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by

Victor E. Garzon

Submitted to the Department of Aeronautics and Astronautics
on 11 December 2002, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Despite the generally accepted notion that geometric variability is undesirable in tur-
bomachinery airfoils, little is known in detail about its impact on aerothermal com-
pressor performance. In this work, statistical and probabilistic techniques were used
to assess the impact of geometric and operating condition uncertainty on axial com-
pressor performance. High-fidelity models of geometric variability were constructed
from surface measurements of existing hardware using principal component analy-
sis (PCA). A quasi-two-dimensional cascade analysis code, at the core of a parallel
probabilistic analysis framework, was used to assess the impact of uncertainty on
aerodynamic performance of compressor rotor airfoils. Three rotor blades with inlet
relative Mach numbers of 0.82, 0.90 and 1.25 were considered. Discrepancies between
nominal and mean loss (mean-shift) of up to 20% were observed. Loss and turning
variability were found to grow linearly with geometric noise amplitude.

A probabilistic, gradient-based approach to compressor blade optimization was
presented. Probabilistic objectives, constraints and gradients are approximated using
low-resolution Monte Carlo sampling. Test airfoils were optimized both determinis-
tically and probabilistically and then analyzed probabilistically to account for geo-
metric variability. Probabilistically redesigned airfoils exhibited reductions in mean
loss of up to 25% and in loss variability of as much as 65% from corresponding values
for deterministically redesigned airfoils. A probabilistic mean-line multi-stage axial
compressor model was used to estimate the impact of geometric variability on over-
all compressor performance. Probabilistic loss and turning models were exercised on
a six-stage compressor model. At realistic levels of geometric variability, the mean
polytropic efficiency was found to be upwards of 1% lower than nominal. Compres-
sor simulations using airfoils redesigned probabilistically for minimum loss variability
exhibited reductions of 30 to 40% in polytropic efficiency variability and mean shift.

Thesis Supervisor: David L. Darmofal
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Despite the generally accepted notion that geometric variability is undesirable in

turbomachinery airfoils, little detailed information is known about the detrimental

effects that geometric variability has on the aerodynamic performance of compressor

airfoils. Furthermore, open literature regarding origins and characteristics of com-

pressor airfoil shape variability due to manufacturing or wear is scars at best.

Finished airfoils inevitably exhibit deviations from their intended shape and size [9].

Geometric uncertainty may be introduced, for instance, by noisy manufacturing pro-

cesses or hand-finishing operations. Figure 1-1 illustrates the discrepancies between

actual manufactured compressor airfoil sections (dashed lines) and their intended

design (solid line).

As pointed out by Roberts [105], geometric variability in the form of leading-

edge erosion in core compressor airfoils may account for an increase of 3% or more

on thrust-specific fuel consumption. To put this into perspective, as little as a one

percent change in fuel burn can mean the difference between profitability or loss to a

fleet operator [35].

Restricting manufacturing tolerances to reduce the amount of geometric uncer-

tainty may be exceedingly costly or otherwise impractical to achieve. Furthermore,
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baseline
measured

baseline
measured

0.1 in

in0.1 

Figure 1-1: Example of geometric variability in manufactured compressor airfoils.
Measurements are represented by dashed-lines and the nominal shape by a solid line

normal engine operation leads to changes in compressor and fan airfoil shapes through

erosion, corrosion and other means. In addition to geometric variability, perturbations

in operating conditions may be simply unavoidable due to the variable environments

in which gas turbine engines must operate.

Since little is known in detail about the impact of geometric variability on aero-

dynamic performance of compressor airfoils, few strategies exist to mitigate the detri-

mental effects of geometric and operating condition variability on overall compressor

performance.

In this work, measured geometric variability from an existing compressor blade

is characterized using statistical techniques. The resulting statistical description is

used to construct high-fidelity models of geometric variability to be used in turn to

assess probabilistically the impact of geometric noise on airfoil performance. The

impact of geometric variability on overall compressor performance is estimated by

means of a probabilistic mean-line compressor model. A gradient-based probabilistic

optimization methodology for redesigning compressor airfoils is presented and used

to redesign three rotor blades.
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1.2 Background

Probabilistic techniques applied to structural analysis and design have been in use

in the aerospace industry for more than two decades [78]. For instance, NASA has

employed probabilistic design methods to assess the reliability of advanced launch

systems [16,111]. Furthermore, NASA has developed a probabilistic structural analy-

sis code, NESSUS (numerical evaluation of stochastic structures under stress), which

has been used in static and dynamic analyses of critical structural components of the

space shuttle’s main engine [87, 109]. The Air Force has likewise been involved in

implementing probabilistic design tools in an attempt to decrease the typically large

safety factors involved in designing turbine disks [78]. The Air Force has also used

probabilistic methods in predicting the life of other critical engine components [129]

and airframes [139].

The potential payoffs that may result from judicious application of probabilis-

tic techniques has not escaped the attention of gas turbine engine manufacturers.

In the United States, both Pratt and Whitney and General Electric Aircraft En-

gines have developed probabilistic tools, primarily for structural design. Pratt and

Whitney developed a probabilistic design system that brings together determinis-

tic analysis codes and probabilistic methods to address various structural reliability

problems [1,39,40]. GE Aircraft Engine’s AURORA (Approximation Used to Rapidly

Obtain Reliability Analysis) system implements a set of techniques collectively known

as fast probability integration to reduce the computational expense of structural relia-

bility analyses [45,133]. GE’s “Six-Sigma” quality initiative exemplifies the high-level

commitment of leading aerospace corporations to the use of statistics and probability

throughout their enterprises.

In contrast to the aggressive application of probabilistic techniques to structural

analysis and durability, there have been considerably fewer investigations involving

aerothermal probabilistic analysis and design of turbomachinery components. Proba-

bilistic aerothermal analysis of turbomachinery components is particularly challenging

due to the complexity of the physical phenomena encountered. A marked increase in
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computational requirements appears in direct proportion to the physical complexity

of the turbomachinery physics. Until recently, probabilistic treatments of turboma-

chinery aerothermal analysis and design have been deemed prohibitively expensive.

The advent of relatively affordable parallel hardware is making such considerations

possible in a number of practical applications.

Although not particularly abundant in turbomachinery fluid dynamics applica-

tions, probabilistic methods are not rare in fluid mechanics at large. For instance,

stochastic ideas have found application in the description of turbulent flows [41, 77].

Other examples include recent studies of stochastic versions of Burgers’ [12,43,64,132]

and Navier-Stokes equations [14] as well as probabilistic treatments of flow in porous

media [59]. Recently, attempts to quantify uncertainty in complex fluid-mechanical

problems with stochastic inputs have appeared [69].

In the past decade probabilistic methods have been employed in optimizing over-

all engine cycle parameters as well as individual engine components. For instance,

Egorov et al. proposed the use of stochastic optimization techniques for axisymmetric

design of axial compressors [10,31,32] and other gas turbine engine components [33].

Mavris and coworkers [82,83] applied probabilistic analysis techniques such as Monte

Carlo simulation, fast probability integration and response surface methodology to

commercial engine cycle selection.

In recent years, a number of articles dealing with the effects of randomness in

aerodynamic shape optimization have appeared. Putko et al. used moment closure

methods and Monte Carlo simulation to propagate Mach number and back-pressure

uncertainty through a numerical one-dimensional inviscid flow model [101]. Kock

et al. implemented a parallel probabilistic analysis and design framework for multi-

disciplinary optimization and applied it to the preliminary design of a commercial

transport aircraft [73]. This work concentrated on preliminary design variables such

as wing span, wing area, fuselage length, thrust and weight, rather than on aero-

dynamic shape design. Huyse demonstrated applied moment closure techniques and

statistical decision theory to optimize airfoil shapes in the presence of Mach number

20



uncertainty [61–63]. More recently, Gumbert et al. studied the effect of geometric

uncertainty on flexible wing structural design using moment closure methods and

a three-dimensional Euler solver [51]. Investigations of the effect of uncertainty on

aeromechanical and structural simulation-based design are more numerous than those

dealing with aerodynamic shape optimization (e.g., [29, 72, 112]).

Global non-convex optimization methods have also been applied to aerodynamic

and turbomachinery shape design, including genetic algorithms [80,97] and simulated

annealing [134, 135]. Despite the initial appeal of these global heuristic methods,

their utilization in probabilistic aerodynamic shape optimization is hindered by their

typically high computational requirements. Obayashi and Tsukahara [91] presented

a comparison of gradient-based, simulated annealing and genetic algorithm methods

applied to aerodynamic shape optimization. A family of low-speed NACA airfoils was

optimized for maximum lift under two-dimensional inviscid assumptions. The genetic

algorithm optimum design was found to produce the best lift coefficient of the three

methods, but at six times the cost of the gradient-based method.

Detailed aerodynamic analysis and design requires computer simulations which

are often too expensive to be used effectively as part of a design framework. This fact

has fueled in recent years the interest on surrogate-based optimization methods. A

surrogate is a low-order model relating numerical simulation outputs to their inputs.

The surrogate (or metamodel) is less expensive to evaluate than the full numerical

model and is typically constructed off-line prior to the optimization work. Surrogate

optimization relies on the premise that the surrogate, though less accurate, is able to

predict the general direction of improvement which can be advantageously exploited

in a constrained optimization algorithm.

Various types of surrogate models have been proposed and used in aerodynamic

optimization applications. Among them are polynomial fits, interpolating multivari-

ate splines, kriging models, and neural networks [3, 4, 48, 79, 113, 116]. Garzon and

Darmofal used quadratic polynomial surrogates to optimize a transonic compressor

airfoil in the presence of geometric variability [44]. Rigorous validation techniques for

21



surrogate model construction in fluid dynamics and heat transfer applications have

been presented by Yesilyurt, Otto and coworkers [94, 140].

Although surrogate optimization offers the attractive possibility of simulation-

free optimization, the initial construction step may be excessively expensive when a

large number of design variables is involved. For instance, the number of simulations

required in the construction of a quadratic response surface typically grows exponen-

tially with the number of design variables. In aerodynamic applications, where large

numbers of modeshapes are typically employed, this exponential growth in complex-

ity severely hinders the applicability of high-order response surfaces to probabilistic

optimization.

Arguably the best-known robust design methods today are those introduced by

Taguchi [98]. Taguchi methods (TM) have been in use for more than two decades

in the United States as a means to reduce variability in products and processes via

parameter redesign [89, 98]. Although used to some degree in the automotive and

telecommunications industries, TM have not found wide acceptance in manufactur-

ing industries at large, and are not commonly taught in academic institutions [68].

As pointed out by Parks [96] one of the major limitations of TM is that the under-

lying assumption of additivity (“linearity”) precludes its use in systems dominated

by nonlinear interactions. Since such interactions abound in mathematical models of

viscous transonic flow applications (as hinted, for instance, by the results presented

in Chapters 3–5), TM have not been applied to aerodynamic shape optimization

problems.

The impact of corrosion, erosion and ingestion of particulates on gas turbine engine

performance has been the subject of various investigations in the past two decades

(see for example Ref. [2]). The impact of blade erosion on turbine engine perfor-

mance has been investigated numerically and experimentally by Tabakoff, Hamed

and coworkers [55,86] among others. Semi-empirical blade erosion models have been

proposed by Tabakoff et al. [125].

Among the first rigorous experimental investigations of the effects of leading-
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edge shape on transonic rotor performance was that of Reid and Urasek [102] in

1973. Using both experimental and numerical techniques Suder et al. [123] found

that surface roughness near the blade leading edge results in thicker boundary layers

which in turn lead to increased blockage and reduced aerodynamic performance.

The importance of leading-edge shape on engine performance is illustrated by

the interest in compressor blade refurbishment operations that offer performance

restoration at costs below those of part replacement [35, 103, 105]. The ability to

refurbish compressor blades by “recontouring” relies in part in experimental investi-

gations that indicate that chord length variations above the stall chord limit are not

significant [104].

1.3 Thesis Objectives

The main objectives of the work reported in this thesis are:

• Construct a high-fidelity model of geometric variability which captures the im-

portant features present in data from advanced compressor rotor blades and

which is suitable for use in probabilistic analysis and design.

• Employ the model to assess the impact of geometric variability on the aero-

dynamic performance (profile loss and turning) of transonic compressor blade

rows.

• Probabilistically optimize the nominal shapes of compressor airfoils and com-

pare with similarly constrained deterministic redesigns.

• Estimate the impact of geometric variability, including noise amplitude and

redesign effects, on the performance of a multistage axial compressor.

1.4 Contributions

The following is a summary of the main contributions of this thesis.
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• First application of statistical methods to constructing high-fidelity models of

manufacturing variability from surface measurements of existing compressor

blades. Using principal component analysis, models of geometric variability

suitable for probabilistic analysis and design were constructed from surface mea-

surements of an existing core compressor rotor blade.

• First probabilistic assessment of the impact of geometric variability on aero-

dynamic performance of compressor blades. The effect of geometric variability

found in existing hardware was assessed using Monte Carlo simulation and

quasi-two-dimensional cascade analysis codes. Discrepancies between nominal

and mean loss coefficient of up to 20% were observed. Loss and turning vari-

ability were found to grow linearly with geometric noise amplitude.

• First probabilistic assessment of the impact of blade shape variability on aerother-

mal performance of multi-stage axial compressors. A probabilistic multi-stage

mean-line compressor model was used to estimate the effect of geometric vari-

ability on compressor efficiency and pressure ratio. The compressor model in-

cluded loss coefficient and turning angle statistics derived from the analysis of

existing hardware. At five-times the baseline level of blade geometric variabil-

ity, the discrepancy between nominal and mean polytropic efficiency was found

to be about one percentage point. Pressure ratio variability was found to vary

linearly with geometric variability amplitude.

• Development of a gradient-based probabilistic optimization method for redesign-

ing compressor airfoils in the presence of geometric variability. Reductions in

mean loss coefficient of up to 25% and in loss variability of up to 65% rela-

tive to deterministically redesigned airfoils were observed. At the compressor

level, compressor simulations using airfoils optimized probabilistically for min-

imum loss variability exhibited reductions of 30 to 40% in polytropic efficiency

variability and nominal-to-mean discrepancy.
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1.5 Outline

The thesis follows the order of the aforementioned objectives. Chapter 2 illustrates

the use of principal component analysis, a well known order-reduction technique, to

characterizing and modeling measured geometric variability in compressor blades.

Chapter 3 reports the use of probabilistic analysis techniques to assess the impact of

geometric variability on the aerodynamic performance of isolated compressor airfoils.

Chapter 4 presents a gradient-based probabilistic optimization method for redesign-

ing compressor airfoils in the presence of geometric and inlet flow variability. In

Chapter 5, a probabilistic mean-line compressor model is used to assess the impact

of geometric variability on overall compressor performance. The last chapter sum-

marizes the contributions of the thesis and offers a few recommendations for future

work.
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Chapter 2

Characterization of Geometric

Variability

Despite general agreement that airfoil shape imperfections are detrimental to aero-

dynamic performance, limited information can be found in the open literature about

their origins and quantitative effects. The lack of characterizations of turbomachinery

shape variability is in part due to the random nature of the processes that cause it

(i.e., noisy manufacturing processes, foreign object damage, etc.) Nonetheless, high-

fidelity models of geometric variability must be constructed in order to assess their

impact on aerodynamic performance.

This chapter outlines the basic ideas behind a method to provide such high fi-

delity models and summarizes its application to the characterization of geometric

variability in compressor airfoils. The method, referred to as principal component

analysis (PCA), has been used in various fields to reduce the dimensionality of large

ensembles of measured or sampled data. In essence, PCA involves finding a statis-

tically optimal basis for representing the scatter of the measured data. PCA results

for surface measurements of an existing integrally-bladed rotor are discussed. High-

fidelity models of geometric variability suitable for probabilistic analysis and design

are constructed. The geometric noise modes resulting from the analysis are found not

to correspond in general to customary geometric design and tolerancing parameters
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of known aerodynamic importance.

In addition to the PCA-based geometric variability model, a leading-edge blunt-

ness mode is introduced to account for airfoil erosion.

2.1 Principal Component Analysis of Airfoil Mea-

surements

Hacker [52] used principal components analysis and other statistical techniques to

produce reduced-order models of compressor blade performance. In Hacker’s study,

heuristically-based models of geometric variability were used in lieu of actual mea-

surements. This section presents results from the application of principal component

analysis to a set of actual high-resolution measurements of an high-pressure com-

pressor integrally-bladed rotor (IBR). A two-dimensional analysis is presented in this

section. Three-dimensional effects are discussed in Appendix A.

2.1.1 Background

The nominal airfoil geometry is assumed to be defined by p coordinate points x0
j ∈ R

m,

j = 1, . . . , p where m is typically 2 or 3. Consider a set of n coordinate measurements

{x̂i,j ∈ R
m | i = 1, . . . , n; j = 1, . . . , p} taken, for instance, with a coordinate-

measuring machine. The measurements may correspond to single radial locations

(m = 2) or entire blade segments (m = 3). Index j uniquely identifies specific nominal

points and their measured counterparts. Similarly index i identifies a distinct set of

measured points, i.e., belonging to a particular blade. The discrepancies from nominal

in the coordinate measurements can be expressed as error vectors

x′

i,j = x̂i,j − x0
j , i = 1, . . . , n; j = 1, . . . , p .
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Subtracting from these error vectors their ensemble average

x̄j =
1

n

n
∑

i=1

x′

i,j, j = 1, . . . , p ,

gives a centered set of m-dimensional vectors, X = {xi,j = x̂i,j− x̄j | i = 1, . . . , n; j =

1, . . . , p}. Writing them-dimensional measurements in vector form, Xj = [xT
1,j , . . . ,x

T
n,j]

T ,

the scatter matrix of set X is given by

S = XTX.

The scatter matrix is related to the covariance matrix C via C = (n− 1)−1S.

It can be shown (see Appendix A or standard references such as [100] and [67])

that the directions along which the scatter is maximized correspond to non-trivial

solutions of the eigenvalue problem

Sv = λv. (2.1)

Because S is symmetric positive definite, it has in general mp orthonormal eigen-

vectors vi ∈ R
mp, i = 1, . . . , mp with corresponding real, non-negative eigenvalues

λi, i = 1, . . . , mp [130]. The eigenvector corresponding to the largest eigenvalue indi-

cates the direction along which the scatter of the data is maximized. The eigenvector

corresponding to the next largest eigenvalue maximizes the scatter along a direction

normal to the previous eigenvector. It is in this sense that it is said that the eigen-

vectors of S provide an optimal statistical basis for the decomposition of the scatter

of the samples.

The total scatter (or energy [8]) E of the data in set X can be shown to be (see

Appendix A)

E ≡ tr(XTX) =

mp
∑

j=1

λj .

In other words, the total scatter of the data set is given by the sum of the eigenvalues

of the scatter matrix S.
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The PCA synthesis of S can be shown to be equivalent to the Singular Value

Decomposition (SVD) of X in reduced form [130],

X = UΣVT , (2.2)

where Σ = diag(σ1, . . . , σmp), σj =
√

λj, j = 1, . . . , mp and the columns of V are the

corresponding eigenvectors of S. The columns of A = UΣ are called the amplitude

vectors or principal components of the data set X (see Appendix A). The SVD of X

is made unique by requiring that {σj}mp
j=1 be a non-increasing sequence.

2.1.2 Application

As an application of the PCA formalism outlined above, an integrally-bladed ro-

tor (IBR) consisting of 56 nominally identical blades with inlet tip radius of 9.87

inches and tip-to-hub ratio of 1.172 is considered. The IBR is part of an industrial

design axial compressor. The measurements correspond to parts fabricated via flank-

milling [138]. Surface measurements of blades from four separate rotors (150 blades

in total) were taken using a scanning coordinate-measuring machine (CMM).1 Each

blade was measured at 13 different radial locations. The scanning CMM measure-

ments of each radial station were condensed to 112 points. Axial elongation and

untwisting of the blade due to centrifugal forces and thermal loading incurred dur-

ing operation are assumed small and neglected in the current analysis of geometric

variability, as well as in the subsequent aerothermal analyses.

For the present application the 13 separate cross-sectional measurements were

stacked together to form a three-dimensional representation of the measured portion

of the blade. Using bicubic spline interpolation [21] the nominal geometry, as well as

each measured blade, were “cut” along a mid-span axial streamline path of varying

radius (see Section 3.3.1). The resulting sets of points are further modified by remov-

ing nine points (five from the suction and four from the pressure sides) around the

trailing edge, as shown in Fig. 2-1, to produce an airfoil with a blunt trailing edge as

1Section 2.3 in Appendix A discusses the impact of number of samples on PCA results.
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required by the blade passage analysis code (see Sect. 3.1.2 and Ref. 27).

Original coord.
Blunt TE coord.
Mean camber

Figure 2-1: Schematic blunt trailing edge modification

Using the notation introduced above, the resulting set X of two-dimensional mean-

centered measurement vectors can be written as n×mp matrix X where n = 224, m =

2 and p = 103. The SVD of X produces diagonal matrix Σ of singular values σi =
√
λi

(arranged in non-increasing order) and orthonormal matrix V of eigenvectors of the

scatter matrix S.

Figure 2-2(a) shows the modal scatter fraction λk/
∑mp

i=1 λi (decreasing) and the

partial scatter
∑k

i=1 λi/
∑mp

i=1 λi (increasing) of the first six eigenmodes of S. The first

mode contains 79% of the total scatter in the original measurement set and it clearly

dwarfs the scatter fraction of the other modes. For instance, the scatter corresponding

to the second most energetic mode is eight times smaller in magnitude than the first.

Figures 2-2(b)–(d) show the directions along which the first three eigenmodes of

S,

xi = x0 + x̄ + σivi, i = 1, 2, 3 . (2.3)

act with respect to the average geometry x0+x̄. More details of eigenmodes 1, 3 and 6

are shown in Figs. 2-4, 2-5 and 2-6 respectively. An additional scaling factor indicated

at the top of each figure was used to distinguish the effect of the eigenmode from the

mean geometry. Only the positive mode amplitude contribution is depicted in the
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Figure 2-2: IBR mid-span section: PCA modes
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figures. Figure 2-4 indicates that the main effects of mode 1 are uniform thickening of

the airfoil and azimuthal translation. Mode 3, on the other hand, exhibits a thinning

of the airfoil on the suction surface away from the leading edge, with the shape of

the latter being maintained. Mode 6 shows more localized effects at both the nose

and tail of the airfoil, i.e., a distortion of the leading edge characterized by thickening

and the appearance of a bulge on the pressure side. The perturbations on the airfoil

nose are noteworthy as the aerodynamic performance of transonic airfoils is known

to be sensitive to leading-edge shape and thickness. At the tail of the airfoil, mode

6 causes an increase in thickness and the appearance of ripples on both the suction

and pressure surfaces.

Figure 2-2(a) indicates that the first six modes, when combined contain 99% of

the total scatter present in the sample. Figure 2-3 depicts the first 50 eigenvalues of

S, showing that they decrease in amplitude exponentially fast. This rapid decrease in

relative energy of the higher modes suggests that a reduced-order model containing

only the first few modes may be sufficient to represent most of the geometric variability

contained in the original set of measurements. The construction of such a model is

discussed in Sect. 2.2.

The description of modes 1, 3 and 6 suggests a decomposition of the PCA modes

into geometric parameters of known aerodynamic and aeromechanic importance.

Table 2.1 summarizes percent changes in maximum thickness, maximum camber,

leading-edge radius, chord length and cross-sectional area, as well as trailing-edge

deflection angles for the first six eigenmodes. In computing the parameter values, the

PCA modes were scaled as in Eq. (2.3). The parameter values, except for trailing-

edge angle, were computed with XFOIL, an isolated airfoil design and analysis code

developed by Drela and Youngren [28]. Trailing-edge angle changes were calculated

by comparing mean camber line angles in the vicinity of the trailing edge (5% of the

camber line arclength). The row labeled “mean” contains the changes corresponding

to the average airfoil, x̄. Table 2.1 suggests that modes 2 and 4 exhibit non-negligible

changes in maximum thickness, while modes 4 and 5 cause the largest relative changes
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Table 2.1: IBR mid-span section: Geometric features of PCA modes. Numbered
entries are percentage changes with respect to the average airfoil geometry, x0 + x̄.
TE angle entries are given in degrees. The average geometry is compared to the
nominal airfoil.

Mode M
ax
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∆
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om

x
0
)

C
h
or

d
(%

∆
fr

om
x

0
)

A
re

a
(%

∆
fr

om
x

0
)

Avg -0.12 -0.98 18.33 0.06 -0.04 -1.03

1 -0.54 -0.06 -4.22 0.00 -0.04 -0.77
2 -1.09 0.28 2.15 0.04 -0.04 -1.27
3 0.53 0.04 1.83 -0.02 0.01 0.85
4 -0.74 0.10 1.34 -0.07 0.02 -0.87
5 -0.11 0.27 4.23 0.06 0.02 -0.01
6 0.03 -0.01 -4.11 0.01 0.00 -0.08
7 0.06 -0.03 3.04 -0.02 0.00 0.02
8 -0.04 0.16 0.65 0.00 0.00 -0.05

in trailing-edge angle. Although to a lesser degree than the mean geometry, modes 2

and 5 also impact the maximum camber. The dominant contribution to leading-edge

radius change in the measurement data can be ascribed to the average airfoil. On the

other hand, the measured airfoils do not show substantial changes in chord length

from the design intent. In summary, it is not clear that any one mode leads to a

dominant change in a particular geometric feature; rather each mode contributes to

changes in some of the features to greater or lesser extent.

The above suggests a characterization of actual manufacturing variability involv-

ing statistical mode shapes to complement customary tolerancing parameters. Fur-

ther, by linking individual mode shapes to their impact on aerodynamic performance,

a functionally based tolerancing scheme could be devised. This issue will be discussed

further in Chapter 3 which addresses the impact of geometric variability on aerody-

namic performance of compressor airfoils.
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2.2 PCA-Based Models of Geometric Variability

A high-fidelity model of the geometric variability present in X , for use in CFD-based

probabilistic aerodynamic analysis, is motivated as follows. Let Zi, 1 = 1, . . . , mp

be independent, identically distributed random variables from N (0, 1) (normally dis-

tributed with zero mean and variance one). By linearity the random vector

X = x0 + x̄ +

mp
∑

i=1

√

λiZivi (2.4)

has mean x0 + x̄ and total scatter
∑mp

i=1 λi = E, i.e., a set of instances of X will have

the same mean and unbiased estimator of the variance, as the set of measurements

X . Furthermore, the number of samples of X for use in probabilistic analysis, N ,

can be large; for instance in Monte Carlo simulation N � mp may be required (see

Chapter 3).

A reduced-order model of X may be useful in preliminary analyses or when tech-

niques other than Monte Carlo simulation are to be employed (e.g., moment methods,

response surfaces, etc). The rapid decay of the eigenvalues of the scatter matrix of

the data (Fig. 2-3) suggests a reduced-order model of X of the form

X̃ = x0 + x̄ +

K
∑

i=1

√

λiZivi

where K < mp is a free truncation parameter. For large enough N , as K increases

from unity the total variance of X̃ approaches that of X. In fact, the total scatter of

a finite set of instances of X̃ is bounded by
∑K

i=1 λi ≤ E.

As discussed in the next Chapter, although the geometric variability present in

measurement samples may be well described by the first few PCA modes, assessing

its impact on aerodynamic performance may require including a larger number of

modes in the model of geometric variability.

A PCA-based high-fidelity model obtained for the IBR airfoil is used in Chapter 3

to assess probabilistically the impact of manufacturing variability on aerodynamic

37



performance. The impact of individual modes and noise amplitude are also addressed

in that Chapter.

2.3 PCA Results Vs. Number of Samples

In the application of PCA to compressor rotor blade measurements discussed above,

all available samples (150) were used in the analysis. This section discusses how PCA

results (covariance matrix eigenvalues) vary according to the number of samples being

considered. For instance, given n measurement samples, there are
(

n
k

)

different ways

of selecting k ≤ n among them.2

Figure 2-7 depicts convergence trends of the first four eigenvalues of the covari-

ance matrix for k measured samples. The average value and standard deviation

of each eigenvalue are computed from min
[(

n
k

)

, 104
]

random permutations of the

indices {1 . . . n}. For each random permutation the eigenvalues of the covariance

matrix of the corresponding indexed measurements is computed via singular value

decomposition. In Fig. 2-7 the average eigenvalues are shown as solid lines and a one-

standard-deviation interval about the mean by dashed lines. Table 2-7 shows mean

and standard deviation values for the first 12 covariance matrix eigenvalues for 5, 10,

60 and 150 samples. As shown in Fig. 2-7 and further illustrated in Table 2-7, the

uncertainty of the first computed covariance matrix eigenvalue is very large for small

sample sizes, and decreases monotonically as the sample size is increased. Figure 2-

7(d) indicates that the likelihood that a sample subset consisting of less than ∼20

randomly-selected samples will be sufficient to approximate the fourth eigenvalue to

within 10% is rather small. It follows that in order to reduce the uncertainty of the

PCA due to sample size to acceptable levels, a large fraction of the total number of

samples must be considered.

2
(

n

k

)

or “n choose k” is defined for k ≤ n by [108]

(

n

k

)

:=
n!

(n− k)!k!
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Figure 2-7: Eigenvalues of covariance matrix versus number of samples
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Table 2.2: Eigenvalues covariance matrix versus number of samples

Nsmpl 5 10 60 150

n
E[λn] σλn

E[λn] σλn
E[λn] σλn

E[λn] σλn

×103 ×103 ×103 ×103 ×103 ×103 ×103 ×103

1 3.0219 1.1010 3.0546 0.8124 3.1103 0.2745 3.1198 0.0192
2 1.0353 0.2741 1.0580 0.1883 1.0467 0.0669 1.0454 0.0047
3 0.5528 0.1675 0.6518 0.1118 0.6531 0.0382 0.6383 0.0029
4 0.2793 0.1080 0.4434 0.0925 0.5602 0.0427 0.5886 0.0039
5 0.2840 0.0666 0.4083 0.0355 0.4214 0.0025
6 0.1786 0.0369 0.2142 0.0164 0.2119 0.0012
7 0.1258 0.0246 0.1794 0.0153 0.1907 0.0013
8 0.0908 0.0184 0.1310 0.0083 0.1306 0.0007
9 0.0629 0.0147 0.1126 0.0074 0.1152 0.0007
10 0.0975 0.0062 0.1006 0.0006
11 0.0848 0.0060 0.0927 0.0006
12 0.0712 0.0043 0.0725 0.0004

2.4 Other Methods of Describing Geometric Noise

As pointed out earlier, the statistical characterization afforded by principal compo-

nent analysis can be used in modeling geometric variability for probabilistic simulation

and optimization purposes. However, high-resolution measurements of new or used

airfoils are not available in many turbomachinery design situations. In the absence

of this type of data, heuristic information such as expert opinion and past experi-

ence may be used in describing geometric variability. Furthermore, known statistical

characterizations may be used to construct geometric variability models for similar

airfoils (e.g., airfoils fabricated by the same process).

Examples of additional geometric modes of possible aerodynamic interest to proba-

bilistic simulations include perturbations to thickness and camber distributions, twist,

leading-edge shape perturbations, overall chord-length changes, trailing-edge angle

variations, etc. The aerodynamic performance of transonic and supersonic airfoils

is sensitive to thickness distribution, particularly to the value and location of its

maximum. For instance, in axial compressor blade passages the maximum thick-

ness influences the shock structure and flow passing capabilities. Similarly, transonic
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airfoils are sensitive to variations in leading-edge thickness and shape, as pressure

distribution, boundary layer transition, separation and reattachment depend to some

degree on the shape of the leading-edge.

Thickness, camber, leading edge bluntness and twist modes are used in the se-

quel to model airfoil geometric variability when manufacturing or wear data are not

available. The thickness perturbation consists of a smooth distribution acting along

the directions normal to the suction or pressure surfaces of the airfoil. The thickness

distribution is given by

f(x) = axα−1(1− x)β−1

for 0 < x < 1, where α and β are distribution parameters which control the location

of maximum thickness increase and how fast the mode dies out as it approaches the

leading and trailing edges. The parameter a controls the amplitude of the thickness

perturbation. Figure 2-8(a) shows the effect of applying the thickness mode with

parameters a = 0.01 chord lengths, α = β = 4 to a sample compressor airfoil.

Figure 2-8(a) also shows the effect of twist which under the present two-dimensional

restriction is implemented as a solid-body rotation about the airfoil’s centroid.

Thickness and Rotation

Nominal
Perturbed

(a) Thickness, twist

b=1
b=1.5
b=2

(b) Leading edge bluntness

Figure 2-8: Thickness, twist and leading-edge bluntness
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Leading edge shape variability is of particular interest in assessing the impact of

wear on airfoil performance. Aircraft engines, for instance, ingest foreign particles

that erode the leading edges of fan and compressor blades [102]. A leading-edge

bluntness mode is implemented by fitting a profile to the “nose” of the airfoil section.

The profile is defined by

g(x) = [4x(1− x)]1/b

for 0 < x < 1 where b ≥ 1 serves a “bluntness” parameter. For b = 1, g(x) is a

concave-down parabola centered at x = 1/2 with maximum value of 1. As b increases

so does the bluntness of the leading edge. Only values of b greater than or equal to

unity are pertinent to the present application. Figure 2-8(b) shows the nose of an

airfoil to which three different profiles with b values of 1, 1.5 and 2 have been fitted.

Although the other heuristic geometric noise modes discussed here can be assumed

to be normally distributed, the impact of erosion on the leading edge is more likely

to result in an increase, rather than a reduction, of the leading-edge radius [104]. It

follows that a symmetric distribution (as is the Gaussian distribution) that equally

favors smaller and larger leading edge radii is not appropriate. Therefore, bluntness

is modeled here as a random variable Xb with Beta probability density, i.e.,

fXb
(x) =











xα−1(1−x)β−1

B(α,β)
, 0 < x < 1

0 , otherwise

where

B(α, β) =

∫ 1

0

xα−1(1− x)β−1dx =
Γ(α)Γ(β)

Γ(α + β)
.

The mean and variance of Xb thus defined can be shown to be [108] (see also Chap-

ter 3)

E[Xb] =
α

α + β
, Var(Xb) =

αβ

(α + β)2(α+ β + 1)
.

The amount of asymmetry or skewness of Xb—as indicated by its third central
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moment—can be found to be [88]

2(β − α)
√
α + β + 1

(α + β + 2)
√
αβ

.

As suggested in Refs. 105 and 103, the leading-edge radius of eroded airfoils has

been observed to increase to twice the baseline value. The amount of leading-edge

shape distortion will depend on many factors such as thickness distribution and wear

rate. A continuous Beta distribution in the interval [0.8, 2.0] with parameters α =

2, β = 4 is assumed for the leading-edge bluntness mode. Figure 2-9 shows the

density function ofXb for the chosen parameters; the dashed line indicates the location

of the mean value. The standard deviation and skewness of Xb are 0.21 and 0.81

respectively, indicating that the distribution of Xb is weighed toward values higher

than the average.

0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

α=2, β=4

Bluntness Parameter, b

f X
b

Figure 2-9: Aerodynamic performance trends and bluntness parameter density

The selection of input statistics for the discrete modes mentioned above is dis-

cussed in Chapter 3 as part of assessing their impact to aerodynamic performance of

isolated compressor airfoils.
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2.5 Summary

This chapter outlines a procedure for characterizing the geometric variability of com-

pressor blades by means of Principal Component Analysis (PCA). PCA is a technique

used in various fields to reduce the dimensionality of large ensembles of measured

or sampled data. In the present context PCA is used to obtain high-fidelity and

reduced-order models of geometric variability from compressor airfoil measurements.

The high-fidelity statistical characterization thus afforded provides a model of geo-

metric variability suitable for probabilistic simulation and optimization. PCA results

for CMM measurements of an existing integrally-bladed rotor were presented. The

geometric variability in the original sample was found to be well represented with less

than ten discrete modes. The geometric noise modes were found in general not to

correspond uniquely to single geometric design and tolerancing parameters of known

aerodynamic importance. Additional modes of geometric variability pertaining to

airfoil wear were also discussed.
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Chapter 3

Impact of Geometric Variability

On Compressor Blade

Aerodynamics

Numerical codes implementing techniques from computational fluid dynamics (CFD)

have for many year been used to analyze and design turbomachinery blading. How-

ever, there have been few rigorous attempts to use CFD tools to assess the impact of

geometric variability on compressor blading performance, due primarily to the exces-

sive computational expense involved. In this Chapter, the quasi-2D flow analysis code

MISES was used as part of a probabilistic analysis framework to assess the impact

of geometric and inlet flow condition uncertainty on the aerodynamic performance of

transonic compressors. Blade row total pressure loss coefficient and turning were the

selected measures of aerodynamic performance. Three rotor blades are considered,

with inlet Mach numbers in the range of common high pressure axial compressor

operation. The inlet Mach numbers considered are 0.82, 0.90 and 1.25. The geomet-

ric noise models are based on the PCA results of Chapter 2. The input variability is

found to affect the expected values of loss and turning as well as their the uncertainty.

It is observed that the amplitude of the geometric noise variability is linearly related

to increase of output variability. The relative mean-shift—or difference between the
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nominal and expected values—is found to be larger in the subsonic-inlet cases than

in the supersonic one, but the latter exhibits more variability in both loss coefficient

and turning. The relative contribution of the average geometry of the noise model to

mean shift decreases as the noise variability is increased.

3.1 Aerodynamic Performance Assessment

3.1.1 Background

The aerodynamic performance of a compressor rotor may be summarized by the

changes in total enthalpy and entropy in the flow across the blade row, i.e., the amount

of work transfered to the fluid and the losses (profile, endwall, shock) accrued in the

process.

Applying the first law of thermodynamics and conservation of angular momentum

to a control volume surrounding a stream-tube across the blade passage leads to the

Euler turbine equation

∆ht = ω(r2v2 − r1v1) , (3.1)

where ∆ht denotes the change in total enthalpy; ω, r and v denote wheel speed, radius

and flow velocity, and the subscripts 1 and 2 stand for inlet and exit respectively.

Eq. (3.1) relates the change in total enthalpy per unit mass ∆ht to the change in

angular momentum per unit mass across the passage. For small radial changes across

the blade row, Eq (3.1) reduces to

∆ht = ωr [u1 tanβ1 − u2 tan(β1 + ϑ)]

where u and β are the the axial flow velocity and relative flow angle respectively and

ϑ denotes the flow turning, ϑ ≡ β2 − β1.

An appropriate choice for a measure of loss in an adiabatic machine is entropy

generation [23]. The increase in entropy results in a decrease of the stagnation pressure

rise compared to the ideal (isentropic) value. In what follows the loss coefficient is
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defined as the drop in total pressure from the ideal value at passage exit scaled by

the difference between inlet total and static pressure,

$ =
p0

T2
− p̄T2

pT1 − p1

. (3.2)

In Eq. (3.2), p0
T2

is the ideal (isentropic) total pressure at the passage exit,

p0
T2

=
γ − 1

γ
h0ρ0ref

(

h0

I

)
1

γ−1

.

The rothalpy, I,

I = h+
|u|2
2
− (Ωr)2

2

is invariant in the rotating frame of reference and h0 = I + 1
2
(Ωr)2, where Ω is the

wheel speed and r the streamtube radius. In MISES the reference quantity ρ0ref
is

taken to be unity. Finally p̄T2 is the mass-averaged total pressure at the passage exit.

Details of MISES’ cascade loss calculation can be found in Appendix C of Ref. 141.

3.1.2 Blade row aerodynamic analysis: MISES

MISES (Multiple blade Interacting Streamtube Euler Solver) is an interactive quasi-

two-dimensional viscous flow analysis package [27] used for turbomachinery analysis

and design. MISES’ flow solver, ISES can be used to analyze and design single or

multi-element airfoils over a wide range of flow conditions. ISES incorporates a zonal

approach in which the inviscid part of the flow is described by the projection of the

steady-state 3-D Euler equations onto an axisymmetric stream-surface of variable

thickness and radius. The resulting two-dimensional equations are discretized in con-

servation form over a streamline grid. The viscous parts of the flow (boundary layers

and wake) are modeled by means of a two-equation integral boundary layer formula-

tion [24]. The viscous and inviscid portions of the flowfield are coupled through the

displacement thickness and the resulting nonlinear system of equation is solved using

the Newton-Raphson method [141].
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ISES can model transitional, trailing-edge and shock-induced separation [141] and

recent modifications allow for boundary layer suction and blowing [85]. MISES has

recently been used to design high-pressure ratio conventional and counter-rotating

compressors [70, 85] as well as aspirated fan stages [114]. Preliminary MISES results

from the present study were used by Häcker [52] to create reduced order models of

the impact of shape variability on compressor blade performance.

A feature of MISES that is particularly relevant to probabilistic analysis is its

speed. For the cases discussed herein, typical execution times are 3 to 10 seconds per

trial on a current commodity CPU. 1.

3.2 Probabilistic Analysis

Conceptually, the computed loss coefficient and turning may be seen as functions of n

independent variables representing the geometry of the flow passage and m variables

representing other flow parameters,

$ = $(x, y), ϑ = ϑ(x, y)

where x ∈ R
n denotes the vector of geometric parameters and y ∈ R

m contains the

remaining parameters. Both $ and ϑ are deterministic functions of x and y, that is,

for given x and y, there is a unique value of $.

Consider next a continuous random vector X with joint probability density func-

tion fX [108]. For fixed flow parameters y, the expected value of $(X, y) is defined

by

µ$ := EX [$(X, y)] =

∫

�
n

$(X, y)fX(x) dx , (3.3)

and the variance of $(X, y) is given by

σ2
$ := Var($(X, y)) = EX [($(X, y)− µ$)2] . (3.4)

1Intel 1.8 GHz Xeon processor

48



Similar expressions follow for mean µϑ and variance σ2
ϑ of turning. It is often useful

in comparing the variability of outputs with dissimilar expected values to consider

their coefficient of variability (COV), defined as the ratio of the standard deviation

to the mean of a given random variable, e.g. the COV of loss coefficient is defined to

be

V$ :=
σ$

µ$

.

In general the functional dependence of $ on the geometric parameters x is too in-

volved to allow for closed form evaluation of the integrals in definitions (3.3) and (3.4).

However, numerical approximations can be obtained via numerical probabilistic anal-

ysis techniques. One such technique, the Monte Carlo method, is described below and

later applied to estimating the effect of geometric and inlet flow condition variability

for three compressor airfoils. Garzon and Darmofal [44] applied and compared two

other probabilistic analysis techniques, response surface methodology and probabilis-

tic quadrature, to assessing the impact of geometric variability on aerodynamic per-

formance. In that study, probabilistic quadrature outperformed quadratic response

surfaces in predicting mean and standard deviation of loss coefficient. Mean loss co-

efficient predictions by probabilistic quadrature were in good agreement with Monte

Carlo predictions, but standard deviations were in general under-predicted.

3.2.1 Monte Carlo Simulation

The systematic application of Monte Carlo method to scientific problems dates from

the 1940s (see Ref. [56], Sect. 1.2 for a more detailed historical account). During

World War II Monte Carlo methods were used to solve neutron diffusion problems.

After the war Ulam, Fermi and von Neumann showed how Monte Carlo methods

can be used to obtain approximate solutions to otherwise intractable deterministic

problems [56].

Monte Carlo methods are numerical techniques used to approximate multivariate

integrals via statistical sampling, a procedure also known as random quadrature [128].

The Monte Carlo method can be applied to both deterministic and probabilistic
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problems. Applications of the former type include approximating multidimensional

integrals [37] and solving partial differential equations numerically [50,53,110]. In the

present context the Monte Carlo method is used to estimate probabilistic moments

(mean and variance) of deterministic functions having random arguments, that is,

mean and variance of loss coefficient and turning for compressor blade rows subjected

to geometric variability.

A frequently used unbiased estimator of the mean of a function g of one random

variable X is the arithmetic average, i.e., for sample size N the estimator of the mean

of g(X) is simply

µ̂g =
1

N

N
∑

i=1

g(xi)

which has standard error

σµ̂g
=

σg√
N

where σg is the standard deviation of g(X). In practice σg is not generally known,

however it can be approximated with the unbiased estimator of the variance of g(X),

σ̂2
g =

1

N − 1

N
∑

i=1

[g(Xi)− (µ̂g)]
2 =

1

N − 1

[

N
∑

i=1

g(Xi)
2 −Nµ̂2

g

]

.

The standard error of σ̂2
g is given approximately by

σσ̂2
g
' σ2

g
√

N/2

with equality holding only when g(X) is normally distributed [56]. It follows from

the above expressions that the standard error of the estimators of mean and variance

of g(X) decrease with the square root of the sample size.

It is often instructive to consider central moments higher than the second one. The

ratio of the third central moment to the cube of the standard deviation, called the

skewness coefficient, provides a measure of asymmetry [7]. Mooney [88] recommends

50



the following expression as an unbiased estimator of skewness coefficient

ŝ =
1
N

∑N
i=1(g(xi)− µ̂g)

3

[

1
N

∑N
i=1(g(xi)− µ̂g)2

]3/2
.

Many improvements to the basic Monte Carlo algorithm have been introduced

to reduce the number of evaluations required to achieve a given tolerance level.

Among them are importance sampling, stratification, control variates, conditional

Monte Carlo, etc. [37,65,84,128]. In the current implementation simple Monte Carlo

sampling will be used in all simulations.

One of the attractive features of Monte Carlo simulation is that parallelization

of concurrent calculations can be readily implemented in shared memory architec-

tures as well as on heterogeneous machines linked over a network. In the present

context each function evaluation consisted of grid generation, flow-field analysis and

post-processing steps that were automated and parallelized using shell scripts. All

probabilistic simulations reported in this thesis were carried out on a 10-node Be-

owulf cluster at the Aerospace Computational Design Laboratory, MIT. Each node

was equipped with dual 1.8 GHz Xeon processors. Depending on the application

(see next section), 2000 MISES trials required on the order of one to three hours of

execution time.

3.3 Applications

This section presents results from probabilistic aerodynamic analyzes of three tran-

sonic compressor rotor blades subjected to geometric variability. The airfoils and

their inlet conditions are representative of typical transonic sections found in core

compressors rotors. The first airfoil, denoted IBR, corresponds to the mid-span sec-

tion of the integrally-bladed rotor discussed in Section 2.1. The second case, denoted

DFVLR belongs to a transonic cascade with relative inlet Mach number of 0.82. The

last case is the mid-span section of the NASA Stage 37 experimental rotor at relative
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inlet Mach number of 1.25.

3.3.1 Integrally-bladed rotor, mid-span section

The integrally-bladed rotor is part of the fifth stage of an experimental core compres-

sion system. The rotor consists of 56 blades with inlet tip radius of 9.87 inches and

hub-to-tip ratio of 0.85.

The axisymmetric viscous flow package MTFLOW was used to perform the initial

through-flow calculation for the IBR and R37 cases (Sect. 3.3.3 below). MTFLOW

implements a meridional streamline grid discretization of the axisymmetric Euler

equations in conservation form. Total enthalpy at discrete flowfield locations and

constant mass along each streamtube are prescribed directly. This allows MTFLOW

to incorporate localized effects of swirl, entropy (loss) generation and blockage due

to rotating or static blade rows without having to solve, in addition, differential

continuity and energy equations [25, 85].

The following operating conditions were assumed in the through-flow analysis:

mass flow rate of 20 kg/sec, wheel speed of 1200 rad/sec (Utip = 301m/sec) and

axial inlet flow (no swirl). In addition the stage inlet static temperature and pressure

were taken to be 390 K and 200 kPa resulting in an inlet axial Mach number of

0.43. Figure 3-1(a) shows the pressure coefficient contours computed with MTFLOW

for the specified flow conditions. Figure 3-1(b) depicts the approximately mid-span

stream path considered in the analysis.

Figure 3-2(a) shows the cross section of the nominal IBR blade along the specified

stream path. The inlet relative Mach number and flow angle are 0.90 and 62.64

degrees respectively2 and the Reynolds number based on inlet tip radius is 3 × 106.

Figure 3-2(b) shows the pressure distribution on the suction and pressure surfaces of

the airfoil. After a short pre-compression entry region a shock appears on the suction

surface followed by mild compression until about two-thirds of the chord length; from

there the flow is further decelerated until the trailing edge is reached. On the concave

2A correction in inlet flow angle predicted by MTFLOW was needed to minimize passage losses
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Figure 3-1: IBR through-flow analysis

side an adverse pressure gradient exists until about mid-chord, followed by a plateau.

The baseline loss coefficient and turning were computed by MISES to be 0.027 and

14.40◦ respectively.

The noise model employed in the probabilistic analysis is the PCA-based model

described in Chapter 2. The model is given by

X̃ = x0 + x̄ +
K
∑

i=1

√

λiZivi

where x0 + x̄ is the average geometry, λi and vi are the ith eigenvalue and correspond-

ing eigenvector of the scatter matrix of measurements, and the Zi i = 1, . . . , K are

independent, standard normally distributed random variables (i.e., from N (0, 1)). As

was discussed in Chapter 2, each measured blade was “cut” along the path shown

in Fig. 3-1(b) and the resulting two-dimensional cross section was used in construct-

ing the scatter matrix. For the present calculations all modes were included, i.e.,

K = mp. The effect of varying the cut-off parameter K is explored at the end of this

sub-section.

The probabilistic analysis consisted of computing the loss coefficient and turning
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Figure 3-2: IBR, M1 = 0.90, axial velocity-density ratio (AVDR): 1.27
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of blades formed by perturbing the nominal geometry (i.e., instances of X̃) while

holding all other input parameters fixed.

The convergence criterion used for the Monte Carlo simulations was

∣

∣σ̂N
$ − σ̂N−n

$

∣

∣ < ε

where the superscripts indicate the number of samples taken. In the present study

ε = 10−5 and n = 10 were used. Results from numerical experimentation suggested

that N = 2000 trials were typically sufficient to achieve the required tolerance for all

the cases reported here.

Figure 3-3 shows histograms of loss coefficient and turning. The abscissa rep-

resents the values of the output variable, while the ordinate indicates the relative

number of trials that fall within each of the equal-length intervals subdividing the ab-

scissa. In the limit of large number of trials, N →∞, the outline of the histogram bar

plot approaches the continuous distribution of the output variable. The two vertical

dashed lines indicate the nominal (baseline) and mean values.

The estimated mean loss coefficient is about 4% higher than the baseline (noise-

less) value, while the mean turning is about 1% lower than nominal. The estimated

variabilities of loss coefficient and turning are small, with a coefficient of variability

of about 0.03 and a deviation of less than one-tenth of one degree respectively. The

loss coefficient density is less symmetric (with positive skewness coefficient) than that

of the turning.

The small impact of geometric variability on aerodynamic performance is not sur-

prising given the small geometric variability present in the measurement samples.

Production airfoils, manufactured with processes that are less tightly controlled than

the current flank-milled IBR case, may be expected to exhibit higher levels of geo-

metric variability. Appendix B illustrates the differences in shape variability between

two IBRs manufactured with point and flank milling respectively. As shown in the

appendix, an IBR fabricated via the more common point milling process can exhibit

a ten-fold or larger increase in geometric variability compared to a flank milled IBR.
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Figure 3-3: IBR: Impact of geometric variability

To explore the impact of increased manufacturing noise amplitude on the aerody-

namic performance statistics, a series of Monte Carlo simulations were performed with

various levels of geometric noise. In these the geometric noise model was modified to

take the form

X̃ = x0 + x̄ +

K
∑

i=1

a
√

λiZivi . (3.5)

where a is a geometric variability amplitude. Figure 3-4 summarizes the Monte Carlo

estimates of mean and standard deviation of the outputs of interest for a = 1, . . . , 8.

In the figure the horizontal dashed line indicates the loss and turning corresponding

to the average geometry, x0 + x̄. Similarly the baseline loss and turning are indicated

by solid lines. At the original noise level, a = 1, the average geometry dominates the

difference in loss coefficient and turning from the baseline values, i.e., the geometric

variability about the average geometry has little effect on the “mean shift.” For a

noise amplitude of a = 2, the effect of the geometric variability becomes noticeable;

in the case of the loss coefficient the noise contributes about half of the total shift.

For a = 4 the contribution of the average geometry to the turning angle shift from

nominal is only half of the total. For a > 4 the shift from nominal in both loss

and turning is dominated by the variability of the measurements, rather than by the
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Figure 3-4: IBR: Mean and standard deviation vs. noise amplitude

average geometry. One implication of the increase in relative importance of the scatter

is that controlling the manufacturing process by “re-centering” the target geometry

may not be sufficient to effectively improve the mean performance.

As mentioned above, at the level a = 1 the loss coefficient mean-shift is about 4%

while the COV is less than 3%. In contrast, at a = 2 the loss coefficient mean-shift

and COV are 6% and 5% respectively; and at a = 5 the corresponding values are 23%

and 15%.

Mean loss coefficient and turning depicted in Fig. 3-4 do not appear to vary

linearly with geometric noise amplitude in the vicinity of a = 1. Rather the amount

of curvature indicates a higher-order dependence. On the other hand, the increase

in loss and turning variability—as measured by their estimated standard deviation—

increases nearly linearly with geometric noise amplitude, at the approximate rates of
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0.001/a for loss and 0.1/a degrees for turning. This behavior can be explained by

considering a quadratic approximation to the loss coefficient; namely

$̂(x) = $̂0 + c1x + c2x
2 ,

where x is a noise variable. In particular consider a centered normal variable X ∼
N (µX, σ

2
X) with µX = 0. Then, letting a stand for noise amplitude,

E[$̂(aX)] = $̂0 + c1aE[X] + c2a
2
E[X2]

= $̂0 + c2a
2σ2

X .

In words, the mean-shift in loss coefficient under the assumed quadratic dependence

and centered noise is seen to depend quadratically on the noise amplitude.

The effect of increasing the geometric variability is further illustrated in Figs. 3-5

and 3-6 which show histograms of loss coefficient and turning angle corresponding to

noise amplitudes of a = 2 and a = 5 respectively. In addition to larger mean shift and

higher variability for both loss coefficient and turning, the figures show an increase in

skewness from 0.5 at a = 1 to 0.75 at a = 2 and 1.2 at a = 5. In other words, values

of loss coefficient higher than the average are more widely dispersed than those lower

than average. The increase in asymmetry provides further evidence of the nonlinear

dependence of viscous loss generation on noise amplitude. In contrast, the turning

distribution remained fairly symmetric (low skewness coefficient) for all three cases.

Figure 3-7 shows plots of computed cumulative distribution functions (CDF)3 of loss

and turning for values of a ranging from one to eight. The nominal and average-airfoil

values are indicated by dashed and dash-dot vertical lines respectively and the arrows

indicate the direction of increasing a. Figure 3-7(a) shows how the high-end “tails”

of the distributions become thicker as a increases. For a = 1 the probability that the

loss coefficient will take on values smaller than nominal is only about 15%, while at

3The distribution function F : R 7→ [0, 1] of a random variable X is defined by F (b) = P{X ≤ b},
i.e., the probability that X takes on a value smaller than or equal to b.
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Figure 3-5: IBR: Impact of geometric variability (a = 2)
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Figure 3-6: IBR: Impact of geometric variability (a = 5)
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Figure 3-7: IBR: Impact of geometric variability on distributions of loss and turning,
a = 1, 2, . . . , 8

a = 8 that probability has dropped nearly to zero.

As shown in Fig. 3-7(b), the CDFs of turning seem to all cross in the vicinity of the

nominal value. To see how this behavior arises consider a quadratic approximation

to the turning angle of the form

ϑ̂(x) = ϑ̂0 + c1x+ c2x
2 .

Taking as before X ∼ N (µX , σ
2
X) with µX = 0, then

E[ϑ̂(aX)] = ϑ̂0 + c1aE[X] + c2a
2
E[X2]

= ϑ̂0 + c2a
2σ2

X .

The variance of ϑ̂(aX) is

Var(ϑ̂(aX)) = E

[

(

ϑ̂(aX)− E[ϑ̂(aX)]
)2
]

= E

[

(

c1aX + c2a
2(X2 − σ2

X)
)2
]

Using the moment-generating function for normally distributed functions [115], the
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third and fourth moments of X can be readily found to be E[X3] = 3µXσ
2
X +µ3

X = 0

and E[X4] = µ4
X + 6µ2

Xσ
2
X + 3σ4

X = 3σ4
X , so that

Var(ϑ̂(aX)) = c21a
2σ2

X + 2c22a
4σ4

X = c21a
2σ2

X

(

1 +
2c22a

2σ2
X

c21

)

It follows that when

2

(

c2aσX

c1

)2

� 1

we can expect approximately linear growth of σϑ with noise amplitude a and a mean

shift that depends quadratically on a. The trend is illustrated by an example in

Fig. 3-8 for Var(ϑ̂0) = 1, c1 = −1 and c2 = −0.01 (cf. Fig. 3-4 and 3-7). Because
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Figure 3-8: Sample mean, standard deviation and CDF of 1−X − 0.01X2

c2 is small compared to c1, the contribution of the mean shift is dwarfed by that of

the variance in the CDF plot, causing the curves to cross in the vicinity of the mean

value, in the manner of Fig 3-7(b).

The impact of geometric variability on boundary layer thickness is illustrated in

Figs. 3-9 for noise levels (a) a = 1 and (b) a = 5. The figures show plots of nominal

and mean momentum thickness (θ/c) on the suction and pressure sides (indicated

in the plots by SS and PS respectively). The dashed and dot-dashed lines indicate

the nominal values—i.e., without geometric noise—while the solid lines indicate the

mean values from Monte Carlo simulation. The error bars indicate to a one-standard-

deviation interval about at the mean. The discrepancy between nominal and mean

momentum thickness values is more pronounced on the pressure side, as is variabil-
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ity. At the higher noise level the impact on the pressure side momentum thickness

variability and mean-shift is more evident.
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Figure 3-9: IBR: Effect of geometric variability on displacement thickness. Mean
indicated by solid lines, one-standard deviation interval by error bars. [SS]: suction
side, [PS]: pressure side

Figures 3-10 show nominal and statistical plots of shape parameter H (i.e., the

ratio of displacement to momentum thicknesses) at noise levels a = 1 and 5. H may

be thought of as an indicator of boundary layer “health”, with values above four

indicating possible downstream boundary layer separation [19]. The nominal values

of shape parameter are higher near the airfoil nose, reaching four on the pressure side

at about x/c = 0.05 and then dropping below two for most of the airfoil chord on

both sides. The mean-shift and variability of H is more pronounced on the pressure

side, especially at x/c = 0.05. The effect becomes more evident at that location at

the higher variability level (Fig. 3-10(b)).

As discussed by Cumpsty [19] 4, the momentum thickness itself does not necessar-

ily indicates the mechanism by which losses are created. A more appropriate quantity

4Sect. 1.5; see also Denton [23]
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Figure 3-10: IBR: Effect of geometric variability on shape parameter H = δ∗/θ.

to consider is the boundary layer dissipation coefficient, defined by

C ′

d =

∫ δ

0

τ

ρU2
e

∂

∂y

(

u

Ue

)

dy , (3.6)

where τ stands for shear stress, Ue is the boundary layer edge velocity, ρ stands for

density, δ is the boundary layer thickness and u is the component of the flow velocity

along the dominant flow direction x (x, and its normal direction y, here stand for

boundary layer coordinates).

As shown by Denton [23] the cumulative value of ρU 3
eC

′

d over the interval 0 ≤
x′ ≤ x,

∫ x

0

ρU3
eC

′

ddx
′ , (3.7)

is a measure of the rate of entropy generation per unit span 5 in the boundary layer.

Figures 3-11 show nominal and statistical plots of ρU 3
eC

′

d at noise levels a = 1, 5. The

highest nominal and mean values occur on the airfoil nose on the pressure side and

at about 10% chord on the suction side. Local mean dissipation values are higher on

the suction side of the airfoil but the variability is larger on the pressure side.

5Assuming that the process takes place at some fixed reference temperature Tref
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Figures 3-12 show cumulative values of ρU 3
eC

′

d as per Eq. (3.7). The rate of

entropy generation is about three times higher on the suction side than on the pressure

side. The nominal-to-mean shift is more pronounced on the pressure side, as is the

variability. The final entropy generation rate uncertainty and mean shift are more

evident at the a = 5 noise level.

Although using Monte Carlo simulation—with its weak dependence on number

of input variables—rests importance from consideration of reduced order models of

geometric variability, additional information that can be obtained from considering

groups of modes separately. Figure 3-13 presents statistics of loss and turning ac-

cording to the number of PCA modes used in the geometric noise model (denoted

K in Eq. 3.5) for noise amplitude a = 5. For each value of K, a Monte Carlo sim-

ulation with N = 5000 trials was performed. Baseline and average-geometry values

are denoted by constant dashed lines, while the values corresponding to K = mp (all

modes) are shown by a solid line. The average-geometry contribution to mean loss

constitutes a relatively small fraction of the total shift from nominal, as pointed out

earlier. The scatter due to the first six modes is responsible for about 90% of the

total loss coefficient mean shift. Similarly, the first six modes taken together produce

close to 90% of the turning mean-shift obtained when all modes are considered. The

first six modes are also the most influential on loss coefficient variability, as indicated

by its standard deviation plot. The first two modes clearly dominate turning angle

variability. Table 3.1 shows percent differences between statistics reduced-order and

full model simulations for noise level a = 5. Using only the first PCA mode, mean loss

is under-predicted by 15% and the error in standard deviation of loss and turning is

56 and 71% respectively. It takes 15 modes to reduce the error in standard deviation

of loss coefficient to 7%. Beyond K = 15 comparisons stop being meaningful due to

lack of resolution in Monte Carlo simulation.
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Figure 3-11: IBR: Effect of geometric variability on boundary layer dissipation coef-
ficient
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Figure 3-12: IBR: Effect of geometric variability on boundary layer entropy generation
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error bars. [SS]: suction side, [PS]: pressure side
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Figure 3-13: IBR mid section: Statistics versus number of PCA modes, a = 5

Table 3.1: Percent difference in statistics from reduced-order model (with K modes)
and full model (K = mp) simulations, a = 5

K µ$ σ$ µϑ σϑ

1 -14.5 -56.4 1.08 -71.1
5 -5.2 -20.0 0.43 -9.3
10 -2.2 -5.7 0.19 -5.2
15 -1.4 -3.0 0.12 -2.4
20 -0.8 -2.5 0.07 -1.4
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3.3.2 DFVLR transonic cascade

The second application considered in this chapter corresponds to the 45%-span section

of a compressor blade row with design pressure ratio of 1.51 and tip Mach number

of 1.38 [119], denoted here as DFVLR. Quasi-2D analysis of the DFVLR case using

MISES for Mach numbers ranging from 0.82 to 1.1 and axial velocity-density ratios

(AVDR) between 1 and 1.184 were conducted and reported by Youngren [141]. For

the probabilistic analysis of this airfoil, inlet Mach number M1 = 0.82, inlet flow

angle β1 = 55.95◦, AVDR = 1 and constant stream-tube radius (2-D cascade) were

taken as the baseline conditions.

Figure 3-14(a) shows the DFVLR airfoil cross section (stagger angle ξ = 48.5◦).

Figures 3-14(b) shows the pressure distribution on the surfaces of the airfoil, while

3-14(c) depicts the Mach number contours in the flow passage. The loss coefficient

and turning computed by MISES for the specified baseline conditions are $0 = 0.0297

and ϑ0 = 9.26◦ respectively.

Three geometric noise modes and Mach number variability are considered. The

former group is comprised of thickness, twist and leading-edge bluntness modes. The

selection of these geometric noise modes was based primarily on two arguments. First,

the statistical analysis of existing hardware reported in Chapter 2 suggested that

these modes are strong contributors to shape variability. Secondly, these modes are

known to directly impact transonic and supersonic airfoil aerodynamics, as discussed

in Section 2.4.

Twist, thickness and Mach number are modeled as normally distributed, indepen-

dent random variables, Xtw, Xth, XM . The parameters used to define their distribu-

tions in the present application, namely mean and standard deviation, are summa-

rized in Table 3.2. The thickness variable is scaled with respect to the nominal chord

length. Twist is given in units of degrees.

Detailed information about geometric variability in compressor airfoils, particu-

larly twist and thickness, is not readily available in the open literature. Thus the

values summarized in Table 3.2 were obtained by scaling the amplitude and mode
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Figure 3-14: DFVLR cascade, M1 = 0.82, AVDR=1
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Table 3.2: DFVLR random input statistics

Mode Mean Std. Dev.

Thickness (c.l.) 0 0.002
Twist (deg) 0 1
Mach Number 0.82 0.01

shape results from the two-dimensional PCA study reported in Chapter 2 to the

DFVLR section. Figure 3-15 shows histograms of exit Mach number from proba-

bilistic simulations of the IBR case discussed previously. The standard deviations for

the a = 1 and a = 5 noise amplitude cases suggest a reasonable range of inlet Mach

number variability to explore would be 0.003 ≤ σM ≤ 0.011. In the DFVLR and R37

cases the higher level of inlet Mach number variability, σM = 0.01 was used.
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Figure 3-15: IBR exit Mach number variability

The leading-edge shape variability was introduced to account for both manufac-

turing imperfections and wear; it is modeled here via the bluntness mode described in

Section 2.4. Figure 3-16(a) illustrates the impact of increasing the leading-edge blunt-

ness of the DFVLR airfoil while keeping other geometric and flow conditions fixed.

Figure 3-16(b) shows the modified leading-edge shapes for various values of bluntness

parameter values. The degradation in performance is shown in the figure as an in-
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crease in loss coefficient and a decrease in turning. When the bluntness parameter

has been increased to three, the loss coefficient has gone up by approximately 8%

while the turning has decreased by about 1.5%. At an increase in b of 3 the increase

in loss is about 17% while the turning has decreased by about 2.8%. The larger rela-

tive impact on the loss coefficient is to be expected since the loss generation for this

low-Mach-number transonic case is primarily due to viscous effects, and the leading

edge shape will directly impact the boundary layer transition and growth. The effect

of leading-edge bluntness can be expected to be more pronounced for higher Mach

number cases, as the loss due to leading-edge thickness has been shown to scale with

M2
inlet [71].
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Figure 3-16: Aerodynamic performance trends with increased leading-edge bluntness

Figure 3-17 shows histograms of loss coefficient and turning angle resulting from

the Monte Carlo simulation. The results indicate that the expected value of loss coef-

ficient in the presence of the prescribed geometric and inlet flow condition variability

is about 0.032, an increase of 6% from the baseline value. The predicted standard

deviation is about 0.002, which corresponds to a variability of 6% as represented

by the coefficient of variability V$. The skewness coefficient is about 1.8, indicat-
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ing that $(X) is noticeably asymmetric, with values higher than the average being

more dispersed than those smaller and not normally distributed. The skewness of

$(X) indicates that geometric or inlet condition perturbations are more likely to

cause a deterioration, rather than an improvement, in the aerodynamic performance

of the blade passage. This behavior is typical of airfoils that have been optimized for

particular operating conditions or without consideration to noisy geometry or inputs.
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Figure 3-17: DFVLR: Histograms of loss coefficient and turning angle

In contrast to the loss coefficient statistics, the mean turning angle differs little

from the baseline value (less than 0.2% change) but the coefficient of variability is

higher than that of the loss, at about 0.1. The turning distribution is more symmetric

than the loss coefficient distribution, as indicated by its smaller skewness coefficient.

Figure 3-18(a)–(d) show nominal, mean and standard deviation values of momen-

tum thickness, shape parameter, dissipation and boundary layer entropy generation

rate. The nominal and mean momentum thickness have similar values until 70%

chord after which the suction side thickness grows faster to become twice as large

as the pressure side thickness at the trailing edge. The mean-shifts are not as pro-

nounced as in the IBR case (cf Fig. 3-9). The nominal shape parameter is highest

in the immediate vicinity of the airfoil nose. H is below two until 80% chord, after

which it grows to three on the suction side. Boundary layer dissipation, as indicated
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Figure 3-18: DFVLR: Effect of geometric variability on airfoil boundary layers
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by ρU3
eC

′

d is highest and most variable in the vicinity of the leading edge. Nominal

and mean local dissipation values are higher on the suction side and are also more

variable on the aft 70% chord. The total nominal entropy generation rate is about

2.5 times higher on the suction side. The final mean-shift and standard deviation are

twice and five times larger on the pressure side than on the suction side, respectively.

3.3.3 NASA rotor 37, mid-span section

NASA rotor 37 (R37) is an experimental compressor rotor designed at NASA Glenn

Research Center. This has been used for experimental and numerical studies of turbo-

machinery phenomena such as endwall blockage development [122] and tip clearance

effects [17,121]. The rotor consists of 36 blades having inlet hub-to-tip diameter ratio

of 0.7 and aspect ratios of 1.19 with an inlet tip radius of 0.252 m. The design hub

and tip relative inlet Mach numbers are 1.13 and 1.48 respectively. The design tip

speed is 454 m/sec at a wheel speed of 1800 rad/sec. The choking mass flow rate,

ṁch is 20.9 (±0.14) kg/sec [30, 120].

An axial Mach number of 0.43—corresponding to a mass flow rate of of 0.95ṁch at

standard temperature and pressure—was assumed at the inlet of the test region. Exit

swirl conditions were imposed according to experimental measurement data provided

by Strazisar [120]. A radial maximum-blade-thickness distribution was used to impose

the inviscid area blockage. Figure 3-19a shows the flow path, axial blade projection

and pressure coefficient contours computed with MTFLOW.

Figure 3-19(b) shows the streamtube path selected for blade passage analysis,

which corresponds roughly to the mid-span radial station. Inlet relative Mach num-

ber (M1 = 1.25), inlet flow angle (β1 = 66.21)6 and back pressure (P2/PT1 = 0.65)

calculated with MTFLOW for this streamtube, as well as the axial variation of stream-

tube radius and thickness were used as inputs for the baseline blade-to-blade passage

analysis. The area velocity-density ratio computed by MTFLOW for this stream-

tube was 1.452 and the corresponding Reynolds number based on inlet tip radius was

6Some adjustment in M1 was required to reduce the passage total pressure loss.
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Figure 3-19: NASA rotor 37 through-flow results

2.33 × 106. Nominal total pressure loss coefficient and turning were computed by

MISES to be $0 = 0.084 and ϑ0 = 14.7◦ respectively.

Figure 3-20(a) shows the cross section of the R37 blade along the selected stream

path. Figure 3-20(b) depicts pressure distributions on the airfoil suction and pressure

sides. The suction-side pressure distribution is characterized by a shock near the

mid-chord location. Downstream of the shock there is further compression. On the

concave side, the pressure is relatively constant. Near the blunt trailing edge the flow

is accelerated again. The acceleration at the entry region, between the leading edge

and the passage throat on the pressure side, is due to a slight mismatch in the inlet

flow conditions caused perhaps by not including end-wall blockage. Figure 3-20(c)

shows Mach number contours. At the given operating condition point the bow and

passage shocks have coalesced and the impingement point on the suction surface is

just upstream of the passage throat.

As with DFVLR airfoil, three geometric noise modes and Mach number variability

are considered in the probabilistic analysis. The geometric noise modes are again

thickness, twist and leading-edge bluntness. The input noise statistics were obtained

by scaling the amplitude and mode shape results from the two-dimensional PCA

study of the IBR blade reported in Chapter 2. The statistics of the normal modes,

74



0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R37 mid section

(a) Blade section

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
−1.5

−1

−0.5

0

0.5

−
C

p
X

Suction
Pressure

(b) Pressure coefficient

0.4

0.6

0.8

1

1.2

1.4

−0.1 0 0.1 0.2 0.3
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(c) Mach number contours

Figure 3-20: NASA rotor 37, M1 = 1.25, AVDR=1.452
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Table 3.3: NASA Rotor 37 random input statistics

Mode Mean Std. Dev.

Thickness (c.l.) 0 0.001
Twist (deg) 0 1
Mach Number 1.25 0.01

namely thickness, twist and Mach number, are summarized in Table 3.3. Thickness

is scaled with respect to the nominal chord length and twist is given in degrees. For

the leading-edge bluntness mode a Beta distribution in the interval [0.8, 2.0] with

parameters α = 2, β = 4 was assumed (see Fig. 2-9).

Figure 3-21 shows histograms of loss coefficient and turning angle which are dif-

ferent to those of the IBR and DFVLR cases. The shift in mean loss coefficient from

the baseline value is only 2%, while the coefficient of variability is roughly 11%. The

increase in loss variability can be expected given the higher inlet Mach number of the

present case. The skewness coefficient is about 0.3, in agreement with a discernible

amount of asymmetry in the loss distribution. The shift in mean turning is negligible,
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Figure 3-21: NASA rotor 37 mid section: histograms

but not so the variability: its six-sigma interval spans nearly 3 degrees. As will be

discussed in Chapter 6, this small amount of variability in turning angle can have a
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strong impact on overall compressor performance, especially on pressure ratio.

Figures 3-22 shows plots of momentum thickness, shape parameter, dissipation

and boundary layer entropy generation rate. At the trailing edge, the nominal and

mean momentum thicknesses are three times larger on the suction side than on the

pressure side. The momentum thickness variability is also larger on the suction side,

especially on the aft 50% chord. Nominal and mean shape parameter values are

highest in the vicinity of the airfoil nose and at mid chord on the suction side. The high

mean and variability of mid-chord shape parameter values occur where the passage

shock impinges on the suction surface, indicating that the shock interacts with the

turbulent boundary layer causing it to separate.

Boundary layer dissipation, as shown in Figs. 3-22(c), is higher and more variable

on the suction side than on the pressure side, particularly behind the shock impinge-

ment location. The total mean entropy generation rate on the suction side is about

six times that of the pressure side, and at least three times more variable. The suction

side entropy generation rate variability becomes more pronounced on the aft 40% of

the airfoil, behind the shock impingement location.

3.4 Summary

In this Chapter, the impact of geometric and inlet flow condition variability on aero-

dynamic performance of three compressor blade passages was assessed. The prob-

abilistic analysis consisted of Monte Carlo simulations using the quasi-2D cascade

analysis code MISES. Geometric noise models were based on the PCA results of

Chapter 2. The IBR test case, discussed previously in Chapter 2, corresponds to

an integrally-bladed rotor passage with inlet Mach number of 0.9. At the original

noise level found in the PCA analysis of surface measurements, the loss coefficient

mean-shift was found to be about 4% while the COV is less than 3%. At double

of baseline geometric noise amplitude, the loss coefficient mean-shift and COV are

6% and 5% respectively. At a more realistic a = 5 geometric variability level the

loss COV 15% and the mean loss is 23% higher than nominal. The amplitude of the
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Figure 3-22: R37: Effect of geometric variability on airfoil boundary layers
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geometric noise variability had a linear effect on the increase of output variability. As

the noise variability was increased, the relative contribution of the average geometry

to mean shift decreased. The loss coefficient distribution became less symmetric as

the noise leveled increased.

The DFVLR test case, a two-dimensional cascade with inlet Mach number of 0.82,

exhibited loss coefficient mean-shift and COV of 6% when subjected to leading-edge

bluntness, inlet Mach number, thickness and twist variability. In contrast, the mean

turning differed by less than 0.2% from the baseline value (less than 0.2% change)

but its coefficient of variability is about 10%. The R37 case, corresponding to the

mid-span section of the NASA rotor 37 experimental rotor, showed a loss coefficient

mean shift of 2%, while its coefficient of variability was more than 10%. The shift in

mean turning was negligible but the six-sigma interval spanned nearly 3 degrees.
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Chapter 4

Probabilistic Optimization of

Compressor Blade Sections

The previous chapters showed that variability in shape and operating condition de-

grade actual compressor performance. In this Chapter a probabilistic gradient-based

approach to compressor blade optimization is outlined. Probabilistic objectives, con-

straints and corresponding gradients are approximated using Monte Carlo simula-

tion. The probabilistic simulations are driven externally by nonlinear optimization

software. The design modes included orthogonal surface modes and blade stagger.

Three airfoils introduced in previous Chapters are optimized both deterministi-

cally and probabilistically and then subjected to simulated geometric variability to

assess its impact on their performance. Two of the airfoils optimized deterministically

for minimum loss coefficient, without geometric or inlet flow variability considerations,

exhibited lower expected performance and increased variability than those designed

probabilistically. Reductions in mean loss coefficient of 25% and in loss variability of

65% were observed.

Different mechanisms for loss variability reduction are noticed between subsonic

inlet flows, in which viscous dissipation in the boundary layers dominates the genera-

tion of entropy, and supersonic flows, in which shock losses are prevalent. In the two

subsonic inlet cases considered, a small thickness increase on the pressure side near
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the leading edge caused to a reduction in the rate of flow deceleration and had a pos-

itive effect in reducing entropy generation variability. In the supersonic inlet case, a

decrease in the flow deceleration rate downstream of the shock impingement location

on the suction side helped reduce the loss variability caused by shock-boundary layer

interaction.

4.1 Gradient-Based Probabilistic Optimization

Turbomachinery airfoils are typically designed for optimal aerodynamic performance

at some nominal operating point such as cruise. Single-point optimization is known

to produce airfoils that may perform poorly off-design [62]. This phenomenon is of

particular concern when optimizing transonic airfoils and when the number of geo-

metric design parameters is high [26], which is commonly the case in turbomachinery

applications. An alternative to single-point optimization is to generalize the objec-

tive function under consideration to a weighted sum involving multiple operating

points [34]. This approach has the drawback, however, that the best relative weights

that appear in the generalized objective function are not generally known in advance.

Also, it has been observed that multi-point optimization may lead to undesirable

localized features such as surface waviness or exceedingly thin sections [26].

As mentioned above, traditional probabilistic optimization techniques tend to suf-

fer from either prohibitive computational requirements or from excessive dependence

on heuristics. In this section a gradient-based probabilistic optimization method for

compressor airfoil shape optimization is outlined. The major advantage of present

method is that sensitivity information can be used to accelerate the design space

exploration, as well as to provide a sensible stopping criterion.

In the presence of variability—geometric or otherwise—the design goals themselves

change. For instance, while a deterministic objective may be to minimize the total

pressure loss provided turning is preserved, in the presence of variability a more

meaningful goal would be to minimize the expected or mean passage loss subject to
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mean turning constraints. Symbolically,

µ∗

$ = min
x∈Ω

E
θ

[$(x, θ)] (4.1)

such that ϑl ≤ E
θ

[ϑ(x, θ)] ≤ ϑu ,

where x ∈ Ω ⊂ R
n is an n-dimensional design vector, θ is a random vector representing

geometric or flow variability and Eθ stands for the operation of expectation with

respect to θ. (Other functional dependencies of $ and ϑ are suppressed to simplify

the notation.) ϑl and ϑu stand for lower- and upper-bound constraints on the mean

turning angle.

Alternatively, the probabilistic optimization objective may be to reduce the loss

coefficient variability, subject to mean turning and mean loss constraints, that is

σ∗

$ = min
x∈Ω

{

E
θ

[

(

$(x, θ)− E
θ

[$(x, θ)]
)2
]}

1
2

(4.2)

s.t. ϑl ≤ E
θ

[ϑ(x, θ)] ≤ ϑu,

E
θ

[$(x, θ)] ≤ $u,

where $u stands for the maximum allowable mean passage loss coefficient. This

objective amounts to minimizing the uncertainty of the realized loss coefficient in the

presence of geometric variability.

The sequential quadratic programming (SQP) method was employed in solving

the nonlinear programs (4.1) and (4.2). SQP is a widely used gradient-based method

for solving nonlinear constrained problems. At each iteration of the main algorithm,

the Hessian of a Lagrangian function, formed by adding the objective function to the

weighted sum of nonlinear constraints, is approximated using a quasi-Newton updat-

ing method. A quadratic programming subproblem is formed with the approximate

Hessian and the resulting direction used in a line search procedure. Further details

may be found in references such as [38] and [11]. The Matlab
1 Optimization Toolkit

1The Mathworks, Inc., Natick, MA, http://www.mathworks.com
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implementation of the SQP algorithm was used to drive the probabilistic optimiza-

tion procedure as shown in Fig. 4-1. Hessian matrix approximations were carried out

using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) updating [127].

Optimizer











Objective f(x)
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Figure 4-1: Parallel probabilistic optimization framework

The gradient information required by the probabilistic optimization algorithm,

namely the Jacobian of the loss coefficient and turning with respect to the design

variables, can be obtained from the sensitivity information provided by the flow solver.

Under the assumption that the noise vector θ is independent of the design vector x,

it follows by linearity that

∂

∂xi
E
θ

[$(x, θ)] = E
θ

[

∂

∂xi
$(x, θ)

]

i = 1 . . . n

∂

∂xi

E
θ

[ϑ(x, θ)] = E
θ

[

∂

∂xi

ϑ(x, θ)

]

i = 1 . . . n .
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Similarly, after some manipulation,

∂

∂xi

{

E
θ

[

(

$ − E
θ

[$]
)2
]}

1
2

=
Eθ

[

$ ∂$
∂xi

]

− Eθ [$] Eθ

[

∂$
∂xi

]

{

Eθ

[

($ − Eθ [$])2]}
1
2

i = 1 . . . n (4.3)

Since the objectives and nonlinear constraints in (4.1) and (4.2) are probabilistic

quantities, their functional evaluation implies the use of probabilistic analysis tech-

niques. In Chapter 3, the Monte Carlo simulation (MCS) method was used to assess

the impact of geometric and Mach number variability on loss coefficient and turning

angle. The disadvantage of using MCS in the present context is the excessive amount

of computation required to accurately predict the variability of nonlinear functions

such as the loss coefficient. Instead, in the optimization procedure, the mean and

variance of loss and turning, as well as their derivatives with respect to the design

variables, are replaced with surrogates consisting of “low-order” Monte Carlo predic-

tions, i.e., using a small number of trials. For instance, the surrogate of Eθ[∂$/∂xi]

used during optimization is given by

1

N

N
∑

j=1

∂$(x, θj)

∂xi
.

Similarly, the surrogate of (4.3) is given by

1

N
√

σ̂2
$

N
∑

j=1

[$(x, θj)− µ̂$]
∂$(x, θj)

∂xi

where

µ̂$ =
1

N

N
∑

j=1

$(x, θj) and σ̂2
$ =

1

N − 1

N
∑

j=1

[$(x, θj)− µ̂$]2 .

The number of Monte Carlo trials, N , becomes another free parameter that may be

selected according to the severity of the nonlinear behavior in a given application.

Furthermore, N may be allowed to vary as the optimization proceeds to improve the

resolution of the objective and constraints near the boundary of Ω or in the vicinity
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of extrema. Numerical experimentation suggested that values of N in the range of

40 to 100 were sufficient to successfully redesign transonic airfoils in the presence

of geometric and inlet Mach number variability (see Sect. 4.2 below for concrete

examples).

The current gradient-based approach assumes that sensitivities of output func-

tions with respect to design variables are available to the optimizer. In aerodynamic

shape optimization a number of methods have been introduced for this purpose. Fi-

nite difference approximations, although readily implementable, are often inadequate

to simulation-based aerodynamic shape optimization [13, 36]. As an alternative to

finite-difference approximations, automatic differentiation codes have been developed

to simplify the task of computing discrete sensitivity approximations using existing

flow solvers [126]. A more accurate, but initially more demanding approach, in-

volves solving separate sensitivity equations derived from linearized versions of the

governing equations [20, 131]. Adjoint methods, pioneered in fluids applications by

Jameson [66], provide linearized sensitivity information at little additional computa-

tional expense [46]. CFD software implementing both continuous and discrete adjoint

formulations have been available for some time [47, 90]. Socha presents a succinct

summary of methods for sensitivity analysis of stochastic systems [118].

In MISES the sensitivity derivatives of various output flow quantities with respect

to the design variables are available as by-products of the flow solution algorithm. The

Jacobian matrix that is generated and factored at each step of the Newton-Raphson

procedure contains the sensitivity derivatives of the flow solution with respect to

global unknowns including the geometric design modes. Derivatives of flow dependent

quantities, such as the loss coefficient or exit flow angle, are obtained by linearizing

the quantity of interest with respect to the flow variables and applying chain-rule

differentiation [141].

As discussed in Appendix C of Ref. 141, the linearized sensitivity information is in

general only valid in a small neighborhood around the current design point. Therefore

care must exercised in selecting the maximum step-size that the optimizer can take
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during the line-search procedure.

4.2 Applications

4.2.1 Objectives and Constraints

To compare the behavior of redesigned airfoils in the presence of geometric variability

three optimization problems are considered: one deterministic and two probabilistic.

The deterministic program seeks to minimize the loss coefficient without considering

geometric variability. This is expressed as

$∗ = min
x∈Ω

$(x) (DML)

s.t. ϑl ≤ ϑ(x) ≤ ϑu ,

where ϑl and ϑu are low- and high-turning constraints respectively. In contrast, the

second program seeks to minimize the mean value of loss coefficient, subject to mean

turning constraints:

µ∗

$ = min
x∈Ω

E
θ

[$(x, θ)] (MML)

s.t. ϑl ≤ E
θ

[ϑ(x, θ)] ≤ ϑu .

The objective of the third redesign is to reduce the variability of loss coefficient, as

measured by its standard deviation, subject to mean turning and mean loss con-

straints,

σ∗

$ = min
x∈Ω

{

Var
θ

($(x, θ))
}

1
2

(MSL)

s.t. ϑl ≤ E
θ

[ϑ(x, θ)] ≤ ϑu,

E
θ

[$(x, θ)] ≤ $u,
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for a given upper expected loss coefficient constraint $u. In what follows the three

problems and their resulting redesigned geometries will be denoted DML (determin-

istic minimum loss), MML (minimum mean loss) and MSL (minimum standard de-

viation of loss) respectively.

Appendix C illustrates the use of probabilistic constrained optimization to carry

out robust parameter design. In the sample application, the design space is explored

by constraining mean performance at different levels and minimizing variability.

4.2.2 Geometric Design Modes

The design mode shapes used to optimize the baseline geometries consisted of modified

Chebyshev polynomials of the first type, i.e.,

T ′

n(x) =
1

n + 1











1− 2x− cos[(n+ 1) arccos(1− 2x)], n even

1− cos[(n+ 1) arccos(1− 2x)], n odd

x ∈ [0, 1], acting along the direction normal to the pressure or suction surfaces of the

airfoil. The geometric modes that modify the airfoil geometry are then given by

gk(s) =











akT
′
k+1
2

(−s)n̂(s), −1 ≤ s ≤ 0

0, 0 < s ≤ 1

for odd k and

gk(s) =







0, 0 < s ≤ 1

akT
′
k
2

(s)n̂(s), −1 ≤ s ≤ 0

for k even, where −1 ≤ s ≤ 1 is the airfoil surface arc length coordinate, with negative

values along the suction side and positive on the pressure surface as shown in Fig. 4-2.

In principle the geometric design modes thus defined provide an orthonormal basis

onto which to expand surface modifications to the interior of the airfoil surfaces(i.e.,

away from the leading and trailing edges). In addition to the surface-normal modes,

a solid body rotation mode was included to allow for blade stagger changes. Axial
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chord length modifications were not considered. (See Ref. [44] for examples of leading

and trailing edge droop modes used in probabilistic compressor airfoil optimization).

In MISES the airfoil geometry is represented by cubic splines which facilitates

the calculation of the normal directions at any position on the surface of the airfoil.

Figure 4-2(b) shows the modified Chebyshev polynomial mode shapes. The vector of

design parameters x ⊂ R
n is formed by the collection of modeshape amplitudes ak,

k = 1, . . . , n and a rotation angle ξ.
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Figure 4-2: Airfoil arc length coordinate conventions and modified Chebyshev poly-
nomials T ′

n(x), n = 1, . . . , 5

4.2.3 IBR Rotor Mid-Span

The IBR airfoil was previously introduced in Chapters 2 and 3. The trade space

selected to redesign this airfoil was Ω = [−0.008, 0.008]n × [−0.05, 0.05] ⊂ R
n+1

where the ak’s (amplitudes of modified Chebyshev polynomials) are given in fractions

of chord length and the stagger angle in radians. Eight parameters (n = 8) were

used to redesign the IBR, DFVLR and R37 airfoils; that is, the first four modified

Chebyshev polynomials described above acting independently on convex and concave

airfoil surfaces. Although the use of Monte Carlo simulation lessens the impact of

number of design variables on computational expense, a relatively low number of
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design modeshapes was employed to preclude the formation of undesirable localized

geometric features (e.g., surface “waviness” or “bumps”).

The boundaries of the tradespace hypercube were selected so as to permit large

baseline shape modifications without allowing unphysical geometries, i.e., collapsed

airfoils. No other thickness constraints were explicitly incorporated in the problems as

the emphasis in the present investigation is on aerothermal rather than aeromechan-

ical performance. The same design space was explored in all three redesign cases.

All optimization calculations started from the baseline geometry, i.e., initial guess

x0 = 0.

The prescribed turning constraints were 14.4◦ ≤ ϑ ≤ 14.5◦ in the deterministic

case and 14.4◦ ≤ Eθ[ϑ] ≤ 14.5◦ for the probabilistic programs.

The PCA-based geometric noise model discussed in Chapters 2 and 3 was used to

perturb the baseline airfoil to simulate geometric variability during optimization. As

in Chapter 3, three levels of geometric variability were considered, a = 1, 2 and 5.

Table 4.1 summarizes the number of trials used in estimating loss and turning

statistics, as well as the number of SQP iterations and functional evaluations re-

quired to achieve convergence. Absolute convergence tolerances of 10−5 on ∆f(x)

and ‖∆x‖ were imposed for the three redesign cases. The increase in computational

Table 4.1: Number of trials, iterations and function evaluations

Program Nopt # SQP iter # f(x) eval # MISES runs
DML - 13 151 151
MML 100 42 138 13800
MSL 100 16 56 5600

expense incurred in going from deterministic to probabilistic optimization can be

seen by comparing the entries of the last column in Table 4.1, which shows number of

MISES runs required for each optimization. Despite the large number of MISES eval-

uations required, the use parallel hardware greatly reduced the total wall-clock time.

As mentioned earlier parallelization of Monte Carlo simulation trials can be readily

implemented using simple shell scripts and the resulting speed-ups increase nearly
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linear with the number of processors used. In addition, since the same population

of perturbed airfoils was used throughout the optimization procedure, the resulting

MISES states were saved and reused to initialize the subsequent calculations, greatly

decreasing the overall computing time.

The number of trials used during the optimization, Nopt, was selected by numerical

experiments in which the total computational expense was weighed against the degree

of improvement achieved. It was found that the number of trials required depends

also on the level of geometric variability. The sample values presented in Table 4.1

correspond to PCA-based noise level a = 1.

The relatively small number of trials required to achieve the levels of improvement

reported below serve as motivation for the proposed approach to probabilistic opti-

mization. During the optimization step the emphasis is not on accurately predicting

loss and turning statistics, but rather on driving the redesign in the general direction

of statistical improvement, as given by the gradients of the probabilistic objectives

(e.g., Eq. (4.3)).

Figure 4-3 shows histograms of final Monte Carlo simulations (N = 2000) for the

redesigned IBR airfoil at baseline geometric noise level. The performance statistics

are also summarized in Table 4.2. In all final Monte Carlo simulations, the fraction

of successful trials (i.e., those for which MISES converged to a physically acceptable

solution) was upward of 99% of the total. Comparing the results for the baseline and

deterministically redesigned airfoils, it is observed that both nominal and mean loss

coefficient have decreased by about 18%. Similarly, the loss COV decreased by about

25%.

The probabilistically redesigned airfoils exhibit lower loss coefficient variability

than either the baseline airfoil or—more appropriate for comparison—the determin-

istically redesigned airfoil. The MML redesign has the same nominal and mean loss

coefficient as the DML redesign, but exhibits about 8% less variability. On the other

hand, when optimizing for reduced variability, as in the MSL case, the COV of loss

coefficient has been reduced by 54% when compared with the deterministic redesign

91



0.022 0.024 0.026

ϖo=0.0224
µϖ=0.0230

σϖ=0.0005

Vϖ=0.0213

sϖ= 0.509

mean
nominal

(a) DML: Loss Coefficient

14 14.2 14.4 14.6 14.8 15

ϑ
r
o=14.50

µϑ=14.40

σϑ=0.074

Vϑ=0.005

sϑ=0.153

mean
nominal

(b) DML: Turning Angle

0.022 0.024 0.026

ϖo=0.0224
µϖ=0.0230

σϖ=0.0005

Vϖ=0.0196

sϖ= 0.466

mean
nominal

(c) MML: Loss Coefficient

14 14.2 14.4 14.6 14.8 15

ϑ
r
o=14.60

µϑ=14.50

σϑ=0.076

Vϑ=0.005

sϑ=0.014

mean
nominal

(d) MML: Turning Angle

0.022 0.024 0.026

ϖo=0.0235
µϖ=0.0242

σϖ=0.0002

Vϖ=0.0098

sϖ= 0.657

mean
nominal

(e) MSL: Loss Coefficient

14 14.2 14.4 14.6 14.8 15

ϑ
r
o=14.57

µϑ=14.49

σϑ=0.083

Vϑ=0.006

sϑ=0.084

mean
nominal

(f) MSL: Turning Angle

Figure 4-3: IBR: Deterministic vs. probabilistic optimization (a = 1, N = 2000)
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and by 65% from the baseline design; the mean-shift for the MSL redesign is 17%

lower than for the mininum loss airfoils. On the other hand, the MSL redesign pro-

duces about 5% higher nominal and mean loss coefficient than the DML and MML

airfoils. The mean turning constraint has been satisfied by the three redesigned air-

foils and the standard deviation of turning angle is less than one-tenth of one degree

in all cases.

Table 4.2 summarizes aerodynamic performance statistics for the redesigned IBR

airfoils at geometric noise amplitudes a = 1, 2 and 5. At the noise level a = 2, where

the impact of the geometric noise scatter becomes comparable to that of the mean

geometry. The shift in mean loss from its nominal value is about 5% for both the

baseline and deterministic redesigns, but the latter produced 20% less variability in

loss coefficient.

Table 4.2: Summary of performance statistics for redesigned IBR airfoils, a = 1, 2, 5

a Design $0 µ$ σ$×103 %V$ ϑ0 µϑ σϑ %Vϑ

1

Base 0.0272 0.0282 0.804 2.850 14.40 14.27 0.087 0.612
DML 0.0224 0.0230 0.490 2.130 14.50 14.40 0.074 0.515
MML 0.0224 0.0230 0.450 1.960 14.60 14.50 0.076 0.521
MSL 0.0235 0.0242 0.238 0.985 14.57 14.49 0.083 0.575

2

Base 0.0272 0.0288 1.550 5.36 14.40 14.25 0.170 1.19
DML 0.0224 0.0235 0.998 4.24 14.50 14.38 0.148 1.03
MML 0.0224 0.0235 1.020 4.35 14.58 14.46 0.150 1.04
MSL 0.0239 0.0249 0.670 2.69 14.60 14.49 0.165 1.14

5

Base 0.0272 0.0334 4.95 14.9 14.40 14.11 0.442 3.13
DML 0.0224 0.0271 3.52 13.0 14.50 14.25 0.397 2.79
MML 0.0231 0.0274 3.47 12.7 14.73 14.49 0.410 2.83
MSL 0.0243 0.0278 2.78 10.0 14.68 14.47 0.414 2.86

For a = 2, the MML redesign has roughly the same statistics as the determin-

istically redesigned airfoil, with slightly larger loss COV. On the other hand, the

minimum-variability redesign, MSL, produced a 37% smaller loss COV than the de-

terministic redesign. The reduction in variability from the DML to MSL redesigns

was accompanied by an increase in mean loss coefficient of roughly 6%. In addition,
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at the a = 2 noise level there is little difference in the turning variability among the

redesigned airfoils (although in all cases it is lower than the baseline design) and the

mean turning constraints have been satisfied.

At the more realistic a = 5 noise level (see Appendix B) the trends are similar to

those at a = 2. The DML and MML exhibit similar values of nominal and mean loss

coefficient and loss COV. The reduction in loss COV between the deterministic and

MSL redesigns is 30%, and the latter exhibits a 26% smaller loss mean shift. The

decrease in variability can also be appreciated graphically in Fig. 4-4 which shows

histograms of loss coefficient at the a = 5 noise level.

Figure 4-4 also shows the change in skewness incurred as the geometric noise

amplitude increased from a = 1 to a = 5. At the original noise level, the loss

skewness coefficient is 0.3 for the baseline airfoil and 0.7 for the MSL redesign, while

at the a = 5 level the corresponding values are 1.2 and 1.5. The increase in skewness

highlights the larger contribution to loss variability of the geometric scatter as noise

amplitude increases.
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Figure 4-4: IBR: Loss coefficient statistics for redesigned airfoils (a = 5, N = 2000)

Figure 4-5 compares the baseline and redesigned nominal airfoil’s geometric char-

acteristics for the a = 5 case. Figure 4-5(a) shows the effect of the stagger mode

which acts as a solid-body rotation of the airfoil about its trailing edge. The change

in stagger for the redesigned airfoils is about two degrees for the minimum-loss re-

designs and 1
2

◦

for the MSL airfoil. In Fig. 4-5(b), showing airfoil sections at zero
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Figure 4-5: IBR mid-span: Redesigned nominal airfoil shape (a = 5)
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stagger angle, the vertical axis has been scaled by a factor of 10 to facilitate com-

parison. Figures 4-5(c) and (d) depict mean camber and thickness respectively. A

feature common to the three redesigns is an increase in airfoil thickness, particularly

on the forward half of the airfoil on the suction side, and near the trailing edge on

the pressure side. The DML and MML airfoil shapes are qualitatively the same,

with a shifting forward (toward the leading-edge) of the maximum camber location

from about 60% chord to 45% chord and a pronounced thickening on the aft 40%

of the pressure surface. The latter change is needed to meet the mean turning con-

straint requirement and may be avoided by adding a trailing-edge deflection mode;

it is more pronounced on the deterministically redesigned airfoil. The minimum-loss

airfoils are in general thicker than the original one, but somewhat thinner than the

MSL redesign on the forward 20% chord and again mid-chord. Unlike the baseline

and minimum-loss airfoils, the MSL redesign shows a thickening on the forward 20%

of the pressure side. The MSL maximum thickness occurs slightly behind mid-chord

unlike the minimum-loss airfoils. The MSL maximum camber occurs at about 45%

chord, but has roughly the same value as the baseline airfoil (about 5% less than

the minimum-loss blades). Similar geometric trends were observed in the redesigned

airfoils at noise levels a = 1 and a = 2. The effects of these geometric modifications

on aerodynamic performance are discussed next.

Figure 4-6 shows plots of nominal and mean pressure coefficient on the surface

of the baseline, DML and MSL airfoils for the three noise levels considered. In all

cases, the minimum-loss airfoil shows a less pronounced initial flow deceleration than

baseline on the suction side, followed by a small plateau and a steep pressure recovery

region near the trailing edge. Beyond the stagnation point on the pressure side of

the DML airfoil, the flow accelerates and then experiences a steeply adverse pressure

gradient until about 10% chord. In the aft 20% of the pressure surface the flow

first accelerates and then diffuses rapidly near the trailing edge, in accordance to the

pronounced airfoil thickening noted earlier. The nominal and mean reductions in loss

coefficient from the baseline case can be attributed in part to the milder diffusion
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Figure 4-6: IBR mid-span: Baseline and mean pressure coefficient
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that the flow experiences because of the re-cambering toward on the forward section

of the airfoils. The corresponding pressure distributions are reminiscent of typical

“controlled diffusion” airfoils [58].

In contrast to the minimum loss airfoils, the MSL redesigns present a less adverse

pressure gradient along the first 20% of the pressure surface chord, as a consequence of

the local thickening and increased camber. This features is common to MSL redesigns

at all three noise levels. The effect of the milder pressure gradient is illustrated in

Fig. 4-7 which shows plots of momentum thickness (θ/c) on the suction and pressure

sides (indicated in the plots by SS and PS respectively) of the DML and MSL re-

designed airfoils. The dashed and dot-dashed lines indicate the nominal values—i.e.,

without geometric noise—while the solid lines indicate the mean values from Monte

Carlo simulation; the error bars correspond to a one-standard-deviation interval cen-

tered at the mean. The deterministic redesign produces lower nominal momentum

thickness (dashed line) than the MSL airfoil, but in the presence of geometric vari-

ability the mean-shift and variability are clearly larger for the former.
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Figure 4-7: IBR mid-span: Momentum thickness θ/c (a = 5)

The effect of MSL redesign on performance variability is illustrated further in

Fig. 4-8, showing plots of boundary layer shape parameter H = δ∗/θ near the leading-
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edge of the DML and MSL airfoils. Values of H above four indicate possible down-

stream flow separation [19]. On the pressure side, the DML airfoil has considerably

larger mean shape parameter values and more variability than the MSL airfoil. Al-

though nominal shape parameter values on the pressure side do not exceed four, the

DML mean values are as high as 10 near x/c = 0.03 where the standard deviation is

approximately nine. In contrast, the MSL pressure side shape parameter mean values

do not exceed seven with a standard deviation of about six. It follows that the MSL

airfoil is less likely to exhibit values of H above four (indicating possible separation)

on the pressure side than the DML airfoil.

Figure 4-9 compares the cumulative values of ρU 3
eC

′

d along the suction and pressure

surfaces of the redesigned airfoils. The impact of geometric variability on boundary

layer dissipation coefficient, C ′

d, and entropy generation rate was discussed previously

in Chapter 3 (see Eqs. (3.6) and (3.7)). Of the four, the baseline airfoil produces

the highest cumulative nominal and mean values of ρU 3
eC

′

d at the trailing edge. By

comparison, the minimum-loss optimized airfoil produced lower final nominal loss

generation rate values on the pressure side with somewhat reduced uncertainty. The

nominal value of
∫

ρU3
eC

′

ddx along on the pressure side are similar for the three

redesigned airfoils, but the MSL redesign shows the smallest mean shift and less

variability at the trailing edge.

The redesigned airfoils result in a less pronounced rate of increase of E[
∫

ρU3
eC

′

ddx]

than the baseline geometry on the first 10% of the pressure surface. The MSL redesign

has higher average values of
∫

ρU3
eC

′

ddx on the suction and pressure sides, which

explains in part its higher mean total pressure loss when compared with the DML

and MML airfoils.

4.2.4 DFVLR Cascade Airfoil

In redesigning the nominal shape of the DFVLR airfoil, the tradespace was selected

to be Ω = [−0.01, 0.01]n × [−0.05, 0.05] where again the mode amplitudes ak are

given in chord lengths. As in the previous case, n = 8 surface-normal and one

99



−0.02 0 0.02 0.04 0.06 0.08 0.1

2

4

6

8

10

12

14

16

x/c

H
=

δ* /θ

f [SS]
µ
f [PS]
µ

(a) DML

−0.02 0 0.02 0.04 0.06 0.08 0.1

2

4

6

8

10

12

14

16

x/c

H
=

δ* /θ

f [SS]
µ
f [PS]
µ

(b) MSL

Figure 4-8: IBR mid-span: Shape parameter H = δ∗/θ (a = 5)
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stagger modes were used. The prescribed turning constraints were 9◦ ≤ ϑ ≤ 9.5◦

and 9◦ ≤ Eθ[ϑ] ≤ 9.5◦ for the deterministic and probabilistic problems respectively.

In the latter Nopt = 100 trials were used to compute the loss and turning statistics

as well as those of their sensitivity derivatives during the optimization procedure.

The optimization algorithm’s absolute tolerances were again 10−5 on both ∆f(x)

and ‖∆x‖. The noise model used to simulate geometric and inlet flow condition

variability was the same as that described in Chapter 3 in the context of assessing

the impact of geometric noise on aerodynamic performance. Three geometric modes

were considered: twist, overall section thickness change and leading edge bluntness.

In addition Mach number variability was considered. The input noise statistics were

summarized in Table 3.2 on page 69.

Table 4.3 summarizes the final loss coefficient and turning statistics for the base-

line and redesigned sections computed via Monte Carlo simulation (N = 2000). As

required, the deterministic redesign exhibits lower nominal loss than the baseline

design (a 17% decrease). Accordingly the expected value of the loss coefficient has

dropped by a similar proportion. However, the loss coefficient for the determinis-

tically redesigned blade exhibits 14% higher COV than the baseline design. When

compared with the deterministic redesign, the probabilistic MML redesign shows sim-

ilar nominal and mean loss coefficient values. In contrast, the loss variability of the

probabilistic minimum-loss redesign is 32% lower than the deterministic redesign.

Table 4.3: DFVLR: Redesigned airfoil statistics

Design $0 µ$ σ$×103 %V$ ϑ0 µϑ σϑ %Vϑ

Baseline 0.0297 0.0315 2.07 6.56 9.26 9.27 0.94 10.1
DML 0.0246 0.026 1.94 7.47 9.498 9.43 0.96 10.1
MML 0.0249 0.0259 1.47 5.68 9.546 9.48 0.94 9.9
MSL 0.0269 0.0272 0.84 3.07 9.546 9.47 0.91 9.7

As with the IBR blade, the airfoil redesigned probabilistically for reduced vari-

ability (MSL) shows larger nominal and mean loss coefficient than the minimum-loss

redesigns (about 5% larger in both cases). The uncertainty in loss coefficient has been
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decreased by nearly 60% from the deterministic redesign and by 46% from the MML

airfoil. Figure 4-10 shows histograms of the MC results. The 17% “mean shift” and

the narrowing of the distribution are discernible, as are the higher nominal and mean

loss coefficient values.

The Monte Carlo confirmation turning statistics summarized in Table 4.3 are simi-

lar for all the redesigned airfoils, with somewhat larger nominal and mean values than

the baseline case. The mean turning constraints were satisfied by all the redesigned

airfoils.

Figure 4-11 shows scatter plots of loss coefficient versus turning angle from Monte

Carlo results. The location of mean loss and turning as well as the loss coefficient 6σ

(six standard deviations) interval are also shown in the plots. The plots illustrate, in

addition, the loss coefficient response to the twist mode since, in the interval consid-

ered, turning is linearly correlated with that mode. The rate of increase in loss away

from the nominal operating condition is greater for the minimum loss redesigns, par-

ticularly for negative incidence (lower turning), resulting in an increased loss spread.

The primary effect of the probabilistic MSL redesign is to reduce the sensitivity to

incidence variability away from the nominal operating condition by re-centering the

“loss bucket”, therefore increasing the low-loss incidence range at the expense of mean

performance.

Figure 4-12 compares baseline and redesigned nominal airfoil geometries. Figure 4-

12(a) shows the effect of the stagger changes incurred by the redesigns: −1.1, −1.4

and −1.6 degrees for the DML, MML and MSL cases respectively. Figure 4-12(b),

depicts airfoil sections at zero stagger angle with vertical axis scaled up by a factor of

10 to facilitate comparison. Figures 4-12(c) and (d) depict mean camber line slope and

thickness respectively. As in the IBR case, the redesigned airfoils share in common

ad change in maximum camber location, but unlike the IBR case, not all the the

redesigned airfoils are thicker than the nominal section.

For all three redesigned sections, the maximum camber location moved forward

by about 10% of the chord length and decreased by 10 to 15% in magnitude, with
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Figure 4-10: DFVLR loss coefficient for redesigned airfoils
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Figure 4-12: DFVLR cascade: Redesigned nominal airfoil shape
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the higher value corresponding to the MSL airfoil—which also has correspondingly

higher incidence. The minimum-loss redesigns have similar thickness and camber

distributions, but the MML airfoil is about 5% thicker than the deterministically

optimized airfoil.

As with the IBR case, the MSL DFVLR airfoil is thicker than the minimum-loss

redesigns along the forward half of the chord; but the trend reverses somewhat for

the rear 20% of the airfoil. Furthermore, the MSL airfoil is thicker than the baseline

section for the first 80% of the airfoil. The MSL airfoil also has a less pronounced

mean camber line slope than the DML or MML airfoils on the front 15% of the

airfoil, and less camber for the first 70%, indicating a shifting in loading similar to

that shown in the IBR MSL redesign. Figure 4-12(b) shows that the camber and

thickness distribution change in the forward part of the airfoil are more noticeable

on the pressure side: as with the IBR case, the MSL redesign shows the thickening is

more pronounced on the pressure side of the airfoil.

Figure 4-13 shows plots of nominal and mean pressure coefficient for the baseline

and probabilistically redesigned MML and MSL airfoils.
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Figure 4-13: Redesigned DFVLR airfoil: Pressure coefficient

The MML pressure distribution is similar to that of typical controlled diffusion

blades: on the suction side the flow accelerates to the boundary layer transition
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point, the flow is then decelerated continuously to the trailing edge without a shock

forming; on the concave side the pressure is kept nearly constant over most of the

blade surface with exception of the rear 30% of the blade where the flow is first

accelerated and then diffused near the trailing edge, again due to the modifications

to the trailing edge imposed by the mean-turning constraint. The deterministically

redesigned airfoil produced a pressure distribution nearly identical to that of the MML

airfoil in agreement with their similar geometry and performance.

As with the IBR blade, the key difference between the MML and MSL pressure

distributions is a qualitative change in the initial diffusion region on the pressure side.

In fact, while the MML airfoil exhibits a nearly constant pressure coefficient for the

first quarter chord, the flow on the MSL airfoil is accelerated for the first 10% chord

and then expanded gradually till mid-chord. On the suction side of the DML and

MSL pressure distributions are similar.

Figure 4-14 shows the impact of the minimum-variability redesign on suction-side

momentum thickness statistics, as compared with those of the MML airfoil. Although

the mean values of θ are similar, the variability about the mean and the nominal-to-

mean discrepancy are noticeably smaller for the MSL redesign.
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Figure 4-14: redesigned DFVLR airfoil: Momentum thickness
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The effect of MSL redesign on performance variability is further illustrated in

Figs. 4-15 and 4-16 showing plots of shape parameter H and entropy generation rate

respectively. On the pressure side, the MML airfoil has considerably larger nominal

and mean shape parameter values with larger variability than the MSL airfoil. On the

suction surface the mean H values are similar for both airfoils. The trends of entropy

generation rate per unit span (as per Eq. (3.7)) shown in Fig. 4-16 are similar to those

of the IBR airfoil: the minimum-loss airfoil has lower nominal and mean values on

the suction surface (with a less abrupt initial rate of increase), but the pressure side

exhibits both a slightly larger mean and substantially more variability at the trailing

edge.

4.2.5 Rotor 37 Mid-Span

The nominal flow conditions and performance under geometric variability of the R37

airfoil were discussed in Sect. 3.3.3. The tradespace considered for redesigning the

R37 airfoil was Ω = [−0.006, 0.006]n with n = 8, i.e., no stagger angle changes

were considered. The turning constraints were 14.5◦ ≤ ϑ ≤ 15◦ in the deterministic

case and 14.5◦ ≤ Eθ[ϑ] ≤ 15◦ for the probabilistic programs. During the probabilistic

optimization Nopt = 100 trials were used to approximate mean and standard deviation

gradients for loss and turning with respect to the design vector x.

As with the DFVLR cascade, twist, thickness, leading-edge bluntness and Mach

number modes were used to simulate geometric and inlet flow condition variability.

The input noise statistics are summarized in Table 3.3 on page 76.

The final loss and turning statistics for the redesigned airfoils were computed

via Monte Carlo simulation with N = 2000 trials. Table 4.4 summarizes the MCS

results. Both the deterministic and probabilistic redesigns that aimed at reducing

loss coefficient exhibit similar nominal, mean and standard deviation values for loss

and turning. When compared with the original design, the DML and MML redesigns

show a reduction in nominal and mean loss coefficient of nearly 30%.

The MSL redesign resulted in a reduction of loss coefficient variability: compared
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Figure 4-15: redesigned DFVLR airfoil: Shape parameter H = δ∗/θ
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Table 4.4: Rotor 37 redesigned airfoil statistics (MCS N = 2000)

Design $0 µ$ σ$×103 %V$ ϑ0 µϑ σϑ %Vϑ

Baseline 0.0842 0.0857 9.64 11.2 14.68 14.74 0.481 3.26
DML 0.0593 0.0632 5.63 8.92 14.54 14.63 0.527 3.61
MML 0.0597 0.0631 5.64 8.94 14.52 14.60 0.510 3.49
MSL 0.0637 0.0667 4.78 7.17 14.56 14.61 0.562 3.84

with the deterministically redesigned airfoil, the MSL redesign has a nearly 20%

smaller loss COV. Similarly, the reduction in loss coefficient COV is around 36%

from the baseline design (or about 50% in standard deviation). The turning angle

statistics are similar for the three redesigned airfoils, with nominal and mean values

less than 0.2 degrees lower than baseline. All three redesigns satisfied the specified

turning constraints. Figure 4-17 shows loss coefficient histograms of Monte Carlo

results for the redesigned airfoils.

The effect of the nominal geometry redesign can also be seen in Fig. 4-18 which

shows scatter plots of loss coefficient versus twist mode amplitude. Locations of mean

loss coefficient and a 6σ interval about it are also shown. All three redesigns reduce

the nominal value, mean and standard deviation of loss coefficient. The minimum-

loss redesigns (DML, MML) have similar pressure distributions. The MSL airfoil

produces a further reduction in loss coefficient scatter, in addition to reduced mean

loss. The redesigned airfoils exhibit reductions in nominal and mean loss coefficient

of 25 to 30% from the baseline design. For that reason further comparisons are made

among the redesigned airfoils only.

Figure 4-19(a) shows the redesigned airfoil sections, with the vertical coordinate

scaled up by a factor of ten. Figures 4-19(b) and (c) show plots of mean camber

and thickness with respect to mean camber arc-length. Unlike the previous cases,

the redesigned R37 airfoils have, in general, thinner cross sections than the baseline

airfoil. Thinner leading-edges in the minimum-loss airfoils are to be expected as losses

due to leading edge thickness tLE have been shown to grow like tLEM
2
1 , that is, with

the square of the inlet Mach number [71]. The MML airfoil is somewhat thicker than
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Figure 4-17: Rotor 37 loss coefficient for redesigned airfoils
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Figure 4-18: Rotor 37: Scatter of Loss coefficient vs. turning angle
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Figure 4-19: Rotor 37: Redesigned nominal airfoil shape
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the deterministic redesign, especially toward the rear of the blade. The MSL airfoil

has more camber and a different thickness distribution than the other two redesigns.

In contrast to the subsonic-inlet cases discussed previously, for which viscous dis-

sipation in the boundary layers and mixing of the wake were the main causes of loss,

the dominant contribution to total pressure loss in the rotor 37 blade comes from

entropy generation at the passage shock. Table 4.5 shows nominal and statistical

values of viscous (subscript v) and wave (subscript w) contributions to the total loss

coefficient. The nominal and mean values of the shock loss roughly twice as large

as the viscous loss. The variability of the former, however, is roughly twice that of

the latter. Although the relative reduction in variability (COV) is similar in both

cases, the reduction in the shock loss variability dominates the reduction in overall

loss uncertainty.

Table 4.5: Viscous vs. shock loss for R37 redesigned blade

Design $0
v µ$v

σ$v
V$v

$0
w µ$w

σ$w
V$w

Base 0.0195 0.0198 0.0025 12.6 0.0454 0.0465 0.0077 16.6
DML 0.0160 0.0164 0.0025 15.2 0.0271 0.0302 0.0058 19.2
MML 0.0167 0.0171 0.0026 15.2 0.0259 0.0287 0.0050 17.4
MSL 0.0162 0.0166 0.0018 10.8 0.0313 0.0337 0.0049 14.5

One mechanism that leads to reduced loss variability can be seen by considering

the pressure distributions produced by the redesigned airfoils in Fig. 4-20. The DML

and MML airfoils have relatively flat pressure distributions on the pressure side and

constant expansion behind the passage shock, which impinges on the suction side at

about mid-chord. The distinguishing characteristics of the MSL airfoil are a pressure

plateau downstream of the shock on the suction side and the decompression at about

30% of the chord on the pressure side. The small pressure plateau behind the shock,

caused by the local change in thickness distribution, lowers the sensitivity of the the

shock impingement point to geometric variability, reducing in turn the likelihood of

boundary layer separation.

Figures 4-21(a) and (b) show mean and standard deviation values of the boundary
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Figure 4-20: Rotor 37: Pressure Coefficient

layer shape parameter H on the suction side of the redesigned airfoils. The minimum-

loss airfoils exhibit lower values of mean H until about 65% chord after which the

trend reverses and the MSL airfoil shows as much as 30% lower mean H values. The

variability ofH, as illustrated in Fig. 4-21(b) by the standard deviation, is consistently

lower for the MSL airfoil than for the DML and MML redesigns in the aft 40% of the

suction side. At 80% chord the variability of H for the MSL airfoil is about 40% that

of the DML or MML redesigns. Figure 4-21(c) shows plots of the standard deviation

of ρu3
eC

′

d on the suction side of the redesigned airfoils. The standard deviation of

ρu3
eC

′

d is consistently lower for the MSL airfoil (as much as 70%) on the aft 35% of

the suction side. The accumulated effect of the reduced dissipation variability on

the suction side of the MSL airfoil is illustrated in Fig.4-21(d) which shows standard

deviation of the entropy generation rate. Initially (for 0 ≤ x/c ≤ 0.5) the MML

airfoil exhibits lower variability in the entropy generation rate, but in the aft 30% the

DML and MML airfoils exhibit consistently higher variability than the MSL airfoil.

At x/c = 1 the MSL redesign produces about 50% lower variability than the DML

and MML airfoils.
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Figure 4-21: Rotor 37: Suction side boundary layer
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4.3 Summary

In this Chapter a probabilistic gradient-based approach to compressor blade optimiza-

tion was presented. The probabilistic objectives, constraints and their corresponding

gradients are approximated using low-fidelity Monte Carlo simulation. An external

nonlinear optimization driver was used to drive the probabilistic simulations. Design

modes included Chebyshev polynomials applied to the airfoil surface and solid-body

rotation to optimize stagger angle.

Three test airfoils were optimized both deterministically and probabilistically and

then subjected to simulated geometric variability to assess its impact on their perfor-

mance. The deterministic redesign objective was to minimize loss coefficient subject

to turning constraints. The probabilistic objectives were to minimize mean loss and

loss variability respectively. In all probabilistically redesigned airfoils a mean turning

constraint was satisfied.

The IBR airfoils was optimized at three geometric noise levels to explore possible

redesign gains under different levels of uncertainty. At the baseline noise level the

probabilistically redesigned airfoils exhibit lower loss coefficient variability than either

baseline or deterministically redesigned airfoils. When optimizing for reduced vari-

ability the coefficient of variability of loss was reduced by 54% from the deterministic

redesign and by 65% from the baseline airfoil; with 17% lower loss mean shift. In

contrast, the minimum-variability redesign lead to 5% higher nominal and mean loss

coefficient than the deterministic or probabilistic minimum-loss airfoils.

For a = 2 the minimum-variability redesign produced a 37% smaller loss coefficient

of variability than the deterministic redesign. The reduction in variability from the

deterministic minimum-loss to the minimum-variability redesigns was accompanied

by an increase in mean loss coefficient of roughly 6%. At the more realistic a = 5

noise level the reduction in loss variability between the deterministic and minimum-

variability redesigns was 30%, and the latter exhibits a 26% smaller loss mean shift.

In the DFVLR case, the deterministic redesign produced 17% lower nominal loss

than the baseline airfoil, with a similar decrease in mean loss. However, the loss
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variability for the deterministically redesigned blade was 14% higher the baseline

design. The loss coefficient variability of the probabilistic minimum-loss redesign was

32% lower than the deterministic redesign.

For the IBR and DFVLR airfoils with subsonic inlet relative Mach numbers, vis-

cous dissipation dominated the generation of entropy. It was found that a decrease in

the rate of diffusion on the entry region of the pressure side reduced the entropy gener-

ation variability by lowering the likelihood of separation in the presence of geometric

variability. This mechanism was noticed at the three noise levels.

For the Rotor 37 mid-span section, the deterministic and probabilistic minimum-

loss redesigns produced a reduction in nominal and mean loss coefficient of nearly

30% from the baseline airfoil. The minimum-variability redesign resulted in a sizable

reduction of loss coefficient variability: 20% smaller coefficient of variability than the

deterministically redesigned airfoil (36% from baseline). The statistics for turning

performance are similar for the three redesigned airfoils, with nominal and mean

values less than 0.2 degrees lower than baseline. The three redesigns satisfy-ed the

specified turning constraints. For this case, shock losses were found to be considerably

larger than viscous losses. A decrease in the rate of flow deceleration immediately

downstream of the shock impingement point on the suction side helped reduce the

loss variability due to shock-boundary layer interactions exacerbated by geometric

variability.
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Chapter 5

Effect of Geometric Variability on

Overall Compressor Performance

In this chapter, a mean-line multi-stage axial compressor model is used to estimate

the impact of geometric variability on overall compressor performance. Probabilistic

models of loss coefficient and turning angle are constructed from the aerodynamic

performance of the IBR blade discussed in previous chapters. The loss and turning

models were used in probabilistic mean-line calculations for various redesigned airfoils

at three noise amplitude levels: original, double and five-fold, the latter representing

more realistic geometric levels. At the baseline noise level the impact on compressor

polytropic efficiency is small, causing a 0.2% mean-shift and 0.04% coefficient of

variability. Loss models using probabilistically redesigned airfoils for minimum loss

variability cause a decrease of 46% in standard deviation of polytropic efficiency

compared to a compressor model using deterministically redesigned airfoils.

At a more realistic geometric noise level (five times the original), the drop from

nominal to mean efficiency is more than one percentage point, with an increase in

efficiency variability to 30%. In contrast, a compressor using minimum-variability

loss blades exhibited a 42% reduction in the discrepancy between mean and nominal

polytropic efficiency as well as 34% reduction in variability compared to the base-

line airfoil. Compressors using minimum-variability airfoils exhibited reductions in
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mean-shift and variability of 30 and 26% respectively compared to compressors using

deterministically optimized airfoils. In contrast to single blade results, polytropic effi-

ciency and pressure ratio variability were found to be 30 and 70% lower, respectively,

for multiple-blade compressor models.

Pressure ratio variability is found to increase linearly with the amount of geometric

variability. Rotor and stator incidence variability is found to decrease with distance

through the compressor. For the same canonical airfoil design, mean stage exit Mach

number increases with noise amplitude as does its variability. As with incidence, the

Mach number variability decreases with each successive stage.

5.1 Mean-Line Compressor Model

A simple compressor stage mean-line model, in which rotors and stators are described

separately, was obtained as follows. Given rotor total pressure loss coefficient, φr, flow

turning ϑr, outlet area and upstream total temperature, relative total pressure and

Mach number, and inlet flow angle, the rotor outlet state is described by the nonlinear

system (see Appendix D for an explanation of the nomenclature)

F := ∆TT −
ω

cp
(r2V2 sinα2 − r1V1 sinα1) = 0 (5.1)

G :=
ṁ
√

TT2

PT2A2 cosα2
−
√

γ

R

M2
(

1 + γ−1
2
M2

2

)

γ+1
2(γ−1)

= 0 (5.2)

H := V2 [sinα2 + cosα2 tan(β1 − ϑr)]− ωr2 = 0 (5.3)

where

TT2(∆TT ) := TT1 + ∆TT

V2(∆TT ,M2) := M2

(

γRTT2

1 + γ−1
2
M2

2

)
1
2

PT2(∆TT ) := PT1R

[

1− φr

1
2
γM2

1R

(1 + γ−1
2
M2

1R)
γ

γ−1

]

(

TT2

TT1R

)
γ

γ−1
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Equations (5.1)–(5.3) form a nonlinear system in the variables ∆TT , M2 and α2, which

can be readily solved numerically using, for instance, a Newton-Raphson solver.

Equation (5.1) is a restatement of the Euler turbine equation for calorically perfect

gases, namely

cp(TT2 − TT1) = ω(r2v2 − r1v1),

which relates the change in total enthalpy to the change in angular momentum of a

stream tube across a rotor. Using the definition of the total pressure loss coefficient 1,

φ ≡ PT1 − PT2

1
2
ρ1V 2

1

,

the rotor relative total pressure ratio may be rewritten in terms of inlet relative Mach

number and pressure coefficient in the form [81]

PT2R

PT1R

= 1− φr
ρ1V

2
1R

2PT1R

= 1− φr
γP1M

2
1R

2PT1R

= 1− φr
γM2

1R

(1 + γ−1
2
M2

1R)γ/(γ−1)
.

Equation (5.2) follows from Fligner’s formula (or mass flow parameter [81]) for

quasi-one-dimensional flow of a calorically perfect gas,

ṁ
√
TT

APT

=

√

γ

R

M
(

1 + γ−1
2
M2
)

γ+1
2(γ−1)

.

Equation (5.3) states how the absolute and relative tangential velocities are related

through the wheel speed (velocity triangles). Expressions for for the derivatives of

F , G and H with respect to ∆TT , M2 and α2,—which are used in a gradient-based

algorithm to solve the nonlinear system—are included in Appendix D.

After solving the rotor equations and using the rotor outlet state to initialize the

stator inlet, the stator exit Mach number is found from Fligner’s formula,

ṁ
√

TT3

f(M3)PT3 cosα3
− A3 = 0, (5.4)

1The loss coefficient definition used here, which differs from that of $ used in the previous
chapters, is more meaningful in the present context.
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where

f(M) =

√

γ

R

M
(

1 + γ−1
2
M2
)

γ+1
2(γ−1)

.

As with the rotor, the stator total pressure ratio may be written in terms of loss

coefficient and the upstream flow conditions,

PT3

PT2

= 1− φs
γM2

2 /2

(1 + γ−1
2
M2

2 )γ/(γ−1)
.

The calculation is marched through the compressor using the previous stage’s exit

conditions to calculate the next inlet state for fixed flow annulus area, i.e., T k+1
T1
← T k

T3
,

P k+1
T1
← P k

T3
, Mk+1

1 ←Mk
3 , where the superscript indicates stage number.

The deterministic mean-line model is used as part of a probabilistic simulation by

prescribing models of loss coefficient and turning angle variability for each blade row.

These loss and turning models are described in the next section.

The current method estimates only the impact of blade profile variability caused by

geometric noise on compressor performance. Endwall effects and radial imbalances

are not included. It follows that the results discussed below likely underestimate

actual compressors performance variability in the presence of geometric uncertainty.

5.2 Loss Coefficient and Turning Angle Models

In a mean-line sense, the effect of geometric and operating condition variability oc-

curring upstream of a given compressor stage translates to changes in axial Mach

number, total pressure and total temperature at the rotor inlet. These augment the

performance variability caused by geometric noise in the rotor blades. The statistical

impact of geometric variability can therefore be modeled by considering changes in

loss and turning statistics based on inlet flow conditions, i.e., inlet flow angle and

axial Mach number.

Conceptually, the loss coefficient and turning obtained from quasi-2D blade pas-

sage analyses may be taken to be deterministic functions of various geometric and

122



flow parameters such as inlet flow angle, inlet Mach number, etc. In particular, for

fixed nominal geometry x0, let

φ = φ(α,x), and ϑ = ϑ(α,x)

where α is inlet flow incidence, and x is a vector of parameters describing amplitudes

of geometric noise modes such as those described in Chapter 2 (e.g., PCA modes,

thickness, twist, leading-edge bluntness, etc). In the present application, “incidence”

refers to the difference between nominal inlet flow angle (here the minimum-loss angle)

and actual incoming flow angle 2. Other geometric and flow parameters are assumed

to be fixed and their functional dependence not explicitly considered.

To proceed, it φ and ϑ are written in the form

φ(α,x) = φ0(α) + ∆φ(α,x), (5.5)

ϑ(α,x) = ϑ0(α) + ∆ϑ(α,x), (5.6)

where φ0(α) and ϑ0(α) are deterministic components of loss and turning depending

on incidence alone.

Next, instead of a deterministic geometric argument, an independent random

vector X is considered. For fixed α, ∆φ(α,X), let

∆µφ(α) := E
X

[∆φ(α,X)], σ2
φ(α) := Var

X
(∆φ(α,X)),

∆µϑ(α) := E
X

[∆ϑ(α,X)], σ2
ϑ(α) := Var

X
(∆ϑ(α,X)).

In general ∆µφ(α), σ2
φ(α), ∆µX(α), and σ2

X(α) cannot be written in closed form.

Instead, let ∆µ̂φ(α), σ̂2
φ(α), ∆µ̂ϑ(α) and σ̂2

ϑ(α) be models of loss “mean shift” (i.e.,

the difference between φ0(α) and EX [∆φ(α,X)] for a given α) and variance, and

2The present definition of incidence, though more appropriate in the current context, is in contrast
with the more common one involving the difference between inlet flow angle and airfoil inlet camber
angle.
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turning mean shift and variance, respectively. Then

E
X

[φ(α,X)] = E
X

[φ0(α) + ∆φ(α,X)] ' φ0(α) + ∆µ̂(α),

E
X

[φ(α,X)] = E
X

[φ0(α) + ∆φ(α,X)] ' φ0(α) + ∆µ̂(α),

and

Var
X

(φ(α,X)) = E
X

[(∆φ(α,X)−∆µφ(α,X))2] ' σ̂2
φ(α),

Var
X

(ϑ(α,X)) = E
X

[(∆ϑ(α,X)−∆µϑ(α,X))2] ' σ̂2
ϑ(α).

To proceed it is assumed that, for fixed incidence α, ∆φ(α,X) and ∆ϑ(α,X) are

normally distributed, that is,

∆φ(α,X) ∈ N (∆µ̂φ(α), σ̂2
φ(α)), and ∆ϑ(α,X) ∈ N (∆µ̂ϑ(α), σ̂2

ϑ(α)).

Although the Monte Carlo simulation results reported in Chapter 3 show loss distri-

butions that are not always normal (indeed not always symmetric), the assumption

of normality is made here for the sake of model simplicity and in lieu of a general de-

scription of loss and turning distribution. Models ∆µ̂φ(α), σ̂2
φ(α), ∆µ̂ϑ(α), and σ̂2

ϑ(α)

are obtained from computed statistics of loss and turning at fixed values of incidence

for single blade passages. The statistics are computed via Monte Carlo simulation,

as described in Chapter 3, for discrete values of incidence in the range of adequate

numerical convergence.

Figure 5-1 shows loss coefficient and turning angle results from MISES Monte

Carlo simulations of the IBR blade. The geometric noise assumed in the simulations

was the PCA-based model from Chapter 2, with noise amplitude a = 2. The output

statistics were computed for each fixed value of α via Monte Carlo simulation (N =

2000). Similar computations were also carried out for a = 1 and a = 5 noise levels. In

Fig. 5-1 the solid line connects the computed nominal (i.e., in the absence of geometric

noise) loss coefficient and turning; the dash-dot line connects the values computed for

124



−4 −3 −2 −1 0 1
0

0.01

0.02

0.03

0.04

0.05

Incidence, α (deg)

L
os

s 
C

oe
ff

ic
ie

nt
, φ

x0

x0+E[x]
2σ
µ

(a) Loss Coefficient

−4 −3 −2 −1 0 1

13

14

15

16

17

18

Incidence, α (deg)

T
ur

ni
ng

 A
ng

le
, ϑ

x0

x0+E[x]
2σ
µ

(b) Turning

Figure 5-1: IBR: Loss coefficient and turning angle vs. incidence, a = 2

the average-geometry airfoil; the dashed line indicates the mean values of the Monte

Carlo trials and the error bars show their two-standard-deviation intervals centered

at the mean.

The loss coefficient plot (Fig. 5-1(a)) shows a typical “loss bucket” shape with

minimum nominal loss approximately located at zero incidence. The loss coefficient

increases more steeply for positive values of incidence. No points are plotted for α >

1 degree where numerical convergence of the Monte Carlo simulations was deficient

(less than 80% convergence rate). As noted in Chapter 3, for the depicted a = 2 case

the average geometry loss coefficient at zero-incidence lies approximately half-way

between the nominal and mean values, indicating that half or more of the mean-shift

is due to the geometric scatter. On the other hand, for |α| > 0.75 the geometric

variability contributes more to the mean-shift than does the average geometry. The

mean-shift is largest for values of incidence above -0.5, with a maximum of 0.004 at

α = 1. The trend is similar for the turning mean-shift, with more negative mean-shift
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values corresponding to positive incidence.

The standard deviation of loss coefficient has a minimum of 0.6×10−3 at the zero-

incidence condition. It increases from there for both positive and negative values of

α; at α = −3, σ$ ' 1.7× 10−3 while σ$ ' 1.5× 10−3 for α = 1. Standard deviation

of turning is roughly constant at 0.16◦ for non-positive values of incidence, increasing

to 0.23◦ at α = 1.

In addition to the baseline design, Figs. 5-2 and 5-3 show loss coefficient and

turning angle plots for the deterministic redesign (DML) and the two probabilistic

redesigns (DML, MSL) introduced and discussed in the previous chapter; all for noise

amplitude a = 5. As with the a = 2 case, the nominal loss coefficient for the baseline

design is smallest near zero-incidence and increases more rapidly for positive incidence

values. The characteristics of the redesigned airfoils at zero incidence, which were dis-

cussed in the previous chapter, are emphasized in Fig. 5-2: The DML redesign has

the lowest nominal loss value, but the lowest mean loss corresponds to the proba-

bilistic MSL redesign; the loss coefficient variability is lowest for the MSL design. In

addition, Fig. 5-2 presents off-design aerodynamic performance information for the

redesigned airfoils. The propensity of the deterministically redesigned airfoil to ex-

hibit larger loss variability extends to values of incidence away from zero, and worsens

for positive incidence. The MSL design shows a less pronounced rate of change away

from α = 0, i.e., a flatter loss trough. A comparison of Figs. 5-2(c) and (d) high-

lights the increased mean and nominal loss coefficient of the MSL redesign, as well

as its reduced variability. The average geometry for the baseline design contributes

comparatively little to the overall loss variability. However, at positive incidence the

average geometry contributes nearly one-fourth of the DML airfoil mean-shift.

The computed output statistics for discrete values of α were used to construct the

continuous loss and turning models which, in turn, were utilized in the probabilistic

mean-line compressor simulations reported below. The computed data points were

used to construct piecewise-cubic interpolating splines with zero-second-derivative

end conditions [22]. To avoid difficulties with extrapolation outside the incidence
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Figure 5-2: IBR mid-span section: Loss coefficient vs. incidence, a = 5. (Linear
extrapolation for α > 0.75.)
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(d) MSL

Figure 5-3: IBR mid-span section: Turning angle vs. incidence, a = 5. (Linear
extrapolation for α > 0.75.)
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range for which computed data points were available, additional points were added

at higher positive incidence by linearly extrapolating the nominal loss and turning

and replicating the mean-shift and variance values corresponding to the highest com-

puted α (e.g., 1 or 1.5). 3 Separate models were constructed for each geometric noise

amplitude considered, as well as for each redesigned nominal geometry.

5.3 Probabilistic Mean-Line Calculations

In this section, mean-line and probabilistic loss and turning models are used to es-

timate the impact of geometric variability on the overall performance of an axial

compressor. A six-stage compressor with a base-line total pressure ratio of 11 is con-

sidered first. Next follows a comparison of compressors using deterministically and

probabilistically optimized airfoils. Performance variability trends with geometric

noise amplitude are discussed next. Lastly, the effect on performance statistics when

considering multiple blades per row is discussed.

5.3.1 Six-stage compressor model: baseline airfoil

A baseline compressor model with nominal pressure ratio of 11 was constructed ac-

cording to the procedure outlined in Appendix D. The nominal rotor and stator loss

coefficients were φr = φs = 0.03 and the nominal rotor turning was ϑr = 14.4 degrees.

The resulting compressor total pressure ratio and polytropic efficiency were π = 10.8

and e = 0.96 respectively.

The probabilistic simulations involve solving nonlinear stage equations (5.1)–(5.3)

and (5.4), for prescribed fixed flow annulus areas and mean-line radii. The compressor

inlet conditions are assumed to be the same for each simulation (see Appendix D).

The rotor and stator turning angle and loss coefficient values are obtained from the

IBR blade models discussed in the previous section. The nonlinear equations for

each stage are solved using the Newton-Raphson method implemented in Matlab’s

3This approach errs on the low side of loss and turning variability, which in turn may under-
predict compressor performance effects.
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Optimization Toolkit. 4 The procedure is repeated for each stage sequentially to

march through the compressor.

Upstream operating condition variability leads to variations in rotor inlet flow

angle (incidence) and axial Mach number, as well as in total temperature and pressure

variability. The later variabilities follow directly from upstream loss coefficient and

turning perturbations respectively. Since the annulus flow areas remain fixed, inlet

total pressure and temperature fluctuations translate, for a given mass flow rate, into

axial Mach number and incidence perturbations. Inlet flow condition variability is

compounded by rotor and stator loss and turning noise to produce variability in the

stage exit conditions, which in turn affect the following (downstream) stage.

The stator nominal loss and turning, as well as their mean shift and standard

deviation were taken from the IBR incidence models discussed above. The impact

of geometric variability on row performance can be expected to vary as nominal

airfoil shapes change from stage to stage. In the current calculations the same loss

and turning models were used for each blade row, as the intent is to illustrate the

approach. In practical design situations, where blade shapes for each rotor and stator

are available, loss and turning models could be readily generated for each separate

blade row.

Commonly, stators are required to produce considerably higher flow turning than

rotors, e.g., in the present six-stage model ϑs =∼ 35◦, more than twice the rotor

turning (see Table D.4 in Appendix D). Therefore it can be expected that the stator

passages will exhibit higher exit flow variability (e.g., more flow deflection) than

the rotor passages. As a conservative estimate the same loss coefficient nominal,

mean-shift and variance models—as functions of incidence—were used for the stator

as for the rotor. Similarly, the same mean-shift model for the rotor was used in

the probabilistic stator calculation, but with the nominal turning being fixed (i.e.,

not varying with incidence). The stator turning variability model was obtained by

scaling the rotor model to the stator nominal turning—effectively using the same

4The Mathworks, Inc., Natick, MA, http://www.mathworks.com
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COV-versus-incidence model as for the rotor.

Figure 5-4 shows polytropic efficiency and pressure ratio histograms of Monte

Carlo simulation results (N = 2000 trials) for the baseline noise level. The histograms

show a 0.2% drop from nominal polytropic efficiency to the expected value, and a

0.6% decrease in total pressure ratio. As discussed in Chapter 3, at this noise level

the primary contribution to performance comes from the average geometry rather

than from the geometric variability (cf. Figs. 3-5 and 3-6). The impact of increased

noise level is reported in sub-section 5.4 below.
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Figure 5-4: Monte Carlo results of Mean-line compressor model: IBR airfoils (a = 1)

The geometric variability present in the IBR coordinate measurements is quite

small (cf. Chapter 3), due to the highly controlled manufacturing processes employed

(i.e., flank milling). The “small” geometric noise in the measurements translates

into small loss and turning variability, which in turn results in small compressor

performance uncertainty: the polytropic efficiency COV (ratio of standard deviation

to mean) is only 0.04%, and the pressure ratio COV is 0.2%.

131



5.3.2 Six-stage compressor model: redesigned airfoils

Figure 5-5 depicts the differences in compressor efficiency and pressure ratio statistics

associated with the various redesigned airfoils reported in the previous chapter, for

baseline geometric noise level. Despite the small compressor performance variability

predicted by the mean-line analysis, the redesigned airfoils lead to differences in per-

formance at the overall compressor level. The deterministic DML and probabilistic

MML blade redesigns lead to similar mean efficiency and standard deviation: about

0.7% better nominal and mean efficiency, and 3% higher pressure ratio. In contrast,

the probabilistic MSL redesign, with similar mean efficiency and pressure ratio as the

minimum-loss redesigns, results in a decrease of 62% in standard deviation from the

compressor model based on the baseline airfoil, and 46% when compared with the

DML-based model. The enforcement of turning angle constraints at the airfoil level

led to redesigned airfoils with similar mean and standard deviation values for pressure

ratio.

5.4 Impact of Geometric Noise on Compressor Per-

formance

Presumably, as blade geometric variability increases so does its impact on compressor

performance. This section attempts to quantify that trend within the limitations of

the current mean-line model. Table 5.1 summarizes the polytropic efficiency and

overall pressure ratio statistics for the three noise variability levels: a = 1, 2 and 5.

The loss and turning-versus-incidence models for the a = 5 noise level were discussed

in Section 5.2. In addition to the baseline design, loss and turning models for the

deterministically and probabilistically redesigned airfoils were considered.

For a = 2, the mean-shift in polytropic efficiency is about 0.4% for the baseline

airfoil and no more than 0.2% for the compressor models based on the redesigned

airfoils. Similarly, mean pressure ratio differs by no more than 0.7% from the nominal

values. On the other hand, the standard deviation of polytropic efficiency for the
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Figure 5-5: Probabilistic mean-line results with redesigned airfoils (a = 1)
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Table 5.1: Six-stage compressor, IBR airfoil-based loss and turning models

a Design e0 µe σe × 103 π0 µπ σπ

1

Base 0.963 0.961 0.038 10.79 10.73 0.022
DML 0.969 0.968 0.027 11.09 11.04 0.021
MML 0.969 0.968 0.026 11.20 11.14 0.023
MSL 0.968 0.967 0.015 11.12 11.08 0.020

2

Base 0.963 0.959 0.083 10.79 10.71 0.043
DML 0.969 0.967 0.059 11.09 11.02 0.041
MML 0.969 0.967 0.060 11.18 11.11 0.044
MSL 0.967 0.966 0.047 11.13 11.08 0.041

5

Base 0.963 0.951 0.275 10.79 10.59 0.111
DML 0.969 0.959 0.244 11.09 10.89 0.114
MML 0.969 0.960 0.218 11.30 11.11 0.115
MSL 0.967 0.960 0.181 11.20 11.05 0.107

baseline design increases by more than a factor of two when compared with its a =

1 counterpart. A similar increase rate is seen in pressure ratio variability. When

comparing efficiency for the DML and MSL redesigns, the latter shows a decrease of

21% in standard deviation from the former, in keeping with what was observed for

a = 1. The pressure ratio COV decreases by about 8% when comparing the baseline

design to the MSL redesign.

At the more realistic a = 5 noise level (see Appendix B), the efficiency COV for the

baseline airfoil-based compressor model has risen to 30%, roughly a seven-fold increase

from the a = 1 case. At this level of noise, the mean-shifts in polytropic efficiency

also become noticeable: ∼1.2% drop for the baseline case, but only 0.7% for the MSL

redesign (i.e., a 42% reduction in mean-shift from baseline and 30% from DML).

At the higher noise level the decrease in efficiency uncertainty for the MSL-based

compressor model is less drastic but still important: 34% from the baseline airfoil

and 26% from the DML airfoil-based compressor. The pressure ratio variability does

not change significantly among the redesigned airfoils, staying below 1%; the MSL

pressure ratio COV is roughly 8% lower than the corresponding baseline and DML

values. The impact of geometric noise amplitude on pressure ratio variability is nearly
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linear with noise level, i.e., the baseline pressure ratio COV for a = 2 is roughly twice

as large as that of the a = 1 case, and similarly the COV for a = 5 is nearly five

times higher. This agrees with the linear increase in turning variability with respect

to noise amplitude observed in Chapter 3. Lastly, the MSL pressure ratio mean-shift

is 25% lower than the corresponding baseline and DML values.

Figure 5-6 shows error-bar plots of rotor and stator inlet incidence variability at

each stage of the compressor model. Plots for geometric noise levels a = 1 and 2 are

shown. The symbols indicate the location of the average value while the error bars

show a 6σ interval centered at the mean. In all cases mean incidence is negative,

indicating that, in average, each stator and each rotor other than the first operate

off-design. At the higher noise level the reduction of rotor incidence variability due

to the probabilistic airfoil redesign becomes apparent, as is the less pronounced off-

design average incidence. The second stage rotor and stator exhibit the highest level

of variability compared to the other stages; in fact incidence variability decreases for

each successive downstream stage.

Figure 5-7 shows error-bar plots of stage exit Mach number (M3) variability for

each stage of the compressor model. Figures 5-7(a), (b) and (c) compare average

and 6σ intervals for baseline and redesigned airfoil-based models at a = 1, 2 and

5 noise levels respectively. Figure 5-7(d) compares stage exit Mach number for the

baseline airfoil-based model at the three noise levels. The mean stage exit Mach

number decreases for each successive stage as the static temperature increases due to

the work done by the rotor. At the higher noise amplitude values the effect of the

probabilistic airfoil redesign becomes apparent: The average M3 is lower for MML

and MSL redesigns as is its corresponding variability. As with incidence, the Mach

number variability decreases with each successive stage. As shown in Fig. 5-7(d), for

a fixed canonical airfoil design (in this case the baseline airfoil), the average Mach

number increases with noise amplitude as does its variability.
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(b) a = 1: Stator incidence
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(c) a = 2: Rotor incidence

0 1 2 3 4 5 6 7
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Stage

St
at

or
 I

nl
et

 I
nc

id
en

ce
, α

s (
de

g)

µ Base
6 σ
DML
MML
MSL

(d) a = 2: Stator incidence

Figure 5-6: Rotor and stator incidence variability
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(a) a = 1: M3 variability
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(b) a = 2: M3 variability
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(c) a = 5: M3 variability
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Figure 5-7: Stage exit Mach number variability
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5.5 Multiple-Blade Rows

In the calculations reported above it was assumed that, for a given bladed row,

all blade passages behaved identically, i.e., a single passage was considered for each

bladed row. In this section, multiple passages per blade row are considered. For a

given blade row, loss and turning values for each passage are sampled from the normal

distribution according to inlet incidence. Thus in each passage loss and turning values

are different, but with statistics prescribed by the loss and turning models for the

specified incidence. The corresponding system of stage equations (Eqs. (5.1)–(5.3) or

(5.4)) is solved for each passage. The outlet conditions are area-averaged to initialize

the inlet conditions of the next rotor or stator and the calculation is marched through

the compressor.

Table 5.2 shows polytropic efficiency and pressure ratio statistics for the six-stage

compressor model reported above but with 80 blades per row (rotor or stator). Statis-

tics for three levels of geometric variability and each redesigned canonical blade shape

are reported. In comparing Table 5.2 to 5.1 it is seen that at the a = 1 noise level the

Table 5.2: Six-stage compressor, IBR airfoil-based loss and turning models, 80 blade
passages per row

a Design e0 µe σe × 103 π0 µπ σπ

1

Base 0.963 0.961 0.033 10.79 10.73 0.005
DML 0.969 0.968 0.022 11.09 11.04 0.006
MML 0.969 0.968 0.021 11.20 11.14 0.006
MSL 0.968 0.967 0.010 11.12 11.08 0.004

2

Base 0.963 0.960 0.065 10.79 10.72 0.010
DML 0.969 0.967 0.045 11.09 11.02 0.011
MML 0.969 0.967 0.044 11.18 11.11 0.011
MSL 0.967 0.966 0.028 11.13 11.08 0.008

5

Base 0.963 0.953 0.197 10.79 10.61 0.029
DML 0.969 0.961 0.163 11.09 10.90 0.033
MML 0.969 0.961 0.145 11.30 11.13 0.033
MSL 0.967 0.962 0.116 11.20 11.07 0.026

mean shifts for the baseline multiple-blade calculation is the same as for the single-

138



blade case. The efficiency and pressure ratio standard deviations in the multiple-blade

case are 13 and 77% lower than in the single-blade case, respectively. At the a = 5

noise level the efficiency mean shift is now one percentage point, in contrast with

the 1.2% drop seen with the single-blade calculation. The standard deviations of

efficiency and pressure ratio have decreased by 30 and 75% from the single-blade

calculations, respectively.

The reduction in efficiency and pressure ratio mean-shift can be explained in part

by considering a deterministic compressor with loss and turning given by the mean

values obtained from Monte Carlo simulation. As the number of blade passages is

increased, the mean values of efficiency and pressure ratio converges to those obtained

with the mean loss and turning models. Table 5.3 shows the resulting polytropic

efficiency and pressure ratio values for the three noise levels considered. Comparing

Table 5.3: Six-stage compressor, mean loss and mean turning (no variability)

a = 1 a = 2 a = 5
Design e π e π e π
Base 0.961 10.73 0.960 10.71 0.954 10.62
DML 0.968 11.04 0.968 11.02 0.961 10.91
MML 0.968 11.15 0.968 11.11 0.962 11.13
MSL 0.967 11.08 0.966 11.08 0.962 11.08

the values in Table 5.3 to those of mean polytropic efficiency and pressure ratio in

Table 5.2, and taking into account their reduced variability, it can be concluded that

the contribution of the mean values of loss and turning (for given incidence) dominates

the mean shifts of polytropic efficiency and pressure ratio.

5.6 Summary

In this chapter, a mean-line multi-stage axial compressor model was used to estimate

the impact of geometric variability on overall compressor performance. Canonical

probabilistic models of loss coefficient and turning angle versus incidence were con-
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structed for an existing compressor rotor blade using Monte Carlo simulation. In

the mean-line compressor model, upstream operating condition variability leads to

variations in rotor inlet flow angle, axial Mach number, and total temperature and

pressure. The later variabilities follow directly from upstream loss coefficient and

turning perturbations. Since the annulus flow areas remain fixed, inlet total pressure

and temperature fluctuations translate to axial Mach number and incidence pertur-

bations. Inlet flow condition variability is compounded by rotor and stator loss and

turning noise to produce variability in the stage exit conditions, which in turn affect

the next stage.

The loss and turning models were used in probabilistic mean-line calculations for

various redesigned airfoils at three noise amplitude levels. At the original noise level

the impact on overall compressor polytropic efficiency is small (about 0.2% mean shift

and 0.04% increase in coefficient of variability). Despite the small compressor per-

formance variability predicted by the mean-line analysis, the effect of the redesigned

airfoils can be detected at the compressor level. The probabilistic MSL redesign, with

very similar mean efficiency and pressure ratio as the minimum-loss redesigns, results

in a decrease of 62% in standard devation of polytropic efficiency from the baseline

airfoil model, and 46% when compared with the DML-based model.

At twice the original geometric noise level, the standard deviation of polytropic

efficiency for the baseline design increased by more than a factor of two from the

original noise level. A similar increase rate is seen in pressure ratio variability. The

compressor model based on MSL-redesigned airfoils shows a decrease of 21% in stan-

dard deviation when compared with a model based on deterministic minimum loss.

The pressure ratio COV decreases by about 8% when comparing the baseline to the

MSL redesign-based models.

At the more realistic a = 5 noise level, the efficiency COV for the baseline model

went up to 30%, a seven-fold increase from the a = 1 case. At this level of noise,

the mean-shifts in polytropic efficiency is ∼1.2% for the baseline case but only 0.7%

for the MSL-based model (i.e., a 42% reduction in mean-shift from baseline and 30%
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from DML). The decrease in efficiency uncertainty for the MSL-based model is 34%

from the baseline airfoil and 26% from the DML airfoil-based model. The increase in

pressure ratio COV is nearly linear with noise level, in agreement with the linear in-

crease in turning variability with observed previously. Lastly, the MSL pressure ratio

mean-shift is 25% lower than the corresponding baseline and DML values. The en-

forcement of turning angle constraints at the airfoil level led to redesigned airfoils with

similar pressure ratio mean and standard deviation, with advantageous implications

for stall margin.

When considering multiple blade passages (80 blades in the present case), the

impact of the scatter about the mean loss and turning angle values was seen to

decrease, leaving the mean values as the dominant contributors to mean shift in

polytropic efficiency and pressure ratio. For a realistic a = 5 noise level the polytropic

efficiency mean-shift was found to be 1%.

Rotor and stator incidence variability was found to decrease for each successive

downstream stage. For the same canonical airfoil design the average Mach number

increases with noise amplitude as does its variability. As with incidence, the Mach

number variability decreases with each successive stage.

141



142



Chapter 6

Summary and Recommendations

In this thesis, statistical and probabilistic techniques are used to assess the impact of

geometric variability on axial compressor performance. The following is a recapitula-

tion of the thesis.

• A statistical analysis of high-resolution compressor blade surface measurements

was performed using principal component analysis (PCA). The analysis resulted

in high-fidelity models of geometric variability suitable for use in probabilistic

simulation and optimization. The geometric noise modes were found in gen-

eral not to correspond directly to geometric parameters of known aerodynamic

importance.

• The impact of manufacturing variability on blade row aerodynamic performance

was assessed using Monte Carlo simulation and a quasi-two-dimensional cascade

analysis code. Geometric variability was introduces via the aforementioned

PCA-based model derived from existing hardware measurements. Loss and

turning variability were found to grow linearly with geometric noise amplitude.

Discrepancies between nominal and mean loss coefficient of 23% were observed

at five-times the baseline noise level. Supersonic-inlet test cases exhibited higher

loss variability than subsonic ones for the same type and level of geometric

variability.
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• A mean-line multi-stage axial compressor model was used to estimate the im-

pact of geometric variability on overall compressor performance. Canonical

probabilistic models of loss coefficient and turning versus incidence were con-

structed for an existing compressor rotor blade. In the mean-line compressor

model inlet flow condition variability is compounded by rotor and stator loss

and turning noise to produce variability in the stage exit conditions, which in

turn affect the subsequent stages. Probabilistic loss and turning models were

used in mean-line simulations of a six-stage compressor with nominal pressure

ratio of 11. At realistic levels of geometric variability the discrepancy between

nominal and mean polytropic efficiency was found to be around one percentage

point. Pressure ratio variability was found to vary linearly with geometric vari-

ability amplitude. Rotor and stator incidence variability was found to decrease

with distance through the compressor. For the same canonical airfoil design

the mean exit Mach number increased with noise amplitude as did its variabil-

ity. Mach number variability was also found to decrease with distance through

the compressor. When considering multiple-blade rows it was found that the

mean shifts in loss coefficient and turning angle dominate the mean shifts in

polytropic efficiency and pressure ratio.

• A probabilistic gradient-based approach to compressor blade optimization was

developed. The probabilistic objectives, constraints and their corresponding

gradients are approximated using low-fidelity Monte Carlo simulation. An exter-

nal nonlinear optimization driver was used to drive the probabilistic simulations.

Design modes included Chebyshev polynomials acting on the airfoil surface and

solid-body rotation to optimize stagger angle. The airfoils were optimized both

deterministically for minimum loss, and probabilistically for minimum mean

loss and minimum loss variability The airfoils were then subjected to simulated

geometric variability to assess its impact on their performance. Reductions in

mean loss coefficient of up to 25% and in loss variability of up to 65% relative

to deterministically redesigned airfoils were observed. At the compressor level,
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simulations using airfoils optimized probabilistically for minimum loss variabil-

ity exhibited reductions of 30 to 40% in polytropic efficiency variability and

mean-shift compared simulations using deterministically-redesigned airfoils.

• For subsonic airfoils viscous dissipation was found to dominate the rate of en-

tropy generation. A decrease in the rate of flow deceleration on the entry region

of the pressure side reduced the entropy generation variability for subsonic inlet

airfoils. In supersonic inlet airfoils, a decrease in the rate of flow deceleration

immediately downstream of the shock impingement location on the suction side

reduced the loss variability caused by shock-boundary layer interaction.

Recommendations For Future Work

Probabilistic turbomachinery analysis and design is a relatively new area of research.

The following is a categorized list of suggestions for further work on some of the areas

touched in this thesis.

Applications

• The techniques outlined in Chapters 2 and 3—or variants thereof—could be

used to assess the validity or relevance of current industrial manufacturing tol-

erancing practices.

• It would also be of interest to build a “catalog” of common geometric modes en-

countered in specific manufacturing processes. Such catalog could be employed,

for instance, in proposing new manufacturing tolerancing schemes backed by

aerodynamic (functional) information in addition to the traditional heuristics

and past experience of current use.

• The main premise of Chapter 2—to obtain high-definition measurements of

actual production hardware and analyze the data statistically—could as well be

applied to characterizing geometric variability incurred during engine operation.
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Clearly, the main obstacles to such a study are the need for large numbers of

samples and the costs involved in measuring them.

• As illustrated in Chapter 4, nominal airfoil shape modifications can contribute

to the reduction of performance variability. Further redesign features should be

explored over a wide range of airfoil types and geometric variability character-

istics.

Extensions

• As briefly discussed in Appendix A, PCA may be used to characterize and

construct three-dimensional of compressor blade variability.

• A natural extension of the investigations reported in Chapters 2 and 3 would be

to perform a “quasi-3D” probabilistic analysis of an entire blade. Such study

would involve obtaining geometric variability models and performing probabilis-

tic analysis of multiple blade sections along the blade span. A simple feedback

loop can then be established with the throughflow analysis code to take into

account changes in streamtube radial paths and thickness.

• The mean-line model reported in Chapter Five can be greatly improved by

considering multiple-stage quasi-2D models (i.e., with different nominal blades

and probabilistic loss and turning models per stage) augmented by end-wall

correlations to account for casing boundary layer blockage effects.

• The extended compressor model may be used in parametric studies of high-

pressure compressors in more general design spaces, e.g., to study the changes

in compressor performance variability for fixed target pressure ratio and variable

number of stages, etc.
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Methodology

• The nonlinear constrained optimization algorithm used in Chapter 4 (SQP),

assumes that the program being solved is convex, i.e., minimization of a convex

function over a convex region. Although convexity can be expected to hold in a

small region around the origin (baseline design), the use of global optimization

techniques (see for instance Ref. 18) may allow for more effective tradespace

explorations.

• In Chapter 4, low-resolution Monte Carlo simulations were used as a surrogate

of high-fidelity ones, the idea being that approximate probabilistic gradient

information is sufficient to drive the probabilistic airfoil optimization. Other

forms of surrogate models are also possible, e.g., polynomial fits, neural nets,

etc. A way to infuse more fidelity during probabilistic optimization may be

to use combinations of surrogate and high-fidelity evaluations. The optimal

“schedules” for alternating low and high-resolution function evaluations should

be investigated.

• Additional research on the importance of deterministic sensitivity-derivative ac-

curacy to the effectiveness of gradient-based probabilistic optimization needs

to be carried out. In particular, trade-offs among ease of implementation

(and retro-fitting), fidelity and computational expense of various methods (e.g.,

finite-difference approximations, solving sensitivity equations or implementing

adjoint-based solvers) should be addressed in the context of gradient-based prob-

abilistic optimization of turbomachinery components.

• Throughout the thesis, simple Monte Carlo sampling was used to estimate the

statistics of functions of random variables. As a first step to improve com-

putational efficiency, the use of variance reduction techniques (e.g., stratified

sampling) should be evaluated.

• The calculations reported in this thesis took advantage of the easily paralleliz-

able nature of Monte Carlo simulation. On the other hand, less expensive
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probabilistic analysis methods may be not only desirable alternatives to Monte

Carlo but perhaps even the only feasible means to assess the impact of geomet-

ric variability on compressor airfoil performance as higher fidelity results are

sought.
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Appendix A

Principal Component Analysis

A.1 Background

The primary underlying idea in principal component analysis is the modal decom-

position of data sets (from experiments, numerical simulations, field observations,

etc.) into bases which are optimal in a statistical sense. This idea is known to

various disciplines under different names: Proper orthogonal decomposition (POD),

Karhunen-Loève expansion, singular system analysis, singular value decomposition

(SVD), etc. [60].

In fluid mechanics POD has been widely used in the analysis of experimental

and simulation data [117], particularly in turbulence [15, 42, 77]. PCA has found

applications in random variables [75, 95], image processing [49, 93, 107] and other

computer science applications [5, 6], and meteorology [76, 100]. Computer packages

implementing the Karhunen-Loève decomposition to study the spatiotemporal be-

havior of dynamical systems have been reported [8,57]. More recently POD has been

used in constructing reduced-order aerodynamic models for applications in turboma-

chinery control [54,106,136,137]. Häcker [52] used principal components analysis and

other statistical techniques to map simulated compressor blade shape variability to

aerodynamic performance.

According to Preisendorder [100] the origins of PCA can be traced back to the
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1870s and the work of Beltrami, Jordan and Wierstrass who laid down the foundations

for what is now known as the Singular Value Decomposition. Lumley [77] reports

that in the 1940s and 50s research in this area was independently carried out by

various researchers including Kosambi [74], Loève [75], Karhunen, Pougachev [99]

and Obukhov [92]. E. N. Lorenz suggested the technique in the context of weather

prediction [76].

A.2 Basic Theory

The presentation of PCA that follows has been adapted from Refs. 100 and 67 to the

characterization of geometric variability in turbomachinery airfoils.

The nominal airfoil geometry is defined by p coordinate points w0(x) ∈ R
m, x =

1, . . . , p where m is typically 2 or 3. We consider a set of n coordinate measurements

{ŵ(t, x) ∈ R
m | t = 1, . . . , n; x = 1, . . . , p} taken, for instance, with a coordinate-

measuring machine. The integral values of x uniquely identify a specific nominal point

and its measured counterparts. Similarly t identifies a particular set of measured

points. The discrepancies in the coordinate measurements can be expressed as

w′(t, x) = ŵ(t, x)−w0(x), t = 1, . . . , n; x = 1, . . . , p .

Subtracting from these error vectors their ensemble average given by

w̄(x) =
1

n

n
∑

t=1

w′(t, x), x = 1, . . . , p ,

gives a t-centered set of m-dimensional vectors, W = {w(t, x) = ŵ(t, x)− w̄(x) | t =

1, . . . , n; x = 1, . . . , p}.

Let w(t) = [wT (t, 1), . . . ,wT (t, p)]T and consider a unit vector e ∈ R
mp with sub

vectors e(x) ∈ R
m, so that e = [e(1)T , . . . , eT (p)]T . The scatter of W along e is
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defined to be

ψ(e) ≡
n
∑

t=1

[wT (t)e]2

= eT

(

n
∑

t=1

w(t)wT (t)

)

e

= eTSe ≥ 0

where the scatter matrix S is composed of the m×m sub matrices

S(x, y) =
n
∑

t=1

w(t, x)w(t, y)

The set W of t-centered error vectors can be written in matrix form as

X ≡ [X(1), . . . ,X(p)]

where X(x) ≡ [wT (1, x), . . . ,wT (n, x)]T . Then the scatter matrix can be more suc-

cinctly written as

S = XTX.

The scatter matrix is related to the covariance matrix C simply by C = (n− 1)−1S.

We are interested in finding directions which minimize (or maximize) the scatter

ψ. Assume that v ∈ R
mp is one such direction. Then for a small perturbation δv

ψ(v + δv) = ψ(v) +O(|δv|2)

so that, to first order ψ(v + δv) ≈ ψ(v). On the other hand, from the definition of ψ

we have

ψ(v + δv) = (v + δv)TS(v + δv)

= vTSv + vTSδv + δvTSv + δvTSδv,
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since S = ST , vTSδv = δvTSv, to first order, ψ(v + δv) ≈ vTSv + 2δvTSv, which

implies

δvTSv = 0. (A.1)

From the requirement that ‖v + δv‖2 = 1, we get

vTv + vδv + δvv + δvT δv = 1

which to first order is equivalent to

δvTv = 0, (A.2)

i.e., to first order the perturbations only alter the direction of v.

To combine Eqs. (A.1) and (A.2) we multiply the latter by λ ∈ R having the same

units as the entries of S, yielding

δvT (Sv − λv) = 0. (A.3)

Since Eq. (A.3) must hold for arbitrary perturbations satisfying Eq. (A.2), it follows

that the extrema of the scatter probe occur along directions which are nontrivial

solutions of the eigenvalue problem

Sv = λv. (A.4)

Since S is symmetric positive definite 1, it has in general mp orthonormal eigenvectors

vi ∈ R
mp, i = 1, . . . , mp with corresponding real, non-negative eigenvalues [130], i.e.,

if V = [v1, . . . ,vmp], then VTV = VVT = I and

VS = VΛ (A.5)

where Λ = diag(λi, . . . , λmp), λ1 ≥ . . . ≥ λmp ≥ 0. Equation (A.5) is a statement of

1For any nonzero vector v, v
T
Sv = v

T
X

T
Xv = (Xv)T (Xv) = ‖Xv‖22 > 0
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the eigenvector property of S [100].

The orthonormal columns of V span R
r where r ≤ mp is the rank of S. Therefore

the original data vectors can be represented as linear combinations of the eigenvectors

of S. From the orthogonality of V we can write the identity

X = XVVT .

Introducing the n×mp matrix of amplitudes A ≡ XV we can rewrite the above as

X = AVT . (A.6)

Equation (A.6) is called the PCA synthesis formula [100]. The entries of A have the

same dimensions as the entries of X, i.e., as the data vectors. The columns of A are

the principal component or amplitude vectors in R
n and can be thought of as the

amplitudes modulating a set of modes given by the eigenvectors of S.

From the eigenvector property of S it follows that

ATA = (XV)T (XV) = VT (XTX)V = VTSV = VTVΛ,

that is

ATA = Λ . (A.7)

This last expression is called the PCA property of the data set X.

The total scatter (or energy [8]) E of the data set W is given by

E = tr(S) = tr(XTX) = ‖X‖2F

where ‖ · ‖2F stands for the Frobenius norm. Using the fact that the Frobenius norm

is invariant under unitary multiplication [130] we can write

E = ‖AVT‖2F = ‖A‖2F = tr(ATA) = tr(Λ) =

mp
∑

j=1

λj .
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Therefore the total scatter of the data set is given by the sum of squares of the entries

of the principal component vectors or, equivalently, by the sum of the eigenvalues of

the scatter matrix S. The latter can also be seen by applying the scatter probe to

each eigenvector vj, j = 1, . . . , mp of S,

ψ(vj) = vT
j Svj = vT

j λjvj = λj ,

by the orthogonality of V. Therefore, the scatter of the data set along a particular

eigenvector is given by its corresponding eigenvalue.

Directly computing the eigenvalue decomposition of S (Eq. (A.5)) can become

computationally expensive for large n,m, p. An alternate, less expensive computation

is motivated as follows. Define the normalized amplitude matrix U to have columns

uj(t) = aj(t)/
√

λj, j = 1, . . .mp, where aj(t) ∈ R
n are the principal components of

the data set. Then

A = UΣ

where Σ = diag(σ1, . . . , σmp), σj =
√

λj, j = 1, . . . , mp. The PCA property can be

rewritten as

UTU = I

and the synthesis formula becomes

X = UΣVT . (A.8)

The above expression is a statement of the Singular Value Decomposition (SVD) of

X in reduced form [130], which is made unique by requiring that {σj}mp
j=1 be a non-

increasing sequence. Computing the SVD of X is less expensive and more numerically

stable than finding the full eigenvalue decomposition of S. Furthermore, the form of

Eq. (A.8) can be readily cast to include cases for which rank(S) ≤ n < mp.
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A.3 Three-Dimensional Analysis of IBR Blade Mea-

surements

An alternative application of PCA to the IBR measurements discussed in Chapter 2

is to consider all 13 sections at once in a three-dimensional analysis. The 3-D analysis

allows for the possibility of section-to-section effects that were precluded by the two-

dimensional assumption made priorly.

Using the notation introduced above, the t-centered measurements are collected

into n × mp matrix X, where now n = 52, m = 3 and p = 112. As before, the

eigenmodes and eigenmodes of the scatter matrix S are obtained from the singular

value decomposition of X.

Figures A-2 and A-3 show the effect of the mean airfoil perturbation and the first

five modes. The scalar quantity plotted is the displacement in the direction normal

to the baseline blade surface (outward positive). For ease of visualization, the surface

of the airfoil has been “unwrapped”: the suction surface of the blade corresponds

to the horizontal interval −1 ≤ x ≤ 0, while the pressure side is corresponds to

0 < x ≤ 1, with the leading edge is located at 0. The portion of the measured span

has been normalized. To facilitate comparison of leading- and trailing-edge effects, a

transformation defined by

T : x 7→











1
2
[1− cos π(x− 1)]− 1 −1 ≤ x < 0

1
2
(1− cos πx) 0 ≤ x ≤ 1

has been used on to the chord-wise component. In the plots, the bottom horizontal

axis corresponds to the transformed abscissa coordinate, T−1(x), while the top aux-

iliary horizontal axis indicates the original x coordinate value. Figure A-1 shows the

effect of T−1 on a uniform grid.

Figures A-2 and A-3 suggest the existence of three-dimensional components of

geometric variability modes acting along the blade span and not only along its axial

and tangential directions.
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(b) Mode 1
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(c) Mode 2

Figure A-2: Three-dimensional geometric modes
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(a) Mode 3
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(b) Mode 4
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(c) Mode 5

Figure A-3: Three-dimensional geometric modes (Cont’d)
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Appendix B

Point- Vs. Flank-Milled

Compressor Blade Rows

Point milling is a well understood and widely used method for manufacturing com-

pressor blades. In this technique, a ball cutter removes material from a block of metal

following computer-controlled paths. The main disadvantages of point milling are the

time required to cut an entire blade surface in several passes and the resulting scal-

loped surface finish [138]. An alternative to point milling that is starting to become

practical is flank milling, whereby a conical tool is used to cut the entire surface of

a blade from the blank material in a single pass [138]. Flank milling poses a more

challenging tool control problem than point milling, but can potentially be more time

and cost effective. Another advantage of flank milling is that it produces a better

surface finish than point milling, requiring less time for surface polishing.

The integrally bladed rotor (IBR) discussed throughout this thesis was manu-

factured via flank milling. Production hardware is likely to be manufactured using

other more common techniques like point milling. Figure B-1 shows plots of mea-

sured deviations of two production compressor rotor blades, one manufactured with

point milling and the other with flank milling. Deviations in chord length, leading-

edge thickness and trailing-edge thickness at various spanwise locations are shown.

The deviations have been scaled with respect to the nominal spanwise average chord.
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Largest positive and negative deviations at each spanwise station are indicated by

dashed lines, which in turn provides a rough measure of variability in each measured

dimension. Table B.1 shows maximum deviations (per unit chord) intervals in chord,

leading and trailing-edge thickness for the measurements shown in Fig. B-1. The

Table B.1: Spanwise maximum deviation intervals (per unit chord) for point- and
flank-milled IBR measurements.

Dimension Point (×103) Flank (×103) Ratio
Chord length 8.6 0.49 18
LE thickness 2.7 0.49 6.7
TE thickness 3.8 0.57 5.6

point-milled IBR exhibits roughly 18 times more variability in chord length than

the flank-milled IBR. The variability in LE and TE thickness measurements for the

point-milled IBR is roughly six times that of the flank-milled rotor. This compar-

ison provides a justification for the higher geometric variability levels considered in

Chapters 3–6.
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(b) Flank-milled IBR: Chord length
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(c) Point-milled IBR: LE thickness
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(d) Flank-milled IBR: LE thickness
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(e) Point-milled IB9: TE thickness
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Figure B-1: Measured deviations for sample point and flank-milled IBR
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Appendix C

Robustness Via Constrained

Probabilistic Optimization

Various definitions of robustness have been introduced in the context of design under

uncertain conditions [98,124]. In the present context a robust blade passage design is

one that exhibits improved mean performance and reduced sensitivity to geometric

and flow parameter variability when compared to a baseline design.

A comparison of problems (4.1) and (4.2) suggests a probabilistic nonlinear pro-

gram of the form

σ∗

$ = min
x∈Ω′

{

Var
θ

($(x, θ))
}

1
2

(C.1)

s.t. ϑl ≤ E
θ

[ϑ(x, θ)] ≤ ϑu,

E
θ

[$(x, θ)] = $∗ .

Assuming that, in some subset Ω′ of the design space Ω, σ∗

$ varies continuously with

$∗ and is furthermore monotonically decreasing in $∗, then an acceptable level of

mean performance degradation may be traded by a profitable reduction in output

variability.

To illustrate a mean performance vs. variability study, the IBR airfoil introduced

in Chapters 2–5 was redesigned to meet the mean loss equality constraints summarized
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in Table C.1. A geometric noise level a = 5 was assumed. The design variables and

tradespace were similar to those used in Sect. 4.2.3 with the exception that no stagger

angle changes were allowed. The turning constraint was relaxed to 14.4 ≤ µϑ ≤ 15.4.

To ensure sufficient resolution of the equality constraints Nopt = 200 trials were used.

All optimization runs were started from the baseline geometry.

Table C.1: IBR a = 5: Mean vs. variability trade-off problem constraints

Problem Eθ[$(x)]
TO1 2.78
TO2 2.83
TO3 2.91
TO4 2.98

The mean loss constraint values in Table C.1 were selected to subdivide the mean

loss interval between the values computed for the MML and MSL redesigns (see Ta-

ble 4.2) into five segments (roughly) uniformly-spaced. The problem names given in

the table identify the resulting redesigned airfoils and their performance statistics in

Figs. C-1 and C-2. Figure C-1 gives final standard deviation versus mean mean loss

coefficient (computed via MCS, N = 2000) for the four trade-off airfoils, as well as

those of the MML and MSL airfoils discussed earlier. The highest variability corre-

sponds to the MML redesign, as does the smallest mean loss. The largest mean loss

value corresponds to the minimum standard deviation airfoil (MSL). The four trade-

off redesigns lie between the MSL and MML cases. The graph can be interpreted in

two ways. As the loss coefficient constraint is eased (i.e., larger values are considered),

the possibility to reduce loss variability increases. Conversely, as the requirement for

reduced uncertainty is reduced, minimum mean loss that can be reduced.

Point labeled MML2 in Fig. C-1 corresponds to the mean loss and standard devi-

ation obtained by minimizing the mean loss starting with the TO2 trade-off design.

The design space explored was the same as in the previous programs. The fact that

a design was obtained resulting in roughly the same minimum mean loss, but with

reduced uncertainty, suggests that a useful strategy for minimizing mean loss while
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Figure C-1: IBR: Mean loss coefficient vs. standard deviation (a = 5)

reducing variability is to first minimize variability and then improving mean perfor-

mance.

Figures C-2 show geometric features of the redesigned airfoils TO1 through TO4

compared to the MML and MSL airfoils. The geometric trends that led to designs

with reduced variability are seen also in the TO3 and TO4 airfoils, namely a somewhat

thicker leading edge (from building up the pressure side) and a shifting of the maxi-

mum camber location aft. However, the thickness and camber transformations among

the three sections are not linear scalings of those in the MSL airfoil. Similarly, thinner

sections in the forward portion of the airfoil and a shifting of the maximum thickness

toward the rear of the airfoil are characteristic to the low-loss/high-variability designs

(MML, TO1, TO2).
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Figure C-2: IBR (a = 5): Geometric features of “trade-off” redesigns

166



Appendix D

Mean-Line Compressor Model

D.1 Nomenclature

Variables

T Temperature P Pressure

M Mach number a Speed of sound

V Velocity u Axial velocity

v Tangential velocity r Radius

ρ Density h Enthalpy

α Absolute flow angle β Relative flow angle

ω Wheel speed φ Total pressure loss coeff.

ϑ Flow turning R Gas constant

γ Ratio of specific heats cp Specific heat at const. P

ṁ Mass flow rate pi Pressure ratio

η Adiabatic efficiency e Polytropic efficiency

D Diffusion factor σ Solidity

A Area
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Subscripts

T “Total” R “Relative”

r “Rotor” s “Stator”

1 Rotor inlet 2 Stator inlet

3 Stator exit

D.2 Baseline Model

For a given choice of the design parameters outlined below, a mean-line compressor

design is obtained as follows: For some initial choice of tip-to-hub ratio, the stage inlet

flow annulus area is calculated according to the formulae summarized in Sect. D.3.

A new tip-to-hub ratio is calculated from the computed area and the iteration is

continued to convergence. The procedure is repeated for the next stage, k + 1, using

the previous stage’s exit conditions, i.e., T k+1
T1
← T k

T3
, P k+1

T1
← P k

T3
, Mk+1

1 ← Mk
3 ,

where the superscript indicates stage number. The design parameters are then varied

as required to comply with the suggested design guidelines and the stage iterations

repeated. The design parameters, guidelines and outputs are as follows.

• Design parameters

– Number of stages, N

– Compressor inlet properties: T 1
T1

, P 1
T1

, M1
1 , and α1

1, for k = 1, . . . , N

– Mass flow rate and wheel speed

– Compressor inlet tip radius and casing (tip) contraction angle θcasing

– Rotor and stator total pressure loss coefficients, φk
r , φ

k
s

– Nominal rotor turning angle ϑk
r

– Rotor and stators axial velocity ratios AVRr, AVRs

– Stage solidity, σk

• Design guidelines (as suggested in Ref. 81)
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– Stage loading coefficient ψ = ∆hT/(ωr)
2 ∼ 0.3

– Flow coefficient Φ = u1/(ωr) ∼ 0.5

– Diffusion factors Dr, Ds < 0.6

– Degree of reaction oR = ∆hrotor/∆hstage ∼ 0.5.

– Axial stage exit flow (no residual swirl)

• Design outputs

– Flow annulus areas: Ak
1, A

k
2, A

k
3, k = 1, . . . , N

– Stator turning: ϑk
s , k = 1, . . . , N

– Baseline compressor pressure ratio π

– Adiabatic and polytropic efficiencies, η, e

The six-stage compressor model parameters and stage settings for the baseline

design used in Chapter 5 are summarized in Tables D.1 and D.2. In addition,

Table D.1: Baseline compressor model parameters

T 1
T1

(K) P 1
T1

(kpa) M1
1 ṁ (kg/s) ω (rad/s) α1

1 (deg) r1
tip (m) θcasing (deg)

380 300 0.6 70 1400 0 0.30 1.3

Table D.2: Baseline compressor model stage settings

Stage 1 2 3 4 5 6

α3 0 0 0 0 0 0
AVRr 1 1 1 1 1 1
AVRs 1 1 1 1 1 1
σ 1 1 1.2 1.4 1.6 1.7
AR 1.6 1.6 1.6 1.7 1.8 1.8
θstagger 30 30 35 35 40 45

the nominal rotor and stator loss coefficients taken from the IBR airfoil calculations
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summarized in Chapter 3 were φr = φs = 0.03. The nominal rotor turning, also

corresponding to the nominal IBR airfoil was ϑr = 14.4 deg. The resulting nominal

compressor total pressure ratio, total temperature ratio, and adiabatic and polytropic

efficiencies were π = 10.8, τ = 2.03, η = 0.95 and e = 0.96 respectively. Figure D-1

shows the a schematic representation of the compressor stages and the mean-line path.

Table D.3 shows the pressure and temperature ratios, diffusion factors, stage loading,

flow coefficient, and degree of reaction for each stage of the nominal mean-line model.

Similarly D.4 shows exit total temperatures, pressures and Mach number, as well as

stator inlet area, stator inlet absolute flow angle and nominal stator turning.
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Figure D-1: Compressor model stages

Table D.3: Baseline six-stage compressor model (1)

Stage η π Dr Ds ψ Φ ◦R
1 0.964 1.655 0.440 0.478 0.429 0.599 0.785
2 0.962 1.573 0.454 0.483 0.421 0.582 0.789
3 0.960 1.504 0.432 0.438 0.418 0.573 0.791
4 0.959 1.447 0.415 0.405 0.416 0.567 0.792
5 0.958 1.400 0.402 0.381 0.415 0.563 0.792
6 0.957 1.360 0.397 0.372 0.415 0.560 0.793

170



Table D.4: Baseline six-stage compressor model (2)

Stage TT3 (K) PT3 (kpa) M3 A2 (m2) α2 (deg) ϑs (deg)
1 441.0 496.5 0.554 0.12112 35.6 -35.6
2 504.4 781.1 0.516 0.08588 35.8 -35.8
3 569.4 1175.0 0.484 0.06322 36.1 -36.1
4 635.5 1700.2 0.457 0.04801 36.2 -36.2
5 702.4 2379.8 0.434 0.03743 36.4 -36.4
6 769.9 3237.7 0.414 0.02982 36.5 -36.5

D.3 Stage formulae

M1 = f−1

(

ṁ
√

TT1

PT1A1 cosα1

, γ, R

)

, f(M) =

√

γ

R

M
(

1 + γ−1
2
M2
)

γ+1
2(γ−1)

.

T1 =
TT1

1 + γ−1
2
M2

1

, P1 =
PT1

(1 + γ−1
2
M2

1 )γ/(γ−1)

a1 =
√

γRT1, V1 = M1a1, u1 = V1 cosα1, v1 = V1 sinα1

v1R = ωr − v1, β1 = arctan(v1R/u1),

V1R =
√

u2
1 + v2

1R, M1R = V1R/a1

TT1R
= T1

(

1 +
γ − 1

2
M2

1R

)

, PT1R
= P1

(

TT1R

T1

)γ/(γ−1)

PT2R
= PT1R

[

1− φr
γM2

1R

(1 + γ−1
2
M2

1R)γ/(γ−1)

]

u2 = AVRru1, TT2R
= TT1R

, β2 = β1 − ϑr

∆TT =
ω

cp
(r1u1 tan β1 − r2u2 tanβ2), TT2 = TT1 + ∆TT
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v2R = u2 tan β2, V2R =
√

u2
2 + v2

2R,

v2 = ωr2 − v2R, α2 = arctan(v2/u2), V2 =
√

u2
2 + v2

2

T2 = TT2 −
V 2

2

2cp
, P2 = PT2R

(

T2

TT2R

)γ/(γ−1)

a2 =
√

γRT2, M2 = V2/a2, M2R = V2R/a2

A2 =
ṁ

PT2 cosα2M2

√

TT2R

γ

(

1 +
γ − 1

2
M2

2

)
γ+1

2(γ−1)

PT2 = P2

(

TT2

T2

)γ/(γ−1)

, TT3 = TT2 , T3 =
TT3

1 + γ−1
2
M2

3
(

PT3

PT2

)

φs

= 1− φs
γM2

2 /2

(1 + γ−1
2
M2

2 )γ/(γ−1)

u3 = AVRsu1

PT3 = PT2

(

PT3

PT2

)

φs

, P3 = PT3

(

T3

TT3

)γ/(γ−1)

a3 =
√

γRT3, V3 = M3a3,

u3 = V3 cosα3, v3 = V3 sinα3

A3 =
ṁ

PT3 cosα3M3

√

TT3R

γ

(

1 +
γ − 1

2
M2

3

)
γ+1

2(γ−1)

πc =
PT3

PT1

, ηstage =
(PT3/PT1)

(γ−1)/γ − 1

TT3/TT1 − 1
, ηpoly =

(γ − 1)

γ

log(PT3/PT1)

log(TT3/TT1)
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D.4 Rotor System Jacobian

The following are the entries of the Jacobian corresponding to the nonlinear system

5.1–5.3.

∂F

∂∆TT

= 1− sinα2
ωr2
cp

∂V2

∂∆TT

,
∂G

∂∆TT

=
ṁ
√

TT2

A2PT2 cosα2

(

1

2TT2

− 1

PT2

∂PT2

∂∆TT

)

,

∂F

∂M2
= − sinα2

ωr2
cp

∂V2

∂∆M2
,

∂G

∂M2
= (M2

2 − 1)

√

γ

R

(

1 +
γ − 1

2
M2

2

)
1−3γ

2(γ−1)

∂F

∂α2
= − cosα2

ωr2
cp
V2,

∂G

∂α2
=

ṁ
√

TT2

PT2A2 cosα2
tanα2

∂H

∂∆TT
= (sinα2 + cosα2 tan β2)

∂V2

∂∆TT

∂H

∂M2
= (sinα2 + cosα2 tan β2)

∂V2

∂M2

∂H

∂α2
= (cosα2 − sinα2 tanβ2)V2

where

∂V2

∂∆TT
=

1

2

V2

TT2

,

∂V2

∂∆M2

=
V2

M2

[

1− (γ − 1)M2
2

2 + (γ − 1)M 2
2

]

,

∂PT2

∂∆TT

=

(

PT2R

T γ
T1R

)(

TT2

TT1R

)
1

γ−1
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