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CONVERGENCE OF EMPIRICAL PROBABILITY MEASURES
by
Joszeph Yukich
Submitted to the Department of Mathematics on July 6, 1982
in partial fulfillment of the requirements for the Degree
of Doctor of Philosophy in Mathematics
ABSTRACT

Let (X,A) be a mecsurable space and F a collection of
real valued measurable functions on X. For each x € X, let
F:=~FF(x):= sup{ [£(x)|: £ € F} be the envelope function
for F. Let P be a probability measure on A and P
the empirical measures for P. For each £ let
v (£) = vn ff(dPn-dP). Under certain metric entropy con-

ditions on F and certain restrictions on F, exponential

bounds for sup{vn(f)[ are proved.
feF

Given (X,A,P), F, and ¢ > 0 let Néq)(e):=
Néq)(e,F,P):= min{m: 3 fl""’fm € L2(X): Vee Fdi,q:

£, <f<f, and {f(fj~fi)qdp}l/q < £}. The relationship

between Néq)(e) and Donsker classes of functions is ex-
plored and it is shown that for all q, g # q, Néq)(e)

does not give sharp results.

Define the metric dg on PGRk) where dg(P,Q):=

sup, | fg(x-y) (dP-dP) (y) | and where g is any uniformly
xeR
k

continuous density on R

~

such that the Fourier transform g



has countable zeroes. dg is generalized to a metric on
P(G) where G 1is an arbitrary locally compact group.

Let Pn be the empirical measures for P. Under suitable
restrictions on P and g we obtain a central limit
theorem for dg(Pn,P) and under stronger conditions an

invariance principle.

Under certain conditions on sequences Gn of classes

of functions, sup ]fg(dPn—dP)I 2509 a.s., where P is
géG

a measure on :Bk and Pn are the empirical measures. The
results are applied to kernel density estimation. Let
Xi’ i > 1 be iid random variables in :mk with a common

density f(x). For each g € Gn define the kernels

~ n

g(x) = % Z g(x—Xi). Then sufficient conditions on g
i=1

and f are found so that sup|g(x)-f(x)| —> 0 a.s.

X
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Chapter 1

Introduction

Let (X,A) be a measurable space and F a collection
of real valued measurable functions on X. For each x € X
let F:= Fp(x):= sup{[f(x)|: £€ F}. F 1is called the

envelope function for F.

Let P be a probability measure on A. Let
(Xm,Am,Pm) be a countable product of copies of (X,A,P)
with ~cordinates Ej = E(j)' so that the gj are independent,
identically distributed random variables with values in X

and distribution P. Let P_ = %(aE to 48 )
(1) (n)

n=1,2,... where 6x is the unit mass at x. Pn are

the empirical measures for P. For each f € F 1let
v (£) = /Hff(dPn-dP). In Chapter 2 we will be concerned

with the suprema of [vnl over the collection F.

As in Pollard [30] we have

Def. 1.1.1 Given F, F, and a finite subset S C X, let

N(8,S,F):= inf{m: 3 fl,...pﬁné F such that

min J (£ -£, (x))% < 62 ] (£(x))? for every £ € F}.
i xS X S

Let N(§,F):= sup N(§,S,F).
S
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Note that ©N(§,F):= inf{m: V n and V'values of P2n

there are fl,...,f € F such that Y £ € F 3 i <m such

that J(£f-£f,) dP < 82 |{F[|2 where

i
Pl 2= o zl Fiz,) ).
L

Suppose N(§,F) < exp( ;ie) for some constants C,e¢
8

where C > 1, 0 < e <1, for all §, 0 < § < 1l. If F =1
then in Theorem 2.2.6 we obtain exponential bounds for

sup v _(£)] for all n>1. 1f F€ [? p> 2, then in
feF

Theorem 2.2.14 we obtain exponential bounds for sup Iv (£)].
feF

In Theorem 2.2.24 we impose a slightly different metric
entropy condition and obtain an exponential bound for

sup |v (£)| when F = 1.
feF

Def. 1.1.2 Given a class (C of subsets of a set X and

a finite sét F C X, let AC(F) be the number of different
sets CNPF for C C. For n=1,2,... let

mc(n):= max{AC(F): F has n elements}. Let

inf{n: mc(n) < 2™

I

vi= V(C)

]

+ o if mC(n) = 2" ¥Yn.
If vi:i= V(C) < » we will call C a Vapnik—éervonenkis
class (VCC).

Let £ € L%(X,A,P), C a vcC, and F:= {£1,: C € C}.



Then in Theorem 2.2.]1 we establish exponential bounds for
sup lvn(f)l. We shall need the following definitions.

fefF
We rely heavily upon [13] and [15], c.f. also [16].

Given a class F C L2(X,A,P) of functions, we say
that it is a Donsker class of functions (DCOF) iff there
is a Gp process which has uniformly continuous and bounded
sample functions on F and such that 3 Yi,Yz,...

iid copies of Gp such that

n
1
£¢F k<n /Hl 51 Xy 1 k

in probability where Xj and Yj are defined on the
probability space (Xm,Am,Pm) x ([0,1],B,)\) where A is
Lebesgue measure and B are Lebesgue measurable sets.
F is P-EM if F 1is empirically measurable for P;

see [l3] for details.

In [13] Dudley shows in effect that a P-EM class F
is a DCOF iff

(a) F 1is totally bounded for pp where pp(f,g):=
ep(f—Ef,g—Eg) and

) ¥ e>o0 16 >0 such that for n > n,

Pr*{3 f,g € F: oo Er9) < 8, v (E-g) | > e} < e.



Def. 1.1.3 Given (X,A,P), F, € > 0, and q > 1 let

WY (e)i= ND (e,F,2) = mintm: Y£,...8 € 1Y Ve F

1 I
we shall call g-norm metric entropy with bracketing, is a

i3 < £ £ and ((E-ETam 2 < ep. n{¥ (o), which

generalization of metric entropy with bracketing as dis-
cussed in [13]. Chapter 2 closes with a discussion of

the relationship between Nﬁq)(e) and DCOF.

In chapter 3 we define the metric dg on PGRk)

where

d _(P,Q):= supk[fg(x-y)(dP—dQ)(Y)l
g %x€<R

and where g is any uniformly continuous density on Imk

Fal

such that the Fourier transform g has countable 2zeroes.
dg is generalized to a metric on P(G) where G is an
arbitrary locally compact abelian group. The results of
chapter 2 give a bounded LIL for dg(Pn,P) where Pn are
empirical measures. Under suitable restrictions on P

and g we obtain an invariance principle for dg(Pn,P),

a central limit theorem, and the asymptotic distribution.

In chapter 4 general conditions on sequences Gn of
n

classes of functions ate found so that sup Ifg(dPn—dP)[ >0
géGn ‘

a.s., where Pn are the empirical measures for P € PCB#).
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The results are applied to kernel density estimation where

for each g € Gn the kernels are g(x):= g(x—Xi),

)
Boi=1

and where Xi are iid random variables with a common

density £(x). These kernels generalize the classic kernels
%—g(%—) considered by Birkel and Rosenblatt [3] and

n n
Devroye and Wagner [7] among others. The strong uniform

consistency of g(x) 1is investigated, i.e., sufficient
conditions on g and f are found so that

sup|g(x)-£f(x)] + 0 as n + » a.s. The result generalizes

X
that in [7].
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Chapter 2

Empirical Processes Indexed by Classes of Functions

§1. Introduction

In this chapter we establish exponential bounds and
limit theorems for empirical processes indexed by classes
of functions. Throughout, let F be a class of real-valued
functions on a probability space (X,A,P). F will denote

the envelope for F.

The technicques employed rely heavily upon those
developed by Pollard [30] and generalize those used by

Alexander [l] for the case when F 1is a class of sets.
The chapter closes with a discussion of the relation-~
ship between Néq) and DCOF.

§2. Exponential Bounds

The techniques used in the following theorem will be

generalized in subsequent results. We have

Theorem 2.2.1 Let (X,A,P) be a probability space and

CCA avcC. Let g be any bounded measurable function
. 2

on X with L° norm ||g|!2:= L, llg"sup <% <>, and

let F:= {glc: c€ C}. If F is P-EM and 2-sample

P-EM, then
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Pr{sup{vn(f)l > M + 2L} < K exp{ >

geF 52
for all n > 1 for M > M0 where XK and M0 are constants

which depend onlv on wv:= V(C) and 2.

Proof: We first formalize the method of randomization

in [30]. Let Y:= {-1,1} and B = P(Y) be the set of

all subsets of Y. Let Q({-1}) = Q({1}) = % and €.

lI
. .th . . o .
i>1, the i coordinate function on Y . Fix n > 1
and define o: Y x {1,...,2n} = {1,...,2n} as follows.

For i=1,...,n, let

i if ei(y) =1
o(y,2i-1) =
n+i if ei(y) = =1, and
o(y,2i) =
i if e, (y) = -1.

1

Define G: (X~ x ¥, A” x 87, p*” x Q7) » (x ,A”,P®) by

X -1 i< 2n
o, (1)
G(x,y)i:= + where GY(°):= o(y,*).
X. i > 2n
i
Let Ei be the ith coordinate function on X . We now have
I ) b
(1) e; (y) (8 -4 )= ) 8 - ) 8 .
i=1 P Egia (X TRy (M 2y B (GBGYD) Gy pyg T84 (GxY))
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Note that ¢ serves to change the indices in the LHS

of (1) so that & has a positive coefficient iff i < n.

£,

1
Now define P : (x7,A", Py ~ D,((C,P),By) by

t n " ] 2 n

1 1
P := = § and P by P_:= =
n n o2 gioG n n n

_ o} . Then P
i=n+l 5i°C

n
and Pn are independent empirical measures for P, and

]
Pn°G and PnoG are also independent and have the same

1 ”
laws as Pn and Pn respectively. Define

e - “‘. 0.-. '-
:= /H(Pn P), and v := v -V

' . _ ' n
o= -P) = -
v /H(Pn P), vy /n(Pn P).

n
'

nl

e

Also, let Pr:= p- x Q00 and P:= P We will write v

" 1 "
Vi etc. for vnoG, vnoG, etc. using Pr and P to make

clear which is meant. The following is adapted from [30],

Lemma 2.3.

Lemmd 2.2.2 Pr{suplv;(f)l >M + 2L} < %P{suplvg(f)l > M}.

feF fe€F
Proof: For x € Xw, let ml(x) = (xl,...,xn) and
— 1 . 3
mz(x) = (Xn+1""’x2n)‘ By Chebyshev's inequality and

2

since E(\J:l(f))2 = /£2ap - (f£ap)? < llf!lg = L°, we have

P(|v (£)| < 2L} > 3 for all £ in F. So

i

[ P*Pisupvl(8) | > mlo(Ey, ... ,E ) tap??

X2n

P{suplvg(f)] > M}

n n
1 ap (wl)dP (wz).

g .
< ¢t suplv (£)]>M
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suppose w, € {Ivn(f)l > M+ 2L} and £ € F is arbitrary.

Then

n n 3
1 dp (wl) > f 1 ap (wl) > e

0 L}
n sup!vn(f)[:>M n Ivn(f)l < 2L

X X

Since f 1is arbitrary,

0 3
P{suplvn(f)l > M} < [ ‘Edpn(wz)’

sup|v_(£) |>M+2L

and the lemma follows. Q.E.D.

In the remainder of the proof write ||£[|], ~for the

2

L ) semi-norm of £. Theorem 5.1 of [30] shows that

(P2n

there exist A and W > 1 depending only on v:= v(C)

such that N(§,F) < as™.

Let mj:= N(Z—J,F) < AZJW, j > 1. Suppose we are
given the ordered 2n-tuple S:= <xl,...,x2n>. Then for

all j > 1 we find Fj:= {fjl”"’fjm.} such that for

J
all f € F,
. 2 1/2 -3
(2) min [f(£-£..)“apP,_] < 277 1E] ],
iimj ji 2n 2n

Thus, for all j > 1 and f£€ F we may define fj(x)

to be one of fl;...,fm such that

2 =23 2
f(f—fj(s)) dp, <2 HEN5,-
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2

Def. 2.2.3 Define n >0, 3 > 1, by 3jW log 2-n3223/7222.

Note that an < o,

\

|
Def. 2.2.4 Let B:= 2y(log 2)22 and r:= r((M):= r%ﬁ—l
where [-] denotes integer part.
Fact 2.2.5 If M > M (8,W):= /T wl/2(10g2 6wt/ 2)1/2,

o]

then Y on. < 1.
j=r+l J

Proof: By definition, ny:= Y2163W log 2 & < Kv32™3 where

/216 (Tog DIW < “Z%Wl/z = X.

Note that nj < KZ-J/2 V’ J > 1 and therefore

-(r+1)/2

rzlnj <1 if KI—:—;:T7~ . This last inequality will

—(r+l)/2 _ 1 12712
be satisfied if 2 < ==, using —m— > =,

7K 2 7
2
Since 2—(r+l)/2 < Z'M /4W8 it suffices to choose M
2

large enough so that 2™ /4WB %%. Clearly,

M > (4WB log.(7K))1/? will do. Note that
2

log, (7K) < log2(862wl/2) and 4w < 10%%W log 2 < 72°%w.

We may choose Mg (%,W):= /7£Wl/2(log2(86£wl/2))1/2.

Q.E.D.

From now on consider any M such that M > Mj;(%,W).
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For a given f € F denote by fj the function

fji (for least i) in Fj for which the ©LHS of (2)

achieves its minimum. Notice that ]Ifj—fIIZn -~ 0 as

j + ». Thus vg(fj(s)) > vg(f) as j > ». Thus for

any fixed s,

0 0 _ v 0 _ 0
v (£) = v (£,(8)) j=£+l vn(fj(s)) vn(fj_l(S)).

Omit the S in fk(S)~ and just write fk'
x

If M > My(%,W) then ) ns: <1, and it follows
j=r+l
. 0 .
that either Iyn(fr)l >M-1 or 3 j > r such that

0
n

0
[Yn (E5) = ¥ (fj_l)l > n Note that

jo

2 2
f(fj"fj_l) dP,, = (Ilf'fj‘IZn + llf‘fj_IIIZn)

(3)

-(3-1),2 2,-23

< lell2 27T +2 )2 < 9g22723,

It follows that for our fixed values of <x1,...,x2n>,

Q"tsup|v2(£)| > M} < Q”[max [vI(£,)| > M - 1] +

. ri
i<m
-r

o ® 10 0
..) - . > n.
+ j=12:+1 Q [?i;_!vn(fjl) \’n(f(j-l)k” ”3]'
-]
kimj-l
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' -2 .2
—-€ | . .
where max  denotes max for llfji *(j-l)kI‘Zn < 9.2 77,
The LHS of (4) is
0
(5) <m_max Q [|V (f_.)| > M - 11 +
i<m n ' ri
v ' © 0 0
+ Z m.m. max O [jv_ (fi.) =v _ (£,._ Y > nsl.
jer+1 3 J 1 i<m., k<m. n'ji n' " (j-1)k 3
-3 —3-1
0 1 9
Now Vn(fji—f(j—l)k) can be written as = zz h, where
hy:= (fj f(j-l)k)£2£) - (fji-f(j~1)k)(g22-l)' By Theorem 2

of Hoeffding [20],

2 1
> n. 2 - s .
(6) Q° [lv (£5;7F(5-1)x) | > n3] < 2 exp{-2nn] 0 hz}
2=1""2
n 2 2n‘ 2
Observe that 221 hy <2 2£1£fji-f(j-l)k) (&)
2.-25

| A
w
o)
3
=
[\
-

(7)

by (3). Thus the second term on the RHS of (4) is

o oo .
Y 22223 ayp - n32 —-—7} ¥ a%2"Iv,

(8) <2
j=r+l 724 j=r+1

Applying Hoeffding again to the first term on RHS of (4)

we get
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Qw[[vo(f )] > M=11 < 2 exp{-Zn(M—l)2 1
n ri - 2
4anr1[|2n
< 2 expi-(m-1)°L},
2%
using Hfri||2n < 2. Note that this holds for all i,
2 2
. W M~"log 2, _ M
i<m. Now m_< A" <A exp{ 75 }=Aa exp{z;zz}.
It is easily checked that for M 1large and Yy > 1, that
2 2 2 2
%— - Mens 2y (Me2) . Thus the first term
Y 2 4y . - 5 5
on the RHS of (4) is bounded by 2A exp{:iﬂigl—}. The

52

second term is bounded by (8) and is (where we may and
<«

do assume W > 2) =2 § a2273W ¢ gp2p7(x*LIW
- J=r+l
2 —MZ/ZB 2 . -M2 2 -(M+2)2 :
< 4A%2 = 4A"exp{ 2} < 4A exp{————f——} if M
4y 5%
is large enough. Thus
P 0 2 '—(M+2)2
Q% [sup|v (£)| > M] < (2A+4A%)exp{——7—1,
feF 5%
and therefore by Lemma 2.2.2
4,,.2 - (M+2) 2
Pr{suplvn(f)l > M+2L} < 5(4a +2A) exp{ }.
feF 5%
Let K:= %(4A2+2A) to complete the proof. Q.E.D.

The bound N(§,F) < A8™" is crucial to the proof

of the above theorem. The next theorem shows that under
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a stronger restriction on the envelope, the bound may be

relaxed.

Theorem 2.2.6 Let (X,A,P)

class of real-valued functions with envelope

be a probability space, F a

F < 1.
c
-€

Suppose that N(§,F) < exp(-j——), for some constants

8
where C > 1, 0 < ¢ < 1, for all

C,¢e
Assuming that F

all n > 1

Pr{sup|vn(f)| > M} < 8-

feF

where M > M(g,C):= 2 + max(37, (5C)

] " 0

Proof. Define Vor Ynr Ve

Theorem 2.2.1. Using Lemma

Pr{suplv;(f)l
fe F

We will need some facts and

Lemma 2.2.7

is P-EM and 2-sample P-EM, we have

for

2
exp{—%n},

1/2(120/56)2/5)
— .

Pr, and P as in the proof of

2.2.2 and its proof we have

> M+2} < %P{suglvg(f)| > M}.
fe

definitions:

Fact 2.2.8 If v = % and if M > 37 then

w12 mom? oM (a2

4y 2 — 4y 4y — 5 )

Pact 2.2.9 ILet Y = 2 and r:i= r(M):= [== lo _ME]
act 2.2. et Y = 3 : = [32z 109, g3l -

-e(r+l) /2 1/2

M > (50)1/2(12076C\2/e oy 2 (216C) < 1.

- € 1 - 2-5/2

If



20.

Proof: The inequality will be satisfied if

172 which in turn

~e(r+l) /2 € l-1log 2 1
2 < 2(109 2)( 5 )(216C)

1 ,1/2 _ €

-e(r+l) /2 -
216C 120/8C

is satisfied if 2 50

- (r+l) | EfelogZ(% C) M -z
Since 2 < 2 Y = (5—x) » this implies
2t
2-e(r+l)/2 < (%7602(2‘8). Thus it suffices to choose M
2 e
large enough so that '(%—6)2(2-8) < —Ef . Thus
A 120/6C

1/2 lggl-—)z/g will work. Q.E.D.

M > (5C) =

Def. 2.2.10 Tet ny > 0 be such that n§:= 273 (2160) .

Def. 2.2.11 my:= N(27,F) < exp{c2?7%)3},

Suppose that we are given the realization of

s o H .. . ‘V 1 < .'Qx >
€l; '€2n' i.e., we are given the values Xq4 rXon

which we will call S. Then V3 > 1 we may find

] {fjl”"'fjmj} such that
(9) min [f(£-£;) 2ap, 1172 < 27
lim

J

for all £ € F. From now on consider any M such that

M > 2 + max(37, V5 (120v6C 2/8y . Fact 2.2.9 and the
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. N . e o]
definition of r and N33 show that 2j=r+lnj < 1.

Suppose that {vg(f)} >M for some f € F. Then

for any such f denote by fj(S) a function fji € Fj

for which the LHS of (9) achieves its minimum. For any

integer s

0 0 S 0 0
» f) - = . - . .
w28y - vl(g_(s)) j=§+lvn(f](s)) Vp(E5_1 ()

From now on, omit the " S in fk(S) and just write fk.
Using ) n., <1 it follows that either Ivo(f )| > M-1
r+l 3 nor

0

. . 0
or there is a j > r such that [vn(fj) vn(fj_l)l > nye

As in (3)

- 2 ™23
[(E-£5_ ) %R, < 9-277,

As in the proof of Theorem 2.2.1 it follows that for our

fixed values of <xl""'X2n>’

(10) Qw[suplvg(f)l >M] <m ?3§ Qm[lvg(fri) > M-1] +
- T

+ 7 m.m,_ max Q IV (£ )=V (€, . )] > n.l
j=r+l 331 limj'kfmj—l n'Jji n " (j-1)k i

)
where max denotes max subject to

2 =3 .
||fji - f(j-l)kl‘zn < 9.2 7., BAas in (6),
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oy 0 i 2 1 ;
(ll) Q [l\)n(fji-f(j_l)k)l > T]j] _<_ 2 ex;—‘{ Znn. ——,

4y b

= N

n .
where ) hi < 36n°2 23. Thus the second term on the
=1

RHS of (10) is

2 ) exp{2C~2(‘—€)J}exP{-ﬂ32‘223 L3

(12)
j=r+1 72

| A

=2 § exp{-c2(?7®)Jy,
j=r+l- :

Applying Hoeffding [20] to the first term on the RHS of (10)

2
we get Qm[lvg(fri)l > M-1] < 2 exp{_ (M=-1) ¥,

which holds for all i, i < m.. Now m, < exp{cz(Z—e)r} <
2
< exp{%y} by the way r was chosen. Using Fact 2.2.8,

the first term on the RHS of (10) is thus bounded by

- (M+2) 2
2 exp{———g———}. The second term on the RHS of (10) is

<2 eXP{—CZ(Z—e)j} < 4 exp{_cz(Z-S)(r+l)}

)
j=r+l

2 N2
4 exp{ %?} < 4 expfiggzl—}.

I A

So on S we have

—(M+2)2}. 2n

© 0 .
Q [sup|v (£)] > M] < 6 exp{ — Integrating over X
feF B

and applying Lemma 2.2.7 gives the desired result. Q.E.D.
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Corollary 2.2.12 Let (X,A,P) be a probability space,

F a class of real valued functions with envelope F = 1.
Let N(8,F,sup) be the least integer such that YeerF

there exist £ ..£ € F such that [|£-f, ][]

l’oo
for some i < m. Suppose that N($,F,sup) < exp(—%:g)
$

<
sup

for some constants C,e where C > 1, 0 < e < 1, and
all 6, 0 < § < 1. Assuming that F is P-EM and 2-sample

P-EM,

2
Pri{sup|v_(£)]| > M} < 8 exp{ =}
feF P - >

@(1201@6)2/5) .

n>1 and for M > 2 + max (37, =

Proof: Given f € F find the fi from the class

£ re..,f € F such that |1 £-£5] ] < 8. Then for all

e sup
2 2
values of P, (u), f(f—fi) dp, (w) < 8. Therefore

N(§,F) < m:= N(§,F,sup) < exp( ZEE). The hypotheses

of Theorem 2.2.6 are satisfied and the result follows.

Q.E.D.

Here is an example showing that the exponent for §
appearing in Theorem 2.2.6 and Corollary 2.2.13 can not

be 2+, € > 0.

Following [14] define a class of functions Fd 8. K
’ 7

as follows. Let o > 0 and K > 0 and let B8 be the



W}
H
w
o1}

p p
pP:= '{p]/%xll...axdd, [pl:= Py + ... F Pgr for
Py integers > 0, p = (pl,...,pd). For a function £

on :Bd such that DPf is continuous whenever

[p]l < B, let

Hflla"‘ max sup{|DPf(x)|: x € R} +
(p1<B

+ max sup{iDpf(X)-Dpf(Y)l/IX‘YIQ—B}r
[pP1=8 x#y

where |u]:= (ui + ...+ ui)l/z, u € RS,

et I¢ be the unit cube {x€ R%: 0 < x5 <1, 3 =1,...,d}.

5 -— d - —
As in [26] let Fd,u,K'— {f on I": ||fl|a < K, o = g+r,

0 <r<1l, qsome integer}. Let NI(S,F,sup):= inf{m:
there exist fl""’fm &€ F: for all f € F there are

i,3: £, < £ < fj and ]Ifj-fillsup < 8}. In [26] bounds

on metric entropy in the sup norm are established and from

this it follows immediately that there are constants My g
14

and Ma a such that
14
m M
o ,d - a,d
PCVCRS log Np(8.Fy, o,k S9P) < J3/a°

d =1. Given € > 0, choose a = 5%5. Then

il

Choose K
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= 2+g; i.e. the exponent for ¢§ in Theorem 2.2.6 and

e|n

Corollary 2.2.13 is 2+¢.

However, Theorem 1 in [2] implies that there is a

Yy = y(l,a) > 0 such that for all possible values of P

sup {[ta(p_-P)} > Yn_a/d = yn %, and
f¢F n -
l,a2,1
Lo
sup {[fav_: |]£]]. < 1} > yn2 + », completing the
feF n e = - :
1l,0,1

examp le.

Here is an example of a class of functions satisfying

the metric entropy hypotheses of Corollary 2.2.12.

Example 2.2.13 Let F:= {f € BL[0,1] such that the

Lipschitz constant for f is 1 and llfilsup < 1}. Then

2 %4—1
N(§,F) < (3 + 1)3 , which may be seen as follows.

Consider a grill on [0,1] x [-1,1] with grill width &.

Considering the intersection points of the verticals and

horizontals, construct the class FS of piecewise linear

Lip 1 functions passing through the intersection points

and linear between these points. The number of such

%4—1

functions can not exceed (% + 1)3 . Clearly, for

all £ € F there is a f£; € F, such that- llf-fillsup <
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1
8“+l

for some 1 < (% + 1)3

Before considering other examples of classes of
functions satisfying metric entropy hypotheses, we first
generalize Theorem 2.2.6 to the case where the envelope

F € Lp, p > 2. Unfortunately, the resulting exponential

bounds will only hold for large n.

Theorem 2.2.14 Let (X,A,P) be a probability space, F

a class of real-valued functions with envelope

Fe (P(x,A,P), p>2. Let F have L° norm L and

L? norm K. Suppose N(§,F) < exp(—%%g) for some
$

constants C,e where C > 1, 0 < ¢ < 1, and all &,

0 < 8§ < 1. Assume that F is P-EM and 2-sample P-EM.

Then if M > M(e,C,L):= 2 + max(45,L(17c) /2 (20L/EEIC, 2/¢,

. 28 --M2
Pr{sup|v_(£f)]| > M + 2L} < Sexp 2}
fefF o 17L
2
| M -2
provided that n > nO(M,p):= (a exp(———z)] where
17L

t:= min(p,4) and A 1is some suitable large finite

constant depending upon p and K.

1 "

Proof: We can assume p < 4. Define YVt Vpo vg, Pr,

and P as in the proof of Theorem 2.2.1. Using Lemma 2.2.3

and its proof we have
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Lemma 2.2.15 Pr{suplv (£)] > M + 2L} < %P{suplv (£)] > M}.
fef feF

We will need some facts and definitions:

w

3

Fact 2.2.16 If vy = 35 and M > 45 then

w2 om-1? -2

16y 8 - I7

2
Fact 2.2.17 Let vy = %% and r:= r(M):= [logz(——*——j)]-
16yCL
' 2/€ -c(r+l) /2
1£ M > (17¢) /2 (20L/BRAC then 2 e <1

1-2

Proof: As in Fact 2.2.9 the inequality wilY be satisfied

if 278/ o L10g 2) d =209 2) L since
vY864CL
2 =&
2"8(1.*'1)/2 < (__EL_§02(2~€) we need only choose M large
l6yCL
2 -€
enough so that ( M 2) 2(2-¢) < é% L . Thus
16vCL V864CL

/ 20L/§€ZE 2/¢

M > (17C) will work. Q.E.D.

Def. 2.2.18 Let T:= {w: !|F||2n < 2§|F1|2} where

|IFll,, is as on page 7.

Def. 2.2.19 Let ny > 0 bLe such that n§:= 2 ¢Jggacr?.

Def. 2.2.20 my:= N(273,F) < exp{c2(?78)3},
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For w € T, suppose that we are given the realization
of gl""’EZn; i.e., we are given <xl,...,x2n> which
we will call S. Then for all j > 1 f£find

Fj:= {fjl""’fjmj} such that

Y2 <2 ell,,

(13) min [f(£-£;)%ap, ]
igmj ] n

for all f in F. From now on consider any M such that

20LV864C)2/€)
I — .

M > M(e,C) := 2+ max (45, (17¢) /2L By

Fact 2.2.17 and the definition of r and nj, we have

e+

n. < 1.

j=r+l J

Suppose that [vg(f)l >M for some f € F. Then
in

for any such £f denote by fj(S) a function fji

Fj for which the LHS of (13) achieves.its minimum. For

any fixed integer s we have

0 0 _ o 0 _ .0
VRlE) = VI(EL(8)) = TS v (£5(8)) = wi(E5_ (s)).

From now on omit the S in fk(S) and just write fk‘

Using zj=r+l N3

. . 0 0
or there is a j > r such that Ivn(fj) vn(fj_l)l > nye

Given w € T and the fixed realization S we have by (3):

< 1, it follows that either ]vg(fr)l >M-1
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, o .
fleg - £, _ap, < 9e2 MIEl15, < 3602773,

Using the same method as in the proof of Theorem 2.2.1,

it follows that for the fixed S

(14) @~ [suplv (£)| > M] < m_ max Q" {{v (£.;) > M-1] +

i<m
+ z m. max' Qm[‘\) )\) (f )l >n]’
j=+1 3 371 sen ken, (3-1k
- 37="3-1
where Tax denotes max subject to I{fji—f(j—l)kllzn <
36122723, as in 6,

2
>n.l1 < - L —
(15) @ Ilv (£5;-F(5-1)x) > N3] < 2 expl-2nn] i hz}
2=1"2
T2 2,-23 2,-23
where ] h; < 4n(36L°27°)) = 144n1°27°) on T. Thus

the second term on the RHS of (14) is

2 ) exp{2C~2(2"€)3}e§‘:p{-n?22:l L =}
j=r+l J 288L

(16)

A

=2 ) exp{-C
j=r+l

Z(Z—E)j}_

Applying Hoeffding [20] to the first term on the RHS of (14)

{ -2n (M-l)

we get Qm[]vg(fri)l > M-1] < 2 exp in| |
n

r1]|2n
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Since E;frillgn < 42 on T we have

© 0 . (mM-1) .

Q [lv) £, > M-1] < 2 expl- —g;z——}, which holds for

all i, i <m_. Now m_ < exp{cz(z—e)r} < exp{—Jgiz}
- r r — -

16vL
by the way r was chosen. By Fact 2.2.16, the first

2
term on the RHS of (14) is bounded by 2 exp{—g—g}. The

17L
second term on the RHS of (14) is
<2 exp{-CZ(Z_E)J} < 4 exp{—c2(2-€)(r+l)} which is
j=r+1 ' '

~W2 - M2
< 4 exp{—- 5} < 4 exp{—=}. Therefore, on T

16vyL 17L

® O£ (=% M2
(17) Q [sup|v_(£f)| > M] < 6 exp .
g B 17L

Before completing the proof we will need

W2, 5oz
Lemma 2.2.21 If n > n.(M,p):= [A exp( )1P7%, 2 < p < 4,
Z 2
17L
and A < «» 1is some suitably large constant dependinag upon K
© - M
and p, then P (T7) < exp{—~>l.
17L

For general p it suffices to take nO(M,p):=

2
[A exp (-2 2)}2/t'2

17L

where t:= min(p,4).

Proof: We rely heavily upon Theorem la of [19].
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Theorem: Let XN for N =1,2,... be a sequence of

independent random variables with finite first absolute

moments; let a for N,k =1,2,... be real numbers.

N,k

aN,k(Xk - EXk). Let T > 0 and {DN}

a sequence of positive numbers such that Z|aN le < py-
k 4

If 1<t<2 and E[X, - EX|" <M<« for all k,

a——

then for every e > 0, P{[sg| > e} = O(py).

Now let X,:= Fz(gz) for all & = 1,2,... and
5, :=x, + + X Then B {[F2dp, > 4[F%dP} =
2n° 1 =t 2n° 2n
s S. =~ 2nEX
®."2n © 2n 1
P {57 > 4EX;} < P {| o | > 3EX;}.

.. - 1 -
Defining a2n,k'- >n for k=1,...,2n and 0

§én - 2nEX;
otherwise, we have | = |s, | by definition
2n 2n
of SZn' Let 1:= %. By assumption, 1 < 17 < 2 and
EIXQ—EX£|T < 21'.E]X5L|p/2 < 2'’P by definition of K.
2n
Letting o, = Y (2n)"F = (2n)l T gives
n
k=1
p*{[F%dp, > 4[F%ap} < P{|S, | > 3EX.} = O(n'"T) which
2n - 2n 1
is < Anl-T for some constant A < » depending upon K

and p. It thus suffices to find ng = nO(M,p) such

l-1

- M2
that n > n, implies An < exp{——gf}. Clearly, we
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may take njy = [A exp{——s Q.E.D.
17

M2 2/p=2
511 :
L
Returning to the proof of the theorem, combine
Lemma 2.2.15 and 2.2.21 with (17), showing that if

M > M(g,C) and n > n,(M,p) then Pr{suplvn(f)} > M + 2L} <

£€F
Ser{sup )| >Mmp=3f [ 1 . aQ”ar” <
x> % {sup{vn(f)|>M}
28 expi= Mz} Q.E.D
3 1712

We note that if the hypothesis p > 2 of the above
theorem is strengthened to p = 2 then exponential bounds
are still obtainable for n > ng, although it is not

possible (to my knowledge) to obtain a precise value of n,.

Now we provide examples of classes F satisfying

(18) N(S,F) < exp<6;1€>

for some constants C,e where C > 1, 0 < ¢ < 1, and

all §, 0 < § < 1. Theorems 2.2.6 and 2.2.14 will then
apply, depending upon whether F = 1 or F € LZ(X,A,P)

respectively.

Example 2.2.22 Iet G be any class of functions

satisfying (18) with envelope G € LZ(X,A,P). Let
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F:= {glc, g€ G, C€ C} where C is a VCC. Then F

satisfies (18).

Proof: Given P2n let glc be any arbitrary element

of F. For this g find the function 95 where
. ) 2 1.2 2 , .
i < N(5,6) such that f(g—gi) dp, < 78 16 ]5,- Likewise,

for lC find the function lc where J < N(%,{Glc; CECH
]

2

such ‘that f(Glc-Glc') dp, < —s ||G|12n

J.

Now g.lc will serve as the approximating function
i 7]
2 -
to gl,. We have f(glc—gilcj) ap, =

- - . 2
= [(glC glc-+glc. gilC-) dP2n
33 ]
2 ) —
< 2f(glc-glcj) dp, + Zf(glci—gilcj) ap, = &°.

Lastly, the cardinality of the set {gilp } is
3
W for small enough &§. Q.E.D.

< AS “exp( C 2C )
6

=) < exp(—;
8

Example 2.2.23 Let Fl and F2 be any two classes of

functions satisfying (18) with envelopes Fl and Fy

respectively. Let Flsz.- {fvg: f ¢ Fl’ g € F }. Then

F.vF also satisfies (18) for some C.

1" 2
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C.

Proof: First assume that N(S,Fi) < exp( Zie) for
5

}_l.
]

1,2 and some ¢e:= slAez.

Consider any arbitrary element £vg of FIVFZ where

f and g are arbitrary elements of Fl and F2 respectively.

For f find the function £; with i < N(3,F;) such that

[ie-£)%ap, < 36| |7, ] |2 . Likewise, for g find the

function g. with J < N(%,Fz) such that

]
2 1.2 2
[(g-gy)7ap, < g8 [IF, 115,
Now fivgj will serve as our approximating function

to fvg. Using |[£fvg - fngjl < |£-£] + ]g—gj],

[(fvg - £5-q5)°%ap,, is

2 2
2 [(£-£;)7aP, + 2 f(g—gj) dp,

A

2
+ [|F,115,)
2''2n

15

| A

1.2

IR AT

A

where FlVF2 is the envelope for FivF2. Finally, the

, 16 (C;+C,)
cardinality of the set {fivgj} is < exp(——=7) -
8

Q.E.D.
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The follcwing theorem is a variacicn of Theorem 2.2.6,

making use of a slightly different metric entropy condition.

Theorem 2.2.24 Let (X,A,P) be a probability space and F

a class of real-valued functions on (X,A,P). Assume that F
has envelope F = 1. Given n, let 3Jj(n):= {% logzn] + 1.

Suppose that for all values of P (except those in a

2n

set A n with P(Azn):= Pn + 0 as n - «) and for all

2
Jjr» 1 < j < 3j(n), that there exist functions

fjl""’fjm € F, m:= m(j), such that for all £ & F there

is an i < m such that

- -3
(19) [l£ fji{dPan 2 -,

Assume for some ¢, 0 <. g < %, and C > 1 that

(1-¢) }

(20) m:= m(j) < exp{C2 j=1,2,...

Assuming that F 1is P-EM and 2-sample P-EM, and

)1/2(482/5)1/8)

M > 2 + max (37, (5C we have for all n > 1

2
' -M 4
(21) Pr{;:glvn(f)l > M} < 8 exp{—=%-} + 3P,.

[ ] " 0

Proof: Define Vor Voo Vhr PI. and P as in the proof of

Theorem 2.2.1. Using Lemma 2.2.3 and its proof we have
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Lemma 2.2.25 Pr{suplvn(f)! > M+ 2} < %P{sup!vg(f)l > M},
feF feF

We will need some facts and definitions:

Fact 2.2.26 If y =g and M > 37 then

Wt aw? o a2

4y 2 - 4y Y — 5 :

Fact 2.2.27 Let y = 2 and r:= r(M):= [+ lo @3—]
aC » . e Y - 8 - - l-e g2 4’YC .

2-€(r+l)/212/6 1
,-€/2 <7

1f > (50)1/2(489/C5L/E ipan
l_

Proof: See the proof of Fact 2.2.9. Q.E.D.

Def. 2.2.28 Iet ny > 0 be such that n§== 27€3 (1440) .

Def. 2.2.29 mj;= m(J) -<_ eXP{CZ(l_e)J}.

For w € Agn suppose that we are given the realization

of gl,...,an; i.e., we are given <xl,...,x2n>, which we

will call S. Then for all j, 1< 3j < j(n), find

Fj:= {fjl""'fjmj} such that
. _ =3
(22) min [|£f fji]dPZn < 2
i<my

for all f € F., From now on consider any M such that

M > M(e,0) r= 2 + max(37, (50) /2 (ABUC)1/8)  pace 2.2.27
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and the definition of r and n. dimply ) n. < L
J r+1 7 2

From now on we will still be considerinag o € Agn

and so all equations will hold except with probability

P(AZn):= P
Suppose that Ivg(f)l > M for some £ € F. Then
for any such £f denote by fj(S) a function fjie Fj

for which the LHS of (22) achieves its minimum. Notice

that for any fixed integer s, s < j(n),

0 .0 _ 3 g .0
vy (£) = v (£_(8)) = j=£+l\’n(fj(s” Vp (£521(8)) + T(8)
where |t(s)] < |vO(f=£. _ (s))| < /@ 2 3™ (L1 g
- ''n j(n) - - 2

definition of j(n). From now on omit the S in fk(s)

and just write fk.

it follows that either

N}

n. <

J

. ©
Using ).

Ivg(fr)l > M-1 or there is a Jj > r such that

0 0
Ivn(fj) - vn(fj_l)l > nj'

Using the same method as in the proof of Theorem 2.2.1
it may be shown (using Facts 2.2.26 and 2.2.27 and Hoeffding's

inequality) for the fixed S and for wé€ Agn that

2
Qm[sup]vg(f)] >M] <6 exp{:£gggl—}. Combining this with
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Lemma 2.2.25 and replacing M+2 by M will give the

desired result. Q.E.D.

§3. A Bounded LIL

Remark 2.3.1. If F 1is a class of functions satisfying
the hypotheses of Theorem 2.2.6 of Theorem 2.2.14 then

|vn(f)[
(1) lim sup sup < sup o(f) a.s.

n o féfF ¥2 log log n feF

where o2 (f) = ]fzdP - (ffdP)z. To see this, observe
that by Theorem 4.2 of [30], F 1is a DCOF. Since the
envelope F € L2, the hypotheses of Theorem 1.2 of [15]
are satisfied. Let S be the space of all bounded

real-valued functions on F. If ¢ € S, let

||w]]:= sup{|y(£)|: £ € F}. By Theorem 1.2 [15], there
is a sequence of iid Gaussian random variables

{Yj' j > 1} on S such that

2 £(xy) - [fap - Yj(f)i} = 0((n log log M%) a.s.
i -1/2
[[n™% T vy ||
j<n
By [28], lim sup sup < sup o(f) a.s.,
n > o féF Y2 log log n feF

showing (1).

§4. Metric Entropy and Donsker Classes of Functions (DCOF)

In this section the relationship between Niq)(e)
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(see Def. 1.1.3) and DCOF is discussed.

Suppose gq =1, F is a P-EM class with envelope
F € LP(x) for some p > 2, and that for some vy,
0 <y <1l- %, and some M < o, Nél)(e,F,P) < exp(Me-Y)
for ¢ small enough. Then by [13], F is a DCOF.
However, if 1 - E%T <y <1l and 2 < p < 3 then F
may or may not be a DCOF, as illustrated by examples 2.4.2
and 2.4.3. If p is fixed, 2 <p <4, and y < 3 then
F may be a DCOF. Aiso, if p+ 2 then F may not

be a DCOF, even when Yy + 0, v > 1 - E%I.

Suppose g = 2 and G:= {g c £, c, = 0 or 1]
and V¥ m 21, £ ¢€ LZ(X) and £  have disjoint support.
=Y
If V e > 0, Néz)(e,G,P) < 2Me where M < = and vy < 1,

then G is a DCOF. Conversely, if G is a DCOF then

1 )
[ Vlog N;“' (e,6,P)de < = .
0

Suppose q > 2 is fixed and F has envelope in Lp,

=Y
p < % + 1., If Néz)(e) < 28 r 2 < g <Y < ©, then

examples 2.4.7 and 2.4.8 show that there are classes F

of a special type which may or may not be DCOF.

Suppose gq < 2 is fixed and F has envelope in Lp,

Y -
and g—.(_p_.gl_<y<(-21-

(q) e
2 < < 4 ~-g. If N < 2



40'

then examples 2.4.9 and 2.4.10 show that there are classes F

of a special type which may or may not be DCOF.

Thus for all g, g # 2, g-norm metric entropy with
bracketing will not, in general, give sharp results. The

case g = 2 1is unresolved.

We turn to the results outlined above, discussing
them in that order. Let (X,A,P) be as above. For all

j >1 let A, € X be disjoint sets with p

3 P(Aj) = C/]B

357

for some B > 1 and some constant C < =, Let aj:= ja,

a > 0.

Def. 2.4.1 Let F_ 1= {Z ajsle., sy = 0 or 1}, ay

B.C
B, 3 3

and Aj as above.

= P _ P
Fy,s,c has envelope F N alej and EF N a;°Ps-
Example 2.4.2 Here we show that for fixed p, 2 < p < ¢4,

(1) e~y .
and NI (e) > 2 where vy 1is any number <

N

, that

F .
a,8,C may be a DCOF

Now Fe P iff B8 > pa + 1 and by [13] F is a

DCOF iff ) aj/pj < w iff B > 20 + 2. So given a,

choose B8 such that B8 > max(pa+l,20+2); i.e.; F is a

DCOF with envelope in LP
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Given € > 0 we find a lower bound for NI (e,F,P).

If the individual terms 2P > e for all j < j0:= jo(e)

J
then
]

(1) wit (o) » 270,

-1
Now ajpj > e 1iff C?_B > €. So we may take jO =~ EB-u’

~Y

and if vy = E%E then Nél)(e) > 2€ . Given o we wish

to maximize y. Let T > 0 be artitrarily small and take
B:= 20 + 2 + 1. If a 1is chosen so that a(p-2) < 1 + T

then pa + 1 < 8 and so B > max(pa+l, 20a+2).

Fact Given p, a, and T as above p > (p=2) (at+2+1) iff

2(a+2+1) _ 2
Ao = L Fr
_ 1 _ 1 p-2 _ , _ 2 -
Now vy = By = a¥2%T > 5= 1 D by the Fact.

Moreover, if a 1is any positive number < 5%7 and
T any small positive number, then all of the above

calculations remain valid. So we may let the sum
2

p:= a + 1t + 0, concluding that if p < 2 + T =
-4 _ 2p -2
= 4 I+ < 4, then vy >1 5

The above shows that for p fixed, 2 < p < 4,

(1) ey . 1
and NI (e) > 2 where vy is any number < =, that
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F may be a DCOF. However, F need not be a DCOF,

as illustrated by

1
.4. Fi= . > - =, < <
Example 2.4.3 Take 'Fa,B,C If v 1 = 2 P 3,

(1) ey
and NI () < 27 , then F may not be a DCOF.

To see this, take pa + 1 < B8 < 20 + 2; i.e., F 1is
not a DCOF and the envelope F € LP. In this case we

must have
(3) (p=2)a < 1.

Given € > 0, find an upper bound for Nél)(e): If

J
jg:= J4(e) and J  asp. < € then N(l)(e) < 2.27°0,
£ S s 353 I -
1239
To find an upper bound for jO' note that Z ajpj =
323,
= Z Cg-B <€ if for some constant K, Kjg'8+l < e.
323,
-1 —y
Therefore Jj, = Bl ana Nél)(e) < 2 where
D 1
Y= B_a_l .

Given p, let's minimize a. Let B8 = 20 + 2.
Let 8 be any arbitrarily small number, 0 < § <1, and

let a = %E%. Clearly, (3) is satisfied.
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- _ 1 _ p-2 _ _ _1-8
Therefore vy = ol - T=5¥p=2 1 5=1=% and so

v+ 1 -2 as s+ o0.

p-1
Finally, if o = %E% and p < 3-8 then a simple
calculation shows vy < %.

Examples 2.4.2 and 2.4.3 show that if 2 < p < 3 and

1 - E%T <y < % then F may or may not be a DCOF.

In examining the case g = 2 it will be convenient

to consider the class G:= {J cf .t Cy = 0 or 1} where

¥m>1, £ € 1°(x) and f_ have disjoint support.

There are three theorems.

Theorem 2.4.4 G is a DCOF iff ) [ifmllz < o,
m

Proof: Suppose Zmllfmllz < », Then E(\)n(fm))2 =
= (£23p _ 2
= [£7dP - (£ dP)° for all n and f_, where

v = nl/z(Pn—P). Thus E|v (£)] < ||f ]|, and

sgp Ezjzmlvn(fj)[ ~0 as m~> o, So for any € > 0,
szp Pr{zjzmlvn(fj)} > e}l ~0

as m > o, So in Theorem 1.3 of [13], condition (b) holds.

The other condition holds for G and so G is a DCOF.
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Conversely, let G be a DCOF and suppose

I%[[fmllz = o, Then ;u}_;pr(f)[ =+ ® a.s. To see
this, note that Wp(fm) are independent and ZIWp(fm)I = 4+

a.s. by the 3-series theorem. So either XWp(fm)+ = 4+

in which case we take Cp = lwp(fm)>o' or ZWp(fm) =+ =

m

in which case we take ¢ = lwp(fm)<0' So Wp 1s unbounded

on G and therefore GP is as well, showing that G is

not a DCOF. Q.E.D.

Theorem 2.4.5 Given G as above suppose that for all

=Y
e > 0, NéZ)(e) < 2Me where M < » and vy < 1. Then G

is a DCOF.
Proof: We need only show Ellfmllz < o, If ]]fmllzé 0
m

then G 1is not totally bounded and for some ¢ > 0,

Néz)(e) = + @, So |Ifml!2 ~ 0 and we may assume that

-

llfmllz ¥. If there are N terms |[f ||, which are > e

then Né2)(€) > 2N,

Let m, be any positive integer. Find €y:= el(ml)

=Y

such that m, = Mel . Then € = (& )l/Y

ml . There can

only be Me ! terms llfmllz which are > ¢,.
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so if m > m; then llfm[lz < e;. 1In particular,

|| £ M)/, since m; is arbitrary,

I <«
ml+l - my

ety < eI, + w7V T@ YT <o, Q.E.D.
m

Theorem 2.4.6 Given G as above, suppose that G 1is a

DCOF. Then

1 )
[ Ylog N, (¢,G,P)de < =,
: .

Proof: From Theorem 2.4.4, Z!lfmllz < », Following
m

Dudley's proof of Borisov's theorem [5] and [16], it will

be enough to show

I viog N;%) (275,6,p) /25 < =
k=1

We may assume i[fmllz +. Let rs be the number of

values of m such that 47371 < llfmilz <473, 3 =0,1,...

and cy:= rj/43. Then ZCj < ©», For each k =1,2,...
let jk be such that

c./4j.

' k
. /47 < .
(4) ijkc]/ < 1/4" < ZJiJk 3

let m:=J5_r.. Then ] |J£ ||5< ] r./165 < 1/4F.
J= J m>mk m hd j>jk J —
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Let A, run over all subsets of {fl""’fm }  where

My
i = lr-ooyz . Let Y.— {fm}m_ - Let B*:Z

A, U {fm Y: m > mk}. Identify any subset F C Y with

the function f£:= {}f : £ € FI.

Then for any F C Y let A, =F n (fl,.. ,fmk}.
2. 2
Then A; CF C B, and [(B;-A;)%aP =[] £ )°dp
m>my
m, +1
< 3 ||f [[2 < 4 k. Thus, N(z)(Z k) <2 K , and it
Ry ml2 = I <
m>m
k
1/2
Mk

will be enough to prove | = < ©. This is done in

k 2

[16], and is as follows. Letting Jj(k):= jk we have

1/2
) = T, Ej(k)4j 1/2/2
k 2K
J(k) j-k 1/2 _ g _1/2 j-k
S R ST Ly <3 (k)2

To prove that this converges, since ch < o, it is enough

by Cauchy's inequality to prove

Y. % 237Ky 2 ¢ w,

I k:i<i(x)

Let k(j):= kj be the smallest k such that J(k) > jJ.
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Then

) 23-k < 23+1—k(3).
k:j<j (k)

We must now prove that 2j43-k(j) < o, Setting 3j(0):= 0
we have
2j4j—k(j) < y 2 4j_k(j) < z 4l+j(k)-k.

Tk 3 (k-1)<i<] (k) K

Now for each k, let X(k) be the smallest K such that

jk = jK. Then from (4) for K, and letting K denote the

range of K(-), we have

K (k) 3
‘ < 135505574

Thus 43 )7k o 73 (KI=k+R(K) ¢ /43

K "k 333 (k) I
- zcj4-j I -4](K)+K 7 47k
. REK, 3 (K) <3 k:K(k)=K
i 220.4—j 4j(K)
33 ReK,3 (k)<

Since Jj(+) 1is one-to-one on K, the above sum is

< 42cj < o, Q.E.D.
3
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=Y
iow ccnsider the case g > 2. If Néq)(s) > 2

then the following example shows that F may be a DCOF

as Y *» » and when F has envelope in L[, p < + 1.

TN}

ILet 6§ > 0 be some

Example 2.4.7 Take F:= Fu,B,c'

arbitrary small number and take B = 2a + 2 + §. Let

€ >0 and find a lower bound for Néq)(a).

If the individual terms acjipj > ed for all

_ , 3
3 < 3p:= Jp(e) then Néq)(é) > 2 O, Now a?pj > ed
e
1fe jqa—s z e? iff Jg = * Tosoif v o= (2-Q?u+2+5 !

(q) € . _
then NI (e) > 2 . Given g, let o = a=7 > 0. Then

“

Y > % 4 o as & + 0. These computations hold even when

F has envelope in Lp, p such that po + 1 < B:= 2a + 2 + §.

In this case p < % + 2 = % + 1.

e~y

I1f Néq)(e) <2 where Y > g > 2 then F may

not be a DCOF as illustrated by

Example 2.4.8 Let F:= Fa 8 c and take B8 < 20 + 2;
4 r

i.e., F 1is not a DCOF. Given ¢ > 0 we find an upper

bound for Néq)(e). If for some j0:= jo(e)

(5) Jol, as1, 0 %ap < €,
3239 7 %3
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3
then Néq)(s) < 22 O, Ssince Ay are disjoint, (5)

follows from

[} a1, yqap = J a
3234 3 323, 323,

where the last inequality will be true if jgu-6+l = eq;

gBaa=1 = o5 if ¥y = —3 __  then

i.e., Jp = )

(@) e 2 = - 9
N7 () <2 . Take B = 20 + 2. Then vy = (3=q)a+1

where we are free to take o as small as we please.

As o ¥ 0, v ¥ (.

These calculations hold even if F has envelope

in Lp, p such that pa + 1 < B:= 20 + 2. Moreover,

as o ¥+ 0 we may let p 4+ + «, So if p < + 1,

NEQ

Néq)(E) < 2° ', and 2 < q <y < », then examples 2.4.7

and 2.4.8 show that F:= Fa g, c May or may not be a DCOF.
r r

Finally, consider the case g < 2. If g < 2 is fixed

and p < 4-q then p=2

—q . Examples 2.4.9 and 2.4.10

=Y
show that if F € Lp, 2 < p < 4d-q, Néq)(e) < 2° '

T

a(p=2) g .=
and =g <Y < 3 then F: Fa,B,c may or may not

be a DCOF.



Example 2.4.9 Take F:= F_ and pa+l < B:= 20+2; i.e.,
a,8,C

F 1is not a DCOF and the envelope F € Lp, p>2. If

p > 2 then clearly o < ?%7. The computations of

p.
example 2.4.8 show that if vy = B—qg—l = (2—q?a+l’ then
=Y
N (e) < 2f
I —
Letting o * 5%5 shows that vy ¢ gi%;%l. If p=2

we may let o 4 o« and vy + 0.

Example 2.4.10 As in example 2.4.7 take F:= Fu 8 c
’ r

where B:= 2a + 2 + 8. Assume F € LP, p > 2. Then
(6) po + 1 < B:= 2a + 2 + 6.

Now the calculations of example 2.4.7 hold for g < 2,
showing th i e 3 (q) ™
g at if vy = (2=9) o3 253 then NI (e) > 2 .

et o+ 0 and 8§ + 0. We may let p 4+ « and still

showing that F may be a DCOF

N

satisfy (6). So ¥y *

~Y
if Néq)(e) >2% vy <

NLQ
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Chapter 3

The Metric dg

§1., Introduction

The exponential bounds of Chapter 2, together with a
theorem of Dudley [13], will be used to study the properties

of the convolution metric dg on PGRk), where

44 (P,0Q):= sup, | fg(x-y)d(P-Q) (v) |
XeR

and where g 1is any uniformly continuous density on :Rk

A

such that the Fourier transform g has a countable set

of zeroes.

Let (S,d) be a separable metric space and Sl’XZ""
a sequence of independent identically distributed (iid)
S-valued Borel measurable random variables. Let P(S)
be the set of all Borel probability measures on S. Let
L(Xl) = P and define the random (empirical) measures

P, as in Chapter 1.

on P(S) put the weak-star topology TW*; i.e.,
the weakest topology such that the map p ~ ffdp is
continuous for each bounded and continuous £: S > R.
The Glivenko-Cantelli theorem states that P, > P

weak-star as n > ® almost surely (a.s.). This
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generalization of the Glivenko-Cantelli theorem is due
to Varadarajan [36]. Weak-star convergence is metrizable

and we shall discuss several metrics which induce TwW¥*,

Denote by BL(S) the set of all bounded Lipschitz
functions f: S + R. Then BL(S) 1is a Banach space with

the norm
| 1£] | o= max{[1£] ], |1£]]}
where

| [£]1,:= sup{£(x) ]|, and [[f][ 2= sup |f(x)-£(y)]|/a(x,y).
X€S X,VéS
X#Y
Let BL(S,l):= {f € BL(S): [[fl]BL < 1}. For any P,Q € P(S)

define

B(P,Q):=  sup | /£ (dP-dQ) | .
feBL(S,1)

Then R 1is a metric on P(S) and the topology it induces
is precisely TW* [9]. B was apparently first used by

Fortet and Mourier [17], who proved that B(Pn,P) +~ 0 a.s.

Now define the Prokhorov metric. For x& S and

TCS, let 4(x,T):= inf{d(x,y): vye€ T}. For &8 > 0 let

T6:='{x(§ S: d(x,T) < 8}. Given any P,Q P(s), define
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p(P,Q):= inf{e > 0: P(F) < Q(FE) + ¢ for all closed F C S}.
Then o 1is a metric on P(S) and induces TW*, as proved
in section 1.4 of [32] for S complete, and general

separable S in section 2 of [10].

If S 1is complete and P,Q P(S), then the
Prokhorov distance p(P,Q) is the minimum distance "in
probability" between two random variables distributed
according to P and Q [34]. Dudley [10] extends this
result with "minimum” replaced by "infimum" to an arbitrary

separable metric space.

In :Rl, weak-star convergence is equivalent to con-

vergence in the Lévy metric Py, where
py,(P,Q):= inf{h: F(x-h)-h < G(x) < F(x+h) + h},

where F and G are the distribution functions for P

and Q respectively.

Weak-star convergence has the advantage that it
takes into account the error which is inherent in the
measurement of a random variable. For example, for any
positive number o, denote by F9 the distribution of
X+ Y where X has the distribution F, and Y, inde-

pendent of X, has a normal N(O,oz) distribution with
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fi=N

mean 0 and variance 62. Following [21], define
AO(P,Q):: pl(FG,GG) where F and G are the distributions

of P and Q respectively, and where for absolutely con-

[ee]

tinuous distributions o, (F,G):= [ |F'(x)-G' (x) |dx.

L [ee]
Then P_~ P iff for all o > 0 A°(P_,P) = 0 as n > =,
The metric A° was apparently first defined by Kolmogorov

in 1953 (25) but to my knowledge has been used little since.

If P,0€ P@MR) with distribution functions F and G
respectivzly, and if ¢ is the density for the normal

distribution N(O,Gz), then note that

(1) A9(p,0) = [ ax|[ ¢%(x-y) (@F(y)-dG(y)) |.

=00 -—C0

Now define and consider the metric d which like

g

A”, is also obtained by convolving the difference F-G

of the distributions with a density g having certain

desirable properties.

First define the metric dg on P(G) where G is
an arbitrary locally compact abelian (LCA) group. Before

doing so, we recall from [33] a few facts about LCA groups.

§2. The Metric dg

A complex function Y on a LCA group G 1is called

a character of G if |y(x)| =1 Y x ¢ G and if
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Y(x+y) = v(x)y(y) ) X,y € G. The set of all continuous
characters of G forms a group I, the dual (or character)
group of G, if addition is defined by (Y1+Y2)(X)

Y, 0)y,x) ¥ x€ G and v;,v, € T. 1In view of the
duality between G and T it is customary to write

(x,Y) in place of vy (x).

lLet dx be Haar measure on G. Then Y £ € Ll(G),

the function f defined on T by

£(y) = [ £(x)(-x,y)dx, Y €T
G

is called the Fourier transform of £f£f. Let B(G) be
the set of all functions f on G which are finite linear
combinations of continuous complex positive definite functions

on G. From [33, pp. 21-33] we have

Inversion Theorem: (a) If £ ¢ Ll(G) N B(G) then

£ € Ll(P). (b) If the Haar measure of G 1is fixed,
then the Haar measure of [ can be normalized so that

the inversion formula f(x) = [ £(y)(x,Y)dy x € G
T
is valid for every £ € L1(G) n B(G).

We will also need

Fact 3.2.1 Given any separable LCA group G with

dual group T, there is a real-valued function h(y)

on I' such that h has no zeroes on I' and h(x) |is
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a uniformly continuous density on G.

Proof. Let £ > 0 be a real valued continuous density
on I' for a Borel probability measure. Define E(Y):= £(-v)
and h:= f*E. Then it may be easily shown that h is
continuous, positive-definite, and in Ll(F), see e.g.,

(331, p. 18.

This h satisfies the conditions of the Inversion

Theorem and using the notation formulated above,

~ -
hiy):= (£x£) (y) = [(£*£) (x) (y,x)dx
r

where x € G. Thus, h(x) = [£(x)[2 >0 and h(x) € L1(G)
using Inversion Theorem (a). Therefore h(x) is a density
on G, normalizing if necessary.

Moreover, since £fxf is a denisty for a regular
probability measure, h(x) is a bounded and uniformly

continuous density. Q.E.D.

Having disposed of the preliminary details, we are
ready to define the metric dg on P(G).

Given the separable group G, let g(x) = h(x) where

h(y) is as in Fact 3.2.1.

Given any two Borel probability measures P and Q

in P(G), define the distance



57.

(2) d_(P,Q):= sup|[g(x~-y)d(P-Q) (y)].
g xX€G

It is easily verified that dg is a pseudo-metric on P(G).
The following theorem shows that dg also metrizes con-

vergence in law.

Theorem 3.2.2 Suppose P , P € P(G). Then P L P iff

dg(Pn,P) - 0 as n +» o=,

Proof: Let u € P(G) be the probability measure in P(G)

having density g with respect to Haar measure on G.

Suppose dg(Pn,P) -+ 0 as n > «, By an easy application

of Sheffé's theorem (see [4], pp. 223-224), we obtain

L
u*Pn -~ uxP as n > =,

a—— S .
Then u*Pn(y) + u*xP(y) uniformly over compacta.

Since 1u(y) 1is non-vanishing and continuous, Pn(y) - P(y)
uniformly over compacta and thus Pn > P.

Conversely, suppose P i P as n + », Since g
is uniformly continuous and bounded with respect to Haar
measure on G, the class F = {g(x-y): v G} 1is a
uniformly bounded equicontinuous class of functions.
Therefore Pn -~ P uniformly over F; see, for example [9],

Theorem 7. This completes the proof. Q.E.D.



58.

Having defined and shown the existence of the metric
d on P(G) for arbitrary LCA groups G, let us consider

the case when G is Euclidean space iRk.

Suppose that g 1is a uniformly continuous density
on :mk and allow g to have countable zeroes. Then
under these relaxed conditions on g, the metric dg defined

by (2) metrizes convergence in law, as shown by

Theorem 3,2.3 Suppose Pn’ P € PGRk). Suppose g is
k

a uniformly continuous density on R and g has a

L
countable set of zeroes. Then Pn - P iff dg(Pn,P) - 0

as n > o«

Proof: Let Q€ Pcmk) be the probability measure in

PGRk) having density g with respect to Lebesgue measure

on :mk.

Suppose dg(Pn,P) - 0 as n + ., As in the proof
L
of Theorem 3.2.2 we have Qn*Pn + Q*P. Therefore, for

kA NN
all t€ R, Q*Pn(t) +~ Q%P (t). Thus Pn-Q > P and

Pn(t) + P(t) as n » » except possibly on the countable

set of zeroes of Q(t). Let the countable set be {ak}.
For {ak}, find a subsequence P of P_ such
n, n
that P (ak) converges. Then P_ (t) converges for
R Ny

all t €1Rk, the limit function is continuous around 0,
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and is thus a characteristic furction z2nd everywhere
continuous. So Enz(t) +- h(t) <£for some characteristic
function h(t). Since h(t) and g(t) are continuous,
h(t) = P(t). Therefore §nl + P for all t € RS,

L L
P - P, and so P_ - P,
n n

The converse is established as in the proof of

Theorem 3.2.2. Q.E.D.
Example. Let g(x):= Ov(l-|x|). Then g(t) = 2(1"235 t)

which clearly has countable zeroes. So dg metrizes
convergence in law on P(R). 1In general, if g is any
Lipschitz density on :Rk such that g is any Lipschitz

k

density on R such that g has countable zeroes, then

dg metrizes convergence in law on PaRk) and

dg(P,Q) < KB(P,Q) where K 1is the Lipschitz constant

for g.

Here is a necessary condition on g for dg to be

a metric on PGRk).

Proposition 3.2.4 if dg is a metric on PGRk) then

{t: g(t) = 0} must have empty interior.
Proof: Suppose k =1 and {t: g(t) = 0} D § where
U = (-b,-a) YU (a,b), 0 < a< b < =, is a union of two

intervals. Then there are characteristic functions h

and j, h # j, such that {h # j} € U and so dg is not
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a metric. Before constructing h and J we recall Polya's

theorem [31, pp. 116-118].

Theorem Let f(t) be defined for all real values of t

and suppose

1) £f£(t) 1is real-valued and continuous
2) f£(0) =1

3) lim £(t) =0

00
4) f£(t) = £(-t)

5) f(t) 4is convex for t > 0.
Then f(t) 1is a characteristic function.

Now construct h and Jj, as in [31]. Now
h(t):= e—lt] is a characteristic function. Consider
the graph of h(t). On U, replace the arc of the graph
by its chord and call the resulting continuous and convex
function 3j(t):; j(t) is a characteristic function by
Polya's theorem. Since {h # j} C U, this completes the
case k = 1.

For general k suppose that {t: g(t) = 0} > U

k

where U CTR is open and symmetric about the origin.

Again, we find characteristic functions f and g, f # g,
such that {f # g} C U. Choose the coordinates SRR TYRRRRE N

so that for some a and 6§, a > § > 0, we have
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UD{]X-&} < 6' I(XZ’."'xk)] <6}.

From the case k = 1, there are characteristic functions
h(xl) and j(xl) such that h = j except on the set
]xl + al < 5. Let k(xz,...,xk) be any characteristic
function such that k(y) = 0 if |y| > 8. Define the
characteristic functions £ and g by f:= h(xl)k(xz,...,xk)
and g:= j(x{)k(xy,...,%). Then £ # g and {f # g} € U.

Q.E.D.

§3. Comparison of Uniform Structures and a Bounded LIL

In this section we assume that g has Lipschitz
constant K, support on the unit cube, and {t: g(t) = 0}

is discrete.

Assuming that g has support on [0,1], the uniform
structure of dg on P(R) 1is strictly weaker than that
of 8 and p. Take Pn and Qné_' PR) where

r 3 =1,...,n. Then

Sl

P (2j) = Q_(2j+1) =
3
dg(PyrQ) = sup|fg(x-y)d(R,=0,) (¥) | < 7 and

. This example may be extended to ka.

N

B(P_,Q) >
On [0,1] the topology of the Kolmogorov-Smirnov

statistic |[|P-Q||_ is strictly stronger than TW*. To

. L
see this, take P = 60 and Qn = Gl/n' Then Qn -~ P,



62.

i.e., dg(P,Q) + 0. However, HQn-P[[00 —> 0.

The Lévy metric oy, and dg do not give the same

uniform structure on P(@R). Take P to be uniform on

[0,n] and ¢Q uniform on [n,2n}. Then

Sl
u.
o)

sup| [g(x-y)dP(y)| < = and sup|[g(x-y)dQ(y)] <
X X

SITY)

d,(®,Q) < and p;(P,Q) = 1.

We now consider a generalized version of AG, as
in (1). For all ¢ >0, let gg(x) be a collection of
uniformly bounded (in x) and uniformly continuous
probability densities with mean 0 and variance 02.

Let P,0 € P(RX) and define

(3) & (@)= [ ax|[ ¢°(x-y)a(r-Q) (v)].

g K-

Let g be a collection of uniformly continuous probability

L L
densities of laws Yo ~ Yo as m +~ o, Let

(4) 8, (P, := [ ax|[ g (x-y)a(P-Q) () ].

/
m 3¥<

L
Theorem 3.3.2 Let Pn and P PGRk). Then Pn > P

as n > o 1ff Ag (Ph/P) =0 as n + = for all m.
m .

Proof: Suppose Ag (Pn,P) + 0 as n > for all m.
m
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L
Then gm*Pn > gm*P as n » « for all m and Pn - P
as n + o, Conversely, suppose Pn - P as n > o,

Since Pn are uniformly tight, it follows that Pn*gm
are uniformly tight for any density I * That is, if

B(0,M) is the ball of radius M centered at the origin

k

of W then for any € > 0 there is an M 1large enough

so that | P g < & and / P*g <e for n>n

o
B(0,M)° B(0,M)C

Also, for any ‘g~ we have {(Pn—P)*gm| < —E r for n>n,
(2M) ™

since gm(x--) are a class of uniformly bounded equi-

continuous functions, see [9]. For n > max(nl.no) we

have [ | (P ~P)xg_|dx = [ | (P,=P) xg_[dx +
IRk B(0,M)

f I(Pn—P)*gm|dx < 2¢, completing the proof. Q.E.D.
c

B(0,M)

L
Corollary 3.3.3 Let Pn and P € Pcmk). Then P > P

iff Agc(Pn'P) + 0 for all o > 0, where Agd(Pn'P) is

as in (3).

Finally, using the results of Chapter 2 we have the
following a.s. upper bound for dg(Pn,P). Note that

upper bounds for the 8 metric are less sharp.

Corollary 3.3.4 ILet P € Pcmk) be a probability measure

with support on the unit cube Ik. Let Pn be the empirical

measures. If g is continuous, Igl <1l, and g has
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k v
support on I, then e >0

/n d_(P_,P)
lim g o <1 a.s,
n>° y2 log log n

Proof: Let F:= {g(x-y); v e:mk}. Since the elements of

F are non-zero iff y ¢ [—1,2]k we have N(§,F) <

O:W‘ @]

for some finite constant C and for all &, 0 < § < 1.
Note that N(§,F) is as it appears in Theorem 2.2.6. The
hypotheses of Theorem.2.2.6 (or its corollary) are clearly

satisfied and Remark 2.3.1 completes the proof. Q.E.D.

§4. An Invariance Principle for the Metric dg

Theorem 3.4.1 Let g be a bounded density on }gc and

Xi' i=1,2,... 1iid random variables with L(X) = P.

Let F:= {g(x-*): x‘EiRk} and suppose that

(2)
I

log N (x,F,P) < Cx“T for some constants C > 0 and

0 <tT<1l. For any 6 < %5} there are random variables

Yj such that

(1) sup| |} £(x.) - [£faP - Y. (£)]| = o(nl/z(log n)'e) a.s.
féF j<n J J

1
Proof: Since [ v/log N
0

the proof of Theorem 5.1 of [12] shows that F 1is a

(2)

(xz)dx < ®©, an examination of
I

DCOF. To see this, replace C by F, sets A in C by
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functions in F, v_(A) by ffdvn, etc., noting that
since g 1s bounded, Bernstein's inequality still holds,

as on pp. 915-916 of [12].

By Theorem 7.1 of [15] for any @ < E;: we can

choose Yj in Theorem 1.3 of {[15] such that (1) holds.
This is true since the proof of Thecrem 7.1 does not

depend upon the use of sets in Theorem 5.1 of [12].

Q.E.D.

We remark that this result gives an invariance

principle for dg(Pn,P) where Pn are empirical measures
for P € PGRk).

Corollary 3.4.2 Let X =R and ]

| the usual

Euclidean norm on :Rk. Let Xi' i=1,2,... Dbe iid

Imk—valued random variables such that for some k > 2

and B > 2

(2) P(||x|| > 1) _<_K(-]:-6—<]3'——L—)B

for all L > 1. Let g be a Lipschitz probability density

on R such that for [1x]] > €

300 < K (g
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where 0 < K' < » and vy > 1. If F:= {g(x-+), x E:Rl}

then (1) holds.

Proof: Given Yy > 1, we may choose B8 so that vy > %.

‘ oxx' 2 1/8
et B > B' > 2. Given e > 0, let M:= M(€):= exp( 7] ) and
€

1 1/8"'
1= (e);= exp(=) .
¥9:= Yo 24

Given a > 0, let B(a) be the ball centered at

k

the origin with radius a. Let x € RT and

2
h(x) = K'1 (x) + &1 (x) .
B(M)c 2 B (M)

Given M as above consider only those € > 0 such that

Yo > 2M. For these e observe that if ||y[| > y, then

(3) 0 < g(x-y) < h(x).
Now (3) is true since if |]|z|| > M then
4 v/8
g(z) < K'(F—5) < 22,
2KK'

by definition of M, K, K', and 8. Also,

4
h2ap < p(M(B)C) + &= < ¢? and so ([hlap)1/? < 2,
= 7z =
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Now on B(yo) find x; € le dense within and let

Nlm

* c2
(4) g; = g(x-xi) + 5 -

Using (3), (4), and the Lipschitz condition on g, we have

’ MO Yo K s
for some C < o (e, F) <2 + C( ) . By definition
e
- '
of Yor N(z) (e ) < 2 + C(l)Zkexp{ks 4/8 }, and for some
1
constant D < «, log N(Z) (e ) < Dke -4/8 . Replacing e:2

by x we have log N](:Z) (x) < Dk;T

where 71 = -‘;——,— < 1.
The hypotheses of Theroem 3.4.1 are satisfied. completing

the proof. Q.E.D.

§5. A CLT for dg on P(IRk)

In this section the metric dg is not restricted to

the case when ¢ is Lipschitz. Let dg(Pn,P):=

Bl

sup |

xe]Rk

n
z g (x-X;) - Eg(x-xi)l and G(s,w):= g(s-X) -Eg(s-X).

Let 'Hk:= {£f: ]Rk + R, f any positive, continuous, bounded

function such that

(1) if x,y € R® and ||x|]| = ||y|l, then g(x) = g(y),
and

(ii) if [|x|| < |[yl|l then g(x) > g(m)}.
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The following results give sufficient conditions for

G(s,w) to satisfy the central limit theorem (CLT).

Theorem 3.5.1 Suppose X is aim;—valued random variable

such that E{log(|X| +2)[log log (}X|-+3)]2a}< »  for
some o > 1. Then G(s,w) satisfy the CLT for all

Lipschitz g with compact support.

Theorem 3.5.2 If g e Hk then G{(s,w) satisfy the CLT

for all P € PGRk).

Proof of Theorem 3.5.1 Assume that g has support on

[0,1] and has Lipschitz constant K > 4. We will rely

heavily upon Theorem 1 of [22]. Define :R* to be the

l-point compactification of IR and COGR*):= {f: £ continuous
and f£(x) > 0 as x + + ®}, Let c?.= E[[g(s—X)-—Eg(s—X)]l2

*
| denotes the sup norm on Cy(R ).

where |

*
Lemma 3.5.3 For all s,t € R , define

e(s,t):= sup |g(s-u) —lgét-u)! _
u C(log(|u[+3)) ™/ “(log log(|u|+16))

*
Then e metrizes the topology of R and for all real

X, s, and t

(1) %lg(s—x)-g(t—x)l,iloq(|xl+3)l/2(log log(|x|+16)%(s,t) .
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Proof of Lemma e(s,t) = 0 iff s = t, e(s,t) = e(t,s),

and

|g(s-u) - g(t-u)| <
(log(|u|+3))l/2(log log(|u|+16))% ~

< lg(s-u) - g(z-u) | +
- 1/2 o
(lLog(|ul|+3)) (log log(|u|+16))

|g(z-u) + g(t-u)|

+
(log (|ul+3)) /% (log log(|u|+16))%

implying the triangle inequality. So e(s,t) is a metric

and (1) is clearly satisfied. Q.E.D.

Returning to the proof of the theorem, note that if
g 1is any continuous density with compact support then

g€ COCR*) . For all s ¢ }R* let Gi(s,w):=
%[g(s—xi(m) - EG(s-Xi(w)] and write G(s,w) for

*
Gy(s, ). Note that EF(G) = 0 for all £€ coaR*) ,

*
the dual to C,(R ). By the normalization, E||G(s,w)[]2==l

L d

*
| denotes sup norm on C,(R ). Note that

where |

*
G(s,w) 1is a COGR )-valued random variable on some

probability space (Q,F,P).
By Lemma 3.5.3, |G(s,w)-G(t,w)| < 2M(w)e(s,t),

where M(w):= log(IX]+3)l/2(log log(|x|+16))“.
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M(w) 1is non-negative and EM2 < «» by hypothesis.

*
Finally, for R equipped with the metric e, let
* - ,
NeGR , 2 J) denote the minimum number of balls of
- * & =
e-radius < 2 J covering R'. Define HM®, 2 1y :=

* =]
log N@®R , 2 7).

Lemma 3.5.4 Iet p be such that 1 < p < a. If 3 1is

) * — . » L)
sufficiently large than N_ (R , 2 Iy < %§2J(exp{223(%)29})-

Proof of Lemma 3.5.4: First note that whenever a > o

and o 1is positive, a calculation shows that for Jj large,

1 -]
— < 2 7.
(log, [2°7 () %°1)* =

tzzj(§)29]1/2

Thus e(s,») < 2‘j if s > exp{zzj(%)zp}. Noting that
gn(|ul+3)2n(&n(|ul+l6)) > 1 for all u and using the
Lipschitz condition on g we can obviously cover each
of the [s] +1 intervals [i,i+1], 0 < i < [s], with
< %Zj balls of e-radius < 273, Cconmsidering also the

closed interval [-«,0] as well as [0,»], we will
2K
<2

clearly need at most jexp(zzj(-]]"-)ZQ) balls of e-radius

- %*
<2 J in order to cover R . Q.E.D.

Finally, returning to the proof of Theorem 3.5.1,

. s : .
observe that H_ R ,2 3 < log(%?QJ) + 223(%’-)2p and
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. .z
ZZ jH;:/2GR ,279) < ®, since o > 1. Applying Theorem 1
J

of [22], Theorem 3.5.1 follows. Q.E.D.

Consider now Theorem 3.5.2.

Proof of Theorem 3.5.2 We rely heavily upon Theorem 1.9

of [13]:
Theorem. Let G:= {lA: A€ C} be a DCOF, M < =, and
F:= {f: X > [-M,M], f_l([a,b[) € C whenever a < bl.

~

Then F 1is a DCOF.

Consider k = 1 and take the density g € HL.
Assume g < M and observe that g(-—t)-l([a,b[) is an
interval or a union of two intervals. By [l12, section 7],
the set of all unions of two intervals is a VCC. So

{g(*~t): t € R} is a DCOF and G(s,w) satisfy the CLT

for all P €& PGRl).

For the general case, take g € Hk and assume

g < M. Let Bt_l be the ball with radius r centered

at the origin of :mk. Then g )‘l([a,b[) is the

difference Bigl of two balls in ®RX where

pk=l.- gkl _ gX"1 f0r some 0 < s < r. Likewise,
rs r S
g(--t)—l([a,b[) is some translate Bigl + t of some
Bigl. The set of all Bigl and their translates forms
a VCC. Applying Theorem 1.9 of [13] shows that

{g(=t): t € 19{} is a DCOF and so G(s,w) satisfy the

CLT for all P € PGRk). ) Q.E.D.
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§6. Th2 Agvmptotic Distribution of dg(P”,P)
Li

In this section I determine the asymptotic distribution
of dg(Pn,P) for special choices of g and where Pn
are empirical measures for the measures P on R. I

rely heavily on the results of V. I. Dmitrovskii [8].

Let g be a continuous density function on R and

F:= {{gt}tﬁm} where g, (y):= g(t-y). Equip F with the

ep metric, where ep(f,g):= (f(f—g)zdP)l/z. Following

DmitrovskiY [8], let

t(g,) = lim /n [ g(t-y)(@P ~dP)(y), g € F

n—+-w -0

where P is a probability measure on 1R and Py the

empirical measures.

Denote by Ne (F,e) the minimal number of balls of

radius < € which cover F. Write N(g) for Ne (F,e).
P

Suppose that
(i) sup{ECz(gt): 9 € F} = 1, and

(ii) the Dudley-Fernique conditions holds; i.e.,

1

[2n N(x)] dx < o,
i 1/2
0

Then by Theorem 3 of [8],
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2
prisup_[z(g,)| > u} = exp{ %— + u-0(1)}, u > o
gteF

in other words,

2
Pr{lim v2 d (P .P) > ul = exp{_%— + u-0(L)}, u > .
n+00

The following example illustrates an application of

Theorem 3.

o]

Example 3.6.1 Let t(gx) = lim /& [ g(x-y) (dP_-dP) (y)

n--o© -0

where g 1is the standard normal density and the measure P

satisfies

1 8
P(|X] > L) < K155 T
for some K > 0, 8 > R' > %, and L > 1. Then

(i) sup{Ecz(gx): 9, € F} = 1, normalizing if necessary,

and

1
(i1) [ (20 N(x)1Y2ax < «.
0

Here is a proof of (ii):

Given K and B8 > B' > % as above, consider only those

2. (4,178
e > 0 such that exp[-3e € 1 £ %. For these ¢,
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o0

)2

we show that fp(y):= f (g(x=y)) "dP(x) < %, for
- ~-1/8" ; ;
ly] > Y, where y, = O(exp(e )). This will be used
to prove (ii). Letting M:= M(g):= exp((%?)l/s), write
(6.1) £,(v):= | (g(x-y))%dP(x) + [  (g(x-y))2dp(x).
x| <n x| >m

Since g 1is bounded by - the second term on the RHS
vam

of 6.1 is bounded by .%. Also, if y 1is such that

2 2
2 - -
l¥| > vg:= 3M, |x| <M, then g(x-y)? = gme™¥ FHYY

2
< f%e M s % by choice of €. So the first term on the
€

RHS of 6.1 is bounded by %, showing that fp(y) i3

Finally,
vo:= vo(e) = 0(3 exo(2&)1/8) = o(exp(e) 7B

as desired. Next, V vy € R, define gy(x) = g(x-y). By
1
2me
- ]
178y,

|y-z]. so

a simple computation, lgy-gz] <

N(e) = 2 + O(ZYO%f = O(% exp (€ proving (ii).

Q.E.D.
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Chapter 4

Rates of Convergence for Classes of Functions

§1. Introduction

In this chapter we f£ind general conditions on sequences
Gn of classes of functions so that supgeGn]fgd(Pn—P)] z 0 a.s.
We apply this result to kernel density approximation in the
following way.

Let Xl’ x2,... ‘'be a sequence of iid random variables
with values in ZRk with a common and unknown density £.
Let {gn} be a sequence of probability densities on RS,

For each g define the kernel density of £ by
-7n

Sl
| >3

(1) ;n(X)== g, (x=X,) .

i=1

We find conditions on the In such that

(2) suplg_(x) - £ | > 0 w.p. L.
X

We will need

Def. 4.1.1 Let f,9: X >R and £f(x) < g(x), x €& X.

Let [f,9] = {h: X +Iml|f(x) < h(x) < g(x), x € X}. Given

a class of functions F with a measure P on X let
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NI:= NI(e,F,P) be a collection of minimal cardinality of
of sets [g_,g+} consisting of measurable functions with

g < g+ and such that
- +
Fcuo _ | lg ,g']
g ,9 1N,
+ - - + .
and Jf(g -g )dP < . Each set [g ,9 1 1is called a
bracket. Let card NI(e,F,P):= NI(e).

Note that given ‘F, X, and P, NI is not uniquely
defined. Also, 2N (e) > Nél)(e) > N (e) where Nél)(e)

is as in Def. 1.1l.3.

§2. Rates of convergence

Here is the main result.

Theorem 4.2.1 et P be a probability measure on ka

with a uniformly bounded density £. Let Gn be a sequence
of classes of probability densities on IRk. Suppose 3
constants 1 < C <« and X < 1 such that V'gnE Gn

and all n

A
l!gn(lsup < e

(a)
and suppose that for some Y > 0 we may choose NI(e,Gn,P)
such that

A
) Y £ € N_(e,6,,8), [£°dP < Cn” and

l-l-Y}

Np(e) 2 exp{D(e)n where D(g) < » 1is some
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constant depending upon «¢.

If Pn are the empirical measures for P, then

(3) 1lim sup ]fgnd(Pn-P) (y)| =0 a.s.

€
n--o gn Gn

Remark. De Hardt [6, Lemma 1] showed that for a uniformly
bounded class F of measurable functions on :mk with

N (8,F.P) < ¥s > 0,

lim suplffd(Pn—P)(y)l =0 a.s.
n+>o f€F

Proof: Assume f < M for some M > 1. Note that

(4) fgidx < (sup gn)fgndx < cnt.

Also, we may assume that VY [g~,g7] € Ny

Finally, by (b) we have

(6) Np(1) < exp{D(l)nl-k—Y}.

Assume 0 < t < 1. For each [g_,g+] € NI(e,G,P) find
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~ " - +
a gné g ,g 1N Gn' Then
Pr{ sup Hgn(dPn—dP)(Y)I >t} <

@ <l max |/§, (@p -dP) (v) | > 5} +
lg ,g ]ENI(l,Gn,P)

+ Pr{] max | J§, (ap_-dP) (y) |
(9 g 16N (1.6_,P)

- sup Ifg (dp_-dP) (y)| >
gé(?

Our first goal is to bound the first term on the RHS of (7).

For a fixed 9, € Gn we have

t _ 1 t
pri|fg (dp -dP) (y)| > 3} = Priz|s | > 3}
n 1
2
where S := i g, (X)) - Eg,(X;), and 0n=/\73£_§;_<_/ﬁ'@ n “ .

Using Bernstein's inequality and M > 1, we have

1-: —t% 1-2
Pr{;li-lsl;l > -g-} = Pr{|s_| > £ _n? o b< 2 exp{ﬂg—-——g} <
2/MC 2 + &
3IM
8) <2 e '{:Ei%nl-k}
S ¢ SXPl17mMc .

Multiplying (8) by NI(l,Gn) gives a bound for the first

term on the RHS of (7). That bound is (using 6):
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(9) 2 exp{D(1)nl” Y}exn{lgMC 1-3y

Finally, note for future use that if X <1 and ¥y > 0
then

2

(10) ) exp{D(l)n - Y}exp{lZMC
© n=1

1- A}

< oo,

Now find a bound for the second term on the RHS of (7).
Let zn(g):= fg(dPn—dP), and from now on write g instead

of g, and § instead of §n* Observe that

| max |z (9) | - sup lz (@) ] <
g™, 9" 16N, (1) 90n
< max sup 2 (@) -z, (9) |.

{g~rg+)€NI(l) gé[g-,q+)ﬂGn

Let [g_,§+] éNI and let g € [g-,g+] N Gn' For any
g and j we can find a bracket [gg,g;] € NI(Z-J,Gn)
such that g ¢ [gg,g;]. Given t, 0 < £t < 1, choose m

such that

(11) 2 —m+l

ot
A
[ 38}

and note that % < % and so m > 2. We have
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(12) |z (g)~2z,(9) < |z (g )=z (9] + |z (g)-z (g )|

-, - + +
and z (g ) + jgmdp <z (9) + fgdp < z (g ) + fgmdp.

m

Also I(g;-g;)dP < 2" < %. Using this we may bound

the second term on the RHS of (12): 1z (9) - z (g ) =
f(g-g)d (R ~P) < [(g-gp)dP_ < [(g; -g_)dP_ <
lzn(g;-g;)l + %. Also, zn(g;) -z (g) = f(g-g;)d(P—Pn) <

f(g;-g;)dP < %. Thus, (g)-—zn(g;)] < [zn(g;)._zn(g;)]_k%

| z
n

Thus we may rewrite (1l2) as

) =2, (@) | + 2z, (ay) -2, (90) | + 5

(15) |z (9) -z (&) < lz (9

Therefore Pr{| max |zn(§)| - sup lzn(g),l > %}
(97,97 1EN(1,G) 9¢6,
is bounded by
- . , - + t
(16) Pr{max'lzn(gm) - zn(g)[ + max lzn(gm) - zn(gm)l > Z},

where max' denotes max over [g;,g;] € NI(Z'm,Gn). Now (16)

is <

. ' - _ .
(17) Primax'|z (9. )-2z (§)] > g} +

1 =\ + t
Pr{max lzn(gm) zn(gm)l > gt
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By condition (a) and (5) we have

<ca’ and llg;-g;|| <acnt.

s |la;-3] sup <

sup
Clearly, by hypotheses (a) and (b) we also have

}\ .

A and Var(g;-g;) < 4MCn”.

(19) Vvar(g -g) < 4MCn

Note that (17) .is bounded by

o rt
[

(20) 2NI(2'm,Gn)2Pr{|zn(f)| >

where f has the form g;l-Ej or gm-g;;. Let
1+A

n ——
= - - 2
s,(9):= izl g(X;) Eg(X;). Then o _:= Var S _(g) < 2/MC n .
Let 0:= %. Using Bernstein's inequality, (18), (20),

M>1l, and C > 1 we have

1-2
2
(21) Pr{lz_(£)] > 8} < Pr{|s ()] > 86 2nu o}
n - n Z/M-—C n
72 -
< 2 explip= 0’7

Since (21) holds for all choices of £, (20) is bounded by

2

-m, _l-A-y -g% _1-a
(22) 4 exp{2D(2 )n }eXP{TfﬁE n }
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So the LHS of (7) is bounded by (9) plus (22). Note that

< o

~2

T -m, _1l=A=-Y
) exp{2D(2 )n }exp{lZMC

n=1

14

whenever A < 1, vy > 0. Finally, (7), (10), (22), and

an application of the Borel-Cantelli Lemma combine to

show that for all 0 < t < 1,

Pr{lim sup |[g d(P_-P)(y)| < t} = 1.

nre g€ Gn

Since 0 < t < 1 is arbitrary, (3) follows. Q.E.D.

§3. Kernel Density Estimates

We may apply Theorem 4.2.1 to the problem of kernel
density approximation. Let gn(x) be as in (1) and
k
l

| the usual Euclidean norm on R . Let | be
the Lipschitz norm as defined in chapter 3.1.

g

Corollary 4.3.1 Let {g,} be a sequence of Lipschitz

A
gl lgyp £ Cn%,

c>1, A <1, and such that }|gn[{L < exp(n®) where

probability densities on :Rk with

p<l—A..

Suppose that for ||x]|]| > e,

(23) g, () < K(IaaiTTETT)Y:
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=l,2,---

where 0 < K < Cn” and ¥ > y—. et X, i
- IS e
be iidjmk—valued random variablss with a uniformly bounded

and uniformly continuous density £ such that

' 1 B8
(24) P(||x]|] > 1) <K (IBE—EJ '
for some K' > 2, B > I%—, and all L > 1. Suppose that
Ye>o0 | g dx = 0 as n > =. Then
|x|>e
(25) suplgn(x)-f(x)[ o a.s.
X

Proof: Let Gn:= {gn(x--): X QIRk}. We find a bound on

NI(E) and apply Theorem 4.2.1.

Given Yy > T%X’ choose B and B' such that

A

Yy >8> R' > =" Given n > 1 and € > 0, let M:= M(g,n):=
venr 1/8B A 1/8!
exp(EEEEE_) and Yoi= yo(s,n):= exp(%—)

Given a > 0, let B(a) be the ball centered at the
origin of :Bk with radius a. Let x € ch and

h(x) = cn™l (x) +

B (M) €

€

-2-' lB (M) (X) .

Given M as above consider only those ¢ > 0 such that
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Y, > 2M. For these ¢ observe that if llyl] > v, then
(26) 0 < g (x-y) < hix).

(26) is true since if ||z|| > M then

A
2K'Cn n

oy m
-

9,(2) < K(

by definition of M, K, K', vy, and B. Also

(27) [hdP < CnAP(B(M)C) + £ < anK-__iL__ + £ < ¢,
- 2 - 2K Y 7 =
K'Cn
Now on B(yo) find xi_é ﬂgc dense within % and let
z €
(28) g9; = g, (x-x;) * 5 .

Using (26), (27), (28), and the Lipschitz condition on g

we have
y
NI(E) <2+ A(gg exp(np))k

for some A < =, By the definition of Yo Wwe have

NI(e,Gn) <2+ A(%)kexp{knl/s'e-l/a'}exp{knp}. Now

' A A
B' > =% BT <1 -}, and for some Y > 0
1.k 1-A=-y
(29) N (e,6.) < A(Z) "expi{Dn }
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where D:= D(g):= st_l/B .
Also,

2 A 2 A
(30) /h™dP < Cn” and Jfg dP < sup g, fg dP < NCn',

where N is the uniform bound for the density £. Thus

it is possible to choose NI(e,Gn) such that V:f € NI’

ffzdP < C'nX for some 1 < C' < @, Using (29) and (30),

Theorem 4.2.1 shows that

(31) suplg_(x) - Eg ()] B0 a.s.
X

It only remains to show

Lemma 4.3.2 supIEgn(x)—f(x)I + 0 as n - o,
X

Proof: PFor all &8 > 0 we have

suplE;n(x)—f(x)I < sup [ if(x-y)—f(x)lgn(y)
X X lyl<s
+ sup | |f(x—y)-f(x)|gn(y)dy
x |yl|>8
(32) < sup sup |£(x-y)-£(y)| + 2N [ 9, (¥)dy

x |yl|<s ly|>¢
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let n > 0 be arbitrarily small. By choosing §
sufficiently small we can make the first term on the RHS
of (32) less than n/2. Having so chosen §, we can
then choose n so large that the second term on the RHS
of (32) is also less than n/2. This proves the lemma

and the Corollary. ‘ Q.E.D.

Remark: Let g be a Lipschitz probability density on
[-a,al, a < 1, with Lipschitz constant K. Let hn = n_k.
Assume g < C. The kernels 95 defined by

gn(-):= gn(ﬁ—)(%—) satisfy the hypotheses of Corollary 4.3.1.
n

This special case is treated by Devroye and Wagner [7] and

2 )

Tog @ and without restric-

they prove (25) with %— = of
n

tion (24).

Assuming a unimodal condition on the densities 9,

we may relax the hypotheses of Corollary 4.3.1 and obtain

Theorem 4.3.3. Let G,, n > 1, be classes of probability

densities {g_} such that Yno>1
n —

(a) 95 is unimodal Vgne Gn’

. _ / n
(b) there is an a, =o TBE_TEE_E such that

Vgne Gn < a_, and

v gl lgup < 24

(c) Ye>o0, sup [ gdx + 0 as n + .
g €6, Ix[>e "
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Let P be a probability measure on IR with a uniformly

continuous density £. Then
sup sup|gn(x)—f(x)l o a.s.
ngGn X

Proof: Using a slight modification of Lemma 4.3.2 and

its proof we have

sup sup[Egn(x)jf(x)! 2.

gﬂEGn X

So it suffices to show

(33) sup sup|fgn(x-y)d(Pn-P)(y)| 20 a.s.
€6 X
9n “n

Define G := {gn(x—-), x € R, and g ¢ Gn}. Then it

suffices to show

sup| [h_a(P_-P) (y) | 2o a.s.

thGn
h_ . |
Let H := {E; :h € G} and H:= {h such that h is
unimodal and |]h|lSup < 1}. Then H C H. By Theorem 1.9

of [13] the CLT is satisfied uniformly over #H. An appli-

cation of Theorems 1.1 and 1.2 of [15] shows that the LIL
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is satisfied uniformly over H. For the classes Gn we

have
- .
}Ifgp {vn(hn)[ < O(a v1log log n) a.s
n n

or, equivalently,

_ og log n
hrsfu% lfhnd(Pn P)(y)]| < O(an/——————I = ) a.s.

n

By definition of a s (33) is clearly satisfied. Q.E.D.
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