching currently available devices and design methods, this system will 

be designed as a socket-based modular architecture realized on a single FPGA as 

seen in Figure 1.  Each socket will be capable of holding a range of DSP 

algorithms designed to interconnect through a standard interface protocol.  The 

standardization of each module’s interface will give much greater flexibility in 

dynamically relocating DSP modules while greatly decreasing the complexity 

associated with interconnecting these modules.  Unfortunately the interface 

protocol does add inflexibility to the type of module usable by limiting the 

specialization of the interface.  Certain applications, for example, might require 

additional features such as extra status signals while others might require larger 

data busses.  As will be described later in the thesis, the interface chosen allows 

for flexibility in the primary data bus width as well as secondary data and control 

pathways. 

 

Figure 1 - Socket-based Architecture 

 



 12

As previously stated, when the system requires that a particular DSP algorithm is 

desired in a particular socket in the DSP chain, that DSP module may be partially 

reconfigured into the device without requiring the reconfiguration of the 

remainder of the FPGA.  Figure 2 illustrates this reconfiguration process.  Partial 

reconfiguration in an often-reloaded application is desirable as it decreases the 

reconfiguration time needed to make the chosen modification.  Run-time partial 

reconfiguration is used here to denote that the remainder of the FPGA can 

continue processing data or operating while the reconfiguration of other sections 

of the device is in progress.  The run-time aspect is realized using a FIFO for 

temporary storage of incoming data within the FPGA while DSP module(s) are 

being partially reconfigured.  Likewise, the system is capable of modifying the 

parameters or coefficients contained within the DSP algorithm modules while the 

system continues to operate.   

 

Figure 2 - Dynamic Reconfiguration 

 

Teradyne’s automated test equipment is designed to sequentially test a large 

number of devices for manufacturing verification purposes.  As the tester utilizing 

this DSP FPGA switches between devices under test, the FPGA will utilize this 
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pause in data flow to empty out internal queues and process all data.  Given the 

goal of operating the FPGA at 100MHz and a data queue that can hold up to 16K 

data points, a test pause of 164microseconds would be sufficient for the device to 

process all stored data.  This desired speed of 100MHz and the associated data 

FIFO size implies that reconfiguration time must be less than the time needed to 

fill the FIFO.  Whether or not this allowable queuing time is sufficient will be 

determined later in this document.  The control system in the FPGA will manage 

reconfiguration and reparameterization scheduling to ensure that all data is 

processed by the FPGA, as the configuration existed when the data entered the 

device. 

 

A Xilinx Virtex-II FPGA will be used for this thesis due to its physical support 

for run-time partial reconfiguration as well as Xilinx’s recent efforts to provide 

support for this capability in its ISE design tool set.  Additionally, the Virtex-II 

series FPGA also boasts advanced features including embedded multipliers and 

dedicated dual-port RAM blocks.  As will be shown in chapter 6, these features 

will significantly decrease the gate-count necessary to attain the desired features 

and speed in the FPGA. 

 

The design of this system is not without a number of design concessions due to 

constraints imposed by both the physical device as well as design tools.  While 

the Xilinx Virtex-II is unique at the time this thesis began in supporting run-time 

partial reconfiguration in a commercially available part, this reconfiguration is 

column-based, which eliminates the ability of the designer to route signals 

through the area of the device undergoing partial reconfiguration. 7  Also, there is 

currently no support for dynamic module relocation, meaning that a separate 

version of each DSP algorithm must be created for each possible socket location 

of the DSP module.  While the process of creating copies of each DSP module for 

all five sockets could be automated, timing may not be consistent among all five 

modules and some socket-module combinations may require attention.  As will be 

described later in this thesis, the use of strict timing constraints on various 
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elements of module timing can alleviate these module replication timing issues. 

Likewise, Xilinx’s ISE development suite does offer rudimentary native support 

for the design of a partially reconfigurable system, however there are no 

commercially available tools supporting the simulation of a complete run-time 

partially reconfigurable system.  Rather, each permutation of the system must be 

independently simulated as static designs without the capability of simulating the 

actual reconfiguration process.  These constraints will be elaborated upon in 

Chapter 4 of this thesis.   

 

Despite these constraints, the design will be able to achieve the intended goal of 

operating as a run-time partially reconfigurable DSP processor although not quite 

capable of operating at the desired speed of 100MHz.  If successful and cost-

effective, Teradyne is likely to further explore this technology to enable the end 

user to configure and utilize an assortment of pre-compiled DSP algorithms that 

could be configured into the FPGA architecture’s sockets.  This dynamically 

reconfigurable system will effectively give the customer the ‘virtual circuitry’ it 

requires on demand with minimal reconfiguration times and little to no 

interruption in data processing. 8 

 

As this technology continues to mature, the physical and design tool constraints 

should disappear, giving the designer even greater flexibility in creating such a 

system.  The potential problems associated with designing a complete system 

without the capability of verifying the reconfiguration process will hopefully be 

alleviated with advancements in design tool capability. 

1.4. Outline 

Following this chapter, this thesis will first consider past and present research 

involving the use of FPGAs in partial reconfiguration applications along with a 

detailed description of current FPGA features and capabilities.  Chapter 3 will 

detail the three sample DSP filters chosen for this thesis, namely a 32-tap even-

symmetry FIR, a Quadrature Mixer with a built- in NCO, and a 32-tap Time-

varying Coefficient even-symmetry FIR filter.  This chapter will concentrate on 
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the functionality of the filters, but will leave implementation-specific details for a 

later chapter.  Next, Chapter 4 will examine the design constraints, both hardware 

and software, encountered during the design and implementation process.  This 

chapter will close with a comparison of the possible design pathways and the 

features considered in making the decision to utilize the chosen device and design 

environment.   

 

Chapter 5 will serve as a design specification for the architecture, starting with a 

high- level description of the intended design along with a detailed description of 

every facet of the target design.  Starting with the fixed logic elements present in 

all permutations of the design, this chapter will then move into an 

implementation-specific description of the DSP filters first presented in Chapter 

3.  Following this specification, Chapter 6 will explain the actual implementation 

process, beginning with the top-level initial budgeting phase, moving then to the 

active module implementation phase, and concluding with the final assembly 

phase that brings all the pieces together into various design permutations.  Next, 

Chapter 7 will detail the simulation process undertaken to verify the functionality 

and performance of the design, both at the individual module and overall device 

levels.  Once a few versions of the design have been completely constructed and 

verified in a simulation environment, Chapter 8 will describe the performance 

benchmarks derived from these designs and compare them to other processing 

options, particularly the use of a G4 PowerPC processor to perform similar 

computations.  In addition to detailing the raw processing power of each option, 

considerations are made for the time needed to partial reconfigure some or all of 

the FPGA and how this relates to the type of data set analyzed.  In the penultimate 

chapter, this thesis will conclude with a summary of the work performed and 

knowledge gained in the process.  Finally, Chapter 10 will contain a discussion of 

possible future work to build upon this thesis project.   
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2. FPGA and Partial Reconfiguration Background 
2.1. FPGA Background 

The SRAM-based field programmable gate array, or FPGA, was first 

commercially introduced by Xilinx in 1985.9  The general purpose of a 

programmable logic device such as an FPGA is to allow designers to create a 

physical logic design and produce a finished product without the overhead 

associated with designing a custom IC.  Furthermore, the devices could be 

reprogrammed with new configurations; a feature most often utilized during the 

design process, but one that can also be used to customize the device for the given 

operation.  Initially, offerings from Xilinx consisted of a few thousand gates and 

could only operate at speeds of under 5MHz.10 Since then, FPGAs have improved 

in size and speed to over 10 million gates at speeds approaching 300MHz while 

also incorporating additional features such as embedded multipliers and dedicated 

SRAM blocks. 

 

The modern SRAM-based FPGA consists of a number of configurable logic 

blocks (CLBs) that are linked through a series of programmable wire 

interconnects.  In the case of the Xilinx Virtex-II FPGA used, each CLB contains 

four slices, as seen in Figure 3.11  Slice logic, as seen in the half slice schematic in 

Figure 4, is contained within look-up tables (LUTs), each designed as a multi-

input, single output SRAM block.  Coupled with storage registers, multiplexors, 

and various other logical mechanisms, each slice can perform a large range of 

logically operations.  The four slices of a single CLB, when combined with 

neighboring CLBs, can perform almost any logical operation.  Like the logic 

functions themselves, the switch matrix interconnects within and between CLBs 

are also determined by configuration data stored in SRAM cells, as seen in Figure 

5. 
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Figure 3 - CLB Schematic 

 

Figure 4 - Slice Schematic 
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Figure 5 - Interconnected CLBs 

 

The Xilinx Virtex-II FPGA used for this thesis uses an “island-style” architecture 

characterized by a fine-grained array of logic cells surrounded by a collection of 

prefabricated routing segments interconnected by programmable switches.12  

Specifically, this project will target the XC2V3000 Virtex-II FPGA, a device 

containing three million usable system gates.  As seen in Figure 6, the device is 

organized as a 64x56 array of CLBs, each connected to a switching matrix used to 

interconnected neighboring CLBs.  Moreover, each CLB consists of two tri-state 

buffers and four slices, each of which containing two function generators, two 

storage elements, and assorted multiplexors, arithmetic logic gates, and cascading 

chains.  The device also includes six columns of 16 embedded 18x18 unsigned 

multipliers, which will be heavily utilized by the DSP algorithm implemented in 

this thesis.  Each embedded multiplier borders a dedicated 18Kb block of SRAM 

that will be used to queue data and store coefficients within each module.  The 

internal logic of the device is surrounded by IOB input/output buffers used to 

connect the device to its host board.  Along with a set of multiple clock 

distribution systems, the FPGA offers a formidable array of capabilities. 
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Figure 6 - Xilinx Virtex-II 3000 FPGA 

 

If used as a traditional FPGA, all of these resources may be used for a design and 

a reasonably optimized mapping, placement, and routing of the design would be 

determined using standard design tools.  In the case of a partially reconfigurable 

design, however, CLB logic placement and routing must be confined within 

specific internal boundaries in a manner that allows individual modules to be 

reloaded without effecting unrelated logic and routing.  The partial 

reconfiguration support offered by the Virtex-II is column-based, meaning that 

the granularity of reconfiguration is limited to a module that is four slices wide 

and ranging the full height of the device.13  As exhibited in Figure 7, this four-
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slice minimum width restriction is based on the number of tri-state buffers 

necessary to create a bus macro barrier between modules, a concept that will be 

detailed later in this document.  The full column restriction is based on the 

architecture’s reliance on a full column as the finest granularity of bitstream 

loading available.  This finest grain reconfigurable area consists of all CLB logic 

resources within the space as well as all non-clocking routing resources and IOB 

input/output buffers along the perimeter of the device that border the 

reconfigurable area.  Partial reconfiguration bitstreams may be loaded through the 

standard reconfiguration interface such as the SelectMAP interface and will only 

affect the logic and routing within the confines of the target area.  As mentioned, 

this area of the device may be partially reconfigured while the remainder of the 

device continues to operate.  The designer, however, must be privy to contention 

issues that may arise if the remainder of the device attempts to communicate with 

portions undergoing run-time partial reconfiguration. 
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Figure 7 - Column-based Reconfiguration 
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2.2. Existing Research 

In the past decade, a number of research efforts have been undertaken to explore 

and exploit partial reconfiguration in FPGAs.  Partial reconfiguration is defined as 

any instance where only a portion of the device is undergoing a configuration 

change, as opposed to the entire device.  Support for partial reconfiguration 

implies that specific regions of the device can be addressed and modified by a 

reconfiguration bitstream without modifying or disabling unchanged portions of 

the configuration.  As a result, partial reconfiguration applications require special 

attention to logic and routing resource allocation in order to prevent contention.  

A number of FPGAs were developed with the capability for partial 

reconfiguration, such as the Xilinx XC3090 and XC6200 series as well as parts 

from Atmel and National Semiconductor.14  While research efforts vary from 

developing place and routing tools to creating simulation environments, research 

projects generally fell into one of two categories: partial reconfiguration using 

dynamically compiled configurations and partial reconfiguration using pre-

compiled designs.   

 

The first category of dynamic compilation-based schemes has been primarily 

targeted towards dynamically recompiling a configuration to create optimized 

solutions in run-time.  The RRANN and RRANN2 projects attempted to create a 

run-time reconfigurable artificial neural network on an FPGA with the capability 

to recompile and reconfigure itself as it effectively learned how to process data.15  

This project also considered creating partial reconfiguration bitstreams such that 

only the differences between two consecutive configurations are defined in the 

bitstream, which would decrease the size of the bitstream and reduce 

reconfiguration time.  As this thesis project requires reconfiguration sockets to be 

loaded with any of a large library of DSP modules, it would be prudent to simply 

store each possible bitstream rather than create differential bitstreams to convert 

between each possible combination of configuration changes.  More recent work 

such as Xilinx’s Jbits tool also attempts to create a real-time redesign capability 

by leveraging core libraries to quickly map, place, and route designs onto a 
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device.16  This project, however, does not attempt to tackle the problem of real-

time design compilation and reconfiguration, predominantly due to the lack of 

commercially available tools to support this endeavor. 

 

A larger effort has been made to develop the design and verification tools 

necessary to create designs allowing for partial reconfiguration using pre-

compiled bitstreams.  The DYNASTY project created by Milan Vasilko attempts 

to create a CAD framework that supports not only the typical spatial 

floorplanning of an FPGA design but also a temporal floorplanning aspect as 

well, enabling the designer to visualize the layout of tasks on the FPGA over 

time.1718  While this design tool capability would be ideal for this project, the 

newer and more powerful Xilinx FPGAs are not supported under the design 

environment.  On other projects, researchers have attempted to create module-

based designs similar to this project.  Gordon Brebner, with his concept of 

Swappable Logic Units, for example, created an architecture supporting the 

partial reconfiguration of small logic blocks within a defined interface for a Xilinx 

XC6200 device.19   Unlike this thesis, however, Brebner’s work attempts to 

modify the configuration on a much smaller scale than the larger DSP algorithm 

modules created for this design.  

 

While some research has set out to create design implementation tools and 

architectures supporting partial reconfiguration, another group of projects have set 

out to create simulation and verification environments with this same support.  As 

will be evident later in this thesis, the lack of compatible simulation tools 

drastically hinders the ability of designers to verify partially reconfigurable 

designs created with standard design tools.  The Dynamic Circuit Switching 

(DCS) CAD framework enables the implementation and verification of partial 

reconfiguration designs by converting dynamic designs into multiple static 

designs for verification, and then back to single dynamic system.20  Dynamic 

circuitry is defined as any logic or routing resources designed to be modified 

during partial reconfiguration.  This capability of the simulator to model static 
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circuitry while simultaneously modeling the replacement of dynamic circuitry, 

however, is not available for use in this thesis and therefore necessitated the 

manual simulation of each separate design permutation without the ability to 

simulate the partial reconfiguration process. 

2.3. Current Capabilities 

While each of the research projects mentioned in the previous section has made 

academic progress in the field of dynamically reconfigurable FPGAs, much work 

remains.  Current academic and commercial development efforts have attempted 

to bridge the gap by creating tools that support partial reconfiguration in modern-

day architectures such as the Virtex and Virtex-II platform FPGA families. 

2.3.1. JBits 

Being the leading designer and producer of FPGAs, Xilinx has an inherent 

interest in providing the design tools necessary to allow for run-time partial 

reconfiguration.  JBits evolved from earlier internal partial reconfiguration 

tool into a Java-based API supporting the reading, manipulation, and writing 

of configuration bitstreams for Virtex FPGAs.21  The tool generally operates 

at a lower level, allowing fine-grained bitstream and logic manipulation and 

the ability to draw on automated core generation capabilities. The JBits tool 

also includes JRoute, which provides access to routing resources in dynamic 

compilation situations.22  VirtexDS, perhaps the most significant and useful 

member of the JBits toolset, allows for device- level simulation of run-time 

reconfiguration designs by running simulations directly against bitstreams 

generated with JBits.23  

 

While this toolset may seem like the optimal design environment for this 

thesis, the JBits toolset currently only supports Virtex and older XC4000 

series FPGAs and is not compatible with the Virtex-II platform FPGA utilized 

in this thesis.  Since the embedded multipliers intrinsic to the Virtex-II and 

absent in the Virtex are vital for the DSP application targeted, JBits will not 

be considered for the remainder of this project.  It is important to note, 
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however, that this project would have greatly benefited from the dynamic 

simulation features available in VirtexDS. 

2.3.2. PARBIT 

In a project similar to the run-time partial reconfiguration architecture 

designed for this thesis, an effort is underway to design a reconfigurable ATM 

switch architecture called RECATS that utilizes dynamic hardware plugins 

designed to fit with specific regions of an FPGA. 24  Based on the Xilinx 

Virtex-E architecture, these dynamic hardware plugins are designed to fit 

within interface gaskets present on the FPGA.  To accomplish the task of 

creating full column partial bitstreams, PARBIT was created to allow for 

dynamic hardware plugin bitstreams to be combined with a bitstream 

representing the default configuration to create valid column-length 

bitstreams.  While this bitstream generation feature may have been useful for 

this project, the tool is also not compatible with the Virtex-II FPGA family.  

Additionally, the ability to circumvent some of the routing constraints 

confronted by both the dynamic hardware plugin project and this project have 

been accommodated by Xilinx’s Modular Design tool and the creation of a 

native partial reconfiguration design flow. 

2.3.3. Modular Design 

While academic research projects and experimental tools might be useful for 

the general advancement of reconfigurable computing technology, the 

technology is commercially useless unless a viable application or product is 

derived.  To complement the partial reconfiguration support inherent in the 

Virtex-II FPGA, Xilinx recently augmented their ISE development toolset 

with a modular design tool, which enables the synthesis, translation, mapping, 

placing and routing of an individual modules within a larger design.  The 

modular design tool is intended to allow large FPGA designs to be partitioned 

among multiple engineers as multiple modules that can be synthesized, 

translated, mapped, placed and routed, timing can be verified, and the 

modules can be combined into a final design.  In order to prevent resource 

contention, the modular design tool allows a designer to initially budget 
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individual modules into specific regions of chip and automatically prevent 

logic and routing from straying beyond those boundaries.25  This feature 

solves many of the manual routing issues encountered by earlier research 

projects. 

 

While designers previously had the ability to specifically place individual 

logic components, the added ability to control routing gives the modular 

design tool the ability to create a complete bitstream for a partially 

reconfigurable module by eliminating resource overlap.  Xilinx formalized 

this capability with the release of application note XAPP290 detailing the 

steps necessary to creating a partially reconfigurable design using Xilinx’s 

ISE development suite with the modular design add-on. 26  While modular 

design allowed the creation of complete individual modules, XAPP290 

introduced a bus macro scheme utilizing tri-state buffers to bridge the gap 

between interconnected modules and prevent signal failure during 

reconfiguration.  Although severely lacking in the ability to simulate a 

partially reconfigurable environment, the modular design tool with partial 

reconfiguration support does create the capability to design a partially 

reconfigurable system using standard design tools and a commercially 

available FPGA.  Therefore, this thesis will be performed using this toolset 

along with a thorough analysis of the advantages and disadvantages of this 

design flow. 
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3. DSP Algorithms 
Teradyne’s DSP requirements are as diverse as the devices under test.  In many 

applications, digitized data must pass through a series of standard processing 

functions, including an equalizer, a numerically controlled oscillator, quadrature 

mixers, resamplers, and other filters.  A typical processing sequence is given in 

Figure 8.  Without the use of an FPGA, this series of algorithms could exis t as a static 

ASIC chain, however the flexibility of the DSP chips is limited and would necessitate 

the use of a G4 CPU for additional custom processing.  Given that the purpose of this 

project is to prove that an FPGA-based dynamically reconfigurable processing 

solution can compare in speed and capabilities to both ASIC and CPU based 

processing, three demonstration filters will be created for this thesis.  Therefore, an 

equalizer will be designed as a 32-tap even symmetry FIR filter, a numerically 

controlled oscillator (NCO) that feeds into a quadrature mixer with dual outputs will 

be implemented, and an interpolator/resampler will be implemented using a 32-tap 

time-varying coefficient even symmetry FIR filter.  The resampler differs from the 

equalizer by using an addressable array of coefficient values for each tap rather than a 

single value.  All filters will be designed to operate at 100MHz on 16-bit data with no 

less than 16-bit internal resolution. 

Data from A/D
Equalizer

(64 Tap FIR)

In Phase
Resampler

(Polyphase FIR)

Numerically
Controlled
Oscillator/

Quadrature Mixer

Quadrature
Resampler

(Polyphase FIR)

FIR Integer
Decimation Filter

FIR Integer
Decimation Filter

A/D Clock

 

Figure 8 - Sample DSP Filter Series 
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3.1. FIR  

The purpose of the FIR filter is to equalize the digitized signal to compensate for 

imperfections in the instrument receiver response.  Each delayed incoming data is 

multiplied by a coefficient, summing the results of all 32 taps, and outputting the 

resulting sum to the next stage of data processing.  Linear phase is assumed and 

the multipliers can be reused according to the symmetry condition, which reduces 

the number of multipliers needed, as illustrated by Equation 1.  Figure 9 gives a 

simplified 4-tap version of the design.  The 32-tap even symmetry FIR filter will 

be designed to operate on 16-bit signed data with 16-bit coefficients to produce 

32-bit products and sums internally, which will then be rounded down to a 16-bit 

signed output.  Coefficients will not be hard-wired into the design and can be 

reloaded at any time without having to reconfigure any logic. 

Equation 1 - 32 tap Even-symmetry FIR Filter 
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Figure 9 - Even Symmetry FIR Filter 
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As an added feature, the system will be designed such that two neighboring 32-tap 

even symmetry FIR filters can be joined to form a single 64-tap even symmetry 

FIR filter.  Data tap interconnects will be provided between modules along with a 

32-bit intermediate sum output from the first to second filters in the sequence.  

The resulting sum of all 64-taps will then be rounded down to a 16-bit value for 

outputting. 

3.2. Quadrature Mixer 

The quadrature mixer/downconverter will be implemented with a built- in 

numerically controlled oscillator, or NCO, that is designed to digitally synthesize 

a discrete sine and cosine based on the supplied period parameter.  The 

synthesized signals are fed into two multipliers together with the incoming data 

stream.  The NCO portion of this filter will consist of a phase accumulator used to 

address sine and cosine lookup tables in order generate deterministic waveforms.  

As seen in Figure 10, the 32-bit phase accumulator is augmented by a 32- bit 

assignable phase increment register, with the output rounded down to a 16-bit 

phase angle used to address the lookup tables.  The sine and cosine lookup will 

then output a set of 16-bit discrete output values, which will then be individua lly 

multiplied by the 16-bit data input to create discrete output values.  In order to 

minimize lookup table memory requirements, quarter wave symmetry will be 

utilized, meaning that only one quarter of the sine waveform must actually be 

stored and that the quadrant designated by the phase angle can be used to 

determine the sign and value of the output.  The 16-bit rounded in-phase and 

quadrature values will each then be outputted to the next processing module. 
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Figure 10 - Quadrature Mixer with NCO 

 

3.3. Time-varying Coefficient FIR 

The time-varying coefficient FIR filter will be implemented as a 32-tap even 

symmetry FIR filter with time-varying coefficients.  The even symmetric tap 

accumulators, multipliers, and sum accumulation structure is identical to the 32-

tap even symmetry FIR filter detailed above.  Rather than a single coefficient for 

each multiplier, however, a memory of 1Kx16-bit coefficients is connected to 

each multiplier.  As seen in Figure 11, all 16 sets of 1K memories are addressed 

by an accumulator that increments the address using an assignable 32-bit delta 

value and taking only the rounded 10 most significant bits as the coefficient 

address.  The coefficients and delta can be chosen to give a range of filtering 

capabilities.  Like the other filters, all coefficients and the delta can be reloaded 

once the filter has been configured onto the FPGA.  While the capability of 

combining two 32-tap time-varying coefficient FIRs into a single 64-tap time-

varying coefficient FIR will be not supported for this thesis, two neighboring 32-

tap time-varying coefficient FIRs can be configured to pass thru the necessary 

data values and sums to allow for simultaneous in-phase and quadrature filtering. 
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Figure 11 – Time-varying Coefficient FIR 
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4. Design Decisions 
4.1. Device Constraints 

The Xilinx Virtex-II FPGA, while physically capable of partial reconfiguration, is 

not without limitations.  It is possible to address and dynamically reconfigure 

specific portions of the device, but this dynamic reconfiguration must correspond 

to a column-based bitstream-reloading scheme.  As mentioned in Chapter 2, the 

smallest portion of the device that can be dynamically reconfigured consists of an 

area four slices wide by the full column height of the device.  Any area to be 

reconfigured must therefore be an integer multiple of a region this size.  This 

limitation has the effect of heavily constraining the type of reconfigurable 

architectures and designs supportable on the Xilinx Virtex-II.  Using this device, 

it would not be possible to create a socket-based architecture consisting of a grid 

of interconnected modules, as seen in Figure 12.  The PARBIT project currently 

in progress intends to create a gasket-based modular architecture along with a 

bitstream modification tool capable of combining multiple bitstreams to create 

valid full column bitstreams.27   

 

Figure 12 - Socket-based Architecture without Column Restraints 
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While the PARBIT tool might solve the problem of allowing the partial 

reconfiguration of modules that do not extend the full height of the device, the 

routing constraints of the Virtex-II continue to pose a formidable hurdle to 

unrestricted module design.  Since all non-clocking routing resources are 

designated by the reconfiguration bitstream, all routing resources within a 

partially reconfiguring module are not available during reconfiguration.  In the 

case that a partial reconfiguration is altering a set of columns in the middle of the 

device, this restriction thus prevents signals from passing between the left and 

right sides of the device without making use of external pin connections.  This 

routing restriction limits the ability to freely route signals inside the device, 

leading to the design of a chained module architecture in which modules can 

communicate with their immediate neighbors, but cannot directly send or receive 

to more distant modules, a scheme resembling that given in Figure 1. 

 

Finally, while the internal structure of the Xilinx Virtex-II FPGA is standardized 

and uniform with the sole exception of embedded multiplier and block RAM 

columns, the device does not support the ability to dynamically relocate modules 

to different locations on the device.  For example, while areas A and B of Figure 

13 are identical in size, logic and routing resources, inclusion of embedded 

multipliers and block RAM, and access to IOB resources, it would not be possible 

to create single bitstream that could be loaded into either location.  Rather, a 

separate version of the bitstream would need to be built for each possible location. 

 

Figure 13 - Dynamic Relocation Restriction 
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Despite being the most advanced commercially FPGA architecture available at 

the time of this project, the Xilinx Virtex-II’s device constraints drastically curtail 

the types of reconfigurable designs currently possible.  As a result of these 

restrictions, the architecture described in the next chapter consists of a socket-

based architecture that includes five full column-height modules in a chain from 

left to right on the device.  These sockets are connected to their immediate 

neighbors via bus-macro routing protocols, which make use of tri-state buffers to 

communicate across module boundaries in accordance with a standard interface 

scheme.  Additionally, since a single DSP module can be instantiated in all five of 

the sockets, five versions of the module bitstream must be created to support all 

possible locations. 

4.2. Design Flow Constraints 

Although one of a few manufacturers claiming to support partial reconfiguration 

of its devices, Xilinx is unique in its initial support for partial reconfiguration 

using standard design tools and methodologies.  As mentioned in Section 2.2.3, 

Xilinx’s ISE framework with the modular design tool does give the user the 

ability to create a partially reconfigurable design, but a number of roadblocks 

remain to prevent the more effective design and proper verification of such a 

design.  On a superficial ease-of-design level, the framework does not offer a 

temporal floorplanning capability that allows designer to visualize configuration 

change over time.  It is therefore necessary to design modules separately and 

manually combine them to create complete permutations of the design.  This flaw 

in the design flow, however, is minor compared to others and will likely be 

corrected in future design flows as the demand for such features increases.   

 

Along with the partial reconfiguration design flow, Xilinx has included a bus 

macro that enables the simple creation of boundary connections between partially 

reconfigurable modules.  Figure 14 shows that each bus macro consists of four tri-

state buffer bits that can be driven and read from either side of the module 

boundary.28  Each 4-bit bus macro is one CLB in height and four CLBs wide - 
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two on each side of the module boundary.  While the functionality of this macro 

could have been manually created, Xilinx has also encoded placement and routing 

directives into the macro for use by the ISE place and route tool.  These 

placement and routing directives ensure that signals from both connecting DSP 

sockets interconnect at a single defined location.  Without the use of these bus 

macros, it would not currently be possible to constrain signals to specific routing 

locations for interconnect purposes.  Each of the 189 bus macros used in this 

design must be manually fixed to a specific location on the device, as will be 

illustrated in Chapters 5 and 6.  Unfortunately, the design flow documentation 

only recommends for the bus macros to be uni-directional within the design to 

prevent signal contention, which eliminates the possibility of designing a bi-

directional network or bus for routing signals between connecting modules.     

 

 

Figure 14 - Bus Macro 

 

It should be reiterated that, while cumbersome, the design flow does allow for the 

effective creation of a partially reconfigurable design.  Verification, however, 

cannot be properly accomplished because no commercially available simulator 

supporting partial reconfiguration currently exists.  Like any standard FPGA 

design, a single assembled static permutation of the partially reconfigurable 

design can be verified for functionality and timing using a standard testbench.  As 
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will be explained in later chapters, a permutation for this design would consist of 

the initial Fixed_Logic module, all five sockets filled with a DSP module, and the 

End_Logic module.  Limited to this methodology, however, it is not possible to 

actually simulate the process of partially reconfiguring the device or to simulate 

the functionality of the FPGA in an in-system use situation.  Since the available 

time and scope of this thesis forbids prototype board testing that would confirm 

the validity of this design in a real world scenario, the simulation of multiple 

static permutations of the design will have to suffice for both benchmarking and 

conclusion-drawing purposes.  Information on reconfiguration times and the 

performance of the FPGA during partial reconfiguration must be extrapolated 

from information provided in Xilinx’s data book as well as observed simulation 

results, which will be presented in Chapter 8. 

4.3. Decision Matrix 

While the decision to proceed with the project using the Xilinx Virtex-II FPGA 

along with Xilinx’s ISE and modular design tool may seem obvious given the 

overall design tool capabilities and device features, it seems important to quantify 

that decision with a decision matrix.  Table 1 details the three design routes under 

consideration at the commencement of this thesis project along with itemized 

features, allowing for a quantification of the advantages and disadvantages of 

each design path.  Not all features are weighted equally, as indicated by the 

subjective scaling factor on the far right of the table.  The chosen scaling factors 

reflect both information garnered during the research of previous projects and the 

recommendations of fellow engineers or supervisors. 



 36

Table 1 - Design Decision Matrix 

 
 

Using either the Xilinx Virtex or Virtex-E, for example, would have eliminated 

the ability to take advantage of the Virtex-II’s size, speed, and embedded 

multiplier features.  The Java-based JBits tool may support partial 

reconfiguration, but the design flow did not permit for simple and reliable design 

creation or verification and would have also carried with it the added overhead of 

requiring extensive experience with both standard FPGA design and Java 

programming.  The PARBIT tool does present attractive features such as the 

added flexibility of dynamic module relocation and fewer module shape 

limitations, but is also inhibited by design flow concerns, validation, and tool 

support concerns.  Utilizing the Xilinx ISE with the modular design tool offered 

the most attractive design pathway despite dramatic limitations in dynamic 

module relocatability and strict module shape limitations.  In all cases, simulation 

support for dynamic partial reconfiguration was not available and therefore this 

factor was not taken into account in the decision matrix. 
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5. Device Architecture 
5.1. Design Overview 

Although aspects of the device architecture have been described or alluded to on 

an introductory level prior to now, this chapter will detail the exact specification 

of the design.  The architecture, as illustrated by Figure 15 consists of seven 

distinct modules arranged left to right across the Xilinx Virtex-II 3000 series 

FPGA and separated by bus macro boundary interconnects.  The first and last 

modules, referred to as Fixed_Logic and End_Logic respectively, exist in all 

permutations of the device and act as the interface connecting the internal DSP 

structure to the external interface.  The five interior modules are the DSP sockets 

into which DSP modules can be loaded, referred to as sockets 1 thru 5.  Between 

each module, a series of tri-state buffer bus macros has been placed to act as an 

interface, which is intended to prevent signal contention during reconfiguration.  

In this scheme, modules can only communicate with their immediate neighboring 

modules.  Data and status signals therefore propagate through the system in order 

to reach their destinations.  If the End_Logic module is ready for data, for 

example, that signal will propagate through the five sockets in reverse order until 

it reaches the Fixed_Logic module.     
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Figure 15 - Chip Layout 
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In order to make this device less dependent on outside micromanagement, the 

Fixed_Logic module orchestrates all data flow, parameter loading, and partial 

reconfiguration control.  Data is then processed through the DSP modules in a 

left-to-right fashion to be transmitted externally via the End_Logic module.  

While the data bus and auxiliary parameter loading bus, which consists of the 

aux_addr, aux_data, dest_id, and aux_en signals and is referred to as aux_bus, 

travels rightward across the device, a few status signals communicate leftward to 

facilitate Fixed_Logic module operation.  The details surrounding each intra-

module and inter-module signal will be expounded upon in the following sections.      

5.2. Fixed_Logic Architecture  

The Fixed_Logic module essentially acts as the brain of the FPGA design - 

controlling data flow, parameter loading, and maintaining the operational state of 

the device.  In the process of facilitating the intended operation of this run-time 

partially reconfigurable design, the current operational state of the device must 

constantly be monitored and coordinated with any attempts to either modify the 

configuration or load any new parameters or coefficients into any of the existing 

DSP modules, a process referred to as reparameterization.  If either a 

reconfiguration or reparameterization is desired, a finite state machine sequence is 

followed to ensure that all necessary DSP modules are disabled prior to said 

modifications.  Likewise, the affected DSP must also be re-enabled post 

reconfiguration or reparameterization so that the device may resume operation.  

Any data entering the data_FIFO prior to either a reconfiguration or 

reparameterization initialization signal must be processed with the old 

configuration before any changes occur.  Similarly, any data input to the device 

after the initialization signals must be processed with the new configuration.  In 

order to simplify the description of this fixed logic module, Figure 16 exhibits the 

internal compartmentalization of this module into coherent operational sub-

modules.  The operation and construction of each of these sub-modules will be 

described in the following sections. 
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Figure 16 - Fixed Logic 

 

Preceding the descriptions of each sub-module, a number of general-purpose 

input signals should be detailed.  Like all other regions of the FPGA, the fixed 

logic module runs synchronously with the rising edge of the input clock signal, 

referred to as clk.  The reset_all signal, with a single exemption in the current 

configuration register, effectively resets the device to a default operational state.  

The mode input defines the current operational mode of the device and can be 

externally set to stop, run, partial reconfiguration, or reparameterization modes.     

5.2.1. Data_Input_Control 

The Data_Input_Control sub-module essentially handles the loading of 16-bit 

data into the data_FIFO based on a number of input control signals sent to the 

device, acting as the first step in the data flow management process.  In simple 
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terms, if Data_Input_Control is ready for data and new data is present on the 

data input bus, Data_Input_Control will load this data into the data_FIFO.  

This loading process, however, must be coordinated with both external signals 

and internal signals asserted by other sub-modules.  When in run mode, 

Data_Input_Control will manage data entering the data_FIFO by tracking the 

reconfig_strobe and parameter_strobe signals.  These signals instruct the 

FPGA to initiate the reconfiguration or reparameterization processes, 

respectively.  In the case that either strobe signal is asserted, 

Data_Input_Control must differentiate between pre-strobe and post-strobe 

data by adding an extra data bit to each 16-bit data input word, enabling the 

17-bit data_FIFO to virtually act as two separate 16-bit data_FIFOs.  For 

example, after a system reset, data entering the system will have a 0x0 set as 

the 17th data_FIFO bit to indicate that the data occupies the first virtual FIFO.  

After a reconfig_strobe or parameter_strobe signal, however, 0x1 will be 

appended as the 17th bit to indicate that this new data belongs in the second 

virtual FIFO.  This distinction between old and new data will allow the system 

to process all old data before changing the system.  If another strobe signal 

occurs after the configuration change is made, the 17th bit will toggle back to 

0x0 and the process will repeat.  The active_fifo signal will reflect which 

virtual FIFO is currently in use.  In order to prevent subsequent 

reconfig_strobe or parameter_strobe signals from confusing the 

Data_Input_Control by beginning an illegal FIFO toggle operation, the 

reconfig_busy and parameter_busy signal asserted by other sub-modules are 

checked.  Finally, Data_Input_Control can be returned to a default state if the 

reset_all signal is asserted. 

5.2.2. Data_FIFO 

In order to enable the run-time aspect to this FPGA design, data is stored in 

data_FIFO queue during either reconfiguration or reparameterization.  The 

goal of this feature is to decrease the overhead of reconfiguration or 

reparameterization by allowing Teradyne’s tester to continuously transmitting 

digitized waveforms into the FPGA.  The system will rely of the FPGA’s 
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ability to process the data with multiple separate configurations.  The FPGA 

would then utilize pauses in input data flow to complete processing of current 

data and empty out the data_FIFO.  The data_FIFO queue is implemented as a 

16Kx17-bit FIFO, with the 17th bit acting to distinguish between two virtual 

16-bit FIFOs.  On the input side of the FIFO, the fifo_full signal will be used 

by Data_Input_Control to determine whether the FPGA is ready for data.  

Also, the new data input to Data_Input_Control will be used to assert the 

fifo_wr_en signal that enables the writing of data to the FIFO.  Likewise, the 

fifo_empty signal is used by Data_Output_Control to determine whether 

data_ready_next can be asserted.  Finally, the ready_for_data_next signal sent 

to Data_Output_Control by DSP Socket_1 dictates whether fifo_rd_en is 

asserted to read data from the FIFO. 

5.2.3. Data_Output_Control 

When in run mode, the Data_Output_Control sub-module acts as the final 

stage of data flow control within the Fixed_Logic module, reading data from 

the data_FIFO and sending the output data to DSP Socket_1 as long as the 

data_FIFO is not empty and DSP Socket_1 is ready for data.  The complexity 

of this sub-module arises from determining which of the two virtual FIFOs is 

active and transmitting the appropriate output data.  While the active_fifo 

signal emitted by Data_Input_Control conveys the current active FIFO to 

Data_Output_Control, older data may still exist in the data_FIFO that must be 

transmitted to DSP Socket_1 prior to any FPGA configuration or parameter 

modifications.  Therefore, once active_fifo changes from its previous value, 

Data_Output_Control will continue to output the previous FIFOs data from 

data_FIFO until the 17th data bit matches active_fifo, indicating that all old 

FIFO data has been flushed.  At this time, Data_Output_Control will assert the 

prev_fifo_empty bit to notify the Parameter_ Control sub-module that it may 

begin reconfiguration or reparameterization.  Data_Output_Control will then 

monitor the fifo_outputting signal asserted by the Parameter_ Control sub-

module and, when fifo_outputting matches active_fifo, Data_Output_Control 

resumes the transmission of data from data_FIFO to the first DSP socket. 
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5.2.4. Next_Configuration and Next_Configuration_Flag 

The next_config and next_config_flag registers are the first stages related to 

the partial reconfiguration of the system.  Prior to a reconfig_strobe signal 

initiating partial reconfiguration, the system must be informed of which DSP 

modules are to be loaded into the DSP sockets.  The next_config registers 

perform this function based on the mode, socket_loc, module_id, and 

module_set input signals.  The next_config registers consist of five 2-bit 

registers, one for each of the five DSP sockets.  As will be described later in 

this chapter, four DSP modules have been designed for this feasibility study, 

each corresponding to a 2-bit value.  If in either run mode or partial 

reconfiguration mode, the external assertion of module_set will result in the 

value of module_id being stored in the next_config register indicated by 

socket_loc.  Values of socket_loc outside of the range of one through five 

inclusive are invalid and are ignored by the Fixed_Logic module.  Since 

multiple configuration changes can be initiated by a single reconfig_strobe 

signal, any or all of the next_config registers can be modified prior to 

reconfiguration.  In the case of a reset signal, the values of next_config will 

default to the current configuration of the system, as indicated by the 

current_config registers. 

 

The next_config_flag registers exist as a 5-bit array that informs the 

Reconfiguration_Control sub-module as to which next_config registers have 

been modified.  This information is then used to determine which DSP sockets 

are to be reloaded with next DSP modules during partial reconfiguration.  In 

the case that only DSP Socket_1 is to be reconfigured, for instance, 

next_config_flag[1] will be asserted while the other bits remain constant.  

Once the Reconfiguration_Control sub-module has made the necessary 

reconfigurations, it will de-assert the affected next_config_flag bits.     

5.2.5. Current_Configuration 

Identical in size to the next_config registers, the current_config registers 

reflect the current configuration loaded into the five DSP sockets.  In addition 
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to being used internally by the Parameter_ Control sub-module, these five 2-

bit values are also routed to output buffers allowing externally connected 

devices to monitor the internal configuration of this FPGA.  Only the 

Reconfiguration_Control sub-module can modify the current_config registers, 

reflecting any configuration changes made to the system.  Like the 

next_config register loading mechanism, the value of reconfig_module_id will 

be loaded into the appropriate current_config register as dictated by 

reconfig_socket_loc and the reconfig_done strobe.  Unlike all other sub-

modules of the Fixed_Logic module, a reset signal while in run mode will not 

change the current_config registers as they must continue to accurately reflect 

which DSP modules are loaded into each of the five DSP sockets.  Only a 

reset signal asserted while in stop mode can override this safeguard.   

5.2.6. Reconfiguration_Control 

While the previously mentioned sub-modules have not been especially 

complex in functionality, the Reconfiguration_Control sub-module is more 

convoluted as it must accurately coordinate the reconfiguration process based 

on a vast array of input status signals and registers.  Simply, the 

Reconfiguration_Control sub-module, when instructed via reconfig_strobe, 

must determine which sockets are to be reloaded with new DSP modules, 

coordinate the disabling and re-enabling of any affected DSP sockets with the 

Parameter_Control sub-module, and output the necessary bitstream control 

signals to facilitate partial reconfiguration.  The following paragraph will 

more accurately define this operation in greater detail, in accordance with 

Figure 17. 



 44

RCstate1 -  Check Flags
reconfig_done=0
if index<=5
  if next_config_flag[index]
    RCstate=2
  else
    reconfig_socket_loc=0
    index++, RCstate=1
else
  RCstate=5

RCstate0 - Default
if reconfig_strobe
  reconfig_busy=1
  index=1
  RCstate=1

RCstate2 - Initiate Reconfiguration
reconfig_socket_loc=index
reconfig_module_id=next_config[index]
bitstream_addr=((index-1)*4)+(next_config[index]+2)
bitstream_init=1
RCstate=3

RCstate3 - Wait
bitstream_init=0
if bitstream_done
  RCstate=4

RCstate4 - Repeat
if ~bitstream_done
  bitstream_addr=0
  reconfig_done=1
  RCstate=1

RCstate5 - Wait
if ParameterControllerState=17
  RCstate=6

RCstate6 - Finished
reconfig_busy=0
RCstate=0

 

Figure 17 - Reconfiguration_Control FSM 

 

As cited, the partial reconfiguration process is commenced by the assertion of 

the reconfig_strobe signal while in the appropriate mode, resulting in the 

immediate activation of the reconfig_busy signal.  At this time, the 

Reconfiguration_Control sub-module must wait for the Parameter_Control 

sub-module to properly deactivate the affected DSP sockets, a process that 

will be explained in the next section.  Once this deactivation process is 

completed, as indicated by the begin_reconfig signal declared by the 

Parameter_Control sub-module, Reconfiguration_Control will utilize 

next_config_flag to determine which DSP socket to begin reconfiguring.  In 

the case that multiple DSP sockets are to be reconfigured, 

Reconfiguration_Control will start with the leftmost socket.  As each socket is 

undergoing reconfiguration, the socket location will be reflected in the 

reconfig_socket_loc signal.  This reconfig_socket_loc signal in conjunction 
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with reconfig_busy will prevent any other operations from interfering with 

partial reconfiguration.   

 

Along with internally coordinating this reconfiguration process, 

Reconfiguration_Control must also output the appropriate bitstream address 

and initialization signals, which will instruct an external bitstream storage 

device to load a particular bitstream.  For this feasibility study, each of the 

four sample DSP modules has a separate bitstream address for each of the five 

DSP sockets.  Once the bitstream has been loaded into the appropriate socket, 

the bitstream_done signal will inform reconfiguration control that it may 

proceed with the next stage of the reconfiguration process.  

Reconfiguration_Control then asserts the reconfig_done signal and, if 

necessary, repeats the process by triggering the partial reconfiguration of 

another DSP socket.  Once all desired reconfiguration changes have been 

completed, Reconfiguration_Control will wait for the Parameter_Control sub-

module to reactivate the appropriate DSP sockets, terminate the reconfig_busy 

signal, and return to a default state. 

5.2.7. Parameter_Control 

By far the largest and most complex facet of the fixed logic module, the 

Parameter_Control sub-module revolves primarily around a 41-state finite 

state machine that control the operational status of all five DSP sockets in 

combination with both reconfiguration and reparameterization operations.  

Figure 18 illustrates this mechanism.  In the case of either a reconfig_strobe or 

parameter_strobe, this module first initiates a shutdown sequence designed to 

involve all sockets to the left of the rightmost DSP socket targeted by the 

respective operation.  The rightmost-targeted DSP socket would be defined as 

the most significant next_config_flag bit asserted in the case of 

reconfiguration or the value of source_id in the case of reparameterization.  

Using the aux_bus as a transmission medium, this module will send signals 

instructing these target sockets to finish processing all pre-strobe data.  After 

Data_Output_Control notifies Parameter_Control that the previous FIFO is 
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empty, Parameter_Control will then wait for the necessary sockets to return a 

status signal indicating that the socket is finished processing data and ready 

for reconfiguration or reparameterization.  This status signal is returned via 

the module_status and source_id signals, also collectively known as 

status_bus, which indicate the type of status message and the socket source of 

the message, respectively.  For example, take the case that DSP Socket_3 was 

to be reloaded with a new DSP module.  Sockets 1, 2, and 3 would all be 

instructed to finish processing and send the appropriate deactivation 

notification back to Parameter_Control.  After prev_fifo_empty is asserted 

and all three status signals are received, Parameter_Control would then 

instruct Reconfiguration_Control to begin reconfiguration.  In the case of a 

parameter loading operation, the shutdown and notification sequence would 

be identical except that the sequence would be followed by parameter loading 

rather than partial reconfiguration. 



 47

PCstate7 - Disable_1
if ((next_config_flag[1] and
status_bus=socket_1 empty) or
~next_config_flag[1])
  PCstate=8

PCstate0 - Default
if reconfig_strobe
  PCstate=1
if parameter_strobe
  parameter_busy=1
  PCstate=33

PCstate1 - Warn_5
if next_config_flag[5]
  aux_bus = warn socket_5
PCstate=2

PCstate2 - Warn_4
if next_config_flag[4]
  aux_bus = warn socket_4
PCstate=3

PCstate3 - Warn_3
if next_config_flag[3]
  aux_bus = warn socket_3
PCstate=4

PCstate4 - Warn_2
if next_config_flag[2]
  aux_bus = warn socket_2
PCstate=5

PCstate5 - Warn_1
if next_config_flag[1]
  aux_bus = warn socket_1
PCstate=6

PCstate11 - Disable_5
if ((next_config_flag[5] and
status_bus=socket_5 empty) or
~next_config_flag[5])
  PCstate=12

PCstate10 - Disable_4
if ((next_config_flag[4] and
status_bus=socket_4 empty) or
~next_config_flag[4])
  PCstate=11

PCstate9 - Disable_3
if ((next_config_flag[3] and
status_bus=socket_3 empty) or
~next_config_flag[3])
  PCstate=10

PCstate8 - Disable_2
if ((next_config_flag[2] and
status_bus=socket_2 empty) or
~next_config_flag[2])
  PCstate=9

PCstate6 - FIFO Empty
if prev_fifo_empty
  PCstate=7

PCstate12 - Start Reconfig
begin_reconfig=1
PCstate=13

PCstate13 - Socket_1
if (reconfig_socket_loc=1 and
reconfig_done)
  PCstate=14
if (reconfig_socket_loc!=1 and
RCstate=5)
  PCstate=15

PCstate14 - Reactivate_1
aux_bus = reactivate socket_1
PCstate=15

PCstate15 - Socket_2
if (reconfig_socket_loc=2 and
reconfig_done)
  PCstate=16
if (reconfig_socket_loc!=2 and
RCstate=5)
  PCstate=17

PCstate16 - Reactivate_2
aux_bus = reactivate socket_2
PCstate=17

PCstate17 - Socket_3
if (reconfig_socket_loc=3 and
reconfig_done)
  PCstate=18
if (reconfig_socket_loc!=3 and
RCstate=5)
  PCstate=19

PCstate21 - Socket_5
if (reconfig_socket_loc=5 and
reconfig_done)
  PCstate=22
if (reconfig_socket_loc!=5 and
RCstate=5)
  PCstate=23

PCstate19 - Socket_4
if (reconfig_socket_loc=4 and
reconfig_done)
  PCstate=20
if (reconfig_socket_loc!=3 and
RCstate=5)
  PCstate=21

PCstate33 - Warn_5
parameter_ready=0
if socket_loc>=5
  aux_bus = warn socket_5
  PCstate=34

PCstate43 - Disable_5
if ((socket_loc>=5 and
status_bus=socket_5 empty) or
socket_loc<5)
  PCstate=44

PCstate42 - Disable_4
if ((socket_loc>=4 and
status_bus=socket_4 empty) or
socket_loc<4)
  PCstate=43

PCstate41 - Disable_3
if ((socket_loc>=3 and
status_bus=socket_3 empty) or
socket_loc<3)
  PCstate=42

PCstate40 - Disable_2
if ((socket_loc>=2 and
status_bus=socket_2 empty) or
socket_loc<2)
  PCstate=41

PCstate39 - Disable_1
if ((socket_loc>=1 and
status_bus=socket_1 empty) or
socket_loc<1)
  PCstate=40

PCstate38 - FIFO Empty
if prev_fifo_empty
  PCstate=39

PCstate45 - Reactivate_1
parameter_error=0
fifo_outputtijg = ~fifo_outputting
aux_bus = reactivate socket_1
PCstate=46

PCstate46 - Reactivate_2
aux_bus = reactivate socket_2
PCstate=47

PCstate47 - Reactivate_3
aux_bus = reactivate socket_3
PCstate=48

PCstate48 - Reactivate_4
aux_bus = reactivate socket_4
PCstate=49

PCstate49 - Reactivate_5
parameter_busy=0
parameter_ready=0
aux_bus = reactivate socket_5
PCstate=0

PCstate34 - Warn_4
if socket_loc>=4
  aux_bus = warn socket_4
  PCstate=35

PCstate35 - Warn_3
if socket_loc>=3
  aux_bus = warn socket_3
  PCstate=36

PCstate36 - Warn_2
if socket_loc>=2
  aux_bus = warn socket_2
  PCstate=37

PCstate37 - Warn_1
if socket_loc>=1
  aux_bus = warn socket_1
  PCstate=38

PCstate23 - Reconfig Done
fifo_outputtijg = ~fifo_outputting
aux_bus = filter_tuning
PCstate=0

PCstate18 - Reactivate_3
aux_bus = reactivate socket_3
PCstate=19

PCstate20 - Reactivate_4
aux_bus = reactivate socket_4
PCstate=21

PCstate22 - Reactivate_5
aux_bus = reactivate socket_5
PCstate=23

PCstate44 - Parameters
parameter_ready=1
if (new_parameters and
1<socket_loc<5)
  if (parameter_addr in range for
  current_config[socket_loc])
    aux_bus = parameters
    parameter_error=0
  else
    parameter_error=1
if socket_loc=0
  PCstate=45

 

Figure 18 - Parameter_Control FSM 

 

The aux_bus used to transmit both instruction and parameters to the DSP 

sockets consists of four separate signals.  The 3-bit dest_id signal designates 

which DSP socket should receive the signal.  While each DSP socket will 

forward the aux_bus signals to the next socket, each socket is responsible for 

whether or not to heed the command or parameter.  A dest_id value of 0x7 

will be received and acted upon by all five DSP sockets.  The 16-bit aux_data 

signal will reflect either parameter data or command data depending on the 
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situation.  The 15-bit aux_addr signal allows the DSP sockets to differentiate 

between commands and parameters.  The address space for both 

circumstances will be described later in this chapter.  Finally the assertion of 

aux_en will inform the DSP sockets that valid data is present on the aux_bus. 

 

In the instance of a parameter loading operation, the parameter_busy signal 

would be immediately triggered to both notify external devices and prevent 

multiple parameter_strobe signals from illegally disturbing 

Data_Input_Control.  Once the necessary socket shutdown sequence has been 

completed as indicated by source_id, parameter control will then assert the 

parameter_ready signal to indicate that parameters can now be loaded.  The 

16-bit parameters signal is used for data, the 15-bit parameter_addr bus used 

to address specific memory locations within a DSP socket, source_id indicates 

the target DSP socket, and new_parameters indicates that this data is available 

for transmission to the DSP sockets.  If parameters are to be loaded into 

multiple DSP sockets as indicated by source_loc, they must be loaded into the 

rightmost socket first.  During this parameter loading process, parameter 

control will compare the parameter_addr and source_loc of each parameter to 

current_config to confirm that it is within the acceptable address space of the 

target DSP module.  If an illegal address is entered, the parameter will be 

ignored and the parameter_error signal will be triggered.  Once all parameters 

have been loaded, externally asserting source_loc to 0x0 will allow 

Parameter_Control to reactivate the affected sockets and continue data 

processing operation.  While dest_id will reflect source_loc, aux_data reflects 

parameters, and aux_en reflects new_parameters, respectively, aux_addr does 

not merely forward parameter_addr, as the address space for each type of DSP 

module is unique.  Again, the particulars of this address transformation will be 

described in the DSP Modules section. 

 

If reconfiguration is occurring, Parameter_Control will assert begin_reconfig 

to command Reconfiguration_Control to begin the reconfiguration process.  
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During this process, Parameter_Control will monitor both reconfig_done and 

reconfig_busy to determine when it may proceed with the next stage, as 

described below. 

 

Once either the parameter loading or partial reconfiguration processes have 

been completed by the respective control elements, Parameter_Control must 

reactivate the necessary DSP sockets in preparation for resumed data flow.  

Beginning with DSP Socket_1, each necessary socket will be instructed via 

the aux_bus to reactivate itself.  In addition to the previously stated uses of the 

current_config registers, the type of DSP module in each location is also used 

by Parameter_Control to construct filter_tuning information.  In the case that a 

FIR filter is loaded into only DSP Socket_1, for instance, it will be given a 

filter_tuning value of 0x1, instructing it to act as a single 32-tap FIR filter and 

transmit its truncated sum output to the next DSP socket.  In the case that two 

FIR filters are placed in neighboring DSP sockets, however, 

Parameter_Control notices this characteristic and modifies the filter tuning 

such that the first FIR is given a filter_tuning of 0x2 and the second a 

filter_tuning of 0x3, indicating that the filters should operate as the first of two 

and second of two filters, respectively.  As the current design stands, if two 

32-tap FIR filters are placed adjacent to one another, they will automatically 

be combined into a single 64-tap FIR.  After all necessary DSP sockets have 

been reactivated, Parameter_Control calculates the 2-bit filter_tuning of each 

of the five DSP sockets and transmits the resulting 10-bit filter_tuning word 

via the aux_bus with a dest_id of 7, which instructs all DSP sockets to heed 

the data.  The particulars of each filter_tuning value for each DSP module 

type will be specified in the following section.  Once the filter_tuning word 

has been transmitted to the DSP sockets, Parameter_Control will return to a 

default state and await the next reconfig_strobe or parameter_strobe signal.  

5.3. DSP Modules 

The three separate DSP algorithms detailed in Chapter 3 have been implemented 

for this thesis project.  As part of the flexible socket architecture designed, each 
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module conforms to a defined and standardized interface that allows each to 

communicate with neighboring modules.  In order to simplify both the design and 

verification processes, a fourth Empty module has been implemented that 

contains a basic module skeleton on which all DSP filters are built.  The next 

section will outline the Empty module, followed by implementation-specific 

details for each of the three remaining DSP modules. 

5.3.1. Empty Module 

The Empty module contains all of the components necessary to act as a 

template on which DSP filters can be built.  First, the Empty module contains 

all of the connections necessary to interface with the bus macro boundaries 

between DSP sockets.  The primary rightward-moving data flow elements 

consist of 32-bit data inputs and outputs along with the corresponding 

data_ready and ready_for_data status signals.  Next, the Empty module 

accepts aux_bus inputs on the left side of the module and forwards those 

signals unaltered to the next DSP socket.  In the opposite direction, the 

module accepts status bus signals from the right side of the module and routes 

those signals leftward towards the Fixed_Logic module.  Also, the module 

contains 16-bit data busses traveling to and from both the previous and next 

module. While unused for the Empty module, these secondary data pathways 

are used to connect identical neighboring filters, such as in the creation of a 

64-tap FIR filter by automatically combining two neighboring 32-tap FIR 

filters, as dictated by the filter_tuning registers.  Besides the obligatory reset 

signal connected independently to each module, the Empty module also 

contains tri-state signals used to enable and disable bus macro interconnects 

on both sides of the module.  These tri-state enabling signals are disengaged 

prior to reconfiguration in order to prevent signal contention. 

 

In addition to the standard interconnects, the Empty module also contains a 

logical frame that controls the module status as dictated by the Fixed_Logic 

module via the aux_bus.  A series of internal registers track the current status 

of the module along with the both the previous module’s status and the next 
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module’s status.  In the case that reconfiguration or reparameterization is 

occurring, the internal module status can be altered to instruct the module to 

finish processing all old data if an aux_addr of ‘h0002 accompanies and 

aux_data value of ‘h0001 and a matching dest_id.  Both the previous and next 

modules will also note this data on the aux_bus.  Once the module finishes 

processing old data, it will send a notification signal to the Fixed_Logic 

module via the status_bus while simultaneously notifying the next module of 

the change via the aux_bus.  In the case of impending reconfiguration, the tri-

state enable signals are disengaged after the aforementioned notifications have 

been transmitted.  Other than the finite state machine that controls these 

module status interactions, the Empty module also contains logic to read 

filter_tuning information transmitted from the Fixed_Logic module via the 

aux_bus and make that filter_tuning information available to any DSP filter 

built on top of the Empty module. 

 

While the logic described can be used in any of the modules, the Empty 

module also contains simple routing to simply forward data from left to right 

without alteration as long as the next module is ready for data and the 

previous module has data ready to transmit.  Likewise, the next and previous 

secondary data busses are connected to zero, as they have no purpose in an 

Empty module.   

5.3.2. FIR  

The 32-tap even symmetry FIR filter has been implemented to match the 

description given in Chapter 3.  As seen in Figure 19, the least significant 16-

bits of the 32-bit data input are entered into a tap shifting mechanism that, 

given a single operation filter_tuning, shifts the data along until all 32 taps are 

filled.  Once this process is completed, the signed 16-bit data values of each 

tap pair are summed to produce a 16-bit signed tap value that is then 

multiplied by the 16-bit signed coefficient value connected to each multiplier.  

Rather than use a multiplier constructed using standard FPGA logic resources, 

the 18-bit fast, embedded multipliers inherent in the FPGA fabric are utilized.  
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The 32-bit signed output values of each multiplier are then summed using a 

series of two-entry 32-bit signed adders until a single 32-bit signed sum is 

ready for truncation to 16-bits and transmission to the next module.   
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Figure 19 - 32-tap FIR Implementation 

 

In addition to the mathematical aspect of this FIR filter, data flow control has 

been designed to speed the processing of data in the FPGA.  When all 32 taps 

are empty, the filter will emit a ready for data signal to the previous module 

regardless of whether or not the next module is ready for data.  Once the taps 

are full, however, the ready_for_data signal sent to the previous module will 

correspond to the ready_for_data signal emanating from the next module. The 

data_ready_next signal, which indicates to the next module that new data is 

present on the data_out bus, is delayed by seven cycles to allow for the 

computational delay in preparing the final sum output value.  In the single 

filter_tuning configuration, the next and previous secondary data busses are 

not utilized. 
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When two 32-tap FIR filters are combined into a single 64-tap FIR filter, the 

default configuration when two 32-tap FIR filters neighbor each other and as 

determined by the filter_tuning value sent from the Fixed_Logic module, the 

tap shifting mechanism is altered to permit proper sum computation.  Figure 

20 illustrates the method described below.  For the first filter in a two-filter 

configuration, data is shifted from tap_1 toward tap_16 in a normal manner.   

Rather than shifting the value from tap_16 to tap_17, however, the tap_16 

value is sent along the 16-bit next_out bus to be used by the second filter.  

Correspondingly, the tap_17 value is read off of the 16-bit next_in bus and 

shifted towards tap_32.  Once all of the first filter’s 32 taps are filled, the filter 

will compute a 32-bit sum value and transmit the entire non-truncated value to 

the second filter in the sequence using the data_out bus.  In this configuration, 

the data_ready_next signal relates to the presence of data on the next_out bus 

rather than data_out bus.  The internal shift register that tracks whether or not 

all taps are full accounts for the full 64-tap design and delays the output of 

sum data accordingly. 
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Figure 20 - 64-tap Two-filter Operation 

 

The second filter of the two-filter sequence shifts data through its 32 tap 

registers as it typically would.  In accordance with the scheme described in the 

previous paragraph, data is read off of the prev_in bus and written to tap_1.  

Likewise, data is read from tap_32 and written to the prev_out bus.   When the 

taps are full and the second filter begins receiving 32-bit sum output values 

from the first filter, the second filter will add this value to the internally 

computed 32-bit sum value and output the truncated 16-bits as the final 64-tap 

output value.     

 

The 16-bit coefficient values used in this tap filter are loaded as parameters 

via the aux_bus.  Using the reparameterization process described previously, 

any or all of these values can independently be modified at any time without 

requiring reconfiguration.  The sixteen coefficient values correspond in order 

to aux_addr values of ‘h4000 through ‘h400F, which correspond to 
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parameter_addr values of ‘h0000 through ‘h0000F, respectively.  The 

modification of the 15th bit is performed by the Fixed_Logic module’s 

Parameter_Control sub-module in order to both simplify the external interface 

and complement the address space requirements of other DSP filters, 

particularly the Time-varying Coefficient FIR filter. 

5.3.3. Quadrature Mixer 

The Quadrature Mixer, which only operates in a single filter_tuning 

configuration is designed to produce 16-bit sine and cosine values using a 

built- in numerically controlled oscillator, independently multiply both values 

by the incoming 16-bit input data, and truncate the 32-bit results down to 16-

bits each for output to the next processing stage.  In order to ease the 

implementation of this filter, a Direct Digital Synthesizer IP core provided by 

Xilinx will be used as the numerically controlled oscillator.  Using a 32-bit 

phase increment value that can be set as a parameter via the aux_bus, the 

NCO will cycle through the phase accumulator address space used by the sine 

and cosine lookup tables.  Using quarter wave symmetry, which adds 2-bits 

worth of lookup table addressing accuracy, and the 16K entry BlockRAM 

capacity of the DSP socket, which is addressed by 14-bits of the phase 

accumulator value, 16-bit sine and cosine values can be derived from the 

NCO.  Two embedded multipliers are then used to create separate 32-bit in-

phase and quadrature output values.  Given the data output bandwidth 

limitation of 32-bits, each 32-bit value is then truncated down to 16-bits for 

output.  In order to accommodate the three-cycle latency of the NCO, the data 

input values are pipelined accordingly.   

 

The data control characteristics of this filter are quite basic as the 

ready_for_data_prev signa l simply reflects the ready_for_data_next signal.  

The data_ready_next signal accounts for the computational latency of the 

NCO and multipliers when data_ready_prev is active.  This filter does not use 

either the next or previous data busses.  Finally, the 32-bit phase increment 

value is loaded as two separate 16-bit parameters due to the data bandwidth 
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limitation of the aux_bus.  A parameter_addr value of ‘h4000, which 

translates to ‘h3FFE on aux_addr, will write the lower 16-bits of the delta 

value while a parameter_addr value of ‘h4001, translating on aux_addr to 

‘h3FFF, will write the upper 16-bits.  The parameter addresses ranging from 

‘h0000 to ‘h3FFF were originally allocated to sine and cosine lookup table 

values, but were not needed due to the utilization of the Xilinx IP core for the 

NCO. 

5.3.4. Time-varying Coefficient FIR 

The computational elements of the Time-varying Coefficient 32-tap even 

symmetry FIR filter is constructed identically to the previously described FIR 

filter with the primary exception of the coefficient storage system.  Like the 

regular FIR filter in single-filter operation, the Time-varying Coefficient FIR 

will shift data until its 32-taps are filled and then compute the output sum 

value.  The ready_for_data and data_ready status signals operate like the 

regular FIR filter and the 32-bit sum output value will also be truncated down 

to 16-bits.   

 

Instead of a single 16-bit coefficient register connected to each embedded 

multiplier, each multiplier is linked to the data output of a 1K-entry 

coefficient storing BlockRAM, referred to as coeffRAMs.  These 16-bit 

coefficients are also loaded via the aux_bus albeit with a significantly larger 

address space.  Parameter_addr values of ‘h0000 through ‘h3FFF are 

translated in the Fixed_Logic module to correspond to aux_addr values of 

‘h4000 through ‘h7FFF.  Parameter addresses from ‘h0000 to ‘h03FF 

correspond to the coeffRAM_1, addresses from ‘h0400 to ‘h07FF correspond 

to coeffRAM_2, and so forth.  Like the phase accumulator present in the 

Quadrature Mixer’s NCO, a 32-bit delta value loadable through the same 

parameter addresses is used to increment a 32-bit address accumulator, the 

most significant 10-bits of which are used to address all sixteen coeffRAMs in 

unison.   
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Rather than support the capability of combining two 32-tap Time-varying 

Coefficient FIR filters into a single 64-tap Time-varying Coefficient FIR, this 

filter is designed with a distinctly different filter combination scheme, as 

dictated by the filter_tuning register.  As a single filter, the Time-varying 

Coefficient FIR will take the lower 16-bits of the input data, perform the 

necessary processing, and output the truncated sum as the lower 16-bits of 

data_out.  As an additional feature, if a Quadrature Mixer filter is followed by 

two adjacent Time-varying Coefficient FIR filters, the two Time-varying 

Coefficient FIRs will be automatically set by filter_tuning to work 

concurrently to independently process both in-phase and quadrature data.  As 

seen in Figure 21 below, the first of two Time-varying Coefficient FIR filters 

will utilize the lower 16-bits of data_in, process the data through the filtering 

mechanism, and output the truncated output sum via data_out.  

Simultaneously, the first filter will also immediately make the upper 16-bits 

available to the second filter by way of the next_out secondary data bus.  

Meanwhile, the second filter will accept this data from the first filter through 

the prev_in bus and process this data through its 32-tap Time-varying 

Coefficient FIR filter apparatus.  Since both filters operate concurrently, the 

16-bit sum output of the first filter will be computed in time with the 16-bit 

sum output of the second filter.  The second filter will then combine both 

values and output the two 16-bit sums using the 32-bit data_out bus.   
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Figure 21 - Two Time-varying Coefficient FIR Operation 

 

5.4. End_Logic Module 

As the final stage of the DSP architecture of the FPGA, the End_Logic module is 

responsible for the simple task of making the data output of the DSP Socket_5 

available externally.  As long as the End_Logic module receives an external 

ready_for_data signal along with a data_ready signal from DSP Socket_5, output 

data will be conveyed on each cycle.  This module also serves as the termination 

point of the aux_bus and the source of module status bus. 

5.5. Bus Macros and Partially Reconfigurable Socket Architecture  

The FPGA specifically chosen for this project, the XC2V3000-FG676-6, was 

used because its size and embedded feature set was well suited to the types of 

filters desired for this project.  In addition to the three million usable system gates, 

the XC2V3000 contains six separate columns of 16 embedded multipliers and 16 

18Kbit BlockRAMs each.  Given that both FIR filters conveniently require 16 
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multipliers, the Time-varying Coefficient FIR requires 16 separate coefficient 

memories, and the Fixed_Logic module requires extensive data queue storage, 

this device offered an excellent embedded feature set while also offering more 

than adequate programmable logic and routing resources.  Figure 22 shows that 

the sizing of each module was chosen such that the Fixed_Logic module and each 

of the five DSP sockets each contain a column of embedded multipliers and 

BlockRAMs. Due to the previously mentioned partially reconfigurable module 

sizing constraints, each of the DSP sockets must also be an even number of CLBs 

wide.  Because the number of CLBs between each embedded multiplier column is 

not uniform, the DSP sockets are not all equal in size.  As a result, the fifth DSP 

socket is ten CLB columns wide compared to eight CLB columns for the first four 

sockets.  
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Figure 22 - Module Placement 
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Physically, each bus macro utilizes four tri-state buffers on each side of the 

module boundary and occupies an area one CLB high by four CLBs wide.  For 

example, as seen in Figure 23, since the boundary between the Fixed_Logic 

module and the first DSP socket is between CLB columns 12 and 13, a bus macro 

across this boundary will occupy CLB columns 11 through 14 for that given CLB 

row.   

column 11 column 12 column 13 column 14

row x

 

Figure 23 - Sample Bus Macro Placement Across a Module Boundary 

 

Once the architecture is assembled, it becomes obvious that a large number of bus 

macros will be needed in between each module to satisfy the design’s large data 

and status bus requirements.  For this design, each bus macro boundary therefore 

consists of 106-bits of data, addressing, or status bits constructed using 28 

separate bus macro instantiations.  Additionally, each of these bus macros must be 

manually constrained to a specific location early in the design process.  This 

manual location constraint has dramatic and noticeable effects on place and route 

performance and will be elaborated upon later in this document.  An exception to 

this requirement for 28 bus macros occurs between the fifth DSP socket and the 

End_Logic module.  Because these bus macro placements are at the rightmost 

possible location on the FPGA, physical limitations of the transmission lines used 

by the tri-state buffers limits each bus macro to 2-bits of usable rightward moving 

signal compared to the usual 4-bits.  This limitation results in the use of 49 bus 

macros rather than 28.  Since the device used contains a 64 CLB high array of 

logic and each 4-bit bus macro requires only one CLB row, the device is limited 

to a maximum of 64 bus macros in a single column, which can typically carry 

256-bits, although not in the rightmost or leftmost physical locations.  Also, in the 



 61

case of the 6th bus macro column, the bus macros simply bridge over 6th 

embedded multiplier and BlockRAM column to link the two rightmost CLB 

columns of DSP Socket_5 with the two CLB columns of the End_Logic module.  

Figure 24 illustrates the placement of each bus macro in the design.  Now that the 

specification of the intended design has been described, the following chapter will 

elaborate on the implementation process. 
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Figure 24 - Overall Bus Macro Placement 
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6. Design Implementation Process 
The three-stage design flow process detailed below is the primary feature of the 

modular design flow as provided by Xilinx.  The initial budgeting stage defines the 

top-level modular framework for the design.  Next, the active module implementation 

stage allows each module, regardless of whether reconfigurable or fixed, to be fully 

designed and built to the extent that a module bitstream can be derived from the 

design.  Thirdly, the final assembly stage incorporates the individually created 

modules into one or more assembled design permutations for both simulation and 

bitstream generation purposes.  For all stages of this design, the requirement to meet a 

10ns clock period and run at 100MHz is the only timing constraint.  Simulation of the 

design, which will be discussed in the next chapter, can be performed during both the 

active module implementation and final assembly stages. 

6.1. Initial Budgeting Phase 

The partially reconfigurable design implementation process begins with the initial 

budgeting phase.  The process starts with the usual verilog top- level module 

instantiation followed by the module instantiations for the Fixed_Logic, 

End_Logic, and DSP modules.  Each interconnection between modules is 

accomplished in 4-bit increments using the bus macros.  Unlike a typical FPGA 

design, however, the top- level design must also include manually placed 

constraints to fix the location and size of each module.  Likewise, the embedded 

multipliers and BlockRAMs available for each module must also be confined.  

Using Xilinx’s constraint file, or UCF, the placement constraints are defined 

according to the x-axis and y-axis slice coordinates of the module boundaries.  

Beyond module location, the bus macro boundaries between modules must also 

be manually placed in the UCF file.  As each of the 189 bus macros used in the 

design occupies an area four CLBs wide, the location of the macro is defined by 

the leftmost slice occupied.  These macros must also symmetrically straddle the 

module boundaries.  Finally, the location of all external pin connections must be 

constrained such that each exists within the appropriate target module’s margins. 
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If this were a typical FPGA design, the usual synthesis, translation, mapping, 

placement, and routing tools would be utilized in a rather automated fashion to 

build the final FPGA design.  At this stage of development in this partially 

reconfigurable situation, however, only the top- level modules and interconnects 

are defined without any lower- level logic.  As a result, special synthesis and 

translation commands must be used to prevent the tools from attempting to 

physically synthesize and model any internal logic.  The build files created in this 

translation stage will be used in the active module implementation stage described 

below.  Lastly, the use of mapping, placement, and routing tools at this stage 

offers the designer a glimpse at module locations, but does not offer any 

significant value since they do not account for any actual logic placement or 

related timing information. 

6.2. Active Module Implementation Phase 

The active module implementation phase occupies the bulk of the design cycle as 

it is in this stage that all fixed and partially reconfigurable modules are built.  

Each module must be constructed in its own project and directory structure to 

prevent overlap with other modules.  This project structure starts with a copy of 

the top- level UCF file along with the translation build file, or NGO, created in the 

initial budgeting phase.  The use of these files along with specific active module 

implementation commands conveys to the design tools that the module must be 

designed within the aforementioned location and timing constraints.  While the 

Fixed_Logic and End_Logic modules each required only a single module version, 

each of the four DSP filters had to be implemented in each of the five possible 

DSP socket locations.  To simplify the process, each DSP filter was created as a 

Socket_1 version with the intent of later replicating the design for sockets two 

through five. 

 

Starting with the Fixed_Logic module, a moderate learning curve was 

encountered and surmounted in dealing with the Xilinx design tools, specifically 

in regard to the modular design flow.  At first, only the top- level constraints were 

used without the addition of any module-specific timing constraints.  The design 
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was entirely manually coded verilog with the exception of the use of a Xilinx IP 

core for the 16K-entry 17-bit data FIFO.  After the expected debugging steps, the 

design placed and routed surpassing the required 10ns minimum clock period 

with a resulting minimum clock period of 8.821ns, or 113.3MHz.  The module 

also utilized far fewer CLB logic resources than expected, requiring only 110 of 

the 768, or 14.3%, of the CLBs allotted, which amounts to only 3% of the total 3 

million system gates available on the FPGA.  If not for the timing and scope 

limitation of this thesis, it would have been prudent to resize the Fixed_Logic 

module to waste fewer resources.  Fortunately, the Fixed_Logic module utilized 

all 16 of its allotted embedded BlockRAMs for use in the 16K-entry data FIFO.  

As indicated by the total equivalent gate count of 1.06 million gates and an actual 

utilization of less than 100,000 gates, the use of BlockRAMs rather than 

distributed RAM for the data_FIFO resulted in a dramatic system gate utilization 

savings.   

 

Post placing and routing, a verilog model including back-annotated timing 

information of this module was derived for simulation and verification purposes.  

As will be discussed in the next chapter, it was quickly discovered through 

analysis of both the synthesized and placed and routed design that synthesis fan-

out restrictions have a dramatic effect on whether or no t the resulting built model 

actually operates.  The End_Logic module, which does not contain any significant 

logic, was built in a similar manner and also easily satisfied the timing 

requirements while using only 13 of the 128 CLBs allotted.  Due to the physical 

placement limitations of the bus macros with respect to the edge of the device, 

however, shrinking the size of the End_Logic module to better employ logic 

resources was not an option. 

 

Next, the DSP modules were implemented beginning with the Empty module.  

The decision to completely build and verify this module before moving onto the 

more elaborate DSP filters greatly decreased backtracking and debugging time.  

The DSP Socket_1 version of the Empty module placed and routed to run at over 
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150MHz, aga in exceeding the then-specified timing requirements.  The simple 

design required only 26 of 512 allocated CLB logic blocks with an equivalent 

gate count of only 1,599 gates.  While testing the performance limitations of this 

module, it was found that the module could successfully place and route up to 

almost 200MHz.  The synthesis, mapping, placing, and routing decisions made by 

the Xilinx tools to achieve this general timing specification, however, would have 

an adverse effect on the timing of a few important signals, as will be discovered in 

the final assembly stages of the design.    

 

Unlike the Empty module, the FIR filter required additional design iterations in 

order to meet the timing requirements.  First, a simple version of the FIR 

containing only the multiplier and accumulator structure along with basic 32 tap 

shifting mechanism was constructed to weigh the benefits of utilizing the 

embedded multipliers.  Clearly, as seen in Table 2, the 79% savings in CLB 

utilization along with the 45% increase in speed realized with the use of 

embedded multipliers is especially promising for this design.  After constructing 

the final version of the FIR filter, including the proper tap shifting and status 

signal mechanisms, the module employed 302 out of 512 CLBs available, 

resulting in a more respectable 59% logic utilization.  Still, the multiplication and 

addition structures needed to be further optimized to achieve the 100MHz goal.  

After modifying the 16-bit and 32-bit adders to register only output data and not 

input data, the design began approaching specifications.  Using the timing 

analyzer tool provided with the Xilinx ISE toolset, it was discovered that the fan-

outs of some signals, particularly the reset and tri-state enabling signals, was far 

too high, resulting in a larger than desired delay.  Unfortunately, as will be 

discussed in the verification phase, setting the fan-out synthesis guide 

significantly lower effectively disrupts the operation of the filter.  Once an 

appropriate middle ground was determined, however, the FIR filter in DSP 

Socket_1 placed and routed to run at 102.8MHz.   
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Table 2 - FIR Comparison 

 Embedded Multipliers LUT-based Multipliers 
CLB use  186 888 
Logic levels 5 20 
Max speed 83.7MHz 57.7MHz 

 

Next, the Quadrature Mixer module was constructed fairly quickly due to the use 

of the Xilinx IP core Numerically Controlled Oscillator.  With only minor 

optimization, the Quadrature Mixer placed and routed to run at 103.4MHz while 

exploiting only 73 of the 512 CLBs available.  Again, this low 14.3% utilization 

of module CLBs results heavily from the use of 14 of the 16 embedded 

BlockRAMs for sine and cosine data storage along with two embedded 

multipliers for mixing, an equivalent gate count of 932,000 system gates.  

Without the embedded features of the Virtex-II FPGA, this filter would have 

required a module twice the size as the one apportioned. 

  

Lastly, the Time-varying Coefficient FIR filter was implemented building off of 

the regular FIR with major modifications to filter tuning-related functionality, tap 

shifting mechanisms, and coefficient storage system.  Starting with the 

optimizations made for the original FIR filter, the coefficient storage memories 

were created using 16-sets of a Xilinx IP core 1Kx16-bits single-port RAM.  As 

these coeffRAMs and the associated accumulator addressing system operated 

faster than the computational components of the module, the Time-varying 

Coefficient FIR in Socket_1 placed and routed to run at 101.7MHz.  Even with 

the use of all 16 embedded multipliers and BlockRAMs within the module, this 

filter required 332 of 512 available CLBs, resulting in 64.8% logic utilization and 

an equivalent gate count of 1,144,000 gates.   

 

As the logic utilization data suggests, an average CLB utilization of only 46% for 

the three DSP filter indicates that there is definitely room for more elaborate 

filters within the given architecture.  While moving to a smaller FPGA is an 

option if higher CLB utilization is desired, that move would also come at the cost 

of fewer embedded multipliers and BlockRAMs.  Furthermore, limited gains 
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would be realized from resizing the module boundaries since each of the five DSP 

sockets and the Fixed_Logic module require an embedded multiplier and 

BlockRAM column.  Given the space between the 3rd and 6th embedded columns 

and the requirement that modules be an even number of CLBs wide, for example, 

it would not be possible to increase the size of all sockets to ten CLBs wide, as 

seen in Figure 25.   
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Figure 25 - Sample Module Resizing 

 

Once all four DSP modules were constructed, each needed to be replicated to 

create a copy for each of the five DSP sockets.  Quickly, it became apparent that 

any changes in socket layout, such as the placement of the embedded multiplier 

and BlockRAM column within the DSP socket, could have an adverse effect on 

placed and routed timing.  In the case of the FIR filter, modules for DSP sockets 

1, 3, 4, and 5 met the 100MHz requirement while DSP Socket_2 failed by 2MHz.  
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While the problem was easily corrected by modifying the structure of the 

mechanism that detected when all 32 taps were filled, the experience does raise a 

significant concern about socket layout regularity.  In the case that a larger library 

of DSP filters were designed for this architecture, a suitable timing buffer 

accounting for layout irregularity must be created to differentiate between the 

actual desired speed of the device and the speed at which the first socket will 

place and route.  Given the proximity of the rightmost embedded multiplier and 

BlockRAM column to the edge of DSP Socket_5, it was expected that routing 

issues could be encountered in the place and routing of a filter into that socket.  

Since all 16 embedded multipliers and BlockRAMs are used for the Time-varying 

Coefficient FIR filter, for example, it was incorrectly anticipated that the 

switching matrices connected to this embedded column would not have enough 

bandwidth to connect to the rest of Socket_5.  This, however, was not the case 

and all twenty DSP module-socket combinations placed and routed to meet the 

100MHz specification.  Table 3 shows the final place and route maximum clock 

rates generated. 

Table 3 - DSP Module Timing 

 Socket_1 Socket_2 Socket_3 Socket_4 Socket_5 
Empty 159.1 138.2 152.5 159.5 182.6 
FIR 102.8 101.9 100.2 102.5 102.5 
Quadrature 103.4 104.1 104.4 104.5 103.4 
Polyphase FIR 101.6 100.9 102.5 103.1 102.2 

 

6.3. Final Assembly Phase 

After completely implementing each of the individual modules, the task turned to 

creating various permutations of the final design for verification and 

benchmarking purposes.  Due to the time constraints of the thesis project, only 

three different permutations were created.  The first version, referred to as Top_1, 

consists of the standard Fixed_Logic and End_Logic modules along with five 

Empty modules filling the five DSP sockets.  Top_1 provided a platform on 

which the general operation of overall architecture could be observed without the 

added complexity of functioning DSP.  The implementation process benefited 
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from a feature of the modular design flow enabling the design tools to build on 

the place and routing work performed during active module implementation when 

creating an assembled build.  Rather than placing and routing the entire design 

from scratch, the toolset would utilize the place and route output files of each 

individual module and simple interconnect the routing and generate the necessary 

timing analysis.  Once combined, Top_1 mapped out to use only 230 of the 3,584 

CLBs, or 6.4% logic utilization, and an equivalent gate count of 1.06 million 

system gates due to the BlockRAM data_FIFO.  While this low utilization was 

not surprising since this design does not contain any DSP functionality, the place 

and route timing result of 80.9MHz was both unexpected and discouraging. 

 

Unfortunately, an unforeseen timing issue related to the tri-state buffer 

interconnects became apparent during this final assembly process.  At the onset of 

the design process, the requirement to run at 100MHz was the only timing 

constraint considered.  Each module was explicitly designed with all output 

signals stored in registers.  As each module met this simple 100MHz requirement 

in the active module implementation phase, it was incorrectly assumed that 

connecting these modules would not have any significant effect on timing.  Due 

predominantly to the unexpectedly significant tri-state buffer delay of 3.593 ns, 

the total delay from the output of one module to the input registers of the next 

reached a maximum of 12.366ns.  Given that this is the simplest assembled 

permutation of the architecture, the speed of the Top_2 and Top_3 was now 

expected to be even worse.  These larger than desired routing delays, however, 

may be correctable through the employment of additional stringent timing 

constraints at the module level and some redesign of the internal logic.  

Regrettably, the remaining time available for the completion of this project does 

not allow for further timing-based optimization, leading to the concession that the 

design will not operate at the expected 100MHz, despite using the fastest grade 

part available. 
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The second assembled permutation, called Top_2, consists of the following 

sequence of filters filling the DSP sockets: FIR_1, FIR_2, NCO_3, polyFIR_4, 

and polyFIR_5.  Filter_tuning generated in the Fixed_Logic module will instruct 

the both sets of matching FIR and polyFIR filters to operate in conjunction.  

Figure 26 shows that the result is a DSP processor that processes data through a 

64-tap even symmetry FIR filter, running the result through the Quadrature 

Mixer, and then sending both the in-phase and quadrature data independently 

through 32-tap even symmetry Time-varying Coefficient FIR filters to generate 

two 16-bit output values.  When mapped, the resulting design used 1,380 of 3,584 

CLB blocks, or 38.5% utilization, while also using 66 of 96 embedded multipliers 

and 62 of 96 BlockRAMs, resulting in an equivalent gate count of 4.47 million 

system gates.  Unfortunately, the design placed and routed to reach a maximum 

frequency of only 68.7MHz due principally to extraordinarily long delays in 

addressing and writing coefficients into the FIR filters.  The tri-state buffers 

provided the same delay as the Top_1 configuration which, when added to 

aux_addr and aux_data delays in reaching the 16-bit coefficient registers, resulted 

in a total delay of 14.553ns. 
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Figure 26 - Top_2 Configuration 

 

As an experiment, an additional timing constraint was added to the FIR filters and 

the filters were individually rebuilt, followed by a rebuilding of the Top_2 

configuration.  The timing requirement that the FIR filters must have a minimum 

delay between inputs and registers of 8ns resulting in an 818ps improvement in 

the Top_2 configuration’s critical delay path.  Now, the Top_2 configuration is 

able to run at 72.8MHz.  While still not close to the desired 100MHz target speed, 
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the experiment does indicate that modest improvements in speed can be realized 

with increased timing constraints.  Further improvement could possibly be 

realized through the use of additional pipeline stages, specifically for the 

aux_addr and aux_data signals since they often must fan-out to all 16 sets of 

embedded multipliers or BlockRAMs.     

 

The third and final design permutation, called Top_3, consists of the following 

filters: NCO_1, polyFIR_2, polyFIR_3, polyFIR_4, and polyFIR_5.  Illustrated in 

Figure 27, the desired functionality of this configuration is a Quadrature Mixer 

followed by two independent 32-tap even symmetry Time-varying Coefficient 

FIRs, with each of the two data paths going independently into separate 32-tap 

even symmetry FIR filters.  As designed, however, two neighboring 32-tap FIR 

filters would combine into a single 64-tap even symmetry FIR due to the 

filter_tuning options implemented.  Rather, Time-varying Coefficient FIR filters 

can be used in place of the FIR filters if the accumulator delta value is set to 0x0 

and only the first location in each coeffRAM is used.  When built, Top_3 uses 

1,376 of 3,584 of the available CLBs, or 38.4% utilization, along with 66 of 96 

embedded multipliers and 94 of 96 BlockRAMs, resulting in an equivalent gate 

count of 6.57 million system gates.  This powerful display of the usefulness of 

embedded components in reconfigurable logic, when placed and routed, runs at 

78.1MHz without the luxury of additional module-level timing constraints.  If 

timing constraints similar to those employed in the FIR filters were utilized, the 

expected 800ps reduction in delay would result in a speed of over 83.3MHz. 
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Figure 27 - Top_3 Configuration 
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The operational speed of this FPGA, however, cannot be dependent on the 

configuration currently loaded.  As a result, the device can only be expected to 

run as fast as the slowest possible assembled permutation, which is expected to be 

five FIR filters.  If this architecture were to be deployed, rigorous timing 

constraints would be required at both module- level and device- level to ensure 

proper operation at 100MHz.  For example, since the tri-state buffer delay 

between modules is approximately 3ns, both the flip-flop to output and input to 

flip-flop delays would need to be limited in a manner that meets this 10ns 

requirement. 

 

More importantly, the essential reason for this undesired delay cannot be 

overlooked: the modular nature of the partially reconfigurable architecture 

inherently adds a significant amount of delay to the design.  The signals within 

each DSP module must be routed within the eight CLB-wide module boundaries, 

which can be very inefficient compared to a design where module location and 

separation is not restricted.  Furthermore, bus macro interconnects between 

modules are manually placed with utter disregard for the optimal location for each 

signal, fostering an even more inefficient assembled design.  Figure 28 illustrates 

a likely scenario, as interpolated from timing analysis data from the Top_3 

configuration.  The aux_bus signals are factors in the worst critical path delays as 

they may be routed to any portion of the DSP module while being required to pass 

through the location-confined bus macro interconnects.  In the example given, 

coefficient information on the aux_data bus may be routed to the first BlockRAM 

of the rightmost socket, which would result in a lengthy routing delay that can 

approach 10ns.  Again, additional pipeline stages would be appropriate to 

alleviate this delay.    
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Figure 28 - Connected Module Delays 

The costs associated with using a partially reconfigurable design rather than a 

conventional design are quantifiable with the following results.  The design 

described was rebuilt using a conventional FPGA design methodology to fit onto 

the same Xilinx Virtex-II 3000 FPGA without pre-defined module locations or 

bus macro boundaries.  The CLB logic overhead associated with the use of the 

partially reconfigurable architecture given is surprisingly small, requiring an 

average of only 3.4% more CLBs than a conventional FPGA design.  The speed 

advantages of a non-partially reconfigurable design, however, were more 

pronounced.  The Top_2 configuration that required a period of 13.735ns for a 

partially reconfigurable design is capable of running at 10.008ns using a 

conventional flow.  The tri-state buffer and extensive routing delays are 

eliminated.  Likewise, the Top_3 configuration that ran on a 12.812ns period now 

runs at 9.790ns.  So while roughly the same size device can be used for both 

design flows, a conventional design can make use of a slower grade part to realize 
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the same performance as a partially reconfigurable design targeted towards a 

high-speed part. 

 

Given the current design flow, however, the bus macros are absolutely necessary 

to ensure proper signal connection within the partially reconfigurable framework.  

In addition to making sure that tri-state signals are only driven when the source 

module is active, the tri-state buffers contain specific placement and routing 

directives that both connecting DSP sockets communicate through a common 

routing node.  A similarly constrained connection node between modules cannot 

currently be replicated manually using the standard design flow process and 

would require manual manipulation of the place and route tool using proprietary 

Xilinx methods. 

 

As an experiment to find possible improvements in timing performance, the 

locations of bus macro columns one through five were relocated as indicated in 

Figure 29.  When the Top_3 configuration was rebuilt under these new 

constraints, performance actually slowed down from the previous 78.1MHz to 

76.3MHz.  Clearly, the placement of such a large number of signals is a delicate 

procedure that can have consequences on the overall performance of the design.   
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Figure 29 - Bus Macro Location Modification 

 

Xilinx’s partial reconfiguration design flow using modular design would be 

greatly improved if the toolset had the capability to automatically optimize the 

location of module interconnects based on a library of all possible assembled 

permutations.  Given the set of the four DSP modules implemented for this study, 

for example, it may be best for the aux_addr signal between the Fixed_Logic 

module and Socket_1 to be in a row X while the same signal between Socket_1 

an Socket_2 may be better suited to row Y.  Whichever optimal placement is 

chosen, the results would need to be applied consistently to all DSP sockets to 

ensure identical placement and guarantee functionality.  Along with the 

prerequisite temporal floorplanning aspect, this feature would greatly enhance the 

ability of a designer to create a stable modular architecture without the added 

concern of delays associated with unexpected assembled design permutations.  

Beyond the inflexibility of the interconnect mentioned in the first chapter, the 

logical and routing resource limitations within each module can strangle the 
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ability of the toolset to refine the design.  These limitations, however, must be 

tolerated as the ability to dynamically resize DSP sockets greatly increases the 

complexity of the design process and architecture to unmanageable levels.   
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7. Simulation  
During the design implementation process described in the previous chapter, each 

module must be simulated to verify proper functionality.  The verilog modules can be 

directly simulated in Verilog-XL using a simple testbench structure that effectively 

acts as a virtual fixture in which the module can tested by stimulating and reading the 

appropriate inputs and outputs, respectively.  While this method will allow for 

verification of basic functionality, it fails to take into account any device-specific 

timing characteristics.  Therefore, the back-annotated timing-based verilog modules 

generated from a placed and routed design allows for the most complete verification 

available at the simulation level.  In order to expedite the debugging process, 

testbenches are initially run repeatedly against the raw verilog modules in order to 

correct as many detectable functional faults as possible before the Xilinx ISE building 

process is started.  Since a single place and route task requires anywhere from two to 

nine hours of CPU compilation time, avoiding unnecessary rebuilds was definitely 

desired.  As any changes were made to the modules later in the design process at 

either the module or device level, both the regular and back-annotated testbenches 

were rechecked.  Each module type and location was independently simulated 

followed by the larger-scale simulation of entire assembled designs. 

 

Before the process is described in detail, however, it should be emphasized that self-

verifying a design can be both difficult and incomplete due to the plethora of 

assumptions, preconceptions, and expectations of the designer.  After designing a 

module, for instance, the designer will create a verification environment that 

transmits a series of expected signals and detects expected outputs.  To verify that 

illegal operations do not occur to adversely effect the operation of the system, the 

designer may also create a series of such situations.  Without an independent audit of 

the design, however, it is extremely difficult to postulate unexpected operational 

scenarios.  The number of previously overlooked module bugs detected during the 

device- level simulation phase reinforces this argument.  
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7.1. Module-level Simulation 

Beginning with the Fixed_Logic module, a testbench was constructed to interface 

with all input and output signals of the module, including all signals passing to 

and from the first bus macro boundary.  The testbench consists of a series of test 

sequences targeted towards various aspects of the design.  The first, for example, 

tests a simple data flow scenario passing through the Data_Input_Control, 

data_FIFO, and Data_Output_Control sub-modules.  After a stream of data is 

loaded into the data_FIFO, the output ready signals are activated to flush the 

FIFO.  In a second test, the reading and writing operations are performed 

simultaneously to ensure that the data_FIFO is capable of such functionality.  

Next, the operation of the next_config and next_config_flag registers was 

simulated in a variety of sequences, followed by much more elaborate partial 

reconfiguration loading tests.   

 

This testbench can only directly verify that the Fixed_Logic module generates the 

appropriate aux_bus and bitstream status signals, so it becomes necessary to 

manually inspect the finite state machines using the SignalScan tool during the 

testbench design process.  For example, during an early partial reconfiguration 

test, a deadlock situation occurred in which the module and testbench both ceased 

to operate, a scenario difficult to debug without any insight into the internal state 

of the module.  Using SignalScan, the failing Parameter_Control sub-module state 

was quickly detected and corrected.  During reconfiguration or reparameterization 

socket shutdown sequences, the aux_bus and bitstream output signals needed to 

be carefully monitored and coordinated with the appropriate module status or 

parameter input signals.  After all conceivable working scenarios were exhausted, 

a series of illegal operation tests were introduced to ensure that the complex 

Fixed_Logic module would not fail once incorporated into the larger assembled 

designs. 

 

After a quick confirmation that the End_Logic module functioned, the DSP 

modules were systematically attacked with the opening salvo assailing the empty 
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module.  Since all other DSP modules were based on the status signal and state 

machine framework of the Empty module, thorough interrogation of this design 

resulted in a significant reduction in overall verification time.  Like other DSP 

modules, the Empty module testbench for Socket_1 was designed for easily 

replication to other socket locations.  Moreover, the setup time of signals asserted 

in the testbench was designed to mimic the clock-to-output delay time of signals 

exiting the Fixed_Logic module.  Most tests for the Empty module revolved 

around the proper forwarding, creation, and use of aux_bus and status_bus 

signals, especially in regard to module shutdown to activation directives.  If a 

module in Socket_2 were to be deactivated, for example, it would further monitor 

the aux_bus to determine when previous modules have finished processing data 

so that it may finish its tasks and transmit a confirmation signal on both aux_bus 

and status_bus.  Lastly, the proper operation of the tri-state enabling signal is 

paramount to preventing signal contention during partial reconfiguration. 

 

Next, the FIR filter testbench built in the tests encompassed in the Empty module 

testbench.  Rather than the verification of simple data flow, however, this 

testbench needed to mimic the operation of the full 32-tap even symmetry FIR 

filter to ensure that all tap shifting, addition, and multiplication operations 

proceeded correctly.  Given that all 16-bit and 32-bit internal values are signed, 

the process of generating the appropriate output sums was daunting.  The pipeline 

latency of the post-multiplication adder tree needed to be accounted for in the 

assertion of the data_ready_next status output.  In addition to a data input stream 

scenario, an intermittent data input situation was also simulated.  In all cases, 

coefficients were first loaded via the aux_bus using a reparameterization process. 

While the verification of the full 32-tap design may itself seem complex, the 

testbench also simulated combined 64-tap operation by verifying filter operation 

in both the first and second positions.  In accordance, the appropriate intermediate 

signals on the secondary data bus needed to be generated and observed where 

applicable.   While this verification phase concluded that the FIR filter operated 

correctly, the upcoming device- level simulation section will refute this claim.   
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In contrast to the FIR simulations, complete coverage of the Quadrature Mixer 

was more difficult to achieve due to the nature of the numerically controlled 

oscillator.  In one test, input data remained at a constant value while the NCO 

cycled through the range of sine and cosine output values, which were then 

captured from the simulation log file and confirmed using an spreadsheet.  Due to 

the range of possible data input, phase increment, sine, and cosine values, 

however, it was not possible to verify every possible corner case within the time 

available for this thesis.  The extent of the verification performed will have to 

suffice.  Finally, since this filter can only operate in a single module 

configuration, it was not necessary to simulate any multi- filter situations. 

 

Lastly, the Time-varying Coefficient FIR module testbench requires a series of 

tests very similar to that of the original FIR filter with the addition of more 

complex coefficient loading.  In addition to the larger addressable size of the 

coefficient storage memories, the coeffRAMs add an additional cycle of latency 

that must be accounted for in the tap shifting mechanism.  Once the coefficients 

are loaded along with an addressing delta value, the operation of a single 32-tap 

Time-varying Coefficient FIR filter is similar to previous FIR tests.  Simulating 

the operation of two Time-varying Coefficient FIRs working in conjunction, 

however, is another matter.  In either the first or second filter position, it is vital 

both filters require the same latency to process data so that both sets of 16-bit 

sums are output in the same clock cycle.  Precise reproduction of the appropriate 

intermediate signals in both steady and intermittent data flow situations resulted 

in satisfactory confirmation that the modules work. 

7.2. Device-level Simulation 

Once the individual modules were acceptably tested, the mission changed to 

verifying the coordinated operation of permutations of the DSP modules in an 

assembled design.  While verification coverage for the aux_bus, status_bus, and 

data bus signals was thought to have been adequate during the module- level 

simulation stages, this was quickly determined to not be the case when the Top_1 
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configuration was initially tested.  After reversing the polarity of the tri-state 

enabling signals to the correct orientation, it was determined that the bus macros 

were being deactivated earlier than necessary to facilitate proper aux_bus and 

status_bus signal forwarding.  These issues, along with some other minor issues 

with data bus status signals, should have been detected at the module level, which 

serves to illustrate the difficulties associated with achieving adequate certification 

in testing one’s own design.   

 

The testing process included not only checking the flow of data through the five-

socket sequence, but also mimicking as much of the reconfiguration process as 

possible given the simulation environment.  As previously highlighted, currently 

available simulation environments due not support the ability to physically 

modify the design logic as is required during partial reconfiguration.  Therefore, it 

is impossible to ascertain whether the bus macro-based module boundaries 

actually prevent signal contention during reconfiguration.  The partial 

reconfiguration sequence of deactivating one or more modules, requesting the 

loading of appropriate bitstreams, and reactivating the affected modules can be 

simulated, but only without any actual change to the contents of the DSP sockets.  

Since the next_config and current_config registers contain default values of 0x0, 

indicating the presence of Empty modules, the Top_1 was testbench was written 

to call for the reconfiguration of the sockets with various other module types.  As 

observed through SignalScan, the internal state of each of the five Empty modules 

responded correctly to aux_bus signals emitted by the Fixed_Logic module.  

Similarly, although the Empty modules do not actually contain any loadable 

parameters, the reparameterization process was emulated to confirm proper 

operation of that aspect of the design as well.  Errors detected during the 

verification of Top_1 were reflected in all other DSP modules, where appropriate.  

Since the speed at which the back-annotated code could run varied as 

optimizations were made in the place and routing process, simulations were run at 

50MHz to avoid complications. 
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While Top_1 verification problems centered predominantly on general module 

interaction and interconnection issues, the verification of the Top_2 configuration 

involved a number of problems related to two-filter combinations.  Some of the 

problems probably should have been detected during module level simulation, but 

again such complex multi-module interactions are difficult to envision in a single 

module environment.  The first test in the Top_2 testbench entails loading the 

next_config registers values reflecting that actual modules existing in the DSP 

sockets.  Once the reconfiguration process was emulated and the appropriate 

coefficients loaded, it became apparent that the FIR filters loaded in the first two 

DSP sockets failed to operate properly.  For instance, the second filter had been 

designed to wait until it detected a data_ready signal from the first filter before it 

would start accepting data from the secondary data bus and shift the data taps.  

Unfortunately, the first filter would not assert its data_ready_next signal until it 

was ready to actually output an intermediate sum value on the data_out bus.  This 

problem was corrected by changing the nature of the data_ready signal to reflect 

the availability of data on the secondary data bus.  Since the second filter still 

needed to know when all 64-taps were filled and intermediate sum data was 

available, a 64-bit shift register was enacted to keep track of how many taps were 

actually filled. The first filter in the sequence keeps track of all 64-bits while the 

second filter tracks 48-bits since it is oblivious to the first 16 taps of the first filter.     

 

A second problem with the interaction of the two FIR filters involved the actual 

64-tap shifting process, as depicted in Figure 30.  As designed, the first filter 

would shift the value of tap_16 onto the next_out bus, making it available to the 

second filter.  On the next clock cycle, the second filter would read this value and 

shift it into its tap_1.  The process was repeated in shifting tap_32 of filter two 

into tap_17 of filter one.  Because of two one-cycle delays across the bus macro 

boundary, the combined 64-taps would not contain 64 consecutive values but 

rather 64 of 66 consecutive values, with the 17th and 50th values in-transit on the 

secondary data bus.  To correct this error, the value of the first filter’s next_out 

bus would be derived from tap_15 with a similar method employed using tap_31 
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of the second filter.  Figure 31 shows how the modification fixes the problem, 

enabling proper operation of the circuit. 
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Figure 30 - Improper 64-tap Shifting 
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Figure 31 - Proper 64-tap Shifting 

 

After confirming that the Quadrature Mixer in Socket_3 operated properly, 

another interconnect problem was detected between the Time-varying Coefficient 

FIR filters occupying the fourth and fifth sockets.  The implementation section on 

the Time-varying Coefficient FIR filter shows how, in two-filter operation, the 

lower 16-bits of data are to be processed in the first filter while the upper 16-bits 

are bypassed to the second filter.  The results are then combined in the second 

filter and transmitted on to the next stage.  As designed, the first filter would 

accurately shift the lower 16-bits into the Time-varying Coefficient FIR sequence, 

but would not forward any values from the upper 16-bits of data_in until it had 

computed the 32-tap Time-varying Coefficient FIR sum and attempted to transmit 

that value on the data_out bus.  In the process, a number of data values intended 

for the second filter were wrongly discarded.  Like the original FIR problem, the 

upper 16-bit value on the data_in bus was immediately forwarded on the 

secondary data bus along with the corresponding data_ready_next signal.  The 

second Time-varying Coefficient FIR filter would then utilize this value to 

compute the resulting FIR value, which would be combined with the first filter’s 

output value to create a pair of 16-bit sum values.  A 32-bit version of the shift 

register incorporated into the FIR filter was implemented in the Time-varying 

Coefficient FIR to better track the presence of data in the 32-taps.  Once these 
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interconnection issues were corrected, the Top_2 configuration operated as 

expected. 

 

The verification of the Top_3 configuration took advantage of corrections made 

during Top_2 verification, resulting in a much more efficient authentication 

process.  Since the two-module interconnection issues were no longer present, no 

problems were detected in this verification phase, thus completing the verification 

process as required for this thesis project.   
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8. Benchmarking 
Now that the three permutations of the design architecture have been created and 

verified, this chapter will contain an analysis of whether the architecture succeeds in 

surpassing the performance of DSP running on a G4 CPU, as currently implemented 

for a Teradyne application.  Since the critical path of the architecture’s operation 

involves signals passing between two interconnected FIR filters, as detected in the 

Top_2 configuration, the maximum operational speed of the FPGA design will be set 

at 72.8MHz.  The G4 PowerPC 7410 processor, on the other hand, will be operating 

at 400MHz and will be connected to a 128MB SDRAM via an intermediate FPGA 

using a 64-bit 100MHz memory bus.  Additionally, the G4 will also be directly 

connected to a 2MB SDRAM cache via a 64-bit 160MHz dedicated bus, as indicated 

by Figure 32.   
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Figure 32 - G4 in DSP Module 

 

Initially, consider a scenario where a single 32-tap even-symmetry FIR filter exists on 

the FPGA connected to four Empty modules.  In the case of a long uninterrupted 

stream of data, a single FIR module will be able to process 16 16-bit additions, 16 

multiplications, and 15 32-bit additions in a single cycle.  For comparison purposes, 

simplify this situation to state that the FIR can perform 16 multiply and accumulate, 

or MAC, operations per cycle.  Given the clock speed of 72.8MHz, this simplified 

FIR filter can perform 1.165 billion MACs, or 1.165 GigaMACs, per second.  If all 
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five sockets were loaded with FIR or Time-varying Coefficient FIR filters, the 

architecture could support a maximum throughput of 5.825 GigaMACs/second.  

Since the Top_2 and Top_3 configuration both contain four FIR or Time-varying 

Coefficient FIR filters, the simulated FPGA produces a throughput of 4.660 

GigaMACs/second.        

 

As a benchmark, internal Teradyne testing produced the following performance 

numbers using the PowerPC 7410 G4 processor running at 400MHz.  To produce 

bulk data processing numbers, 4096 MAC operations were run on the G4 to simulate 

a 4096-tap constant coefficient FIR filter.  Due to the serial processing nature of this 

test, which in this example does not utilize the vector processing ALU present on the 

G4, this operation took an average of 102.9µs, or 25.11ns per MAC.  This results in 

an effective throughput of 39.82 MegaMACs.  In a separate 4096-tap time-varying 

coefficient FIR filter test, the G4 required an average of 53.52µs to perform the 

calculation, or 13.07ns per MAC, resulting in an effective throughput of 76.53 

MegaMACs.  It is suspected that the manner in which the time varying coefficients 

were generated and stored in the cache resulted in an increase in coefficient fetch and 

subsequent overall processing speeds over the constant coefficient version.  As 

evident in Table 4, the FPGA architecture provides a significant processing speed 

advantage over this G4 in the case of a long, uninterrupted data stream.   

Table 4 - FPGA to G4 Performance Comparison 

  MegaMACs/second Performance Advantage  
Single FIR 1,165 15.22x 
Top_2 4,660 60.89x FPGA 
Maximum 5,825 76.11x 
G4 76.53   

 

Since the FPGA is designed as a run-time partially reconfigurable architecture, 

however, DSP module-reloading times must be considered in order to fully compare 

the true performance of the FPGA.  On the G4 processor, the time required to call a 

subroutine from the instruction cache is negligible compared to data and coefficient 

bus access and processing time requirements.  For the FPGA, on the other hand, 

module reconfiguration times are significant compared to processing speeds.  Using 
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the Virtex-II’s 8-bit SelectMAP configuration loading interface running at 66MHz, 

the following loading times can be achieved, as given in Table 5.  The partial 

reconfiguration of all five sockets, for example, would require 13.62ms.   

Table 5 - Partial Reconfiguration Times (ms) 

Sockets 1-4 2.59 
Socket_5 3.24 
All Sockets 13.62 

 

It quickly becomes apparent that the 16Kx17-bit data_FIFO is not sufficiently large 

enough to hold all of the required data.  Running at 72.8MHz, the data_FIFO would 

need to be increased to 992Kx17-bits in order to accommodate all the data.  

Effectively, in order for the existing data_FIFO to be sufficiently large enough to hold 

all incoming data during a five-socket reconfiguration, the system could only run at 

1.2MHz.  This FPGA architecture would be better implemented with an external 

SRAM data_FIFO connected to a memory controller embedded in the Fixed_Logic 

module.  To simplify this viability study, however, utilizing an embedded data_FIFO 

reduced the complexity of the design and simplified the verification of the design as 

well.   

 

Aside from the data_FIFO issue, the size of the data stream to be processed with a 

given configuration can determine whether or not using the partially reconfiguration 

FPGA architecture is a better option than a G4.  For the following scenario, assume 

the G4 memory architecture is designed such that larger data sets do not adversely 

affect processing speed.  Also, assume again that that Time-varying Coefficient FIR 

filter performs 16 MACs per second.  Consider a stream of 10 million data points 

running through a single Time-varying Coefficient FIR loaded into Socket_1 on the 

FPGA.  Running at 72.8MHz, the device would only require 137.4ms to process all 

10 million data points.  Even if the 2.59ms partial reconfiguration time is included, 

the device still only needs 140ms to process the data.  At the previously given speed 

of 13.07ns per MAC, a 16-tap time varying coefficient FIR filter implemented on a 

G4 would 2.09 seconds to accomplish the same task.  If the data stream length is only 

1,000 data points, on the other hand, the picture drastically changes.  The FPGA 
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processing time of only 13.74µs is overshadowed by the constant 2.59ms partial 

reconfiguration time for that module.  Meanwhile, the G4 processor provides superior 

performance by completing the task in 209µs.  As displayed in Figure 33, the 

crossover point between FPGA and G4 processing advantage occurs at 13,256 data 

samples in this case.  In the case that Time-varying Coefficient FIR is already loaded 

into Socket_1 and reparameterization does not occur, the FPGA will surpass the G4 

in all instances.  Finally, in the case of a full reparameterization of all 16K 

coefficients present in the filter, which requires approximately 225.1µs, the FPGA is 

superior as long as the data stream is longer than 1,152 data points, as seen in Figure 

34. 
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Figure 33 - PolyFIR_1 to G4 Comparison 

 



 89

PolyFIR_1 Reparameterization to G4 Comparison
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Figure 34 - PolyFIR_1 Reparameterization to G4 Comparison 

 

Now, consider the Top_3 configuration, as described in previous chapters, along with 

a full five-socket partial reconfiguration.  While the processing speed remains the 

same, the partial reconfiguration time increases to 13.62ms and becomes an even 

larger component of overall processing times.  On the G4, even without considering 

the Quadrature Mixer, a set of four 16-tap time-varying coefficient FIRs would 

require 836µs per sample to process.  As a result, as seen in Figure 35, the 

performance crossover occurs at 16,554 samples.  In the separate case that the five 

sockets are already loaded and only the parameters are being adjusted, Figure 36 

shows that the crossover is reduced to 548 samples. 
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Top_3 to G4 Comparison
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Figure 35 - Top_3 to G4 Comparison 

 

Top_3 Reparameterization to G4 Comparison
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Figure 36 - Top_3 Reparameterization to G4 Comparison 

 

Clearly, the processing scenario can contribute greatly in determining which 

processing solution is most applicable.  In the case that a single configuration is 

repeatedly used in the testing of a batch of devices, the run-time partially 

reconfigurable FPGA solution is always superior to a G4 given that processing chain 

can be fit within the FPGA architecture.  In the case that a single device under test 
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must be run through multiple processing configurations, the FPGA maintains its 

advantage as long as the data set is sufficient.  Since the data set length can vary from 

under one hundred to over a one million samples based on the users requirements, the 

system should designed to be able to select the optimal processing method of either 

the FPGA or G4.  Effectively, the test program would need to select between either 

hardware or software subroutines, respectively.     



 92

9. Conclusion 
All things considered, the goal of implementing a high-speed DSP architecture within 

a run-time partially reconfigurable FPGA was achieved.  While the device as 

designed will only operate at 72.8MHz, the five-socket modular architecture will 

support a wide range of DSP algorithms that can make use of the advanced embedded 

features of the Xilinx Virtex-II FPGA.  If a desired processing algorithm is too large 

for a single DSP socket, the architecture compensates by allowing multiple 

neighboring sockets to work together in a coordinated manner.  The resulting large-

scale parallel computational ability reigns superior to a serial processing solution 

given the available processing speeds and the fact that the G4’s vector processing 

ALU was not utilized.  Additionally, secondary considerations such as ease of 

instrument design, ease of system design, field upgradability, and thermal properties 

also lean in favor of utilizing an FPGA running at 100MHz rather than a series of 

ASICs or a G4 running at 400MHz.         

 

The result, from the user’s perspective, is in an architecture that can support a library 

of timing-verified and guaranteed hardware subroutines that could be utilized in a fast 

and flexible FPGA architecture just as a software subroutine could be processed on a 

CPU.  A programming interface could just as easily run through a sequence of run-

time partial reconfigurations as desired by the application while enjoying the parallel 

processing speed advantages offered by the FPGA.  While the same processing 

algorithms could be realized by using a vast array of interconnected programmable 

DSP devices or ASICs, a single FPGA could duplicate this functionality with a 

fraction of the power consumption and footprint.   

 

Additionally, the exact specifications of the design implemented were based on the 

parameters desired for this feasibility study.  The Xilinx Virtex-II 3000 FPGA was 

chosen because it features six columns each with 16 embedded multipliers and 

BlockRAMs, which easily supported a partially reconfigurable five-socket 

architecture.  Each DSP Module would receive a set of 16 embedded blocks, a 
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convenient number to work with given the desired FIR-based filters and the storage 

requirements of the desired NCO.  Within the architecture, the data and secondary 

bus sizes were arbitrarily chosen for the given DSP modules, but could be increased if 

desired.  Since the embedded multipliers and BlockRAMs are 18-bits wide, all 

computational, storage, and bus elements could have been increased to this size.  

Furthermore, the number of supportable DSP modules could easily be increased from 

its current value of four, which again was arbitrarily chosen for this feasibility study.   

 

There were, as expected, a number of concessions made in the design process as 

dictated by constraints present in either the available hardware, supporting software, 

or the scope of this project.  While a workaround was found and utilized, the column-

based reconfiguration scheme present in the Xilinx Virtex-II devices presents a 

significant design hurdle.  A FPGA without this constraint could be used to design a 

much more flexible and less wasteful architecture.  For example, since the FIR filter 

implemented required less than 40% of the CLB resources allocated, reducing the 

size of the DSP module by half would result in a corresponding reduction in partial 

reconfiguration time.   

 

Furthermore, the removal of this column-based constraint would also greatly simplify 

the control scheme designed into the Fixed_Logic module.  As described, shutdown 

notifications and directives must propagate through intermediate modules in order to 

reach the target module.  This process is complicated by the fact that module 

undergoing partial reconfiguration temporarily disrupts this communication method.  

Preferably, the Fixed_Logic module would directly connect to each DSP Module 

either through independent channels or through a central uninterrupted bus.   

 

Along these lines, the utilization of a flexible data bus could also increase the 

flexibility and efficiency of both the architecture itself and specifically the partial 

reconfiguration process.  Referring back to Figure 12, consider an architecture devoid 

of column-based restrictions in which a number of specific DSP modules are loaded. 

Consider the scenario in which a partial reconfiguration is desired to remove a single 
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DSP module from the processing chain.  Rather than reloading the affected socket 

with an Empty module, which would require a couple milliseconds depending on the 

size of the module, the same processing chain modification could be utilized by a 

simple parameter change that altered data routing through a central bus.  The ability 

to specifically target a routing change rather than a larger-scale logical change would 

significantly reduce effective partial reconfiguration time and make the FPGA 

architecture an even more desired processing solution. 

 

The software constraints are similarly difficult to work around, leaving much room 

for future improvements in the design process.  As stated, a temporal floorplanning-

based design environment would again greatly simplify the design process by 

removing a great deal of complexity that for now must be dealt with manually.  DSP 

modules were created in separate design environments and continually checked to 

ensure that they operated within the scope of the architecture.  Any major 

modification to the architecture would require the designer to scour through a number 

of design environments and implementation stages to propagate the desired changes. 

 

Verification alone presents an obstacle that simply cannot be completely overcome 

given the current design process.  Modules can independently be verified to a 

satisfactory degree, but the combined design can only be confirmed at the 

rudimentary level.  Like the design process itself, various permutation of the design 

must be verified separately without the much-needed ability to verify the run-time 

partially reconfigurable aspect of the design.  If this degree over coverage were 

available, it would be possible to construct a simulation suite that included a number 

of partial reconfigurations, which could be more directly compared to the G4 

processor’s ability to sequentially process a chain of subroutines. 

 

Finally, the time constraints and scope of this thesis limited the extent to which this 

architecture could be explored.  The design, implementation, and simulation of the 

architecture were deemed sufficient for this thesis.  It would be desirable, however, to 

delve into a physical prototype scenario in which the run-time partially reconfigurable 
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design was tested in a real-world situation.  The following chapter outlines potential 

future work using this architecture and technology.   
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10. Future Work 
Given the opportunity to continue work on this project, a number of challenges would 

be undertaken to refine the current architecture, physically test the architecture, and 

find adapt this architecture to suit other potential applications.  Clearly, there are a 

few issues for which additional work would yield a superior final product than the 

one presented in this thesis.  First, further optimization of the module timing 

requirements should lead to reductions in bus macro interconnect delay and result in 

improvements in overall system speed.  Also, an external version of the Fixed_Logic 

module’s data_FIFO would result in a more appropriately sized data storage 

capability.  To accomplish this, for example, the Data_Input_Control and 

Data_Output_Control sub-modules could remain in the Fixed_Logic module while 

connected through external pins to a separate SRAM device.  In the case that the 

SRAM device is designed to act as self-addressing FIFO, the data and control 

connections would be quite simple.  On the other hand, if a regular SRAM memory 

were used, the Fixed_Logic module would need to contain the addressing mechanism 

and either a single memory bus or dual-port memory access scheme would be 

required. 

 

Prototype testing of the device architecture using either a Xilinx prototyping board or 

an in-system configuration would result in a more comprehensive glimpse at the final 

product.  Although this degree of testing would have also resulted in a significantly 

longer development timeline, data collected from an actual run-time partial 

reconfiguration could reveal certain power drain, stability, or other physical- level 

issues that are undetectable in simulation. 

 

On a separate topic, the issue of the variable latency of the FPGA architecture was not 

considered until the final phases of this project.29  Despite the fact that every module 

runs on the same clock, depending on the configuration loaded into the device, the 

raw data input to processed data output latency can range from ten cycles for the 

Top_1 configuration to 28 cycles for the Top_3 configuration.  As designed, the 
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device reading data from the End_Logic module would simply wait until the 

data_ready_out status signal indicated available data.  Given the complex pipeline 

timing required for Teradyne testing system or any other comparably complex 

system, additional process latency information may be required from the FPGA.  This 

design enhancement would not be complicated and given that the Fixed_Logic 

module already tracks the current configuration and filter_tuning of the device, it 

would only be a matter of adding an additional output bus to communicate this 

process latency. 

 

In addition to the designated application, this run-time partially reconfigurable 

architecture could be adapted to serve other signal processing purposes for other 

applications.  While this version was designed to act as an alternative to the use of 

software processing in a CPU, this FPGA could also be used to serve as a dedicated 

co-processor to the CPU.  This modification could simplify the design process by 

allowing the control scheme and external interface of the FPGA, as dictated by the 

software on the CPU, to be modified along with the FPGA’s contents. 

 

Furthermore, rather than reserving this technology for larger systems, the same 

architecture could be adapted for use in portable digital devices.  A similar 

architecture would be well suited for use in a software radio application, for instance.  

As encoding schemes and processing requirements change not only with 

advancements in technology but also the region of use, the ability to reprogram the 

DSP capability of a phone over the air could be extremely useful.30  It is unreasonably 

burdensome to prepare for a number of configuration or processing possibilities by 

placing more DSP devices into small portable devices, especially when newer, faster, 

and more capable FPGAs excel at the same sequential signal processing tasks.31  

Advancements in design methodologies to make partially reconfigurable modules on 

an FPGA more analogous to hardware subroutines, such as object oriented 

reconfigurable processing work currently underway at Jet Propulsion Laboratories, 

could make the design of similar time-multiplexed processing architectures more 

efficient.32   
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Overall, the utilization of the run-time partially reconfigurable aspect of current 

FPGAs opens up a wealth of design opportunities for applications unavailable to 

designers only a few years ago.  This design capability is of course nicely 

complimented by the increasing logical and memory potential of FPGAs, which now 

includes PowerPC cores embedded in the fabric of the Xilinx Virtex-II Pro FPGA.  

As emphasized, however, there remains much need for improvement in design tool 

features and capability, but this improvement should occur swiftly as the demand for 

such capability increases.   
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