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Abstract

Hybrid atomistic–continuum formulations allow the simulation of complex hydrody-
namic phenomena at the nano and micro scales without the prohibitive cost of a fully
atomistic approach. This is achieved through a domain decomposition strategy whereby
the atomistic model is limited to regions of the flow field where required and the continuum
model is implemented side–by–side in the remainder of the domain within a single computa-
tional framework. The current work is focused on arguably the most critical elements of any
hybrid formulation: the atomistic–continuum coupling method and the imposition of con-
tinuum boundary conditions on the atomistic subdomain. The relative merits of different
approaches for both are delineated and demonstrated using sample test problems.

For the case of incompressible steady gaseous flows a hybrid formulation is developed
using a finite element method for the continuum subdomain and the direct simulation Monte
Carlo (DSMC) method for the atomistic subdomain. The Schwarz alternating method is
used to couple both subdomains using an overlap region across which the successive ex-
change of Dirichlet boundary conditions yields a steady state solution. This approach has
the advantages of decoupling both length scales and time scales of the atomistic and contin-
uum solvers leading to superior performance over conventional explicit schemes. Continuum
boundary conditions are imposed on the atomistic subdomain using the Chapman–Enskog
distribution function in conjunction with particle reservoirs. A driven cavity test problem
shows convergence in O(10) Schwarz iterations for flow Reynolds numbers O(1).

The Schwarz method is also, for the first time, extended to couple unsteady hybrid
incompressible flows. Tests for an impulsively driven Couette flow highlight the versatility
of this approach to advance solutions to arbitrary times through appropriate interpolation
of Dirichlet boundary conditions. Techniques are also developed using limited ensemble av-
eraging of the atomistic solution to realize significant computational savings over a standard
ensemble averaging process while maintaining the same variance reduction.

Finally an unsteady compressible hybrid formulation utilizing Adaptive Mesh and Al-
gorithm Refinement (AMAR) technology is described. DSMC is used to model the atomistic
regions on the finest grid of the adaptive hierarchy. The continuum flow is solved using a
second order Godunov scheme. New gradient–based tolerance parameters are developed to
provide robust detection and tracking of concentration diffusion fronts and stationary and
moving shock waves. Extension of AMAR to binary gas mixtures is also completed and
demonstrated using a binary gas shock wave test problem.

Thesis Supervisor: Nicolas G. Hadjiconstantinou
Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

The objective of this Chapter is to give an introduction to hybrid atomistic–continuum

formulations and their purpose. While the current work is focused on gaseous systems,

liquid systems will also be described briefly for completeness. The limitations of current

hybrid formulations are then described and a set of research questions outlined. Finally the

key contributions from this work is summarized together with the thesis structure.

1.1 Background

The physics of fluid phenomena span a wide range of length scales from the atomistic

through the atmospheric. Two parallel formulations exist to predict the gas flow behavior

that spans these length scales; the discrete or atomistic formulation and the continuum

formulation. As shown in Figure 1-1 the range of validity of each formulation can be

mapped with respect to a non–dimensional length scale, the Knudsen number, Kn = λ/L

where λ is the atomistic mean free path (= 4.9 × 10−8m for air) and L is a characteristic

dimension.

Design tools based on continuum formulations are traditionally preferred for engineer-

ing applications due to their computational efficiency but are increasingly reaching their

limit of applicability especially within the operating environments typical of novel nano

and micro-electro-mechanical systems (N/MEMS). Ducts of width 100nm or less which are

common in such applications correspond to Knudsen numbers of order 1 or above [15].
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Figure 1-1: The Knudsen number limits on hydrodynamic formulations. Adapted from [20].

The Knudsen number for Helium leak detection devices and mass spectrometers can reach

values of up to 200 [87]. Also material processing applications such as chemical vapor de-

position and molecular beam epitaxy involve high Knudsen number flow regimes [26]. The

assumption of a fluid continuum deteriorates not only with increase in Knudsen number

but also in the vicinity of material interfaces and sharp gradients. In particular continuum

formulations for high Mach number moving shock waves are reported to generate spurious

post-shock oscillations [10, 98].

Figure 1-2 depicts an alternate view of the effective limits of the continuum formulation

with respect to characteristic dimension and gas density ratio (here δ = inter–atomic spacing

and d = diameter of atomistic collision cross-section). This limit map shows the continuum

formulation to be borderline at the micron scale even at standard temperature and pressure

(density ratio = 1). The errors resulting from the use of a continuum formulation can

therefore be significant. For example, the load capacity of a hard–drive mechanism predicted

by continuum equations at standard temperature and pressure and Kn = O(1) is in error

by more than 30% [34, 4]. While greater accuracy can be obtained over a broader range

of length scales using an atomistic formulation, there are practical limitations caused by

the substantial computational overhead required for a Molecular Dynamics (MD) or direct

simulation Monte Carlo (DSMC) atomistic simulation approach. A significant challenge

therefore exists to develop accurate yet efficient design tools for gas flow modeling at the

nano and micro scales.

In response to this challenge, “hybrid” atomistic–continuum simulations have been
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Figure 1-2: Effective limits of the continuum formulation based on density ratio and system
characteristic dimension. no, ρo are the number and mass densities at standard
temperature and pressure. Adapted from [20]. Reproduced with help [44].
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proposed as a novel approach to model hydrodynamic flows across multiple length and time

scales. These hybrid approaches limit atomistic models to regions of the flow field where

needed and allow continuum models to be implemented side–by–side in the remainder of

the domain within a single computational framework. A hybrid method therefore allows the

simulation of complex hydrodynamic phenomena which require modeling at the microscale

without the prohibitive cost of a fully atomistic calculation.

1.2 Development of a Hybrid Scheme

Over the years a fair number of hybrid simulation frameworks have been proposed. Original

hybrid methods focused on dilute gases [90, 91, 31, 51, 76], which are arguably easier to

develop than their liquid counterparts mainly because boundary condition imposition is

significantly easier in the former. The first hybrid methods for liquids appeared a few years

later [69, 47, 48, 33]. Numerous hybrid schemes have also been proposed and demonstrated

for solids [1, 77, 82]. All these initial attempts have led to a better understanding of the

challenges associated with hybrid methods.

To a large extent, the two major issues in developing a hybrid method is the choice

of a coupling method and the imposition of boundary conditions on the atomistic simu-

lation. These two can in general be viewed as decoupled. The coupling technique can

be developed on the basis of matching two compatible and equivalent hydrodynamic de-

scriptions over some region of space and can hence borrow from the already existing and

extensive continuum–based numerical methods literature. This is further discussed in Sec-

tion 1.2.1. Boundary condition imposition can be posed as a general problem of imposing

macroscopic boundary conditions on an atomistic simulation. This is a very challenging

problem that has not yet been resolved. Continuum boundary condition imposition on the

atomistic subdomain is discussed in Section 1.2.2. Atomistic boundary condition imposition

on the continuum subdomain is generally well understood, as is the process of extracting

macroscopic fields from atomistic simulations (typically achieved through averaging).
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1.2.1 Atomistic–Continuum Coupling

The choice of coupling procedure is one of the most important aspects of hybrid method

development. Although not originally realized, it is intimately linked to the nature of the

flow (elliptic/hyperbolic) just like in continuum–only numerical methods. Unfortunately,

significant confusion has resulted regarding the relative merits and applicability of different

coupling approaches.

Hybrid atomistic–continuum coupling belongs to the field of heterogeneous domain de-

composition [73]. This is a generalization of the classical, homogeneous domain decomposi-

tion approach in which the same kind of problem occurs in each subdomain [74]. Examples

include the propagation of electromagnetic waves in heterogeneous media with different

conductivity coefficients [8] and fluid–structure interaction between the action of blood flow

and compliant vessel walls [71]. Multiple non–overlapping and/or overlapping domains

Ωi, i = 1...n can be utilized to partition the complete computational domain Ω. Common

to all decompositions is the problem of coupling solutions across a shared interface Γ. A

wide range of numerical formulations have been proposed which utilize both state variable

(Dirichlet) and flux variable (Neumann) boundary conditions and combinations thereof [43].

One of the most popular techniques is that of explicit time coupling that lends itself natu-

rally to coupling hyperbolic conservative formulations by matching fluxes. A second type of

approach uses exchange of state properties or fluxes to achieve implicit (in time) coupling

to either given times for time–dependent problems or steady states in steady problems. In

this thesis prototypical examples from these two general classes of coupling methods are

used to illustrate and investigate their relative advantages and general characteristics in the

context of hybrid atomistic–continuum formulations.

It is important to realize that a particular coupling procedure is not the objective but

a means to obtain a hybrid method. In other words, just like in continuum–only numerical

methods, the flow physics dictates both a) the use of say, a compressible or incompressible

formulation in the continuum subdomain (the atomistic description captures both limits

automatically) and b) the coupling method that best matches the characteristics of the

mathematical formulation. Considerations which influence the choice of coupling method

is expanded on below under the assumption that the hybrid method is applied to problems
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of practical interest and therefore the continuum subdomain is appropriately large. The

discussion below focuses on time scale considerations that are more complex but are equally

important to limitations resulting from length scale considerations, such as the size of the

atomistic region(s).

It is well known [94] that the time step for explicit integration of the compressible

formulation, ∆tc, scales with the physical time step, ∆th = ∆xc/U (which is in balance

with the physical time scale L/U), according to

∆tc ≤ M

1 + M
∆th (1.1)

where ∆xc is the continuum grid spacing, U is a characteristic velocity scale and M is the

Mach number. As the Mach number becomes small, the well–known stiffness problem arises

whereby a) numerical efficiency degrades due to disparity of the time scales in the system

of equations and b) the accuracy of the compressible solution degrades due to mismatch

of magnitudes between fluxes in the original equations and the corresponding terms in the

numerically added artificial viscosity [97]. For this reason, when the Mach number is small,

the incompressible formulation is often used which allows integration at the physical time

step ∆th. In the hybrid case, matters are complicated by the introduction of the atomistic

integration time step, ∆tm, which is at most of the order of ∆tc (for some cases in gases)

and in most cases significantly smaller (liquids). One consequence of Equation (1.1) is that

as the global domain of interest grows, ∆th grows and transient calculations in which the

atomistic subdomain is explicitly integrated in time using ∆tm become more computation-

ally expensive and eventually infeasible. The limitation of using a compressible formulations

for incompressible flow fields has however not been evident to date since the test problems

used for hybrid scheme verification consist of small continuum subdomains and small to-

tal integration times; neither of these assumptions hold in practical flow problems where

hybrid formulations should ideally be applied. The severity of this problem increases with

decreasing Mach number and makes unsteady incompressible problems very computation-

ally expensive. New integrative frameworks which coarse grain the time integration of the

atomistic subdomain are therefore required.

Fortunately, for low speed steady problems implicit methods exist which provide solu-
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tions without the need for explicit integration of the atomistic domain to the global problem

steady state. The particular method developed here is known as the Schwarz method and is

described shortly. In the variant used in this thesis coupling is achieved by exchange of state

variable boundary conditions. This is preferable because, as discussed later, the relative

error due to statistical sampling in flux quantities is higher than the error in state variables.

Although other iterative methods based on both state variable and flux variable exchange

exist and may be preferable in some cases, we find that the Schwarz method suffices for our

purposes and serves as a good example of implicit techniques for the discussion purposes of

this thesis.

Note that compressible formulations may still be used in the continuum subdomain for

low speed flows. In fact, preconditioning techniques which allow the use of the compressible

formulation at very low Mach numbers have been developed [94]. Such a formulation can,

in principle, be used to solve the continuum problem while being coupled to the atomistic

simulation via an implicit approach. What should be avoided is a time–explicit coupling

procedure for solving essentially incompressible steady state problems. This becomes es-

pecially acute when the continuum subdomain is significantly larger than the atomistic

subdomain, i.e. situations for which hybrid schemes should practically be applied.

On the other hand, Schwarz–type implicit techniques based on the incompressible

physics of the flow require a fair number of iterations for convergence (O(10)). These

iterations require the re–evaluation of the atomistic solution. This is an additional compu-

tational cost that is not shared by explicit time coupling. At this time, the choice between

a explicit formulation or a Schwarz–type implicit formulation for incompressible unsteady

problems is not clear and may be problem dependent. Despite the fact that as L grows the

advantage seems to shift towards Schwarz–type methods, recall that from Equation (1.1),

unless time coarse–graining techniques for the atomistic subdomain are developed, large,

low–speed, unsteady problems are currently too expensive to be feasible by either method.

These issues are investigated further in Chapter 5.

An additional consideration must be made regards the choice of state variable or flux

variable based coupling formulations vis-á-vis noise concerns related to the atomistic solu-

tion. The flux–based formulation suffers from adverse signal to noise ratios in connection

with the averaging required for imposition of boundary conditions from the atomistic subdo-
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main to the continuum subdomain. In the case of an ideal gas it has been shown in [50] that,

for the same number of samples, flux (shear stress, heat flux) averaging exhibits relative

noise Ef , which scales as,

Ef ≈ Esv

Kn
(1.2)

where Esv is the relative noise in the corresponding state variable (velocity, temperature)

which varies as 1/
√

(number of samples). Here Kn = λ/L is the Knudsen number based

on the characteristic length scale of the transport gradients, L, and λ is the mean free

path which is expected to be much smaller than L since, by assumption, a continuum

subdomain is present. It thus appears that coupling using flux variables will be significantly

disadvantaged in this case since 1/Kn2 times the number of samples required by state–

variable averaging is required to achieve comparable variance reduction in the matching

region where Kn � 1.

In the remainder of this Section, the Schwarz alternating method and time explicit

coupling methods are described further.

The Schwarz Alternating Method

The Schwarz alternating method is a coupling approach borrowed from the field of domain

decomposition [74]. The basic features of this coupling method are illustrated in Figure 1-3.

Within this coupling framework, an overlap region facilitates information exchange between

the continuum and atomistic subdomains in the form of Dirichlet boundary conditions. A

steady state continuum solution is first obtained using boundary conditions taken from the

atomistic subdomain solution. At the first iteration this latter solution can be a guess. A

steady state atomistic solution is then found using boundary conditions taken from the con-

tinuum subdomain. This exchange of boundary conditions corresponds to a single Schwarz

iteration. Successive Schwarz iterations are repeated until convergence, i.e. until the solu-

tion in the two subdomains are identical in the overlap region. The Schwarz procedure is

guaranteed to converge for elliptic problems [61], and has recently been shown to converge

for finite but sufficiently small Reynolds numbers [62]. The significant advantage of the

exchange of boundary conditions in the above described manner is that time scales can
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Figure 1-3: The Schwarz alternating method in 1–dimension.

be decoupled since only steady state solutions are required from each subdomain. Hence

the atomistic and continuum subdomains can be advanced at a locally optimal time step.

Most importantly, steady solutions to large problems (for which explicit time integration

at the atomistic scale is impractical) are feasible since the time required for the atomistic

subdomain to reach steady state is small and hence integration of the atomistic subdomain

to this time is possible.

The use of the Schwarz method for hybrid schemes was first described by Hadjicon-

stantinou and Patera [47] and was used to couple a Molecular Dynamics description of a

dense fluid with a Navier–Stokes continuum flow solver. More recently Aktas and Aluru [2]

use the Schwarz method for the simulation of flow through micro machined filters. These

filters have sufficiently small passages such that an atomistic description is required to sim-

ulate the flow through them. Depending on the geometry and number of filter stages the

authors report computational savings ranging from 2 to 100.

The use of the Schwarz method to obtain an implicit solution to steady state problems

is not only significantly more efficient than an explicit time march, but also allows con-

tinued time integration of the atomistic subdomain for variance reduction purposes. This

is particularly important for low speed flows where the signal to noise ratio is significant.

Additionally the Schwarz coupling approach will have lower susceptibility to noise as only

state–variable averaging is required.

33



Figure 1-4: Atomistic–continuum coupling using flux conservation. The atomistic subdomain is
simulated using direct simulation Monte Carlo (DSMC) in this example. Adapted
from [56].

Explicit Coupling Method

Atomistic–continuum coupling may also be achieved by explicit time integration of fluxes

across the atomistic–continuum interface. This is illustrated schematically in Figure 1-4.

The atomistic fluxes are imposed on the continuum subdomain by the summation of mass,

momentum and energy of particles that cross the atomistic–continuum interface. Similar

bookkeeping is performed to impose the continuum fluxes on the atomistic subdomain by

utilizing particle reservoirs that overlap with the continuum subdomain. Particle reservoirs

are discussed in Section 1.2.2.

The Adaptive Mesh and Algorithm Refinement (AMAR) compressible hybrid formu-

lation by Garcia et al. [36] pioneered the use of mesh refinement as a natural framework for

explicit time coupling of atomistic and continuum fluxes. In AMAR the typical continuum

mesh refinement capabilities are supplemented by an algorithm refinement (continuum to

atomistic) based on continuum breakdown criteria. This seamless transition is both the-

oretically and practically very appealing. Using the Adaptive Mesh Refinement (AMR)
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Figure 1-5: Continuum to atomistic boundary condition imposition using reservoirs.

capabilities provided by the Structured Adaptive Mesh Refinement Application Infrastruc-

ture (SAMRAI) developed at the Lawrence Livermore National Laboratory [84], the above

adaptive framework has been implemented in a fully three-dimensional, massively parallel

form in which multiple atomistic patches can be introduced or removed as needed. Addi-

tional details of this AMAR hybrid scheme are provided in Chapter 6.

While explicit coupling helps realize the computational savings of the hybrid formula-

tion in a spatial sense, the temporal coupling between the atomistic and continuum formu-

lations limit the total integration time that can be achieved unless significant computational

resources are available.

1.2.2 Continuum to Atomistic Boundary Condition Imposition

The most popular approach for imposing continuum boundary conditions on an atomistic

simulation is by using “particle reservoirs” R, surrounding an atomistic region Ω as shown

in Figure 1-5. The reservoir serves as a region in which the dynamics of the atomistic

simulation particles are altered to ensure the appropriate boundary conditions appear on

∂Ω.

The use of reservoirs to impose continuum boundary conditions on atomistic descrip-

tions of dilute gases has received significant attention [36]. In a dilute gas, the non–

equilibrium velocity distribution function in the continuum limit has been characterized [22]
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and is known as the Chapman–Enskog distribution. The use of this distribution results in a

robust, accurate and theoretically elegant approach. Typical implementations [36] require

the use of particle generation and initialization within R. Particles that move into Ω within

the atomistic time step are added to the simulation whereas particles remaining in R are

discarded. Additional details are covered in Section 4.2.

The same does not hold for liquids however where not only the particle velocities

but also the atomic structure needs to be imposed. No theoretical results exists for the

non–equilibrium distribution function of these quantities. Nevertheless Li et al. [60] used

a Chapman–Enskog distribution to impose boundary conditions to generate a dense–fluid

shear flow. In this approach, particles crossing ∂Ω acquire velocities that are drawn from a

Chapman–Enskog distribution parametrized by the local values of the required velocity and

stress boundary condition. Although this approach was only tested for a Couette flow, it

appears to give reasonable results (within atomistic fluctuations). In a different approach,

Flekkoy et al. [33] use external forces to impose boundary conditions. More specifically, in

the reservoir region they apply an external field of such magnitude that the total force on the

fluid particles in the reservoir region is the one required by momentum conservation. There

is no theoretical description however that specifies how such a force should be distributed

amongst the individual particles. Also it is not clear whether this method can be used to

model flows with components normal to ∂Ω; the authors only present results for Couette

and Poiseuille flows with flow velocities parallel to ∂Ω.

An additional issue for liquid simulations is that of terminating the atomistic domain

Ω or reservoir R such that the fluid state inside Ω is not significantly affected. Hadjicon-

stantinou and Patera [47] proposed the use of fully periodic boundary conditions around the

reservoir R. This approach has minimum impact on particle dynamics inside Ω provided R
is large. Unfortunately the number of simulation particles grows rapidly with R and there-

fore the approach incurs additional computational cost. Flekkoy et al. [33] terminate their

reservoir region by using an ad–hoc weighting factor for the force distribution on particles

within R such that particles are prevented from leaving the reservoir region. It is not clear

however what effect these forces have on the local fluid state (it is well known that even

in a dilute gas gravity driven flow exhibits significant non–continuum effects [63]). In more

recent work Delgado–Buscalioni and Coveney [29] follow the approach by [33] but distribute
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Scheme System Approximation Coupling
Aktas and Aluru [2] Gas Steady, incompressible, viscous Schwarz

Garcia et.al. [36] Gas Unsteady, compressible, viscous Explicit
Hadjiconstantinou [47] Liquid Steady, incompressible, viscous Schwarz
Hash and Hassan [51] Gas Steady, compressible, viscous Explicit

Table 1.1: Summary of existing hybrid schemes.

the external forces uniformly among all particles in the overlap region.

1.3 Questions Posed by the Current Research

A summary of recently proposed hybrid schemes are listed in Table 1.1 categorized according

to the fluid system (liquid or gas) modeled, the specific flow regime considered and the

atomistic–continuum coupling approach.

While hybrid formulations for liquid systems have many outstanding implementation

issues, the current work will be focused on gaseous systems as non–continuum effects first

appear in these flows as the characteristic length scale of interest decreases. The use of

a hybrid scheme for gaseous flows is therefore justified at the typical scales of current

engineering interest. These flows are typically viscous and incompressible. The first half

of this thesis investigates generalized hybrid scheme formulation and implementation issues

using the Schwarz alternating method for low speed gaseous flows. The following questions

will be addressed:

1. General boundary condition imposition on dilute gas atomistic simulations can be per-

formed using the Chapman–Enskog velocity distribution as described earlier. What

specific implementation issues must be addressed to ensure accurate and efficient use

of this approach for viscous, incompressible hybrid formulations? The most recent

work in this regard [2] based on the Schwarz coupling method uses a Maxwellian

velocity distribution and a “feedback control mechanism” to impose a steady Stokes

continuum flow field on the atomistic simulation. This approach, although successful

in quasi one–dimensional flows, is not very general. Additionally, it is well known that

using a Maxwellian distribution to impose hydrodynamic boundary conditions, if un-
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corrected, will lead to slip (discrepancy between the imposed and observed boundary

conditions).

2. Can the Schwarz method be extended to couple unsteady incompressible flows? If so,

how? Would a time explicit approach be better?

3. What strategies can be used to reduce the computational cost associated with simu-

lating unsteady flows using hybrid formulations?

The final half of this thesis is devoted to developing extensions to the compressible

AMAR hybrid formulation developed by Garcia et al. [36]. This hybrid formulation utilizes

a second order unsplit Godunov method to solve the continuum Euler equations and direct

simulation Monte Carlo (DSMC) for the atomistic description. The following questions will

be addressed here:

1. The current implementation of AMAR simulates single gas fluid flows. What mod-

ifications are required in the atomistic and continuum solvers to accommodate two

gaseous species?

2. How can the effect of atomistic fluctuations be theoretically and practically accounted

for?

3. The AMAR scheme allows for novel algorithm refinement in addition to mesh refine-

ment at the smallest level of an adaptive mesh hierarchy. What refinement criteria

should be used to signal the use of an atomistic description such as to ensure accurate

and efficient fluid feature tracking?

1.4 Technical Approach

The initial 3 questions will be addressed by presentation of a general formulation followed by

test examples for verification purposes. The atomistic and continuum numerical schemes

used in the hybrid formulation will be developed first and verified independently of the

hybrid scheme. The direct simulation Monte Carlo (DSMC) method is used as the atomistic

simulation approach of choice while the incompressible Navier–Stokes equations are solved
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using a finite element discretization. Code for these routines are custom written to allow

for easy modification within a hybrid scheme. The code development is performed under

FORTRAN 77 and a LINUX RedHat operating system environment. Test simulations are

run on a single processor INTEL PENTIUM processor at 550 MHz.

The final 3 questions are addressed utilizing the computational resources available at

the Lawrence Livermore National Laboratory. The AMAR hybrid scheme is built on an an

object oriented framework using C++ and is compiled to run on multiple processors. Test

simulations were conducted on a distributed COMPAQ cluster using 1 GHz EV68 Alpha

processors.

1.5 Thesis Contributions

The work conducted in this thesis has made significant contributions to the field of hybrid

atomistic–continuum formulations. In particular,

• A viscous, incompressible hybrid formulation using the Schwarz alternating method

and Chapman–Enskog distribution based particle reservoirs has been developed and

verified using a 2–dimensional driven cavity test problem. The use of the Chapman–

Enskog distribution to impose continuum boundary conditions on atomistic simula-

tions provides an order of magnitude error reduction over current hybrid formulations

using the Maxwellian distribution.

• The Schwarz coupling method for incompressible flows has been extended to couple

unsteady flows. This hybrid formulation has been demonstrated using a 1–dimensional

impulsively started Couette flow test problem.

• The atomistic simulation for the unsteady hybrid formulation has been accelerated

using limited ensemble time integration while retaining the same variance reduction.

• The Adaptive Mesh and Algorithm Refinement (AMAR) compressible hybrid scheme

has been successfully extended to simulate binary gas species and has been verified

using a binary gas shock test problem.
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• Robust and efficient refinement criteria have been developed based on density gradient

and concentration gradient based parameters to track fluid interfaces for a number of

test cases including moving shock waves, concentration diffusion and the Richtmyer–

Meshkov instability. A theoretical framework which accounts for the effect of atomistic

fluctuations has also been developed.

1.6 Thesis Organization

The direct simulation Monte Carlo and the finite element numerical scheme used in this

work are derived in Chapter 2 and Chapter 3 respectively. Results from test examples to

help verify these formulations (independent of the hybrid scheme) are also presented here.

The Schwarz method applied to low speed, steady, viscous, incompressible flows is described

next in Chapter 4. The use of particle reservoirs to impose continuum boundary conditions

on the atomistic simulation is also described in this Chapter. Chapter 5 describes exten-

sion of the Schwarz method to unsteady flows and strategies for accelerating the atomistic

subdomain time integration. An explicitly coupled high speed, compressible hybrid scheme

using Adaptive Mesh and Algorithm Refinement (AMAR) is detailed in Chapter 6. Criteria

for adaptive tracking of fluid interfaces are described here and verified using test cases for

shock waves and concentration diffusion. Finally a summary and suggestions for future

work are discussed in Chapter 7.
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Chapter 2

Direct Simulation Monte Carlo

The aim of this Chapter is to describe the Direct Simulation Monte Carlo (DSMC)

atomistic solver used in the hybrid formulations developed in Chapters 4, 5 and 6. The

DSMC method was developed by Bird in the 1960’s [18] and has been used extensively to

model rarefied gas flows. A more comprehensive introduction to DSMC can be found in [20].

The DSMC routines described here were verified independently of a hybrid scheme using

Couette flow simulations at finite Knudsen numbers where velocity slip and temperature

jump phenomena become important.

2.1 Introduction

The DSMC method is based on the assumption that a small number of representative

“computational particles” can accurately capture the bulk macroscopic dynamics and ther-

modynamics of a complete system of gas atoms or molecules. This assumption holds for the

case of a dilute gas which is a good approximation to a real gas when the ratio of the mean

atomistic spacing δ to atomistic collision cross–section d is such that δ/d � 1. Empirical

results show that a minimum of 20 DSMC particles per cubic mean free path is usually

sufficient to capture the relevant physics [20]. In this case each DSMC particle corresponds

to Nef = nV/N real atoms in the physical system where V is the system volume, n is the

number density and N is the total number of DSMC particles. N is typically 2 orders of

magnitude smaller than the actual number of gas atoms contained in the same volume and

is a significant source for DSMC’s computational savings over Molecular Dynamics (MD)
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Figure 2-1: A sample computational domain for DSMC atomistic simulation.

simulations.

A sample computational domain for an atomistic simulation using DSMC is shown

in Figure 2-1. The domain shown here is bounded by two walls and is periodic in the

xy and xz planes. In DSMC the particle positions and velocities (ri,vi , i = 1...N) are

advanced in time by a two–step process of advection and collision which corresponds to a

splitting method of solution for the underlying Boltzmann equation. Particle advection is

ballistic with time step ∆tp chosen to be a fraction of the mean collision time. Collisions

are performed between randomly chosen particle pairs within small cells of size ∆xp. This

approach has been shown to produce correct solutions to the Boltzmann equation in the limit

∆xp, ∆tp → 0 [92]. Note that the motion of DSMC particles is inherently 3–dimensional

even though a single coordinate direction is discretized in Figure 2-1. If the particle reaches

a boundary in the simulation domain the positions and velocities are adjusted such that

the specified boundary conditions is imposed (see below). The flow solution is determined

by averaging the individual particle properties over space and time.

Recent studies [49, 37] have shown that for steady flows, or flows which are evolving

at time scales that are long compared to the atomistic relaxation times, a finite time step

leads to a truncation error that manifests itself in the form of time step–dependent transport

coefficients; this error has been shown to be of the order of 5% when the time step is of the

order of a mean free time and goes to zero as ∆t2p. Quadratic dependence of the error in

the transport coefficients on the collision cell size ∆xp was shown in [6].
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Figure 2-2: Block schematic of the DSMC algorithm. Note: “BCs” refer to boundary conditions.

2.2 DSMC Algorithm

The DSMC algorithm is best described with reference to the block schematic shown in

Figure 2-2. Here Nm1 corresponds to the DSMC time step counter and Nmax
m1 is the total

number of DSMC time steps. Each block of the algorithm will be described briefly below.

2.2.1 Mover

Here each particle i is advanced in space with time step ∆tp according to,

ri(t + ∆tp) = ri(t) + vi(t)∆tp (2.1)
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2.2.2 Apply Boundary Conditions

The particle positions ri are then checked to determine if a boundary of the computational

domain was crossed. DSMC provides flexibility in imposing a variety of boundary conditions

ranging from periodic, reflection, velocity and thermal walls. Periodic boundary conditions

are imposed by adding or subtracting the appropriate domain dimension to the particle

position coordinate ri based on the periodic face through which the particle exited the

domain. Reflection boundaries are imposed by switching the particle velocity component

normal to the reflection boundary. Certain combinations of periodic, reflection and velocity

boundary conditions would clearly conflict and hence good judgment should be exercised

to ensure chosen combinations are not mutually incompatible. In all cases the time of flight

spent by a particle after leaving the computational domain should be used to determine the

particle’s subsequent motion after being returned into the computational domain.

Thermal boundary conditions are imposed by choosing particle velocities from a biased

Maxwellian distribution [38]. For the example in Figure 2-1 with the wall boundaries held

at temperature Tw say, the particle velocities after wall collision are obtained from the

following velocity distribution functions,

Pvx(vx) = ± m

kbTw
vxe−mv2

x/2kbTw (2.2)

Pvy(vy) =
√

m

2πkbTw
e−mv2

y/2kbTw (2.3)

Pvz(vz) =
√

m

2πkbTw
e−mv2

z/2kbTw (2.4)

where m is the particle mass, kb is the Boltzmann constant and the ± sign in Equation (2.3)

corresponds to the left and right wall respectively. Additional wall velocities in the tangen-

tial direction can also be imposed on the particles by shifting the origin of the distributions

accordingly. Further description of boundary condition imposition is covered in [38] to-

gether with details of routines to generate the velocity distributions using random number

generators.
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2.2.3 Sort

Particles are next sorted in computational cells in order to process collisions. While this

process is generally straightforward it incurs a major computational expense. Routines for

minimizing this cost through efficient use of data arrays are detailed in [38] and will not be

covered here.

2.2.4 Collision

In DSMC, collisions are binary and occur only between particles that reside within a single

computational cell. In the current implementation a hard sphere model is assumed for

particle collisions which in turn defines the collision probability between particles Pcoll(i, j)

as,

Pcoll(i, j) =
|vi − vj |∑Nc

m=1

∑m−1
n=1 |vm − vn|

(2.5)

where Nc is the number of particles per cell. The double summation in the denominator of

Equation (2.5) is expensive however, and would cause the DSMC simulation cost to grow

quadratically with the number of particles. An alternate acceptance–rejection scheme is

used instead, in which collision partners are selected according to the following steps [38]:

1. Select collision candidate pairs i, j at random.

2. Calculate their relative speed, vr = |vi − vj |.

3. Accept pair for collision if vr ≥ vmax
r R where vmax

r is the maximum relative speed in

the cell and R is a uniform deviate in [0, 1).

4. If the pair is accepted determine particle post–collision velocities.

5. After collision is processed or if the pair is rejected, return to step 1.
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In step 4 the following relations can be obtained for the pre– and post– collision particle

velocities (see Figure 2-3) by using the conservation of momentum and energy,

v1 = vcm +
m2

m1 + m2
vr (2.6)

v2 = vcm − m1

m1 + m2
vr (2.7)

v∗
1 = vcm +

m2

m1 + m2
v∗

r (2.8)

v∗
2 = vcm − m1

m1 + m2
v∗

r (2.9)

where vcm = (m1v1 + m2v2)/(m1 + m2) is the velocity of the center of mass which re-

mains unchanged after collision and vr,v∗
r are the pre– and post– collision particle relative

velocities, the magnitude of which also remain unchanged after collision. The direction of

the post collision relative velocity is calculated by using the result that all directions are

equally likely, i.e. that the angles θ, φ in Equation (2.10) are uniformly distributed over the

unit sphere,

v∗
r = vr[(sin θ cos φ)i + (sin θ sinφ)j + cos θk] (2.10)

The azimuthal angle φ is uniformly distributed between 0 and 2π and is chosen as φ =

2πR and the vertical angle θ is chosen according to the probability density Pθ(θ)dθ =

0.5 sin θdθ [38].

Finally the total number of collisions in a cell during a time ∆tp is given by,

Mcoll =
Nc(Nc − 1)Nefπd2〈vr〉∆tp

2Vc
(2.11)

where Vc is the volume of the cell and 〈vr〉 is the average relative velocity. Since collision

candidates are selected through an acceptance–rejection scheme where the ratio of total

accepted to total candidates is proportional to 〈vr〉/vmax
r , the number of candidates that

should be selected for collision is given by,

Mcand =
Nc(Nc − 1)Nefπd2vmax

r ∆tp
2Vc

(2.12)
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Figure 2-3: Schematic of DSMC particle collisions. a) Pre–collision velocities, b) Post–collision
velocities.

Note that while hard–sphere dynamics are assumed for the collision model in this study,

alternative models such as the variable hard sphere and variable soft sphere [20] have been

developed that capture real gas effects. These can be easily incorporated with minimum

additional effort.

2.2.5 Sampler

The sampling routines average the particle positions and velocities to calculate the cell den-

sity, velocity, and temperature. Sampling can be set to occur at pre–determined intervals.

This completes a single iteration of the DSMC algorithm.

2.3 Velocity Slip and Temperature Jump in Micro–Channels

In order to verify the DSMC algorithm described in Section 2.2 an atomistic simulation of

velocity slip and temperature jump in micro–channels was conducted. A brief description of

these phenomena is provided first. Details of the simulation parameters are then presented

together with sample results and conclusions.
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2.3.1 Introduction

Maxwell [64] was the first to predict the phenomenon of velocity slip; i.e. the difference

between the velocity of a gas close to the wall and the velocity of the wall in the presence

of shear. This difference can be expressed as follows,

ugas|wall − Uwall = α
2 − σv

σv
λ

du

dη

∣∣∣∣
wall

(2.13)

where σv is the momentum accommodation coefficient, equal to zero for specular reflections

and equal to 1 for diffuse reflections [14], and η is the coordinate normal to the wall. The

thermal slip at the wall is given by a similar expression,

Tgas|wall − Twall = β
2γ

γ + 1
2 − σT

σT

λ

Pr

dT

dη

∣∣∣∣
wall

(2.14)

where σT is the energy accommodation coefficient, γ is the ratio of specific heats, and Pr

is the gas Prandtl number. These expressions have been used extensively to provide simple

corrections to the boundary conditions employed in the Navier–Stokes equations without

the need for detailed atomistic simulations. As the characteristic length scale of engineering

components continues to diminish further such relationships need to be re–evaluated. In

what follows we will take σv = σT = 1 since this does not detract from the generality of our

conclusions; consequently, our simulations will be performed with perfectly accommodating

walls.

The coefficients α and β introduce corrections to the original results of Maxwell (α =

β = 1) that were obtained through an approximate method [23]. The theoretical models

derived by Ohwada et al. [68] and Sone et al. [83] predict α = 1.11 and β = 1.13. These

values will be used for comparison with the DSMC results presented below.

In accordance with Bhattacharya et al. [17], Equations (2.13) and (2.14) can be re–

written in terms of a non–dimensional slip length (ls) and jump length (lj) as follows,

ls = αKn (2.15)
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Figure 2-4: Couette flow schematic.

lj = β
2γ

Pr(γ + 1)
Kn (2.16)

where,

ls =
ugas − Uwall

H du
dη

(2.17)

lj =
Tgas − Twall

H dT
dη

(2.18)

and the Knudsen number, Kn, is defined as the ratio of the mean free path λ = (
√

2πnσ2)−1

to the channel height H. Here n is the number density and σ the atomistic diameter.

With these definitions for slip length and jump length, the gradients du/dη and dT/dη

are determined from the velocity and temperature profiles outside the Knudsen layer [23].

Values for gas velocity ugas and gas temperature Tgas are also obtained from profiles outside

the Knudsen layer. This is illustrated in Figure 2-4 for du/dη and ugas.
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2.3.2 Simulation Results

We simulated gaseous Argon (atomic mass m = 6.63 × 10−26 kg, hard sphere diameter

σ = 3.66×10−10 m) at atmospheric conditions (P = 1.013×105 Pa and average temperature

T = 273 K). This choice of species was due to historical and convenience reasons: the hard

sphere diameter for Argon is well known to reproduce equilibrium and non–equilibrium

properties accurately. Argon is historically used in the majority of DSMC studies because

it provides instant availability to a substantial literature of simulation and experimental

results for code validation. The present simulations use a minimum of 3 DSMC cells per

mean free path and 50 particles per cell. A time step of 0.2 times the mean collision time

was used to advance the simulation.

A wide range of Knudsen numbers is investigated. Figure 2-5 and Figure 2-6 shows the

velocity slip results for M = 0.1 and M = 0.01 respectively expressed in terms of slip length.

These results indicate the theoretical prediction [68] holds for Kn → 0 and is accurate for

Kn � 0.1.

The temperature jump results are shown in Figure 2-7 in terms of the temperature

jump length. Similar to velocity slip, the theoretical results [83] are also found accurate for

Kn � 0.1.

2.3.3 Conclusions

The following conclusions are reached in this study:

1. The DSMC results for velocity slip and temperature jump agree with the correspond-

ing theoretical hard sphere model results [68, 83] for Knudsen numbers Kn � 0.1.

2. No discernible difference is observed between the slip length results for M = 0.1 and

M = 0.01.

3. Both slip length and jump length simulation results are lower than the theoretical

results for Kn � 0.1. A factor ≈ 2 difference is seen at Kn = 1.0 with larger

deviations at higher Kn.
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Figure 2-5: Velocity slip variation with Knudsen number for M = 0.1.
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Figure 2-6: Velocity slip variation with Knudsen number for M = 0.01.
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Figure 2-7: Temperature jump variation with Kn. Wall temperatures are 273 ± 5K.

4. The deviation of the DSMC results from the theoretical results for Kn � 0.1 is

consistent with, but also smaller than the deviation seen in the molecular dynamics

(MD) simulation results obtained by Bhattacharya et al. [16] and the DSMC and

MD simulation results of Morris et al. [67]. This may be due to the lower viscous

heating in the present simulations. The previous MD and DSMC simulations also use

Lennard–Jones pair potentials and variable hard–sphere models respectively. In both

cases the mean free path is extracted in terms of the viscosity which may also lead to

the differences [40].

5. The deviation between the theoretical results and simulations for Kn � 0.1 is expected

since the former considers a semi–infinite domain subject to a constant gradient. As

Kn increases beyond 0.1 (i.e. as the channel width H decreases) molecules undergo

more frequent collisions with the bounding walls. The net effect is a reduction in the

mean free path λ as suggested by Morris et al. [67]. Hence by Equations (2.15) and

(2.16) the corresponding slip lengths are also reduced.
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Chapter 3

Finite Element Method

The purpose of this Chapter is to describe the finite element continuum solver used for

the incompressible hybrid scheme developed in Chapter 4. The solver is based on the 2–

dimensional, steady, incompressible Navier–Stokes equations. The formulation of the finite

element solver is described first; it is verified using a driven cavity test problem. Good

agreement is found with published results.

3.1 Introduction

An excellent introduction to the finite element method and its application to fluid flows

can be found in Huebner [58]. In the finite element method the physical flow domain

is discretized into a number of elements inside which the continuum field variables are

approximated by piecewise continuous functions. For a systematic formulation, these ap-

proximating functions or interpolations are defined in terms of nodal variables. Nodes often

occupy locations on the element boundary but may also be defined in the interior of the

discretizing element. The continuum field at any point is defined uniquely once the nodal

values are determined. Huebner [58] outlines a clear methodology for solving for the nodal

values in 6 steps:

1. Discretize the continuum field equations

2. Determine the interpolation functions

53



3. Determine the element equations

4. Assemble the element equations to obtain the system equations

5. Impose boundary conditions

6. Solve the system equations

Each of these steps will be discussed briefly below:

3.1.1 Step 1: Discretize the continuum

The finite element method provides great flexibility to discretize complex flow geometries.

Many different element types exist for both 2–dimensional and 3–dimensional domains. For

the purpose of the current work a standard 2–dimensional triangular element with 6 nodes

as shown in Figure 3-1 is chosen. The u and v velocity is defined at all 6 nodes of the

element while the pressure P is defined only at nodes 1,2 and 3. An element defined by this

particular choice of node variables is referred to as a Taylor–Hood element. The nodes of

the element are defined with respect to a natural coordinate system (ξ,η). In this case the

(ξ,η) coordinate pairs for nodes 1 through 6 are: (0, 1), (0, 0), (1, 0), (0, 0.5), (0.5, 0), (0.5, 0.5)

respectively. Natural coordinates help simplify the integration procedure required to obtain

the element equations (described later in Section 3.1.3). Elements defined in terms of

natural coordinates in this way are termed isoparametric.

3.1.2 Step 2: Determine the Interpolations Functions

The velocity and pressure fields within the Taylor–Hood element can be interpolated ac-

cording to Equations (3.1)–(3.3). The index i refers to a particular node, and ui,vi and Pi
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Figure 3-1: Taylor–Hood finite element.

are the nodal values of the u, v velocities and pressure P respectively.

u(e) =
6∑

i=1

Nu
i (ξ, η)ui (3.1)

v(e) =
6∑

i=1

Nv
i (ξ, η)vi (3.2)

P (e) =
3∑

i=1

NP
i (ξ, η)Pi (3.3)

The expressions for the interpolation functions Nu
i , Nv

i and NP
i are given in Equations (3.4)–

(3.12). Note the interpolation functions for the u, v velocities Nu
i and Nv

i are equivalent

and are referred to as Ni. As seen in these expressions the velocity field has a quadratic

interpolation while the pressure field has a linear interpolation. This follows from the need

established by several researchers [99, 54, 11] for the velocity interpolation to be one order

higher than the pressure interpolation. Olson and Tuann [70] show that spurious rigid–body
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modes occur in the element coefficient matrix unless this requirement is met.

N1 = η(2η − 1) (3.4)

N2 = (1 − ξ − η)(1 − 2ξ − 2η) (3.5)

N3 = ξ(2ξ − 1) (3.6)

N4 = 4η(1 − ξ − η) (3.7)

N5 = 4ξ(1 − ξ − η) (3.8)

N6 = 4ξη (3.9)

NP
1 = η (3.10)

NP
2 = 1 − ξ − η (3.11)

NP
3 = ξ (3.12)

3.1.3 Step 3: Determine the Element Equations

In Step 3 the element equations for the incompressible, steady, Navier–Stokes equations

are derived. These equations for momentum and mass conservation are given in Equa-

tions (3.13)–(3.15) below.

ρ

(
un ∂u

∂x
+ vn ∂u

∂y

)
=

∂(τxx − P )
∂x

+
∂τxy

∂y
(3.13)

ρ

(
un ∂v

∂x
+ vn ∂v

∂y

)
=

∂τxy

∂x
+

∂(τyy − P )
∂y

(3.14)

∂u

∂x
+

∂v

∂y
= 0 (3.15)

Here, τxx = 2µ
(

∂u
∂x

)
, τyy = 2µ

(
∂v
∂y

)
, τxy = µ

(
∂u
∂y + ∂v

∂x

)
, µ is the viscosity and un and

vn are approximate solutions to the x and y velocity components to be determined by

successive iteration (see Section 3.1.6).

The solution to the system of equations follows the method of weighted residuals using

a Bubnov–Galerkin approach [58]. In this method the momentum equations are integrated

over each element using the interpolation function for velocity as a weighting function. The

continuity equation is weighted by the interpolation function for pressure. This can be
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written as follows,

∫
Ωe

[
−ρ

(
un ∂u

∂x
+ vn ∂u

∂y

)
+

∂(τxx − P )
∂x

+
∂τxy

∂y

]
NidΩ = 0 (3.16)∫

Ωe

[
−ρ

(
un ∂v

∂x
+ vn ∂v

∂y

)
+

∂τxy

∂x
+

∂(τyy − P )
∂y

]
NidΩ = 0 (3.17)∫

Ωe

[
∂u

∂x
+

∂v

∂y

]
NP

i dΩ = 0 (3.18)

This velocity–pressure formulation is favored due to its easy extension to 3–dimensions and

its ability to incorporate physical boundary conditions. After substituting for Ni and NP
i

using Equations (3.4)–(3.12) the resulting element equations can be re–written in matrix

form as follows:
[C11] + [C22] [0] [0]

[0] [C11] + [C22] [0]

[0] [0] [0]




{u}
{v}
{P}

 +


[2K11 + K22] [K12] [L1]

[K12]
T [K11 + 2K22] [L2]

[L1]
T [L2]

T [0]




{u}
{v}
{P}

 =


{Ru}
{Rv}
{0}

 (3.19)

where,

C11 =
∫

Ωe

ρunN

[
∂N

∂x

]
dΩe (3.20)

C22 =
∫

Ωe

ρvnN

[
∂N

∂y

]
dΩe (3.21)

K11 =
∫

Ωe

µ

[
∂N

∂x

] [
∂N

∂x

]
dΩe (3.22)

K22 =
∫

Ωe

µ

[
∂N

∂y

] [
∂N

∂y

]
dΩe (3.23)

L1 = −
∫

Ωe

[
∂N

∂x

]
[NP ]dΩe (3.24)

L2 = −
∫

Ωe

[
∂N

∂y

]
[NP ]dΩe (3.25)
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The RHS terms correspond to the surface tractions and are given by,

Ru =
∫

τxx[N ]dΓ (3.26)

Rv =
∫

τyy[N ]dΓ (3.27)

τxx = (τxx − P )nx + τxyny (3.28)

τyy = (τyy − P )ny + τxynx (3.29)

The integrands in Equations (3.20)–(3.25) are expressed in terms of natural coordinates ξ

and η while the integral is defined over physical space. To convert the complete expression

to natural coordinates the coordinate transformation jacobian J is required such that,

∫
Ωe

f(ξ, η)dΩe =
∫ +1

−1

∫ +1

−1
f(ξi, ηi)|J |dξdη (3.30)

where f(ξ, η) represents a given integrand and the jacobian is given by,

J =

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

 (3.31)

The partial derivatives for x and y in Equation 3.31 are determined in terms of corre-

sponding derivatives for the velocity interpolation functions Ni using the expressions in

Equations (3.32)–(3.33).

x =
6∑

i=1

Ni(ξ, η)xi (3.32)

y =
6∑

i=1

Ni(ξ, η)yi (3.33)

The evaluation of the integrals is simplified by use of Gauss–Legendre quadrature. Here the

integral is replaced by a summation of the integrand evaluated at finite points weighted by

known coefficients Wi. For Taylor–Hood triangle elements integrand polynomials up to 5th

order can be evaluated exactly using summations over just 3 points (in this case over nodes

4,5 and 6). This is summarized in Equation (3.34):

∫
Ωe

f(ξ, η)dΩe =
6∑

i=4

f(ξi, ηi)Wi|J | (3.34)
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where the weights W4 = W5 = W6 = 1/3.

3.1.4 Step 4: Assemble the element equations to obtain the system equa-

tions

After the individual element equations are determined they must be combined to form the

global system equations. This assembly is performed by summing the contributions of all

element equation entries for a given node (and field variable) across the solution domain.

This procedure is simplified by the use of a connectivity matrix that maps the local element

nodes to the global system nodes. The resulting global system of equations can be written

in a simplified form as shown in Equation (3.35).

[C(un, vn)]


{u}
{v}
{P}

 + [K]


{u}
{v}
{P}

 =


{Ru}
{Rv}
{0}

 (3.35)

3.1.5 Step 5: Impose Boundary Conditions

Once the global equations are assembled boundary conditions must be imposed before

inverting Equation (3.35). The velocity–pressure formulation provides flexibility to impose

both Dirichlet and Neumann velocity conditions. To impose a Dirichlet condition on the

nth degree of freedom in Equation (3.35), the nth equation in the matrix is replaced by the

Dirichlet constraint equation. Neumann conditions are prescribed directly in terms of the

right hand side expressions for Ru and Rv in Equations (3.26)–(3.26) respectively.

The pressure field in an incompressible formulation contains an arbitrary additive con-

stant. A single pressure node in the domain can therefore be specified a constant value, say

atmospheric pressure, to appropriately set this constant.

3.1.6 Step 6: Solve the System of Equations

The solution of Equation (3.35) after imposing boundary conditions is performed by an

iterative process using a “method of successive substitution” [41]. Rewriting the solution
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vector {{u}, {v}, {P}} at iteration (n + 1) as {{un+1}, {vn+1}, {Pn+1}} = Un+1 and the

right hand side surface tractions {{Ru}, {Rv}, {0}} as R then Equation (3.35) can be written

as,

[C(un, vn)]Un+1 + [K]Un+1 = R (3.36)

To initialize the iterative process the velocities u0, v0 are set identically to 0.0. Hence the first

iteration velocity field corresponds to the solution of a Stokes flow problem [K]U1 = R.

Using this method, convergence of the velocity field has been found to occur within 5

iterations for flow Reynolds numbers in the range 0 − 10, 000 [41].

3.2 Driven Cavity Test Problem

The finite element formulation detailed above is verified using a driven cavity test problem.

Results are presented and compared against those in the literature for Reynolds numbers

Re = 0, 100 and 400.

3.2.1 Introduction

The 2–dimensional, viscous, steady, incompressible flow in a driven cavity has been used for

many years as the model problem to test new numerical schemes and solution methods [45,

93, 42, 86, 3]. Earlier work was reviewed by Burggraf [21] who used a vorticity–stream

function formulation and finite difference discretization of the Navier–Stokes equations to

solve for flows with Re up to 400. He showed the formation of a large primary vortex in

the center of the cavity and smaller secondary vortices at the lower corners. Ghia et al. [42]

obtained solutions up to Re = 10, 000 using a coupled strongly implicit multigrid method

also using a vorticity–stream function formulation. Their work is the most comprehensive

study of cavity flow to date [57].
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Figure 3-2: Boundary conditions for the 2–dimensional driven cavity test problem.

3.2.2 Boundary Conditions

The boundary conditions for the driven cavity problem are shown in Figure 3-2. The top

boundary moves from left to right at velocity u = Udc. All other u, v velocity components

are held at zero. There are no Neumann boundary conditions imposed hence the right

hand side surface tractions in Equation (3.36) are identically zero. The pressure level

is set by constraining the middle node on the lower boundary to atmospheric pressure

(1.013 × 105 N/m2).

3.2.3 Computational Grid

All tests were performed for a square cavity size L = 1 × 10−6m using a regular cartesian

grid as shown in Figure 3-3. This grid has a total of 800 triangular elements with 41 nodes

in both the x and y directions. This corresponds to a total of 1681 velocity nodes and 441

pressure nodes. The grid spacing h is 5 × 10−8m.
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Figure 3-3: Grid for driven cavity test problem.

3.2.4 Results

Tests were conducted for Re = 0, 100 and 400 where the Reynolds number Re is defined by

Equation (3.37) below,

Re =
ρUdcL

µ
(3.37)

Here the upper boundary velocity Udc = 50 m/s, cavity height L = 1×10−6m, fluid viscosity

µ = 2.08 × 10−5 kg/(ms) and density ρ = 41.62, 41.62, 166.48 kg/m3 respectively. The

viscosity and density values chosen here do not correspond to that of a specific fluid but

are chosen to achieve the given Reynolds number.

The Re = 0 test corresponds to a Stokes flow solution obtained by setting the convective

terms to zero ([C] = 0) and solving [K]U1 = R. This also corresponds to a solution with

viscosity µ � 1. Note this Stokes flow solution is also recovered as the first iterate solution

in the method of successive substitution (Section 3.1.6) for the Re = 100 and Re = 400
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Reynolds Number Reference x/L y/L

0 e 0.5000 0.7500
100 a 0.6188 0.7375

b 0.6172 0.7344
c 0.6167 0.7417
d 0.6196 0.7373
e 0.6240 0.7250

400 a 0.5563 0.6000
b 0.5547 0.6055
c 0.5571 0.6071
d 0.5608 0.6078
e 0.5740 0.6000

Table 3.1: Comparison of the location of primary vortex centers in driven cavity flow. a,
Vanka [89], b, Ghia et al. [42], c, Schreiber and Keller [80], d, Hou et al. [57], e,
Current work. This table is adapted from Hou et al. [57].

tests. A total of 5 iterations were used to converge the solution for the flow at these higher

Reynolds numbers. The velocity and pressure results from the tests are shown as contour

plots in Figure 3-4 through Figure 3-12. These results compare well graphically with the

contour plots by Burggraf [21].

The location of the primary vortex center (obtained using contour plots of the speed

distribution) are compared against values in the literature in Table 3.1. The results from

the current work differ from previous results on average by 2%.

The y variation of the u velocity at x/L = 0.5 is plotted in non–dimensional form and

compared with results from Burggraf [21] in Figures (3-13),(3-14) and (3-15) for Re = 0, 100

and 400 respectively. Generally good qualitative and quantitative agreement is found.
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Figure 3-4: Driven cavity u–velocity contours in m/s. Re = 0.
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Figure 3-6: Driven cavity pressure contours in N/m2. Re = 0.
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Figure 3-7: Driven cavity u–velocity contours in m/s. Re = 100.
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Figure 3-8: Driven cavity v–velocity contours in m/s. Re = 100.
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Figure 3-9: Driven cavity pressure contours in N/m2. Re = 100.
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Figure 3-10: Driven cavity u–velocity contours in m/s. Re = 400.
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Figure 3-11: Driven cavity v–velocity contours in m/s. Re = 400.
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Figure 3-12: Driven cavity pressure contours in N/m2. Re = 400.
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Figure 3-13: Variation of centerline u–velocity with y–coordinate at x/L=0.5. Re = 0.
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Figure 3-14: Variation of centerline u–velocity with y–coordinate at x/L=0.5. Re = 100.
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Figure 3-15: Variation of centerline u–velocity with y–coordinate at x/L=0.5. Re = 400.
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Chapter 4

Schwarz Coupling for Steady

Flows

In this Chapter a hybrid scheme for atomistic–continuum coupling of steady incom-

pressible viscous flows is developed. This scheme uses the Schwarz alternating method to

reach a steady solution through the iterative exchange of Dirichlet boundary conditions

between the atomistic and continuum subdomains. The Schwarz methodology allows for

time scale decoupling of the integration routines of both subdomains as only the steady

state solutions in each are required during boundary condition exchange. Continuum to

atomistic boundary condition imposition is performed using the Chapman–Enskog velocity

distribution function in conjunction with particle reservoirs. The direct simulation Monte

Carlo method and the finite element formulation described earlier are used to solve the

atomistic and continuum subdomain flows respectively. The hybrid scheme is verified by

solving a 2–dimensional driven cavity flow.

4.1 Introduction

The hybrid solution methodology using the Schwarz alternating method belongs to a class

of domain decomposition methods that employ overlapping subdomains [85]. Consider the

solution of a linear elliptic partial differential equation (PDE) for the domain Ω = Ω1 ∪ Ω2

in Figure 4-1. This can be written as
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Figure 4-1: Schwarz’s original figure. Adapted from [85].

Lu = f in Ω,

u = g on ∂Ω (4.1)

where L is a linear operator and ∂Ω is the boundary of Ω. The alternating Schwarz method

starts with an initial guess u0
2 for the values in Ω2, then iteratively for n = 1, 2, 3, ..., solves

the boundary value problem [85],

Lun
1 = f in Ω1,

un
1 = g on ∂Ω1\Γ1 (4.2)

un
1 = un−1

2 |Γ1 on Γ1

for un
1 . This is followed by solution of the boundary value problem,

Lun
2 = f in Ω2,

un
2 = g on ∂Ω2\Γ2 (4.3)

un
2 = un

1 |Γ2 on Γ2

where Γi is part of the boundary Ωi that is interior to Ω and ∂Ωi\Γi represents all of the

points on ∂Ωi that are not on Γi. The Schwarz alternating method was first introduced by
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Schwarz in 1870 [81] not as a numerical scheme, but rather to prove existence of a solution

to Equation (4.1) in a domain in which there was no known analytical solution [85]. More

recently the Schwarz method has been shown to converge for elliptic equations [61].

An illustration of the Schwarz alternating method to solve for the velocity in a pressure

driven Poiseuille flow is shown graphically in Figures 4-2,4-3,4-4 adapted from [46]. Starting

with a zero guess for the solution in domain 2, the first solution in domain 1 can be obtained.

This provides the first boundary condition for a solution in domain 2 (Figure 4-2). The

new solution in domain 2 provides an updated second boundary condition for domain 1

(Figure 4-3). This process is repeated until the solution in the overlap region matches. As

seen in Figure 4-4 the solution across the complete domain rapidly approaches the steady

state solution. The boundary condition iteration detailed above for continuum–continuum

formulations can be applied to a heterogeneous atomistic–continuum formulation provided

the solution in the overlap region is equivalent in both formulations [46]. Hadjiconstantinou

and Patera [46] were the first to demonstrate the Schwarz alternating method for such an

atomistic–continuum domain decomposition.

The Schwarz approach relies on the robust imposition of boundary conditions on the

two subdomains. Although in continuum domains imposition of boundary conditions is well

understood, in atomistic simulations this is not as straightforward. The problem arises from

the fact that macroscopic boundary conditions do not uniquely determine the atomistic state

since they correspond to the first few moments of an atomistic distribution function. Fortu-

nately for gases the non–equilibrium distribution function corresponding to the continuum

region is known and is referred to as the Chapman–Enskog distribution. The generation of

particle velocities with this distribution is described in detail next.

4.2 Continuum to Atomistic Boundary Condition Imposition

The continuum boundary conditions are imposed on the atomistic domain utilizing particle

reservoirs as shown in Figure 1-5. Particles are created in the reservoir with a spatial dis-

tribution that satisfies the continuum density field (described shortly in Section 4.2.1 and

a velocity drawn from a Chapman–Enskog distribution. The imposition of density gradi-

ents derived from an incompressible solution is slightly subtle. It is required because the
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Figure 4-2: Schematic illustrating the Schwarz alternating method for Poiseuille flow. Solution
at the first Schwarz iteration. Adapted from [46].

Figure 4-3: Schematic illustrating the Schwarz alternating method for Poiseuille flow. Solution
at the second Schwarz iteration. Adapted from [46].
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Figure 4-4: Schematic illustrating the Schwarz alternating method for Poiseuille flow. Solution
at the third Schwarz iteration. Adapted from [46].

atomistic simulation, being always compressible requires the presence of density (pressure)

gradients for flow to exist. The density field extracted from the pressure field of the contin-

uum solution using the ideal gas law is found to work well. Note that isothermal conditions

are assumed in this case.

The Chapman–Enskog velocity distribution function f(C) can be written as [35],

f(C) = f0(C)Γ(C) (4.4)

where, C = C/(2kT/m)1/2 is the normalized thermal velocity,

f0(C) =
1

π2/3
e−C2

(4.5)
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and,

Γ(C) = 1 + (qxCx + qyCy + qzCz)
(

2
5
C2 − 1

)
− 2(τxyCxCy + τxzCxCz + τyzCyCz)

− τxx(C2
x − C2

z ) − τyy(C2
y − C2

z ) (4.6)

with,

qi = − κ

P

(
2m

kT

)1/2 ∂T

∂xi
(4.7)

τij =
µ

P

(
∂vi

∂xj
+

∂vj

∂xi
− 2

3
∂vk

∂xk
δi,j

)
(4.8)

where qi and τij are the dimensionless heat flux and stress tensor respectively with µ, κ, P

and v = (v1, v2, v3) being the viscosity, thermal conductivity, pressure and mean fluid

velocity respectively. Each particle i created in the reservoir at location ri, is convected

with a velocity drawn from the Chapman–Enskog distribution defined by the continuum

velocity and temperature field value at ri. Particles that enter the atomistic subdomain

are retained for processing by DSMC routines. Particles that remain in the reservoir are

discarded.

A scheme to spatially distribute particles in reservoirs to match imposed continuum

density gradients is described next. This is followed by outline of an “Acceptance–Rejection”

method to generate the Chapman–Enskog distribution. A Poiseuille flow test problem

is then solved to demonstrate the efficacy of particle reservoirs for continuum boundary

condition imposition.

4.2.1 Particle Generation in Reservoirs According to Imposed Contin-

uum Density Gradients

A procedure to generate particle x, y, z coordinates according to imposed continuum density

gradients was developed by Garcia [39].

Consider a linear density variation in a cell with dimensions �x, �y, �z and with ρ0 being
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the density at the center,

ρ(x, y, z) = ρ0 + ax(x − �x/2) + ay(y − �y/2) + az(z − �z/2) (4.9)

and aα = ∂ρ/∂α. The total number of particles to be generated within a cell can be obtained

by integrating ρ(x, y, z) and dividing by the mass of a single particle. The location of the

particles are then chosen at random as follows. The probability that a particle has a position

x̃ = x/�x is given by [39],

P (x̃) = 1 + γx(x̃ − 1/2) (4.10)

where γx ≡ �xax/ρ0 is the non–dimensional density gradient. By writing an expression for

the cumulative distribution function F as

F (x̃) =
∫ x̃

0
P (x̃) dx̃ =

1
2
γxx̃2 +

(
1 − 1

2
γx

)
x̃ (4.11)

and solving for x̃ in terms of F , it can be shown that

x̃ = γ−1
x

[
(γx/2 − 1) +

[
(γx/2 − 1)2 + 2γxF

]1/2
]

(4.12)

and that when γx ≈ 0,

x̃ ≈ γ−1
x |γx/2 − 1|

(
γxF

(γx/2 − 1)2

)
=

F

1 − γx/2
(4.13)

Hence to chose the particle x position, a random uniformly distributed value between 0

and 1 is first chosen for F. The corresponding x̃ is calculated using Equation (4.12) (or

Equation (4.13) if γx ≈ 0) and the particle position is set as x = x̃�x. It can be shown

further that y = ỹ/�y can then be generated by replacing γy/P (x̃) in the place of γx in

Equations (4.12) and (4.13). Finally z = z̃/�z is selected by replacing γx by γz/P (x̃, ỹ)

where P (x̃, ỹ) = 1 + γx(x̃ − 1/2) + γy(ỹ − 1/2).
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4.2.2 Generation of Velocities from a Chapman–Enskog Distribution

The “Acceptance–Rejection” scheme [30] described by Garcia and Alder [35] is utilized to

generate Chapman–Enskog distribution velocities for this work. In this scheme an amplitude

parameter A = 1 + 30B is first chosen where B = max(|τij |, |qi|). Next a trial velocity

Ctry is drawn from the Maxwell–Boltzmann equilibrium distribution function f0 given by

Equation 4.5. Note f0 is a normal (Gaussian) distribution that can be generated using

standard numerical techniques [72]. The trial velocity Ctry is accepted if it satisfies AR ≤
Γ(Ctry) where R is a uniform deviate in [0, 1). Otherwise a new trial velocity Ctry is drawn.

The final particle velocity is given by

c = (2kT/m)1/2Ctry + v (4.14)

4.2.3 Poiseuille Flow Test Problem

The reservoir boundary condition imposition technique is validated in this Section using a

continuum field corresponding to a pressure driven Poiseuille flow. This test was chosen

because an analytical solution is known. Boundary conditions can therefore be imposed

and checked to an arbitrary degree of accuracy. A continuum solution is adequate here

since the atomistic subdomain is far from any walls and thus no non–equilibrium effects

beyond the Chapman–Enskog distribution will be present. The computational domain for

this flow is shown in Figure 4-5. The DSMC atomistic subdomain has size 12λ× 12λ while

the reservoir region has a uniform width of 4λ.

The DSMC simulation is conducted using gaseous Argon with atomic mass m = 6.63×
10−26kg and hard sphere diameter σ = 3.66 × 10−10m at temperature T = 273K. This

specific system has a kinematic viscosity ν = 1.1688665× 10−5m2/s. A total of 576 DSMC

cells were used (24 in each coordinate direction) and an average of 17280 DSMC particles

(30 particles per cell).
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Figure 4-5: Geometry used to impose continuum boundary conditions on the atomistic subdo-
main using particle reservoirs.

The continuum velocity field for Poiseuille flow is given by solution of,

µ
∂2u

∂y2
=

∂P

∂x
(4.15)

where µ is the fluid viscosity and P is the pressure. The analytic solution to the velocity

profile is parabolic and is given by,

u =
1
2µ

∂P

∂x

(
y2 − Hy

)
(4.16)

where H is the channel width and the velocity gradient ∂u/∂y is given by,

∂u

∂y
=

1
2µ

∂P

∂x
(2y − H) (4.17)

A value of (−15.36 × 1012)/(ms) was chosen for the (1/(2µ))∂P/∂x prefactor in Equa-

tions (4.16) and (4.17) so that a centerline velocity of 6m/s is obtained. This in turn yields

a pressure gradient ∂p/∂x = −6.4 × 108N/m3. The corresponding number density gra-

dient ∂n/∂x = (1/kT )∂p/∂x = −1.7 × 1029/m4. This corresponds to a variation of the

density along the channel of ∆n/n0 = 0.008 which is small. This allows us to neglect the
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acceleration effects due to the pressure drop.

DSMC particles are created in the reservoir utilizing the procedure outlined in Sec-

tion 4.2.1 such that the x coordinate locations are distributed to match the number density

gradient obtained above. The particle y-coordinate location is distributed uniformly in the

reservoir as there is no density gradient along this direction. For a given x, y location the

DSMC particle velocities are then drawn from a Chapman–Enskog distribution defined by

values of u and ∂u/∂y given by Equations (4.16) and (4.17). Particles created in the reser-

voir are advected during the “Move” routine described in Section 2.2 for a single DSMC

time step. Those particles that enter the DSMC subdomain are sorted for collision purposes.

Particles that remain in the reservoir, or enter the reservoir from the DSMC subdomain are

discarded.

DSMC simulation results for the velocity profile at 3 stations x = 0.36 × 10−6, 0.51 ×
10−6, 0.67 × 10−6m are shown in Figure 4-6. Good comparison is seen with the continuum

result. Figure 4-7 shows the u(y) mean velocity profile (averaged at each x–plane) with one

standard deviation error bars. The atomistic result is within 2% of the continuum solution.

Figure 4-8 plots the convergence history for the Poiseuille flow test averaged over

225,000, 450,000 and 1,350,000 iterations respectively. The square root decay of the er-

ror with number of DSMC samples corresponds to the variance reduction of the statistical

fluctuations. The error of the imposition method is small and is masked by this noise.

4.3 Driven Cavity Test Problem

The complete hybrid scheme is validated using the driven cavity test problem described in

Section 3.2 over the domain outlined in Figure 4-9. The flow in the atomistic subdomain

is solved using the DSMC algorithm developed in Chapter 2. Argon gas with atomic mass

m = 6.63×10−26kg and hard sphere diameter σ = 3.66×10−10m was used for all simulations.

The continuum subdomain is solved using the finite element solver based on the steady,

incompressible Navier–Stokes equations described in Chapter 3.
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4.3.1 Continuum to Atomistic Boundary Condition Imposition

The imposition of continuum subdomain boundary conditions on the atomistic subdomain

is facilitated by a particle reservoir in the overlap region as shown in Figure 4-10. Particles

are created at locations x, y within the reservoir with spatial distributions chosen according

to the overlying continuum cell mean density and density gradients as described in Sec-

tion 4.2.1. A continuum cell for this purpose is formed by a pair of finite element triangles.

The mean density and density gradients are defined at the cell center via interpolation of the

nodal pressures NP
i using Equations 3.10– 3.12. Note the density field is obtained here from

the pressure solution using the ideal gas relation as mentioned in Section 4.2. Unlike the

Poiseuille flow test case in Section 4.2.3 density gradients exist in both the x and y directions

for the driven cavity flow. The particle velocities cx, cy are drawn from a Chapman–Enskog

velocity distribution generated using the mean and gradient of velocities interpolated from

cell nodes using the same quadratic interpolation functions (Equations (3.4)– (3.9)) used

by the finite element solver. After particles are created in the reservoir they are convected

for a single DSMC time step. Particles that enter DSMC cells are incorporated into the

standard convection/collision routines of the DSMC algorithm. Particles that remain in the

reservoir are discarded. Particles that leave the DSMC domain are also deleted from the

computation.

4.3.2 Atomistic to Continuum Boundary Condition Imposition

The atomistic boundary conditions are imposed on the continuum subdomain more directly.

The DSMC cell velocities obtained by time averaging particle velocities can be specified

directly as Dirichlet conditions on the corresponding finite element nodes (see Section 3.1.5).

As shown in Figure 4-10, the centers of the DSMC cells are aligned along the nodes of the

finite element cells. While this alignment is not a requirement for the scheme, this helps

avoid interpolation errors which may be significant due to atomistic solution fluctuations.

A correction to nodal velocities to ensure mass conservation is also performed [48]. The

DSMC cell velocities normal to the atomistic subdomain boundary and which overlap with
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the continuum element nodes vb
i .n are altered such that,

vb
i .n

corrected
= vb

i .n ±
∣∣∣∣∣1/Nb

Nb∑
i=1

vb
i .n

∣∣∣∣∣ (4.18)

where Nb is the total number of normal velocity nodes along the boundary. The sign for

the summation term is chosen opposite to the sign of the unit normal n. The discrepancy

in mass flux is essentially removed equally across all normal velocity components.

4.3.3 Results

The hybrid solution is expected to recover the fully continuum solution since the atomistic

subdomain is far from solid boundaries and from regions of large velocity gradients. This test

therefore provides a consistency check for the hybrid scheme. Standard Dirichlet velocity

boundary conditions for a driven cavity problem were applied on the continuum subdomain;

the u velocity component on the left, right and lower walls were held at zero while the upper

84



Property Value
Total domain width Lx 1 × 10−6 m
Total domain height Ly 1 × 10−6 m

Finite element nodes in Lx 41
Finite element nodes in Ly 41

Overlap region width h 1.0 × 10−7 m
Reservoir region width 8.75 × 10−8 m

Atomistic domain origin lxo 3.875 × 10−7 m
Atomistic domain origin lyo 3.875 × 10−7 m
Atomistic domain width lx 2.25 × 10−7 m
Atomistic domain height ly 2.25 × 10−7 m

DSMC cells in lx 9 (2.5 cells/λ)
DSMC cells in ly 9 (2.5 cells/λ)

Number of particles per cell 50
Argon mean free path λ 6.258 × 10−8 m
DSMC time step ∆tp 3.7 × 10−11 s

Imposed flow velocity at y = Ly 50 m/s
Reynolds number based on Lx 4.3

Mean temperature T 273K
DSMC time steps per Schwarz iteration 500000

No. of time steps before averaging 50000

Table 4.1: Baseline simulation parameters for the driven cavity test problem.

wall u velocity was set to 50 m/s, the v velocity component on all boundaries was set to

zero. Despite the high velocity, the flow is essentially incompressible and isothermal. The

pressure is scaled by setting the middle node on the lower boundary at atmospheric pressure

(1.013 × 105 Pa). Additional parameters used in the simulation are listed in Table 4.1.

A zero velocity solution in the atomistic subdomain was used as an initial guess. The

DSMC simulations were advanced for a total of 500,000 (18.5µs) time steps per Schwarz

iteration with averaging beginning after 50,000 (1.85µs) time steps.

The convergence of the u and v velocity along the y = 0.425 × 10−6m plane and

x = 0.425 × 10−6m plane respectively as a function of Schwarz iterations is plotted in

Figures 4-11 and 4-12. Good comparison is achieved between the fully continuum numerical

solution and the coupled hybrid solution. The continuum u velocity solution is reached to

within ±10% at the 3rd Schwarz iteration and to within ±2% at the 10th Schwarz iteration.

Similar convergence of the v velocity field is also observed. For a more global indication of

convergence the L2 norm of the velocity and pressure variables at each Schwarz iteration
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is plotted in Figure 4-14. The velocity L2 norm shows rapid decay and convergence. The

pressure L2 norm also shows a general decay but indicates that further iterations are required

for convergence.

While the above test problem was not selected to demonstrate computational sav-

ings, substantial savings are expected in practical applications where the reduction in cost

achieved by the use of the continuum description significantly outweighs the increase in cost

due to the small number (O(10)) of Schwarz iterations required. Additional contributions

to computational efficiency include the drastically reduced time to which the atomistic sub-

domain needs to be simulated before it reaches a steady state, and the improved computer

performance for calculations with small memory requirements [2].

4.3.4 Factors Governing Convergence

A range of tests were conducted to assess the effect of Maxwell–Boltzmann based equilib-

rium distribution particle reservoirs (i.e., equivalent to ignoring gradient information in the

overlying continuum solution), the number of DSMC time steps per Schwarz iteration and

the overlap region width on the convergence of the coupling scheme. Results from these

tests are plotted in Figure 4-14 and Figure 4-13. The following observations can be made

from these plots:

1. The velocity and pressure error norms are one order of magnitude larger when a

Maxwell–Boltzmann reservoir is used.

2. Halving the number of DSMC time steps per Schwarz iteration (via advancing the

DSMC solution to 275,000 time steps and averaging after 50,000) has an insignificant

effect on the convergence of the velocity L2 norm. The pressure L2 norm tracks

the baseline solution for 3 Schwarz iterations but then fluctuates above the baseline

solution.

3. Convergence of the velocity field is only weakly coupled to the overlap region width

h in the range 0.8λ–1.6λ considered. A similar conclusion was reached by Aktas

and Aluru [2]. The pressure field shows greater sensitivity to h but no significant

differences in convergence can be seen.
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4.4 Conclusions

A hybrid atomistic–continuum scheme has been developed to couple a steady, incompressible

Navier–Stokes description of a continuum field with an atomistic description of a dilute gas.

Coupling of the atomistic–continuum subdomains is achieved by exchange of boundary

conditions via a Schwarz alternating method. Continuum subdomain boundary conditions

are imposed on the atomistic subdomain using particle reservoirs based on the Chapman–

Enskog velocity distribution. The atomistic subdomain boundary conditions are imposed

on the continuum subdomain via simple averaging. The following conclusions have been

reached in this study:

1. The use of Chapman–Enskog distributions significantly improves the accuracy of the

solution compared to Maxwell–Boltzmann equilibrium distributions.

2. The Schwarz coupling scheme applied to a two–dimensional driven cavity flow at

Reynolds number 4.3 converges to within ±2% of the fully continuum solution after

10 Schwarz iterations.
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Chapter 5

Schwarz Coupling for Unsteady

Flows

In this Chapter a hybrid atomistic–continuum formulation for unsteady, incompressible

flows is developed using a coupling approach based on the Schwarz alternating method. An

impulsive Couette flow test problem is used to validate the hybrid scheme. Finally, a method

to help reduce computational costs through limited ensemble averaging is presented.

5.1 Introduction

In Chapter 1 the importance of avoiding time explicit coupling methods for steady incom-

pressible flows was highlighted. The time implicit Schwarz coupling method has a clear

advantage here. For the case of unsteady incompressible flows however, the question of the

most appropriate coupling approach is not clear and may be problem dependent. Unless

time coarse–graining techniques are developed for integrating the atomistic solution, large,

low–speed, unsteady problems will remain too expensive to be feasible by either method. If

we assume that the atomistic computations are feasible by explicit integration to the global

time of interest the question of which is the most appropriate coupling approach arises.

We begin by describing a simple hybrid method based on a combined explicit/implicit

approach for domain decomposition proposed by Dawson et.al [27] and Dawson and Dupont [28].

The basic approach used here is illustrated with respect to a 1–dimensional example in Fig-

ure 5-1. A distinct interface is created between the left subdomain and right subdomain.

91



Figure 5-1: Explicit/Implicit domain decomposition stencil.

The solution at the interface point at time tn+1 is first obtained explicitly using values

borrowed from both subdomains at time tn. The solution at interior points within the

subdomains can then be integrated implicitly to tn+1 using the interface value determined

at tn+1. The subdomain solutions can then be used to advance the interface to the next

time level.

The variation of the maximum error of the explicit/implicit coupling scheme for a

hybrid continuum–continuum solution for impulsive Couette flow is shown in Figure 5-2.

Note the maximum explicit time step ∆texplicit to advance the interface is limited by the

width ∆x of the stencil by the stability condition,

∆texplicit ≤ ∆x2

2ν
(5.1)

where ν is the kinematic viscosity. Larger time steps are possible however with a larger

error penalty. The time step restriction of the explicit/implicit coupling approach although

constrained by stability requirements is less severe than that which comes from a fully

explicit method [28].

The use of the explicit/implicit coupling technique was considered for atomistic–continuum

coupling but was ultimately rejected on grounds of lack of generality when used for solving

the more complex Navier–Stokes system. Explicit time marching of Navier–Stokes equa-

tions on a sharp interface could also pose severe numerical implementation constraints, in
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Figure 5-2: Variation of the maximum error of the explicit/implicit hybrid scheme as a function
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particular regarding appropriate pressure and velocity boundary conditions at low Reynolds

numbers. The development of a fully implicit Schwarz–type coupling technique was there-

fore considered instead. As detailed shortly the Schwarz method offers two advantages

compared to time explicit coupling approaches. First the time scale decoupling properties

of the approach are manifested by the ability to couple only at the time where solutions are

required. This not only allows the use of optimal time steps in each subdomain but also

the use of acceleration methods such as the limited ensemble approach to gain an efficiency

advantage. The second advantage arises from the fact that Schwarz coupling using state

variables provides cost savings over traditional flux based coupling schemes vis-á-vis noise

concerns related to the atomistic solution as discussed earlier in Section 1.2.1.

5.2 Unsteady Schwarz Coupling

The Schwarz alternating method can be extended to couple time unsteady flows to some

time tn by exchanging boundary condition information similar to steady flow coupling. As

shown schematically in Figure 5-3 an overlap region between the subdomains facilitates

information exchange in the form of Dirichlet boundary conditions. Unlike the steady flow
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Figure 5-3: Schematic of the unsteady Schwarz alternating method.

case however successive Schwarz iterations are used to converge the solution to a given time

tn. The converged solution at tn forms the initial condition for subsequent Schwarz iterations

to advance the solution to time level tn+1. The unsteady Schwarz scheme still allows for

time scale decoupling; each subdomain can be advanced at the local most favorable time

step and the choice of tn+1 is arbitrary. The computational cost of performing multiple

Schwarz iterations per time level is thus partially offset by the ability to implicitly advance

to the time of interest without the need for explicit coupling at previous times. Note the

steady Schwarz method can be considered a particular instance of the unsteady Schwarz

method as tn → ∞, or steady state.

The algorithm schematic for the unsteady Schwarz scheme is shown in Figure 5-4. An

outer time step iteration loop 1 is added to the Schwarz iteration performed within loop

2. Implementation of the unsteady Schwarz method requires 2 additional constructs not

present in the steady scheme; a) ensemble averaging of the unsteady atomistic subdomain

solution and b) time interpolation of solutions between atomistic and continuum subdomains

to allow for different time steps in these subdomains.
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Figure 5-4: Unsteady Schwarz algorithm schematic. NT is the time step integration counter and
Ns is the Schwarz iteration counter.

5.2.1 Particle Ensembles

In the steady flow case time averaging of the atomistic solution after the latter has reached

steady state was performed to help reduce the effect of statistical fluctuations. The relative

statistical error for an averaged quantity defined by the ratio RMS/mean, where RMS is

the root mean square value, decreases as

RMS/mean =
1√

NcNmax
T

(5.2)

where Nc is the average number of particles in a cell and Nmax
T is the total number of

samples taken [32]. However, if the samples taken are not statistically independent (for

example, if time–averaging the time between samples is shorter than the correlation time)

Nmax
T is the number of independent samples.

For unsteady flows time averaging is not feasible for reducing the statistical error as the

hydrodynamic field is evolving as a function of time. An alternative approach is to use an

ensemble of calculations. For a time–unsteady flow, the solution at any given time tn is then
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Figure 5-5: Unsteady Schwarz algorithm schematic. Ns is the Schwarz iteration counter and NE

is the ensemble averaging counter. Loop 1 corresponds to the time iteration loop in
Figure 5-4.

obtained by averaging over the ensemble of identical calculations. Ensemble averaging is

essential to ensure the atomistic solution is accurately determined. The associated statistical

error now decays as 1/
√

NcNmax
E where Nmax

E is the total number of ensembles.

For the unsteady hybrid scheme, particle ensemble averaging routines are embedded

within the Schwarz iteration loop as shown in the algorithm schematic in Figure 5-5.

5.2.2 Time Interpolation

A distinctive advantage of steady Schwarz coupling is its ability to decouple time scales;

the time step for the continuum subdomain ∆tc is often larger than the time step for the

atomistic subdomain ∆tp. Similar time scale decoupling is also possible using unsteady

Schwarz coupling. For the case where ∆tc > ∆tp, the boundary values from the contin-

uum solutions must be interpolated to the atomistic subdomain as shown schematically in

Figure 5-6, to ensure the atomistic subdomain solution has the most accurate continuum

boundary conditions during advance to any time level tn+1. Note that during time advance
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Figure 5-6: Interpolation of boundary conditions.

of the continuum subdomain, direct imposition of the atomistic subdomain boundary con-

dition is possible provided the continuum subdomain time step is an integer multiple of the

atomistic subdomain time step.

The effectiveness of linear time interpolation of the continuum boundary condition is

assessed next using a hybrid continuum–continuum scheme using unsteady Schwarz cou-

pling. The continuum–continuum domain decomposition helps evaluate the time interpola-

tion routines independent of the ensemble averaging required for an atomistic–continuum

formulation and hence in the absence of statistical fluctuations which make quantitative

comparison difficult. The impulsive Couette flow shown in Figure 5-7 is used as a test

problem. The wall at x = L moves with velocity Vo at time t = 0 while the wall at x = 0 is

held stationary. The hybrid scheme consists of 2 continuum subdomains I and II extending

from x = 0, b and from x = a, L respectively with overlap width h.

The resulting flow is obtained by solution of a diffusion equation for y–momentum,

∂v

∂t
− ν

∂2v

∂x2
= 0 x ∈ (0, L), t ∈ (0, T ) (5.3)

where ν = µ/ρ is the kinematic viscosity. This equation can be solved numerically using an

implicit backward difference scheme (i.e. Backward Euler),

∂t,∆tv
n
i − ∂2

x,∆xvn
i = 0 (5.4)
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Figure 5-7: Computational domain for the impulsively started Couette flow test problem.

where,

∂t,∆tv(x, t) =
v(x, t) − v(x, t − ∆t)

∆t
(5.5)

∂2
x,∆xv(x, t) =

v(x − ∆x, t) − 2v(x, t) + v(x + ∆x, t)
∆x2

(5.6)

Here ∆t is the time step and ∆x is the spatial discretization. Equation (5.4) is used in both

subdomains I and II. In this test problem, subdomain II is advanced at 1/10th the time

step of subdomain I. The LHS boundary condition for subdomain II, vII(a, t) is linearly

interpolated from the subdomain I solution as follows,

vII(a, tk) = vI(a, ti) +
(k − pi)

p

(
vI(a, ti+1) − vI(a, ti)

)
where ti < tk ≤ ti+1

(5.7)

Here p = ∆tI/∆tII , and i, k are the indices of the time step used in subdomains I and II

respectively. The RHS boundary condition for subdomain I, vI(b, t) is obtained by direct

imposition of the subdomain II solution as follows,

vI(b, ti) = vII(b, tk) where k = pi (5.8)

Additional constants for the impulsive Couette flow test are listed in in Table 5.1.
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Property Value
Overlap width h 0.06 × 10−6 m

Boundary a 0.94 × 10−6 m
Boundary b 1.00 × 10−6 m

Domain Length L 2.00 × 10−6 m
Wall velocity V0 30 m/s

Kinematic viscosity 1.1688665 × 10−5m2/s
Subdomain I time step ∆tI = 1 × 10−10 s
Subdomain I space step ∆xI = 2 × 10−8 m
Subdomain II time step ∆tII = 1 × 10−11 s
Subdomain II space step ∆xII = 2 × 10−8 m
Schwarz iterations / ∆tI 10

Table 5.1: Properties of hybrid continuum–continuum scheme used for the impulsive Couette
flow test problem.

The velocity profiles predicted by the hybrid scheme are plotted in Figure 5-8 together

with a solution obtained by numerical integration of Equation (5.3) in a single domain

with ∆x = 2 × 10−8m and ∆t = 1 × 10−11s (referred to here as the exact solution). The

hybrid scheme velocity profiles are in good agreement with the exact solution. The effect

of the overlap region width h on convergence of the t = 4 × 10−8s velocity profile to the

exact solution is plotted in Figure 5-9 as a function of the number of Schwarz iterations.

The number of Schwarz iterations for convergence decreases by almost a factor of 4 as the

overlap region width increases by a factor of 2. Note that the error saturates after a number

of iterations. This is due, as discussed below, to the boundary condition interpolation.

The convergence of the velocity profile at time t = 4× 10−8s to the exact solution as a

function of Schwarz iterations and interpolation scheme is plotted in Figure 5-10. The lin-

early interpolated boundary condition solution converges after approximately 5 Schwarz

iterations. The velocity solution using stepwise boundary condition interpolation (i.e.

vII(a, tk) = vI(a, ti+1) for pi < k ≤ p(i + 1)) also converges but with larger deviation.

The use of equal time steps ∆t = 1 × 10−11s in both subdomains, i.e. where direct bound-

ary condition imposition is possible between subdomains I → II and II → I shows the

best performance. This final result verifies consistency of the unsteady Schwarz coupling

as the time interpolation between the subdomains is removed. While use of equal time

steps in both subdomains results in greater accuracy this must be weighed with the benefit

of reduced hybrid simulation cost through time step decoupling. Linear interpolation of
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Figure 5-8: Comparison of the hybrid continuum–continuum solution for the impulsively driven
Couette test problem with the exact solution. Overlap h = 6 × 10−8m. Profiles are
shown for t = 1 × 10−8s to 4 × 10−8s in steps of 1 × 10−8s.

the boundary condition provides reasonable balance between the two constraints in this

case. Application of unsteady Schwarz coupling to hybrid atomistic–continuum schemes is

described next.

5.3 Impulsive Couette Flow Test Problem

A hybrid atomistic–continuum scheme using unsteady Schwarz coupling is validated in this

section for the 1–dimensional impulsive Couette flow test problem shown in Figure 5-7. The

subdomains I and II correspond to the continuum and atomistic subdomains respectively.

The continuum solution is obtained by solving Equation (5.3) for the y–momentum

diffusion using the implicit backward difference scheme detailed in Equation (5.4). The

atomistic subdomain is solved using DSMC. The imposition of continuum boundary con-

ditions on the atomistic subdomain is facilitated by particle reservoirs as described for the

steady flow case. Particles are created in the reservoir with a uniform distribution in the

x–coordinate direction and a velocity drawn from a Chapman–Enskog distribution. The
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Property Value
Kinematic viscosity ν 1.1688665 × 10−5m2/s
Total domain width L 1 × 10−6 m

Continuum subdomain width Lc 0.75625 × 10−6 m
Continuum nodes in Lc 51

Continuum time step ∆tc 1.0 × 10−10 s
Atomistic subdomain width La 0.25 × 10−6 m

DSMC cells in La 20
No. of particles in each cell 2000

DSMC time step ∆tp 1.0 × 10−11 s
Overlap region width h 6.25 × 10−9 m
Reservoir region width 4.0 × 10−8 m

DSMC time steps per ensemble 100
No. of ensembles 1000

Schwarz iterations per time step 10
Wall velocity V0 30 m/s

Table 5.2: Unsteady Schwarz simulation parameters for the impulsive Couette flow test problem.

mean particle velocity in the reservoir is obtained by linear time interpolation as detailed

in Equation (5.7) and by linear spatial interpolation between the continuum nodes. Impo-

sition of the atomistic boundary conditions on the continuum subdomain follows the use of

overlapping continuum nodes and DSMC cell centers similar to the steady flow case. Direct

imposition is possible here as the continuum time step is chosen to be an integer multiple

of the DSMC time step.

The statistical error of the atomistic solution is reduced by ensemble averaging per-

formed using simulations initiated from different random number seeds. The Nmax
E ensem-

bles created over a time interval tn−tn+1 are retained and advanced at each subsequent time

interval. Additional parameters used in the unsteady simulations are listed in Table 5.2.

Figure 5-11 compares the hybrid solution obtained at times t = 1 × 10−9s = 5.4τ

through t = 4 × 10−9s = 21.6τ with the fully atomistic DSMC solution. The hybrid

solution shows good comparison and captures the unsteady velocity slip at the wall.
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Figure 5-11: Comparison of the unsteady hybrid scheme with the fully DSMC atomistic solution.
10 Schwarz iterations were required to converge the solution at each time level.
Velocity profiles are shown for t = 5.4τ, 10.8τ, 16.2τ and 21.6τ respectively, where
τ = 1.8559 × 10−10s is the gas mean collision time.

5.4 Acceleration of Unsteady Hybrid Atomistic–Continuum

Schemes

In this Section we develop an acceleration scheme that takes advantage of the time scale

decoupling properties of the Schwarz method. The idea behind this method is that a

large number of ensemble members is only needed for noise reduction purposes whereas the

hydrodynamic behavior of the system is present in any of the ensemble members albeit in

a noisy form. Thus, since the coupling procedure used here allows for a large gap between

sampling times (only when matching occurs, which can be as infrequent as only once in

the calculation) it is natural to attempt to use a large number of ensembles only during

the sampling phase. This can be achieved by noting that the decorrelation time between

different calculations is small compared to the hydrodynamic time scale (especially of the

outer problem). Thus if a small number of ensemble members are used for the majority

of the time integration and from these systems a larger amount of systems are generated

by perturbation at a time which allows for decorrelation, a full decorrelated sample will
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exist when required without integrating this full ensemble through time. In the case of our

DSMC calculation sufficiently perturbed systems can be generated by simply changing the

random number seed but using the same initial configuation. In our nomenclature, in the

unsteady Schwarz coupling approach of the previous Section Nmax
E particle ensembles are

created and advanced through each time interval tn → tn+1. According to the approach

proposed here the ensemble creation within a single time interval tn → tn+1 is split into 2

stages, i.e. Nmax
E1 ensembles for simulation time tn → tn+δ and Nmax

E2 ensembles for time

tn+δ → tn+1 such that,

Nmax
E1 (tn+1 − tn+δ)/∆tp + Nmax

E2 (tn+δ − tn)/∆tp < Nmax
E (tn+1 − tn)/∆tp (5.9)

Nmax
E1 < Nmax

E2 (5.10)

where ∆tp is the time step of the atomistic subdomain simulation and 0 < δ < 1. Note that

Nmax
E2 can equal Nmax

E to allow the same degree of error reduction in the final solution at

time tn+1.

The computation cost reduction of the unsteady Schwarz method using limited ensem-

bles in this manner is dependent on the values of δ and Nmax
E1 required to maintain accuracy.

Results from an initial analysis of the method using a fully atomistic simulation of an im-

pulsive Couette flow are shown in Figure 5-12. For these tests Nmax
E2 = 2000 and δ is chosen

such that (tn+1 − tn+δ)/∆tp = (tn+δ − tn)/∆tp = 500 DSMC time steps. This provides

a 26.9τ decorrelation time before sampling of the atomistic solution. Good comparison is

obtained for the Nmax
E1 = 100 simulation. The reduction in error as a function of Nmax

E1 is

further plotted in Figure 5-13 which shows a slow decay with Nmax
E1 . This indicates that a

small number of ensembles is required to carry the dynamics forward in time, i.e., Nmax
E1

should be kept as small as possible. The choice of parameters for this test using limited

ensemble acceleration results in a 47% savings in simulation cost over a non–accelerated

unsteady simulation. The limited ensemble approach is incorporated within an unsteady

hybrid scheme applied to an impulsive Couette flow test problem next.
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Figure 5-14: Algorithm schematic for limited ensemble acceleration. Loop 1 corresponds to the
time iteration loop in Figure 5-4.

5.4.1 Impulsive Couette Flow Test Problem

Limited ensemble acceleration can be incorporated within a hybrid scheme with minor

modification to the overall algorithm as shown in Figure 5-14. The ensemble creation loop

is split into 2 stages during advance of the atomistic solution calculated by DSMC. The

continuum subdomain is solved using the implicit backward difference scheme described in

Section 5.2.2. Particle reservoirs are used to impose the linearly time interpolated continuum

boundary condition on the atomistic subdomain. The atomistic boundary condition is

directly imposed on the continuum subdomain. Parameters for the unsteady simulation are

listed in Table 5.3.

Unlike in the non–accelerated unsteady hybrid scheme however, there are now two

families of particle ensembles that consist of Nmax
E1 and Nmax

E2 members respectively where

Nmax
E2 > Nmax

E1 . The Nmax
E2 members are created by splitting off an additional (Nmax

E2 −Nmax
E1 )

members with different random number seeds at time tn+δ from the Nmax
E1 original ensembles

as shown graphically in Figure 5-15. This process beginning at time tn is repeated for Nmax
s
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Property Value
Kinematic viscosity ν 1.1688665 × 10−5m2/s
Total domain width L 4 × 10−6 m

Continuum subdomain width Lc 3.71 × 10−6 m
Continuum nodes in Lc 186

Continuum time step ∆tc 1.0 × 10−10 s
Atomistic subdomain width La 0.30 × 10−6 m

DSMC cells in La 15
No. of particles in each cell 2000

DSMC time step ∆tp 1.0 × 10−11 s
No. of ensembles Nmax

E1 100
No. of ensembles Nmax

E2 2000
DSMC time steps per ensemble 500 for both Nmax

E1 and Nmax
E2

Reservoir region width 4.0 × 10−8 m
Overlap region width h 1.0 × 10−8 m

Schwarz iterations per time step 10
Wall velocity V0 30 m/s

Table 5.3: Accelerated unsteady Schwarz simulation parameters for the impulsive Couette flow
test problem.

Schwarz iterations. At the final Schwarz iteration Nmax
s a limited set of the Nmax

E2 ensemble

members are then advanced forward as the new Nmax
E1 ensemble family for the next time

interval. The velocities of these new Nmax
E1 members are first reset to the tn+1 ensemble–

averaged solution while retaining their spatial distribution. The process is repeated at each

coupling time interval. Note also that in this simulation 10 Schwarz iterations are used

to couple the solution at every 1 × 10−8s (53.9τ) compared to coupling at every 1 × 10−9s

(5.39τ) for the non–accelerated scheme. While this is driven by the need to provide sufficient

decorrelation time before sampling of the Nmax
E2 ensembles, it also highlights the versatility

of the hybrid Schwarz coupling to match solutions at arbitrary times.

The results from the accelerated unsteady hybrid scheme are shown in Figure 5-16.

Good comparison is obtained with a fully atomistic solution. The simulation cost of this

scheme is compared to a fully atomistic scheme and a non–accelerated unsteady Schwarz

scheme in Table 5.4. For the parameters chosen in this example the use of limited ensemble

acceleration has helped reduce the total simulation cost of an unsteady hybrid scheme by

more than a factor of 2. Of course in applications of practical interest, the atomistic region

will be significantly smaller than the continuum region leading to larger savings. In the
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Figure 5-15: Graphical illustration of the limited ensemble acceleration approach.
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Figure 5-16: Comparison of limited ensemble accelerated unsteady hybrid scheme for impulsive
Couette flow with fully atomistic solution. τ = 1.8559×10−10s is the mean collision
time.
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Property Atomistic Hybrid Hybrid (accelerated)
Atomistic subdomain width La 4.00µm 0.3µm 0.3µm

Ensembles Nm
E ax 2000 2000 Nmax

E1 = 100, Nmax
E2 = 2000

DSMC time steps Nmax
m1 1000 1000 500 for both Nmax

E1 and Nmax
E2

Schwarz iterations Nmax
s 0 10 10

Cost (La × Nmax
m1 × Nmax

E × Ns) 8 × 106 6 × 106 3.15 × 106

Savings (compared to Atomistic) - 25.0% 60.6%

Table 5.4: Comparison of simulation cost.

same vein, the time scale of evolution of the continuum subdomain will be significantly

larger than the atomistic decorrelation time leading to additional savings from the limited

ensemble procedure.

109



110



Chapter 6

Explicit Coupling

In this Chapter an Adaptive Mesh and Algorithm Refinement (AMAR) based compress-

ible hybrid formulation is described. Atomistic–continuum coupling is achieved by explicit

time integration of fluxes. AMAR ensures the atomistic description is applied exclusively in

localized regions with high flow gradients and discontinuous material interfaces, i.e. regions

where the continuum flow assumptions are typically invalid. Direct Simulation Monte Carlo

(DSMC) is used to model the atomistic regions on the finest grid of the adaptive hierarchy.

The continuum flow is modeled using the compressible flow Euler equations and is solved

using a second order Godunov scheme. The AMAR data structures are supported by a

C++ object oriented framework using the Structured Adaptive Mesh Refinement Applica-

tion Infrastructure (SAMRAI) software library [84]. The AMAR routines and the SAMRAI

library were written by members of the Center for Applied Scientific Computing (CASC)

at the Lawrence Livermore National Laboratory. Code modifications to incorporate binary

gas species and subroutines for adaptive refinement criteria were written additionally for

this thesis.

6.1 Introduction

The AMAR compressible hybrid formulation developed by Garcia et al. [36] pioneered the

use of mesh refinement as a natural framework for robust explicit coupling of an atomistic

fluid representation and a continuum field model using flux matching. Fluxes from the

atomistic subdomain are transferred to the continuum subdomain by summation of the
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mass, momentum and energy of particles that cross the atomistic–continuum interface. Im-

position of fluxes from the continuum subdomain on the atomistic subdomain is facilitated

by “buffer cells” similar to particle reservoirs used for Schwarz coupling. This formulation

is extended in the present work by a) modifications to the atomistic and continuum models

to simulate binary gas mixtures, b) development of a theoretical description for the effect

of statistical fluctuations on refinement criteria and c) development of tolerance parameters

based on flow field values and gradients for robust continuum to atomistic refinement.

The continuum and atomistic solution methods are described first in the context of the

AMAR explicit coupling approach. Reliable and accurate grid and algorithm refinement

criteria to track fluid interfaces are discussed next. Finally numerical results are presented

for several test cases and compared against theory and other simulations.

6.2 Adaptive Mesh and Algorithm Refinement

This section describes the Adaptive Mesh and Algorithm Refinement (AMAR) explicit cou-

pling methodology in which a continuum algorithm is replaced by an atomistic algorithm

at the finest grid scale in a hierarchical adaptive grid refinement (AMR) setting. A detailed

description of the AMAR scheme is provided by Garcia et. al. [36]. This work is summa-

rized here for completeness together with a description of the modifications required for

simulations of binary gas mixtures.

6.2.1 AMR Algorithm for Continuum Hydrodynamics

The AMAR implementation is built on a structured AMR grid hierarchy where the com-

pressible, two–species Euler equations are solved on every grid level except the finest. Note

that AMAR uses the same adaptive meshing and time integration algorithms developed for

continuum modeling of hyperbolic hydrodynamics [12, 13].

Consider the governing Euler equations written in conservative form,

∂U
∂t

+
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
= 0 (6.1)
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where,

U =



ρ

px

py

pz

ρE

ρc


Fx =



ρu

ρu2 + P

ρuv

ρuw

ρuH

ρcu


Fy =



ρv

ρuv

ρv2 + P

ρwv

ρvH

ρcv


Fz =



ρw

ρuw

ρvw

ρw2 + P

ρwH

ρcw

(6.2)

and,

P = ρRT ρE = P
1

γ − 1
+

1
2
ρ|V |2 ρH = P

γ

γ − 1
+

1
2
ρ|V |2 (6.3)

The mass concentration variable c gives the concentration of the first gas species. By defini-

tion, (1− c) represents the mass concentration of the second gas species. The concentration

variable is purely convected here by the mean flow as governed by the Euler equations.

Discrete time integration is performed using a finite volume approximation to Equa-

tion (6.1). This yields a conservative finite difference expression with Un
ijk appearing as

a cell–centered quantity at each time level and F
x,n+ 1

2

i+ 1
2
,j,k

located at faces between cells at

half–time level [55], i.e,

Un+1
ijk = Un

ijk − ∆tc

Fx
x,n+ 1

2

i+ 1
2
,j,k

− Fx
x,n+ 1

2

i− 1
2
,j,k

∆x
+

Fy
y,n+ 1

2

i,j+ 1
2
,k
− Fy

y,n+ 1
2

i,j− 1
2
,k

∆y

+
Fz

z,n+ 1
2

i,j,k+ 1
2

− Fz
z,n+ 1

2

i,j,k− 1
2

∆z

 = 0 (6.4)

A multidimensional second–order version of an unsplit Godunov scheme [24, 25, 78] is used

to approximate the fluxes in Equation (6.4). Specific time integration routines for AMAR

can be found in [55]. A summary is given below.

Time stepping on an AMR grid hierarchy involves interleaving time steps on individual

levels [13]. Each level has its own time step as dictated by its spatial resolution (typically

constrained by a CFL condition). The key to achieving a conservative AMR algorithm is
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to define a discretization for Equation (6.1) that holds on every level of the grid hierarchy.

In particular, the discrete cell volume integrals of U and the discrete cell face integrals

of F must match on the locally–refined AMR grid. Thus, integration of a level involves

two steps: solution advance and solution synchronization with other levels. Synchronizing

the solution across levels assumes that fine grid values are more accurate than coarse grid

values. Thus, coarse values of U are replaced by suitable cell volume averages of finer U

data where levels overlap, and discrete fine flux integrals replace coarse fluxes at coarse–

fine grid boundaries. Although the solution is computed differently in overlapping cells on

different levels as each level is advanced initially, the synchronization procedure enforces

conservation over the entire AMR grid hierarchy.

6.2.2 Atomistic Algorithm

The atomistic algorithm used in AMAR is the direct simulation Monte Carlo (DSMC)

method outlined in Chapter 2. The single gas species advection and collision relationships

defined in Equation (2.1) and Equations (2.7)–(2.10) also hold for the case of a binary gas

mixture. The state of the system is now given by positions and velocities of two particle

species s1 and s2; (rs1
i ,vs1

i , i = 1...N s1) and (rs2
i ,vs2

i , i = 1...N s2). The system evolves

in time using the familiar splitting approach. First particles from both species are moved

without interaction according to Equation (2.1) and appropriate boundary conditions are

applied to particles that reach the DSMC domain boundary. Second, after all particles have

moved, a given number are randomly selected for collisions. Unlike with the single species

case, there are now 3 pairs of collision candidates (species 1→species 1, species 1→species

2 and species 2→species 2), with M11
cand, M12

cand, and M22
cand number of collisions per cell

respectively,

M11
cand =

N s1
c (N s1

c − 1)Nefπσ2
1v

max11
r ∆tp

2Vc
(6.5)

M12
cand =

N s1
c N s2

c Nefπσ2
12v

max12
r ∆tp

Vc
(6.6)

M22
cand =

N s2
c (N s2

c − 1)Nefπσ2
2v

max22
r ∆tp

2Vc
(6.7)
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where σ12 = 0.5 × (σ1 + σ2), σ1, σ2 are the hard sphere diameters of the species, N s1,s2
c are

the number of particles per cell, vmax11,12,22
r are the species maximum relative speeds, ∆tp

is the atomistic time step and Vc is the volume of the cell.

6.2.3 Atomistic–Continuum Coupling

The atomistic–continuum coupling routines used in AMAR are detailed in [96]. The de-

scription below is provided for completeness.

The atomistic–continuum coupling routines are best described with reference to the

graphical sequence shown in Figure 6-1. During time integration of continuum grid levels,

fluxes computed at each cell face are used to advance the solution U as illustrated in

Figure 6-1(b). Continuum values on each level are advanced using a ∆tc appropriate to that

level, including those that overlay the DSMC region. When the particle level is integrated,

it is advanced to the new time on the finest continuum level using a sequence of particle

time steps, ∆tp. The relative magnitude of ∆tp to the finest continuum grid ∆tc depends

on the finest continuum grid spacing ∆x (typically a few λ) and the particle mean collision

time.

Euler solution information is passed to the particles via buffer cells surrounding the

DSMC region. At the beginning of each DSMC integration step, particles are created in

the buffer cells using the continuum hydrodynamic values (ρ, u, T ) and their gradients as

illustrated in Figure 6-1(c). Since the continuum solution is advanced first, these values

are time interpolated between continuum time steps for the sequence of DSMC time steps

needed to reach the new continuum solution time. DSMC buffer cells are one mean free

path wide; thus, the time step ∆tp is constrained such that it is extremely improbable that

a particle will travel further than one mean free path in a single time step. The particle

velocities are drawn from an appropriate distribution for the continuum solver, in this case

the Maxwell–Boltzmann distribution for the Euler equations.

During each DSMC time integration step, all particles are moved, including those in

the buffer regions as shown in Figure 6-1(d). A particle that crosses the interface between

continuum and DSMC regions will eventually contribute to the flux at the corresponding

continuum cell face during the synchronization of the DSMC level with the finest continuum
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level. After moving particles, those residing in buffer regions are discarded. Collisions among

the remaining particles are evaluated and new particle velocities are computed.

After the DSMC region has advanced over an entire continuum grid time step, the

continuum and DSMC solutions are synchronized in a manner analogous to the AMR level

synchronization process described earlier. First, the continuum values in each cell overlaying

the DSMC region interior are set to the conservative averages of data from the particles

within the continuum grid cell region as illustrated in Figure 6-1(e). Second, the continuum

solution in cells adjacent to the DSMC region is recomputed using a “refluxing” process

denoted in Figure 6-1(f). Here a flux correction is computed using a space and time integral

of particle flux data,

δF = −AFn+ 1
2 +

∑
particles

Fp (6.8)

where A is the signed area of a grid cell face. The sum represents the flux of the conserved

quantities carried by particles passing through the continuum cell face during the DSMC

updates. Finally,

Un+1 = Un+1 +
∆tcδF

∆x∆y∆z
(6.9)

is used to update the conserved quantities on the continuum grid where Un+1 is the coarse

grid solution before computing the flux correction.

In summary, the coupling between the continuum and DSMC methods is performed

in three operations. First, continuum solution values are interpolated to create particles in

DSMC buffer cells before each DSMC step. Second, conserved quantities in each continuum

cell overlaying the DSMC region are replaced by averages over particles in the same region.

Third, fluxes recorded when particles cross the DSMC interface are used to correct the

continuum solution in cells adjacent to the DSMC region. This coupling procedure makes

the DSMC region appear as any other level in the AMR grid hierarchy.

Multiple DSMC parallelepiped regions (i.e., patches) are coupled by copying particles

from patch interiors to buffer regions of adjacent DSMC patches (see Figure. 6-2). That is,

particles in the interior of one patch supply boundary values (by acting as a reservoir) for
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Figure 6-1: Outline of AMAR hybrid: (a) Beginning of a time step; (b) Advance the continuum
grid; (c) Create buffer particles; (d) Advance DSMC particles; (e) Refluxing; (f)
Reset overlying continuum grid. Adapted from [96].

adjacent particle patches. After copying particles into buffer regions, each DSMC patch may

be integrated independently, in the same fashion that different patches in a conventional

AMR problems are treated after exchanging boundary data.

6.3 Euler–DSMC Code Implementation

The Euler–DSMC AMAR code utilized in this work is composed of elements from the

SAMRAI object–oriented framework, developed at the Lawrence Livermore National Lab-

oratory, and numerical routines specific to the application. SAMRAI provides a general,

flexible software toolbox for developing multi–physics AMR applications and supports gen-

eral parallel data management capabilities, including particle representations, on an AMR

grid hierarchy [56]. A brief overview is given below [84].

The organization of major algorithmic parts in the hybrid Euler–DSMC code is similar

to that of an Euler–only AMR code. However, the hybrid code requires a new level inte-

grator that coordinates DSMC and Euler operations on different hierarchy levels. The new

integrator, developed for this project, was constructed from elements in SAMRAI. Figure 6-
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Figure 6-2: Multiple DSMC regions are coupled by copying particles from one DSMC region
(upper left) to the buffer region of an adjacent DSMC region (lower right). Af-
ter copying, regions are integrated independently over the same time increment.
Adapted from [96].

3 illustrates the relationships between this and other algorithmic parts. It is interesting to

note that all classes appearing in an Euler–only application are used without modification

in the hybrid code. Also, the DSMC data structures and numerical routines, developed

previous to incorporation in the hybrid application, were introduced without significant

modification. Recall that the Euler continuum model and DSMC particle model are vastly

different numerical approaches. The Euler model represents compressible fluid flow as a

deterministic system of partial differential equations containing a few grid–based variables.

DSMC approximates the Boltzmann equation using a representative, stochastic sampling of

a collection of particles whose state and motion are essentially grid–less. The DSMC data

structures and numerical routines are insulated from SAMRAI abstractions by a “wrapper”

interface class. This class serves two important functions. First, it acts as a translator

between SAMRAI patch data and the DSMC particle structures. Second, it allows the par-

ticles to be manipulated on a distributed parallel machine by SAMRAI. More importantly,

the serial DSMC routines were coupled to the SAMRAI parallel communication framework

without changing the particle structures or routines or recompiling SAMRAI library code.

Additional details describing how this is done appear in [56].
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Figure 6-3: Illustration of the coupling of the major algorithmic components in the Euler-DSMC
code. Bold arrows indicate where one object owns a reference to another. Dashed
arrows indicate control flow for advance operations. Classes from the SAMRAI li-
brary are indicated by “(SAM)”. Numerical operations on Euler patches are called
in the EulerPatchModel class. DSMC numerical routines are called in the DSMC-
PatchModel class. A DSMC “Wrapper” object holds the DSMC data on each DSMC
patch and couples it to the SAMRAI communication routines. Adapted from [56].

6.4 Refinement Criteria

Standard AMR methods assume that continuum field equations are valid at all length

scales in the computation. Regions for grid refinement are located using ad–hoc notions

(e.g., refine around steep gradients) or analytical error estimation techniques involving the

differential equations (e.g., Richardson extrapolation [13]). In contrast, hybrid methods

apply computational models matched to the flow characteristics at each physical scale.

The AMAR algorithm can refine the grid and algorithm based on any flow field property

and combinations thereof. For single species flows, refinement based on density gradients

have been found to be robust and reliable. The tracking of concentration gradients or con-

centration values within specific interval are also effective for multi–species flows involving

concentration interfaces. These refinement criteria will be demonstrated shortly with test

examples in Section 6.5.

The parameters for transitioning from the continuum algorithm to the atomistic al-

gorithm used here are based on a continuum breakdown parameter method proposed by

Bird [19], whereby refinement is triggered by spatial gradients exceeding empirically–determined

tolerances. The gradient detector formula employed in AMAR is a variation of a sharp dis-
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continuity detector by Trangenstein and Pember [88].

Due to fluctuations present in atomistic computations, it is important to develop gra-

dient refinement methods that do not allow fluctuations to trigger unnecessary refinement

and excessively large atomistic regions. For example, at thermodynamic equilibrium, the

standard deviation in the normalized gradient of density due to atomistic fluctuations can

be shown to be given by [7],

σ =

√√√√〈(
dρ/dx

ρ

)2
〉

≈
√√√√〈(

Nc(i+1) − Nci

∆xc〈Nci〉
)2

〉
=

√
2

∆xc

√〈Nc〉
(6.10)

since Nc, the number of particles in a DSMC cell, is Poisson distributed.

To investigate the effect of a fluctuating atomistic description on the continuum subdo-

main, an AMAR hybrid atomistic–continuum simulation was conducted for an equilibrium

uniform stationary fluid. A 2 level (fine and coarse) AMAR grid hierarchy was used to

discretize the geometry outlined in Figure 6-4. The atomistic and continuum subdomains

are predetermined here and density gradient tolerance based refinement is turned off. The

atomistic subdomain consists of 512 DSMC cells each of volume λ3 in a cube 8λ× 8λ× 8λ

occupying the fine grid level. The continuum subdomain consists of 400 cells each of volume

8λ3 arranged in a parallelepiped geometry of 50λ× 8λ× 8λ on the coarse grid level. Argon

gas was simulated at atmospheric conditions; pressure P = 1.013×105 Pa and temperature

T = 273 K. Both atomistic and continuum subdomains were initialized with uniform density

1.78 × 10−3g/cm3. As shown in [7] for a given computational grid the density fluctuation

can only be reduced by increasing the number of DSMC simulation particles per cell Nc.

This is captured in Figures 6-5, 6-6, 6-7 where the density (averaged over the y–z plane) is

plotted for Nc = 20, 80 and 320 respectively as a function of the x–coordinate position. The

error bars indicate a one standard deviation in the density fluctuation over a 10 time step

(7.5 × 10−10s = 4τ) interval. As can be seen in these Figures, fluctuations in the atomistic

region causes the continuum region to also fluctuate with a variance which decreases with

the distance from the continuum interface. In fact, the variance of the fluctuations in the

continuum region adjacent to the interface is very close to the atomistic region fluctuation

variance. This is in agreement with the observations by Alexander et. al. [7] who performed

similar measurements on a system of random walkers simulating the diffusion equation.
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Figure 6-4: 3D AMAR computational domain for investigation of tolerance parameter variation
with number of particles in DSMC cells Nc.
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Figure 6-5: Average density for stationary fluid AMAR hybrid simulation with Nc = 20. Error
bars give one standard deviation over 10 samples.
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Figure 6-6: Average density for stationary fluid AMAR hybrid simulation with Nc = 80. Error
bars give one standard deviation over 10 samples.
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Figure 6-7: Average density for stationary fluid AMAR hybrid simulation with Nc = 320. Error
bars give one standard deviation over 10 samples.
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These results have consequences for the use of density gradient tolerances Rρ used for

AMAR. In general, such tolerances must be coupled to the number of particles used for the

atomistic domain since the spatial gradients of density on the coarse grid which is fluctuating

are used to decide whether refinement will take place. In particular, refinement occurs in

regions where the non–dimensionalized density gradients are above the Rρ threshold, i.e.

Rρ <
2λ

ρ

∣∣∣∣dρ

dx

∣∣∣∣ (6.11)

To determine the minimum value of Rρ required to prevent growth of the atomistic region,

simulations were conducted using the domain geometry shown in Figure 6-4 for a range

of Nc. During a “trigger” event where the density fluctuations exceed Rρ grid refinement

occurs as shown in Figure 6-8. The value of Rρ that results on average a 5−10% trigger rate

(i.e. between 5-10 trigger events per 100 iterations) is plotted in Figure 6-9 as a function of

Nc. In what follows we outline how theoretical predictions bounding these numerical results

can be obtained. These predictions are shown as solid lines in Figure 6-9.

For the geometry considered here, each continuum cell consists of 8 DSMC cells and

hence effectively the contribution of 8 × Nc particles is averaged to determine the density

gradient between continuum cells. The relationship between σ and Nc in Equation (6.10)

is therefore modified to,

σ =
1

2∆xc

√〈Nc〉
(6.12)

Note that we are assuming that the fluctuation at the continuum cell across the atomistic–

continuum interface is the same as that in the atomistic region. This allows the use of

Equation (6.10) that was derived assuming 2 atomistic cells. Note the observed trigger event

is a composite of a large number of probable density gradient fluctuations that could exceed

Rρ; gradients across all possible nearest neighbor cells, next-to-nearest neighbor cells and

diagonally-nearest neighbor cells are all individually evaluated by the refinement routines

and checked against Rρ. For a 10% trigger rate (or equivalent probability of trigger) the

probability of an individual cell having a density fluctuation exceeding Rρ can be estimated

as O(0.1/100) by observing that,

• since the trigger event is a rare event, probabilities are additive,
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Figure 6-8: 3D AMAR hybrid simulation illustrating continuum to atomistic grid refinement
during a “trigger” event where density gradients on coarse grid level exceed a user
specified tolerance. a) Region of continuum grid is identified for tagging, b) DSMC
routines replace continuum algorithm in tagged region.

• for the geometry considered, there are O(100) nearest neighbor cells that can trigger

refinement and

• the rapid decay of the Gaussian distribution ensures the decreasing probability (O(0.1/100) ∼
O(0.001)) of a single event does not significantly alter the corresponding confidence

interval and thus an exact enumeration of all possible trigger pairs with correct weight-

ing factors is not necessary.

For example our probability estimate at O(0.001) suggests that our confidence interval

is 3 − 4σ. This is verified in Figure 6-9. Larger trigger rates can be achieved by reducing

Rρ. Curves shown in Figure 6-9 help prototype tolerance criteria using a small number of

particles prior to running larger simulations.

6.5 Validation Tests for AMAR

This section describes a range of test problems to verify the AMAR hybrid scheme. All single

species tests use gaseous Argon (atomic mass m = 6.63 × 10−23 g, hard sphere diameter

σ = 3.66 × 10−8 cm). Gases for binary systems will be defined with respect to the specific

test problem. The computational domain used consists typically of periodic boundary

conditions in the y–z directions and flow boundary conditions in the axial x direction as
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Figure 6-9: Variation of density gradient tolerance with number of DSMC particles per λ3.

Figure 6-10: 3D AMAR computational domain for validation tests.

illustrated in Figure 6-10 unless noted otherwise. The domain size is 100λ × 12λ × 12λ.

All tests consists of 2 grid levels with the continuum subdomain occupying the coarse mesh

and the atomistic subdomain residing on the fine.

6.5.1 Uniform Field Test

A uniform field test was conducted with the density and temperature initialized to ρ = 1.78×
10−3g/cm3 and T = 273K and with all velocity components set to zero. The computational

domain consists of a cubic DSMC region of size 4λ × 4λ × 4λ embedded in the center of
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Figure 6-11: Computational domain for uniform field test.

an Euler continuum grid of size 32λ × 32λ × 32λ as shown in Figure 6-11. The DSMC

simulation uses 800 particles per λ3. The continuum cell size is 2λ while the DSMC grid

size is λ. This test condition and geometry match that used by Garcia, et al. [36] to examine

thermodynamic equilibrium in an Euler/DSMC hybrid scheme.

Although the initial conditions are uniform, the statistical nature of DSMC generates

fluctuations that transfer heat flux to the continuum subdomain. Since the Euler model

possesses no mechanism to transfer thermal energy back to the atomistic domain, the result

is an energy increase in the continuum subdomain and a corresponding energy decrease in

the atomistic subdomain (as total energy is conserved). This in turn produces an increase in

density in the atomistic subdomain so that mechanical equilibrium (i.e., constant pressure)

is maintained. This is evident by the increase in the total number of particles in the

atomistic subdomain as shown in Figure 6-12. This phenomenon is not a flaw in the AMAR

methodology but a common observance in other Euler/DSMC hybrid schemes [36]. The

DSMC particle increase seen here is within 1% of the initial value and is consistent with

the results obtained by Garcia, et al. [36].
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Figure 6-12: Particle increase in the DSMC domain resulting from net heat flux transfer from
the atomistic to the continuum region.

6.5.2 Concentration Diffusion

A concentration diffusion test was conducted to assess the ability of the AMAR hybrid

scheme to accurately track the spreading of an interface between two gases. Note that since

the Euler equations contain no diffusion terms the physics of interface diffusion is captured

solely by the DSMC atomistic routines. The diffusion coefficient for two gases modeled as

hard spheres can be approximated as [52],

D12 =
3
16

√
2πk3T 3/M
Pπσ2

12

=
3
8

1
nσ2

12

√
kT

2πM (6.13)

where M = (1/m1+1/m2)−1 = m1m2/(m1+m2) is the reduced mass, and σ12 = (σ1+σ2)/2

is the average diameter. The self–diffusion coefficient for Argon at pressure P = 1.013×105

Pa and temperature T = 273K is D11 = 0.14 cm2/s. The DSMC simulation utilized 80

particles per λ3.

A simple self–diffusion test can be conducted using Argon gas “colored” differently

on either side of an interface (the different colors can be interpreted as different Argon

isotopes with negligible differences in mass). The initial conditions for this test are shown
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Property Interval 0 Interval 1
Density (g/cm3) 0.00178 0.00178
Velocity u (m/s) 0.0 0.0
Temperature (K) 273 273

Mass concentration 1.0 0.0

Table 6.1: Initial conditions for the concentration diffusion test. Interval 0 and Interval 1 corre-
spond to upstream and downstream regions either side of the Argon–Argon interface.

in Table 6.1. A step change in mass concentration corresponds to the different colored

Argon species.

Figure 6-13 shows the evolution of the Euler–DSMC computational domain for this

self–diffusion test. Initially the red (left) and blue (right) particles are separated by a

discontinuous interface corresponding to a step function profile for the gas concentration.

Refinement of the computational domain is performed using a mass concentration gradient

tolerance parameter Rmc and a mass concentration deviation parameter Rdev
mc . The former

is used to locate the DSMC region at the gas interface during initialization and is turned

off soon after at t = τ . Since the gradient in mass concentration across a step initialization

is infinite, any finite value for Rmc ensures the interface region is refined. Subsequently, the

mixing region is tracked by placing particles in the region where Rdev
mc has a value between

0.001 and 0.999. This ensures negligible mass concentration gradients across the interface

between the Euler and DSMC regions.

The AMAR concentration profiles for the self–diffusion case are compared with the-

oretical profiles in Figure 6-14. Also shown is the concentration profile for a test case

using Argon and a fictitious gas G with hard–sphere diameter σ2 = 1.516 × 10−8cm such

that the diffusion coefficient is exactly twice the coefficient in the self–diffusion case; i.e.,

D12 = 2 × D11 = 0.28cm2/s. Note the simulated results show excellent agreement with

theory in both cases.

6.5.3 Single Gas Stationary Shock Wave

Further validation of the AMAR hybrid scheme was performed using a M = 5.0 stationary

gas shock wave test. The Rankine–Hugoniot conditions predict the density, temperature
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Figure 6-13: Computational domain for self-diffusion interface tracked adaptively. The borders
of DSMC patches are indicated by the boxes near the middle of the domain. The
Euler model is applied outside of this region.
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Figure 6-14: Comparison of profiles obtained simulating diffusion with AMAR with theoretical
diffusion profiles. Both self-diffusion and two-species diffusion are shown. Note λ
refers to the Ar-Ar mean free path. The mean collision time τm is also associated
with the Ar-Ar system.

and u velocity ratios to be 3.57, 8.68 and 0.28 respectively at this Mach number. These

ratios are reflected in the initial conditions used for the test listed in Table 6.2. The DSMC

simulation utilized 80 particles per λ3 for this test.

A density gradient tolerance parameter Rρ = 0.2 was used to detect and refine the

continuum grid region across the shock front. This value for Rρ creates a stable ±10λ

atomistic region ahead of and behind the shock. Note this value also lies within the 3− 4σ

curves in Figure 6-9.

The step profile shock initialization gradually transitions to a smoother curved profile

Property Interval 0 Interval 1
Density (g/cm3) 0.00178 0.00636
Velocity u (cm/s) 153902.0 43092.5
Temperature (K) 273.0 2369.6

Mass concentration 1.0 1.0

Table 6.2: Initial conditions for single gas stationary shock test. Interval 0 and Interval 1 corre-
spond to upstream and downstream regions either side of the shock wave interface.
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Figure 6-15: Argon gas density profile relaxation to equilibrium. τm is the mean collision time.

within the DSMC region as shown in Figure 6-15. The final equilibrium profiles for pressure,

density, u velocity and temperature are shown in Figure 6-16. The hybrid solution matches

the analytical solution in the far field while resolving the flow discontinuity at the shock

front. Note since the initial step profile density gradient is infinite, the shock front will

be refined for any setting of Rρ. However as the profile becomes smoother, the value of

Rρ must be such that the shock front remains tagged for refinement while ensuring the

atomistic subdomain does not grow excessively by tracking statistical fluctuations.

6.5.4 Binary Gas Stationary Shock Wave

A binary gas shock simulation was conducted to validate the multispecies capability of the

AMAR hybrid scheme. A 97% Helium and 3% Xenon gas mixture by number density was

chosen as a test case. The hard sphere mass and diameter for Helium and Xenon were speci-

fied as m1 = 6.65×10−24g, m2 = 2.18×10−22g, σ1 = 2.28×10−8cm and σ2 = 5.18×10−8cm

respectively. The upstream flow Mach number was set to 3.89 with a temperature of 300K

and reference mass density of 1.07 × 10−7g/cm3. These flow conditions were chosen to
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Figure 6-16: Equilibrium shock wave profiles for density, temperature, velocity, and pressure.
The solid line is the analytical result, while the solid–square line is the AMAR
result.

allow convenient comparison with published results. The corresponding Rankine–Hugoniot

relations for the shock density, temperature and velocity ratios are 3.34, 5.59 and 0.3 re-

spectively. These ratios are reflected in the flow properties used to initialize the shock wave

listed in Table 6.3. The DSMC simulation utilized 160 particles per λ3 of Helium for this

simulation. Tolerance parameters were not used for this test and instead the refinement

region was user specified to extend 15λ ahead of and 35λ behind the step initialized shock

front.

Property Interval 0 Interval 1
Density (g/cm3) 1.076 × 10−7 3.593 × 10−07

Velocity u (cm/s) 283561.0 84944.4
Temperature (K) 300.0 1677.4

Mass concentration 0.496555 0.496555

Table 6.3: Initial conditions for He–Xe binary gas stationary shock test. Interval 0 and Inter-
val 1 correspond to upstream and downstream regions either side of the shock wave
interface.
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Figure 6-17: Comparison of He–Xe binary gas shock wave equilibrium profiles computed with
AMAR and a fully DSMC simulation [79]. The mixture mean free path λ = 0.46
mm for this test.

Similar to the single gas shock case, the binary gas shock profile also transitions from

the initial discontinuous step profile to a smoother equilibrium profile. A comparison of the

equilibrium density profiles obtained by AMAR and a fully DSMC simulation [79] is shown

in Figure 6-17. The lighter He gas density profile leads the heavier Xe gas density profile.

Good qualitative and quantitative agreement is obtained.

6.5.5 Moving Shock Wave

Adaptive feature–tracking of the AMAR hybrid scheme is further validated using a M = 5

moving shock passing through a stationary Argon gas. The flow properties across the shock

wave are listed in Table 6.4. 80 DSMC particles per cubic mean free path were used for the

atomistic simulation.

Figure 6-18 shows the shock front dynamically tracked by the atomistic domain. Similar

to the case of a stationary M = 5 shock wave a density gradient tolerance Rρ = 0.2 was

found successful to ensure the atomistic region extended ±10λ about the shock front.

The density profile of the moving shock is shown in Figure 6-19. Good comparison is
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Property Interval 0 Interval 1
Density (g/cm3) 0.00636 0.00178
Velocity u (cm/s) 110809.0 0.0
Temperature (K) 2369.6 273.0

Mass concentration 1.0 1.0

Table 6.4: Initial conditions for M = 5 moving shock test. Interval 0 and Interval 1 correspond
to upstream and downstream regions either side of the shock wave interface.

Figure 6-18: Moving Mach 5 shock wave though Argon.The AMAR algorithm tracks the shock
by adaptively moving the DSMC region with the shock front.

seen with the analytical result. It is interesting to note that the density profile does not

produce spurious post–shock oscillations that are well known to plague shock capturing

schemes [10, 98]. Moving shock simulations using conventional shock capturing schemes

for the Euler equations require artificial viscosity and enhanced smoothing techniques to

reduce oscillations which recur in a periodic manner and often cannot be eliminated entirely.

The use of a hybrid scheme with the shock front resolved with DSMC generates a resolved

solution without spurious oscillations and artificial numerical constructs.
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Figure 6-19: Moving M = 5 shock wave though Argon gas. The AMAR profile is compared with
the analytical time evolution of the initial discontinuity. τm is the mean collision
time.

6.5.6 Richtmyer–Meshkov Instability

The Richtmyer–Meshkov instability (RMI) (Meshkov [65, 66], Richtmyer [75]) is generated

when a shock wave refracts through the interface between two gases. The impulse from the

shock wave causes perturbations on the interface to grow in size which in turn creates a

mixing layer between the two gases [53]. RMI is a significant test problem from which to

assess both the adaptive feature tracking and multispecies capability of the AMAR hybrid

scheme. For the simulation considered here adaptive mesh refinement is considered only for

tracking the shock front.

The computational domain illustrated in Figure 6-20 was used for the RMI simulation.

Argon gas and a fictitious gas B with hard sphere mass and diameter mB = 1.326×10−22g,

σB = 3.66×10−8cm were chosen for the test. In order to reduce diffusion between the gases

the cross collision diameter σ12 defined in Equation (6.7) was increased by a factor of 4. The

density ratio across the gas–gas interface was initialized to ρ2/ρ1 = 1.5 (which corresponds

to an Atwood number At = ((ρ2/ρ1) − 1)/((ρ2/ρ1) + 1) = 0.2). The lighter Argon gas

occupies the left hand side of the interface while the heavier gas B occupies the right hand
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Figure 6-20: Computational domain for Richtmyer–Meshkov instability simulation.

side. The shock wave is initialized upstream of the gas–gas interface and propagates at

Mach number M = 4.0 through Argon gas. The gas–gas interface has an initial sinusoidal

profile with wavelengths 171λ and 57λ superimposed. Peak to trough amplitudes vary here

between 8λ and 32λ.

On interception with the interface a reflected shock returns upstream and a transmitted

shock continues through gas B. On reflection with the right hand wall, the transmitted shock

returns past the interface and leaves the domain through the left face. The flow conditions

at initialization are listed in Table 6.5 for each interval 0, 1 and 2 defined in Figure 6-20. 20

DSMC particles per cubic mean free path of Argon is utilized for this simulation.

A density gradient tolerance Rρ = 0.6 ensures the atomistic subdomain is localized

about the shock wave region only while the gas–gas interface remains non–refined. Figures 6-

21, 6-22 and 6-23 show the propagation of the shock front through the gas–gas interface.

Note that Figure 6-23 also shows a reflected shock wave traveling upstream in addition to

the transmitted shock through the gas–gas interface. The particular choice of Rρ allows

136



Property Interval 0 Interval 1 Interval 2
Density (g/cm3) 0.00599 0.00178 0.00267
Velocity u (cm/s) 86569.9 0.0 0.0
Temperature (K) 1600.7 273.0 364.0

Mass concentration 1.0 1.0 0.0

Table 6.5: Initial conditions for Richtmyer–Meshkok instability test problem. Interval 0,1 and 2
are defined in Figure 6-20.

only for the transmitted shock wave to be refined in this case.
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Figure 6-21: Density contour plot of Richtmyer–Meshkov instability simulation. Shock wave is
ahead of the gas–gas interface. The time t = 1.3τm where τm is the Argon-Argon
mean collision time.
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Figure 6-22: Density contour plot of Richtmyer–Meshkov instability simulation. Shock wave
intercepts the gas–gas interface. The time t = 26.0τm where τm is the Argon-Argon
mean collision time.
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Figure 6-23: Density contour plot of Richtmyer–Meshkov instability simulation. Shock wave has
passed the gas-gas interface. The time t = 170.1τm where τm is the Argon-Argon
mean collision time.
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Chapter 7

Summary

The development of nano and micro scale engineering devices has increased the need

for accurate and efficient computation of multiscale hydrodynamic phenomena. Hybrid

atomistic–continuum formulations provide a novel approach which combines the efficiency

of established continuum field solution methods with the high fidelity of atomistic simulation

tools. The present work has provided an overview of the current state–of–the–art in this

field and has focused on hybrid scheme development for a variety of flow regimes as outlined

in Figure 7-1. A summary of the work presented in this thesis is given below together with

suggestions for further work.

7.1 Incompressible Flows

The true benefits of hybrid schemes are realized when both length scale and time scale

de–coupling can be achieved between the solution schemes for the atomistic and continuum

subdomains.

The present work demonstrates how this can be realized for incompressible steady and

unsteady gaseous flows by using the Schwarz alternating method. Within the Schwarz cou-

pling framework, an overlap region facilitates information exchange between the continuum

and atomistic subdomains in the form of Dirichlet boundary conditions. Schwarz iterations

using updated boundary conditions are repeated using steady solutions in both subdomains

until convergence, i.e. until the solutions in the two subdomains are identical in the over-
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Figure 7-1: Scope of hybrid schemes considered in present work. The flow classification is specific
to the assumptions used for the continuum submodel.

lap region. The Schwarz coupling scheme applied to a 2–dimensional driven cavity flow at

Reynolds number O(1) is found to converge within O(10) Schwarz iterations.

The imposition of Navier–Stokes boundary conditions on the atomistic subdomain

was also demonstrated here using the Chapman–Enskog distribution function in conjunc-

tion with particle reservoirs. In addition to sampling reservoir particle velocities from a

Chapman–Enskog distribution parametrized by the continuum velocity and temperature

fields, it is also essential to locate particles in the reservoir in a way that is consistent with

the continuum density field. The latter requirement must not be overlooked as it appears

to be of great importance to the correct imposition of boundary conditions.

For the unsteady flow case successive Schwarz iterations are used to converge the so-

lution to a given time tn. The converged solution at tn forms the initial condition for

subsequent Schwarz iterations to advance the solution to tn+1. Time step decoupling is still

feasible here provided appropriate interpolation between boundary conditions is performed.

Solution of an atomistic–continuum 1–dimensional impulsive Couette flow test problem

using unsteady Schwarz coupling shows good comparison with a fully atomistic simulation.
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A method to further reduce the computational cost for unsteady hybrid schemes was

also proposed using limited ensemble averaging. This method involves splitting the time

step over which the solution advances into 2 intervals. The first interval is advanced using

a smaller number of ensemble solutions relative to the second interval. For this particu-

lar implementation a factor of 2 computational savings was possible over non–accelerated

unsteady Schwarz coupling while retaining the same error reduction. For flows with larger

separation of time scales (between the atomistic relaxation time and the global solution

time scale) significantly larger savings can be obtained.

7.2 Compressible Flows

For the case of high speed compressible fluid flows, atomistic–continuum coupling was

achieved through explicit coupling of fluxes. The Adaptive Mesh and Algorithm Refinement

(AMAR) hybrid scheme formulated by Garcia et. al. [36] has demonstrated the feasibility of

this approach by using mesh refinement as a natural framework for robust explicit coupling

of an atomistic fluid representation and a continuum field model. The finest level of an

adaptive mesh refinement (AMR) hierarchy is replaced here by the direct simulation Monte

Carlo atomistic simulation method. The continuum field is modeled using the compressible

Euler equations and is solved using a second order Godunov scheme. The AMAR appli-

cation code is implemented in C++ and is built upon the SAMRAI (Structured Adaptive

Mesh Refinement Application Infrastructure) framework developed at the Lawrence Liver-

more National Laboratory. Numerical routines were written/modified to include an Euler

convection equation for concentration, tagging routines for density and concentration gra-

dient based refinement and DSMC particle flux bookkeeping for binary species simulations.

Extensive debugging was performed on the code written here.

The current work has developed robust refinement criteria using tolerances based on the

mean and gradients of flow field variables. In particular, density gradient based tolerances

Rρ have been found successful to capture and track moving shock waves. A theory for the

effect of atomistic fluctuations on spurious refinement triggering was also developed. This

theory uses the fact that the number of particles per cell Nc is Poisson distributed to show

the standard deviation of the density fluctuation is proportional to 1/
√

Nc. Moreover a
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formula was developed for choosing Rρ such that spurious fluctuations do not trigger rapid

and uncontained growth of the atomistic subdomain.

The AMAR hybrid solution for a moving shock wave shows superior stability over

existing continuum–only methods. This underlines the capability of hybrid schemes to

capture the physics of fluid phenomena using the most appropriate physical models in a

theoretically consistent manner.

The present work has also extended AMAR to perform simulations of binary gas mix-

tures. This has allowed the simulation of binary gas shock waves and also a representative

Richtmyer–Meshkov instability calculation where a interface between two gases is acceler-

ated by a moving shock wave.

7.3 Further Work

The adoption of hybrid atomistic–continuum schemes will continue to rely on their ability to

deliver significant computational advantages over fully atomistic methods and greater phys-

ical accuracy over classical continuum techniques. The modeling of steady, incompressible

gaseous flows using hybrid schemes is quite well understood at the current time. Extensions

to unsteady flows however will require a significant more effort. While the Schwarz method

has been shown to provide efficient coupling, the time integration of the atomistic simu-

lation continues to consume significant computational resources. Methods to coarse grain

the time evolution of atomistic systems will be required prior to pursuing investigations of

unsteady flow field phenomena. This is further compounded by the poor signal–to–noise

characteristics of atomistic schemes at low speeds. Hence methods for variance reduction

of the atomistic solution must also be further explored.

Although not covered in this work, hybrid schemes for liquid modeling have the most

to benefit from novel continuum to atomistic boundary condition imposition techniques.

The need to use molecular dynamics for atomistic simulation of liquids limits almost by

design the options available for efficient boundary imposition. Greater understanding of the

packing and structure of liquid molecules and their velocity distributions will be required

before significant benefits can be realized here.
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The AMAR hybrid scheme has demonstrated the validity of an Euler–DSMC formula-

tion for compressible flows. Future work should focus on adoption of a Navier–Stokes model

using the same algorithmic framework to increase the range of flow problems that can be

analyzed. Criteria for mesh and algorithm refinement should be more tightly coupled with

local continuum breakdown, such that tagging of cells for refinement occurs automatically

using the most optimal refinement criteria.

Finally, the range of scales and dynamic nature of hybrid schemes emphasizes the

need for efficient computational approaches for large–scale parallel computing platforms.

The SAMRAI grid hierarchy paradigm offers many advantages to algorithm development

and parallel code implementation, including the ability to manage both field data and

particles in a single grid system, while allowing workload and data for each method to

be distributed in parallel independently of one other. Dynamic load balancing and data

distribution algorithms are required to help increase the scale of the problems that can be

simulated.
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