HOMOGENIZATION AND DEHOMOGENIZATION

SCHEMES FOR BWR ASSEMBLIES

by

PHILIPPE JEAN F/I/NCK
Ingeénieur Civil des Mines
Fcole Nationale Supérieure des Mines de Paris
(1980)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1983 (2 )

@ M assachusetts Institute of Technology 1982
N

Signature Of AllthOI‘: ------- a0 000 v s e N I I P N S EEREEEEREEEEEE .
: C_/D/e{)artment of Nuclear Engineering

November 22, 1982

Certified by: ..o

WY RTECE- TR B W BTN WW e d e e e e b4 e B4 s

ACCEpted by: ------------ U'- ------------ @ 8V e @Té e 8 ® e e P e NS Bsese
Allan F. Henry
Chairman, Department Graduate Committee

MASaACHUSETTS INST!
OF TECHNULOGSY TuTE

APR 151983

LIBRARIES



ii

HOMOGENIZATION AND DEHOMOGENIZATION

SCHEMES FOR BWR ASSEMBLIES

by
Philippe Jean Finck

Submitted to the Department of Nuclear Engineering on November
22, 1982 in partial fulfillment of the requirements for the Degree
of Doctor of Philosophy in the field of Nuclear Engineering.

ABSTRACT

The objective of this research is to apply nodal equivalence theory
and the analytic nodal method to the analysis of Boiling Water Reactors.
This includes developing accurate homogenization schemes for estimat-
ing equivalence theory parameters, and devising accurate methods for
inferring local fuel pin power densities from the nodal results.

The use of surface flux response matrices for estimating equival-
ence theory parameters is first investigated. Analysis of several
realistic two-dimensional BWR benchmark problems shows that the use
of surface flux response matrices leads to maximum errors in assembly
powers of less than 3%. This scheme is shown to improve consistently
the nodal results predicted by conventional homogenization methods.

‘The computational efficiency of this scheme is shown to be one order of
magnitude larger than that of conventional finite-differences methods.

Two-dimensional homogenization schemes are then extended for
three-dimensional calculations. Analysis of a three-dimensional bench-
mark problem shows that axial discontinuity factors are well approxi-
mated by unity.

Reconstruction methods are developed for various nodal solutions.
They result in maximum errors in pin powers of less than 6%,

Homogenization and reconstruction methods are then applied to

depletion calculations. A simple approximation allows these methods
to yield consistent results throughout life.

Thesis Supervisor: Allan F. Henry

Title: Professor of Nuclear Engineering
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The safe and economical operation of a modern nuclear reactor
requires the precise knowledge of the spatial power distribution. The
early developments in the field of nuclear reactors relied on a large
quantity of experimental information. Unfortunately, with the increas-
ing complexity and extreme operating conditions of modern reactors, any
major use of experimental facilities to guide design becomes prohibit-
ively expensive. Thus in the last forty years complex theoretical and
computational tools have been developed to calculate the space and
energy distributions of the free neutron population. These methods
have now reached a high degree of reliability, and are very accurate
provided the necessary basic nuclear data can be accurately measured.

These reactor physics calculations serve, from an engineering
viewpoint, to determine the state variables (temperature, power, void
fraction, xenon concentration, *++) which describe the condition of the
core. Thus, the operating limits of a reactor can be determined in
order to insure the safety of the reactor and its environment. These
calculations allow for better fuel management capabilities, and reduce
the safety margins included in the design of the core. Thus, important
financial savings can be achieved if reliable methods of analyzing

reactor behavior are available.

1.2 Solution Methods

The Boltzmann transport equation [1] accurately describes the

behavior of the neutron population in phase space (position, energy, and
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direction of travel). TUnfortunately, for realistic problems the solution
of that equation is beyond the reach of even the most sophisticated
computational tools available today.

Therefore, different levels of approximations to the transport
equation have been devised. Numerical schemes to solve this equation,
such as Monte Carlo or discrete ordinate methods [1], yield very
accurate results, but are still prohibitively expensive for large problems.
The most commonly employed approximation for industrial purposes is
the group diffusion equation, where the angular distribution of neutrons
is assumed to be at most linearly anisotropic [1]. This equation is
routinely solved by finite-differences computer codes [17, 18].
Unfortunately, excessively large numbers of spatial mesh points have to
be used to implement these codes for realistic three-rdimensional
problems. Furthermore, the information provided by these calculations
is often overabundant, For example, many applications require only
the determination of the global eigenvalue and the average assembly
powers.

Various methods have been developed to reduce the cost of these
calculations. Synthesis methods [26], finite element techniques [27],
response matrix methods [28], and nodal methods [22], are the most
commonly employed methods.

It is the purpose of this thesis to develop schemes based on nodal
methods, aimed at replacing standard finite-differences methods for the
Analysis of Boiling Water Reactors. Three distinct and successive
tasks have to be carried out [14]. First it is necessary to develop a
nodal procedure. Next it is necessary to determine the parameters

used in the nodal equations. Finally, it is necessary to recapture the
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local fuel pin power densities from the nodal results.

1.3 The Development of Nodal Methods

The general principle of Nodal Methods as applied to a BWR is
to divide the reactor core into large nodes (~15 cm x 15 cm x 15 cm)
consisting of an axial segment of a fuel assembly and its surrounding
control rod and moderator material, The node-averaged flu:»\zes and
surface-averaged net currents are generally considered as the unknowns
of the problem. An integration of the neutron diffusion equation over
each node yields an exact balance condition relating these unknowns.
Unfortunately, this equation is not sufficient for determining all the
unknowns. Thus, other relations, called coupling equations, between
the node-averaged fluxes and the face-averaged currents must be
obtained. Numerous ways of deriving these coupling equations and
solving the resulting system of coupled equations have been tested [22].

In this thesis we shall use the Analytic Nodal Method which was
recently developed at M.I.T, [2,23], and has been shown to be computa-

tionally very efficient [2, 3, 6, 7].

1.4 The Determination of Spatially Homogenized Parameters

for Diffusion Theory

The Analytic Nodal Method, as implemented in the computer
code QUANDRY [2], requires the knowledge of diffusion theory parameters
homogenized over each node, and uses them to calculate node-averaged
quantities. The solution of the nodal problem cannot reproduce the
detail of the exact heterogeneous fluxes. Nevertheless, the homogenized
parameters should be such that some average quantities are preserved,

These quantities are the global reactor eigenvalue, the node-integrated
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reaction rates in each energy group, the average net currents on all
nodal faces, and the nodal powers.

The determination of "exact'" homogenized parameters (i. e, they
preserve all these average quantities) is not a trivial task. In order to
see how they are defined, we shall assume for the moment that an exact
solution to the heterogeneous problem is known. Thus, the following
quantities are known:

qog(_r_) is the scalar neutron flux in group g (g =1, -+, G)

at point r;

Jg(_y_) is the net neutron current in direction u, in group g,
and at point r;

Eag(g) is the macroscopic cross section for event o
{a =r, a, gg', £, vf) in group g, and at point r;

xg(g) is the fission neutron spectrum contribution to group
g at point r;

Dg(_x_') is the diffusion coefficient in group g, and at point r;

A is the global reactor eigenvalue.

The corresponding quantities for the homogenized problem will be
denoted with a circumflex. The homogenized parameters are supposed
to be spatially constant within each node.

The preservation of nodal quantities implies the following

relations:
A A
= =
SV. z czg(z) (og(g‘_) dv Sv. "’arg(V) <pg(£) dv
i i
u _ A y A |
Selemas = - (B0 28 o as
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i =1, -, N (1.1)
where
. .th
vi is the volume of the i""" node;

s!: is the kth face of the ith

node;
K is the total number of faces per node;
G is the total number of energy groups;

N is the total number of nodes.

Consequently the exact homogenized parameters must be such that:

SV. g™ 0,0 dv

% i
ag S b (r) dv
v. B8
i
u
Ssk dx Jg (r)
A -
D = - (1.2)
g S dsl' (r)
Sk du Tg =
i

The homogenized diffusion coefficient defined by Equation (1.2)
depends on the face where it is calculated. This fact implies that there
are six different diffusion constants for each group in a given node and
thus that homogenized parameters giving rise to the standard mathematical

formalism of diffusion theory (involving a single group-diffusion constant
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for each homogeneous node) do not exist,

Two distinct approaches to overcoming this theoretical limita-
tion have been taken. In the first approach, which is today fairly
standard, "flux weighted constants' are defined. The heterogeneous
flux distribution used to weight the heterogeneous cross sections in
Equation (1.2) are obtained from aig *+ h = 0 assembly calculation, and
the volume integral of the homogeneous flux is assumed to be equal to
the volume integral of that assembly flux, Thus, the flux-weighted cross

sections are defined by:

" A

e BV- Eag(z) o (r) dv

T = - (1.3)
ag S qog(g) dv

V.
1

where qoéL (r) is the heterogeneous assembly flux.

The homogenized diffusion coefficient is usually defined by:

_ | S -1
{ p2lmol (o av
FWC w 8 F
D - — (1.4)
g 5 Oy (r) dv
V.

1

Unfortunately, the use of these parameters does not guarantee the preser-
vation of any of the nodal quantities of interest, and errors in nodal
powers as high as 20% have been reported [3].

The second approach is to define "exact' homogenized parameters
by modifying the theoretical model in which they are to be used, One
such method, "equivalence theory', was originally developed by

Koebke [24], and later modified by Smith [3]. Instead of relaxing the
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conditions imposed by Equation (1.1), it adds extra degrees of freedom
to the nodal method, thus allowing for the exact preservation of all
reaction rates. ''Equivalence theory' will be discussed in detail in
Chapter 2.

Unfortunately, ”equivalen-ce theory' does not provide a practical
way of determining the exact homogenized parameters. Several schemes
have been proposed [3, 6,25], but, for BWR!'s, they yield only a margin-
ally acceptable approximation to these parameters. It is the fundamental
purpose of this thesis to study more accurate homogenization schemes

applicable to BWR's,

1.5 The Reconstruction of Heterogeneous Fluxes

The fact that nodal methods do not predict detailed flux shapes
throughout the core is a fundamental limitation to them since such
detailed information can be of vital importance in the course of designing
and operating a reactor. Thus, the necessity of reconstructing hetero-
geneous fluxes and pin powers was recognized early [16].

The development of accurate nodal methods brought about the
creation of sophisticated reconstruction schemes. Koebke and Wagner
[16] proposed two such schemes, the imbedded heterogeneous assembly
calculation method and the modulation method.

In the modulation method, heterogeneous assembly calculations
are multiplied by smooth shapes derived from the nodal calculations, in
order to obtain reconstructed quantities. This approach was taken by
Hoxie [7] and Khalil [19], who report excellent results for PWR's,

The imbedded heterogeneous assembly calculation method con-
sists of using information obtained from the nodal caleulation to deter-

mine the boundary conditions for a heterogeneous assembly calculation.
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Excellent results were obtained by Koebke and Wagner [16] when
incoming partial currents were used as boundary conditions, Parsons
[12] also reports excellent results for PWR's, when surface fluxes are
used as boundary conditions. The implementation of such schemes for
BWR calculations is closely connected to the quality of the nodal solution
available, and thus with the accuracy of the homogenization scheme used.
In Chapter 4 of this thesis we shall develop accurate reconstruction
schemes, based on imbedding methods, for various homogenization

schemes,

1.6 The Application of Nodal Methods to

Depletion Calculations

Depletion calculations are currently performed with great
accuracy by finite differences codes such as PDQ7 [17] or CITATION [18].
These codes keep track of each nuclide concentration throughout space
and time by solving the differential equations relating these nuclide con-
centrations to the heterogeneous fluxes [1, 9].

Heterogeneous fluxes are not obtained directly from nodal calcu-
lations, and flux reconstruction is generally a lengthy and expensive
process. Thus, depletion methods based solely on nodal results must

be developed. This will be the objective of Chapter 5 of this thesis.

1.7 Objectives and Summary

This thesis has three objectives, First, accurate and efficient
methods to estimate equivalence theory parameters for BWR's need to
be developed. Second, accurate flux reconstruction schemes need to be
implemented for available nodal solutions. Third, these methods need

to be applied to depletion calculations.
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In Chapter 2, "equivalence theory' and the Analytic Nodal
Method will be reviewed. Various homogenization schemes [3, 6, 25]
will be examined. In Chapter 3 a homogenization scheme based on
surface flux response matrices will be introduced. It will be shown to
be very accurate and efficient . In Chapter 4, flux reconstruction
methods will be described, and they will be shown to be accurate to
within a few percent. These homogenization and reconstruction methods
will be extended to depletion calculations in Chapter 5, Finally,
Chapter 6 contains a summary of this investigation and recommendations

for future research.
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CHAPTER 2
THE NODAL EQUIVALENCE THEORY AND THE

ANALYTIC NODAL METHOD

2.1 Introduction

In Chapter 1 it was shown that the diffusion theory model does not
allow for ‘enough degrees of freedom for exact homogenized parameters
to exist: no set of homogenized parameters, including the standard flux-
weighted constants, can reproduce the nodal quantities of interest (global
eigenvalue, nodal reaction rates, nodal fluxes and nodal surface currents).

In this chapter we shall review the nodal equivalence theory, which
by extending the hypothesis of the diffusion theory model, permits the
existence of exact homogenized parameters. We shall then discuss how
the resulting equations for the homogenized core are solved via the
analytic nodal method, as implemented in the computer code QUANDRY.

These theories are more completely described in Smith's N. E.
thesis [2] and Ph.D. thesis [3].

Section 2 presents the nodal equivalence theory. In section 3 the
QUANDRY model is examined., Section 4 reviews some of the methods
developed for finding close approximations to the reference parameters.

2.1.1 Notation

All reactor problems are treated in three-dimensional Cartesian
geometry. The notation %, y, and z represents the coordinate directions,
while u, v, w are used as generalized coordinate subscripts, Each
problem is divided into a set of regular parallelepipeidal blocks (nodes) at

the coordinates:
X ie[1,I]

yj! je [1,J]



kell,K]

Zk,

The node (i, j, k) is defined by
x ¢[x., x.
i

1+1]

v elyy viql

A e[zk, zk+1]
The node widths are expressed as
hE = uz+1 - uz; us=x,y,z
and the node volume is
- X,y .2
gk T %Ry By

2.2 Nodal Equivalence Theory

Throughout this investigation, all problems are assumed to be
steady-state. The time-dependent behavior of the neutronic properties
of the reactor materials, resulting from depletion effects, is significant
only if integrated over very long time periods; time derivatives due to
these effects are generally neglected when calculating flux distributions
throughout a core.

The steady-state Boltzmann transport equation states an exact
neutronic balance in the small volume dE dQ dV around the point (E,g, T)

of the phase space

£ WrQE) + I (r,E) ¥, Q5
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= SO aer { aol4 EX'® v I (0, B) + 3 (5, Q' 4 0. B 4 B) [p(e, 0, EY)

(2.1)
where
ib(EonE) = directional flux density at point r, direction Q
and energy E
xj(E) = fission spectrum for isotope j
A = global reactor eigenvalue

and the cross section notation is standard.

It is very common to assume that the differential scattering cross
section ES(_I;,Q' + 0, E' 4E) is a function only of the relative angle
between the in- and out-going directions of neutron travel. By integrat-
ing (2. 1) over all directions of neutron travel and OVer an energy range

AEg (g=1, «++, G), we obtain a set of G exact equations

v . _J_g(g) + Etg(g) qog(g)

= % 1 v (ry + = (r)_’co (r) (2.2)
gi=1 LX Xg Vg £ gg'='17g' = '
where

o (r) = g an { $(r,Q,E) dE

g . AR
J (r) = S dQ Q U(r,Q,E) dE

g
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S dE{  dE'T_ (r,E' + Bo(r, EY)
AE “AE S0 =
T (n) = g E
X = S x(E) dE
g AR
g
where
owE = (davram
1 du
_ o 1
Z,,(LE > E) = 8-1 5— L, (r, E'+E, Ho)

For the sake of notational simplicity, we assume there is only one
fissionable isotope in the reactor.
Integrating (2.2) over node (i, j, k), and applying the divergence

theorem gives:

hYy h? (7% - J% + h¥pZ (JY - 37

]k (gi+1,j,k gi,j,k> Ik £i,i+1,k 84,k
+ h¥w (g% -J? +V,.. T -

1 ] ( gi.j; k+1 gl’ j, k> 1ank tgl"]’kcpgi J K
G
1 —_ -

= ¥ Vv, . =X . VD + X [0s] (2, 4)
g'=1 LJjk I:K g fg’i,j,k gg'i,j,k] g'i,j,k

S
ogQ
-
G+
-
n
Raul P
.
-
S
Uql—\
%
o,
s
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g (r) Zag (r) dr

fag = 1rJl—k
i,j, k O V. .
B,k Lk
z (r) (r)
Xv. . gg'— (og - d£
'E . = I’J:k
88 ik 5 V. .
I.,Jl cpgi’j’k 1,‘]’1{
§Vm+1 W1
dv S dw J_(u.,v,w
u ‘Vm Wn g g ?{ #
J = - uf v, v#w, and
813, k b by
m n

uFw
{L,m,n} - {i,j,k}

We now want to introduce a set of mathematical quantities called
"exact homogenized parameters", denoted with a circumflex, spatially

constant in each node and constant in each energy group, which, when

used in the neutron balance equation

A A
7w+ B 8w

G 1 N\ A
- gEl [§Xg VEgg zgg,] b, (2. 5)

will yield a solution having the following properties:

1. Reference nodal surface currents are preserved in each

energy range.

Reference nodal reaction rates are preserved in each
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energy range.

3. Reference nodal fluxes are preserved in each energy

range.
(2. 8)
Integrating (2. 5) over node (i, j, k) gives:
A A
ny hy §x - gx ) + B Ky (Jy -3y )
] &i+1,,k 81,4,k L 8L, i+, k B4,k
A A A
+ Y (7% - J? >+v..k2t ()
PUYV B Bk RO 5k 8L,k
G AN A
1 TA
= X V. . = vy + (2.7)
g'=1 LIk [ Xg ', 5k gg'i.j,k-' @g'i,j.k
where
A 1 C A
© 2 o (r) dv
8i, 1,k Vi, k Sy g

i, i,k

Comparison of (2, 7) and (2. 4), along with conditions (2. 8) yields
A

A=)

A
= = ! 2.
Ea EO[ o t,f, gg (2.8)

All coefficients of Equation (2.7) are now known, but this equation
still contains unrelated unknowns, the homogeneous fluxes and face-
averaged currents. In order to find a relation between these unknowns,
we shall solve Equation (2. 5) within each node while assuming that Fick's

law is true. Nevertheless, this assumption does not 1limit the equivalence
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theory to the usual diffusion theory model. Any of the models used to
solve the transport equation (such as Monte=-Carlo, discrete ordinates,
multi-group diffusion theory ...) can be implemented in the equivalence
theory content,

In the diffusion theory model, adjacent nodes are coupled by
imposing the continuity of surface fluxes. When heterogeneous fluxes
are considered, this continuity is verified because of the physical nature
of these fluxes. Homogenized fluxes have only a mathematical meaning,
in the sense that they are not measurable quantities., Thus, there is no
reason to expect that they are continuous at assembly interfaces,
Nevertheless, a coupling relation between adjacent nodes is still needed
for solving the nodal equations, If we define the heterbgeneous one-

dimensional fluxes by

m+1 Wnt1
S dv S dw ¢ (u,v,w)
v \i g
(pu. (u) = I n
gz,m,n h:ﬂ h:
it is trivially true that
u
) g (uz)
u £, m,n
o) (uz) x =
gf:‘l, m,n (u )
gz-l, m,n 4
-
Ay gz, m, n (uﬂ..)
= (u,) x
g L Ag
4, m,n 0 (uz)
gﬂ, m, n

We now define discontinuity factors as
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- o4 (uz)
£u - gz,m.n

€2, m, n AU (u,)

mgz,m,n L
u

+ Py (u,)
fu - 2, m,n
gl_lym)n A (ll )

(Pgﬂ-l, m, n 4
and the needed boundary condition for Equation (2.5) becomes:

ut Al (0.) - u Al
£

f ©® %) (2. 9)
gz-l,m, n gz-l,m, n

f
gz, m,n gﬂ,, m,n

The set of homogenized parameters defined by (2. 8), along with
the discontinuity factors £u” » Will reproduce, in a node and energy
group averaged sense, anyzs’é;l&trilon of (2.1); it is very important to note
that they will do so if and only if the same relation between current and
fluxes is used when determining them and when solving (2.5) (whatever
this relation is!).

Throughout this investigation, we shall limit ourselves to solving
the 2 group diffusion equations for the heterogeneous ﬂuxés; although
this model is far from being exact [1], especially near strong hetero-
geneities,our purpose will be to measure the discrepancy between our
nodal schemes and '"reference" finite differences methods. In that sense,
we shall determine only the accuracy of the nodal scheme, not the
quality of the neutronic model being used.

The next section will show how this particular model has been

implemented in a computer code.



2.3 The QUANDRY Equations

2.3.1 Introduction

The purpose of the QUANDRY computer code is to solve the
equations corresponding to the extension of the diffusion theory, called
equivalence theory, which was descriked in the previqus section. In the
framework of this theory, a reactor is divided into an array of large
homogeneous blocks whose neutronic properties are described by the
homogenized cross sections defined by Equation (2.8). In this section,
these parameters are assumed to be known.

In order to be able to solve the global homogeneous problem, we
shall first define all variables necessary to the description of all
phenomena. Then, the sufficient number of equations to determine all
these variables will be derived. Finally, the numerical solution to
these equations will be discussed.

2,3.2 Problem Description

Equation (2. 7) states an exact neutronic balance within each node

and each energy group. It can be rewritten as

h h2 ix + h* hiﬁy
j 8,5k T % %4k
% yAZ A A
+ hi h?' L + V.., [
I8 BB e Tk
G /\
1 A
= V. . z [% T <X v :’35
Lhkgar D85k §"Bmn Fyk Bk
(2.10)
where
o g
gi,j,k gz.J,.l'm’n gﬂ"m’n
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is the face averaged net leakage in direction u. Equation (2. 10) shows
that the global problem is defined, for each node and energy group, by a
set of 4 independent variables: the volume averaged flux and the three
directional leakages. A set of 4 independent equations relating these
quantities has to be defined for these variables to be uniquely determined.
One such equation, the nodal balance Equation (2. 10) is already known.
Three more relations, called the spatial coupling equations, will be
obtained by solving the homogeneous diffusion equation within each node,

2.3.3 The spatial coupling equations

By integrating the diffusion equation for the homogeneous flux over
the two directions transverse to direction u, one obtains a second order

differential equation for the one-dimensional homogeneous flux:

o} Ay
-D - O A Au
g 2 g (w ® (u)
£, m, n du 4, m, n €, m,n €4, m,n
G A /N A
- = (2, * %Xg VDo )w;' (w)
g'=1 * 88 4, m,n ) L, m,n gz,m,n L, m,n
A Vm+1 V1 32 A
= D S dv S dw —5 0 (u, v, w)
g.@.,m,n v w dv gz,m, n
m n
A Ym+1 Pt 32 A
+ Dg S dv S dw —5 qog (u, v, w)
£,m,n Vo Y HW L,m,n
gu
= " %8,m,n W u=x,y,2 g=1,-+,G  (2.11)
A
In that equation, s4 (u) represents the net leakage rate in the
L, m,n

directions transverse to direction u. This equation is written in matrix
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form as

(B o) 22 85, ]+ 8 ] 42 0]

- -5 L W] (2. 12)

where
[ﬁz,m, n] is a G x G diagonal matrix containing homogenized
diffusion coefficients;
[cpz m, n ] is a column vector of length G containing homogenized
one-dimensional fluxes;

A
I:Z‘e m nJ is a full G x G matrix whose elements are:

1
= ) - ¥ - =
agg, Ggg' tgz,m,n g’g'z,m,n ﬁxﬂ'm’n
7%
X v
fg'!,,m,n

where § gl is the standard Dirac notation.
[ég m n(u)] is a column vector of length G containing the net

transverse leakages.

This inhomogeneous second order differential equation could be
easily solved if the transverse 1eakage term [gf o n(u)] were known,
A 1 4 ’

Unfortunately, only its average over u, ,_S

is known. To over-
_ 4, m,n

come this difficulty, an approximation concerning the shape of the trans-
verse leakages must be made.

Two such approximations can be made in QUANDRY: this shape
can be assumed to be either flat or quadratic. For the direction u, the

flat transverse leakage is equal to its average value, while the quadratic
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chosen is such that the integrals of the quadratic transverse leakage
approximation over the node (£, m, n) and the two adjacent nodes

(£-1, m, n) and (£+1, m, n) preserve the average transverse leakages over
each node.

Once an approximation for the shape of the transverse leakage has
been made, the differential Equation (2.12) can be solved for the one-
dimensional homogeneous flux. This equation being of the second order,
both the flux and its derivative (which is proportional to the net current)
have to be specified at a given point to yield a completely determined
solution.,

The actual solution to (2, 12) involves some heavy notation,
though it is algebraically trivial. It will not be repeated here since it is
very well documented in [2]. It is assumed that this solution is known,

Figure 2.1 shows three adjacent QUANDRY nodes, Equation
(2.12) is first solved for node (£-1, m, n) subject to the homogeneous

boundary conditions (one-dimensional flux and currents) at u = u By

4
integrating the resulting solution over the range !I:uz-l' uZ], and
rearranging terms, one obtains the homogeneous one-dimensional flux at

Ay .
Uys Oy 4 m, n (uz), as a function of the surface averaged current, trans-

verse leakages and volume averaged fluxes

[AE 1, m, n(uz)] ( -1, m,n z)_] [‘% 1, m,

[gz 2, m, n] [gg-l,m,n]’ [g:’ m,n}> (2.13)

By similarly imposing the homogeneous boundary conditions at u = u, on

node (4, m, n), one obtains:
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a; (u ’
L-l,m,n (Su (Ll )
>
gﬁ,,m,n A1
A
'quu (u,)
gz,m,n
A A
Ju (u,)pd (u,)
g‘z-l,m,n gz,m,n
Au Au
J (u YeJ (u )
8,mn V| 81 m,n M1
' (uppy)
gz+l,m, ¢}

Node (£-1, m, n) Node (2, m, n) Node (4+1, m, n)

2-1 Yy Ug+1 Ug+2

Fig. 2.1 Three adjacent QUANDRY nodes.
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mz m, n(”z)] B g)\ <[ £, m,n z)] [ ]
[z 1, m, n] Léz m, n] [gzﬂ m, n] (2.14)

By imposing the continuity condition (2. 9), along with the net current
continuity condition, the one-dimensional homogeneous fluxes appearing

in (2,13) and (2, 14) can be eliminated; the resulting relation will be of

the form:
hk ([ﬁu(uz)]’ [g%z-l,m,n]’ [gl.;-Z,m,n]’ [é.é-l,m, n_—li’
[gz,m,nj’ [gzﬂ,m,n]) = 0 (2. 15)
where
[‘?u(ul)] ) [32, m,n(uz)] - [3;-1,m, n(uz)]

Though Equation (2. 15) has been written in an implicit form, it is
a linear relation (except for the eigenvalue dependence). It is particular-
ly important to notice that currents can be expressed as functions of the
other parameters in this relation. The same process can be repeated at
u=ug, g, and will yield a relation analogous to (2. 15), By extracting
the face-averaged net currents at u, and Upiq from these equations, and
subtracting them to obtain the net leakage in the u-direction, the spatial
coupling for direction u is found: this equation relates only net leakages
and nodal fluxes; the face-averaged fluxes and net currents have been
eliminated.

We have now found enough equations to determine fully a solution

to the equivalence theory equations. The next section will discuss how
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these equations are solved in the computer code QUANDRY, and will
outline the possible problems associated with the numerical schemes used
in QUANDRY,

2.3.4 Numerical Solution to the QUANDRY Equations

The combination of the nodal balance equation with the three

directional coupling equations yields a system of the form:
[H] [9] = %[P} [4] (2. 16)

where
A A A A

@1 = col {[pl. (T, (T, [T} isa4*G*1*J %K column
vector, containing the nodal fluxes and net leakages in
each direction:

(Plis a (4 *G*I*J*K)x (4% G*1%Jx* K) square matrix,
containing the fission production terms in the top left
(G*I*J*K)* (G=*I%Jx*K) Square sub-matrix.

Its elements are zero everywhere else.

[Hlis a (4 +* G*I*J*K)x (4% G*1%J % K) square matrix
whose elements result from the coupling equations
derived in section 2. 3. 3. These elements depend on 4.

This last dependence of [H] on the global eigenvalue of the homogeneous
problem creates a nonlinearity in Equation (2. 16). Nevertheless,
QUANDRY is generally successful in solving this eigenvalue problem by
implementing the following four levels of iterations:

° an updating process, wherein the matrix [H] is recalculated

every few (usually 5 to 10) outer iterations;

° a fission source iteration ("'outer' iteration), accelerated

through Wielandt's scheme [4], and used for determining
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the maximum eigenvalue;
© within each outer iteration, "inner" iterations, using a
modified Gauss-Seidel scheme [5], performed to invert [H];
e acyclic Cheybychev Semi-Iterative method [5] to perform
the flux iterations.
In the course of this investigation, some nodal schemes which involved
the use of QUANDRY were found to be non-convergent,. Though this
_non-convergence is not necessarily due to the QUANDRY numerical
schemes, it seems important to point out where they may fail.

We already indicated the nonlinear nature of Equation (2. 16).
Under these conditions, there is no mathematical guarantee that
QUANDRY will converge. Nevertheless, Smith [2] indicates that when
a good estimate of the eigenvalue of the global homogeneous problem is
known, the effects of updating the matrix [[] should be quite negligible.
Unfortunately, in the case of iterative schemes, eigenvalues can vary
widely from iteration to iteration, as shown in Chapter 3.

Cheng [6] pointed out that, as both energy groups are solved
simultaneously during the flux iterations, diagonal dominance is not
ensured, so that these iterations are not guaranteed to converge.

However, QUANDRY has been used very extensively at MIT, and
the accumulated experience indicates that, if realistic input parameters

are used, it never fails to converge.

2.4 The Generation of Approximate Equivalence

Theory Parameters

2.4,1 Introduction

The "exact" equivalence theory parameters are defined by

Equation (2, 8):
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gog(£) Zag(z) dr

% - i, i,k
ag. . =
i, j, k Vl,],k 2

81,5,k

This relation involves the knowledge of the exact heterogeneous
macroscopic cross sections Zag(E)’ along with the knowledge of the
spatial shape of the reference fluxes, qog(;)/qs iy . How two-group

v s
macroscopic cross sections are obtained will be discussed in the next
section.

Determining the shape of the reference fluxes is probably as
difficult as determining the fluxes themselves. Furthermore, there
would be no advantage in using elaborate nodal methods if the reference
solution was known anyway. It is therefore of primary interest to be
able to generate an accurate and cheap approximation for the detailed
shape of the reference fluxes, Section 2.4.3 will present and discuss

the various methods which have been devised for that purpose.

2.4.2 Determination of 2-Group Heterogeneous

Macroscopic Cross Sections

The general expression for a heterogeneous macroscopic cross

section in group g is:

€ dE T n.(r)o_ _(E)o(r, E)
.JAEg ] ]— o] -
Z (r) = (2,17)
g~ S olr, E)
AE

g

where
nj(z) is the density of isotope j at point r;
caj(E) is the microscopic cross section for event ¢, for

isotope j, at energy E;
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¢(r, E) is the flux of neutrons with energy E at point r.

The exact knowledge of all these quantities is necessary for the
calculation of Zag(z). Unfortunately, their determination is clearly an
impossible task: for example, calculating (p(g., E) would require solving
the continuous diffusion equation. Furthermore, the isotope densities,
nj(z), are a function of all time-dependent pointwise fluxes. Ultimately,
the knowledge of microscopic cross sections and depletion dependent
phenomena is not perfect; even though the capacities of digital computers
increase rapidly, the basic experimental determination of these physical
quantities remains a final limit to the precision of Reactor Physics calcu-
lations.

Numerous approximate methods have been devised for the estima-
tion of macroscopic cross sections [1,8,9]. They generally rely on
assuming the separability of ¢(r, E) with respect to space and energy.
The energy component is then approximated by known shapes, or obtained
from spectrum calculations.

The implementation of energy collapsing procedures in the‘
equivalence theory framework has been studied only superficially [10].

In the rest of this investigation, it will be assumed that the 2-group
heterogeneous macroscopic cross sections of all materials involved are
known.

2.4,3 The Determination of Approximate Equivalence

Theory Parameters

2.4.3.1 Problem Definition

The most common approach to approximating the shape of the
reference flux is to solve the diffusion equation within each node, applying

some set of assumed boundary conditions. This set of boundary
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conditions should obey two rules: first, it should be general enough so
that just a few of these local calculations are sufficient to solve the
global problem; second, and most important for the accuracy of the
results, it should respect the physics of the problem, in order not to
introduce artificial distortions.

Partial incoming or outgoing currents, net surface currents, or
surface fluxes, if defined on all faces of the node, each constitute a set
of boundary conditions sufficient to determine a unique solution to the
diffusion‘equation within the node. Each of these sets of boundary
conditions can be described entirely by the magnitude and the shape of the
corresponding physical quantity. Therefore, any assumption made for
approximating the reference flux shape will consist of choosing the magni-
tude or the shape (or both) of the quantity imposed on each boundary.
Consequently, there will be two classes of approximate methods for
determining homogenized parameters; the first category will consist of
those methods where both the shape and magnitude of the boundary

condition are chosen: these methods will be essentially non-iterative,

The second category will contain all methods where only the mathematical
form of the shape of the boundary condition is chosen: its magnitude has
to be determined through an iterative process,

A simple test can be used for determining the accuracy of a given
approximation, without having to implement it in a sometimes complicated
procedure: if, for example, the shape of some boundary condition is
assumed, the diffusion equation should be solved within a node, imposing
the reference magnitude along with the chosen shape on its boundaries.

A comparison of the reference flux shape within the node with the flux

shape obtained through this process will indicate the quality of the
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approximation.

2.4.3.2 Non-iterative Schemes for the Approximation of

Equivalence Theory Parameters: "Assembly"

Homogenized Parameters

"Assembly' homogenized parameters are obtained by assuming
that the net current across the boundaries of each individual assembly
are zero (J * n = 0) in all energy groups, Smith [3] introduced this
method for BWR's when he noticed that reference discontinuity factors
depend essentially on the type (defined as a function of void fraction and
burnup) of assembly considered, and little on the position of the
assembly in the core. In this connection it should be noted that the
presence of a large gap of water between the fuel and the assembly
boundaries (see Appendix 1) isolates individual assemblies from each
other.

For each type of assembly an eigenvalue calculation is done with
the J - n = 0 boundary condition. The resulting heterogeneous fluxes,
gog (x,y), are used along with Equation (2. 8) to obtain ""assembly cross
sections" (AXS), Because of the zero current boundary condition, the
homogeneous fluxes within the node are spatially flat; hence the
"assembly discontinuity factor' (ADF) on a face is the ratio of the
average heterogenecﬁus flux on this face, to the node-averaged hetero-
geneous flux.

The first two columns of Tables 2.1 and 2.2 show the nodal
results obtained from different homogenization schemes for the LSH-
BWR benchmark, a strongly heterogeneous and tilted core, and the CISE
benchmark, a more homogeneous core. Both these benchmarks are

described in Chapter 3 and in Appendix 1,
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The standard flux weighted constants (FWC) yield high errors in
nodal powers. The use of "assembly' parameters (ADF-AXS) clearly
improves the nodal solution, but the precision obtained is still only
marginally acceptable,

The failure of ADF-AXS to yield excellent results is clearly
related to the inadequacy of the J + n = 0 approximation: while this
approximation is physically acceptable far from any strong heterogeneity,
assemblies close to control rods or to the water reflector are subject to
very important currents of neutrons across their faces,

An immediate generalization of the notion of assembly parameters
is to impose the J « n = 0 condition not on assembly boundaries, but on
some arbitrary location, where the condition seems to be physically
acceptable. This generalization was done for PWR's by Hoxie [7], with
the notion of "extended assemblies'.

Extended assemblies are constituted of some peripheral fuel
assemblies, along with a part of the water reflector and, in PWR's, they
also include a portion of the steel baffle surrounding the core. An eigen-
value calculation, with J - n = 0 boundary conditions, is then performed
for that portion of the core; by avoiding the imposition of a non-realistic
zero-current condition on the fuel-reflector interface, this methoed
enabled Hoxie to improve results obtained from ''normal” assembly
calculations,

This method could conceivably be applied to the analysis of
BWR's by using large sets of assemblies surrounding all important
heterogeneities (control rods and fuel-reflector interface). However,
the number of heterogeneous calculations involved (as many as half the

fueled assemblies) would make this scheme unattractive. Some partial
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use of the concept underlying this procedure will nevertheless be made
in the course of this investigation.

We conclude that non-iterative methods for determining approxi-
mate equivalence parameters are not sufficient to yield uniformly
accurate nodal results in BWR's. In order to obtain improved accuracy,
more sophisticated schemes must be used,

2.4.3.3 Iterative Schemes for the Approximation of Equivalence

Theory Parameters Based on Partial or Net

Surface Currents

Assembly calculations based onJ - n = 0 boundary conditions
fajl to yield correct homogenized parameters because these boundary
conditions do not take into account many of the interassembly effects.

Smith [3] noticed that if the actual boundary conditions that exist
on the surface of an assembly were known, a fixed source cell calculation
could be performed to obtain exact equivalence parameters. Unfortunately,
the determination of these exact boundary conditions is as difficult as the
determination of the reference heterogeneous fluxes. Nevertheless, the
observation that such fixed-source calculations could produce the exact
equivalence parameters led Smith to devise an iterative scheme in which
the needed boundary conditions at each iteration are obtained from the
magnitude predicted at the previous iteration, along with an assumed
shape. Later, Cheng [6] introduced the use of pretabulated response
matrices for these schemes, in order to reduce significantly the number
of fixed-source calculations to be performed.

Cheng first investigated the use of partial incoming current
response matrices. These matrices were generated either for one node

(a node being either an assembly or a cluster of 4 assemblies), or a
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cross-shaped cluster of five nodes: The use of a cluster of five

nodes was intended to suppress the effects of the approximation made on
the shape of the partial currents on the boundaries of the central node.
In both cases, the shape of the partial currents was represented by
either one or two flat segments on each surface. Upon testing these
methods, Cheng obtained very large errors in both eigenvalue and nodal
powers (see Table 2.2, columns 3 and 4). He related these large
errors to the inadequacy of the spatial approximations applied to partial
surface currents. In particular, discontinuity factors for peripheral
nodes were greatly in error, which resulted in significant discrepancies
in the power densities of these nodes.

Noticing that the shape of net currents was much smoother than
the shape of partial currents, Cheng then investigated the use of response
matrices based on net surface currents. The different approximations
used were the same as for the case of partial surface currents (one or
five nodes, one or two flat segments). Results for the LSH-_BWR and
CISE benchmarks are given in the last two columns of Tables 2. 1 and
2.2, respectively. Although these results are often very good, they do
not appear to be totally consistent. For example, these iterative schemes
do not always improve the ADF-AXS results. Furthermore, Cheng
found that the global-local iteration process associated with these
schemes often fails to converge. Such erratic behavior makes this
particular approach of limited use.

To understand why these relatively sophisticated schemes fail to
predict correct equivalence theory parameters, we applied the test
suggested in section 2. 4. 3.1 to estimate how well different shape

approximations reproduce the reference fluxes within a node when
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reference magnitudes are used. It was shown [11] that unless a
quadratic shape was assumed for the net surface currents, the hetero-
geneous fluxes could not be obtained with satisfactory precision.
Unfortunately, there is no known way of inferring the parameters that
specify the required quadratic shape from only nodal results. Thus
iterative schemes based on net surface currents seem not to be a

fruitful approach to the problem of finding homogenized group parameters

and discontinuity factors for a heterogeneous node,

2.5 Summarx

In this chapter we first described the nodal equivalence theory,
and showed that there exist homogenized parameters which will reproduce
any reference solution to the neutron transport equation. The implement~
ation of the equivalence theory in the computer code QUANDRY was then
described. Finally, different approximate methods for estimating
homogenized parameters were examined, and it was shown that for BWR
benchmark problems both non-iterative methods, which supress the
coupling effects between adjacent nodes, and iterative schemes, which
represent this coupling through surface partial- and net-currents, fail to

yield correct homogenized parameters,
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CHAPTER 3
HOMOGENIZATION TECHNIQUES BASED ON
SURFACE FLUX RESPONSE MATRICES

3.1 Introduction

In Chapter 2 we described a simple method, based on zero net-
currents boundary condition assembly calculations, for determining
approximate equivalence-theory parameters, and we also described more
sophisticated iterative schemes, based on partial- and net-current
response matrices. We pointed out that these schemes fail to yield good
homogenized parameters because of the inadequacy of the assumptions
made for the shape of the boundary conditions used for determining these
parameters.

In this chapter we shall first describe the two-dimensional BWR
benchmarks for which new homogenization schemes will be tested. In
section 2 the possibilities of approximating the assembly boundary con-
ditions by polynomial shapes will be examined, and we shall show that the
most feasible scheme consists of assuming a quadratic shape for the
surface form function (the ratio of the heterogeneous surface flux to the
assembly surface flux). Section 3 will describe how this quadratic shape
can be derived from a nodal solution, by interpolating cornerpoint fluxes.
Section 4 will discuss the response matrices based on this assumption,
and will show how a consistent iterative scheme using these matrices can
be implemented, This scheme will be tested for realistic benchmarks in
section 5. Finally, the extension of homogenization schemes to three-

dimensional calculations will be discussed in section 6.
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3.1.1 Two=-Dimensional BWR Benchmarks

The axial flux distribution in a BWR core is smooth everywhere,
except at the tip of inserted control rods. Therefore, the main Qiffi-
culties for assembly homogenization lie in the radial planes of the core,
Consequently, the benchmarks chosen for testing new homogenization
schemes are all two-dimensional; these benchmarks are explicitly des-
cribed in Appendix 1. An extension to the axial direction will be exam -
ined in section 6 of this chapter.

3.1.1.1 The CISE BWR Benchmark Problem

The CISE BWR benchmark problem [13] represents a simplified
model of a two-dimensional BWR core. It consists of 208 fuel assem-
blies (both fresh and burned) surroundéd by a 15-cm water reflector, It
does not exhibit any void pattern. The fuel assemblies consist of a
central homogeneous fuel region, surrounded by a water gap and controtl
rod blades. Though some heterogeneities (such as water holes, burnable
poison pins and enrichment zones) are not represented explicitly, the
most important heterogeneities, as far as homogenization is concerned,
are represented. These are the control rod blades and the water gap.
Thus, the CISE BWR benchmark serves as a realistic test of any homog-
enization scheme.

The reference solution for the CISE BWR benchmark was obtained
from a fine-mesh QUANDRY run. 64 mesh points were used in each
assembly. It is important to note that this meshing is sufficient for the
QUANDRY solution to be spatially converged, whereas a PDQ7 [17]
solution using this same meshing would not be spatially converged,

3.1.1.2 The LSH BWR Benchmark Problem

The LSH BWR (Loretz-Smith-Henry) benchmark problem was
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designed at MIT in order to be a very severe test for the homogenization
schemes being studied there, and is described in Appendix 1. It consists
of 160 fuel assemblies surrounded by a 30.62 cm water reflector. The
central region of the core is partially voided (40% and 70% void fractions),
and two control rods are present in each quarter-core. Their location

is such that groups of two very close control rods exist around each
symmetry-line of the core, That particular feature creates very strong
flux tilts in the core., The fuel assemblies are those characteristic of the
Vermont Yankee reactor, where most heterogeneities are explicitly
represented; i.e., the different enrichment zones, the water hole, the
gadolinium pins, the wide and narrow gaps and the control rod blades are
all represented as distinct regions. The can surrounding the fuel regions
is not modeled, though it is accounted for in the calculation of the hetero-
geneous diffusion theory parameters.

Two reference solutions are available for this benchmark; a fine-
mesh QUANDRY solution, for which 169 mesh points were used in each
assembly, and a fine-mesh PDQ?7 solution, where 324 mesh points were
used in each assembly. While the first solution is spatially converged,
the second is not (as can be seen from the results shown in Appendix 6).
Nevertheless, it is an essential feature of equivalence theory to be able
to reproduce any solution of the diffusion equation. Therefore, both of
these references are valid, as far as the testing of homogenization
procedures is concerned,

3.1.1.3 The MVY BWR Benchmark Problem

The MVY BWR (Modified Vermont Yankee) benchmark problem
models the bottom section (water inlet) of the Vermont Yankee reactor

and is described in Appendix 1. It consists of 368 fuel assemblies
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surrounded by a water reflector. The assembly configuration and the
heterogeneous cross sections are the same as those described for the
LSH BWR benchmark. These assemblies differ only slightly from those
used to model the real Vermont Yankee core: the model used in this
thesis assumes that the fuel cross sections are only enrichment depend-
ent, whereas a more precise modeling would require these cross
sections to be position dependent, to account for spectral effects.

Some previous testing at MIT [14] has shown that the Vermont
Yankee core is a very severe problem for usual homaogenization schemes:
standard flux weighted constants yield errors in nodal powers as large as
26%, while the use of ADF-AXS reduces these errors to around 10%.

This is only marginally acceptable, though it is better than the results
from the tuned nodal code SIMULATE [15]. The presence of an important
number of control rods, and particularly the proximity of one of these rods
to the water reflector, creates very large flux gradients throughout the
core,

The reference solution for the MVY BWR benchmark problem is a
fine-mesh PDQ7 solution, where 324 mesh points are used in each

assembly.

3.2 Polynomial Approximations for Assembly Boundary Conditions

The determination of equivalence theory parameters requires the
knowledge of approximated boundary conditions for each assembly.
These approximated boundary conditions should have the following
properties:

1. The fluxes resulting from solving the diffusion equation

within each assembly, subject to these particular boundary

conditions, should be a close approximation to the reference
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fluxes.

2. These boundary conditions should have some properties of
additivity, namely, the sum of two such boundary
conditions should still have the same mathematical form as
the two original boundary conditions. This property is
essential for the very existence of response matrices based
on these particular boundary conditions.

3.  The mathematical form of this approximation can be imple-
‘mented from the sole knowledge of a nodal solution to the
global problem.

The second condition quoted eliminates the majority of the usual
analytic functions: trigonometric functions, exponentials, logarithms,
do not have the necessary additivity properties. For example, the sum
of two sine functions is generally not a sine function. On the other hand,
polynomials of degree smaller or equal to n form a ring for the usual
addition and multiplication by a scalar. They are, therefore, natural
candidates for approximating assembly boundary conditions.

The first condition has less obvious implications: for example, it
is hard to judge a priori if a poor approximation for some surface
currents will result in poor heterogeneous fluxes within the assembly.
Appendix 3 contains some graphs of the actual boundary conditions along
assembly faces: net and partial surface currents, albedos and surface
fluxes. The behavior of these quantities in the fast energy group is
generally very smooth, so that any shape approximation which is
sufficiently accurate in the thermal group can be immediately extended to
the fast group. The first eight graphs show these quantities, in the

thermal group, along two interfaces between fueled assemblijes and water
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reflector, for the LSH BWR benchmark (the PDQ7 reference calculation
was used; the partial and net currents were calculated by D. K. Parsons).
The six first graphs, which represent in- and out-going partial currents,
net currents and albedos (¢/J) clearly demonstrate the impossibility of a
polynomial fit to these quantities, The next two graphs represent the
heterogeneous fluxes and a new quantity, called the form function, and
defined as the ratio of the heterogeneous flux to the heterogeneous

assembly surface flux:

¢ (x,y)

Fg(X, Y) = Ig-(ry)— (3. 1)

g

Both the flux and form function appear to be quadratic in shape along the
considered faces.

The following twelve graphs in Appendix 3 represent the hetero-
geneous flux and the form function, along a one-dimensional cut of the
MVY BWR benchmark, ranging from the center of the core to the middle
of its reflector. The quadratic nature of the form function is obvious,
whereas the heterogeneous flux is poorly fit by a quadratic, especially
along rodded faces,

There is strong evidence that the quadratic form function assump-
tion is the best candidate for being implemented in an iterative scheme.
Physically, this fact is not surprising: currents are proportional to the
derivative of the fluxes, and are therefore very likely to have sharp
variations; the fluxes themselves are subject to very large gradients
near strong heterogeneities such as control rods; but once these fluxes
are divided by the assembly fluxes, the dependence on local heterogen-
eities is supressed, and only the smooth global tilt of the core should

appear,
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It will be shown in the next section that the quadratic form function
approximation satisfies the third condition stated earlier. It should also
be noted that there appears to be no way of determining accurate quadratic )
shapes for partial and net surface currents, if only a nodal solution is

known,

3.3 The Interpolation of Cornerpoint Fluxes

In this section we shall discuss mainly the theoretical background
and the theoretical limitations of the cornerpoint fluxes interpolation
scheme which has been developed at MIT [7,14]. The actual equations
which result from this theory are very simple, and are explicitly
presented in Appendix 4 of this thesis.

3.3.1 Problem Description

Definition (3. 1) for the form function implies the existence of two
different form functions along a face common to two non-identical assem-
blies (these two form functions correspond to the two different assembly
fluxes along this face). Furthermore, once the quadratic approximation
is made for each of these form functions, two distinct heterogeneous flux
shapes are defined along this face, as the quadratic approximation cannot
reproduce exactly the pointwise fluxes. This very un-physical situation
leads us to blend the two assembly flux shapes along this face in a unique

"average assembly flux shape'':

AaV(X)

(1 +2> (3.2)

N =

where
X is the dimensional variable along the considered face;
Al(X) and A, (x) are the two assembly fluxes along that face;

A_l and K2 are the averages of the assembly fluxes over that face.
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The assembly flux shapes vary relatively little with the exposure
and void fraction of the considered assembly. It is therefore quite
natural to use the blending process described by Equation (3. 2),

The definition of a quadratic form function for each face requires
three pieces of information (or equations) for each face. Two are
readily obtained: the preservation of the average flux on that face
(determined by a nodal calculation) leads to a first equation; the contin-
uity of the heterogeneous flux at the cornerpoint leads to another equation.
There is only one degree of freedom left to be eliminated. This will be

done by the source-free condition.

3.3.2 The Source-free Condition
It is physically exact to st‘ate that each assembly cornerpoint is
source-free [16]. This condition is implemented in a mathematical form
by drawing a small square box around each cornerpoint (see Fig, 3.1)
and requiring the contour integral of the net transverse currents,
(ng *n, to be zero at the limit of an infinitely small box. Thesé
currents are estimated from the derivative of the approximate flux
shapes defined on the four faces converging at that cornerpoint. The
resulting equations lead to a linear system in each energy group, where
each cornerpoint flux is related to its four closest neighbors. Such a
system is easily solved by an accelerated Gauss-Seidel iterative scheme,
Unfortunately, the fact of having used approximate flux shapes to
determine net currents creates two essential problems:
1. The derivative of a good approximation is not necessarily
a good approximation to the original derivative: even if the
quadratic form function approximation is a very close fit to

the reference form function, the derivative used in the
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Fig. 3.1 The source-free condition.
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source~free condition may yield a very bad approximation
to the reference currents.

2. The reference net currents transverse to an assembly face
are continuous across this face, whereas the approximate
net currents are not necessarily continuous. This leads
to a situation where the equation resulting from the source-
free condition depends on the shape of the box used to
implement this condition.

Two interesting limit-cases appear: when a rectangular box is
used, and is being "flattened" in only one dimension, the resulting
equation will impose the continuity of the net current in that same
dimension, and no effects of currents transverse to that direction will be
accounted for.

Some results for this cornerpoint flux interpolation scheme will be
described in section 5 of this chapter. It will be seen that, although
some serious theoretical limitations have been pointed out, the resylts

are generally quite good.

3.4 An Iterative Scheme Based on Surface Flux Response Matrices

3.4.1 Definition of Surface Flux Response Matrices

It was stated in the second section of this chapter that polynomials
of degree n, and particularly quadratics, have additivity properties which
enable them to be implemented in a response matrix scheme,
Specifically, it is very easy to show (using this additivity property along
with the superposition principle for the solution of the diffusion equation
and the continuity of surface fluxes) that, for a given global eigenvalue, A,
the heterogeneous flux at each point of an assembly is a linear function of

the cornerpoint fluxes and average surface fluxes on the boundaries of
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that assembly, provided the quadratic form function assumption is made:

) z [T -IF aiF HZ (pIC IC (x’y)}
g'=1 IF=1 g'g IC=1 roig

(3.3)

where

9551 is the average flux in group g' on face IF;

c,oIg is the flux in group g' at cornerpoint IC;
a;F' (x,y) is the flux in group g' at point (x, y), resulting from a
£E fixed-source problem for the eigenvalue A, where all
surface form functions are quadratic, and all cornerpoint
fluxes and average surface fluxes are zero, except cp]éF
which is one.
bict (x,y) is the flux in group g' at point (x, y), resulting from a.
g'8

fixed-source problem for the eigenvalue A\, where all
surface form functions are quadratic, and all cornerpoint
fluxes and average surface fluxes are zero, except @Ig(,:
which is one.

As the volume averaged fluxes, volume averaged reaction rates
and face averaged transverse currents depend linearly on the hetero-
geneous fluxes (via the integration and derivation operators, which are
linear), these quantities also depend linearly on the cornerpoint and face-
averaged fluxes. Therefore, it is possible to define a response matrix
R, so that:

A
[N.Q.] = [RX] %) (3.4)

where
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[¢] is an 8G column vector containing cornerpoint fluxes and
face-averaged fluxes;

[N.Q.] is a 10G column vector containing all nodal quantities:
the 4 face-averaged currents, the volume averaged fluxes,
and the integrated reaction rates (transport, absorption,
removal, nu-fission and fission).

Consequently, [R>\] is a 10G x 8G rectangular matrix. Its
elements are defined in Appendix 5. It is important to notice that it is
necessary and sufficient to know X, the heterogeneous macroscopic cross
sections and a model to solve the diffusion equation, in order to define
[Rk] exactly.

3.4.2 The Generation of Surface Flux Response Matrices

It was shown in Chapter 2 that "'exact” equivalence theory
parameters have to be generated with the same model as is used in the
reference calculation. It was also stated that they exist for any
"reference" solution, even if this solution is not spatially converged.
Specifically, the model which has to be used in both the reference calcu-
lations and the determination of equivalence theory parameters includes
not only a relation between fluxes and currents, but also some inforrné—
tion on the degree of spatial truncation allowed. For example, if the
reference solution is a PDQ7 run [17], the homogenized parameters
should be calculated with the same formalism (diffusion theory finite
differences), and using the same geometrical meshing.

Unfortunately, the codes QUANDRY and PDQ7 do not contain any
practical option for doing fixed flux boundary condition calculations.
However, the diffusion theory, mesh-centered, finite-differences code

"CITATION" [18] allows for such a boundary condition. The details of
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the generation of surface flux response matrices using "CITATION'" are
given in Appendix 5. The general principle of the method being used is

to impose successively on one face of the assembly, and in each energy

group, a flat, linear and quadratic form function, while the flux is set to
zero on the three other faces.

Unfortunately, the use of "CITATION" to generate response
matrices does not guarantee consistency with a reference solution (point-
centered) calculated by PDQ7, which is the standard of the industry.
Therefore, a diffusion-theory, point-centered, finite differences code
was written, with the sole purpose of generating surface flux response
matrices using the PDQ7 difference equations. This code, along with its
implementation in a scheme generating response matrices, is described
in Appendix 5. The general principle used for the generation of these
matrices is to set up for each input quantity of the matrices (i.e., for
each cornerpoint flux and average surface flux) a fixed source problem
which yields the flux shapes that result when this particular quantity is
set to one, and the 15 other inputs are set to zero. Thus, any incon-
sistency due to the different finite differences models is eliminated.
Furthermore, although the point centered code being used is very rudi-
mentary (it does not use any acceleration scheme), the cost of generating
a surface flux response matrix using this code is approximately equivalent
to the cost of generating this matrix with "CITATION",

3.4.3 The Interpolation of Surface Flux Response Matrices

The purpose of response matrices is to permit the pre=-tabulation
of a large number of fixed-source calculations for one type of assembly.
Unfortunately, these matrices depend on all position-dependent cross

sections, which vary individually throughout the life of an assembly, so
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that the tabulation process can become lengthy and expensive. Some
matrix interpolation scheme ig necessary to reduce the cost of that
process.

On physical grounds, it is expected that a few state variables
(power level, xenon concentration, temperature, void fraction, void
history, average exposure, and eigenvalue} describe fairly accurately the
neutronic properties of an assembly. The variations of these properties
(and, consequently, of response matrices) with the state variables
depicted, are expected to be smooth, It is not the purpose of this thesis
to establish multidimensional interpolation formulas for response
matrices. Nevertheless, the smoothness of the dependency of the
matrices on the state variables makes it very likely that tables of
matrices can be easily generated for interpolation purposes. The A
dependency of the response matrices has been studied, for PWR's, by
K. Parsons [12] who found that this dependency could be very well approx-
imated by a quadratic function, This same approximation will be used in
this thesis, The benchmark problems for which the response matrix
homogenization technique is tested in this chapter are all steady state
beginning of life cores, so that the response matrices will not have to be
interpolated versus the void fractions and average exposures of the
corresponding assemblies. Chapter 5 will describe some aspects of the
effects of fuel burnup on the generation of response matrices.

3.4.4 The Implementation of Surface Flux Response

Matrices in an Iterative Scheme

3.4.4.1 The Non-selective Use of Response Matrices -

Figure 3.2 summarizes the different steps of an iterative scheme

based on surface flux response matrices. As response matrices are
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Fig. 3.2 Description of the iterative scheme,
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used for determining equivalence theory parameters for all assemblies,
this scheme is called "non-selective'.

Some preliminary calculations have to be performed before the
iterations can start: assembly surface fluxes (used in the cornerpoint
flux interpolation scheme) and response matrices have to be interpolated
for the state variables of each assembly (this interpolation should be
included in the iterative process in the case when feedback or transient
effects are taken into account). Also, an initial guess for the equivalence
theory parameters has to be found: a relatively good guess is to choose
the assembly discontinuity factors and cross sections for each node (they
can be pre-tabulated and interpolated versus the state variables of each
assembly). The effect of this initial guess on the convergence of the
iterative scheme will be discussed in section 5 of this chapter.

The iterative scheme itself consists of using this guess, or the
homogenized parameters resulting from a previous iteration, along with
the nodal code QUANDRY, to get a new estimate of the nodal solution.
The homogeneous face-averaged fluxes predicted by QUANDRY are then
multiplied by the corresponding discontinuity kfactors. Thus, hetero-
geneous face-averaged fluxes are obtained for each face. Only the global
eigenvalue and the heterogeneous face-averaged fluxes predicted by this
calculation are used in the following steps. The heterogeneous face-
averaged fluxes are used, along with the interpolated assembly surface
fluxes, to interpolate, group by group, the cornerpoint fluxes. In
parallel to that interpolation process, the global eigenvalue is used to
interpolate, in a quadratic manner, the surface flux response matrices
corresponding to the state variables of each assembly. The resulting

matrices are then rotated, in order to correspond to the correct position-
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ing of each assembly (beginning of life BWR assemblies have very little
symmetry). The interpolated cornerpoint fluxes and the average hetero-
geneous surface fluxes from the earlier nodal solution are then used as
input to the response matrices., A simple multiplication yields for each
assembly: new homogenized cross sections, volume averaged fluxes,
and a set of net surface currents. It should be noted here that these
currents are in general physically incorrect, as can be seen from the
fact that, along a single face, the net currents predicted by the matrices
corresponding to the assemblies located on either side of that face will
generally not be identical. This inconsistency will be further discussed
in section 5.

The homogenized cross sections, net surface currents and
volume averaged fluxes determined by the response matrix technique,
and the global eigenvalue and average surface fluxes from the previous
iteration are then used in equations of the type (2.13), which define the
discontinuity factors, to determine new discontinuity factors. A
QUANDRY nodal calculation is then performed with the new equivalence
theory parameters. This process is then repeated until convergence.

The mathematical nature of the scheme described above is highly
nonlinear, There is therefore no guarantee that it will converge,
Furthermore, even if it does converge, the converged solution will be
very hard to characterize mathematically.

The properties of this iterative scheme will be examined in
section 3.

3.4.4.2 The Selective Use of Response Matrices

The generation of tables of response matrices is an expensive

process: the discretization of the state variables describing each
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assembly will lead to interpolation tables containing several thousand
response matrices. Though this important financial investment can be
depreciated over the whole lifetime of a reactor (or type of reactor), it
is of paramount interest to reduce that tabulating effort as much as
possible. One drastic way of doing so is to generate response matrices
only for those nodes having the strongest heterogeneities, corresponding
to the assemblies where the control blades are inserted. Other assem-
blies are generally well represented by the ADF-AXS parameters. An
iterative scheme using response matrices for the rodded nodes, and pre-
tabulated assembly homogenized parameters for all other nodes can be
implemented in a manner equivalent to the scheme where response
matrices are used for all nodes,

As was the case for the previous iterative scheme, no predictions
based on mathematical properties can be made concerning the behavior of
that "selective'' scheme. Furthermore, it is not known if the fact of
improving the homogenized parameters in the rodded nodes will also
improve the nodal solution in the other nodes, or will merely renormalize

the power levels in the non-rodded assemblies.

3.5 Numerical Testing of the Surface Flux Response

Matrix Iterative Schemes

3.5.1 A Preliminary Test Problem

A very small and highly tilted BWR benchmark was designed in
order to test our iterative schemes and understand their behavior., This
benchmark is described in Appendix 1: it consists of 38 heterogeneous
assemblies, with very dissimilar exposures and void fractions. 4 control
rods are inserted in locations close to the center of the core, and the

fluxes are set to zero on the externsal boundary: these characteristics,
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though very artificial, create very strong tilts, thus making the homog-
enization problem a difficult one. The assemblies are idealized BWR
assemblies, where the central fuel region is partially homogenized but
still consists of three different fuel enrichment zones and four gadolinium
pins (see Fig. A1.5.2). The control rod blades and the water gaps are
represented explicitly.

The reference solution for the preliminary test problem is a fine-
mesh QUANDRY run, where 144 meshes are used in each assembly.

The response matrices were generated with CITATION, using 576 meshes
per assembly: this finer meshing is intended to ensure a correct spatial
convergence, The assembly surface fluxes and equivalence theory
parameters were obtained from fine-mesh QUANDRY runs where 576
meshes were used in each assembly.

When the surface flux response matrix iterative scheme was
described, it was stated that the matrices corresponding to two neighbor-
ing assemblies do not predict the same currents on the face common to
the two assemblies. In particular, response matrices do not necessarily
predict zero net surface currents on faces where this is a physically
imposed condition. Consequently, there exist two distinct approaches
for implementing the iterative scheme:

Method A:  This method consists of using the net currents

predicted by the response matrices in the calculation of the

discontinuity factors.

Method B: This option consists of averaging the net currents

predicted by the response matrices for two adjacent assemblies.

Also, the physical zero net current boundary condition is

implemented explicitly.
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Both methods were tested for the small benchmark described
earlier, using response matrices for all nodes. Figure 3,3 shows the
eigenvalue obtained at each iteration for both methods: clearly Method B
diverges, while Method A coaverges in an oscillatory fashion. This
behavior can be explained on physical grounds: the net currents, reaction
rates and node-averaged fluxes predicted by the response matrices obey
an exact neutronic balance for each individual node, although the sufface
currents implied by this balance may not match when more than one node
is considered. Thus, when these surface currents are averaged,
balance is destroyed, so that the resulting discontinuity factors are
inherently in contradiction with the nodal balance equation (2. 7).
Divergence results., Accordingly, in the rest of this investigation only
Method A will be used.

It is extremely important for the study of any iterative scheme to
determine whether the converged solution, if it exists, depends on the
initial guess used to start the iterations: if there is such a dependence,
the whole scheme is of very little interest, as no prediction can be made
concerning its outcome. On the other hand, if the converged solution is
unique, it is generally also the solution to 2 simpler equation, which
helps in understanding its physical nature. To test for uniqueness, two
distinct initial guesses were used for the preliminary test problem: the
approximated assembly homogenized parameters, and the reference
homogenized parameters. The converged solutions were identical.

The nodal solutions are summarized in Table 3. 1. While the
assembly homogenized parameters yield a maximum and‘average error in
nodal power of 9, 85% and 3. 63%, respectively, these quantities are 4.51%

and 1.75% for the converged response matrix solution: a very significant
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improvement is obtained from the use of the iterative scheme. The
improvement is even more evident when the homogenized cross sections
and the thermal surface fluxes are considered. Complete ncdal results
are given in Appendix 6,

A relatively poor eigenvalue was obtained. This seems to be due
to the use of "CITATION" for generating response matrices. While the
analytic nodal method, implemented in QUANDRY, ensures spatial con-
vergence even with a relatively coarse meshing, fhe mesh-centered
finite-differences scheme implemented in CITATION requires a very fine
meshing in order to be spatially converged.

The iterative process showed a very slow convergence: 18 itera-
tions were needed to converge fully. This feature could make the
scheme marginally attractive, but, fortunately, the oscillatory fashion in
which it converges can be used to obtain, after a few iterations, a good
estimate of the converged solution: the results in Table 3.1 show that the
average of 2 successive iterations is very close to the converged solution.
However, these results also show that a single iteration is not sufficient
to estimate the converged solution.

3.3.2 The CISE BWR Benchmark Problem

The reference run for the CISE BWR benchmark is a fine mesh
QUANDRY calculation, where 64 meshes are used for each assembly.
The surface flux response matrices were generated with the diffusion
theory code CITATION and, in order to insure a correct spatial
convergence, 576 meshes were used for each assembly. Assembly
surface fluxes and homogenized parameters were obtained from QUANDRY
runs, using the same 576 meshes for each assembly.

The behavior of the "non-selective'" iterative scheme was investi-
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gated, and the features discovered for the Preliminary Test Problem
were checked. It was found that:

1. The converged solution does not depend on the initial

guesses for the equivalence theory parameters.

2. The convergence is oscillatory, and the averagelof

the third and fourth iterations is a very good estimate
of the converged solution.

Furthermore, it was found that essentially the same converged
solution was obtained, whether the flat or quadratic transverse leakage
approximations were used in the nodal calculations of the iterative
scheme. The discontinuity factors determined at each step by the
iterative scheme account for both the heterogeneous nature of the CISE
BWR assemblies and the transverse leakage approximation used in the
global QUANDRY calculations. This is a further indication that the
iterative scheme involves some inherent mathematical or physical
property. Also, this behavior demonstrates a significant advantage for
the surface flux response matrix method, since the '"flat" global calcula-
tions are faster running and require less memory than the "quadratic"
global calculations.

The nodal solutions for the CISE BWR benchmark are summarized
in Table 3.2. Complete nodal results are given in Appendix 8, The
values resulting from the iterative scheme exhibit a significant improve-
ment over the ADF-AXS results: the maximum and average errors in
nodal powers are reduced by a factor of 2, while the homogenized cross
sections and the surface fluxes are improved by an even greater factor.

From an examination of the nodal powers, it appears that, while

the use of assembly homogenized parameters results in high errors in
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rodded nodes, the iterative scheme predicts excellent nodal powers in
these locations. This result indicates that the only approximation made
in the iterative scheme, the quadratic form function approximation, is
uniformly good, even in the presence of very strong heterogeneities.

3.5.3 The LSH BWR Benchmark Problem _

Two reference solutions are available for the LSH-BWR bench-
mark., They result in two homogenization problems which are mathemat-
ically distinct, though they are physically identical. They will be
called the CLSH (Converged LSH) and the NLSH (Non-converged LSH)
benchmarks, depending on whether the fine-mesh QUANDRY solution or
the fine-mesh PDQ7 solution is considered.

3.5.3.1 The CLSH BWR Benchmark Problem

This benchmark corresponds to the fine-mesh QUANDRY solution
where 169 meshes are used in each assembly. The surface flux response
matrices were generated with CITATION, using 576 meshes per assembly,
The assembly surface fluxes and homogenized parameters were obtained
from fine-mesh QUANDRY runs with the same 576 meshes.

The properties of the "'non-selective' iterative scheme which were
noticed in the study of the two previous benchmark problems were verified
for the CLSH benchmark:

1. The converged solution does not depend on the initial guess

for equivalence theory parameters.

2. The converged solution does not depend on the transverse
leakage approximation used in the global QUANDRY calcu-
lations.

3. The convergence is oscillatory.

The oscillatory behavior of the convergence is illustrated in
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Fig. 3.4 which represents the eigenvalue predicted at each iteration for
two different initial guesses. This figure suggests that the convergence
is oscillatory-exponential: namely, if J\n is the eigenvalue predicted at

iteration n, the following relation

kr1-A'n+1 - C

. = (3.5)
n+1 n+2

(where C is a negative constant which does not depend on n) is expected

to be verified for any n. X will then converge towards:
. i}
A, = o A\ Chpry) (3.8)

where 2y and Ak+1 are any two successive values of \. The validity of
Equations (3, 5) and (3. 6) was verified for the CLSH benchmark., Table
3.3 indicates that a few iterations, along with these relations, are
sufficient for obtaining an excellent estimate of the converged solution.
The nodal results for this benchmark are summarized in Table
3-4. The use of standard flux-weighted constants leads to extremely
high errors: the maximum error in nodal powers is 22. 6%, which
cannot be accepted if the nodal method is to be used for industrial pur-
poses. The use of assembly homogenized parameters (ADF-AXS)
reduces this maximum error to 9.61%, which is still only marginally
acceptable, The "non-selective'' response matrix technique results in a
maximum error in nodal powers of only 1.06%, which is quite acceptable.
Detailed nodal powers are presented in Appendix 6, They show that
assembly homogenized parameters predict poor nodal powers for rodded
nodes but predict accurate powers in other nodes. The "non-selective"

response matrix homogenization scheme predicts powers that are
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Table 3.3 The oscillatory-exponential convergence

for the CLSH benchmark

C estimated from

X . 1,2,3 2,3,4 3,4,5
iterations:
A - A
_e.x;__% +0.0015% -0.0002% +0.0003%
de B q_ac
( ) 1.72% 0. A3% 0.13%

The ¢'s are the average surface fluxes.

Index ¢ means "converged value''; index e means '"estimated value'.

Table 3.4 Nodal results for the CLSH-BWR benchmark

UDF-AXS ADF-AXS Response
. Matrices
Error in eigenvalue -0.29% -0.05% 0.54%
Maximum error in
nodal powers 22, 6% 9.61% 1.06%
Average error in 5. 90% 3.26% 0.46%

nodal powers
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uniformly good.

The eigenvalue predicted by the response matrix technique is
quite poor. The error is 0.54%, while the corresponding error for the
ADF-AXS calculation is only -0,05%. This is surprising in view of the
excellent powers obtained from the response matrix technique. Two
interpretations of this behavior are advanced:

1. This error could be intrinsic to the quadratic form

function approximation,

2. The method used to generate fesponse matrices and, in
particular, the use of CITATION, may not be accurate
enough.

The NLSH benchmark, for which response matrices are generated by a
scheme consistent with the reference solution, will permit us to deter-
mine which interpretation is the correct one.

3.5.3.2 The NLSH BWR Benchmark Problem

This benchmark corresponds to the fine-mesh PDQ7 solution
for which 324 mesh points are used in each assembly. The surface flux
response matrices, the assembly surface fluxes and the assembly hom-
ogenized parameters were all calculated using the same mathematical
formalism and geometrical meshing as in the reference solution. Both
the "selective" and '""non-selective" iterative schemes presented earlier
were tested. The corresponding nodal results are summarized in
Table 3,5,

The "non-selective" scheme (i.e., the scheme where response
matrices are used for determining equivalence theory parameters in all
assemblies) predicts excellent nodal powers: the maximum and average

errors are 2.50% and 0.81%, compared with 10. 83% and 13.37% for



3-31.

ADF-AXS. Also, the predicted eigenvalue is correct (the error is

0. 18%, while it was 0.54% for the CLSH problem); this result strongly
suggests that the cause of the high error in eigenvalue found for the
CLSH problem lay in the scheme used to generate surface flux response
matrices,

The cornerpoint fluxes interpolated from the various nodal
solutions are the most significant measurements of the quality of the
nodal solutions, as these fluxes are the most detailed information ever
involved in the homogenization processes, The cornerpoint fluxes for
the NLSH benchmark are shown in Appendix 6: while they are highly in
error for the "FWC" and "ADF-AXS" homogenization schemes, the
response matrix technique predicts them very well throughout the core.
This result indicates the coherence of the response matrix scheme, in
opposition to non-iterative schemes which do not perform uniformly
well.

The "selective' scheme (i.e. the scheme where response
matrices are used for determining equivalence theory parameters in the
rodded assemblies only, and ADF-AXS are used in other assemblies)
also predicts very good nodal powers: the maximum and average errors
are 4.21% and 1.34%. A close examination of the predicted nodal
powers shows that while this scheme greatly improves the power level of
the rodded assemblies, in comparison with ADF-AXS, it merely
renormalizes the powers in the other assemblies. An immediate conse-
quence of that fact is that this scheme will predict a good power distribu-
tion if and only if the ADF-AXS approximation is consistently good in non-

rodded regions. Unfortunately this can not be guaranteed.
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3.5.4 The MVY BWR Benchmark

The reference solution, assembly fluxes, assembly homogenized
parameters and response matrices for the MVY benchmark were
generated in the PDQ'? formalism, using 324 meshes per assembly.

The nodal results are summarized in Table 3.6, The inadequacy
of standard flux weighted constants is clearly demonstrated by the very
high errors in the nodal powers they predict: the maximum error is
31.31%. The assembly homogenized cross sections and discontinuity
factors considerably improve these nodal powers: the maximum error is
reduced to 11,26%. This is still only marginally acceptable. The nodal
results associated with the non-selective use of response matrices are
excellent: for example, the maximum error in nodal powers is less than
2%. Also, the oscillatory-exponential behavior of the convergence,
described by Equations (3,5) and (3. 6), was checked, and the results
given in Table 3.7 indicate that this behavior is a general property of the
iterative scheme.

The selective use of response matrices led to disappointing
results: while the power densities of the rodded assemblies are
predicted with much greater accuracy than when ADF-AXS are used for
all assemblies, the power densities in the non-rodded assemblies are
merely renormalized. Consequently, some of the errors in the non-
rodded assemblies are increased; finally, the average error in nodal
powers for the "selective' iterative scheme and the assembly homogen-
ization scheme a‘re practically equal: they are 1.80% and 1. 90%
respectively. Thus the "selective' scheme appears to be of marginal

interest.
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3.5.5 Physical Interpretation of the Converged Solution

The uniqueness of the converged solution points strongly towards
the existence of some physical property that characterizes this converged
solution. It is not the purpose of this investigation to do a complete
mathematical study of the surface flux response matrix iterative scheme.
Nevertheless, the experience which has been accumulated about its
behavior allows us to make an ""educated guess' concerning the nature of
this property: it is believed that the converged solution not only satisfies
the nodal equations described in Chapter 2, but that it also is such that
the currents predicted by the response matrices corresponding to two
adjacent nodes are continuous.

This conjecture is practically impossible to demonstrate
rigorously, as a high rate of convergence is necessary before large
fluctuations in surface currents are eliminated (currents are very
sensitive to even small variations in the nodal solution). Unfortunately,
numerical truncation errors are such that this high rate of convergence
cannot be reached,

3.5.6 Execution Time Comparison

The charges (on MIT's IBM 370/168) for various homogenization
schemes applied to the NLSH and MVY benchmarks are summarized in
Table 3.8, The figures indicated are only meaningful for comparative
purposes. They include all system-related charges (CPU time,
memory usage), but do not include the "overhead' costs (data files
manipulations, printing, ...).

For all three homogenization schemes investigated, the main cost
incurred is in the pre-tabulation of assembly calculations or response

matrices. But, even if these tabulation costs are not depreciated over
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the lifetime of a reactor, the homogenization schemes still improve

significantly the computational efficiency of the core calculations.

3.6 Extension of Homogenization Methods to

Three-Dimensional Calculations

3.6,1 The Estimation of Three-Dimensional

Equivalence Theory Parameters

The homogenization schemes which were described and analyzed
for two-dimensional benchmarks in the earlier sections of this chapter
predicted equivalence theory parameters with an excellent accuracy.
Unfortunately, their direct extension to three-dimensional calculations
would be expensive, For example, the generation and tabulation of three-
dimensional response matrices would require such storage capabilities
that it is impossible with state of the art computing tools,

QUANDRY has never been applied to realistic three-dimensional
BWR benchmarks, with heterogeneities in the radial and axial directions.
The fluxes are smooth in the axial direction, except at the tip of inserted
control rods. This property will be used for determining discontinuity
factors. It is hoped that, if axial node boundaries are chosen to coincide
with material discontinuities, each node will be homogeneous in the
axial direction, and axial discontinuity factors will be close to one.

Thus, accurate two-dimensional homogenization schermes should be
sufficient to determine a good three-dimensional nodal solution.

3.6.2 Numerical Testing of Three-Dimensional

Homogenization Schemes

The TRD BWR (Three Dimensional BWR) benchmark problem has
been designed to test the validity of the unity axial discontinuity factor

approximation. This benchmark consists of 9 assemblies, characteristic
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of the central region of a BWR core, Zero net-current radial boundary
conditions are imposed, The assemblies are based on the Vermont
Yankee assemblies, However, the central fueled region (containing the
fuel pins with different enrichments, the gadolinium pins and a water
hole) is homogenized. Thus, some heterogeneities are eliminated;
nevertheless, the most important heterogeneities, as far as homogen-
ization is concerned (the water gaps and control rod blades), are
explicitly represented. Four different regions of voiding are present in
the core, The bottom section, corresponding to the water inlet, is not
voided and the void fraction increases towards the top of the core., A
control rod is inserted halfway and a 20 cm water reflector is present at -
each axial boundary of the core,

The reference solution for this benchmark is a fine-mesh PDQT
run. The radial mesh layout is 13 x 13 in each assembly, and 57 meshes
are used axially. A fine mesh (0.5 cm) is used in the vicinity of
material discontinuities; a coarser mesh (4.0 e¢m) is used far from any
axial discontinuity., The two-dimensional homogenized parameters
(ADF?AXS) were calculated with PDQY7, using the same 13 x 13 mesh
layout.

The nodal calculation was performed with one node per assembly
in the radial direction and eight 15 ¢m segments in the axial direction of
the fueled region; 2 20-cm axial node size was used in the water
reflector. Both FWC and ADF-AXS were used to approximate the
radially homogenized parameters, The axial discontinuity factors were
set to unity. Table 3,9 summarizes the nodal results. More complete
nodal results are given in Appendix 6, As had been conecluded for two-

dimensional benchmarks, the superiority of ADF-AXS over FWC is
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Table 3.9 Nodal results for the TRD-BWR benchmark

Radial Homogenization Scheme

FWC ADF-AXS
Error in eigenvalue -0.12% " +0.056%
Maximum error in
nodal power 10.54% 4, 70%
Average error in 9. 35% 1. 14%

nodal power

Table 3.10 Radially averaged nodal powers for
the TRD-BWR benchmark

RZ?;':;;: Error from Error from —‘
Power FWC ADF-AXS
Plane #1 0.7139 -2. 9% -0.87%
#2 1,109 -1.49% +0, 34%
#3 1.177 -0.97% +0, 07%
#4 1.299 +0, 79% +0, 92%
#5 1.373 +1, 96% +1,15%
#6 1.056 +0. 89% -0, 49%%
#7 0.7524 +1,22% -0, 56%
#8 0.5158 -0.48% -2,48%
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clear: the maximum errors in nodal powers are 4. 70% and 10.54%
respectively.

Two tests were applied to examine the effects of the unity value
assumed for the axial discontinuity factors. First, the average powers
in each of the eight radial node-groupings were computed, and errors
resulting from the nodal calculations were obtained. These results are
shown in Table 3.10. As expected, ADF-AXS significantly improves the
FWC results; furthermore, the axial power profile obtained from ADF -
AXS is very close to the reference power profile. This is a strong
indication that use of unity discontinuity factors in the axial direction is
acceptable. The second test which was performed was to study two-
dimensional cuts of the TRD BWR benchmark. The errors resulting
from the FWC and ADF-AXS homogenization schemes in these sections
are summarized in Table 3.11. ~“The magnitude of these errors is
comparable to that obtained for the three-dimensional analysis of the
whole core.

These results support the adequacy of our homogenization schemes
for the analysis of three-dimensional heterogeneous BWR cores. In
particular, the use of unity axial discontinuity factors does not seem to

affect the accuracy of the nodal results.

3.7 Summarx

An iterative scheme, based on surface flux response matrices
was formally introduced and was tested for realistic two-dimensional
benchmarks, Results show that, if response matrices are being used
to represent all the assemblies in the core, the maximum error in nodal
power is always smaller than 3%, whereas conventional FWC and ADF -

AXS yield errors as high as 25% and 12% respectively. The behavior of
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Table 3.11 Nodal results for two-dimensional

cuts of the TRD-BWR benchmark

Homogenization Scheme FwWC ADF-AXS

Error in eigenvalue
Region 1 -0.321% -0.013%
Region 2 (rodded) -0.37% +0.008%
Region 2 (non-rodded) -0.007% -0.006%
Region 3 -0.003% -0.0002%
Region 4 0% 0%

Maximum error in

nodal power
Region 1 6. 40% 5.25%
Region 2 (rodded) 7.68% 3.55%
Region 2 (non-rodded) 0.10% 0. 35%
Region 3 0, 56% 0.31%
Region 4 0% 0%

Average error in

nodal power
Region 1 2.31% 1.38%
Region 2 (rodded) 2.79%% 0.99%
Region 2 (non-rodded) 0. 05% 0.16%
Region 3 0.21% 0.15%
Region 4 0% 0%
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the iterative scheme was shown to be very consistent, and its execution
time was shown to be one order of magnitude smaller than that needed
with standard finite-differences schemes, Finally, it was shown that
the extension of homogenization schemes to three dimensions was
straightforward, since axial discontinuity factors may be set to unity.
The characteristics and reliability of the iterative scheme
described make it of great value for the analysis of BWR's, and the
initial investment, which consists of generating tables of response

matrices, seems to be justified,
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CHAPTER 4
FLUX RECONSTRUCTION TECHNIQUES BASED ON
COARSE MESH NODAL METHODS

4,1 Introduction

In Chapter 3 it was demonstrated that relatively cheap and very
accurate BWR homogenization schemes do exist: an ii:erative Scheme
based on surface flux response matrices resulted in reliable nodal
solutions. The next stage in the development of nodal methods consists
of finding a way to recapture cheaply the heterogeneous detail of the
fluxes from the sole knowledge of some (not necessarily accurate) nodal
solution.

In the course of designing and operating a nuclear reactor,
various tasks can be assigned to heterogeneous flux reconstruction
schemes, The most fundamental one is the prediction of the hottest pins
in the core, a determination essential to the safety of the reactor. The
most complex task is the accurate determination of all heterogeneous
fluxes throughout the core. Implicitly, this task is aimed at the
replacement of standard finite-differences methods by a sophisticated,
and cheaper, homogenization-dehomogenization scheme. It is the pur-
pose of this chapter to describe methods which will meet these two
objectives.

Section 2 will discuss the relation between the accuracy of the
nodal solution available and the necessary complexity of the reconstruc-
tion schemes used. Section 3 will show that excellent reconstructed
fluxes can be obtained from the converged solution of the iterative
scheme described in Chapter 3. Section 4 Wﬂ].. describe more sophisti-

cated reconstruction schemes which, when used in connection with the
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cheap (but inaccurate) ADF-AXS parameters, still yield very good
reconstructed fluxes, Finally, section 5 will discuss briefly the
extension of these reconstruction schemes to three-dimensional calcula-

tions.

4.2 The Relation Between Homogenization and

Reconstruction Schemes

The main difficulty in reconstructing heterogeneous fluxes is that
nodal schemes predict only surface and volume averaged quantities, so
that it is necessary to make some kind of assumption concerning the
shape of the flux in order to recapture it. Numerous such assumptions
have been implemented and tested in recent years, and two large classes
can be distinguished among them:

1. The "overall shape approximations"

These methods consist of assuming that the fluxes throughout
the assemblies have a known mathematical form [186, 19, 20].
Some of these schemes, in particular the polynomial form
function method developed by Khalil for PWR's, are very
attractive, but they will not be tested in this investigation.

2. The "boundary shape approximations'

These methods consist of assuming a precise mathematical
form for some quantity on the boundary of the nodes [186, 201].
It has already been shown (Chapter 3) that the most practical
scheme in the class involves assuming a quadratic shape for
the surface form function.
The first class of methods has the advantagé of being very cheap,
since the chosen shapes for the heterogeneous fluxes can often be obtained

by a simple multiplication. Unfortunately, some important limitations
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exist for these methods, since the chosen shapes often lack the flexibility
required to take into account such effects as the large neutron thermaliz-
ation in the water reflector.

The second class of methods is relatively more expensive (about
one order of magnitude), since a fine-mesh finite-differences calculation
is required for each assembly. But, as only the boundary condition is
approximated, local errors there will smooth out in the interior of the
assembly; specially, the presence of a water gap in BWR assemblies
involves important thermalizations, and it is expected that localized
errors in surface fluxes will not propagate far inside the assembly.

The quality of the nodal solution clearly affects the precision of
the reconstructed heterogeneous fluxes., While it is expected that an
excellent nodal solution (such as the converged solution of our iterative
scheme) will predict excellent boundary conditions, a relatively poor
nodal solution (such as ADF-AXS) will predict poor boundary conditions,
(It has already been shown (Chapter 3) that cornerpoint fluxes interpol-
ated from the ADF-AXS nodal solution can be ag much as 40% in error, )

The reconstruction strategy therefore depends on the nodal
solution available. If a good solution is used, the nodal quantities
predicted on the boundary of each assembly can be used to reconstruct
accurately the fluxes within that assembly. If only a poor nodal solution
is known, iarger fixed-source calculations must be used, where the
boundary conditions used are not applied at the surface of the assembly
to be reconstructed, but rather at locations far away from that assembly.
Thus, such local effects ag poorly interpolated cornerpoint fluxes are

expected to have a very limited influence on flux reconstruction,
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4,3 Flux Reconstruction Techniques Based on the

Converged Solution of the Iterative Scheme

4,3.1 The "One-Assembly" Flux Reconstruction Technique

A straightforward extension of the response matrix technique is
to generate flux reconstruction matrices while calculating the matrices
needed for the iterative scheme. The reconstruction matrices will
relate group and point-wise heterogeneous fluxes within each assembly

to face-averaged and cornerpoint fluxes:

[Ppet] = [Rc(x)] {o] (4.1)

Where,_ for a two-dimensional reconstruction,

[d is an 8 * G column vector containing cornerpoint and face-

averaged fluxes;

["Dhet] is an N * N * G column vector containing heterogeneous

fluxes (N is the number of meshes in each direction for
one assembly).

Thus, [RC(),)] is an (N * N G) * (8 * G) rectangular matrix, and
depends on all the state variables.of each assembly. Though [Rc(k)] is
implicitly calculated in the process of determining [Rk]’ the response
matrix described in Chapter 3 (Equation (3. 4)), the storage requirements
of tables of such large matrices are clearly excessive. For example, if
an 18 x 18 mesh layout is used, the resulting [RC(A)] will be 32 times
bigger than the corresponding {Rk]' Thus, it is not expected that recon-
struction matrices will be pretabulated, It is more efficient to do a
separate fixed-source calculation with quadratic form-function boundary

conditions for each assembly to be reconstructed.
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4.3.2 Numerical Testing

4,3.2.1 The CLSH Benchmark

For this benchmark problem, the fixed-source calculation used
in the reconstruction process was performed with the code CITATION.
The same meshing used for the generation of response matrices was
used.

Because of the technical difficulty of implementing this recon-
struction, only two representative assemblies were reconstructed: these
are the sixth and seventh assemblies in the boftom row of the core. The
seventh assembly is rodded and corresponds to the node where the maxi-
mum error in nodal power occurs for the response matrix homogeniza-
tion scheme. The sixth assembly is not rodded, so that the heterogen-
eous flux distribution within its boundaries is expected to be very smooth.

The maximum errors in pin-wise reconstructed fluxes are given
in Table 4.1, (It should be noted that only the fluxes in the fueled
regions are being reconstructed, as the fluxes in the water gaps are of
little interest.) The largest error in reconstructed fluxes is 3. 31%, a
satisfactory value, in view of the heterogeneity and strong tilt of the

CLSH benchmark.

4.3.2,2 The NLSH Benchrnark‘

The fixed-source calculations for this benchmark were performed
using the same formalism and meshing as in the reference calculations.

All fueled assemblies in the core were reconstructed, The
maximum errors in each group and assembly are shown in Table 4, 2,
While fluxes in the interior of the core are very well reproduced, recon-
structed fluxes in the peripheral assemblies are relatively poor (the

maxXimum error in the thermal flux is 7. 46%).
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Table 4.1 Errors in reconstructed fluxes

for the CLSH benchmark

Node #6 Node #7
Maximum error in reconstructed
fast flux in fueled region. -1.89% ~2. 85%
Maximum error in reconstructed -2. 68% -3, 37%

thermal flux in fueled region.
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Note: All extended assemblies have zero current boundary
conditions.

Fig. 4.1 Extended assemblies for the L.SH benchmark,
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Such poor reconstructed fluxes are related to a poor approxima-
tion of the heterogeneous surface fluxes by the quadratic form function
method. Specifically, the use of assembly calculations, based on zero
net current boundary conditions to reproduce the local heterogeneous
nature of the flux, does not take into account the important neutron
thermalization occurring in the water reflector.

These effects can be included in the reconstruction scheme by
using "extended assemblies' to generate so-called "assembly flux
shapes' in the periphery of the reflector. These extended assemblies
are described in Fig, 4.1, They are composed of a set of 4 assemblies
containing fuel and reflector nodes. The flux shapes resulting from
eigenvalue calculations done for each of these sets are used to interpolate
cornerpoint fluxes in the iterative process. It is important to note that
these shapes are not used to generate new response matrices (the tabula-
tion of response matrices which are not based on the usual asserbly
calculations can become very expensive). Nevertheless, the use of new
flux shapes in the cornerpoint interpolation scheme results in a new con-
verged nodal solution, which is summarized in Table 4. 3 (detailed nodal
power distributions are shown in Appendix 6). This nodal solution is
very close to the solution obtained using the usual assembly flux shapes.
The extended assembly flux shapes are then used for flux reconstruction.
The results for all assemblies are shown in Table 4.4. The overall
maximum error in reconstructed point-wise flux in the fuel is 4. 76%.
This is an excellent value; it is smaller than the maximum error in nodal

power obtained from ADF-AXS,
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Table 4,3 Nodal results for the NLSH benchmark

when extended assemblies are used

Error in eigenvalue 0.18%
Maximum error in nodal powers 2.88%

Average error in nodal powers 0. 94%
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4,4 Flux Reconstruction Techniques Based on

the ADF -AXS Nodal Solution

4.4.1 The "Four-" and "Nine-Assemblies"

Reconstruction Techniques

The use of response matrices for determining equivalence theory
parameters is relatively expensive, There is a strong incentive to
develop reconstruction techniques based on cheaper nodal solutions.

The use of the ADF-AXS nodal solution seems particularly well
suited for that purpose. Far from control rods, ADF-AXS predicts
good face-averaged and cornerpoint fluxes (therefore giving good
reconstructions with the straightforward technique); it also appears that
the effect of control rods is very localized, so that one expects to get
good reconstructions when using nodal information in locations relatively
distant from the heterogeneity.

Accordingly a method has been devised in which quadratic fluxes
are imposed not on the boundary of each node, but 3 such quadratics are
imposed on each face of a set of 8 nodes, centered on the node to be
reconstructed. A fine-mesh calculation is then performed, using the
global eigenvalue predicted by the ADF-AXS run. The method is illus-
trated in Fig. 4.2,

This reconstruction method is fairly expensive. Furthermore, it
is generally of no interest to reconstruct fluxes over full assemblies,
For example, the value of the fluxes in pins very close to a control rod
is of limited use,

Therefore, we devised a way to predict the power of the hottest
pin in low power assemblies. As the location of that pin can generally

be estimated fairly well, we surrounded the assembly to be reconstructed
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One Assembly

\

Reconstruction
L)
™,
/ Liocation of
/{ hottest pin
Four Assembly
- / Reconstruction
A,

Nine Assembly
Reconstruction

\

Fig. 4.2 Different reconstruction methods.
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by three adjacent assemblies (see Fig, 4.2) so that the hottest pin is
close to the center of the set. That way, we expect to suppress all

local effects due to the interpolation of the cornerpoint closest to this
hottest pin.

4.4,2 Numerical Testing

The hypothesis that the ADF-AXS nodal solution yields good
reconstructed heterogeneous fluxes in assemblies located far from aay
heterogeneity was checked for the central assemblies (those with voids
of 40% and 70%) of the NLSH benchmark. The results, shown in Table
4.5, are excellent.

The nine-assemblies reconstruction scheme was tested for two
assemblies of the NLSH benchmark: a rodded assembly (the }ifth
assembly on the second row, #12), and a non-rodded assembiy adjacent
to the reflector (the eighth assembly on the second row, #15). Results
for this reconstruction scheme, along with those corresponding to the
"one-assembly" scheme, are given in Table 4.6. Node 12 1s particularly
well reconstructed. This is due to the fact that the boundarx conditions
for the reconstruction are relatively far from any significant heterogeneity
and are therefore well predicted. Node 15 is in a globally overpredicted
region, so that all boundary fluxes are overpredicted, Therefore, the
reconstructed fluxes are overpredicted too. Nevertheless, 511 local
effects (those due to the ADF-AXS approximation on this partijcular node,
and those due to the cornerpoint interpolation) have been smoothed out,
as can be seen from the fact that the minimum and maximum errors in
reconstructed fluxes are very close.

The four-assembly reconstruction scheme, designed to predict

the power of the hottest pin, was tested on node 12 in the NLSH bench-



Table 4.5
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Maximum errors for pin-wise flux reconstruction in the

central assemblies of the NLSH benchmark, when the

ADF-AXS solution and the "one-assembly'' recon-

struction scheme are used.

-0.55% -0. 84%
1. 32% -2, 44%
0.39% -0, 48% 1. 77%
-0.31% 1. 44% 2.46%
0.30% 0, 34% 0.45% 1,75%
0.37% 0.29% 1.57% 2. 48%

+ fast flux

+ thermal
flux
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mark and node 10 (teath node in the first row) and node 35 (third node in
the third row) of the MVY benchmark. The reconstruction results,

shown in Table 4.7, are very good.

4,5 The Extension of Reconstruction Schemes to

Three-Dimensional Calculations

It is not the purpose of this thesis to extend the two-dimensional
reconstruction schemes described earlier, to three-dimensional calcu-
lations. Such work is currently underway at MIT,

Nevertheless, the smoothness of the fluxes in the axial direction
makes it likely that the radial and axial behavior of the fluxes can be
mathematically separated. If this fact is verified for realistic three-
dimensional benchmarks, the extension of two-dimensional schemes will

be straightforward.

4.6 Summarz

In this chapter, flux reconstruction techniques based on imposing
quadratic form functions on the boundary of one, four, or nine adjacent
assemblies wére described and tested,

It was shown that if the nodal solution resulting from the iterative
scheme described in Chapter 3 was used, the one-assembly technique
was sufficient to reconstruct heterogeneous fluxes within 5%. If the
ADF -AXS nodal solution is to be used, the one-assembly technique gives
excellent results in assemblies far from any significant heterogeneity and
the nine-assembly technique yields good fluxes in all other assemblies,
whereas the four-assembly technique is sufficient to predict very

accurately the power in the hottest pin of each assembly.



Table 4,6 Maximum errors in flux reconstruction

when using the ADF-AXS nodal solution

One-Assembly

Nine-Assembly

Reconstruction Reconstruction
Node #12 (LSH)
Fast flux -13. 3% 0.81%
Thermal flux -18.5% 0. 83%
Node #15 (LSH)
Fast flux 7. 48% 5. 94%
{min: 4. 86)
Thermal flux 13.1% 6.01%
(min: 4. 486)

Table 4.7 Maximum errors in hottest pin

when using the ADF-AXS nodal solution

and the "four assemblies" technique

Assembly 12

Assembly 10

Assembly 35

(LSH) (MVY) (MVY)
Fast flux -1.06% -0.15% -1.39%
Thermal flux -0.95% -0.01% -1.21%
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CHAPTER 5
THE APPLICATION OF NODAL METHODS TO
DEPLETION CALCULATIONS

5.1 Introduction

In the earlier chapters of this thesis, homogenization and
reconstruction schemes were described which, when applied to beginning-
of-life BWR benchmarks composed of realistic assemblies, gave very
satisfactory results,

The extension of these schemes to depletion calculations is not a
straightforward procedure, Whereas exact heterogeneous cross sections
are known for the beginning of life benchmarks, this is not the case when
depletion effects are considered. Determining the exact heterogeneous
cross sections throughout life would require the knowledge of all exact
time-dependent pointwise fluxes, but nodal methods predict only approxi-
mate node-averaged quantities. Thus, some method has to be devised
which will predict time-dependent equivalence theory parameters from
the sole knowledge of a time-dependent nodal solution to the global
problem.

Such a method, the "assembly-depletion'" scheme, will be
described in section 2. This method will be tested, both for the
prediction of equivalence theory parameters and for flux reconstruction,

in section 3. Feedback effects will not be tested,

9.2 The Assembly-Depletion Approximation

The most important limitation of nodal methods is the cost of ,
generating and storing tables of response matrices or assembly homogen-

ized parameters. Thus, the pretabulation of these quantities should
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require as few interpolating parameters as possible. In particular, it
would be extremely costly to take into account the global flux tilt of the

reactor. Therefore, a simple approximation is needed for evaluating

the time-dependent heterogeneous cross sections used in the process of
generating equivalence theory parameters.

Because of the small magnitude of inter-assembly effects, the
"assembly-depletion' approximation seems particularly well suited:
each assembly is depleted with the J * n = 0 boundary condition. Thus,
assembly homogenized parameters and response matrices can be pre-
tabulated versus the average assembly exposure. The same kind of
tabulation should also be performed for the other state variables
describing each assembly (void, void history, temperature, xenon con-
centration -++). Nevertheless, it is not the purpose of this thesis to
study the effects of variations of these state variables. Thus, they will .
be assumed constant, The following procedure can be implemented at
each time step of the depletion caleulation.

1. Obtain, at beginning of time step, node-averaged powers,
using known homogenized parameters or response
matrices.

2. TFor each assembly, calculate average burnup, and inter-
polate new homogenized parameters or response matrices,
using the zero current boundary condition "assembly
depletions'.

3. Calculate end of time-step nodal solution.

Compared to equivalent beginning of life nodal calculations, the

depletion calculations performed that way include two new sources of

errors., First, it is an inherent feature of the "assembly-depletion"
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approximation that the flux tilts throughout the core are not taken into
account, Therefore, heterogeneous cross sections used in the calcula-
tion of response matrices and ADF-AXS will not be predicted exactly.
The second, and most important, source of error is that the nodal
procedure leads to some error in average assembly exposures. Hence,
the homogenized parameters and response matrices used at each time-
step do not represent the exact physical state of the corresponding
assembly.

Nevertheless, the variations of the heterogeneous cross sections.
with fuel burnup are generally very small [1, 8]. Consequently, even a
large imprecision in the determination of pin or assembly-averaged
burnup, is expected to have a relatively insignificant effect on the deter-

mination of homogenized parameters or response matrices.

9.3 Numerical Testing

5.3.1 Description of Benchmark Problems

The two depletable benchmarks described in this section are both
small two-dimensional BWR cores, They are more.explicitly described
in Appendix 2,

53.3.1.1 The DEP1 BWR Benchmark Problem

The DEP1 BWR benchmark is a small and very tilted core. It
consists of 32 fresh and burned fuel assemblies, some of which are
partially voided. It is surrounded by a water reflector. A control rod
is present in each half-core, and is located close to the reflector. That
particular feature creates a very strong local tilt, thus increasing the

difficulty of the homogenizations. The assemblies are those character-

istic of the Vermont Yankee reactor.
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The variations of the macroscopic-cross sections with burnup
were obtained from CASMO calculations [2 1] provided by Yankee Electric.
We assumed that all cross sections vary quad‘ratically with pin-wise
burnups, No feedback effects were accounted for. The assumption that
macroscopic cross sections vary only with pin-wise burnups is very
simplistic, as some effects, like the spectral dependence of cross
sections in adjacent pins, are neglected. Nevertheless, these are only
second-order effects. Furthermore, the objective of this study is to
compare nodal methods to fine-mesh finite-differences calculations. In
that respect, an approximate cross-sectional model is sufficient for
meaningful comparisons,

The reference solution for the DEP1 benchmark is a fine-mesh
full core PDQT "one-shot'" depletion. The depletion was performed for
10,000 hours at a reactor power level of 105 W/em height. 969 mesh-
points were used in each assembly. The "one-shot" assumption is not
realistic, but is expected to be conservative: generally B. O, L, fluxes
have larger gradients than fluxes in depleted cores; thus, the "one-shot"
depletion generates more tilted burnups than a realistic depletion.
Furthermore, if the same "one-shot" assumption is used to perform
nodal calculations, comparisons between the nodal and finite-differences
solutions are expected to be meaningful,

5.3.1.2 The DEP2 BWR Benchmark Problem

- The DEP2 benchmark is a small and strongly tilted BWR core,
It consists of 60 fuel assemblies, surrounded by a water reflector. A1l
assemblies are heterogeneous and are those characteristic of the Vermont
Yankee, where the length of the control rods has been slightly modified

(see Appendix 2). The cross section behavior with burnup is the same as
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that used in the DEP1 BWR benchmark.

Two successive, one-shot 10, 000-hour depletions were performed
and the assemblies were shuffled at the end of each cycle, The beginning
of life core consisted of a central rodded region with burned fuel and 40%
void fraction, surrounded by high void burned fuel. The outside of the
fueled region consists of fresh assemblies, with 40% void, A one-shot
depletion was performed for 10, 000 hours at a full core power level of
197606 W. The resulting core was then shuffled, in order to bring the
outer fresh fuel in a more central position. The mostly burned assem-
blies were eliminated, and fresh fuel was brought into the outer locations.
The central rodded assemblies were kept in the same location. (No data
was available for the variation of cross sections with void; thus each
assembly was assumed to operate at its original void.) A new one-shot
depletion of 10, 000 hours was then performed, again at a power level of
197606 W, and the resulting core was then shuffled, The assemblies in
the periphery were those which were located next to the "jag" of the core
during the second depletion cycle, and had therefore been depleted under
very strongly tilted conditions., The inner assemblies were the same as
those used for the first reload core (they had been burned in peripheral
positions during the first cycle).

The reference solution for the DEP2 benchmark is a full core
CITATION run, where 256 meshes are used in each assembly.

5.3.2 Numerical Testing of Homogenization Methods

5.3.2.1 The DEP1 Benchmark

The assembly surface fluxes and homogenized parameters were
obtained from PDQR7 calculations, using the same meshing as in the

reference calculation. The surface flux response matrices were
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generated with CITATION, using that same meshing,

Beginning of life nodal powers were predicted using both the
ADF-AXS and the response matrix homogenization schemes. For each
of these methods and for each assembly, a one-shot depletion was per-
formed for 10, 000 hours with PDQ?7, for the nodal power predicted at
beginning of life. These calculations led to a new set of homogenized
parameters (corresponding to ADF-AXS B.O.L. nodal powers) and
response matrices (corresponding to response matrix B.O. L. nodal
powers),

Tables 5.1 and 5.2 give the B.O. L. and E.O.L. nodal powers
and the errors corresponding to the two homogenization schemes used.
Tables 5.3 and 5.4 summarize the nodal results.

The response matrix homogenization scheme results in only a
marginal improvement on the ADF-AXS results, This seems to be due
to the severity of this benchmark, which causes the quadratic form
function approximation to be invalid. Nevertheless, both homogenization
schemes predict very good nodal powers. This seems to be due to the
small size of the core.

Although the end of life homogenized parameters and response
matrices were generated from assembly depletions which reproduce
neither the reference B. O, IL.. powers, nor the flux tilts, the nodal
powers predicted by the two depletion schemes at EO L. are consistently
better than at B.O.L, These results seem to indicate that the "assembly-
depletion" approximation is accurate, even in the case of a highly tilted
benchmark,

5.3.2,2 The DEP2 Benchmark

The assembly surface fluxes and homogenized parameters were
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Table 5.1 B.O.L. nodal powers for the
DEP1 benchmark

1.10895 1,00858 Reference

~1.17% ~2.68% ADF-AXS

+3.07 +1.33% Response matrices
1,00765 1.111286 1.03922

- 2.05% - 0.02% + 2. 48%

+ 0.63% - 0.92% + 0. 36%

0.75218 0.97299 0,99917

-0.17% - 0.30% 3.89%

-2.12% -2.16% -1.15%
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Table 5.2 E.O.L. nodal powers for the
DEP2 benchmark

1.12865 1.03486 References
2.07% 0.50% Response matrices
0,00% -1.34% ADF-AXS
0, 98729 1.06904 1.05908
0.48% - 0.56% 0.00%
0, 04% 0.04% 1.13%
0.78219 0. 96354 0.97535
-0.68% -1,51% -0.79%
~0.47% 1.01% 2.01%




Table 5.3 Nodal results at B.O,L. for the DEP] benchmark

Response

ADF-AXS Matrices
Error in eigenvalue -0, 18% +0.22%
Average error in nodal power 1.60% 1.47%
Maximum error in nodal power 3.89% 3.07%

Table 5.4 Nodal results at E.O. L. for the DEP1 benchmark

ADF-AXS Response

Matrices

Error in eigenvalue -0.07% +0.20%
Average error in nodal power 0. 90% 0. 82%
Maximum error in nodal power 2.01% 2.07%
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obtained from QUANDRY calculations, using the same meshing as in the
reference calculations, The surface flux response matrices were
generated with CITATION, using that same meshing.

The nodal powers were predicted at each time step, using both
the ADF-AXS and the response matrix homogenization schemes., The
assembly homogenized parameters and the response métrices were
predicted, at each time step, from successive one-shot CITATION
depletions performed with zero current boundary conditions, using the
average nodal powers predicted at the earljer steps by the response
matrix technique. As these nodal powers are generally better than
those predicted by the ADF-AXS method, this approach is expected to
yield better assembly homogenized parametérs than those which would
have been calculated from the nodal powers of the ADF -AXS run.,
Therefore, a comparison between the ADF-AXS and response matrices
results is expected to overestimate the accuracy of the ADF-AXS
results.

Nodal results for each time step are summarized in Table 5, 5,
No significant variations in the quality of the nodal results can be
observed when the fueled assemblies are either depleted or shuffled.
Thus, the "assembly-depletion' approximation seems to be adequate for
predicting assembly homogenized parameters and response matrices,

5.3.3 Numerical Testing of Reconstruction Methods

A straightforward extension of the depletion schemes based on
the "assembly-depletion" approximation is to use the local heterogeneous
cross sections predicted by this approximation in the fixed source calcu-
lation involved in the reconstruction process. Only the "one-assembly"

reconstruction scheme, used in conjunction with the response matrix
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solution, will be tested.

The heterogeneous cross sections of depleted assemblies are not
predicted exactly by the "assembly depletions'', as the flux tilts through-
out the core are not taken into account when these depletions are per-
formed (see section 5.2). More accurate cross sections could be
predicted by reconstructing the heterogeneous fluxes throughout the core
at each time step. These reconstructed fluxes would then be used for
depleting each individual pin. Thus, flux tilts would be taken into
account. Unfortunately, this approach would be very expensive, Not
only would it require reconstructing all heterogeneous fluxes, but also
each individual pin burnup would have to be calculated and stored, Thus,
this approach does not seem to be fruitful.

5.3.3.1 The DEP1 Benchmark

The heterogeneous fluxes were reconstructed at B.O.L. and
E,O. L., using the response matrix nodal solution. The pin-powers
were reconstructed by using these reconstructed heterogeneous fluxes,

and the pin-wise fission cross sections obtained from the '

'assembly-
depletions''.

Table 5.6 gives the maximum errors in reconstructed fluxes and
powers at B.O.L, and E.O.L., and the maximum error in pin-wise
thermal fission cross section in the fuel pins and in the gadolinium pins,
due to the "assembly depletion’ approximation.

The maximum errors in reconstructed fluxes and powers
decrease during depletion. The errors in reconstructed powers decrease
by a large amount; this is mainly due to a cancellation of errors; at the

particular location where the maximum error in reconstructed power

occurs, the flux is overpredicted and Efz is underpredicted. Nevertheless,
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Table 5.8 Errors in reconstruction for the DEP1 benchmark

using nodal quantities from response matrices

B.O.L E.O.L,.
Maximum error in:
Reconstructed flux
e fast 4.686% 3.60%
e thermal 8.62% ‘ 6. 66%
Reconstructed powers 8.31% 5.13%

Thermal fission xs
e in fuel - -1.57%

e in gadolinium - 4, 87%
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the absolute sum of the maximum error in thermal flux (6. 66%) and the
maximum error in I, in the fuel (1.57%) is still smaller than the
maximum error in reconstructed power at B.O. L.

The large error in Zfz of the gadolinium pins is due to the sharp
variations of this cross section with burnup. Fortunately, these pins lie
far inside the assemblies, where the reconstructed fluxes are always
very accurate,

5.3.3.2 The DEP2 Benchmark

The heterogeneous pin-wise fluxes and the pin-wise powers were
reconstructed for all five time steps. CITATION was used to perform
the fixed-source calculations. Quadratic form functions were imposed
on the assembly boundaries. Maximum errors for these reconstructions
are given in Table 5.7. At all time steps, the maximum error in recon-
structed thermal flux and pin power occurs in the pin closest to the top
right corner of assembly #9 (this is the fourth assembly in the third row).

The maximum errors in reconstructed fluxes and powers in the
gadolinium pins are relatively large. However, it should be noted that
these errors occur in low power nodes,

In order to obtain better reconstructed fluxes, ''extended
assemblies'’, described in Fig. 5.1, were used to generate the
"assembly'' fluxes involved in the cornerpoint interpolation scheme and in

the reconstruction scheme, while '

'normal'’ assembly calculations were
used to generate response matrices and perform assembly depletiohs.
Thus, the cost of using extended assemblies was minimal.

The concept of extended assemblies was tested for the first three

time steps of the DEP2 BWR benchmark. Nodal results are summarized

in Table 5.8, while reconstruction results are given in Table 5. 9.
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S
JI.N—O
/’/K‘
W W .~
/'//
/
Note: Only fluxes
FUEL #9 w below the symmetry
axis are used in
calculations
J=0
J=0
J=0  FueL #4 W Jiy=0
‘] b
J=0

Fig., 5.1 Extended assembljes for the DEP2 benchmark.
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Table 5.8 Errors in nodal quantities when using ""extended

assemblies' in the DEP2 benchmark

(in percents)

B.O.L. 1 [E,O.L. 1 {B.O.L. 2
Maximum error in nodal power 0.98 1.28 1.21
Average error in nodal power 0.65 0.59 0.60
Error in eigenvalue -0.59 -0,21 0.00

Table 5.9

Errors in reconstruction of heterogeneous

quantities when using "extended assemblies'

in the DEP2 benchmark

(in percents)

B.O.L.1|E.O.L. 1 |B.O,L, 2
Maximum error in reconstructed:
Fast flux in assembly 9 1.55 -1.14 -4,22
Thermal flux in assembly 9 3.58 4.08 3.86
Fast flux in other assemblies -3.05 -2.03 -3.29
Thermal flux in other assemblies| 3.28 -5, 17 -3.84
Pin power in fuel 3. 40 4.55 -3. 90
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These results show a very significant improvement from those in Tables
5.5 and 5,7 corresponding to the use of '"normal'’ assemblies.

The high errors encountered when reconstructing power in
gadolinium pins are due to the sharp variation of the thermal fission
cross section in the gadolinium fuel with burnup. In assembly 9, where
the fluxes are very strongly tilted, "assembly depletions' predict poorly
the burnup of the gadolinium pins; this will result in very inaccurate
fission cross sections,

To correct this problem while still using the "assembly depletion"
approximation to generate response matrices, one can use the pin powers
reconstructed at each time step to keep track of the burnup of each
gadolinium pin. This burnup can then be used to estimate the fission
cross sections entering in the power reconstruction, while all other
calculations (global local iterations and flux reconstruction) are done
using only the results of "assembly depletions". Thus, the cost of this
method can be kept minimal.

With this scheme used for the first depletion cycle, the highest
error in reconstructed power in gadolinium pins was reduced from 13%
to 3. 1%.

The results show the consistency of the depletion scheme being
tested. 'The reconstructed results are not significantly affected through-
out either single-cycle depletions or when shuffling of the fuel is

performed.

5,4 Summarz

In this chapter a nodal depletion scheme, based on depleting each
assembly with zero net-current boundary conditions was described.

It was shown that this approximation does not significantly affect
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the precision of the homogenization schemes used (ADF-AXS and
response matrices). With a few inexpensive modifications, the same

conclusion was reached for the "one-assembly'" reconstruction scheme.
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CHAPTER 6

SUMMARY

6.1 Overview of the Investigation

The goal of this research was to apply the nodal equivalence
theory and the analytic nodal method to the analysis of Boiling Water
Reactors. First, it was necessary to develop homogenization
procedures which would predict accurate equivalence theory parameters.
The next step was to infer local fuel pin power densities from the nodal
results,

In Chapter 1, it was shown that standard flux weighted constants
do not preserve the nodal quantities of interest, because they do not
allow for enough degrees of freedom. However, "equivalence theory',
which is an extension of the usual diffusion theory model, shows that
there exist homogenized parameters which reproduce the nodal quantities
of interest.

Equivalence theory was formally derived in Chapter 2, The
unique feature of that model is that it allows for the solution of the
homogeneous problem to be discontinuous at nodal interfaces.
Unfortunately, the reference solution is necessary to define ""exact”
parameters based on equivalence theory. Hence, approximate methods
for determining them must be used in practical cases,

Such approximate methods were reviewed, The ADF ;AXS
method, developed by Smith [3], is é cheap and simple scheme, but its
accuracy is only marginally acceptable for BWR applications.
Consequently, more sophisticated methods were developed, wherein equiv-

alence theory parameters are computed by local fixed-source calcula-
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tions. Cheng (6] implemented fixed-source calculations based on
partial or net surface currents in iterative schemes. These schemes
appeared not to be a fruitful approach to the problem of obtaining
homogenized parameters. It was shown that their failure was related
to the inadequacy of the spatial approximation made for the boundary
conditions of the fixed-source calculations,

Hence, various approximate boundary conditions were examined
in Chapter 3. It was shown that a practical alternative consists of
assuming that the heterogeneous surface fluxes are the product of an
"assembly flux' and of a quadratic form function. The parameters of
this quadratic can be obtained by interpolating cornerpoint fluxes.
Response matrices based on this approximation were implemented in an
iterative scheme. Numerical tests show that a few iterations are
sufficient to predict very accurate assembly powers. The maximum
error for average nodal powers generated in this way is generally less
than 3%. Furthermore, this scheme was shown to improve consistently
the ADF -AXS results. For two-dimensional cases the computational
efficiency of the method appears to be at least one order of magnitude
greater than that achieved by solving the global heterogeneous problem
by a standard finite-differences method.

The extension of these homogenization schemes to three-
dimensional calculations was shown to be straightforward. A numerical
test demonstrated that axial discontinuity factors are well approximated
by unity.

In Chapter 4, different heterogeneous flux reconstruction schemes
were described. The general procedure adopted was to perform fixed

source calculations with quadratic form functions imposed on the
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boundaries of a set of one, four, or nine adjacent assemblies, It was
shown that if the solution of the surface flux response matrix iterative
scheme is available, detailed fluxes can be reconstructed to within 5%
of reference values everywhere in the core using the one-assembly
method. If the ADF-AXS nodal solution is used, a nine-assembly
method predicts reconstructed fluxes within 6% of the reference solution,
However, it vis fairly expensive. On the other hand, a four-assembly
method can be used along with the ADF-AXS nodal solution to determine
the power of the hottest pin in each assembly. These powers are
predicted very accurately.

In Chapter 5, the effects of fuel depletion and assembly shuffling
were examined. A cheap way to estimate assembly homogenized
parameters and response matrices had to be found if these effects are
considered. Accordingly, the "assembly-depletion" approximation was
described and was shown to be sufficient for predicting équivalence theory
parameters throughout the life of a reactor,

Thus, cheap and efficient ways of predicting nodal powers and
heterogeneous fluxes have been developed. They imply a relatively
important initial investment, Nevertheless we strongly suggest that they

be used for all BWR analysis.

6.2 Recommendations for Future Research

6.2.1 Improved Cornerpoint Flux Interpolation Schemes

Serious doubts about the theoretical validity of the cornerpoint
flux interpolation scheme used for this investigation were raised in
section 3.3.2. Specifically, the outcome of that scheme depends on the
shape of the box used to implement the source-free condition. It seems

highly desirable to develop methods which are more theoretically
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defensible,.

6.2.2 Tabulation and Interpolation of Response Matrices

The tabulation and interpolation of response matrices has been
discussed in section 3.4,.3. It was stated that a few state variables
(void, void history, power level, temperature, xenon concentration,
average exposures) are expected to describe well the physical properties
of an assembly. Furthermore, it was expected that the variations of
the response matrices with these state variables would be smooth.
Nevertheless, no systematic way of interpolating response matrices has
been studied in this thesis. Such a study is very important, in
particular when feedback effects are considered and transient analyses
are performed. |

6.2.3 Three-Dimensional Flux Reconstructions

The smoothness of the flux in the axial direction suggests that the
two-dimensional flux reconstruction method can be extended to the third
dimension without having to perform expensive three-dimensional calcu-
lations. Nevertheless, cases such as partially inserted control blades
should be studied.,

6.2.4 The Analytic Generation of Response Matrices

The response matrices used in this investigation were based on
an assumed shape of the flux on the boundaries of each assembly. Thus,
expensive fixed-source calculations had to be performed to generate
these matrices., An alternative to that method would be to find an
analytic approximation for the fluxes within the assembly. Response
matrices based on this approximation could then be generated analytically,
and would therefore be very cheap. An investigation of this scheme is

underway at M.I. T,
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6.2.5 Improved Depletion Studies

Two important assumptions were made for the depletable bench-
marks analyzed in Chapter 5: "one-shot' depletions were performed,
and the heterogeneous cross sections were assumed to vary only with
pin-wise burnups. It was argued that if the same two assumptions are
used in the nodal calculations, comparison of finite-differences and
nodal solutions would be meaningful. This argument needs to be further

investigated, by performing more realistic depletion calculations.
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APPENDIX 1

DESCRIPTION OF BWR BENCHMARK PROBLEMS

Al.1 THE CISE BWR BENCHMARK PROBLEM
Al.2 THE LSH BWR BENCHMARK PROBLEM
Al.3 THE MVY BWR BENCHMARK PROBLEM
Al,4 THE TRD BWR BENCHMARK PROBLEM

Al1.5 THE PRELIMINARY TEST PROBLEM
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Al.1 THE CISE BWR BENCHMARK PROBLEM
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Fig. Al.1.1

Core layout for the CISE Benchmark Problem.
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Fig. A1.1.2 Assembly description for the CISE Benchmark Problem.

Zone A At B B" | REFL.
I 3 3 4 4 2
II 9 1 2 1 2
111 2 2 2 2 2

Table Al1.1.1 Material Positions for Assemblies
of the CISE Benchmark.



D

Composition group
1
{Control blade) 2
2
(Water) ‘ 2
3
{Fresh fuel) 2
4

(Depleted fuel)

X1
Xy = 0.0
v

Al-4

3.00
0.15

2.00
0.30

1.80
0.55

1.80
0.55

z vZ I,
agl fgl 991)
(cm 7) (cm ) (cm
.08 0.0 0.0
1.00 0.0
.0 0.04
01
0.008 0.006 0.012
0.085 0.110
0.008 0.0058 0.012
0.085 0.100

Table A1.1.2 Heterogeneous cross sections for

the CISE Benchmark.
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Al. 2 THE LSH BWR BENCHMARK PROBLEM

in
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V=40%| V=40%|V=40%| V=0%| V=0%| V=0%| W W W W
V=708% V=70%|V=70% |V=40%| V=0%| V=03 | W W W W
V=70%| V=70%{V=70% |V=40% |V=0% 'v=0% V=03 |V=0% | W | W
J=70%| ¥=70%1V=70% |V=40% [V=0% g V=0% | V=0% | W W

in

Fig. Al.2.1 Core layout for the LSH BWR Benchmark Problem.
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0.90
D c|¢C A A A|C D 1.63
|
™ D B|B B B B [B C 1.63
*
ol B|G B B B |B A 1.63
*
C B|B B F B | B A 1.63
*
C B|B G B B |B A 1.63
12.45 L
D C|B B B G|B (o 1.63
*
D ci|{c B B B |B C 1.63
x
E D|D C c cCiID D 1.63
H 1?197
N V. N 0.40
1/

Fig. A1.2.2 Assembly description for the LSH BWR Benchmark.

VOID FRACTION

ZONE 0% 0% 40% 70% W
(rodded)

A 1 10 18 26 34
B 2 11 19 27 34
C 3 12 20 28 34
D 4 13 21 29 34
E 5 14 22 30 34
F 6 15 23 31 34
G 7 16 24 32 34
H 8 17 25 33 34
I 9 17 25 33

Table A1,2.1 Material positions for assemblies
of the LSH BWR Benchmark,
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Zone Material
A 2,50 w/o fuel adjacent to can
B 2.50 w/o fuel in the interior
C 1.90 w/o fuel
D 1.49 w/o fuel
E 1.18 w/o fuel
F the water rod
G the gadolinium rods
H the wide and narrow gaps
I the control rod

Table A1.2.3 Material description for the LSH BWR Benchmark
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Al1.3 THE MVY BWR BENCHMARK PROBLEM
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Fig. Al1.3.1

Core layout for the MVY BWR Benchmark Problem.

The assembly geometry and the heterogeneous cross sections

Note:

are the same as for the LSH BWR Benchmark Problem.
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Al.4 THE TRD BWR BENCHMARK PROBLEM

Fig., Al.4.1

REFLECTOR

REGION 4

REGION 3

REGION 2
UNRODDED

REGION 2
RODDED

REGION 1

REFLECTOR

Fig. A1.4.2 Axial core layout for the TRD BWR Benchmark Problem.
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Radial core layout for the TRD BWR Benchmark Problem.
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veot |Jveoz

V=07

V=0%

V=0%

V=0%

V=07

V=07

REGION 1

V=707

V=407

V=407

V=707

V=/07%

V=70%

V=707

V=707

V=70%

REGION 3

Al-14

V=407

o1,

V=07

V=407

V=407

V=407

V=407

V=407

V=407

REGION 2

V=70%

V=707

V=70%

V=707

V=70%

V=707

V=707

V=703

V=707

REGION 4

Fig. A1.4.3 Void fractions for the TRD BWR Benchmark.
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i .90
A M
I 13.04
12.45
II T o 97
s mi F 0.40
ITI

Fig., Al.4.4 Assembly description for the TRD
BWR Benchmark.

VOID FRACTION

ZONE 0% 0% 40% 70% REFL.
(rodded)

I 1 4 6 8 10

IT 2 5 7 9 10

III 3 5 7 9 10

Table Al.4.1 Material positions for assemblies of the
TRD BWR Benchmark.
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Compo..- Group D 'z )}

g tg rg. Efg :
1 1 1.406 .2596E-1 .1667E-1 .5963E-2
2 .3735 .8025E~1 0.0 .1048
2 1 1.523 . 2685E-1 .2625E-~1 0.0
2 .3123 .8559E-2 0.0 0.0
3 1 1.113 .8742E-1 .3750E-2 0.0
2 .1840 .9673 0.0 0.0
4 1 1.417  .2618E-1 .1696E-1 .5983E-2
2 .3696 .7986E-1 0.0 .1019
5 1 1.531 .3131E-1 .3074E-1 0.0
2 L2942 .9160E-2 0.0 0.0
6 1 1.696 .1883E-1 .1015E-1 .5715E-2
2 5276 .7658E-1 0.0 .9909E-1
7 1 1.610 .2827E-1 .2772E-1 0.0
2 .3166 .8550E-2 0.0 c.0
8 1 1.696 1443E-1 .5739E-2 .5694E-2
2 L5262 .7688E-1 0.0 .1006
9 1 1.610 .2826E-1 .2771E-1 0.0
2 L3167 .8547E-2 0.0 0.0
10 1 2.010 .3569E-1 .3516E-1 0.0
2

.3259 .9963E-2 0.0 . 0.0

Table A1,4.2 Heterogeneous cross sections for the
TRD BWR Benchmark,
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Al.5 THE PRELIMINARY TEST PROBLEM

% =0
E=5 E=5 E=5
V=0 V=0Z V=40
Q _=0 E'_'S E=30 E=20
V=0 V=707 | V=407
F=30 E=5 E=20
v=707 Y v=07 V=407
J.n=0

Fig. A1.5.1 Core layout for the preliminary

Test Problem.

ITI

I1

[11

11

v

v

Iv

IV

I1

ITI

IT

[1I

VI

LN

1.0
3.0

1.5

3.0

allb&1.5

3.0

.70
-30

Fig. Al.5.2 Assembly description for the

Preliminary Test Problem.
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ASSEMBLY
ZONE E=5 E=5 E=20 E=30
V=0% V=0% V=40% V=70%
(rodded)
I 1 6 12 17
II 2 7 13 18
ITT 3 8 14 19
v 4 9 15 20
v 5 10 16 21
VI 5 11 16 22

Table A1.5.1 Material positions for assemblies of

the preliminary Test Problem.
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Table Al.5.2 Heterogeneous cross sections for the preliminary

Compo.

10

11

Test Problem.

D
g

1.7150%
5.1128B9E-1

1.69906
S.11885E-1

1.68338
S.13507€~1

1.73868
5.11698E-1

1.60915
3.14606E-1

1.98792
7.47662E-1

1.98759
7.59114€-1

1.93191
7.66242E-1

2.01118
7.48782E-1

1.67279
3.70045E-1

-

. 14239
2.03168E-1

—

—

—_

Z%g

.B4927E-2
.46766E-2

.99288E-2
. 17403E-2

.09624E-2
.46235E-2

.85938E-2
.15108€-2

. 7853SE-2
.60145E-3

.30264E-2
.95545E-2

.37564E-2
-82293E-2

.4358559E-2
.21661E-2

.33169E-2
.4B796E-2

.96026E-2
.43640E-3

.58520E-2
.SB8567E-1

z%?g vz%g Z%g

8.B1354E-3 4.99860E-3 1.B4674E-3
0.00000000 1,19180E-1 4.43968E-2

9.71929E-3 4.30283E-3 -56236E-3
0.0 9.26985E-2 3.37757E-2

-

1.03746E-2 3.93319E-3 1.41348E-3
0.00000000 7.86099E-2 2.82029E-2

.B3287E-3

8.52619E-3 4.99940E-3 1
0.0 1.25018E-1 4.69796E-2
2.730S8E-2 0.0 0.0

0.0 0.0 0.0

4,06734E-3 4.12817E-3 1.49970E-3
0.00000000 1.07666E-1 3.89830E-2

4.26446E-3
0.0

.522B4E-3 1,25997E-3
.53155E-2 3.02465E-2

LA

4,46617E-3 3.23760E-3 - - 14956E-3
0.00000000 7.39183E-2 2.59204E-2

Y

3.9010BE-3 4.06286E-3 1,4878B8F-3

0.0 1.11592E-1 4.07234E-2
1.90530€-2 0.0 0.0

0.0 0.0 0.0
3.896S53E-4 0.0 0.0
0.0 0.0 0.0



T able Al. 5.2 (continued)

12

13

14

15

16

17

18

19

20

21

22

[A ey

-

W =

-

-

.42296
3.68090E-1

.41659
3.6365€E~1

.40531
3.63633€-1

. 42655
.33876E- ¢

.53187
.93667E~1

1.41364

.7T1078E-1

. 39631
.70192E-1

.37762
. 72979E-1

.41302
.381B3E-1

.52271
. 12588E-1

. 18545
.99039E -1

.54540€E-2
.66178E-2

.65477€-2
.49651E-2

.74979E-2
.66050E-2

.65288E-2
.28168E-1

.10730E-2
. 18008E-3

.56225€E-2
-62191€-2

.59559€-2
.43578E-2

.64745E-2
.59599E-2

.69276E-2
.24434E-1

.64480€E-2
.75572E-3

,21421E-2
.98926E-1

A1-20

{.58941E-2

¢.0

1.69087E-2
c.0

1.77605E-2
0.0

1.56848E-2
0.0

3.05027E-2
0.0

1.59582E-2
0.00000000

1.62703E-2
0.0

1.67106E-2
0. 00000000

8926E-2

Q -
oo

2.58513€E-2
0.0

5.04714E-4
0.0

6.20089E-3 2,
1.30677E-1 S.

5.36251E-3 2.
1.06123E-1 4.

4.80538E-3 1

5.97769E-3
9.82144E-2

w N

6. 19485E-3 2.

{.30499E-1 5.
5.25298E-3 1
1.05588E-1 4
4.64045E-3 1
8.,86472E-2 3
5.89273E-3 .2
9.79440E-2 3
0.0 (o}
Q.0
0.0 0.
0.0 0.

37656E-3
17711€-2

02871E-3
14995E-2

.79981E-3
8.91109€-2 3.

441T74E-2

.30796E-3
.88767E-2

37655E-3
15526E-2

. 990BBE-3
-12276E-2

.74209E-3
.41744€E-2

.31689E-3
.87449E-2

[o N o]
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APPENDIX 2

DESCRIPTION OF DEPLETABLE BWR

BENCHMARK PROBLEMS

A2.1 THE DEP1 BWR BENCHMARK PROBRLEM

A2.2 THE DEP2 BWR BENCHMARK PROBLEM
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A2.1 THE DEP1 BWR BENCHMARK PROBLEM

J;=0
W W W W
E=0 E=0
V=0% V=07 W W
J.n=U Jin=
] E=10 E=10 E=0 y
V=05% V=407 V=03 '
—
p———
E=5 E=5 E=10 y
| V=407 V=70% V=407%
J.N=0
E = B.O.IL. average exposure,
V= void fraction (constant throughout life)
Total Power = 105 W/em height.
Depletion Time = 10,000 hours.

Fig. A2.1.1 Core layout for the DEP1 BWR
Benchmark Problem.

Note: The assembly geometry is the same as for the LSH BWR
benchmark problem.




A2-3

Table A2.1.1 describes all heterogeneous cross sections for
the DEP1 BWR Benchmark Problem in the PDQ7 format, for

a mask at burnups 20,000, 10,000, and 0 MWD/MT.
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401000, 01

401001, A54C

401100,0+0,0+0,0+0

401200,0+0,0+0,0+0

40110102, . 19666+00, .96210-2, .98690-2, .22800-2, .26075+1, 0.3204-10
40120102, .64B63+00, .84320-01,0.0,.51010-01,.25368+01, .3204-10
» FUNCTION TABLES FOR MATERIAL A (V=40%, BURNUP=5, CONTROLLED)
130010.4.,02,1,1,2,1

130041, . 19602+00, . 19634+00, . 19666+00

130020,4,02,1,2,2,1

130021, .65744+00, .65569+00, . 64863+00

130030,4,02,2,1,2,0

130031, .10548-01,.10154-01, .96210-02

130040,4,02,2,2,2,0

130041, .84522-01, .85990-01, .84320-01

130050,4,02,3,1%,2,0

130051, .,95167-02, .96305-02, .98690~02

130060,4,02,3,2,2,0

130061, .0,.0,.0

130070,4,02,4,1.2,0

130071, .18354-02, .20320-02, .22800-02

130080.4,02,4,2,2,0

130081, .43828-01, .48057-01, .51010~-01

130090,4,02,5,1,2,C

130091, .27123+01, . 26624401, .26075+01

130100,4,02,5,2,2,0

130101, .26946+01, .26263+01, ,25368+01

402000,02

402001, 854C

402100, 0+0,0+0,0+0

402200,0+0,040,0+0

40210102, . 19771+00, . 89950-02, . 92000-02, .22560-02, . 26011+01, . 32040-10
40220102, .62881+00, . B2180-01, .0+0, .50220-01, .25309+01, . 32040- 10
* FUNCTION TABLES FOR MATERIAL B (V=40%, BURNUP=5, CONTROLLED)
130110,4,02,1,1.2,1

130111, .19617+00, . 19684+00, , 18771+00

130120,4,02,1,2.,2,1

130121, .64536+00, . 64040+00, . 6288 1+00

130130.4,02,2.1,2,0

130131, .99153-02, .85211-02, .89950-02

130140.4,02,2,2,2.0

130141, .84181-01, .84826-01, .82180-01

130150,4,02,3,1,2,0

130151, .86332-02, .88464-02, .92000-02

130160,4,02,3.2,2,0

130161..0,.0,.0

130170,4,02,4,1,2.0

130171, .17447-02,.19696-02, .22560~02

130180,4,02,4,2,2,0

130181, .42741-01, .47026-01, .50220-01

130190.4,02,5,1,2,0

130191, .27272+01, .26671+01, . 26011+01

130200,4,02,5,2,2,0

130201, .27187+01, .26362+01, . 25309+01

Table A2,1.1 Heterogeneous cross sections for the DEP1
BWR Benchmark Problem.
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T able A2,1.1 {(continued)

403000, 03

403001,C54C

403100,0+0,0+0,0+0

403200,0+0.0+0,0+0

40310102, .20020+00, .91140-02,.33720-02, . 18840-02, .26327+01,,32040-10
40320102, .62941+00, .71120-01, .0, .40510-01, .25648+01, .32040-10
*» FUNCTION TABLES FOR MATERIAL C (Vv=40%, BURNUP=%, CONTROLLED)
130210,4,02,1,1,2,1

130211,.19812+00, . 19966+00, . 20020+00

130220,4,02,1,2,2,1

130221, .63877+00, .63706+00, .62941+00

130230,4,02,2,1,2,0

130231, .10414-01,.98812-02, .91140-02

130240,4,02,2,2,2.0

130241, .70883-01,.72337-01,.71120-01

130250,4,02,3,1,2,0

130251,.82212-02, .90680-02,.93720-02

130260,4,02,3,2,2,0

130261,.0,.0,.0

130270,4,02,4,1.2,0

130271,.13984-02, .15856-02,.18840-02

130280,4,02,4,2,2,0

130281, .31313-01,.35859-01, .40510-01

130290,4,02,5,1,2,0

130291, .27911+401,.27245+01,.26327+01

130300,4,02,5,2,2,0

130301, .28054+01,.27079+01, . 25648+01

404000, 04

404001,D54C

404100 ,0+0,0+0,0+0

404200, 0+0,040,0+0

40410102, . 20288+00, .92450-02, .96420-02, . 16460-02, . 26580+01, . 32040~ 10
40420102, .52598+00, .63070-01, .0, .33730-01, .25974+01, . 32040-10
+ FUNCTION TABLES FOR MATERTAL D (v=40%, BURNUP=5, CONTROLLED)
130310,4,02,1,1,2,1

130311, .20165+00, .20227+00, . 20288+00

130320,4,02,1,2,2,1

130321, .63371+00, .63267+00, .62598+00

130330,4,02,2,.1,2,0

130331, .10820-01,.10195-01,.92450-02

130340,4,02.2.2,2,0

130341, .64049-01, .64708-01,.63070-01

130350,4,02,3,1,2,0

130351, .92400-02, .93472-02, .96420-02

130360,4,02,3,2,2,0

130381,.0,.0,.0

130370,4,02,4,1,2,0

130371, .12520-02, . 13B05-02, . 16460-02

130380,4,02,4,2,2,0

130381, .25938-01, .298369-01, .33730-01

130390,4,02,5.1.2,0

130391, .28202+01, .27618+01, . 26580+01

130400,4,02.5,2,2,0

1304014, .2B504+014, .27644+01, .25974+01
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T able A2. 1.1 (continued)

408000, 085 !
405001 ,E54C

405100, 0+0,0+0,0+0

405200,0+0,0+0,0+0

40510102, ,20730+00, .93490-02, .90850~-02, . 14030~02, .26828+01, .32040-10
40520102, .60584+00, .55090-01, .0, .27430-01, .26424+01, .32040-10
* FUNCTION TABLES FOR MATERIAL E (V=40%, BURNUP=5, CONTROLLED)
130410,4,02,1,4,2.1

1304114, .20435+00, .20608+00, .20730+00

130420,4,02,1,2,2,1

130421, .60692+00, .51232+00, .60584+00

130430,4,02,2,1,2,0

130431,.11286-01, .10818-01,.93490-02

130440,4,02,2,2,2,0

130441, .55329-01, .57165-01, .55090-01

130450,4,02,3,1,2,0

130451, .89201-02, .87463-02, .90850-02

130460,4,02,3,2,2,0 :

130461, .0, .0,.0

130470,4,02,4,1,2,0

130471, .12680-02,.11160-02,.14030-02

130480,4,02,4,2,2,0

130481, .21717-01,.21991-01,,27430-01

130490,4,02,5,1,2,0

130491, .27235+01, .28309+Q1, . 26B2B+01

130500,4,02,5,2,2,0

130501, .26948+01, ,28725+01, .26424+01

406000,086

406001,65%4C

406100,0+0,0+0,0+0

406200,0+0,0+0,0+0

40610102, .19677+00, . 10300-01, . 90600-02, .22060-02, .25834+01, .32040-10
40620102, .70472+00, .21210+00, .0, . 38400-01, .25328+01, . 32040-10
* FUNCTION TABLES FOR MATERIAL G (V=40%, BURNUP=5, CONTROLLED)
130510.4,02,1.1,2,1

130511, .19398+00, . 19486+00, . 19677+00

130520,4,02,1,2,2,1

130521, .63831+00, .64896+00, . 70472+00

130530,4,02.2,1,2.,0

130531, .10452-01, .10221-01, . 10300-01

130540,4,02,2,2,2,0

130541, .80849-01, . 10743400, .2121C+00

130550,4,02,3,1,2,0

130551, .83498-02,.85794-02, . 90600-02

130560,4,02,3,2,2,0

130561,.0,.0,.0

130570,4,02,4,1,2,0

130571, .16679-02,.19034-02, .22060-~02

130580,4,02,4,2,2.0

130581, .43944-01, .46284-01, . 38400-01

130590.4,02,5,1,2,0

130521, .27219+01, .26582+01, .25824+01

130600,4,02,5,2,2,0

130601, .27121+01, ,26411+01,.25328+01



A2-7
T able Az. 1.1 (continued)

407000,07
407001, ADONC

407100,0+0,0+0,0+0

407200,0+0,0+0,040

407101,02, .23557+00, .95800-02, . 16820-01, .25850-02, . 25625+01, . 32040-10
407201,02, .90678+00, .80370-01, .0, .51860-01, . 24238+01, . 32040-10

* FUNCTION TABLES FOR MATERIAL A (V=0%, BURNUP=0. NON CONTROLLED)
130610,4,02,9,1,2,1

130611, .23471+00, . 23516400, , 23557+00

130620,4,02,1,2.2,1

130621, .93397+0Q, .92701+00, . 90678+00

130630,4,02,2,1,2.0

130631, .11058-01, . 10419-01, . 85800-02

130640,4,02,2,2,2.0

130641, .87939-01,.88187-01, .80370-01

130650,4,02,3,1.2,0

130651, . 16208-01, ., 16391-01, . 16820-01

130680,4,02,3,2,2,0

130661, .0,.0,.0

130670,4.02,4,1,2.0

130671, .19550-02, . 22339-02, . 25850-02

130680,4,02,4,2,2,0

130681, .45100-01, .50095-01, .51860-01

130690.4,02,5,1,2,0

130691, .27085+01, . 26408+01, . 25625+01

130700,4,02,5,2,2,0

130701, .26803+01, . 25777+01, . 24238+01

408000,08

408001, BOONC

408100 ,0+0,0+0,0+0

408200, 0+0,0+0,0+0

408101,02,.23540+00, .92000-02, . 16240-01, .25420-02, . 25649+01 , . 32040-10
408201,02, .88676+00, . 78270-01, .0, .50490-01, .24223+01, . 32040-10
= FUNCTION TABLES FOR MATERIAL 8 (V=0%, BURNUP=0, NON CONTROLLED)
130710,4,02,1,1,2,1 '

130711,.23261+00, .23323+00, .23540+00

130720,4,02,1,2,2,1

130721, .92439+00, .81848+00, . 38676+00

130730,4,02,2.1,2,0

130731, .10508-01,.99251-02, . 9200002

130740,4,02,2,2,2,0

130741, .87280-01, .89037-01, .78270-01

130750,4,02,3.1.2,0

130751, .15261-01,,15489-01, . 16240-01

130760,4,02,3,2.2.0

130761, .0,.0,.0

130770,4,02.4,1,2.0

130771,.19368-02,.22060-02, .25420-02

130780,4,02,4,2,2.0

130781, .44546-01, .50333-01, .50490-01

130790,4,02,5,1,2.0

130791, .27123+04, .26479+01, .25649+0

130800.4,02,5,2,2,0

130801, .268284+01, .25901+01, .24223+01



A2-8
Table A2.1.1 {(continued)

409000, 09
409001, COONC

402100, 0+0,0+0,0+0

409200, 0+0,0+0, 0+0

409101,02, . 23590+00, .90600-02, . 17250-01, . 22060-02, . 25848+01, . 32040- 10
409201,02, .89993+00, .67110-01, .0, . 40730-01, . 24230+01, .32040-10
*+ FUNCTION TABLES FOR MATERIAL ¢ (v=0%, BURNUP=0, NON CONTROLLED)
130810,4.02.1,1.2.1

130811, .23458+00, .23494+00, . 23590+00

130820,4,02,1,2.,2,1

130821, .92678+00, . 92206+00, . 89993+00

130830,4,02,2,1,2,0

130831, .10821-01, . 10098-01, . 90600-02

130840,4,02,2,2,2,0

130841, .74648-01, .75891-01, .67110-01

130850.4,02,.3,1,2.0

130851, . 16504-01, . 1§652-01, . 17250-01

130860,4,02,3,2,2.0

120861,.0,.0,.0

130870,4,02,4,1,2,0

130871, .16560-02, . 18884-02, . 22060-02

130880.4,02,4,2,2,0

130881, .34405-01, . 39557-01, . 40730-01

1308%0,4,02,5,1,2,0

130891, .27550+01, .26832+01, . 25848+01

130900.4.02,5.2.2.0

130901, .27375+01, . 26256+01, . 24230401

410000, 10

410001,000NC

410100Q,0+0,0+0,0+0

410200,0+0,0+0,0+0 .

410101,02, .23810+00, .290000~-02, . 18150-01, . 19500-02, .26021+01, .32040-10
410201.02, .89820+00, .57880-01,.0,.32910-01,.24236+01, .32040-10
* FUNCTION TABLES FOR MATERIAL O (Vv=0%, BURNUP=0, NON CONTROLLED)
130910,4.,02,1,1,2,1

130911, .23657+00, .23693+00, .23810+00

130920.4,02,1,2,2,1

130221, .92498+00, .92180+00, . 89920+0CQ

130930,4,02,2,1,2.0

130931, .11143-01,.10316-01,.90000-02

130940,4,02,2,2,2,0

1309414, .67020-01,.67821-C1, .357880-01

130950,4,02,3,1,2,0

130951, .17448-01, .17528-01, . 18150-01

130960.4.02,3.2,2.0

1309861, .0,.0,.0

130970,4.,02.4,1,2,0

130971, .14895-02,.16701-02,.198500-02

130980,4,02,4,2,2,0 .

130981, .28311-01,.32622-01, .32910-01

130920.4,02.5,1.2.0

130991, .27858+01, .27168+01, . 26021+01

131000.4,02,5,2,2,0

131001, .27849+01, .26713+01, . 24236+01
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Table A2.1.1 (continued)

411000, 11

411001, EQONC

411100,0+0,0+0,0+0

411200,0+0,040,0+0

411101,02, .23998+00, .90300-02, .18170-01, .17520-02, .26170+C 1, .32040-10
411201,02, .89993+00, .50610-01, .0, .26740-01, .24237+01, .32040- 10
* FUNCTION TABLES FOR MATERIAL E (V=0%, BURNUP=0, NON CONTROLLED)
131010,4,02,1,1,2,1

131011,.23878+C0, .23914400, .23%998+00

131020,4,02,1,2,2, 1

131021, .92364+00, .92132+00, .89993+00

131030,4,02,2,1,2,0

131031,.11579-01,.10651-01, .90300-02

131040,4,02,2,2,2,0

131041, .60153-01, .60445-01, .50610-01

131050,4,02,3,1,2,0

131051, .18569~01, . 18387-01, . 19170-01

131060,4,02,3,2,2,0

131061,.0,.0..0

131070,4,02.,4,14,2,0

131071,.13532-02,.14915-02,.17520-02

121080,4,02,4,2,2,0

131081, .2308B3-01, .26562-01,.26740-01

131080,4,02,5,1,2.0

131091, .28100+01, .27474+014, .26170+01

131100,4,02,5,2,2,0

131101, .28270+01, .27147+01, . 24237+01

412000, 12

412001, GOONC

412100,0+0,0+0,0+0

412200,0+0,0+0,0+0

412101,02, 23708400, . 13860-01, . 16070-01, .22930-02, .25573+01, . 32040~ 10
412201,02, .12579+01, .45300+00, .0, . 10720-01, .24244+01, . 32040-10
* FUNCTION TABLES FOR MATERIAL G (V=0%., BURNUP=0, NON CONTROLLED}
131110.,4,02,1,1,2, 1

131111,.22976+00, .23159+00, ,23708+00

131120,4,02,14,2,2,1

131121, .80834+00, .96017+00, . 12579+01

131130,4,02,2.1,2,0

131131, .10926-01,.11253-01,,13860-01

131140,4,02,2,2,2,0

131141,.70775-01, . 14938+00, .45300+00

131150,4,02.3,1,2,0

131151,.14661-01,.15032-01, . 16070-01

131160,4,02,3,2,2,0

13116€1,.0,.0,.0

1311756,4,02,4,1,2,0

131471, .17709-02,.20125-02, .22930-02

131180,4,02,4,2,2,0

131181,.46348-01,.42873-01,.10720-01

131190,4,02,5,1.2,0

131191, .27279+01, . 26559+01, . 25573+01

131200,4,02,5,2,2,0

131201, .26983+01,.26364+01, ,24244+01
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Table A2.1.1 {(continued)

413000, 13

413001, A14NC

413100, 0+0.,0+0,0+0

413200,0+0,0+0,0+0
413101,02,.19677+00, .99710-02, .95810-02, .20800-02, . 26486+01, . 32040-10
413201,02,.65359+00, .85730-01, .0, .48870-01, .26028+01,.32040-iC
* FUNCTION TABLES FOR MATERIAL A (V=40%, BURNUP=10, NON CONTROLLED)
131210,4,02,1.1,2.1

131211, .19609+00, . 19633+00, . 19677+00

131220,4,02,1,2,2,1

131221, .65630+00, . 65661+00, .65359+00

131230,4,02,2,1,2,0

131231,.10911-01,.10509-01, .99710-02

131240,4,02,.2,2,2,0

131241, .80863-01, .83973-01,.85730-01

121250,4,02,3,1,2.0

131251, .93723-02,.94367-02, .95810-02

131260,4,02,3,2,2,0

131261,.0.,.0,.0

131270,4,02,4,1,2,0

131271,.16170-02,.18141-02, . 20800-02

131280,4,02,4,2,2,0

131281, .37921-01, .43259-01, .48870-01

131290,4,02,5,1,2,Q

131291, .27698+01, .27140+01, .26486+01

131300,4,02,5.,2,2,0

131301, .27731+01,.26984+01, .26028+01

414000, 14
414001 ,B14NC

414100,0+0,0+40,0+0

414200,040,0+0,0+0

414101,02,.19482+00, .91910-C2,.90260-02, .21080-02, .26428+01, .32040~10
414201,02, .64675+00, .85680-01, .0, .49640-01, .25907+01, . 32040- 10

* FUNCTIDN TABLES FOR MATERIAL B (V=40%, BURNUP=1Q, NON CONTROLLED)
131310,4,02,1,14,2,1

131311,.19389+00, . 19435+00, , 19482+00

134320,4,02,1,2,2,1

131321, .65234+00, .65198+00, .64675+00

131330.4,02,2,1,2,0

131331, .10056-01, .96872-02,.91910-02

121340,4,02,2,2,2,0

131341,.81279-01,.84639-01. .856B80-01

131350,4,02,2,1,2,0

131351, .86965-02, .88108-02, .90260-02

131360,4,02,3,2,2.0

131361,.0..0,.0

131370,4,02,4,1,2,0

131371, .16411-02, .18426-02,.21080-02

131380.4,02,4,2,2,0

131381, .38574-01, .44295-01, .49640-01

131390.4,02,5,1,2,0

131391, .27618+01,.27076+01, .26428+01

131400,4,02.5,2,2.,0

131401, .27604+01, .26863+01, .25907+01
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Table A2.1,1 (continued)

415000, 15
415001, C14NC

415100,0+0C,0+0,0+0

415200,0+0,0+0,0+0

415101,02, . 19643+00, . 95740-02, . 98490-02, . 17880-02, . 26829+01, . 32040- 10
415201,02, .64876+00, . 73430-01, .0, .39040-01, . 26383+01, . 32040-10

= FUNCTION TABLES FOR MATERIAL C (V=40%, BURNUP=10, NON CONTROLLED)
131410,4,02,1,1,2,1

131411, 19586400, . 19619+00, . 19643+00

131420,4,02,1,2,2,1

131421, .65095+00, . 65114+00, . 64876+00

131430,4.,02.2,1.2.0

131431, . 10660-01, . 10200-01, .95740-02

131440,4,02,2,2,2,0

131441, .69585-01,.71777-01, .73430-01

131450,4,02,3,1,2,0

131451, .96807-02, .27218-02, .98490-02

131460,4,02,3,2,2,0

131461,.0,.0,.0

131470,4,02,4,1,2,0

131471,.14256-02, . 15655-02, . 17880-02

131480,4,02,4,2,2,0

131481, .29707-01, .33870-01, . 39040-01

131490.4,02.5,1,2,0

131491, .28017+01,.27536+01, . 26829+01

131500,4.02,5,2,2.0

131501, .28166+01, .27424+01, . 26383+01

416000, 16
416001,D14NC

416100, 040, 0+0,0+0

416200,0+0,0+0,0+0
416101,02,.19818+00, .98500~02,. 10470-01,, 15890-02, .27145+01, . 32040~ 10
416201,02, .64712+00, .65460-01, .0, .32410-01, .26779+01, .32040-10
* FUNCTION TABLES FOR MATERIAL D (v=40%, BURNUP=10, NON CONTRDLLED)
131510,4,02,1,1,2,1

131511, .19760+00, . 19806+00, . 19818+00

131520,4,02,1,2.2.1

131521, .64928+00, .64913+00, .64712+00

131530,4,02,2.1,2.0

131531, .11113-01,.10583-01, .98500-02

131540.4,02,2,2,2,0

131541, .63756-01. .64630-01, .65460-01

131550,4,02,3,1.2.0

131551, .10330-01, . 10371-01, . 10470-014

121560,4,02,3,2,2.0

131561, .0..0..0

131570.4,02,4,1,2,0

131571, .13219-02,.14145-02, . 15890-02

131580,4,02,4,2,2,0

131581, .25456-01, .28239-01,.32410-01

131590,4,02,5,1,2,0

131591, .28210+01, . 27828401, . 27149+01

131600,4,02,5,2,2.0

1316014, .2B492+01, .27866+01, . 26779+01
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Table A2, 1.1 (continued)

417000,17

417001, E14NC

417100,0+0,0+0,0+0

417200,0+0,0+0,0+0

447104,02,. 19986400, . 10270-01, .11220-01, . 14200-02, .27451+01, .32040-10
417201,02, .64625+00, .58250-01, .0, .26480-01, .27205+01, .32040-10
« FUNCTION TABLES FOR MATERIAL E (V=40%, BURNUP=10, NON CONTROLLED)
131610,4,02,1,1,2,1

131611, .19940+00, . 19985+00, . 13996+00

131620,4,02,1,2,2,1

131621, .64739+C0, .654748B+00, . 64625+00

131630,4,02,2,1,2,0

131631, ,11662-01, . 11087-01,.10270-01

131640,4,02,2,2,2,0

131841, .58048-01, .57933-01, .58250-01

131650,4,02,3,1,2,0 '

1316514, .11132-01,.11171-01, .11220-01

131660,4,02,3,2,2,0

131664,.0,.0,.0

131670,4,02,4,1,2.,0

134671, .12339-02, . 12890-02, . 14200-02

131680,4,02,4,2,2,0

131681, .21511-01, .23181-01, .26480-01

131680,4,02,5,1,2,0

131691, .28334+01,.28049+01, .27451+01

131700,4,02,5,2,2,0

131701, .28742401, .28250+01, .27205+01

418000, 18

418001,G14NC

418100,0+0,0+0,0+0

418200, 0+0,0+0,0+0

418101,02,.19223+00, .95920-02,.87700-02, .20970-02, .26218+01, .32040- 10’
418201,02, .64712+00, .96630-01, .0, .51090-01, .25719+01, .32040-10
= FUNCTIQN TABLES FOR MATERIAL G (Vv=40%, BURNUP=1Q, NON CONTROLLED)
131710,4.02,1,1,2,1

131711,.19119+400,.12164+00,.19223+00

131720,4,02,1,2,2,1

131721, .65308+00, .65170+00, .64712+00

131730,4,02,2,1,2,0

131731,.10449-01,.10108-01, ,95320-02

131740,4,02,2,2,2,0C

131741, .88450-01,.91139-01,.96630-01

131750,4,02,3,1,2,0

131751,.83780-02, .85123-02, .87700-02

131760.4,02,3,2,2,0

131761,.0,.0,.0

131770,4,02,4,1,2,0

1317714, .16009-02,.18109-02,.20970-02

131780,4,02,4,2,2.,0

131781, .40468-01,.46518-01, .51090-01

1317%0,4,02,5,1,2,0

131781,.27444+01,.26892+01, .26218+01

131800,4,02,5,2,2,0

131801, .27429+01, .26684+01, .25719+01
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Table A2, 1.1 (continued)

419000, 19

419001, A57NC

419100,0+0,0+0,0+0

419200,0+3,0+0,0+0
419101,02,.16793+00, .83130-02, .49640-02, .21460-02, . 26025+01, ,32040-10
419201,02,.44749+00, .B0970-01, .0, .49800-01, .25402+01, .32040-10
* FUNCTION TABLES FOR MATERIAL A (V=70%, BURNUP=5, NON CONTROLLED)
131810,4.02,1,1,2.1

131811, .16740+00, . 16752+00, . 16793+00

131820,4,02,1,2,2,1

131821, .45178+00, .45450+00, .44749+00

131830,4,02,2,1,2.0

131831, .98433-02, .94718-02,.89130-02

131840,4,02,2,2,2,0

131841,.78693-01,.83153-01, .80970-01

131850,4,02,3,1,2,0

131851,.47136-02, ,47386-02, .49640-02

131860,4,02,3,2,2,0

131861,.0,.0,.0

131870,4,02,4,1,2.,0

131871, .15980-02,.18272-02, .21460-02

131880,4,02,4,2,2,0

131881, .32115-01, .45911-01, .49800~-01

131890,4,02,5,1,2,0

131891, .27363+01, .26786+01, .26025+01

131900,4,02,5,2,2,0

131901, .27417+01, .26580+01, .25402+01

420000, 20

420001 ,B57NC

420100,0+40,0+0,0+0

420200,0+0,0+0,0+0

420101,02, . 16625+00, . 80600-02, .47480-02, .21360-02, .26021+01, . 32040- 10
420201,02, .44144+00, .79580-01, .0, .49410-01, .25319+01, . 32040-10
* FUNCTION TABLES FOR MATERIAL B (V=70%, BURNUP=5, NON CONTROLLED)
131910,4,02,1,1.2,1

131911, ,16570+00, . 16524+00, . 16625+00

131920,4,02,1,2,2,1

131921, .43572+00, . 45802400, .44 144+00

131930,4,02,2,1,2,0

131931, .88247-02, .85275-02, . 80600-02

131940,4,02,2.2,2,0

131941, .77517-01, .83589-01, . 79580-01

131950,4,02,3,1,2,0

131951,.44180-02, .44144-02, .47180~02

131960,4,02,3,2,2,0

131961,.0,.0..0

131970,4,02.4,1,2.0

131971, ,16244-02,.18360-02, .212360-~02

131980,4,02,4,2,2,0

131981, .39009-01, . 46608-01, .49410-01

131990,4,02,5,1,2,0

131991, . 27256+01, . 26759+01, . 26021+01

132000,4,02.,5,2,2.0

132001, .27240+01, .26500+01, .25319+01
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Table A2.1.1 (continued)v

421000, 21

421001 ,C57NC

421100,0+0,0+0,0+0Q

421200,0+0,0+0,0+0

421101,02,.16750+00, .84940-02,.52010-02, . 18420-02, .26325+01, .32040-10
421201,02, .44303+00, .69400-01, .0, .40280-01, .25645+01, .32040-10C
* FUNCTION TABLES FOR MATERIAL C (V=70%, BURNUP=5, NDON CONTROLLED)
132010,4,02,1,1.2,1

132011,.18729+00, . 16703+00, . 16750+00

132020,4,02,1,2,2,1

132021, .44594+00, .44919+00, . 44303+00

132030,4,02,2,1,2,0

132031, .95691-02, .91415-02, .84940-02

132040,4,02,2,2,2,0

132041,.67048-01,,71240-01, .69400-01

132050,4,02,3,1,2,0

132051, .49702-02, .49678-02, .52010-02

132060,4,02,3,2.2,0

132061,.0..0,.0

132070,4,02,4,1,2,0

132071, ,14068~-02, . 15747~-02, . 18420-02

132080,4,02,4,2,2,0

132081, .30625-01, .36548-01, .40280-01

132090,4,02,5,1,2,0

132091, .27663+01, .27162+01, .26325+01

132100,4,02,5,2,2,0 ‘

132101, ,27764+01, .26966+01, .25645+01

422000, 22

422001 ,DS7NC

422100,0+0,0+0,0+0

422200,0+0,0+0,0+0

422101,02, . 16203+00, .87710-02, .55620-02, . 16320-02, . 2658 1+01, . 32040-10
422201.02, .44074+00, .61700-01, .0, ,33690-01, .25960+01, .32040-10
= FUNCTION TABLES FOR MATERIAL D (v=70%, BURNUP=5, NON CONTROLLED)
132140,4,02,1,1,2,1

132111, .16883+00, . 16867+00, . 16903+00

132120,4,02,1,2.2.1

132121, .44330+00, . 44594+00, . 44074+00

132130,4,02,2,1,2.,0

132131, .10061-01, .95759-02, .87710-02

132140,4,02,2,2,2,0

132141, .60770-01, .63767-01,.61700-01

132150,4,02,3,1,2,0

132151, .53797-02, .53536-02, .55620-02

132160,4,02,3.2,2.0

132161,.0,.0,.0

132170,4,02,4,1,2,0

132171,.12850-02,.14114~Q2, . 16320-02

132180,4,02,4,2,2,0

132181, .2587%5-01, .30477-01, .33690-01

132190,4.02,5,1,2,0

132191, .27912+01, .27461+01, .265B1+01

132200,4,02,5,2,2,0

132201,.28103+01,.27405+01, . 25960+01
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Table A2, 1.1 (continued)

423000,23

423001,E57NC

423100,0+0,0+0,0+0

423200,0+0,0+0,0+0

423101,02,.17033+00, .92300-02,.60260-02,.14630-02, .26863+01, .32040-10
423201,02,.43975+00, .55150-01, .0, .28060-01,.262311+01, .32040-10
* FUNCTION TABLES FOR MATERIAL E (V=70%, BURNUP=5, NON CONTROLLED)
132210,4,02,1,1,2,1

132211, .17029+00, . 17022+00, . 17033+00

132220,4,02,1,2,2,14

132221, .44171400Q, .44333+00, .43975+00

132230,4,02,2,1,2,0

132231, .10687-01, .10145-01, . 92300-02

132240,4,02,2.2.2,0

132241, .55292-01, .56739-01, .55150-01

132250.4,02,3,1,2,0

132251, .58828-02, .58561-02, .60260-02

132260,4,02,3,2,2,0

132261,.0,.0,.0

132270,4,02,4,1,2,0

132271,.11949-02,,12751-02, . 14630-02

132280,4,02,4,2,2,0

132281%,.21956-01,.25035-01, .28060-01

132290,4,02,5,1,2.,0

132291, .28060+01, .27757+01, .26863+01

132300,4,02,5,2,2,0

132301, .28377+01,.27796+01, .26311+01

424000, 24
424001 ,G57NC

424100,0+0,0+0,0+0

424200,0+0,0+0,0+0

424101,02, . 16420400, .91860-02, . 45960-02, . 20840-02, . 25864+01, , 32040-10
424201,02,.52116+00, .20980+00, .0, . 38340-01, . 25329+01, . 32040-10

« FUNCTION TABLES FOR MATERIAL G (V=70%, BURNUP=5, NON CONTROLLED)
132310.4.,02,1,1,2.1

132311, .16229+00, . 16283+00, . 16420+00

132320,4,02,1,2,2, 1

132321, .45086+00, . 46090+00, .52116+00

132330,4,02,2,1,2,0

132231, .92380-02, .90445-02, ,91860-02

132340,4,02,2,2,2,0

132341, . 10477400, . 17134+00, . 20980+00

132350,4,02,3,1.2.0

132351, .41254-02, . 42779-02, . 45960-02

122360,4,02,3,2,2.0

132361, .0,.0,.0

132370,4,02,4,1,2,0

132371..15685-02, . 17938-02, . 20840-02

132380,4,02,4,2.,2,0

132381, .43144.01, . 46060-04, .38340-01

132390,.4,02,5,1,2,0

132391, .27243+01, .26613+01, . 25864+01

132400,4,02,5,2,2,0

132401, .27181+01, . 26428+01, . 25325+01
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Table A2.1.1 (continued)

425000,25

4235001,A10C

425100,0+0,0+0,0+0

425200,0+0,0+C,0+0 -
425101,02,.23392+00, . 10550-01, . 16410-01,.21920-02, .26551+01,.32040- 10
425201,02, .33058+00, .88840-01, .0, .49480-01, .26011+Q1, ,.32040-10
* FUNCTION TABLES FOR MATERIAL A (V=0%, BURNUP=10, CONTROLLED)
132410,4,02,1,1,2,.1

132411, .23300+00, .23346+00, .23392+00

132420,4,02,1,2,2,1

132421,.93489+00, .93376+00, .23058+00

132430,4,02,2,1,2,0

132431,.11401-01,.11025-01, . 10550-01

132440.4,02,2,2,2.,0

132441, .85242-01, .87369-01, .88840-01

132450,4,02,3,1,2,0

132451, .16189-01, , 16273-01, . 16410-01

132460,4,02,3,2,2,0

132461,.0,.0,.0

132470,4,02,4,.1,2.0

132471,.18142-02,.198298-02, .21920-02

132480,4,02,4,2,2,0

132481, .,40824-01,.45040-01, .49480-01

132490,4,02,5,1,2,0

132491, .27493+01, .2704B+01, . 26551+01

132500,4,02,5,2,2,0

j32501..27342+01..26714+O1..2SO11+01

426000, 26

426001,B10C

426100,0+0,0+0,0+0

426200,0+0, 0+0,0+0

426101,02, .23491+00, . 10020-01, .15570-01, .22110-02, . 26445+01, . 32040- 10
426201,02, .91075+00, . 88810-01, .0, .50390-01, .25878+01, . 32040- 10
x FUNGCTION TABLES FOR MATERIAL B (V=0%, BURNUP=10, CONTROLLED)
132510,4,02,4,1,2,1

132511, .23351400, .23413+00, .223491+00

132520,4,02,4,2,2,1

132521, .91888+00, .91699+00, . 91075+00

132530,4,02,2,1,2,0

132531, .10945-01, . 10557-01, . 10020-01

132540,4,02,2,2.2.0

132541, .85303-01, .87990-01, .88810-01

132550,4,02,3,1.2,0

132551, .15172-01, . 15314-01, ., 15570-01

132560,4,02,3,2,2,0

132561,.0,.0,.0

132570.4,02.4.1,2,0

132571, .17623-02,.19579-02, .22110-02

132580,4,02,4,2,2,0

132581, .40414-01, .45518-01, .50330-01

132590,4,02.5.1,2.0

132591, . 27565+01, .27045+01, . 26445+01

132600,4,02,5,2,2,0

132601, .27468+01, .26759+01, . 25878+01
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Table A2.1,1 (continued)

427000, 27

427001,C10C

427100,0+C,0+0,0+0

427200,0+40,0+0,0+0
427101,02,.23827+00Q, . 10160-01, . 15980-01, . 1B350-02, .26834+014, . 32040- 10
427201,02,.90728+00, .75980-01, .0, .39450-01, .26362+01, .32040~-10
* FUNCTION TABLES FOR MATERIAL C (V=0%, BURNUP=10, CONTROLLED)
132610,4,02,1,1,2,1

132611, .23684+00, .23767+00, .23827+00

132620,4.02,1,2,2,1

132621,.91139400, .91129+00, .90728+00

132630,4,02,2,1,2,0

132631, .11403-01,.10910-01,.10160-01

132640,4,02,2,2.,2,0

132641, .71798~01, .743%96-01, .75980-01

132650,4,02,3,1,2,0

132651, .15723-01, .15793-01, . 15280-01

132660,4,02.3,2,2,0

132661,.0,.0,.0

132670,4,02,4,1,2.0

132671, .14393-02,,15803-02, . 18350-02

132680,4,02,4,2,2,0

132681, .29281-01, .33772-01, .39450-01

132690,4,02,5,1,2,0

132691, .28130+01, .27642+01, .26834+01

132700,4,02,5,2,2,0

132701, .28277+01, .27568+01, .26362+01

428000, 28

428001,010C

428100,0+40,0+40,0+0

428200,0+0,0+0,0+0

428101,02, .24155+00, . 10310-01,.16440-01, . 16080-02, .27139+01, . 32040-10
4282014,02, .90139+00, .67710-01, .0, .32660~01, .26781+01, .32040-10
* FUNCTION TABLES FOR MATERIAL D (V=0%, BURNUP=10, CONTROLLED)
132710,4,02,1,1,2 .1

1327141,.23981+00, .24083+00, .24155+00

132720,4,02,1,2,2,1

132721, .90506+00, . 90511400, . 90139+00

132730,4,02,2,1,2,0

132731, .11805-01,.11236-01,.10310-01

132740.4,02,2,2,2,0

132741, .65782-01, .66966-Q1,.67710-01

132750,4,02,3,1,2.0

132751, .16226-01, . 16282-01, . 16440-01

132760,4,02,3,2,2,0

132761,.0,.0,.0

132770.4,02,4,1,2,0

132771,.13247-02,.13947-02,.16080-02

132780,4,02,4,2,2.0

132781, .24859-01,.27673-01,.32660-01

132790,4,02,5,1,2,0

132791, .28264+C1, .27998+01, . 27139+01

132800,4,02,5,2,2,0

132801, .28531+01, .28131+01, .26791+01
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Table A2.1.1 (continued)

429000, 29

429001,E10C

429100,0+0,0+0,0+0

429200,0+0,0+0,0+0
429101,02..24728+00,.10460-01,.15910-01, . 13760-02, .27420+01, .32040~-10
429201,02, .87443+00, .59370-01, .0, .28300-04,.27281+01, .32040-10
= FUNCTION TABLES FOR MATERIAL E (V=0%, BURNUP=10, CONTROLLED)
132810,4,02,1,1,2,1

132811, .24301+00, .24564+00, . 24728+00

132820,4,02,1,2,2,1

132821, .87283+00, .87835+00, .87443+00

132830,4,02,2,1,2,0

132831, .12128-01,.11913-01, . 10460-01

132840,4,02,2,2,2,0

132841,.61398-01,.59654-01,.59370-01

132850,4,02.3,1,2,0

132851, .15661-01,.15727-01,.15910-01

132860,4,02,3,2,2,0

132861, .0,.0,.0

132870,4,02,4,1,2,0

132871, .14906-02, . 11958-02,,13760-02

132880,4.,02,4,2,2,0

132881, .25678-01,.21440-01, .26300-01

132890,4.02,5,1,2,0

132891, .26860+01, .28324+01,.27420+01

132900,4,02,5,2,2,0

132901, ,26040+01, .28696+01, .27281+01

430000, 30

430001,610C

430100,0+0,0+0,0+0

430200,0+0,0+0,0+0

430101,02, .23343+00, . 10490-01, . 15330-01,.21960-02, . 26211+01, .32040-10
430201,02, .90752+00, .99890-01, .0, .51640-01, . 25697+01, .32040-10
* FUNCTION TABLES FOR MATERIAL G (V=0%, BURNUP=10, GONTROLLED)
132910,4,02,1,1,2,1

132911, .23195+00, .23260+00, .23343+00

132920,4,02,1,2,2,1

132921, .91578+00, .91337+00, . 90732+00

132930,4,02,2,1,2,0

132931, .11459-01, . 11075-01, . 10490-01

132940,4,02,2,2,2,0

132941, .91179-01, .94118-01, .99890~-01

132950,4,02.3.1.2,0

132951, .14838-01,.14993-01, , 15330-01

132960,4,02,3,2,2,0

132961,.0,.0,.0

132970,4,02,4,1,2,0

132971, .16970-02,.12135-02,.219860-02

132980,4,02,4,2,2.0

132981, .41433-01, .47157-01, .51640-01

132990,4,02,5,1,2,0

132991, .27408+01, .26853+01, .26211+01

133000,4.,02,5,2,2,0

133001, .27326+01, . 26615+01, ., 25637+01
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A2.2 THE DEP2 BWR BENCHMARK

Jin=O
W W W W W
£=0 E=0 E=0
V=407 V=40% V=407 W W
0=( 0=( 0=0
E=10 E=10 E=0 E=0
V=70% V=/0% V=407 V=407 W J;,=0
0=() 0=() 6=() 0=
H I
E=10 E=0
V=70% | v=u07 J
g 0 g =0 g
E=10 E=0
V=707 V=407 W
Bl 0 | 0
J . N=0
E = B.O.L. average exposure.
V= void fraction (constant throughout life),
8 = rotation angle (clockwise; equal to 0 in initial position).
Total Power = 0.197606 MW/cm height,
Depletion Time = 10,000 hours.

Fig. A2.2.1 Core layout for the first cycle of the DEP2
BWR Benchmark,
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y
! N
E=0 E=0
V=0% V=07 W
=0 | o=0 |
E=0
1 6| v-0z W
=1 1 e=3ng | e=)
F=0
A |
! . V=07 W
o=0 4| ©=0 0=3I4L| ©=0 M
J:n=0

Assemblies described by letters (A, D, G, H,I) have been
depleted in the first cycle.

Total Power = 0.197606 MW /cm height.
Depletion Time = 10,000 hours.

Fig. A2.2.2 Core layout for the second cycle of the
DEP2 BWR Benchmark.
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y
i W
R i N
o=0 0=3114
H 6 S y
=1 ®=3Hé @:3]16
J 1 D S y
o=() e=() o=314 0=()

All assemblies come either from the end of the first cycle
(D,G,H, ) or from the end of the second cycle (J, R, S),

Fig. A2.2.3 Core layout for the third cycle of the DEP2
BWR Benchmark.
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DB (B Bl B BI|B|C
C|B |G Bl B|BI|B A
C|B |B Bl F| B |B |A
C|B |B G| BB |B |A
12.78
D|C |B B| B|GIB |C
DJC IC B| B|B|B |C
E|D {D cC|Cc|C|DID
H
N4 1
I
Note: ‘Except for the dimension indicated, all properties are the
same as for the assemblies of the LSH BWR Benchmark.
Fig. A2,2.4 Assembly description for the
DEP2 Benchmark.
ASSEMBLY
E=10 E=10 E=0 E=Q REFLECTCR
ZONE V=40%  V=70%  V=40% V=03
{controlled)
A 1 10 18 27 ) 26
B 2 11 19 28 26
C 3 12 20 29 26
D 4 13 21 30 ) 26
E 5 14 22 31 26
F 6 15 23 32 26
G 7 16 24 33 26
H 3 17 25 34 26
I S 17 25 34 26

Table A2.2,1 Material positions for assemblies of the DEP2 Benchmark.
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APPENDIX 3

CURRENT AND FLUX SHAPES IN THE LSH BWR

AND MVY BWR BENCHMARKS
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Fig. A3.1 Location of Figures A3, 2 to A3.9 in the LSH

BWR Benchmark.
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APPENDIX 4

EQUATIONS FOR CORNERPOINT FLUXES INTERPOLATION

A4,1 Introduction

The purpose of this appendix is to derive the linear equation
which relates, in each energy group, a cornerpoint flux to its four
neighbors, when the quadradratic form function approximation is made.
The resulting linear system, relating all cornerpoint fluxes in the core,

is easily solved by a classical iterative method (Gauss-Seidel, S.O.R. ,

).

A4.2 Problem Description

Figure A4.1 describes the unknown and known quantities entering

in the derivation of cornerpoint fluxes:

o8

3 is the value of the flux in group g at cornerpoint (i, 3);

é% is the average value of the surface flux, obtained from a
nodal calculation, on face k;

AE is the fine-mesh "assembly flux" on face k (defined by

Equation (3, 2));
Ly is the length of face k;

D§ is the diffusion coefficient in quadrant n.

A4.,3 Problem Solution

On face k, the heterogeneous flux is approximated by the product

of the agsembly flux and a quadratic form function:

goﬁ(x) = FE(X)Aﬁ(X)
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?i, j+1

Ai(x)

~2 g 28 g
?3 A3(x) G Al(xl

11,3 ) i1, j

b

i-1,j )

[\

i,j-1

Fig, A4,1 Definition of quantities used in cornerpoint

flux interpolation.
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where
g _ .82 g g
Fk(x) = ap x + bkx + cp

The coefficients of FE are then chosen so that goi matches the cornerpoint

fluxes cpIE’: and go% and the average surface flux, (BE, on that face:

(pE(XL) = QD%
@E(XR) = qo%
X
R
g - - =g
S cpk(x) dx (xR XL)(Dk
XL

This linear system of three equations and three unknowns (ag, blg{, cg)

has a unique solution. If one defines:

*R
g _ g 2
ap Sx Ak(x)x dx
L
X
R
BE = S Aﬁ(x)xdx
AL
XR g
¥ = SX AE(x) dx
L
K
£ - -2 L /z
k g g k
Ak (xR) Ak (xL)
then:
g _ (8 _ B & _ .8 .E
ap o - v cg - B 6
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g _ g g
= mL/Ak(x

cp )

L

T he derivative of the flux at x = X, on face k is:

d A8 8 - A8 4d g g 4 A8
ax e P | = ARSI T TR AL
X = XO X = XO X = XO

Thus, the source-free condition around point (‘oigj leads to the following

equation:

t
=
A
2
w
s
o
0q
'
o]
iy
0
w
o
0a

It should be noted that the right hand side of this equation is zero
if the assembly fluxes are obtained from zero-current eigenvalue calcula-
tions, or the currents obtained from these assembly calculations are

continuous across assembly interfaces,
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APPENDIX 5

THE GENERATION OF SURFACE FLUX RESPONSE MATRICES

A5,1 Introduction

The purpose of this appendix is to define the surface flux response
matrices based on the quadratic form function assumption, and describe

how they are generated in practical cases.

A5.2 Definition of Surface Flux Response Matrices

Equation (3. 4) defined the 10 G x 8 G response matrices for each

assernbly:

[N.Q] = [R,][e]

We shall assume in this section that the following quantities are

known:
I . .
a (x,y), defined in Chapter 3;
A
g'e
IC . .
bl (x,y), defined in Chapter 3;
g'g

Dg(x,y), Eag(x, y), Erg(xy), uEfg(x, y), Efg(x, ¥), the hetero-

geneous cross sections in group g, at point (x, y).
We shall derive the matrix elements corresponding to the input of
a cornerpoint flux (IC) in group g'. They relate that input to the follow-
ing outputs in group g:

1. The face averaged net current on face k, in group g:

IC
) '(x, y) dv

- D (x,y) = b
SSk E T 09 Agp

S dx dy
Sk




A5-2

where {u,v} = {x,y}.

2. The volume averaged flux in group g:

S bic (x,y) dx dy
V_ "gg

dx dy

)

v

3. The integrated reaction rates in group g:

SV Eag(x, y) b;c (x, y) dx dy
: gg'
iv dx dy

, vZf, Ef.

where Eoz D,z , Z

a r

A5.3 The Generation of Surface Filux ,Response

Matrices Using CITATION

The manner in which fixed-source calculations with surface flux
boundary conditions are implemented in CITATION is described by
Parsons [12].

For each assembly face (k = 1, ..., 4), and in each energy
group, three successive fixed-source calculations are performed, with

the following boundary conditions:

1. qog(x) - A}g‘(m
2. gog(x) - Ag(x)' %
k k 2
. = A .
3 (pg(x) g(::s:) X

where
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x is the dimensional variable on face k;

Alg{(x) is the assembly flux in group g on face k;

mg(x) is the imposed surface flux.

The fluxes on the three other faces are set to 0,
Once the intra-assembly fluxes corresponding to these boundary

conditions are calculated, simple algebraic manipulations yield aiF (xy)
e g'g
Ag'g

It should be noted that the fact of imposing finite fluxes on one

(IF =1, **+, 4), and b (2, y) (IC =1, +--, 4),

face while fluxes are zero on the other faces can be detrimental to the
resulting fluxes within the assembly. In particular, extremely large
flux tilts in locations close to the cornerpoints may result in important

truncation errors.

A5.4 The Generation of Surface Flux Response

Matrices in the PDQ7 Formalism

A small computer code was written to perform fixed source
calculations for a given eigenvalue. The mathematical formalism of the
finite differences equations is the same as is used in the PDQ7 computer
code [17]. Two levels of iterations are performed.
1. The inner (flux) iterations are performed for each energy
group by a Gauss-Seidel iterative scheme, accelerated by
S.0.R.

2. 'The outer (source) iterations are not accelerated.

The versatility of that program is such that it can handle cases

where fluxes become negative, Thus, the aiF and b;c can be calcu-

gg' ge'
lated directly, by setting the corresponding physical quantity to one, and
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all other matrix inputs to zero in a fixed source calculation.
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APPENDIX 6

DETAILED NODAL RESULTS

A6.1 THE PRELIMINARY TEST PROBLEM
A6.2 THE CISE BWR BENCHMARK PROBLEM
A6.3 THE CLSH BWR BENCHMARK PROBLEM
Ag8.,4 THE NLSH BWR BENCHMARK PROBLEM
A6.5 THE MVY BWR BENCHMARK PROBLEM
A6,6 THE TRD BWR BENCHMARK PROBLEM
A6,7 THE DEP2 BWR BENCHMARK PROBLEM



AB-2

A6.1 NODAL RESULTS FOR THE
PRELIMINARY TEST
PROBLEM

Reference Eigenvalue: A = 0,63753

1.4300 0.8367 0.2127  ==-=====--- REFERENCE
-2.66% 2.87% ~1.41% —-meem-ee-- ADF -AXS
3.15% 1.65% -4.00% ~--------- FIRST ITERATION
3.08% 2.12% -4.51%  —-----==-» CONVERGED SOLUTION :
3.08% 2.07% ~4.23%  —mem-m-e--- AVGE OF THIRD & FOURTH ITERATIONS
2.1570 0.€6569 0.4556
-5.80% 9.85% 4.50%
-0.51% -1.16% ~0.92%
-0.42% -1.70% -1.01%
-0.37% -1.69% -1.01%
0.9031 1,6910 0.6576
4,.75% 0.77% 0.09%
-1,92% - -0.89% 0.78%
-2.15% -0.59% 0.14%
-2.13% -0.65% 0. 14%

Table A6,1.1 Nodal powers for the preliminary Test Problem.
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A6.2 NODAL RESULTS FOR THE CISE
BENCHMARK PROBLEM

Reference Eigenvalue: A = 0,9523989
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A6.3 NODAL RESULTS FOR THE CLSH

BENCHMARK PROBLEM

Reference Eigenvalue: X = 0.9766051
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A6.4 NODAL RESULTS FOR THE NLSH

BENCHMARK PROBLEM

Reference Eigenvalue: X = 0.964283
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A6.5 NODAL RESULTS FOR THE

MVY BENCHMARK

Reference Eigenvalue: X\ = 0,996161
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A6.6 NODAL RESULTS FOR THE
TRD BENCHMARK

Reference Eigenvalue: x = 0, 976717



AB-15
ERRORS FROM :
REFERENCE:  UDF: ADF :
PL1 * 0.7130 -5.82% -0.36% * 0.4637 3.21% -4.70% = 0.3872 4.34% -2.32%
PL2 : 1.1130 -4.048% 1.17% : 0.7264 3.8B% -4.61% : 0.6090 4.93% -2,30%
PL3 : 1.1720 -4.18Y% 0.51% : 0.8839 10.54% 0.92% : 0.7984 6.83% -0.80%
PLA4 : 1.2930 -2.09% 1,31%‘ : 1.1040 9.42% 0.72% : 1.0070 9.83% 2.98%
PLS * 1.3170 1.37% 1.06% : 1.4830 4.18% 2.02% : 1.4490 4.90% 2.35%
PLS : 1.0200 1.08% -0.69% : 1.1600 +.47% 0©.80% : 1.1600 2.24% :0.69%
PL7 : 0.7469 1.42% -0.42% : 0©.7636 0©.88% -0.80% : 0.7637 1.11% -0.79%
PLB : 0.5150 -0.47% -2.47% : 0.5150 -0.33% -2.38% : ©.5147 -0.25% -2.33%
* 0.8179 -4.05% -0.92% = 0.7442 -4.94% -0.20% = 0.6968 -5,17% 0.01%
: 1.2680 -2.44% 0.47% : 1.158B0 -3.37% 1.21% : 1.0880 -3.58% 1.47%
: 1.3000 -2.B5% -0.46% : 1.2110 -3.63% O.50% : 1.1500 -4.00% O.70%
: 1,3900 -1.22% ©0.14% : 1.3230 -1.81% 1.21% : 1.2760 -1.96% 1.49%
: 1.3500 ©.84% 0.59% : 1.3340 1.3%5% 0.97% : 1.3110  1.,53% 0.99%
: 1.0240 0.39% -0.88% : 1.0270 0.88% -0.88% : 1.0210 1.18% -0.78%
: 0.7491 1.24% -0.49% : 0.7483 1.39% -0.41% : 0.7473 1.54% -0.36%
: 0.5162 -0.56% =-2.523% : 0.5157 -0.48% -2.48% : 0.5152 -0.43% -2.47%
:***#t*ttttttttt**t****tt:t*tttt#t*tt**ttit*ttittt:*ttti***it#*ttttt*;ttttt
* 0.8946 ~2.82% -0.69% * 0.8665 -2.90% -0.54% = 0.B412 -2.92% -0.36%
: 1.3780 -1.23% 0.65% : 1.33B0 -1.27% 0©.82% : 1.3010 -2.Ba% 1.08Y%
: 1,3830 -1.79% -0.36% : 1.3570 -1.77% -0.07% : 1.3250 -1.74% 0.08%
: 1.4600 -0.48% 0.21% : 1.4320 -0.42% 0.235% : 1.4070 -0.43% ©0.50%
: 1.3880 0.79% 0.50% : 1.3710 1.02% 0.80% : 1.3560 1f11% 0.88%
: 1.0360 0.10% -0.97% : 1.0300 0.29% -0.87% : 1.0240 0.39% -0.78%
: 0.7528 1.05% -0O.58% : 0.7507 1.15% -0.55% : 0.7486 1.23% -0.49%
: 0.5175 -0.66% -2.59% : 0.5168 -0.62% -2.55% : 0.5161 ~0.56% -2.54%
*
%

"

R OR R R RN R RR R EREREREE R EREF R EE R RREE R REEE RN EREREREEER R

Wk ek ok ke ok A oK ok ok ok o ok ok o e T e K R I T e ok ok R K % ok T B B ok o ko ok e o o ok ok ok o ok ok ok ok ok ok ok

Note:

Table AG6.8. 1

PLn is the n'

ponds to the bottom fueled slice of the core.

h

15 cm plane grouping.

n=1corres-

Nodal powers for the TRD BWR Benchmark.
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A6.7 NODAL RESULTS FOR THE

DEP2 BENCHMARK

Reference Eigenvalues:

Beginning of cycle 1:
End of cycle 1:
Beginning of cycle 2:
End of cycle 2:

Beginning of cycle 3:

A =0,923458
A = 0,838761
A =0.829696
A =10,887143
A =0,907373
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