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ABSTRACT -

The asymptotic behaviour of parameter estimates and the identification
and modeling of dynamical systems are investigated. Measures of the
relevant information in a given sequence of observations are defined
and shown to possess useful properties, such as the metric property on
the parameter set. The convergence of maximum likelihood and related
Bayesian estimates for general observation sequences is investigated.
The siutation where the true parameter is not a member of a given para-
meter set is considered as well as the situation where the parameter
set includes the true model. The finite parameter set case is empha-
sized for simplicity in the convergence analysis, but the results are
extended in general terms to the infinite parameter case. It is shown
that under unigueness conditions on the output statistics of linear
dynamical systems identification procedures converge to the true model
if it is 2 member of a given model set. If the true model is not a
member of the set, then the estimates converge to a model in the set,
closest to the actual system in the information metric sense. - Sta-
tionary and non-stationary systems are considered. Rates of convergence
in the mean are obtained, and the separate contributions of the sto-
chastic and the deterministic parts of the input to the convergence
rates are shown. The analysis also suggests methods for approximating
a high order system by a low order model and for selecting a repre-
sentative model from a given model set, applicable to infinite and even
non-compact model sets.
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CHAPTER I

INTRODUCTION

This thesis is concerned with some fundamental questions associéted :
_ with the common problem of assigning é mathematical model to a physical
phenomenon, using a set:of observationsQ -The'situation is complicated
by the fact that the relationship between the observations and the
sought mathematical model is uncertain and can only be specified in a
probabilistic framework. For mathematical tractability the problem is
formulated as one of selecting via some criterion the "best" model

from a specified set of models. The formulation of tﬁe mathematical
problem requires, then, the choice of a model set on the one hand and
the choice of a model selection criterion, on the other. The first
choice presents an obvious tradeoff. Tﬁe more strictly the model set

is specified, the more tractable is the mathematical solution, but the
leés probéble is the case that a correct model is included in the speci-
fied model set. As an illustration, consider the two extreme situations.
If the model set consists of a single model, then the selection is tri-
vial, but the model may not be an adequate representative of the obser-
ved phenomenon. On the other hand, if‘the model set is the abstract
"set" of "all models", then it obviously contains the correct model,

but a mathematical solution (or formulation) of the model selection

problem is then not feasible.



The model set can be naturally specified in terms of a parameter
set, such that to each parameter there corresponds a model and vice
versa. The terms model set and parameter set will be used interchange-
ably and precise relétionships between them are defined in the thesis.
The model selection problem can then be nafurally definedvas a para-
meter estimation problem. Given a parameter set the prgblem formulation
requires the selection of a parameter estimation criterion. The true
parameter cannot, in general, be assumed to belong to the prespecified
parameter‘set, as asserted above. It turns out that the maximum like-~
lihood estimate, defined in Chapter 2 is wmost adequate for this situa-
tion. On the other hand, the Bayesian methods of maximum a posteriori
probability and least squares, also defined in Chapter 2, intrinsically
assume that the true parameter is a member of the médel set.

One objective of this thesis is to provide in a very general
setting answers to the following questions: Under what conditions do
the maximum likelihood and the Bayesian estimates converge to some para-
meter in the parameter set? What distinguishes the selected model from
the other models in the model set and what is its relationship to the
true model? For the éelection of an estimation procedure is it reason-
able to assume that the true parameter is a member of the set when it
is not? 1Is the true model selected when it is a member of the model
set? A question that ;rises naturally in this setting is: what is the
best épproximation of a complex model by a simple one?

A particular problem of considerable practical significance is that
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of dYnamic system identification. The situation described above, and
the questions raised, naturally apply to the system identificationvprob—
lem. In fact, this research has been motivated by the problem of iden-
tifying the dynamic equations of an aircraft during its opération
throughout the flight envelope for the purpose of adaptive control. We
analyze the asymptotic beha&iour of system identification procedﬁres in
the pfesenqe and in the absence of the true moael in a given model set.

The analysis also suggests a systematic approach to certain system

" modeling problems of practical significance.

‘A major part of the analysis in this thesis will be restricted to
the case where the model set is finife. This restriction serves several
purposes. We chose to emphasize the statistical properties of the ob-
servation seéuences involved (such as their content of information) and
to avoid considerations of topological conditions on the parameter set,
which are unavoidable if results for e.g. infinite compact parameter sets
are desired. This makes the analysis considerably simpler, and enables
us to consider very general classes of observation sequences. It is
nevertheless demonstrated in Chapter 7 that the results obtained in
this thesis fdr finite parameter sets may be extended to compact sets
by additibnal requirements on the topolecgy of the set, such as uniform
continuity of the density functions involved. Further research in

this direction is recommended.



In addition to the above consideration, the case of finite para-
meter sets has a considerable practical significance as a method of
approximation. Identification techniques for finite sets of models
are considerably faster than those‘for infinite sets, as the search
procedure for the parameter satisfying the estimation criterion is
practically trivial. In fact, this thesis makes a strongréase for the
finite modél set, faking the viewpoint that the true model is in most
cases notvincluded in any prespecified set of models. Identification
is thus a procedure of finding an approximate model whether a finite or
an infinite model set is considered. The approximatioh is nevertheless
"coarser" when fewer models are included in the model set.

It should, however, be emphasized that a substantial portion of the
thesis applies to parameter sets that may be infinite and even non-
compact. This is the case in the derivation of distance measures on
the parameter set and the consideration of system modeling problems.

For comparison with earlier results we note that the convergence of
the parameter estimates is considered in this thesis in the probabilis-
tic senses of convergence almost everywhere (a.e.) and convergence in
the mean square (m.s:), which will be defined in Chapter 2. Consistency
is traditionally defined as convergence a.e. of the estimates to the

true parameter when it is included in the parameter set.

l.1 Historical Review

Parameter estimation techniques have been studied ever since the
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introduction of the maximum a posteriori probability (MAP) and the
least squares (LS) criteria by Gauss [1809], and Laplace [1820] and
their later studies by Edgeworth [1908]. Fisher [1922] proposed the

maximum likelihood (ML) estimate, which has since gained .considerable

popularity due to its intuitive appeal and ifs asymptotic properties

(e.g. LeCam [1953]).

The consistency of ML estimates for sequénces of independent and
identically disfributed (i.i.d4.) observations was proved by Cramer [1946]
who assumed differentiability to 4'th order of the probability density
functions involved. Differentiability assumptions were dispensed with
in proofs by Doob [1934] and Wald [1949]. The main tool in proving con-
siétency for i.i.d. observations, is, naturally, the strong law of large
numbers. Roussas [1965] proved the consistency of ML estimates for the
case of ergodic Markov observation sequences, employing the ergodic
theorem. The m.s. convergence of LS estimates given i.i.d. observations

was considered by Liporace [1971], who showed, via the multiplication

rule for independent random variables, that the mean squared error of

these estimates 1is exponentially diminishing. 1In the case where the
true parameter is not included in the parameter set, the estimates were
shown to converge to a parameter in the set, which is most similar to
the true parameter. The measure of similarity suggested by Liporace is
related to the information measures introduced in this thesis. Caines
[1975a] proved and applied the submartingale property of sequences of

maximized likelihood ratios on finite parameter sets to prove the con-
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sistency of ML estimates on such sets for a géneral class of observation
éequences, satisfying a certain probabilistic condition. Baram and
Sandell [1976] extended Caines' results to Bayesian estimates, which
were shown to be consistent a.e. and in the mean square,'and showed that
Caines' condition applies to stationary Gaussian linea: systems.

The identification of linear dynamical systems employing parameter
estimation techniques has been studied intensively for over a decade.
However, several consistency proofs that have appeared in the early lit-
erature have overlooked the fact that for consistent estimation on com-
pact parameter sets, uniform convergence of the associated probability
densities on the parameter set is necessary, while pointwise convergence
only provides consistency for finite parameter sets. Correct consistency
proofs have appeared in the laterature in recent years. Caines and
Rissanen [1974] (see also Rissanen and Caines [1974]) proved the consis-
tency of ML estimates for autoregressive and moving average (ARMA) ob-
servation sequences. Ljung proved the consistency of a general class of
stochastic approximation techniques [1974a] and the consistency of a
class of prediction error techniques [1974b]. (see also Lijung [1975])
Caines [1975b] proved-consistency for stationary processes of a more
general class of prediction error techniques, which includes the maxi-
mum likelihood technique for the case of stationary Gaussain observation
sequences. The topological requirements specified by Caines [1975b]
reduce in the finite parameter set case to a requirement that there

exist a 1 to 1 correspondence between the parameter set and the set of
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system's impulse responses, corresponding to the system's innovations
representation. Similar conditions were suggested by Tse and Weinert

- [1975] (see also Tse [1976]) and by Hawkes and Moore [1976] (see also
Moére‘and Hawkes [19741), who considered the convergence of Bayesian‘
estimates on finite sets of stationary Gaussian linear systems. The
condition suggested by Baram and Sandell [1976] is a uniqueness condi-
tion on the output statistics associated with the different models in
the model set. Other statistical conditions are motivated and derived
in this thesis. We shall coﬁment on the correspondence between parame-
tric and statistical conditions in Chapter 7 as we suggest further
study of this subject.

Information methods have been suggested by many authors for the
solution of the related problems of hypothesis testing, signal selection
and model indentification. In recent years Kullback's information
measure (Kullback {1959]) has proved to be useful in the analysis of
parameter estimation and model identification techniques. Akaike
([1972]1, [1974]) has related Kullback's information with certain ver-
sions of the ML criterion. Kullback's information measure was employed
by Liporace [1971], and, f;llowing Liporace, by Hawkes and Mooré [1976]
in their ééudies of éarameter estimates given i.i.d. and stationary
Gaussian observations. In this thesis we define and employ information
measures, which prove to posses valuable properties lacked by Kullback's
information measure, such as the metric property on the parameter

space. Other information measures defined and employed in the litera-



ture, will be mentioned in Chapter 3 as they are compared with the

information measures defined in this thesis.

1.2 Organization and Results

In the first part of the thesis (Chapters 2, 3 and 4) we consider
general classes of observation sequences and parameter sets. The re-
sults are specialized to linear dynamical systems in Chapters 5 and 6.
Familiarity with advanced concepts of probability theory is only re-
quired in Chapter 2 and parts of Chapter 4. The sequence of Chapter 3,
sections 4.1 and 4.4, Chapter 5 and section 6;3 provides a consiséent
discussion of the information approach to system identification and
modeling, which is the mainstream of the thesis. The rest of Chapter 4
is believed to be of theoretical interest and also of practical value,

which is demonstrated in sections 6.1 and 6.2.

In Chapter 2 we present the underlying probabilistic set up for the
thesis and recall definifions and results frbm probability and estimation
theory used in the thesis. Since parameter estimates may be based on
the possibly incorrect assumption that the true parameter is a member of
a given parameter set; we define the different probability spaces in
which the estimates are defined and in which the analysis is performed.

In Chapter 3 we define two measures of the relevant information in

each observation favoring one parameter in the parameter set against
another. Both measures will prove useful in later analysis. The infor-

mation measures are shown to be metrics, or distance measures on the para-
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meter set and to provide a measure of closeness 6f each parameter in the
sét'to the true parameter which is not necessarily a member.of the set.
The information measures defined in this chapter are compared with other
measures éf information common in statistics and information theory.

In Chapter 4 we investigate’the convergencé of maximum likelithd
and Bayesian parameter estimates for general classes of observation
sequences. Consistency conditions are derived in terms of. the informa-
tion in fhe observations and‘exténded to the case where the true para-
meter is not a member of the parameter set. Rates of convergence in the
mean for the ML énd MAP pr&cedures are also derived.

In Chapter 5 we analyze the identification and modeling of sfa-
tionary Gaussian linear systems. We show that the identification pro-
cedures under consideration converge under a certain uniqueness condi-
tionbto the true model if it is included in the model set. If the true
model is not a member of the model set the identification procedures
converge to the model in the set whose output statistics are best
matched to those of the true model. The selected model is also shown
to be closest to the true model in the information metric sense. It is
then shown that under the uniqueness condition likelihood ratios and
a posteriéfi probability ratios converge in the mean at rates faster
than exponential. The analysis also suggests solutions teo other modeling
problems, such as the approximafion of a complex system by a simple
model and an optimal representation of a model set by a single model.

In Chapter 6 we consider general classes of time varying linear

SYStems. In particular, we interpret for such systems the information
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conditions derived in Chaptér 4, and obtain consistency conditions in
terms.of the output statistics associated with the different models
in the model set. The Ll convergence of the likelihood and the

a posteriori prbbability ratios is investigated and the separate con-
tributions of the stochastic and the deterministic parts of the input

to the information and, consequently, to the L convergence rates are

1
shown.

In Chapter 7 we sﬁggest further research of possible extension and
application of the theory. In particular, we show how the convergence
results obtained in this thesis for finite sets of parameters may Ee
extended to compact parameter sets. We also suggest further investi-
gation of the problem of existence and uniqueness of a solution to the
estimation, or identification problem. Then we suggest further study

of the identifiability of dynamic systems via application of determin-

istic input sequences. Finally, we suggest applications of the theory

to classes of problems, not directly addressed in this thesis, such as
the identifiability of non-~linear systems and periodically varying

linear systems.




CHAPTER II

PRELIMINARIES: PROBABILITY SPACES, PARAMETER

ESTIMATES AND STOCHASTIC CONVERGENCE

The purpose of this chaptef is to present the underlying mathemati-
cal set up for this thesis and to recall definitions and results from
probability and estimation theory that will be used in the followipg :
chapters.

Since a major objective of this thesis is tq analyze, using correct
assumptions, parameter eétimates that may be based on incorrect assump-
tibhs, it is essential to define at the outset the different probabilis-
tic frameworks in which the estimates are defined and in whicﬂmthe ana-
lysis is performed. We first ihtroduce the correct framework in which
the analysis is performed. It consists df an underlying probability
space and a separate parameter space, of which the true parameter may
or may not be a member. Likelihood ratios and maximum likelihood esti-
mates are naturally defined in this framework. On the other hand,
Bayesian parameter estimates are defined in a different framework where
the parameter space is a part of the underlying sample space. Conse-
quently, the existence of a probébility measure defined on the parameter
space (i.e. assigning to each set in the parameter space the probability
that it includes the true parameter) is postulated. The Bayesian frame-

work then inherently includes the assumption that the true parameter

is a member of the given parameter space, and is inadequate for the ana-

-11-
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of the general case considered in this study. Thus, while the‘Bayesian
set up is assumed in the definition of Bayesian estimates, the .analysis
of these éstimates, és:wellbas the maximum likelihooﬁ~est§mate, is per-
formed using the underlying, non-Bayesian framework.

‘Readers unfamiliar with the notion of measure,and‘propgbility'
spaces may identify here, and in the following chapters, the functions
£z, £z |2"") and £(s|z”) with the familiar probability density,
conditional;prababilitymdensity,andra'posteriori.prQbabiiity density
functions ;on Euclidean :cbservation .and parameter spaces. ‘Several sym-
bols and terms, mostly standard in probability and estimation theory,
4are-introduced in this chapter. For other terms and symbols, defined
throughout 'the ‘thesis ‘where they :are used, the reader is referred to

the symbol list.

2.1 .Obsexrwvations, 'Barameters andfnﬂkeiihood:Ra;ios

Consider a:measurable:space R, U) where ) is some sample -space .and

U is a 0-algebra .of subsets of {i. The cbservation seqguence (zn) is a

stochastic jprocess :on a probability space (2, U, B,) with wvalues in a

measurable space (D, D), called the observation space. We 'shall be in-

terested in the case (D, D) = (Rz, Bk)'where-RQ is the f-dimensional
Euclidean space and Bz is the O-algebra of Borel sets in Rz. We call

P, the true measure and * the true parameter.

The parameter space S is a set such that for each s € S there

exists a probability measure P_ defined on Q, . Let T = (*U 5.
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Obviously, * € T, but * need not belong to the set S.

For each s € T we denote by Es expectation taken with respect to

Ps' We use the notation a.e. (almost everywhere) to denote events of

P, measure one. Events of Ps measure one will be denoted a.e. Ps.

Recall that the conditional expectation of a random variable x on

(Q, Ur P) given A € [ is a U-measurable random variable denoted EA(x)

such that
EE (x) = E(x) (2.0)

‘ ‘ A s . .
For each s € § we shall denote by Es the conditional expectation given
A, taken with respect to Ps'

If U and V are measures defined on (£, U)_then U is said to be

absolutely continuous with respect to V if for any set A € U V(a) =0

. * : . :
implies U(A) = 0. W is said to be singglaé )with respect to V if it is

not absolutely continuous with respect to V.

Let (Un) = (Uh(zn)) be the increasing family of O-subalgebras of

U, generated by

2% 2 (z),000z) | (2.1)

For each s € T and for each n 2 0 let Ps denote the restriction of PS

3¢

to Uh. Suppose that for each n > O the measures P are absolutely

r

continuous with respect to some measure An defined on (2, Uh)' Then

This is not a standard definition. For a definition of mutually sinqular
measures see Rudin [1966], p. 121.
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—_—8a seT (2.2)

are the Radon-Nikodym derivatives (or densities) between the respective

measures. The likelihood ratio between two parameters s, t € T is de-

fined as

dP_ . .
s _ s,n _ "s,n (2.3)

t,n d Pt,n ft,n

h

provided that Ps‘n_is absolutely continuous with respect to Pt n When §
: . ’ b

r

the time parameter n is included in the argument we shall use the some-~ _

what shorter notation oy - —
f (aln)) = fsfn(a(n)) i se€T; a(n) € U

in particular

£z =¢ (2% ;seT (2.4)
S S,n

£ ooon, - .t ny o _

h (Z)_hs'n (z™) ,s,j:eT (2.5)

For any c € U£ and b € Uh such that fs'n(b) # 0 for all s € S, the con-

r

ditional densities of ¢ given b are

£ (C, b)
= ___s_.___.__....'n
fs’n(c|b) = fs n(b)
14
in particular
n-1 fs(zn)
fs(zn|z ) — i seT (2.6)

fS(Z )
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The conditional likelihood ratios are then defined as

;i s, teT ‘ (2.7)

| -1
for any 7 such that ft(znl‘zn ) # 0 for all t e T.

The following condition will be assumed throughout the thesis

(c2.1) For all s € S the probability measures Ps o axe mutually abso-

14

lutely continuous.

2.2 Bayesian Probability Densities

Consider a measurakle space (f}, ), where § is some sample space
and U is a O-algebra of subsets of(2, and a measurable space (S, US),

where S is the parameter space and U° is a O-algebra of subsets of S.

Let (QP, Ub) be a measurable space, where

b

Q 2 x8

t

and
b

U Ux U

are the cartesian products of the respective sample spaces and C-alge-

“b .
bras. Let P° be a measure on (Qb, Ub). We denote by Eb expectation and

A
by Eb ; A € U conditional expectation given A, taken with respect to Pb.

We call the restriction Pg of Pb to (S, Us) the a priori probability

s b | . .
measure on (S, U”). Suppose that PO is absclutely continuous with re-
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s
spect to some measure V on (S, U"), then the density

dPp

40 O O

(2.8)

is well defined. 1In particular, we call

£ (s) isgS | (2.9)

. the a priort probability density on S with respect to the measure‘vc.

ased ' o b
Let (z) be a stochastic process on the probability space (0

U-b', Ep) with values in a measurable space (D, P), and let (@)

'l'

b n
(Un(Z ))
be the increasing sequence of o-subalgebras of sz generated by

n - ‘ b ' . b b
2" = (2y4..002)). Let B- ¢ n > 1 be the restriction of P to U, ané for

b . .
each n > 1 let P~ be absolutely continuous with respect to some measure

Yy defined on @, U®). Then the density

o

ap

£ 2 2=t | - (2.10)

o}

Re)

is well defined. We shall be particularly interested in the a<poster¢9ri

probability density of s, given bl

b

£ (s|z™ = fi (s|z™) = > 1 (2.11)

assuming fﬁ’(zn) # 0,
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Let the parameter set S be finite, i.e.

S=1{s. i 35€x=(0,...,p)} , (2.12)

Then

JEDIENS - |
=0 j

s
is a measure ("the counting measure”) on (S, U"). Let A be a measure on
(2, U) then vn = vo'l i n > 1 is the product measure on (QP, Ub).
Suppose that Pﬁ is absolutely continuous with respect to vn (i.e. the
entire measure Pi is concentrated on the setSEX{si ; 1 € K}) for all
n > 0, then we have

L (e) = 5 2 (5,0 1 (s) (2.13)
o - :E: o ‘5i’ g, '® .
4 i
1=Q
and

b .
b n b n

£, (s, 27) = Z ;fn (s;r 27) 1 (s) 7 (2.14)

=0 1
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Hence

"
A
N
g
L]
M o
' 5"t
)
-y
N
B
g

: n
=y s, 2
i=0
| '
_ w b &L o
DIAR £ (z ;) (2.15) ?
i=0
where we have appliedeayes rule :

n, b n
£ (s, 2N = £ (s £ (s (2.16)

Substituting (2.15) and (2.16) into (2.11) yields for each j € k

Kol L n

£ (s.) f.b.(z [s.)
£ (sjlvzn) =0 3 n = 3 (2.17)

- ® b - n

1=
Note that
n n

fi (Z lsj) =f_(2) (2.18)
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where the right hand side is defined by (2.4) . Thus, finally, for the

n

finite parameter set

£ (s [z") = — J . | (2.19)

2.3 Parameter Estimates and Stochastic Convergence

An estimate s on Sis a Un-measurable‘mapping from ¢nto S.

A maximum likelihood (ML) estimate on S is an estimate s, € S such
that
n : n
. b < ~
{fs(z ) ; s € S} fsn(z )

A maximum g posteriori probability (MAP) estimate on S is an esti-

mate gn € S such that

{fb(slzn) i s € S} < fb(gn[zn)

Let S be linear. Then a least-squares (LS) estimate on S is an
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~
estimate s, € S such that

P {(s, R A;,,).:} N -Eb,{(; - 0T (s - /*)}

for any estimate sé'on S. xT denotes x transposed and * denotes the
true parameter, assumed to have the same dimension as s.
Let the true parameter be assumed to belong toc a finite set

{Sj'e Rm; j € k}. Then the LS estimate'on~Rm at instant n is the con- .

ditional expectation

£ s - fs £(s|zh av - -
S - Lo

p
2: s, fb(sj‘[zn) (2.20)

]

J

J

A stochastic sequence (xn) on (2, U, P) is said to converge almost

evggy@hgﬁgvfg,gs) to a random variable x on R, U, P) if

A stochastic sequence (xn) on (2, U, P) is said to converge in the

mean (or in Ll) to a random variable x cn (2, U, P) if

lim E|lx - x| =0
n—)w n
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A vector-valued stochastic séquencev(xn) on (R, U, P) is said to

converge in the mean square (in m.s. or in L2) to a random vector x

on (R, U, P) if

lim EIx - x . 0
n> n

1
where lxl = (xTx)é.

A sequence of parameter estimates (§n) is said to be consistent a.e.

or in the mean square if it converges a.e. or in the mean square to the
true parameter.
We now present without proofs three well known results from the

probability theory, which are used in this thesis.

Theorem 2.1 .(Jensen's inequality, e.g. Bauer [l972j, p. 322).
Let x be a real integrable random variable on a probability space
(2, U, P) with values in Rl, and let g(x) be a convex integrable function

on-Rl, then

g(Ex) < E g(x)

Theorem 2.2 (Fatou's Lemma, e.g. Bauerv[l972]( p. 71)
Let (xn) be an integrable stochastic sequence on ({2, U, P) such
that xn > 0 a.e. for all n, then

E lim inf x < lim inf E x
n-e n n->® n
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Theorem 2.3 (Lebesgue's dominated convergence theorem, e.g. Chung
[1974]1, p. 42) '

Let (xn) be an integrable stochastic sequence on ({, U/, P). Then

if

where x is an integrable random variable on (§, U, P) and if there

exists some integrable random variakle y on ({2, U, P) such that

Ey <
and

lxn[ <y a.e. foralln
then

limE x = E X.
nH® n

2.4 Martingales and Martingale Difference Sequences

Let (2, U, P) be a probability space and let (Uh) be an increasing
family of O-subalgebras in U. A Ug—measurable stochastic sequence (xn)

on (8, U, P) is called a Un—martingale if for each n

(a) Elxn! <

U
® £ lx =x
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If the equality in (b) is replaced by < then (xn) is called a Uh—éuper-
martingale.

It can be shown (Doob [1953], p. 93) that the likelihood ratio se-
; 4ap » '
guences (afgidl); s € S, defined in section 2.2 are Uh-martingales
* . .
. 3! :
according to the measure P,. Hence

U dp, /AP ar U .4aPp

B n-1 s,n-1 - *,n-1 E n-1 s,n
* : * '
a P*,n/d P*,n—l d Ps,n-l ol P*,n
arp
. - *,n-1 d Ps,n--l
d Ps,n-—l d P*,an
=1

Consequently, we have by (2.7}, (2.6) and (2.2)

n-1
/ fi
n-1 [nfl fs(znl7 )

n-1.s
) = E,

E, hy (z |2 =1 for each s € S

n-1
£,(z |27 )

(2.21)

Theorem 2.4 (The martingale convergence theorem, e.g. Chung [1974],
p. 334, Bauer [1972], pp. 341-343)
Let (xn) be a Uﬁ—martingale on (R, U, P) and let
+
sup E x < o
n>0

where

+
xn = sup (xn, 0)
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Then (xn) conVerges a.e. to a finite limit.
"Let (2, U, P) be a probability space and let (Dh) be an increasing

family of O-subalgebras in U. A Uh—measurable stochastic segquence (xn)

on (£, U, P) is called a Ug—martingale diffe:ence sequence if it is

integrable and if

U
E n-'lx =0 a.e.

 Let yn'be‘a stochastic sequence on (£}, U, P) and let (Uh).be a sequence
of O-sﬁbalgebras of U, generated by (yl,...,yn). Then, clearly

Uﬁ—l.

(yn - E Yn)

is a Uhfmartingale difference sequence. Also note that if (xn) is a

Uh—martingale difference sequence then

n

X E‘ii: X

n ¢ m
m

=1

is -a martingale. Indeed

n U
g "L x ZE n-1,
n u
m=1

n-1 U

m n
=1
n-1
B xm = Xn—l
m=1 ' -
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2.5 Stationarity and Ergodicity

The burpose of this section is to providé definitions and con-
vergence results for ergodic sequences, which will be used in the £he-
sis. It is not intended to provide an elaborate presentation of the
céncept of ergodicity. For a thorough development of ergodic theory
the reader is referred tb, e.g., Doob I1253],'Halmos [1956] and

Chacon and Ornstein [1959].

Consider a probability space (2, U, P). A transformation T from

$2 to U is said to be measuré preserving if
-1 '
P(T "A) = P(A)

for all A € U.

Given a measure preserving transformation T, a U-measurable event

A is said to be invariant if

Let (xn) be a stochastic sequence on (2, U, P) with values in
£ 2 2 . . . . L
(R R B ), where R” is the %-dimensional Euclidean space and’B is the
0 algebra of Borel sets of Rl. Let Bi be the 0-algebra of Borel sets
[ AN NN . . .
of Rw where Rw = R"xR"x... Then (xn) is said to be stationary if for

each k > 1
P [(xl,...,xn) € C] =P [(Xk+l' xk+2,...) e C}

: 2
for every C € Bw.
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A stationary sequence (x ) on (2, U, P) is said to be ergodic if
every invariant event in U has probability zero or one. It can be shown
(e.g. Stout [1974], p. 168) that (xn) is generated by a measure pre-

serving transformation T (the shift operator), i.e.

x (W) =x_ (T - . (2.22)

Let (xn) be a vector valued stochastic sequence from (22, U, P) into

% ' . . . '
(R‘,-Bz) such that the probability density with respect to the Lebesgue

measure .on (Rz,.ﬂm)‘df (xn) is Gaussian on RR, with

E L constanﬁ for all n
and
E {(x -m)(x - m )T}» depends only on k.
n X T ntk X »
Then‘(xn) is a station;ry Gaussian sequence.

Proposition 2.1 (Grenander [1959], pp. 257-260 and Doob [1953, p. 494)

" A zero mean stationary Gaussian process is ergodic is and only is

n
3 5
lim —— lRx)[“ =0
n+l
n
k=0

where

R(k) = E {x T }
n




Y -

and where lR(k)[ denotes the determinant of R(k).

Theorem 2.5  (The ergodic theorem, e.q. Doob [1953], p. 464, Halmos
{1956], p. 22, Weiner [1949], p. 16)

Let (xn) be an ergodic sequence on (2, U, P) and let f(xn) be a

U-measurable function such that Eff(xo)l is finite, then
1 &
lim —— f(x,) =E f(x).
o n+l ;Z% j o'
J:

The following vérsion of the central limit theorem of probability

theory will prove useful in later chapters.

Theorem 2.6 (Billingsley [1961])
Let (Xn) be an ergodic stochastic process on (§, U, P) such that

E x° is finite and

1
U
E n—lx =0 a.e.
n .
(i.e. (xn) is an ergodic martingale difference sequence). Then the
n
. . =% 0
distribution of n - }dek approaches the Gaussian distribution with
k=1

’ . .2
mean zero and variance E xi.
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2.6 Metric Spaces and Stochastic Metrics

Consider a set S and a real-valued function e on: Sx§ which/éatisfied

(1) e(s;s) = 0 for any s € S

(ii) e(s;t) e(t;s) for any s, t € S

C(1ii) e(s;t) < els;ir) + e(r;t) for any s, t, r € S.

Then e is called a pseudo metric on S. If in addition to (i), (ii) and

(iii) & satisfies

(iv) e(s;t) =0 ; s, t €S implies s=t
then e is called a metric on S. The pair (S, e) is called a metric
space.

Now consider a probability space (£, U, P) and an increasing family
(Un)vof O-subalgebras df'U. Let (en) be a (Uh)—measurable sequence of
functions on SX§ such that each e, satisfies (i) - (iii) above. Then

. . . *
we shall call (en) a stochastic pseudo metric sequence( ) onS. If

each e, satisfies (i) - (iv) above, we shall call (eh) a stochastic

*
metric sequence( ) onS.

*
( )These definitions do not seem to have appeared in the literature
before.




CHAPTER III

INFORMATION

In this chapter we develop the notion of the information in a
sequence of observations favoring one parameter in a given parameter set
against another. We do not make the assumption, cbmmon in the deriva-
tion of other information measures in information theory, that the true
parameter is included in a known set, or, equivalently, that the true
measure belongs to a known set of measures. The‘mean and the conditional
mean values of the discriminating information in a single observation
are shown to possess properties that wiil prove useful in the following
chapters. In particular, their absolute values are metrics, or dis-
tance measures, on the parémeter space. This provides a meaningful
measure of the relative closeness of parameters to the true parameter.
The new inférmation measures are then compared with other measures com-

mon in information theory.

3.1 The Information in a Single Observation

Let S be a parameter space and let T = (* U S), where * is the true

parameter. If for some pair of parameters s, t € T
n n
£
S(Z ) > ft(Z )
or, equivalently,
n n
: bd
log fS(Z ) 1log ft(Z )

~29-
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we say that the parameter s is favored over the parameter t by the
observations Zn. Then log fs(Zn) may be regarded as a measure of the
_information in Z" for selecting a parameter from the set T. The differ-

ence

log £_(z") - log ft(Zn) = log hi (z™) | (3.1)

is then a measure of the information in Z" for selecting between s and
t. If (3.1) is positive then s is favored and if it is negative then t

is favored. The difference

s n ] n-1 s n-1
log hy (2') - log h_ (Z° °) = log he (zan ) (3.2)

is then a measure of the difference between the information favoring s
against t at instant n and the information favoring s against t at in-
stant n-1. It can then be regarded as a measure of the information
favoring s against t in the observation z - We define

Uﬁ—l 5 n-1 |
I(sit) 2E T log by (znlz ) (3.3)

as the conditional mean information in z favoring s against t and

T - s n~-1 '
I, (sit) = B, log h (z |2 ) (3.4)

as the mean information in z favoring s against t. (& more general
A
form of (3.3) would be fn(s;t) = E*n-l log hi (anzn—l) for some sequence

(An) such that An € Un' However, for the purposes of this thesis we
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use the information defined by (3.4).)

3.2 Properties of Information

We now show some properties of the information measures defined

above that will prove to be useful in the following chapters.

Theorem 3.1
Let S be a parameter space. Then for any s € S and for each n >0
we have
* s > o

In( :s) _{O a.e.
and

T (% S

In( is) >0

with equality if and only if fs(znlzn-l) = f*(znlzn—l) a.e.

Proof

In(*;s) = -E*n-l’logAhi (znlzn_l)

Using the inequality

1 é a <a-1l; loga=a-1lif and only if a =1 (3.5)

We get
1.s -1, : '
h, (z_[2" ) =0 a.e. . (3.6)
n .

where the second equality follows from (2.21). To show that equality

. : n-1 -
helds only if fs(zan ) = f*(znlzn l) a.e. (sufficiency is trivial)
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suppose that

Uﬁ-l s n-1

I (*s) =1-E, h, (z |[2777) ave.

Uﬁ—l s n-1 s | n=-1
E* {_h* (?nlfz ' ) - 109“'5».* (-%nlz =) "l%}==0 -a.e.

By (2.0) .we then have

s

: . -1
] hy ‘(fén Ivzn

) - log bS (z_|2°™h) - 11ap, = 0 W)

(3.7) .and (3.5) together .give

h$ (zn\lzn’l) =1 a.e.
or
1sn=1 _ sn-1 ‘ &
£.(2 [277) = £,(z |27)  a.e. (3.8)

Hence, equality in (3.6) holds if and only if (3.8) holds. Similarly,

since_In(*;s) 3;0, we have
In(*;s) =‘E*In(*;s) Z.o

with equality if and only if In(*;s) =0 a.e., which, as shown above,

. . n-1, _ _ n-1
occurs if and only if fs(znlz ) = f*(anZ ) a.e. o

Corcllary 3.1

Suppose that r € S is the true parameter. Then for any t € S

In(s;t) and E;(s;t) are maximized on S at s = r. This maximum is
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r

- U, -1
unique unless for igme/g/érs fs(zn|zn ) = f (znlzn ) a.e.

Proof

By theorem 3.1 we have

]

. - - - > .e.
In(r,t) In(s,t) In(r,s) 20 | a.e

and

T (rit) - I (sit) = I (xis) >0

'Zn-l

with equality if and only if fs(znlzn—l) = fr(zn ) a.e. The asser-

tion follows..

Theorem 3.2

The sequence (Iig(s;t)[); s, t € S is a sequence of pseudo metrics
on S. It is a sequence of metrics on S if an only if E;(s;t) = 0 implies
s = t. The sequence ([In(s;t)l); s, t € S is a stochastic sequence of
pseudo metrics on S. It is a stochastic sequence of metrics if and only

if In(s;t) = 0 implies s = t.

Proof
To prove that |f£(s;t)l is a pseudo metric on 8 for each n we have

to show (see section 2.6) that for each n it satisfies the following

conditions.
(i) Ifg(s;s)l =0 for any s € S
(ii) |E;(S;t)| = Jf£(t;s)l for any s, t € S

(iii) l'fn(s;t)l < {fn(s;r)l + [fn(r;t)l for any s, t, r € S.
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We have
s n-1 - .
hy (z |z0 ) =1
Hence
s n—i
log hS (zn|Z ) =0

Then élso

8 n-1. _
E log h_ (znlz ) =0
and (i) follows. Also
fks;t) = —f(t;s)

and (ii) follows.

Condition (iii) is proved as follows

ITQ(SPI)I + lE;(r;t)l

"
=l

« log hi (znlzn_l)l + IE* log hi (znlzn—l)‘

log fs(znlzn'l) - E, log fr(znlzn'l)[

= IE*

+ IE* log fr(anZn_l) - E, log ft(znlzn_l)l
- -1

z_lE* log'fs(zn|zn 1) - E, log ft(znlzn )l

_ s | n-1 T .

= [E* log hy (anZ )| = IIn(s,t)l
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If in addition to (i), (ii) and (iii) |fn(s;t)'l satisfies

S (ivy ]E;(s;t)l =0;s,te8 implies s = t

then ]E;(s;t)] is a metric on S. The assertion follows for [E;(s;t)l.
The result for IIﬁ(s;t)l»is obtained by showing that conditions (i)-(iv)
U .

above hold a.e., replacing E, by E_ n-l and following the same steps..

Theorem 3.3
For any t, r € S and for each n > O the sequences (IE;(*3t)|) and
(]In(*;t)]) satisfy the properties (i) - (iii) above. They satisfy

(iv) if and only if ft(zn]Zn—l) = f*(zn|Zn-l) a.e. implies t = #%,

Proof
The proof of properties (i)-(iii) is obtained precisely as in the
proof of theorem 3.2. (iv) is satisfied if and only if f£(znlzn-l)

= f*(zn[zn-l) a.e. implies t = * by theorem 3.1..

The variables !f;(*;t)[ and |In(*;t)|; t € S are then distance

measures from the true parameter * to points in the parameter set S.
They can be regarded as extensions of the metrics 1E£(s;t)| and lIﬁ(s;t)I

on S totheset T = (¥ US).

- Corollary 3.2

Let S, t € S be any pair of parameters in the parameter space S.
Then s iscloser to the true parameter * than t in the metric IIn(s;t)|

if and only if In(s;t) > 0 a.e. and in the metric lf;(s;t)[ if and
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only if E;(s;t) > 0.

Proof
s is closer to the true parameter than t"in the metric |In(s;t)[ if

and only if
lIn *fS){ < IIn(*;t)I a.e.

" But by theorem 3.1

|I;1*$591'=:Ih§*)si a.e. for any s € S

Hence, s is closer to the true parameter than t if and only if-

I (*¥is) < I (Y1) a.e.

oxr

I (*5¢) = I (*;s) = I (s;t) >0 a.e.

n n n :
To show that s-is closer to the parameter than t in the metric
If;(sjt)l an’ identical procedure can bé‘followedrusing”f;(s;t) instead

of In(s;t)'-f

Example 3.1

Let x be a random variable, whose probability density is known to

belong to the set 2

£, (%) st ¢ 1, 5-0,1,2 (3.9)

V2 a2
1
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Suppose that i=0 is the true parameter, i.e., that x is actually dis-
tributed according to fo(x) . The mean information in a single observa-
tion x favoring one parameter against the other is found to be

2 2

I(1;0) = I(1:0) =-2—log—2-+-:-2-( _._L.)
ag? g ?
1 1
_ 1 o ? L g ?
I(2;0) = I(2:0) =5'log—-°-—2—+§-( _0_)
_ | ; 5 )
2 2
’ 2 2 ~ o
g g .
I(1;2) = I(1:2) =%Log 2+ ; ( -2 )
: 1 2 1
Note that I(i;j) - O as Gi > O‘j
Theorem 3.1 is verified'as follows
A o ?
I(1;0) < 5 [log —— 4+ log 2=|=0
G 2 g2
1 0

where we have used the inequality 1 - a < -log a.

Similarly
I(2;0) £0

To verify corollary 3.1 we check whether
I(2;1) > I(2;0)

but

I(2;1) - I(2;0) = 1(0;1) = -I(1;0) >0
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Similarly

I(1;2) > 1(1;0).
Next, we check the conditions under which the parameter 1 is closer
to the parameter O than the parameter 2, in the metric senses defined by

theorem 3.2. By corollary 3.2 it suffices to have

I(1;2) >0
l.e.
’ 2
g o .
log =2— + @ (—l---l—)> 0. | (3.10)
g 2 0 g 2 g 2 .
1 2

(3.10) relates the relative closeness of thé parameters 1 and 2 to the
true parameter 0 (see corollary 3.2) with the covariances assoéiated
with the parameters. It is interesting to check, then, whether the
closeness of the covafiances implies closeness of the parameters in

the information metric sense, i.e. whether
c?-0?<|c?-02 (3.11)
1 ) 2 )

implies that the parameter 1 is closer than the parameter 2 to the true

parameter 0, i.e. that
I(1;2) > 0.

In general, (3.11) does not imply (3.10), which depends on the numerical

values of 00,‘01 and Oé. However, (3.11) does imply (3.10) in two

cases, namely:
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o : { <
Case 1 OO Gl 02

Clearly, (3.11) is satisfied. Using the inequality log a < a -1

for a # 1 we have

g2 g2
log =—< - -1 - (3.12)
0_2, 0._2 .
.2 2
or
qu G 2 _
log %=>1--1>0 - (3.13)
1 2
. o ?
and since —LZ < 1 we further have
52
1
cg? g? g ?
g2 g2 a?
1 1 2
Hence
2
g ‘ .
I(1;2) = log~2—+ 0 2(—3‘-— - —l--) >0
0«‘2 Q 0.2 02

1. 2 1

:. < <
Case 2 02 Gl GO

(3.11) is again satisfied. By (3.12) we have

o ? o ?

log2=>1--2-<p
01 0..22.
o ? S

. 0
and since ——;—> 1 we further have

a
1
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g? qg? g 2 .
g 2 o 2 G 2
1 1 2
'Hence
,
g
- 1
uha=% PW—L+04—7-
o (T
1 2

However, 1f we have

Case 3 01 Gb < 62

or

Case 43 0,< 0 <0

2 1

|5 i, 3 =1, 2; 1 # j does not necessarily imply

Then |0, - &, < kaj - o,ls

I{i;j) > 0 ox Eki:jb > 0. For instance, let

g?2=2
0
and
c?2=1
2
Then if
g ?=2.73
1
we have
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- : | aw  eamam— = (). > 0

then we have

2

Jlo2-062>]c?-0
1 a T2 [

[1.386 + é(—i— - 1)]: -0.057 < 0.

Hence closeness of the covariances to the true covariance does not imply

But

T(2;1) = 1(2;1) =

0

closeness of the parameters to the true parameter in the metrics {I(';°)|

and IEK';')[ in general, except for cases 1 and 2 above.

A

We shall use the notation

8§,(sit) = [I_(sit)]
and

d (sit) = |I (s;t)]
Then we have sequences of metric spaces
(S, 8,) + (S, d)

where S is the parameter set. Note that while.In(s;t) and Sn(s;t) are

Un_l-measurable random variables, E;(s;t) and dn(s;t) are not random var-

iables. We shall see that In(s;t) and Gn(s;t) are useful for purposes of
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anialysis. The metric dn(s;t) willrprOVe particularly useful when it is
constant in time, as will prove to be the case for ergodic observation

sequences. The parameter metric space can then be defioted (S, 4.

3.3 Comparison with Other Information Measures

Attempts by statisticians and engineers to6 assigh qﬁahﬂitative
measures to the intuitive notion of informétioﬁ have resulted over the
years in many different definitions of inférmatidh. Information measures
can, in essence, be classified in two different categories. Oné is
characterized by the Shammon entropy, which has proved useful in coffintni-
cation énd source-coding theory, sometimes teévied information theory.

The other is characterized by Fisher's and Kullback's information measures,
which have been fiore popular in statistical c¢ircles. Our information
measures fall in the second category. It seems that different permuta-
tions of Fisher's or Kullback's information measures result from diffeér-
ent interpretations of a given set of data, which in turn reflect the
intended application. Our version of iﬁformatidﬁ seems to be the most
general, since, unlike other definitions, it does not assume that the

true parameter belongé to the parameter set under consideration. However,
special care must be taken in evaluating the advantages of one definition
of information over another.

The information measures defined in this chapter prove very useful
in the analysis of the asymptotic behavior of parameter estimates. They
provide insight into the convergence of thé estimates in the presence and

in the absence of the true parameter. However, they can only be computed
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if the true parameter is known. Nevertheless their appli&ation is not
limited to analysis, as will be evident inkchapter 5 where we consider
several model selection problems. On the other hand, éeveral other in-
formation measures'which are useful in given applications, such as
'signal detection, do not possess properties which are useful for analy-
_tical purposes, such as the metric property. 'In the rest of this section
we briefly discuss a few information measures, common in the information

theoretic and the statistical literature and relate them to the informa-

tion measures defined in section 3.1.

3.3.1 Rullback's Information, the Divergence, the Bhattacharyya

Distance and the Ambiguity Function:

Kullback [1959] defined the mean information for discriminating in

favor of one hypothesis H., against another, H2, given an observation x as

1

K fl(x)
I7(1;:2) =f109 NN day, (x)
: 2

where ul is a probability measure corresponding to Hl. fl is the density

%‘ﬁ” of‘ul with respect to some measure A and f. is the density with respect

2

to A of uz, a probability measure corresponding to H The divergence

2-

between H, and H,, first introduced by Jeffreys [1946] and employed by

1 2
Kullback [1959] is defined as:

3(1:2) = 18(12) + T5(2;0)

"fl(X)
/[fl(x) - fz(x)] log ?E'-z—z;)—_dk(x)

v/f .fl(x) : _‘fi(x) »
= [ log 73-2—(;)- dul(x) -/109 ‘f‘za)- auy,, (x)
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In contrast, I(1;2), defined by (3.3) would be written as
‘ .fi(x)
I(1;2) = log ?;GCTdu(X)

where U(x), the correct probability measure may be differént from both
My (x) and uz(x); | |
The Bhattacharyya distance (Bhattacharyya[1943]) between two den-

sities fl(x) and fz(x) bf an observation x
. | w
B=-4n f[fl (x) 'f2 (x)1° ax

where A is the Lebesgue measuré on the‘space'of X. Properties of the
Bhattacharyya distance and the divergence were studied and compared by
Kailath [1967], and they were found to be particularly suitable for

signal detection in communication. However, Kullback's information,

the divergence and the Bhattacharyya distance do not satisfy the triangle .
inequality and thus fail as metrics on the parameter (or hypothesis)

space. In contrast, the metric property of the information measures
introduced in section 3,1 follows from the consistent use of the true
probability measure throughout, whereas Kullback's information, the di-
vergence and the Bhattacharyya distance are defined using different mea-

sures.

The ambiguity in an observation x between a parameter s and the true

parameter * is defined as

YS = E, log fs(x)
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The ambiguity function Ys has been found useful in the analysis of

error in radar applications (Woodward [1953]). In fact

I(sit) =Y, - Y,

Hence, the information between two parameters as defined in this thesis

is the difference between their ambiguities.

3.3.2 Fisher's Information

We shall now show that the information measures introduced in sec-
tion 3.1 are related to Fisher's information measure fFisher (19561,
Savage [1954]). We follow a similar comparison between Kullback's and
Fisher's information measures (Kullback [1959]). However,. in order to
relate measures of the same quantity, we define Fisher's information in
a single observation z -

Let S € Rk be the parameter space. Suppose that for any s € S the
following reqularity conditions (Cramer [1946], Gurland [1954], hold for

all i, j =1,...,k

-1 2 -1
1) d log fs(znlzn ) 9” log fs(znlzn )

: <F (ZM; =0
dsT 1 3s™ 9s’ , 2

where the partial derivatives are assumed to exist and Fl(zn) :nd Fz(zn)

are integrable random variables.

afs(znlznfl) 3% (zniz?fl)
2) T ap, = 0; J/- O CU— ap, = 0
3s | 3s™ 3sd
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We define Fisher's information in a single observation at a para-

: . =F 5
meter point s as a matrix In(s),.whose elements are S %

n-1

A n-1 }

I L 8f (2 27 D)y N o _(z_[2"0)
I (s) = E, n-1 i q.n-1 j
i,3,n fs(znlz ) de fs(znlz ) ds

(3.9)

Consider a point s € S and a close point s + As € 8. Using Taylor's
expansion to second order we have

n-1
o3 £ (a2 0

} o, n-1 g I o T DU i
log fs+As(zn|Z ) log fs(anZ ) = ;E: As T
i=1 d9s™ -
k k 2 n-1,
) , . . 0°log f (z |Z )
1y - i j S n ,
P13 st agt D0
i=l j=1 9s™ 0s
But
dlog £_(z |z°7%) 3f (z |2°71) 5° n-l
s ' n ' 1 s 'n tog fs(znIZ )
i - n-1 i i L=
ds fs(znjz ) os ‘ 3s™ s’
2 n-1 ‘ _ L=l n-1
i 1 3%t (2 |27 ) 1 3 (z |27 ) Bf_(z |2 7
- -1 1.3 o n-1 i 3
(2 |27 3s” 3s fi(znlz ) s 9s

The information in z favoring s against a close point s + As as

defined by (3.4) is

f;(s;s + As)

1}
~~
[o]

Q
Hh
H
~
N
o~
s
3 N
(W]
:3 Ta”
-._/H
%»

]
&_l_\
™M~
>
(1]
'—lv
QL
H
(o)
Q
+h
0n
N
N3
*
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1

/ZZAS Asalogf(z{z ‘dP*

i=1 j=1 st 9s?
| k n-1 A
Lotz |z Yy
= - ZAS:L/ = n.i dP*
S i=1 s
L X e (z |27
- -Z—Z nst Asf[
i=1 j=1 : Bs ’Bs
| ' , n?l ‘ n-1 _
_ 1 afs(znIZ ) st(znlz_ )] ap
.o - 1 3 *
f (z !Zn l) 3™ 98
s n

k k v‘. .
= -21-2 > as* 287 T (s)

i=1 j=1 Tedem

where the last equality is obtained by the regularity condition 2) above.
Hence, the information ‘in a single observation is related to Fisher's

information in a single observation by
T (s;s + As) = 2 asT TF (s) As
n’ 2 n

Defining similarly the conditional Fisher Information in a single cbser-

. . F
vation as a matrix In(s) whose elements are

n-1 n-1
Fay - Jnen ( B .B.f.s(zr}lz. )>( 1 afscznl? >>
toJem £z 2% ast £ (z_ 2" ast
S n 1 n




We get, using a similar procedure

I (s;s + As) = l-AsT‘IF(s) As
n 2 n

3.3.3 Self Information and Entropy

To complete this discussion, placing the information measures
motivated and defined in this chapter in perspective with respect to
other measures found in the literature, we meption two other measures
which are guite common in information theory, namely, the self infor-
mation and the entropy (e.g. Fano [1961] and Gallager [1968]). The defi-
nition of these measures is based on the Bayesian aSSumption (see Chap-
ter.2);

COnsider a parameter set S. The self information in the measure-

ments Z© about a paraméter's‘e S is defined as
fi(s) = - log fb(s[zn) (3.14)

A cotiparative measure of information can then be obtained by taking the
difference of the self information corresponding to two parameters

s, t €S

AIi(S;t) = 15(s) - f%t) = - log fb(slzn)
§ fb(tIZ)

The self information difference between s and t in a single observation

z  can be obtained, using (2.6) and (2.19) as

¥
i
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) -1
fs(znlzp_ )

S s n-1
AIn(s;t) - AIi_l(s;t? = - log = - log ht(zn|Z ) (3.15)

ft(anZ )

Taking expectation and conditional expectation of (3.15) with respect to

the true measure one gets

S(e;t) - ATS  (s:8) ) = T (s
E*'{AIn(s,t) AIn—l(s't)} In(s,t) (3.16)

and

U .
E*n,_l{AIrsl (S.ft) - ,AIfl_l (s;t)} = —In(s;t) (3.17)

Hence, the mean and‘the conditional mean values of the sélf‘information
difference in a single observation ére the negative values of the infor-
mation measures defined in section 3.1. (The sign is, of course, of no
significance since the self information defined by (3.14) is in faét
lack of information; and would become positive information, in the sense
meant in thié chapter, by inverting the sign.)

Note that in (3.17) the expectatidn is taken with respect to the
correct probability measure P, independently of whether the correct
parameter even belongs to the set S. If, on the other hand one makes
the assumption that the true parameter belongs to a finite set, say
{sj;j €K = (O,...,p)}, and takes a conditional expectation given z" of
(3.14), then one gets

U p
n
2 D(s) = - 2 fb(sj[Zn) log fb(sj[z“) = 1(z™ (3.18)
j=o | |
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(3.18) is the entropy in z". Note that the entropy differs from the
other information measures considered in this section in the sense that
it is not a comparative measure between parameters. It does provide

some measure of the average information gained from the observations,

with respect to the g priori assumptions (Berger [1971]).

e e )




CHAPTER IV

CONVERGENCE OF MAXIMUM LIKELIHOOD AND BAYESIAN

ESTIMATES ON FINITE SETS OF PARAMETERS

In this chapter we study the convergence of maximum likelihood and
Bayesian parameter estimates for general classes of observation se-
quences. The convergence of the estimates folléws from the convergence
ofﬁthe likelihood ratios over the parameter set. Consistencf conditions
are derived in térms of the information in the'observationét The case
where the true'parameter is not necessarily a ﬁember of the parameter
set is.also considéred. Rates of convergence in the mean for the ML and

the MAP procedures are derived.

4.1 Convergence of Parameter Estimates

Let (zn) be a stochastic process on a probability space (2, U, Pk)
and let S = K = {0,...,p} be a parameter set such that {Pj; j € K} is a
family of probability measures on (2, U). Let (Un) be an increasing

sequence of O-subalgebras of U generated by (Zn) and let P, be the

[4

restriction of Pj to Un for each j € K. Consider the following con=~

dition:

(c4.1l) For some k € K and for each j € K; 3 # k

) =0 a.e. (4.1)

-51-
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In the sequel we show that the convergence a.e. of the ML and the MAP
parameter estimation procedures and the convergence a.e. and in m.s. of

the LS procedure follow from condition (c4.l). Of course, the major

difficulty in proving convergence of the parameter estimates is to

vérify condition (c4.1). 1In the following sections we give.conditions

- for general classés of observéfion sequences under which condition (c4.1)
is satisfied when k is the true parameter and extend the resﬁlté to the
case where the true parameter is not necessarily a member of the para-
meter set. The iatter case is treated specifically in the followihg

chapter where the following theorems will prove very useful.

Theorem‘4.l

Suppose that (c4.l) is satisfied, then ML estimates on K converge

a.e. to k as n-ow,

Proof

Since the set j€ K ; j # k is finite, (c4.l) implies

lim sup { hiA(Zn); j €K ; j# k}= 0 a.e.

n>oe  j
Hence
. j n \ k . n
lim sup hk (z); jex;= hk (z7) =1 a.e.
n»oo  j
oxr

lim k(") =k  a.e.
n-co
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Theorem 4.2

Under condition (c4.1) MAP estimates on K converge a.e. to k.

" Proof
By (2.19) we have for each j € K
£0) £,% £

fb(JIZ) < hj (2

fb(k) £,(z") fb(k)

n

)

By (c4.l) for each j € K ; j # k we have

1im £ |2 < linhd (ZM =0 a.e.
nreo : (k) nro.
o
- implying
. fb .| .0 . .
lim (le') =0 a.e. foreach j €K ; j#k (4.2a)
n>e ,
But since
P
) £5]2" =1
j=o
we have
s b n
lim £ (k|2") =1 a.e (4.2b)

n—-)oo

yielding the assertion.-

Theorem 4.3

Suppose that a parameter vector s is assummed to belong to a finite



-54-

sét s, € Rm; j € K in the calculation of the estimates (but is not
J
necessarily a membexr of the set). Suppose further that for some k € K
. . m
condition (c4.l) is satisfied. Then LS estimates of s on R° converge

a.e. .
e. to sk

Proof

By (2.20)‘and (4.2) we have

A P )
lim s, = j{: s, lim fb(j|Zn) =35 a.e.
e n I oo
J= _ )
Theorem 4.4

For the situation given in theorem 4.3 LS estimates converge to Sy

in the mean-square.

Proof

We follow in part Liporace [1971] who treated the case of independent

and identically distributed observations. Consider the norm

2
|

A TA
n E*{(sn - sk) (Sn - Sk)}

p P
T b n n
E*{Z(Sj - 5T £20s4 12 35 - ) (s, |z )}
j=o

i=o :
b

p
:E: :E: (sj - sk)T (si - sk) E*{fb(sjizn) fb(silzn)}

j=o i=o

2
<p R E, fb(sj|zn) for some j € K ; j # k
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" where

since obviously
b n n n
E*{f (sjlz )} _>_E*{f(sj]z ) (s, |z )}

(becausef(silzn) <1.

By (2.19) we have for each j € K

L f sy £.D £ (s,) | .
fb(sjlz ) 22— -2 n) (2"
fo (sk) fk(Z ) fo (sk)
By (c4.1) we have for each j € X ; j #k
n fg (sy) ; n
lim £2(s, |2") <o 1inn) @) =0 a.e.
N J fo (sk) n-o
Hence
lim fb(s.lzn) =0 a.e
n-o J
Now since

£(s.|z2% <1
j —
we have by the dominated convergence theorem (theorem 2.3)
that for each j € K ; j # k

lin E,£(s, |2 = E, Llim £(s,|2") = o
n?e J n*® J
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and thus

lin N_ < p°R® lim E (s, |2"F
pieo 1 n-e J

) =0

vielding finally

lim Nn = O;
.

4.2 Consistency of the Estimates

In Chapter 3 we defined for each pair k, j € K

oy - n-1 k n-1
In(k;j) = E, log hj (zn]Z )

Let us also define

: k n-1 .
log hj (zn|Z ) - In(k,J)

i

Jn(k;J)

Jn(k;j) is the error in the incremental information In(k;j), or the

information residual. Denote

n
Y (ki3) = B T (ki)
m=1
and
n
v (kij) = z: 3 (ki3
m=1

Note that for each j, k € K (Jn(k;j)) is a Un—martingale difference

sequence according to the true measure P, and consequently (Vn(k;j))
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is a Un—martingale sequence according to P.
Suppose that * € K, i.e. that the true parameter is a member of the
: ‘ {

- , : . {
parameter set and consider the following conditions:

(c4.2) For some k € K and for each j € K ; j # k

lim shp Vn(k;j) > - a.e.

(c4.3) For some k € K and for each j € K ; j # k

lim ¥ (k;j) = = a.e.
nreo O
Lemma 4.1
Suppose that conditions (c4.2) and (c4.3) hold for k = *. Then
for eadh j €K ; j# * one has
lim h) (z%) =0 a.e.
n-=c
Proof
We have noted (see section 2.4) that for each j € K the sequence

(hJ (Zn)) is a U _-martingale according to the measure P,. Furthermore
* n *

It follows from the martingale convergence theorem (theorem 2.4) that

the sequence (hi (Zn)) converges to a finite limit. Thus, the sequence

(log hi (Zn)) converges to some a < ®, We have
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* n *o s .
= H + *; .
log hj (z7) Yn( ) Vn( 3) (4.3)
Suppose that

lim log hi (Zn) = a > - a.e.
n-o '

or

. * n
lim log h, (Z7) < a.e.
Famasl J

Then by condition (c4.3) and by (4.3) we have

lim V_(*;7)
n--o n

"

5
p
o

.

contradicting condition (c4.2). Hence, we have

/

7 . * n
e lim log hj (z7) = a.e.

‘/ n—reo

or
lim log hi (z%) = - a.e. e
yielding
lim hi (Zn) =0 a.e. g
n-ee

Theorem 4.5
Suppose that some k € K is the true parameter. Then under condi-
tions (c4.2) and (c4.3) ML and MAP estimates are consistent a.e. and LS

estimates are consistent a.e. and in the mean square.
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Proof
The assertion follows direcfly‘from lemma 4.1 and from theorems

4.1 through 414.. ‘
~ Consider the following condition

(c4.4) For some k € K and for each j € K ; J .# k'there exists some

ej > 0 and a subsequence (ni ) of n such that
3 '

I (k;3j) >€. a.e. for all n.
- "n -3 i

i, j
i ' J

Theorem 4.6
Suppose that some k € K is the true parameter. Then under condi-
tion (c4.2) and (c4.4) ML and MAP estimates are consistent a.e. and LS

estimates are consistent a.e. and in the mean square.

Proof

By theorem 3.1 we have
In(k;j) >0 a.e. for alln >0

Thus, condition (c4.4) implies condition (c4.3). The assertion follows

from theorem 4.5..

In the following chapters we shall see certain important cases to
which the information condition (c4.3) applies. We now examine condi-

tion (c4.2). We have noted that for each pair j, k € K the sequence
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'(Jn(k;j))is a martingale difference sequence according to the true mea-

sure P,. The following special case is of particular interest.

Lemma 4.2

For any pair j, k € K let‘(Jn(k;j)) be an ergodic sequence. Then

lim sup Vn(k;j) = a.e.

Proof

We have by (2.21) for each w € Q
Vn(k;J,w) = Jl(k;j,w) + Vn_l(k;j, T W)

where T is a measure preserving transformation. It follows that the
event

{ lim sup Vv (k;3j) < w}
n+o n

is invariant. Thus, either

P {limsup v (kij) < w} =0
or
P {lim sup Vn(k;j) < m}'= 1

Obviously, we have that if

lim sup Vn(k;j) < o

then
Vn(k;j)
lim syp ———— < ®
n
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But by theorem 2.6

' Vh(kij)
P {lim sup < w}v< 1
n

Hence

p {lim sup Vn(k;j) < °°}< 1
‘yielding

p {lim sup Vn(k;j) <<»}'= 0
Thus

lim sup Vn(k;j) = ™ a.e.g
Example 4.1

Let (xn) be a sequence of independent identically distributed ob-
servations. Suppose that each X is distributed according to the den-

sity

Let the covariance 0° be given on a set {Gi, i=1,2}, and suppose that
0% = 012, i.e. that 1 is the true parameter. As in example 3.1 we have

for alln > 0

[e) [e)
1
I (1;2) = 5 log ==+ = ( 1 _ .1 )
. 2 0,2 0,2
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and

' o
1
s =tk (A oL) 4 (L
n..v n 02, o.‘2 : 0—2 O.2
2 1 2 1

Since (xn) is an ergodic sequence, so is (Jn(l;2). Thus, by lemma 4.2

condition (c4.2) is satisfied. It follows from (3.5) that if 01 # 02

‘then I (1;2) # 0 and then, by theorem 3.1 we have

In(l;2) = I(1;2) >0 for all n > 0

Thus, condition (c4.3) is satisfied for k = 1. Hence, py theorems 4.1
through 4.4, the ML and the MAP estimaﬁes of 0 will converge a.e. and
the LS estimates will converge a.e. and in the mean-square to Ol ‘A

The following general result provides a sufficient condition satis-
fying condition (c4.2). Although it will not be used directly in the
following chapters, it seems to have useful implications (see example

4.2) .

Lemma 4.3

Suppose that for any j, k € K we have for any positive scalar a
E’,‘{Vn (k;3) - a}< o (4.4)
a
where

n, = inf { n : Vn(k;j) > a} (4.5)
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 then for each w € { either

lim Vn(k;j,w) exists and is finite

n-ro
or
lim sup Vn(k;j,w).= ©
Proof
Let
Ra(krj) =V (k;3) - a
. a :
and
a A .
Vn (k;3) = V(k:J)‘ _
min(n,na)
Note that
v (k;3) < a + R_(k;3)
n iJ S~ a a Ha|
Since Yn(k;j) is a Un—martingale, so is (Yz (k;j)). Obviously, we
have

+ .
a . .
E*{Vn (k;])} <a+ E*Ra(k;j)

Hence, under (4.4)

a+
E*{vn (k;j)} < w

‘ a '
It follows from theorem 2.4 that the sequence (Vn (k;j)) converges to a
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Let
Aa.E .{w e N : sﬁp Vh(k;j,w) < a}
and
(o0}
Az U A -
a=1 2

If W €A thenw € Aa for some a, say, a- Then,
a

V_(kij,w) =V ;3w for all n

and then -

a
lim v_(k;3j,w) = lim‘vno(k;j,w) is finite.
n—)& n n-reo

If wﬁﬁ A, then

lim sup Vn(k,ij L) = 00.%-

Example 4.2

Let (xn) be a sequence of real valued random variables taking
values in the interval [0, 3]. Suppose that the sequence (xn) is not
necassarily independent or identically distributed. Consider two hypo-

theses (or two parameters) 1 and 2, according to which (xn) is i.i.d.

with probability densities

o
| A
DM
A
P

Bl N
=
A
SN
I A
w

fl(xn) =

0 elsewhere
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‘and
L 0<x <2
4 - 'n —
f(x) = L 2<x <3
2'"n : 2 - 'n —
‘0 elsewhere

It is easy to see that
Jn(l;2) <2 log 2 for all n.

independently of the actual values the sequence (xn) might take in the

interval [0, 3]. Now since for any a > O

. = . < .
v, (L;2) = v 43 (1;2) Sa+J (1;2)
a a a - . a

we have

E*{Vn (1;2) - a} SE I (1;2) £2log 2
a a

for all n. Hence (4.4) holds. It follows from lemma 4.2 that condition
(c4.2) is satisfied for this case independently of the actual probability

measure generating the sequence (xn).

viv 4.3 Convergence in the Absence of the True Parameter

Consider the probability and parameter spaces given in section 4.1.

While the absolute continuity of the restrictions Pl n and P2 n of two
7 4

measures Pl and P, to the O-subalgebra Un of U is possible to verify in

2

practical situations (it follows e.g. from the absolute continuity of
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. - - n-1 n-1
the co?respondlng conditional densities fl,n(znlz ) and f2,n(znlz )
for each n), the absolute continuity of Pl and P2 does not follow and
is, in general, more difficult to verify. The following results are

nevertheless interesting from a theoretical viewpoint.

Theorem 4.8
Let conditions (c4.2) and (c4.3) hold for some parameter k € K.
Furthermore, suppose that the true measure P, is absolutély continuous

with respect to the measure Pk. Then for each j € K ; j # k one ‘has

lim h}J{ (zM =0
n—)OO

and, consequently, the parameter estimates will converge to the para-

meter k in the senses specified in theorems 4.1 through 4.4.

Proof

Since the sequence (hi (Z#)) is a (Un, Pk)-martingale and since

3 oony
Ekhk (z) =1

n .
(Z)) convergence a.e. P. to a

it follows from theorem 2.4 that (h:l X

k
finite random variable. Since P, is absolutely continyous with respect
to Pk' then (hi (Zn)) converges to a finite random variable a.e. P_.
The remainder of the proof is identical to the proof of lemma 4.1, and

the convergence of the estimates follows from the convergence of the

likelihood ratios by theorems 4.1 through 4.4..
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In the following chapter we shall treat the case where the true

parameter is not necessarily a member of the parameter set for a case

of practical interest, namely, linear dynamical system. We shall not}

however, investigate the absolute continuity of the probability mea7ure§\\~;//é

P, and P , but rather use simpler arguments, enabled by the particuiar‘

k

.problem under consideration.
Condition (c2.l) requires that for any parameter k € K, the re-

strictions P, n of the measures Pj’ j €K ; j #k be absolutely contin-
, (

uous with respect to the restriction Pk n of the measure Pk' An inter-
. 7 -

esting observation is given in the following theorem.

Theorem 4.9
Suppose that condition (c4.l)'holds for the parameter k € K. Then
the measures Pj' j € K; j # k are singular with respect to the measure

P

*x°

Proof n
: £
k(Z )

n

For each j € K the likelihood ratio sequence(
fj(Z )

) is a martin-

gale according to the measure Pj (Doob [1953], p. 93). 1In addition, we
have
n
fk(Z )

gl XV _ . (4.6)
J fj(zn)
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By the martingale convergence theorem we then have

£ (2™

. k'
lim =
n>® fj(z )

= finite r.v. ases Pﬁx

(whererr.v.'denotes random variable).

But under condition (c4.1l)

£ (2% |
lim ———= L a.e. P
% £ (Z)
J
S0 we- have
£ (2") ..;
P, { lim — = finite r.v.) = 1
I (e £, (2
J
and also
_ogaEh
P,( lim e = finite r.v. ) =0
e fj(Z )

Hence, under condition (c4.l) the measures Pj; j €K ; j # k are singu-

lar with respect to the measure P*..?

4.4 Ll Convergence

/7
The L, convergence of the likelihood and a posteriori probability

. . : Y
ratios follows directly if coniltlon (c4.l) holds. We show that under
a certain condition on the info}mggign/in the observations the conver-
gence rates are bounded by exponentials of the number of samples. The

true parameter is not assumed to belong to the parameter set. These

results provide performance measures for the ML and MAP estimation
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methods. In the following chapters we show that bounds of the Ll con-

vergence rates can be computed in common situations for linear sys-

tems.

Theorem 4.10

Suppose that condition (c4.l) holds for some k € K.

Then for each j € K ; j # k we have

lim E*h]j{ (z") =

n—>e
and
n .
llm E, EE&ELE—L = ©
£ (32"
Proof

We have by (c4.l) for each j € K : j #k

lim h (Z ) =% a.,e.
nre '

and by (4.2)

b n
iim fb(k Zn) =® ga.,e,
me £ (3]z7)
Since both sequences are non-negative, we have by Fatou's lemma

(theorem 2.2)

lim E h (z) > lim inf E h (z™) >.E, lim inf b (z") = o
oo’ ne n ]

and

b n b n
llmE f(kZ)>1mme —(—k—LZ—-l>E Lim int (k|2 )

Y)Y T " PGlEY T fb(3|z )
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Now consider the following condition

(c4.5) There exists a parameter k € K such that for each j € K ; j # k

there exists a positive scalar uj and a positive integer Nj such that

I (k;j) > a. for all n > N,
I, (ki) 2 oy or all n > N, (2.7

Theorem 4.11

Under condition (c4.5) there exists some positive integer N such
k n
that for each j € K ; j # k the sequence (hj (z7)) and

doh ' '
(—f—bi-(—k—i-z—)) diverge in L

£(5|2™ 1

at rates no slower than exponential for all

n > N. -
Proof
N £ (z |27
In(k;j) = E, log S ——
£.(z_ |z )
j ' n
£ (2" fk(zn'l)
= E,log - " E,log -y
£.(27) £.(Z )
J J
By (c4.5) we then have
-1
fk(zn) £ (2"
E, log ———— - E,Klog —————— > O,
* * _l —
£ (2" £.(20 )
J _ J
yielding
fk(zn)
E, log >a, + (n- Nj)OLj for all n z_Nj (4.8)

£.(zh
J
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where

a; 2 Elog —d —— I, (ki) 3_a5 | (4.9)

Since log (*) is a concave function, we have by Jensen's inequality

{theorem 2 1)

/

£ (2" £ (z")
log E*—f-—n— 2 E* leg o (4.10)
£.(z™ £.(z™
i j
(4.8), (4.9) and (4.10) give
K o ‘fk(zn) a, (n - N.)o.
E,h. (z7) = E >e e I
3 k. n. —
£.(27)
3
(n-N.+1)o.
s 3 (4.11)

for all n 2 N ,for each j € k P J#k
] :

Herice for each j € K ; j # k the likelihood ratio h]; (Zn) tends in the
mean to infinity faster then an exponential with a rate of c_xj.

By (2.19) we have for each j €K

- n
(x| 2?) _ £ K@)
£(5]z% 24 £, (2")

Thus, by (4.11) for each j €K ; j#k

n
fk(Z )

p Eklzh | Pao
: *
LGz £ NS
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fb(k) (n-N_+1)0,
e 7 3 foralln> N (4.12)

Hence, for each j € K; j#k the a posteriori probability ratio

n
fb(k Z ) tends in the mean to infinity faster than an exponential with

£ (32"
a rate of aj.
Finally, taking N = max {Nj; j €K ; j#k}anda = min {aj; j € K;

b

< I . T
j # k} we have that the sequences (h? (Zn)) and (f (klzn)) converge in
’ £(312)

Ll to infinity faster than an exponential with a rate of o for all

h > N. u
At instant n the ML estimation method will select the parameter k
if
£, (2% |
———>1 ‘foralljeX; j#k (4.13)
n. —
fj(Z )

The MAP method will select k if

n
Z .
fb(k L 1 forall jeXK; j#k (4.14)
fb A plly —
(3lz™)
Hence, the L1 convergence bounds established in theorem 4.11 provide a
qualitative measure of performance for the ML and the MAP estimates in

terms of rates at which (4.13) and (4.14) are attained in the mean.

Of course, the bounds cannot be computed unless the true measure is
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known. Yet, if the true parameter can be assumed to belong to a finite
set, then bounds can be computed over the set. This will be demonstrated

in the following chapters, where we consider linear systems.




CHAPTER V

STATIONARY LINEAR SYSTEMS

: /
In this chapter we restrict our attenﬁion to linear systems driven

by white Gaussian inputs having time-invariant statistics. We make the.

assumption that the system has attained steady state, i.e. that all sig-
hals of interest are stationary. We first study the convergence of iden-
tification procedures. The convergence conditions are obtained in terms

of the second order statistics associated with the models in the model

set. If the true model is included in the set, it will be identified
under a verifiable uniqueness condition. If the true model is not in=
cluded in the model set, then the identification procedures converge to
a model in the set which is closest to the true model in the information

metric sense, introduced in Chapter 3, and in the sense of the second-

order statistics associated with the models. Then we treat the Ll con-

vergence of the likelihood ratios and the ratios of a posteriori proba-

bilities. We show that under a simple uniquenesé condition the sequences
of likelihood and a posteriori probability ratios are bounded in L, by
simple exponentials. If the true system belongs to the given model set,
then the bounds can be easily computed using the a priori data. The L,
convergence results provide performance measures for the ML and the MAP

identification methods. Finally, the analysis is extended to other

modeling problems. Methods are suggested for selecting a reduced order

-74-
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model to represent a high order system and for selecting a representa-
tive model from a set from which the tfuevsystem, or an appropriate
model of it, are known to take their valués.

The convergence of the identification procedures is proved by
direct application of the ergodic theorem. This chapter then depends
'only on the results of Chapter 3 and section 4.1 and the more advanced

probabilistic arguments used in Chapter 4 are 6mitted. (Note that
since we consider here a very specific class of observation sequences,
we are, in fact, able to treat a more interesting class of problems
than that considered in section 4.2, as the true pérameter i% not

assumed to belong. to the parameter set.)

5.1 " Models and Densities

Consider the system

]

X F.x + G.w
n+l *'n *'n

b4

p " HI PV (5.1a)

initialized at n = n_ with

where (wn) and (vn) are uncorrelated and mutually uncorrelated Gaussian

{
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sequences with

T - T
E{wnwn } =09, E{anh } =R, (5.1b)
The model set is a finite set of models for (5.1) denoted by

My

’ : (N4 : i j KE (2L 4 -
{(Fj, Gj Hj' QJ #J) j € (o p)} (5.2)

Let

K (* UK)

(As in Chapter 4, the restriction>to a finite set is done for the
analysis of convergence and cbnsistency. In section 5.4 we consider
other modeling problems and there the model set is allowed to be infin-
ite. Also note that the results of this chapter can easily be extended
to the case where the system (5.la) is driven by an additional deter-
ministic inputs sequence.)

Let

5 Un-l

= . 2 '
j'n_Ej "z, i JEK

denote the one-step least squares prediction of z s given the past ob-
. -1 . . .
servations Zn , assuming that the j'th model is the true one. For

each i, j € K' let

- = -7 T -
z, = Zj(n. no) = Ej{(zn z, ) (= Zj,n)} (5.3)

J.n
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and

i i ' A~ T A
I I' (n Z E.{(z - Z, “z_ - 2Z, } 5.
s =05 (ony 2E Pz, - 25 ) (5.4)
denote the prediction error covariance matrices according to the respec-
tive measures. (For each j € k', Ej 0 and Ej~ﬁ are computed, in ess-

) ’ ’ .

ence, by a Kalman-Bucy filter corresponding to the j'th model.) Denote

.= lim Z.(n, n) | (5.5)
J n -> =co o :
(o]

provided that the limit exists.

We shall use the following condition:

(c5.1) For each j € K' Zj exists and has a finite positive definite

value.

A sufficient condition for (05.1) is that each model corresponding to
j € K' is detectable and controllable. For each j € K' Zj is ob-
tained'by running a Riccati equation, or equivalently, a Kalman-Bucy

filter corresponding to (F N G, H, . R. ) -
P ng J ! J ! J ’ QJ ! J
Also denote

I = 1im T (o, n) | (5.6)
n > = ©
(@]

provided that the limit exists. T; is obtained by the following pro-

cedure. First, assuming no<=“=@7\§ake I, = Zj for each j € K' and

‘ s
}

/

\
\
\
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>
for all n2n, s whgre n,

is any fixed integer. Then the dynamic equation

generating simultaneously, according to the measure Pi' the state X

and its' one step prediction by the j'th Kalman-Bucy ‘filter ﬁj is
A r
% a4 [Fi Sy 0 Vi
= +
%, K_H a FE | |v
j,ntl ji1 3] n
where
k. =%, 50 . %, 6T + r) T
J i J J
Let
F, 0 G,.. O
_ i 3 i
F, = G, =
J . J
F K H, F.(I-K.H,) 0 F.XK,
| JJ1 J J 3] J 2
[ 0
i % i
= H. Z|H, -H,
: el L
0 R,
- i
Then the matrix
s X ,n+l
jon - E Xi ntl ’ xj,n+i]
xj,n+l
is generated by the Lyapunov equation
1 1 1 1 1 1 1
. =F, Y, F. + G, G, (5.7)
j,n+l j J/m 3 ] 0 J
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Initialized at n by any initial value. We can write

1
i i
Wj,n __Wj (n, nl)
Then let
¥ o= 1im ¥ (n, n). (5.8)
J n.,r =00 ’
1
Finally
, i , iT ‘ )
I =ur ¥ H. +R, (5.9)
J J J 3 1 ,

It is well knoWn‘that the limit (5.8) of (5.7) exists and is finite if
the matrix F§ has all its' eigenvalues inside the unit circle. This is
the case if for each j € K' Fj has all its' eigenvalues inside the unit
circle and (Fj, Hj) is obéervable. Note, however, that these conditions
are only sufficient, not necessary, for-T§ to be finite, since (5.9)

may be finite even if W;, obtained as the limit value of (5.7) is not

finite.

Theorem 5.1
For each j € K' let the corresponding model be stable and observable
and let no =. =%, Then the residuals segquences (zn - Ej n) i j € K';
. r

n 2_0 are ergodic according to the true probability measure.

Proof

We have by (5.5) Zj n = Zj for all n > 0. Since both (zn) and
, Z
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(z n) are linear operators on a zero mean Gaussian sequence (xn), they
3.

. "N
are zero mean Gaussian, and so is the sequence (zn - Zn j) for each
: r

j € K'. Hence, (z_ - Ej n) is a zero mean stationary Gaussian sequence
. Jr ’

for each j € K'. By proposition 2.1 we have that (zn— ﬁj n) is ergodic
14

if (and only if)
11m 1 :E: lr) |2 ~ (5.10)
k=0

where IR(k)].denotes the determinant of the matrix

H- V5 BT + R, =0
N T ! J 3 3] 1
= Eqlz - - 2. = (5.
R(k) E{(zn 25 0 B 25 ek } P I (5.11)
S H, Y, H] (F)) k>0
J J 3 J
We have foﬁ any k > 0
. .T . sk
i 1 1 1
|roo) | = |y w; | Y] |5l
. J 3] J J

Since all eigenvalues of F; are inside the unit circle, then

EXIRE
3
Hence
n S .T n . 2k
lim :£:1R(k)|2 = ot 5t | ¥ 1im }E: |77
k=1 =1
T2 2
lat w1t |7 v
= —d 1 1< w (5.12)
1 - [P}
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Yielding

n--e

n
.1 2
lim == z: |R(x) | =0
j=0

The assertion follows.

Note that the stability and observability pf the models, assumed in

theorem 5.1 are only sufficient, not necessary. In fact, we have

proved ergodicitonf the state residuals (xn - %j n), which is not
[4

necessary, to show the ergodicity of_(zn - Qj n). In the sequel we shall
- [4

directly use the following condition.

(c5.2) For each j € K' the residuals'sequence (zn - Ej n) is ergeodic.
N f

5.2 Information, Convergence and Consistency ‘

Consider the system (5.1) and the model set (5.2). Let condition
(c5.1) hold. Then the conditional probability density of z, given the

past observations Zn-l, corresponding to each model is

n-1 _ 2/ -1/2 - _]_.- _ 2 T _1 _ 2 .
£ (z,12"h - [(2m lzj[] xp{ (z_ -2, )" (2 >} -

where % is the dimension of z -
In Chapter 3 we have defined for each pair j, k € XK'

n-1
fk(znlz )

E-(k;j) = E, log
n £ (2 IZn l)
i n
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and L
\\\
dn(ki]) S lIn(k;J)i
We have for each j € K'
n-1 L 1 1 -1 _*
= - = - = .| -=tr I, T, .14
E,log fj(znlz ) > log 2m 5 log | Jl 5 tr ;5 (5.14)

and for -each pair j, k € K'

T ki) = Toeed) = & Lo plpr 1 |
In(k,j) = I(k;3) = 2Alog le] +5tr Zj Pj 7 log |Zk|

1 -1 L%
-3 tr Zk Tk (5.15)
Let
Lj.' Z log |I,| + tr 2_.1 I’i. i, j e k' (5.16)
J J 3 J
Then we have
I (k;] Lot * 3 5.17
n ij) =3 [Lj - Lk j, k € K (5.17)

Also, by theorem 3.1
’fn(*,-j) >0 for each j € K

Hence

da(*;3j) = dn(*;j) = In(*;j) for each j € K

Thus, for any j, k € K
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a(*;3) - d(*;k)

T (*:3) - = *.
In( :3) In( i k)

=_in(k:3)
_ l * *
=3 [Lj Lk]

Hence

d(*;3) > d(*;k)

if any only if

Lemma 5.1

(5L18)

Let (zn) be generated by (5.1) and let condition (c5.1) hold.

Then, under condition (¢5.2), for any j, k € K
lim hi (z") =0 a.e.
n->co

if

and only if

»

(5.19)

(5.20)

(5.21)
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Proof
j n n j . m—-1
log hy (2) = Z log hy (zm|Z )
m=1
We have
_ . z.|
3 n-1 1 I k
log hk (z ‘Z } = = log
n 2 IZ.I
: J
l A T v“l . "N
-=(z_ -2z, L. (2 -z,
7 J.n) 3 ( jomn

l A N
-5 (zn -z, ) L | (z_ -2

(5.22)

(5.23)

Since for each j € K the residuals (zn - Qj n)Iare ergodic, it

r

follows from the ergodic theorem (theorem 2.5) that

1 e 3 m-1 i m-1
lim e log hy (zmIZ ) = E, log hk (zle ) a.e.
e 3 .
m=1
= I,ik)
_ 1 * *
=3 (Lk Lj)
Now if
* < *
Lk L
Then obviously
n . m-1 .
lim log hi (z IZ ) = 1lim log nl (z") = -
n¥e 1 m ne k
m==

(5.24)

(5.25)
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yielding

n

lim hi (z)y =0

n¥o

To prove that (5.19) implies (5.21), suppose that (5.19) holds, but

(5.21) does not, then

> . )
L > L, (5.26)
and by (5.24)
n j m-1 j n
lim log h.jj( (z_|2™ ") = lim log hf{ (z") = o
pe n n*®
m=1
implying
lim h]J( (z%) = (5.27)

which contradicts (5.19). Thus, (5.19) implies (5.21)..

Consider the following condition

(c5.3) There exists some parameter k € K such that

* *
Lk < Lj for all jexK ; j#k (5.28)

Theorem 5.2

Consider the system (5.1) and the model set Ml' and let (c5.1) hold.
Under conditions (c5.2) and (c5.3) the ML, the MAP and the LS identifica-.
tion methOdshwill converge a.e. and the LS method will also converge in

N
m.s. to the moéfl (Fk, Gkr Hk' Qk' Rk)'

’

i
i
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Proof

By lemma 5.1 condition (c4.l) is satisfied for the parameter k.

m
(

A\

The assertion then follows from theorems 4.1 through 4.4.

Note that by (5.18) the identified model is the closest to the\true

model in the metric 4.

Corollary 5.1

The convergence specified in theorem 5.2 will be to a model in

M,, such that

1’
* * . [ % * . } .
ILk - L*l = min {ILj - L, ¢+ J€ K}» (5.29)
Proof
By theorem 3.1 we have
AE'(*;j) >0 for each j € K
Hence i i ;
* - *
Lj -L, >0 {
if

* *
LjaeL*

So the assertion follows from lemma 5.1 and theorem 5.2.'

The identification methods will then converge to a parameter in X, clos-
est to the true parameter in the scalar L, which in turn implies close-

ness of the corresponding models in terms of their output statistics.
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Corollary 5.2
Suppose that the true system belongs to the set Ml’ i.e. let (F, G,

H, Q, R) = (Fr"Gr' Hr' Qr' Rr) for some r € K. Let conditions (c¢5.1)

and (c5.2) hold and suppose that for each'j €K ; j# r we have

L = L #1f =1, | (5.30)

Then -the identification procedures will converge to the true model in

the senses specified in theorem 5.2;
Proof
The result follows immediately from corollary 5.1..

E B *
é - To compute the scalars Lj' j € K one must compute the matrices Zj

*
and Fj. While the matrix Zj can be computed by running a Riccati equa-

*
tion corresponding to the j'th model to steady-state, the matrix Fj
cannot be cbmputed unless the true measure or, equivalently, the true

system is known. If r € K is the true parameter, then

*
I =If =71
r r r
and consequently
L =1 =1log |Z | + & : (5.31)
r r r °

In the identification problem the true parameter is unknown. If the
true parameter can be assumed to belong to the parameter set, then (5.30)

will have to be checked for all pairs of parameters in the set, namely
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(c5.4) For all pairs i, j €K ; i # 3j

i i
Ly # Ly = log [I,] + & | (5.32)

Theorem 5.3

Let the system (5.1) belong to the set Ml' and let conditions
(¢5.1) and (¢5.2) hold. Then under conditions (c5.4) the true model is

 identifiable a.e. by the ML and the MAP estimates and identifiabie a.e.

and in m.s. by the LS estimate.

Proof

y
Under condition (c5.4) we have (5.30). The assertion then follows

e

directly from corollary 5.2.. [

5.3 Ll Convergence

We have shown in section. 4.4 the Ll convergence of the likelihood

ratios and the a posteriori probability ratios under condition (c4.l).

Furthermore, it was shown that under condition (c4.5) bounds on the Ll

convergence rates can be established, thus providing a measure of per-

formance of the ML and the MAP estimation methods. We now show Ll con-

vergence and derive L., convergence bounds for the identification of

1

stationary linear systems treated in this chapter.
Consider the system (5.1) and the model set Ml and let condition

(c5.1) hold. We have shown ((5.17)) that under condition (c5.2)

— . — . l *
I (k;3) = 1(k;3) = 5 [Lj

*
n - Lk] for all n
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‘*
for each pair k, j € K where Lj ; 3 € K are constants.

Theorém 5.4
;}” Consider the system (5.1) and the model set Ml given by (5.2).
Under conditions (c5.1) and (c5.3) for each j € K ; j # k the sequences

A n _
(h]; (z™)) and (—f—hﬂz—l) converge in L

£3]2%

the sequences converge at rates no slower than exponential.

1 to infinity. Furthermore,

Proof

By lemma 5.1 condition (c¢5.3) implies condition (c4.l). The L,

convergence of both sequences follows from theorem 4.10.

Now let

* * '
[Lj - Lk] for each j €K ; j #k

N

o,
J

then following the proof of theorem 4.11, we get by (4.11) and (4.12)

for each J €K ; j #k

(n+l)a,
E h]; (z" > e ] (5.33)
and
b +1)a.
. fz(klzn) > £ (ne1yay (5.30)
£(]z2% T £2(9) | »

The rates aj = E-(k;j) ; J €K ; j# k can only be computed, as

discussed in section 5.2, if the true model is known. If the true model
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is oniy known to belong to the sét Ml’ then the rates can be bounded as

follows. We have.seén that if k € K is the true parameter, then ((5.31))

log |Zk[ + £

H
]

Now since

1 __* * . .
o, = 5 [Lj - Lk] for each j € K ; j #k

where k is now the true parameter, we have

o, =L ' - 1og |I,] - 2]
i 273 k!
Then ' }
o >0t5minmin{-l-[Lk—log Iz | -2 ; ¥ - log Iz/i->| -2 = 0
j - 2 '3 k Py k
for all j € K ; 3 # k} k € K} (5.35)

(5.35) reads as follows: For each k € K suppose that k is the true

parameter.  If

L]J?-log[zkl-zzo for all § €K ; § # k (5.36)

then take the min over j of (5.36). Continue the procedure over all

k € K, discarding such k for which (5.36) does not hold (since then k
cannot be the true parameter, for which (5.36) always hclds). Then take
the least of all the minimum values of (5.36) found above. Note that
this procedure does not identify the true parameter, but rather finds

a lower bound for aj over j € K.
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The above discussion is summarized in the following theorem.

Theorem 5.5

Consider the system (5.1) and suppose that its' true model belongs

to the set Ml given by (5.2). Then under condition (c5.3) we have

(n+l) 0

E§ (z") >e (5.37)

£ (]2 | L) L (n+l)a

£(5]2% T £23)

E (5.38)

fo: each j €K ; j # r where r is the true parameter and where O is

given by (5.35).

As discussed in section 4.4 the bounds (5.37) and (5.38) provide
perfofmance measﬁres for the ML and the MAP estimation methods. We
have shown that bounds on the L. convergence rates of the indicated

1

ratios can actually be computed for stationary Gaussian linear systems.

5.4 Model Selection

In practice, when a mathematical model of a dynamical system is
required for purposes of estimation and control, one often knows, to
certain approximation, what the model éhould be. However, because of
implementétion constraint one has to .select a different model. Such is

" the case when the actual system is of high order, buﬁ the available
computation and storage capabiiities are such that only a low order

model can be handled. Another modeling problem arises when the actual
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system's model is known to take its' values, which may be time-varying,
from a given set, but only a single model can be considered. An example
of practical significance is the dynamical model of an aircraft, whose
parametersvvary considerably over its' flight envelope. However, the
airborne computation and storage capabilities are limited and a single
model of the aircraft dynamics must be used throughout its operation.
These are not identification problems in the strict sense. Never-
theless the analysis in Chapter 3 and sections 5.1 and 5.2 suggests a
natural extension of the results into the model selection problems in-
troduced above. It should be emphasized that unlike the investigation of
convergence and consistency of parameter estimate the-results of this

section apply to infine and even non-compact parameter sets.

5.4.1 The Selection of a Reduced Order Model

| Suppose that the true system or an approximate model of it are
known; but their dimensions are too high for implementation of estima-
tion and control prodecures. A model of lower dimension is then desired.
Let the true system, or an approximate model of it be given by (5.1) anq
let

M = {(Fs, Ggr Hyr Qs R) 5 s € S} (5.39)

be a model set of dimension lower than that of (5.1). The system co-
efficients in M depend on a parameter vector s belonging to a parameter
set S. It is desired to find the model in the set M which is closest

to the true system (F_, Ger Hyy Q,, R,) is some meaningful distance
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sense.

For each s € S let

= log |T | ey
log A + tr s s (5.40)

lng
*
"

where
*
I = -2 -2 )T
s E, {(zn zs,n) (zn Zs,n) _

gs,n is the one-step least-square prediction of z given the past ob~-
sexvations Zn-.1 assuming that s is the true parameter value, and ES is
the corréspindin§ predictio? error covariance matrix. ZS is obtained
by running a Riccati équagién correspondiﬁg to the model (Fé, Gs' HS,
QS, Rs) to steady~sta?€j The computation of‘T: was discussed in the
previous section. Letls° € S be a parameter which satisfies the follow-
ing criterion |

*
L < {t ;seS s#s°}
s s

Y

Then, following the reasoning of section 5.2 the model (Fs°' Gs°’ Hs°’

Qgo Rs°) satisfies the following equivalent criteria:

1) The model which is closer to the true model than any
other model in M in the sense a(*;s°) < {d(*;s); s e S}.
2) The model which would be favored over any ofher model
in M by the incoming information.
3) The model which would identified as the true model among

any finite set of models from the set M by the maximum
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likelihood and Bayesian estimation techniques.
The model selection problem reduces then to the minimization prob-
lem

min {L: i s G‘S} (5.41)
< :

We do not address the algorithmic pfoblem of solving (5.41) or the exis-
tence of a unique minimum of L: on S. These problems are sugéested for
further research.
/
5.4;Z/ The Selection of a Representative Model

/
/éﬁppose that the model of a linear system whose parameters may be -

\

time:v§rying is known to take its values from a. set

.

M

{(FS, GS, Hs, Qs, RS) ; 8 € S}
Two different cases may be considered.
1) The model takes a certain constant value in the set M
and there is no prior kﬁéwledge even in a probabil-
istic sense on what value it might be.
2) During the system's operation its' mathematical model
varies overithe model set M . However, it is not
possible to consider the model's time program.
In either case it is desired to select a single model from the set M
to represent the system throughout its' operation. One criterion for
the selection of such a model is that the maximum possible distance 4

between the representing model and the true model (whatever it might be)
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will be minimal.

The procedure forrselecting the representative model from M will
then be as follows. First, for each parameter s € S find the paréﬁeter
t whose distance from s is maximal, and the corresponding maximum dis-
tance. Then find the parameter s for which the maximal distance found
is the first step is minimal.

The distance between a parameter s and thé parameters t of the set

S is maximized over t by maximizing with respect to t

_ -1t | A
L = log IXSI + tr Xs Fs_ (5.42)

where, as before
A A T
2 T E {(z -z ) (z - Z ) }
s s n s,n n s,n

is obtained by running a Kalman-Bucy filter to steady-state, and

t

- Al A T
I1s = Ep {(Zn - Zs,n) (zn - zs,n) }

is obtained by running a Lyapunov eguation to steady-state, as shown in
the previous section.

The representative model is then found by solving the minimax prob-
lem

min max {Lz : s, t € S} (5.43)
s t '

The uniqueness of the solution of (5.43) is suggested for further re-

search.
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Remarks

1) The procedures described in this chapter find, in general, a model
in the model set, whose output {(or. observations) statistics are best
matched with those of the true system. However, for the modeling prob-
lems considered above, the role of the output can be played by any lin-
e&r funcﬁion of the state variables. If, for instance, it is desiredvto
.emphasize certain variables that affect the system's performance more
than the others, or that can can be measured better than the others,

then these variables can be selected as: outputs for the model selection

procedures described above.

2) The problem of selecting a single model from a model set, considered
in sections 5.4.1 and 5.4.2 can be generalized to a problem of selecting
a number of models from the set, so that the model set is approximately
represented by a finite set of models. 2An identification procedure can
then be employed "on-line" to find the model in the finite set which is
closest to the true system. The selection of a finite model set would
require, as a first step, the division of the infinite parameter set .
into a finite number of subsets. The way in which the parameter space
should be divided would depend on considerations of the physical prob-
lem involved, but it seems obvious that the division could employ the
metric topology of the parameter space introduced in Chapter 3. - (Just
as interval lengths are used in Rn, say, to divide a rectangle into

equal parts.) The selection of a representative model for each subset
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is then performed as described in sections 5.4.1 and 5.4.2 above. Fur-

ther research of this seemingly promising approach to system modeling

and identification problems is recommended.




CHAPTER VI

NON-STATIONARY LINEAR SYSTEMS

The assumption of stationarity made in the previous chapter is now
removed, as we consider the general. case of non-stationary, time-
varying linear systems. 'We first derive expressions for the information
in the observations, discriminating one model in the model set against
another. The information conditions for the consistency.of the esti-
mates are interpreted in terms of the second-order statistics associated
with the different models and computed by solving the correspondiﬁg
Riccati equations (or, equivalently, running Kalman-Bucy filters). The
consistency result for time varying systems is not, however, as ex-
plicit as in the stationary case. The L, convergence of the likelihood
and the a posteriori probability ratios is investigated. The separate
contributions of the stochastic and the deterministic parts 9f the in-

convergence rates

put to the information and, consequently, to the Ll
are shown. -
6.1 Models
Consider the system
= + G w
n+l F*,nxn *,nn
‘\\\%K\= H, /% + v : (6.1a)
n /nn n
\.\bv/’/
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initialized at n = nO with

where (wn) and (vn) are uncorrelated and mutually uncorrelated Gaussian

sequences with

Y ‘ 7\ -
E{w v } = Q, H E{v v } =R (6.1b)
Consider a finite set of families of models

M2 :{(Fjrn' Gjrn' Hjln, ‘yj' len' len) y

j ex = (o,l,...,p)} (6.2)

Let (zn) be an £ .dimensional observation sequence. The conditional

probability density of z, given the past observations Zn—l and corres-

ponding to each model is .given by

<

n-1, _ 3 -y 1 s\ T A }
fj(znlz ) = [(2Tr) lzj,nl] exp{ 3 (zn z, ) Zj'n(zn _zj’n)
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where, as before, Ej n is the one-step prediction of zn given the past
, .

observations Zn‘l, assuming that the j'th model is the true one (i.e.

assuming that the observations are generated by the j'th model), and

I, is the corresponding error covariance matrix. Both Z. _ and I,
Jen . Jn J.n

are generated by a Kalman-Bucy filter corresponding to the j'th model.

6.2 Information, Convergence and Consistency

The information in a single observation zh, favoring the k'th

\

model against the j'th model will now be derived.

v, £tz |27
I,&k:3) =E, log —=—=———
£ (z_|2"h)
j "n
n—l l A T "'l ~
= E - = log|Z -= - z -
* { > log] K, | -3¢ 2k’ Pkon @n k,n)}
1 l A T "l A
+ =1 % + = - -
2 og| 3 | 2 (2 J,n) j.n (2, J,n)
1 IZ~,nl 1 Z-—l n-l{ T} 1 T -1
= = lo - = tr E z + =2 2
2 99 |Zk,n| 2 K, n®n 2 “k,n “k,n “*,n
l ~ T "l ~ l A T _l ~ _1 n"l T
+ = - = + =
2 “*,n *k,n %k,n T2 Z%n Ckon Zen T2 EELy L Ee {ann }
2 j,m 3,n n 2 "%,n j,n J,n 2 "*,n j,m "*,n -€

ST

IR R A
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But
U 1 T T
n- A A
=z + -
E* {znzn } *,n z*'n z*'n a.e
Hence
I (k1) = = 1o | "nlﬁ;\*—l- err, ot -5y
iJ 2 g ’Zk 2 *.n j,n k,n
S/ 28
//
1 A ~ T -l A A
- 2”‘2*,n - zk,n) Zk,n (z*,n - zk,n)
1 A A T -1 A A ’ )
- ¢ - z, -z, .e. (6.
5 (f*,n zj,n) j,n (z*’n zj,n) a.e (6 ?)
Let
(1) 1 IZj,ni 1 5 2-1 Z-l :
I k:q) = =1 + = - :
n kil 2 Og']"fk—,:r 2 Bl ( j,n k,l)'l (6.5)
and
4 (2) . l A A T -1 ~ A
B I ; e - -
3 n (kiJ) 2 (z*,n Zk,n) Ek,n (Z*,n zk,n)
] 1 ~ ~ T "l ~ A
+ = - L : - .
2 (Z*.n J.n) Jmn (z*.n zj,n) (6.6
Hence
oy oo 1) (2) ,, .. '
T 0GD) =L G+ 1T G ) (6.7)

Suppose -that condition (c4.2) is satisfied. Then, by lemma 4.2

% and by theorems 4.1 through 4.4 conditions (c4.3) or (c4.4) are sufficient

Rt
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for convergence of the estimates to the k'th model in Ml' However, it
is not difficult to see that the verification of conditions (c4.3) or ' §

(c4.4) is not possible for the general case considered here under any
(1)

n (k;j), due to the ran-

(2)
n

conditions imposed on the deterministic part I

dom part 1(2)(k;j). In section 6.3 we shall show that I

(k;j) can be
n .

further separated into deterministic and stochastic parts. We now show

that under the assumption that the true model belongs to the given set

MZ’ the information expression for the time varying system under con- _ :

-
5
3
J
E,
By

sideration is simplified and consequently some explicit conditions for

Lo~

identification can be obtained.

Suppose that some k € K is the true parameter, then by (6.4)

. = 1 P " . l ‘
In(k,j) I (k;j) + I (k'j), (6.8) :
where ' %
1 Zj n 1 1 ;
I '(k;3) == ! + = - - .
n (k;3) > log 5 > t; (Zk,n Zj,n I) (6.9)
k,n .
and
—_ l ~ A T ‘l A
" k; = = _ . i _ 2
o (kij) > (zk,n Zj,n) j,n(zk,n zj,n) (6.10)
Consider the following condition ‘ : ' %

(c6.1) For some k € K and for each j € K ; j # k there exists some

scalar'aj > 0 and a subsequence (n?) of (n) such that

lz .-z || > a. for a1l n’ (6.11)
k,nj j,nj - 1]
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where

11al] = |get Al

Lemma 6.1

Let some k € K be the true parameter, i.e. let
y = '
(F*,n'G*,n'H*,n' *'Q*,n'R*,n) (Fk,n'Gk,n’Hk,n'Yk'Qk,n'Rk,n?

-Then condition (c6.l) implies éondition (c4.4) for k.

Proof
Clearly
I "(k;j) >0 for all n for each j € K
Thus

In(k;j) z_In'(k;j) for all n for each j € K.

It will suffice then to show that condition (c6.l)‘implies the existence

of a subsequence (ni) of (nJ)/and\some'Ej > 0 such that

J

I'.(k;j) > €, for all .
Igid) z ey for allmy (6.12)
t .
: Consider the following equation

|z -AZ. | =0 ' (6.13)
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For positive definite Zk n and Zj n there exists a nonsingular matrix A
r 14

such that (Anderson, [1958], p.341): ' B

AT L a =A (6.14)
n k,nn n
and
ATI, A =1 | (6.15)
n j,nn

‘ {
i
where ./\.n is a diagonal matrix whose elements are An i i=1l,...,%, the
.. 3 I

roots of (6.13). In addition, we have A 2_i\fer’ail\i=l,...,£ and

r \.

n > 0.

It is easy to verify that In'(k;j) remains invariant under the

transformations (6.14) and (6.15). Hence

o) = - Lo 1 i
I'(k;j) = - 5 log IAhI +5tr (An I) :
1 L '
=5 Z [An,i - log )\n'i - 1] (6.16)
i=1

Suppose that for some subsequence (nj) of (n)b

sz,n. - Zj,njH 20, >0 forall n’ (6.17)

Then there exists some Cj>'0 and a subsegquence (ni) of (nj) such that

et et i o e N e RPN A B BT DAY et e L

T S T B S S KRS

[A . -1| >z, for all n) for each i=1,...,% (6.18)
‘ nj,i - * '
r

since if such Cj and such (ni) do not exist, then
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AL, i ;07 1 asn~>o ' ’ (6.19)

where
AL, 1. :lmin{}\ ;1 1—1,...,2}
nJ nJ nJ
and then
|z j-z jl'-»(z j—)\j,ijZ. j['=o
k,nr J,nr k,nr _nr nr J,nr

as n) » @, contradicting (6.17). Hence, (6.17) implies (6.18).

Now consider (6.16). Since
a-loga-120 (6.20)

with equality if and only if a = 1, and since the function on the left
hand side of (6.20) is convex in a, it follows that given [ > O there

exists some o > 0 such that
a - log a-12>aq
whenever la - 1] >z

Thus,'finally,(6.18) implies that there exists some Ej > 0 such that

I'. (k;j) > €. for all n’
j =55 r

n
r

(6.21)

The assertion follows. -



-106~

We have shown in Chapter 4 that consistency of the parameter
estimates (or, equivalently, identifiability of the dynamical system)
follows from conditions (c4.2) and (c4.4). Condition (c4.4) (or, more

~generally, (c4.3)) seems to be, for obvious reasons, the "crucial"

condition for the strong consistency of the estimates. We show below
that condition (c4.2) holds for the case of time invariant stationary
linear systems. It seems, however, that condition (c4.2) would hold

for very general classes of observétion sequences. For the general

case of time varying systems we condition éhe consistency result on
condition (c4.2) which has to bé checked for each case under consid-
eration. It seems, in particular, that condition (c4.2) would not be
difficult to verify for the class of periodically varying linear systems
and for systems driven by bounded deterministic inputs. This, however,

is'left for future research.

Theorem 6.1

Suppose that the system (6.1) beloggs to the set M2 specified by
(6.2) . Furthermore, suppose that condition (c4.2) holds. Then the
system is identifiablé a.e. by the ML and the MAP estimates and identi-
fiable a.e. and in m.s. by the LS estimate on the set if condition (c6.1)

is satisfied.

Proof

The assertion follows from lemma 6.1 and theorem 4.6..
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Now consider the case, treated in Chaptér 5, where the true sYs-
tem, given by (5.1), is assumed to belong to thé set Ml’ given by (5.2).
Under conditions (c5.1) and (q5.2) condition (c6.l) simplifies to the
thevfollowing condition:

(c6.2) For each j €K ; j#k

|z - | #0
Suppose that k € K is the true parametef. We have'for,each jex;
] # K | | |
I (k;j) =~ l-log |z.] - Lers?t EUh—l {(z -z | Y(z -2 T
n 2 3 R n i,n' %0 zj,n) }

/A
L 1 -1 _“n-1 “ .
+ > log Izkl + E-tr Zk E, {(zn -2z )z - Zk,n)T}

k,n n
€.22
where, for each j € K ( )
E ( -z, P -
* n J:n)( n zj,n) }
n"‘l{ T} A A T A T T
=E z z -z Z, -z, % + 2 2
* n n *,n J,n j.n *,n Zj,n zj,n
=I, + (2, -2 )¢, -3 F (6.23)
* *,n J.m - :

and, since k = *, ‘ \

oy - k n-1
J ; = . - iJ
L (k;3) = log B (znlz ) - I_(k;3)
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l -l s ~ A T
+ 5 tr Zk _(Zn zk,n)(zn zk,n) }
1 '-l B A ‘ A ~ A A A T
‘ 2 tr Zj (sz "Zj,n)(zn z],n) (Zk,n zj,n)(zk,n Zj,n) ]
(6.24)
Since the seguences (zn - 2j,n) and (gk,n -~ Ej,n) are ergodic for all

j, k € K; so are the sequences (In(k;j)) and (Jn(k;j)). It follows
from lemma 4.2 that condition (c4.2) is satisifed. Condition (c4.3) is
satisfied if condition (c5.4). is satisfied, by theorem 3.1 and thg
ergodicty of’(In(k;j)). The identifiability of the system under con-

dition (c5.4) thus follows from theorem 4.5.

6.3 'Ll Convergence

We have shown in section 4.4 that by bounding the information in the

observations away from zero, bounds on the L. convergence rates of the

1

likelihood and the a posteriori probability ratios can be established,
which in turn provides performance measures for the ML and the MAP es-

timation procedures. In ghis section we consider the identification of

|

a general class of time-vd@ying systems driven by stochastic and deter-
. N

\,

ministic inputs. The fact EH&E oﬂi?*convergence in Ll and not in the
stronger senses of a.e. and m.s. is sought enables us to obtain rather
explicit results. The stochastic and the deterministic parts of the

input are shown to contribute separately to the convergence rates of the

identification procedures.
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Consider the system

X :
n+l *,n 'n *n n *n n

z = H*,n x, tv, (6.23)

where (un) is a deterministic (known) input sequence and the other ele-~

ments are as specified in section 6.l. Also consider a model set

M_ =

(F, .G, _,J. _,H. Y, );.'GK)} 6.26)
3 { jmm"3m"3,m"5,m 5’ i (

Q

R R,
jon'"3,n

where Q, and R, are the covariance matrices of (u ) and (v respec-
J/n J.n n n

tively, corresponding to each model.

The incremental information for favoring a parameter k over a

parameter j in the set K, is given by (6.8). For each j € K we have

‘ N — l A A T —l
: " *; = = - . oy _ 2
i n (*;3) 3 (z*'n J,n) j,n (z*’n zj,n) (6.27)
?E Let
A* — (l\ ~ * ,\* .
z, = (z - . = H, . H
Jmn *,n ) zJ,n) J,n xj'n (6.28)
; where
*
| im = Fxnr By ) (6.29)
and
*  _ AT AT.T
b = (X , X.7) (6.30)

BRI
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For each j € K' we have

A ) A
X, =F, (I -K, H, X. + G, u
j,n+l J.n J/n Jln) J.0 j»n n

F. K, H, x + F, K, v (6.31)
Jon 3, ;0N j.»n 3,M
where
EZ. 'T ' ) .T +R )"l
J/mn J»n J.m jn 3,0 3 j.n
Let
~ - A - -
. = X. = I - K, . X, + G u
*5,n+1 Bx jn+l J.n( jon jm J.m j,n n
ijn Kjrn *,n “¥%,n
" where
Uﬁ 1
oy - . = - A =<
x*'n = E*xn E*E* xh E,,,x,,"n x*'n
Also lét
& = R. - % =F., (I -X, H. )=X.
*5,n+1 *5,n+l j,ntl J.n( jon o Jn
+ F, . - X
J.n Kjrn H*ln(xn *rn)
+ B, K. v
jen " Jj,m n
and

?
2

t

X = X - =
*,n+l n+l *,n+l *,n  *,n *.n n
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Now let
X % ok . : :
z = H. X, - (6.32)
J.n o 3.0 .
where
o ~ T ~T T :
. = . .33
x]ln - (X*'n ! XJrn) (6 )
— \v///”'ﬁ\\\
and let \\
EIER 6.34
z, = H., X, .
Jj.n J.n 3, (6.34)
where
>k - =T =T T
Xj,n = (x*'n, xj,n) (6.35)
Then we can write
. 1 * -1 x
I" (%9 == (5. +3 )Tl gt 43
n 2 "j,n j,n jon "3,n jn
, 1T o1 1okl o] ORI g
; ==z, oz, +=z. LTz, +%. .z,
i 2 °3m j,m"3,m 2 73m "j,n%,n jn "3,n"j,n
? : Let
@* :;fi* :*T
. =z, Z.
Jj.n J.,n 3,n (6.36)
v* _ =* x*T
: ] =z, z, .
/ J.n J.«o J,n (6 37)
I and
* _ X% T
0, = z. (6.38)
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Then we have

Y (*;95) =3 £ Z_l‘ é* + V* + 9* - ‘ :
n T TTE S Byt e T Pyl (6.39)
We shall use
—k %*
o, = E*Q.
J.n J.n

which is obtained via the following procedure.

Define

;X)) ~ (6.40) ’
L Ak
Then xj n is generated by the following equation

X X + G, w ' (6.41)

where . -
F 0 0
o
F*
, E F I-K, H
j.n F*'nK'*’nH*'n *’n( *' *,n) 0
F, K, H 0 F., (I -K, H )
| 3/m3,m *n i J,n h,n
(6.42)
% n 0
w
* n
G = = .
Son 0 . S W (6.43)
v
n
0 . K.
L jmj,n

R S
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Also let
0
* Q*'n
Q =
I .

Then

. = H. . .

j.m = 3m 3, =
where

T
* _ ~k ~*
I, ZEe {x. x.
J/n * J.n J.n
is generated by the equation

* * * *T *

. = F, II. F, + G.
j.n+l jn j,n " 3j,n j.,n

initialize@’at

I'/
\ . W* 0
T eo®
R 0 0 Y-
J

.
Next consider Vj 0" We have
’

—— — —f —k

X. = F, X, + G, u ;
j,n+l j.»n J,n j,n n

*

Q

n

T

G.
J.n

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)
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where

*'n

!

J./n

F, K. H F, (I - K
. J.n J,m *,n J.n

(6.48) can be written as

—k n-1. . —k
X, = A, (n,m) G, u
J/n J Jom W
m=1
where
n-m-1_,
A, (n,m) = [1 F,
. Js
i=1
We have
E, @j,n =‘0

Thus, for k = * and each j € K ; j # k

I (kid) =1 (k;3) + 17 (k:3)
Z. |
1 Bl
=3 log ¥ + > tr (Zk,n
k,n

+-£ tr ZTl (53 k
2 J.n J.n J.0

z

3

-1

H, )
jonj.n~

.0

- I)

Ol

,n

*'n

'bGj,nJ

(6.49)

(6.50)

(6.51)
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[4

Note that while Zj and Zk-n {or In'(k;j)) depend only on the sto-

’
. ' . o ok sy e e
chastic part of the input the term Vj n represents its' deterministic
14
part. In the sequel we examine the separate~contributions of these
elements to the Ll convergence rates of the likelihood ratios and the

a posteriori probability ratios on the set K.

Theorem 6.2 

Suppose that the true system (6.25) belongs to‘the set M3 given
by (6.26). Let k € K bevthe true parameter; Sﬁppose that foE_each B
3 € K; j #k there exist a positive scalar ui and é posifive,ipteggr

Nj sgch'that

I -I > > N, .
H K. j,nll 20y for all n >N (6.52)

Then we have for.each jEe€K; j#k

X n (n=N.+1)a,
By (2) 2e J for all n >N,

. and
N b (n-N_+1)0,
E, fb(kig') = fb(k) ‘e J J for all n > N,
R SIS 24 €} J
Proof

The proof follows from arguments similar to those made in the proof
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of lemma 6.1. We first show that (6.52) implies that there exists

some € > 0 such that

|A. . - 1] > e for each i=1,...,%, for all n >N, (6.53)

n,i

where ) 3 # i=l,...,0 are the solutions of (6.13). Suppose that (6.53)

1

does not hold, then for any € > 0 there exists some né‘z.Nj such that

. -1<e | (6.54)
n_,i ’
n

€
€

where
i H i=1'o-.,2/}.

and then; by continuity of the left hand side of (6.13) in Xn’ given

uj > 0 one can take £ such that

yvielding

12 0 - 55 0l <o

contradicting (6.52). Hence (6.52) implies (6.53). Now by (6.16) and
by the convexity of (6.20) we have that (6.53) implies that for each

J €K ; j # k there exists some uj > 0 such that
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I_"(k;j) > a, for alln >N
n- = 3

Since E; (k;j) > 0 we then have

E.(k;j) > o, for all n > N.
n J- - ]

Condition (c4.5) is then satisfied and the assertion follows from equa-

tions (4.11) and (4.12) in the proof of theorem 4.11..

Corollary 6.1 °

Let'the.se‘tM2 be time invariant and let the true system belong
to NE. Suppose that for each j € K Ej given by (6.23) is finite and

non-singular. Then the L,-convergence bounds asserted in theorem

1

(6.2) holds under condition (c6.2), where k is the true parameter.

Proof
Condition (c6.2) implies that for each j € K ; j # k there exists

some Cj > 0 such that

clearly,

v (12, -5 = L - 5l 2

o j.n k/n
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Hence, for any positive_scalar aj such that.-0 < aj < Cj there exists
some positive integer’Nj such that

]z, -t

[I > 0, for all n > N,
j,n k,n - - 3

The assertion then follows from theorem 6.2;.

Theorem 6. 3

Suppose that the true system (6.25) belongs to the set M3 given by
(6.26};l Let k»é'K be thé& true parameter. Suppose that for each j4€ K ;
j # k there exists a positive scalar uj and a positive integer Nj such
that

tr Zfl V% > 20, for all n > N, {6.55)
J.qo J,n - J I

Then the L. convergence rates asserted in theorem 6.2 hold.

1

Proof

For each j € K ; jJ # k we have
In'(k;j) >0 for alln > 0

(It follows from (3.5). Also see the proof of lemma 6.1) and

tr L. (0] >0 for alln > 0
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Hence

- 1 -1 ok
;9) > = tr L, V. >a, for all n > N,
'In(k 3) =2 jen Jm— 3 |

Condition (c4.5) is then satisfied and the assertion follows from equa-

tions (4.11) and (4.12) in the proof of theorem 4.11..

convergence rate of the likeli-

Theorem 6.2 guarantees a certain Ly

hood ratios and the a posteriori probability ratios under a certain con-
dition involving the stochastic characteristics of the inputs to the
systems. .Theorem 6. 3 means that the convergence ratés can be imﬁroved

by application of certain deterministic inputs, satisfying (6.55).

SR



'CHAPTER VII

SUGGESTIONS FOR FURTHER RESEARCH

7.1 Extension to Compact Parameter Sets

As mentioned in Chapter 1, the extension of parameter estimation
convergence fesults from finite to infinite sets’qan, in general, be
obtained via the addition of fopoloéical cOnaitions on fhe parameter
set. Let S be a compact metric space with metric 8. 1In the previous

sections’ we' have: studied donditions- under which one has for some r e S.

(¢7.1) 1lim hi (z') =0 a.e. foreachs € S; s #r (7.1)

n-r-o

We have seen’ in Chapter 4 that' if the true‘parametEr is a member of the

parameter set, say, * = r € S, then (c7.1) is implied by the following

conditions
. n -
(c7.2) 1lim § ' I (r;s) = a.e. for each s € §; s # r
n-o & m
m=1
and

n .
lim sup :Z:Jm(r;s) > -0 a.e. for each s € S8; s # r
=1 ‘

The pointwise convergence in (7.1) is not sufficient for convergence : {

a.e. of, say, the ML estimates on S to r (although mistakenly consid-

ered to be by several authors). L E

%
;
i

-120-
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To cobtain convergence a.e. of the estimates to r it must be shown that

for any open neighborhood V(r) of r one has

lim sup hs (Zn) =0 a.e. (7.2)
n?*® s € Vc(r)

where.Vc(r) is the complement of V(r) in S. Consider the following

condition.

(c7.3) At each s € S the ratios hi (Zn) are continuous in s unifotmly
in n. This means that for any realization of the sequence (zn) given

€ > 0 there exists for each s € S a neighborhood
v(s) = {t [t - s| < 53} | (7.3)
for some ﬁs > 0,such that

sup [no (2" -1 (@] <e foralln o0 (7.4)
t € V(s) o

Tueorem 7.1

Suppose that conditions (c7.1) and (c7.3) hold, then ML estimates

on S converge a.e. to the parameter r.

Proof
Choose € < 1. Then for each s € Vc(r) there exists an open neigh-
borhood V(s) satisfying (7.3) and (7.4). Since V(r) is open, Vc(r) is

a closed subset of a compact set, hence, compact. Thus, there exists a
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finite number of points S, ier=(1,...,9) such that

ve(r) Cu, {V(s.) ;ie 1}
i i _ .
Now
lim sup o hi (z™) < lim max {sup ht (z%) ; ie I}
n*>® g € Vv (x) n>o i t € V(si)
< lim max {hs (z%) + € ; ieI}
n*® i i
{ .. n .
=max{llm[hs (z7) +€];1€I}
i n-o i
=g <1 a.e.
But since
lim sup _h> (z") > lim h. (z") =1
e seS T ne r

the ML estimates on S converge a.e. to r. -

The proof of convergence a.e. of MAP estimates on S to r is simi-

lar, as by (2.1l1l) we have

?(slzn) _ fb(s) s n

h” (27)

fb(rizn) ) fb(r) r.

Condition (c7.3) and its applicability to cases of interest are

suggested for further research. Two guiding guestions seem to be:
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1) When can (c7.3) be replaced by continuity conditions on
the conditional ratios hi (zn[Zn—l)?
2) How can (c7.3) be relaxed and still provide the transition

from (7.1 to (7.4)?

7.2 Existence and Unigqueness

Astrom and Soderstrom [1974], considefing the identification of the
parameters of stationary Gaussian ARMA processes, presented the problem
of consistency of the ML estimate as a problem of existence of a unique.
maximum over s € § of the scalar function lim fS(Zn). An equivalent

oo
problem for state space models was posed in section 5.3.1 as the exis-
tence of a ﬁnique minimum of the scalar function L;, defined by (5.40),
on S. A related problem is thevexistence of a unique minmax point of
the scalar function L:, defined by (5.42), for the solution of the
modeling problem proposed in section 5.3.2.

The existence and uniqueness problem has also been treated in the

literature in terms of the parameters of certain realizations of the

'system to be identified. Caines [1975b] has proposed the condition

that there exist a homeomorphism between the parameter set and the set
of impulse responses of the system's innovations representations for

the identifiability of stationary linear systems. Similar conditions

were suggested by Tse andyWéinerf‘Il975] and, for the finite parameter

set case, by Moore and Hawkes [1974]. The advantages of statistical

uniqueness conditions such as the one suggested by Baram and Sandell

[1976] and in this thesis is that they apply to any given set of state
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space models and not to certain canonical répresentations of the system,
and they are verifiable by standard computations (such as'the steady-
state solutions of'Riccati and_Lyapunov equations). Their disadvantage
is that the actual parametrization of the‘system gets lost in the statis-
tical conditions. The homeomorphism condition presented above seems to
correspond to conditions (c7.2), which requires uniqueness, and (c7.3)
which requires continuity, put together. Mo;e eiaboratg/investigation

of the correspondence between these conditions is sugqéste@ for future

research. The finite parameter set case should be-addressed first.

7.3 Identifiability by Deterministic Inputs,

The application of deterministic inputs to dynamic systems for the
purpose of identification and their optimal selection have been addressed
by several authors (Levadi [1966], Gagliardi [1967], Nahi and Wallis
[1969], Acki and Staley [1970], Mehra [1972], Goodwin, et al [1973],
Lopez-Toledo and Athans [1275]). The analysis of section 6.3 suggests
& new approach to the problem. It follows from theorem 6.3 that any
input sequence that satisfies (6.3) ﬁill provide convergence in the
mean of the identification pfocedures at a certain rate. The condition
in (6.3) also_involves the system's coefficients and thus, the selected
deterministic input sequence will obviously depend on the nature of the
system under consideration. The problem can then be éresented as follows.
Under what conditions on the true system generating the observations

and on the model set will the identification pProcedures converge to a
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model in the set using some input sequence, and what class of input

séquences will then provide identifiability?

7.4 Other Application Areas

In Chapters 5 aﬁd 6 we have applied the general theory derived in
Chapters 3 énd 4 to certain aspects of linear system identificatién and
modeling. Further investigation of modeiing as?ects has been suggested
in remarks 1 and 2 in section 5.4. Other general areas of application
which have not been specificaily addressed in this thesis are:

1) Application to certain classes of time varying systems,

such as peiiodicaily varying liﬁear systems.

2) Application to non-linear system identification

problems.
3) Application to signal detection problems in communication

systems.
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