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Abstract

A novel covariant formalism for the treatment of the transfer and Compton scattering
of partially polarized light is presented. In this approach, the polarization state of a
light beam is described by a tensor constructed from the time average of quadratic
products of the electric field components in a local observer frame. This leads natu-
rally to a covariant description which is ideal for calculations involving the boosting
of polarized light beams between Lorentz frames, and is more flexible than the tradi-
tional Stokes parameter approach in which a separate set of polarization basis vectors
is required for each photon.

The covariant kinetic equation for Compton scattering of partially polarized light
by relativistic electrons is obtained in the tensor formalism by a heuristic semi-classical
line of reasoning. The kinetic equation is derived first in the electron rest frame in
the Thomson limit, and then is generalized to account for electron recoil and allow
for scattering from an arbitrary distribution of electrons.

This formalism is applied to a calculation of the relativistic corrections to the spec-
tral distortions imprinted in the intensity and polarization of the cosmic microwave
background radiation (CMB) by inverse Compton scattering in clusters of galaxies
(the Sunyaev-Zeldovich effects). We develop a Monte Carlo method for simulating
these effects, based on the tensor formalism and kinetic equation.

We also consider the use of the polarization signal generated by scattering of the
CMB from distant clusters as a probe of cosmological perturbations. Such observa-
tions allow an indirect measure of the CMB quadrupole as seen on the last scattering
surfaces of observers at nonzero redshift. The statistical properties of this signal in
a simple cosmological model are derived. We demonstrate that measurements of this
signal would yield more information than is available from observations of the CMB
anisotropies on our sky, and would potentially allow more precise measurement of
cosmological parameters and the primordial power spectrum of density fluctuations.
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Chapter 1

Introduction

In the last few decades, there has been increasing interest in measurements of the
anisotropies in the cosmic microwave background (CMB) radiation, the relic radia-
tion of the big bang, which is an almost perfectly isotropic blackbody radiation field at
a temperature of 2.726 K. Primary fluctuations in the CMB temperature and polar-
ization were imprinted at the last scattering surface at redshift z ~ 1100. Theoretical
predictions of the observable fluctuations in the temperature and polarization maps
of the CMB, taking into account all of the details of the dynamics of the growth of
matter and radiation perturbations, have become easy with codes such as CMBFAST
(Ma & Bertschinger, 1995; Seljak & Zaldarriaga, 1996; Zaldarriaga & Seljak, 1997).
The agreement between these theoretical models and the observations of the temper-
ature anisotropy from instruments such as COBE (Lubin et al., 1983) and WMAP
(Bennett et al., 2003; Kogut et al., 2003) has so far been quite spectacular.

Largely due to these observations and the underlying theory (in conjunction with
data from galaxy surveys, weak lensing, and the Ly-« forest), it is now widely accepted
that the universe is very nearly flat, as predicted by the inflationary paradigm (Guth,
1981), and has energy density dominated by a cosmological constant. Measurements
of the polarization of the CMB will yield additional information about the physics at
the era of recombination, and are more sensitive than the temperature measurements
to the stochastic background of gravitational waves predicted in inflationary models.

With some confidence that the background cosmology has been reliably deter-
mined, attention has turned to the study of CMB foregrounds (Peterson et al., 1999),
which are usually defined as any distortion to the CMB additional to that imprinted
at the era of recombination. The most interesting foregrounds from a cosmological
point of view are those due to Thomson scattering of the CMB photons by the elec-
trons in ionized plasma. At a redshift z = 10 — 100, the first stars and galaxies
formed and re-ionized the surrounding neutral gas. This process leaves a signature in
the polarization of the CMB at large and small angular scales.

At low redshift, inverse Compton scattering by the dense, hot concentrations of
ionized gas in clusters of galaxies injects energy into the CMB, leading to a net increase
in the (frequency integrated) CMB brightness in the direction of clusters. This is
the thermal Sunyaev-Zeldovich effect (SZE). (Zeldovich & Sunyaev, 1969; Sunyaev
& Zeldovich, 1980a). The effect leads to a deviation of the CMB from a perfect



Planck spectrum with a well known frequency dependence. At low frequencies, in the
Rayleigh-Jeans limit, the CMB is actually cooler, while it is hotter in the Wien tail. In
conjunction with measurements of the X-ray brightness of clusters, the thermal SZE
allows measurement of the Hubble constant, although the measurement is difficult
(Birkinshaw, 1999).

The bulk motion of the gas in a cluster with respect to the CMB rest frame leads
to a Doppler boosting or dimming of the CMB according to whether the cluster is ap-
proaching of receding along the line of sight. This kinematic Sunyaev-Zeldovich effect.
has a different frequency dependence from the thermal SZE (Sunyaev & Zeldovich,
1980b). Measurements of this effect (which have not yet been achieved) would allow
determination of the radial bulk motions of gas in the cluster. This in turn would allow
an estimate of the underlying dark matter peculiar velocity field and provide further
constraints on cosmological parameters and models of structure formation. Several
groups have used hydrodynamic simulations to investigate the statistical properties
of the SZ contamination of the CMB power spectra, and considered how to extract
information on peculiar velocities from the kinematic effect (Molnar & Birkinshaw,
2000; Seljak et al., 2001; Refregier & Teyssier, 2002; Nagai et al., 2003).

In addition to these effects which distort the CMB intensity, a CMB polarization
signal can be generated via Compton scattering - we refer to this as the generation
of polarization in the Sunyaev-Zeldovich effect. The basic process responsible for the
generation of polarization is Thomson scattering of a radiation field with a quadrupole
anisotropy (Sunyaev & Zeldovich, 1980b; Audit & Simmons, 1999; Sazonov & Sun-
vaev, 1999). There are several means by which this anisotropy may be generated, in
the case of the CMB radiation incident on a galaxy cluster: the primary CMB tem-
perature quadrupole @y at the cluster (yielding polarization fraction ~ 71Q5, where
71 is the optical depth to Thomson scattering), the kinematic quadrupole arising from
the Doppler boost of the isotropic CMB into the electron rest frame (~ 7rv?/c?), and
double scattering of the anisotropic radiation due to the single scattering thermal
and kinematic effects (~ 7r times the thermal and kinematic SZE). These effects are
described in detail in Chapters 4 and 5.

For rich clusters with 7+ ~ 0.01, these polarization effects are expected to produce
a 0.1uK distortion at most, and so their measurement will be challenging. However
there are compelling reasons for studying them both observationally and theoretically.
First of all, measurements of the kinematically generated polarization effect would
allow determination of the components of the cluster bulk velocity perpendicular to
the line of sight, complementing the measurement of the radial component via the
unpolarized kinematic effect. Secondly, the polarization signal produced by scattering
of the intrinsic CMB quadrupole anisotropy allows an in situ measurement of the local
CMB quadrupole. As described in §1.2, this provides a means of studying directly
the time evolution of the CMB anisotropies. And finally, theoretical study of the SZ
polarization effects has motivated the introduction of an original formalism for dealing
with the Compton scattering of polarized photons, as described in §1.1, which will
no doubt have applications in other astrophysical settings.



1.1 A tensor method for polarization calculations

The computation of the polarization in the Sunyaev-Zeldovich effect requires a for-
malism for the treatment of the Compton scattering of a polarized radiation field. In
looking at the details of these calculations it becomes apparent that the Stokes param-
eter formalism conventionally used in polarized radiative transfer (Chandrasekhar,
1960), and in the primary CMB calculations (Zaldarriaga & Seljak, 1997), is very
cumbersome for this purpose, due to the fact that a separate set of polarization basis
vectors has to be specified for every photon. Since Compton scattering involves a
relativistic scattering electron in general, Lorentz transformation of the Stokes pa-
rameters is necessary, which turns out to be complicated.

To get around this difficulty, we found it convenient and illuminating to introduce
a novel formalism for doing radiative transfer calculations with polarized photons,
the polarization tensor formalism. The formalism is described in detail in Chapter 2,
and its application to Compton scattering described in Chapter 3. There exist other
approaches to the description of the polarization properties of radiation fields, for
example the Jones calculus, Mueller matrices, and coherency matrices (see Swindell
(1975)). Our approach is closest in spirit to the coherency matrices of Wolf (1959),
except we go further and develop a covariant tensor formalism. With this we can
study the polarization generated by relativistic Compton scattering.

The basic idea of this matrix formalism is to associate a 3 x 3 matrix with each
photon, rather than a set of polarization basis vectors and the associated Stokes
parameters. For example, a beam of partially-polarized light travelling in the z-
direction is described by the Hermitian matrix (termed the polarization matriz):

L[ I+Q U—ivV 0
0 0 0

where I,Q,U,V are the Stokes parameters (with units of specific intensity). The
trace of the matrix is the total beam intensity. For a general photon direction mn, the
beam is described by a matrix I(n), and transversality of the polarization implies
n'I;; = 0. In general, the polarization matrix is a function of photon frequency and
direction as well as spatial position and time, I = I(v,n,x,t). The real advantage
of this description is that there is no need to perform a complicated rotation of axes
when examining photons with different direction vectors (in the angular integrations
needed in the radiative transfer equation for example). In addition, it is simple to
extend the 3 x 3 matrix description to a 4 x 4 tensor description in which Lorentz
transformation of polarized beams between frames is easy.

In the matrix approach, the radiative transfer equation for scattering of polarized
radiation is much more straightforward than in the Stokes approach. There is no need
for rotation of axes to define separate Stokes parameters for the incoming and outgoing
beams. Both are described by a single polarization matrix. By contrast, when using
Stokes parameters one has a complicated angular integral involving rotation matrices
(Hansen & Lilje, 1999; Chandrasekhar, 1960). The transfer equation for Thomson



Figure 1-1: Radiation Thomson scattered into the line of sight from a source at the
center of an inhomogeneous cloud of electrons. In the various panels we show: the
total intensity I (upper left), the magnitude of the polarization IT (upper right), the
Stokes () parameter (lower left), the Stokes U parameter (lower right). The Stokes
parameters are defined with respect to the axes of the projected face.

scattering is elegantly expressed in terms of a set of projection matrices P(ng) which
project out of the matrix I(n) the component of polarization orthogonal to n.

The Monte Carlo simulation of polarized radiative transfer is also easy with po-
larization matrices. The result of such a simulation is shown in Fig. 1-1. These are
simulated observations of the intensity (log scale) and polarization (linear scale) of
the Thomson scattered (monochromatic) radiation produced by a point source at
the center of a cubic volume containing an inhomogeneous distribution of stationary
electrons (as observed from a point in the far field). The plasma density distribu-
tion, defined on a cubic grid of 323 points, is taken from a cosmological simulation
of a galaxy cluster by Greg Bryan. The cloudy and filamentary nature of the gas is
apparent, as is the discreteness of the grid on which it is defined. In this simulation
4 x 107 unpolarized photons were generated at the source and allowed to Thomson
scatter through the cloud until they hit the boundary. The opacity was adjusted so
that average number of scatterings undergone by each photon before leaving the cube
was 2.0. The procedure used to generate these images is described in Appendix B. To



perform such a simulation of the generation of polarization with multiple scattering
would be much more difficult in the Stokes approach than with the matrix approach
advocated here.

1.2 Spatial correlations of CMB anisotropies from
polarization

Kamionkowski & Loeb (1997) made the interesting suggestion that measurements
of the polarized SZE could enable one to get around the cosmic variance limit on
the CMB quadrupole (I = 2) anisotropy. Part of the polarization measured from a
cluster is proportional to the CMB quadrupole at the cluster itself. Since an observer
in a distant cluster has a different last-scattering surface than an observer at redshift
z = 0, this leads us to ask, what additional information is present in principle if one
could measure the CMB quadrupole at other points in spacetime? This is explored in
detail in Chapter 5. This has required generalizing the usual CMB treatment, which
is based on the assumption that we can measure the anisotropy at only one point in
space. Expanding the anisotropy in the usual way,

Ale,n,7) =Y > am(@,7)Vin(n) (1.2)

=0 m=—1

where x is the comoving position vector, 7 is the conformal time, and n is the photon
direction vector. One must define a direction for the polar axis and prime meridian
everywhere in space; this is easily done with respect to the comoving coordinate grid.
Now one can generalize the usual CMB angular power spectrum to distinct points in
space as well as multipoles, resulting in the generalized CMB correlation functions:

Clml’m’(maTa mlaTl) = <a‘lm(m77—)a‘7’m’(mla7—1)> . (]‘3)

When the two points are brought together, Cppym = Ci(T)dyy Sy 1 diagonal. How-
ever, it is non-diagonal when the points are distinct. The cluster polarization allows
us to extract some of the information contained in the generalized correlation func-
tions that is not present in the simple angular power spectrum C; measured at redshift
z = 0. In Chapter 5, we show that by combining polarization measurements from
many clusters at different redshifts, the cluster polarization signal can be used as a
probe of the time evolution of the angular power spectrum harmonic Cy(7). In the
now-standard ACDM cosmology, a late-time contribution to the CMB anisotropy on
large scales is made by the time-changing gravitational potential as €2, drops signifi-
cantly below 1 starting about z & 1. This effect, known as the integrated Sachs-Wolfe
effect, could be directly measured by using clusters to provide in situ measurements
of the quadrupole. The experimental measurement is difficult because it is based on
polarization anisotropy in the SZE. However, it is worthwhile to develop any possible
way to provide an independent check on the acceleration of the universe, starting at
z = 2, inferred from type Ia supernovae.
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Chapter 2

Tensor formalism for transfer of
polarized light

There is an extensive literature dealing with the radiative transfer of polarized light
(Wolf, 1959; Chandrasekhar, 1960; Dialetis, 1969; Acquista & Anderson, 1974; Hen-
ney, 1994; Lee et al., 1994; Code & Whitney, 1995; Hansen & Lilje, 1999; Challinor,
2000; Carozzi et al., 2000). Most treatments use the four Stokes parameters I, Q, U, V,
which provide a complete description of the polarization properties of the radiation
field. These parameters have dimensions of specific intensity, and are functions of
time, photon propagation direction, and frequency. In the case of unpolarized pho-
tons, a complete description of the radiation field is given by the total specific intensity
Stokes parameter I, or equivalently the phase space density of photons. The Stokes
parameters are essentially time averages of quadratic products of the electric field
components of the electromagnetic field. They are usually not written in a form
which is manifestly covariant, but this can be done quite simply by expressing the
electric fields in terms of the Maxwell field strength tensor components in a local
observer frame. This leads naturally to a classical formalism in which the four Stokes
parameters are replaced by a two index complex Hermitian tensor I*” whose trace
reduces in the unpolarized case to the usual total intensity. A tensor analogue of the
phase space distribution function, f*”, is also easily defined. These objects are col-
lectively termed the polarization tensor. This formalism is similar to that introduced
by Challinor (2000).

In §2.1, the Stokes formalism is reviewed and we reconsider the notion of the
polarization coherency matrix. In §2.2, this notion is generalized and our tensor de-
scription of polarized light described, first in a non-covariant manner. The covariant
formalism is introduced in §2.3. The properties of the polarization tensors, their
evolution in the absence of scattering and in the geometrical optics limit, and their
relation to the Stokes description are discussed. In §2.4, the behaviour of the polar-
ization tensor under Lorentz transformation is discussed, and an explicit example of
the computation of the polarization of a boosted beam presented.

Note that throughout this thesis, boldface quantities, e.g. p, denote 3-vectors,
and quantities with vector arrows, e.g. p, denote 4-vectors. The indices of 3-vectors
and tensors are denoted with Roman indices, and those of 4-vectors and tensors with
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Greek indices. Both 3 x 3 and 4 x 4 matrices are denoted with boldface quantities.
Note also that 3 denotes the set of real numbers, C denotes the set of complex
numbers, and e denotes the operation of taking the real part.

2.1 The coherency matrix

The classical description of partially polarized light uses the well known Stokes param-
eters, which are defined operationally in terms of experiments with polarizing plates.
Physically the Stokes parameters can be thought of as time averages of instanta-
neous products of electric field components. There is a close relationship between
the Stokes parameters and the notion of the coherence of the two photon polariza-
tion states, which is described mathematically by the coherency matriz introduced
by Wolf (1959), based on the work of Wiener (1930). Additional work was done by
Barakat (1963) to extend the concept to a spectral coherency matrix. It is worth-
while reviewing the notion of the coherency matrix, since this leads naturally to the
polarization tensor description.

We will only consider electromagnetic fields which are superpositions of plane
electromagnetic waves. An idealized superposition of such waves whose wave-vectors
are all perfectly aligned will be termed a beam. Consider first a beam propagating
along the z-axis. The transverse electric field components at a specified fixed spatial
point (x,y, z) are real functions of time, E;Sf)(t), Egsr)(t). These functions can be
expressed as a superposition of an infinite number of monochromatic waves with
arbitrary phases, i.e. as Fourier transforms

; 1 [ . i . ,
B0 =—= [ Bweta.  EeR jefes)  (21)

We have assumed here of course that the Fourier transform exists — which is not true
for all functions B (t), EY(t), but we will gloss over this point (the existence of the
Fourier transform can be assured without difficulty by working with functions which
are truncated as t — foo. See for example Born & Wolf (1980)). In order to ensure

reality of E](.r) (), the Fourier transforms must satisfy E;(—w) = E~J* (w). Now we split
the integral above into two parts:

(r) _ L - L (w)e “tdw L ’ 2 (w)e” “tdw
B0 = o= [ Beetass—= [ Bt
- %(Ej(t)+E;(t)):§)%eEj(t), (2:2)

where we have defined the complex functions F;(t), conventionally called the analytic
signal (Born & Wolf, 1980) associated with E](-r) (1):

E;(t) = % /0 T Bwe dw . Bt ec (2.3)

12



We may decompose Ej (w) uniquely into a real amplitude and complex phase factor:

Ej(w) = aj(w)e™i) aj, p; € N (2.4)

The analytic signal is thus

E;(t) Jeibi)=iwtg, (2.5)

=7

How are all of these quantities related to what is measured by a real polarimeter?
Generally speaking, polarimeters measure the time average of the intensity of the light
beam at a fixed spatial point after it has traveled through a combination of filters (See
e.g. Britton (2000) for a good general discussion of astronomical polarimetry). The
two basic filter elements required to measure the polarization state are a polarizing
plate, and a compensator (Stone, 1963). We shall describe how the time average is
constructed from the quantities we have defined, and then consider the effect of the
two types of filter on the beam.

We first make the simplifying assumption that the beam is quasi-monochromatic,
which means that the functions Ej (w) are assumed to be non-vanishing only in a
narrow frequency band w € [wy — Aw/2, wy + Aw/2], with Aw < wy. Physically this
means that the beam is a wave-packet of spectral width Aw, centered roughly on
frequency wy. This implies that the functions a;(t), ¢;(t) vary slowly in comparison
to cos(wpt). To see this, first note that we can always choose to write the analytic
signals in the form

Ej (t) = aj (t)@i[d)j(t)iwoﬂ . (26)

Then it follows from Eqn. (2.5) that

a; ()% = e~ Hwmwolt gy,
\/27r
= (W' + wo)e ™ tdw' (2.7)
N

Then since F;(w' 4 wo) vanishes by assumption for |w'| > Aw/2, the left hand side is
a superposition of Fourier modes of low frequency |w'| < Aw/2 < wy.
Then the time average is defined by

<E§” (t)> = % /t f EV (t)dt | (2.8)

where T is chosen such that Aw < 2% < wp. The quantities measured by the detector
will be some combination of the following time averaged real quantities (expanding
using Eqn. (2.2)):

13



With the assumption of quasi-monochromaticity we may now ignore time averages
which contain the rapidly varying phase factor e’ and retain only those over the
slowly varying functions a;(t), %), Thus, for example

(Eu(t)Eu(t)) = <a )e2ida (1) g2ty
) = <ax )

< (t) (t)> =

(E,()E;(t)) = <am S(0-0s®) (2.10)

The non-vanishing elements are all of the form J;; = (Ej(t)E}(t)). We denote the
Hermitian matrix of quantities J;; the coherency matriz:

a; a.(t)a, (t)el@=(O=2u®)
J= (aw(t)ay(gj)zg(tazz(t)—¢z(t))> (0{0) (85(75» ) (2.11)

This matrix was introduced by Wolf (1959). Now we relate the elements of the
coherency matrix to measurements with a polarimeter. With an optical element
known as a compensator, a coherent phase delay between the x and y components of
the beam can be introduced. After passing through this device, the resulting analytic
signal has the form

Ej(t) = aj(t)eld Ot (2.12)

where the phase difference 0 = €, — ¢, is a known constant. Taking time averages of
products of these quantities yields

(EOE;(1) = e "D ay(t)a; (1)@ 000D
= e @G, (2.13)

The polarization is measured by passing the beam through a further optical element,
a polarizing plate oriented at angle # to the z—direction, and measuring the total
intensity of the transmitted light, I(#). The transmitted electric field is

EM(0,t) = EL)(t) cos 0 + E{) () sin . (2.14)
The measured intensity is thus

1(0) = 2(E"(0,1)%)

= Jy.cos0+ Tyy sin? § + sin(26) [mee’i‘s + Jywei‘s] ) (2.15)

14



The Stokes parameters are then identified as
= Juw + Jyy = <a:20(t
= Jow = Jyy = (ai(t

= Jay + Jgy = 2aa(t)ay (1) cos(¢(t) — oy (1)) ,

Vo= iy = J5] = 2ant)a, () sin(oa(t) = 6,(1)) . (216)

The measured intensity in terms of the Stokes parameters is:

SO ~

1(0) = cos* O(I +Q)+sin29(T—Q)+%sin(29) (U +iV)e ™+ (U —iV)et™] . (2.17)

The Stokes parameters can thus be determined by choosing various combinations of
9 and 6 and measuring I(f). (Note that the assumption of quasi-monochromaticity
is actually not necessary to define the Stokes parameters, e.g. see Wolf (1959)).

A few properties of the Stokes parameters and the associated coherency matrix J
are worth noting. The Stokes () parameter measures the amount of linear polarization
in the beam in the z or y-directions. U measures the linear polarization in the
directions at an angle 7/4 to the z axis in the z—y plane. V measures the amount
of circular polarization. If the wave is perfectly monochromatic, the amplitudes and
phases of the electric field components do not vary in time. Then we may remove the
time average brackets in Eqn.(2.16) and there is the following relation between the
Stokes parameters:

P=Q*+U*+V?*, (2.18)

For the general case, this constraint becomes an inequality instead:
PP>Q*+U*+ V2. (2.19)

The matrix J is obviously Hermitian, J; = J;;. The determinant of J is:
1
det[J] = 1 [P = (Q*+U*+V?*)] >0. (2.20)

The polarization magnitude T1 (or degree of polarization) is a dimensionless quantity
defined by

QP+ UV
= 7

Note that most authors use the dimensionless polarization magnitude II as defined
here, but some prefer to use dimensions of specific intensity (by multiplication by
the total intensity) or brightness temperature. A beam with IT = 0 is said to be
unpolarized. A beam with IT = 1 is said to be a pure state (this terminology stems
from the analogy ' between coherency matrices and density matrices in quantum
mechanics). By Eqn. (2.18), a perfectly monochromatic beam (as opposed to a quasi-
monochromatic beam) is a pure state.

I1° =1—4det[J]/I*. (2.21)

!See for example Simmons & Guttman (1970) and Kosowsky (1994).
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If several quasi-monochromatic beams all with the same mean frequency are su-
perimposed, and the electric fields of each beam have phases which are varying com-
pletely independently of the phases of the other beams, then the coherency matrix of
the total beam is simply the sum of the coherency matrices of the separate beams.
An elementary proof may be found in Rybicki & Lightman (1979) — the gist is that
in the forming the time average of the quadratic products of the sum of the elec-
tric fields, the cross terms between separate beams vanish (by the assumption of the
independence of the phases). Beams with electric fields with no permanent phase
relations are said to be incoherent. We will always assume, in summing two beams
with the same direction and frequency, that the beams are incoherent and thus that
the coherency matrices may be summed.

A general beam can be constructed by superimposing an arbitrary number of
quasi-monochromatic beams. We then obtain spectral Stokes parameters (Barakat,
1963) which are functions of the mean frequency wp, which we rename as w for con-
venience. The polarization state and intensity of the beam associated with each
frequency may also be a function of time. One can imagine decomposing the beam
into a time series and Fourier analyzing successive segments of the time series to
obtain the time dependence of each Fourier mode (this is what is actually done in
polarimetric measurements of the time dependence of spectral Stokes parameters, see
e.g. Costa et al. (2001).).

2.2 A tensor generalization of the coherency ma-
trix

The polarization state and intensity of a beam of light propagating in the z—direction
is characterized completely by the 2 x 2 Hermitian matrix .J;;, with (¢,j) € {z,y}.
There are several papers which study a description of polarized radiation transfer
using the 2 x 2 coherency matrix (Acquista & Anderson, 1974; Dautcourt & Rose,
1978; Bildhauer, 1989a,b, 1990; Kosowsky, 1994). An obvious generalization is to
allow (i,7) to become Cartesian tensor indices and to run over all of {x,y,z}. We
obtain a 3 X 3 matrix:

Qij = <El(t)Ej*(t)>, (1,7) € {z,y, 2} . (2.22)

This matrix and its 4-dimensional generalization is one of the main tools in this thesis.
It differs from the usual 2 x 2 coherency matrix in that it is 3 x 3, the extra dimension
corresponding to the direction of photon propagation n. Adding the extra dimension
(and a fourth, when we introduce the covariant form in the next chapter) makes it
much easier to handle the computation of the polarization of photons after general
rotations, Lorentz boosts, and scattering.

To our knowledge, only Challinor (2000) and Carozzi et al. (2000) have system-
atically explored a similar approach previously. The matrix ();; is denoted the po-
larization matriz or polarization tensor (whether the 3-dimensional or 4-dimensional
version is being talked about ought to be clear from the context). The polarization
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information is contained in the normalized version of @);;, termed the normalized
polarization tensor:
_ Qi
oy

- TQl

For a given photon direction n, the polarization vector is transverse, implying

(2.23)

n'Qi; =0 . (2.24)

It is useful to define a matrix with dimensions of specific intensity, also called the
polarization tensor or matrix:
Iy = 16, (2.25)

where the specific intensity I and the components of ¢;; are associated with some
mean frequency w as discussed in the last section. The transition from the quasi-
monochromatic case to the general polychromatic case may be taken as discussed in
the previous section, and the components become functions of photon frequency. In
general, the polarization matrix is a function of photon frequency (or momentum)
and direction as well as space and time:

[ij = Iij(l/, n,x, t) . (226)

Other conventions are also useful — in the computation of the Sunyaev-Zeldovich ef-
fects (SZE), it will be convenient to work with polarization matrices whose trace is
either the occupation number n(v,n,x,t) or the phase space distribution function
f(v,n,x,t) (associated with a particular photon momentum state and spatial posi-
tion). Since the Stokes parameters are usually taken to have dimensions of specific
intensity, we usually work with [;;, but it is occasionally useful to use the other forms.

Now in the usual description of polarized light, the Stokes parameters are defined
with respect to a particular choice of “polarization basis”. This is a pair of mutu-
ally orthogonal unit vectors e("), e, both orthogonal to the beam direction. The
Stokes parameters () and U depend on the orientation of these vectors. By contrast
the polarization matrix is a tensor and its components in any basis contain all the
information about the polarization ellipse. Its advantage is that there is no need to
rotate axes to define Stokes parameters. The Stokes parameters are given in terms of
the polarization matrix and the polarization basis vectors as:

1 I+Q U+:iV
= ) ; 1,2 2.2
Ay L @he?. @)
(the sum over the Cartesian indices ij is implied) which is just the previously defined
coherency matrix J of equation (2.11).

It is of interest to see how the Stokes parameters transform if we choose a rotated
set of basis vectors. In the case of a beam propagating in the z-direction for example,
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we have, choosing polarization basis vectors e =z, e®® =y,

L I+Q U+iV 0
Ij=5 | U=V 1-Q 0 |. (2.28)
0 0 0

If the basis vectors are rotated clockwise (according to an observer looking in the
direction of propagation) through an angle x, the new set of basis vectors is

el = cosye +sinye®

eg) = cosye® —sinyel) . (2.29)
Forming the matrices egg’)iegg?j, with (a,b) € {1,2}, the primed Stokes parameters
according to Eqn. (2.27) are:

I' =1

Q = Qcos2y+ Usin2y ,

U = Ucos2yx — @Qsin2y ,

Vo= V. (2.30)

These transformations are also obtained directly from @);; by forming the rotation

matrix:
cosy —siny 0

R(x)=| siny cosy O : (2.31)
0 0 1
Then
L[ QU0
U -V I'-@Q 0 |=RXQR"(x). (2.32)
2 0 0 0

These factors of cos 2y, sin 2y in the transformation law are well known and associated
with the fact that the linear polarization is described by a “headless vector” which is
invariant under a rotation through 7 radians.

Now, given a set of matrix elements I;;, supposed to represent a beam propagating
in the direction n, how do we go about deciding if this matrix can represent a physical
beam? Clearly the matrix must be Hermitian and satisfy /;;n/ = 0. This yields a
matrix whose elements contain four independent real quantities. In addition, the
elements must satisfy some analogue of the relation between the Stokes parameters
Eqns. (2.18) or (2.19). The required condition is apparent from Eqn. (2.20) — the
eigenvalues of the matrix I must be non-negative.

Another obvious question to ask is, how does one construct the matrix of an
unpolarized beam propagating in a general direction n? The only quantities we have
available to construct the matrix are the intensity I, the components of the direction
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vector n, and the Kronecker delta d;;. The matrix must therefore be of the form:

Now the matrix of an unpolarized beam propagating in the z—direction is obviously

I 1 00
Lij = 3 010 (2.34)
0 00
Comparing this with the form of Eqn. (2.33) for the special case n; = §;,, we see that
A = —B = I/2. Thus the matrix of an unpolarized beam in a general direction n is
I I

where we have defined the projection matrix P which will figure prominently later.
The polarization magnitude (squared) of the beam described by a general matrix
I;; is given by
o, 2Tr[I?]
Rk

This is readily checked with the matrix (2.28) of a beam propagating in the z direction.
To see that this relation is true for any beam, we need only note that the matrix
of a beam propagating in a general direction is related to (2.28) by a similarity
transformation with an orthogonal rotation matrix, which does not change the traces
in Eqn. (2.36). Note also that reality of the right hand side of Eqn. (2.36) follows
automatically from the Hermiticity of I (since I and I are Hermitian, and the trace
of a Hermitian matrix is real).

In the computation of the Sunyaev-Zeldovich effect in the single scattering limit,
derived in detail in §4.2, we have a situation where the scattered beam consists of
an unpolarized component plus a small polarized perturbation proportional to the
optical depth to scattering, 7. It is useful to compute at this point an expression
for the polarization matrix of the total beam to first order in the intensity of the
perturbation. From Eqn. (2.35), the beam has polarization matrix

—1. (2.36)

1
Lj(n) = I} + TALj(n) , where I = gpij(n) : (2.37)

or in matrix notation, I = I°® +7AI, and I° = (Iy/2)P(n). Substituting this into
Eqn. (2.36) we find, in matrix notation
27Tr [2I°AT — [ZAI] + 72 (2Tr[AT?] — Tr[AI]?)

M*(I° + 7AI) = TN . (2.38)

Now the unpolarized part of the beam is just a projection matrix multiplied by a
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scalar, so it has the property:
0 1o
TI°AL] = 3 TY{AT] . (2.39)
Therefore the first trace in the numerator in Eqn. (2.38) vanishes. The second term

in the denominator can be ignored in the limit of a small perturbation intensity, and
the squared polarization magnitude reduces to

M(I° + 7AT) ~ 72 <TY[AI | ) 2 {2TY[AI i 1]

™0 ) | AL (2.40)

In other words, the polarization magnitude of the total beam is just that of the
polarized perturbation multiplied by the ratio of the intensity of the polarized part
relative to the unpolarized part:

I(I°+7AI ~ T (gﬁ#) II(AI) . (2.41)

Finally in this section, we note that the polarization matrices of incoherent beams
associated with the same direction and frequency may simply be summed, by an
obvious extension of the proof for coherency matrices mentioned in §2.1.

2.3 Extension to a covariant polarization tensor

The discussion so far has been in terms of electric fields measured in a particular
Lorentz frame. In treating problems involving scattering from a moving medium,
it is necessary to Lorentz transform the fields between frames. This can be done
explicitly by writing down the time dependent electric and magnetic fields of the
waves, and using the transformation law of the fields. However it turns out to be
much simpler to use an extension of the matrix approach we have described in which
the beam is described by a second rank tensor on spacetime. In this approach the
Lorentz transformations become simple tensor (or matrix) relations. Indeed a full
development of the radiative transfer of polarized light on a curved spacetime is
possible with this covariant formalism. In this section we work in a curved spacetime
initially but eventually restrict to flat spacetime, which is adequate for our application
to the SZE. We use the Minkowski metric with the convention g, = diag{—1,1,1,1}.
The coordinates of a point in spacetime will be denoted either abstractly as x, or as
an upper index quantity z* = (¢, x,y, z). Latin indices will denote components in the
orthonormal basis {€;, €, €, }.

A truly covariant description of the electromagnetic field requires introduction of
the field strength tensor F,s, and indeed a covariant description of the polarization
of light can be accomplished entirely in terms of the field strength tensor (Dialetis,
1969). But we wish to maintain an explicit connection with the Stokes parameters
which are defined as time averaged quadratic combinations of electric field amplitudes,
as measured by an observer at rest in some Lorentz frame. Thus we must express the
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electric field amplitudes measured in the rest frame of a given observer in a Lorentz
covariant manner. The rest frame of the observer along the light beam can be defined
by specifying a differentiable time-like vector field ¥(z) giving the observer 4-velocity
all along the light cone (with -7 = —1).

To generalize the coherency matrix of the previous sections, we need to find a
covariant way to describe the time averaged product of electric fields. This must be
done by constructing the electromagnetic field strength tensor for a plane wave in
the WKB (or shortwave) approximation of geometrical optics (see e.g. Born & Wolf
(1980); Schneider et al. (1992); Misner et al. (1973)). In this approximation we treat
the antisymmetric electromagnetic field strength tensor F),, as a test field (meaning
that we may ignore the influence of F,, on the gravitational field) and assume that
there are no charges or currents in the region we are considering. The field tensor
thus obeys the source free Maxwell equations:

V" =0, VaFu +V,Fro+ V,Fay=0. (2.42)

The geometrical optics approximation consists in assuming that the field strength
tensor can be written as the product of a slowly varying complex amplitude and a
relatively rapidly varying phase factor:

Fl, = Re {ﬁu,,(x) expliy () /e]} (2.43)

where € ~ A/L is a perturbation parameter with A being the wavelength and L
the length-scale over which the amplitude ﬁ,“, changes (roughly the local radius of
curvature of spacetime). In the geometrical optics limit we expand the Maxwell
equations in an asymptotic series in €, take the limit € — 0, and read off the lowest
order terms. Then € is absorbed into ¢(z), by replacing ¢(z)/e with ¢(x) and then
dropping the tilde. The lowest order terms describe the evolution of electromagnetic
waves which, on scales which are large compared to A but small compared to L, are
plane and monochromatic to an excellent approximation.

Substituting equation (2.43) into the Maxwell equations (2.42) and working to
lowest order in €, we obtain

ke P =0
koFu +kuFoo +k,Foy=0. (2.44)
where the wavevector k, is a one-form field normal to surfaces of constant phase,

defined by:
ku(z) =V,p. (2.45)

It follows from this, and the fact that covariant derivatives commute when applied to
a scalar field, that
Vuk, =V, k, . (2.46)

Contracting the second equation in (2.44) with k%, and assuming that ﬁ,“, vanishes
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only on hyper-surfaces, we find
Kk, =0 . (2.47)

Thus the wavevector & is null. If desired we may associate a photon 4-momentum
P = hk with the wavevector, and go over to a particle description. The frequency
of the wave as measured by a local observer with worldline z#(7) and 4-velocity
ubt = da# [dr is given by w = —k - ii = dyp/dr (taking € = 1). Eqns. (2.46) and (2.47)
imply that the wavevector is parallel transported:

Viky = k*Vok, =0 . (2.48)

The curves z#(\) with dz#/d\ = k* are called light rays () is an affine parameter
along the ray). Note V) = k*V, = d/d\ is the directional derivative along the ray.
As a consequence of Eqn. (2.48), the system of rays is equivalent to a Hamiltonian
flow for particles with Hamiltonian

H(z, k) = %g””(m)kuky. (2.49)

Hamilton’s equation dk,/d\ = —0H/0x" is equivalent to Eqn. (2.48), which is the
geodesic equation for photons, while dz#/d\ = 0H/0k, gives the advance of the
wavefront along the ray. The Hamilton-Jacobi equation H(x, V) = 0 is also known
as the eikonal equation for the phase factor ¢(x).

Now we would like to express the components of F,, = —F,, in terms of the
electric field. Writing a propagation equation for the electric field requires that we
have a differentiable time-like vector field v* (¥- ¥ = —1) giving the 4-velocity (hence
rest frame) of observers all along the light cone. In other words, the electric field is
defined with respect to a family of observers with 4-velocity ¢(x). In the local Lorentz
frame at point x of the observer with 4-velocity ¥/(z), the electric field components are
E; = F; and the magnetic field components are B; = %ez[mF[m where Latin indices
range over the spatial components and the carets indicate an orthonormal basis, with
& = #. The transversality from equation (2.44) implies B; = e;;. k'E™ where k is a
spatial unit vector along the wavevector. In a general basis, we promote the electric
field to a 4-vector

E,=v"F,, . (2.50)

By antisymmetry of F),,, £, is orthogonal to the 4-velocity of the observer v*:
vE, =0. (2.51)

In the geometrical optics limit we may define the complex amplitude of the 4-vector
electric field using the complex amplitude of the field strength tensor:

E,=v"F,, vE,=0. (2.52)
Thus B
E, = Re{E, explip(x)/€]} . (2.53)
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Eqns. (2.44) imply k*E, = k“Eﬂ = 0, which correspond to the transversality of the
electric field to the the wavevector. The electric field 4-vector may be factored as

E, = FEe, , (2.54)
where €'is a vector which satisfies g"”e) e, = 1, called the electric polarization vector.
In the rest frame of ¥, this reduces to a 4-vector with spatial parts equal to the usual
polarization 3-vector.

Contracting the second of Eqns. (2.44) with v® and substituting Eqn. (2.52) yields
an expression for the field strength amplitude in terms of the electric field 4-vector

amplitude: B B B
F,, = kil(kuE,, — k,E,) where = —ko" . (2.55)

Next we would like to know how the amplitudes F o and Eu change along a ray. We
proceed by computing the divergence of the second of the Maxwell equations (2.42).

9V [VoFu +V,uFya +V,F.]=0. (2.56)

Note that swapping the order of the covariant derivatives in the second two terms
kills each term by Maxwell’s equations. Thus using the following identity for the
commutator of covariant derivatives in terms of the Riemann tensor,

(VuVy = VoV,)Sas = =Sog R up — Sao R’ (2.57)

Buv >

we find a wave equation for F),, with curvature terms:
9"V oV Fu — RuaF®, + RyaF%, + RuesF* =0 (2.58)

Substituting equation (2.43) and working to the two lowest orders in €, one finds the
following equation for the evolution of the field strength amplitude (the Riemann
tensor terms do not appear to this order):

- 1 ~
ViFu = —50F , 0=Vak". (2.59)

The amplitude of the electromagnetic field changes along rays due to curvature of the
wavefronts. For example, diverging rays (6 > 0) lead to a decrease in the electromag-
netic field strength as the wave propagates.

Substituting equation (2.55) into equation (2.59) now gives an equation for the
electric field evolution along a ray,

_ 1\ ~ K -
ViE, = (vk Ink — 59) B+ 55 (Vo) B (2.60)

Factoring the electric field into its magnitude and direction (polarization) vector,
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E, = Ee, where g"’¢,e, = 1 and vte, = 0, we obtain

~ 1 ~
VkE = (Vk Ink — 59) FE s (261&)
kﬂ «
Vie, = m (Viv®) €q - (2.61Db)

The first of these equations yields for example the 1/r fall off of the electric field
magnitude expected for a radiation field. The right-hand side of both equations
vanishes for a plane wave in flat space, but not for a curved wavefront (e.g. a spherical
wave), or for a wave propagating in a general curved space.

It is perhaps surprising that the electric polarization vector is not parallel trans-
ported in a curved spacetime. This fact leads to a rotation of the polarization vec-
tor when a beam passes through a strong gravitational field. This effect has been
noted before by several authors (Skrotskii, 1957; Plebanski, 1960; Nouri-Zonoz, 1999;
Kopeikin & Mashhoon, 2002), and is important in considering for example the prop-
agation of polarized radiation in the vicinity of a black hole. However it is true that
if one defines the polarization vector to be parallel to the vector potential rather than
the electric field of the electromagnetic wave, then it is parallel transported in the
geometrical optics limit (see e.g. Misner et al. (1973), Schneider et al. (1992)). This
turns out to be consistent with the electric field evolution due to the enforcement
of the gauge choice of the vector potential all along the photon worldline. Thus in
considering the propagation of polarized photons on a curved spacetime it is more con-
venient to use a polarization tensor constructed from the vector potential to evolve
the polarization state along the ray, and then make the transformation to electric
fields. If the photon path does not pass through regions with an exceptionally strong
gravitational field however, the rotation of the polarization vector resulting from this
gravitational effect is small (but note that, strictly speaking, the rotation arises from
the acceleration of the local observers, Viv* = dv®/d\, which can be large even in
flat spacetime if a peculiar vector field of observer 4-velocities is chosen). In consid-
ering the propagation of photons through a cluster of galaxies for example, the effect
is entirely negligible, and so henceforth we will restrict the discussion to flat space-
time, and work with the more physical polarization tensors we defined in terms of the
electric fields. In flat spacetime we may drop the right hand sides in Eqns. (2.61).

Having described the propagation of electromagnetic waves in the geometrical
optics approximation, and defined the electric field in a covariant manner, we are
equipped to construct the covariant version of the coherency matrix. We consider a
plane electromagnetic wave propagating in flat spacetime, in the geometrical optics
limit, with wavevector k and associated photon momentum p. Henceforth we will
write the complex amplitude of the 4-vector electric field of the wave as E*, dropping
the tilde for brevity. The 4-vector E has the property that its spatial components
E® in the rest frame of the observer, in which v* = (1,0,0,0), are equal to the
measured electric field, and also E° = 0 in this frame. Thus by analogy with the
3 x 3 polarization matrix ();; defined in Eqn. (2.22), we are lead to define a complex
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valued rank (0, 2) tensor called the polarization tensor:

Quv(z,p,0) = (E,E,) . (2.62)

The spatial components of this tensor in the rest frame of the observer are entirely
equivalent to the elements of the 3 x 3 coherency matrix considered in the previous
section. It is related to the stress-energy tensor TH = FX F¥® — 19" F*’F, 5 (in
Heaviside-Lorentz units). In particular, the time-average energy density in the geo-
metrical optics limit is v,v, (T") = Q = (", where angle brackets denote averaging
over a few periods. Note that Q*v, = Q*p, = 0 (where p* is the four momentum
of the photon).

To define Stokes parameters, we need to specify a set of polarization basis vectors.
The natural choice is the orthonormal tetrad basis vectors {€,}:

_’0 =7 s 5\3 = p_lﬁ— 0] , 51 5 52 (263)
where p = —¢ - p. These vectors have the property €, - €, = 7. Latin indices
{a,b,...} are tetrad indices; Greek indices {y,v,...} are coordinate indices. The
spatial direction of the photon momentum for an observer with 4-velocity €, is €.
The remaining basis vectors, €; and €, give the physical polarization space. We
call this tetrad the polarization tetrad. There are associated basis 1-forms {é*}),
which are dual to the basis vectors: (€%, &) = 0%,. (Note that the polarization tetrad
depends on the photon momentum, i.e. € = €,(z,p). Thus, in general a different
basis is needed for each photon momentum). The coherency matrix of Eqn. (2.11) is
then given by

Jop = ey Qu(z,p,7) , (a,b) € (1,2) . (2.64)

In the case of beam which has a definite polarization vector € (lying in the po-
larization subspace spanned by {€,é}) which does not vary with time, i.e. a pure
beam, the polarization tensor is given by

Quv(,7,7) = Q €46 . (2.65)

So far we have used the tensor Q" to describe a polarized EM wave. However if we
wish to consider energy transfer between photons and some scattering medium, free
electrons for example, we must consider the trajectories of photons in phase space.
To describe an ensemble of polarized photons we must define a distribution function
on phase space. The matrix Q" is not very useful because it describes a single
classical system (the classical counterpart of a pure state) with specified wavevector
k,(x). Developing a kinetic theory requires an ensemble of systems encompassing a
continuous distribution of wave-vectors k, at each spacetime point. We accomplish
this heuristically by analogy with the usual treatment of the unpolarized case.

In general, the stress-energy tensor of a system of photons may be written (in flat
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space) as

T (s / CP ot () | (2.66)

where p = p® and f(z,p) is the (unpolarized) photon distribution function, which
determines the total number of photons in the quantum state corresponding to phase
space element d3x d®p according to

dN = f(z,p) &z d’p . (2.67)

The occupation number is given by n(z,p) = h3f(z,p). It is not hard to prove that
n and f are Lorentz scalars (see for example Lightman et al. (1975) for a proof).

To incorporate polarization we define the distribution function polarization ten-
sor fu(z,p,¥) in a manner similar to the scalar distribution function f(z,p). The
polarization tensor of a general superposition of waves at a given spacetime point, ac-
cording to the local observer with 4-velocity @, may be defined as @, (v, ) = (E,E}).
Then by analogy with (2.66) we have

3
@ (1) = [ 2 i) (2.65)

This obviously does not uniquely define f,, (z,p, 7). A rigorous definition requires
a more sophisticated discussion (as in Bildhauer (1989a)). However we do not run
into any difficulties if we simply regard f,,(z, 7, ) as a tensor generalization of the
scalar distribution function which satisfies Eqn. (2.68). f® has the property that
f”‘ﬁeaﬁ;’; d?p d3z is proportional to the number of photons in the phase space element
d®p d®x passing per unit time through a polarizer oriented to select polarization €®
(where this 4-vector must lie in the polarization subspace spanned by the vectors €, €
of Eqn. (2.63)). Contraction with the metric yields the scalar distribution function:

G [ (0, 0) = f(P) - (2.69)
The distribution function tensor also has the properties
af(P.0) = pafP(BO) =0, fr=(F) . (2.70)

The generalization of Eqn. (2.36) for the polarization magnitude is

2+ (7, ) fyu (7. 7)
[gas P (5.7

which is manifestly a Lorentz scalar.

Similarly to the case for coherency matrices and 3 x 3 polarization matrices, the
polarization tensors f{" (7, ¥) and f”(p,¥) of two incoherent beams associated with
the same photon momentum may be summed to yield the total polarization tensor.
We shall always make the assumption that two separate beams are incoherent and

I*(p) =

~1, (2.71)

26



have polarization tensors that may be superimposed in this manner.

It is useful to define a covariant polarization tensor with dimensions of specific
intensity (whose components are combinations of Stokes parameters). In the unpo-
larized case, the specific intensity I(z,p) is introduced by defining

700 — /d?’ppf(x,ﬁ) - /dz/dQ I(z,5) , (2.72)

where df is the solid angle element about the photon direction. It follows from (2.66)
that
I=hp’ f=h"?f=hln. (2.73)

We define a specific intensity (or brightness) tensor by analogy with the unpolarized
case:
I"(x, 5, 0) = hp® f* (z, 7, 7) . (2.74)

The intensity polarization matrix is zero outside from the two-dimensional polariza-
tion space spanned by €], €5, where it may be written in terms of the usual Stokes
parameters I, @, U, and V:

1 I+Q U-iV
f“”_2hp3<U+z'V 1—Q> (2.75)

The Stokes parameters are functions of frequency (photon energy); I = I, is the
spectral intensity. In an arbitrary basis the intensity is I = (hv?/¢?)g" f,,. The
normalization factor is chosen so that fi; is the photon occupation number (phase
space density divided by h?) for photons passed by a linear polarizer oriented along €
(and similarly for other directions). In terms of the total spectral intensity, we may
write the polarization magnitude as I1> = 2(1%)I*[,, — 1.

Now we wish to obtain an equation for the evolution of f*” in time. In the absence
of scattering, photons follows geodesics (free stream) and the distribution function
evolves according to the Liouville equation. The Liouville equation for the unpolarized
distribution function is simply Df/d\ = 0, where \ is an affine parameter along the
ray:

da Of  dp, Of

dX\ dzr T dX dp, (276)

This may also be written in the more familiar form (valid in curved spacetime)

, 0
Vpf =1, 0" azfi = 0 where V, =p°V,, (2.77)

provided one regards f as a function of the 3-momentum in some frame, f = f(p)
(not f = f(p)), by enforcing the mass shell constraint p*p, = 0.

Now we consider the generalization to the polarized case. From Eqns. (2.61) it
follows that the evolution equation for (),, in the geometrical optics approximation
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in flat spacetime is
kauV =0. (278)

This is suggestive that the Liouville equation for f,, in flat spacetime is simply
Vofw =0, (2.79)

where in flat spacetime V,, = p®0, of course. This obviously reduces to the correct
evolution of the unpolarized distribution function on taking the trace. This is in fact
the correct Liouville equation in the polarized case, as has been argued in the more
sophisticated treatments of Dautcourt & Rose (1978); Bildhauer (1989a,b, 1990);
Breuer & Ehlers (1980, 1981).

The full polarized Boltzmann (or kinetic) equation for the distribution function
polarization tensor is

vpf/u/ — Cuu 5 (280)

where the effect of scattering is contained in the scattering term C,,. In Chapter 3,
the general form of the scattering term is derived for the case of Compton scattering.

2.4 Lorentz transformation properties of the po-
larization tensor

On performing a Lorentz transformation between inertial frames, it is well known that
the propagation direction of an EM wave (or equivalently, photon) is aberrated and its
frequency (or momentum) Doppler boosted. The transformation of the polarization
state of the beam is less well known. Here we derive the transformation law of the
polarization tensor between frames. This leads to the transformation law for the
Stokes parameters, which turns out to be very simple (in fact, they are invariant)
provided a certain choice of polarization basis is made.

First, we find the transformation of the 4-vector electric field E#(¥) under a change
of the local observer vector field from ¥(z) to ©'(x). The spatial components of
E'(¥) are the electric field (3-vector) components measured by the observer with
four-velocity ¥ (in her rest frame). Let us find the relationship between the electric
fields E#*(¥) and E*(7"). To determine this, recall from (2.55) that the definition of
E* implies the following relation between E, and the field strength tensor for a plane
wave:

F.,=p'(p.E, ~p,E), p=-p-7. (2.81)

Therefore, since E*(7) = F*v,,

’ ]
) = 2 (o ) B 2.52)
p p
where p' = —#/ - j. These relations suggest introduction of a tensor P,,(p,¢) which

projects onto the physical polarization plane €;-€ by eliminating components in the

28



surface spanned by € and €; (or ¥ and p):

Ppu(ﬁ _)) = Gu + €Cop€or — €3u€30
_ 1 PuPv o "
= G+ ]—j(pﬂv,, + pyvy) — 2 where p=—vfp, . (2.83)

This satisfies the idempotency relation P* P“, = P* , so that P*, is a projection
tensor, henceforth denoted the screen projection tensor which will prove to be impor-
tant. The transformation law for measured electric fields, equation (2.82), may be

written in terms of the screen projection tensor as follows:

vl p®
vgp?

B, (@) = =L pv (5.9)B,(7) | (2.84)
since the second and the last term in P”, vanish when contracted with E”. In
the geometrical optics limit, taking components in the appropriate Lorentz frame,
Eqn. (2.84) reproduces the usual relativistic transformation of electromagnetic fields.
The dependence on the four-momentum appears because the boosted electric field

depends on the magnetic field, which in the geometrical optics limit is p x E.
The transformation law of Q" (x, ¥) follows from Eqn. (2.62):

—f -\ 2
"o UI P [N AN V=
@ @) = (TL) PP @G (259
Since the integration measure in Eqn. (2.68) is Lorentz invariant, the transformation
of Q" implies that f*” transforms in the following way under change of the local
observer 4-velocity:

BT = P TP (5, T) (5, D) - (2.86)

Note that the following transformation property of the specific intensity tensor fol-
lows immediately from the transformation properties of the distribution function and
Eqn. (2.74):

3
) = (T2 P P ) (287
In the unpolarized limit, the trace of this reduces to the familiar statement that I/v?
is Lorentz invariant. In the general polarized case, one sees that all of /13, Q/v?,
U/v3, V/v3 are invariant under a boost along the photon direction.

The transformation properties of the Stokes parameters under a boost in a general
direction are clearly dependent on the polarization basis chosen in each frame. To
work out the general case, we consider the transformation from frame K’ (the rest
frame) with 4-velocity @, into frame K (the lab frame) with 4-velocity ;. In lab frame
coordinates, let v# = y(1,v). In the rest frame, the brightness tensor I*" (p,,)
contains all polarization and intensity data of a photon with 4-momentum p. We

29



denote the photon momentum in rest frame coordinates, as p* = p/(1,n'), and in lab
frame coordinates as p* = p(1,n).

The Stokes parameters measured in K’ are defined by specifying a set of orthonor-
mal polarization basis vectors {3}, 5>}, where §;-p'= §,-p= 0, and &, -0, = §»-7, = 0.
Since the vectors 5, are purely spatial in the rest frame, we may write s* = (0, €.),
a € {1,2} with €, -n’' =0, €, - €, = 4. The Stokes parameters measured in K’ are
determined by the quantities:

Jtlzb = [#’y’ (ﬁa 778)80,“’51)1/ ) (a7 b) € {1; 2} . (288)

To determine the Stokes parameters measured in K, we must specify lab frame
basis vectors {ﬂ,t}} which satisfy ¢, - p =ty -p =0, and t; - 0} = to - ¥, = 0. We
write t = (0,€,), a € {1,2} with €, - n = 0. The analogous quantities to those in
Eqn. (2.88) in K are

Jop = [“V(ﬁ,ﬁl)t(wtby , (a, b) S {1, 2} . (289)

The vectors {t,} are not uniquely determined, but there is a natural choice of ba-
sis which keeps the transformation of the Stokes parameters simple. Applying the
transformation law (2.87) to Eqn. (2.89), and replacing

1°%(p,7.) — P* (9, 0.) P’ (. 0.) " (§, ©.) (2.90)
we obtain ,
p 12 — — — - —
Jop = (17) P (P, T, ) 17 (P, T ) tapth - (2.91)
where
PY 5(D, Ue, 07) = P* ,(, 0) P 5(7, 0) P*., (P, 7.) P’ (7, %) (2.92)
and
p=—0-F, p=-0-7. (2.93)

Comparing Eqn. (2.91) to Eqn. (2.88), it is apparent that if we demand that the
vectors t, satisfy:
P (P, Ue) P* (D, T1) tay = Sary (2.94)

then the transformation law of the quantities .J,, reduces to

3
p
Jun = (;) - (2.95)

and thus the Stokes parameter (), for example, transforms simply as

Q= <£,>3Q’ : (2.96)

p
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and similarly for the other Stokes parameters. Since {,, is assumed to be purely
spatial in K (fa -1 = 0), it follows that P* (P, ;) tay = taa, and the transformation
(2.94) simplifies to

P® (P, Ve)taa = Say - (2.97)

In 4-vector notation, using p- t, = 0 we find

— g ]' — T\ =
5, = t, + E(UB ta)p (2.98)

This manifestly satisfies &, - 7, = 0. Since ¢, must be purely spatial in K we have

i = (3) A (2.99)

which yields
g — ]' — g —
ty =8, — ]—9(05 ta)D (2.100)
The transformation law of the polarization basis 3-vectors €,, €, now follows.
Denoting 5, in lab frame coordinates as s* = (s, s,), and Lorentz transforming s

a
into K we obtain

sa = Yv-€,,
. !
Sa = € +(7— 1)”("’7;“) (2.101)
v
Thus the spatial part of Eqn. (2.100) yields
’ v(v ) 6:1) !

€=¢€+(v—1)—5—1n(v-¢,) . (2.102)

v

This transformation law was previously obtained by Challinor & van Leeuwen (2002).
One may check, using the transformation law of n (see Eqn. (3.59)), that the polar-
ization basis 3-vectors €, are indeed orthonormal and orthogonal to m. The fact
that such a complicated transformation of basis is needed to ensure that the Stokes
parameters transform in a simple fashion demonstrates that the tensor approach is
more convenient when dealing with relativistic transformations of polarized beams.

The screen projection tensor PM(p,¥) defined in Eqn. (2.83) is an important
tool in this polarization tensor formalism. It projects onto the “screen” subspace
orthogonal to the photon momentum p’ and local observer 4-velocity v, in the sense
that it leaves f#(p, ¢) invariant:

Pt (5, 7) f*° (P, 0) = (5, ) . (2.103)

In a local Lorentz frame P* is simply the 2 x 2 identity matrix in the subspace
orthogonal to v* and p*. It is appropriate now to discuss some of its properties,
which will be useful to refer to in later chapters. It may also be written in the form
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(used in Challinor (2000) and Thorne (1981) for example)
P;w = Guv + VyUy — Ny My (2104)

where n* is a spacelike unit vector giving the propagation direction of the photon
with respect to the observer:

—

p=p@+n), #-0=0, A-i=1, A-p=p. (2.105)

In the rest frame of the observer with 4-velocity o, the 00 and 07 components of
P,,(p, V) vanish, and the spatial components are given by

Pij(P,7) = dij — min; . (2.106)

where n is the photon direction 3-vector in the rest frame. By an obvious general-
ization of the argument leading to Eqn. (2.35), the distribution function tensor of an
unpolarized beam is given by

There are the simple properties:

=y

v P, (P,
G P (P,
P (p, 9) P, (P,

) =0 ) pupuu(ﬁa _‘) =0 )
) = 2, PY(p,0)P,(p,7) =2,
) = P",(p,7) . (2.108)

=y

=y

Contracting two projection tensors with the same photon momentum but different
observer velocities yields, with p; = —p- ¥}, po = —p - v3:

prd  pPul N Uy Ty 5

PP (5.5 P (p, T, = ¢°" + + 2.109
/\( 1) ( 2) g P2 b1 pPip2 ( )

Another contraction yields:
P (5, 0) PP (5, 0) PY(p, 5) = PP (5, 1) (2.110)

which proves that a beam that is unpolarized according to some observer is also
unpolarized according to any other observer.

We close this chapter with a demonstration of the Lorentz transformation of the
polarization state of a beam using polarization matrix manipulations. This will serve
as an introduction to the more complicated matrix manipulations used in the deriva-
tion of the SZE later.

We consider a photon with a general polarization state propagating in the z—
direction with momentum p. We will compute the polarization matrix of the beam
measured by an observer moving in the z—direction with velocity v. We work in the
inertial frame K (unprimed) with basis 4-vectors €;, and observer 4-velocity @y = €;
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with unprimed components vf = (1,0,0,0). Let us consider a partially polarized
photon beam propagating in the €, direction, with 4-momentum p with unprimed
components p# = p(1,0,0,1), and distribution function polarization tensor f*” (%)
as measured by observer 7. We suppress the photon 4-momentum argument of the
polarization tensor since we deal here with a monochromatic beam.

We may perform tensor manipulations by defining 4 x 4 matrices with entries
equal to tensor components, with no distinction between raised and lowered indices,
provided there is a separate matrix for each combination of raised and lowered indices.
Thus we define f*() = [f(%)],, where

0 0 0O

. 0 a b O
f(vo) = 0 b d 0 , (2.111)

0 0 0O

where the row elements from left to right and the column elements from up to down re-
fer to the (¢, z,y, z) components. Choosing polarization basis vectors €; = x, €, =y,
the coefficients (a, b, ¢, d) are related to the usual specific intensity Stokes parameters
(here h =c=1):

I+Q U+1V
a = 5 b= )
2p3 2p?
U—iv -0
b* = d= . 2.112

Now we consider the polarization tensor measured by an observer moving per-
pendicular to the photon momentum in the unprimed frame, with 4-velocity #. The
rest frame of this observer is K'. We take 4-velocity ¥ to have unprimed velocity
components v* = v(1,v,0,0), where v = 1/4/1 —v2. Then the polarization tensor
measured by the observer with 4-velocity v has components in the unprimed frame
as follows:

fr(@) = P* o (3,5) P¥ (7, 5)f* (%) (2.113)

where the projection tensor P*, is given by:

1 Hp,
Pt (P, 0) =", + > (v, + vP'p,) — pp}; : (2.114)
and p' = —p+ ¥ = yp. In matrix form P¥, = [P] , where
—v? v 0 v?
—v 1 0 w
P, = 0 01 0 (2.115)
—v? v 0 v?
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The lowered index quantity P, is represented by a matrix P, with different entries:

2

v —v 0 —wv
—v 1 0 w

P, = 0 01 0 (2.116)
—v2 v 0 ?

The idempotency relation satisfied by the projection tensor, P* P,3 = P,g, implies
the matrix relation

P’P, = P, (2.117)

which is satisfied by the matrices above. Using the projection matrices we find
fr (@) = [f ()" where

av? av bv av?

. . av a b av

f(U) = Plf(UO)PIT = b*u  b* d b*v

2

(2.118)

N

av® av bv av

Now we would like to obtain the Stokes parameters measured by the observer with
4-velocity @#. This is given by the Lorentz transformed matrix f/ = AIAT, where in
this case the matrix A is a boost matrix in the z-direction:

v —yv 0 0

| —vw oy 00
A= 0 0 10 (2.119)

0 0 01

Thus the polarization matrix of the beam measured by the observer at rest in K’ in
primed coordinates, is

0 0 0 0
ww | 0 a/y? b/y av/y
=1, vy d o bu | (2.120)
0 av/y bv av?

Adding the diagonal elements of this matrix yields a + d, since the total photon
occupation number f"“’nu,, = I/p® = a+d is a Lorentz invariant quantity. The ¢i and
it elements are zero since the electric field 4-vectors in this frame are purely spatial by
definition of the tensor f#*(¥). A matrix of this form is termed a physical polarization
matriz, since its elements correspond to quantities measured by a polarimeter in this
frame.

We now examine the Stokes parameters measured by an observer with 4-velocity
v according to the polarization tensor derived, in order to check that our formalism
agrees with the known transformation properties of the Stokes parameters. To obtain
the Stokes parameters in the boosted frame, we need to define a photon polarization

34



basis. The basis given by Eqn. (2.102) should guarantee that the Stokes (divided by
the cube of the momentum) are invariant under the boost. In the unprimed frame,
the basis vectors were €, = @, €; = y. In the lab frame (here primed), the photon
momentum is p* = p(v, —yv, 0, 1), the photon direction is n’ = (—v,0,1/7), and the
lab frame velocity is v/ = —vx. Substituting these into (2.102) yields

e = (0,1/7,0,v),
e, = (0,0,1,0), (2.121)

which are clearly orthonormal and orthogonal to the primed photon momentum, and
reduce in the limit v — 0 to the unprimed basis. A more general polarization basis is
obtained by rotating these vectors through an angle xy about the photon momentum,
as follows:

€, — cosx €; —sinx €y = (0, cos x/v, —sinx,vcosx) ,

€, — CosX €y~ siny €] = (0,sin x/v,cosy,vsiny) . (2.122)

In this rotated basis, the Stokes parameters in the boosted frame are given by the
quantities

ad = € f'el =acos’x — (b+ c)cosxsiny + dsin® x ,
V = € - f'el, =bcos’x + (a —d)cos ysiny — b*sin? y ,
d = € - f'eh =dcos’ x + (b+c)cosxsiny + asin®x . (2.123)

Thus the measured Stokes parameters in the primed frame are given by:

r , I
—— = d+d=a+d=—,

pl 3 pg

(Q2 Q U

(p’)?’ - a,_d,: (a—d) COS2X_ (b+b*)S1n2X: ECOS2X_ ESIH2X ,

!

—(5)3 = b/ + bl* — (b + b*) COS 2X + (CL — d) Sin 2X el 2%COS 2X —+ 2% Sin 2X ,

% Vv

= (0 =) =i(b—-b") = — . 2.124

(')? ( ) =i( ) 7 ( )

We find that with the choice x = 0, the Stokes parameters transform as claimed
in Eqn. (2.96), and with a general x the Stokes @, U, V' transform in the expected
fashion under rotation of the polarization basis vectors.

We now describe the general procedure for transforming polarization tensors be-
tween frames in the case of an arbitrary boost direction, since this will be used in
section §4.4 in a Monte Carlo simulation of the polarized SZ effect. Let the photon
4-momentum in frame S be p* = (/piDi, Ps, Py, P.) and the components of the po-
larization tensor be given by some 4 x 4 matrix f(@) in which none of the entries
are necessarily zero. To obtain the polarization tensor measured by an observer with
4-velocity v = (1, vy, vy, v,) the following steps are taken:
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L. Compute p = y(\/pipi — pivi)-

2. Define the following row vectors corresponding to the upper and lower index
4-momenta:

P11 = (\/pipiapxapyapz) )
P2 = (_\/pipiap:vapyapz) . (2125)

3. Define the following row vectors corresponding to the upper and lower index
4-velocities:

V1 = ’)/(]_,Ux,Uy,UZ),
vy = Y(=1,v,0y,0,) . (2.126)

4. Construct the 4 x 4 matrix P whose entries are given by:

[P],, = O + % ([pﬂu [va],, + [P2], [vl],,) — ]% P, [p2], - (2.127)

5. Construct the boost matrix A(v).

6. Perform the following matrix multiplications:

f@ = Pf(o)P",
F'(7) = Al)f@)A(v)" . (2.128)

These steps are easy to implement in a computer program or computer algebra script.
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Chapter 3

Kinetic theory of Compton
scattering of polarized photons

The Sunyaev-Zeldovich effects (SZE) arise due to inverse Compton scattering of the
CMB. The evolution of the polarization matrix of the CMB is determined by the
Boltzmann (or kinetic) equation

Vofuw =Cu (3.1)

where C),, is the Compton scattering term. In this chapter we derive this scattering
term for arbitrarily relativistic electrons and polarized photons. In fact, since the
CMB photons have negligible momentum in comparison to the electron rest mass,
the SZE can be calculated accurately with a simpler scattering term derived in the
Thomson limit, in which the electron recoil is ignored. However, we go through the
complete relativistic calculation in any case since there are other applications (not
considered here) in which the recoil effect cannot be ignored.

We do however ignore the effect of induced (or stimulated) scattering, which is
required for example to obtain the Kompaneets equation often used to derive the
thermal SZ distortion. But the terms due to induced scattering in the Kompaneets
equation are negligible in the case of cluster SZE, and in general in the unpolarized
case it is known that induced scattering is a negligible effect unless electron energies
are comparable to the electron rest mass. In any case a rigorous derivation of the
induced effects require a quantum treatment (Nagirner & Poutanen, 2001), which we
have not developed here.

The structure of this chapter is as follows. In §3.1, the classical non-relativistic
physics of the generation of polarization by Thomson scattering in the electron rest
frame is discussed using the polarization tensor approach. An equation for the time
evolution of the distribution function polarization tensor in the electron rest frame
due to Thomson scattering is derived. Then in §3.2 we derive the Boltzmann collision
integral using a phenomenological approach based on the master equation of kinetic
theory, still in the Thomson limit. As a check, we construct the matrix analogue
of the radiative transfer equation in the case of a scattering medium composed of
stationary electrons, which agrees with the results of Chandrasekhar (1960). In §3.3
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n;

Figure 3-1: Thomson scattering of a pure incident beam from an electron at rest into
a specified final polarization state.

the full relativistic kinetic equation is obtained, working in the rest frame of the
initial electron — following the procedure used in the Thomson limit, but using the
Klein-Nishina cross section and taking into account recoil. The transformation to a
common lab frame is then taken, to obtain the kinetic equation for scattering from
electrons with a general distribution of velocities. We check that this can be expressed
in a manifestly covariant form. Note that throughout this chapter we work in flat
spacetime.

3.1 Thomson scattering

In this section we present a derivation of the equation for the time evolution of the
distribution function polarization tensor due to Thomson scattering from a distribu-
tion of stationary electrons, starting from the classical results for Thomson scattering,
ignoring the effects of electron recoil and induced scattering.

Recall that for a completely linearly polarized beam, Q"€€, is the time-average
energy density for electromagnetic radiation of polarization €,, where €, is spacelike
and normalized, €* - € = g"¢;e, = 1. Consider a completely polarized beam with
polarization vector € and momentum p; incident upon an electron at rest (Fig. 3-1).
The polarization matrix of the incident beam is Q;€; ®€; where c@); is the incident flux
(we choose units such that ¢ = 1). Normalization of the polarization vector implies
Qi = Q;”¢f ,¢i. In the Thomson limit, in which the electron recoil is negligible, the
differential cross section for Thomson scattering of a beam into final momentum pj
and polarization €; is (Jackson, 1998)

do 3o ., L0
dQs == 8—7'(' |€i €s| . (32)
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Thus the power per unit solid angle in the scattered beam is

dPs 30’T
dQ,

QAP (3.3)

where df) is the element of solid angle associated with the direction of pi;. We may
also write Q;|€;* - &% = Q1 €; eq,

Next consider a gas of electrons all at rest with number density n.: we work in the
rest frame of the electrons throughout this section. Assuming incoherent scattering,
multiplying Eqn. (3.3) by n.dQ, converts scattered power per electron to the rate of
change of energy density in final polarization state €:

@ * o 3O—T p

dt Gsuesl/ - 87T ne /) SMGSV

da, (3.4)

Note that the time derivative d/dt here should actually be interpreted as a total
derivative taken along the ray, d/dt = 0/0t + n - V, since eventually the left hand
side of the evolution equation will be replaced with the left hand side of Eqn. (3.1).
Using equation (2.68), and setting p; = ps since we are working in the Thomson limit,
we may convert, this to the change in the phase space density matrix, giving

SO'T

dfé“/ * 0 pw Q Q
o €5 u€svd s:§nei €5 u€sw did (3.5)

We would like an equation for the change in f,, due to scattering, but Eqn. (3.5)
gives the change only for a particular (but arbitrary) polarization of the outgoing
wave, €;. We cannot remove the polarization factors and conclude df*” o f!' because
the polarization of the incoming wave does not lie in the same plane as the polarization
of the scattered wave. For a given outgoing momentum pj, the outgoing polarization
is a linear combination of the two basis vectors € and € (associated with the photon
of momentum f;) of §2.3. Thus, f{”¢; ,e;, projects out of the incoming density matrix
I only those components lying in the €1-€5 plane. This projection is equivalent to
first projecting f/* with €] ® €] + €, ® €. But this is exactly the projection tensor
of Eqn. (2.83), with 7 = p; being the outgoing photon momentum and # being the
electron 4-velocity. Projecting the final polarization vector with P,, does not change
it: P* €5, = €sq. It follows that f/"e €4 s = fiaﬂP“aP”ﬂejﬂﬁs,,. Now it is safe to
remove the outgoing polarization vectors from Eqn. (3.5).

We conclude that, for any initial and final polarizations,

df‘é‘“j ﬁsaﬁe 30— - = v g e g
Eit - e PP (5 B ) P (5, ) / dsy 74 (7, 7.) - (3.6)

Eqn. (3.6) is the key result for Thomson scattering in the polarization tensor for-
malism. It gives the photon scattering rate per unit volume for given momenta and
polarizations. The projection tensors are easy to understand: the scattered density
matrix is simply proportional to the incident density matrix after the unphysical
polarization components (those proportional to 7, and 7i,) are eliminated.
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If the integration time is sufficiently short, we may replace n.or dt with the optical
depth to Thomson scattering, 7. Then we have

vi= = 37 - o v o= = aB/ - —
PG T = g P TP () [ d 527 ) (3.7

It follows that scattering of a photon with a given incident momentum p; leads to a
scattered beam with normalized polarization tensor

() = @ T )P (P B ) 657 (5 ) 58)
T P55, 7 )67 (i, )

Taking the trace of the scattering rate Eqn. (3.6) yields the evolution equation
for the scalar distribution functions f;(p;) = gags 23, fo() = Gop [P (P,), which
may be written in the following form (by definition of the differential scattering cross
section):

do
dQ),

which yields the differential scattering cross section in the rest frame (and the Thom-
son limit):

%(fs de d3ps) = (ne dgx) dQs (fz dgpz') ) (39)

do 307

R AT AR 1
dQs ST aﬁ(psave)¢z (pu'Ue) (3 0)

In rest frame coordinate, we may deal with 3 X 3 matrices rather than tensors.
Then we may write the normalized polarization matrix of the scattered beam in terms
of that of the incident beam as:

P(n,)¢i(n;)P(n,)
Tr[P(n,)i(n;)]

The polarization magnitude of the beam reduces to a familiar form in the case of an

unpolarized incident beam. For example, consider the case of an unpolarized beam

incident in the z-direction in the rest frame, and let the rest frame direction vector
of the scattered beam have components

ns = (COS PsV 1- MgaSiH Ps 1 - Mgaﬂs) : (3'12)

The incident normalized polarization matrix is ¢(n;) = P(n;)/2. The polarization
magnitude of the scattered beam is given by

¢s(ns) = (3.11)

— 2\ 2
() = 2106 0~ 1= (122 ) (313)

which is independent of ¢, since the incident unpolarized beam picks out no preferred
azimuth. In the case of an incident beam with a general polarization state, we may
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Figure 3-2: Polarization magnitude versus rest frame scattering angle
dinates). The plots for incident beams with Stokes parameters: (a)
(b) Q/IT=09, U=V=0,(c) Q/I =05 U=V =0, (d) U/I=0.

€2 = e, and write,

eﬁ?)

vectors ! for the incident beam €; =
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choose polarization basis 3

b

(3.14)

)

4 (—P+Q*+ U+ V?) py
P14 12 + (=14 11,2) (Q cos(2 ) + U sin(2 p,)) /1]
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This function is plotted for incident beams with various polarization states in Fig. 3-2.
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Figure 3-3: Phase function ® versus rest frame scattering angles (in polar coordinates,
for a beam incident along the z-axis with Stokes parameters: (a) Q =U =V =0,
(by Q/I=1, U=V =0.

scatter into a particular solid angle element df),, which is conventionally termed the
phase function. This is simply proportional to the differential cross section, which in
matrix notation is

do 307

— = — Tr|¢p;(n;) P(ny)| . 3.17

o = L Tl (n) P(.) (317
Thus the phase function for Thomson scattering is a function of the scattered direction
vector ng and the elements of the incident polarization matrix ¢;(n;) (the dependence
on mn; is implicit in ¢;(n;)). Denoting the phase function as ®[ng, ¢;(n;)], we use the
normalization

[ ool T2 =1 (3.9
Since [ P;;(n,) dQ,/4m = 26;;/3, we have
By, di(n:)] = ; Tr[gp(ni) P(n,)] . (3.19)

For example, consider the case of an incident beam with n; = (0,0, 1), and inten-
sity polarization matrix with Stokes parameters defined with respect to polarization
basis vectors (associated with the incident beam) €; = e,, €2 = e,

I+Q U 0
In)=5| U 1-Q 0. (3.20)
0 0 0

and let the scattered direction have the components (3.12). Then we obtain the phase
function (Code & Whitney, 1995):

B, di(n)] = 5 (142~ (1—12) (Qeos26, + Usindg,) /1] . (3.21)
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In Fig. 3-3 this function is compared for unpolarized and completely polarized incident
beams. The polarization of the incident beam destroys the azimuthal symmetry of
the differential cross section and phase function.

Before proceeding further with the derivation of the Boltzmann equation, it is
instructive to see how Eqn. (3.6) leads to the classical Rayleigh phase matrix (as
defined by Chandrasekhar (1960)). Consider an incoming ray along e, scattering
into an outgoing ray along e, (i, ¢s) = /1 — p2(e, cos s + e, sing,) + e ;. For
the incoming wave we choose polarization basis €;1 = e, cos ¢, + €, sin ¢, and €;, =
e;, = —e,siny, + e, cos p,. For the scattered wave, €;5 is a good polarization vector
(it is orthogonal to the momentum direction e,) but the other basis vector is changed

to €51 = €5 = €yl COS P, + €yligsin s — e,\/1 — 2 = €115 — e,\/1 — p?. In the
basis {€;1, €2}, we find

,UZ 0 —Ms\/l—/lz

P (ps, Ve ) = 0 1 0

—py/1—=p2 0 1—p]

For f*P* (7,7, )P" 4(Fs, 7. ) this gives

(A B C
Pifip=2| B 1-Q D | (3.22)
C D' E

where A = (I +Q)ug, B = (U~ iV)pi, C = —(I + Q)uj\/1 -2, D = —(U +
iV)psy/1— p2, E = (I 4+ Q)u*(1 — p?). In the same basis, the scattered matrix is

1 A, B, C,
fs = 5 B: Is - Qs Ds ; (323)
C, Df B,

Us - Z%)Ns; Cs - _([s + Qs)ﬂs V 1 - M?, Ds -

where A, = (I, + Q,)u?, By = (
© (1, +Q)(1 - ). We find

—(Us—|—iVs) 1_/1’27 Es

1) g2 0 0 0 1)
d I 307 0O 1 0 O I
_ s — = ein 4 , 3.24
i | U, 81 0 0 p O U (3:24)
Vi 00 0 p V;

where Il = I +Q, I+ = I — Q. Eqn. (3.24) gives the classical Thomson (or Rayleigh)
phase matrix (Chandrasekhar, 1960).

This completes our general discussion of the generation of polarization by classical
Thomson scattering in the electron rest frame.
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(a) Gain (b) Loss

Figure 3-4: Gain and loss processes in kinetic/master equation for Thomson scatter-
ing.

3.2 Kinetic equation in the Thomson limit

We now use the preceding results to derive the Boltzmann collision term in the elec-
tron rest frame. This is derived by the following heuristic line of reasoning. If we
ignore polarization and assign a scalar distribution function f(p) to each photon, the
scattering rate is given by Eqn. (3.9) with the cross-section for the transition from p;
to p, replaced by its unpolarized form, which in the Thomson limit is

— [1+(n;-ny)?] . (3.25)

We could then write the rate of change of phase space density by subtracting from
Eqn. (3.9) the rate of scattering out of p,. That result is known as the master equation
or Boltzmann equation for f (Binney & Tremaine, 1987; Groot et al., 1980):

Gi®) =, [0, [ Ep S wip) ) [P0 -p) - S . (320

The meaning of the master equation is that the rate of change of the photon number
in a given phase space element is given by summing over all scatterings into and out
of this element. In this expression, py is not a free variable, it is a function of the
incident photon momentum and scattering angles, p; = ps(p;, n,), determined by
the scattering kinematics. In the Thomson limit, |p,| = |p;|, so the scattered photon
momentum is simply given by ps(p;,ns) = |p;|ns. This allows completion of the
integral over the first delta function.

The first and second terms inside the square brackets correspond to scatterings
into and out of the beam (with momentum p) respectively, and are termed the gain
and loss terms. The delta functions select the appropriate states, as indicated in
Fig. 3-4. Eqn. (3.26) is simply a statement of photon number conservation combined
with the rate of scattering into the final momentum state (3.9).

Now we wish to generalize this to the polarized case. The polarization tensor
allows us to extend equation (3.26) to a general polarization state. and write down the
kinetic equation for polarization corresponding to Eqn. (3.6). Because the transition
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rate is linear in f; and f, it is possible to write the scattering rate for a linear
superposition of initial states to a linear superposition of final states. Assuming
linear superposition for incoherent light, we can write the most general incident state
as f*%(p;,v,) and ask for the transition rate of each element of this matrix. The
transition rate is a linear transformation from f*%(p;, v,) to f*(p;,¥.) and must
therefore take the following form,

Ty W= oo o\ raB(m 2\ g3

%[f (p87 Ue) d ps] = N q)ag (p87 Ve; Pis Ue) f (pi7 Ue) d bi dQs ) (327)
with some matrix @gg that we call the polarization scattering tensor. It is convenient
to write this as ®/(s;7), where the arguments (i) and (s) are abbreviations for the
pairs of 4-vectors (pj, ¥.) and (P, Ue),

The polarization scattering tensor is effectively a 4 x 4 matrix giving the transition

rate between all possible initial and final polarization states. It follows from Eqn. (3.6)
that in the Thomson limit the polarization scattering tensor is given by

14 . 30 1 — —
D 5(s34) = 8—TP o(Pss U) P 4P, ) - (3.28)

Now we make the following ansatz for polarized analogue of the master equation
corresponding to Eqn. (3.26):

f’“’ . U, —ne /dQ /d?’pz q)aﬁ ps,Ue,pz,'Ue) f’w(ﬁi’ﬁe)
5“ (51/ 63 ps p) — Jap Pt (pv 776) 63(pi _p)] ) (3'29)

This is the rest frame form of the scattering term C* in Eqn. (3.1). With this ansatz
for the master equation, it may be checked that for any two initial and scattered
pure states f° (5, 7.) = fiet(e])* and f*(py, 0.) = foe(e?)*, Bqn. (3.29) reduces to
Eqn. (3.26) with the Thomson cross section Eqn. (3.10). Then since any polarized
beam can be written as some superposition of pure states, it follows that Eqn. (3.29)
is true for all polarization states. This verifies that the ansatz (3.29) is correct in the
Thomson limit.

The first term in the square brackets is exactly the gain term of Eqn. (3.6). The
second term represents losses to any final polarization state; the sum over polariza-
tions is given by g,s. Each incident photon beam with polarization tensor ¢ (j, v)
is lost by scattering implying that the loss term must be proportional to ¢ (p, @,).
Just as the loss term in Eqn. (3.26) is proportional to the same quantity occurring
on the left-hand side of the equation, the same is true here. In fact this loss term is
simply the phase function multiplied by the incident beam, and is thus proportional
to the probability of a photon scattering from momentum p; to ps. To see this, note
that the loss term contains the scalar obtained by contracting the projection tensors
which are orthogonal to the incident and scattered photons:

— = e 2 — — ﬁi'ﬁs 2
Paﬁ(piave)Paﬁ(pSave) =2+ — Pi - Ds + u

PiDs (pips)? (3:30)
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where p; = —p; U, ps = —Ps- Ue. In the rest frame of @, pi' = p;(1, n;), p* = ps(1, ny),
giving p; - ps = —pips(1 — n; - ng), and the loss term scalar has the form

Paﬁ(ﬁ;7 776)Paﬂ(ﬁs; 776) =1 + (nl - n5)2 s (331)

which is the familiar angular dependence of the differential cross section for Thomson
scattering of unpolarized radiation. The total loss term is thus simply proportional
to the incident beam multiplied by the total cross section (in this case, since we have
restricted to the Thomson limit, the Thomson cross section).

Note that the form of Eqn. (3.29) guarantees photon number conservation (Comp-
ton scattering cannot change the overall photon number):

df*™ (P, Ue
/d3p guy% =0. (3.32)

Integration over the delta functions yields the much simplified form of the rest
frame kinetic equation 2 :

&P ) = neor [g [ PP .85 57 - G| (339)
This equation, in conjunction with the transformation to lab frame and integration
over electron velocities, discussed in the next sections, is sufficient to compute all the
Sunyaev-Zeldovich effects.

At this point we consider the form of Eqn. (3.33) in the case where the polariza-
tion tensors on the right hand side are taken to be unpolarized. This will be used
later in the computation of the polarization generated by a single scattering of an
unpolarized radiation field. In this case the integrand of the gain term in Eqn. (3.33)
is proportional to the following combination of projection tensors:

G (i, B, Ue) = PV o (05, o) P 5 (B, 02) P (B, T) - (3.34)

This combination can be simplified considerably. Defining p; = —pj - v, ps = —Ds - e
as before, an intermediate result is:

B B
Pl (TP T = g vEPs | BiVC | PPk PPl PiD;
° Ps pi  pips  Di p;
50 e 10,8 Ko B
+pl pS ,Ugveﬁ_i_pspz _ps e _pz e ) (335)
PiDs PiDs Ps Di
Contracting with P 4(ps, v,) we find:
G" (D, Ps, Ue) = P (Ps, Ue) — N (Pi, Ps, Ue) N (Pl Ps, Te) (3.36)

2It is important to remember that on the left hand side, the derivative d/dt stands for the operator
0/0t+ n -V, where p" = p(1,n) in a local Lorentz frame.
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where

N (i, P, T) = % - % + ]% {17 - %] . (3.37)
Clearly
NL(@aﬁsaﬁe) 'ﬁs = 0 ) (338)

as required by transversality of the Thomson scattered polarization tensor to the
scattered photon momentum. Dotting N, into itself yields:

- D - Ps { 25 -ps} (3.39)

N, -N, =— 24+ ——
Pips PiPs
We can simplify things a little by defining spacelike vectors 7; and 775 whose spatial
parts are the direction 3-vectors of the photons according to the observer v:

pi = pi(Ue+;) , fi-te=0, m;-i;=1, 7 pi=p;,
ﬁs = ps(ﬁg"‘ﬁs)a ﬁs'ﬁezoa ﬁs'ﬁszla ﬁS'ﬁszps‘ (340)
We find

This vector is obviously orthogonal to 7i:
N, -ity=0. (3.42)
In the rest frame of ¥, where n¥ = (0, n;), n* = (0, n;), cosf = n; - ng, we obtain:

N! = (0,N.) where N, =mn,x(n; xny),
N,-N, = —(n;-n,)[2+n; n, =sin’0 . (3.43)

We find from Eqns. (3.36) and (3.41) that in the rest frame, the spatial components
of the integrand of the gain term are given by

Gij(ﬁi,ﬁs, Te) = (5,’c — nins,k) (6{ — ngns,l) (5“ — nfni)
= (5” — nzn{) — ngni[l + (ny - m)?] + (nlsng + n@ng)(ns ‘n;) . (3.44)

This expression is very convenient for the calculation of the polarization generated
by scattering of the CMB quadrupole, in §5.3. In that section we use Eqn. (3.44) to
prove that only the quadrupole component (in a spherical harmonic expansion) of the
intensity of the unpolarized incident beam leads to generation of polarization, which
is not obvious from the general form of the kinetic equation (3.33).

We close this section with a demonstration that the rest frame form of the kinetic
equation, Eqn. (3.33), yields the well known results of Chandrasekhar (1960) for the
polarized radiative transfer equations in the case of Thomson scattering from cold
(i.e. stationary) electrons in a slab geometry. Since Chandrasekhar used a different
formalism based on transformations of the Stokes parameters to derive his expressions,
this is an important check of the formalism we have developed.
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Consider a plane parallel atmosphere of cold electrons with uniform density filling
the half-space z < 0, illuminated by an unpolarized beam of monochromatic radiation
incident along the normal to the plane (we do not specify the boundary conditions
here, since we are only interested in deriving the form of the transfer equations and not
their solution). By symmetry the radiation field in this case is clearly axisymmetric.
We work entirely in the electron rest frame, where I°° = 1% = 0, and following
Chandrasekhar (1960) define 7 to be the optical depth from the surface z = 0 along
the downward normal. The Cartesian coordinates in the plane are x and y, and The
polar and azimuthal angles about the z-axis are denoted § and ¢ (and p = cos#).

Then the kinetic equation for the lab frame intensity polarization matrix I (ju, ¢, 7)
is given by Eqn. (3.33) (replacing distribution function tensors by intensity tensors,
which is trivially allowed here since the beam is monochromatic):

3 1 2m dSOs
poI(p, @, 1) = —§P(N)/1dus /0 P I(ps, 05, 7)PT () + I(p,0,7) .
(3.45)

where n(f, ¢) = (cos psinf,sin psinf, cosf) is the direction 3-vector of the beam.
Note that in this expression, following Chandrasekhar (1960), the gain and loss terms
have picked up a minus sign since the direction of increasing optical depth (along the
normal to the boundary z = 0 directed into the half-space z < 0) is defined to be
opposite to the polar axis.

In contrast to the Stokes vector approach of Chandrasekhar (1960), the polariza-
tion matrix even in this azimuthally symmetric problem has azimuthal dependence.
But we are free to exploit the azimuthal symmetry here by choosing a convenient
azimuth to evaluate the projection factors, and then the result obtained for this az-
imuth may be transformed into the other directions trivially. Choosing ¢ = 0, we
have (n®,n¥,n?) = (/1 — 12,0, u). In the ¢ = 0 direction, I/ has the form (since the
yr and yz cross-terms must vanish in order that the place of polarization is parallel
or perpendicular to the y — 2z plane as required by axisymmetry).

Lip? 0 Lpy/1—p?
I(p,0,7)= 0 I, 0
Lip/T—=p? 0 I(1—p?)

(3.46)

Here I;(j1, 7) and I,.(p, 7) are the azimuth independent Stokes parameters, parallel
and perpendicular respectively to the meridian plane, as defined in Chandrasekhar
(1960). The matrices inside the dyy integrals range over all values of ¢4 though, so an
expression for I* (g, oy, 7) is required. By azimuthal symmetry, this is simply given
by rotating I*(u,,0,7) through an angle ¢, about the 2 axis (since under rotation
polarization matrices transform according to the vector rotation of the electric field
strength vectors):

I(i5,05,7) = R(—s2) I (11,0, 7) RT (%) . (3.47)
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where R(yps2) is the matrix which rotates through angle ¢, about the z-axis. Per-
forming the matrix multiplication, and integrating over the azimuth yields

1 aT[l(M7 7_) = [l(ua 7_)

_2/_ afts {[l(ﬂsﬁ) 201 = p) (1= %) + p] +Ir(us,7);ﬁ} . (3.48)

1

The equation for I, is obtained similarly:

3 1
wotur) = Lnn) -5 [ i B+ e} G
—1

These are the coupled radiative transfer equations for the Stokes parameters for
Thomson scattering in slab geometry, first obtained by Chandrasekhar (1960).

3.3 Klein-Nishina scattering

Up to now we have worked in the Thomson limit. In this section we extend to the
general case of Compton scattering with the full Klein-Nishina form of the scattering
cross section, and taking into account the electron recoil.

For now we work still in the rest frame of the electron before scattering (the
“initial” electron). To derive the polarization tensor kinetic equation our starting
point is the Klein-Nishina differential cross-section (Greiner & Reinhardt, 1994), in
the initial electron rest frame, for photons with 3-momentum p; and polarization ;
to scatter into 3-momentum p, and polarization €, generalized to allow for arbitrary
elliptical polarization * (Stedman & Pooke, 1982):

d 3 s 2 1 s 3
R <p—> [|ei-6:|2+—<p——|—p——2> (1+ € - €2 — |e - &) | -(3.50)
p.

dQs g Di 4 i Ps

where p; = E(p;) = |pi| and ps = E(ps) = |p;|]- We allow the polarization vector
to be complex in order to treat elliptical polarization; the polarization vectors are
normalized by €;-€ = €,-€ = 1. The factor (1+|€;-€|*—|€;-€|?) is usually not given
as it reduces to unity for linearly polarized light, but we allow for light of arbitrary
polarization. Eqn. (3.50) assumes the transverse gauge condition €; - p; = €; - ps = 0
and that the time component of both polarization 4-vectors vanishes in the initial
electron rest frame. The factor (p,/p;)? in the cross section is a phase space factor.
Conservation of energy-momentum relates the initial and final momenta and scat-

tering angle:

-1

Ps Di Ps

o1+ (1—-n, - =1—-—(1—-n;-n 3.51
Di me( ni - n) me( mie ) ( )

3This has recently been verified by A. Guth, by performing the explicit QED computation with
complex polarization vectors
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where n; and ng are unit three-vectors along the spatial parts of the photon momenta
p; = pin; and p, = p,n,. Note that for fixed directions, dp,/dp; = (ps/p;)*.

Equations (3.50) and (3.51) both assume that all quantities are given in the rest
frame of the incident electron. We note, incidentally, that the Klein-Nishina formula
should be symmetric under the interchange of the initial and final states, but the
gauge condition which was imposed to derive this form of the cross section required
that the incident and scattered photon polarization basis 4-vectors be orthogonal to
the incident electron, and it thus appears rather asymmetric. However, it is true that
there is nothing special about this choice of gauge. In Appendix A, it is demonstrated
that the cross section is manifestly symmetric under interchange of the initial and
final states.

The 4-velocity of the incident electron will from now on be denoted @;, rather than
U, (since now we have to distinguish between the incident and scattered electron mo-
menta). Now following the procedure in the previous section, we write the transition
rate of the scattered polarization matrix f**(ps, U;) as a linear transformation of the
incident matrix f*%(p;, #;), as in Eqns. (3.27) and (3.28), except we pull the phase
space factor out for convenience:

d V(= — vV (= = — = (6% = pS ?
%[fﬂ (psa'Uz') d?’ps] = Ne @Zﬁ(psavi;piavi) f ﬁ(piavi) <p_> d?’pi dQS ) (352)

3

The scattering polarization tensor @Z; for the Klein-Nishina cross-section is then
given by the modified form:

3 1 s )
O (s5;1) = “T{ng(s)+1<3+p——2>

8—7T Pi  Ds

X [P"(s)Pap(i) + Pag () — Pé‘é(S)]} , (3.53)
where

P (s) = Py (s)P'y() (3.54)
and the arguments (i) and (s) are abbreviations for the pairs of 4-vectors (p;, ¥;) and
(ps, U;), and ps = —10; - Py and p; = —0; - p;. As a check, if we consider an unpolarized

incident beam with ¢*?(;) = 1P*#(i) and sum over final polarizations, we get the
usual spin-summed result for the Klein-Nishina cross section:
lP (P, 0) O, (P, Us; s, 05) P2 (5, 0) = sor (Ps + Pi_ Gin2g (3.55)
2 v \Fsy Vi) ¥ qp\Psy Vis Pis Vi 1y Vi 167 i Ds ) .
where 6 is the scattering angle, cos = n,; - n,.
Now, as in the derivation in the Thomson limit case, we make an ansatz for the

20



rest frame kinetic equation:

fﬂ” _" /dQ /d3 <&> q)aﬁ(psavzapuvz) fva(pl76l)
[64,8"5 0% (s — P) — gas O (5, 7) 8*(pi — p)] . (3.56)

That this expression is correct can be verified as in the Thomson limit case by sub-
stituting the matrices of pure states and checking that Eqn. (3.26) is regained with
the the Klein-Nishina cross section (3.50). It is important to understand that, as in
Eqn. (3.26), the scattered electron 3-momentum p; in the expression above is not a
free variable — it is determined by the scattering kinematics as p, = psn,, where p;
is given as a function of p; and n; by Eqn. (3.51).

Having obtained the equation for polarized radiation transfer in the rest frame
of the scattering electron, we now consider the general case of scattering from a
distribution of electrons with varying velocity. To obtain this, first it is necessary to
transform the kinetic equation to a common lab frame. Since we are now dealing with
two coordinate frames, for clarity the coordinates used to describe the scattering are
shown schematically on the Feynman diagrams representing the Compton scattering
process in Figs. 3-5, 3-6, and 3-7. We take ¢ = 1 throughout. Henceforth, components
of 4-vectors in the rest frame of the initial electron are denoted with primes, and those
in the lab frame without primes. The incident particles are denoted with a subscript
1, and the scattered particle with a subscript s. Photon momenta are denoted by
p, and electron momenta by ¢. As usual, quantities with arrows are 4-vectors, and
boldface quantities are 3-vectors. The 4-momenta satisfy the mass shell conditions
pi P =PsPs =0, ¢ = qs-gs = —m?. The electron energies are given by
E(q) = /mZ +|q*

In lab frame, the initial and scattering electron 4-momenta are written in terms
of the lab frame electron 3-velocities as follows:

1
1—wv?
- 1

s = MU = ’Ysme(lavs) Vs = \/17_70‘3 .

The Lorentz transformation into the rest frame of the initial electron is given by
the matrix:

G = mel; =yime(l,vi), v

(3.57)

. . Vi), |Vil;
Ay = v A=, A=6+(n— 1)”0# (3.58)
This yields the transformation of the photon direction vector between frames:
n, =l —mn;-v)] " |n+ ¢ vi(n; - v;) — v | - (3.59)
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The relationship between the rest and lab frame momenta of the incident and scat-
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Figure 3-5: Scattering process in four-vector notation

— —

qi qs

Figure 3-6: Scattering process in rest frame coordinates

Pl =pi(1,n) Py = pl(1,n})

¢ = (m.,0) M= (E(q,). q,)

Figure 3-7: Scattering process in lab frame coordinates

p? :pi(lani) i ZPS(L”S)

¢ = (E(q,), q;) ¢t = (E(qy), q5)
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tered photons is

L. 1
Py = —Ds-q/me = E[Psqi -Dps-q ,
L. 1
p;- = —pi Qi/me = ﬁ [piQi —D; qi] . (3-60)

e

Or in terms of the v; factor,

/

p.

;: = %(l—n;-v) ,

p/

= = %(l-ns-v) . (3.61)
Ps

The scattered and incident photon energies in the rest frame are related by the
familiar Compton scattering formula:

Py _ L (3.62)
Py 1+ (pi/me)[1—n)-nl] '
The lab frame version of this is
i(l—mn; v,
2 pill — i v) (3.63)

T 1—n, v+ (pifume) (1 —n; -ny)

We are now in a position to Lorentz transform Eqn. (3.56) to a lab frame in which
the electrons have 3-velocity v;. Four quantities need to be transformed: n, dt’, the
3-vector p' of the beam on the left hand side of the master equation, and f*(p, v;)
itself because of its dependence on ;. Let the four-vector p have spatial components
pn in the lab frame and p'n’ in the electron rest frame. The transformation laws of
p and n have already been derived:

/

P = yp(l—n-v),

n = [%(1—”'%‘)]_1 n -+ 2%2
v +1

vi(n-v;) — vl . (3.64)

The Lorentz transformation of the electron density is
n, = 'n, . (3.65)

This is simply due to the Lorentz contraction of the volume element.
The Lorentz transformation of the time element is more subtle; dt transforms like
p, not like n,:

From a mathematical point of view, this is because the transport operator on the
left-hand side of the Boltzmann equation is actually the directional derivative d/d\ =
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(dz*/dN)O/OxH + (dpt /dN)O/Op* = ptd/Ox* (in flat space). In a local Lorentz frame,
d/d\ = pd/dt where d/dt = 0/0t + n - V. Physically, the transformation of dt arises
due to the enhancement of the rate of scattering of photons from electrons which are
approaching compared to that from electrons which are receding, which is due to the
dependence of the flux of photons incident on the electrons on their relative velocity.
Thus we refer to the factor v;(1 — n - v;) which appears in Eqn. (3.66) as the fluz
factor. This factor is crucial in the derivation of the SZ effects!

It follows from the transformation of the time element and the invariance of the
trace of the distribution function tensor, that the left-hand sides of the Boltzmann
equation in rest and lab frame are related by *

df'(p) _ 1 df (p)

or alternatively

e _ 1 4w

dt — v(1+n'v) dt (3.68)

(The photon occupation numbers in rest and lab frames also satisfy these equations,
of course).

We now have all the ingredients needed to transform equation (3.56) to the rest
frame of an observer with 4-velocity ) (the subscript standing for “lab”). The trans-
formation of the polarization tensors from lab to rest frame was derived in §2.4:

F (B, ) = PR, 6P (B, 6) (5, 6 - (3.69)

It is convenient to insert the tensors which project into the electron rest frame into
the scattering tensor, by redefining the tensor Pj;(s) which appears in Eqn. (3.53)

as

P (syi) = P* (s)P5(s) P, (i) P°4 (i) (3.70)

where the arguments (i) and (s) are abbreviations for the pairs of 4-vectors (p;, ¥;)
and (p, i), and py = —1j - pi and p; = —7; - pi.

Finally, we can generalize the electron density to a distribution of electrons, n, =

[ d*q; ge(q;) where g; is the electron 3-momentum, and g, is the scalar phase space
distribution function for the electrons. Putting everything together, we obtain

—f" pP" P e\Y; e
pdtf (pa Ul) (pa Ul) z/(pa Ul) E(q;) g (q )’ITL p

ps e g
/dQI /d3 ; < ) 75 (pSan;pian) f75(piavl)

(6446”5 8° (P, — D) — gap & (0, 1)) 6*(P} — P')] (3.71)

where E(q;) = vim.. Primes denote components in the rest frame of @; = ¢ /m.,
e.g. p = —0; - p. The flux factor is contained in the p’ factor in the first line on the

4Recall that 7 is a Lorentz covariant 4-vector in these expressions.
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right hand side (the Lorentz invariant measure d*q;/E(q;) is pulled out to facilitate
the derivation of the covariant form to follow). Note that the projection operators
which project f7° into the rest frame of @ are already present in @2‘? . Similarly, it
does not matter whether ¢*” is evaluated in the rest frame of v; or ¥, because of the
projection operators in front of the integral. It follows that we may, without loss of
generality, drop the 4-velocity argument from f* and ¢*” provided it is understood
that the final results must always be projected into the physical polarization space of
the observer.

Eqn. (3.71) looks complicated and is not the most convenient form for computa-
tion. The delta functions can be integrated over resulting in a simpler expression.

This requires the Jacobian of (p,n}) and (p),n}), which follows from Eqns. (3.62)
and (3.64), yielding °

12 2
4y, d° '<§S) = 4O dp, (j’)—) . (3.72)

[ s

The Boltzmann equation now becomes

G0 = [ Faala) 1 -n o)

. [ [ (%) (5,5 5 ) £ ()
-/ dsz;( ) (790527 (o 13, 50) O 5 >] | (3.73)

This form is convenient for both analytic and Monte Carlo calculations. The flux
factor is explicit in the integration over the electron momenta. (Recall that f* must
be projected into the observer frame at the end of the calculation.)

The covariant kinetic equation for Compton scattering was derived for unpolarized
photons by Dodelson & Jubas (1995). Their expression for the time evolution of the
photon phase space distribution function has the form (Eqn. (2.3) of Dodelson &
Jubas (1995)):

d d3(]1 d3(]2 d°py 9 o4
_ 0, —_— M — o —
pldtf(pl) /E(lh) / E(QZ) /E(p ) | | 0 (p1 + ¢ — Do (]2)

[f(ﬁz)(l + [ (1)) ge(@2) — F(P) (L + F(P2))ge(qn) |- (3.74)

where |M]? is the squared matrix element for unpolarized Compton scattering. Note
that this contains stimulated emission factors, which we ignore in our treatment of
the polarized case. The integration measures are Lorentz invariant: [ dq;/E(q) =
[ d*qi6[5(q1 - @i +m2)]. E(q) = ¢° is set by the mass shell condition. We complete our

This also follows from the well known transformation law of the solid angle element.
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discussion of the Boltzmann equation by checking that the lab frame kinetic equation
can be recast in such a manifestly covariant form. We will need the following identities:

d3(]1 / d3(]2 / d3p2
SY Py G — Py — @
/E(QI) E(qz2) J E(p2) P+ & =52~ G)
E((h) (—152 : ‘fz) E((D) (—152 : ‘fl) . '

These follow from writing the time part of the delta function as §[E(p;) + E(q:1) —
E(p2) — E(p1 + @1 — pama)] or §[E(p1) + E(pana + g2 — p1) — E(p2) — E(g2)]. To get
the forms that we finally need, we replace the denominators of the angular integrals
using the identities pi - 1 = P> - ¢ and pi - ¢o = ps - ¢1, which follow from conservation
of total 4-momentum.

With these identities, the Boltzmann equation finally takes a manifestly covariant

form,
d d*q / d3qo / d*ps
pldtf (p1) /E(Q1) E(qz) E(pQ) (p1 q1 — D2 QZ)

X [q’%(ﬁl, U3 P2, U2) 17 (72) 9e(@2) — 6" (1) 9as @5y (P, T0; 1, 1) F7° (1) ge(@n) | - (3.76)

The integration measures are Lorentz invariant: [ d*qi/E(q) = [d*¢0[5(q - ¢ +
m?)]. Tt may be checked that working backwards from this equation, integration over
the 4-dimensional delta function yields the rest frame form of the master equation
Eqn. (3.71).
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Chapter 4

Theory of the polarized
Sunyaev-Zeldovich effects

In this chapter we apply the polarization tensor methods described in the previous
chapters to the calculation of the polarized Sunyaev-Zeldovich (SZ) effect in clusters
of galaxies.

In §4.1, we review briefly the unpolarized thermal and kinematic effects. In §4.2,
the generation of polarization by scattering of the unpolarized isotropic part of the
incident CMB (the monopole in the spherical harmonic expansion) by the electron
distribution is considered. In this case, motion of electrons in a cluster with a bulk
velocity of magnitude V}, with respect to the CMB rest frame produces an apparent
CMB quadrupole in the rest frame of the scattering electrons, of order V;*. Thus a
single scattering generates polarization of order V;?7r, where 71 is the optical depth
to Thomson scattering along the line of sight through the cluster. We present a de-
tailed calculation of the polarization matrix of the scattered radiation, which yields
in addition to the polarization magnitude, the unpolarized thermal and kinematic ef-
fects also. We obtain the first relativistic corrections to the polarization and intensity
distortions.

In §4.3 we discuss briefly the generation of polarization by double scattering of
the CMB photons. We obtain expressions for the Stokes parameters of the effect, and
present numerical results in the case of a homogeneous spherical cluster.

In §4.4 we describe a Monte Carlo procedure for simulation of the Sunyaev-
Zeldovich effects, based on the polarization tensor master equation.

We defer a detailed discussion of the component of the polarization generated by
scattering of the intrinsic CMB quadrupole until §5.3 in Chapter 5, where its use as
a cosmological probe is considered.

4.1 Unpolarized thermal and kinematic SZ effects

The CMB photons propagating from the surface of last scattering have a blackbody
spectrum with temperature Teyp ~ 2.726 K. Recall that in a blackbody radiation
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field at temperature Tcyg, the specific intensity at frequency v is given by

£U3

[V:IOZioewj 5 (41)

where © = hv/kpTcvg and g = 2(kpTewms)?/(he)?. The corresponding photon occu-
pation number (averaged over the two polarization states) is

1
er —1

ng = (4.2)
As the photons pass through the electron-proton plasma in a galaxy cluster, with
typical electron temperatures T, ~ 10°K, some are inverse Compton scattered by
the electrons, on average to higher energies (scattering off the protons is negligible
because the cross section is smaller by a factor of m,/m,). This may happen multiple
times before they leave the cluster, but cluster optical depths are roughly 0.01, so the
probability that a photon scatters more than once is small. Consequently the CMB
spectrum observed on the sky in the direction of a cluster is slightly distorted relative
to that seen away from a cluster. Roughly speaking, the distortion is an increase in
the specific intensity in the Wien tail and a decrement in the Rayleigh-Jeans tail.

The canonical way to derive the frequency dependence of the distortion produced
by a homogeneous cloud of electrons at temperature 7T, is via the Kompaneets equa-
tion, which is an equation for the rate of change of the photon occupation number
due to the process of inverse-Compton scattering in a homogeneous plasma:

dn kBTe 10 4 Te on 2
= = (n, i — , 4.3
dt (neore) <m602) x? 0x {x (TCMB oz T )] (4:3)

This equation is obtained via a Fokker-Planck type approximation where the typical
photon frequency shift is assumed to be small compared to the photon frequency (see
e.g. Rybicki & Lightman (1979) for a derivation). Since T, > Tcyp in galaxy clusters,
the second two terms in round brackets (the second of which, incidentally, arises from
the quantum effect of stimulated emission) may be neglected in comparison to the
first. Then substituting Eqn. (4.2) into the right hand side, and replacing n.orc with
the Thomson optical depth 7r (a valid procedure in the limit of low optical depth),
yields the well known thermal SZ distortion (Zeldovich & Sunyaev, 1969; Sunyaev &
Zeldovich, 1980a):

xte®

Al, = ioym

F(z), F(z) = —4+ xcoth (g) , (4.4)
where the Compton y-parameter is:

kgT,
Y= / m 02 neUle ) (45)

e

the integral ranging over the line of sight through the cluster.
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(a) Thermal effect (b) Kinematic effect

Figure 4-1: The frequency dependence of the intensity distortion in the CMB due to
the (a) thermal, and (b) kinematic SZ effects, for a cluster with highly exaggerated
temperature, radial velocity and optical depth. Note that the thermal SZ distortion
has a zero at v &~ 217 Ghz (z ~ 3.83).

Note that it is common practice to express the intensity distortion in terms of the
Rayleigh-Jeans (RJ) brightness temperature — the temperature of a blackbody with
the same intensity at the given frequency, in the RJ limit. This is given by

2

T,
ATy = AL = ~MBAL | (4.6)

2I€BV2 Z’().'L'2

The thermal SZ effect has attracted considerable attention in the astronomical
community because, in conjunction with measurements of the X-ray luminosity of
clusters, it offers the prospect of a measurement of the Hubble constant (Birkinshaw,
1999; Rephaeli, 1995a; Holzapfel et al., 1997). So far the measurements have had
fairly limited success in this regard due to the many sources of systematic error in
the measurement. Several authors have derived the relativistic corrections to the
thermal effect, which turn out to be quite substantial (Rephaeli, 1995b; Challinor
& Lasenby, 1998; Itoh et al., 1998; Nozawa et al., 1998; Sazonov & Sunyaev, 1998a;
Molnar & Birkinshaw, 1999). Measurement of the relativistic corrections would allow
measurement of the Hubble constant even without the X-ray observations (Diego
et al., 2003).

In the kinematic SZ effect (KSZ) (Sunyaev & Zeldovich, 1980b; Phillips, 1995), the
bulk motion of the cluster with respect to the CMB rest frame (the frame in which the
CMB dipole vanishes) leads to a Doppler boosting of the incident CMB radiation.
This leads to an enhancement or decrement in the CMB intensity depending on
whether the cluster is approaching or receding along the line of sight. The frequency
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dependence is simply (Rephaeli, 1995a),

zte  V,
)2e 7

Al = —ig ( (4.7)

eCE_

where V, is the velocity component along the line of sight (directed toward the ob-
server if V. < 0). Thus via the kinematic SZ effect, the radial component of the pecu-
liar velocity of the cluster could be measured (Kashlinsky & Atrio-Barandela, 2000),
This has yet to be achieved in practice. Relativistic corrections to the kinematic effect
have also been derived (Sazonov & Sunyaev, 1998a), but are less important than in
the thermal effect. The thermal and kinematic effects are plotted for highly exagger-
ated cluster temperature and bulk velocity in Fig. 4-1. The cluster optical depth was
set to 7p = 1, and the distortions were computed with, in figure (a), electron tempera-
ture kpT, = 50 keV, in figure (b), radial bulk flow velocity V; = +15000 km s *. The
upper and lower curves in (b) correspond to approaching and receding bulk velocity
respectively. The solid line in both plots shows the undistorted Planck spectrum.
For more realistic cluster parameters and optical depths, the thermal SZ brightness
temperature distortion is typically ~ 1 mK, and the kinetic SZ distortion typically
~ 0.1 mK. Note that the SZ fractional intensity (or brightness) distortion is redshift
independent, essentially since the photon momentum dependence appears only in the
ratio hv/kgTcyp. This fact makes SZ observations an especially useful probe of high
redshift objects.

In the following section, we perform calculations of the polarization generated in
the SZ effect using the kinetic equation for Thomson scattering derived in Chapter 3,
which yields as a by-product derivations of both the thermal and kinematic SZ dis-
tortions, and their relativistic corrections. Note that the polarization magnitude can
also be expressed as a brightness temperature distortion, using the formula Eqn. (4.6)

with A, replaced by \/AQZ + AU2.

4.2 Scattering of CMB monopole

In this section we compute the CMB intensity and polarization distortion, in the
approximation of a single scattering, due to scattering of the unpolarized isotropic
part of the incident CMB (the monopole) from moving electrons in the cluster gas.
We deal only with an idealized galaxy cluster composed of a concentrated clump of
electrons of density n. and corresponding optical depth 7t in lab frame. The electrons
are assumed to have a phase space density ¢, given by a relativistic Maxwellian
distribution with electron temperature T, (which we henceforth write in the non-
dimensionalized form 6, = kgT,/m.c?), and a bulk 3-velocity V; = Byc with respect
to the CMB rest frame. The CMB rest frame will henceforth be called the “lab frame”
in this section. We choose to align Vj, with the z-axis of a Cartesian coordinate system.

We wish to calculate the polarization matrix Is(n) resulting from Thomson scat-
tering of the incident unpolarized CMB blackbody radiation in the lab frame into the
viewing direction n. Previous calculations have determined the intensity (Sunyaev &
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Zeldovich, 1980b; Nozawa et al., 1998; Sazonov & Sunyaev, 1998a), and polarization
magnitude (Sunyaev & Zeldovich, 1980b; Sazonov & Sunyaev, 1999; Audit & Sim-
mons, 1999; Challinor et al., 2000; Itoh et al., 2000) of the distortion of the scattered
radiation field as expansions in 6, and 3, with various formalisms, but not in such a
systematic and explicit fashion as we describe here.

In the single scattering limit, since the resulting scattered radiation field must be
symmetric under rotations about the electron bulk velocity, the angular dependence of
the intensity and polarization magnitude of the scattered radiation is a function only
of the angle cosine = n - 8,/|8s| between the electron bulk velocity and the line of
sight. The resulting intensity distortion and polarization magnitude is an expansion
in powers of 3, u, and the dimensionless electron temperature 0, = kgT,/m.c*.
By symmetry, the actual polarization vectors on the sky produced by this effect are
simply all orthogonal to the direction of the cluster bulk velocity (they could also be
parallel to it, depending on the sign of the Stokes parameter @), but turn out to be
orthogonal (Sazonov & Sunyaev, 1999)).

In a calculation with a real cluster with spatially extended structure we may
replace 7r with the optical depth integrated along the line of sight to obtain the
intensity distortion for each viewing angle.

We break the calculation into two stages. In §4.2.1 we perform the calculation in
the case of a clump of electrons with zero temperature moving with a collective bulk
velocity (3, along the z-direction in the lab frame, working entirely in the rest frame of
the electrons. The polarization matrix of the scattered radiation is obtained, which
on transformation to the lab frame yields the kinematic effects to any desired order in
Bp. In §4.2.2, we extend this calculation to allow for thermal motion of the electrons.
This is done by first generalizing the calculation of the rest frame scattered matrix in
§4.2.1 to the case of a lab frame electron velocity in an arbitrary direction. Since the
algebraic manipulations are lengthy and tedious, a computer algebra system is used.
(One of advantages of the polarization matrix formalism is that it is quite simple to
implement on a computer algebra system capable of handling matrix manipulations).

After transformation of the resulting scattered beam into lab, the integration over
electron velocities is performed, yielding both the thermal and kinematic effects, and
relativistic corrections.

4.2.1 Cold electrons

We begin by considering a simplified calculation in which the clump of electrons is
taken to move collectively along the z-axis, i.e. the electron distribution has zero
temperature. We work in the rest frame of the electrons, in which the Thomson
limit form of the rest frame scattering term Eqn. (3.33) can be applied. We align the
velocity 3-vector of the electrons in lab frame with the z-axis, and write the electron
velocity in lab frame coordinates as

1

Ue - ’717(17 61)2) ) (48)

61



)
b *

n n; n'

Figure 4-2: The coordinate system in the (a) lab frame, and (b) rest frame, used
to evaluate the polarization matrix. In lab, the clump of electrons indicated at the
origin travels along the z-axis with velocity V. Note that in the rest frame, we choose
to consider the photons scattered in a direction n' in the z-z plane, but the incident
photon direction n} is in a general direction.

The lab frame 4-velocity is denoted ;. The rest frame momentum of the incident
photon is p!" = pl(1,n}), where the rest frame direction vector is expressed in polar
coordinates with respect to the z-axis:

= (cosuiy/1 - sinoty/1- ) (19)

The coordinate system is illustrated in Fig. 4-2. The corresponding lab frame mo-
mentum is p!' = p;(1,n;), where the lab frame direction vector is:

n; = <COS¢%‘\/1 — %, sini/1 — 2, Mi) : (4.10)

Assuming unpolarized isotropic incident CMB radiation in lab frame, the intensity
polarization matrix of a photon incident in the lab frame with 4-momentum p; is given

by
- = 1 V- =
I" (g, 1) = §fo(pi)P” (pi @) (4.11)

where I is the Planck function at the mean temperature of the CMB, Tvg:

2c p?

I(p) = 15 eiatom —1 - (4.12)

The incident photon momentum in the lab frame is Doppler shifted on going to the
rest frame:

p; = pi(L — Botta) (4.13)

This may be written in terms of the incident polar angle in the rest frame. Using
the formula for relativistic aberration,

i+ B

= : (4.14)
1+ By

i
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we obtain
bi

(L4 Bopl)
The specific intensity tensor in the rest frame can be obtained from that in the
lab frame using the transformation law of the intensity between frames,

N\ 3 / /
: To[ypi (1 + Bopss)]
I'(pj 1) = <&> Io(pi) = 3 :
(23 1) o) = S0 By
2h py’

- g@'pr;(l‘i‘/BbN;)/kBTCMB -1 (4'16)

p;- (4.15)

3

The isotropic specific intensity in the lab frame, Iy(p;), transforms into an anisotropic
intensity in the rest frame which is still of blackbody form but with a temperature
with angular dependence: -
, CMB
Tl (1 + Boptf) (417
The incident radiation field in the rest frame is of course also unpolarized and has
intensity tensor:

I, 5) = IV (G, ) = 50 i) PP (7, %) (4.18)

Now using the kinetic equation in the form Eqn. (3.33) we may write down the

scattering term in the rest frame. The Thomson limit form is appropriate here since

even with the boost from the lab to rest frame, the CMB photon momenta are a

tiny fraction of the electron mass and therefore recoil is negligible. We evaluate the

kinetic equation at photon 4-momentum p, with the following components in rest
frame coordinates:

’

pﬂ = p,(]-a nl)a n' = (COS ,QZ), 1 - /'lea sin ,QZ), 1 - /'lea /'L,) ) (419)

where p' = p! since we are working in the Thomson limit.

In the single scattering limit, we may insert the polarization tensor of the incident
unpolarized radiation field in the right hand side of the kinetic equation to obtain the
scattered beam:

i[”,’/(ﬁﬁ) _ §nlo- dQ;[l(pl I.)G/'L,V,( ! 'l/}l' l 'l/}l) o ljl(pl /)PH’VI(ﬁU)
dt' y Ve 4 eVT A is My s Mgy Wy 9 s y Ue) -
(4.20)
where
G (W s iy ) = P (5,8 P (5, 5) P (5, ) (4.21)

The 00 and 07 components of this tensor equation obviously vanish when evaluated
in electron rest frame coordinates. We evaluate the gain term by first performing the
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integral over azimuthal angles d, using the explicit form of the spatial part of the
projection tensor P*7'(j;, ,):

L (= 1) oyl (2 — 1) cosgfsingl —py/1 — i cos
2 . 2 . 2 .
(" =) cosyisingf 1+ (ui” = 1)sin® o) —pfy/1— p*sing) | o (4.22)

—pi\/ 1 — P cosh  —piy/1 — pi? sin ) 1— pf?

Performing the integral over azimuth yields

o g 1+ u?) 0 0
[ R N R TR B I IFCE)
° 0 01—

To further simplify, we may evaluate the rest of the scattering term at ¢’ = 0,
since by azimuthal symmetry of the radiation field in the rest frame the intensity
tensor for a general (1, 1)') is related to that at ¢' = 0 by a rotation about the z—axis
through angle v’, and the polarization magnitude is independent of azimuth. Putting

n = (\/ 1— 2,0, ,u’), the explicit form of the spatial part of the projection tensor
is P'9'(p, 7,) is:
N ILLIZ 0 _,ul 1 — /1//2
P (p,v,) = 0 1 0 . (4.24)
_,ul 1 — M/? 0 1 — MIQ
Now performing the multiplication of two of the matrices in Eqn. (4.24) with the

matrix in Eqn. (4.23), yields the azimuthal integral of Eqn. (4.21) required in the
gain term of the kinetic equation (4.20):

=il il 27rd ! il
G = [ G o) =
0

2T
) Gy, ) 0 — N1 = PGy (i, 1)
! 0 G (i) 0 @)
2
— /1 — PGy (! ) 0 Gy, ) (1= ")
where
Gy = 2=+ i (307 —2)
G, ) = 1+p". (4.26)
One can check that .
1 = 4, 2 1.,
_/ dp; G = Z PV (p, ) (4.27)
2/, 3

(evaluated at ¢’ = 0). Thus as B, — 0, 41*Y(p,#,) — 0, since by symmetry

?odt
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scattering of an isotropic radiation field from a stationary electron cannot alter the
radiation field.

Now putting together the gain and loss terms, and integrating ., we find for a
finite rest frame time interval At (all evaluated at ¢’ = 0 in rest frame coordinates):

AT(5) 1 Ly, 1w AT ()
T AL 9 0 I(p'sp') 0 )
T _,ul /1 — NIQIH(pI,,UI) 0 I||(p’,,u’) (1 _ MIQ)
(4.28)
where we set the optical depth in the rest frame to A7, = nlorAt’, and defined
3 8
N0 = 3| k00 + B - K6 - S| |
3 8
L) = 3 {J(p’) +HEQ) - I, u’)} , (4.29)

and the functions (note that these are functions of pf, but in the Thomson limit this
equals the scattered photon momentum p'):

1

J(p) = /duél’(p’,ué),

1

1
/ dptf I'(p' i) s (4.30)
-1

=
%\
I

Using the dimensionless frequency x' = ¢p'/kpTeoup, and the constant ig (recall
Eqn. (4.1)), these functions are given by the integrals

-1

1

T By) = ipx” / dy; [e%w’(lwbu;)_l] :
-1

-1

1
K, 6) = ion® [ Pyl [t ] (431

—1
The intensity of the scattered radiation in the lab frame is thus given by the trace

A2 )y = Te[AI'(p,v,)]

3 16

= A [(3 W) ) + B~ DK )~ 1 u’>] (4.32)

where .
I'(@ i) = oz [eW’(1+5b“’> _ 1] . (4.33)
The polarization magnitude, in the limit of small A7}, is given by the formula (2.41):

Tr[AT'
(', p') = (TP, 0.) + e AL(D, 0.)) = AT < ;‘[ 7 ]> (AL . (4.34)
T
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Evaluating this, we find

xla Bb) - J(xla Bb)
', ') '

This formula, and the p; angular dependence inside the integrands of K and .J,
shows that only the quadrupole in the incident intensity in the rest frame generates
polarization. The polarization magnitude has the familiar sin®#" dependence. As
By — 0, the incident radiation field in the rest frame becomes isotropic, I'(z', u') — Iy
(of Eqn. (4.1)), yielding J — 21y, K — 21/3, and thus II(z', i//) — 0 as expected.

We now expand the denominator of the integrands of J(z', 5,) and K (', 3,) in
powers of [y:

! / 3 ! / 3K
(2, 1) = 1—6A7'T (1—p") ( (4.35)

z' ’ -1 6:1:’ - 6:1:’ " ngn
enr ) =no(z) — (er' —1)2 Z <e$’ _ 1) S (436)
n=0
where
§ = eVl embon'a’ _ 1 (4.37)

Expanding 6 up to second order in (3, we find:

1
/ dil's = B (H%x')w(ﬁé),

1

1
!/ 2 !
[ e = Zaar o,

! 1 3
/ dp' u* s = 3B (1 + gfv’> +0(8;)
-1

1
2
[ awire = Zen o (4.38)
-1
To obtain II(z', ') to second order in 3, since the numerator is already second order,
we may replace I'(2, 1/') in Eqn. (4.35) with .

Using the results in the previous equation we obtain finally the polarization mag-
nitude in the rest frame to second order in [:

1 e’ (e + 1
1’ ) = g Arta o (1= ). (4.39)

On Lorentz transforming into the lab frame, the polarization magnitude of the scat-
tered photons does not change, but the photon angle is aberrated, with

r_ ,U’_Bb
L — By

Since p? = p? + O(B), and 2’ = = + O(3), and the optical depth A7} transforms

o (4.40)
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Figure 4-3: Polarization magnitude of the CMB scattered by a concentrated cloud of
cold electrons with a bulk flow velocity V} transverse to the line of sight. In (a), we
plot the dimensionless polarization magnitude II(x) divided through by the optical
depth 7r. In (b), we plot the polarization magnitude II(z) as a (Rayleigh-JeansJ)
brightness temperature distortion, taking 7 = 0.01. The upper and lower curves in
both (a) and (b) correspond to Vj = 5000 km s~ ' and V; = 1000 km s~ ' respectively.

like dt', we have the same result in the lab frame quantities to this order:

O N . PR (1.41)

This result was obtained before by Sazonov & Sunyaev (1999); Audit & Simmons
(1999); Challinor et al. (2000), all using different methods. Note that the (1 — p?)
dependence implies that this component of the CMB polarization is a direct measure
of the peculiar velocity of the cluster gas perpendicular to the line of sight, which
in conjunction with the intensity measurement allows, in principle, measurement
of all the components of the cluster peculiar velocity. This will be an important
cosmological probe, if the polarization measurements can be made. This will be a
considerable experimental challenge, since the polarization magnitude is rather small,
typically 0.1 uK at most, as illustrated in Fig. 4-3 (note that cluster bulk velocities
rarely exceed 1000 kms '),

One might worry that the dimensionless polarization magnitude II goes quadrat-
ically in x as * — oo, which would seem to be a problem since the polarization
magnitude must be bounded by unity. However, the analysis we have given is only
the lowest order result - at high photon frequencies, relativistic corrections will mod-
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ify Eqn. (4.41). Since we essentially expanded in powers of f,x, our analysis cannot
be trusted for frequencies greater than x ~ 1/f.

We finish this section by expanding the total intensity of the scattered radiation,
given in Eqn. (4.32), to second order in 3, and performing the transformation to lab
frame to obtain the kinematic SZ distortion and its first relativistic correction. To
do this calculation it is convenient to work with the phase space density rather than
the intensity. The intensity distortion AI'(z’, y') is related to the phase space density

distortion by
AI’(II,/LI) B Af’(x’,,u’)
['(33', Iul) - f’(l", Ml)
From the transformation law of the left hand side of the kinetic equation, given by
Eqn. (3.67), we find an equation for the rate of change of the phase space density in

lab:
1 df(l‘, M) o , A[/(xl’ :U’I)
flo,p)  dt V(1 = Byp) mgor (m> : (4.43)

Expanding the functions K(z', 5y) and J(2/, ) in Eqn. (4.32) up to second order in
By as before, and expressing the right hand side in lab frame quantities by making

the replacements =’ = vx(1 — Byu), 1’ = (w — Bp)/(1 — Bpu) and n, = ne /v, we find
to O(3?) the fractional intensity distortion in lab:

(4.42)

Al(z, p)
Iy(x)

where the lab frame optical depth is defined by Arr = n.orAt. This is the first
relativistic correction to the kinematic SZ effect, obtained previously by Sazonov &
Sunyaev (1998a,b). Note that without the correct “flux factor” in Eqn. (4.43), this
would differ at second order in 2. The first term is simply the lowest order kinematic
SZ distortion (4.7), where V,, = —puf, is the bulk velocity projected along the line of
sight (which is opposite to the direction of the scattered photon momentum, hence
the minus sign).

= ATT*@’” [M By + <—1 — i+ clChs g(j) COth(g)) 5112] , (4.44)

T
e? —1

4.2.2 Hot electrons

We now extend to the more general case of a Maxwellian distribution of electrons
with dimensionless temperature 0, = kgT./m, moving with a bulk velocity V, with
respect to the CMB rest frame (lab frame). In the single scattering limit, the Thomson
scattering of isotropic blackbody radiation from a Maxwellian distribution of electrons
moving with a bulk velocity V, = Byc produces a scattered radiation field whose
intensity and polarization magnitude are azimuthally symmetric about Vj,. Our goal
is to compute the polarization matrix of the scattered radiation field, as an expansion
in powers of V;, and 6. This computation will yield, to lowest order, the usual thermal
and kinematic SZ distortion of the intensity, and the polarization magnitude to lowest
order in V}. Going to higher order yields the “interference” terms between the thermal
and kinematic effects, in both the intensity and polarization, and the relativistic
corrections.
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The first task is to determine the lab frame polarization matrix of the scattered
beam due to scattering of an incident unpolarized isotropic blackbody radiation field
in lab by an electron with a general lab frame velocity 8. This is not the bulk veloc-
ity but rather the velocity of some of the electrons in the thermal distribution, which
will eventually be integrated over. This part is just a generalization of the calcula-
tion performed in section §4.2.1. The resulting polarization matrix of the lab frame
scattered radiation field as a function of electron velocity may then be averaged over
a distribution of lab frame electron velocities to yield the observed lab frame result.
The steps required to compute this are described below. The actual calculation, even
at lowest order, is quite lengthy, so a computer algebra system (Mathematica) was
used to perform the calculation. We do not give all the algebra but just outline the
procedure. Henceforth in this section primed indices refer to components of 4-vectors
in the electron rest frame, and unprimed indices to components in the lab frame.

It is convenient to integrate over angles in the electron rest frame, but to express
the electron velocity and final state photon momentum in lab coordinates throughout
(to avoid a cumbersome transformation of rest frame angles to lab frame). In lab
frame coordinates, the electron 4-velocity is

S
AR

The Cartesian coefficients of 8 are denoted ;. In rest frame coordinates, the velocity
of the lab frame is of course

v =7(1,8) , B=18|. (4.45)

v =(1,-8) . (4.46)

The scattered photon momentum in lab frame coordinates is written

Pt =ps(1,my) . (4.47)

To simplify the computation, we set up a polar coordinate system with polar axis
along the z-direction and evaluate the scattered polarization matrix at azimuth ¢, =
0:

n, = (m 0, us) . (4.48)

This is no loss of generality provided we choose the bulk velocity V, to lie along the
z—direction, in which case the polarization matrix for a general ng is related to the
one calculated here by a simple rotation about the z—axis.

The scattered photon momentum in the electron rest frame is found by applying
Lorentz transformation matrices to obtain p/ = A“’u(ﬂ) pY, where

AUO = y=1/y/1-p3% Aoi:Ai0:—75i7

A= (- 1)%@ +o . (4.49)

Using the notation of §3.3, we denote the momenta of the incident photons in the lab
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and rest frames as follows:

= (cosuly/L— i sinuty/1— 7, ) (150)

with p; = —; - Py, p; = —V, - p;. In the lab frame, the scalar occupation number of
the incident photons is isotropic with a Planck spectrum:

1

T v (4.51)

n;(p;
(Note, do not confuse n;, a direction vector, with n;, the occupation number!). In the
rest frame, n}(p;) = n;(p;), but the occupation number of the incident photons is no
longer isotropic since photons with different momenta are aberrated through different
angles. Thus n; becomes a function of p} and n) through p;:

1
, g _—
7Lz(pz) - gpi(p;:n’i)/kBTCMB 1 y (452)
where in terms of 3,
pi(pi; ;) = pi (L+ B - ny) (4.53)

The angular dependence of the incident radiation field in the rest frame is obtained
by expanding (4.52) in powers of the velocity components ;. For the lowest order
polarization computation, the expansion must be taken up to at least second order
in the velocity components.

Then as in the previous section, the right hand side of the rest frame master
equation (3.33) is constructed, and the integration over the rest frame angles of the
incident beam performed. The resulting matrix is then transformed into lab frame
by the application of two projection tensors, and the lab frame fractional intensity
distortion obtained, making sure, as in Eqn. (4.43), to multiply by the correct flux
factor, which now has the form v(1 — 8- n).

We thus obtain the lab frame polarization matrix as a function of the lab frame
photon direction and the velocity components 3. In the lab frame, the integration over
electron velocities is performed. To do this we need first to construct the distribution
function of electron velocities in lab frame. In the “comoving frame”, denoted with
primes, in which the average electron velocity vanishes, the electron phase space
distribution function as a function of the electron 3-momentum q’ is assumed to be
a relativistic Maxwellian at dimensionless temperature 6,:

9e(q') = goe"@/mebe) (4.54)

where F(q') = \/q'"* + m2, and gy is a normalization constant which depends on the
total number density of electrons. We use a relativistic Maxwellian in order to retain
the corrections to the SZ effect in a mildly relativistic plasma.

With q' = m.y'8', where B’ is the electron 3-velocity in the comoving frame, and
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v =1/4/1 — B, we have (as a function of /5 since the distribution is isotropic in the
comoving frame)

g:(8) = goe "% . (4.55)

The number density of electrons in each comoving frame momentum element d*p’ is
thus
dn!, = 4 gy p? dp'e /% . (4.56)

Integrating this distribution over the element d3p’ yields the electron number density
in the comoving frame n.. Using p' = m.y'f', we find p?dp’ = m3~3"?d/3'. Thus
ne = 9 / dmy B dge
= Admgom? 0,K5(1/0,) , (4.57)

where K, is a modified Bessel function (for a derivation of this result see for example
Lightman et al. (1975) or Synge (1957)).

Thus in the comoving frame, the number density of electrons in each comoving
frame velocity element d3v’, is

. d?’ﬁ' 7/5677’/06

dn, = . 4.58
e = e 0, K(1/6,) (4:58)

For small 6., the denominator can be expanded:
470, K5(1/0,)et% = (2m0,)**[1 + 1560, /8 + - -] | (4.59)

yielding the familiar prefactor of the non-relativistic Maxwellian to lowest order.

Now we wish to compute the analogous lab frame quantity by a Lorentz transfor-
mation from the comoving frame. Since the distribution function is a Lorentz scalar,
the number density element transforms like the momentum space volume element in
Eqn. (4.56). Using the Lorentz invariance of the quantity d*p/p = d®p'/p/, it follows
that

plepl — m27'55'2dﬁ' — mz’)/552d6(’)/,/’}/) ) (460)
Choosing the bulk velocity of the comoving frame with respect to the lab frame to
be V, = Byc in the z-direction, we have

Y= B5) , = (1-p2) 12, (4.61)

For calculations it is convenient to write the distribution function in lab frame in a
form in which the non-relativistic part of the Maxwellian, which has Gaussian form,
is pulled out and the rest expanded in a series in powers of the velocity relative to
the dimensionless bulk velocity 8, = (0,0, 5;):

dne 6_(7_1)/08

e _ 5y (1 — 3, =7 (1= B=Bp)—1]/0e
e 9e61/96K2(1/98) [’Y Y ( B.0) € }

i)

= (4.62)
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Making the substitution 3, — Bz + Vj, the part in square brackets may be expanded
straightforwardly about unity in powers of 3, 8,, 3., B, and 0.. Defining

B=Bl+ B+ B2 (4.63)
the exponential factor in front can be written as
e /% » prefactor (4.64)

where the prefactor is an expansion about unity in powers of B;, Bz, By- The result is
a Gaussian multiplied by a prefactor which is polynomial in the components J; with
coefficients which are functions of 3, and @,.

A further transformation is required before the lab frame integral can be done.
The integral d33 ranges over the velocity sphere |3] < 1. To simplify the Gaussian
integrals, it is easier to make the transformation 3; — u;/7, and integrate d*u over
all space. With this transformation, we find

=v1+u?, Y B2dB = udu . (4.65)

Steps similar to those described above yield an expansion about the transformed bulk

velocity B, — U, = (0,0, 5,/+/1 + B2) in powers of 4, = u, — Bp/\/1 — BE, g, uy.
This form is then convenient for integration by a symbolic algebra package.

We expand the prefactor to terms up to sixth order in the coefficients, and up to
second order in both [, and .. Integration over the electron distribution function
then yields the lab frame polarization matrix as a function of the bulk velocity 3, and
electron temperature #,. Taking the trace of this matrix gave the following result for
the intensity distortion:

Al

— = ATT [9 Fl'(z) +0*F] (z)
0

+6bF0K(u)+5§F{((x,u)+9eﬁbﬂ”(x,u)+---] . (4.66)

Here F{ is the well known thermal SZ distortion piece, given in Eqn. (4.4), and FT
is the first relativistic correction to the thermal effect:

Fl(¥) = —4+x coth (g)

3z

Fl(a) = e [5(-1+¢)'] " |z (~285+772%) cosh ()
x (235 + 73:2) cosh <37x>
—8 (=25 + 4207 + (25 + 212%) cosh(x)) sinh (3 )] . (4.67)

The frequency dependence obtained here agrees with that obtained by Sazonov &
Sunyaev (1998a,b); Itoh et al. (2000); Challinor et al. (2000).
The terms Fy* and F[* are the lowest order kinematic effect and the first rela-
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Figure 4-4: The frequency dependence of the thermal and kinematic SZ effects and
their first relativistic corrections (as RJ brightness temperature distortions, as defined
in Eqn. (4.6)). The solid lines in each plot show the lowest order effect, and the short
dashed lines show the first relativistic correction. The long dashed line in plot (a)
shows the “interference” term FI'K.

tivistic correction respectively:

F(p) = n,
z (3 + 11 p?) coth(Z)
Fff(a,p) = —1-4"+ =

20

which agree with the forms in Sazonov & Sunyaev (1998a,b); Itoh et al. (2000);
Challinor et al. (2000). The “interference” term between the thermal and kinematic
effects is:

(4.68)

_ 2 2 _ :
FI(o ) = g [—45 + 14 2% + (45 + 71: g cosh(z) — 47 x sinh(z)]  (4.69)
10 sinh” (x/2)

The thermal and kinematic effects, their relativistic corrections, and the interference
term are plotted for representative cluster parameters in Fig. 4-4. These were com-
puted for a cluster with electrons at temperature kg7, = 10 keV, a bulk flow velocity
Vs = 1000 km s~ ' at an angle cosine 1 = 1//2 to the line of sight, and an optical
depth to scattering of 7r = 0.01. (Note that the dips in the curves are zero crossings).

Computing the polarization magnitude of the final lab frame matrix, we find:

. = Are 5 (1- 1) [F) () + F (@06 + O@)] . (4.70)
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Figure 4-5: Polarization magnitude generated by scattering of CMB monopole (solid
line), and the first relativistic correction (dashed line), as RJ brightness temperature
distortions, in the case of a concentrated cluster with electrons at temperature kg7, =
10 keV, a bulk flow velocity Vj, = 1000 km s ! perpendicular to the line of sight, and
an optical depth to scattering of 7+ = 0.01.

where
T (1 T 2
Rl = SUtee (@.71)
20 (—1 + ev)
and
FP(z) = LZAL [(—4 +112%) cosh (£> + (4 + 27) cosh <3_x>
10 (=1 +e®) 2 2

82 <3 sinh (;) + sinh (%))] . (4.72)

As 6, — 0 this reduces to the cold electron result Eqn. (4.41). The frequency depen-
dence of these results for a cluster with typical parameters is shown in Fig. 4-5.

4.3 Double scattering effects

Here we discuss the polarization generated by double scattering of the CMB in a
galaxy cluster. The first scattering generates a radiation field with the SZ distortions
described in §4.2, which in general is anisotropic. On a further scattering of this
radiation field, the quadrupole component of the anisotropy generates polarization,
which is of order §,7% and V7% for the anisotropy associated with the thermal and
kinematic effects respectively (for a cluster with average optical depth 7).
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Figure 4-6: The coordinate system used to describe the generation of polarization by
double Thomson scattering.

We now derive expressions for the Stokes parameters of the double scattered radi-
ation field for a general cluster gas density and velocity distribution. The scattering
geometry is illustrated in Fig. 4-6. The line of sight through the cluster is taken to
be in the —z direction. The observed polarization matrix is then a function of the
projected coordinates & = (x,y). The electrons have number density n., temperature
0. and bulk velocity V, = ¢8;, which are all functions of position in the cluster. We
assume the incident singly scattered radiation is unpolarized. We consider only the
anisotropy introduced by the lowest order thermal and kinematic SZ effects.

First, consider the anisotropic part of the radiation field due to the thermal SZ
effect incident at the point P indicated on the diagram. To lowest order in the electron
temperature, this is given by the line integral of the intensity distortions contributed
by a first scattering of the CMB by electrons distributed along the incident ray:

Alr(n,v) _ < it )FOT(:i) or /dl nefe . (4.73)

[0 6:5—1 n

where fn denotes the line integral along the incident ray n passing through P, with
dl the distance element along the ray, and we use & = hv/kgTeup to distinguish from
the cluster projected coordinate vector .

For example if the cluster is spherical with uniform density, the intensity of the
singly scattered radiation radiation field incident on the point P along the incident
photon direction n is proportional to the distance to the edge of the sphere along
direction —n from P. Thus there is an anisotropy of the local radiation field at a
given point in the cluster due to the differing path lengths to the sphere boundary
along the rays converging on this point. The frequency dependence F is given in
Eqn. (4.67).

Similarly, the anisotropy in the singly scattered radiation field produced by the
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kinematic SZ effect yields the incident intensity at point P

Alg(n,v) :< 556_“"1>0T /ndl neBy-m . (4.74)

I() e?

The double scattered radiation field can now be obtained from the kinetic equation
with a gain term of the form given in Eqn. (3.44), for scattering of unpolarized
radiation in the electron rest frame and Thomson limit, provided we ignore the motion
of the scattering electrons at P. This approach is sufficient for calculation of the lowest
order double scattering effect. We thus obtain the following intensity polarization
matrix of the radiation scattered into direction n’ at point P:

Ii(r,my) = %AT / 40 AT(n, ) [(5 — niny)
—n;n;[l + (n'-n)? + (nin; + n;nz)(n' . n)] , (4.75)

where df2 is the solid angle element about n, A7 is the optical depth of the scattering
electrons at point P, and AT stands for either Al; or Alg.

The total observed intensity matrix at the observer is given by setting n’ = —z,
and integrating along the line of sight. It is convenient to express the result in terms
of a Stokes basis along the line of sight direction. We choose the basis e; = x, e; = y.
Using polar coordinates in which m = (cos ¢ sin 6, sin ¢ sin 6, cos §), we obtain:

3
Qz) = I,—1I or

vy — _E
30,
167

/ne(z)dz/dQ AlI(n,v)cos(2¢p)sin® 0 dQ

Ux) = 20, = /ne(z)dz/dﬂ Al(n,v)sin(2¢p)sin® 0 dS) . (4.76)
This result agrees with that obtained by Sazonov & Sunyaev (1999). We computed
the double scattering effects numerically in the case of a spherical cluster of radius R
with uniform electron density n.. We will just briefly outline the numerical procedure.
The electron density, temperature and bulk velocity of a homogeneous approximately
spherical cluster were defined on a cubic grid (with 64® points), and a square array
of bins on the z-y face set up. Then a numerical integration of Equs. (4.76) was
performed by stepping along the line of sight parallel to the z-axis passing through
each bin in increments Az, computing the Stokes parameters of the radiation scat-
tered into the line of sight at each element Az. At each point along the line of sight,
a large number of rays were shot to the edge of the cube along which the inten-
sity anisotropies Eqn. (4.73) and Eqn. (4.74) were integrated. Line integrals were
performed by numerical interpolation of the grid point values.

In Fig. 4-7, we plot the polarization magnitude generated by double scattering
of the thermal SZ component in a homogeneous spherical cluster, as a function of
the distance along a projected diameter of the sphere. The polarization magnitude is
divided by the dimensionless electron temperature 6, and 72, where 7¢ is the charac-
teristic optical depth (n.opR). For typical cluster parameters, the maximum polar-
ization magnitude has a temperature I1 ~ 0.2uK. The double scattering component
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Figure 4-7: Polarization magnitude generated by double scattering of the thermal SZ
distortion in a spherical cluster of radius R with uniform electron density 7,.

of the polarization tends to dominate over the effects due to single scattering. The
polarization magnitude falls to zero at the center as it obviously must by symmetry.
The polarization vector field in this case is, by symmetry, either radial or tangential
depending on whether the frequency is above or below the zero of the thermal SZ
distortion.

In Fig. 4-8 we show the polarization vector field and magnitude produced by dou-
ble scattering of the kinematic SZ component, again in the case of a homogeneous
spherical cluster, with a uniform bulk velocity in the (negative) x-direction (per-
pendicular to the line of sight). The headless arrows in the plot show the plane of
polarization, and their length is proportional to the polarization magnitude. In this
case, the polarization vector field depends on the direction of the bulk velocity on
the sky. It is perhaps not intuitively obvious that the polarization magnitude should
fall to zero at the cluster center, but this is indeed the case as is apparent from the
figure. This was noted previously by Sazonov & Sunyaev (1999).

4.4 Monte Carlo simulation of the SZE

In this section we describe a general Monte Carlo procedure which yields the unpolar-
ized and polarized SZ distortions. This has been implemented in the work of (Molnar
& Birkinshaw, 1999; Sazonov & Sunyaev, 1998b,a), but they did not consider the
procedure for polarized photons.

Monte Carlo simulations can be used to solve radiative transfer problems by gen-
erating large numbers of simulated photons at specified sources and allowing them
to propagate, scatter, and be absorbed in a manner consistent with the known prob-
ability distributions for these processes, recording parameters of interest for each
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Figure 4-8: Polarization field (with projected coordinates x and y in units of the
cluster diameter) of the double scattered component generated in a homogeneous
cluster with a constant bulk velocity along the x-axis in the figure (towards negative
x), and its magnitude (linear scale).
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photon as the simulation proceeds (see for example Yusef-Zadeh et al. (1984); Code
& Whitney (1995); Wood et al. (2001); Baes & Dejonghe (2002)).

For sufficiently large numbers of photons, the mean of the tabulated quantities
should approach the solution of the radiative transfer equations (for a detailed dis-
cussion of the Monte Carlo simulation of Compton scattering of unpolarized photons,
without restriction to the Thomson limit, see Pozdnyakov et al. (1983) and Gorecki
& Wilczewski (1984)).

To simulate the single scattering SZ effects considered in §4.2; we need to design a
Monte Carlo procedure which will converge to the solution of the relativistic master
equation (3.73). This is achieved as follows. We generate unpolarized photons in
lab frame, with frequency drawn from the blackbody distribution function of photon
energies, and a random (uniformly distributed) direction. The polarization matrix of
this photon is constructed. An electron velocity is generated by working first in the
frame comoving with the electron bulk velocity (given by a general velocity vector
in lab). In this frame, the electron velocity magnitude is drawn from a relativistic
Maxwellian distribution, and the direction selected randomly. Then the electron
momentum is boosted from the comoving frame into the lab frame. Then, in order to
account for the flux factor appearing in Eqn. (3.73), the sampled electron is rejected
or accepted according to whether a rejection crieterion is met which simulates the
effect of this factor. Once a photon and electron momentum and photon polarization
matrix in lab have been generated, the photon momentum and polarization tensor are
boosted into the rest frame of the electron. In this frame, the probability distribution
of the direction of the scattered photon is given by the phase function for Thomson
scattering, assuming the Thomson limit. In this limit, the frequency of the scattered
photon may be set to that of the incident photon (in the rest frame). Once a scattered
direction has been sampled from the phase function, the polarization matrix of the
scattered photon is determined. The rest frame photon momentum and polarization
matrix is then boosted back into lab frame, where the photon frequency, direction
and polarization matrix elements are recorded.

Having described the procedure in general terms, we now explain how each of
the steps is implemented numerically. First of all, we need to sample photon energies
from the distribution of photon number (not energy, since the Monte Carlo procedure
builds up a histogram of photon number counts in energy bins):

1 z%de
py(x)de = F(?))ﬁ . (4.77)

To sample from this distribution we compute the cumulative function

Fla) = /0 " po(a) (4.78)

The sampled energy z is obtained by generating a uniform random deviate ! ¢ and

!Note that by uniform random deviate we mean a random variable distributed uniformly on the
interval [0, 1].
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Figure 4-9: The p.d.f. of photon number obtained by inversion sampling of the photon
number distribution (filled squares). The true p.d.f (solid line) is superimposed.
2 x 10° photons were generated and binned in 256 energy bins (linearly spaced) in
the interval z € [0.005, 20].

solving the equation
F(z)=¢. (4.79)

Computation time is cut down by performing an accurate integration of (4.78) before
the simulation and storing the values of F' at about 100 values of z in [0,20]. Then
the inversion is performed during the simulation using Newton’s method to solve
Eqn. (4.79) with F'(x) constructed by interpolation between these stored points (using
cubic splines). The result of this procedure is shown in Fig. 4-9. The photon direction
vector in the lab frame, n;, is chosen randomly (by setting the polar angles to cos ; =
26, — 1, ¢; = 2w&, where &, & are uniform random deviates).
Now we consider the sampling of the electron velocity from a relativistic Maxwellian.

It follows from the form of the distribution function Eqn. (4.57) that the p.d.f of elec-
tron velocities in the comoving frame (in which the average electron velocity vanishes)
is:

7 Bre 0D dp,
b0 - Fo(E)

Pe(Be)dfe (4.80)

where 0, = kT /m.c? is the dimensionless electron temperature, v = 1/4/1 — 32,
and K is the modified Bessel function of the second order and second kind. Since
we are dealing with small values of #,, it is useful to note that for 6, < %,

1 703
0, e'% Ky | — | ~ e 4.81
‘ ’ <ge> 2 ( i )
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Figure 4-10: The p.d.f. of electron velocities (filled squares) obtained by inversion
sampling of a relativistic Maxwellian distribution, for dimensionless electron temper-
atures © = 0.03 (leftmost curve) and © = 0.5 (rightmost curve). Here we have binned
10% samples in 100 3, bins. The true p.d.f (solid line) is superimposed.

Sampling from this distribution may be achieved by a procedure similar to that used
to sample from the Planck distribution. The result is illustrated in figure 4-10.

The direction of the electron velocity vector in the comoving frame, n!, is chosen
randomly. Having sampled the electron velocity parameter [, and direction vector n.
in the local rest frame of the electron gas, the electron velocity vector v, in lab frame
(moving with a specified bulk velocity —V} with respect to the comoving frame) is
determined by a Lorentz transformation. Then to account for the flux factor, this
electron is either accepted or rejected by choosing a uniform random deviate & and

testing whether
1

5 (1—v.-mn;) <E. (4.82)
If this criterion is satisified, the electron is accepted, and we procede to make the
transformation to the rest frame. Otherwise, it is rejected, and a new electron is
sampled.

Having described how to sample the photon and electron momenta in the lab
frame, we now describe some of the details required to simulate the scattering pro-
cess. To apply our Thomson scattering procedure we need to transform the photon
momentum and polarization matrix into a frame in which the electron is at rest
before the scattering (and also at rest after the scattering, in the Thomson limit).
Quantities in the electron rest frame are denoted with primes. The momentum of
the photon before scattering in the electron rest frame is found by applying Lorentz
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. . . / ’
transformation matrices to obtain p! = A¥ L pi where

AO0 = Vzl/vl— Z, Aoi:Aioz_VBéa

Q.
ANo= (- 1)58552” +6 . (4.83)
e
The polarization matrix is transformed into the electron rest frame using the matrix
technique described in §2.4. The transformed polarization matrix thus obtained is
used to sample the direction of the Thomson scattered photon m/ in the electron
rest frame. Transforming back yields the polarization matrix and momentum of the
scattered photon in the lab frame. Given an incident photon with 4 x 4 normalized
polarization matrix ¢;(p;, 0;) in lab frame, the explicit steps are as follows. The
physical polarization matrix in the rest frame is computed, in lab frame coordinates:

¢z(ﬁza 776) — P(ﬁza 776)¢i(ﬁi7 @)P(ﬁz, 776)T . (484)
This is Lorentz transformed into rest frame coordinates:
¢;(ﬁza 776) = A(/Be)()bz(ﬁza UC)A(IBC)T ) (485)

where A has components given in equation (4.83). Rejection sampling of the scattered
photon direction n’. is now performed in the rest frame using the polarization matrix
¢.. The p.d.f of the scattered photon direction in the rest frame, n, is given by the
Thomson phase function ®[n, ¢!] (see Eqn. (3.19)). In order to sample n! from
the phase function, we use the rejection method. The polar angles of the scattered
photon are denoted (u}, ¢). This procedure is based on the method described by
Code & Whitney (1995). They use a Stokes vector approach, and have to rotate into
a particular polarization basis at each scattering. The advantage of the polarization
matrix approach described here is that we do not need to specify a particular choice of
basis. To apply the rejection sampling procedure, we need to find a proposal density
function Q(ul, ¢%) from which we can easily generate samples, such that there exists
a constant ¢ such that for all ), ¢':

Q1 85) > (1, 85) (4.86)
and which is normalized: o
S ! li — 1 . 4
/ 1 @ 60) (4.87)

This is most easily achieved by finding an upper bound ®, on the phase function
®[n!, ¢!] for all possible directions n), and setting @@ = 1, ¢ = &, so that Q is
simply uniform. We then sample from Q(p}, ¢.) to obtain a trial scattered photon
direction n}, = (u}, ¢;), and generate a uniform random deviate y from the interval
[0, cQ (1}, #})]. We now evaluate ®(uy, ¢}) (suppressing the other arguments here) and
accept or reject the sample (u}, ¢}) by comparing the value of y with the value of
Oy, d)). Iy > O(uy, ¢}), the sample (u}, ¢}) is rejected. The process is repeated

until y < ®(u}, ¢;). To determine an upper bound @, first we note that the phase
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Figure 4-11: Joint p.d.f of the scattered photon angles computed by the rejection
method compared to the true phase function. The incident photon has p; = 1.0, and
polarization matrix given by Eqn. (3.20), with /I = 0.6, U/I = 0.5. The left hand
figure is a slice of the function ®(ul, @) at ¢, = 0, the right hand figure at u, = 0.
Samples have been binned in a 100 x 100 grid in the (1!, ¢) plane. In this simulation
there were 107 samples in total.

function can always be written in the form (3.21) (in the case V' = 0) by rotating the
coordinate system with some unitary rotation matrix R so that the photon points
along the polar axis. This does not affect the phase function, since

Tr[¢;P(n,)] =Tr [R"'¢RR 'P(n)R] . (4.88)

Then considering the requirement for a physical polarization matrix I? > Q?+U?, it is
easy to see that the form of the phase function in equation (3.21) implies 0 < ® < 3/2.
Thus we take the upper bound to be ®, = 3/2. With this value of ®,, the ratio of
accepted points to rejected points is 2/3. In Figure 4-11 we show the result of sampling
from the phase function for a polarized incident beam using the rejection procedure
described, compared to the exact phase function. With the sampled scattered photon
direction n’, the physical (normalized) polarization matrix of the Thomson scattered
beam in rest frame coordinates is determined:

(s, Te) = P(n)¢iP(n))" . (4.89)

The scattered matrix in lab frame coordinates is computed:

¢s(ﬁs: ﬁe) = A(_B)¢;A(_ﬂ)T . (490)
Finally, the physical scattered matrix in lab frame coordinates is computed:
d)s(ﬁSa 27l) = P(ﬁsv Ul)d)s(ﬁ& UB)P(ﬁsa 27Z)T . (491)
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Figure 4-12: Monte Carlo simulation of thermal SZ intensity distortion, with ATl
in units of i5. The electron temperature is #, = 0.01 The points are the results of
the simulation. The line which passes through the points is the analytic result with
relativistic corrections to order §2. The other line is the Kompaneets approximation.

Then a photon count is added to the energy bin corresponding to the scattered
photon energy, and a count subtracted from the energy bin of the incident photon.
After a large number of scatterings have been simulated, the resulting histogram of
counts is normalization to account for the total number of photons simulated and the
bin widths. This yields the photon number distortion, which can easily be converted
to the intensity or brightness temperature distortion.

The polarization matrix in lab frame may similarly be computed by adding the
elements of the normalized polarization matrix of each scattered photon to the ap-
propriate bin of photon angles and frequency, and normalizing after the simulation.

The result of using this procedure to compute the thermal SZ intensity distortion
is shown in Fig. 4-12. In this simulation 2, the bulk velocity was set to zero, and
the electron temperature sampled from a relativistic Maxwellian with temperature
0. = 0.01. The points show the result of the Monte Carlo simulation, and the curve
which passes through them is the analytic result for the thermal SZ distortion correct
to O(#?) (from Itoh et al. (1998)). The other curve is the lowest order thermal SZ
distortion obtained from the Kompaneets equation. The Monte Carlo computation
is in full agreement with the analytic results.

2The code used to perform this simulation was written by E. Bertschinger
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Chapter 5

Cluster polarization as a
cosmological probe

The CMB radiation incident on galaxy clusters has an intrinsic intensity quadrupole
(2> created by inhomogeneity at the surface of last scattering. On a single scattering of
the CMB in a galaxy cluster with typical line of sight optical depth 7, this anisotropy
generates polarization of order (Q37¢. In this chapter we explore how a measurement
of this polarization signal would allow an estimate of the CMB quadrupole at non-zero
redshift.

This is of interest because it would potentially allow us to get around the re-
striction of cosmic variance. To elaborate, at z = 0 we only have one CMB sky to
observe, and the observed CMB temperature anisotropy is a projected snapshot of
the perturbation to the photon distribution function at the time of last scattering.
The theoretical predictions for the angular power spectrum of the CMB anisotropies
on our sky are obtained by evolving the transfer functions for matter and radiation,
with a Boltzmann code such as CMBFAST, and ensemble averaging over realizations
of the primordial potential with a given power spectrum of Fourier modes (Bond &
Efstathiou, 1987; Ma & Bertschinger, 1995; Seljak & Zaldarriaga, 1996; Zaldarriaga
& Seljak, 1997). With the transfer functions one may obtain the angular power spec-
trum according to an observer at any epoch desired. The theoretical predictions yield
the variance of the Gaussian p.d.f from which the temperature anisotropy is drawn.

But since we are limited to the data obtained from a single point of view, we
can measure only (2/ + 1) independent real data points for each spherical harmonic
mode of the CMB on our sky, to compare with the ensemble average prediction of
the variance. There is thus an intrinsic fractional sample variance of the harmonic C;
of 2/(20 + 1) (see section §5.1), which severely limits comparison with the ensemble
averaged theory at low [. This restriction is important because it limits the accuracy
of measurements of the power spectrum of the inflationary potential on the largest
scales. The theoretical predictions thus obtained for the CMB power spectra are
fundamentally limited by this sample variance, commonly termed the cosmic variance.

However some information about the CMB sky at non-zero redshift may be ob-
tained via measurements of the polarization of the radiation emitted by hot electrons
in the intra-cluster gas of galaxy clusters. Thomson scattering of the [ = 2 part of the
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CMB anisotropy generates a secondary polarization anisotropy which depends on the
spherical harmonic components as, as seen by an observer at the cluster, producing
a characteristic pattern of polarizations on the sky (Sazonov & Sunyaev, 1999). This
signal produced by a cluster is sensitive to the density perturbations on a last scat-
tering surface different to our own. Thus in principle, this allows one to make more
accurate comparison to the theoretical predictions for CMB angular power spectra at
low [ than allowed by the cosmic variance limit, as first pointed out by Kamionkowski
& Loeb (1997).

However the observed signals are correlated if the comoving separation between
the clusters is less than a certain correlation length. Thus it turns out that one can-
not reduce the sample variance by more than roughly the number of regions available
which produce uncorrelated signals (which grows rapidly with redshift). This corre-
lation information is contained in the generalized correlation functions of the CMB
temperature anisotropy coefficients, (a;,(x,7)a,(x',7')), which contain all of the
statistical information (assuming Gaussianity) about the variation of the a;,, coeffi-
cients as the observation point and associated last scattering surface change. This is
a generalization of the angular power spectrum.

We now outline the structure of this chapter. In §5.1 and §5.2 we derive the
two-point generalized correlation functions of the spherical harmonic coefficients, as-
suming a Gaussian primordial perturbation spectrum, and working in the large scale
limit (appropriate for working with the harmonics [ = 2) in which only the Sachs-
Wolfe effects need to be incorporated in the transfer functions. Having obtained the
correlation functions of the a;,,, in §5.3, we derive expressions for the Stokes param-
eters @, U (defined in an appropriate all-sky basis) of the CMB radiation scattered
into the line-of-sight by the cluster gas, in terms of the local a;,, at the cluster, for
a general line-of-sight. Then in §5.4 we consider the the statistical variation of these
Stokes parameters with the comoving position of the cluster. We construct a simple
estimator for the time dependent [ = 2 harmonic of the angular power spectrum,
Cy(7), and show that this estimator beats the cosmic variance limit (ignoring the
effect of noise). In §5.5 there is a discussion and summary. Note that we restrict the
discussion to the case of a flat FRW universe throughout, for simplicity.
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5.1 Generalized correlation functions

The CMB power spectra change with the comoving spatial position and redshift of
the observer at a given redshift, and also with redshift along the same line of sight.
Nearby observers however see similar CMB maps and power spectra - the (primary)
CMB power spectra measured by separated observers are strongly correlated if the
space and time separations are small enough. Here we analyze how the statistical
variation with position may be characterized completely with a set of correlation
functions of the photon distribution function. The coefficients at any given point are
all independent, but there are spatial and temporal correlations between any pair of
coefficients at different points. The joint p.d.f of any set of the coefficients is Gaussian
(assuming that the initial conditions were Gaussian) and is thus described completely
by the covariance function, which we derive.

Restricting attention to scalar modes in flat FRW space, the metric may be written
in conformal Newtonian form

ds® = a®(1) { = (1 + 2¢)dr* + (1 — 2¢)0;;da’da’ } . (5.1)

In a flat FRW space, we are free to manipulate the comoving 3-vectors of events
as if we were dealing with position vectors in Minkowski space (see e.g. Peacock
(1999), p.71, Eqn. (3.19)). The comoving spatial 3-vector is denoted @, and the
radial comoving coordinate || denoted y. Henceforth when computing distances
and scalar products we neglect the perturbations ¢ and 1 and work in flat space;
their overall effect on photon paths and spacetime separations is a higher order effect
than we need not consider here.

The fractional CMB temperature perturbation A(x, 7o, 7) = AT /Ty is a func-
tion of the spatial position of the observer x, the conformal time of observation 7,
and the direction of “view” fn (Ma & Bertschinger, 1995) '. Of course, one can work
with cosmic time, or redshift, if desired, by a change of variables. In order to expand
the sky temperature in spherical harmonics a;,(x, 7), we must define a conventional
polar coordinate system everywhere. It is simplest to use the convention that the
polar axis is taken to be the same at each point. Then general expressions may
be derived without explicitly specifying the polar coordinate system. The fractional
temperature anisotropy can be expanded

Az, 7,7) =Y ) (@, 7)Yim(R) . (5.2)

(Note that the a;,, as defined here are dimensionless). The general two point corre-
lation of the temperature anisotropy is

(A, 7, 7)A, 0, 7)) =D Clora (@, 7,2, 7)Y (R)Y (R)) - (5.3)

Im I'm’

INote that 7 is opposite to the direction of the momentum of the observed photons.

87



where we have defined the generalized CMB correlation functions
Clml’m’ (CB, T, mla 7_,) = <alm(w7 T)az(’m’ (wla 7_,)> . (54)

We refer to the functions with different values of I, m, ', m' as separate correlation
functions. In fact the whole set of functions Ciyppy (2, 7, &', 7') form the covariance
function of the Gaussian random process from which the photon distribution function,
defined at all points in space and observed in all directions, is sampled (see section
5.2). If the ay,, are produced by underlying Gaussian random fields, then this function
contains all of the information extractable in principle from the (ensemble averaged)
primary CMB. To characterize non-Gaussian processes (for example correlations of
secondary anisotropies) we require higher order products. Given a set of cosmological
parameters, these correlation functions may be computed using the photon transfer
function which describes the physics of the propagation of CMB photons from the
last scattering surface to the cluster.

We will be interested only in the case where both sets of spacetime coordinates
lie on our past light cone, in order that we are computing only quantities which are
directly observable. (It is possible in principle that the anisotropy seen by observers at
spacetime points inside our past light cone might be obtained indirectly by observation
of multiply scattered light, but we do not consider that here.) Choosing ourselves
to be at the spatial origin of the comoving coordinate system, at conformal time 7
(the age of the universe in conformal time), the events at @, ' occurred at conformal
times 7 = 19— X, 7' = 79 — X’ respectively. The correlation function may therefore be
written as a function of spatial variables only, Clpmy (, 2').

The generalized correlation functions obey some simple symmetry relations:

Cl,—m,l’,—m’ (ma ml) = (_1)m+m’ Cl*ml’m’ (CB, ml)
C’lml:m:(m', 33) = C;;m/lm(al‘, 33,) . (55)

When we need to specify the coordinate system we will take the polar axis to be the
e, axis at each point, with the ¢ = 0 plane normal to the e, axis. Then the direction
vector 1 refers to the polar coordinates (6, ¢) about the the e, axis. Of course, there
is no physical significance in the choice of the polar axis for the spherical harmon-
ics. If desired, one could obtain more general expressions for the spherical harmonic
coefficients defined about any polar axis, using the Wigner rotation matrices D!
(Rose, 1995), which relate coefficients defined with respect to primed and unprimed
left handed coordinate systems as follows

alm CB T ZDmm’alm’ ) . (56)

Now we derive the relationship between the generalized correlation functions and
the CMB transfer function. In a flat FRW space, the temperature anisotropy may be
Fourier expanded in comoving wavenumber k on the three-dimensional hyper-surface
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Figure 5-1: Comoving coordinate system for CMB covariance function, in flat space.
All points in the plane shown lie on the past light cone of the observer at O. The
outermost solid circle indicates our last scattering surface. The solid circles about
the observers at positions & and &’ (and conformal times 7 = 79 — |z| and 7" =
— || respectively) indicate their last scattering surfaces, which are smaller since
recombination occurred in the less distant past according to them. Note that any
orientation of the points  and «’ in space can be rotated into this plane.

of constant 7, ¥,
Az, n,7) = /d% ek TAK BT, (5.7)

where A(k,n;3,) is the Fourier transform associated with this hyper-surface only
(Ma & Bertschinger, 1995).

Now since each Fourier mode evolves independently in linear theory, and corre-
sponds in the case of scalar perturbations to a plane wave perturbation which has
azimuthal symmetry about k, A(k,7;%,) depends only on k - 7 and |k| and may
therefore be expanded in Legendre polynomials:

o0

Ak = (=)' @+ )A(k, 7) Pk - 7). (5.8)

=0

The (—i)! is included by convention to be consistent with most other authors. It is
convenient to use the addition theorem at this point to express the Legendre polyno-
mials in spherical harmonics, giving

Az, 7 )—47r/d3kelk -"’Z ) A (K, T) ZYlm w(R) . (5.9)

m=—1

89



Employing the orthogonality relation for spherical harmonics [ dQ Y% (R) Y, (R) =
010mm (where d€) is the integral over solid angle elements centered about direction
71) yields

aom(@,7) = /dQAa: A, 7)Y ()
— /d3k ek TA (k7)Y (k)
(5.10)

The correlation function may now be written as
Comire (%, ) = (_i)H' (47r)2/d3k d?’k'eik . Cl:efik' -z
(A, )AL (K, 7)) Vi (B) Vi (B) - (5.11)

Now since the Boltzmann equation which governs the evolution of the CMB
anisotropy A;(k,7) is independent of k the k dependence comes entirely from the
initial conditions, and we may write Al(k, 7) in terms of the CMB transfer function
A;(k,7) which is defined by (Ma & Bertschinger, 1995):

Al(ka T) = d)z(k)Al(va) ) (512)

where ¢;(k) is the initial potential perturbation and A;(k,7) is real 2. By the as-
sumption of translational invariance ¢;(k) has a two-point correlation function of the
form

(¢i(k); (k) = Py(k) 6°(k — k') , (5.13)

where P, (k) is the power spectrum of the primordial (post-inflationary) gravitational
potential fluctuations. Then we may write

(AR, T)A (KT = Ak, T)Ap(K,7') Py(k) 6°(k — K') . (5.14)

If we evaluate Cipypy (2, ') for & = ' (and 7 = 7'), the covariance matrix is
diagonal and the familiar orthogonality relation follows

Clmym:(a:, 33) = (471-)25l’l6m’m / dek' A?(k‘, T)P¢(I€) = 5l/lf5m:mC’l(T) s (515)
where C)(7) = (Jaym(x, 7)|?) is the ensemble average of the [ harmonic of the CMB

power spectrum according to an observer at conformal time 7. Thus at any given
point all of the a;,, are independent random variables. Using the addition theorem,

2Reality of A;(k,T) is ensured by the choice of including the (—i)! factor in Eqn. (5.8); see Ma,
& Bertschinger (1995).
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we obtain the usual real-space angular correlation function, at any epoch

(Alz, 70, ") A, 7, 7)) = 417T QU+ 1)C(NPR-7) . (5.16)

With & # &', 7 # 7' we obtain a more general expression for the correlation function:

Olmz'mf(il:,a:’) = (_i)l*l’ (47T)2/d3k eik.(mfa:')
Ak, 7)Ap (K, 7') Py(k) Y5 (K) Y (K) . (5.17)

The symmetries stated in equation (5.5) may be verified from this expression.
We may perform the angular part of the d®k integral in Eqn. (5.17) by expanding

the plane wave piece in spherical Bessel functions (valid in flat space). Defining
Ax=z—z' Az = (x —x')/|z — '],
exp (ik-Ax) = Y (2" +1)i" Pu(k - Ad)ji (k| Ax|)
1"=0
lll

== 47‘(’27, ]l” k|ACB| Z Yumu leH(Aa’J), (518)

1"=0 m!—=—[!"

where we used the addition theorem to separate the k and A% dependence. Then
the correlation function becomes

Clml/m/(QB,QBI) = ( ) /kde Al(k T)All(k 7') P¢(I€) ( )l v (—1)m

S jur (K| AZ]) Vi (A2) / A% Vi (k) Yo (B)Yy o (R) . (5.19)

lllmll

The angular integral of the product of three spherical harmonics is expressible in terms
of the Clebsch-Gordon coefficients C'(ly, l2, I3 ; my, mo, m3) (see e.g. Rose (1995)),

/ 0% Vi () Yie (k) Vi ()

2+ 1)(20 + 1
= JREDCEED gy g 0 )T ) (5.20)
2+ 1)

The Clebsch-Gordon coefficients are non-zero only if m+m' = m”, and [, I', 1" satisfy
the triangle condition that [" be equal to one of [ +1',1+1"—1,--- |l = I'|. The sum
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over [" therefore reduces to a finite sum. We have

20+ 1)(2I"+ 1)

47

Clml’m’(maml) = (_i)l_l’ (_l)m (471')3\/
I+’
x Y C(LI1"50,0,00C(L 11" s =m,m! ,m! —m)
llI:‘lill|

g
Zl

Xi
20" 1 1

where all of the physical information is contained in the kernel

Kl,ll’lﬂ(|A33|,T, TI) )/l;k/’m/_m(ACiZ) s (521)

Kl,ll,lu(|AiB|,7', 7'/) = /k2dk Al(k,T)Al/(k,T,) P¢(k) ]lu(k|A$|) . (5.22)

A useful fact is that the coefficient C'(1,1’,1" ;0,0,0) vanishes unless [ 41" +1" is even.
Thus for example if [ = ', only even values of [” occur in the sum.

Now we review the calculation of the cosmic variance of the spherical harmonic
coefficients. First, let us establish the statistical properties of the coefficients ay,.
Assuming Gaussianity of the primordial potential, it follows that all of the various
N-point joint probability distribution functions for the a;,, are (complex) multivariate
Gaussians, that is

1

(2m)¥|det[R]|
N
Xexp | —3 Zal m; mz R al-mj (CB]) R (523)

ij

P [allml (2131), s Qiymy (mN)] =

DN | —

where the covariance matrix R is given by (note that each index labels both the set
of values [;, m; and also the point x; in three dimensional space):

Rij = <a’l mz(wl)al m; ($])> = Climiljmj ($i7 wj) : (5'24)

It is easiest to see why the a;,, coefficients have a multivariate Gaussian distribution
by considering all the cumulants (aj,m, (1) - - - a; .., (®ar))c for any integer M (and
any permutation of conjugated and un-conjugated factors). Using equation (5.11)
we can express these in terms of integrals of products of M factors of ¢;. Then
assuming ¢; is a Gaussian random field, and applying Wick’s theorem to obtain the
ensemble average of the product, one finds that all of the cumulants vanish except
for the the two point functions. The unique distribution which has this property is
the multivariate Gaussian above.

Thus given a cosmological model we have the p.d.f of the ensemble from which
the a;, () are drawn, and the associated ensemble average angular power spectrum
harmonics Cj(7). Then given a set of observations af, (x), these ensemble average
predictions are compared to the observed quantities C?(z) = S lag ()|*/(20+1)

m=—1
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(in practice instrument noise is taken into account). The mean square difference
between the experimental observations and the ensemble averaged theory is then
characterized by the cosmic variance

([C7 (=) - Cil@)]*) = (C7(@)*) — Ci(r)” . (5.25)

Expanding this gives

(Cr(@)?) = Y (2+1)(laf, (@) laf, (x)) . (5.26)

mm/

To evaluate the right hand side, we need to compute the ensemble average of the
product of four ay,’s:

(i (@, 7)o, (@, T (@ 7V (' 7)) = (4)" / P lrd yd ad ke

e or ke i Ra RO N (o), 7) A (o, ) v (s, ) A (R, 7))
Y, (k1) Yim, (k2) Yy, (k3)Yim, (ka) - (5.27)

Imy

The ensemble average in the integrand may be expanded

<Al(k1, T)A;(kg, T)All(kg, TI)AZ(’Q;, TI)> = Al(kl, T)Al(k'g, T)Al/(kg, TI)AZI(]C4, TI)
(0i(k1) @ (k2)i(K3)di (ka)) - (5.28)

Assuming that the primordial potential is a Gaussian random field, the expecta-
tion value of the potentials may be expanded via Wick’s theorem as

(0i(F1)0; (F2)di(Ks)b; (ka)) = (9i(K1) 9 (K2))(bi(Ks)b; (Ka))
+(0i(k1)di(ks)) (] (K2)b; (Fa))
+H(9i(k1) 95 (ka)) (0] (k2) @i(K3)) - (5.29)

Then on using (¢i(k)¢; (K')) = Py(k) 6°(k — k'), (9i(k)$i(K)) = Py(k) 0°(k + k'),
due to the second term in the equation above we get quantities like Ylm(—l%) inside
the integrand. In polar coordinates this is equal to Vi, (7 — 0, ¢+ ) = (=1)'Y},,(0, ¢)
(the transformation of the associated Legendre functions under reflection through the
origin gives (—1)*™, and the complex exponential gives another (—1)™). Thus we
get

<alm1 (ma T)afmz (CB, T) Al'ms (mla T')af'm (mla T,)> = 6m1m2 6m3m4 Cl(T) Cl’ (T,)
+ Clmll’m4 (mv ml)Cl*mgl’mg (mv ml) + Clmll’,—m3 (CB, m,)cl*mzl’,fm4 (ma ml) . (530)

With my = mo = m, and ms = my4 = m/, and allowing [ # [’ for the moment, we find
(i (@, 7)ajy, (2, 7)armw (&, 7')ag,, (2, 7))

= Cl(’/') Oll (7',) + |Clml’m’($a iBI)|2 + |Clml’,fm’($7 $,)|2 . (531)
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Now setting I' = [, € = @', and using C,ppy (T, ) = OOy Ci(7), we obtain for the
cosmic variance associated with each harmonic, (CP(x)?)

2
C(x)*) — Ci(1)” = —— Ci(1)”. 5.32
(Co@?) - G = 5 Gi(7) (53
This quantity captures how much we can expect the measured power spectra to differ
from the ensemble average.

5.2 Transfer functions

To compute Cj,prpy for a given cosmological model we need the CMB transfer function
Ay(k,7). On the large angular scales accessible via the polarization technique, the
only significant effects responsible for the temperature anisotropy which need to be
included in the transfer function are the Sachs-Wolfe (SW) and integrated Sachs-
Wolfe (ISW) effects (Sachs & Wolfe, 1967). The SW effect is the anisotropy due to
the temperature fluctuations on the last scattering surface, and the associated time
dilation effect. The ISW effect arises because, at late times, as the universe is making
the transition from the matter dominated phase into the vacuum dominated phase,
the fluctuations in the gravitational potential - on scales still in the linear regime - are
still evolving with redshift. As photons fall into and climb out of this time changing
potential they are red-shifted and thus a temperature anisotropy is generated.

We first consider the transfer function of the SW effect. This is computed by
ignoring the physics on scales comparable to the acoustic horizon at the time of
recombination, and retaining only the large scale effects. In this limit, the anisotropy
is produced solely by the variation in potential ¢ (and the consequent gravitational
redshift and time dilation effects on the photons) and photon density ¢, across the
last scattering shell, ignoring the small scale acoustic waves which give rise to the
acoustic peaks in the angular power spectrum. Using the line-of-sight integration
method (Seljak & Zaldarriaga, 1996), the SW temperature anisotropy is given in real
space by

M) = [Tavie-v) [amon)] . 63
Here Y’ is the comoving distance measured along the past light cone of the observer
at (x,7), in the direction n. The visibility function is defined by ¢(7) = e~™*("), with
Thomson optical depth mp(7) = [ dx'a(r — X)n.(T — x')or (here and elsewhere a
dot means a derivative with respect to conformal time 7).

In the Sachs-Wolfe approximation (valid on scales much larger than the acous-
tic horizon), and assuming adiabatic initial conditions, a perturbative analysis of
the equations of motion shows that 6, = —%qﬁ, and that in Fourier space the evo-
lution of the potential is given by ¢(k,7) = %@(k) (see, for example, Bashinsky
& Bertschinger (2002); Padmanabhan (2003)). The factor of 9/10 accounts for the
evolution of the transfer function between radiation and matter domination (in the
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case of adiabatic initial conditions). Decomposing the plane waves (working here in
flat space) into spherical waves, we obtain

A7) = g5 [ G =) i) (5.34)
The visibility function ¢ contains the physics of recombination. It rises rapidly during
recombination from 0 to 1, with derivative sharply peaked about the time of recom-
bination, 7, (Dodelson & Jubas, 1995). The effect of the finite thickness of the last
scattering shell can only influence the radiation field on rather small scales, so for
times well after recombination, and for low /, we may assume that recombination oc-
curred instantaneously at time 7,. In this limit we may take ( to be a delta function
centered on 7,, and the transfer function reduces to

Ak, 7) = 1—30jl[k(7 _5). (5.35)
Taking the usual power law form Py(k) = Ak"™* (n = 1 gives the scale-invariant
Harrison-Zeldovich spectrum) with an arbitrary amplitude A (with dimensions of
(¢/Hp)™ ), with the transfer function in equation (5.35) the integral in equation
(5.15) may be done analytically, yielding the well known Sachs-Wolfe expression for
the angular power spectrum at low [ and n < 3 (see for example Peacock (1999)):

/ Edk k"*52 [k(1 — 7,)]

_ 2 3 ’ n74F(3_”)F(2l+—g_l) I-n
= A(4m) (1—()) 2 2 () (25T, (r—1) ™. (5.36)

2

Cir) = A(dr) (%)2

Note that if n = 1, this expression has no time dependence. This is a manifestation
of the scale invariance property of the n =1 case.

In the general case including the ISW effect (and assuming a flat universe), the
CMB transfer function is given by a generalization of Eqn. (5.33), the line of sight
integral:

Manr) = [Tav i) |00+ on)

4 / Ly G — X)) 20(x') | (5.37)

In linear theory, the growth of the amplitude of the potential perturbations is governed
by the growth function D, (7) of the dark matter perturbation

The evolution of the potential perturbation in the adiabatic case is then given by
¢(k, ) = 350i(k) D+ (1) /a(7).

In the case of a flat universe with only non-relativistic matter and vacuum energy,
the solution for the growth function, normalized to D, = a at early times, has the
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Figure 5-2: A plot of Cy(2), including both the SW and ISW effects, normalized to
the value of the SW contibution at z = 0. The growth function was computed in
a ACDM model with (4,€2,) = (0.7,0.3). The upper solid black curve is for the
case of power spectral index n = 1, and the lower solid black curve for n = 0.9. The
dashed upper and lower curves curves show the contributions to the n = 1 case from
the ISW-ISW term and the SW-ISW interference term respectively. These two tend
to cancel. (Note that the interference term is negative, and its magnitude is plotted
here).
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simple form (Heath, 1977; Seljak, 1995):

0, +9
D.(r) = Qm\/ + aalr / X*2(q

2 3/2

where X(a) = (5.38)

Q. —|—QACL3 .

In the instantaneous recombination approximation, this leads to the following
CMB transfer function

o D,

3 9 [T ,
Bulhyr) = ik =+ [ ) g
0

5.39
10 T a ’ ( )

T—x'

where the time derivative in the integrand is evaluated at time 7 — y’.

In the kernel Ky, the product of two transfer function appears. Thus there are
three terms, a contribution entirely from the SW effect, an “interference” contribution
from both the SW and ISW effects, and a contribution entirely from the ISW effect.
Since the ISW part of the transfer function is usually negative, the interference term
tends to cancel the third term. This is illustrated in Fig. 5-2, which shows the redshift
dependence of the CMB harmonic C5 in a ACDM model with (24, ,,) = (0.7,0.3),
and various values of the power spectral index n.

5.3 Scattering of CMB quadrupole

In this section we consider the generation of polarization by scattering of the intrinsic
CMB quadrupole from electrons in a galaxy cluster, which we idealize as a concen-
trated clump of stationary electrons with a Thomson optical depth 7. The optical
depth will vary as the line of sight moves across the cluster, but here we ignore this
and take the cluster to lie on a specific angular point on the sky. We will assume that
the optical depths of each cluster are uncorrelated with each other.

The incident CMB has an intrinsic intensity quadrupole ()2 created by inho-
mogeneity at the surface of last scattering. A single scattering of the quadrupole
anisotropy generates polarization of order (Q27¢. We compute the Stokes parameters
of the scattered radiation as a function of the cluster position on the sky. The Stokes
parameters of the radiation scattered into the line of sight to the cluster are functions
of the quadrupole anisotropy in the local CMB radiation field at the cluster.

This is characterized by the coefficients as,,(x) of the spherical harmonic expan-
sion of the fractional temperature anisotropy of the radiation field, which are functions
of the spatial position of the cluster in comoving coordinates denoted @ (see §5.1 for
a description of this coordinate system). The direction vector of the line of sight from
the observer to the cluster is &. The coordinate system used is illustrated in Fig. 5-3.

In terms of the general set of coefficients a;,,(x), we may write the brightness
temperature of the incident CMB radiation field at the cluster as a function of the
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direction vector n of the incoming photon as viewed from the cluster:

I(’fl, TCMB Z Cllm lm ’fl,) s (540)

where Tcyp is given in Eqn. 4.1, and 7 = 79 — || is the conformal time of the
scattering events. Here I(f,x) is the brightness temperature (do not confuse it
with the specific intensity). Thus since the primary anisotropy is blackbody, there
is no frequency dependence in I. We may suppress the frequency dependence of
the (brightness temperature) polarization matrix and associated Stokes parameters
of the scattered photon also, since there is no energy transfer to the photons in the
case of scattering from stationary electrons. Since the primary CMB anisotropies are
blackbody, the intensity matrix of the scattered photon is also blackbody. We assume
that the incident CMB radiation is unpolarized, which is sufficient to compute the
lowest order polarization signal generated by the quadrupole anisotropy (there are
relativistic corrections to the effect described here in the case of a cluster with a
peculiar velocity with respect to the CMB, as discussed by Challinor & van Leeuwen
(2002), which turn out to be negligible).

The brightness temperature polarization matrix [;; of the radiation scattered into
the line of sight can be computed using the kinetic equation with a gain term of the
form given in Eqn. (3.44), for scattering of unpolarized radiation in the electron rest
frame and Thomson limit. The matrix /;; in direction —&, in terms of the brightness
temperature of the CMB incident at the cluster, is given by

37’(; ’ N N
Lij(x) = 1o- | AV I(R,2)[(6 — nuny)
— 8251+ (& - 0)°] + (&0 + &50,) (2 - 7)) (5.41)

where d)' is the solid angle element about the fi direction. 3

We now define a polarization basis to define the Stokes parameters of the radiation
incident at the observer from a cluster in any direction on the sky. We denote the
polarization basis vectors as é;, é; and leave these unspecified for the moment. The
Stokes parameters measured in the é;,é; basis at our position due to scattering in
the cluster at comoving position & are then (note that the terms in the second line
of equation (5.41) do not contribute):

[(a:) + Q(a:) = 2[Z]($) él,iél,j s
I(:B) — Q(:B) = QIZ](QB) éQ’Z'éQ’j y
U(:B) = QIZ](QB) él’iéQ’j . (542)

On substitution of Eqn. (5.40) we find

3The primed solid angle element df)' is associated with the unprimed direction vector 7 since we
wish to reserve df) for the polar angles of the cluster on the sky.
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Figure 5-3: Illustrates the coordinate system used to describe the generation of polar-
ization by Thomson scattering. The CMB incident on a cluster at comoving position
x, which we approximate as unpolarized, is Thomson scattered and re-radiated by
free electrons in the cluster, producing partially polarized radiation scattered into the
line of sight. At the observer position (redshift z = 0) the radiation is decomposed
into Stokes parameters with the polarization basis vectors é;, €, indicated (defined
in equation (5.52). The CMB radiation incident on the cluster at @ is decomposed
into spherical harmonics defined with respect to polar coordinates # and ¢. Only the
[ = 2 harmonics of the incident radiation field generate polarization.
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37'0

Q(a:) = — CMB Zalm /dQIY (’f),) [(éQ’ﬁ,)Q—(él’ﬁ,)Q] y
Ulz) = —3£TCMB Zalm / A Vi (R) (6 -2)(Es-1) . (5.43)

To perform the angular integral we need to expand the integrands in equations (5.43)
in spherical harmonics by expressing 71 in polar coordinates. In polar coordinates
about the £ axis, the Cartesian components of the direction vectors are taken to be:

S

(N, Ty, 11,) = (sin @' cos @', sin @' sin ¢', cos §') |
= (%, 2y, 2,) = (sinf cos ¢, sinf sin ¢, cos ) . (5.44)

=

We use the following trick *. Any spherical harmonic can be expanded in terms
of the complex quantities (21, 2, z3) = (sin @'’ sin e~ cos §').
In terms of these functions we may write 1 = ((z1 + 22)/2,i(22 — 21)/2, 23). Note

that zo = 27, 25 = 23, 2120 = 1 — 22. It is also convenient to define

e, = é,+1é,,
é. = é,—1é,. (5.45)
Then for instance we have
” o AN ” 22 . A ” ~
61")12561'€_+561'6++2361'6z (546)

The [ = 2 spherical harmonics may be written as functions quadratic in the z’s as

follows:

5 (3 1

Yoo = — 22—

20 ir (223 2) ’

/15 /15

Y2,1 = - Q 2143, YQ,—1 = g <23

115, 1 /15
Yoo = 1V o 21 Yo o= Vo 2y . (5.47)

Then expanding the integrands in equation (5.43) in the 2’s using expressions like
(5.46) and comparing ° with the expressions for Y3, above, we find the following

4See for example the discussion of spherical harmonics in Byron & Fuller (1992)
°In performing this calculation, it is necessary to use the relation 212 = 1 — 22 to eliminate one
of the coefficients (21, 22, 23).

100



manifestly real result for the integrands of @) and U:
87 <
(éy-1)* — (e,-n)* = ”? mZQ Qum(T)Yom(R)

—2(éy-)(er R) = \/% S Un(@)Vau(R) - (5.48)

The coefficients @, U,, appearing in this expression are the following functions of
the arbitrary polarization basis vectors chosen by the observer, which in turn are
functions of the cluster direction on the sky (so @, U,, are written as functions of
the cluster direction vector &, which will become explicit once a polarization basis is
chosen):

Q@) = ~[@e)—(e-e)]

Q@) = e e e - (e -ee )]

@@) = e er-(e ey, (5.49)
and

Up() = —V2(é-¢&)(e-e.),

(@) = = e en(e. e + (e &le. &)l

Up(#) = ———(6_-e1)(6_ &) . (5.50)

Also, we define the quantities with negative m by the relations

Q-m(@) = (-1)"Qn),
U (@) = (—1)"U%(z) . (5.51)

Here we see explicitly that only the quadrupole anisotropy in the incident unpolarized

radiation field generates a polarization signal, which is a well known fact that is not
obvious in the matrix formalism. ©

We specialize now to a particular choice of of polarization basis vectors. Defining

a direction vector [. , then a suitable choice is

s % X €, 5 é, — ux

e T i

6Since the integrand of the kinetic equation is quadratic in fi;, it is obvious that some combination
of the monopole, dipole and quadrupole generates polarization, but not that only the quadrupole
contributes.

(5.52)
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where 4y = & - €, = cos#, so that the Stokes parameters (), U are defined with respect
to the plane containing the €, axis and the photon direction —& (see Fig. 5-3).
Then the coefficients @Q,,, U,, are

1

Qo(&) = ﬁsinw,
i (z) = icos@sinﬁe_w,
V3
Q&) = 2—;5(1“0529)62@, (5.53)
and

Us(8) = 0,

Ui(3) = %sinﬁe‘id’,

Up(#) = —= cosfe2 (5.54)

V3

where 6 is the polar angle between @ and the é, axis and ¢ is the azimuthal angle
between the projection of  on the (é,,€,) plane and the &, axis. The Stokes pa-
rameters may now finally be expressed as a linear combination of the ag,,(x), with
polar axis €,. Angular integration picks out the five coefficients as,, of the primary
anisotropy:

Q(Q’J) - 7—C’I)O Z Qm(i)a2m(m) )

m=—2
Ulx) = 1cP Z U (&) g () (5.55)
m=—2

where Py = 4\/%TCMB (7). Note that this depends on conformal time, but the frac-

tional distortion in the Stokes parameters is redshift independent (as is the case for
all of the SZ effects). Note also that

43
Qu+iUn = 2\ 5 25 - (5.56)

Qx) +iU(x) = —2—60\/77_C’TCMB Z 12Yom (Z) azm (@) (5.57)

Thus we may write

m=—2

where Y}, are the “spin-weighted spherical harmonics” of spin s (see e.g. Hu & White
(1997)). This form is familiar from the all-sky calculations of the CMB polarization
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Boltzmann hierarchy (Zaldarriaga & Seljak, 1997).

It is useful to give here the transformation from our notation to the so-called
“Berkeley notation” for the CMB quadrupole, which is the conventional notation
used in the literature. This is defined with reference to great circle of the plane of the
Milky Way on the sky (the galactic equator). Aligning our z—axis with the normal
to this plane, the galactic coordinates are related to our polar coordinate system by
the replacement in @ of cosf by sinb, where b is the usual galactic latitude with
respect to the galactic plane, and the replacement of ¢ by [, the galactic longitude.
The dependence of the quadrupole part I(l,b) of the CMB temperature anisotropy
is written in terms of five (real) quantities @, (a € {1,---,5}), where (Lubin et al.,
1983; Bennett et al., 1992; Kogut et al., 1996):

Io(l,b) = Qi(3sin®b —1)/2 + Qysin2b cosl
+Q5sin2b sinl + Q4 cos?b cos 2l + Q5 cos® b sin 2l . (5.58)

Expressing this in terms of the [ = 2 spherical harmonics, we find that the relationship
between the complex a;, and the (); is as follows:

47
20 = EQI )

ay = —\/%(Qz—iQ?,) ;
g2 = \/%(Qél_iQE)) . (5-59)

The quadrupole can also be written in terms of a symmetric traceless tensor ();;,
Io(l,b) = Zij z;xj Qi;, where (Sazonov & Sunyaev, 1999),

Qi —@Q1/2 Qs Q2
Qij = Qs —Qi—Q1/2 Qs | . (5.60)
Q2 Q3 Q1

In terms of the @),, the Stokes parameters generated by scattering of the local
quadrupole become:

Qx) = Q—?E)TCMB(T) [Ql sin? § — ; sin 260 (Qs cos ¢ + Q3 sin @)
%(1 + cos? 0) (Q4 cos 2¢ — Qs sin 2¢)] :
Ulx) = ?TOMB(T) [— sin @ (Q2sin ¢ + ()3 cos @)

+ cos (Q4 cos 2¢ — Q5 cos 2([))] . (5.61)

103



Finally in this section, we quote the following properties of Q),,,, U,,,, which are needed
in §5.4 (these are derived using the explicit forms in Eqns. (5.53) and (5.54)):

> 1@u(@)P = 3 (@) = 3

m=—2 m=—2

2

> Q@)U () =0, (5.62)
m=—2

and

D (1) Quu(@:) Uy (&) = 0 . (5.63)

5.4 Statistics of the cluster polarization signal

Now we consider the information obtainable from measurements of the CMB polar-
ization signal (due to scattering of the CMB quadrupole) from galaxy clusters at
various redshifts and lines of sight. Assuming that the redshifts of each cluster can
be obtained, this allows mapping, in principle, of a particular linear combination of
a;, over a significant portion of our past light cone. Galaxy clusters at similar red-
shifts and on lines of sight separated by small angles will produce polarization signals
with Stokes parameters which are strongly correlated. Widely separated clusters pro-
duce uncorrelated signals — and it is the combination of these uncorrelated signals
that beats cosmic variance. In similar work, Cooray & Baumann (2003) constructed
estimators of Cy(7) (taking into account the kinematic SZ contamination of the po-
larization signal also), but did not consider the effect of statistical variation in the
polarization signal. This variation was considered by Seto & Sasaki (2000), but they
did not include the ISW effect.

Using Eqn. (5.55), the two-point correlation function (Q(x)Q(x')), of the Stokes
parameters, as defined in the basis Eqn. (5.52), due to two clusters at general comoving
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Figure 5-4: Normalized magnitude of the two-point correlation of the Stokes Q,
2Py 21 [(Q(=)Q(2'))|, where @ is taken to be at redshift z = 0 and @' is a point
at redshift z in the plane orthogonal to 2. The growth function was computed with
cosmological parameters €2, = 0.35, Q4 = 0.65, n = 1. (Note that the dip in the
interference term, which occurs at z & 3, is not a zero crossing).
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positions @, " with Thomson optical depths 7, 74 is given by *

Q@)Q) =1emePy Y Qul(@)Qh (&) Comame (x, @) (5.64)

m,m/=—2

and similarly for (U(z)U(z')) and (Q(x)U(z')).

The two-point correlation function (Q(x)Q(x')), for points lying on the same line
of sight, is shown in Fig. 5-4, which was computed with cosmological parameters
Q,, = 0.35, Q5 = 0.65, n = 1. The solid black curve is the total correlation, and
the other curves show the contributions from the SW and ISW terms, and their
interference term. Note that the interference term is negative - its magnitude is
shown here. Only the surface Sachs-Wolfe contribution has a genuine zero crossing.
The vertical dotted line indicates the time of (instantaneous) recombination. Note
that the SW part of the correlation passes through zero at redshift ~ 10, since at
redshifts higher than this x’ is in a region of the universe separated from the origin
by a comoving distance greater than ¢/(2H,), and thus the [ = 2 correlations die off
rapidly.

As ¢ — &', (agm(x)al,, (') — Co(T)0muy, therefore

Q@) = (U)) = S4B Culr)
(Q(x)U(x)) = 0. (5.65)

Thus the ensemble average polarization magnitude due to the scattering of the CMB
quadrupole is:

) = QELHEED _La (DY om. G

Toms(T)? 39\ Teus

The quadrupole Q- is conventionally defined by C, = (47/5)Q3. Thus the root mean
square polarization magnitude is given by (recall Py = 4\/%TCMB(T))

V6
(P) = V(ll(@)?) = 55 7cQ: (5.67)
as obtained by Cooray & Baumann (2003). In a ACDM model, (P) ~ 57¢ puK (at

zero redshift), so the magnitude of this signal is comparable to that of the other SZ

"These correlation functions of the Stokes parameters of the polarization signals from each cluster
are obviously not rotationally invariant quantities — they depend on the particular choice of basis
used. We note in passing that a correlation function of the polarization signals which does not
depend on the choice of basis may be obtained using polarization matrices. Given the normalized
polarization matrix of the signal from each cluster, ¢(x), the polarization part may be constructed
by defining ¢ () = ¢(x) — P(x)/2. Then the correlation function (Tr[%(a:)q?(:c’)]) is independent of
basis and contains all the relevant information. We do not develop this further here, but note that
in future work it would be preferable to use this matrix approach rather than the Stokes parameter
based approach.
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polarization effects. R R

Now the relations Eqn. (5.65) suggest unbiased estimators C*(7) and CY(r) of
Cy(7), given the measured Stokes parameters of N clusters at the same redshift z(7)
on lines of sight &; with optical depths 7¢; (i = 1,---,N), which beat the cosmic
variance limit:

9!
PiS
I
I
=3
=

Q) + Ni)* —op]
CY(r) = P2 Wi [(Ulz:) +N:)?—o}] . (5.68)

We have added to the polarization signal from each cluster a random instrument noise

component N;, assumed to be Gaussian with brightness temperature variance op for
both @ and U, in which case (N;) =0, (N?) = 03, (N7 N7) = op(1 +20;). For the
mean of these estimators to equal Cy(7), the weights W; must be chosen to satisfy

d Wird,=1. (5.69)

We will consider the simple choice

n—2
W, = —Ci (5.70)
Zj TG,

Note that n = 0 would be a bad choice since it gives more weight to clusters producing
weaker signals, reducing the signal to noise. A better choice is the uniform weighting
n=2.

The cosmic variance limit on these estimators is determined by the variances (with
X, X' indicating either @ or U)

~ 9_
Var C5' (1) = 15 DWWy (X () + N (X () + Nj)?)
ij

—op(X (@) + N;)?) — op(X () + N;)*) +op] . (5.71)
The sum over ¢, j may be broken into a contribution from clusters at the same location,
Var; (X)), a contribution from clusters at seperate locations, Vary(X, X'), and the noise
variance, N (W;):
Var C;X (1) = Var, (X) + Vary(X, X) + N(W;) , (5.72)
where

1
Var; (Q) = Py 'Cy(r Z WQTCZ [ (1-— 7 sin” 26;)%|

Var, (U) = P, 0y (1 Z WiTé [1+ cos® 26;] (5.73)
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and

2
Vary (X, X') Z Wi W; TCZTCJ Z X, (&) X% L (&) Comyom, (T4, )
1, j>1 mims
0 2
3 YW Wy wEméy | Y (1) Xy (£) X, (25) Comoms (@i 25)| , (5.74)
1, J>1 m1msa
and
N(W;) = —P ZW2 { 2720y (7 )0123+0}13} . (5.75)

Here we used the 4-point correlation function from Eqn. (5.31), the relations in equa-
tions (5.62), and the fact that Copmom (€4, ;) = Sy Ca(7). Note that the variances
are functions of the angular positions of the clusters on the sky, which is due to the
specific choice of polarization basis for the Stokes parameters.

In the simplest case all clusters have the same optical depth 74, and the weights
given in equation (5.70) are all equal, W; = 7;5?/N. This gives

If all of the correlations Cyyo m (24, ;) with ¢ # j vanish, then only the first terms
on the right hand sides of equations (5.73) remain. If however the cluster positions
x; are close enough that the these correlations approach Cy(7), then the O(N?)
terms in the Vary(X, X') terms combine to swamp the first terms. Thus in order to
beat cosmic variance by a factor of O(N~'/2) we need N sets of clusters which are
mutually uncorrelated (as pointed out in a qualitative discussion by Kamionkowski
& Loeb (1997)).

The number of uncorrelated regions available increases as the redshift increases,
since the comoving region surrounding each cluster outside of which the polarization
is approximately uncorrelated with that produced by the cluster is smaller at higher
redshift. This is because smaller comoving scales contribute to the [ = 2 harmonic
of the CMB on the sky at higher redshift, i.e. Cy(7 < 79) depends on fluctuations of
smaller scale than Cy (7).

At very low redshift, any cluster will be correlated with any other, and we get
back the usual cosmic variance constraint. In other words, we can beat the cosmic
variance on Cy(7 < 7p), but not on Cy(7p), today’s quadrupole.

To demonstrate the reduction in cosmic variance, we first combine the ) and U
measurements to obtain an improved estimator of Cy(7). Taking a linear combination
of 6262 , égf yields an improved estimator,

CP(r) = aC% )+ (1—a)CV(r), (5.77)
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Figure 5-5: Reduction in cosmic variance with clusters at redshift z.
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with 0 < o < 1. This has variance

Var 65(7) = o*Var C9 (1) + (1 — a)*Var 65(7)
+20(1 — @) Cov(CE,CY) . (5.78)

It is easy to see that the covariance Cov(éZQ ,65] ) is zero because of the relations
in equations (5.62), which imply Vary(Q,U) = 0. Thus the optimum value of « is
trivially o = 1/2.

In Fig. 5-5 we show the limits of the accuracy to which C'; may be measured via
polarization measurements from a set of clusters all at the same redshift, but sprinkled
in random directions on the sky (in cosmology €, = 0.35, Q24 = 0.65, power spectral
index n = 1). The filled squares indicate 55, the variance of the average estimator
for Cy, (C$ + CV)/2, for 10 and 100 clusters as indicated. This is expressed as a
fraction of the Sachs-Wolfe contribution to C5, which is independent of redshift for
n = 1. The noise term is not included here.

Only the Sachs-Wolfe contribution to the estimator is shown here. ® The horizon-
tal dashed line at \/% ~ (.63 indicates the cosmic variance limit on a single CMB
sky given in Eqn. (5.32).

As z — 0, the estimator variance slightly exceeds the cosmic variance limit given a
single CMB sky — clusters with overlapping correlation spheres as z — 0 are no more
useful than a direct measurement of the quadrupole on our sky by e.g. WMAP. In fact
our estimator of Cs is worse than a direct measure — but an optimal estimator could
be constructed which would yield all of the ay,, at z &~ 0 from cluster measurements
at various points on the sky.

As z — o0, the estimator variance approaches 0.923/\/N. This may be derived
by averaging the estimator variances in Eqn. (5.73) over angles in the N — oo limit,
assuming the signals from each cluster are uncorrelated in this high redshift limit.

At z = 2, with 100 clusters, the cosmic variance limit on determination of C5 has
been reduced from about 60% of the ensemble average to 30%. Thus with a reasonably
large number of clusters this estimator allows much more precise constraint of C; than
is possible with one CMB sky.

8The general computation with the ISW effect included was considerably more difficult to achieve
numerically, so we computed the simplified case with only the SW contribution. But note that the
ISW constribution will become negligible at sufficiently high z, before 25 begins to dominate.

110



5.5 Discussion

We have developed a statistical theory of the part of the polarization signal in the
CMB in the direction of galaxy clusters produced by scattering of the CMB temper-
ature quadrupole. We have shown explicitly that it is possible to beat the cosmic
variance limits using indirect information about the last scattering surfaces of dis-
tant observers obtained via these polarization measurements, and thus constrain the
C5 harmonic of the CMB as a function of redshift with greater statistical accuracy.
A more accurate measurement of Co(7) would provide a test of the low quadrupole
amplitude observed by WMAP, thereby making a key test of standard cosmology.

In the standard AC DM model the ISW effect produces a small (1 —2%) bump in
CMB harmonic Cy(7), which is swamped by the high cosmic variance at low redshift.
However the ISW effect produces a significant feature in the two-point correlation
function of the Stokes parameters which might be detectable. Detection of the ISW
effect would provide additional information about the acceleration of the universe
and the dark energy. We also note that this method is a rather sensitive probe of
deviations from the scale-invariant power spectrum, because if n # 1 then the Sachs-
Wolfe contribution to Cy(7) either grows or decays rapidly with conformal time.

The procedure for getting around the cosmic variance limit that we have outlined
is something of an idealization. We assumed that we have the polarization signals
from many clusters at the same redshift, and we also ignored noise. In practice, sep-
arating the quadrupole signal from the other SZ signals will be a major experimental
challenge. However the signal to noise may be increased to some extent by combining
signals from clusters nearby in direction and redshift, since the signal from sufficiently
nearby clusters is strongly correlated.

Given actual data of cluster polarizations, optical depths, and redshifts, the op-
timal procedure for constraining the cosmological parameters {Q,,, Qx,n,w} (w
parametrizes the equation of state of the dark energy) involves maximizing the like-
lihood function for the parameters. This may be constructed from the joint p.d.f of
the quantities Q(x;). By the same argument used for the ay,, this p.d.f has Gaussian
form:

P[Q(Zlaa}l)a"' 7Q(ZN7§3N)|Qm7QA7n7w] =

(2w>N1|det[R1| exp | =3 - Q)R Qw) | (579)

with covariance R;; = (Q(x;)Q(x;)) (and similarly for the general case with () and
U). The comoving vectors are known functions of the parameters given the redshifts
and direction vectors, &; = X (2z;, O, Qn, 0)&;.

Now we consider to what extent the this method can put better constraints on the
primordial power spectrum. In principle the error bar at wavenumber corresponding
to [ = 2 in the primordial power spectrum can be reduced by roughly the same
factor as the measurement of the harmonic Cy(7) (see Eqn. (5.81)). The | = 2
harmonic of the CMB anisotropy at redshift z = 0 contains contributions from a broad
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Figure 5-6: Illustrates that the angular scale of a given comoving k-mode subtended
on the CMB sky of an observer at high redshift is greater than the angular scale of
the same k-mode on the CMB sky of an observer at low redshift.

range of wavenumbers of order ¢/H,. But at higher redshifts the CMB quadrupole
probes the potential on a smaller last scattering surface than at redshift z = 0.
Thus measurements at higher redshift constrain the primordial power spectrum at
higher wavenumber (see Fig. 5-6). The comoving scale on which power is probed
by our method at a conformal time 7 is given roughly by comoving wavenumber
ky =1/[c(r, — 79)] (with [ = 2).

To obtain a measure of the wavenumber being probed, there is useful method
(Tegmark & Zaldarriaga, 2002) for relating the CMB power spectrum at a given
epoch directly to the primordial power spectrum, given the CMB transfer functions.
This method yields an estimate of the range of wavenumbers &£ which contribute to
each [ value. The power in the [ = 2 mode at time 7 yields the window function:

(47)*AF (k, 7) Py (k) &

Pk|r,1) = S , /_Oo Pklr,1) dlnk =1, (5.80)

where the transfer function is computed with some assumed model. For estimation
of the power at k£ modes corresponding to [ < 20, the Sachs-Wolfe transfer function is
sufficient. The window function obtained using the Sachs-Wolfe transfer function is
shown for the model h2Q, = 0.141,Q, = 0.71,h = 0.7,n = 1 at two redshifts in Fig.
5-7. The k value is then plotted at the median k; of the window function with an
error bar extending from the 20th to the 80th percentile (which corresponds to full-
width-half- maximum in the Gaussian case). The range of wavenumbers contributing
to the [ = 2 harmonic at a given redshift is shown in Fig. 5-8. An estimate of the
primordial power at this wavenumber is then

k:Cy(7)
[ kA2(k,7) k3 dInk

Py(kilr, 1) = (5.81)

This gives a reasonable estimate because the transfer function A; is quite stronly
peaked at k; = [/[c(r, — 10)]. Crudely, A?(k,7) ~ Ad(k — I(T — 7,)~'), yielding the
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Figure 5-7: The window function defined in equation (5.80), at two different redshifts.
From left to right, the curves are for multipoles [ = 2, 8, 32.

ensemble average (Py(k)) =~ (ki/ki)Ps(k) ~ Ps(k). The fractional variance in the
estimator P¢ is the same as the fractional variance in the estimator Cl( ) obtained
from polarization measurements.

Thus at each redshift z we can in principle reduce the cosmic variance error bars
in the inferred primordial spectrum by the factor shown in Fig. 5-5 at the range of
wavenumber shown in Fig. 5-8. The gain will be greater at smaller scales which
correspond to contributions from higher redshift.

It remains to be seen if this technique will be a useful cosmological probe in
practice, but we are optimistic in light of the recent progress in the detection of the
primary CMB polarization signal (Bennett et al., 2003; Kogut et al., 2003).
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Appendix A

Symmetry of the Klein-Nishina
matrix element

It is apparent that the square of the invariant amplitude for the Klein-Nishina formula
should be symmetric under the interchange of the initial and final states, but it is
written in a way that is very asymmetric. Here we show that it is possible to write
the K-N invariant matrix element in a way that is manifestly symmetric between the
initial and final states. ' One might think that the non-invariance of the ¢; - €; term
is perhaps canceled by the noninvariance of the rest, but it turns out that it is much
simpler than that. Each part is separately symmetric.

The matrix element for Compton scattering is usually written in an asymmetric
way. One can call the initial and final electron 4-momenta ¢; and py, and the initial
and final photon 4—momenta:q,» and py. Using conventions for which the Lorentz dot-
product is defined as time minus space, one defines p; zjqz- jf]l and p, = py 3qz That
is, in the initial rest frame of the electron, p; and p, are the initial and final photon
energies, multiplied by m., the mass of an electron. One also defines polarization
vectors for the photons to have zero time-components in this frame, so ¢; -q; = 0,
€7 -¢i = 0. The differential cross section is then

o _ o (”—) e ()

aQ 4m?2 ;1
where
Y R A L | P 2)
Pt P2

The invariant matrix element M2 should be symmetric under the interchange of initial
and final states, 7 <+ f, but it does not look that way. However, it really is. To see
this, note that conservation of 4-momentum implies that

QG+ G =Dpr+pr - (3)

Squaring both sides, and using the fact that ?]f = P and:q? = P}, one has immediately

!This appendix is based on a private communication from A. Guth
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that

@@ =Dr Dy (4)
so in fact p; is invariant under ¢ <> f. Similarly conservation of 4-momentum implies
that

G —Pr="0r =4 » (5)
and squaring implies that . B
G- Py =Df G (6)
SO po is invariant under i <> f.

The only remaining problem is the (¢5-¢;)? term, which is not manifestly invariant,
since the €’s were both defined to have vanishing 4th components in the initial rest
frame of the electron, so €;-¢; =0, €7 -¢; = 0. One can use an arbitrary gauge for the
polarization vectors, however, if one explicitly constructs the gauge transformation
satisfying € -¢; = 0 before calculating the dot product. That is, if €; does not satisfy
€; - ¢; = 0, then one constructs

—
—

€ = e — S, (7)
q; - q;
and .
€U L
6,f:ef__,f:;pfa (8)
Py -q;

S0 € :qz = €} :qz = (. To continue, it is useful to define a more compact notation. Let

Aa,B =€y " pg (9)
Bog = €a - kg . (10)

where o and [ can be either 7 or f. Each polarization vector is orthogonal to its
corresponding momentum, so B;; = Byy = 0. In this notation Eqgs. (7) and (8)
become

A“—»
G =€~ —0 (11)
y4!
and 4
¢ =€ — Ly 12
[ el (12)

So, for polarization vectors ¢; and ey written in an arbitrary gauge, the equation for
M? must be written by replacing ¢; - €; with

ApiBiy  AiByi n AjiAps

D2 y4! P1D2 / ( )

I_ .. j—
i €p =€ - €f

To proceed, we want to use some identities that follow from energy-momentum con-
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servation. Dotting both sides of Eq. (3) with ¢;, one finds

Aji = Biy + Aiy (14)
and dotting both sides with €; (and reversing the sides of the equation) gives

App = Byi+ Ayi - (15)

Since one has 6 dot products — A;;, Aj¢, Agi, Agp, Bif, and By; — and two constraints
(Egs. (14) and (15)), one can eliminate two of the dot products from all expressions.
‘The simplest result seems to arise from eliminating the B’s. One also needs to simplify
Qi - Py, which can be done by dotting Eq. (3) with p:

p2+qi-pr=p1,
SO .
Gi-Pr=p1—D2 - (16)
Finally, substituting into Eq. (13),
Api(Ai — A Aii(App — Api) | AuApi
i ) AalArr = Ap) | £ oy — o)

D2 2 P1p2
1
Apdip  Audpy 1

P2 P1

:Gi'ﬁf—i‘

Written in this form, the result is manifestly symmetric under the i <+ f interchange,
and it is valid for polarization vectors ¢; and e; written in an arbitrary gauge. One

can check that the expression vanishes if ¢; is replaced by :qi, or if €7 is replaced by
Py
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Appendix B

Monte Carlo simulation of
polarized radiative transfer in an
inhomogeneous cloud

Here we consider how to set up a simulation of the Thomson scattering of radiation
emergent from a point source through an inhomogenous cloud of electrons within
which the source is embedded. This parallels the analytic calculations of Murphy &
Chernoff (1993), except with the Monte Carlo method we can easily study the effect
of more than one scattering and multiple point sources. A Monte Carlo calculation
of Thomson scattering of polarized light in a clumpy cloud using a Stokes parame-
ter approach is described in Kishimoto (1996), and it is instructive to compare the
complexity of that scheme to the matrix approach described here.

In the most physical picture of Monte Carlo radiative transfer, simulated photons
are generated at some source within the cloud (or injected at the boundary), and
allowed to scatter through the cloud until they are absorbed or strike the boundary
(Witt, 1977; Code & Whitney, 1995; Gordon et al., 2001). The photons which strike
the boundary emerge from the cloud in any direction. But we wish to make a projected
image of the scattered liga ht as seen by an observer in the far field in a given direction.

To do this, the flux of photons emerging in a fixed direction can be computed by
considering each scattering point as a secondary source, of intensity weighted accord-
ing to the probability of a photon reaching the observer (Yusef-Zadeh et al., 1984).
An image of the intensity and polarization of the radiation escaping along the ob-
server’s line of sight can then be formed by accumulating the normalized polarization
matrices of escaping photons in a grid of bins lying in the projected plane normal to
the line of sight.

To generate an image in the far field, appropriate for example in the case of
observations of a galaxy cluster, the correct procedure is to propagate parallel rays
from each secondary source. The resulting image will be equivalent to that seen by an
observer with a lens in the far field. If the cloud is close enough to the observer, then
there is a perspective effect which can be accounted for by projecting rays directly to
the observation point rather than along a common viewing direction, but in this case
the emergent photons must be weighted by the solid angle subtended by the bin on
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the projected face through which the outgoing ray passes.

We now describe the procedure used to generate the images in Fig. 1-1. We assume
that Thomson opacity values are provided on a cubic grid, and the line of sight to
the observer is parallel to z. A photon is generated at the position of the point
source (if there are multiple sources, photons are created at each source in numbers
proportional to the desired intensity of each source). We choose a random direction
for the photon, n; and assign it the normalized polarization matrix (assuming that
the source is emitting unpolarized light) ¢;(n;) = P(n;)/2. We sample the optical
depth 7 to scattering by choosing a random deviate £ and setting 7 = —In(1 — &)
(this correctly models the probability of scattering at a given point along the ray;
see e.g. Molnar & Birkinshaw (1999)). The opacity is then integrated along the
photon direction until either this optical depth is reached, or the photon hits the cube
boundary. The value of the opacity x(x) at each point is computed by interpolation
of the opacities at the corners of the grid cube surrounding .

If the photon hits the boundary before reaching the pre-decided optical depth, it is
discarded. (Thus we discard photons which arrive at the observer without scattering.
But in the far field case, only rays that lie exactly along the line of sight would arrive at
the observer, so it is only really of interest to compute the scattered radiation field).
If the photon reaches the pre-decided optical depth at some point without leaving
the cube, we cause it to scatter at that point. First we generate the normalized
polarization matrix ¢o of the photon scattered towards the observer generated by
the secondary source at the scattering position:

_ P)i(n) P(2)
$o(z) = Tr [P(z)¢i(n;)]

We compute the optical depth 7o for the photon to be re-emitted and escape from
the cube along the z-axis towards the observer, and add the following polarization
matrix to the appropriate projected image bin:

(B.1)

op(z) =e ©do(z) . (B.2)

Note that this correctly accounts for the probability of the photon scattering into the
line of sight (the phase function). Then a new photon direction ng is computed, by
rejection sampling from the phase function ®(n, ¢;(n;)) (given in Eqn. (3.19)). The
polarization matrix of the scattered photon is computed:

P(n,)p(n;)P(n,)
Tr [p(n;) P(ns)]

The photon is allowed to re-scatter multiple times, binning the secondary radiation
produced at each scattering, until the photon it leaves the cube. Then a new photon
is generated at the source and the whole procedure repeated. The binned values are
normalized at the end of the simulation to obtain the observed intensity.

In Fig. B-1 we show the results of applying this procedure to compute the polarized
radiation produced by two point sources of equal luminosity, in the same density cube

¢s (ns) -

(B.3)
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Figure B-1: Radiation Thomson scattered into the line of sight from two point sources
embedded in an inhomogeneous cloud of electrons. In the various panels we show: the
total intensity I (upper left), the magnitude of the polarization IT (upper right), the
Stokes ) parameter (lower left), the Stokes U parameter (lower right). The Stokes
parameters are defined with respect to the axes of the projected face. The intensity
is plotted on a log scale, the polarization and Stokes parameters on a linear scale.

used to generate Fig. 1-1. The point sources are located at opposite ends of a line
passing through the center of the cube perpendicular to the line of sight and parallel
to one of the cube sides. 4 x 107 photons were generated, distributed equally between
the point sources. The average number of scatterings undergone by each photon in
the simulation was 1.6.
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