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Abstract

Means of minimizing the flow-induced and thermally-induced residual stresses in
injection molded parts through optimization of the thermal history of the process
are presented. Two approaches to residual stress minimization have been studied:
the use of a passive insulation layer and the active control of the surface
temperature. The passive insulation layer prevents the polymer melt from freezing
during filling of the mold and allows the flow-induced stresses to relax after filling.
The cavity surface attains high temperature during filling which subsequently cools
down to low temperature due to heat transfer to the mold. The criteria for the
optimal thermal properties and the required thickness of the layer are presented. A
numerical simulation model of non-isothermal filling and cooling of viscoelastie
materials has been developed to understand the molding process and evaluate this
approach.  This model predicts the stress development and relaxation in the
molding cycle.  Both simulation and experimental results show that the final
stresses in the molded parts can be reduced by at least 40% with the use of
insulation layer.  The second approach, an active control of the surface
temperature, is to find an optimal thermal history within a specified time period
for minimizing residual thermal stresses in viscoelastic materials. Both free and
constrained plates with temperature gradient across the thickness are investigated.
The surface temperature of each plate is chosen as the control variable while the
temperature at everv node across the thickness is chosen as the state variable.
Euler-Lagrange equations are solved with first gradient algorithm to iterate the
solutions. Physical insights are provided for the optimal cooling paths predicted
theoretically.

Thesis Supervisor: Prof. Nam P. Suh
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Injection Molding Process

Injection molding is a process in which a polymer melt is forced into a closed
mold where it solidifies under pressure in the shape of the mold cavity. Then the
mold is opened and the molded part is ejected. The resulting parts are usually
finished parts which require no further work before being used as final products,
Although thermoplastic injection molding is the subject of this thesis, the
techniques discussed can also be applied to other materials as well as other molding

processes.

An injection molding machine consists of two parts: an injection unit to melt
and inject polymer into the mold, and a c¢lamp unit to hold the mold closed against
the pressure of injection and subsequently opéli the mold for part removal. There
are various distinet design approaches used in both the injection and clamp units.
The mechanical design of the clamp unit is a major topic in itself. This thesis
considers only the filling and cooling of the polymer in the mold. A comprehensive

review on the design of an injection molding machine is given by Rubin [30].

1.2 Problem Statement

The flow of polymer during mold filling produces stresses in the parts. These
stresses are greatest near the surface of the part where the polymer starts to freeze
immediately after it comes in contact with the cavity surface and thus cannot
relax. The relaxation time constant increases with decreasing temperature. For

amorphous polymer, relaxation is almost impossible when the temperature is below
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its glass transition point.

In addition to the flow-induced residual stresses, there are also thermally-
induced stresses caused by non-uniform cooling. During the cooling process. a
temperature gradient develops across the thickness of a part due to the heat
conduction from the plastic to the mold. When the part has a varying thickness, a
gradient also develops perpendicular to the thickness direction. The temperature
gradient results in differential thermal contraction and stress relaxation, which in

turn lead to thermal stresses inside the part [27, 23].

Both flow-induced and thermally-induced residual stresses inside a part result
dimensional instability over the life time of the part. For high precision optical
parts, dimensional accuracy and stability on the suface are particularly critical.
Moreover, non-uniform stresses inside optical parts produce differential optical

indices.

The ideal condition in injection molding is to have a hot mold during the
filling stage and a cold mold for cooling. Hot mold during “m-— filling can eliminate
short: shot and weld lines and minimize flow-induced stresses in molded parts.
Subsequent to the complete filling of the mold, cold mold is required so that the
parts can quickly pass through the glass transition temperature and be e¢jected
from the mold. However, it takes a very long time for the whole mold to go
through this thermal cycle because of its huge thermal inertia. This thermal cycling

would also reduce the life of the mold.
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1.3 Research Goal

The goal of the research presented in this thesis is to minimize flow-induced
and thermally-induced residual stresses in injection molded parts through
optimization of the thermal history of the process. Two different approaches to

residual stress minimization are studied in this thesis.

The first approach is to apply a passive insulation layer with low thermal
inertia. on the cavity surface. The outermost surface of this layer reaches a high
temperature during the filling satge, which subsequently cools down upon futher
cooling. This layer provides a hot cavity surface during the filling and a cold
avity surface during the cooling without heating the mold. The criteria for the
optimal thermal properties and the required thickness of the layer are presented. A
numerical simulation model of non-isothermal filling and cooling is developed to
evaluate this approach. Experiments are also done to compare the residual stresses
and cooling times for two cases: with the passive layer and without the passive

laver. The experimental results are also compared with the theoretical predictions.

The second approach, an active control of the surface temperature, is to find
an optimal thermal history which minimize thermally-induced stresses in
viscoelastic materials. Both free and constrained plates with temperature gradient
across the thickness are studied. The surface temperature of each plate is chosen as
the control variable while the temperature at every node across the thickness
represents the state variable. Kuler-Lagrange equations are solved with first
gradient numerical iteration to obtain the optimal cooling profiles.  Physical

insights are provided for the optimal cooling paths predicted theoretically.
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Chapter 2

Fundamentals of Injection Molding Process

2.1 Introduction

The injection molding process begins with feeding polymer pellets from the
hopper to the screw for mixing, heating and transport to the mold. As the screw
rotates to transport the polvmer forward, the mechanical shear of this action
provides viscous heating to further melt the polymer in addition to the electric
heater surrounding the barrel. Mixing and heating occurs simultaneously between
serew [lights. The polymer melt finally passes through the screw tip non-return

valve.

Accumulation of polvimer melt in front of the rotating screw causes the screw
to displace toward the rear. Rotation, accumulation and backward displacement
continue until the desired quantity of melt is available for injection. Then the
serew is hvdraulically activated for forward injection, while the screw tip non-
return valve closes to prevent material back-flow along the screw. The screw tip
functions as an injection piston, foreing polymer melt into the mold through the

nozzle.

The melt then flows through the mold sprue, runner and gate into the mold
cavity. The sprue forms the overall entrance into the mold. It has a generous
taper to facilitate removal of polvmer, and a streamlined channel to minimize the

resistance to flow.

The runner system is the connection between the sprue and the gate. It
should be large enough to provide rapid filling with minimum pressure loss.

Although the runners ean be reground and reused, the length of the runner should
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be kept to a minimum. A hot runner system. where the polymer in the runner is
prevented from solidifving by employing a heating unit around them in the mold,

can also be used to achieve material saving and faster cycle.

The gate controls the flow of polymer melt into the cavity. Its size should be
small enough so that the runners can be separated from the molded parts easily,
and the gate can solidify after the filling. However, a small gate creates large shear
strains in the polymer melt, and consequently increases the residual stresses in
molded parts. A fan gate can be used if the stress level in the molded parts is of
concern. In molds with multiple cavities, gates and runners also serve to balance
the flow so that all cavities fill simultaneously. The location of the gate is also

important since it affects the formation of weld lines in molded parts.

2.2 Characteristics of Injection Molded Parts

One ol the problems in the injection molding process is that the filling
process is coupled with the cooling process [17].  The cooling of the injected
polymer melt occurs before the filling is completed. Therefore, every point in the
molded part experiences a different thermo-mechanical history. This variations
combined the coupled nature of injection molding processes create anisotropic and
nonhomogeneous characteristies in molded parts, which degrade the quality of the
parts.  These are caused by the non-uniform molecular orientation and residual

stresses inside the parts.

The molecular orientation and residual stresses inside injection molded parts
have hecome the focal point of many experimental and theoretical investigations,
Tadmor [33] presented two major sources of ortentation in injection molding: the
elongational flow in the melt front and the shear flow behind it. He then proposed
a semiquantitative model to determine the the distribution of molecular orientation

in injection molded amorphous polymer. He also concluded that the orientation in
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the surface skin is caused by the steady elongational flow in the advancing front,

whereas the orientation in the core region is related to the shear flow behind the

front, between two solidifving lavers.

Dietz, White and Clark [6] developed a simplified model for the orientation
development and relaxation in injection molding. They separated the state of the
polymer melt in the cavity into an isothermal core region and two solidified layers
on the walls. An isothermal power law model was used to calculate the shear stress
in the core region. A linear viscoelastic Maxwell model was utilized to study the

stress relaxation in the cooling stage.

Greener and Pearson 8] followed this model but used the viscoelastic
constitutive equation of Marrueei [24] to predict the residual stresses in injection
molded parts. He attributed the non-zero birefringence along the midplane of the

molded part to thermal stresses, which were induced by non-uniform cooling.

A more rigorous model for predicting stress relaxation was developed by
Isayev and Hieber [I1] using Leonov constitutive equation. This work will be

discussed in more detail in Chapter 3.

2.3 Processing Parameters

In the .injection molding process, a hot polymer melt is injected into a cold
avity., The melt and cavity temperature as well as the flow rate and injection
pressure determine the thermo-mechanical history of the molded part.  The
mechanical properties of injection molded parts are strongly affected by the
thermo-mechanical history of the processes. Due to the complexity of the process,
most of the studies in the effects of processing conditions on the final properties of

the molded parts relyv on empirieal investigations.

Siegmann et al. [32] conducted a comprehensive study on the influence of
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melt temperature, mold temperature. injection rate and injection pressure on the
residual stresses of molded parts. They found that stress in the surface region
decreases with increasing melt temperature in zones far away from the gate. This
was attributed to the fact that the stress relaxation in polymer increases as the
melt temperature increases. However, the polymer melt may degrade if the

processing temperature is too high.

In that report, increasing mold temperature was found to decrease the
magnitude for compressive stress on the surface. As the mold temperature
approached T ., verv low value of residual stress was measured. The increasing

g
mold temperature reduced the amount of frozen-in stresses and allowed the [low-
induced stresses to relax. At one extreme, Johnson [15] reported that relatively
strain-free parts could be obtained by heating the mold to the polymer melt
temperature. It should be noted that if the mold temperature is above 'I‘g. the

by

parts will not solidify and their dimensions will not stabilize.

Menges and  Wuabken [25] reported similar findings in which frozen
orientation was reduced by increasing melt and mold temperature since these have
the same effects on relaxing the orientation. They also found that an increase in
injection rate led to slightly  higher surface orientation while the internal
orientation was significantly reduced. In terms of the thickness of the oriented
layer, Isayev [13] found that inereasing the flow rate substantially decreased the
thickness of the oriented laver. These findings agree with cach other because high
flow rate reduces the filling time. and therefore reduces the thickness of solidified
layer during the filling process. Furthermore, higher strains which resulted from
higher injection rate, led to faster relaxation since the stress relaxation is also

strain-dependent.

In order to mold a high quality part with minimum orientation, the

processing parameters may be adjusted to achieve the goal. However, there are
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limits to the adjustable ranges of processing parameters. Moreover. the
compromise among minimum orientation. cyele time and dimensional stability
should also be considered. An optimal processing condition should be developed to

improve the part quality without reducing productivity.

2.4 Process Simulation

The process of injection molding involves flow, heat transfer and the
mechanics of viscoelastic materials. The complexity of the process has made
analytical solutions so difficult that numerical simulations of the process have been

used to understand the details of the process,

Extensive studies [10, 16, 37, 35, 19] have focused on the filling process to
calculate the thermal and flow fields of this unsteady flow as well as to predict the
positions of melt front and the required injection pressure. The power law model
was the most commonly used constitutive equation. 'This model is strain-rate and
temperature dependent but cannot account for the viscoelastic characteristics of

polymer.

The Cornell group [5] developed a two dimensional mold filling program
which utilized the generalized Hele-Shaw flow model. The position of the melt front
was presented as function of time, and therefore the location of weld lines, il any,
could be predicted. They emploved the finite element method in the planar
coordinates and the finite difference method in the gapwise direction. The power
law material model was also used. The advance of melt front in each time step,

however, required the user's judgement and correction.

Kim [I8] contributed to that program with a automatic melt front mesh
generation feature which used a so called boundary-pressure-reflection scheme to

determine the moving melt front automatically.
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Few researchers have attempted modeling of the packing and cooling
processes. This could be attributed to the complexity of considering the state
equation and viscoelastic material model. However, these processes are important
if the properties of molded parts are to be predicted. Unfortunately, the studies
that have been conducted [16, 4, 19, 7] are primarily concerned with the pressure
field in the packing and cooling stages. To the best of the author's knowledge. the
effects of packing on the final stress distributions in the molded parts have not
been studied. This is probably because of the complexity of the phenomena, which

include the state equation, the viscoelastic material model and solidification.

The effects of cooling on the residual stresses have been investigated using the
quenching of viscoelastic materials per se [27, 23, 22] instead of the cooling process
in injection molding. Nevertheless stress relaxation models in the cooling have been
reported [14, 17] which considered the cooling only as a stress relaxation process by
neglecting the thermally-induced stresses. Thermally-induced stresses are caused
by temperature gradient during the cooling.  Others [5, 8] approximated the

quenching as the cooling process in injection molding.
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Chapter 3

Passive Insulation Layer for Stress Relaxation

3.1 Introduction

The flow of polymer during mold filling in injection molding produces stresses
in the parts. The stresses near the surface of the part, where the polymer starts to
freeze immediately after it comes in contact with the cavity surface, cannot relax.
The filling and the cooling processes are coupled. The relaxation time constant
increases with decreasing temperature. For amorphous polymer, relaxation is nearly

impossible when the temperature is below its glass transition point.

The ideal condition in injection molding is to have a hot mold during filling
and a cold mold during cooling in order to decouple the filling and the cooling
processes. High mold temperature during the filling eliminates short shots, weld
lines and flow-induced residual stresses in molded pa‘rL‘s.} Low mold temperature
during cooling is required so that the parts can qlﬁ(‘»kly pass through glass
transition temperature hefore they can be ejected from the mold. However, if the
entire mold is to be heated and cooled, it will take tens of minutes for the thermal

cycle to complete and the life of mold would also be reduced.

A low thermal inertia mold, which could provide rapid change of temperature
on the cavity surface by a heated layer on the cavity surface without changing the
temperature of the whole mold, was developed in MIT-Industry Polymer Processing
Program [17] and Intelitec Corporation. The flow-induced stresses relax if the
cavity surface is heated to the same temperature as the entering polymer melt
during the filling process. However, one of the difficulties in that technique was the
thermal stresses introduced at the interface between the heated layer and the mold

due to the large temperature gradient. Furthermore, uniform heating of the layer



was hard to achieve in 3-D complex cavity surface.

Another technique for reducing flow-induced and thermally-induced residual
stresses without external heating is to apply a passive insulation layer with low
thermal inertia on the cavity surface. The interface temperature between the
incoming polymer melt and the mold during filling will rise according to the
particular thermal properties of this layer. The heat conduction from the polvmer
to the mold is delayed for few seconds which are long enough for filling and
subsequent stress relaxation. Therefore, polymer does not freeze during the filling,

allowing the flow-induced stresses to relax prior to solidification.

The thermally-induced stresses can also be reduced since the temperature
gradient in the polymer will be lowered by this layer. This layer provides a hot
cavity surface during filling and a cold cavity surface during cooling without

having to heat or cool the whole mold.

Two simple criteria for the optimal thermal properties and required thickness
of the layer are presented. A numerical simulation model of non—isol,]w‘r.l.‘nal filling
and cooling was developed. This model predicts the stress development and
relaxation in the molding cycle. The effects of this layer on the residual stresses of
the molded parts can also be evaluated with this model. Experimental results
showed that the birefringence in the molded parts was reduced by 0% with this

layer.

3.2 Thermal Criteria

Two criteria have been identified, based on the fundamental principles of
heat conduction, for the optimal thermal properties and the required thickness of
the layer that give the best performance. Theyv give guidelines for selecting the

materials and thickness of the layer.
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3.2.1 Thermal Properties of the Layer
In order to raise the interface temperature between the polymer flow and the

cavity surface above the glass transition temperature for a few seconds after the

filling process, the thermal properties of the layer should be selected as follows.

When two semi-infinite parts with different initial temperatures 'I‘l and T,

come into contact, the temperature T, at the interface is governed by

T T o),
1 oz(( P )_)1/2 G51)
To—T, N (ko)

where

k= thermal conductimly,
p = densily,
c = speci fie heal.

The interface temperature increases with decreasing (kpe) of the insulation layer.
Ty is not a function of time for two semi-infinite parts. The derivation of equation

(3.1) is shown in Appendix B.

In situations where the plastic part and the insulation layer have finite
thicknesses, Ilquation (3.1) is still valid as long as the outside surface temperatures
of the two parts are not affected by the contact. This fact will be used as the
second criterion to estimate the required thickness of the layer. From equation
(3.1), th.e value of (kpc) for the insulation layer can be determined if T, is specified,

since T, T, and (kpe) of the polymer are known.

3.2.2 Thickness of the Layer

For equation (3.1) to be valid, the insulation layer should be thick enough so

that the heat does not penetrate the layer within a specified time period. The
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temperature history of a semi-infinite solid with step change in surface temperature

from T, to T _is given [12] by

T-T, . |
rlv _ 7.: - B'I’f(‘ ( ___)O (3-2)

P 2 Vot

where
erfe(u)=1— erflu)isthe complementary error function,
= distance from surface,

o =—="lhermal di ffusivity,
pe
= hime.

(&

~

By knowing the thermal properties of the layer from equation (3.1), the required
thickness of the layer can be caleulated if the time to keep the interface

temperature well above 'l‘g after filling for stress relaxation is specified.

3.3 Thermal Analyses

After caleulating the required thermal properties and thickness of the layver
based on the thermal criteria, it is necessary to check if the increase of cycle time is

within the acceptable range.

It is expected that the subsequent cooling would take longer than when the
insulation layer is excluded. H()ww.vr. the percent of increase should not be large
for two reasons. First, since the thermal conduetivity of polymer is much lower
than those of the laver and the mold, the cooling time must be dominated by the

heat conduction inside the polymer.

Second, a steep temperature gradient develops within the layer for the first
few seconds while the surface temperature of the part is kept well above 'I‘g

Although the thermal conductivity of the layer is lower than that of the mold, the
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heat flux through the laver should not decrease due to this high temperature

gradient since heat flux is the product of thermal conductivity and temperature

gradient. Therefore, the subsequent cooling would not he delayed too much.

Table 3-1 gives the values of interface temperature for different materials in
contact. with polystyrene. These values are obtained from equation (3.1). It is
clear that the material which has the smallest kpe gives the highest interface
temperature. The values in Table 3-1 are the interface temperatures right after the
contact occurs, and before heat has penetrated through the layer. A simple
numerical simulation of conduction can give us the transient temperature profile

even after heat has penctrated through the layer.

[Migure 3-1 shows the transient temperature profile after hot polystyrene
(210 °C*) comes in contact with a cold steel mold (70 °C’). It should be noted that
the thicknesses of the different materials are not in scale in the figure. The surface
temperature of the polystyrene drops to 89 °C', which is below its Tg of 100 °C,
immediately after contacting with the steel mold. Therefore, the flow-induced
orientation near the surface cannot relax. The total cooling time, defined as when

the highest temperature inside the part passes through 'l‘g. is 11 seconds.

The results for the case where a Teflon layer is applied on the cavity surface
are shown in Figure 3-2. The surface temperature of the polystyrene drops to
123-°C" after the polvmer and the laver come in contact, as predicted from the first
thermal criterion and shown in Table 3-1. A typical filling time in injection
molding process is about 0.5 seconds, at which the interface temperature is still
kept at about 123 °C. Therefore, the flow-induced orientation will relax after the

filling process,

In about 13 seconds, the highest temperature inside the part reaches Tg and

the interface temperature is al. 87 °C'. This laver provides a hot cavity for the



(kpe) (CGS) T ( °C)
13
Steel 3.73 x 10 89
Al O 9.01 x 10 '2 105
2 3 B
12
Teflon 2.88 x 10 123
Styrene | 6.10 x 10 ' 155

Table 3-I: Interface Temperature for Different Materials in Contact
with Styrene, T = 240 °C, T, = 70 °C.

44444
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filling and a cold cavity for the cooling without having to heat or cool the whole
mold. The polymer sees the mold temperature only at their interface. [If the
interface temperature is high. the polyvmer behaves as though subjected to a hot

mold regardless of the temperature in the rest of the mold.

The objective of having an insulation layer with small kpe on the cavity
surface is to keep the polymer above 'l‘g for a few seconds after the filling so that
the flow-induced stresses can relax. ‘The cooling time for this case is 13 seconds as
compared to 11 seconds in the former case. The increase of cooling time is less than

209, which is expected from the two reasons explained previously.

3.4 Stress Development and Relaxation

The thermal analyses in the last section were based on conduction only,
which gave us an approximation of the transient temperature profile during the
molding cycle. The influence of convection and viscous heating in polymer flow
should also be considered since polyvmer melts, in general, have high viscosities.
Moreover, a model to predict the stress development and relaxation in the molding
cvele should also be developed in order to gain insights into the processes and
evaluate the effects of this passive layer on the final stresses of molded parts.
Filling and cooling in the injection molding process were simulated in order to

understand how the stresses develop and relax in the molding evele.

3.4.1 Constitutive Equations

A viscoelastic material model must be used in order to account for the stress
relaxation in the polvmer. The Leonov constitutive equations [21. 20]. which were
obtained from the methods of irreversible thermodynamies to deseribe the behavior
of polvmer in an arbitrary elastic state, were used. The constitutive equation may

be expressed as
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N
. -1
ct+péb= 2:;Ose+ 2 Z (””klck— < Mfk:l)'
. k=1

(3.3)

v p P
¢, —cle—e)—(e—e)c,

0,

(3.14)

where

(3.6)

:ZWk = W l | 'lk.:z) + W lk.‘.”]k,l)'

(3.8)

In these equations, o is the stress tensor, p is the isotropic pressure, 4 is the unit
tensor, n_is the zero-shear-rate viscosity, s (0<s<l1) is the dimensionless
rheological parameter. e is the rate of strain tensor, ¢k is the elastie strain tensor

(the Finger measure) in the "k"th relaxation mode, 1, | and 1, are ¢ 's basic

mvariants, c, I8 the Jaumann tensor derivative with respect to time, W is the
elastic potential, W, is the elastic potential in the "k"th relaxation mode, eL is the

irreversible rate of strain tensor, oy and m, Are relaxation time and viscosity in the



-32-
"k"th relaxation mode respectively. The shear modulus in the "k"th relaxation

mode . can be given as 2"’k = "k/ak‘

The rheological parameters 0\ and m, can be determined by standard
rheological measurements for a linear case. If not very large elastic deformation is
considered, the classic statistic potential of the high-elasticity theory can be taken

as the elastic potential W, .

H’Vk == pk_( [k.l —3), (3.9)

My
H’kz?( llf.l + l',&,‘2 —6).

This material model with the considerations of temperature-dependent

ity and relaxation time makes it possible to predict the stress

.

modulus, viscos
development in unsteady, non-isothermal flow during filling and the non-isothermal

stress relaxation during cooling.

3.4.2 Model Formulation

Isayev and Hieber [11] employed this constitutive equation for modelling hoth
the filling and cooling in injection molding. They idealized the problem by
considering a lully-developed Poiseuille-type polymer flow of uniform initial
temperature. The wall temperature is then abruptly lowered to room temperature.
The temperature field is determined by transient one-dimensional conduction. The
flow field is subsequently calculated under constant flow rate with temperature-

dependent viscocelastic properties.

They applied this idealized problem to the filling process of injection molding
by assuming that the fields at t=0 correspond to the fields at the end of the
channel while the fields at (=tp) is equivalent to the fields at the gate.  They

neglected the elongational flow and assumed a constant temperature in the
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advancing melt front. Despite the simplifications, the prediction seemed to

correlate with the experimental results very well.

In the present model, convection and viscous heating are included. The
thermal aspect of the fountain flow is considered; the initial temperature assigned
to the new melt front at every time step is based on the fountain flow field. As
such, the initial temperature of the advancing melt front comes from the
equilibrium temperature in the core region of previous melt front. The initial
temperature of the melt front, from which the thermal field of the flow is
calculated, plays an important role in the simulation because the stress field is
affected strongly by the temperature-dependent viscoelastic properties. The
objective of this filling and cooling model is to evaluate the idea of using the

insulation layver for stress relaxation.

We consider here a model for the injection molding of a plate (Figure 3-3).
The flow direction is shown by x or | while z or 2 represents the thickness
direction. The polymer melt is initially at a uniform temperature TO and is injected
under constant flow rate into a mold cavity with the mold temperature at T, A
thin insulation layver, also at T, initially, on the cavity surface is used to control
the thermal history of the molded parts for stress relaxation. A cooling channel
inside the mold with constant coolant temperature draws the heat out of the mold

continuously.

The kinematic matrices for the case of simple shear have the forms,

010 0 -1 0
=4/2L 1 00 ], w=45/2f1 0 0}, (3.10)
000 00 0
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k) (k) , (k) (k)
c(n) g U \ Cog €9 0
- _ k
(o) w'=(- 4 o)
"N 0 1 0 0 1

and the basic invariants of ¢ are given by

k k)
hy=hs= "(l l) + "532 +1.

The incompressibility condition del ¢, =1 takes the following form,

9
(k)

12

‘(‘Y:) ('(2’1,) =1+c

In this particular case, equation (3.4) can then be shown as

LK)
T k) (k) (k) , (K

20, Y +o (E—eyy )+ 2c), (e, =296, ) =0,
oy k), (k) (k) (k)

20"'T+ o (o + r,_,g)— 258 cyy = 0.

The governing equations for flow and heat transfer are

dﬂl'.!

)z ar

or  aT I O*T
C (—+u—)=K—+0,,7
=N I

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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The inertial terms are assumed to be very small and have been neglected
from equation (3.15). However, the convection and viscous heating are taken into
account in equation (3.17), which can also be used to caleulate the heat conduction
in the insulation layer and in the steel mold with v =0 and 4= 0. The boundary

conditions of the velocity are

n=~0, alz=0, (3.18)
Ju
— =10, al 7= 0. (3.19)
0z

The conditions of temperature are given by

aT
— =0, alz=0, (3.20)
-~z
T=T. at the cooling channel. (3.21)

A cooling channel (Figure 3-3) inside the mold with constant coolant
temperature draws the heat out of the mold continuously. It should be noted that
the temperature on the cavity surface is not fixed, but is determined by the
thermal properties kpe of the material on the cavity surface. [For this simple shear

flow, equation (3.3) can be represented as

N
ot+pb=2y se+? Z My C e (3.22)
ko

where y_is the zero-shear-rate viscosity which ean be given as
k. . .
n o= E (‘—5 O<s <) (13.23)
—s

and s is the dimensionless rheological parameter.  Integrating equation (3.15) and

using the fact that o,, = 0, at z = 0, we arrive al

12
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09 = T 2 (3.24)

. k) . -
— =2 Z " (‘(I‘.’. +on, 89 (3.25)

In addition. integrating equation (3.16) by parts and making use of equation (3.18)

give

b
— / Yo ds = (). (3.26)
0

As suggested by Isayvev and Hieber [H]. equations (3.13). (3.14). (3.26) and (3.25)
(k) (k) (k)
e

are a system ol 3N+2 equations for 3N+2 unknowns, which are ¢ P O Con

Jp - . . . .
and o I'his is a set of nonlinear equations which can be solved by numericeal
or

iteration.

3.4.3 Numerical Procedure

Newton-Raphson  iteration  was used to solve this set  of nonlinear

equations [2]. The general form of nonlinear equations can bhe expressed as

F(U )=0. (3.27)

* *
where U is the solution of the set of equations. Both F and U are in vector
: (i—1)
forms.  Assume that the solution Uf LA

then a Taylor series expansion gives

of the (i-1)th iteration has been evaluated:

FUY) =FulY ['—)—q v -uly 398
(U)=FU, )+ JU U(i—l)( - I!Ar)' (3.2%)

1AL
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where higher-order terms are neglected. Equations (3.27) and (3.28) give

OF . ) N
0] -0 (U = U ) =—F(U, ). (3.29)
' UH At
If we define
cerli) ot pli=1)
aul) = (U _UH.'_\I)’
. (3.30)
=[]
KH—AI = lgu U(:-l)-

i—1) . T . . s .
where K(”A’ is defined as the tangent matrix in iteration (/—1), which is assumed

to be nonsingular. Thus equation (3.29) can be rewritten as
|

(i=1) ' (i—1) o
KHA!AU(,) =—F(U;, /) (3.31)

AU can then be ealeulated from equation (3.31) by the algorithm based on Gauss

elimination and is used to obtain the next approximate solution by

tratgl) — tatgli=1 4 Ayt (3.32)

Since an incremental analvsis is performed with time step of size Af, the initial

conditions in this iteration are

o _
K, PAr T K,.

(0) .
Fl')  =F,. (3.33)
ul? —u

traAr— e
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The iteration is continued until appropriate convergence criteria are satisfied.

The numerical procedure used in this model begins with the initial meshes at
the entry of the cavity, representing the entering polymer melt. “The initial
conditions are the solutions of isothermal, steady-state, fully-developed flow
between two parallel plates. The temperature distribution is first calculated by
converting equation (3.17) into finite difference scheme. Subsequently, the values of

B+ 1y, and A are obtained from the temperature at every node.

The system of 3N+2 equations is then solved simultaneously for every node
by Newton-Raphson numerical iteration. Since those equations involve integration
across the thickness, iterations are needed not only at the solution of every node
but also across the thickness direction as well. Iteration between solving equation
(3.17) and the system of 3N+2 equations should also be performed because they are

supposed to be solved simultaneously.

After the equilibrium conditions have been reached at every time step. the
melt front marches forward one step in the x (“I'(‘('l«i()li. The size of the step is
determined by the flow rate. The initial temperature of the new melt front is
taken from the core region of previous melt front at the last time step, which is

suggested by the fountain flow phenomena [33].

The above procedure continues until the filling process is finished.  The
polvmer then enters cooling period for stress relaxation.  During this stage.

equations (3.13) and (3.11) are simultancously solved with 5=0 for 3N unknown

k k k) . :
(‘(l 1)' (‘(12) and ('gz). Fhe shear stress is then calenlated by [14]
N
g, =2 o R (3.34)
"-’_'Z"\‘ 12
ko1

The simulation is continued until the highest temperature in the polymer reaches
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'l‘g assuming that no relaxation occurs at T < Tg.

The temperature dependence of ¢, is based on the W.L.I". equation [36].

0.(T) ) | TH(T-T)

0T, 5164 (T~ T)

log (¢(7)) = on( . (3.35)

An amorphous polymer above Tg is in a rubber state. Rubber elasticity is
distinguished by two basic characteristics: very large elastic strains and elastic
moduli that increase with increasing temperature. The latter response is opposite to

that found in other materials, including polymer below Tg.

b

Elastic moduli i of amorphous polymers in the rubber state have a linear
dependence of absolute temperature. This can be demonstrated [I1] by simple
application of the first and second laws of thermodynamics, which is presented in
Appendix C. After determining the values of o and p . the rahie of viscosity can

then be obtained through ne=2u.0,.

The rheological parameters n,, 6, and s are determined by standard dynamie
measurements for a linear case. For small amplitude oscillation, the functions

('(w) and G"(w) in the Leonov model can be presented as [20)]

N n k” kw"z

G'(w) = Z -1_:;-:;_3
Sw

k=1

G"(w) = sw+ Z -, (3.36)
bt |+0

The model constants have been evaluated [14] for polystyrene (Styron 678) with

;’\"22 an
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gm

=080 sec. iy, =544 10" ——,
cm sec
s =0.09, (3.37)
,ogm
6, = 0.027 sec, = 1.5 101 ——,
= = cne Sec

After all the unknowns are determined for every node at every time step,

other variables can be caleulated from the following formulae.

b
u=—/ ~dz,
Z "y, .,+n S

N
A k
11_”22:22"/.[”() (m)]'

(22
b
0’22 — =) Z ;z ,)‘) — 1 ], (3.38)
) (k)
Ty T3y =2 Z l‘k[" — 1]
ko

, 2 2912
= ((T)[(a“ —022) + -1012] .

= (1) 2y, — 0y, ).
An, = T)[" R ]

where C(T) is the stress-optie coefficient, and An,. An, and Ang are the
birefringences in the 1-2, 2-3 and 1-3 planes respectively. White and
coworkers [29. 6, 31] found that the stress-optic law is valid in polymer melt and
the molecular orientation in polvmeric parts is related to the level of principle
stress difference at the time of vitrification. Therefore. a stress-optic coefficient
with the appropriate value at the molten state near 'l‘g should be used since the

coelficient varies with temperature,
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The Cornell group [5] suggested that frozen-in birefringence in injection
molded parts of polystyrene is due to.the effect of flow. However, the frozen-in
stresses are due to both filling and cooling. This is because the stress-optic
coefficient depends strongly on temperature. For polystyrene, the coefficient is
large in the melt and decreases by an order of magnitude as the temperature passes

through T .
wough T,

<

3.4.4 Simulation Results

Figure 3-4 compares the temperature on the cavity surface along the flow
channel at the end of filling with and without Teflon layer on the cavity surface.
The Teflon laver prevents the polvmer from freezing during filling by raising the
avity temperature to 125 € The flow-induced stresses can, therefore, relax after
the filling. If the incoming polymer melt is to contact steel instead, the interface
temperature decreases to 89 °C" at which the flow-induced stresses near the surface
-annot relax. These values are close to those calculated from the first thermal
eriterion shown in Table 3-1. The small deviations are the result of viscous heating,

which can be clearly seen from the gapwise temperature distribution in Figure 3-5.

The gapwise temperature distributions for these two cases are presented in
Figure 3-5.  The polymer temperature near the surface are increased by the
insulation layver to allow the stress relaxation after the filling. The effect of viscous
healing creates a maximum temperature at a location away from the midplane.
Indeed, the insulation laver promotes more viscous heating than the steel cavity
sinee there is no viscous heating in the frozen region. The viscous heating therefore
raises the interface temperature even higher, in addition to the contribution from

the [irst thermal eriterion.

Pressure distribution along the flow channel is given in Figure 3-6. Due to the
higher temperature. and consequently lower viscosity, in the polyvmer melt of

coated eavity, the pressure at the gate is significantly lower. This is advantageous
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because a smaller injection pressure, and therefore a smaller machine, is required to
inject the same shot size. However. because a pressure drop exists between the
hydraulic syvstem and the gate, the reduction of the pressure in the hydraulic
system may not be as significant as the pressure reduction in the gate region shown
in Figure 3-6. Experimental results (Table 3-11 shown in the next section) have
given a reduction of 15 for hydraulic pressure in the ram as compared to the

reduction of gate pressure by 219¢ in Figure 3-6.
A g

The velocity profile across the thickness immediately before the end of filling
is presented in Figure 3-7. The region of the frozen layer, where the velocity is
zero, can be identified in the uncoated cavity. The coated cavity, as was expected,
eliminates the frozen layer during the [illing by raising the cavity temperature well
above 'l‘g.‘ Since the flow rates are the same in both cases, the frozen layer near
the surface results in higher velocity in the center. Flow in a narrower channel
leads to higher strain rate in the polvmer melt as shown in Figure 3-8. A higher

strain rate produces larger strains and stresses in molded parts.

The shear stress developed at the end of filling and its relaxation during the
subsequent cooling, is shown in Figure 3-9.  The abrupt decrease of shear stress
following the filling is due to the disappearance of the strain rate in equation (3.22)
for the cooling. The curves of 0.5- and 0.54+ correspond to the shear stress
distributions at 0.5 second immediately before and after the filling is complete.
The strain rate is zero right after the filling is complete. Most of the shear stress
relaxes in the first half second after the filling. The stress inside the plate relaxes
completely while that near the surface does not. The insulation layer has allowed
more stress relaxation on the surface as compared with the part injected from the

coated cavity (Figure 3-10).

The relaxation of the primary normal stress difference o, —a,, alter the

Ll T

filling is shown in Figure 3-11. The stresses inside the polvmer relaxes almost

~
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completely while the stresses near the surface relaxes only partially or not at all.
Most of the relaxation occurs in the first half second after filling. The stress state
does not change much in the remaining cooling stage. Comparing the coated with
the uncoated cavities (Figure 3-12), the stress distributions do not show much
difference immediately after the filling. However, the insulation layer has allowed

more stress relaxation, especially near the surface.

The maximum value of T "9 OCCUTS noObL on the surface but near the
surface. This is because the polymer on the surface freezes immediately after it
contacts the steel cavity, and it does not accumulate any more strain because the
strain rate is zero in this frozen layer. Nor does it relax any strain because it is
frozen.  On the other hand, the polymer near the surface, which is not totally
frozen, accumulates more strain as the filling progresses since maximum strain rate
exists in this region. Only small amount of strain can relax after the filling because
the temperature is close to ’l‘g. FFor the polymer far away from the surface, the
strain rate is small and the temperature is high. Only a small amount of strain

accumulates and quickly relaxes.

The relaxation of secondary normal stress difference o,,—0 which is

33.°
presented in Figures 3-13 and 3-14, show the characteristics similar to those of

7 —0a,,. The coated cavity also allows more stress relaxation than the uncoated

cavity. Figures 3-15 and 3-16 show the relaxations of 7

RN
-

—o.,., In a similar manner

1 733
to the relaxation of a,,—a,,. The coated cavity results in more stress relaxation

after the filling.

The relaxations of birefringence, which are defined in equation (3.38), is given
in Figures 3-17 and 3-18.  The curves of 0.5- and 0.5+ correspond to the
birefringence at 0.5 second (end of filling) immediately before and after the filling
finishes respectively. The instantaneous change of birefringence at 0.5 second is due

to the abrupt change in shear stress resulting from the sudden change of strain rate
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Figure 3-16: Relaxation of o,,—04, after the Filling of Coated Cavity,
0.5 sec. (end of filling) - 14 sec. (end of cooling).
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when the filling is completed. Most of the birefringence relaxation occurs in the
first half second following the filling. It relaxes completely in the core region and
not at all near the surface. Figure 3-18 shows the coated cavity has allowed the

relaxation of birefringence not only in the core region but also near the surface.

3.5 Experiments

Two identical molds were fabricated with and without Teflon coatings on the
cavity surfaces to mold a plate with a thickness of 0.1 em. The plate was 20 cm
long and 6 em width. The cavities were fan-gated at one end so that the conditions
of the entering polvmer melt was close to the assumptions of isothermal fully-
developed flow in the simulation. Teflon=S with a thickness of 0.01 cm was applied

to one of the two molds.

Dow Styron 685-D polystyrene was injection-molded using a Van Dorn 150
ton injection molding machine in Eastman Kodak Co.. The processing conditions
are given in Table 3-1l. The injection temperature was 240 °C’ while the mold
temperature was 70 °C'. The same conditions were used in both the coated and
uncoated molds.  The required injection pressure to completely fill the coated

avily was 1130 psi while that in the uncoated cavity was 1310 psi.

A reduction of 1570 was gained in the injection pressure of the coated cavity
beacuse of the higher average temperature and consequently lower viscosity in the
polymer melt. This would enable a smaller machine to inject the same shot size
with the coated cavity. A reduction of 219 in gate pressure resulting from the
simulation was achieved as shown in Figure 3-6. The difference between 219 and
159¢ is due to the pressure drop between the hydraulic system and the gate.

The birefringence An, of the molded parts in the 1-3 plane was measured
3

using a Polariscope System (Model 051) manufactured by Photolastic Ine.. The
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Figure 3-17: Relaxation of Birefringence after the Filling of Uncoated Cavity,

0.5 sec. (end of filling) - 12 sec. (end of cooling).
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Coated Uncoated
Cavity Cavity
| 240°C 240 °C
Yo, | 70°C 70°C

Table 3-II: Processing Conditions in Experiments.




circular polariscope was used to obtain the isochromatic fringe pattern. The fringe
order at every isochromatic fringe could then be identified with N=0 at the end of
flow direction. Tardy Compensation was also used to quantify the value of
birefringence at every point along the flow direction. The values of o

1T T3y WOre

then determined by

|
T T O3 = A"‘:& (—' (3.39)

where ("= stress—oplic coefficient

The wvalue of € is taken as £LHX l()—”)('m")/rl_r/'nc from reference [6].  The
experimental values of T T Ty along the flow direction computed from equation
(3.39) are presented in Figure 3-19. The values decrease with increasing distance
from the gate. The coated cavity allows more stress relaxation following the filling

and therefore reduces the values of ¢, — 0.

' in the molded parts.

33

The average values of 7y — 733 10 1-3 plane from the simulation can be
obtained by integrating TV T sy in Figures 3-15 and 3-16 across the thickness and
dividing the result by the thickness. The distributions along the flow direction is
given in Figure 3-20. The values decrease, as in the experimental results, with
increasing distance from the gate. The coated cavity has resulted in smaller

T T P33 in the molded parts because it allowed stress relaxation near the surface.

The discrepancy between the predicted and measured values comes from the
value of stress-optic coefllicient used to ecaleulate the normal stress difference. The
stress-optic coefficient of polystyrene decreases by an order of magnitude from the
melt to glass  transition  temperatures [5]. It also  varies  between different
manufacturers and  with different molecular weights. White el al. [29. 6. 31]
suggested that a stress-optic coefficient with the appropriate value near 'l‘g should

be used because the molecular orientation in plastic parts is related to the level of
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principle stress difference at the time of vitrification. It is not related to the stress

state in the final parts which should be determined from direct stress measurement.

3.6 Summary

One of the problems in injection molding is that filling and cooling are
coupled, which means the cooling begins before the filling is completed. Therefore,
flow-induced stresses cannot relax in the surface region. The dimensions of the
parts may change over the life time of the parts if the residual stresses are too
high. Therefore, the ideal condition in injection molding is to have a hot mold
during the filling and a cold mold during the cooling in ('n-der to decouple these two
processes. However, it takes tens of minutes to have the whole mold go through
this ideal thermal cycle. Not only does the cycle time increases drastically, but also

the life of the mold decreases.

The approach presented in this chapter solved this problem by using a
passive insulation layer with low thermal inertia on the cavity surface. This laver
raised the temperature on the cavity surface during the filling without heating the
whole mold. Consequently, it provided a hot cavity surface during the filling and a

cold cavity surface during the cooling.

Two simple criteria for the optimal thermal properties and required thickness
of the layer have been presented. The first criterion tells us that the smaller the Ape
of the layer, the higher the interface temperature. The second eriterion allows us to
caleulate the required minimum thickness for the layer so that the flow-induced
stress can relax after the filling and the increase of subsequent cooling time is kept

to a minimum.

In addition to the optimal thermal properties of the layver, the material used

for the layer should also satisfy the following conditions. Good wear resistance is
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required in order to extend the life of cavity. The melting point of the layer should
be much higher than that of the polymer. The bonding strength of the laver to the
mold must also. be high enough to avoid delamination as the processing pressure is
tremendously high in molding processes and the thermal stresses in the layer should
not be ignored. A good surface finish is, of course, a must if high precision optieal
parts are to be molded. A material for the layer which meets all these requirements

is yet to be developed.

A numerical simulation model for the molding cycle has been developed 't()
understand the stress development and relaxation during the molding cyele and to
evaluate this approach. This model utilizes the Leonov constitutive equation to
represent. the time- and temperature-dependent stress relaxation. The results show
that the stresses inside the parts relax completely while those near the surface relax
partially or not at all. Most of the relaxation occurs in the first hall second after
the filling when the polymer is still at a relatively high temperature. The maximum
stresses exist not on the surface but near the surface due to the fact that the frozen
laver on the surface does not accumulate any more strains during the filling

because the strain rate is zero in the frozen layer.

By comparing the results from the coated and uncoated cavities, the
insulation layer raises the cavity temperature during the filling, which subsequently
allows the flow-induced stresses to relax after the filling. The final residual stresses
are significantly reduced. The cooling time is increased by less than 20% and the
total cyele time should be increased by even less percent because the cooling time is
only a portion of the total cyele time. The required injection pressure is also
reduced because the polyvmer has higher temperature and therefore lower viscosity
during the filling. A smaller injection molding machine can be used to inject the

same shot size.

A typical molding process includes both material flow and cooling processes,



A part will start to cool before the process of material flow is completed. The
technique presented in this chapter decouples the processes of material flow and
cooling and allows the flow-induced stresses to relax after the flow. This idea can
be applied not only to the injection molding processes but also to all molding
processes, including the molding of metals. lts effects are particularly significant in
the molding of metals because the values of kpe of metals are much larger than
those of polymer. An insulation layer like ceramic can easily raise the interface

temperature to a higher level when molding metals.
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Chapter 4

Optimal Cooling for Minimum Residual
Stresses

4.1 Introduction

A molding process, in general, is a process in which a heated malleable
material is forced to flow or deform into the shape of the mold cavity. The
material then solidifies and retains the shape of the cavity. The molding process is
capable of producing complex three dimensional parts in a single molding
operation. The material starts to cool before the process of material flow or
deformation is completed. The flow-induced stresses in the material near the
surface eannot relax after the flow and result in residual stresses in the molded
parts. In addition to the flow-induced residual stresses, non-uniform cooling also

causes thermally-induced residual stresses.

For large structural molded parts, annealing is usually necessary in order to
relax the residual stresses so that their dimensions will not change over the life time
of the parts. Although the heating in the annealing process relaxes the residual
stresses, the cooling process may reintroduce thermally-induced residual stresses if
it is non-uniform. The temperature gradient developed during the cooling results in
differential thermal contraction and stress relaxation. which consequently create

thermal stresses in the parts.

In order to reduce thermally-induced stresses which result from annealing, the
cooling process must be very slow, usually requiring days, to keep the temperature
gradient. very small so that the part cools uniformly. Not only is energy input
wasted during such a long operation, but productivity is also reduced. The

objective of this study is to find an optimal cooling path within a specified time
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period for minimum residual thermal stresses.

A low thermal inertia mold. which has a heating element on the cavity
surface and can provide rapid change of cavity temperature, was developed in
MIT-Industry Polymer Processing Program and Intelitec Corporation. To utilize
the potential of this new technology, an optimal thermal history during the
molding. cyele to minimize residual stresses in the molded parts needs to be

established.

This chapter first analyvzes the development of the residual thermal stresses
aused by the temperature gradient during the cooling.  The stresses are then

minimized through optimization of the thermal history in the cooling cyele.

4.2 Thermal Stress Analyses

The analysis of thermal stresses in viscoelastic materials must take into
consideration the temperature dependent properties. However, some analyses [1]
have idealized these properties by assuming inviscid behavior above and elastic
behavior below the critical temperature referred to as the glass transition
temperature of an amorphous polymer. Such models neglect the important stress

relaxation property of viscoelastic materials,

A ‘material model termed [31] "thermorheologically simple" was also
investigated [26, 27].  This model exhibits a pure shift in relaxation funetion
plotted against the logarithm of time when there is a temperature change. The

relaxation functions measured at two temperatures, T, and T, are related simply

|
by a change in the time scale with a factor o(7))), which reduces the time scale as
the temperature increases.  Therefore, it is convenient to define a reduced time v

which includes the varyving scale factor o(7) so that the viscoelastic stress-strain

relation under a continuously varying temperature has the same form as the
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isothermal relation.

Bascd on  this shift hypothesis, Morland and Lee [26] introduced the

generalized relaxation integral law

i

7
Ay ) ! Frp— .‘,’ — ~r f,, y "
.S'.J(y.b )= ./0 (:l(u y ),‘M,I[eij(“”u )] dy'.

oy ()

ol\_k(:.u‘*) == /0 (1'2(w—e"')m[(kk(:.q’v') - 3n”0(z.tj")] dy,

where

b'.J.: Kronecker della,

!
= / o(8(z.8)) ds. o = time—lemperature shifl factor,
0

G,=20= LG, =3 K =——,

G = shear modulus, W = bulk modulus
w, = coefficient of thermal erpansion,

i=T-T.
0

The deviatorie components of the stress Si; and strain €, are introduced to separate
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the shear and dilatational responses of a homogeneous and isotropic viscoelastic
solid. Thermal contraction is taken into account in the dilatational response of the
malerials. The temperature effect on the response is considered in the reduced time
¢ which is a function of the shift factor é. The shift factor, in turn, depends on the

temperature.

4.2.1 A free plate

Lee, Rogers and Woo [23] used equation (4.1) to calculate the residual
thermal stresses in a free glass plate (Figure 1-1) cooled svimmetrically from both

surfaces. The strain fields in the plate can be expressed as

where the z-axis is perpendicular to the surfaces of the plate. It is assumed that
the lateral dimensions of the plate are large compared with its thickness, so that
edge effects can be neglected.

In the absence of body and inertia forces, the equilibrium equations give

J
—o_ =0, (1.3)

oz =

The free surface tractions require that

o..=0 at =0, 2l (1.1)

-
~a

By Equations (1.3) and (4.1),

o =0, (1.5)

Therefore, the stress components are
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Figure 4-1: Schematic Diagram of a Free Plate,



o, ,=o0, =0 =0 =0 0 =0 /. (-1.6)

Symmetry and no surface tractions have led to zero shear stresses. The deviatoric

strains can be obtained as

e —a I — - 0
ry Yz zr
| 2
C.r.tzeyy:‘;((lx‘f::)’ ’::=~;(.r.t_(::)' “‘)
while the deviatoric stresses are
=3 =5 =1,
Ty y: zr
| 2
8§ =8 ==g , S _=—=0g_ . A (1.8)
rx yy 3 oo zz R

By using Equation (4.1). the following integral equations are obtained.

" 0
axr(g"/’) = /0 (.’l(u’v—u-')w[s‘”(:.u-') — ¢

iy J
20, (o) = [ Gyl 20, (o) 4o (o)

= 3o (') | dy.

Applying the Laplace transform to equation (1.9) and making use of the

convolution theorem, one arrives at

(1.10)
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Eliminating ¢, (2,s) in equation (4.10), one has

G (5)Gs)

o, (2.8)=3 8 [e, (5:8) — o 8(2.5)].

2G,(s) + Go(s)

(1.11)

Let
“ ¥ G (8)Go(s) )
R l/’ = IJ_ y S . (‘.12)
2(:1(8) + (12(8)
LEquation (4.11) becomes
y 4
) — |—‘y’— 'y',’ —_ .,,r" ',I ) :
o, () =3 ./0 B(v =o' ) oole, () = o, 0zl (4.13)

By changing variables from the reduced time ¥ to the physical time 1, equation

(4.13) results in

Free edge boundary conditions reveal the fact that

d
/0 aII( wt)ydz=0.

The equilibrium condition of the moment of momentum

(1.14)

(1.16)

is automatically satisfied
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because of the symmetric nature of the plate. Equations (4.14) and (4.16)
constitute coupled integral equations which lead to the solution for o, and e .
They were solved [23] by numerical finite-sum integration without determining an
analytical expression for %“(x). The analytical expression of %”()\) ié necessary if

the stress is to be minimized by the method of variational calculus.

Combining these two equations gives

NN
‘/0 ./0 R(e(=0)) i ,, (%) — a b(z0)]dx dz = 0. (4.17)

Ii'xchanging the integrals and using the fact that €., 18 DO 2 function of z, one

arrives at

ot +
./0 [é“_(A)./O R(&(z\)) dz— o /0 R(E(=\)) B(=) dz] dx = 0, (1.18)

Equation (4.18) is valid for any t only if the integrand is zero.

J

R(e(z0)) dz — /0 R(e(=0)) B(2\) dz = 0, (1.19)

),

This leads to

\) = — : (1.20)

/" R(e(20)) d=

Therefore, the residual thermal stresses of the free plate can be expressed as



.[f
0 (2t ) =3 ‘/0 R(&(=)) i, (1) = a, (=) ] dt, (4.21)

Since the analyses of thermal stresses in viscoelastic materials require the
consideration of temperature dependent properties and the thermal contraction, the
temperature field in the plate during the cooling should first be determined. For a
step change in surface temperature from Ty to T, the transient temperature

distributions can be given as [12]

T—'I', nm., . onnz

T = -Z — exp(— —) at)sin ()—l), n=1,3,5, --- (1.22)
0 n-=1 / B

where

T = initial temperature,
T = surface lemperature,

a = thermal diffusivity,

2l = thickness of the plate.

In the following mathematieal operations, the terms on the right hand side can be

regarded as f{z.0) for simplicity.
g ] A

71‘—— IIV
w

= f(z.1). 1.23
T = =) (1:23)



0 T_To L= ) (124)
0'U ’1‘ _T _— ~a . . . h
w 0

If 8, varies over time, superposition requires that

y 0
o(zd) = /0 0,0 =Mz =x) d. (1.25)

Taking the derivative of equation (-1.25) with respect to t gives

")
J”

o
B(ed) = /0 0,0 5= S =3 iy = (z0) 0, (0) (4.26)

The values of 8(z.t) calculated from equation (4.26) are used in equation (4.21) to
determine the transient and final thermal stress distributions. The influence of

cooling rate on the final stress field can also be investigated.

For illustrative purposes, the parameters of this cooling problem took on the

following typical values:

T =200°C, T =10°C, 20=10.6 cm, (14.27)
o n
k .
a=—="7.676:10"" em*/sec.. « =1.0-107> °cL,
pe 0

The time-temperature shift factor o(7) is given by W.L.F. equation [36].

—I17T. (T~ T)

log (6(7)) = (4.28)

51.6 + (T — lg)
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Muki and Sternberg [27] obtained the values of R(¢) for polymethyl methacrylate
at 80 °C' by using the asymptotic method for finding the inverse Laplace transform
in equation (1.12). The expression of R(¢), which has separate approximate

representations in different ranges of ¢, is given by

R(¢) = 101935 {0513 — 0.913 [ 1 — exp(—1.89¢) ] + 0.0234¢
— 0.0476€% + 0.0465¢> —0.0301¢* ), (0 < ¢ < 0.398),
R(€) = 101995 10.366 — 0.121 log (¢) }.
(0.398 < ¢ < 70.8), (4.29)
R(e) = 101935 1 6.66-107F + 133672 — 10.6673/2 + 11467%/2
— 951772, (708 < ¢ < o0),

where ¢ is in hours. A constant value of 0.35 was assumed for the poisson ratio v.

Figure 1-2 presents the plot of () in semilogarithmic scale.

The transient stress distributions of a free plate under rapid cooling from its
surfaces are shown in Figure 4-3. The corresponding temperature distributions are
presented in Figure 4-1. The initial cooling of the surface leads to the contraction
of the surface which produces tensile stress near the surface balanced by the
compressive stress in the core region. Most of these stresses relax while the plate is
still hot. The subsequent cooling, and therefore contraction, in the core region
creates compressive stress near the surface also balanced by the tensile stress in the

core region. Most of these stresses remain while the plate is cold.

The remaining thermal stresses in the plate after the cooling, i.e. tension in
the core region balanced by the compression near the surface, are regarded as
residual stresses. These stress distributions are also influenced by the cooling rate

since the stress relaxation is a strong function of temperature.

Figure 1-6 presents the final stress distributions subjeet to different cooling
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rates shown in Figure 4-5. It is clear that slower cooling results in smaller stresses
because of the longer time for stress relaxation. ldeally, if the cooling time is
infinite, the residual thermal stress will be zero. However, this is not possible in
practice since the productivity will be greatly reduced. Therefore, finding an
optima] cooling path within a specified time period is eritical to both quality and

productivity of injection molded parts.

4.2.2 A bounded plate

The thermal stresses of a bounded plate, which is shown in Figure 4-7, were
also investigated by Muki and Sternberg [27]. Again, it is assumed that the lateral
dimensions are much larger than the thickness and the lateral displacement is

completely constrained.

The strain fields in the plate can then be given as

du
€ = =—¢ m=m¢ —¢_ =, ¢ =—. (-£.30)
I yy Ty yz r 2z O~ B
The stress components in this case are
o, =0 —o =0 =0, o =o . (4.31)
2z zy yz 2 xr vy

| oo

1
€ == G
rr yy 3 =* foted

=e =e =0. (1.32)

.
[}
(5]
2

Correspondingly, the stress components are
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Figure 4-5: Surface Temperature Profiles of Different Cooling Rates.
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1 2
8 == —_— o . S = — =0 .
Tz yy 3 rr 2z 3 ox
(4.33)
s =8 =8 =0.
Iy yz xr

Substituting equations (4.32) and (1.33) into equation (4.1) yield the following pair
of integral equations.

— o, 5= ‘ /0 G 1(l/’—-uf")(..)—w,[f::(:.czv’) | dy,

»

(4.34)
B ()
_20“_( )= /0 (1'2(11"—([")1)—7[( =) — 3(100( zy)] dy’.

dy’t =+

Applying the Laplace transform to

Squation (-1.34) and making use of the
convolution theorem, one arrives at

polze8) = —sG (8)e_(=.8)

(4.35)
20, (2.8) = sG(s)]e_(=.8) — Ba #(z.3)].

~a

Eliminating ¢ _(z.8) from equations (4.35). one has

G (3)Gy(s)
2,8) = — 3¢ s 6(z.8). 1.36
01_1_( ) Jo 2('v|(3) + (1’2(8) 3 ( 3) ( )
As in the case of free plate, let
| ( (8)Gy(s)
R V)= L~ . 1.37
) (2(,'|(.s) + (:__,(s)) 1:37)

Kquation (4.36) becomes
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Uy

.‘u': (')
axx(z,z/») = —3a /0 R(v — ¢")) -‘)—’,’-0(3@,' ) dy. (4.38)

By converting the reduced time y to physical time ¢, the final thermal stresses of a
bounded plate can be shown as

J
—4

= 0(=t) dt. (1.39)

) 'y
7 ol ) = - 3(10. /0 R(¢(=1))

4
where ¢&(z,0)= / f(b((i(z.)\)clx.
{

Another way to obtain equation (4.39) is to eliminate ¢ (¢) from equation (1.21)

sin('e"e“_(l) =0 due to the mechanical constraints on the edges.

The values of #(z,t) caleulated from equation (1.26) are used in equation
(4.39) to determine the stress distributions. The functions of ¢(#) and R(¢) used in

the case of free plate are also utilized in this bounded plate.

The final stress distributions resulting from different cooling rates are shown
in Figure 4-8. Figure 4-5 presents the corresponding surface temperature profiles,
Tensile stresses exist across the thickness of the bounded plate because of the
constraints on the edges of the plate.  The surface cools the fastest and
consequently has the least time for stress relaxation. Hence, the surface stress is the
largest across the thickness. Slower cooling allows more stress relaxation and
therefore leads to smaller stresses. However, it is not efficient to allow the cooling
to last a long period of time. An optimal cooling profile within a specified time

period is therefore strongly desired.
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4.3 Optimal Cooling

When a plate of viscoelastic material is cooled symmetrically from both
surfaces, the differential thermal contraction and stress relaxation produce residual
thermal stresses. The thermal analyses in the previous section have shown that
slower cooling led to smaller residual thermal stresses. However, slow cooling is not

economically desired because it increases the cost and reduces the produectivity.

Therefore, an optimal thermal history, which cools the plate from 6, to 8
within a specified period t=0 to tzlj. and results in minimal residual stresses at
t=t,, is critical to both the part quality and productivity. The work presents in the
following assumes the temperature 6 (1) on the surfaces of the plate can be varied
as a function of time and determines the optimal thermal history of @ (t) for

minimum residual thermal stresses.

4.3.1 A free plate

The cooling of a free plate p'r(::)duves compressive stresses on the surfaces and
tensile stresses in the center [23, 28]. Since the stresses on the surfaces usually have
the highest magnitude, it is reasonable to use the surface stress as the target for
minimization in this particular analysis. However, for general case. the stress of

concern is assumed to be at z = Z,

The residual thermal stress at = z, of a free plate can be obtained from

equation (4.21) as
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ﬂ_afh?zt [€(1) =, B(z,.)] dt,

(4.40)
where

a, = coefficient of thermal expansion,

9=T-— TO, TO = initial temperature,

gzt)= /qu ) ds,

¢ = time—temperature shift factor,

Equation (4.26) will be used as the system equation with the temperature as the
state variables to determine the optimal cooling profile.  The optimal control

problem is to find an admissible control ¢ (t) that causes the system

9(z,t)=/(;lo (: )Btd f(zt— X)cik—f(:,())ou,(t). (4.41)

to follow an admissible trajectory 6(z,t) which is prescribed at =0 and I-——If. and
minimizes the residual stress expressed in equation (4.10). Half thickness of the
plate is divided into n nodes and the temperatures of the nodes are the state
variables. #(zt), f and f(z,()) in equation (4.41), therefore, are in vector forms. A
performance measure .J is defined as the square of the stress at =z since the

objective is to minimize the magnitude of the stress.

1—{/f23 D le(t)—a b(=0)] 1 (1.12)
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The terminal constraints of this optimal control problem can be specified as

8(2,0) =0, 0(z.tf) =0y (1.43)
A terminal function in vector form, therefore, can be defined as
N(()(z.t,)) = o(z.tf) - 0,———- 0. (4.41)

The difficulty of using the gradient method [3] to solve this problem is that a
function #(zt) which satisfies equation (4.41) for an optimal ¢ (t) will not
necessarily. satisfy equation (4.44). In other words, the gradient method will not
satisfy the boundary conditions. Thus we need to incorporate equation (4.44)
directly in the gradient method. An augmented functional also in vector form.

therefore, is formed as

N = N(¢(t )

1QT: o :
/ Q| [ AN =Bz =2) dh (1.15)

This is accomplished by adjoining the system equation (4.41) to the N function
with the Lagrange multipliers Q(z.t)'s, where Q is an nXn matrix.

The approach of Bryson and Denham [3] separates the problems of
minimizing J with the constraint equation (4.41), and satisfying both equation
(4.41) and N =0 simultaneously. Applying variational calculus to these separated

problems, we obtain

o
5J=20/ TH e dt, (1.16)
0 113 w
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AN(H(=.L ) )
6N = [—(1—0(;,17 - Q(Z,tf) | 60(2,1,].)
t -t »
+ ﬁ) G Too(zt)dt + /0 la e, dt, (4.47)

where G_ is an nXn matrix and G, is in vector form. The derivations of H .G
and G, are shown in Appendix A. If we let the coefficients of 59(z,t]) and 80(z,t)

equal zero, we have

dN(a(z,tf))

. G = Q(=t)=0. 1.18
o =) (1.18)

Q=) =
/ f)

The values of Q(z.t) can then be determined from equation (4.48) by backward
integration. Q(z.t) is then used in equation (A.31) to calculate G . Equation (4.47)

is then reduced to

.t
N= [ TG w_dt. (1.19)
0 u w

Before every iteration in gradient method, values of 6N are chosen so that
N(o(z.tj)) will be closer to zero after that iteration. In other words, values of o(z.ff)
are expected to get closer to 9f after every iteration. The values of éN may be
chosen by 6N=—pN(()(t/)), 0 < p < 1. Therefore in every iteration, of, is
expected to create a specified change of 6N in equation (4.49) and also to have a

minimum value of 6J in equation (4.46).

The minimization of éJ subject to constraints (4.19) can be achieved by
adjoining (1.19) to (4.46) by Lagrange multipliers. However, since equations (1.16)
and (4.49) are linear equations, there is no minimum for 6/ subject to constraints

on the size of SN. A method for creating a minimum is to add a quadratic integral
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penalty function in 6, to (4.46),

1 gt
— [T w ,
8J, =¢6J + 3 /0 88, W a8, dt, (4.50)

where W is an arbitrary positive-definite weighting factor and is used to adjust the
step size of every iteration. Therefore, adjoining (4.49) to (4.50) with constant

Lagrange multipliers S, which is in vector form, results in

o
_ T / .
J, =6l +8"( /0 G, 8, dt —sN ). , (1.51)

The first variation of equation (4.51) gives

o
0d, = /0 T2oH +o, W+8TG, |ees,)dt. (4.52)

A minimum of &J, occurs if

; T .
20H,+6, W+8 G =0. (4.53)

Rearranging equation (4.53) for 88, leads to

0, =-Ww'211 +8"G ) (1.51)

4y

tquation (4.54) gives the values o or every numerical iteration in
Equati 1.54) gives the val f 60, for very numerical iterati

Pl _ i .
0 =4, '+, (1) (4.5¢

w

'
gl
S—
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The weighting factor W{t) is obviously used to adjust the step size in every
iteration. The values of the vector S in equation (4.54) are yet to be determined.

Substituting (4.54) into (4.19) leads to

IN=-K,,-K,;S. . (4.56)

where K., a vector, and K .., an nXn matrix, are defined as

ot
- [ ~1
Koy= [ /@eH )W (G,)dt,
ot
) — T
K., = /Of (G, )w'aG, )Td. (4.57)

If K., is not singular, equation (4.56) can be solved for the required value of S.

—1
S= K, (N+K.p,). (1.58)

Finally, 8J can be found by substituting (4.54) and (4.58) into (4.46), which gives

. —1,,T -1
“z‘("11;1_KI{(:K;GKHG)+KHGKG(;5N- (4.59)

where KHH’ in scalar form, is defined as

Y|
K= /Of(zmu)vr‘ (20 H,)dt. (4.60)

The first and second terms on the right hand side of equation (4.59) should equal
zero to the desired degree of accuracy when the optimal condition is reached. The
choice of W(t) in equation (4.54) should be made by comparing the actual values of

6N and &J with the predicted values from equations (4.56) and (4.59). If the
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differences are too large, W should be increased, or vice versa.

The numerical procedure of the first-order gradient algorithm for solving this
opimal cooling problem can be summarized in the block diagram given in Table
4-1. The numerical iteration begins with making an initial guess for
6,(t), 0 <6 () < Ly The thermal field §(z,t) is then determined by integrating
the system equations (4.41) with the initial condition #(z,0) = 0. The shift factor
o(6(2,t)), reduced time ¢ and relaxation modulus R(¢) are computed from equations

4.28), (4.40) and (4.29) respectively.
(

Subsequently, the values of N(H(:,tf)) are calculated by equation (4.44). At
the same time, Q(z,t) can be determined from (4.48) by backward integration. The
values of Q(z.t) are then used to calculate G, in equation (A.31). H_ is obtained
from equation (A.23). Values of K. K, and Ky are then computed from

equations (4.57) and (-4.60).

The desired values of &N in every iteration are chosen by
6N=—-pN(0(:.tf)), 0 < u < 1. Once values of N are specified, S is then
calculated using equation (1.58). Finally, 69 (1) is determined from equation (4.54),
and used to correct the value of 8 by 6 '"'=9 '+ (t). 6 1 is then used as

w w w w w
the new guess to repeat the numerical iterations until the first and second terms of

equation (4.59) equal zero to the desired degree of accuracy.

Figure 4-9 shows the initial guess of the surface temperature history and the
optimal cooling path obtained from the numerical iterations for minimum surface
stress. The surface temperature had to drop the final temperature well before the
final time to allow the temperature inside the plate to reach the final temperature
at the final time. The final stress distributions which result from these two thermal
histories are presented in Figure 4-10. In this particular case, the magnitude of

surface stress is used as the target of minimization because it is always the largest
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make an initial guess for

f | 6,0 : 0,(t) St

determine 6(z,t) from
Eq. (4.41) with 6(2,0)=0.

compute ¢(6(z.t)), &, and R(E)
from Egs. (4.28), (4.40) and (4.29).

caiculate Q(z,t) from Eq. (4.48)
by backward integration. -

4
determine Hu and Gu from

Egs. (A.23) and (A.31).
§

compute KHG, KGG and KHH ‘
from Eqs. (4.57) and (4.60).

calculate N(6(z,t)) and let
SN=-u N(6(z,15)), O<p<1.

|
determine S from
Eq. (4.58).

y
compute 36,,(t) from Eq. (4.54)

i+1 = i
and let O By + aew.

Are oN < €1 and
Ay T
KuH-KHGKgg KHG <&?

no yes

stop

Table 4-I: Block Diagram of the Numerical Iterations.
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across the thickness and is critical to the surface dimensions. The optimal cooling
profile reduces the magnitude of surface stress significantly as compared with the

stress resulting from very rapid cooling (Figure 1-6).

The physical insights of this optimal cooling profile are explained as follows.
When the cooling has proceeded to near the final stage, the stress state is tensile in
the core region and compressive on the surface. A short term surface reheating
expands the surface and produces an even larger compressive stress. Larger
compressive stress allows more stress relaxation because the stress relaxation for

viscoelastic materials follows roughly an exponential decay.

The surface reheating also raises the surface temperature and consequently
allows faster stress relaxation. The effects of higher temperature and larger amount
of stress allow more and faster stress relaxation, and therefore reduce the surface
stress to a minimum. The extent of the surface reheating is also critical to the final
stress magnitude. Too much reheating will also raise the temperature in the core
region while insufficient reheating will result in larger compressive stress on the

surface.

This optimal cooling path is initial-guess dependent. If a different initial
guess of surface temperature profile (Figure 4-11) is given instead, the optimal
temperature path obtained from the numerical iteration will be different. This
alternative can also reduce the surface stress significantly (Figure 1-12). Therefore,
many local minimums exist in this particular problem and nearly every minimum
can reduce the surface stress significantly. This occurs because the plate is free to
contract during the cooling process. No mechanical constraint exists on its edges
and the target of minimization is the stress magnitude at a given point across the
thickness only. In general, the characteristics of the optimal cooling path for
minimizing the surface stress of a free plate presents a short period of surface

reheating.
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The optimal cooling profile for minimizing the entire stress field rather than
the stress at a given point should also be investigated. In this case, the summation
of the stress magnitude at every node across the thickness is defined as the
performance measure .J. Therefore, the optimal cooling profile for minimizing the
entire stress field would be the superposition of the-optimal profile for minimizing

the stress at every point across the plate.

In order to obtain a smooth profile from superposition, the number of nodes
across the thickness should be substantially increased and the time step should be
decreased. However, the computing time to determine H  is increased by orders of
magnitude due to the multiple integrals in Hu and the newly-defined performance
measure .J. This study is left as the future work using much faster computing
machine.

4.3.2 A bounded plate

The final thermal stress at = z, of a bounded plate can be rewritten from

equation (-1.39) as

N
o2l ) ==3a, /0 T R(e(=,0)) 0= .t) dt, (1.61)

where
a = coe [ficient of thermal exrpansion,

0=T-T, T = imtial temperature,
0 [0}
-ff
&z 0)= /{ o(6(z .3)) ds.

¢ = Hime—lemperature shift factor.

Since the material on the surface cools the fastest, which implies the least stress
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relaxation, the final thermal stress on the surface is expected to be the largest
across the thickness of the plate. Therefore, it is reasonable to choose the final

stresses on the surface as the target for minimization.

Since the magnitude of stress is to be minimized, a performance measure [ is

defined as the square of the stress at the target z = g,

I={-3a, /(;'fh’(s(:u.t)) Bz ) dt )} (1.62)

~ e
0

The same system equation for temperature which was used in the case of free plate

will also be used here.

o (')3 .
B(zd) = (N) —— (= =\) dx — £(=0) 0 (1). 1.63
()= [, o) Gy M0 r = B(0) 0, 0) (4.63)

The initial state is 8(z.0) =0, while the final state is given by 0(z,tj)= o As in

the free plate, a terminal function can also he defined as

N(()(:.fj.)) = 9(:.ff) — 0, =0. (1.64)

Furthermore, an augmented functional N should also be formed.

N = N(¥(=t )

e

Jo

Y > .
g (N ——TF(z0-2)d\—£(20)0 (t
SN e =0 3) s~ 1(=0) 0,00

— #(=t)] dt. (1.65)

The first variation of equations (1.62) and (1.65) gives

o
5.1220/ Ty ose i, (1.66)
0 u w .
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dN(o(=1 ) .
N = [ —————Q(z! )| st(=.t
of . ol .
+ /Of G, s0(=t) dt + /Of G, dt. (4.67)

Note that equation (1.67) is identieal to equation (4.47). Moreover, by comparing
equations (1.42) and (4.62), it is clear that the only difference is in the ¢(t) term.
Therefore, F is given by the first three terms of H, presented in equation (A.23)
of Appendix A. G, and ¢/, are also shown in Appendix A. With F, ¢ and ¢
known, the same algorithm used in the solution of free plate can be employed to

iterate the optimal cooling path.

Figure 4-13 shows the final thermal stress distributions across half the plate
resulting from quenching. linear and optimal coolings. The corresponding
temperature profiles are given in Figure 4-14. In this case, the surface stress was
minimized. Quenching produces the largest surface stress while the optimal cooling

gives the smallest stress on the surface.

The optimal cooling profile presents an initial rapid cooling followed by a
slower cooling for most of the cooling period. Since every node across the thickness
should reach the final temperature ¢, at t =1, ¢ should reach 8, well before ¢

S [ / I
Although the final temperature jump would produce surface stress that cannot

relax, the optimal cooling still produces minimum final stress.

The optimal cooling profile for minimizing the entire stress field across the
thickness, rather than the stress at a given point, is presented in Figure 4-16. In
other words, the summation of the stress at every node across the thickness is
defined as the performance measure J. The initial jump of the surface temperature
is larger in this case than that in Figure 4-14 in order for the average temperature

across the thickness to follow the same profile shown in Figure 4-14 because the
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entire stress field is minimized.

The resulting stress distribution is given in Figure 4-15. Obviously, the entire
stress field is smaller than that in Figure 4-13 since it is the target of minimization.
However, the surface stress is larger than that in Figure 4-13 because the surface
stress rather that the entire stress field is minimized in Figure 4-13. The focus of
minimization in Figure 4-13 is the surface stress while that in Figure 4-15 is the

summation of stress across the thickness.

The physical insight of the optimal cooling is explained in the following.
Since the initial and final temperatures are fixed, the total thermal strain resulting
from the cooling of a bounded plate is constant. In order to have minimum final
thermal stress, maximum stress relaxation should be achieved during the cooling
cycle, which is constrained from {_ to ']' Since the period of cooling is also fixed,
producing more strain and therefore more stress in the very early stage would allow
a longer period for stress relaxation. Therefore, a rapid cooling in the very

beginning is desired.

The degree of the temperature jump in the initial cooling also affects the
relaxation because relaxation time constant increases with decreasing temperature.
If the surface of the plate is cooled quickly to the final temperature in the
beginning, only a small amount of stress will relax because of the low temperature.
Although this has produced more stress in the beginning and left 2 longer period

for stress relaxation, the stress remains frozen in.

On the other hand, if the initial jump is small, the small stress resulting from
this small thermal strain would relax quickly due to the high temperature.
However, the large stress resulting from the final temperature jump would not have
time to relax. The trade-off between thermal strain and temperature has led to the

optimal temperature path that the surface should follow during most of the cooling
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cycle for maximum stress relaxation.

Gurtin and Murphy [9] studied the interface residual stresses of a fiber-
reinforced viscoelastic plate which was cooled from cure temperature to room
temperature. The differential coefficients of thermal expansion between the matrix
and fibers create the interface residual stresses. They assumed uniform
temperature in the reinforced part and derived an optimal cooling path for
minimum residual stresses at the interface between the fibers and the matrix. 'I‘he
matrix was assumed to be a viscoelastic material while the fibers were assumed not

to deform. The residual stress at time tf is given by

alt) =~ ./(;If(,’(s(t)) a(t) di, ' (41.68)

where

Iy

()= /,"f oo(5)) ds,

1 1+U 1
G 22(1 ——u) (am—-af) i

0(1) = temperature,

v = Poisson ratio of matriz,
G, = shear relaration function of matrir,
a, = coefficient of thermal expansion of matrir,

= coe [ficient of thermal expansion of fiber.

This equation and the method of variational calculus were then used to obtain an

optimal temperature path [9], which is given by,

‘

GM(E(1)) @(6(1))* o'(e(1))

b(t) = . (4.69)

GI(&(1) [2 6'(0(1))° — o(o(t)) 6"(6(1)))
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with an initial discontinuity given by

8, — 6(0) = . . (4.70)

where
6, = initial temperature,

8(0) = temperature at t =0.

Equation (4.68) is similar to equation (4.61) in the sense that the integrands
are the product of 8 and a relaxation function. By assuming simple exponential
forms for the function of shift factor ¢ and the relaxation function, the analytical
solutions (equations (4.69) and (4.70)) may be used to verify the solution (Figure

1-14) obtained from the numerical iterations.

By comparing equations (4.61) and (4.68), G and ¢ can take the following

exponential forms

G(€) =3 o R(€) = 3-10° - exp(—&/2.24-10°),

exp(0.1533 (8 —0 ). 6> 9
#(8) = { g I,

1, 0<()g

where
"
(1) = /, L o(6(s)) ds.

0g = glass transilion temperature.

Substituting ¢ and ¢ into equations (4.69) and (1.70) gives
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— exp(0.1533(6 — ()g))

=

A

2.24.10%.0.1533

(4.72)
8, — 8(0) = 6.5.
Solving the first order differential equation gives
| t
=40 — n + exp(—0.1533(6(0) — 0 ))). 4.73
T T PO H0) — ) (1.73)

The optimal temperature path given by equation (4.73) is plotted in Figure 4-17.
At the same time. using these exponential forms of R and ¢ in the optimal cooling
of the bounded plate, the optimal temperature profile from the first gradient
algorithm is obtained and also shown in Figure 4-17. By comparing these two

curves, the solution from the first gradient algorithm is verified.

The surface temperature of the bounded plate jumps to the final temperature
well before the final time to allow the temperature inside the plate to reach the
final temperature at the end of the cooling period. This is because a temperature
gradient is considered in the bounded plate while the reinforced plate [9] assumes

uniform temperature in the plate.

4.4 Summary

The objective of this study was to find an optimal thermal history within a
specified time period for minimizing residual thermal stresses in the cooling

processes of viscoelastic materials.

The development of the thermal stresses caused by the temperature gradient
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Figure 4-17: Optimal Temperature Profiles Given by equation (4.73)
and First Gradient Algorithm.
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during the cooling was first analyzed. The temperature gradient developed during

the cooling results in differential thermal contraction and stress relaxation, which

consequently lead to the thermal stresses in the parts.

Both free and bounded plates with temperature gradients across their
thicknesses were investigated. The surface temperature of each plate was chosen as
the control variable. The node temperatures across the thickness represented the
state variables. Since the magnitude of the stress was minimized, the square of the
stress at the location of minimization was defined as the performance measure J.
Euler-Lagrange equations were solved with first gradient numerical iteration to

obtain the optimal cooling profile.

The optimal cooling profile of a free plate shows a short period of surface
reheating near the end of the cooling if the surface stress is minimized. The
physical meaning of the surface reheating has also been interpreted. The optimal
cooling profile changes when the target of minimization is varied. This path is
initial-guess dependent. 1f a different initial guess of surface temperature profile is
chosen, the optimal temperature path obtained from the numerical iteration will be

different.

Many local minimums exist in this particular optimal control problem and
nearly every minimum can reduce the surface stress significantly. This is because
the plate is free to contract during the cooing process. There is no mechanical
constraint on its edges and the target of minimization is the stress magnitude at
one point across the thickness only. In general, the characteristies of the optimal
cooling path for minimizing the surface stress of a free plate presents a short period

of surface reheating.

The optimal cooling profile for minimizing the entire stress field rather than

the stress at a given point in the free plate should also be investigated. In this
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case, the optimal cooling profile for minimizing the entire stress field would be the
superposition of the optimal profile for minimizing the stress at every point across

the plate.

In order to obtain a smooth profile from superposition, the number of nodes
across the thickness should be substantially increased and the time step should be
decreased. However, the computing time to determine Hu is increased by orders of
magnitude due to the multiple integrals in H, and the newly-defined performance
measure .J. This study is left as the future work using much faster computing

machine.

The . optimal cooling profile of a bounded plate presents an initial rapid
cooling followed by a slower cooling for most of the cooling period. The surface
temperature stays on the optimal cooling path until the time that the surface
temperature has to drop to the final temperature so that the temperature inside
the plate can reach the final temperature at the final time. Although the final
temperature jump would produce stress on the surface that cannot relax, the total
stress is still a minimum. A physical int.é'rpret,ation of the optimal cooling profile

has also been given.

The optimal cooling profile for minimizing the entire stress field across the
thickness, rather than the stress at a given point, was also investigated. The
summation of the stress at everv node across the thickness is defined as the
performance measure J. The initial jump of the surface temperature is larger in
this case than the profile of minimizing surface stress in order for the average
temperature across the thickness to follow the profile of minimizing surface stress

because the entire stress field is minimized.

The analytical expression of residual thermal stress between the fiber and the

matrix in fiber-reinforced composite is similar to that of the bounded plate if the
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fibers are assumed rigid. Therefore, the optimal cooling profile of the composite
for minimum residual stresses at the interface could also be given by the solution of

the bounded plate.
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Chapter 6

Conclusions and Recommendations

5.1 Conclusions

Two approaches have been studied in this thesis to minimize the residual

stresses in molded parts through optimization of the thermal history of the process.

The first approach is to apply a passive insulation layer with low thermal
inertia on the cavity surface to decouple the processes of material flow and cooling.
The passive insulation layer prevents the polymer melt from freezing during filling
of the mold and allows the flow-induced stresses to relax after filling. The cavity
surface attains high temperature during filling and subsequently cools down to low
temperature due to heat transfer to the mold. The layer provides a hot cavity
surface during the filling and a cold cavity surface during the cooling. This allows
the flow-induced stresses to relax immediately after the filling and the: injected

polymer in the cavity to quickly solidify and be ejected from the mold.

Two simple criteria for the optimal thermal properties and required thickness
of the layer have also been presented. The first criterion tells us that the smaller
the value of kpc of the layer, the higher is the interface temperature. The second
criterion allows us to calculate the required minimum thickness for the layer so
that the flow-induced stress can relax after the filling and the increase of

subsequent cooling time is kept to a minimum.

In addition to the required thermal properties and thickness for the layer. the
materials used for the layer should also satisfy the requirements of good wear
resistance, high melting point, good bonding strength to the cavity and smooth

surface finish. A material for the layer which meets all these requirements and
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have low kpe is yet to be developed.

A numerical simulation model for the molding cycle has also been developed
in order to understand the process and evaluate this approach. This model utilized
the Leonov constitutive equation to account for the time- and temperature-
dependent stress relaxation. The results show that the stresses inside the parts relax
completely while those near the surface relax only partially or not at all. Most of
the relaxation occurs in the first half second after the filling when the polymer is
still at a relatively high temperature. The maximum stresses exist not on the
surface but near the surface. This is due to the fact that the frozen layer on the
surface does not accumulate any more strain during the filling, since the strain rate

is zero in the frozen layer.

By comparing the results from coated and uncoated cavities, the insulation
layer raises the cavity temperature during the filling, and subsequently allows the
flow-induced stresses to relax immediately after the filling. Both simulation and
experimental results show that the final stresses in the molded parts are reduced by
at least 407¢ with the use of insulation layer. The cooling time is increased by less
than 20 “6 and the total cycle time should be increased by a smaller percentage.
The required injection pressure is also reduced because the polymer has a higher
temperature and therefore a lower viscosity during the filling. A smaller injection

molding machine can be used to inject the same shot size.

A typical molding process includes a material flow and a cooling process.
The parts start to cool before the process of material flow is completed. The
technique presented in this thesis decouples the processes of material flow and

cooling in order to relax the flow-induced stresses after the flow.

This idea can be applied to not only the injection molding process but also all

the molding processes, including the molding of metals. Its effects are particularly
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significant in the molding of metals because the values of kpc for metals are much
larger than those of polymers. An insulation layer like ceramic can easily raise the
interface temperature to a higher level if metals are to be molded instead of

polymers.

The second approach, an active control of the surface temperature, is to find
an optimal thermal history within a specified time period for minimizing residual
thermal stresses in viscoelastic materials. This technique can be applied to the
annealing process of large structural molded parts as well as the molding of fiber-
reinforced polymeric composites. The annealing process is usually necessary to
reduce the flow-induced and thermally-induced stresses which result from the
molding process. However, the annealing process itself would also create thermally-
induced stresses in the parts because of the temperature gradient during the cooling

process.

The temperature gradient leads to differential thermal contraction and
relaxation, which subsequently results in residual thermal stresses in the parts.
Therefore, the annealing process should be very slow, usually taking days, in order
to reduce the temperature gradient and have a uniform cooling. As a result, an
optimal cooling profile within a specified time period for minimum residual thermal

stresses is critical to both quality and productivity of the molded parts.

Plates with and without mechanical constraints on their edges were
investigated. The surface temperature of the plate was chosen as the control
variable and temperature gradient inside the plate was considered. Euler-Lagrange
equations were solved with first gradient algorithm to iterate the solutions. The
optimal cooling profile of a free plate shows a short period of surface reheating
near the end of the cooling if the surface stress is minimized. The physical meaning
of the surface reheating has also been presented. The optimal cooling profile

changes when the target of minimization is varied. This path is initial-guess
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dependent. If a different initial guess of surface temperature profile is chosen, the

optimal temperature path obtained from the numerical iteration will be different.

Many local minimums exist in this particular optimal control problem and
nearly every minimum can reduce the surface stress significantly. This occurs
because the plate is free to contract during the cooling process. No mechanical
constraint exists on its edges, and the target of minimization is the stress
magnitude at one point across the thickness only. In general, the characteristics of
the optimal cooling path for minimizing the surface stress of a free plate presents a

short period of surface reheating.

The optimal cooling profile for minimizing the entire stress field rather than
the stress at a given point should also be investigated. However, the computing
time in determining H  is increased by orders of magnitude due to the multiple
integrals involved in H_and the newly-defined performance measure J. This study

is left as the future work using much faster computing machine.

The optimal cooling profile of a bounded plate presents an initial rapid
cooling followed by a slower cooling for most of the cooling period. The surface
temperature stays on this path until the time that it has to drop to the final
temperature so that the temperature inside the plate can reach the final
temperature at the final time. Although the final temperature jump produces
stress that cannot relax, the total stress is still a minimum. A physical

interpretation of the optimal cooling profile has also been given.

The optimal cooling profile for minimizing the entire stress field across the
thickness of the bounded plate, rather than the stress at a given point, was also
investigated. The summation of the stress at every node across the thickness is
defined as the performance measure .J. The initial jump of the surface temperature

is larger in this case than the profile of minimizing surface stress in order for the
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average temperature across the thickness to follow the profile of minimizing surface

stress because the entire stress field is minimized.

The analytical expression of residual thermal stress between the fiber and the
matrix in fiber-reinforced composite is similar to that of the bounded plate if the
fibers are assumed rigid. Therefore, the optimal cooling profile of the composite
for minimum residual stresses at the interface is also given by the solution of the

bounded plate.

5.2 Recommendations

1. Materials for the insulation layer on the cavity surface need to be
developed.

2. Fountain flow (elongational flow) should also be considered in the
model in addition to shear flow.

3. The stresses due to packing and cooling should be included in the
simulation of the molding cycle.

4. Minimizing the entire stress field in the free plate, i.e. the integration of
stress magnitude across the thickness, should also be investigated.

5. The optimal thermal history in the whole injection molding cycle should
be determined using the low thermal inertia mold.

6. The optimal temperature profile should be verified by experiments.
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Appendix A
Derivation of H , G_ and G,

Equation (4.42) is rewritten as

J={ ﬁ) s R(e(z,,0)) [¢(t) — a, B(z ,t) ] dt }2, (A.1)
where
gz t) = /:f o(6(2,8)) ds. (A.2)
ot J
o(zo,t)zfo aw(x)y)—;f(zo.t—x)dx, (4.3)
. 0 . .
b(z,t) = /0 6, (N) 7= Jlz,t =2) dh = 12,0 0,(0), (A.4)
Y|
o, [ R(g(=)b(zt) dz
e(t)= ¥ (.1.5)
A R(&(z.t)) d=

The first variation of equation (A.1) gives
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8J=-6oa, /:f {R(&(z,t)) - _ (A.6)

ot (32
0 c)tax

[ 2ot =X) 88, (N) dN — Nz ,0) 66 (1))
+8(z,0) R(E(2,00)) -

/f¢’ z,.3) / ;f(z 8—X) 88, (\) dx ds} dt
+60 /;fR’(f(zo,t)) /t.!fgb'(ﬂ(zo.)\)) 88, (7) dx €(t) dt

R(¢(z .t))

f 0
+60a /
% Jo |l
( A R(&(z.t)) dz)?
N} )
{[/0 R(&(=.1)) dz]

A . 8 0
[ /0 R(¢(=0)) /t 'S (6(z.5)) /0 S M(zis=3)8,(3) d ds #(z) dz

N -f (32 )
+/0 R(f(z.t))(/ (20 =3) 8, (3) dr = 1(2.0) 60,(1)) d]

ol
- [/0 R(&(z.t)) b(2.t) dz] -

N ) w0
[ /0 R(&(z.0)) /’ 'S (0(2.5)) /0 —~f(z3=2) 8, (A d dis ]} dt

In order to have a form like

.(f
5.1:20/ H 60 dt, (4.7)
0 u w

80, in equation (A.6) should be relocated outside some of the integrals. This can be
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demonstrated with one of the most complicated terms

? f(zo,t)

ot
- 6oa / /
. o] 0

0

aj‘(z,s—)«) 88, (N) dx ds #(z.t) dz dt.

[( ) N} 'tf , n8
! 'l R(E(z!))dv‘/ o 1D [T
Jo n

It can also be written as

1 BE(z00) 1(8(200)) B(z4t) ty 8
6o, /0 /0 ’R d I/ ¢(0(z,s))/
ft))dz
Jo fe=0)
)
—flz.8=X) 60 (X\) dX ds dt dz.
2)) w

If we let

R(&(z 1)) R'(&(z.t)) B(=.t)

!l
‘/0 R(e(=.1) dz

A(z,t) can then be expressed as

Jd
./0 R(&(z.5)) d=

Integrating (A.9) by parts gives

u g )
6oa, ./0 { [,{(:.t)‘/"fw(o(:.s))/ Tf(z,s—)\)éﬂw()\)d)\ ds ]:)f

0 U

ot )
- /Of A=) (= (8(=0)) / —[(z4—) 80, (1) dX dt } d.

0 O

(A.8)

(A.10)

(A.11)
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The first term is clearly zero while the second term can be shown as

Ao, i 0
6oa, ./0 ‘/O'IA(z,t)'gb'(()(z,t)) ./0[ Z Jia(:t) f5, (M) -

n=1

8, (A dndt dz, n=1,3.5 - (A.13)
where

) o0

> (zd—=X) = Z S (at) Lo, (M) n=1,3,5,
n="1
amn nr., . onmz
Ji(zt) = —[-:)— exp( ——(g)" at)sin (—2—1—), (A.14)
nr .,

f?’"(k) = exp( (2—1) a X )

Equation (A.14) was derived from equation (4.22). Equation (A.13) can also be

rearranged as

J oo . .
6o, ./0 ) ./OlfA(:.t) ¢'(0(=.t)) £}, (2.t) ./0' Jo,(A) -

n=I1

80, (N dhdt dz, n=1.3.5 --- (AA.15)

B (20)= A=) o'(8(=0)) f,, (2.0). (A.16)

then
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Integration by parts of (A.15) also gives

o] X N /
6o, /0 S (1B, () /0 Fo3) 88,0 d )/
e |
ot
- /Of B (=) fy, (1) 80 (1) dl } dz n=1.3.5, - (4.18)

Again, it is obvious that the first term is zero. Substituting B, (z,t) in (A.18) by

equations (A.17) and (A.11) gives

s)) [¥(&(z.5)) 8(2,9)

J X .(f .[f oY R(G(Zo-
6o a, ‘/0 Z {— /0 /, — ./0 ds
n—1

f Rle(zs)) d2

Jo
o d'(0(=N)) Sy, (e ) dX [y (1) 80, () dt } dz. n=1,3,5, - - (A.19)

Rearranging (A.19) results in

o0, [/ 1 [ Z =) Ey ) S0z [

dsdxdz8 (t)dt, n=1,3.5, .- (4.20)

which leads to



R(e(z,.5)) RU(e(z.5)) B(=.5)

ds dx dz 68 (1) dl. (A.21)

N
/0 R(¢(2,8)) d=

With similar procedures applied to other terms, equation (A.6) can be expressed as



~0,

t o, 0
6J=/0fﬁaoa{ /tf—qf(zo‘,x—t)l?(ek 2)) dx

Y L b Sy N I d=
]O _f(za—1) dh

H can then be easily obtained from the integrand of equation (A.

2

)

) as

(A4.22)
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b

» B(&(z,08)) R'(€(z.8)) € (s)

ds dx dz

2 R(&(z,0)) R(g(=0))

S — (z2—t) dx dz

2
O / R(&(20)) dz

/ S Sza=1) ¢'(0(z)) -

N

To derive G

ds dxdz }.

/ R (i"(l

 €duation (4.45) is rewritten here as
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N = N(o(=t )

/IQY [/ dtaxf("t A)

—£(2.0) 8, (1) — b(=L) ] dt.

Since N is a differentiable function, we can write

, N = /f(“ )) dt + N(8(=,0))

ating [ & t—) d
+‘/0 Q (~..v>['/oo () 5=zt d

—£(20) 8, (1) — b(=L)] dt.

(A.24)

(A4.25)

The minimization does not affect N(6(z,0)) because #(z,0) is fixed. Therefore, we

can exclude it from the functional. Applying the chain rule to dN/dt gives

_/I[JN
2

d
" /[Q,I ) { Jo w _)78_f(~’t X) dx

—£(=2.0) 8, (1) — b(=t) ] dt.

The first variation of equation (A.26) gives

dIN(¢
- / S ———Z _ Q(zt) | T sb(z.t) dt

/ IQ-. [/Ol—a—m.t NES x)dx—f(z,o)éo

O

wlt) ] dt.
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Integrating the first term by parts gives

L o
do(=.t ) Q(z.t )] #a(=t )

/fQF )66(2.t) d

SN = |

+./(;fo71(::.( [lot-d-(t%f(nt 2) 66, (x )dx—f(zo )88, (t)] dt. (A.28)

. . t .
Applying the same procedure as before to relocate 89, out of the integral fo in the

second term, one arrives at

dIN(6( Z.tj))
do( Z.lf)

e -y
+ /OIQI(:.!)ﬁa(z.t)dt

5N = | —Q(at )] oozt )

ol e |
+ /0 - Q7(=.1) f(20) (4.29)

/ IQ —f(w A—t) d)\]bﬂ t)dt.

G, and Gu can then be given as

G, == (A.30)

Guz—[QT(:. (z,0) + / fQT d—f(g,x t) dx]. (A.31)
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Appendix B
Derivation of Interface Temperature

Consider two semi-infinite bodies that are initially at temperature T, and 0

respectively. The two bodies are in contact at t>(0. The temperature at the

interface is to be analyzed.

The formulation of this problem is

32
BTl 0 Tl
= .
ot 1 a;,?
. %) o
0T2 d 72
= a,
ot © oz
kl ,“'2
where a) = ——., a, = —.
p](‘l “ pgt‘:3

Tl =T. al z = —o0,
3
Tl ‘j—— 7‘2 — (lt = ()v
dTl ) ()'12 , ,
—_——f, — at z =20,
1 9z 2 9z
T2=0 al z = oo.

We may write the Laplace transform of equation (B.1) in time

(B.1)
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d*T,(s) - T,
— q - 8)= — — .

d? bl Py

d2T,(s)
- 9,°Ty(s) =0, (13.3)

dz
| 22 22
where 9, = . vy = o .

Ti
Tl(3)=-; at z = —oo0,
T\(s)=Ty(s) at z =10,
dT,(s) dTy(s)
= K t 2y = N o
k, T k., R a 0 (.1)
T,(s)=0 at z =00

The general solutions of equation (B.3), expressed in terms of exponentials are

T.
4
T\(s)= a—l- + A exp(—q,2) + B exp(q,z),
(13.5)

Ty(8) = C exp(—g,2) + D exp(qy2).

The constants A, B, C and D can be determined by considering equation (B.4),



This leads to

T, exp(—gy2)

(
1+ ( :ZZ;?)I/‘Z

T2(8) =

Inversion of the Laplace transform allows us to arrive at

7,

T,= erfe( )-

(k‘pC)2 1/ 2V at
/2 @9
tr ( (kpc),)

The temperature at the interface is given by

T.

]

1m0 =),

o ( (kpC)l)l/2

The temperature drop of body 1 at the interface is

Therefore, from equation (B.9) and (B.10),

ATl (kp(')‘) .
_ “\1/2

(13.6)

(B.8)

(B.9)

(B.10)

(B.11)
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| Appendix C
Temperature Dependence of Elastic Modulus of
Rubber

This appendix demonstrates [11] that the elastic modulus of rubber should
increase with increasing temperature by the laws of thermodynamics. The first law

of thermodynamics gives
AU = d@Q + dW. (C.1)
where
dl7 = change in internal energy,

d@Q = change in heat absorbed or released,
dW = work done on the system.

From the second law of thermodynamics, for a reversible process,
dQ = T-dS, (C.2)
where

T = temperature,
dS = change in entropy.

If an elastomeric rod of length ! is extended by an amount d!/ due to a tensile
load F, the work done on the rod is F-dl. Therefore, equation (C.l) can be

expressed as

dU =T-dS + F-dl. (C.3)

At constant temperature, equation (C.3) can be rearranged as
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F= (63—({)T" T(Z—f):r (C4)

where
ot ) .
/= change in strain energy,
oS X
S/ change in entropy.

Since polymer chains prefer a random configuration, their unloaded degree of
order is low and entropy is high. When a tensile force is applied, the entropy

decreases as the chains become straightened and aligned.' Therefore, ('51-)’1’ is

negative, which means the force F required to extend the rubber rod increases with
increasing temperature T which can be seen from equation (C.4). This leads to the
conclusion that the elastic modulus of rubber, or polymer in the rubbery state,

increases with increasing temperature.



