AN EXPERT SYSTEM
FOR AIRBORNE OBJECT ANALYSIS

by
DAVID EDWARD POPE

SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREES OF

MASTER OF SCIENCE
IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

and

BACHELOR OF SCIENCE
IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
January, 1985

C) David Edward Pope, 1985

The author hereby grants to M.I.T. =2nd to Hughes Aircraft
Company permission to reproduce and to distribute copies of
this thesis document I1n whole or in part.

Signature of Author

Department of Electrical Engineering
and Computer Science
January, 1985

-

Certified by ry ra gt .

Antonio L. Elias
Thesis Supervisor

Cortif
ertified by T T Y " Charles P. Dolan

Hugh Aifg;g%t omganx/gﬁpervisor

Accepted b L, . - .
P Y = ' e Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

HUSETTS INSTITUTE
MRS S NGLOGY

ARCHIVES APR 01 1985
 LIBRARIES

AN EXPERT SYSTEM
FOR AIRBORNE OBJECT ANALYSIS

by
DAVID EDWARD POPE

Submitted to the Department of Electrical Engineering and
Computer Science on January 28, 1985 in partial fulfil ment of
the requirements for the Degrees of Master of Science in
Electrical Engineering and Computer Science and Bachelor of
Science in Electrical Engineering and Computer Science

ABSTRACT
Two expert systems were designed and implemented for the
purpose of performing airborne object analysts, the task of

identifying as completely as possible opposing military planes
on the basis of returned sensor evidence.

‘Knowledge engineering on airplane characteristics, sensor
capabilities, and pilot protccols was performed, and a base of
sixty rules, including mission-level, formation-level, and

target inferencing, was developed.

The first expert system, designated 0OAS1, was rule-based and
served primarily as a demonstration, feasabilty, and learning
tool. A Bayesian inference net was integrated into the system
to evaluate belief maintenance requirements.

The second expert system, designated 0AS2, is demon-based,
represents formation and airborne object knowledge in frames,
and uses procedural attachments to control the spawning of
demons. Performance on 2 six-object scenaric with six possible
identities approaches real-time, using LISP on engineering
workstations.

Thesis Supervisor: Dr. Antonio L. Elias
Assistant Professor of
Aeronautics and Astronautics

TABLE OF CONTENTS

TITLE PAGE .. ittt e e e e e e e e et e e i
ABSTRACT .ttt e e e e e e e i
LIST OF FIGURES i vi
ACKNOWLEDGEMENT S . . . i e it e e e e s vii
Chapter 1

AN OBJECT ANALYSIS EXPERT SYSTEM 1
Background e 1
Tntroduch iOn .. e e e e 1
Scope of This Work, 5
A Guide For The Reader iiine-n 6
Chapter 2

0BJECT ANALYSIS AND EXPERT

SYSTEMS: SOME BACKGROUND i 9
Object AnalySisot g
Expert Systems i 12
Expert System Belief Maintenance 14
Knowledge Representation and Reasoning 15
Related Expert System Research 18
Good problems for Expert System Application 19
Why Use AI Techniques For Object Analysis? 20
SUMMEAIEY o v e e e e e e et i e e e 22
Chapter 3

KNOWLEDGE ENGINEERING AND RULE DEVELOPMENT 24
Introduction ...t e e e 24
Aircraft Research i 25
Sensor Research i 28
Scenario Research i 32
Rule Development i 34
Physical Property Ruleso 35
Radar-0Oriented Rules i, 38
Target-Oriented Rules 40
Mission-Oriented Rules 42
Cyclical Rules i 44
ECM RUIES ot e e e e e e e e 45
Exampie Rules from Defense Systems Corp. 46

Chapter 4

0AS1: A RULE-BASED EXPERT SYSTEM

Introduction ...
Design Goals ...
Overview of 0AS1

....................................

....................................

...................................

Belief Maintenance vttt et et e e e e et e e e e s
ARF: Rules and Framest
Input Assumpbions

A Sample Run ..

....................................

System Evaluation i

Shortcomings ...
Implications for

....................................

the Development Effort

Chapter 5

0AS2: A DEMON-BASED EXPERT SYSTEM
0 Vo V2 T
Design of DASZ2 i
Demons: Some Background oo
Airborne Object Frames
Knowledge Base i
Belief Maintenance innn.
A Sample Run e
Summary of D0AS2: Strengths
Weaknesses of OASZ e
Chapter 8

SUMMARY OF RESULTS AND

RECOMMENDATIONS FOR FUTURE RESEARCH
Introduction .. . e
OAS] SUMMANY & v et et e e ettt et e
OAS2 SUMMAIY ..ottt ettt ittt e e et e ans
Recommendations For Future Research
APPENDIX A

0AS1 SAMPLE RUN

Rule Set Frames

....................................

....................................

A Sample Run of OAS1
0AS1 System Output i
View of ARF Frames

Graphics screens

...................................

a7

47
47
49
53
63
65
67
687
69
74

76

76
79
81
88
95
96
106
107
110

113

113
113
115
116

121

121
124
127
136
137

APPENDIX B

DAS2 SAMPLE RUN e

Overview ..

...

Input Trackfile i
0DAS2 Input Trackfile Listing
System Oubtpubt e e e
System Output Listing
Demon Operatopm i i e
Physical Attribute Demon Trace
Mission-Level Attribute Demon Trace
Emissions Demon Trace.
Action Demon Trace i
Internal Knowledge Representation

REFERENCES

...

140

140
143
145
148
149
153
154
156
158
160
161

166

LIST OF FIGURES

1a Classification Ability Without OAS

1b Classification Ability With OAS

2

W

w ~N O om

Feature Hierarchy Table

0AS1 Block Diagram
Sensor Evidencial

0AS2 Block Diagram
0OAS1 Sample Screen
OAS1 Sample Screen

DAS2 Sample Screen

..............................

Hierarchy

..............................

3
2

..............................

10

50

54

80

138

139

165

Acknowledgements

This thesis could mot have been completed without the help of a
great many people at home, at the Massachusetts Institute of
Technology, and at Hughes Aircraft Company, where I completed

this research. It is a pleasure to acknowledge them each in
turn.
Sue Baumgarten and Brock Fifer, my senior-level managers at

Hughes, took an interest from the beginning in my search for a
thesis topic, and worked hard to find the best location for me
at Hughes. They provided support and encouragement throughout
my stay at Hughes, and were always concerned with my well-
being. I couldn’t have asked for any better people to work
for.

I would like +to express my appreciation to Hughes for its
commitment to the MIT Engineering Internship Program, and to
education in general. The coordinators of the co-op program,
including Mimi Shefrin, Marshall Thompson, and Gretchen
Replogle, make every effort to make the students’ stay here
extremely enjoyable. Furthermore, Hughes managers |ike John
Drebinger, Dick Remy, David Breuer, and Dick Pio, make it
possible for a large number of students to benefit from and
contribute to Hughes’ technical expertise. It would have been
impossible to complete this research without the resources,
both in people and in facilities, that Hughes provided.

On the MIT side, John Martuccelli and Brenda McFadden run the
Engineering Internship Program professionally, with the
concerns of students in mind. They were always available to

provide guidance, and to help solve administrative problems.

Charles Dolan, my immediate supervisor and the group head for
Artificial Intelligence at Hughes Radar Systems Group,
organized the scope of my research effort, made significant
contributions to the design of the expert systems, and taught
me a lot about AI. In addition, he provided sources for
background information and valuable comments on thesis drafts,
helping to make it 2 coherent dissertation. Though busy as a
student himself and as manager of our group, Charlie always had
time for discussions about my work or about AI in general.

Mark Young and Craig Lee, my co-workers and office-mates at
Hughes, contributed greatly to the project. Mark designed and
implemented two belief mechanisms used in the project, and
worked with me on integrating them into the expert systems. He
furthered my understanding of Bayesian and Shafer-Dempster
probability theory, as well as made suggestions on the design
of the expert systems. Mark undertook the unenviable task of
reading drafts of my thesis, providing interesting comments and
helping to eliminate excess verbiage.

- vii -

Craig provided unparalled system support, amazingly answering
any questions I had about our (reliable) Apollo machines, the

LISP environment, or the VAX. Craig ported +the ARF frame
system onto the Apollos, made T-LISP compatible with FRANZ-
LISP, a2nd designed the frame system that we will use in future

implementations of the object analysis expert system.

Both Mark and Craig are designing extensions to the expert
system, including a sensor simulator that should make input to

the system much easier.

I would like to thank =2 number of other people at Hughes,
including Mike Harris, Jack Schwartz, Bill Hefenieder, Todd
Marsh, Claudia 0’Brien, Terry Bay, Lisa Jack, Dorene Grimmett,
Mary Corridan, Tanya Greenwood, Mitzi Mori, and the others in
the SAR Lab and APD who were always willing to lend a hand.
The people are what make Hughes a truly enjoyable place to
work.

I would Ilike to +thank Professor Antonic Elias, my thesis
advisor at MIT, who sparked my interest in avionics
applications of expert system and took the time to come to
California to see my work first-hand. He also made a2 number of

valuable suggestions about the content and organization of the
thesis.

Finally, and most importantly, I would like to thank my parents
for their guidance and love. They have always done what is
best for me, and have set me in the right direction in life.

- viil -

CHAPTER 1
AN OBJECT ANALYSIS EXPERT SYSTEM

Background

This thesis was completed at the Radar Systems Group (RSG)
of Hughes Aircraft Company, EI! Segundo, California, in partial
fulfiliment of the requirements for M.I.T.’s Engineering
Internship Program. EIP, as it is <called, requires that a
student spend a seven-month period at the sponsoring company
(Hughes), completing master’s degree thesis research on a

project of mutual interest to both M.I.T. and the company. The

project I <chose originated out of my interest in systems
engineering and artificial intelligence, my advisor’s interest
in expert svstem applications in the avionics environment, and
Hughes’ interest in both areas.

Introduction

This thesis describes the development of a prototype expert
system to perform airborne object analysis, the task of using
returns from an airplane’s sensors to infer type identification
and associated tactical information about surrounding airborne
objects. Using a set of if-then rules developed through sensor
and aircraft research, the prototype system accepts a file
containing a2 sequence of simulated sensor data and attempts to
characterize approaching aircraft as completely as possible.
Since sensor data becomes more plentiful and more accurate as

objects approach, the identification algorithms provide better

ID over time. For example, at a range of 80 nautical miles
(nmi), the expert system may be able to tell us only that a
plane is high-velocity and powered by jet engines; at 45 nmi,
however, when the plane is within the detection range of a
greater variety of sensors, we may be able to deduce, for
instance, that it is a MiG-class fighter, tracking two possible

targets on its radar.

The figures on the next two pages characterize the expert
system’s classification ability. Figure 1la shows a typical
scenario a fighter pilot might face, along with sensor returns
available to him a2t a range of approximately 80 nmi. While the
sensors provide a great deal of data on the enemy airborne
objects, they provide no easily useable information about them.
Just by loocking at the sensor displays, the pilot has little
idea about the identity, cupzbility, or mission of the opposing
planes, and he is too far away to visually assign them into
formations. The pilot must therefore analyze the sensor
returns himself, and from experience on past missions determine
the characteristics of his opposition. This is time-consuming
and diverts the pilot’s attention. An alternative is to
relegate the task to an object analysis expert system, which

produces the results of Figure 1b.

From sensor data and its own knowledge base, the expert

system has determined the identities of the planes, grouped

Hid

f\ MY

A3HVvYdNI
Hvavy

SHOSN3IS 41V
SIONIHIINI NMO StH INVIN 1SN 107Tid 31V

\%\ \\

dNOYO dOL WOYS 4VAVY ONIAITDITY
dnNOY¥O WoLL08g ‘L4 000!

dNOY¥9 0L L4 000°0€ 3ANLILTV

drno¥o ¥IMo7 ‘930 00L
dnoy¥on 4ol 930 00S! diNal Hi

£'1HOVW ALIDOT3IA

S133ra0 SNINOINL 9
A SHOSNI3S A8 A3I2NA0Ud NOILLYWHO4NI
\

SYO LNOHLIM ALITIEY NOILYDIFISSVYID V1 F3HNOH

e — —

~’ 1071d 41 HOd4 SIINIHIINI SINVN SYO
.
-7 °

ISNILIA-H13S ILIWIT *ALITEVYdYD
SINFWVWHV #3130 OL ..dNN1-dOd,, 133dX3
SILNNIW & IVAIHHY JWIL 1S3 <
SY¥FLYYNOAVIH ‘g ISVE ‘13DHUVL "SSOd
HSVJ ‘3ISVHd

NNY-INIGWO8 NOISSIW

SY3IgN0g 671114 “SLNANLILSNOD
¢ NOILLVWHOS JWVN

® <

1Y NYHL ISHOM o

SNYNL ¥3FLL38 STLVYITIIOY
AVaAVY NMOG-LOOHSINMOG-YOOT ALINEAVIYD
NIVLLY ONIGWITD 4O NOLLVILINI :123d4X3
ONIFEWITD ONILYYITIDOV NIVHL
SILNANIW £ IVAIHYY JWIL "183
4LV (1ADHYL $SOd
: HSVQ@ 3SYHd
ALIYOIYIINS-¥IY LH¥0OIST ‘NOISSIN

SHILHOIS 62-91W ‘SININLILSNOD
Il NOILYWHOd :JWVN

‘SH34NI SVO
‘340438 SV NOILLYWHO4NI HOSNIS JWVS JHL DNISN

SYO HLIM ALiTIGVY NOILVYIIFISSYID 9l 3HNDIY

them into formations, determined possible targets, and
hypothesized their mission and roles.t The expert system
relieves the pilot of performing object analysis himself, while
giving him useful information about the opposing strike force.
(For more sample scenarios and actual runs of the system, see

Appendices A and B.)

Scope of This Work

The development effort reported here entailed the design
and implementation of two versions of the expert system, one
rule-based [Shortliffe, 1976] and one demon-based [Rieger and
Small, 1979]. Both use a frame-slot-filler structure [Bobrow

and Winograd, 1977] to represent knowledge. The development of

two systems was not originally planned, but as is often the
case in expert system construction, the development cycle was
extremely iterative. After construction of the rule-based
system, which served primarily as a learning and feasability
tool, we went to a demon-oriented system controlled by

procedural attachments [Bobrow and Winograd, 1977], resulting
in greatly improved efficiency and flexibility. Though the
demon-based system (hereafter 0AS2) is much more suited to the
object analysis task, I have not omitted discussion of our

first effort (0AS1) in this thesis. We learned a great deal

1. See the Rule Development section of Chapter 3 for a
discussion of the criteria for these inferences.

about the knowledge domain, belief mechanisms, and knowledge
structure by doing the implementation, and O0ASl1l served as an
important bridge to the design of 0AS2. As predicited in
[Hayes-Roth, Lenat and Waterman, 1983], it is usually the case
that after finishing the first cut at an expert system, it is
best to throw it away. We felt it was important not to be
confined to design |imitations and decisions made when less
knowledge was available about the probiem domain and system-

building tools.

Prior to the design and implementation of the expert

system, preliminary tasks of knowledge engineering and rule

deve lopment had to be performed. This involved research on
pilot decision rules, sensor capabilities, and aircraft
characteristics. One problem we faced is that there is no
human expert currently performing the object analysis task. In
most development efforts, a human expert is available to
participate tn the knowledge engineering, and to evaluate the
system as progress is made. However, no human currently
integrates all the sensor returns in a tactical fighter. A

possible exception to this is the naval flight officer in an
F-14, but even then the level of sensor information fusion is

not as great as that required for an object analysis system.

A Guide For The Reader

The remainder of this thesis is organized in a manner that

reflects the development path followed during the construction
of 0AS1 and 0DAS2. Certain tasks were necessarily performed
prior to others, and it may be beneficial to the reader to
share the insight gained as research progressed to design, then
implementation, and finally evaluation. Precisely because
expert system development is so application-dependent, it is
important to discover how the methodology of design affected

development.

Chapter 2 provides background material on object analysis
and expert systems. Requirements of object analysié and
justification for its need are discussed. A brief history of
expert systems is presented, along with requirements for their
successful construction. Interaction between object analysis
and expert systems is also discussed. The section concludes
with an examination of the uses of artificial intelligence (AI)
in the avionics environment, and the advantages of using expert

systems to solve the object analysis problem.

Chapter 3 discusses the knowledge engineering aspect of

expert system development, including research on sensor
capabilities and airborne-object characteristics. The rule-
development process is discussed, and a list of the rules used

by 0AS1 and OAS2 is presented.

Chapters 4 and 5 discuss the design and implementation of

-7 -

DAS1 and DAS2, respectively. The design of each system is
presented in detail, along with an evaluation of the results.

The impact of O0ASl’s shortcomings on the design of 0AS2 is

discussed.

Chapter 6 presents a2 summary of results, and a2 review of
the main discoveries of the research. This section also
indicates areas where future research may be oriented, points
out the need for expansion of the rule set, and enumerates
requirements and justification for an explanation facility.
Possible extensions to the user interface and expansion of the

scenario and airborne-object domain are discussed.

CHAPTER 2
OBJECT ANALYSIS AND EXPERT SYSTEMS: SOME BACKGROUND

Object Analysis

The purpcse of object analysis is to combine low-level
sensor returns into useful, higher-level information. As shown

in the feature hierarchy tabie of Figure 2, sensors provide,

among other things, information on a surrounding object’s
range, velocity, shape, and radio frequency (RF) emissions.
Upon receiving enough information about =a single target’s

"track“,2 first level attributes, such as engine type, possible
point-of-origin (base), and missi;n route can be inferred.

When, in turn, we have acquired enough first level attributes
on 2 track, we may be able to infer type or class of craft, and
thus capability (fuel, armaments, fire control, performance).
Behavioral attributes can be better deduced by examining groups
of planes or objects, rather than just one at a time. For
instance, the formation and maneuvers of a group of planes may
indicate their types, roles, and possible missions. As one
example, if fighter planes are escorting bombers, the former
must execute "S" turns periodically to ensure that they do not

overtake their slower counterparts. This type of motion can be

detected by radar. and passed to the object analysis system,

2. "Track" is the military term used to indicate an airborne
object’s flight path through the air.

3. Inference rules are discussed in the Rule Development
section of Chapter 3.

SISATTYNY TV3ILOVL

AlLgv SJ1ovi
151d34d —=— LNIHHND
TvDILIVL TV3LLIVL
J3IAIT ANe 13A37 181

SISATYNY LD23ra0

379VL AHOHVHIIH 3HUNLYIL € 3HNDII

ONIQ0D

3y
WHO43AYM
ddd

(3dvHS

>

Hvdvy

10

(ziy
Savmvi
TYNYHILX3I

03
H3svV
1Sl

{3A1L0V}
Hvavd

S31NAIM11Y SH3LIWVHYd HOSN3S

IDNVIN
-HO4HId —
— ONIWWVF
TOHLNOD
L ONIONVY I — JOYLNOD
— auld
—— ONIHIS INJWVAHY —]
L NO-MOO01 asys — - SLOHS
ONINOVHL INIONT — = 17v/3100Y
— ALIDO13A
— asvsa
| NOILYINHOA ONINIVWZH
LNINVWHY | 34vHS
S3ILITIEYdYD —— 3INIDN3
NOISSIN —— ONINIYWIY
7ana adAL
| zax
30NLILTY
®
| NOILISOd
_ IVHOIAVYHIE SALNGIM1LY SALNGIHLIY
13A31 QHE 13A31 GNZ 73A37 LSL

which may be able to hypothesize that the incoming group of
planes is a ground attack squadron of bombers escorted by
fighters. With knowledge of ﬁhe ratioco of bombers to fighters
and spacing in a typical enemy formation, it may be possible to
estimate the size of the incoming raid and allocate tactical
resources accordingly. Decisions on maneuvers, strategy, or
resource allocation, however, have been left for the tactical

situation assessment task, to be developed in the future.

In current avionics systems, object analysis as described
above is done implicitiy by the pilot as he flies his plane.
There are separate displays inside the cockpit for each sensor,
and the pilot glances at them periodically, making
interpretations based on experience. There is not, however, a
computer or human dedicated to the object analysis task. The
reason for the low priority of object analysis is twofold: (1)
the current range of air-to-air missiles is not as great as the
detection ranges of sensors, so even if a plane could be
identified at long range, it could not be fired upon; and (2)
current rules of engagement require visual identification of
the enemy before attack. This thesis research, however, is in
anticipation of the time when advances in missile technology
(and sensor research) will permit air battles to be fought
beyond visual range (BVR). Under BVR conditions, quick and
accurate assimilation of the vast amounts of sensor data that

will be available will provide a distinct advantage.

- 11 -

Expert Systems

Expert systems have been the most successfully applied Al
technique to date, resulting in operational systems that solve
symbolic mathematical problems, diagnose disease, and perform
geological prospecting. (See [Hayes-Roth, Lenat, Waterman,
1983], [Gevarter, 1983], and [Clancey, 1984] for survey
discussions of expert system applications; the section below
entitled Related Expert System Research examines other work

oriented towards military applications.)

Simply put, an expert system is a computer program that
takes as input known or partially known information, examines a
knowledge base for rules that use this input, and deduces new
information that hopefully helps to solve the probliem.
Regquired steps for successful expert system construction
include knowledge engineering (learning about the problem and
the "knowledge" that constitutes expertise in the field), rule
development (combining results from knowledge engineering with
protocols of human experts to form rules a computer can
interpret), inference engine design (developing 2 way to use
the rules formulated), and knowledge structure (designing an
efficient way to represent the knowledge used in solving the

problem) .

Often the most difficult part of expert system development

is the embodiment of knowledge in the system. A doctor trained

- 12 -

in the diagnosis of infectious diseases, for example, may not
always be abie to explain his exact methodology. Many of his
techniques may have evolved over years of practice on hundreds
of cases, and may be based on intuition or rules of thumb.
Even when one is able to extract a protocol from an expert,
there is often difficulty in translating his manner of
expression and terminology into accurate representations in the
expert system knowledge base. The expert system-developer, who
is usually relatively inexperienced in the probiem domain, thus
faces the problem of correctly transiating information from an

expert who may know little or nothing about the requirements of

computers.

Related to translation is the conflict reso!ution4 problem.
Here the experts decision making strategies must be translated
into probabilistic algorithms, requiring the use of confidence
factors in evidence and rules. For example, a doctor may say,
"If a patient’s throat culture is positive on Test A, it
usual ly indicates that the patient has strep-throat"

[Shortliffe, 1976]. The doctor has expressed his "degree of

belief? in this rule by the word "usually". For use in an
expert system, however, this English-oriented confidence
measure must be translated into 2 number. Furthermore,
4, Conflict resolution, as the name implies, requires

determining the "best" solution when evidence indicates
different answers.

- 13 -

translation conventions vary with the problem domain, so the
knowledge engineer must become thoroughly familiar with the

expert’s terminology.

Expert System Belief Maintenance

Once we have acquired confidence factors, we must determine

how we are going tc combine them. There are two related
problems to solve: confidence propagation and assertion
combination. Using the strep-throat rule of +the previous

paragraph as an example, confidence propagation is the task of
determining how confidence factors in the evidence ("Test A is
positive") and the rule itself combine. For instance, if
Prob(Test A is positive) = 0.6 and the "belief" in the rule is
0.7, then we must determine the confidence that "patient has
strep-throat". One popular confidence propagation method simply
multiplies the two factors, resulting in a confidence of 0.42.
This simple method, however, is not sufficient when there are
multiple sources of evidence and multiple conclusions [Lowrance

and Garvey, 1983, p.14]. {See the Belief Maintenance section of

Chapter 4 for more details.)

The second problem is the combination of assertions. If
the rule above asserts "patient has strep throat™ with
confidence 0.42, and a different rule =asserts "patient has
tonsilitis" with confidence 0.75, there is a question of how to

combine these assertions and determine the patient’s disease.

- 14 -

The solution has been dealt with in a number of ways, including
ad-hoc [Shortliffe, 1976] and classification methods [Ben-
Basset, 1980] [Clancey, 1983], Bayesian inferencing [Duda,
Hart, and Nilsson, 1978], and Shafer-Dempster theory [Garvey

and Lowrance, 1983] [Dillard, 1983].

Some assumptions of a belief-maintenance mechanism, it
should be noted, can be blatently wrong. For example, a
standard assumption about two competing hypotheses about which
no evidence has been received is that they are both equally
|ikely (e.g., we are trying to decide if its sunny or raining,

but we can’t look out the window (no input), so we assign each

proposition probzbility 0.5). In a real-world situation,
however, when a2 human expert is weighing two alternatives, he
does not usually assume equal likelihood [Garvey, Lowrance, and
Fischler, 1981, p.320]. This is because he may have prior

know!edge that is unavailable to the belief mechanism (e.g., it
is summer in Los Angeles, so it’s probably not raining). These
are issues that make accurate belief-maintenance an especially
difficult problem for expert systems. The methods we have ﬁsed

for our implementations are discussed in Chapters 4 and 5.

Knowledge Representation and Reasoning

The software tasks of designing an effective knowledge

structure and inference engine have their own set of

- 15 ~

requirements. The structure must be both complete enough to
hold all the data necessary to solve the problem, and flexibie
enough to allow extensions to the knowledge base. 1In addition,
the most-used data should be easily accessible. 0One common
method of holding knowledge, used in both of the expert systems
of this thesis, is a frame system [Bobrow and Winograd, 1977]
[Minsky, 1975] [Edwards, 1984]. Frames hold information about
classes of objects in slots, and provide accessors to put and
get values from slots. To hold information about airborne
objects, we could define a frame pattern by:
(define—frame airborne-object

(slot track$)

(slot xyz-~location)

(slot velocity

(slot #engines)

(slot ID)
(slot parent-formation)

Then when we learned about 2 plane, we could:

(set PLANE1
(make—instance airborne-object
(track# 1)
(xyz-location (+35 -2 10000))
(velocity Mach-1.2)
(#engines 2)
(ID fighter)

(parent-formation Attack-Group-A)))

This piece of code insbantiatess an object of type

airborne-object, and enables us to access the values contained

5. Instantiate means to create an instance (copy) of a frame
pattern.

- 16 -

in PLANE1l, or put in new slots or values. In addition to
providing a structured way to store information, frames allow
hierarchica!l organization in a parent-child structure. 1If, for
example, we found ourselves detecting a targe number of fighter
zirborne objects, we could define a new frame subordinate to
the airborne-object frame <called fighter, which would hold
airborne object data specific to fighter craft, while
maintaining properties all airborne-objects had in common.
Then it would be easy to group, say, all airborne objects in
the same formation with velocity greater than Mach 1.0, whose
ID is also fighter. Frames allow design of knowledge

structures that represent real-world ordering of information.

The design of an expert system’s rules and inference engine

influence its extensibility, efficiency, and 2bility to reason
(i.e., deduce new information from what it already knows). To
aid system evaluation, rules should use the terminology of

human experts, and be designed to embody a single concept of
the problem-solving methed, avoiding, if possible, complicated
multi-part rules. Furthermore additions to the rule base
should be easy to make. An expert system’s inference engine is
the piece of code which cycles through the rule base searching
for the implications of new evidence, given the current
knowledge state. It can be 2as simple as a forward-chaining
engine that checks the "if" part of 2 rule, and if its true,

asserts the "then" part of the rule. Alternately, it can be a

- 17 -

backward-chaining engine that starts with a goal and generates
evidence that satisfies the goal. Inference engines with
backtracking can retract assertions that are later found to be
incorrect. An ideal inference engine should not have to be
modified as the rule base is extended, should allow generalized
antecedants and consequents (if- and then-parts), rule base
indexing, and efficiency checks to ensure that rules that are
not affected by a particular piece of new evidence are never
even examined. The degree to which these various criteria are
satisfied by 0AS1 and OAS2 is discussed in the Design sections

of Chapters 4 and 5.

Related Expert System Research

There have been a number of research efforts in the
military applications area aimed at the development of
automated methods for performing tactical situation assessment
[Spain, 1983] [Geschke, Bullock, and Widmaier, 1983], sensor

combination [Waltz, 1981], and report assimilation [Lenat,

Clarkson, and Kiremidjian, 1983]. None, however, are directed
at object analysis as a precursor to tactical situation
assessment. In the airborne environment, at least,

identification of the opposition greatly influences tactical
decisions. This will become even more true with the onset of
BVR encounters. Most previous research efforts have either
focused !|imited attention on object identities, or presumed

they are given in the system.

- 18 -

In addition, previous efforts have dealt with the ground-

based or naval environment, rather than the airborne
environment. Airborne object analysis presents a host of
problems not encountered in other areas, such as the

possibility of rapid maneuvers, the sophistication and quantity
of sensor reports, the degree to which jamming and counter-

measures are utilized, and the need for very fast decision-

making.

Furthermore, since extensions to the object analysis task
plan to integrate diverse non-airborne information sources,
such as ground intelligence information and JTIDS6 data, much

of the previous work may contribute to the system we have

developed.

Good problems for Expert System Application

In examining a . candidate problem for expert system
application, one requirement is that the solving methodolgies
be well-known. An expert should be able to identify a plan or
sequence of steps that he follows in solving the problem. In
addition, the problem should not be +trivial for an expert to
solve (else why build an expert system to do it), and it should

not require tremendous effort (otherwise it will be difficult

6. JTIDS: Joint Tactical Information Display System, an armed
forces network of integrated intelligence information.

- 19 -

to embody the complexity in the knowledge base). The next

section discusses the specific application of expert systems to

object analysis.

Why Use AIl Techniques For Object Analysis?

Object analysis is the first step towards the future goal
of automating many of the tasks +that pilots must now perform
themselves. As discussed above, this will become increasingly
important with the onset of BVR air-encounters and airspace-
saturation. The allocation of low-level tasks to intelligent
subsystems illustrates the pilot-as-system-manager concept, the
objective of which is to reduce the pilot’s workload by

presenting him only with information relevant to the mission at

hand. For example, if enough fuel remains to complete a
mission, there is no need to inform the pilot of this fact
unless he specifically requests it. By distributing low-level

tasks to "electronic co-pilots", the pilot is left free to fly
his plane, communicate with friendly forces, and make tactical
decisions. For this structure to work, however, the pilot must

trust the decisions of the co-pilots and be able to easily

communicate with them. This explains the desire to implement
the co-pilots with artificial intelligence techniques, using
natural language processing and speech synthesis for
communication, and expert systems for their reasoning and

explanation ability.

- 20 -

There are several characteristics of expert systems that
make them particularly attractive for application to the object
analysis task. First, the explanation facility that exists in
most operational expert systems allows the wuser to trace the
inference path of the expert system. The pilot could query the
system during use, determining what evidence has been received,
what rules have fired, and what knowledge has been inferred.
Over time, the pilot would develop trust in the results the
expert system provides, and he would be able to "fine-tune" the

system to his own particular needs.

Another desirable characteristic of expert systems is their
ability to provide requests for needed evidence. For example,
when the inference engine is checking the rule base, it can
identify those unavailable w'pieces of information which would
allow a rule to fire if they were present. This is an idea!
input to an avionics sensor manager, which determines how to
al locate sensor resources upon the many surrounding airborne
objects. An object analysis expert system could report to the
sensor manager, "If I had the radar cross-section of target 22,
I could identify its class." This request provides a valuable
input to the sensor manager, whose job is to prioritize the
acquisition of sensor data. Given constraints on time-on-
target and the information that sensors can provide, the sensor
manager attempts to maximize the wutility of sensors [Blackman

and Broida, 1983].

- 21 -

In addition to being able to deal with nonexistent

information, expert systems have an advantage over non-Al-based

computer systems in that they can deal with wuncertain
information in 2 manner rivaling that of humans. Some sensors,
for instance, may be only intermittently operational due to

excessive range, poor weather conditions, or jamming by the
opposition. Furthermore, a sensor may not return 100% accurate
data due to operating conditions or l|imited time-on-target. In
either case, it is desirable to have 2 system that still
provides us with results, despite the partial Jlack of
information. Though not able to specifically identify a plane
as, say, a Tu-95 bomber, an expert system may at ieast be able
to tel| us that the object is a relatively slow plane with four
turbo-prop engines. The pilot thus has a decision aid even if

complete information is not available.

Summary

Object analysis is a problem that is wel l-suited to expert
system application. In one sense it is difficult because there
are no human operators explicitly dedicated to the task--pi lots
do it intuitively and incompletely. However, object analysis
is essentially a classification problem of grouping planes
based on evidence, and there is 2a wealth of information

available on aircraft characteristics, sensor abilities, and

- 29 _

enemy tactics. With the advent of sensor fusion7 and the
inevitable advances in sensor technology, more and more
information wil!l become available, and computer systems with
intelligence will be needed to sift through all of it. The
engineering

next chapter examines some of the knowledge

accomplished in order to demonstrate the applicability of

expert systems to the object analysis task.

7. Sensor fusion involves control and combination of multiple
sensors for tracking and identification functions. See

[Waltz, 1981]

- 03 -

CHAPTER 3
KNOWLEDGE ENGINEERING AND RULE DEVELOPMENT

Introduction

Though expert system development is highly anplication-
dependent, at least two tasks must be completed for their
successful construction. The first is knowledge sngineering:
identifying the structures appropriate to store the specific
knowledge required in an application. (This topic is discussed
in the Block Diagram sections of Chapters 4 and 5§.) The second
task is transfer of expertise, with the associated task of
knowledge-gathering. For object analysis, this involves
interviewing pilots and operations analysts about air-to-air
situation assessment, and embodying their decision methodology
in if-then rules. In addition, knowledge-engineering requires
researching aircraft characteristics, sensor capabitities, and
plausible scenarios, for the purpose of categorizing them and

developing a suitable knowledge representation scheme.

The knowledge engineering and rule development tasks are
highly interrelated: as new rules are proposed, relevant data
must be entered into the knowledge base; similarly, researching
knowledge that characterizes the object analysis domain enables

us to examine new areas for possible identification rules.

- 924 -

In the object analysis task we are trying to characterize
an unknown airborne object using sensor data. Therefore, we

must deal with two questions:
1. What characterizes an object as being an aircraft
of type A, and not of type B (or C or D)7
2. What types of sensor information are available tc

identify objects?

The next two sections discuss answers to these questions.

Aircraft Research

To develop a knowledge base, we investigated the types of
airborne objects we would be identifying in a battle
environment. OQur sources were primarily public-domain, and
included Jane'’s AllL The World’s Aircraft [Taylor, 1985],
Aviation Week and Space Technology articles [1—9],8 and other
defense articles [10-12]. In =addition, we checked classified
sources of information to ensure that the data we would be
using in our demonstration system would rot differ
significantly from that of an operaticnal expert system. of
course, a future object expert analysis system will be able to
take advartage of classified sensor sources to perform more
powerful inferencing. In this thesis, however, we are
primarily concerned with the system’s structure and problem-

solving methodology.

8. See References.

- 25 —

Of the dozens of possible types of airborne objects in a
typical battle scenario, we chose to I|imit ourselves to the
four classes |listed below for a demonstration system. We have
ignored, for example, helicopters, surveil lance and
reconnaissance planes, surface-~launched missiles, and decoy
objects. These objects can be added rather easily to the
expert system, once the proper research has been done, and
should greatly enhance the utility of the system. We have also
not done in-depth research on each of the classes of objects
listed below. There are probably a hundred different kinds of
fighters alone, each with its own radar, fire control system,
and capability. Below, for each class of craft are listed some
characteristic features, wusual function and capability, and

some specific IDs that make up the class.

Fighter

Fighters are high speecd, versatile craft that are
usually equipped with turbojet engines. They can fly
air-to-air, air-to-ground, or escort missions, carrying
six to twelve air-to-air rockets or bombs.
Characteristics of these planes include: high velocity,
engines with afterburner capability, medium radar cross-
section, smal | wingspan and length, very good

maneuverability, high-altitude capability, and multiple

radar capability. Specific planes include American
F-14s, F-16s, and F-~18s, and Soviet MiG-21s, MiG-25s,
Su-27s, and MiG-29s. Each specific plane can be

specially outfitted to perform special missions.

- 26 -

Bomber

Bombers, in general, are low or medium=-altitude,
average-velocity ground-attack planes. They have
limited self-defense capability, and are usually
escorted by fighters. Additional characteristics
include: more engines that other planes (up to eight),
extremely large combat radius, low~-flying or terrain-
hugging flight path, jet engines, large wingspan and
length, and ground-mapping radar. The B-52 and Bl are

U.S. bombers; Tu-22 and Tu-95 are Soviet bombers.

Rocket

Rockets (or missiles) can be air or surface-launched,

and include everything from anti-tank to ballistic

cruise. For now, we are concerned with those that would

threaten ownship.9 These include air-to-air or anti-
aircraft surface-launched rockets. Rockets

generally small and extremely fast. They may contain
their own radar for guidance, or may require

"il{lumination" by the launcher’s radar in order to hit a

target. Surface-launched rockets are usually larger,

have lower initial speed, greater range capability, and

begin their flight from =zero elevation (the ground).

Air-to-air missiles are smaller =and shorter-range,

have an initial velocity equal to that of the jet that
launched them. A U.S. rocket is the Sidewinder. Soviet

rockets include the AA-7 and AA-9.

g. Ownship is a military term meaning "our own airplane”.

- 97 -

Transport

Air-transports carry troops, supplies, and equipment
from supply posts to the front lines. They have limited
self-defense capability and are wusually escorted by
other aircraft. Two main types exist: subsonic, which
have propeller engines and are relatively slow, and
supersonic, which have jet engines and are comparatively
fast. Both +types have large radar cross-sections and
wingspans, limited radar capability, and medium-altitude

capability.

Sensor Research

In order to construct realistic sequences of sensor returns
(trackfiles) to drive the scenarios, we investigated what
sensors would typically be available on a fighter, what
information they coul!d provide, and what their capabilities

were (detection range, resolution, and confidence as a function

of range). Sources for our results included sensor and
" avionics experts at Hughes [13,14], books and periodicals on
sensor technology [Stimson, 1983], and internal Hughes reports
[Blackman and Broida, 1983] [Goltzman, 1984] . Since
performance data is classified, we are not using exact
detection ranges or full sensor «capability. For our purposes,

however, accurate "numbers" are not important. We need only a
representative idea about what kinds of information we can get
from sensors, and in what sequence it becomes available. The

fol lowing paragraphs describe the sensors that would probably

- 28 -

be

10

available on a fighter such as the ATF. We have

speculated about some sensor’s future capability, since the

expert system will not be in operational use for several years.
Radar
Radar is a standard, long-range sensor available on

nearly every combat aircraft. It provides range, range-
rate (velocity), and bearing data11 on surrounding
objects. In addition, it provides radar cross-section
(RCS), an indication of the size of an airborne object.
Research is underway to provide radar with even more
advanced capabilities. A radar’s useful range can be in
excess of 100 nmi, and its angulsr resolution and
accuracy can be quite good. Disadvantages of radar
include its susceptibility to enemy jamming and
electronic counter-measures (ECM) , its performance
degradation by clouds and inciement weather, and the

fact that it is an active (emitting) sensor.

10.

11.

ATF stands for Advanced Tactical Fighter, the Air Force’s
designation for its next generation of fighter aircraft, in
which AI technology and electronic co-pilots will be used.
Background material on ATF is provided in [Kinnucan, 1983] .
In this thesis, ATF is a2lso referred to as ownship.

Bearing (or heading) as used in this thesis is the
angular position relative to ownship.

- 29 -

IRST (Infrared Search Track)

An IRST obtains the heat characteristics of objects by
measuring the frequency and intensity of their infrared
radiation. This information indicates the temperature
and size of the engine, whether its accelerating or not
(by keeping 2 time history of temperature), and what
mode its engine is in (afterburn, for example). The
angular resolution of IRSTs is particulariy good, and
depending on the wavelength used, detection ranges can
extend to 50 nmi. IRSTs can have problems when looking
down upon an object, since the ground appears as
background clutter, but since they are passive sensors,
they are impossible to detect and are relatively immune

to direct jamming.l2

FLIR (Forward-Looking Infrared)

FLIR is a TV-like device that can provide visual data at
night. It gives temperature signatures |ike an IRST, in
addition to information on the shape, length, and width

of objects. Shape information might include special
features of an aircraft, such as its silhouette,
external fuel pods, or weapons stores. FLIR is a
relatively short range sensor (20 nmi) and is

practical ly immune to jamming.
RWR (Radar Warning Receiver)
RWRs provide information about the electromagnetic

emissions of enemy objects. This includes data on radar

and fire control! systems, such as modulation frequency,

12.

Flares, however, can be used to distract infrared
sensors.

- 30 -

radio frequency (RF) band, pulse repetition freguency
(PRF), waveform, pulse type, and mode. 1In addition to
helping characterize a particular type of plane, this
data may indicate where the enemy’s radar is searching
or tracking, and whether he is preparing to attack. RWRs
are susceptible to jamming and frequency agility

13

techniques. Useful range is greater than 150 nmi.

There are a great many sources of intelligence information
other than that provided directly by onboard sensors. AWACS
(Airborne Warning And Control System) planes carry very
sophisticated electronic equipment and can provide more precise

information a2t greater detection ranges than ordinary fighters.

JTIDS, currently under development, will coordirate
communications and sensor data from ground, naval, airborne
forces. Other planes in the same formation as ownship can

provide evidence that supports ownship’s sensor data, or

14 Ground-based friendly

pinpoints and object’s position.
forces can detect troop deployment, supply |line movement, and
iaunchings at enemy airbases. Finally, pre-flight briefings
can give weather conditions and positioning of enemy jamming

sources (both of which degrade sensor performance), as well as

up-to-date deployment information (number =and types of planes)

13. Frequency agility is the tactic of rapidly changing the
radar’s base frequency to prevent opposing radar
trackers from "locking on" to it.

14. Two planes correlating their respective bearing data can
more easily pinpoint the location of an enemy object.

- 31 -

at enemy bases. While some of these additional information
sources are implemented in the I|atest version of the expert
system (0AS2), much has been left for future development. The
classification ability of the expert system should greatly

increase with the addition of these sources.

When a polished object analysis module is present in the

future, it is hoped that results from running the expert system
on real scenarios will provide valuable feedback to those
investigating sensor technology. By analyzing the results of

the expert system, we may be able to determine those sensors
with the highest utility, and help to shape the sensor suite of
advanced fighters. In addition, we might identify what
additional sensor data would be most useful in identifying

planes, thereby helping to direct future sensor research.

Scenario Research

A third knowledge engineering area we researched is the
operational and flight profiles of enemy planes, including
missions, flight patterns, radar techniques, and mission
phases. This area contains the most unpredictable and least
reliable, yet potentially most valuable information available.
We investigated only a smal | amount of +the available
information, as much of it is classified. A summary of the

information that influenced rule development is given below.

- 32 -

Planes typically fly in groups, and can be judged "in
formation" by physical proximity, or by similarity in
maneuvers or predicted targets. There are a tremendous variety
of possible missions for a formation, including bombing-run,
air-superiority, and defense suppression. A formation with
mission bombing-run would include bombers to deliver armaments
to ground-based targets, plus escort fighters to provide self-
defense capability. Air-superiority formations consisting of
fighters might have =2 mission to eliminate opposing fighters
protecting an airbase or a formation of ships. A defense
suppression mission could include jets with air-to-surface
missiles whose task would be to cripple opposing ground forces
in preparation for an air or ground invasion. With
identification of enemy mission comes clarification on the
number of planes in the formation, what friendly resources will
be needed to match the attack, possible targets (based on

heading), and predicted future tactics.

Each possible mission above has different "phases", with
characteristic maneuvers and tactics. A typical sequence of
phases in a mission is: launch, climb, cruise, dash (to
target), attack, retreat, cruise, land. With identification of
enemy mission phase comes knowledge of: ETA (estimated time of
arrival), future tactics, maneuvers, and velocities. More
aspects of scenario research will become evident in the next

section, Rule Development.

- 33 -

Rule Development

In translating the results of knowledge engineering into
usable rules, we examined each measurable a sensor could
provide and determined what intermediate or direct effects it
could have on the identity of an airborne object. Some rules
use only a single sensor parameter in the antecedent (if~part),
while others have antecedants that use two or more sensors.
Infrared emissions, for example, can somewhat characterize a
plane by itself, since the heat-content of an airborne object
indicates the type of engine it is using. Velocity alone, on
the other hand, does not provide an indication of identity.
However, when it is coupled with 2 second sensor parameter |ike

RCS, we can draw conclusions about ID.

The consequents (then-parts) of rules either assert ID
information directly, as in the velocity-RCS rule above, or
they "post" intermediate results which may later trigger other
rules. This is the case with the IR temperature rule, which
deduces information about engine type. Later, another rule-

firing will relate engine type to identity.

The rules |listed below have been divided into categories
based on the sensor returns they use and the effect they have
when they fire. Where needed, a short explanation or
justification follows a rule. Keep in mind that rule-
confidence values have been omitted from +this list, but in

actual use, assertions like "ID is bomber" become "ID is

- 34 -

bomber, confidence = n", where O < n < 1. (A consequent’s
confidence value is a function of the "belief factor" assigned
to +the rule, and the probability with which the rule’s
antecedent is true.) Furthermore, any numbers used in a rule
are merely representative of a threshold whose exact value can
be determined by experts when they evaluate the system. At the
end of the list are a2 few ru'es provided by Defense Systems

Corporation (DSC), a company under subcontract to Hughes to

perform expert interviewing. DSC presented pilots with
simulations of real scenarios and collected protocols from
them.

Not all the rules |isted here ended up being implemented in
the first expert system because of design constraints, and in
the second expert system because of +time Ilimitations. All
rules here can be implemented in the second system, however,

and should greatly increase its power.

Physical Property Ruies

This section contains rules that deal with the physical
attributes and capabilities of airborne objects, such as
velocity, dimensions, climb-rate, and radar cross-section.

IF velocity < Mach 0.8 '
AND radar cross-section is large

THEN object ID is bomber

IF velocity < Mach 1.5
THEN object ID is not a rocket

- 35 -

IF velocity > Mach 2.0
AND radar cross-section is small
THEN object ID is rocket
IF velocity > Mach 1.5
AND radar cross-section is medium
THEN cobject ID is fighter
These four rules indicate that different classes of planes
have different maximum velocities. When combined with radar
cross—-section, which gives an idea of the size of an aircraft,
we have rules that say, "Fast 2and very small objects are
probably rockets" and "Medium-size, slow objects are probably

bombers". Further rules 1Iike these c¢ould be based on our

knowledge of the typical velocities of aircraft in different

phases of a mission.
IF |climb-rate| > 5000 ft/frame
THEN object ID is fighter
IF delta-velocity > Mach 0.4/frame
THEN object ID is fighter
These two rules say the the climb-rate and acceleration-

rate of fighters is greater than that of other aircraft.

IF IR temperature < 500 deg
THEN engine type/mode is jet

IF IR temperature < 1100 deg
THEN engine type/mode is turbojet

IF IR temperature < 2200 deg
THEN engine type/mode is afterburn

IF IR temperature > 2200 deg
THEN engine type/mode is rocket

IF delta-IR temperature > 200 deg/frame
THEN object is accelerating

- 36 -

IF delta-IR temperature < -200 deg/frame
THEN object is decelerating

IF |delta-IR temperature| < 200 deg/frame
THEN object is holding speed
This set of rules demonstrates how infrared temperature

returns, which give the "heat content" of an object, indicate
engine type, since engines are a plane’s main source of heat.
In addition, keeping track of IR temperature changes over time
shows whether an object is accelerating, decelerating, or
hoiding speed [Goltzman, 1984].

IF number of engines15 = 2
THEN object ID is fighter

IF number of engines = 4
THEN object ID is bomber
IF lengthi® ¢ 70 ft

THEN object ID is fighter

IF length > 70 ft
THEN object ID is bomber or transport

IF width < 10 ft
THEN object ID is rocket

IF width ¢ 70 ft
THEN object ID is fighter

IF width > 70 ft
THEN object ID is bomber or transport

The above rules deal with +the physical characteristics of

15. Number of engines is an observable not yet provided by any
sensor, but future indications are that it may soon b:

available.

16. Length and width are provided by FLIR.

~ 37 -

planes: bombers usually have four engines and a large wingspan;

fighters are smaller and have two engines.

IF engine type/mode is rocket
THEN object ID is rocket

IF engine type/mode is turbojet
THEN object ID is fighter

IF engine type/mode is afterburn
THEN object ID is fighter

AND object is accelerating
AND mission phase 1s dash

IF engine type/mode is jet
THEN object ID is not 2 Tu-95 bomber

in one case,

These rules associate engine type with ID and,

mission phase.

Radar~-Driented Rules

This section contains rules that deal with properties that

can be detected with ownship’s radar, such as enemy radar type,

PRF, modulation, frequency, and scan pattern. Shown here is

just a small subset of +the many types of rules that can be

garnered from examining a radar’s characteristics.

IF object is emitting
THEN object ID is probably fighter
AND object ID is possible bomber 17
or other aircraft using TF/TA

IF radar altimeter emissions are detected
THEN aircraft class is reconnaissance

17. TF/TA: Terrain-Following/Terrain-Avoidance (i.e., map-of-
earth operations).

- 38 -

Radar altimeters are used by =a few kinds of aircraft to
determine their own altitude [14]. Since this is an especially

scarce occurrence, it makes a good rule for identification.

IF radar is Foxfire
THEN object ID is Su-27 fighter

IF radar is Hi-lark
THEN object ID is MiG-29 fighter

Foxfire and hi-lark are two types of radar known to be used
by Su-27 and MiG-29 fighters f1]. They have special

characteristics that can be detected by our own radar.

IF no radar is detected
AND range is small
THEN object ID is bomber

IF aircraft is approachigg
AND PRF is "sawtooth" 19
THEN radar mode is STT

IF PRF is medium
AND timing is burst 20
THEN radar type is SAR

IF radar scan pattern is spiral
OR raster o1

THEN radar mode is TWS

IF radar scan pattern éﬁ conical

THEN radar mode is SST

18. A sawtooth pulse repetition frequency resembles a ramping
function, alternately rising and falling.

19. STT: Single Target Track

20. SAR: Synthetic Aperture Radar, a very high resclution
ground-mapping radar.

21. TWS: Track-While~Scan
22, SST: Single-Scan Track

- 239 -

IF radar return is chirped23
THEN radar type is SAR

IF radar pattern-is on§4fan and several slant beams
THEN radar mode is GCI
Scan patterns refer to the path by which an enemy radar
searches a given air-space. If enough readings are taken of
the direction in which an enemy radar is "pointed", we can,
over time, determine its scan pattern. From scan pattern we
can determine radar mode, such as track-while-scan, which may

provide clues to the object’s intentions, depending on his

mission phase [13] [14].

Target-Oriented Rules

Target rules deal with the criteria for airborne objects to
be considered "in formation", along with the determination of
targets, maneuvers, and missions of those formations. These
rules border on tactical situation assessment, to the point of
determining the intent of opposing planes. The next step, to
be impiemented by future electronic co-pilots, would be the
determination of ownship’s tactics from enemy intent.

IF dist(0BJ X, OBJ Y) < 5 nmi

AND delta altitude/0BJ X, 0BJ_Y) < 5000 ft
THEN 0BJ X and OBJ Y are in the same formation

23. A pulsed method of sending radar signals.

24. GCI: Ground-Controlled Intercept

- 40 -

This rule indicates that two planes are in the same

formation if they are within 5 nmi horizontally and 5000 feet

vertically.

IF formation is heading towards a friendly base
THEN base is a target of the formation
The above rule is implemented by comparing the |ine-of-
sight (LOS) between the formation center and a friendly site,
with the heading of the formation. If the difference in angle
is within 2 certain threshold, that site is considered a
possible target of the formation.
IF a fighter is detected
THEN hypothesize escorted aircraft according to
targets on heading
This rule indicates that fighters, in general, escort other
aircraft, and the number escorted may be determined by the
"firepower" necessary to attack a friendly base. In other
words, if a fighter s >detected in Formation A, and it is
heading towards Friendly Base B, and on a normal bombing run it
would take three bombers to destroy Base B, then hypothesize

the existence of the three bombers that the fighter s

escorting.

IF object ID is fighter

AND mission is escort

AND fighters are above escorted planes

AND fighters are not forward of escorted planes
THEN formation is not near its target

- 41 -

IF object ID is fighter
AND mission is escort
AND fighters are moving forward of formation

THEN formation is approaching the target
The above two rules tel! what maneuvers fighters make when
they are escorting other planes. When the formation is
cruising, and not near the planned target, fighters weave and
execute "S-turns" so they do not overtake their partners.
However, when the formation nears the target, the fighters fan
out in front of the formation to intercept any opposing planes.

IF aircraft "pops up" 25
AND heading is along LOS®Y of possible target

THEN weapon delivery on target is imminent

This rule says that terrain following aircraft will pop up

and point towards their target just prior to attack.

IF an object’s munitions is bombs
THEN 1%t has no rockets

IF an object’s munitions is rockets
THEN it has no bombs
Most all-purpose fighters c¢an carry bombs or air-to-air

missiles, but not both.

Mission-0Oriented Rules

These rules deal with the inference of opposition’s mission

from maneuvers. Most planes fly a pre-planned mission with

25. L0OS: Line-0f-Site

- 42 -

phases |ike take-off, ascent, cruise, dash, attack, retreat,
cruise, and landing. Each phase has its own characteristics:
ascent has high rate-of-climb, dash has high acceleration,
cruise has stable velocity and altitude, and attack has quick
maneuvers. With determination of an enemy object’s current

mission phase, we may be abie to infer time and distance until

later phases.

IF altitude is very low 26
AND object is close to FEBA
THEN mission is close air support
IF maneuvers are erratic
AND altitude is low
THEN mission is close air support
IF object has no l|ook—down radar capability
THEN mission is not strike defense
"Look-down" refers to =a radar’s ability to distinguish
moving objects against a cluttered background |ike the earth’s
surface. Radars can "see" much more easily against a cold,

uncluttered background |ike the sky. Strike defense aircraft

need this capability to be able to fly above planes that are

interdicting.

IF a strike formation is approaching FEBA
THEN look for defense suppression aircraft

IF formation altitude is low
AND maneuvers is not terrain-following
THEN formation is preparing to attack

26. FEBA: Forward Edge of Battle Area, the imaginary dividing
line between friendly and opposing forces.

— 43 -

IF formation altitude is low
AND velocity is slow
THEN formation has |imited self-defense capability

IF maneuvers is S-turns
THEN mission is escort

IF maneuvers is terrain-following
THEN mission is bombing-run
IF formation mission is cruise
AND new object (0BJ NEW) joins formation
AND dist(0BJ_NEW, OBJ_ANY) is very small
THEN mission(OBJ NEW) is refueling
AND formation is bombers or transports
AND iook for NEW 0BJ to soon leave formation

Cyclical Rules

This set of rules exhibits "chaining", whereby the
antecedent of one rule becomes true (the rule fires) because
the consequent of another rule fired at an earlier time. These
rules work as follows: if the identity of a plane is known, its
combat radius (how far it can fly between refuelings) is also
known . Given the combat radius and the plane’s current
position, and assuming enemy base positions are known, all
possible origins for the plane can be determined. Furthermore,
pre-mission briefings might have yielded deployment information
(percent of each kind of plane at each base) about the enemy
bases. This information, finally, "feeds back" on ID, and

serves to "bump up" or "bump down" the current estimate of the

probability of ID.

IF object ID is fighter
THEN combat radius < 1000 nmi

IF object ID is bomber
THEN combat radius < 8000 nmi

- 44 -

IF object ID is transport
THEN combat radius < 6500 nmi

IF distance-to-base < (combat-radius / 2)
THEN base is a possible point-of-origin

IF object’s point-of-origin is known
THEN examine deployment at that base and update ID

ECM Rules

used

Listed here are 2 few other

in our expert

rules that are not currently

systems because electronic counter-measures

(ECM) have not been added to the environment model yet.

IF S0J%7 is detected
THEN hypothesize a screened aircraft attacking

a high-value target

IF SSJ28 is detected
THEN hypothesize additional aircraft in formation

These rules say that the enemy uses electromagnetic jammers

to screen planes of high value.

with no up-to-date sensor returns by extending the

This rule says to estimate

IF position of OLD OBJ is not received
AND time frame has ended
THEN estimate current position of OLD _0BJ

by dead-reckoning

the current position of targets

last-known

heading of the plane.

27.

28.

SSJ: Single-Side Jammer, an airborne
with 2 formation to screen its approach.

S0J: Stand-Qff Jammer, a ground-based jammer that attempts
to obscure air formations with electromagnetic emissions.

jammer that flies

- 45 -

Example Rules from Defense Systems Corp.

Included here are a couple of rules derived from

interviewing pilots and recording their protocols. The rules

are more tactics-oriented, but show the future development path

of the object analysis expert system.

IF enemy aircraft turns worse and accelerates

better than cwn aircraft
THEN anticipate enemy initiating a climbing attack

IF enemy fighter formation splits equally left

and right
THEN anticipate attack from a pincer maneuver

- 46 -

CHAPTER 4
0AS1: A RULE-BASED EXPERT SYSTEM

Introduction

0AS1 was the first of two expert systems created as a

result of this research. Implementation was begun as soon as a
small portion of the knowledge engineering was complete, so the
resulting system has many imperfections. We felt it was

important, however, to begin c¢oding as quickly as possible,
even though the design was not perfect. We would never have

accomplished as much as we did if we had delayed implementation

until the knowledge engineering was "done". Know | edge
engineering, after all, is never really finished. O0AS1l was
built as a learning tool, to be discarded after completion.
The discussion below describes 0AS1, what we learned from it,

and how it influenced the design of DAS2.

Design Goals

The overall goal of 0AS1 was to demonstrate the feasability
of performing object analysis with an expert system. Design
was completed with three constraints and sub-goals in mind: (1)
use existing software tools, (2) include a belief-maintenance

mechanism, (3) demonstrate as many rules as possible.

The first requirement, to use existing software tools,
entziled using an Hughes-developed knowledge representation

system called ARF [Edwards, 1984], A Rule and Frame system.

— 47 -

ARF is described in more detail below, but is basically a
frame-based representation system |ike the one described in
Chapter 2. DOne goal of O0AS1 was +to evaluate ARF for use in

future expert system applications.

Requirement two, the inclusion of a belief-maintenance
mechanism in 0AS1, was considered important because of the need
for determining what sort of belief mechanism object analysis
would require. We felt it was important to evaluate one
candidate belief mechanism (a Bayesian tree for DAS1) to see if
it would be powerful and flexible enough for future

implementations.

Given the constraint of using ARF’s built-in rule
constructor, the third design goal was to implement as many of
the developed rules as possible. O0f course, not all of the
Iknowledge engineering discussed in Chapter 3 had been completed
at the time of O0ASl’s development, so a side-effect of the
first-cut implementation was to determine those rules and
knowledge areas that I|ooked the most promising for object

analysis.

The next few sections examine the structure of 0AS1, giving
detailed descriptions of how the components interact.
Following that are some sample runs and results, and =2
discussion of the effect that O0ASl’s development had on the

design of 0ASZ2.

- 48 -

Overview of 0AS1

Figure 3 is a block diagram of the expert system, showing
the five main components (Airborne Object Frames, Blackboard,
ID and Belief Maintenance, Inference Engine, and Knowledge
Base), input and output, and interactions between the blocks.
The driver of the system is the input trackfile, which consists
of time-sequenced ownship-centered simulated sensor returns
from surrounding airborne objects. T§ construct a trackfile, a
scenario is devised in which ownship faces a formation of
incoming enemy aircraft. Given ownship’s sensor suite, we then
determine what information, if any, each sensor would provide

on each object in the enemy fleet, and at what time and range

it would provide it. The sequence of returns for each sensor
is then assimilated into one compesite file of time-ordered
sensor information on all +the airborne object tracks in the

scenario. This ordering simulates how the expert system would
receive sensor data in a real avionics suite, except that each
sensor would have to have the ability to asynchronously report

any newly-detected information on an airborne object.

Entries in the DAS1 input trackfile are either "detections"
or "facts". Detections indicate when a new airborne_object is
found, presumably by the longest-range sensor available, the
radar. A detection causes three things to happen: first, an

empty airborne object frame is created to hold information

- 49 -

1ndino

A

- 50 -

AVIHIANO STIHIYHD
L N N
<
13341 ¢ 33HL
JONVYNILNIVIAN 431738 B Gl
asvs : :
N0y coe Z 19v4 Z 1ov4
Alv 1 LOvd 1 1Y+ - S10v4d
1 W1S PINLS
04NI
INIW
’ >% wmwm sayvoaMovis
> INIONI
JONIHISNI k
Jsve
IOAITMONM
o€ @
4P <d SNOI1D313a
LoV ¢ ov
FTNAINOVYHL
SINVHS (OV) 123180 INEOGHIV LNdNi

WYHOVIG X2019 LSYO ‘€ 3HNOId

about the new object. Second, an empty STM (short-term memory)
is created and "posted" on the biackboard. This STM is used to
hold facts about the airborne object. Third, a Bayesian tree

structure is created to maintain the probability of the

object’s ID. (The belief mechanism is described in more detail
below) .
Input trackfile "facts" represent actual sensor returns

from an airborne object. These facts can do one of two things:
they can be placed on the STM associated with the airborne
object for use by the inference engine in checking rules, or
they can go directly to the belief mechanism for updating the
identity of the airborne object.29 (See the Input Assumptions
section for some system simplifications which allowed us to

ignore some real-world sensor problems.)

To summarize, for each new object detected, an a2irborne
object frame is created to hold information about the object,
an STM is created to hold sensor data about the object, and a
Bayesian probability tree is created to keep track of the

object’s ID. The input trackfile then puts the sensor returns

29. For efficiency reasons in ODAS1, a fact’s destination
(either the inference net or an STM) is predetermined in a

trackfile; an operational system should have a
"preprocessor" determine the appropriate place to send
facts.

- 51 -

on previously detected objects onto their STMs and belief
trees. At the end of a2 fixed length of time (nominally 30
seconds), the inference engine cycles through the rule base,
trying to satisfy antecedants by looking at frames, STMs,
belief trees, or the knowledge base, which contains information
like plane-deployments at bases. For each antecedent that
tests true, the ruie "fires", and the consequent of the rule
either adds information to the airborne object’s frame or STM,
or updates the object’s ID by passing data to the belief tree.
The inference engine cycles through the rule base until a pass
produces no new information, and then the input trackfile
resumes sensor data assertion and airborne object detection.
Facts that cause 2 rule to fire are removed from the STM at the

end of a cycle; otherwise, they remain until used.

The output of all this is a vector that represents the
probability of ID for each possible type of airborne object
allowed. For our initial system we decided to allow only six
different kinds of airborne objects to be identified: MiG-29
and Su-27 fighters, Tu-95 bombers, Tu-144 transports, and AA-7

and AA-9 rockets.30

Therefore, the output of the system for
each detected airborne object is a six-element vector

indicating the probability that the object is a MiG-29, Su-27,

30. The system is in no way constrained to six objects; this
small number was chosen to simplify things at the
beginning.

- 52 -~

Tu-95, etc. The initial probability distribution for a newly-
detected target is (.167 .167 .167 .167 .167 .167), because
each of the six IDs is equally likely. Following is a more

detailed discussion of how the expert system maintains belief.

Belief Maintenance

The belief maintenance architecture used in O0AS1 is a
hierarchical Bayesian inference net based on the theory of
Pear| [Pearl, 1982], and implemented with modifications by Mark
Young of Hughes. The goal of belief maintenance is to compute
the probability of a hypothesis based on evidence, and 1o be
abie to perform updates on the hypothesis whenever new evidence
is received. In object analysis, the hypothesis is the ID of
the airborne object and the evidence is sensor returns. The
hierarchical arrangement of object analysis evidence is shown
in Figure 4. ID, the goal of the inferencing, is located at
the "root" node of the +tree. One level below are sensor
returns that directly affect ID: signature (SIG), number of
engines (ENG), radar type (RADAR), length (LEN), and width
(WID). "Direct effect on ID" means we are able to assign a
value to the conditional probability, Prob(Si’j|IDk), for all
i, j, and k, where, for Figure 4, | indicates one of five
possible sensors (SIG, ENG, RADAR, LENGTH, or WIDTH), |
indicates one of the possible values that sensor Si can have,
and k indicates one of the (six) possible IDs. 1In other words,

if the RADAR sensor c¢an have the possible values of "R-95",

- 53 -

NMONMNN

00Ce>
000L>
0og>
dW3l-yi
1ar NMONMNN
‘tevmpor Avue 100ud0 oY) sonpin 135%901 mmm
$§ DPVINIPUD PIXOP Y YUY 2«.__.MWMMMMM & NS
vorpus faowapmns vovuss fo oafhy Zns
D PJuNYP 93} By WP IPOU YOV L ns
JA0OW-9N3 DIsH
NMONMNN g OIS
AHVYI-tH NMONMINND ¥ OIS
o< JHIIX04 ¢ £ oIS
0L> oL< yvL-H Z rAS 1
£ 0L> 56-H l L 9IS
alm N3 HYQawvH ON3I# ols
ai

AHOHVHIIH TYION3IGIAI HOSNIS ¥ 3HNDIA

- B4 -

"R-144", "Foxfire", "Hi-Lark", and "Unknown" (j goes from 1 to

5), we are able to write a probability matrix:

R-95 R-144 Foxfire Hi-Lark Unknown

0.75 0.20 0.01 0.01 0.03 Tu-95
0.156 0.80 0.01 0.01 0.03 Tu-144
0.00 0.00 0.90 0.10 0.00 MiG-29
0.00 0.00 0.15 0.85 0.00 Su-27
0.05 0.05 0.00 0.00 0.90 AA-Q
.05 0.05 0.00 0.00 0.90 AA-7

This matrix compietely describes the effect that radar
returns have on ID. For instance, if the ID is given to be a
MiG-29, then according to the matrix above, Prob(radar is

Hi-Lark) = .10 and Prob(radar is Foxfire) = .90,

locoking at Figure 4 again, the long-range signature (LRSIG)31
and engine mode (ENG_MODE) sensor returns have an effect on
SIG, and infrared temperature (IR TEMP) affects ENG_MODE. We
can write conditional probability matrices for these
relationships in a manner similar to that shown above, yielding

Prob(S' m|S) matrices that show, for instance, the
’

n,p
probability that IR_TEMP is less than 300 degrees, given that

ENG_MODE is afterburn.

31. LRSIG is a parameter that is representative of the ID-
specific information that would be received about an
airborne object at long range.

- 55 -

matrices
n,p)

derived through knowledge engineering, we must now find

Given the Prob(Si'jIIDk) and Prob(Sl’m|S

Prob(IDklsr s), the probability that ID is one of k possible
’

values, given some new piece of sensor evidence--that sensor Sr

has value 5.32 Bayes rule, which allows computation of
Prob(H|E) by:

Prob(E|H) Prob(H)
(4.1) Prob(H|E) = ; (H:hypothesis, E:evidence)

Prob (E)

provides the +type of solution needed, but it bhas several

shortcomings for our implementation.

First, there is an instability problem in updating the

tree: if an increase in the confidence of evidence causes
increased certainty in the hypothesis it supports, and, in
turn, stronger belief in that hypothesis means greater
expectation for occurance of the evidence, the update may

continue forever.33'34 This occurs because the update of the
"father" node depends on the prior probability of the "son" (as
shown by Bayes rule), and |ikewise, the update of a2 son node

depends on the priors of its father (because P(E) = Prob(H)

Prob(E|H)) .

32. For Figure 4, k =1 to 6, and r = 1 to 8.

33, See [Pearl, 1982, p.3]

34. It doesn’t matter whether the update is an increase or 2
decrease in confidence.

- 56 -

A second problem is the Bayes rule requirement that the
prior probability, Prob(H), be known to compute Prob(H|E).
However, in an evidenciai network, each node acts as both
evidence to support nodes above it, and as a hypothesis to
which nodes below contribute evidence. There is thus a problem
in knowing the priors for an intermediate node in the network,
due in part to the subjectivity and inconsistency of expert

information [Duda, Hart, Nilsson, 1976, p.5].

The final and most severe |imitation of a straight Bayes
rule implementation is that it only allows binary-valued
hypothesis variables to be wused. For example, in calculating
Prob(H|E), H and ASY could only be "ID is fighter" and "ID is
not fighter", respectively. What we really want for object
analysis is for H to be multi-valued: H1 is "ID is fighter", H2
is "ID is bomber", H3 is "ID is rocket", etc., so we could

calcuiate Prob(HiIE) for all values of i.

Pearl’s solution is an algorithm, consistent with the
theory of Bayes, that (1) constrains diffusion of new evidence

into the tree to a single pass, (2) eliminates the requirement

36

of knowledge of prior probabilties, and (3) allows the use of

35. A, pronounced "H-bar", means the opposite of H, or not H.

36. except at the root node, as discussed below

- 57 -

multi-valued variables. If we want to find the |ikelihood of
the states of some node A induced by some data D, part of
which, DY(A), comes from above A and part of which, Dd(A),
comes from below, then according to Pearl, we use:

(4.2) Prob(A, [D(A),D (A)) = a = Prob[Dd(A)IAi]*Prob[Ai]DU(A)]37

where ¢ is a normalization constant. This is analagous to

Bayes rule, when (4.1) is written in a different form:
(4.3) O(H|E) = X(E) = O(H)

where A(E)=Prob(E|H)/Prob(E|A) is the Ilikelihood ratic, and
O(H)=Prob(H) /Prob(H) is the prior odds.

Pearl’s generalization allows the update of the probability
of any node in the tree, since the prior odds term
[Prob(H) /Prob(H)] in (4.3) has been replaced in (4.2) by
Prob[AilDu(A)], which means the likelihood of a variable state,
given all the evidence gathered by the network above it.38

This allows the update of an intermediate node in the attribute

hierarchy to take place in a single pass, since that node need

37. From [Pearl, 1982, p.B8].

38. Paraphrased from [Pearl|, 1982, p.6].

- 58 -

only "communicate" with its immediate father and son nodes.
Equation (4.2) separates the dependence of Ai upon both DU(A)
and Dd(A) into two multiplicative terms, each of which includes
onty DY(A) or Dd(A) factors. See page 16 of [Pearl, 1982] for

implementation details of (4.2).

The replacement of "prior probabilities" by "evidence above
the node in question” discussed in the last paragraph works at
every node except the root node, since it has no network above
it. For this special case, DU(A) should be interpreted as
"available background knowledge", rendering it identical to the
classical notion of subjective prior probability. For our
expert system, upon creation of =a new network structure, this
root node background probability is distributed equally among
the possible IDs. With six possible objects, the initial
probability vector looks like (.167 .167 .167 .167 .167 .167).

To summarize: sensors, which are assumed independent,sg
"assert" the returns they get from airborne objects into the
appropriate inference net node4o with some confidence level
between 0.0 and 1.0 that depends on range, weather conditions,

time on target, etc. The change in belief at the node

39. Each sensor asserts its belief without knowledge of what
any other sensor asserts; there is no correliation between

them.

40. For Figure 4, there are eight possible nodes.

- 59 -

propagates up the tree to the ID root node, and then down the
remaining branches to the Iowest |eaves, updating likelihood
vectors along the way. The complete update of the tree is

finished in only one "cycle", with each node visited just once.

As indicated in the Overview above, not all the evidence
used to maintain belief comes directly from the input
trackfile. The rule base and inference engine provide an
alternate tool to perform more complex deduction than that
possible with the inference net alone. Handling the combined
effect of velocity and radar c¢ross-section upon 1D, for
example, is much easier with rules. In general, knowledge
engineering that resulted in rules with simple if-parts and
consequents that directly affect ID were embedded in the
inference net; those with complex if-parts or "chained"
inferencing (like the cyclical rule set) were implemented with
rules. We also felt that rules used as an alternate evidencial
reasoning tool wou | d give the system flexibility and
extensibility: it wouldn’t always be necessary to redesign the
sensor hierarchy or probability matrices--code for rules would

only need to be added.

Since the inference net is the only mechanism that actually
maintains ID probability vectors, rules must have some way of
making assertions to the inference net, just as trackfile

sensor facts can. A modification to the Bayesian inference net

- 60 -

allows this: assertions about ID can be made directly to the
root node. To illustrate, one rule discussed above was:
IF velocity > Mach 1.5

AND radar cross-section is medium
THEN object ID is fighter

If the trackfile asserted onto the STM the velocity and
radar cross-section facts that satisfy this rule, the rule
would fire and the inference engine would assert "ID is
fighter" into the net with a confidence that is a function of
the "belief" in the above rule, and the confidence that

"velocity > Mach 1.8" and "radar cross-section is medium".

Suppose the rule fired and asserted, "ID is fighter,
confidence = 0.8". To update ID, an assertion vector, ;, wou |l d
be created, with 0.8 probability distributed equally over IDs
that were fighters, and (1.0 - 0.8) = 0.2 probability

distributed over the remaining IDs. For our case,
e = [.05 .05 .40 .40 .05 .05]

since our vector of possible IDs is

1D = (Tu-95 Tu-144 MiG-29 Su-27 AA-9 AA-7),
poss

and MiG-29s and Su-27s are both fighters. The vector e is

combined with the current background probability vector,

- 81 -

Pr°b(ID)curr’ of IDposs according to the formula,
Prob (ID) . * e,
i,curr i 41
PrOb(ID)i,new = ,
I Prob(ID). * e,
. Jscurr J

J

to calculate the ith element of the new background probability
vector, PrOb(ID)i,new’ for the root (ID) node of the inference
net.42 This formula says to multiply the assertion vector by
the background prdbability ‘vector element-by-element, and
renormalize the result so the probabilities sum to unity. The
background probability vector is used by the inference net in
the computation of the actual probability of ID vector that is
the output of the expert system. As mentioned above, when a
new inference net is created for an airborne object,

Prob (ID) = [.167 .167 .167 .167 .167 .167] ,

curr

indicating that all IDs are equally likely. By the method

out!lined above, rules that make assertions directly about ID

41. Ai denotes the ith element of the vector A, and the operator =
is product.

42. A, denotes the ith element of the vector A, and the

operator * is product.

- 82 -

have an interface to the belief-maintenance mechanism.

To insure that multiple firings of the same rule do not
adversely alter ID, a list of rule firings and their arguments
(assertion vectors) is kept. In this way, if a2 sensor provides
information that is not new, but still causes a rule to fire,
that rule will be ignored. Similarly, if Rule i asserts "ID is
fighter, confidence =.7" at time j, and then asserts "ID is
bomber, confidence = .5" at time j+1, the effect of the first
assertion will be removed from the net. We therefore assume
that the most recent assertion of a sensor or a rule is also

the most accurate.43

For rules to assert results to the net with confidence
levels, the inference engine must have a way to propagate
confidence from the facts in the trackfile to the results of 2
rule’s consequent. This is discussed in the next section,
which describes 0OAS1’s know!edge representation system in more

detail.

ARF: Ruies and Frames

ARF is a frame-based knowledge representation system that

features an inference engine and rule constructors. Among the

43. This, of course, is not true when the airborne object is
moving away from ownship. The system does not handle this

case.

- 83 -

pre-defined frame objects in ARF are STMs, FACTs, and RULEs.
STMs (or blackboards) are special frames upon which FACTs can
be instantiated with confidence values. FACTs are specialized
frames which have ob_jec‘b,44 attribute, and value slots. RULEs
are generalized "if-then" constructs with an associated
confidence ievel, and include special macros |ike "check-fact"
and "object-test" to facilitate pattern-matching. In addition,
RULEs can use wildcarding, so (check-fact ’x ’ eng 2) in the
if-part of a rule will find any frame object with the attribute

"engines" and value "2" (a plane with 2 engines).

The inference engine is a separate entity in ARF, and, when
invoked, cycles through the rule base comparing if-parts with
FACT frames and executing then-parts when appropriate, until no

rules fire during a complete pass of the engine.

Confidence propagation is achieved in the following manner.
When 2 rule is ready to fire, the inference engine multiplies
the confidence associated with the rule by the product of the
confidences of each FACT checked in the if-part. This result
becomes the confidence level with which the then-part is

asserted. The result of executing a then-part is either a

44 . Here, object refers to any frame instance in the system,
such as instances of airborne-object frames.

- 84 -

FACT-assertion back onto the STM,45 or an ID-assertion to the

inference net.

Besides their use for STMs, FACTs, and RULEs, frames are
used in the object analysis expert system for holding long-term
information about airborne objects, such as position, mission,
and mission~phase. These airborne-object frames are more
accessible than STMs, which are only used during inference
engine operation. Originally, frames were also meant to hold
formation information about airborne objects--which objects
belonged to which formation, what was the heading or possible
target of the formation, etc. This feature was not implemented
in O0AS1 because development work was halted once we saw
problems with its design. Formation-level and target
information, as well as maneuver information is used, however,

in the second expert system, 0AS2.

Input Assumptions

As mentioned above, we have ignored several real-world
problems and macde several important assumptions in constructing
our trackfiles of simulated sensor returns. First, we have

constrained the trackfile +to <contain only sensor data that

comes from ownship. There is no "cooperation" from other

45. These assertions can either change the value of a FACT that
aiready exists, or create a new FACT.

- 65 -

planes or external sources of information. Incorporation of
alternate knowledge sources is left for the future. Second,

each sensor is assumed to have some sort of pre-processor that

performs decision-making, resclving possible ambiguity in a
sensor’s returns. We’ve also assumed the sensor processor
assigns confidence levels to the data. A third assumption is

that sensors have no correlation problem: they have a perfect
ability to assign a sensor return to the correct airborne
object, even though there may be many objects located within a
small airspace. This assumption, of course, eliminates a
serious problem a real sensor-driven object analysis system
would have. QOur fourth and final assumption is that sensors
have an unlimited amount of time to "look" at any airborne
object desired (thus producing the best possible information
given the range), and that there is enough time to use all the

sensors (if desired) to examine an object.

Naturally, in a real system, time is a very valuable
resource. We could overcome this problem, however, by utility
analysis. One possible scheme would be to prioritize rules
(and therefore the sensors they use) by calculating the
quotient {rule cost/ID importance}, where rule cost is a
function of the sensors needed to check the rule and ID
importance is an estimation of the object’s threat value. For
an initial development effort, we have chosen to ignore these

four problems. A treatment of utility analysis is presented in

- 66 -

[Blackman and Broida, 1983] . Other computational

considerations for sensor fusion are considered in [Waltz,

1981].

A Sample Run

A sample run of DAS1l is shown in Appendix A. The scenario
depicted is ownship facing two incoming planes--one MiG-29 and
one Su-27 fighter. A commented listing of the trackfile that
drives the system is shown, along with the corresponding effect
that each sensor return has on system output. The trackfile
for the scenario was purposely constructed with misleading
long-range sensor returns to see how the system would recover

from sensor inaccuracy. See the appendix for more details.

The norma! output of the system is artime-history of the
probability of ID vectors as sensor data accumulates. For
demonstration purposes, a graphics front-end was added to DAS1.
Planes appear on the screen as they are detected by sensors,
and transitions in ID are depicted by changing graphics icons.

Two sample screens from the scenario are included in the

appendix.

System Evaluation
For a first cut =2t an expert system in 2 new knowledge

domain, OAS1 functions reasonably well. It is able to take a

- 87 =~

sequence of simulated sensor returns and accurately identify
airborne objects, although not always in the most robust or
efficient manner. The flaws in O0ASl’s design were caused
primarily by the constraint to use the software tool ARF, and
because implementation and design occurred simultaneously, for
the most part. As mentioned in Chapter 1, however, we thought
it best to begin implementation quickly, to facilitate the
iterative nature of system design and knowledge engineering.
We viewed the first object analysis expert system primarily as
a learning tool. The shortcomings of the system will be
discussed momentarily, but first let us focus on O0ASl’s

positive aspects.

A strength of 0AS1 is the manner in which the Bayesian

inference net handles belief maintenance. As shown by the
sample run in Appendix A, the ID vectors make transitions
commensurate with the confidence in the facts that cause the
changes: facts with |ittle confidence cause small changes in
Prob(ID), and vice-versa. The inference net also allows
hierarchical structuring of sensor attributes. It is easy to

see sensor dependencies from tree structures |ike Figure 4, and
sensor relationships are <clearly determined by probability
matrices. The ability of the inference net to make smooth
transitions in ID is apparent from the sample run: the net
accurately followed +the initial assertions that the objects

were bombers and transports, but gradually reversed itself as

- 68 -

sensor data began to indicate that 1ID was really fighters. It
was encouraging to see that the inference net did not make any
sudden "jumps" in ID probability. In addition, the method we
chose of interfacing the rule base to the belief mechanism
through assertions to the root node seemed to work well. Upon
examining the sample trace in the appendix, we see that the
rules help to correctly identify the objects sooner. DAS1 also
demonstrates that two separate inferencing mechanisms (the
inference net and the rule base) can operate independently, yet

both contribute towards determining ID.

Another positive result of O0AS1 is that it helped to
identify promising rule areas. The cyciical rule set, in which
ITD implies combat radius, combat radius implies point-of-
origin, and point-of-origin implies ID, appears to work
effectively in DAS1l, allowing correct ID to be determined more
quickly than without the rule set. In general, using rules
that "post" facts to be used by other rules works well within
ARF’s framework. In addition, we’ve confirmed that the ability
to trigger new rules from old rules (by "chainfng") is required

for the object analysis task.

Shortcomings

OAS1’s principle weaknesses are 2 result of using ARF’s
"packaged" facility for rules and inferencing. Overall, there

is little flexibility in choosing how knowledge, rules, and

- 69 -

confidence propagation interact. This rigidity has kept us
from using all the rules we developed and has led to a number

of inefficiencies.

One problem is the lack of intelligent coupling between the
reception of new sensor evidence and the testing and execution
of rules. With the ARF inference engine, there is neither a
way to limit which rules are tested, nor which object frames
they are tested wupon. As soon as the inference engine is
invoked, all rules =2re tested on all airborne-object frames
until no rules fire during =z complete pass through the rule
set. In contrast, we shall see that 0AS2 allows rules to be

tested singly upon any airborne object.

Another problem is the lack of an easy interface to
confidence computation. If, for example, the result of a rule-
firing is the assertion of a2 new fact onto an STM ("chaining"),
we have no way to easily access either that fact or its
confidence factor for use in other parts of the system.
Furthermore, the confidence propagation method of DAS1 is fixed
by the inference engine; this is no way to experiment with

different methods of computing belief factors.

In the future, we want to eventually write rules that do

more than just check simple attributes of an object. We want

- 70 -

an inference engine and rule base that allows mission-level
inferencing, message-passing to the pilot, prioritization of
rule testing, and checking for the occurrence of long-term
events, such as plane maneuvers or radar scan patterns. We
want to vary the method of confidence propagation as it
proceeds from sensor evidence to rule consequents. This would
allow the evaluation of different interfaces to the belief-
maintenance mechanism. In short, 0ASi’s Ilimited rule-
construction ability will restrict the power and flexibility of

the expert system as the problem domain grows.

OAS1’s wuse of the Bayesian inference net causes some
extensibility and efficiency problems, although +they might
exist in any expert system that maintains belief. Expansion of
DAS1 to handle either more sensor inputs or a greater number of
possible IDs is not easy. To perform either extension, each
probability matrix46 that relates sensor evidence to identity
must be completely recreated, so that the dimensions are
correct and all probabilities sum to one. Furthermore, there
is no easy way to tell +the system to "forget" about a possible
ID for a sample scenario, in case we wanted to evaluate system

performance for a run where we knew there would be no planes of

46. A sample matrix was shown in the Belief Maintenance section
of this chapter,

- 71 -

that ID used.

An efficiency concern of the Bayesian belief-maintenance
mechanism is that the inference net must be updated every time
new sensor evidence is received. This update process is fairly
time-consuming, even though (1) we are using a relatively small
sensor attribute tree (Figure 4), and (2) we are using Pearl’s
method to |imit the update to a2 single pass. We can probably
eliminate these inefficiencies by using Shafer-Dempster theory
to maintain belief, since it requires updates of the tree to be

done only when Prob(ID) is needed.

The result of the structural shortcomings of 0AS1, and to a
lesser extent, the Bayesian belief mechanism, is a system that
is annoyingly siow. Though not the most important weakness of
the system, it is certainly the most frustrating. Despite the
use of only two airborne objects, six possible 1IDs, and
compiled code, the sample run of Appendix A takes over five
times real time, using thirty-second frames. While speed is of
little concern in the design of prototype AI systems, 0AS1 is
slow enough to impair the system’s development cycle. It is
very difficult to evaluate the usefulness of rules, assign
belief ratings to rules, and examine tradeoffs in knowledge
representation when it takes so long to see the effect of

making a single change.

- 72 -

In addition, OAS1 is space~inefficient. This is primarily
because the development work is being completed on engineering
workstations (Apeollo DN300s) running LISP, rather than on
dedicated LISP machines. Because the Apollos were not designed
specifically for executing LISP code, the space allocated for
heaps (storage) is fairly small. As a result, the machine
garbage-collects (reclaims unused memory cells) quite often,
halting the expert system’s operation. It appears, though,
that 0AS1’s space-inefficiency is caused primarily by ARF,
since DAS2, without ARF’s inference engine and rules, uses only

one-eighth the space of DOAS1.

Two final concerns with O0AS1’s belief mechanism are that,
unlike Shafer-Dempster theory, Bayesian inferencing (1) has
problems maintaining consistency in degrees of belief for
evidence that represents ignorance [Shafer, 19876, p.24], and
(2) does not distinguish between evidence that comes from a
single source and evidence that comes from disparate sources
[Lowrance and Garvey, 1983, pp. 13-15]. In reference to the
first concern, the justification for using a belief-maintenance
mechanism that has the ability to represent ignorance is that
the likelihood of erroneous evidencial reports is reduced. To

quote Lowrance and Garvey:

"The primary advantage of this approach is that each
knowledge source can express itself at a level of
detail of its own choosing. When there is no clear

- 73 -

reason to prefer one proposition to another, that
judgment can be suspended. Thus, a radar operator can
express some belief that an object is at a given
location without having to specuiate as to that
object’s type. A Bayesian approach would require that
a precise probability be assigned to each type, no
matter how noisy the sensory data, and no matter how
little statistical data are available from which to

make justifiable estimates."4’
In object analysis, assertions with ignorance are of the
form, "ID is not bomber, conf = n". The ability to use rules

involving assertions such as this should become much more
valuable as further rule-research is accompl ished.
Furthermore, the Shafer-Dempster ability to integrate disparate
sources of evidence will become important as we add more

knowledge sources (sensors) to the system.

Implications for the Development Effort

Since the major shortcomings of O0AS1 stemmed from the
inference engine and rule base, a logical step was to implement
them another way. For 0AS2, the second cut at the object
analysis expert system, we decided to keep the frame
representation for knowledge, but implement rules using demons.
In addition, we decided to forgo integration of a sophisticated
bel ief-maintenance mechanism into 0OAS2; rather, we concentrated

on making the design modular enough so its inclusion would

47. From [Lowrance and Garvey, 1983, p.13].

- 74 -

later be easy. We also started a development effort parallel
to that of 0AS2 to implement Shafer-Dempster theory, because of

the advantages it seems to have over Bayesian belief

maintenance. (These topics are discussed further in the next
chapter.)
In conclusion, two lesser implications of DAS1’s space and

time inefficiencies were: (1) develop an alternate frame-based
knowledge representation system similar to ARF, but without the
special features needed for rules (this was developed by Craig
Lee of Hughes while O0AS2 was being constructed), and (2) use
dedicated LISP machines for future work (not for O0AS2,
unfortunately), to provide increased execution speed and better

storage management.

- 75 =~

CHAPTER &
0AS2: A DEMON-BASED EXPERT SYSTEM

Overview

The evaluation of ODAS1 discussed at the end of Chapter 4
served as a guide to the design of DAS2. Indications were that
the frame system for representing knowledge was adequate for
the object analysis task, but that the rule and inference
engine combination caused structural and flexibility problems.
The major shortcomings of the system were: (1) an inability to
use all the rules developed because of the knowledge structure
chosen, (2) the rigidity of the inference engine and its
confidence propagation mechanism, which prevented investigation
of different methods of interfacing with the belief mechanism,
and (3) a restriction on the extensibility of the system, both
in possible object identities and sensor returns. In general,
DAS1’s design relied too heavily on the pre-packaged ARF
environment. We felt the expert system’s design became
constrained by the way ARF’s rules, knowliedge, and belief-

maintenance interact.

In light of +these results, our goal for O0AS2 was to
simplify the interaction between system components. Above all,
we wanted to maintain the =ability to alter the behavior and
communication between different parts of the system to allow
easy testing of different configurations. We felt this woulid

result in 2 modular, flexible system. In turn, we felt a

- 76 -

modular design wou l d promote system extensibility, and
important feature considering the |arge number of possible IDs
and sources of classification information in object analysis.
Whereas the principle design goals of 0AS1 were to evaluate ARF
and a candidate belief system, and to '"size-up" the object
analysis task, the goal of DAS2 was to design a flexible system
structure that would encourage evaluation of different rules,

knowledge sources, and belief mechanisms.

Along the way, O0AS2 acquired capabilities not previously
included in 0AS1 because of structural design |limitations.
These new features include an ability to provide requests for
unavailable sensor informétion, group planes into formations,
and determine possible targets of formations. (See Appendix B
for a sample run of the system.) In addition, the rule base of
DAS2 was extended to use more of the rules in Chapter 3,
including mission-level inferencing. Overall, the system
exhibits substantially improved performznce, as shown in the

Summary section later in the chapter.

The principle design change from O0AS1 to O0AS2 was the
replacement of ARF’s inference engine with one based on demons
[Rieger and Small, 1979] [Dyer, 1983]. Demons allow coding of
rules as general (LISP) procedures, resulting in far more
flexibility in the use of knowledge engineering resuits. In

addition, demons enhance system efficiency, since their built-

- 77 -

in control structure allows selective test and execution of
demon-based rules, unlike the inference engine implemented in
ARF. (Demons are discussed in greater detail below.) DAS2 also
expands the use of frames to represent formations and
formation-level information, and airborne objects in greater
detai | . In addition, the ARF feature of slot procedural
attachments [Bobrow and Winograd, 1977] is wused to trigger

demons upon the arrival of relevant sensor information.

Further reduction in O0AS2 of +the dependence on ARF was
accompl ished through the elimination of the use of frames
associated with the inference engine, such as those for STMs,
FACTs, and RULEs. Instead, airborne-object frames centralize

almost 21! knowledge represented in 0AS2.

Another difference in O0AS2 is the reduced emphasis on
belief-maintenance. Rather than trying to determine the "best"
belief mechanism for object analysis, and designing 0AS2 around
it, we decided to decentralize the design in such a way that
that any belief-maintenance mechanism could be integrated into
the expert system with |little modification. In this way,
candidate belief methods could I|ater be evaluated with a

working expert system.

As mentioned at the end of Chapter 4, one belief mechanism

we currently have under development is based on the thecry of

- 78 -

Shafer [Shafer, 1976] and Dempster [Dempster, 1967]. Shafer-
Dempster theory is a generalization of Bayesian inference with
the added capability of handling multiple evidencial reasoning
for a large number of possible hypotheses. Mark Young of
Hughes is implementing the theory in a tree structure similar
to that of the Bayesian net, using the structure proposed by
Lowrance and Garvey [lowrance and Garvey, 1983]. Previous
implementations of Shafer-Dempster theory serving as a guide
include: [Strat, 1984], [Ginsberg, 1984], [Dillard, 1983},
[Dillard, 1982], and [Garvey, Lowrance, and Fischler, 1981].
Eventually an evaluation to determine strengths and weaknesses

of the two systems will be performed.

The remainder of this chapter examine the OAS2 design in more
detail, and includes a description of the block diagram and
background information on demons. This is followed by a sample
run and an evaluation of the system. Some overlap discussion
on elements common to both O0AS1 and 0AS2 is presented for

completeness, even if it duplicates material in Chapter 4.

Design of 0QAS2

Figure 5 shows =2 block diagram of 0AS2, with the major
components of Airborne Object Frames, Knowledge Base, and.
Demon-Control, and input and output. The primary differenéé
from 0AS1 is the use of demons to implement rule-|ike behavior,

and the expanded use of frames in knowledge representation.

- 79 -

i — —_—

+INIDONT JONIUIINI.. NOWIGQ

Do+ |

i = = AN

_ 1531 NOW3AQ 1531 NOW3a
ININD NOWIQ AINMVY LS

]

— 3YId ON 3HId NMYJS-3d TN “
|

-]

L— %

_1 IONVNILNIVA |“
FEINEL]
viva _ ||_
NOISSIN-IHd aNV P —_——
‘1394vl ‘asva
L J
¢ ®
¢ L]
*
— _ _ _ s $v'd viva z'o'vw
see f FUSIWOVHL
ANdNI
_ _ L u vd -
SNOW3d g3NI43a < viva 1'ov
3Sv8 39A3TMON SINVHL (0'V) 133r50 INHOGHIV

WYHOVIA X0078 ZSVO 'S 3HNOS

- 80 -

The input trackfile has remained virtually unchanged,48 and the

know!edge base has been enlarged to include target and more

formation-level information. The system design has a space for
"a belief mechanism, too, as shown by the dotted box.
Currently, a rudimentary "time-smoothed" belief-maintenance

mechanism is used, toc be replaced later by the Bayesian
inference net or Shafer-Dempster theory. Since there isn’t a
Input trackfiles are cumbersome to develop, for example, and
probability-of-ID vectors are not presented to the user while
the system is running. Because of U0AS2’s emphasis on knowledge
centralization, however, it mechanism in 0AS2, the output of
the system no |. information is contained in airborne object
frames, and must be viewed when the system is not running.
This points out one weakness of 0AS2--the lack of a
sophisticated input and output capability. However, it should
not be too difficult to add an I/0 facility to DAS2 because of

the emphasis on the centralization of knowledge.

Demons: Some Background

The design of 0OAS2 is centered about the use of demons for
implementing rule and deduction capabilities. Demons have been

previously used primarily in the natural language processing

48. The only difference is that trackfile entries are more
English-like, and no confidence values are currently
associated with sensor returns.

- 81 -

(NLP) area for expectation-based processing [Dyer, 1983] .
Demons are used during the parsing of a sentence: as each word
is "read", a demon that "knows" about this word and all its
possible meanings "comes to life" and contributes to the
understanding of the sentence. The nice thing about demons for
NLP is that they’re self-perpetuating: there doesn’t need to be
an underlying controller that determines which demons to bring

alive and in what order to execute them. The demons figure it

out themselves.

Demons are procedures with a built-in control mechanism to
determine when and how often execution occurs. An unlimited
number of demons can be created without seriousiy affecting the
efficiency of the system because only those demons that have a
chance of firing are ever processed. Until they are spawned,
or "brought to life", demons stay in a dormant state, requiring
no processing time. Once spawned, they are added to a queue
called an agenda [Charniak, Riesbeck, and McDermott, 1980] or
working-memory-node [Dyer, 1983], and when the appropriate
"driver" code is invoked, they are retrieved (in the order they
were spawned) to have their test code evaluated. If the test

code evaluates to "true", the demon’s +act4g code is executed;

otherwise, its —act50 code is executed. This mechanism is an

49. Pronounced "plus-act", indicating the positive action to
take.

50. Pronounced "minus-act", indicating the negative action to
take.

- 82 -

exact analog to the if-then-else construct of a typical rule.
A sample demon will help to illustrate the operation:
(demon velocity-~-RCS-demon

(params mynode frame)

(comment (test "if velocity > Mach 1.5 & RCS is medium

then ID is fighter"))

(test (and (> (xfgetx frame ’velocity) 1.5)

(eq? (xfget*x frame ’RCS) ’medium)))

(+act (id-update frame ’fighter .9))

(-act t))

This piece of code defines velocity-RCS~demon, a demon for
implementing the rule shown in the comment slot of the above
definition. The params slot binds local variables to the
parameters upon which this demon is spawned. For example, when

we receive an update on the velocity of PLANEO, an airborne-

object frame, and we want to test the above rule, we execute:

(spawn *wm* (velocity-RCS-demon PLANEO))

This adds the velocity-RCS-demon to an agenda called *wmx,
a working-memory-node that had been previously created. When
the demon is ready to be run, the local variables mynode and
frame are bound to *wmx and PLANEO, respectively, providing a
way to access from inside the demon the arguments of previous
demons (through other working-memory-nodes) and the knowledge

stored in the PLANEO airborne object frame.

Upon invocation of the demon driver code, the test slot of

velocity-RCS-demon is executed. For the code above, an xfget=

- 83 -~

(access) of the velocity and RCS slots of frame (bound to
PLANEO) is performed to see if they are both greater than 1.5
and egqual to medium, respectively. If the result is "true",
the code in the +act slot executes, asserting "ID is fighter,

1 If the result of test is "false", the

- confidence = 0.9".
demon executes the code in the -act slot, returning true for
the code shown above. We thus have an analogy to an if-then-

else rule construct.

Demons continue to execute each time the driver-code is
invoked, unless they are explicitly "killed", or removed from
the agenda. This operation is part of the function of the
driver code we mentioned above: as it takes each demon from the
agenda, it checks its fired?52 property, and if is equals true,
indicating the demon has executed before, the driver kills the
demon. Otherwise, the driver runs the demon. The one
exception is that demons containing a "t" (true) in their -act
slot kill themselves when they test false. This feature allows
rules that should be tested only once to remove themselves from
the demon queue, eliminating the need for an external control

mechanism to do so.

51. "id-update" is the name of the procedure that maintains
belief in DAS2,

52. A demon acquires the property, fired? = true, anytime its
+act slot executes.

- 84 -

Rules built around a demon-oriented architecture feature
tremendous fle#ibility and power. In addition to being able to
test rule-like if-then-else constructs, demons can mimic the
"chaining" and "fact-posting" ability of blackboards by using
their +act slots to spawn other demons onto the agenda. The
cyclical rule set,53 as an example, is implemented by spawning
a single demon that examines probability of ID and waits for it
to cross an arbitrary threshold. When this happens, the +act
part spawns a second demon whose task is to look at the

object’s combat radius, assign a probable point cof origin, and

spawn a third demon. This last demon examines deployment data
of the possible bases and asserts additional information to
identity.

This sequence demonstrates the simplicity of the
interaction between demons, as they wait their turn, come to
|ife, and execute their function, and then die. We have the
option, though, of augmenting communication between demons by
parameter—-passing (through the params slot) and message-passing
[Dolan, 1984], which allows primitive communication between
demons. Though DAS2 does not currently use these features, we
may come across rules in the future that could use a

cooperative effort to solve an inference problem.

53. Described in Chapter 3--see the table of contents.

- 85 -

There are several other advantages to using demons for
object analysis. Because they do not have to die after they
execute, demons have the ability to "hang around" and wait for
events to occur. For instance, one rule we developed requires
detection of ememy "S-turn" maneuvers. We could spawn a demon
to look for this trait for us, checking over several time
frames to see if an airborne object’s maneuvers oscillate

transversely to its flight path.

DAS2 also uses meta-demons [Dolan, 1984], an extension that
allows demons to be organized into logical execution groups.
Meta-demons are "wrapped" around a set of constituent demons
that are about to be spawned. The meta-demon then controls the
execution sequence of its constituents. Three types exist:

OR-demons execute when at |least one constituent tests true, and

then all constituents are allowed to execute at the same time;
AND-demons execute when all constituent demons test true, and
then all are allowed to execute at one time; XOR-demons allow

the first of its constituent demons which tests true to

execute, but none of the others.

Meta-demons are used in D0AS2 +to increase efficiency. For
example, several groups of rules we developed are mutually
exclusive, meaning only one of them can possibly execute.
Wrapping an XOR-demon around the group when they are ready to

spawn ensures that the first to test true will fire, but no

- 88 -

time will be wasted checking the others. Meta-demons also
ensure that all demons in a group execute at the same, for the

case when time-ordering of results is important.

Since demons afford us explicit control over which demons
execute, we can afford to have a large number of defined demons
(eventual ly the case for object analysis), while maintaining
efficiency by running only those that have a chance at
executing. Besides the ability to control which demons are run,
we can also determine which airborne objects they are spawned
upon. Uniike the rule set of OAS1l, rules do not have to be

tested on every detected airborne object.

Another advantage of demons is that we can modify the
inference engine, or driver code. In the future, we can decide
how to handle confidence propagation or evaluate different
methods of interfacing with the belief-mechanism. We are not
constrained, as in OASl, to use a single method of processing
data, rules, and belief. For example, one possible extension
could be to prioritize the execution of demons, perhaps making
sure that a demon that presents a message to the pilot is given
immediate attention. Detection of a rocket coming towards
ownship and the subsequent message that a demon might give a
pilot, for example, should be given the highest priority. With

flexibility in the inference engine, we should be able to fine-

- 87 -

tune the system as it changes and grows. Currently, this

feature is used only to ensure that demons are killed once they

execute the first time.

Finally, looking even further into the future, demons lend
themselves easily to processing in a highly-parallel
architecture. When a '"burst" of new sensor data becomes
available, a large number of associated demons are spawned. In
many cases, the order in which they run is not important. 1In a
parallel-processing environment, demons could queue in a2 iist
and wait for the next available processor. The processor would
execute the demon, perhaps posting a message, updating belief,
or spawning another demon into the queue. Demons that required
time—ordered execution could be tagged so they were only
accessed by the same processor, or were checked to see if it
was their time to execute. A simpler scheme would be to
al locate a processor for each new airborne object detected,
which would handle all the demons associated with that object.
Using this method, performance of the system would stay
essentially the same no matter how many objects were detected.
Of course, execution times of formation and target demons would

increase with the number of airborne objects.

Airborne Object Frames

. This section examines some of the other aspects of DAS2’s

design, including the knowledge representation and the use of

- 88 -

procedural attachments to control the execution of demons.

Referring again to the block diagram of Figure 5, defined
demons reside in the Knowledge Base, along with pre-mission
information and data on enemy bases and possible targets. One
of the functions of the Airborne Object Frames is to spawn
demons, moving them from their "dormant" state into the Spawned
Demon Queue, where they can be accessed by the demon inference
engine. Demon-spawning is controlled by procedural attachments
(P.A.s) to the slots of airborne object frames; the slots hoid
sensor returns that are needed by the demon. When the input
trackfile receives sensor returns on an airborne object, it
puts the data into the appropriate slot on the frame,
triggering a P.A. that spawns demons that use this data. To

ilfustrate, a reduced version of +the airborne object frame

definition used in 0AS2 is shown below:54

(defframe airborne object
(slot name)
(siot velocity)
(slot xy-pos)
(slot heading)
(slot RCS)
(slot IR_temp)
(stot radar)
(s!ot maneuvers)
(slot altitude)
(slot prev-altitude)
(slot hyp-ptr)
(slot com_rad)

54, For a fuil-length exampie of an airborne object frame with
slots filled, see the sample run of 0AS2 in Appendix B.

- 89 -

(slot base_POD)
(slot poss_IDs)
(slot ptr_list)
(slot pID_list)

(initialize (fput &node ’hyp-ptr 55
(make-instance ’hypotheses)))

(proc velocity (spawn *wmx*
(xor-demon (speed-demonl &node)
(speed-demon2 &node)
(speed-demon3 &node)
(speed-demond &node)))

put after)
* (proc xy-pos (set lastxy (fget &node ’xy-pos)) put before)
* (proc xy-pos (fput &node ’heading
* (cmpute-head (fget &node ’xy-pos)
* lastxy))
* put after)
(proc RCS (spawn *wm*
(xor-demon (speed-demonl &node)
(speed-demon3 &node)
(speed-demond &node)))
put after)
(proc IR _temp (spawn *wmx*
(xor-demon (IR-demonl &node)
(IR-demon2 &node)
(IR-demon3 &node)
(IR-demon4 &node)))
put after)
(proc altitude (spawn xwmx (alt-demon &node))
put after)
(proc com_rad (spawn swmx (comrad-demon &node))
put after)
(proc base P00 (spawn *wmx (POO-demon &node))
put after)
)

55. The initialize piece of code executes upon instantiation of
a frame; in this particular case, the code <creates a
pointer to a chi!d hypotheses frame that keeps mission and
phase information about its parent airborne object.

- 90 -

The above code creates an airborne object frame, which can

be instantiated by executing,
(set PLANEn (make-instance airborne-object))
Values can be put into the slots of instance PLANEn by
(fput PLANEn slot-name value)
and can be accessed by
(fget PLANEn slot-name)
The code that creates slots in the above frame-definition is
(slot slot-name)

and the code to c¢reate a procedural attachment to 2 slot that

has been defined is
(proc slot-name (... code ...) get/put after/before)

where the "/" indicates to <c¢hoose one or the other. The
get/put and after/before choices indicate whether the P.A. is

triggered before or after a "get" or a "put" to the slot.56

Once within the executable code of the attachment, other

values in the instance can be accessed with the variable
"&node", which refers to the instance itself, and "&slot" which
56. Therefore, there are four combinations: before/get,

before/put, after/get, and after/put. This is done so when
the P.A. executes, it can have access to whatever state of

the slot it requires.

- 91 -

refers to the slot-name of +the current instance. Take, for
example, the procedural attachments to the xy-pos slot,
designated by asterisks on the previous page. The slot holds
an ordered pair (x y), referring to the position of the
airborne object relative to ownship. The two P.A.s compute the
heading of the airborne object whenever new position
information is entered into the frame. The first P.A. sets the
global variable lastxy to the value of xy-pos before it is
changed. The second P.A. computes the heading (using the
cmpute-head function) with arguments of lastxy and the new xy-

pos value,57 and puts it into the heading slot of the airborne

object.

The other P.A.s |listed spawn demons using meta-demons. For
example, the P.A. for velocity spawns four demons (rules) that
have a chance of firing when new velocity information is
received. The four are wrapped with an xor-demon meta-demon,
to ensure that only the first of the demons to test true will
execute. These two techniques promote efficiency: (1) only
trackfile facts that are be used by a demon cause that demon to

be spawned; and (2) meta-demons reduce the number of demons

that are tested.

Most of the slots in the airborne object frame are fairly

57. The new xy~pos value was put into the slot between the two
firings of the procedural attachments.

- 92 -

self-explanatory, except for the three slots dedicated to
0AS2’s belief mechanism: poss IDs, ptr_list, and pID_list. An
explanation of these slots can be found in the Belief

Maintenance section, below.

Two other frame definitions are important for the knowledge
structure of DAS2. These are the definition of the hypotheses
frame, which contains mission-level information, and the
cluster frame, which holds formation-level information. The
definition of the former is:

(defframe hypotheses

(slot mission)

(slot phase)

(slot acc-hist)

(proc mission (announce-mission &node) put after)
(proc phase (announce-phase &node) put after)

As mentioned in footnote 55 above, the hypotheses frame is
created as a child to an airborne-object frame wupon the
latter’s instantiation. A pointer to the hypotheses frame is
put in the hyp-ptr slot of the parent airborne object. The
hypotheses frame currently bholds mission-level information
about an object, including possible mission, phase, and
targets. This data could, of course, be stored in the parent
frame, but in the future there will be muitiple hypotheses
dealing with airborne object intent and function, so it is best
to separate the knowledge now. When ECM capability is added to

0AS2, the hypotheses frame may be used in rules such as, "IF a

- 93 -

stand-off jammer is detected, THEN hypothesize the existence of
an enemy formation". Later, a sepzrate belief mechanism just

for hypotheses may be added to the system.

Cluster frames hold formation-level data, and are defined by:

(defframe cluster
(slot name)
(slot constituents)
(slot heading)
(slot targets)
(proc constituents (fput &node ’'heading
(find-avg-head (fget &node &sliot))

) put after)
(proc heading (spawn xwmx (target—demon &node)) put after)
(proc targets (spawn xwmx (sayfrm-demon &node)) put after)

These frames indicate how detected airborne objects are
organized into groups. The constituents slot contains a list
of pointers to airborne objects that are members of the
formation, and the targets slot contains a list of possible
friendly bases or planes that the formation may attack. The
heading slot contains a2 value that is the average of the values
in the heading slots of the formation constituents. This
heading value is used in the determination of targets: those
that lie along the | ine—of-sight of the formation are

considered possible targets.

Cluster siot-values are computed by demons dedicated to the
task, as shown by the procedural attachments above. Because

demons are not restricted to pattern-matching functions, as are

- g4 -

many rule-based inference engines, extensive numerical

computations can be included as part of rule-testing or
execution. This ability to compute needed values "on the fly"
means fewer facts need to be stored in a knowledge base. When

seldom-used values are computed as they are needed, the

knowledge base stays uncluttered and system efficiency

increases.,

Ancther example of numerical computation within a rule is
the formation rule that gathers airborne objects into groups.
Currently, criteria for membership in 2 formation is |imited to
physical proximity, but as knowledge about mission and
formation tactics is added to the knowledge base, it can be
used, too. As shown in the sample run in Appendix B, the
sayfrm~demon that is a P.A. to the cluster frame’s target slot
prints a summary of formation information at the end of every

time frame.

Knowledge Base

Besides containing the definitions of demons, the knowledge

base, as it stands right now, contains definitions of enemy
bases and friendly targets. Base information consists of a
base name, location, and deployment percentage for each type of

possible ID. We assume that pre-mission data might give us
this type of information. As discussed in Chapter 3, plane

deployment information at enemy bases is used in the cyclical

- g5 -

rule set to help determine ID, once combat radius and a list of

possible originating bases is determined for each airborne
object. Bases are "created" for a scenario using a create-base
macro, which allows arbitrary positioning and deployment
information to be entered. The x-y position is used in the

calculation of an object’s combat radius, to determine which

bases it might have taken off from.

Target information consists of names, locations, and values
of friendly sites, which might be strategic headquarters, troop
concentrations, surface-to-air missile sites, or air-strips.

This data is used in the determination of possible targets for

formations of enemy planes. A site’s position information is
used in the calculation of the Iline-of-site to the enemy
airborne object formation, which is then compared to the
heading of the formation. If the difference is within a

threshold of 10 degrees, the site is c¢onsidered to be one of
the formation’s possible targets. A site’s value parameter may
be used later by a tactical situation assessment module that
determines the size of +the incoming formation based on the

strength of airborne force needed to successfully attack the

site.

Belief Maintenance

Although shown as a dotted box in Figure 5, a rudimentary

belief-maintenance mechanism has been implemented for 0AS2.

- 96 -

The dotted box is meant to indicate that any belief mechanism

could fit into the modular design of O0AS2, intercepting
assertions from the demon "inference engine" on their way to
the airborne object frames. ODAS2’s current belief mechanism,
which uses a time-smoothing "fifter" in the computation of 1D
probability, keeps a history of confidence assertions for each

possible ID in a list. A "belief rating" is then computed for
each ID by taking a time-weighted average of the current
probability of ID vector and the assertions in the l|list. An
interactive demonstration of the belief mechanism will clarify

the operation.

First we <c¢reate a demonstration airborne object called
demo-piane. (The computers response is shown in 2talics; the
"s" is the LISP prompt):

> (detect demo-plane)
Detected an airborne object...

(DEMO-PLANE)

Now we can view the demo-plane airborne-object frame, and

examine its slots and values. Initially, each slot is empty.

> (view demo-plane)

F.568

SELF (F.568 () () () (#{Procedure 77}))

CLASS (AIRBORNE OBJECT () O O ()

PARENTS 0

NAME (DEMO-PLANE () (O O 0)

VELOCITY (O O O O (#{Procedure 78}))

XY-POS (O O O (#{Procedure 79}) (#{Procedure
80}))

- 97 -

HEADING O 0 0 0O O)

RCS (O O O () (#{Procedure 81}))

IR TEMP (O O O O (#{Procedure 82}))

RADAR (O O O O (#{Procedure 83}))

LRSIG (O O O O (#{Procedure 84}))

ENG (O O O O (#{Procedure 85}))

ENG_TYPE (O O O O (#{Procedure 86}))

LENGTH (O O O () (#{Procedure 87}))

WIDTH (O O O O (#{Procedure 88}))

MANEUVERS (O O O () (#{Procedure 89}))

ALTITUDE (O (O O (#{Procedure 80}) (#{FProcedure
913))

PREV-ALTITUDE (O O O O O)

HYP-PTR (F.569 O O O Q)

COM RAD (O O O () (#{Procedure 92}))

BASE POO (O O O () (#{Procedure 93}))

POSS IDS (O O O O Q)

PTR _LIST (O O O O O)

PID LIST (O O O O O)

The frame above contains three slots that are used for
belief-maintenance: the POSS_IDS siot contains a list of the
possible identities of the airborne object; the PTR_LIST slot
containg a |list of pointers to child frames that more
completely represent the ID classes in the POSS_IDS slot; and
the PID _LIST sliot contains a list of values that represent the
probability of ID of each corresponding entry in the POSS_IDS

slot. To see the function of these slots, we assert "ID is

fighter, conf = .5":

> (id-update demo-plane ’fighter .5)
(1.0)

Now, if we view demo-plane, we see the effect of the
assertion (only the belief-maintenance slots are shown in the

remaining traces):

> (view demo-plane)

- 98 -

F.568

NAME (DEMO-PLANE () O (O ())
POSS IDS ((FIGHTER) ()" O (O ()
PTR TIST ((F.570) O O O 0)
PIDLIST ((1.0) () () O 0)
PIDGFIGHTER ((0.50.00.000° 0 O O)

The assertion that demo-plane’s ID could be a fighter
causes four things to happen: fighter is added to the |ist of
possible IDs in the POSS_IDS slot; a subordinate fighter frame
(F.570) is created to hold specific ID information about
fighters, and a pointer to it is added to the PTR_LIST siot; a
PIDZFIGHTER slot is created to keep a history about all fighter
assertions; and the PID_LIST, which keeps the current

probability of ID vector, is updated.

In general, the PID%obj-typei slot keeps all past
confidence values with which ID was asserted to be of type obj-
typei. A confidence rating, CRi’ is then computed for obj-

type, based on the time-weighted average of the current

probability value of IDi and the confidence values contained in
the PID%obj—typei slot. The method used takes the current
probability value and the |ast two asserted confidence values

and weights them by .5, .3, and .1, respectively. (Because
three values are used, when a new PID%obj-type slot is created,

zeroes are inserted for the first two values.)

The final probability of ID vector is computed by taking

CRi for each obj—typei and renormalizing so the CRis sum to

_ 99 -

unity. This vector is then stored in the PID_LIST slot, with
the first probability in the slot corresponding to the first ID
listed in POSS_IDS, the second probability corresponding to the

second ID, etc.

Of course, in the frame above, since there is only one
possible ID so far, the PID_LIST value is 1.0. However, when
we assert "ID is bomber, conf = .3", we’ll see the belief
values distributed between bomber and fighter.
> (id-update demo-plane ’bomber .3)

(0.625 0.875)

> (viéw demo-plane)

F.568
NAME (DEMO-PLANE () (0 (O ()
POSS IDS ((FIGHTER BOMBER) (O O O)
PTR LIST ((F.570 F.571) O O O O)
PID LIST ((0.625 0.875) O O O O)
PIDZFIGHTER ((0.50.000 O 0O O O)
PIDZBOMBER ((0.80.000 O 0O O O)

We see now that the .625 to .375 ratio in the PID_LIST slot
is equal to the initial values in the PIDAFIGHTER and
PID%BOMBER slots. (When the prior probability equals 1.0, it

is not used in the time-weighting scheme.)

If we want to assert ID information about specific fighter
or bomber types, like MiG-29 or Tu-95, we need a place to store
this information. That is the purpose of the fighter and

bomber frames pointed to by the elements of the PTR_LIST slot.

- 100 -

If we view F.B70 and F.571, the frames representing

specific fighters and bombers, we see that they are both

currently empty.

> (view ’f.570)

F.570 '
SELF (F.570 () O (O O)
CLASS (FIGHTER () O O (O)
PARENTS (F.568 () (O O 0O)
POSS IDS (O O O O 0O)
PID TIST O 0 0 O 0)

> (view ’f.571)

F.571
SELF (F.571 O O O O)
CLASS (BOMBER () (O (O ()
PARENTS (F.568 () O (O O)
POSS IDS (O O O O O)
PID TIST O 0 O O O)

However, they come into play when we assert "ID is MiG-29,
conf = . 7". This assertion causes MiG-29 to be added to the
POSS_IDS slot of the fighter frame, F.570, where belief-
maintenance occurs for ID assertions about specific types of
fighters. In addition, the assertion has an effect on the
parent frame, demo-plane, since MiG-29 is of class fighter. It
is as if the assertion "ID is fighter, conf = 0.7" were made.

> (id-update demo-plane M1G-29 .7)
(1.0)

> (view demo-plane)

F.568
NAME (DEMO-PLANE () O O (O)
POSS IDS ((FIGHTER BOMBER) (OO O 0O)
PTR TIST ((F.570 F.571) O O O 0O)
PID LIST ((0.692 0.308) O O O O
PIDZFIGHTER ((0.70.50.00.00 O 0O O O)
PID%BOMBER (0.3 0.00.00) O 0O O 0O

- 101 -

The confidence value 0.7 has been added to the PID%FIGHTER
slot and PID LIST has been updated.>® In addition, the child

fighter-frame to demo-plane has been updated.

> (view f.570)

F.570
SELF .\, (F.570 () () O O)
CLASS (FIGHTER ()" " O 0)
PARENTS (F.568 () O O O)
POSS IDS (MIG-29) O O O 0O)
PID TIST (1.00 O O O O)
PIDGMIG-29 ((0.7000.0° 00 O 0O)

MiG-29 was added to the POSS_ IDS slot of F.570, because it
was not a member already, the PID LIST slot was set to 1.0, and
the PID%MIG-29 slot was created with an initial value of 0.7,
which means, "Given that ID is fighter, Prob(ID is MiG-29) =
0.7". If we now assert another specific ID of type fighter, the

proba— bilities will be distributed between IDs just as in

demo-plane.

> (id-update demo-plane ’Su-27 .85)
(0.452 0.548)

58. The ratio .692/.308 s equal to the ratio
CR where CRfighter = [(.B x .625) + (.3 =

fighter’ “Rbomber
[(.B * .375) + (.83 = .3) +

7)Y + (.2 * .5)] and CR

bomber
(.2 x 0.0)]. The values .5, .3, and .2 are weighting
factors, and .625 and .375 =are the prior probabilities of

ID.

- 102 -

> (view demo-plane)

F.568

NAME (DEMO-PLANE () (O (O ()

POSS IDS ((FIGHTER BOMBER) () () (O ()
PTR_LIST ((F.570 F.571) () () O ()

PID LIST ((0.752 0.248) O O O ()
PIDZFIGHTER ((0.85 0.7 0.5 0.0 0.0) () O O Q)
PIDZBOMBER ((0.8 0.0 0.0) O O O 0O)

The confidence value 0.85 has been added to the PID%FIGHTER
slot, since an Su-27 is of «class fighter. When we view the

child fighter frame:

> (view ’f.570)

F.570
SELF ... (F.570 OO (O O O)
CLASS (FIGHTER () (O (O ()
PARENTS (F.568 () () O ()
POSS IDS (MIG-29 SU-27) O O O ()
PID TIST ((0.452 0.548) () () O Q)
PIDGMIG-29 ((0.70.00.0 O O O O)
PIDZSU-27 ((0.85 0.0 0.0) () O O 0O)

We see that Su-27 has become one of the possible IDs, and
the PID_LIST has been adjusted accordingly. Another assertion
about Su-27:
> (id-update demo-plane ’Su-27 .95)

(0.874 0.626)
> (view demo-plane)

F. 568

NAME (DEMO-PLANE () (O (O ()

POSS_IDS ((FIGHTER BOMBER) () (O () Q)

PTR _LIST ((F.570 F.572) O O 0O ()

PID LIST ((0.795 0.205) (O O O O)

PIDZFIGHTER ((0.95 0.85 0.7 0.5 0.00.0) O O O
0)

PIDZBOMBER ((0.80.00.0) O O O O)

- 103 -

The 0.95 assertion on Su-27 has been added to demo-plane,

increasing the likelihood of Prob(ID is fighter) to 0.795.

> (view *f.570)

F.570
SELF ... (F.570 O O O O)
CLASS o\, (FIGHTER ()" (0" O)
PARENTS (F.568 O O O O)
POSS IDS (MIG-29 SU-27) O O O ()
PID TIST ((0.875 0.625) O (O O 0)
PIDGMIC-29 ((0.70.00.00 O O O O
PIDGSU-27 ((0.95 0.85 0.00.0) O O O 0)

In addition, Prob(ID is Su-27 | ID is fighter) is now
0.625. If we assert that ID is bomber with a very low
confidence, it increases the probability that ID is fighter:
> (id-update demo-plane ’bomber .1)

(0.816 0.184)

> (view demo-plane)

F.568

NAME (DEMO-PLANE () O (O ()

POSS IDS ((FIGHTER BOMBER) () (O () ()

PTR LIST ((F.570 F.571) (O O O ()

PID LIST ((0.816 0.184) () O O)

PIDZFIGHTER ((0.95 0.85 0.7 0.5 0.00.0) (O O O
)

PIDZBOMBER ((0.2 0.3 0.0 0.0) O O O Q)

This concludes the demonstration of the belief mechanism.
Part of the reason that the current value of Prob(ID) is
included in the computation of the new value of Prob(ID) is to
"smooth" the transition in probability in case of a "quirk"
sensor return that incorrectly asserts ID. With this method,

several assertions upon IDi must be made for Prob(IDi) to be

- 104 -

significantly shifted towards that ID]‘ It should also be
noted that low-confidence assertions upon ID increase all the

other ID’s probability, as shown by the above assertion, "ID is

pomber, conf = 0.1",

Overal!, this rather ad-hoc time-smoothing belief mechanism
has |ittle sophistication, especial ly when it comes to
combining multiple evidence upon a single hypothesis. The
methodology, however, is conceptually valid in at least one
respect: the most recently received sensor data is assigned the
most validity. This is important because sensors may provide
inaccurate information at long range, and later correct their
prior assertions when the airborne objects get closer. 0On the
other hand, a sensor may provide more accurate information at
long range if jamming or poor weather conditions at close range
cause degradation of sensor performance. Perhaps a future
implementation of the expert system can decide when +to
disregard sensor returns, even if they are the latest to have

been received.

For future work, we recommend the Shafer representation and
Dempster’s rule of combination to provide an inferencing

technigue for sensor evidencial reasoning. Several previous

59

efforts in the field are serving as the basis for development

59. See References.

- 105 -

work . We expect that Shafer-Dempster +theory will provide

greater accuracy and efficiency than the Bayesian inference net

of 0AS1. The former is purported to provide greater
inferencing capability when the number of sensors and IDs is
large. This is because the use of standard Bayes rule

inferencing reguires the knowledge of appropriate statistical
data for the ID and sensor relationships, which is often
unavailable as system complexity increases.eo The efficiency
using Shafer-Dempster should also increase, since ID
probability updates need only be done when new sensor evidence

is received.

A Sample Run

0AS2’s operation is depicted in a sample run in Appendix B.
Shown is the input trackfile +that drives the system, the
response of the system, an internal trace of demon actions, and
the knowledge representation of frame objects. Full-length
airborne object frames are listed, and 2 trace is shown of the
demon driver code that selectively spawns, executes, and kills
demons. Criteria for cyclical rule invocation, requests for
sensor information, and future improvements to the system are

also discussed.

80. In addition, it is difficult to specify consistent degrees
of belief with Bayesian inferencing, as shown by [Shafer,
1976, p.24]. Also see the introduction of [Lowrance and
Garvey, 1983].

- 106 -

Summary of DAS2: Strengths

DAS?2 has satisfied its design goals by reducing dependency
on a pre-packaged expert system tool (ARF), resulting in a
modular system that is flexible and extensible. This, in turn,
has increased system efficiency: O0AS2’s sample scenarios
process three times the number of airborne objects as 0AS1 in
one-sixth the time--a2 factor of nearly twenty in increased
performance. Running the scenaric of Appendix B, the non-
optimized61 system with compiled code runs nearly in real-time,
with the use of 30-second time frames. In addition, the system
uses oniy one-ninth the heap space62 of O0AS1 for the same
number of objects, resulting in much less frequent garbage-

collections.63

System extensibility is enhanced by the use of demons to
implement inferencing capability and the use of individual
frames to hold information about airborne objects. As
previously mentioned, any number of demons can be defined in
the system without seriously affecting performance. This means
we can add rules a2t any time by coding a few lines of LISP. 1In

addition, since demons <can execute general procedures, rather

B1. Steps have not bean taken to reduce the execution time of
the system by exploiting redundancy; it is estimated we
could increase performance by 50% i1f we optimized the code.

62. Heap space refers to storage area in a LISP environment.

63. Garbage-collection is a computer operation in a LISP
environment that reclaims unused memory cells.

- 107 -

that being restricted to pattern-matching or testing if-then

constructs, we have the freedom to code rules that print

messages, organize formations, or wait for the occurrence of
events.
Efficiency is further enhanced by having procedural

attachments spawn only those demons that have a chance at
executing, and by using meta-demons to eliminate unnecessary
demon testing. Before, in 0AS1l, each rule was checked on every
detected airborne object. Now, only selected demons need be

checked upon a |imited number of airborne objects.

Other advantages of DAS2 include its simple operation and
clean interface between modules. All system tasks performed
upon the reception of new. sensor evidence are initiated by a
single entry in the input trackfile. From there, returns are
stored in the knowledge base, and procedural attachments send
appropriate demons to the agenda, where they wait to be tested
and executed. Tests involve accessing the knowledge base (or
asking for information when it’s unavailable), while executions
spawn other demons, perform belief-maintenance, or make

assertions to the knowledge base.

The demon-oriented architecture of 0AS2 creates a
"distributed" inference engine, in that spawnings, killings,

and executions of demons are relatively independent processes,

- 108 -

and, to a certain extent, can take place in any order. This
makes DAS2 an especially good candidate for implementation in a
parallel-processing environment. One scheme would be to have
unused processors take the next demon waiting in the queue and
process it until completion. If this were accompanied by a
mechanism that could accept sensor returns asynchronously,
rather that in éequence, the performance of the system would be

further improved.

The modular design of O0OAS2 wil! make it easy to add a
bel ief-mechanism to the system, Shafer-Dempster or Bayesian-
based belief trees can be associated with each airborne object
frame, as is done with the current time-smoothing belief
algorithm. An additional benefit of the Shafer-Dempster
implementation is that updates of the tree need only be
performed when knowledge of ID is necessary, rather than each

time new evidence is received.

Because we have reduced system dependency on ARF, almost
any frame-based knowledge representation system can now be used
in OAS2, if it has some provision for procedural attachments.
Use of a more streamlined knowledge representation mechanism
than ARF would likely improve the system’s performance, since
the overhead for rules, STMs, and " other frame objects that
support the pattern-matching inference engine in ARF would not

be necessary. Another deveilopment effort, in fact, has

- 109 -

proceeded in parallel with O0AS2, resulting in a frame system
with P.A.s that has four times the execution speed of ARF.

This task was performed by Craig Lee of Hughes [Lee, 1985].

Finally, DAS2 provides some of the features listed in Chapter 3

as characteristic of an ideal object analysis expert system.
These include the ability to provide requests for sensor
informatior to 2 sensor manager, and the system structure to
provide mission-level inferencing about formations, targets,

and intent of enemy planes.

Wezknesses of 0AS2

0AS2 has no serious structural problems, and most of the
shortcomings of +the system can be overcome by further
development work. Unlike O0AS1, O0AS2 provides an extensible

system structure, so the elimination of problems should not be

too difficult.

A current weakness of O0AS2 is its wunsophisticated I/0
facility: it is difficult both for the user to easily develop
new input scenarios and to see the result of system inferences.
New input trackfiles are relatively time-consuming to develop
because a sensor return for each sensor must be specified for
each airborne object for every time frame of the scenario. To
thoroughly evaluate the expert system, a variety of scenarios

need to be developed. Examination of performance in different

- 110 -

situations helps the system designer determine the confidence

values of rules, discover the relative importance of different

sensor returns, and prioritize sensor use.

The iterative nature of expert system development suggests
that new scenarios should be easy to develop. Ideally, for a
scenario |like that of Appendix B, a user should simply have to
specify the IDs of the six incoming aircraft, their mission,
and their flight path. From this data, a preprocessor would
then create an entire input trackfile that could be loaded into
DAS2. Development on =a "sensor simulator", in fact, has

already begun; it is discussed more fully in the next chapter.

Turning to the system output of O0AS2, the current
implementation has |imited capability. While O0AS2 does
identify +the detection of airborne objects and print out
formation and target information, there is no way to explain

the decision process of the system or trace +the current

Prob (ID) of airborne objects.

The requirement for an explanation facility may be made
easier because rules are implemented as demons. The existing
demon-tracing facility64 provides a skeleton for a more
advanced explanation facility, which would allow a user to

64. See the demon traces in Appendix B.

- 111 -

determine the inference process through which a piece of
knowledge was discovered, as well as record the frequency with
which rules were used. The relative importance of rules could
then be investigated in anticipation of the time when the ratio

{rule importance/rule cost} determines how to al locate scarce

Sensor resources.

The problem of presenting the wuser 'with the current
Prob(ID)s for all objects detected could be solved by
installing a query facility into the system, or by presenting
the user with periodic updates on ID upon the reception of new
evidence. The first solution is probably what will eventually
be implemented in 0AS2, since the use of Shafer-Dempster theory

for belijef-maintenance allows Prob(ID) to be updated whenever

it is needed. The explanation facility would contain a simple
natural language interface, allowing the wuser to ask about
mission, phase, and ID of various craft he opposes. In
addition, there will very likely be a graphics display

connected to the output of the system, as in DAS1. Much of the
required information could then be presented in tabular and

graphic form, reducing the frequency of user requests.

- 112 -

CHAPTER 6
SUMMARY OF RESULTS
AND RECOMMENDATIONS FOR FUTURE RESEARCH

Introducticn

This final chapter discusses some of the major findings of
this research, summarizes important aspects of the two versions
of the object analysis expert system, and presents

recommendations Tor future extensions to 0AS2.

0AS1 Summary

The first cut at the expert system, 0AS1l, served primarily
as a tool to learn about requirements for the object analysis
task. O0AS1 demonstrated the feasibility of performing object
analysis with an expert system, and with the graphics front-
end, helped to demonstrate the impact of artificial
intel ligence technigues on avionics. In addition, OAS1 served
as a vehicle to evaluate ARF, explore the requirements of
object analysis belief maintenance, =and identify important

rules and knowledge areas.

OAS1 performed object analysis reasonably well, but
suffered in power, flexibility, and extensibility because it
was built on top of an integrated inference engine/rule
base/confidence propagation package. With OAS1’s emphasis on
frames to represent system objects, we were unable to implement

all the rules we gathered through knowledge engineering.

- 113 -

For a prototype expert system, we really wanted to be able
to investigate different knowledge representation schemes and
rule formats. Furthermore, we wanted to be able to evaluate
different confidence propagation interfaces with the belief

maintenance mechanism.

A positive result of 0AS1 was the Bayesian inference net.

Though the ID-update process is time-consuming, it maintained

belief well, and was able to handle Iincorrect evidencial
assertions without producing sudden "jumps" in probability of
ID. The Bayesian net accurately describes relationships

between sensor evidence and identity through probability
matrices, and represents evidence in a tree structure that

reflects the ordering of information in the problem domain.

Of the rules that were implemented, we found that the
cyclical rule set relating ID to combat radius, then to point-
of-origin and deployment data, and finally back to identity,
worked very well. Correct ID was achieved more quickly using
the cyclical rules, with eighteen percent fewer sensor

assertions required.

Finally, the graphics interface we added to 0AS1 proved to
be very useful. Besides its value as a marketing tool, the
overlay helped to identify useful methods of representing

information to the eventual end-user, the pilot. We realized

- 114 -

that the pilot needs to be informed of enemy IDs and
formations, but that he should a2lso have some way to query the
system for additional information. Finally, we identified the
eventual need for an explanation mechanism to justify

inferences to the pilot.

0DAS2 Summary

With the shortcomings of OAS1 in mind, we designed DAS2 to
have a much more modular structure. We implemented rules as
demons, using their built-in control structure as an inference
engine to perform spawn, test, execute, and kill functions.
0OAS2 has a2 clean interface between evidencial input (sensor
returns) and the inference engine, accomplished through the use
of slot procedural attachments to spawn demons and meta-demons.
This interface promotes system efficiency: only those rules
that have a chance of firing are ever tested. Furthermore, the
number of defined demons does not affect the execution time of
the system. In contrast, O0AS1’s execution time increases
| inearly as a function of the number of defined rules, since

each rule in the rule base is examined when the inference

engine is invoked.

Demons’ ability to execute general code, coupled with the
centralization in frames of knowledge about planes and
formations, allows implementation of ali the rules mentioned in

Chapter 3. DAS2 performs high-level inferencing about airborne

- 115 -

object formations, missions, and mission-phases, and has the
structure necessary for extension to the tactical situation
assessment task. 0AS2 also provides requests for missing
sensor returns, and hypothesizes possible targets for plane

formations.

One design goal of 0AS2 was to make the system modular
enough so that different belief maintenance mechanisms could be
evaluated with a working expert system.65 Though we did not
develop a sophisticated belief system for 0AS2, we came up with
an ad-hoc "time-smoothing" mechanism. Though unable to combine
multiple assertions, it has a valid methodology of assigning
the most confidence to recently-received sensor data. By using
a rudimentary belief mechanism in O0AS2, we demonstrated the
feasibility of keeping beiief information with frame objects,
whether those frames represent classes (fighter) or specific

types (MiG-29) of airborne objects.

Recommendations For Future Research

0AS2 provides a promising system design upon which to build

an operational system. To become truly useful, however, much
more knowledge must be embodied in the system. Research must
be done in the following areas: formation-level rules (what

65. One of the next plans for O0AS2 is the integration of a
Shafer-Dempster belief mechanism, the development of which
took place in parallel to that of DAS2.

- 116 -

formation constituencies and actions help to determine ID);
mission and phase rules (how does mission affect ID, what does
one plane’s mission imply about other planes in +the same
formation, how does current phase determine ID and future
maneuvers); and rules to distinguish between planes of the same
class (what distinguishes a MiG-29 fighter from an Su-27
fighter, what characterizes two MiG-29s outfitted for different
missions). Other sources of higher-level knowledge will become
available when Defense Systems Corporation completes its pilot
interviews, and when outside sources, such as JTIDS and AWACS

become integrated into the system.

Additional research must also be performed on lower-level
sensor attributes, to find out how they determine parameters
currently in use in 0OAS2. For example, 0AS2 now assumes that
RWR sensors give the specific radar type of airborne objects.
In reaiity, however, RWRs give pulse repetition frequency,
signal coding, radio frequency, and other low-level attributes
that together determine radar type. So the expert system will
more accurately reflect real-world sensor inputs, additional

rules need to be developed and installed in DAS2.

One feature of DAS1 that is lacking in OAS2 is a confidence
propagation mechanism. This =allows both sensor returns and
rules to have associated "belief factors", which are combined

according to some algorithm to yield resultant assertions that

- 117 -

also have associated confidence measures. Various algorithms

must be evaluated, and an interface to the belief mechanism
chosen.

Lack of input/output facilities are a particular weakness
of 0AS2. Currently, system input consists of sequence of

sensor data that must be hand-coded for each different
scenario. Because the performance characteristics of sensors
are generally "fixed", a better solution is to develop a

simulator that embeds sensor characteristics in software.

For example, to simulate =a radar sensor, we would gather
its performance characteristics: detection range, argular
resolution, jamming and weather sensitivity, base frequency,
scan rate, etc. In addition, since some capabilities vary as a
function of the type of plane being examined, we would have to
encode these also. Once 2 sensor is "defined" in this manner,
the user would need only to specify the airborne objects in a
scenario, and the simulator would output the sequence of

returns the sensor would provide.

Use of a sensor simulator has many benefits:

(1) the user no longer has the cumbersome task of
hand-coding trackfiles

(2) the rate at which sensor returns are received can
be easily varied

- 118 -

(3) a sensor can be completely "turned of f", if
desired, to evaluate expert system performance
without it

(4) new airborne object types can be added to the
expert system by simply augmenting current sensor
performance characteristics

(5) 2 simulated sensor manager could be developed,
"elosing the loop" by ‘integrating expert system
"requests for information" into the output of the
sensor simulator

The simulator is current being designed by Craig Lee and

Mark Young of Hughes. In some ways, depending on how

extensively development proceeds, the sensor simulator

resembles another expert system.

The output facilities of 0AS2 need to be improved. The
graphics overlay of 0AS1 provides some insight intoc how to
effectively present information to a pilot, buy additional
graphical formats need to be developed and shown to pilots for
evaluation. The feedback they give may help prioritize our
presentation of information, which may, in turn, affect our

methods of knowledge acquisition and representation.

Along the lines of user interface, an explanation facility
needs to be developed. As previously mentioned, this may be
constructed on top of the demon tracing facility already
present in 0AS2. As the system’s rule and knowledge base
grows, we wili increasingly need a mechanism for tracing and

justifying knowledge inference through rules.

- 119 -

Finally, we need to develop methods of evaluating the
performance of the expert system, to provide justification for
its inclusion in an avionics suite. Possible evaluation
criteria include time-to-ID (how much sconer can we identify an
airborne object with the expert system than by using a2 human
operator), launch-zone improvement (how much larger is the
range at which ownship can fire air-to-air missiles at incoming
enemy objects), and resources used per target (bow many sensors
do we need and how long must they "look" at enemy objects to

accurately identify them).

- 120 -

APPENDIX A

This appendix shows a sample run of DAS1, the first-cut at the object
analysis expert system, a2long with some sample frames that depict the ARF
representation of rule sets and airborne object patterns. In addition, two
sample screens of the graphic output of the system are shown. A
description of the scenaric represented by these screens is included prior

to the sample trace.

Rule Set Frames

Shown here are the frame representations for the rule sets used in 0AS1.
The eighteen rules implemented have been divided into four groups: rule set
1 relates veiocity and radar cross-section rules to ID, rule set 2 relates
IR temperature to acceleration facts, rule set 3 relates rate-of-climb
(ROC) to acceleration and ID, and rule set 4 is the cyclical rule set
described in Chapter 3. As code is loaded into the LISP environment, rules
are converted into ARF frames, which also represent STMs, FACTs, and user-
defined patterns |like airborne-objects. (Some of these other frame

representations are shown at the end of this section.) The system responds

with:

Creating Rule Set - F.36 - ID-PLANE-1
Creating Rule Set - F.45 - ID-PLANE-2
Creating Rule Set - F.54 - ID-PLANE-3
Creating Rule Set - F.59 - ID-PLANE-4

- 121 -

These four messages indicate that four RULE frames have been instantiated.
ID-PLANE-1 corresponds to rule set 1, which is stored in frame object F.36.

Once created we can view the frames (the ">" is the LISP prompt):

> (view ’f.36)

F.36

I (F.36 () O () (#{Procedure 66}))5°

CLASS «ovvvnenn.. (RULE-SET O O O)

PARENTS

DOC ("Rule set 1: track-speed facts" () () () ()

NAME (ID-PLANE-1 ©) O O O)

FIRE ©\vvvnennn.. (SEQUENTIAL) () OO ()

DO ..., A 0 0 0 0)

LOCALS ... @oonn...))

RULES (($RULE-CHECK-SPEED-1 $RULE-CHECK-SPEED-2
$RULE-CHECK-SPEED-3 SRULE-CHECK-SPEED-4) () O O 0)

CODE ... (RULE-SET-ID-PLANE-1 () (0 O Q)

TRACEoo.... O 0000

This is a sample of ARF’s representation for a frame. Frames have slots
(such as SELF, CLASS, and PARENTS), and slots have values (like F.36, RULE-
SET, and ()). Except for the PARENTS slot, each slot in ARF has five
positions: the first position holds the value of the slot, and the
remaining four contain procedural attachments, LISP code that can be
executed upon accesses of the slots. (This last feature is not used
explicitly in DAS1, but is used extensively in O0AS2.) The F.36 frame
object is the parent frame for each of the four rules that constitute the
rule set with NAME ID-PLANE-1. Each of the four rules is itself
represented by a frame, pointers to which are contained in the RULES slot
of F.36. The parent frames for the other three rule sets (ID-PLANE2, ID-

' PLANE3, and ID-PLANE4) are shown beiow:

66. #{Procedure x} is ARF’s representation for a procedural attachment.

- 122 -

> (view ’f.45)

F.45
SELF (F.45 0 O O (#{Procedure 66}))
CLASS (RULE-SET) O O)
PARENTS
DOC ("Rule set 2: infer accel .ation facts" () () O ()
NAME (ID-PLANE-2) O O O)
FIRE (SEQUENTIAL O O O O)
PO ...l (ALL O O ())
LOCALS (O 0O
RULES ((SRULE-CHECK ~ACCELERATION $RULE CHECK-DELTA-IR-1
$RULE-CHECK-DELTA-IR-2 $RULE-CHECK-DELTA-IR-3) () O 0)
CODE (#{Syntax 50 RULE-SET-ID-PLANE- 2} O 0 0 0)
TRACE (O 0 00 O
> (view ’f .54)
F.54
SELF (F.54) O (O (#{Procedure 66}))
CLASS (RULE-SET) O O O
PARENTS 0
DOC ("Rule set 3: infer ROC facts®™ () O O ())
NAME (ID-PLANE-3 0 O O 0O)
FIRE (SEQUENTIAL) (O O 0O)
DG (ALL O O O 0O)
LOCALS (0O 0 00 0O
RULES ((SRULE-CHECK-DELTA-ROC-1 SRULE-CHECK-DELTA-ROC-2)
0 () () 0)

............. (RULE-SET-ID-PLANE-3 () () O ()
TRACE (0O 0O 0 0 0)

F.59

SELF (F.59 O O O (#{Procedure 66}))

CLASS (RULE-SET () O O O)

PARENTS

DoC ("Rule set 4: base, comrad, ID cyclical facts"
0 () () 0)

............. (ID-PLANE-4 O O O 0O)

FIRE (SEQUENTIAL) O O O)

DO (ALL O O O O)

LOCALS (0O 000 0

RULES ((SRULE-CHECK-ID-COMRAD-1 $RULE-CHECK-ID-COMRAD-2

SRULE-CHECK-ID-COMRAD-3 $RULE-CHECK-COMRAD-BASE-1 $RULE-CHECK-COMRAD-BASE-2
$RULE-CHECK--COMRAD-BASE-3 $RULE-CHECK-BASE-ID-1 $SRULE-CHECK-BASE-ID-2)

0 () () 0))
............. (RULE-SET-ID-PLANE-4 ()) O ()

TRACE ------------ (00000

- 123 -

A Sample Run cf 0AS1

Below is a sample run of 0AS1. The input sequence of sensor returns
(trackfile) that drives the simulation is interlaced with 0AS1’s output, so
the effect of each nevly-asserted fact can be seen. Trackfile FACTS and
DETECTIONS are shown justified at the left; system outputs are shown
indented. As mentioned before, sensor returns have been deliberately
separated into facts that go to the inference net and facts that go to an
STM; these are distinguished by the two functions that assert senser
returns, sfacts and assert-data. The separation was done onrly for
efficiency purposes. In an operational expert system, some sort of

preprocessor would decide where to send the different sensor returns.

One other efficiency tactic that would be eliminated in an operational
system was to give the expert system delta-quantities, rather than have it
compute them itself. For instance, rather than give the expert system IR
temperature in each time frame and have it keep track of temperature
changes over time, we give it delta-IR temperature directly. As has been
stressed before, the main purpose of O0AS1 was to determine the rough

structure of the object analysis task, and not to worry about details.

The scenario represented by this simulation is ownship facing two incoming
enemy fighters, one MiG-29 and one Su-27. The sensor data at the beginning
of the run has been purposely "skewed" to make the expert system "believe"
that the two incoming objects are actually bombers or transports. This was

done to see how the expert system would recover from erroneous sensor data.

- 124 -

Time for the simulation has been broken into seven, thirty-second frames,
corresponding to "bursts" of sensor data that might be received. (Future
systems that can process returns closer to real-time might accept data

asynchronously.)

As discussed in Chapter 4, the primary output of ODAS1 is a six-element
vector corresponding to probabilities of the six possible airborne object
identities we have allowed: (Tu-95 Tu-144 MiG-29 Su-27 AA-9 AA-7). The
Tu-95 is a bomber, the Tu-144 a transport, MiG-29 and Su-27 are fighters,
and AA-9 and AA-7 rockets. If the system works perfectly, at the end of
the run the ID vector for PLANEO (the first detected airborne object) will
be equal to (0.0 0.0 1.0 0.0 0.0 0.0), indicating ID is MiG-29, and the ID
vector for PLANE1 (the second detected airborne object) will be equal to

(0.0 0.0 0.0 1.0 0.0 0.0), indicating ID is Su-27.

All DAS1 system responses (except for status messages) shown indented below
are in one of two formats:
(1) {AD frame} {sensor attribute} : {sensor value} = {confidence level}
P(ID) #{AD number}: (P, P, P, P,y Ps Pg)s
or

(2) {A0 frame} {rule number} : {assertion vector}
P(ID) #{AD number}: (P, P, P5 P, P P},

where P1 = Prob (ID is Tu=95)
P2 = Prob (ID is Tu-144)
P3 = Prob (ID is MiG-29)
Pa = Prob (ID is Su-27)
P5 = Prob (ID is AA-9)
P6 = Prob (ID is AA-7} ,

- 125 -

everything not enclosed in curly-braces {} is literal punctuation, and A0

stands for airborne object.

Output (1) is a system response to a FACT assertion (by xfact*), and output
(2) is a system response when a rule fires. {sensor attribute} in (1) is
one of the eight nodes in Figure 4, and {sensor value} is one of the
possible values of that node. The operation of an {assertion vector} in (2)

is discussed on page 61 in Chapter 4.

0AS1 uses eighteen rules, and the numbers wused in (2) correspond to rules

as follows:

RO thru R3 velocity and radar cross-section rules
R4 thru R6 infrared and acceleration rules

R7 thru R13 rate-of-climb, engine, and IR rules
R14 thru R17 cyclical rule set

The meanings of the two types of system outputs should become clear upon

examination of the trace beiow. Explanatory comments are shown to the

right in ztalics.

- 126 -

0AS1 SYSTEM OUTPUT

(time 0)

time =0

Object Analysis Expert System Demo
(plane-detect)

[Binding PLANEO]

Creating STM - F.157 - Basic blackboard
- list of objects.

(«fact« plane0 ’track-speed .90 1.0)

=1.0

(assert-data plane0 LRSIG SU2 .45)
PLANE O Ir sig : su2=.450

P(ID) #0: (.201 .201 .138 .197 .130 .130)

(assert-data plane0 IR-exh 300 .28)

PLANE O ir_ex t: <300=.280C
P(ID) #0: (.276 .215 .131 .188 .124 .124)

PLANE O RO: .237 .237 .237 .237 .025 .025
P(ID) 40: (.278 .276 .169 .242 .016 .016)

(time 30)

time = 30
(plane-detect) ; plane # 1
[Binding PLANE1]

Creating STM - F.163 - Basic blackboard
- list of objects.

- 127 -

Trackfile e try

System response to that entry

Radar has detected a plane

call 2t PLANEO
an STM to keep FACTS on PLANEO

assert to the STM that PLANEO’s
velocity = Mach 0.9, with conf

assert to PLANEO’s inf net
that Long-Range stgnature s
Soviet-type 2, conf = 0.45

Prob(ID 2s Tu-95) = .201
Prob(ID is Tu-144) = .201

IR temp < 800 deg,
conf = .28

Asserted to net...
Current Prob(ID) wvector

End of frame, so rule set
begins to execute:

Rule 0 =) ID not a rocket
since low vals n AA-9 and
AA-7 assertion slots

Only one rule fired

Next time frame

Second plane detected, and
associated STM and belief trees
are created

(xfactx plane0 ’track-speed 1.30
(¥fact* planel ’track-speed 1.20
(«factx plane0 ’RCS *medium
(xfact*x planel ’RCS "med ium
(assert-data plane0 LRSIG Su2

PLANE O Ir_sig : su2=.650

P(ID) #0: (.298 .297 .125 .256 .011
(assert-data planel LRSIG Su1

PLANE 1 Ir_sig : sul=.350

P(ID) #1: (.246 .271 .222 .235 .012
(assert-data plane0 ENG quad

PLANE O §eng : eng4=.300

P(ID) #0: (.328 .318 .109 .223 .009
(assert-data planel ENG quad

PLANE 1 #eng : engd4=.280

P(ID) #1: (.264 .286 .207 .219 .011
(assert-data plane0 IR-exh 300

PLANE O ir_ex_t: <300=.330

P(ID) #0: (.350 .337 .096 .197 .008
(assert-data planel IR-exh 300

PLANE 1 ir_ex t: <300=.350

P(ID) #1: (.296 .315 .178 .189 .009
(assert-data plane0 Radar-sig unknown

PLANE O r-sig : r0=.500

P(ID) #0: (.333 .321 .091 .187 .033
(assert-data planel Radar-sig RDRO

PLANE 1 r-sig : r0=.250

P(ID) #1: (.294 .313 .177 .188 .012

PLANE O RO: .237 .237 .237 .237 .025

P(ID) $0: (.333 .321 .091 .187 .033

PLANE 1 RO: .237 .237 .237 .237 .025

P(ID) §1: (.294

.313 .177 .188 .012

- 128 -

1.0)
1.0)

.50)
.65)

.65)

.011)

.35)

.012)

.30)

.009)

.28)

.011)

.33)

.008)

.35)

.009)

.50)

.033)

.25)

.012)

.025

.033)

.025

.012)

To STMs: wvelocity info
To STMs: radar cross-
section info

To net: new LRSIG

ID still looks Llike
bomber or transport

ID vector isnt the same as
that of PLANEO, because fewer
sensor assertions received

Number of eng = 4, conf = .8

Looks even more like large,
four-engined plane

Same for PLANE1

Strll low temp

Detected radar, but unknoun

Rule® fires again with the

same assertion wvector: note how
1t doesn’t changs the Prob(ID)
vector at all

(time 60)

time = 60
(«factx plane0 ’delta-ROC 6
(#factx planel ’delta-ROC 7
(#fact* plane0 ’track-speed 1.85
(#fact* planel ’track-speed 1.85
(assert-data plane0 LRSIG Su2

PLANE O Ir_sig : su2=.750

P(ID) #0: (.347 .334 .074 .193 .024
(assert-data planel LRSIG SuU1

PLANE 1 Ir_sig : sul=.500

P(ID) #1: (.292 .323 .176 .191 .007
{assert-data plane0 ENG quad

PLANE O $eng : eng4=.550

P(ID) $#0: (.444 .404 .035 .092 .011
(assert-data pianel ENG quad

PLANE 1 $eng : eng4=.600

P(ID)} #1: (.417 .429 .070 .076 .003
(assert-data plane0 IR-exh 1000

PLANE O ir_ex t: (1000=.550

P(ID) $0: (.368:/.369 .065 .177 .009
(assert-data planei IR-exh 1000

PLANE 1 ir ex t: <1000=.350

P(ID) #1: T(.363

(assert-data plane0

PLANE O r-sig

P(ID) $0: (.360

(assert-data

PLANE 1 r-sig

P(ID) §1: (.350 .

¢

planel

.398 .111 .119 .003

Radar-sig Foxfire

foxf=.200

.362 .076 .198 .002

Radar-sig Hilark

‘hi-1=.250
384 .107 .152 .002

- 129

.95)
.95)

.95)
.95)

.75)

.024)

.50)

.007)

.55)

.011)

.60)
.003)
.55)
.009)

.35)

.003)
.20)

.002)
.25)

.002)

New time frame

Change n alt. = 6000 feet

velocity has increased sharply

Stall see "wrong” number of eng

Really think ID is bomber or
transport for PLANEO and 1

Getting hotter: not a charac-
teristic of a bomber

Now get radar like MiG-29

Get radar like Su-27

PLANE 0 R2: .114 .114 .271 .271 .114 .114
P(ID) #0: (.278 .279 .118 .320 .001 .001)

PLANE 1 R2: .099 .099 .300 .300 .099 .099
P(ID) #1: (.230 .252 .212 .301 .001 .001)

PLANE O R8: .137 .137 .451 .451 .137 .137
P(ID) #0: (.138 .139 .194 .525 ,000 .000)

PLANE 1 R8: .137 .137 .451 .451 .137 .137.

P(ID) #1: (.105 .116 .320 .455 .000 .000)

PLANE O R16: .022 .022 .454 .454 .022 .022

P(ID) #0: (.009 .009 .265 .715 .000 .000)

PLANE O R17: .128 .052 .341 .341 .062 .062

P(ID) #0: (.003 .001 .269 .725 .000 .000)

PLANE 1 R16: .022 .022 .454 .454 .022 .022

P(ID) #1: (.006 .007 .407 .578 .000 .000)

PLANE 1 R17: .128 .062 .341 .341 .062 .062

P(ID) #1: (.002 .001 .411 .584 .000 .000)

(time 90)

time = S0
(«fact* plane0 ’delta-ROC 6 .95)
(#fact* planel ’delta-ROC 7 .95)

(#fact* planed ’MRSIG ‘afterburner .80)
(+fact* planel °’MRSIG ’afterburner .80)

(assert-data plane0 LRSIG Su2 .85)

PLANE O Ir_sig : su2=.850
P(ID) #0: (.003 .001 .211 .782 .000 .000)

(assert-data planel LRSIG Su1l .90)

PLANE 1 Ir_sig : sul=.900
P(ID) #1: (.C02 .001 .406 .589 .000 .000)

(assert-data plane0 ENG dual .65)

PLANE O §eng : eng2=.650
P(ID) #0: (.000 .000 .197 .8C1 .000 .000)

- 130 ~

Rules fire with assertion
vecte "s favoring fighters

Rule 8 really boosts fighter

Prob (ID) exceeds threshold, so
eyclical rules start up

PLANEO ID more certain, but
PLANE1 ID undecided yet

New time frame

Detect AB, characteristic
of jet craft

Finally engine sensor is
correct, feng = 2

(assert-data planel

PLANE 1 $eng :
P(ID) #1: (.000

(assert-data plane0

PLANE O ir_ex_t:
P(ID) $0: (.000
(assert-data planel

PLANE 1 ir_ex t:
P(ID) $1: (.000

(assert-data plane0

PLANE O r-sig :
P(ID) #0: (.000

(assert-data planel

PLANE 1 r-sig
P(ID) #1: (.000

(assert-data plane0

PLANE O wid :
P(ID) $0: (.000

(assert-data planel

PLANE 1 wid :
P(ID) $1: (.000
(assert-data plane0

PLANE O len :
P(ID) #0: (.000
(assert-data planel

PLANE 1 len

ENG dual

eng2=.700
.000 .384 .615 .000

IR-exh 2200
€2200=.750

.000 .181 .818 .000
IR-exh 2200

€2200=.750
.000 .349 .650 .000

Radar-sig Foxfire

foxf=,450
.000 .419 .580 .000

Radar-sig R27

r27=.5850

.000 .128 .871 .000
Width w3
»70=.500

.000 .419 .580 .000
Width w3
»70=.450

.000 .128 .871 .000
Len L1
{70=.65C

.000 .431 .568 .000
Len L1
70=.600

.70)

.000)

.75)

.000)
.75)

.000)

.45)

.000)

.55)

.000)

.50)

.000)

.45)

.000)

.65)

.000)

.60)

P(ID) 41: (.000 .000 .132 .867 .000 .000)

PLANE O R8 :

.137 .137 .451 .451 .137 .137

P(ID) #0: (.000 .000 .431 .568 .000 .000)

PLANE 1 R8 :

.137 .137 .451 .451 .137 .137

P(ID) $1: (.000 .000 .132 .867 .000 .000)

- 131 -

IR temp confirms afterburn
indication

Still not sure whether FPLANEO
18 a MrG-29 or Su-27

As range decreases, getting
length and width info

(assert-data

(assert-data

PLANE O R16: .022 .022 .454 .454 .022 ,022
P(ID) #0: (.000 .000 .431 .568 .000 .000)

PLANE O R17: .128 .062 .341 .341 .062 .062
P(ID) $0: (.000 .000 .431 .568 .000 .000)

PLANE 1 R16: .022 .022 .454 .454 .022 .022
P(ID) #1: (.000 .000 .132 .867 .000 .000)

PLANE 1 R17: .128 .062 .341 .341 .062 .062
P(ID) #1: (.000 .000 .132 .867 .000 .000)

(time 120)
time = 120
(#fact* planed ’delta_IR 50 .65)
(xfact* planel ‘’delta IR 35 .65)
(assert-data plane0 MRSIG AB .65)
PLANE O mr_sig : ab=.650
P(ID) #0: (.000 .000 .425 .574 .000 .000)
(assert-data planel MRSIG AB .55)
PLANE 1 mr sig : ab=.550
P(ID) #1: {.000 .000 .133 .866 .000 .000)
(assert-data planed ENG dual .95)
PLANE O geng eng2=.950
P(ID) $0: (.000 .000 .420 .579 .000 .000)
(assert-data planel ENG dual .95)
PLANE 1 §eng : eng2=.950
P(ID) #1: (.000 .000 .131 .868 .000 .000)

plane0 Radar-sig Foxfire .75)

PLANE O r-sig : foxf=.750
P(ID) $0: (.000 .000 .724 .275 .000 .000}
planel Radar-sig R27 .85)

PLANE 1 r-sig r27=.850

P(ID) #1: (.000 .000 .032 .967 .000 .000)

- 132 -

Similar radar returns as before
only becoming more confident;
This would make a difference if
there were more poss. IDs

Finally, greater conf in
radar-type IDs PLANEO

(assert-data plane0 Width w2 .85)

PLANE O wid : (70=.850

P(ID) #0: (.000 .000 .724 .275 .COO .000)
(assert-data planel Width w2 .90)

PLANE 1 wid : <70=.900

P(ID) #1: (.000 .000 .032 .967 .000 .000)
(assert-data plane0 Len L1 .95)

PLANE O len : (70=.950

P(ID) #0: (.000 .000 .736 .263 .000 .000)
(assert-data planel Len L1 .95)

PLANE 1 len : (70=.950

P(ID) #1: (.000 .000 .034 .965 .000 .000)

PLANE O R16: .022 .022 .454 .454 .022 .022
P(ID) #0: (.000 .000 .736 .263 .000 .000)

PLANE O R17: .128 .062 .341 .341 .062 .062
P(ID) #0: (.000 .000 .736 .263 .000 .000)

PLANE 1 R16: .022 .022 .454 .454 .022 .022
P(ID) #1: (.000 .000 .034 .965 .000 .000)

PLANE 1 R17: .128 .062 .341 .341 .062 .062
P(ID) #1: (.000 .000 .034 .965 .000 .000)

(time 150)
time = 150 New time frame

(assert-data plane0 SIG SI1G3 .45) SIG info helps to confurm
PLANE O sig : sig3=.450
P(ID) #0: (.000 .000 .964 .035 .000 .000)

(assert-data planel SIG SIG4 .65) Remainder of sensor info serves

to confirm ID; not too helpful

PLANE 1 sig : sig4=.650 with only siz possible IDs, but

P(ID) 41: (.000 .000 .011 .988 .000 .000) with more they would be useful
(assert-data plane0 Radar-sig Foxfire .95)

PLANE O r-sig : foxf=.950
P(ID) $0: (.COO .000 .993 .006 .000 .000)

- 133 -

(assert-data planel Radar-sig R27 .95)

PLANE 1 r-sig : r27=.950
P(ID) #1: (.000 .000 .003 .996 .000 .000)

(assert-data plane0 Width w2 .90)
PLANE O wid : £70=.900
P(ID) $0: (.000 .000 .993 .006 .000 .000)
(assert-data planel Width w2 .95)
PLANE 1 wid ¢ €70=.950
P(ID) #1: (.000 .000 .003 .996 .000 .000)
(2ssert-data plane0 Len L1 .99)
PLANE O len ;. (70=.990
P(ID) #0: (.000 .000 .993 .006 .000 .000)
(assert-data planel Len L1 .99)
PLANE 1 len : €70=.990

P(ID) #1: (.000 .00C .003 .996 .000 .000)

PLANE O R16: .022 .022 .454 .454 .022 .022

P(ID) #0: (.000 .000 .993 .006 .000 .000)

PLANE O R17: .128 .062 .341 .341 .062 .062

P(ID) #0: (.000 .000 .993 .006 .000 .000)

PLANE 1 R16: .022 .022 .454 .454 .022 .022

P(ID) #1: (.000 .000 .003 .996 .000 .000)

PLANE 1 R17: .128 .062 .341 .341 .062 .062

®(ID) #1: (.000 .000 .003 .996 .000 .000)

(time 180)
time = 180
(assert-data plane0 SIG SIG3 .95)
PLANE O sig : si1g3=.950
P(ID) $0: (.000 "0 .998 .001 .000 .000)
(assert-déta planel SIG SIG4 .95)
PLANE 1 sig : sigd4=.950

P(ID) #1: (.000 .000 .001 .998 .000 .0O0O)

- 134 -

Last frame

PLANE O R16: .022 .022 .454 .454 .022 .022
P(ID) #0: (.000 .000 .998 .001 .000 .000)

PLANE O R17: .128 .062 .341 .341 .062 .062
P(ID) $0: (.000 .000 .998 .001 .000 .000)

PLANE 1 R16: .022 .022 .454 .454 .022 .022
P(ID) #1: (.000 .000 .001 .998 .000 .000)

PLANE 1 R17: .128 .062 .341 .341 .062 .062
P(ID) #1: (.000 .000 .00l .998 .000 .000)

- 135 -

View of ARF Frames

To give an idea of the other types of frame objects used in 0AS1, views of STM,
FACT, and airborne-object frames after the sample run are shown below. F.157 is

~an STM frame object frame, upon which FACTs are asserted.

> (view ’f.157)

F.157
SELF (F.157 0 (0 (O (#{Procedure 67}))
CLASS SM OO0 O
PARENTS
DOC ("Basic blackboard - ltist of objects.® () (O () ())
STM ...t (((F.202 . 0.8) (F.216 . 0.65)) (O OO O 0O)
STM-DOC (OO0 00 M
TRACE (OFF O O O 0O)

In the STM slot of F.157 are two FACTs, F.202 and F.216, which were not used
during the sample run. Each has an associated confidence which is used along
with the belief-factor of RULEs in computing the confidence with which to assert

additional FACTs or ID information. If we view the two facts, we see:

> (view ’f.202)

F.202
SELF wvvvinnnnn. (F.202 0 O 0 O)
CLASSovvnenn. (FACT O 0 0 0)
PARENTS O
0BJECT (PLANEO () O O 0)
ATTRIBUTE MRSIC O 0 0O 0)
VALUE (AFTERBURNER () () O O)

> (view ’f.216)

F.216
SELF v, F216 O O O O)
CLASSonnnn.. (FACT 00 0" 0)
PARENTS O
OBJECT (PLANEO) O O 0)
ATTRIBUTE (CELTAIR 0" 0 0 0)
VALUEo.... 0 0”0 O 0)

- 136 -

FACT frames have object, attribute and value slots; these two happen to

hold information about the first detected airborne object, PLANEO.

Graphics screens

Figures 6 and 7 on the next two pages are copies of computer screens made
during the scenario run above. The graphics front-end was added to 0AS1
for demonstration purposes, to show the type of information a pilot might
like to see in a cockpit display. The graphics makes it especially easy to
see how planes are grouped into formations and what their IDs are at a
glance. Transitions in probability of ID can be seen as the expert system
receives additional sensor data.

For demonstration purposes, each of the two objects in the above scenario
represents a formation of eight planes in the screens below. Each of the
eight planes is assumed to have the same characteristics. The graph at the
right of the screen shows probability of correct ID over time. The "dip"
in the curve represents the deliberate "twists"™ in the trackfile sensor
data, intended to make the expert system believe the objects were bombers

or transports, instead of fighters.

- 137 -

[o5

‘GNVIWNQD

f £00°0 £00°0 600°0 2000 LYY
Z0 £06°0 £00°0 6000 Z00'0 6-vV
. 9100 6110 LIVO 08L°0 Lz-ns
170 040°0 LLL0 590°0 990°0 62-911N
. 6210 86£°0 6950 vLS0 prL-nNL
490 Y0 £98'0 89£°0 €L£0 S6-NL
180 {and _ (and (and (G)d 3dAL 103rdo
iR 1SYT INIHHND 1SVl LN3HUND
L YILSNTD 0 H3LSNTD
311 SA (L23HHOD SI d1) 90Hd NOILVIWHOANI Ol
G6-NL - > Hv
<]
prL-NL o > >
Lz-ns " 3> *
6Z-DIN > W s <
NMOMINN > ...W
41V < »
1wy GZ = JONVY
an3o 935 09 = L1

L N33HIS 31dWVS 1SVYO 9 JHNDIY

-~ 138 -

“GNVIANOD

0000 0000 000°0 000°0 LYY
z0 000°0 060°0 000°0 0000 6-VV
£96°0 G960 SLZ'0 £9Z°0 L2-NS
dpo Z£0°0 ¥£0°0 vZL0 9£L°0 62-9I14
0000 0000 0000 0000 vPL-NL
90 0000 000°0 0000 0000 $6-NL
480 and (and {and (and 3dAL 103r90
_ 1SV INJHHND ISVl IN3HHND .
L 43LSN1D 0 ¥31SN1D
AWIL SA (193HHOI S dl) §0Yd NOILVIWHOINI ai
. » | L |
> @
v.v. e
o I
b
- ..+ »
56-Nl g N <
prL-NL " »>
>
LzZ-Ns » W
KV
6Z-DIN > o <
»
NMONMNN > -
»
41V < *
1w 0§ = 3ONVH
aN3o3 ONILYHITIDOV SI HOVHL 93S 021 = INIL

€ NJI3HIS 31dAVS ISVO £ 3HNDIA

APPENDIX B

Overview

This appendix contains a sample run of 0AS2, the expert system described in
Chapter 5. To make it easier to understand the operation of the system,
listings have been split into four major sections: Input Trackfile, System

Output, Demon Operation, and Internal Knowledge Representation.

The "driver" of 0AS2 is the input trackfile, which consists of entries that
simulate the detection of airborne objects and the reception of sensor
returns upon those objects. Listed below are the four different kinds of

functions a trackfile can perform, and the effect they have on system

operation.

Function: (detect obj-name)
Execution of this code indicates that a new airborne object has been

detected. As a result of this, an empty airborne-object frame is

instantiated, and given the label obj-name. From this point forward,
the frame can be referred to by this label. See the Internal Knowledge
Representation section for full-length examples of airborne-object

frames that have had sensor returns asserted upon them.

- 140 -

Function: (fput obj-name attribute value)
Execution of this code puts value in the attribute slot of obj-name,
triggering any put procedural attachments associated with the slot.
These procedural attachments often spawn demons representing rules that
may fire depending wupon value. See the Internal Knowiedge
Representation section for examples of frames with sensor returns that
have been fput into slots. See the Demon Operation section for 2
"trace" of the spawning, execution, and killing of demons. The trace
is not an explicit output of 0AS2, but can be optionally enabled to see

the frequency with which demons (rules) are used.

Function: (vput obj-name attribute value)
This function is similar to fput, except that procedural attachments
associated with slot are not triggered. A vput is used in the
trackfile for efficiency purposes only, to ensure that the same demon
is not spawned twice in the same time frame. For instance, one demon

discussed above uses velocity and radar cross-section values in its

test slot. If new information is received about both of these
attributes in the same time frame, the demon will be spawned twice
unless a vput s used. This "kiudge" would be eliminated in an

operational system, where a preprocessor would examine sensor returns

to inhibit repeat spawnings of a demon.

- 141 -

Function: (invoke~demon-driver xwmx)
Execution of this expression, which occurs at the end of each time
frame, causes the demon inference engine to be invoked. The inference
engine takes the next available spawned demon from the queue *wmx and
evaluates its test slot. If the result is true, the demon’s +act slot
is executed, else the -act slot is executed. The resuits of +act slot
execution can be: (1) an update of the probability of ID of the object
upon which the demon was spawned (belief-maintenance), (2) the spawning
of another demon (forward-chaining), (3) an fput into the slot of
another frame object (knowledge-gathering), or (4) the printing of

formation, target, or request information for the user (message-

passing) .

See the Demon Operation section to see the "life-history" of demons as
they are spawned, executed, and killed. To see (1), described in the
previous paragraph, look at the Belief-Maintenance section in Chapter
5. To see (2), look at the cyclical rule set demons in the Demon
Dperation section. To see (3), look at the formation frames in the
Internal Knowledge Representation section. To see (4), look at the

requests and target information in the System Output section.

Function: (spawn-end-of-frame-demons)
This last function spawns 2ll demons associated with end-of-frame
tasks. For example, at the end of each frame, we want to group
detected airborne objects into formations and determine their possible

targets. This function causes the appropriate demons to be spawned.

- 142 -

For an example of the messages produced, see the System Output section.
The sections below discuss system operation in a |little more detail.
Desirable enhancements to the system are mentioned, and Figure 8 at the end

of the appendix shows a sample screen of 0AS2.

Input Trackfile

Shown below is a listing of a demonstration input trackfile for DAS2. It
is simitar in format to those used for DASl, except asserted sensor returns
have no confidence values associated with them. In the current version of
0AS2, demons that perform belief-maintenance have no provision for

confidence propagation.

The scenario represented by the sequence of sensor facts on the next few
pages is an incoming enemy formation of two bombers (planel, plane2) and
three fighters (plane3, plane4, planeb). Initially, only the (larger)
bombers are detected, but as the fighters close in, they are seen also.

Towards the end of the scenario, one of the fighters fires a missile at

ownship.

The trackfile that produced results for this appendix was actually seven
time "frames" long, in thirty-second intervals from time = O to time = 180
seconds. Only the first four or five frames are shown here, however,
because for such a small| scenario, the later frames have minimal effect on
the determination of identity. Furthermore, repetitive fact assertions

have been omitted for brevity. Velocity and altitude, for example, are

- 143 -

asserted for each airborne object in every trackfile frame when the system
is actually run, but are only shown here the first time. Explanatory

comments are shown in <talzcs.

- 144 -

(TIME

0)

0AS2 Input Trackfile Listing

(detect planel)
(detect plane2)

(vput
(vput

(fput
(fput

(vput
(vput

(vput
(vput

planel
plane2

planel
plane2

planel
plane2

planel
plane2

'xy-pos ’(100 3))
*xy-pos ’(100 1))
‘velocity 0.9)
’velocity 0.95)

’altitude 20000)
’altitude 21000)

'RCS ’medium)
'RCS ’medium)

(spawn-end-of -frame-demons)

(invoke~-demon-driver swmx)

(TIME

(fput
(fput

(fput
(fput

(fput
(fput

(vput
(vput

(fput
(fput

30)

planel
plane2

planel
plane?2

planel
plane2

planel
plane2

planel
plane2

'xy-pos (88 0.1))
'xy-pos (88 1))

‘altitude 22500)
*altitude 23000)

'velocity 0.85)
‘velocity 0.90)

'RCS ’large)
'RCS ’large)

’LRSIG ’Soviet-classl)
’LRSIG ’Soviet-classl)

(spawn-end-of -frame-demons)
(invoke~-demon-driver wmsx)

(TIME

60)

(detect plane3)
(detect planed)
(detect planeb)

detect two airborme objects; call
them planel and plane2

z and y positions in nmi, relative
to oumship position (0,0)

velocity = Mach 0.9

altitude = 20,000 feet

RCS = radar cross-section

spawn formation and target demons

run demons on agenda xwmx

new time frame

planes are getting closer

altitude increasing

velocity decreasing

Large RCS s
characteristic of a bomber

close enough now to see three
other planes

- 145 -

(fput planel
(fput plane2
(vput plane3
(vput plane4
{vput planeb

(fput plane3
(fput plane4d
(fput planeb
(vput plane3
(vput plane4d
(vput planeb

(fput plane3
(fput plane4d
(fput planeb

(fput planel
(fput plane?2
(fput plane3
(fput planed
(fput planed

(fput plane3
(fput planed
(fput planeb

*xy-pos (75 -1))
'xy-pos ’(75 -0.5))
*xy-pos (76 1.5))
'xy-pos (75 -0.4))
*xy-pos ’(74 1))

'velocity 1.52)
’velocity 1.55)
’velocity 1.47)
>altitude 30000)
’altitude 30000)
’altitude 30000)

’LRSIG ’Soviet-class?2)
’LRSIG ’Soviet-class?2)
’LRSIG ’'Soviet-class?2)

’eng 4)
’eng 4)
’eng 2)
’eng 2)
‘eng 2)

IR temp 950)
IR temp 975)
"IR_temp 950)

(spawn-end-of -frame-demons)
(invoke-demon-driver *wmx)

(TIME 90)

(detect rocketl)

(vput rocketl ’xy-pos ’(57 -0.7))
(fput rocketl ’IR_temp 2500)
(fput rocketl ’velocity 2.1)

(vput rocketl ’aititude 32500)
3

(vput plane3

(vput plane4d

(vput planeb
¥

(fput plane3
(fput planed
(fput planeb

¥

’RCS ’medium)
’RCS ’medium)
*RCS ’medium)

IR _temp 1500)
IR _temp 1450)
IR _temp 1525) ,

* - 146 -

give their positions

they are flying much faster than
planel and plane2 _

they’re at higher altitude, too

they have a different "SIG" then
planel and plane?

characteristic of a bomber

characteristic of a fighter

infrared temperature in degrees

another airborne object is detected;
give 2t the name rocketl

. much hotter than other objects
much faster than other objects

same altitude as the fighters

temperature of engines increasing

(fput planel ’radar ’none)
(fput plane2 ’radar ’none)
(fput plane3 ’radar ’foxfire)
(fput planed4 ’radar ’hi-lark}
(fput plane5 ’radar ’hi-lark)

(fput plane3 ’maneuvers ’s-turns)
(fput planeS ’maneuvers ’s-turns)

(spawn-end-of-frame-demens)
(invoke-demon-driver *wmx)

(TIME 120)

(fput rocketl ’xy-pos ’(28 -0.4))

(fput rocketl ’altitude 25000)

]

(fput planed4 ’maneuvers ’s-turns)

(vput rocketl ’RCS ’small)

(fput planel ’length 85)
(fput planel ’width 75)
(fput plane2 ’length 80)
(fput plane2 ’width 75)

(fput plane3 ’width 45)
(fput planed ’width 45)
(fput plane5s ’'width 45)

(spawn-end-of -frame-demons)
(invoke-demon-driver *wmx)

(TIME 150)

no radar wnfo on bombers

two different radars for fighters

two of the fighters are ezecuting
weaving MInEUVeTs

rocket closing quickly
on ownship

reaching ounship’s altitude

at close range, begin to receive
length and width information

other similar time frames follow

-~ 147 -

System Output

This section contains a listing of 0AS2 output generated when the input
trackfile is loaded. The user is notified of airborne object detections,
constituency of formations, and possible targets of incoming planes. In
anticipation of the time when O0AS2 interfaces with a sensor manzger, the
system also provides requests for sensor data if availability of that data
would enable a rule to "test" its if-part. Finally, 0OAS2 notifies the user
when invocation of the cyclical rule set begins. For an airborne object
with n possible IDs, this occurs when Prob(identity is IDi) > (3/(2 % n)),
for 1 { i < n. For an airborne object that’s either a fighter or a bomber,
for example, Prob(ID is fighter) or Prob(ID is bomber) would have to exceed
0.75 for invocation of the cyclical rule set to occur. This threshold is

somewhat arbitrary, and can easily be changed when more research is done.

A major weakness of DAS2 is its current inability to notify the user of the
most likely identity of each airborne object, without stopping the run and
examining the airborne object frames. Once a more sophisticated belief
mechanism is instailed, an unobtrusive way to notify the user of the

current ID must be developed.

- 148 -

System Output Listing
» (load ’“demons/track)
;Loading ""demons/track.t" into *SCRATCH-ENV«
Time is now O.

Detected an airborne object...
Detected an airborne object...

Time is now 30.

Prob (PLANE1 = BOMBER) exceeds threshold of 3/4
-- invoking cyclicali rules.
Prob(PLANE2 = BOMBER) exceeds threshold of 3/4

-- invoking cyclical rules.
Now grouping planes into formations...
[Binding FORMATIDN$.175]

FORMATION$.175 consists of (PLANE2 PLANE1) .
Possible targets incliude:

NAME ; ATF

LOCATION: (0.0 0.0)
VALUE: 6

NAME : H.Q.

LOCATION: (-700.0 -200.0)
VALUE: 10

Time is now 60.

Detected an airborne object...
Detected an airborne object...
Detected an airborne object...

Need RCS value of PLANE3
Need RCS value of PLANE4

Prob(PLANE1 = BOMBER) exceeds threshold of 1/2
-- invoking cyclical rules.

Prob (PLANE2 = BOMBER) exceeds threshold of 1/2
-- invoking cyclical rules.

Prob (PLANES = FIGHTER) exceeds threshold of 3/4
-- invoking cyclical rules.

- 149 -

result of (detect planel)

cyclrcal rules are invoked
(both planel and plane2 have
two possible IDs at this point)

Formation demon invoked...
one formation found

Both planes are near enough
to be in a single formation

These are targets created with
the create-base macro described
2n Chapter 5

three fighters detected

a request for sensor wnfo;
a rule would have fired if RCS
had been available

only three of the five planes
have Prob(ID) high enough so
that the cyclical rules are
invoked

Now grouping planes into formations...

[Binding FORMATION§.304] Two formations this time
[Binding FORMATION§.307]

FORMATION#.304 consists of (PLANE2 PLANE1).

Possible targets include:

NAME : ATF

LOCATION: (0.0 0.0)

VALUE: 6

NAME : H.Q.

LOCATIDN: (-700.0 -200.0)

VALUE: 10

NAME : SAM3 formation’s heading changed,
LOCATION: (-690.0 50.0) so another target became
VALUE : 8 possible

FORMATION§.307 consists of (PLANE3 PLANE4 PLANES) .
Possible targets include:

NAME : ATF second formation’s targets
LOCATION: (0.0 0.0)

VALUE: 6

NAME : H.Q.

LOCATION: (-700.0 -200.0)

VALUE: 10

NAME : SAM3

LOCATION: (-690.C 50.0)

VALUE: 8

Time is now 90.

Detected an airborne object... stxth object detected;
this 1s the rocket

PLANE3 is exhibiting S-TURNS maneuvers. weaving manewvers of two

PLANES is exhibiting S-TURNS maneuvers. fighters detected

Need RCS value of ROCKET1
Need RCS value of ROCKET1

Possible mission of PLANE3 is ESCORT possible mission deduced
Possible mission of PLANES is ESCORT from maneuver information

Prob(PLANE1 = BOMBER) exceeds threshold of 1/2
-- invoking cyclical rules.

-~ 150 -

Prob(PLANE2 = BOMBER) exceeds threshold of 1/2
-- invoking cyclical rules.

Prob(PLANES = FIGHTER) exceeds threshold of 3/4
-- invoking cyclical rules.

The phase of PLANE3’s mission is DASH mission phase deduced from
The phase of PLANE4’s mission is DASH acceleration information
The phase of PLANES’s mission is DASH

Now grouping planes into formations...

[Binding FORMATION§.451] still two formations
[Binding FORMATION§.454]

FORMATION§.451 consists of (PLANE2 PLANE1).
Possible targets include:

NAME : ATF
LOCATION: (0.0 0.0)
VALUE: 6

NAME : H.Q.

LOCATION: (-700.0 -200.0)
VALUE: 10

NAME : SAM3

LOCATION: (-690.0 50.0)
VALUE: 8

'FORMATION#.454 consists of (ROCKET1 PLANE3 PLANE4 PLANES) .
Possible targets include:

NAME : ATF rocketl considered part of

LOCATION: (0.0 0.0) this formation because 1t 1s

VALUE: 6 still close to fighter that
faired 1t

NAME : H.Q.

LOCATION: (-700.0 -200.0)

VALUE: 10

NAME : SAM3

LOCATION: (-690.0 50.0)

VALUE : 8

Time is now 120.
PLANE4 is exhibiting S-TURNS maneuvers.

The phase of ROCKET1’s mission is DESCENT rocket descending to ownship’s
altitude

- 151 -

Possible mission of PLANE4 is ESCORT

Prob(PLANE5 = FIGHTER) exceeds threshold of 3/4
-~ invoking cyclical rules.

Now grouping planes into formations...

[Binding FORMATION{}.515] three formations now: rocket
[Binding FORMATION§.518] has accelerated away
[Binding FORMATION#.521]

FORMATION#.515 consists of (PLANE2 PLANEL).
Possible targets include:

NAME : ATF
LOCATION: (0.0 0.0)
VALUE: 6

NAME : SAM3
LOCATION: (-690.0 50.0)
VALUE: 8

FORMATION$.518 consists of (PLANES PLANE3 PLANE4).
Possible targets include:

NAME : ATF

LOCATION: (0.0 0.0)
VALUE: 6

NAME : H.Q.

LOCATION: (-700.0 -200.0)
VALUE: 10

FORMATION#.521 consists of (ROCKET1).
Possible targets include:

NAME : ATF rocket heading towards ouwnship
LOCATION: (0.0 0.0)

VALUE : 6

NAME : SAM3

LOCATION: (-690.0 50.0)

VALUE: 8

for small scenario, additional
frames provide little insight

Done.

- 152 -

Demon Operation

This listing shows the optional system output available when the tracing
facility for demons is enabled. Demon spawns, executes, and kills are

shown in the order they occur. In addition, meta-demons are identified

when they are used.

For tracing purposes, demons are divided into four major groups, depending
on the type of rules they represent. Physicai Attribute demons deal with
physical properties of airborne objects, such as velocity, altitude, number
of engines, length and width. Mission-Leval Attribute dJemons handle
formation, target, mission, and ID-oriented tasks. Emissions demons deal
with radiated properties of airborne objects, such as electromagnetic
(radar), infrared, and "signature" emissions. Finally, Action demons

handle airborne object maneuvers.

A few representative demons from each of the four grouns are shown below.

- 153 -

Physical Attribute Demon Trace

Time is now O.

Spawning demon: SPEED-DEMON1.116
(SPEED-DEMON1 $#{0Object 73} F.110)

Spawning demon: SPEED-DEMON2.117
(SPEED-DEMON2 #{0bject 73} F.110)

Spawning demon: SPEED-DEMON3.118
(SPEED-DEMON3 $#{0bject 73} F.110)

Spawning demon: SPEED-DEMON4.119
(SPEED-DEMON4 #{0bject 73} F.110)

Killing demon: SPEED-DEMON1.116
Executing -act of demon: SPEED-DEMON1.116

Executing Demon: SPEED-DEMON2.117 as
part of XOR-DEMON.114

Time is now 30.

Spawning demon: ALT-DEMON.135
(ALT-DEMON #{0Object 73} F.110)

Killing demon: ALT-DEMON.135
Executing ~act of demon: ALT-DEMON.135

Time is now 60.

Spawning demon: ENG-DEMON1.219
(ENG-DEMON1 #{0bject 73} F.110)

Spawning demon: ENG-DEMON2.220
(ENG-DEMON2 #{0bject 73} F.110)

Killing demon: ENG-DEMON1.219
Executing -~act of demon: ENG-DEMON1.219

Executing Demon: ENG-DEMON2.220 as
part of XOR-DEMON.217

- 154 -

new velocity and RCS info
cause 4 demons, wrapped by
an XOR-demon, to spaum;
speed-demons relate velocity
and RCS to ID

#{0bject T8} 1is »um¥, the
demon queue, and F.110 1s
the arrborne-object frame
upon which the demons were
spauned

demon is killed because test
slot was false

speed-demon2, however, tests
true and fires; remaining
demons enclosed by the
XOR-~demon meta-demon are
automatically killed, and

no message 1s printed

alt-demon check rate-of-climb
(ROC) and infer ID

ROC not great enough: tests
false and dies

eng-demons check number
of engines and infer ID

tested true and fired

Time is now 90.

Spawning demon: LEN-DEMON1.469
(LEN-DEMON1 #{0Object 73} F.110)

Spawning demon: LEN-DEMON2.470 Length and width demons

(LEN-DEMON2 ${0bject 73} F.110) test for threshold and
assert ID information

Spawning demon: WID-DEMON1.473

(WID-DEMON1 $#{Object 73} F.110)

Spawning demon: WID-DEMON2.474
(WID-DEMON2 #{0Object 73} F.110)

Spawning demon: WID-DEMON3.475
(WID-DEMON3 #{0Object 73} F.110)

Killing demon: LEN-DEMON1.469
Executing -act of demon: LEN-DEMON1.469

Executing Demon: LEN-DEMON2.470 as
part of XOR-DEMON.467

Killing demon: WID-DEMON1.473
Executing -act of demon: WID-DEMON1.473

Killing demon: WID-DEMON2.474
Executing -act of demon: WID-DEMON2.474

Executing Demon: WID-DEMON3.475 as
part of XOR-DEMON.471

- 155 -

Mission-Level Attribute Demon Trace

Time is now O.
These demons are spauned at

Spawning demon: ID-DEMON.126 end-of-frame; ID-demon is the
(ID-DEMON #{0Object 73} F.110) Proot” demon for the cyclical
rule set: 1t checks to see 1f
Spawning demon: FRAME-SPAWN-DEMON.128 Prob (ID) is past threshold,
(FRAME-SPAWN-DEMON #{0bject 73}) and spauns other demons 1f
2t 18,
Killing demon: ID-DEMON.126 This time frame a1t is not.
Executing -act of demon: ID-DEMON.126
Executing demon: FRAME-SPAWN-DEMON.128 Frame-spaun demon spawns the
demons assoctiated with the
Spawning demon: FORMATIDN-DEMON.131 end of frame; here we see
(FORMATION-DEMON #{Object 73}) 2t spauns Formation-demon,

then gets killed.
Killing demon: FRAME-SPAWN-DEMON.128

Executing demon: FORMATION-DEMON.131 Formation demon trys to group

airborne objects and spauns
Spawning demon: TARGET-DEMON.134 target-demon, which looks for
(TARGET-DEMON #{0bject 73} F.133) their targets.

Killing demon: FORMATION-DEMON.131

Killing demon: TARGET-DEMON.134
Executing -act of demon: TARGET-DEMON.134

Time is now 30.
ID-demon spauwned again--thais

Spawning demon: ID-DEMON.157 time-frame the cyclical rules

(ID-DEMON #{0bject 73} F.110) will be invoked.

Spawning demon: FRAME-SPAWN-DEMON.159 spauned again

(FRAME-SPAWN-DEMON #{0bject 73})

Executing demon: ID-DEMONM.157 Prob(ID) > thresh, so three
demons spauned with "bomber"

Spawning demon: F-CR-DEMON.164 (the current ID) as argument;

(F-CR-DEMON #{0bject 73} F.110 BOMBER) Demons check ID and spaunm

comrad-demon to check (R.
Spawning demon: B-CR-DEMON.165

(B-CR-DEMON #{0bject 73} F.110 BOMBER) F-CR: sees +if ID 1s fighter
B-CR: sees +f ID 1s bomber
Spawning demon: T-CR-DEMON.166 T-CR: sees if ID 1s transport

(T-CR-DEMON #{Object 73} F.110 BOMBER)

Executing demon: FRAME-SPAWN-DEMON.159 Frame-spaun-demon’s turn to
test and ezxecute.

- 156 -

Spawning demon: FORMATION-DEMON.172
(FORMATION-DEMON #{0bject 73})

Killing demon: ID-DEMON.157
Killing demon: FRAME-SPAWN-DEMON.159

Killing demon: F-CR-DEMON.164

Executing -act of demon: F-CR-DEMON.164

Executing Demon: B-CR-DEMON.165 as
part of XOR-DEMON.162

Spawning demon: COMRAD-DEMON.173
(COMRAD-DEMON #{0bject 73} F.110)

Executing demon: FORMATION-DEMON.172

Spawning demon: TARGET-DEMON.177
(TARGET-DEMON $#{0bject 73} F.176)

Killing demon: FORMATION-DEMON.172
Executing demon: COMRAD-DEMON.173

Spawning demon: POO-DEMON.178
(POO-DEMON #{0Object 73} F.110)

Executing demon: TARGET-DEMON.177

Spawning demon: SAYFORMS-DEMON.180
(SAYFORMS-DEMON #{0bject 73} F.176)

Killing demon: COMRAD-DEMON.173
Killing demon: TARGET-DEMON.177
Executing demon: PCO-DEMON.178

Executing demon: SAYFORMS-DEMON.180
Killing demon: POO-DEMCN.178
Killing demon: SAYFORMS-DEMON.180

- 157 -

ID-demon 8§ frame-spauwn-demon
previously spauned are killed

Now back to CR demons, F-CR
killed because ID is bomber;

B-CR exzecutes though; spauns
comrad-demon, which locks for
combat radius of a bomber.

Formation demon executes, and
spauns target demon.

Execution of comrad-demon
causes PO0-demon (point-of-
origin) te spaumn; checks for
base object might be from.

Go back and execute target-
demon, which spaums sayforms-
demon, whose purpuse s to
print out formations and
targets.

execute PO0-demon, asserting
new Prob(ID) info based on
enemy deployment of planes
at bases.

print out formations, targets

Emissions Demen Trace

Time is now O,
Time is now 30.

Spawning demon: LRSIG-DEMON1.151 Long-Range "Signature” demons
(LRSIG-DEMON1 #{0bject 73} F.110) spaumed: infers ID.

Spawning demon: LRSIG-DEMONZ.152
(LRSIG-DEMONZ #{Object 73} F.110)

Executing Demon: LRSIG-DEMON1.151 as
part of XOR-DEMON.149

Executing Demon: LRSIG-DEMON1.152 as
part of XOR-DEMON.150

Time is now 60.

Spawning demon: IR-DEMON1.239 IR demons check temp of
(IR-DEMON1 #{0bject 73} F.181) objects, assert data about
engine type or mode, and
Spawning demon: IR-DEMON2.240 spawn other demons (type-
(IR-DEMON2 #{0bject 73} F.181) demons) to infer ID from this

Spawning demon: IR-DEMON3.241
(IR-DEMON3 #{0bject 73} F.181)

Spawning demon: IR-DEMON4.242
(IR-DEMON4 #{0bject 73} F.181)

Killing demon: IR-DEMON1.239
Executing -act of demon: IR-DEMON1.239

Executing Demon: IR-DEMON2.240 as demon executes, fputting info
part of XOR-DEMON.237 to frame, spawning type-demon

Spawning demon: TYPE-DEMON1.269
(TYPE-DEMON1 #{0Object 73} F.181)

Spawning demon: TYPE-DEMON2.270
(TYPE-DEMONZ ${0bject 73} F.181)

Spawning Hemon: TYPE-DEMON3. 271
(TYPE-DEMON3 #{Cbject 73} F.181)

Spawning demon: TYPE-DEMON4.272
(TYPE-DEMON4 #{0bject 73} F.181)

~ 158 -

Killing demon: TYPE-DEMON1.269
Executing -act of demon: TYPE-DEMON1.269

Executing Demon: TYPE-DEMON2.270 as type~demon fires, updating
part of XOR-DEMON.267 Prob (ID)

Time is now 90.

. Spawning demon: RADAR-DEMONL1.369 radar-demons check radar
(RADAR-DEMON1 #{0Object 73} F.110) type of object and update ID

Spawning demon: RADAR-DEMONZ2.370
(RADAR-DEMON2 #{0bject 73} F.110)

Spawning demon: RADAR-DEMDN3.371
(RADAR-DEMON3 #{0Object 73} F.110)

Ki!ling demon: RADAR-DEMON1.369
Executing -act of demon: RADAR-DEMON1 .369

Killing demon: RADAR-DEMON2.370
Executing -act of demon: RADAR-DEMONZ.370

Killing demon: RADAR-DEMON3.371
Executing -act of demon: RADAR-DEMON3.371

- 189 -

Action Demon Trace

Time is now 0.
Time is now 30.
Time is now 60.
Time is now 90.

Spawning demon: MNUVR-DEMON1.394
(MNUVR-DEMON1 #{0bject 73} F.181)

Spawning demon: MNUVR-DEMON2.395
(MNUVR-DEMON2 #{0bject 73} F.181)

Executing Demon: MNUVR-DEMON1.394 as
part of XOR-DEMON.392

Time is now 120.

Spawning demon: MNUVR-DEMON1.465
(MNUVR-DEMON1 #{Object 73} F.183)

Spawning demon: MNUVR-DEMON2.466
(MNUVR-DEMON2 #{0bject 73} F.183)

Executing Demon: MNUVR-DEMON1.465 as
part of XOR-DEMON.463

Time is now 150.

Time is now 180.

- 160 -

spauri of these demons doesn’t
occur until close range, when
maneuvers and such can be
detected

mnuvr -demon checks maneuvers
updates mission or phase of
cbject, and prints message on
system output

Internal Knowledge Representation

To conclude this appendix, we show the effect that the trackfile assertions
and the demon actions have on the internal representation of airborne
objects. The listings show views of airborne-object, formation, and
hypotheses frames after a complete system run, affording a demonstration of

the representation capabilities of the system.

Typing the variable plane-list to the LISP prompt yields a list of the

airborne-objects detected to date.

> plane-list
(PLANE1 PLANE2 PLANE3 PLANE4 PLANE5 ROCKET1)

The variable form-list contains a list of the current formations detected.

» form-list
(FORMATION$.554 FORMATION#.557 FORMATION$.560)

We can now view one of the formations:

> (view formation§.554)

F.555
SELF v, (F.555 0 0 O 0)
CLASS .ovvvnnne... (CLUSTER 0 O 0 0)
PARENTS 0
NAME (FORMATION$.554) O O Q)
CONSTITUENTS ((PLANE2 PLANE1) () O O (#{Procedure 74}))
HEADING (180.0 () () () (#{Procedure 75}))
TARGETS ((ATF SAM3) ' 0 O (#{Procedure 76}))

FORMATION$.554 consists of PLANE2 and PLANEl, and its heading is 180
degrees. Possible targets are ATF (ownship) and a surface-to-air missile

site, SAM3. Now we can view one of the formation’s constituents:

- 161 -

> (view plane2)

F.112

SELF (F.112 O O (0 (#{Procedure 77}))

CLASS (AIRBORNE OBJECT () O O 0O)

PARENTS (F.555) O O O)

NAME (PLANE2 () O O ()

VELOCITY ©.9 0 O O (#{Procedure 78}))

XY-POS ((32 -2.0) 0 (0 (#{Procedure 79}) (#{Procedure 803})

HEADING (180.0 O O O O)

RCS ... it (LARGE) O () (#{Procedure 81}))

IR TEMP (0O O O O (#{Procedure 82}))

RADAR (NONE () () () (#{Procedure 83}))

LRSIG {SOVIET-CLASST () O () (#{Procedure 84}))

ENG (4 0 O (O (#{Procedure 85}))

ENG TYPE (0 0 0 O (#{Procedure 86}))

LENGTH 80 O O (O (#{Procedure 87}})

WIDTH (75 O O O (#{Procedure 88}))

MANEUVERS (0O O O O (#{Procedure 89}))

ALTITUDE (23000) () (#{Procedure 90}) (#{Procedure 91}))

PREV-ALTITUDE (21000 () O O Q)

HYP-PTR (F.113 0 0O O 0)

COM RAD (8000 () () () (#{Procedure 92}))

BASE_ POO ((#{0bject 98} §{Object 94} #{Object 95}) (J () O
(#{Procedure93}))

POSS_IDS ((ROCKET BOMBER TRANSPORT) () () OO ()

PTR_LIST ((F.130 F.161 F.266) () O O Q)

PID LIST ((0.034 0.479 0.487)) (0 O ()

PID%ROCKET ((0.05 0.05 0.0 0.0) O O O O)

PID%BOMBER ((0.50.90.80.50.00.0)) O O 0)

PID%TRANSPORT ((0.5 0.9 0.8 0.00.0)) O O ()

Many of the values in plane2’s slots were asserted directly from the input
trackfile, but quite a few others were added by demon-firings. Note that
procedural attachments are represented by #${Procedure x}; most reside in
the fifth location of a slot, reserved for the putf/after procedural
attachment.67 Note also the contents of the BASE P00 slot: three possible

bases where the airborne object might have originated. Information on

67. A slot holds five lists, the first of which is for its value, and the
remaining four for get/before, get/after, put/before, and put/after
procedural attachments, respectively.

- 162 -

Prob(ID) for this object is contained in the final six slots. ID is either
a bomber or a transport. Note that Prob(ID is transport) is more likely
even though the last three ID assertion confidence levels are the same for
both bomber and transport (0.5 0.9 0.8). This is because the order in
which assertions were made affects past values of Prob(ID), which are, in

turn, used to calculate the current Prob(ID).

If we view one of the fighters, plane5, we see:

> (view plane5)

F.185

SELF (F.185 () O () (#{Procedure 77}))

CLASS (AIRBORNE DBJECT () (O O)

PARENTS ((F.558) O O O)

NAME (PLANES (O O O (O)

VELOCITY 1.7 0 O (O (#{Procedure 78}))

XY-POS ((30 -2.5)) () (#{Procedure 79}) (#{Procedure 80})

HEADING (180.0 O O O O)

RCS ...ttt (MEDIW () O (O (#{Procedure 81}))

IR TEMP (1525 () 0 (O (#{Procedure 82}))

RADAR (HI-LARK () O (O (#{Procedure 83}))

LRSIG (SOVIET-CLASS2 () () (O (#{Procedure 84}))

ENG 2 0 O O (#{Procedure 85}))

ENG TYPE (AFTERBURNER () () () (#{Procedure 86}))

LENGTH 65) O O (#{Procedure 87}))

WIDTH (45 0 O O (#{Procedure 88}))

MANEUVERS (S-TURNS () () () (#{Procedure 89}))

ALTITUDE (33500 () () (#{Procedure 90}) (#{Procedure 91}))

PREV-ALTITUDE (30000 () () O 0O)

HYP-PTR (F.188) O O O)

COM RAD (1000 () O O (#{Procedure 92}))

BASE POO ((#{0bject 94} #{0bject 95}) () () (#{Procedure93})

POSS IDS ((ROCKET FIGHTER) () O (O ())

PTR_LIST ((F.261 F.264) () O O)

PID LIST ((0.006 0.994) () (O O)

PIDZROCKET ((0.05 .00.0) O O O 0O)

PIDRFIGHTER ((0.9 0.8 0.95 0.7 0.9 0.85 0.8 0.5 0.0 0.0) () ()
0 M

Prob(ID) for this object is much more definitive. If we want to know data

about this fighter’s mission, we look at the HYP-PTR siot above, which

- 163 -

points to F.186. If we view this frame object, we see:

> (view 'f.186)

F.186
SELF ..., (F.186 0 O O 0)
CLASS ... (HYPOTHESES (0 0" O)
PARENTS ((F185) 0 O O O)
MISSION (ESCORT () 0 ()" (#{Procedure 963))
PHASE (DASH () O O (#{Procedure 97}))
ACC-HIST O 000

The mission of piane5 is escort, and the phase of the mission is dash.
Currently, the ACC-HIST (acceleration history) slot of hypotheses is not

used.

- 164 -

Atenuep *Aepuoly auou “auou “dapies se ui pablio) |

pusuIUO)
8 EANIVA
{0'0S 0069~ INGELY DO
EWvS TANYN
oL ENYA
(0°002- 0°00L-) INOJLVYOOT
OH INYN
9 FANVYA
(0°0 9°0) INOILVYIO01
d1v ‘NN

‘3ANTINL S439YVL 31815S0d
(S3NVId PINYTd EANVTID LLINI0H) 40 SLSISNOD vSF 'ON NOILVYIWHOZ

€4 SS3004d
Z6€ NOW3G HOX 40 LUV SV v66 INOWNIG HAMNW 'NOWIG ONILADI XS ;
(S81'd (E£ LOArBO0) 'ON ZNOWIA-BANNNW) LSP'NOWIC-00d :NOW3IT ONITTIN
66EZNOWIA-HANNW :NOW3A ONINMY IS 19" NOWIA-SWHO S AVS INOWIA ONILNDIX3
(6B1°2 (EL 123/80) ‘ON LNOWIA-BAANAI 09v'NOWIA-SWHO FAYS INOW3IA DNILNDIXS
86€' LNOWAG-HANNIW :NOW3G DNINMY dS 650"NOWIG-00d :NOW3O ONILADIX3
(181°3 (E£ LDO3rE0) "ON ZNOWIA-HANNW) 850°NOWIQ'004 :NOWIQ ONILNTAX]
SBE'ZNOWAG-HANNW :NOWIA SNINMYJS £59’NOW3-00d NOW3a DNILND3XT
(L81°4 (E£ 1DIFA0) "ON LNOW3Q-HANNWI 959P'NOW3Q-LIOHVL NOW3IA ONINIM
PEE LNOWIG-HANNW :NOW3A DNINMY IS £6P°'NOWIQ-13DUVYL :NOW3A ONITTIN
‘06 MON SI JWIL 0SY'NOWIA-GYHWOD INOWAA ONITTIN
SNOILDVY S31NAIYLLY TIAIT NOISSIW
SLP'ZNOWIA-FIAL INOWIQA ONITTIN LYE ENOWIQ-Q33dS :NOWIQ 40 13V~ ONILNDIXS
GLo INOWIA-3dAL ‘NOWIG 40 LOV- DNILNDIX3 (Y€ ENOWIQ AI2dS ‘NOW3A DNITTIN
SLY LNOWIQ-IdAL :NOWIA ONITTIN 9P ZNOWIA 03345 :NOW3IA 40 13%- ONILADIXI
Zo¥ NOWIA-BOX 40 LHVd SV 605 LNOW3G-3dAL :NOW3Q ONILNDIX3 9PE'ZNOWI -3 34S NOWIA DNITIN
LBE'NOW3G-HOX 40 LHvd SY 06E'ZNOWIA-HVAVH NOWIQ ONILNDIXT) SPE INOWIG-G332dS ‘NOWIGA 40 10V~ ONILADIXA
682’ INOW3O-HYAVH :NOW3QA 40 LIV~ ONILADIXI SEE LNOWIQ-a334S :NOWIA ONITTIN
68E° L NOWAA-HVAYH :NOW3A DNITTUN LEE'NOWIA-HOX 40 LHVd S¥ ZbE'PNOWIA-0334S 'NOWIA ONILND3XA
*NOISSING SALNGIHLLY TVIISAHd
.

N3I3H3IS 3T1dAVS ZSVO "8 HNDIL

- 165 -

REFERENCES

Blackman S. S. and Broida T. J. A Method of Sensor Allocation
for a Multitarget-Multisensor Tracking Problem (U), Hughes
Aircraft Company, Ref. 2312.10/31, March 1983.

Ben-Basset, M. Multimembership and Multiperspective
Classification: Introduction, Applicationsa, and a Bayesian
Model. IEEE Transactions on Systems, Man, and Cybernetics.

Vol. SMC-10, No. 86, pp. 331-336, 1980.

Bobrow D. B. and Winograd T. An Overview of KRL, A Knowledge
Representation Language. Cognitive Science, Volume 1, No. 1,
1977 .

Clancey W. J. Classification Problem Solving. Heuristic
Programming Project, Computer Science Department, Stanford
University, Stanford, California, 1984.

Charnizk E., Riesbeck C. K., and McDermott D. V. Artificial
Intelligence Programming, Lawrence Erlbaum Associates,
Hillsdale, New Jersey, 1980.

Dempster A. P. Upper and lower probabilities induced by 2
multivalued mapping, Annals of Mathematical Statistics, Vol.

38, pp.325-339, 19567.

Dillard R. A. Computing Confidences in Tactical Rule-Based
Systems by Using Dempster-Shafer Theory. Technical Note 649,
Naval Oceans Systems Center, San Diego, California, September
1983.

Dillard R. A. Computing Probability Masses in Rule-Based
Systems. Technical Note 545, Naval Oceans Systems Center, San
Diego, California, September 1982.

Dolan C. P. Representations for Conceptual Objects: T-CD2,
Discrimination Net, and Demon Control Structures. Tools Note 1,
Artificial Intelligence Laboratory, UC Los Angeles, California,
June 1984.

Dyer M. G. In-Depth Understanding: A Computer Model of
Integrated Processing for Narrative Comprehension, The MIT
Press, Cambridge, Massachusetts, 1983.

Duda R. 0., Hart P. E., Nilsson N. J. Subjective Bayesian
Methods for Rule-Based Inference Systems. Technical Note 124,
SRI International, Menlo Park, California, January 1976.

- 166 -

Edwards G. R. A Rule and Frame System, version 2.2. Hughes
Artificial Intelligence Center, Calabasas, Califronia, April

1984 .

Fikes F. and Hendri x G. A Network-Based Know | edge
‘Representation and its Natural Deduction System. In
Proceedings of the Fifth International Jownt Conference on
Artificial Intelligence, 1977, Massachusetts Institute of
Technology, Cambridge, Massachusetts.

Fox M. S., Lowenfeld S., and Kleinosky P. Techniques for
Sensor-Based Diagnosis. In Proceedings of the Eighth
International Joint Conference on Artificial Intellagence,
1983, Karlsruhe, West Germany.

Garvey T. D., Lowrance J. D., Fischler M. A. An Inference
Technique for Integrating Knowledge from Disparate Sources. 1In
Proceedings of the 7th International Joint Conference on
Artificial Intelligence, 1981, University of British Columbia,
Vancouver, Canada.

Geschke M. J., Bullock R. A., and Widmaier L. E. TAC = I] An
Expert Knowledge Based System For Tactical Decision Making.
Master’s Thesis, Nava l Postgraduate School Monterey,
California, June 1983.

Gevarter W. B. Expert Systems: Limited But Powerful. IEEE
Spectrum, Vol. 71, no. 8, p. 39-45, 1983.

Ginsberg M. L. Non-Monotonic Reasoning Using Dempster’s Rule.
In Proceedings of the National Conference on Artificial
Intelligence, 1984, University of Texas, Dallas, Texas.

Goltzman D. Infrared Sensors for Air-to-Air FCS Applications
(U), Hughes Aircraft Company, Ref. 23-30-00/107, August 1984.

Hayes-Roth F., Waterman D. A., Lenat D. B. (Eds.). Buzlding
Expert Systems, Addison-Wesley, Reading, Massachusetts, 1983.

Kinnucan P. Superfighters. High Technology, Vo!. 4, No. 4,
pp. 36-41 and 44-49.

Klahr P., McArthur D., and Narain S. SWIRL: An Object-Oriented
Air Battle Simulator. In Proceedings of the National
Conference on Artificial Intelligence, 1982, Carnegie-Mellon
University, University of Pittsburgh, Pittsburgh, Pennsylvania

Lee C. A. Manual on Improved ARF, Hughes Aircraft Company,
El Segundo, California, 1985 (in print).

- 167 -

Lenat D. B., Clarkson A., and Kiremidjian G. An Expert Sysem

for Indications and Warning Analysis. In Proceedings of the
Eighth International Joint Conference on Artificial
Intelligence, 1983, Karlsruhe, West Germany '

Lowrance J. D., Garvey T. D. Evidencial Reasoning: An
Implementation for Multisensor Integration. Technical Note

307, SRI International, Menlo Park, California, December 1983.

Minsky, M. A Framework for Representing Knowledge. In P.
Winston, ed., The Psychology of Computer Vision, McGraw-Hill,
New York, New York, 1975.

Pearl J. Reverend Bayes on Inference Engines: A Distributed
Hierarchical Approach. UCLA-ENG-CSL-8250, UC Los Angeles,
California, June 1982.

Rauch H. E. Probability Concepts For An Expert System Used For
Data Fusion. The AI Magazine, Fall 1984, pp. 55-60.

Rieger C. and Small S. Word Expert Parsing. In Proceedings of
the Sizth International Joint Conference on Artificial
Intelligence, 1979, Tokyo, Japan.

Riesbeck €. and Schank R. Comprehension by Computer:
Expectation-based Analysis of Sentences in Context. Research
Report 78, Yale University, 1976.

Schmolze J. G. and Lipkis T. A. Classification in the KL-ONE
Knowledge Representation System. In Proceedings of the Eighth

International Joint Conference on Artificial Intelligence,
1983, Karlsruhe, West Germany.

Shafer G. A Mathematical Theory of Ewvidence. Princeton
University Press, Princeton, New Jersey, 1976.

Shortliffe E. H. Computer-Based Medical Consultations: MYCIN,
American Elsevier, New York, New York, 1976.

Spain D. S. Application of Artificial Intelligence to Tactical
Situation Assessment. IEEE, pp. 457-464, May 31, 1983.

Stimson G. W. An Introduction to Azirborne Radar, Hughes
Aircraft Company, El Segundo, California, 1983.

Strat T. M. Continuous Belief Functions for Evidential
Reasoning. In Proceedings of the National Conference on
Artificial Intelligence, 1984, University of Texas, Dallas,
Texas.

- 168 -

Taylor J. W. Jane’s All The World’s Aircraft: 1984-1985,
Jane’s Publishing Co. Ltd., London, England, 1985.

Waltz E. ... Computational Considerations for Fusion in Target
Identification Systems. Bendix Communications Disvision,
Aerospace Systems Operation, Ann Arbor, Michigan, 1981.

Note: references 1-9 are from Aviation Week and Space
Technology. Most articles did not have authors
listed.

[1] March 12, 1984. pp. 136-173

[2] March 16, 1981. USAF Pushes Production, Performance. pp.
48-55.

[3] March 16, 1981. Soviets Press Production, New Fighter
Development. pp. b6-61.

[4] August 8, 1977. Strength Sought at Least Cost. pp. 36-47.

[8] January 21, 1980. Soviets Press Antijamming Training. pp.
95-99.

[6] October 5, 1981. Soviet Union Defensive Buildup Detailed
by Weinberger. pp. 18-22.

[7] August 31, 1981. Libyan Incident Spurs Deployment Shift.
pp. 19-20.

[8) March 26, 1979. Soviets to Field Three New Fighters in

Aviation Modernization Drive. pp. 14-16.

[9] October 20, 1980. Dornier Planning New STOL Flying Boat.
pp. 65-66.

[10] Three New Soviet Air-to-Air Missiles in Service.
International Defense Review, March 1978, p.400.

[11] New Soviet Aircraft: The RAMs. Marine Corps Gazette, May
1988, pp. 20-22.

[12] Special Report: Soviet ESM Capabilities Detailed. EW/DE,
December 1978, pp. 60-68.

[13] Discussions with Mike Tom of Hughes Aircraft Company,
October 1984.

[14] Discussions with Tracy Wickman of Hughes Aircraft Company,
October 1984.

- 169 -

