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ABSTRACT

Thesis Supervisor: Dr. Michael S. Triantafyllou

Title : Associate Prcfessor of Ocean Engineering

DYNAMICS OF ELASTIC
TAUT INCLINED CABLES

by

Laurent Grinfogel

Submitted to the Department of Ocean Engineering
in partial fulfillment of the requirements cf the Degree
of Master of Science in Ocean Engineering

Asymptotic, analytic expressions for the natural frequencies, the
natural modes and the dynamic tension of a taut, elastic, inclined cable
are derived for small ratios of cable weight to end forces. It is
explained in detail how, starting from the exact solution of the
linearized dynamic equations, perturbation expansions can provide simple,
accurate results. The results for horizontal cable can be obtained as a
particular case by letting the inclination angle of the cable tend towards
zero, Indeed, all the characteristics of the dynamics of an inclined
cable, such as the existence of hybrid modes, an amplification of the
dynamic tension for a particular value of the elastic stiffness, and no
cross-over occurrence are captured by our approximations. All the results
compare extremely well numerically with the respective exact quantities
calculated by computer codes.

The natural modes, as calculated here, proved not to be orthogonal.
Consequently our analytic formulations might be less convenient to combine
into more complex solutions, to solve, for instance, for the non linear
dynamics of cables.



TABLE OF CONTENTS

Page

Introductiono.Ql..o.l.o....o..l....u'l...'lﬂn..‘..l‘.c....l.....o...o. 5

Solution of the Linear Dynamics of Inclined Marine CableSeeeecosnoscee 7

1.1 Governing qu]at‘ions.‘.)....l...'..'..0...........OQ...'I.O.'O.‘.. 7
1.2 Solution of the Linearized EQUatiONSeeeosscescccccscssnasesassses 10
1.

3 Conc]usiono.Q.e.'...Olo..t...oolo.o..c.l.o.o.'.0.00...0'.0..00..0 19

Approximation of the Equation for the Natural FrequenCieSeeeseeccessses 21

2.1 Derivation of an Approximate Equation for the Natural

Frequenc1ESooooonoooocun.0.0.0...0s.co.oc...-oo.o.oo-...ov.o.o... 21

2.2 ier1iicatio © © 030 0000000000000 0003 0000000800000 00600060006000600CCGGEES 32

203 Conc]usion...oooo.o..o...o...o‘o...00..‘.‘.0‘..0.ovo...o.ou...o.. 36

Approximation of the Natural M0d€S.eeeecesecscccsscccasasscsassnscosonve 3/

1 Derivation of the Natural MoOdeS.cceeceecesccesesocsscscscccncncse 37

2 Transverse Natural MOUESeecessecsecscoscsssccsccsscscosossscnssssess 40

3 Longitudinal Natural MOUES.eeceeececsccescscccscsscssccssssssncones 44
e84 Ver1f1CatiONeecessescecosccncssssosscescssssccsscsssscsccsoscscsosscancee 40

5

6

Orthogona]ity Of the modes.ooc'coooooooo.oo...oc0..0.00...0..ocoo 55

CO”C}U510n----............-.o...o-..:-..s...oo-..-.--...-....-.n. 55

Dynamic Tension-.c....at.o.oo..0--.-.00.0.-00-.00--:-....o.lio..l.o.‘c 57

4-1 Derivation.-Q.....0.0..O‘.llooc.-o'.ll..ol.o.ooo..'oco.oo.o..-.o. 57
4.2 Approx]’mation..Q"..Q.‘...‘.0.0....‘.....'...‘...0....‘...‘...0.0 57
4.3 RESU]tS aﬂd Conc]usions..-..-n.l.o-.o...oo...ooo.lo...ooo....Cluo 59

62

Conc]usion-...;..oo.-.cl-llc...oo..oo.ocoococ..c.oo....oc.c.'.cncoocun

AEpend‘ix A...l...O..l...O......O..Q'.O......l...0..........'.0...'.... 63
ADPENdiX B.....O-l...ll.-..0".".......0........‘....ll......’.‘.‘... 65

Bib]iography......-ol..........c.oc.....o-l...o.-..on..--o.ou.ulooclu. 67

-4



Introduction

Surprisingly enough, however simple cables may appear, when
considered as structural elements, a thorough understanding of their
dynamic behavior has been achieved fairly recently, especially for the
more complex cases, such as inclined cables and large sag cables in a
strong current., A complete summary of these solutions can be found in
[1]. Nonetheless, man has been able to use cables for centuries because
the structural properties of cables come only from their static behaviors,
and as long as one makes sure that no excitation will induce vibrations in
the cable, a study of the statics is sufficient. Any motion induced in
the cable will deteriorate its static behavior by generating additional
stresses, which may rupture the cable. The role of a proper design con-
sists in either avoiding that the cable be excited, or in accounting

vproperly for the excess of tension generated by the motion.

Of particular interest to the structural designer is the taut elastic
inclined cable. Its linear dynamics are now precisely modelled ([2]), but
at the price of a greater complexity. In particular, no easy-to-use
analytic formulae for the natural modes, or the natural frequencies exist,
and computers must be used. This justifies that we try to simplify the
exact formulation when the ratio of sag over span is small. The economy
in computer time is not so important; the principal advantage of having
analytic expressions is that we can study in depth the influence of the
principal parameters. Also, closed form expressions for the natural modes
can help build non linear solutions as demonstrated in [3].

In the sequel, we will show how to fully describe analytically a taut

inclined cable. We will first explain its linear dynamics (Chapter 1),

-5-



then successively derive analytic expressions for the natural frequency
equation (chapter 2) and the natural modes (chapter 3). At this step, the
governing equations of a cable are entirely solved and the dynamic tension
is easily obtained using these solutions (chapter 4). At each step, our
approximate results are carefully checked against the exact ones, which

are numerically computed.
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ChaEter 1

Solution of the Linear Dynamics of Inclined Marine Cables

1.1 Governing Equations

l1.1.1 Notation
In the sequel, we will consider a perfectly elastic cable with the

following geometric and dynamic properties:

L unstretched cable length

A stretched cable cross-section

m (W) stretched cable mass (weight) per unit length

M stretched cable mass plus added mass per unit length

E Young's modulus

Also, we will denote by s the unstretched Lagrangian coordinate along
the cable (s=0 at the bottom, s=L at the top), % () the static (dynamic)
part of the angle measured between the horizontal and the tangent to the
cable at point s and by H the horizontal component of the force at the top
end of the cable (see figures 1.1.1 and 1.1.2). Also, «(s) stands for the
local static curvature dmo(s)/ds, and T (To) for the dynamic (static) part
of the effective tension. (We recall that the effective tension Te is the
sum of the tension in its usual sense plus the hydrostatic pressure times

the cross-section at point s. Te is a scalar which introduces itself



Te
1.1.2. Coordinate system and forces acting
on a segment of cable



naturally in the static equations. For further detail on the static

equations, see [5].)

1.1.2 Governing Equations

As shown in [5] (chapter 14), the governing equations for the
dynamics of a cable are highly non-linear, which makes it difficult to
solve trem without further assumptions.We focus on those dynamic cable
configurations which remain close to the static equilibrium, which means
that we do not want the dynamic behavior to change significantly the
static performance. By retaining first order terms, a set of linearized

equations for the cable dynamics is derived:

2 Taé
dw _ 20 0
M 2 ds [To¢] * 3s (1)
ot
2
3 u T
Mm-——s == ~W_ ¢c0S ¢_ ¢ (2)
at2 3s 0 0
o6
au 0 _
S 3s ¢ (3)
.\:
(o)
oW o _
5s T Uzs ¢ (4)
T=FEAe (5)

where u and w are the dynamic displacements along, respectively, the
static tangent to and normal N, directions (see fiqure 1.,1.2), wo is the
weight minus the buoyancy, e is the dynamic stretching,¢ the dynamic angle
and T the dynamic tension. This set of equations assumes that the static
configuration is two dimensional (lying in a vertical plane), in which

case, within linear theory the out-of-plane motion is uncoupled from the
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in-plane motion. In the sequel, we will not pay any more attention to the

out-of-plane motion which is quite simple to study.

1.2 Solution of the Linearized Equations

1.2.1 Methodology

Even this linearized set of equations can not be solved for in the
general case and an approximate solution requires a lot of physical
insight. The study of two limiting cases of cable vibration, the taut
string and the inelastic chain can help us gain this insight. Since the
properties of a taut cable lie between those of a taut string and of an
inelastic chain, it seems reasonable to build our solution for the taut
cable using arguments from both these limiting cases.

Since, equations 1 to 5 are linear, we can speak of modes for the
tangential and transverse displacements u and w (by taking a Fourier
transform with respect to the time variable). We will see in 1.2.2 in the
case of the taut string that u and w have wavenumbers (that is, rate of
spatial change) with different orders of magnitude. The recognition of
these different orders of magnitude is the basic step towards applying the
perturbation method principles to distinguish two different kinds of
solution for our problem. Thus it is important to understand the physical

characteristics that these solutions represent.

-10-



1.2.2 Taut String

A taut string is a cable without sag, i.e. with zero curvature, or,
alternatively a cable whose ratio (WOL/H) of the cable weight to the end
forces tends towards 0. The static tension T0 is constant along the
string. The dynamics equations in that case simplify into (by setting

26
sc-and W_ to 0 in (1, 2, 3, 4)):

oS
azu _ EA azu
7 cn 7 (5)
ot 0s
2
2% = 12 E_E (6)
Rl

We see that the transverse (w) and longitudinal (u) modes are
uncoupled. If we call natural modes the solutions that cancel out at both
extremeties (this happens for a set of particular frequencies called the
natural frequencies: these particular solutions are especially useful as
it is easy to build other solutions by combining them), then the natural

modes of the taut strings are:
u(s,t) ~ sin(kns) sin(wnt)

with kn =W / EA/m and w, given by s1n(knL) =0

w(s,t) ~ sin(kns) sin(wnt)

t ] 1 ]
with kn = wn/ TO/M and w. given by sin (knL) =0
If we now induce forced vibrations in the taut string at a frequency
W4 then the wavenumbers p and k of the longitudinal and transverse modes

will be in the ratio:
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Since To/A is the static stress and we design the cable so that To/A
is much less than the yield stress, which in turn is much less than
Young's modulus, then k/p >> 1, i.e. the transverse waves travel much
faster than the longitudinal ones or alternatively, the spatial rate of
change of w is much greater than that of u. Indeed, p can be very low, So
that u can be set as:

U~ sin us sin wt = ps sin wt
u is similar to a distributed string: this is called quasi-static
stretching.

The dynamic tension is generated only by the longitudinal mode (cf. 5
with e = 92) and is thus proportional to s. The transverse mode does not

os
generate any tension, to first order.

l.2.3 Inextensible Catenary

Inextensible cables, hanging between two ends reconfigure themselves
as they vibrate around a higher, and thus shorter average position than
the static configuration, so that the excess lenght is used to accomodate
the sinusoidal like arcs of vibration.

If we distinguish now between symmetric modes (even number of nodes)
and antisymmetric modes (odd number of nodes) we can expect that those
fatter will generate less tension than the former since intuitively a
symmetric mode seems to require more stretching than an antisymmetric one.

Since the case of an elastic cable lies between the case of a taut

string and the case of a catenary, we can expect a taut cable to behave
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with a mixture of taut string and inextensible catenary properties. This

is what we are going to study now.

1.2.4 Fast and Slow Solutions

Potential solutions of equations 1, 2, 3, 4 might be as in the case
of a taut string, fast travelling transverse waves and slowiy varying
longitudinal waves (in short, respectively "fast solution" and "slow

solutions").
NOL
We denote<—ﬁ— by €, which in the cases we want to address is a small
parameter. It provides us with a scale to give sense to the expressions
"fast" and "slow" solutions. A "fast" solution will be a furction of s
whereas a slow solution will be a function of es. More precisely, if

logically we assume that the solution of the static equations is of zeroth

order in e, the dynamic quantities for the slow solution will be set as:

dynamic tension eT(es)
longitudinal displacement eu(es)
transverse displacement ew(es)
dynamic angle ed(es)

whoreas for the fast solution:

dynamic tension e T(s)
longitudinal component szu(s)
transverse component ew(s)
dynamic angle ed(s)



The orders of magnitude have been chosen in accordance to what was
observecd in the study of the taut string.
By using a perturbation method a second time, we derive two groups

equations from 1, 2, 3, 4:

First group: &= [To'%g] + Mo = 0

dé

dui _ %0 ~
s - d@ "
Second group: ‘gg E%-g%] +U=0
S [6/(do sds)] = h T (
ds 0
2 deo
. ) 0,2 _m
With Ccgr-hE) =g
~ iwt
and w(s,t) = w(s) e
iwt

u(s,t) = u(s) e

The selution is the sum of the four independent solutions derived

from these two groups of equations. The first group provides the fast
solution and the second group the slow one.

The solution of the first group is:

Wy(s) = exp [+ 3 f-——==="‘*’ =
4 T_(S)/H To(s)/M
4 p do
T (s)/M
T (s) = 40 (—20) exp {+ [S 1wds
1 ( * iw ds { 0 To(s)/M

and indeed it looks very much like the transverse solution for the taut

string. The main difference with the taut string is that u and w are

-14-
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coupled and therefore each mode will be a mixture of the fast and slow
solutions which will be derived in the sequel. This very mixture captures
our intuition that a taut cable may behave both as taut string and as an
inelastic chain,

Unfortunately, the second group has no general solution and we can
solve it only for particular cases. [1l] contains a summary of various
solutions. We will pay attention to only two of them: the horizontal

taut cable and the inclined taut cable,

1.2.5 Horizontal Cable

This case will interest us in so far as it makes possible checks of
our results for the inclined cable, in the asymptotic case of a zero
inclination angle.

The slow solution is:

T, (s) = exp (= §0 5]
o 1
WZ (s) =+ h ﬁg-——— exp {ti/aﬁ}
i Q

By expressing that the end displacements are null, we find the

equation for the natural frequencies:

sin (kL/2){tan(kL/2) - kL/2 + L5 (kL/2)%} = 0
A

(11)

2 Mot 2
with k = w/YH/M and A = (EA/H) (=)

A is the fundamental parameter which expresses this mixture of taut

string and caterary effects.

Figure 1.2.5 shows a plot of equation 11, The solutions of
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sin 6;5) = 0 provide the natural frequencies of the antisymmetric modes
while the solutions of the second factor in 11 provide the natural
frequencies of the symmetric modes, which generate most of the dynamic
tension, It is worth noticing that at a specific point, the cross-over
point, the curve that gives the symmetric mode frequencies crosses the one
giving the antisymmetric mode frequencies. This is the main charac-
teristic of the dynamics of taut horizontal cables. At this point, Q is
zero all along the cable (since the curvature is constant) and the slow
solution undergoes a change from sinusoidal type shape (taut string) to
exponential type shape (chain dynamics). These results are slightly

modified in the case of the taut inclined cable,

1.2.6 Taut Inclined Cable

The solution to the second group of equations is

~ 1 3 A ] 1
us (s) = - QO / { L Ai (-z) + C4 Bi (-2)}
~ o,
W, (s) = I {C3 Ai (-z) + C4 Bi (-2)}
2 do
. . 2
with Q=5 -h (G =q, (s-s,)
_ A 1/3
z = Q"7 (s-s)
Ai’ Bi’ Ai’ Bi are the Airy, Bairy functions and their derivatives, C3 and

C4 are two constants. This solution bears one slight analogy with the
horizontal cable solution: Q(s) can become zerc at one point on the cable
(depending on the frequency), but at only one. At that point, the Airy

and Bairy functions have a transition from exponential-like shape (at the
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bottom) to sinusoidal-like shape (at the top) (see figure 1.2.6.1 for the
shape of the Airy function, [4] for the Bairy functions). The static
tension is greater at the top of the cable than at the bottom, due to the
weight of the cable. Hence the cable behaves closer to a taut string in
its upper part. On the contrary, it behaves closer to a catenary in its
lower part. This creates hydrid modes, which are neither symmetric nor
antisymmetric.

As regards the natural frequencies, we can see on figure 1,2.6.2
that a mode cross-over never occurs, but that the curves are very close in

the hybrid mode region.

1.3 Conclusion

One will notice that no equation for the natural frequencies has been
given for an inclined cable because an analytic form would be too
complicated to be of any use. The same holds true for the mode shapes.

Therefore, starting from the exact analytic solutions for the displace-

ments:

U(s) = ————{C, R(s) + C,/R(s)} + C4 h a(s) A.[-2] + C, h B, [-2]
JTO(S)/M (12)

W(s) = HEL AT (/M (c) R(s) - Cu/R(s)]

+ 0y (0,13 ALz + Cy(-0, %) BiL-2]  (13)
z = 0,1 (ss,)
mmz 2
0(s) =B - n [a(s)1% = Qy(s-s,) (14)
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our objective is to derive an approximated version of the natural fre-
quency equation, the modes, and the dynamic tension when g = Eﬁt is small,
in order to not only economize in computer time, but especially to have
analytic forms of the natural modes that can be used to study complex

dynamic motions.



Chapter 2

Approximation of the Equation for the Natural Frequencies

2.1 Derivation of an Approximate Equation for the Natural Frequencies

2.1.1 Principie

Finding the natural modes of our cable consists in adjusting the

constants Cl’ C2, C3, Cq in (12) and (13) so that

u(0) =u (L) =0 w(0) = w(L) =0 (15)

This is done by solving the systems of linear equations represented
by (15) with unknowns C1 C2 C3 C4. We will find nor -zero solutions
only if the system is of rank lower than four. This condition is

expressed mathematically by setting the determinant of system (15) to

zero. This is our natural frequency equation

2.1.2 Obtention of the Exact Natural Frequency Equation

Here is the full determinant:

exp [4(0)1 exp[-H(0)] ha(0)*/T (0)/M AL-2(0)1 ha(0)*[T (0)/M B;L-2(0)]

explH(L)]  exp[-H(L)T ha(t) */T (O/M A L-211  na(L)* [T (LI/M B;T-2(1)]

dA, [-2(0)] a8, [-2(0)]
explH(0)] -exp-(H(0)] s Ee T
* T (0)/M * T,(0)/M
an; [-2(L)] a8, [-z(L)]
explM(L}] -explN(L)] 2y 2 lo g5
(L) T (O/m a(t) T (LM
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with W(s) = fos w ds

To(s)/M

The full development yields (equation 16):

2 .. - dA. dB dA dpP.

w- 21 sin [N(L)j]._ i [- 0] [ L]-———— “2(L) —. r-2(0

2(0)a(L) 4V&(0)/M 4/T(L)/M { as z(0) z(L) [-z(L) g [-z( )1}
(Term 1)

dB dA
+ 2iw h {A jomz(L)] 5 = [-2(L)] - -——'[ z(L)] 8, [-2(L)]1} (Term 2)
dB dA
+ 2iwh {A [-z 0)] L [-2(0)] i L [-2(0)] B, ;L= z(0)]} (Term 3)

4 dB. dA
+iwh 2 1Z§%%%%% (~2cos[W(L) 1) {A; [-2(L)] g~ [-2(0)] - =+ [-2(L)18,[-2(0)]}
(Term 4)

4[““" B dA

. a0

+ h U 7 ==l (~2cosTu(L) ) (A, [-2(0)] == [-2(1)] - o [-2(L)18,[-2(0) 1}
(Term 5)

+ 21 sin [W(L)T 0% 2(0) a(L) YToym Yrm
(A L-2(0)] B,[-2(L)] - AL-2(1)] B,{-2(0)1 =0 (Tern 6)

|
|

Term 2 and 3 can be computed exactly without approximation as the
Wronskian of the Airy and Bairy functions at any point is-% ([4]):
term 2 = term 3 = 2whi (-Q 1/3)-—

For the other terms, perturbation expansions must be made, but the

computational effort can be reduced using the symmetry of the expressions.
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2.1.3 Principle of the Expansions

Equation (16) shows that one must expand two different kinds of
expressions:

- products of static quantities and sin[W(L)] or cos[W(L)]. Each of
these quantities has an expansion readily available from former results on
the static solution or can be easily calculated, like cos[W(L)] or sin[W(L)]

- expressions containing Airy, Bairy functions and their derivatives.
These functions have an argument -z(s) whose order of magnitude is unknown,
since z(s) is an involved expression in w and the elastic stiffness,
quantities which vary over a wide range when we study the influence of
these two parameters on the dynamic response of our cable. A perturbation
expansion requires that we choose a point and an order for the expansion.
We will devote a special paragraph to this question and we will see thet
two domains of elastic stiffness must be distinguished where two different
expansions will be performed.

As regards the terms involving only static quantities, although the
order of expansion is still unknown (it must be consistent with the order
of expansion of the terms in z(s)), we choose to expand them up to second
order in e. We may have to reduce the expansion to the zeroth or first
order later, but since we will encounter most of these expressions in the
section dealing with the modes, it is wiser to compute them here once and
for all.

An important simplication can be made in their calculations,though,
Let us have a look at some of these static quantities. We call To the
tensicn at the point where the static angle is exactly equal to the

inclination angle of the cable o, (i.e. the angle of the cord joining the
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two extremities). This point always exists. This should not be confused
with the point with a Lagrangrian coordinate So* which appears in the
variable z(s) and which does not always exist, that is, depending on the
frequency, So will or will not be comprised between 0 and L. We choose as
definition of ¢:

WL
0

-

0

Y]
1

WL
(The definition of £ was in the case of a horizontal cable ¢ = —%—, H =

horizontal force at the top, which is consistent with our definition
here).

Whenever we have to non-dimensionalize quantities by a reference
force, we will use TO. Therefore using TO, the static tension and

curvature are:

cosé
_ a . s 1 2. s 12 2 a
a(s) = ] {1-2¢ SINe \r =) + e [(r -5 (4sin6,-1) - ——1}
. 2
2 sin 4
- i s_Ly,e 2, (s _ L2 a
T(s) = T, {1l +esine, (F -5) +5 [cosTe (F - 5)° + ——1}
We notice the term in c% —-%): it comes from the fact that the
Lagrangrian coordinates sa of the point where ¢(sa) = ¢a is:
S, 1 £ S1Tii
T 2717
Subsequently, all products like a{0) a(L) or TO(O) TO(L) will have
no first order terms. W(L) = fg ds v is the integral of an odd
T(s)/m

function and will have no first order terms as well.

If we add the symmetry of expressions like
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a(0) YT /M (L A Om

where the first order terms disappear any way in the sum, as these
terms are the inverses of each other, we may have now a feeling about why
in the full expansion of equation (16), terms of order e disappear, with
the consequence that if we want to point out the difference between an
inclined cable and a horizontal one, we have to develop (16) up to second
order in e.

Some expansions of compounds of static quantities which we encounter
frequently are given in appendix A. We will just have, therefore, to
plug these expansions in our equations and we will be able to derive a

significant number of other results.

2.1.4 Hybrid Mode and Non Hybrid Mode Domains

Let us focus our attention first on Q(s) and z(s), the argument of
the Airy functions.
By definition, we have

mmz 2
o(s) = g - h o (s)

If we define k = =~— (analogous definition to the taut string
To/M
transverse wave number) and plug in the expansion of az(s), to the first

order we obtain

h 52c052¢a To k2L2 -1
Q(s) = > { s - 1+ de sin o ( ?0}
L EA e cos ¢a

L 1)
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9 EA £2C052¢a
We define A" = e This is an analogous quantity to the
0

Az defined for the horizontal cable where
WL
A% = (BAH) ()7 (see [1])

since To is equal to H for a horizontal cable. In both cases, xz

has the same interpretation and will be one of the fundamental parameters
which determine the dynamics of the cable.

Therefore, we end up with:

necos’s (22 . s
Q(s) = 2 { > - 1 - 2 sino_ + 4e sino, T }
A
= Qo(s - so) by definition of s, and Q0
We derive:
83 2
G, = 4h 3 cos %, sin ¢, (17)
1/3
L Q 2,2
Lty Lo KL 1/3 ;s -1
2(s) “ e (-0 i, T (18)

23) + 0L 7 D)

z (s) is the sum of two terms:

- LQOI/3 (%-'-%) which is of order ¢ for all s.
Lo, k2L2 o kL2
v sin¢a ( x2 - 1) which is of order ( xz -1)

This quantity may be of order 1, or of order e. More precisely,

2,2
(E—E— - 1) is of order e and becomes equal to zero, at the point where,

AZ
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on the diagram w vS. kz (see figure 1.2.6.2), the curve for the first

mode comes closest to the curve w vs. AZ for the second mode, in what we call the

hybrid mode region, or what we will refer to as "“near cross over",

although we recall that no cross over occurs for an inclined cable.
Consequentlyywe must distinguish two domains for our expansions of

the Airy and Bairy functions:

2,2
- the hybrid mode domain, where GK—%— - 1) is of order ¢,
A k2L2
- outside the hybrid mode domain, where G—TT' - 1) is of order 1
A

Defining these two regions in terms of an "order" of magnitude may not
seem very precise. We can define these regions precisely as follows:

1/3

z(s) = Qo (s-so)
S 2,2
. 0 1 kKL .
—_ e {1 -
with T TE s, 8 2 + 2 sino }

S
Assuming that 0 < fg < 1, z(s) can become equal to zero at a point on

the cable, and thus for s < so, [-z(s)] is negative and therefore the Airy
and Bairy functions have an exponential form (see 1.2.6.1). For s>so
[~z(s)] is positive and the Airy functions have a sinusoidal form. This
means that at the bottom part of the cable, there is no travelling wave,
while at the upper part the wave travels as in the taut string case.

These two different solutions create hybrid modes. We can define the
s
hybrid mode region as the region Oérg <1 where

k2L2
-Zssin¢a < 5 -1« 25$in¢a

A

2,2
That is exactly what we mean when we say "(E—%— - 1) is of order &"
A
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Fortunately, except when actually deriving the natural frequency equation

and the modes, we will not have to pay attention, after the final
2,2

expressions are obtained, to whether c£~§— - 1) is of order ¢ or not. We
A

will derive formulas which hold true throughout the AZ domain.

We can now proceed to expand the Airy and Bairy functions.

2.1.5 Expansions of the Airy and Bairy functions

In the previous paragraph, we concluded that z(s) is either of order
€, in which case we can expand the Airy and Bairy functions about 0, or of
order 1, in which case we expand them at [-z(%)] (which is of order 1 in
that case). We will see in the sequel see the consequences for not
distinguishing between these two cases. We will see that by doing the
complete expansion of:

{8:[-2(0)] A.[-2(1)] - A1[-2(0)] B,[-2(L)]} (19)

The reader will be spared the computation of all similar terms in
(16) and will find all the expansions, up to second order, collected in
appendix B. These expressions will recur in the derivations for the modes.

- outside the hybrid mode region
L 173, ;s 1
2(s) = 2(3) + 0,1 °L @ - )

A1l the derivatives are at the point [-z(%)]

1/3 2/3 1/3 2/3
[} 0 " QO LZ [i} QO L 1 QO L2 n
(19) = {8; + —5= LBy + 5o By } A - —5— Ay + oo Ay}
REREE B AR B A Sl iT T S T T
2/3
_ A BI AIB + QO L2[1 BIA“ Al Bll + 1 AIB"+A“BI + 1( A"IB +BI|‘A ]
= (ABy - AyBy) + ——— L[7 (B;A; - Ay By) + 3 (-A;B;+A;B;) + Z(-A; By+B; Ay)

-28-



The terms in 001/3 L cancel out.

Since (B;A; - A(B) [-2(5)] = (-ABy + ABL)[-2(5)] = (-A; B.+8] A)[-z(5)]
- 2(3)
T T

Q 2/3
(19) = f - - L2(3)
where the last term is of order 52
- in the hybrid mode region
A1l the expansions are made at the point 0. Since G; = ZGi with Gi
" W

the Airy or Bairy function, Gi(O) = 0 and G, (0)=G, (0)

Thus, to second order:

0. 2/3 1/3

- ‘ 0 2 ! 0 !

(19) = {B; + ==L "B} {A; - —— L A}
2/3 1/3

. Q Q .

- (A g o) 1By - L sy)

(A, B - A B) + 0(e?) = 1+ 03

If we had made only anzexpansion outside the hybrid mode domain, we

would have kept the term Eg%——— L2 z(%) which is of order e3 near crossover

and, thus, must be discarded. However, although mathematically incorrect,
the influence of such "false second order terms" is neglible if we keep

them inadvertently. One possible strategy could be therefore to expand

all terms as if we were outside the cross over area, then realize that

kL2 . .
near cross over, because c——?- -1) is one order higher in ¢, some terms
A

are of order 53, then discard them, reorder terms in ascending powers of ¢
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and have one formula for each domain. Another strategy, less rigorous
mathematically, but easy to use in practice could be to keep all terms,
even if they are of order e3 for some wavenumbers, knowing their influence
is negligible ,and thus obtain a unique formula valid for both domains
(which is especially useful for plots). The disadvantage is that outside
the cross-over domain, we must expand up to the same order as the expan-
sion in the hybrid mode region, which may not be necessary to obtain the
same accuracy outside the hybrid mode region and therefore 1involives a lot
of unnecessary algebra. Nonetheless the simplicity of a single final
result outweighs such considerations and this technique will be used in
this thesis.

For the natural frequency equation, we will use a different metho-
dology, for the following reasons: plugging in (16) the expansion to
first order given in Appendices A and B, and after factoring out powers of

e, it is easy to see that the natural frequency equation outside the

hybrid mode domain is, to zeroth order(l)
kL kLy kL kZL2 kL 2
sin(z=) {cos(z—) 7= (== - 1) + sin > b +0(e”) =0 (20)
A

To second order and away from the cross-over region, the equation has
exactly the same form as for a horizontal cable, except that the defini-
tion of KZ accounts for the inclination angle. The main point, however,

ji.e. the existence of symmetric and antisymetric modes remains valid.

(1)
Actuall% th1s equation 1is of first order if sin(kL/2) is or order ¢ and
k22 /A is of order 1. This is the case for low or high values
of Ao This represents a third domain, which we have not dealt with
especially, since the two cases discussed above encompass this domain.
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This equation is obviously not valid near cross-over since both
2,2
k“L
( A

in (20) is of order sz, and the other terms of the expansion which are of

- 1) and sin (;L) are of order £ in this region, thus the first term

order EZ must be retained.

From the discussion above, we conclude that (20) is a very good
approximation of the natural frequency equation, correct to second order
and away from the cross-over region, and there is no need for second order
terms which would have a negligible influence. Besides, outside the
hybrid mode domain, there are several second order terms, so the advantage
of an analytic formula is lost. Near cross-over, the second order terms
are not a correction: they are the leading order part of the expansion
and must be kept. Fortunately, the second order terms near cross-aver are
much fewer since, as we can see in Appendix B, the expansions for the Airy
and Bairy functions are simpler in that domain.

In brief

- a zeroth order expansion is sufficient away from cross over

- & second order expansion is necessary near cross over, but the
algebra is simpler in that region.

Following this strategy, we end up with:

2,2
sin(%L {cos(%LJ %L (5—%— -1) + sin%k} - ezsinzd:a coskL %% =0

A
If we now notice that outside the cross over region, the term

52 sin2¢a coskL %% has a neglible influence, we can keep the unique natural

frequency equation:

kL. kL ke 2

sinc;E) {cos ) 7 (5;%— - 1) + Sin;L} - szsin b, COSKL %% =0 (21)
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2.2 Verification

First, from a qualitative point of view it is interesting to check
whether, if ¢a tends toward 0, we recover the equation for a horizontal

cable.
Second, the correction of order 52 is in agreement with our intuition,

since if we look at the plots of w vs. xz, near cross over both sin %L and

(EE%E - 1) are small. From a quantitative point of view, it is not at all
obtious that we will obtain any meaningful result by a perturbation
expansion of any order. If we look at a plot of the Airy and Bairy
functions (see figure 1.2.6.1), we see that even near zero their slopes
are large and thus the higher ordef terms of the expansion may not be
negligible. Fortunately enough, approximate formulae, given in Appendix
B, provide results which compare well with the exact ones. In particular,
the natural frequencies, given by the approximate equation above, agree
very well with the exact results.

Figure 2.2. is a plot of the non-dimensional quantity %L versus A
It is no use superposing the exact and approximate solution, because the
difference can not be detected within the scale of the plot. For this
reason we enclosed two tables with numerical values, one for a moderate

and one for a high value of . We notice that, for e=0.18, three digits

after the decimal point are captured by our approximation.

2.3 Conclusion
Most of this chapter was devoted to explaining the approximations of
the Airy and Bairy functions. We had to distinguish two domains even

though we end up with a single equation. The same reasoning and tech-
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niques which proved fruitful for the equation providing the natural
frequencies will be used again next for the derivation of the natural

modes.
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Chapter 3

Approximation of the Natural Modes

3.1 Derivation of the Natural Modes

3.1.1 Principle

The natural modes are the non-zero solutions of the governing
equations which cancel out at both ends. This, as we saw in 2.1.1,
implies that the determinant of system (15) must be zero and, consequently,
the modes are obtained by solving (15) for three out of the four constants

c,, C C, in terms of the fourth constant for the values of w that

12 72° “3° 74
satisfy the natural frequency equation.

c

We rewrite our solutions as:

w(s) = Cla(s) Ai[-z]+C2a(s)Bi[-z] A - {C3cos[w(s)]-c4sinEW(s)]}
Yt osim
1/3 /3
U(s) = €} (—p—) Ay[-20+C, (——) B;[-Z]

+ Eéil i/?;z;77ﬁ {C5 sin[W(s)] + C, cos[W(s)1}

Through an appropriate choice of the constants C3, C4 we have
expressed the modes as real functions of s, which makes manipulations
easier, at the expense of losing symmetry. For this reason, in chapter 2
we kept complex solution in order to retain a perfectly symmetric 4x4
matrix.

The matrix of the system becomes:
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1/3 ' Q 1/3 '
(- ) AL-20)] (- =) L2100 A5y m
«(0) A;[-2(0)] 2(0) 8;[-2(0)] : 0
MATOE
(- 25—) AL-2(0)7 (- =2—) ByL-z(1)] UL ) sinpuqy &) JTELD cospuy
al) AL-2()3 a(LBL-2(1)] —2— coslN(L)] —=L— sinfu(L)]
Hrym Yrym

and we will denote by A the 3x3 upper left corner matrix. We will solve
our system for Cl’ CZ’ CB'

Each unknown is equal to the ratio of the determinant of its cofactor
by the determinant of matrix A. We must compute exactly and analytically

all these quantities:

2/3
Q 1 ] t [}
det(A) = {—— () [A;[-2(0)] BiL-2(L)] = A[-2(L)] B{[-2(0)1]
Yrioom N

1/3

4 Q
+ 2alt)  VTLM Gnpe()] ()

cof(Cy) 200y 4 o,/? , .
o = L YT ) L2001 80-2(0)] - AL-2(1)] 8,L-2(0)]]
Q 1/3
- afQa(t) Afm costu(L)] (<)}
1/3

cof(C,) ' YETRY '
= - () (038 T-2(1)] - (L) LM cospu(L)] B, [-2(0)1]

4 Yrio)m

2 4
+awy@)7§QQW)gﬂwu]mpuwn
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4
cof(Cz) ) Q 1/3 ‘/i%tkl

1 1 '
—,— = - () g [a) o cos[(L)] A;[-2(0)] - «(0) A;[-2z(L)1]

2
_ o (0)a(L) 1/T(L)/M f/T(o)/M sin[W(L)] A;[-z(0)]}
w

We see that det(A) and cof(C3) have retained their symmetry regarding
the Airy and Bairy functions and can be easily expanded using Appendix B.
As for Cof(Cl) and Cof(Cz), if we attempt to expand them, we would get
into a lot of trouble, because, of their due to a lack of symmetry, the
Wronskian of the Airy functions does not appear, so the expressions can
not be simplified. We choose C4 = det A and calculate the complete
analytic form for the slow solution. This yields

1/3
Q [} [} ‘f
w(s) = a(s) (=3—) = a(0) {A;[-2(1)I8,[-2]-B[-2(L)]A,[-2]}

4
T(L 1/3
‘/ Q ' '
+ a(s)a(l) g=== cos (L)1 (=) & [B,[-2(0)IA;[-2] - AL-2(0)] 8,[-2])
2 |

2
v a(s) &) Afrym Af1(0)/m sinfu(L)] {A,[-2(0)38,[-2]-B, [-2(0)] A,[-2])

’ (22)
Q 2/3 i ] ] 1
us(s) = - —hﬂz——;};a(m {A;[-2(L)18,[-2] - B;[-2(L)]A.[-2]}
0,23 | 4 1)
0 [} 1) ] 1
. = a(L) z7?7377; cos[W(L)] {B;[-2(0)]A;[-2] - A,[-2(0)1B,[-2]}
'Q 1/3 [}
25— 2(0)a(t) YTm JrL)/M sin(L)] {A;L-2(0)18;[-2] - B,[-2(0)1A,[-2]}
(23)



Now we retrieve perfectly symmetric expressions as regards the Airy func-
tions, that we are able to expand. Cof (C3) and det(A) can be expanded

separately and then plugged in the fast solution. We are going to apply
those two techniques successively first to the transverse modes.and then

to the longitudinal modes.

3.2 Transverse Natural Modes

3.2.1 Transverse Modes Qutside the Cross Over Region

As in chapter two, we have again to distinguish between two domains.

Using Appendix A and B and plugging the expansions up to the appropriate

2 2 1/3
cos ¢a € Q0

order in (22) with Sf = =

nJTO/M kL L h

—-é:—Legéﬂ)- {251n22£+ssm a(-l-%—coskL+4s1nz-§L({- ’2'))}
(24)

For the fast solution

cof(C3) 1 cosz¢ 82 Q 1/3 551n¢
T == T L ( h ) {2 sin ( ) + ——=— (-cos kL + 15)}
4 4
‘/TO/M (25)
1 cosqua 82 001/3 2L2 esin¢a
dethA = - ; T — (——) {[sin kL + kL(—-—-- 1)1(1+ —g—)}(26)
22
J TO/M
which yields the following fast solution:
W' (s)dethA _ ([2 sin? KL cog(KLS) _ gin(KLs el (K2
p n" > cos( ) - sin(——= T )J[sin kL+ (_;?_ - 1)]1]
e sing,
+——2 2 sin S IER)E - 1) sindE) - @ - 2) cos(KE)]
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+ ?-cos &5%5)(-cos kL+15)

+ [-sin( ) 7+ EDE - 1) cos BB + - ) sin ()]

2 2
[sin kL+kL(——z— - 1]} (27)

The reader will understand why we have expanded only to first order.
We will not rewrite the complete transverse displacement, which is

easily done by summing 24 and 27.

2 2
WSS !detA {2 s1n2(kL)[co kLs - 1] - sin ({_L_S_) [sin kL+kL (__2__ - 1)]}
4 : (28)

We notice that w(0) = 0 exactly and w(L) = 0 to secend order.

3.2.2 Transverse mode near cross over

Plugging in (22) the appropriate expansions, we get:

S
LM - T ¢ sing, + o sins, 0§ G-I - 25l g (9)

For the fast solution

1 c052¢a 52 Qol/3 2 2

detA = R — (kL ( - 1) + sin kL
T 4[
TO/M
€ s1n¢a 2 2
b— 2 [kL( - 1) +sin kL]}  (30)
2 2 1/3
cof (C,) cos ¢, g Q
3. 1 a 0 {%-s sine, +-% 52 s1n2¢ + 2 s1n2.§£}

¢

4 y ﬁ/?;?g kL L h (31)

which yields the fast solution
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f 2,2
!%431%%35 {%-s s1n¢ cos (kLS) - sin (kLS) [kL(k ; - 1) + sin kL]}
A

4 (32)
+e? sinfe, {5 L)@ - 1) stn (72 - @ " 9) cos (P + 7 cos (1)

+ {2 sin? ;L cos (kLS)}

€ sin¢ 2 2

+

—{LERE - 1) cos €52 + @ 79 sin ERIKLEF - 1) + sin kL]
A

k22

- sin (5F) 3 [kt ‘7;2' - 1) + sin kL]}

To zeroth order:

2,2

~Eé512§%5 = {; € s1n¢ [cos (kLS) - 1] - sin (kLS)[kL(k ; - 1) + sin kL]}
4 A

At s = 0, w(0) = 0 exactly whereas at s = L, w(L) = 0 correct to order 53.

3.2.3 Comparison of the transverse mode equation in the two domains

Because of the importance of the transverse displacement, it would be
interesting to have one unique equation valid for both domains.
If we take the expression of w outside the hybrid mode region and

— - 1) tend to a value of order e, after reordering we

2 2

%‘E%%SEA -% € s1n¢ [ros(kLs) - 1] - sin (kLS)[s1n kL + kL(——%— 1)]
4

sing
v 2 sin? (KErcos(Khs) - 11 v 2 (1= L sindhS) KB - ) cos()
2,2
+ (73 sin EE)I0sin kL + kL (e - 1)) (33)
)\
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If we compare this expression to the expression for the transverse
mode at cross-over, we notice that the principal parts are similar, but in
the correction term some terms are missing and indeed (33) does not vanish
at both ends up to second order.

This is due to the fact that, outside the hybrid mode region, the
principal part of w is of order 0 and its correction term of order 1,
whereas near cross-over, the retained terms are shifted by one order (the
principal part is of order e, the correction term is of order 82).
Consequently, terms of order 82 outside the cross-over region, which we
have ommitted and which would remain of order ez near cross-over, should
also be retained.

- Qur formula for w outside the cross over region, which is similar
in its principal part with w in the cross over area, is already a first
step towards a unified formula. However, we will see that a correction
term near cross-over is absolutely necessary. Possible remedies include:

- including the second order terms outside the hybrid mode domain.

It is possible to do so with the expansions we have provided in Appendices
A and B. However, the algebra is quite involved.

- using the technique we have already resorted to for the natural
frequency equation: that is, adding the second order terms which appear
at cross-over and which are absent from equation (33), to the expression
of w outside the hybrid mode region. These terms have no influence
outside the cross-over region, but they allow us to obtain accurate

expressions for w within the cross-over region.

2

Therefore, an acceptable formula valid throughout the A" domain is:
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2,2

w(s)detA . 2.kl kLs . kLs . kL
= 2 [ - l - kL kL - 1
'ci'lgr-— {2 sin®(3=) [cos(==) - 1] - sin(==)[sin kL + G:Fr- )1}

e sing KLs KLs

+ 2 {2 sin? S LEER)E - 1) sin B - (§ 7 3) cos (KES))

T

+ %-cos (5%5)(- cos kL + 15)

+L-sin (2) 5+ G- 1) B cos A + ¢ - ) sin (K53
K2L2 3 2 kLy,s - 1
[sin kL + kL (=5 - 1)1 +4 [ -1 -Fcos kL + 4 sin® (=)(F ~ 5)]}
A
i, B Lo (8 T h s ],

KLs kLs

+ L K3 - 1) sin A (34)

3.3 Longitudinal Modes

3.3.1 Longitudinal component outside the hybrid mode region

As we will see in the sequel soon, the longitudinal component is of
order ¢ relative to the transverse component. For this reason, we will

only compute its leading order part without including any higher order

terms.
C053¢a E3 Qo1/3
Outside the hybrid mode region, we define Sf' = 2 0——5—-),
ﬁ?TO/M (kL) L
We can re-use (25) and (26) for C3 and detA
This yields the following fast solution:
u (s)detA 2 kL . kLs KLsy .. k22
TT‘“%?T"‘ = {2 sin »= sin (—) + cos c-r-) [sin kL + (——?— - 1) kL]}

4 A

-44-



As for the slow solution

s 2,2
u-(s)detA _ _ [kL (k L~ _ 1) [- 2 s1n2¢§L).% + 11 + sin kL}
4 A

so that
2,2

tﬁ—)-g.—”f d‘:”‘ = {2 sin? 3 [kL (7_"; - 1) 3+ sin B+
[cos (KLS . k22
cos (=) - 11 [sin kL + (= - 1) kL]} (35)
A

3.3.2 Longitudinal component near cross over

We use again (30) and (31) for C, and det{d) and we get:

2,2

f
(s)detA kLs . kL 7 . . kLs
u4 Sf = {cos 'Tf'[51" kL + @7;2- - 1) kL] + z € sing, sin @1T-)}

s 2,2
u~(s)detA k™L .
5 S = - [kL("?T" 1) + sin kL]
4 f A
Thus
2,2

T'4—2—5—,-“45 de:A = {[kL (—ﬂz—"}\L - 1) + sin kLllcos (B(2) - 1] + £ € sin o, sin (K1%))

u(0) = 0 exactly

u(L) = 0 to the second order (36)

3.3.3 Uniformly valid formulation

From (35) and (36), an approximate formulation valid for any A is:

2,2
%ﬁ% = {kt (3 - 1) + sin kLI[cos (KR8 - 1
p A
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2,2
+2sin® b I (Ao - 1) 24 sin (T + f e sing, sin KBS} (37)
A

3.4 Verification

3.4.1 Transverse component

Figures 3.4.1.1 and 3.4.1.2 show a superposition of the exact trans-
verse mode and w, derived in paragraph 3.2.1, both with its correction
term and without it according to equation (26) for kL/n = 1,58 (outside
the cross-~over region). We can see that for low values of ¢ and ¢a the
superposition is perfect, while figure 3.4.1.2 demonstrates that the
correction is hardly necessary.

Figures 3.4.1.3 and 3.4.1.4 point out to the same facts for kL/n =
1.96 (cross over). There, the correction term is absolutely necessary.
Notice that at cross-over, the program which computes the exact solution
has to invert matrices with very small determinants. Therefore, depending
on which 3x3 matrix (see 3.1) we choose to invert the superposition might
not be accurate due to numerical errors (Figure 3.4.1.5).

In figure 3.4.1.6 w is shown for kL/n = 1.96 using the general
formula (34). Very good agreement with the plot shown in figure 3.4.1.4
is obtained, demonstrating the validity of the approximation.

For illustration purposes, we have also shown:

- the approximation of the second mode at cross over (kL/m = 2.01)
(Figure 3.4.1.7)

- the very good approximat%on of the second mode far from cross over

(Figure 3.4.1.8 and 3.4.1.9)
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3.4,1.1. Superposition of the exact transverse mode and its
approximation correct to first order, for KL/PI=1.58,
e=0.1s,(pa=23.46°

3.4.1.2. Superposition of the exact transverse mode and its
approximation, correct to zeroth order (dotted),

for KL/PI=1.58,E=O.18,<€=23.46°
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3.4.1.3. Superposition of the exact transverse mode and
its approximation, correct to first order (dotted),
for KL/PI=1.96, E=o.18,qg=23.46°

3.4.1.4, Superposition of the exact transverse mode and
its approximation, correct to second order (dotted),
for KL/PI=1.96,€ =o.18,§g=23.46°
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74
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3.4.1.5. Same as 3.4.1.4., pointing out potential
numerical errors in the computation of
the exact solution

/
/ \
N4 ‘

3.4.1.6. Same as 3.4.1.4., but with the approximation
valid for all values of the elastic stiffness
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3.4.1.7.

Superposition of the exact second transverse mode
with its approximation (dotted) for KL/PI=2.01
with (bottom) and without (top) numerical errors
occurring in the computation of the exact solution
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.
3.4.1.8., Superposition of the exact second transverse mode
and its approximation for KL/PI=2.33

\

3.4.1.9. Superposition of the exact second transverse mode
and its approximation for KL,/PI=2,73
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3.4,2.1. Superposition of the exact longitudinal mode
and its approximation (dotted) for KL/PI=1.96,
€=0.18, q9=23.46
3

T\

/
//
/
\\\.//

3.4.2.2. Superposition of the exact longitudinal mode
and its approximation (dotted) for KL/PI=1,58,
€ =0.18, (0 =23.46
3 _52-



W, 20%U)

KL/PI = 1,38

1.25
1.00
7?5 F
.52 F
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N
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~N o 13 ~J (] n
-.25 L a ® u S w

CARBLE COORDINRTE (s-/L)

3.4.2.3. Transverse (solid) and longitudinal (dotted) modes
for KL/PI=1.58
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3.4.2.4, Transverse (solid) and longitudinal (dotted) modes

KL/PI = 1.86
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CABLE COORDINRTE (s-/L)

for KL/PI=1.96
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3.4.2 Longitudinal component

Figures 3.4.2.1 and 3.4.2.2 show the exact longitudinal mode and the
approximate longitudinal mode given by equation (37) for-%k = 1,58 and
1,96,

We also inciuded a plot of u and w, superimposed on the same graph,

for two different values of A.

3.5 Orthogonality of the modes

Neither w nor u are crthogonal in the scalar product form

th (mth) transverse or

L
fo ¢ by ds, where ¢ (¢ ) represent the n
longitudinal mode.
Another scalar product, which is useful when computing the kinetic
energy of a cable whose displacement is a linear combination of natural

modes, is

SP = éL (m u, uj + M w, wj) ds

.th ,.th
(3

where subscript i(j) refers to the i ) natural mode.

Since the longitudinal component is of order e relative to the
transverse mode, Uj u‘j is of order 52 in the product W, wj. Therefore,

Uss ”j’ Wss wj are orthogonal, in the generalized sense, correct to first

order, if

L -
[o % Wy ds = 0
which is the first scalar product we contemplated. Therefore our natural

modes are not orthogonal.
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3.6 Conclusion

Based on the same assumptions we derived in chapter 2, we were able
to approximate both the transverse and longitudinal modes by a uniformly
valid forﬁu]a, whose precision is demonstrated by figures 3.4.1.1 to
3.4.2.2.

The approximate modes are not orthogonal for any of the scalar
products we have contemplated.

Now using these approximate formulae for the modes, we can proceed to

derive the ultimate objective of the study: the tension generated by the

motion of the cable.
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Chagter 4

Dynamic Tension

4.1 Derivation

The dynamic tension is the ultimate objective of our study. In the
three stage process we have described in this thesis, i.e. the computation
of the natural frequencies, natural modes and tensions, the natural modes
can be considered as only a preliminary step in our calculations. They are
important to build solutions or check our hypotheses regarding the
magnitude of the displacements, however the designer is interested in the
spectral response of the cable in tension, so it is important to establish
the effect of xz, on the dynamic tension.

Since, by finding the natural modes, we have solved the two groups of
equations (7) through (10), the dynamic tension is simply given by the

equation:

- MoZW(s) = T(s) a(s) + O(e)
where W 5 stands for the slow transverse mode. As a matter of fact the
stow solution generates most of the tension (which agrees with the
hypotheses made in the perturbation method, paragraph 1.2.4).

Figure 4.1.1 and 4.1.2 illustrates this fact for two different values

of AZ, one near and one away from cross-over.

4,2 Approximation

We will derive only the leading order part of the dynamic tension
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TENSION

TENSION

Dotted lines represent the approximations of the tensions
Solid lines represent the exact tensions

KL./PI =~ 1,38
‘025 o

1.00
«?3 }
i1

023 o

—— 4

-

'™y
. . . .
n (2] ! ~ 8
(2] [~} “

CABLE COORDINATE

£2°1

=l

KL/PI = 1,896
!.25 r

.80 t——————————————————

3 r

.S58 ¢

23

— <3

2.2

? L] L] . .-

8 a & - 8
CABLE COORDINATE

4.1.1. Comparison of the tension generated by hhe slow and
fast solution: the ""fast'" tension is confounded with

the X axis.

s2°1
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since due to the quasi-stretching approximation, the dynamic tension is,
almost constant throughout the cable

From equation (29), w(s) near cross over is:

w(s 7 .
‘ tigl detA = - o+ € sing
45¢ K3 a

Outside the hybrid mode region, from equation (24)

S
W _ . 2 kL
C4 Sf detA = - 2 sin >

S
with Hgfﬁ in both cases

S 1
detA 4 k2 2
T /M [ sin kL + kL c——z- - 1)]

Therefore, an approximation for the dynamic tension for all

frequencies is
2 2 kL 7
[+ 2 sin + o€ s1n¢ ]
7z 7 (38)

T _
T:; - 4 2 2 cose
TO/M [sin kL + kL (————- -1)] ———

4,3 Results and Conclusions

Figure 4.3.1 represents the dynamic tension vs. KZ for C4 = 1. We

see that at cross-over a phenomenon of dynamic amplification occurs, i.e.
the dynamic tension is very large in the hybrid mode region, whereas for
low or high values of kz the dynamic tension is relatively small.

A well designed mooring cable should have those natural frequencies

that are likely to be excited away from the cross-over region.
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TENSION

208.20E+82

!7 oSBE*'& ~
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es°e
Q3°e

LOG13(LAM~2)

4,3.2. Amplification of the dynamic tension at
the cross-over of the first mode
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TENSION (LOG)

BS°€E

4.80

3.808

2.08

1.808

8.88

-1.00 |

-2.008 |

-3.080 |

-4.0e A 4 L ~t : !
S . - . g o &
8 & &8 & 8 & 8

LOG1a(LAM~2)

4.3.3. Same as 4.3.2., with a logarithmic
scale for the tension
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ChaEter 5

Conclusion

We have successively derived approximations to the equations for the
natural frequencies, the modes and the dynamic tension of a taut inclined
marine cable, by distinguishing two regions, one near and one away from
cross-over. Subsequently, we were able to provide uniformly valid
expressions by retaining terms of second order with respect to the sag to
span ratio. Particular attention was paid to the derivation of the trans-
verse modes, which in turn allow accurate predictions for the dynamic
tension.

How these formulae should be used depends on the application. If one
is interested in what happens in a specific domain, i.e. near or away from
cross-over one should use the specific formulation for this domain, so
that fewer terms will be necessary; otherwise, one has to use the general
formulations and hence a larger number of terms,

Finally, we hope that with the careful outline of the methodology
provided in the text and the appendices one will find it easy to improve
the accuracy of some expressions if necessary, as for example in the case

of the longitudinal modes.

-62-



AgEendix A

This appendix deals with the expansion of expressions containing

static quantities only.

2

c°S¢a € . s -1 s - 1,2 sin ¢
a(s) = —1— {1 -2¢ sing (T~ ) + e? LT " %) (4 sin ¢ -1) - -—3——-]}
s - 1 2 s1n2¢
T(s) = Ty 1+¢ sino, ('E -2-) -2 [cos o (-[- -2-) +T—']}
cosé,. €
a(0) =—La— {1 +¢ sinq>a + 52 [% sincha - 7}]}

cose, 25 o2 1
a(L) = -——-E——— {1 -c¢ sing, EE sin“, - ZJ}

e sing c052¢a 351n2¢a

4
YR v S TR A NERR Nt R IC s Bt

sin2¢a
+ =1}
€ 51n¢ 2
/ /T M {1 - ———————- 82 [cos 6, + sin ¢ 2]}
I§Ll ezs1n¢a e2sin? by

== 1+ —— + ——

‘/I}gp_z
O oy A in%,
0 v (3) = To/M [1 +'T€ [cos oy + E'I%T'J}

COSZQ) 82 2

«(0)a(l) = ——p— {1+ 2§ sin

)
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2 2
2 cos ¢ € . 2 -1 8 .2
a“(0) = ___EE____ {1+2¢esinp, +e E?' + -3 8N ¢a]}

ing
cos MH(s)] = cos (45) + T2 sin EEERIE - 1)

ind
sin [W(s)] = sin (FY) - £ cos (KhsykbsyE - 1)
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AEEendix B

In this appendix, the reader will find expansions of complex expres-

sions of Airy and Bairy functions in the two domains considered in chapter
2.

- outside the hybrid mode region.

' ' 1 % 2 Lias
B;0-2(L)] A4 [-2(5)] - AjT-2(L)] 8;[-2()] = & - .2 12 [2(5)3(E - 1)

2/3
' ' Q
B,[-2(0)1 A;L-2(5)] - AL-2(0)] B;[-2(s)] = 3 - oo— L2[2(5)1(})

B;[-2(0)] Ay[-2(s)T - A;[-2(0)] B;[-2(5)] = —— L(7) + 0(¢”)

1/3

] ) ] ] Q
B.[-z(L)] A[-2(s)] - A[-2(1)] Bi[-2(s)] = =— L [2(3)1(} - 1)

2/3
f P RE -
173 Q 2/3L2 .

[} ] 1 ] Q
B,[-2(0)1 A,[-2(s)] - A;L-2(0)] B,[-2(s)] = 2 [2(5)]2) + -2 @@=

‘ 2/3L2
B,[-2(0)1 A [-2(s)] - A;[-2(0)] B;[-2(5)] = 2F + 52— [2(5)1(})°
- In the hybrid mode region
By[-2(L)] A[-2(s)] - A;L-2(L)] B;[-2(s)] = + + 0 (&°)
3,[-2(0)1 A;[-2(5)7 - A;[-2(0)] By[-2(s)1 = 5 + 0 (&)

3

B;[-2(0)1 A;L-2(5)] - A[-2(0)] B;[-2(s)] = 2 0,/ °L (@) + 0 (&%)
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B;[-2(L)] A [-2(5)] - A[-2(L)] B;L-2(s)]

1/3, q 232
S HIE -1+ — AE - 1)

B, [-2(0)] A [-2(s)] - A;[-2(0)] B;[-2(s)]

1/3L Q 2/3L2

e HIE -1 — DE -1

8;0-2(0)] A;[-2(s)] - A[-2(0)] B[-2(s) = =2 + 0 (&7)

™
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