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Abstract

Many threat assessment algorithms are based on a collection of threshold equations
that predict when a collision is to occur. The fact that there are numerous algorithms
suggests a need to understand the underlying principles behind the equation design
and threshold settings. This thesis presents a methodology to develop appropriate
alerting thresholds based on performance metrics. This also allows us to compare
different alerting algorithms and evaluate alerting systems.

The method is a performance-based approach in state-space. It can be used as a
stand alone system for real-time implementation or a threshold design tool in conjunc-
tion with any chosen alerting algorithm or sensor system. Using carefully prescribed
trajectory models (which may include uncertainties), the performance tradeoff with
and without an alert can be predicted for different states along the course of an en-
counter situation. This information can then be used to set appropriate threshold
values for the desired alerting logic.

The development of the threshold criteria for a rear-end collision warning system
is given as an example. Though the approach given is presented as a threshold design
tool, the methodology is self-contained as a threat assessment logic. The possibility
exists to compute the performance measures on-the-fly from which alerting decisions
can be made directly.

We demonstrate the methodology on Lincoln LS concept vehicle with a GPS-
based system and a full-cab driving simulator as prototypes. Application examples,
a collision mitigation by braking system and a face tracking warning system, are
shown to handle the universality of the performance-based approach. For illustrative
purposes, a vision-based system (post-processed off-line) is compared with the GPS-
based system.

Thesis Supervisor: Eric Feron
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Objectives

The major objective of this thesis is to develop a performance-based approach for a

collision avoidance/mitigation system and to present application examples including

a rear-end collision warning system for ground vehicles. An alerting algorithm for

a warning system which could be configured for any sensor system is proposed and

it details the development of trajectory models. Trajectory models could include

uncertainties in state trajectory estimation and some examples of performance metrics

which evaluate alerting system performance are introduced to deal with uncertainties.

This algorithm aims at collision mitigation as well as collision avoidance, which

could be achieved by introducing different performance metrics to the system, since

collision avoidance and mitigation have distinct objectives. Trajectory models for

collision avoidance and mitigation will be presented for ground vehicles.

Prototypes and application examples of collision warning system are provided. The

alerting algorithm will be combined with several different sensor systems and alerting

objectives so that we explore how we could configure different sensor systems and the

algorithm together.
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1.2 Thesis Overview

Chapter 2 reviews relevant terms and definitions used to describe the alerting sys-

tem concept. As a way of introducing the concept, the state-space representation

of alerting system developed by Kuchar [9, 10] is reviewed. It is based on multi-

variable control system theory [16]. The performance metric is presented to show

the tradeoff between unnecessary alarms and necessary alarms via System Operating

Characteristics (SOC) curve and Performance Metric (PM) analysis.

Chapter 3 presents a so-called Performance-based approach, which is the alerting

algorithm we developed. This methodology deals with the tradeoff between posi-

tive and negative consequences of warnings as well as uncertainties in the model and

trajectory estimation. A design process for a rear-end collision avoidance system of

ground vehicles is given for an example. Trajectory models, such as a nominal (no

alert) trajectory and an avoidance (alert) trajectory are built up for a rear-end colli-

sion avoidance system. An analysis based on System Operating Characteristics curve

and Performance Metric plot is carried to predict performance of the warning system.

Furthermore, the alert space is estimated based on the outcome of the analysis for a

selected scenario.

Chapter 4 discusses prototypes application of the methodology. A GPS-based

collision warning system is presented and the same warning system is implemented

in a full-cab driving simulator. A rear-end collision mitigation by braking system for

real-time implementation is studied and the basic trajectory model is developed. To

demonstrate the universality of the approach, a drowsiness warning system using a

face tracking system is carefully examined.

In chapter 5, the summary and contribution of this research are provided and

future work related to this field is discussed.

17



Chapter 2

Review of Alerting System

Concept

As preliminaries, it is worthwhile to begin with a description of the general alerting

system concept. Most of contents in this chapter including a description of alerting

system is cited from [16] and [9]. This study is a groundwork of developing a new

methodology in Chapter 3.

2.1 Generic Alerting System

A hazard warning system is one of several safety components typically found in com-

plex human systems [9, 16]. Its purpose is to monitor potential threats and issue

warnings to human operators when undesirable events are predicted to occur [16]. A

simplified diagram of a generic alerting system is shown in Figure 2-1.

Information from environment, human and control system is measured by sensors

and some parts or all of the information are presented to the human operator by

various types of displays, such as cockpits in ground vehicles or airplanes. The in-

formation from sensors also could be the input information of an alerting system to

help determine the possibility of a hazardous situation [16]. In many cases, a hazard

can be detected by the operator from the displays themselves; however, in other in-

stances, the operator may not be fully aware of the situation or may need additional

confirmation to aid in decision making [16]. Warning signals from the alerting system

18



Environment

Controlled System

Informational
Displays

Alerting System

Human 
Operator

Situation Operating Procedures

Control Inputs

Figure 2-1: Generic alerting system [9, 16]

could be visual alerts, auditory warnings or a combination of both of them. Still, the

human is ultimately responsible for making a final decision in most cases, such as

activating a brake system or not when an alert is given to the driver. The degree of

automation can vary, with some alerting systems providing a simple warning, while

others give additional resolution advisories [16]. Three categories of applications that

typically include alerting systems are outlined in Figure 2-2.

Alerting systems in process control applications are generally designed to alert

the operator that certain parameters of the process are reaching dangerous values.

Applications in transportation systems typically involve a controller that oversees a

number of independent vehicles [9]. Alerting systems in single vehicles are generally

designed to warn the vehicle operator that a hazard exists. In response to an alert,

the operator typically changes the trajectory or configuration of the vehicle [9].

2.2 State-Space Representation of Alerting System

The use of state-space representation [9, 10, 16] is a good way of introducing the

concepts and issues associated with alerting system design. The following is a brief

description of state-space methodology and is applicable to any alerting system.
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Teleoperated 
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Chemical 
Process

Manufacturing

Nuclear 
Power

*IVHS = Intelligent Vehicle Highway Systems

Figure 2-2: Typical alerting system application [9]

The state-space representation is based on multivariable control system theory

such as described in [7]. The variables y1(t), y2(t), . . . , yn(t) are defined as the

values of the states of the system at time t. These states represent the complete

set of parameters that define the dynamics of a hazardous situation. In a collision

alerting system application, for example, these states include the relative positions

and velocities of the own vehicle and an obstacle [9].

The processing components of the alerting system may not monitor some of the

states y1(t), y2(t), . . . , ym(t). As in control system design, unobservable states may

have a large impact on the performance of the system [9]. (There is a component

in the alerting system, which is the information sources that are used during normal

operation of the system. Cockpit instruments, air traffic control communications,

view through the windscreen, aeronautical charts [9] and speedometer of ground ve-

hicles are examples of nominal information sources.) Note that the states from the

information sources x1(t), x2(t), . . . , xn(t) do not necessarily represent all states in

y1(t), y2(t), . . . , ym(t); some states may be unobservable to the rest of the control loop

[9]. Observable states may be direct measurements of states in y1(t), y2(t), . . . , ym(t)

20
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Figure 2-3: Example of state-space diagram [16, 9]

such as reading speed of airplane or car, altitude from a cockpit instrument or may

be indirect approximations of a state in y1(t), y2(t), . . . , ym(t). From now on, we

describe the generalized model of alerting systems with states observable from the

processing components of the alerting system.

The state-space of an alerting system is comprised of the states x = [x1 x2 . . . xn]

available to the alerting logic to characterize a threat condition. Typically these

states are sensor inputs or other pertinent information that can be used to describe

the operating environment. An example could be x = [r ṙ] where r is the range

between two vehicles and ṙ is the corresponding range rate. At any given time t,

the current state of the system, as known to the alerting logic, is identified by the

state vector x(t) = [x1(t) x2(t) . . . xn(t)]. The set of x(t) over a given time interval

is termed the state trajectory as depicted in Figure 2-3.

In certain regions of the state-space, there are domains where undesirable events

can occur, such as a collision (e.g. x1 = r = 0). These regions are termed hazard

space. Whenever x(t) is allowed to enter a region of hazard space, a missed detection

has occurred and the alerting system has failed to provide the necessary protection

to prevent an unwanted event [16]. An example of hazard space as depicted in a

state-space diagram is show in Figure 2-4.

The alert space is defined as the set of all state vectors x(t) in which the system

will initiate an action or alert in order to prevent a possible intrusion into hazard

space. By definition, no alerts are generated when x(t) is outside of alert space. The

21



2x

1x

H x(t)

State Trajectory

Figure 2-4: Example of hazard space in state-space diagram

boundaries of alert space are considered the alerting thresholds and basically define

when alerts are given and when they are not. These critical points will be denoted

x∗. In Figure 2-5, an example alert space is shown in a state-space diagram. When

the state trajectory first enters alert space, the thresholds are met and an alert is

issued. At this point, the alerting logic has decided an intrusion into hazard space is

likely if nothing is done. By initiating an alert, it is expected that some action will

be performed to alter the course of the state trajectory in order to prevent a hazard

from taking place.

The main difficulty with alerting is due to the uncertainties in the problem. There

are errors in the current states, plus the path of the state trajectory is usually not

known exactly. In Figure 2-6, we can see different trajectories based on the infor-

mation of current states x(t). When the alerting system gives a vehicle operator a

warning signal to notify him or her of a hazardous situation, the operator could make

a proper action to avoid the hazard situation such as a collision. Or, the operator

may respond too late to avoid the hazard situation.

We can think same result when no alarm is given to the human operator. For

example, most drivers can determine if there is a hazardous situation or not and can

make an action to avoid the collision without any warning. Still, there are possibili-

ties that drivers are not aware of the situation so that the collision or other hazard

situation could occur.
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Figure 2-5: Example of alert space in state-space diagram

2.3 Alerting Outcomes and Performance Metrics

Ideally, an alert correctly notifies the driver when a hazard will occur if nothing is

done about the current situation of the system [16]. To evaluate characteristics of the

outcomes we could classify alerts as: correct detection(CD), missed detection(MD),

false alarms(FA) or correct rejection(CR), etc. The definition of each category could

vary with system designers. An example of the complete decision outcomes is depicted

in Figure 2-8.

A similar concept is depicted in [9] with different terms. If the situation is truly

hazardous, an alert may be necessary and is termed a true-positive, denoted TP.

Similarly, a failure to alert when the situation is non-hazardous is a true- negative,

denoted TN. An alert that is issued in a non-hazardous situation is a false-positive,

denoted FP, and likewise, failure to alert to a truly hazardous situation is a false-

negative, denoted FN. This is summarized in Table 2.1. The meaning of T, F, N

and P is as follows: ‘True’ because the correct alerting decision is made, and ‘positive’

because an alert is issued. ‘False’ indicated that the alerting decision is wrong, and

‘negative’ indicates that an alert is not issued [9].

We introduce probabilistic performance metrics to quantify the performance out-

comes of the alerting system. There could be several different types of performance

metrics and, initially, we focus on describing two performance metrics we used for the

collision warning/avoidance system in chapter 3. To quantify alerting system out-

comes from both positive and negative points, we would like to weigh the outcome
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Figure 2-6: Different trajectories due to uncertainties : P(SA)

between initiating an alert or not at various x locations spanning the state-space

region of operating interest. To do so, two trajectory models are needed at each state

position - one if the alert is issued (referred to as the Avoidance or Alert Trajectory,

A) and one if no alert is issued (called the Nominal or No-Alert Trajectory, N). These

models are simply the vehicle dynamics of the encounter along with any uncertainties

involved in predicting current and future states. Figure 2-6 and Figure 2-7 depicts a

representative example of these two trajectories.

Because of the uncertainties, a statistical description of alerting performance is

needed. We use the quantitative metrics Probability of Successful Alert, P (SA), and

Probability of Unnecessary Alert, P (UA). Previous papers [16, 9] have used the term

Probability of False Alarm, P (FA) instead of Unnecessary Alert, but the author feels

the wording of P (UA) is more appropriate. Thus we define the following:

P (SA(x)) = 1− P (C|A(x)) (2.1)

P (UA(x)) = 1− P (C|N(x)) (2.2)

where P (C|A(x)) is the probability of a collision if an alert is given at x and

P (C|N(x))) is the probability of a collision if no alert is given. Thus at each state x

location, there is an associated positive consequence of initiating an alert (measured

by P (SA)) and an subsequent negative consequence (measured by P (UA)).

Unless the state size is 2 or less, however, it is generally too difficult to visualize

P (SA) and P (UA) in state-space. Instead, a sort of performance space can be utilized
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Figure 2-7: Different trajectories due to uncertainties : P(UA)

by plotting P (SA) versus P (UA) over the course of a specific encounter situation.

This type of plot was referred to as a System Operating Characteristic (SOC) curve

by Kuchar [10, 9], similar to ROC (Receiver Operating Characteristic) curve in Signal

Detection Theory.

2.4 Performance Metric Analysis

A SOC plot (Figure 2-9a) depicts the tradeoff between the positive and negative conse-

quences of alerting at different states during course of an encounter. Setting a thresh-

old to alert early (and often) can prevent accidents from occurring (high P (SA)), but

this comes at the expense of increased nuisance or unnecessary alarms(high P (UA)).

However, by alerting late to reduce P (UA), we lower the chances of avoiding a colli-

sion if there is indeed a threat.

Ideally one would like the operating point to be at the upper left corner of the SOC

plot, where all alerts successfully avoid an accident and there is no nuisance alarms.

However, the uncertainties involved in the prediction of future states usually prevent

this from occurring. Consequently, the uncertainties modeled in the trajectories A

and N actually define the achievable performance of the system (bend in the curve).

If the future trajectories were to be deterministic (without any errors), then the

operating point must lie at one of the 4 corner points of the SOC diagram. Generally,

this is not the case and an ideal system is never achieved regardless of the setting.

Sometimes a more convenient way of presenting the performance tradeoff is by
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Figure 2-8: Alert decision outcomes [16]

plotting P (SA) and P (UA) separately as in Figure 2-9b. Here the gap between

P (SA) and P (UA) is a measure of the system benefit of an alert at any given x. This

type of plot will be referred to as a Performance Metric (PM) plot [19].

2.5 Summary

Description of generic alerting systems is presented in the section 2.1 and the use of

state-space representation was shown in the section 2.2 as a way of presenting the con-

cepts representing alerting system design. We introduced a probabilistic performance

metric to deal with uncertainties in state trajectory. As a method of analyzing the

performance tradeoff of alerting systems, SOC curve and PM plot are highlighted and

provide a framework for developing a performance-based approach in later chapters.
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True situation
Non-Hazardous Hazardous

(Incident does not occur along T) (Incident occurs along T)

Alert Not Issued TN:True-Negative FN:False-Negative

Alert Issued FP:False-Positive TP:True-Positive

Table 2.1: Alerting decision outcomes [9]
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Figure 2-9: Conceptual diagram of SOC Curve and PM plot
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Chapter 3

Performance-based Methodology

for Alerting System Design

3.1 Introduction

Typically, alerting systems are developed through an ad hoc, evolutionary process,

although many design issues are common across applications [9]. The purpose of this

research is to provide a deeper understanding of alerting logic design and to provide

a methodology to model and evaluate alerting system. It is not intended to be an in-

depth evaluation of any specific algorithm, but instead provide insight to the design

of the alerting equations.

We begin by presenting a conceptual model of the threshold design process. We dis-

cuss the development of performance metrics and an approach to set alert thresholds

to achieve the desired level of performance based on a state-space view of alerting that

facilitates a clear and generalizable description of the important elements involved in

an alerting system.

3.2 Conventional Method of Threshold Placement

An alerting system is a discrete decision-making element that continually decides

whether to remain silent or to warn of an impending hazard. Typically, the logic is

based on a set of equations that determine the threshold for which the alert is to be
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issued. For example, some of the more commonly used alerting equations in ACWAS

(Automotive Collision Warning and Avoidance System) development extracted from

[6, 1, 20, 14, 15, 8, 2, 5] are listed in Table 3.1. These are the six typical alerting

equations for rear-end collisions.

No. Threshold Equations : Alert if the condition is met

1 r <
(ṙ + vF )2

2aL
−

v2
F

2aF
+ RT · vf + B

2 r < −
ṙ2

2aF
+ RT · vf + B

3
r

ṙ
< TTC

4
r − SP · vF

ṙ
< TTC

5
r

vF
< THW

6 r < −TTI · ṙ −
1
2
r̈ · TTI2

Table 3.1: Alerting threshold equations

r = Range between two vehicles [m]

ṙ = Range rate between two vehicles [m/s]

r̈ = Acceleration between two vehicles [m/s2]

vF = Velocity of the following vehicle (FV) [m/s]

aL = Acceleration of the leading vehicle (LV) [m/s2]

aF = Acceleration of FV [m/s2]

RT = Reaction time [sec]

B = Buffer [m]

SP = Speed Penalty [sec/(km/h)]

TTC = Time-to-Collision [sec]

THW = Time-to-Headway [sec]

TTI = Time-to-Impact [sec]
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Most alerting algorithms are based on the use of threshold equations : if conditions

are met then the alert is given. Any threshold equation is an approxiamaion of the

alert states in the system; some of them work well for certain situations and some

of them do not. The first equation in Table 3.1, for example, will work well in the

situation when the leading vehicle is decelerating since the alerting equation is derived

from the assumption that the leading vehicle is braking. However, the equation may

not work well and may not estimate alert states properly for other situations, such as

when two vehicles are travelling with same speed or the leading vehicle is not moving.

(This will be verified in later chapters as a result of performance-based approach.)

The first two equations in Table 3.1 are often referred to as distance-based thresh-

old algorithms while the latter four equations are known as time-based or perception-

based algorithms. Usually, people try to tune parameters(RT , TTC, TTI, THW ,

etc.) in the threshold equations in order to force the threshold equations to give the

best performance in alerting systems. The way people usually tune design parameters

is through a lengthy iterative trial and error process.

Typically, we choose an alerting equation and start with an initial guess for the

equation parameters, such as TTC = 5sec or RT = 2sec and run it through simu-

lations with test scenarios. Based on the performance outcome, the parameters are

modified in an iterative fashion until the desired performance is met. By repeat-

ing this procedure, we could define states of the alerting boundary, x∗, for example

warning distance and warning range rate.

3.3 Performance-based Threshold Placement

In this section, we develop a performance-based design method, which is a systematic

approach to design threshold placement. If it is possible to predict the state trajectory

without using any alerting equation and to decide whether we are in a safe situation

or in an alert space A. Then we can build an alerting algorithm independent from

any of those equations.

The approach given here is a direct application of the concepts described in Chapter
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2 and [9, 16]. The process begins by developing the alert trajectory (A) and nominal

trajectory (N) models for a specific encounter scenario. Uncertainties in these state

trajectories should be a part of the model and may include some characteristics of

human behaviors, vehicle characteristics, sensor errors, environmental factors, etc.

HumanScenarios
commandInformation

Visual Display/ 
Audio Signal/

Action

Vehicle StatesVehicle
Dynamics

ACWAS

RT distribution Sensor 
characteristics

Braking 

distribution

randomness

Environment 
uncertainties

Figure 3-1: Schematic diagram of trajectory model

Given trajectory models, performance metrics, for example P (SA) and P (UA),

can be obtained according to time over the course of a hazardous encounter situation.

For our work, we use Monte-Carlo simulations to compute performance metrics for

each scenario. A desired operating point corresponding to a specific alert state x∗

is picked from the analysis using a SOC curve or PM plot. The performance-based

approach is depicted in Figure 3-2.

Regardless of the choice of equations, the instance the alert is first given corre-

sponds to a certain state of the system. Any alert state in the alert space A is a set of

state variables x1(t), x2(t), . . . , xn(t) describing current system statues. Thus, alert

state boundary x∗ could be understood as a combination of state variables, which

describes the threshold between alert space A and safe space.

In general, the state-space threshold function may be expressed in the form f(x, a)

where x is the system states and a is the set of equation parameters. We could say the

state-space threshold is a set of x which forms the alert state boundary. The function
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Figure 3-2: Performance-based approach

f is usually unknown, but may be approximated by any of the alerting equations.

The condition to alert can then be written as

f(x, a) > 0 (3.1)

The boundary between alerting and not alerting is then defined by the set of states

x∗ such that

f(x∗, a) = 0 (3.2)

Though not normally written in this way, the equations listed in Table 3.1 can be

reformulated in the functional form of Equation 3.1 to emphasize their structural dif-

ferences. Even though these equations appear to be completely different in modality,

the instance in which they alert is associated with some state combination x∗. In

fact, TTC, THW, TTI are really just equation parameters, much like the slope and

y-intercept for the equation of a line. These parameters, as well as aL, aF , and RT are

predefined and are not actual sensor readings. They can be and are often adjusted to

match some desired result or performance criteria - in essence a curve-fitting activity.

Using simple algebra, the rearranged form of equations is given in Table 3.2

In Function 1 for example, the current system states x are [r ṙ vF ], the set of
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No. Threshold Function f(x,a)

1 f1(x,a) = −r +
(ṙ + vF )2

2aL
−

v2
F

2aF
+ RT · vf + B

2 f2(x,a) = −r −
ṙ2

2aF
+ RT · vf + B

3 f3(x,a) = −r − TTC · ṙ

4 f4(x,a) = −r − TTC · ṙ + SP · vF

5 f5(x,a) = −r + THW · vF

6 f6(x,a) = −r − TTI · ṙ −
1
2
r̈ · TTI2

Table 3.2: Alerting threshold functions

equation parameters a is [aL aF RT B] and the alert boundary is the set of states

x∗ = [r∗ ṙ∗ v∗F ] (3.3)

satisfying

f1(x
∗, a) = 0 (3.4)

Thus, x∗ can then be mapped to the alert function f(x, a) by solving for the parameter

a in

f1(x
∗, a) = 0 (3.5)

The result is essentially a curve fitting exercise in n-dimensional state-space.

Often the choice of parameters settings is accomplished through an iterative, trial-

and-error process. First an alerting function f(x, a) is chosen with an initial set of

parameters a defining the threshold boundary. These thresholds are evaluated over
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one or many test scenarios (in simulation or in the field), then the equations and

parameters are modified iteratively based on the performance outcome of the results.

The final settings of a will in turn define the set of states x∗ forming the alert state

boundary.

For different encounter scenarios, it is usually necessary to compute different pa-

rameters or to use different functions in order to achieve a desired performance. The

idea is similar to the modelling of a very complicated function with piecewise linear

curve fits. The alerting logic would then implement a different f(x, a) depending on

the expected scenario (for example, intersection environment versus freeway driving,

or cut-in versus passing). This could be accomplished with if-then statements or neu-

ral network classification within the framework of a larger hierarchical decision logic.

(Global design vs. situation-specific design is discussed in the next section.) Or,

the parameters could be implemented as a function of the states themselves, i.e. a

= g(x,b). However, this has the same effect as just changing the threshold function,

f(x, a) = f(x, g(x,b)) = h(x,b) (3.6)

The method explained thus far is largely an off-line exercise for setting thresh-

old parameters. However, because information on the trajectory models can change

constantly over time, it may become overly burdensome to derive a different f(x∗, a)

for all encounter situations expected in the field. Instead, the possibility exists to

compute the performance metrics on-line and make alert decisions based directly on

P (SA) and P (UA) (e.g. alert if P (SA) < 0.95 and P (UA) < 0.4 ). Given any time,

real-time Monte-Carlo simulation gives a value of performance metrics instead of the

whole SOC curve or PM plot. An example of this on-line approach using real-time

Monte-Carlo simulations for aircraft collision avoidance is given in [17, 16].

3.4 Global Design vs. Situation-Specific Design

A global design refers to a process in which the simulation used to set the thresholds

is based on an aggregate mixture of different encounter scenarios; while a situation-

specific design only considers the current situation at hand [16]. We can take an
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automobile company designing a “world” car to be sold globally under on baseline

model as an example. Suppose this company gathered the following data shown in

Figure 3-3 on the height of drivers in country A,B and C.

a) Individual Distributions b) Global Distributions 

Figure 3-3: Examples of global design distribution [16]

Distributions will be associated with the random variables T1, T2 and T3 respec-

tively; with corresponding means, variances and sample sizes of µ1, σ2
1, n1; µ2, σ2

2, n2;

and µ3, σ2
3, n3. If the company were to design different cars for each of these markets,

the size and dimensions of each car would more than likely be tailored to meet the

requirements of each country separately. However, if restricted to a one car design

in which a combined global distribution, TG with mean µG, variance σ2
G and sam-

ple size N = n1 + n2 + n3, is utilized as the test data, then some compromises and

added difficulties would be encountered. It is important to note here the following

characteristics(see [16]):

min(µ1, µ2, µ3) ≤ µG ≤ max(µ1, µ2, µ3) (3.7)

σ2
G ≥ min(σ2

1, σ2
2, σ2

3) (3.8)

There are three significant consequences that come out of these equations. First, the
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mean of the global distribution will not be the same as the mean of the individual

distributions, unless, of course, µ1 = µ2 = µ3. Second, the variance of the global

distribution is larger than at least one of the variables of the other individual distri-

butions(increase in overall uncertainty). And finally, the global distribution can be

heavily biased toward individual distributions by having uneven sample sizes [16].

Use of a global distribution would likely result in modeling errors and therefore

increase the overall uncertainty of the system since the design is not individually

tailored to the current encounter situation. The threshold would instead be based on

a weighted average of thousands of sample scenarios which may not be applicable to

the current situation at hand [16]. Examples of scenario classification are presented

in the next chapter.

3.5 Comparison of Iterative Trial and Error Method and

Performance-based Design Approach

In this section, we are going to see the main difference between iterative trial and

error method and performance-based approach.

Trajectory Models

*xObtain

Performance-Based 
Approach

Performance-Based Design

Alerting Equations  
Equation Parameters, etc.

*xDefines

Iterative Trial and Error

Iterative Trial and Error

Test Scenarios

Figure 3-4: Schematic diagram - Iterative trial and error vs. Performance-based design approach

In the performance-based approach, rather than starting with alerting equations,
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we start off by developing trajectory models of the vehicles that could also include

uncertainties. Taking these trajectory models, we predict future states and determine

what happens when an alarm is given or when it is not given, which then allows us

to determines the performance of the system. We choose x∗ based on this prediction.

Using x∗, we can map back to any alerting equations to determine equation pa-

rameters. Essentially what we are doing is that we have x∗ , and choose any function

f and solve this alert boundary equation for a. A new, direct method is also proposed

to overcome some of the limitations in the ad hoc approach [16].

3.6 Implementation of the Methodology : Design Process

for a Rear-End Collision Avoidance System for Ground

Vehicles

We now give an example of this methodology to design the threshold parameters for

a rear-end collision avoidance system. In addition to setting the threshold, we will

determine a for each of the 6 threshold functions from Table 3.2 to show the general

applicability of this method, .

3.6.1 Define Operating/Encounter Scenarios

Using the NHTSA report [15] as a guideline, we examine three common types of rear-

end collision scenarios listed in Table 3.3. Scenarios here are for two vehicles with

LV (denoting the Leading Vehicle) and FV (denoting the Following Vvehicle). The

alerting system mounted on the FV. Separate thresholds will be developed for each

scenario and we assume the available states from sensors are x = [r ṙ vF ]. To classify

scenarios from raw sensor data, we introduced if-then statements and neural network

classification within the framework of a larger hierarchical decision logic in the next

Chapter.

A description of the scenarios is listed in Table 3.3. In Scenario 1, the leading

vehicle LV is assumed to be stopped on a straight road and the following vehicle

FV is approaching at constant speed. Scenario 2 means that the leading vehicle LV

travels slower than the following vehicle FV with both vehicles at constant speed. In
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scenario 3, the leading vehicle suddenly decelerates when the leading vehicle LV and

the following vehicle FV travel at the same speed.

No. Scenario
1 FV constant speed, LV stopped,

straight road
2 FV constant speed, LV constant lower

speed, straight road
3 FV and LV same constant speed, straight

road, LV then decelerates

Table 3.3: Scenario definitions

3.6.2 Set Trajectory Models

The design process begins with defining trajectory models for both the nominal (no

alert) and avoidance (alert) trajectories. The parameters used are shown in Table 3.4

and were extracted from distributions used to generate test scenarios for evaluating

ACWAS systems in [15]. In Table 3.4, Stdev means standard deviation.

In alert trajectory for rear-end collision, which assumes the alert is given at the

time, the driver is assumed to trigger the brake system only when he or she hears

the warning signal. The reaction time for a human, when hearing the warning signal,

is set as a normally distributed random variable with lower and upper bound. The

mean of the normal distribution is 1.1 second and standard deviation is 0.305 second.

This assumes that the driver begins to decelerate 1.1 second on average after hearing

the warning signal. System delay of the vehicle is assumed as 0.2 second without

any uncertainties. It has uncertainties but the amount of uncertainty is negligible

compared to other distributions such as reaction time of human and braking deceler-

ation. This means that the brake system of the vehicle is triggered 0.2 second after

the driver starts to step on the brake pedal. The amount of deceleration the driver

gives to the system is normally distributed with mean 0.4g and standard deviation

0.1g with bounds. Upper bound is 0.7g and lower bound is 0.2g.

In nominal trajectory, the driver is assumed to trigger the brake system when he

or she perceives that the situation is hazardous. (Nominal trajectory for collision

mitigation by braking is different. We could include steering actions for the nominal
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Variable Distribution Mean Stdev Min Max

Alert Trajectory
Reaction Time Gaussian 1.1 sec 0.305 sec 0 sec 2 sec
System Delay Impulse 0.2 sec 0 sec 0.2 sec 0.2 sec

Braking Deceleration Gaussian 0.4 g 0.1 g 0.2 g 0.7 g

No Alert Trajectory
Inattention Uniform 1

2
(r − 2) m 1√

12
(r − 2) m 0 m r-2 m

Reaction Time Lognormal 1.27 sec 0.72 sec 0 sec ∞
System Delay Impulse 0.2 sec 0 sec 0.2 sec 0.2 sec

Braking Deceleration Gaussian 0.4 g 0.1 g 0.2 g 0.7 g

Sensor Characteristics (GPS)
Range (r) noise Gaussian 0 m 3 m

Range rate (ṙ) noise Gaussian 0 m/s 0.4 m/s

Table 3.4: Trajectory models

trajectory for collision mitigation by braking. We only include braking action without

steering action.) System delay and braking deceleration is assumed same as in alert

trajectory. We assumed that the time driver makes a decision (trigger the brake

system) is uniformly distributed between the leading vehicle LV and the following

vehicle FV. The reaction time of the driver in nominal trajectory is lognormally

distributed. When the logarithm of the random variable is normally distributed, the

distribution of the variable is called lognormal distribution. The distribution has a

long tail and is not symmetric. The schematic diagram to compare both distributions

- normal distribution and lognormal distribution - is depicted in Figure 3-5.

fnormal(x) =
exp

{
−

(x− µ)2

2 · σ2

}
σ ·

√
2 · π

(3.9)

flognormal(x) =
exp

{
−

ln
((x− θ)

m

)2

2 · σ2

}
(x− θ) · σ ·

√
2 · π

(3.10)

(3.11)
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Normal Distribution Lognormal Distribution

Figure 3-5: Normal distribution and lognormal distribution

3.6.3 SOC Analysis by Monte Carlo Simulation

Given the trajectory models and assuming simple dynamics of each vehicle, Monte

Carlo simulations are done for different settings. States such as range between two

vehicles(r), velocity of FV(vF ), velocity of LV(vL), acceleration of FV(aF ) and acceler-

ation of LV(aL) are generated with given scenarios. Each scenario and simulation has

different settings of the states. For example, aL = 0, vF = 0 for scenario 1. Assuming

constant accelerations for both vehicles, the following simple dynamics equation is

used for the simulation.

a =
dv

dt
(3.12)

v =
ds

dt
(3.13)

s = s0 + v0 · t +
1

2
· a · t2 (3.14)

v2 − v2
0 = 2 · a · (s− s0) (3.15)

Monte Carlo simulations are done for vF = 25mph, 35mph, 45mph, and 55mph.

For each of the four velocities, the SOC curve is generated from the results of the

simulations along with a PM plot as a function of alert range, R. An example for

Scenario 1 and vF = 35mph is shown in Figure 3-7.
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Figure 3-6: States in Monte-Carlo simulation

3.6.4 Determination of Desired Alert Space

From each SOC curve, the desired operating point can be selected as a performance

tradeoff between P (SA) and P (UA). This point corresponds to a specific combination

of states x∗ which we would like to the alert occur. Performance requirements, i.e.,

minimum P (SA) and maximum P (UA), may be set based on a designer’s choice. For

our examples, we chose the criteria P (SA) ≥ 0.95 and P (UA) ≤ 0.25 for Scenario 1

and 2, and P (SA) ≥ 0.90 and P (UA) ≤ 0.60 for Scenario 3.

Thus given a specific scenario, a threshold alert state x can be picked from SOC

curves and/or PM plots. As shown in Figure 3-7, 68m is picked as the alert range for

Scenario 1 and vF = 35mph since this alert state satisfies the previously defined design

specification. Thus, x∗ = [r∗ ṙ∗ v∗F ] = [68m, −35mph, 35mph]. This procedure is

repeated to span the over the region of state-space expected for an encounter. The

results of x∗ for the three scenarios are tabulated in Table 3.5.

3.6.5 Equation Parameter Determination from Alert States

Using the desired x∗ data from Table 3.5, the alert boundary can be approximated

with a number of appropriate functions including those from Table 3.2. The procedure

is simply to solve for a to satisfy f(x∗, a) = 0. We compute a least-squares error

solution for a - to minimize distance between the curve and data points. . An

example using Scenario 1 (vL = 0) is shown in Figure 3-8 and in Table 3.6.

Because ṙ∗ = −vF in Scenario 1, only a 2-D plot of the state-space using [r vF ] is

shown in Figure 3-8 to reduce clutter. For f1 and f2, we chose to hold B = 2m and
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Figure 3-7: Example of warning distance selection from SOC curve and PM plot with GPS-based
system

solve for the other equation parameters. The results show that all the functions in

Table 3.2 can be used as suitable approximations of x∗ in this scenario. However, f1

and f2 are slightly better than f3 - f6 because the latter functions are lines confined

to pass through the origin. An additional curve fit was done using f3 plus an added

buffer parameter B to obtain a slightly better fit than without.

The resulting parameter values for all 6 alerting functions in the three scenarios

are provide in Table 3.6. For Scenario 2 (LV travelling at a constant slower speed),

f2 provided the best least-squares fit, while for Scenario 3 (LV decelerating), f1 was

the best (shown in Figure 3-9). To obtain better results with the other equations,

it is possible to break the functions into smaller piecewise curve fits and use if-then

statements. However, this in effect is reformulating a new function to better match

the desired x∗.

The purpose is to have a simplified function or surrogate (e.g. f1 - f6) that would

give the same result as if a tedious performance analysis was done instantaneously.

Of course, this all assumes the trajectory model is correct in the first place.

As mentioned previously, mapping to a surrogate equation is unnecessary if the

performance metrics can be computed in real-time [18, 16, 17].
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ṙ∗
Scenario1

-25 mph -35 mph -45 mph -55 mph

25 mph 42 m · · ·
35 mph · 68 m · ·

v∗F 45 mph · · 102 m ·
55 mph · · · 142 m

ṙ∗
Scenario2

-5 mph -15 mph -25 mph -35 mph

25 mph 25 m 31 m · ·
35 mph 34 m 39 m 52 m ·

v∗F 45 mph 42 m 48 m 61 m 81 m
55 mph 50 m 56 m 70 m 95 m

ṙ∗
Scenario3

-5 mph -10 mph -15 mph -20 mph

25 mph 31 m 35m 40 m 41 m
35 mph 46 m 52 m 59 m 62 m

v∗F 45 mph 60 m 70 m 78 m 87 m
55 mph 77 m 88 m 100 m 109 m

Table 3.5: The alert states x∗ = [r∗ ṙ∗ v∗F ] from SOC analysis

Functions 1,2

Function 3 with B

Functions 3,4,5,6

Figure 3-8: Alert boundary for scenario 1
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No. Scneario1 Scenario2 Scenario3

· aL = −3.7907 aL = −3.8961
aF = −3.0765 aF = −5.0 aF = −3.2

f1 RT = 1.7 RT = 1.8 RT = 1.8
B = 2 B = 2 B = 2

aF = −3.0765 aF = −2.8527 aF = −2.5908
f2 RT = 1.7 RT = 1.9 RT = 3.2

B = 2 B = 2 B = 2

f3 TTC = 5.1324 TTC = 5.9353 TTC = 10.1827

TTC = 7 TTC = 4.2 TTC = 3.2
f3B B = −36.66 B = 21.2216 B = 46.8075

TTC = 3.4 TTC = 1.8
f4 TTC + SP/0.2778 = 5.1324

SP = 0.4117 SP = 0.8725

f5 THW = 5.1324 THW = 2.9977 THW = 3.6625

f6 TTC = 5.1324 TTC = 5.9353 TTC = 10.1827

Table 3.6: Equation parameters developed from performance-based approach (see Table 3.2 for units)

Figure 3-9: Alert boundary for scenario 3 using f1
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Chapter 4

Prototypes and Application

Examples

In this chapter, prototypes of a rear-end collision warning system applying performance-

based approach are presented along with several application examples. The method-

ology is installed in a ground vehicle and a driving simulator. A rear-end collision

mitigation by braking system for real-time implementation is explored and the ba-

sic trajectory model is developed. To demonstrate universality of the approach, a

vision-based collision warning system and a face tracking warning system is studied.

4.1 GPS-based System

4.1.1 System Architecture

A rear-end collision avoidance warning system based on the performance-based ap-

proach is implemented in a Lincoln LS concept vehicle. The original vehicle system

structure other than warning system is developed by Ford Science Research Lab-

oratory. The system description is mostly cited from a technical report [5]. The

experiment equipment includes two vehicles (Lincoln LS and Ford Escape) with on-

board GPS (Global Positioning System), a central processing unit in each vehicle

and a laptop which runs the alerting algorithm in the Lincoln LS concept vehicle.

The alerting algorithm was coded in the program Visual C++. Figure 4-1 shows the

central processing unit in Lincoln LS concept vehicle and the laptop with the warning
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system connected to the vehicle. The central processing unit is a SONY VAIO laptop

PCG-Z505LEK.

Figure 4-1: Lincoln LS Setup- a central processing unit and a warning system unit

For the purpose of threat detection and mitigation, it is desired to have relative

positions known to sub-meter accuracy with update times on the order of 10Hz [5].

Upon initial installation of a low cost GPS in the vehicle, the system will provide

updates of the vehicle’s position and velocity. The advantage of using GPS in the

vehicle is that the service is available around the world and there is no cost to the

user beyond the cost of the preinstalled unit. However, the performance of the system

may degrade based on the constellation of GPS satellites at any given time. The

performance depends on good reception of the satellites scattered across the sky for

accurate positioning. The device is Garmin 35 12 channel receiver that updates at

1HZ and has 3-10 meters accuracy (with differential correction). The unit is self-

contained in a weatherproof enclosure in the vehicle. It has built-in Kalman filters

that compensate for selective availability and for statistical errors generated in the

antenna and receiver[5].

Peer-to-peer wireless communication is achieved by using Orinoco PCMCIA Wave-

LAN cards, which has an outdoor range of 80 ∼ 100 meters. HyperAmp bi-directional

amplifier(HA2401-AG1000 with automatic gain control 1 Watt, 2.4GHz)is used to en-

hance the wireless range of the Orinoco cards. From empirical test[5], the resulting

range was improved to 400 meters, effective range to 200 ∼ 300 meters.
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4.1.2 Scenario Classification

Using the performance-based approach, alerting thresholds were determined for three

types of scenario situations as listed in Table 3.3. For scenario 0, there is no hazard

and it shows a safe situation. The three scenarios were chosen using results from

[15] as a guideline. Equation 1 of Table 3.2 was utilized as the threshold function

for scenarios 1-3 while equation 5 was used for scenario 0. As explained previously

in Chapter 3, other equations could have been used as the mapping function or the

performance-based approach could be used in real-time. Application examples of real-

time implementation is shown in the next section with a rear-end collision mitigation

by braking system.

Before a threshold equation can be applied, the correct scenario situation must

be determined. In the prototype algorithm, the decision tree logic in Figure 4-2 was

used to select the corresponding scenario. Inputs from the GPS sensor are converted

to relative range (r), relative range rate (ṙ), and velocity of the following vehicle FV

(vF ). A neural net classifier is presented in the next section as another possible way

of a scenario classification.

m/s 12.1−≥r&

Yes Scenario0

0=LV

m/s 1>∆ LV

m/s 1<∆ LV

Scenario1

Scenario0

Scenario2

No

No

No

Scenario3No

Yes

Yes

Yes

Is LV stopped?

Are LV and FV platooning or 
getting away?

Is LV accelerating?

Is LV  velocity constant ?

Figure 4-2: Scenario decision tree
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4.1.3 Test Drive

The Lincoln LS was used for several test drives in city roads around Dearborn,MI, to

examine the response of the alerting system. In an aggressive driving period of 146

seconds, 14 total alerts were triggered. In this situation, many alarms will alert the

driver and it depends on the driver’s preference if the alarms are annoying. It may

be possible to carry out subjective statistical evaluations of the alerting performance.

The overall performance of the alerting system can then be adjusted using this feed-

back. Or, if a proper trajectory model can be obtained in real-time, the system can

be optimized to any specific driver.

As a side note, the driver in our test drives had commented that the alarms

appeared late. This latency comes from the GPS delay which was not included in the

trajectory models used in developing the alerting logic. This can be improved with a

modification of the trajectory model or by using a upgraded GPS system.

4.2 STI Driving Simulator

STISIM is a low-cost, interactive driving simulator from Systems Technology, Inc.

STISIM Drive Simulation System operates on personal computers with simulation

hardware and uses Windows operating system interface. Simulation configuration op-

tions are easily accessible and simple scenario definition language(SDL) can be used

for developing driving scenarios. The simulator operates main display(optional), driv-

ing display(s) and head-mount display(optional)[3]. AgeLab at MIT has a full-cab

STISIM Drive simulation system. Figure 4-3 shows the appearance of the simula-

tor. The desktop is a control station and we can see immediate visual and auditory

feedback from the station.

At the AgeLab, we implement the same collision avoidance warning system as

used in the vehicle but in the simulator. Real-time monitoring interface is captured

in Figure 4-4. The open module is coded in Visual Basic; STISIM provides a template

for additional user-defined algorithms in the simulator.

STISIM Drive with a collision warning system implemented aids to verify trajec-

tory models originally used in the warning system. SDL(Scenario Definition Lan-
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Figure 4-3: STISIM Drive Simulation system

guage) and open module allows one to set and to control environments and scenario

sequences. Thus, driver behavior characteristics could be studied through the sim-

ulator with the warning system and without it. This can be utilized to build more

realistic trajectory models.

4.3 Collision Mitigation-Simulation of Real-time Implemen-

tation

4.3.1 Data Collection

To simulate real-time collision mitigation system, we collect data from on-board sen-

sor(radar) vehicle and feed the data through the Matlab Simulink model. Scenario 1

is examined only for a collision mitigation system.

The data collected from the test track for scenario 1 is plotted in Figure 4-5.

First few seconds, the radar couldn’t detect the stationary object since the distance

between the vehicle and the object are larger than the radar range coverage. The

radar starts to detect the target so that the vehicle ID changed from 0 to 1. At the

same time, the relative range is obtained and we can see the relative range between
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Figure 4-4: STISIM real-time monitoring interface

the vehicle and the object, which is decreasing according to the time since the vehicle

is approaching the object. Relative range rate has constant negative value since the

host vehicle was travelling in constant speed and the object was stationary.

4.3.2 Trajectory Model and Performance Metrics

In nominal trajectory for a collision mitigation system, the driver is assumed to

trigger the brake system and the steering system simultaneously. Reaction time of

the driver in nominal trajectory is assumed as a normally distributed random variable

with lower bound 0 and upper bound 2. System delay of the vehicle is assumed as

0.2 second without any uncertainties. Imminent braking deceleration of the driver is

assumed as a normal random variable with mean 0.5g and standard deviation 0.1g.
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Figure 4-5: Scenario 1 data collected from a test track

Steering action is approximated to a linear motion and lateral acceleration is assumed

uniformly distributed between 0.3g and 0.5g. (More accurate trajectory model could

be developed considering tire dynamics, i.e., coupling between braking and steering

force.)

In alert trajectory, the vehicle is assumed to trigger brake system automatically

when the system decides that it enters a hazard space. System delay is assumed

the same as in the nominal trajectory and the braking deceleration of the vehicle

is assumed as a normal random variable with a mean 0.5g. In the alert trajectory

for a collision mitigation system, human uncertainties are not included since we are

assuming automatic braking system. The parameters used in trajectory models are

shown in Table 4.1

Performance metrics for a collision mitigation system are defined as

P (SA) = 1− P (∆v < 5m/s|A) (4.1)

P (UA) = 1− P (C|N) (4.2)
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Variable Distribution Mean Stdev Minimum Maximum

Alert Trajectory
System Delay Impulse 0.2 sec 0 sec 0.2 sec 0.2 sec

Imminent Braking Deceleration Gaussian 0.5 g 0.1 g 0.4 g 0.6 g

No Alert Trajectory
Reaction Time Gaussian 1.00 sec 0.333sec 0 sec 2 sec
System Delay Impulse 0.2 sec 0 sec 0.2 sec 0.2 sec

Imminent Braking Deceleration Gaussian 0.5 g 0.1 g 0.4 g 0.6 g
Lateral Acceleration Uniform 0.4 g 0.0033 g 0.3 g 0.5 g

Table 4.1: Trajectory models

where ∆v means the velocity difference of two vehicles at the instance when the

collision is to occur it there is one. P (SA) measures how well the mitigation system

is working if the alert is is given at the time. The mitigation threshold is set to

∆v < 5m/s. This is a different definition from P (SA) in a collision avoidance system

since having a collision or not doesn’t result having a severe injury or not. The

collision mitigation system aims to mitigate the severity of the collision so that the

performance metric should be different from a collision avoidance system. P (UA) has

a same definition but the trajectory model is different.

Following shows a dynamic equations to calculate velocities at the instant when

the collision is to occur. Equation 4.3 is a basic dynamic equations which could be

derived from equations 3.12.

v2
2 − v2

1 = 2 · a · (s2 − s1) (4.3)

Subscript 1 and 2 refers to corresponding instances. From the above equation, we

can calculate the velocity of the following vehicle given initial speed, range, and some

equation parameters.

v2
Fcollision

− v2
F = 2 · a · (R− vF ·RTsystem) (4.4)

vFcollision
=

√
v2

F + 2 · a · (R− vF ·RTsystem) (4.5)

Through the Monte-Carlo simulation, we can obtain P (SA) as follows where N is the
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total number of runs.

P (SA) = 1−
Number of collisions, ∆v < 5m/s

N
(4.6)

4.3.3 Performance Outcomes

A simulation result through the Simulink model with the real data gives performance

outcomes for all corresponding simulation time step, which is set 0.01 sec in the

model. Figure 4-6 shows P (SA) and P (UA) according to simulation time. From

beginning to the time when the radar starts to see a target(∼ 6.5 sec, see Figure

4-5), both P (SA) and P (UA) are 1 since there are no objects, which means there

are no potential threats. Whenever the radar starts to see a target, the performance

metric calculation based on the trajectory model starts. After the radar detects a

target, one can see that both P (SA) and P (UA) decreases to 0 eventually. Both

Figure 4-6: Real-time simulation of performance metric calculation

performance metric fall off as the host vehicle approaches to the object, which means

that the threat level becomes higher and higher so that the probability to mitigate

the collision decreases either giving an alarm or not. Though one sees that when

or how both performance metrics decreases has different profile according to the
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time. The difference comes from diverse distribution settings in trajectory models

(see Table 4.1). Since the nominal trajectory model(for calculating P (UA)) has more

uncertainties, P (UA) starts to decrease earlier than P (SA). We want to give a

warning or an action at the time when P (SA) is high enough so that the system has

a chance to mitigate the collision. Though we want low enough P (UA) not to bother

the driver. This shows the typical tradeoff issues in alerting system design.

As the host vehicle approaches to the object, both P (SA) and P (UA) drops to 0,

which means that there is no way to mitigate collision either given any action or not.

Once the vehicle passes the stationary object, the threat is removed and both metric

becomes 1.

4.4 Face Tracking Warning System

Since the performance-based approach can be used with any type of sensors, we can

examine how we can use a face tracking technology as a sensor for hazard warning

systems. Face tracking system referred to here is from Trevor Darrell’s group at MIT

AI (Artificial Intelligence) lab. The algorithm for the face tracking could be found in

[13, 12]. A brief review of the face tracking system cited from [13, 12]tracking system

to hazard warning system.

1 20 110 150 220

500 525

565 615 665 715 790

420360270

Figure 3:Head pose estimation using an adaptive view-based appearance model.

Pitch Yaw Roll Total
Sequence 1 2.88◦ 3.19◦ 2.81◦ 2.97◦

Sequence 2 1.73◦ 3.86◦ 2.32◦ 2.78◦

Sequence 3 2.56◦ 3.33◦ 2.80◦ 2.92◦

Sequence 4 2.26◦ 3.62◦ 2.39◦ 2.82◦

Table 1: RMS error for each sequence. Pitch, yaw and roll
represent rotation around X, Y and Z axis, respectively.

along the Z axis. Figure 3 shows the pose estimates of our
adaptive view-based tracker for the sequence 1. Figure 4
compares the tracking results of this sequence with the in-
ertial sensor. The RMS errors for all 4 sequences are shown
in table 1. Our results suggest that our tracker is accurate to
within the resolution of theInertia Cube2 sensor.

6.4. General Object Tracking
Since our tracking approach doesn’t use any prior informa-
tion about the object, our algorithm can works on different
class of objects without changing any parameters. Our last
experiment uses the same tracking technique described in
this paper to track a puppet. The position of the puppet in
the first frame was defined manually. Figure 5 presents the
tracking results.

7. Conclusion
We presented a method for online rigid object tracking us-
ing adaptive view-based appearance models. The tracker
registers each incoming frame against the key-frames of the

view-based model using a two-frame 3D registration algo-
rithm. Pose-changes recovered from registration are used to
simultaneously update the model and track the subject. We
tested our approach on real-time 6-DOF head tracking task
using stereo cameras and observed an RMS error within
the accuracy limit of an attached inertial sensor. During all
our experiments, the tracker had bounded drift, could model
non-Lambertian reflectance and could be used to track ob-
jects undergoing large motion for a long time.
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Figure 4-7: Head pose estimation using an adaptive view-based appearance model [13]

Adaptive view-based model consists of a collection of pose-annotate key frames
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acquired by using a stereo camera during tracking. For each key frame, the view-

based model maintains the following information:

µs = {Is, Zs, xs} (4.7)

where Is and Zs are the intensity and depth images associated with the key frame

s. The adaptive view-based model is defined by the set {µ1 · · ·µk}, where k is the

number of key frames. The pose of each key frame is considered as a Gaussian random

variable whose distribution is to be refined during the course of tracking.

xs = [Tx Ty Tz Rx Ry Rz] (4.8)

is a 6 dimensional vector consisting of the translation and the three euler angles,

representing the mean of each random variable. The view-based model also maintains

the correlation between these random variables in a matrix Λχ, which is the covariance

of these poses when they are stacked up in a column vector.

Tracking and pose adjustments to the adaptive view-based model are performed

simultaneously. As the tracker acquires each frame, it seeks to estimate the new

frame’s pose as well as that of the key frames, using all data seen so far. That is, we

want to approximate the posterior density:

p(xt, xµ|y1···t) (4.9)

where xt is the pose of the current frame, y1···t is the set of all observations from the

registration algorithm made so far, and xµ contains the poses of the key frames in

the view-based model, xµ = {x1 · · ·xk}.

To analyze quantitatively the algorithm, Trevor’s group compared results to an

Inertia Cube2 sensor form InterSense. Inertia Cube2 is an inertial 3-DOF orientation

tracking system. InterSpace reports an absolute pose accuracy of 3◦ RMS when the

sensor is moving. Four sequences are recorded with ground truth poses using the

Inertia Cube2 sensor. The sequences were recorded at 6 Hz and the average length is

801 frames (∼133sec). During recording, subjects underwent rotations of about 125

degrees and translation of about 90cm, including translation along the Z axis. The
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RMS errors for all 4 sequences are shown in Table 4.2. The RMS error are within the

accuracy limit of an attached inertial sensor.

Pitch Yaw Roll Total
Sequence1 2.88◦ 3.19◦ 2.81◦ 2.97◦

Sequence2 1.73◦ 3.86◦ 2.32◦ 2.78◦

Sequence3 2.56◦ 3.33◦ 2.80◦ 2.92◦

Sequence4 2.26◦ 3.62◦ 2.39◦ 2.82◦

Table 4.2: RMS error for each sequence. Pitch, yaw and roll represent rotation around X,Y, Z axis,
respectively [13]

Since the face tracking system provides a full 6 DOF pose information and uncer-

tainty characteristics, the system could be used in the hazard warning system with a

proper trajectory model which predicts performance outcomes of the alerting system.

However, the human driver behavior should be studied beforehand.

4.5 Vision-based system vs GPS-based system

To demonstrate the flexibility of the methodology, alerting criteria were developed

for a second sensor system using a imaging device. For illustrative purposes, we

videotaped the scene from a mounted video camera in the Lincoln LS test vehicle

when the GPS-based system was working. Image processing was done off-line to

extract the state variables.

Alerting thresholds for the vision-based system were determined utilizing the same

method used in the GPS-based system. The only change was due to different sensor

characteristics in the modeling of the trajectories. For the vision system, the range

rate noise was assumed to be 3m/s while other components of the trajectory models

in Table 3.4 were kept the same.

The uncertainties in the states derived from the sensor is a function of the image

quality and the image processing logic. Assuming one-dimensional space and flat

earth, an image processing logic was implemented to obtain a relative range between

the FV and the LV. The main idea was to estimate the vertical pixel distance px to

the edge between the road and the tires of the LV. As depicted in Fig.4-8, relative

range (r) can be calculated in the vehicle frame from px. The Kalman filter was then
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 px 

 r  = f(px)

Figure 4-8: Image from on-board vision sensor

applied to obtain estimates of the true r and ṙ

The sensor characteristics between the two systems will result in slightly different

performance. One of PM plot of P (SA) vs. P (UA) is compared in Fig.4-9 for Scenario

1 and vF = 35mph. To achieve P (UA) = 95% for both systems, P (UA) = 21%

for the GPS-based system while P (UA) = 30% for the vision-based system. The

corresponding warning distance for the vision-based system is 75m, which is longer

than the 68m for the GPS-based system. The earlier alert distance is to account for

the larger uncertainty in the vision-based system.

A sample time history with triggered alarms is depicted in Fig.4-10 for both sys-

tems. Since the prototypes are identical other than the sensor element, all differences

come from different sensor characteristics. Region A shows that the vision-based

system triggered the alarm earlier than the GPS-based system. However, since the

GPS update rate is 1Hz and the vision sensor update rate is 15Hz, the vision-based

system can detect the variation of the situation more quickly than the GPS-based

system (region B). Given the same level of P (SA) is required, we expect higher rate

of false alarms in the vision-based system which appears in region C.
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Figure 4-9: GPS-based system vs. vision-based system

Figure 4-10: Comparison of triggered alarms : GPS-based system vs. vision-based system
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4.6 Scenario Classification

Global design vs. situation-specific design is discussed in the previous chapter and

a way to classify situations(scenarios) is given in this chapter in order to accomplish

situation-specific design. Since there are huge uncertainties in trajectory models, a

single global warning system or logic do not provide satisfactory performance. This

requires a hybrid/hierarchical decision logic. Which is similar to hybrid control sys-

tem with switching logic. The individual decision logics for each scenario can be

thought of as multiple controllers with the classifier as the higher level supervisor de-

ciding which one to use. A decision tree logic in Figure 4-2 was used for the prototype

and a classification using neural net is presented in this section. The overall concept

is depicted in Figure 4-11.
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Figure 4-11: Hierarchical/hybrid decision logic

The goal of classification is to able to classify a given input into a relatively small
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number of classes. We need training data for building models, validation data for

stopping criterion and test data for evaluation of generalization accuracy [11]. Data

set for each scenario is generated with some uncertainties in the trajectories.

Softmax(normalized exponential unit) is defined as

yi =
e−xi∑n

k=1 e−xk
i = 1 · · ·n (4.10)

where yi is the activation function of the ith output node and c is the number of classes.

Note that this has the following good properties; it is always a number between 0

and 1, it gives a weight update proportional to (t-y) when combined with the error

function[4]. Thus, the output of the neural net is probability of each event(scenarios)

with n possible outcomes which sum up to 1.

Generated data set of scenario1, scenario2, scenario3, scenario0 and scenario p(passing

scenario) is the classification object. Number of inputs to the neural net is 4,which

consists of state of each scenario = [r ṙ vF aL], where r is range between two vehicles,

ṙ is range rate between two vehicles, vF is velocity for following vehicle and aL is

acceleration of leading vehicle. The six node hidden layer and the six node out layer

is tried in this case. Weights and bias for each layer is sum up in Table 4.3.

0.0722 -1.0458 0.0031 -0.1359 0.0351 -0.0008
-9.8694 0.0840 -2.0937 1.1290 -0.3086 -1.3091net.w1
0.0069 0.3834 -2.0684 1.0925 -0.5304 0.0143
-0.6826 -0.0334 1.5663 2.3841 -1.1610 13.4638

net.b1
-2.8513 0.3702 1.5536 -0.1019 3.9612 0.0872

2.9635 -1.7173 0.3699 -7.2356 4.9229
-0.5358 0.1378 0.7342 -2.2626 2.0018
7.8758 -2.4715 -2.0005 1.0613 -4.7065net.w2
-1.1873 -3.2549 -1.4780 3.5937 2.5868
0.8997 4.1645 1.6790 1.1689 -7.7634
1.0497 2.9531 -7.6873 10.0060 -5.6992

net.b2
0.5832 -0.7989 -0.0603 -1.3642 1.3878

Table 4.3: neural net - weights and bias

One of the result from the neural net is shown in Figure 4-12. Upper plot show
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the training data of scenario 2- so all data set has P (sc2) = 1. If we put test data

through the net, we obtain the bottom plot. Most of the case P (sc2) ≈ 1, at least

P (sc2) has the maximum value among all other outputs.

Figure 4-12: Training data and results from test data
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Chapter 5

Summary and Conclusions

5.1 Summary

A brief overview of generic alerting system and state-space representation of alerting

system are presented to provide as a groundwork for studying a performance tradeoff

between positive and negative consequences of hazard alerting system. A review of

System Operating Characteristic(SOC) curve and Performance Metric(PM) plot were

given to provide an organized way of analyzing the performance outcomes.

A survey of conventional method of threshold placement was given and a uni-

fied methodology, a performance-based approach, was developed based on the study

in previous chapters. Hazard alerting problem was focused on a threat prediction

problem in the presence of uncertainties. Global design vs. situation-specific de-

sign issue was presented to show that a global design is a compromise between more

situation-specific designs. An example of implementing the methodology was given

for a rear-end collision avoidance warning system for ground vehicles.

Prototypes and application examples are shown utilizing the performance-based

approach. The methodology was installed in a ground vehicle and a driving simulator.

Several application examples of the performance-based approach was given as well. A

rear-end collision mitigation by braking system for real-time implementation is shown

and the basic trajectory model was developed. To demonstrate universality of the

approach, a vision-based collision warning system and a face tracking warning system

was studied.
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5.2 Conclusions

Hazard alerting system such as a collision warning system can be effective com-

ponents of the human-operated systems by providing protection against unforseen

threats. The principal issue of the alerting system design is balancing a trade-

off between increasing successful alarms and reducing annoying, unwanted unnec-

essary(false) alarms. A performance-based approach which can be used to model and

evaluated alerting system performance was extended from [9, 16] and applied to a col-

lision avoidance/mitigation system for ground vehicles. Diverse application examples,

trajectory models are given after the methodology. The performance-based approach

is a systematic method to the alerting system design. It can be used as a stand alone

system or a threshold design tool in association with any threat assessment equation.

Once proper trajectory models are determined, the alert space can be decided from an

analysis of performance metrics, successful alerts and nuisance alarms. Furthermore,

the methodology can be applied to any sensor system if the sensor characteristics can

be included in the trajectory model. According to objectives of alerting system, the

performance metric of the alerting system should be changed. The trajectory model

can be modified by changing the metrics to include crash severity as opposed to sim-

ply whether a collision occurs or not for a collision mitigation system. To achieve

maximum performance of the system, i.e. to operate at the optimized point on SOC

curve, all parts of the hazard alerting system should be carefully developed. This in-

cludes characteristics of sensor, filter issues, classification of encounter scenarios and

trajectory models which reflects a real world.
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.1 Simulink Model : Collision Mitigation

Figure -1,-2,-3 and -4 shows the performance-based approach in a collision mitigation

by braking described in Chapter 4. Figure -1 shows the Simulink model of the system

which receives the real data and run through the block. Outputs of the system are

P (SA) and P (UA). Vehicle ID, target range, rate of target range and vehicle speed

are inputs of the system.

Figure -1: Collision mitigation by braking system

Subsystem of Figure -1 is described in Figure -2. The subsystem consists of two

separate blocks; one is for generating random numbers based on inputs and the other

is used for calculating performance metrics from trajectory models defined in Chapter

4.

Figure -3 shows random number generation routines according to the distribution

given in trajectory models in Chapter 4. For example, RT is generated as uniform

random number following settings in the trajectory model. Figure -4 shows how to

calculate probability of collision when there is alarm or not. The calculation algorithm

is explained in Chapter 4.
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Figure -2: Subsystem of collision mitigation by braking system

.2 Linearization of vision system

From the range(r) obtained from the image sequences, relative position(x1) can be

calculated in Cartesian coordinate system. We assumed yaw angle(target angle) 0

for now. We use the range r in the image coordinate as measurements, which has a

nonlinear transformation with relative position between the detected objects and the

vehicle .

Since the states consist of relative position, velocity and acceleration, which is

x = [x1 x2 x3]
T , the state space equations are given as below. Assume the system is

time-invariant and apply point-mass dynamics. (Free-Body Diagram and A matrix

will be added here)

ẋ = Ax + Bu (1)

yv = C(x) + v (2)

x : state vector [x1 x2 x3]

A : state transition matrix in the absence of a forcing function
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Figure -3: Random number generation block

C(x) : Nonlinear transformation giving the ideal(noiseless) connection between

the measurement and the state vector

v : Measurement error- assumed to be a white sequence with known covariance

structure having zero cross correlation with the

u : No input assumed

yv : Measurement (Range only from the image sequences)

We are going to include ’Heading angle’ as a measurement later on. ’Yaw rate’

or ’Heading angle’ could be used as elements of the state vector to describe circular

maneuver more effectively.

A detailed explanation of nonlinear transformation C(x) is presented here. The

pixel values obtained from image sequence are related to the range between the de-

tected object and the vehicle by the following nonlinear relations.

y = h ·

f · sin α + x · cos α

f · cos α− x · sin α

 (3)
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f : the focal length of the lens system

h: the height of the focal point above the ground

α: the elevation angle of the optical axis

Then, linearize the transformation about prior estimate of [x1 x2 x3], which we

call [x̄1 x̄2 x̄3]. Then apply Kalman filter technique to the linearized version of yv =

C(x) + v

dy
.
= y − ȳ (4)

∼=
∂C

∂x

∣∣∣∣∣∣
x=x̄

(x− x̄) + v (5)

.
=

∂C

∂x
dx + v (6)

(7)

Therefore, measurement matrix C can be determined with given variables.

y − ȳ = [C1 C2 C3]

 x1

x2

x3

 + v (8)

C1 =

 ∂y

∂x1


x1=x̄1,x2=x̄2,x3=x̄3

(9)

=
fh2

(fh cos α− h sin α)2
(10)

C2 =

 ∂y

∂x2


x1=x̄1,x2=x̄2,x3=x̄3

(11)

= 0 (12)

C3 =

 ∂y

∂x3


x1=x̄1,x2=x̄2,x3=x̄3

(13)

= 0 (14)

C =

 fh2

(fh cos α− h sin α)2
0 0

 (15)
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Figure -4: Performance metric calculation
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Implementation of Kalman Filter

in Vision-based System

Ji Hyun Yang

April 30th, 2002

1 System Description

From the range(r) obtained from the image sequences, relative position(x1) can be cal-
culated in Cartesian coordinate system. We assumed yaw angle(target angle) 0 for now.
We use the range r in image coordinate as measurements, which has a nonlinear trans-
formation with relative position between the detected objects and the vehicle .

RANGE

r = f(x )1

Figure 1: Schematics of Images Obtained from the Camera Inside the Vehicle

Since the states consist of relative position, velocity and acceleration, which is x =
[x1 x2 x3]

T , the state space equations are given as below. Assume the system is time-
invariant and apply point-mass dynamics. (Free-Body Diagram and A matrix will be
added here)

_x = Ax+Bu (1)

yv = C(x) + v (2)

x : state vector [x1 x2 x3]
A : state transition matrix in the absence of a forcing function

Figure -5: Schematics of Images Obtained from the Camera Inside the Vehicle

C(x) : Nonlinear transformation giving the ideal(noiseless) connection between the
measurement and the state vector

v : Measurement error- assumed to be a white sequence with known covariance struc-
ture having zero cross correlation with the

u : No input assumed
yv : Measurement (Range only from the image sequences)

We are going to include 'Heading angle' as a measurement later on. 'Yaw rate' or
'Heading angle' could be used as elements of the state vector to describe circular maneu-
ver more e�ectively.

A detailed explanation of nonlinear transformation C(x) is presented here. The pixel
values obtained from image sequence are related to the range between the detected object
and the vehicle by the following nonlinear relations.

y = h �

 
f � sin�+ x � cos�

f � cos�� x � sin�

!
(3)

f : the focal length of the lens system
h: the height of the focal point above the ground
�: the elevation angle of the optical axis

7
2

.2
4

m
mh

x
f

alpha45

a

Figure 2: Schematics of Longitudinal Axis Perspective Transformation

Then, linearize the transformation about prior estimate of [x1 x2 x3], which we call
[�x1 �x2 �x3]. Then apply Kalman �lter technique to the linearized version of yv = C(x)+ v

dy
:
= y � �y (4)

�=
@C

@x

�����
x=�x

(x� �x) + v (5)

2

Figure -6: Schematics of Longitudinal Axis Perspective Transformation
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