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Abstract

A microworld to support investigations of cybernetics is developed, con-
sisting of a miniature computer programmable in Logo, called the "Logo
Brick," a:lc mobile mechanical vehicles built of LEGO plastic parts. These
"Programmable Turtles" are equipped with various sensors, including touch
sensors and light sensors.

A series of experiments with these materials is performed with two groups of
elementary school children, aged from twelve to fifteen years. The children
design behaviors for the Turtles by writing Logo programs and building
materials in the Turtles' environment.

The children encounter several powerful ideas in cybernetics: feedback,
multiple levels of analysis, and object/environment boundaries. Through
the course of the experiments, their understanding of the Programmable
Turtles deepens and becomes more flexible.
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Chapter 1

Introduction

This thesis is about cybernetics, the study of systems or feedback net-

works of interacting elements. It's also about children's thinking as they

build robots and observe them Interacting with their environment and other

robots. And it is about the relevance of this work to science education.

The foundations of cybernetics were laid two thousand years ago by the

inventions of the Hellenistic period. But its principles remained in obscurity

until James Watt's invention of the steam engine governor in 1784. The

governor had an enormous impact on the technology of the era, catalyzed

the birth of the Industrial Age, and introduced the study feedback control

as an engineering technique.

In the 1940's, the work of pioneer cybernetician Norbert Wiener and

others showed how the feedback could be used in a variety of areas of scien-

tific inquiry, such as physiology and psychology. A community of scientists

developed methods and styles of inquiry of the field which came to be called

cybernetics. The modern methods of dynamical systems analysis and con-

temporary theories of mind such as the Society of Mind by Marvin Minsky

have precursors in the work of the cyberneticians of the 1940's and 1950's.
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The concepts of systems theory, such as feedback, seem very complex,

but that is because they are explored in highly abstract and mathematical

ways. The Swiss psychologist Jean Piaget argues that as a child's mind

develops to become able to perform abstract types of thought, it passes

through stages which support these forms of thought. I believe that the

concepts of cyberneticians could have a corresponding pre-formal represen-

tation in minds of children and novice adults.

Seymour Papert argues that many ideas of mathematics are hard to

learn because the tools for their appropriation do not exist in the learner's

environment. This explains why people have trouble with classroom-style

mathematics; the tools used to learn mathematical ideas are abstract and

make it difficult for the learner to "sink his teeth" into the material. In his

book Mindstorms, Papert describes the development cf Logo, a computer

programming language designed to support the "speaking" of mathematics

in a way analogous to how living in France supports the speaking of French.

Papert explains how the Logo language could be situated in an envi-

ronment of "math-speaking" persons and other materials that support the

development of an active mathematical mind. Logo would have a central

role in this environment which Papert calls "Mathland." (Papert 1980)

If this need for materials of appropriation is true of mathematics, than it

makes sense to explore a miniature Mathland, or microworld, that supports

the techniques of cyberneticians. I will review four microworlds which make

these ideas accessible to children and novices:

* Papert's Logo and the Logo turtle (Papert 1980);

* Valentino Braitenberg's experiments with programmable vehicles (Brait-

enberg 1984);
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* animal microworlds software being developed by Roy Pea and asso-

ciates (Pea et al. 1988);

* a mechanical and computer-based building system, called LEGO/Logo,

developed by Papert, Ocko, and Resnick (Ocko et al. 1988).

The work des-cribed in this thesis is based around an extension to the

LEGO/Logo system in which the computer, rather than being a desk-sized

personal computer, is miniaturized to the size of a deck of cards. It can then

be incorporated into a LEGO machine, and each machine can literally carry

its own program. Very small computers encourage the design of mobile,

animal-like machines, which can interact with each other in unpredictable

and interesting ways.

Several sorts of sensors were created for the "artificial animals" to re-

ceive data from their environment.

These materials were developed to meet three goals:

1. To build a flexible and engaging microworld that can provide children

access to the powerful ideas of the cyberneticians.

2. To learn about children's intuitive ideas relating to feedback and sys-

tems thinking.

3. Through experimentation, learn how to make these ideas more readily

understandable to children.

When the technological materials were ready, they were used in a series

of experiments with children.

The first of those who used the materials were fifth grade children at-

tending the Hennigan school in Jamaica Plain, Massachusetts, the site of
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a three-year-long Logo project called Project Headlight, led by Seymour

Papert and his M.I.T. associates. The children had had intensive computer

and Logo programming experience while part of Project Headlight.

Afterwards, experiments were done with a group of seventh and eighth

grade students who were attending a private school in Newton, Massachu-

setts. The experiments with the fifth grade children took place over the

course of a school year (nine months), while those done with the older

children took place over a six-week period. These experiments are described

in Chapter 4.

Experience gained in one experiment often guided the construction of

subsequent ones; the activities performed with the older children made

considerable use of knowledge gained in earlier experiments. This forms a

design cycle for making the system more understandable to children. The

steps in this cycle are: developing a prototype system, observing children

using this system, analyzing how they appropriate or have trouble appro-

priating certain ideas, and then redesigning the system in order to try

again.

In Chapter 5, the children's activities in each of these experiments are

described. Chapter 6 contains an analysis of the children's work which

brings out the following issues:

1. Development of the children's understanding of feedback, as relating

to activity they have designed for their robot turtle.

2. Children's tendency to anthropomorphize the turtle into a living crea-

ture, which affects the style of interaction they have with it.

3. Ability of children to analyze the turtles' behaviors using several dif-

ferent styles or levels of explanation.

10



4. Emergent phenomena resulting from multi-processing (multiple robot

interactions) and "environment programming" (robot behavior af-

fected by programming the environment).

The conclusion, in Chapter 7, suggests improvements and extensions to

the materials including new sensor technology and more powerful program-

ming paradigms, proposes alternate styles of research using the materials,

and makes connections between the experiments and science education.
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Chapter 2

Theoretical Background

2.1 A Short History of Cybernetics

The field of cybernetics began with a single idea, that of a feedback system.

Using negative feedback, a system is able to regulate one or more variables

by making corrections to its performance. These corrections are based on

observations of its current state.

For example, you are part of a feedback system, where you act as the

controller and sensor, when you adjust the temperature of your morning

shower. If the water feels too cold, you make it hotter (with either more

hot water or less cold). If the water feels too hot, you make it colder. You

repeat this action of testing and then correcting several times before you

are satisfied.

You make these corrections based upon your preferred temperature

which is your goal. If the difference between the current temperature and

the goal temperature is large, then you make a large correction. If the dif-

ference is small, then you make a small correction. This guiding difference

is called the error temperature.

This example of a feedback controlled system uses a person to sense the

error and apply the correction. If we analyze this process, we can extract
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its key steps, and form a working definition of a feedback system. Then we

can look for examples of machines doing that job.

SHOWER FEEDBACK

1. Measure water temperature.

2. Find difference between goal temperature and measured temperature.

3. Make correction so as to reduce that difference.

4. Repeat from step 1.

This feedback system is called a negative feedback system, because it

tries to reduce the error. If it increased the error, then it would be a pos-

itive feedback system. Positive feedback systems are extremely unstable,

because any error will push the system further and further away from equi.

librium.

It is believed that the first machine that had a negative feedback mecha-

nism was a water clock designed Ktesibios of Alexandria, who lived between

300 and 250 B.C. His feedback mechanism was used to increase the accuracy

of a water clock.

The feedback device maintained a constant flow of water that was mea-

sured to show the passage of time. It worked by keeping a constant water

level in a regulating tank, which would ensure constant water flow.

The feedback device was a float valve: a cork at the end of a rod. The

cork floated on the water in the regulating tank, and moved the rod. It, in

turn would operate a valve which controlled the amount of water allowed

to enter the tank.

When the water level in the tank rose, the cork would rise, cause the

valve to close. When the water level fell, the cork would fall, and cause the

valve to open.
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Throughout the following centuries, several other inventions made use

of a feedback mechanism for some regulating purpose. Often the earlier

machines were unknown, so the concept of feedback was rediscovered many

times. Among the inventions incorporating feedback were:1

* A flow regulator for an oil lamp, designed by Philon of Byzantium in

250 B.C.;

e water clocks of the Islamic region, dating to the 1200's A.D.;

* heat regulated furnaces of Cornelis Drebbel of Holland, in early 1600's;

* pressure regulated boilers in the 1600 and 1700's (England);

* feedback mechanisms on windmills, designed to aim the mill blade

toward the wind, and regulate the speed of the mill (1700's, England,

Scotland, and Holland)

* James Watt's centrifugal governor on the steam engine (1784, Eng-

land)

These machines had remained obscure in their time, so that feedback

remained hidden until James Watt's governor on the steam engine.

The Watt governor greatly increased the usefulness of the steam engine

and catalyzed the dawn of the Industrial Age. It also captured the attention

of the engineering community, and initiated international recognition and

study of feedback engineering.

Watt as believed to have invented the first feedback device, and was

attributed to the patent of the steam engine governor. In fact, Watt himself

'This historical research is taken from Otto Mayr's book, The Origins of Feedback
Control, which includes in-depth analyses of each of these inventions.
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recognized his invention as another application of the technique that he had

observed in windmill regulation, and never sought a patent for his regulator.

As explained by Otto Mayr2:

The governor did not strike him as new; he considered it merely
an adaptation of a known invention to a new task. [...] Com-
pared with the large but straightforward task of producing power,
the regulating devices and whatever theory they involved may
have appeared to the sober Watt as secondary, if not marginal.

By the 1820's, the governor had gained a firm place in the engineering

textbooks, and by the late 1800's, engineering theory included dynamic con-

trol theory, and many historical and general-interest works were available

to laymen.

Feedback remained exclusively in the domain of control engineering until

World War II when a group of scientists, formed in 1910, explored feed-

back mechanism in anti-aircraft weaponry. Eventually, they came to the

conclusion that feedback was important in the operation of animals.

These scientists held meetings through the 1940's and continued re-

search and discussion to find common ground amongst the field of math-

ematics, physiology, psychology, and engineering. This work coalesced in

Norbert Wiener's publication of Cybernetics: Control and Communication

in the Animal and the Machine in 1948. He chose the word cybernetic from

the same Greek root word from which governor, the word James Watt chose

to describe his feedback invention, is derived.

The development of cybernetics as a field in its own right continued, with

a regular series of conferences, a number of journals devoted to the field, and

several university programs partially or wholly dedicated to cybernetics.

2 ibid., pp. 112
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In the 1960's there was some controversy over what exactly the field of

cybernetics was. Michael J. Apter, a developmental biologist and cyber-

netician, made the following comments in his book entitled Cybernetics and

Development (Apter 1966):

* Cybernetics has no central part but consists of many strands that
overlap each other in different ways, including computer and commu-
nication engineering, mathematics and logic, biology, physiology, and
psychology.

* There are genuine differences of opinion among cyberneticians them-
selves about what cybernetics is and what cyberneticians should be
doing. As two examples along a continuum of opinions: Stanford Beer
looked on cybernetics as the science of proper control within any as-
sembly that is treated as an organic whole; while Ashby emphasized
abstracting a controllable system from the flux of the real world.

Apter also pointed out criticisms of the cybernetic approach, which

claimed that cybernetics consisted mostly of analogy-making and lacked

empirical data.

Those criticisms became invalid as analogy-making evolved to model-

building, and the technique of computer simulation, based on these models,

drove research. The advent of computer simulation justified the approach of

the cybernetician, who, in the words of Apter, "is doing more than merely

drawing analogies between animals and machines, but is concerned with the

development of conceptual systems at a level of generality which subsumes

both animals and machines."

Models and computer simulations are simplified versions of the phe-

nomena that they represent, but they can provide enough complexity to

possess the properties of the actual systems of study. They may even re-

veal or predict phenomena that would be difficult or dangerous to observe

in the actual systems.

16



This approach is further validated by comments of Roy Pea and asso-

ciates (Pea 1988), who explain that simulation and modeling techniques

combine the classical "analytic" and "synthetic" methods of science.

The analytic approach is that of observing phenomena and then seeking

laws to account for them; the synthetic approach involves confirming the

validity of laws by prediction and experimentation. Computer simulation

combines these two approaches: in creating a model, there is an analysis of

the system of study; in experimenting with a model, the scientist synthesizes

observations of the model system to match with the actual system.

Contemporary theories of mind, such as the "Society of Mind" the-

ory (Minsky 1985) and connectionism (McClelland et al. 1986) incorpo-

rate mechanisms more sophisticated than simple negative feedback in their

models. Minsky's theory is based upon hierarchical societies of interacting

managers and agents, and the connectionists emphasize emergent proper-

ties within a certain level of interconnection.

These models extend negative feedback by placing each element in a

web of like elements. This is similar to the technique of the cybernetician,

who might study the fashion in which the body's control systems (nervous,

homeostatic, circulation) interact.

2.2 Educational Initiatives

Cybernetic ideas seem complex, but often it's because the tools used to

explore them are abstract and highly mathematical. Perhaps that is why

they aren't treated in the traditional educational curriculum before the

college level. This section will describe previous work which sought to

make these concepts more accessible to children and technical novices.
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Dr. Grey Walter was a British cybernetician, neurophysiologist, and

pioneer in electroencephalography. In the 1950's he constructed a series

of machines he called mechanical "tortoises" because of their characteristic

shell-like protective cover.

They incorporated touch sensor and light sensor elements and some

fairly simple electronic circuitry. Yet, they exhibited a variety of complex

behaviors, including positive and negative tropism 3 for light, exploratory

movement, and self-recognition (when the tortoise"saw" its reflection in

a mirror, it would do a sort of dance). Some of these behaviors were

specifically designed into the machines (such as the tropisms) and others

were unanticipated, emerging from the interactions of the turtle with its

environment (such as the self-recognition dance).

Dr. Walter did not report any experiments with children's opinions of

his turtles, but did mention that their animal-like behavior would occasion-

ally frighten visitors to his lab.

Seymour Papert added a floor turtle to early versions of Logo. It was

a small mobile device which could be controlled by commands from the

computer. He intended the turtle to be a body-syntonic object for children;

they could use knowledge about their own bodies in understanding how the

turtle moved. In this way, the turtle would become an object-to-think-with.

In his 1984 book, Vehicles: Experiments in Synthetic Psychology, Valen-

tino Braitenberg described a series of vehicles that were hypothetical self-

operating machines, built out of connections of simple electronic elements.

They would display a range of behaviors, progressing from simple attraction

and repulsion to complex "emotions" and "intelligence."

3 an attraction or repulsion

18



light sensor Y

FT
motor wheel 

Figure 2.1: Braitenberg Vehicle No. 1

Braitenberg's vehicle No. 1 is shown in Figure 2.1. This vehicle consists

of a light sensor connected (via a wire) to a motor. The more light received

by the sensor, the faster the motor turns.

Vehicles No. 2a and 2b make use of two of these light-sensor-and-motor

circuits, to form a vehicle that has the ability to turn (Figure 2.2). As

indicated in Figure 2.3, these vehicles display either a positive or negative

tropism to light.

Let's examine vehicle 2b. If a light is positioned to its left (as in the

figure), then its left light sensor will be excited to a greater degree than its

right sensor, and its right wheel will turn faster than its left wheel. This

will cause the vehicle to turn towards the light; the sensor-motor interaction

will continue to drive it toward the light.

In a complementary fashion, vehicle 2a turns away from the light.

Proposed as a series of thought experiments, at least two projects have

taken inspiration from Braitenberg's work. One is software designed for

the Macintosh that allows some experimentation with early vehicles. The

software is not very flexible and allows only rudimentary experimentation.

A much more elaborate and powerful Braitenberg microworld is presently

being developed by Roy Pea, Michael Eisenberg, and Franklyn Turbak (Pea

19
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Figure 2.3: Braitenberg Vehicles 2a and 2b Encountering a Light
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et al., 1988). Entitled "Creatures of Habit," it is a universe of interacting

programmable "creatures" whose individual behaviors are guided by simple

rules that may model naive psychology, physical laws, chemical affinities,

and other domains. Using the system, students may create or revise crea-

ture rules and explore resulting emergent behaviors within the 'artificial

ecosystems."

A system called LEGO/Logo takes this "artificial animal environment"

off the computer screen and puts it into three dimensions. Designed in a

collaborative effort between LEGO A/S, a company based in Denmark, and

Seymour Papert, Stephen Ocko, and Mitchel Resnick of M.I.T., LEGO/Logo

is a building set consisting of LEGO plastic building materials - beams,

blocks, gears, pulleys, wheels, and motors - and a computer interface

involving sensors and Logo programming.

The materials are part of a learning environment for children, wherein

they build motorized machines and then hook them up to the computer,

thus enabling them to write programs to animate their constructions. The

LEGO building parts are extremely versatile, as evidenced by the variety of

machines children have constructed, including cars, dinosaurs, and roller-

coasters.

Experience has showed that these materials can tap a wealth of creativ-

ity in children. Many children who do not possess verbal or mathematical

skills (and those who do) are able to use a form of "spatial intelligence"

and knowledge of physical materials in LEGO/Logo activity. Often collab-

oration occurs between children who combine LEGO skills and Logo skills

to accomplish a project (Ocko et al. 1988).

The LEGO/Logo system incorporates two types of sensors that can be

built into LEGO machines: a touch sensor and a light sensor. Children

21



often will build a car, and then mount a touch sensor on its bumper. Then

they can write a Logo program to cause the car to change direction when

the touch sensor is triggered, as when the car hits a wall.

The LEGO/Logo system includes sensors, motors, and control (Logo

programming), which are exactly the elements needed for explorations of

cybernetics. However, each LEGO machine must be hooked up with wires

to its computer, and it is difficult to write programs for more than one ma-

chine at a time. These limitations constrain the extent to which machines

may interact with each other and their environment. And it exactly these

interactions which are of most interest to the cybernetician.
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Chapter 3

Programmable Bricks

3.1 Logo Bricks

In the original version of LEGO/Logo, a machine must be hooked up via

long wires to a host computer, which is a desktop-sized personal computer.

The limitations of this system led to the idea of a "computer-in-a-LEGO-

brick" that could be built into the LEGO machine itself.

Hence, the development of the Logo Brick: a computer inside of a LEGO

brick. One programs it in Logo, by hooking it up to a "large" computer

that has a keyboard and screen. The Logo Brick can directly cnntrol up to

four motors, and receive information from several sensors.

Figure 3.1 shows a picture of the Brick and its insides. The Brick

measures 9 cm long by 5 cm wide by 3 cm high - about the size of a

deck of cards. It is powered by a rechargeable battery pack of the same

dimensions.

There are several implications for projects that are built using the Logo

Brick, rather than using original LEGO/Logo. Machines can be designed

for mobility without having to worry about tangled trains of wires. This

encourages more "animal-like" inventions, instead of stationary machines.

23



The Logo Brick

Figure 3.1: The Logo Brick
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Because each machine can carry its own program aboard the Logo

Brick, multi-machine projects are possible without cumbersome program-

ming techniques. Projects involving more than one machine often reveal un-

predictable emergent phenomena from interactions between the machines,

which are interesting to study.

Appendix A includes a history of the development of the Logo Brick

and technical information on its use.

3.2 Sensor Devices

New sensors were developed for use with the Logo Brick. I will mention

these devices briefly here, and explain their operation in more detail in the

context of experiments.

* LEGO Touch Sensor. Responds to contact pressure. Same as in

original LEGO/Logo.

* LEGO Light Sensor. Useful for certain tasks, but not used in any of

the experiments with the Logo Brick.

o Sound Sensor. Responds to "beep" generated by small beeper unit.

Allows signalling from one machine to another.

* Directional Light Sensor. Indicates direction of brightest incoming

light.

* Threshold Light Sensor. Responds when incoming light surpasses an

adjustable threshold.

* Analog-to-Digital Light Sensor. Reports a numeric value correspond-

ing to the amount of light it is receiving. None of the experiments

made use of this sensor.
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Figure 3.2: Illustration of Light Sensor

The directional light sensor played a centra! role in much of our exper-

imentation.

This light sensor would indicate a difference in brightness of light: it

would tell whether incoming light was brighter from a left-hand direction,

or whether it was brighter from a right-hand direction. It would indicate

this by lighting one of two small lamps, and by sending a corresponding

signal to the Logo Brick (See Figure 3.2).

We used this sensor to design a behavior whereby a vehicle could follow a

light. The vehicle would use the light sensor to correct its course repeatedly

so as to point towards the brightest source of light. This behavior became

the paradigm feedback process for the children to explore.

The indicator lamps were designed into the light sensor for the human

experimenter's benefit when working with the device. These lamps indicate

the state of the sensor, in order to help a person using the device to test

what to what the device responds.

A similar feature was installed into the sound sensor. This device sig-

nalled 'true" when it was hearing" a beep, but unless the Logo Brick using

the sensor is programmed to perform some specific and evident action upon

reception of the sound, this state of recognition is invisible to the observer.
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So I added a small lamp that would light when the sensor received the

sound.

I chose to implement the sound sensor as the first wireless communica-

tions device specifically because the mode of communication, a high-pitched

tone, can be directly perceived by a person. Radio or infrared communica-

tions would also have worked for a wireless communications method, and

have some advantages such as increased range, but I wanted a device whose

sensory modality children could directly perceive and easily understand.

3.3 Braitenberg Bricks

In addition to the fully programmable Logo Brick, a set of hardware bricks

were developed that allow construction of several of the vehicles described

in Braitenberg's book.

These "Braitenberg Bricks" consist of a light sensor brick and a motor

driver brick. When the light sensor is connected to the motor driver, the

motor will turn at a rate proportional to the amount of light being received

by the light sensor: the more light shining on the sensor, the faster the

motor will turn

An additional inverter brick can be wired in the circuit between the

light sensor and motor driver. The motor will then turn according to an

inverse-proportional relationship: the more light received the slower the

motor will turn.

An arrangement of two of these circuits can be used to make a vehicle

that is either attracted to or repelled by a light source, as described by

Braitenberg. in his vehicles 2a and 2b (Figure 2.2).
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Chapter 4

Description of Experiments

The chapter outlines the series of experiments I led with two groups of

children: fifth grade children at the James W. Hennigan school, and seventh

and eighth grade children from the Fessenden school, a private school for

boys in Newton, Massachusetts.

In this chapter I describe the activities that were set up for the children,

explain how these activities were chosen, and indicate what I expected

the children and the researchers' to gain from them. I wish to stress the

exploratory nature of these experiments, on the part of the researchers as

well as the children, and that I would classify this work as a pilot study.

Chapter 5 contains a narrative of what the children actually did in these

experiments, and Chapter 6 presents an analysis of these activities.

4.1 Format of the Experiments

M.I.T. researchers worked with the Hennigan children beginning in Octo-

ber, 1987 through June, 1988. There were varying numbers of research-

ers/observers on hand at a given session; from two or three to up to ten

'Many people contributed regularly to these sessions, including Edith Ackermann,
Mitchel Resnick, Carol Strohecker, and Allan Toft.
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onlookers. Several of the sessions were videotaped. 2 The sessions ran about

once a week (one hour per session) from October to December, and about

once every two weeks from February to June.

The groups of Hennigan children were taken from two "advanced work"

fifth grade classes. The children in these classes were considered more

capable in traditional school work than children in the regular classes. We

chose children from this group deliberately, expecting them to learn how

to deal with complex subject matter more quickly. We met with groups of

four children from each of the two classes. Each of the groups consisted of

two boys and two girls.

Two of the boys in one of the groups were asked to leave the group after

one month. The other group of four was split into two groups of two (two

boys and two girls) beginning in March, 1988. There had been a difficulty

in the larger group that not enough of the children could participate at

once; there was only enough hardware to support one computer terminal

for which to program the Logo Bricks. The groups of two worked out much

better.

The group of older children were seventh and eighth graders from a pri-

vate school in Newton, Massachusetts. They were chosen for their interest

and demonstrated ability by their computer teacher. I met with six boys

over a period of four weeks for two two-hour sessions per week.

4.2 Research Methodology

The research was characterized by direct involvement in the children's ac-

tivities. This strongly guided approach allowed me to go further in the use

of the materials within the time period of experimentation. The children's
2 My thanks to Scott Paul for this service.
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freedom was somewhat limited in this departure from earlier LEGO/Logo

philosophy. Teachers using the original LEGO/Logo materials were encour-

aged to allow children to invent their own projects as well as to build them

(Ocko et al. 1988). In these experiments, I wanted to be able to steer the

children into certain types of problem-solving situations.

There was an on-going process of examination of the experimental con-

tent and style during the course of the experiments. Experiments were

often planned after analyzing the previous week's activity, or were moti-

vated by a new sensor device constructed at the M.I.T. laboratory. In one

case, a project idea of the children led to the development of a sensor in

order to realize that idea.

I was interested in finding out what the problems are; that is, conducting

an in-depth survey, with new materials, to reveal what is interesting, and

worth exploring further, about them.

4.3 Materials Used in the Experiments

4.3.1 Programmable Turtles

In order to focus on new activities using the Logo Brick, I felt it would be

more efficient to give the children pre-constructed LEGO machines, which

they could program, rather than have the children spend time on mechan-

ical LEGO work. Therefore, I designed a vehicle for them to use in their

Logo Brick activities.

I call this vehicle the Programmable Turtle. It is the LEGO equivalent

of the Logo turtle in that it can move in a similar fashion: forward and

backward movements, and left and right turns. The Programmable Turtle

carries a Logo Brick and battery pack on its back. It is outfitted with two
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touch bumpers for sensing collisions. Figure 4.1 shows a picture of the

Programmable Turtle.

A variety of sensors were used in the experiments. These sensors were

plugged into the Logo Brick and then mounted physically on the Pro-

grammable Turtle. The following devices were added onto the Turtle during

the course of the experiments: lights, a beeper, a light sensor (two kinds),

and a sound sensor.

4.3.2 Programming Tools

To make the Programmable Turtles easier to use, I designed a set of pro-

gramming tools, which I called the "Tools Words," for communicating with

the Turtles.

Using the primitive operations of the LEGO/Logo language, one must

give instructions explicitly to motors and sensors. For example, to make

the Turtle go forward, one would have to give instructions to turn on both

the left motor and the right motor. The LEGO/Logo commands: to do this

are:

TALKTO A B] SETEVEN ON

The first command, TALKTO, tells the computer to send commands to

the motors labeled A and B. The second command, SETEVEN, sets those

motors in the even" direction, which is wired on the turtle for forward.

The final command, ON, turns the motors on.

I encapsulated all of those instructions into a single Tools Word, named

GOFD (for GO ForwarD). The full set of Tools Words that I gave to the

children included words for moving the turtle forward, backward, left, and
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Figure 4.1: Programmable Turtle with Logo Brick and Battery Pack
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right, and for inputting information from the touch sensors and light sen-

sors.

This sort of module construction is a commonly accepted programming

practice; the Logo language was specifically designed to support this sort

of construction. Once you have written a tool, you can forget" about how

the work is done.

Unfortunately, I did not introduce the Tools to the Hennigan children

until the springtime. Several of the earlier experiments consisted of work-

ing out low-level details; this work was unnecessary and could have been

avoided by introducing the Tools earlier on. I introduced the Newton chil-

dren to the Tools in their first session with the Logo Brick without causing

them any confusion.

4.4 Description of Experiments: Hennigan
Children

The Hennigan children were already familiar with the original LEGO/Logo

materials, so we planned the first session to be a review of LEGO/Logo.

In the next session we planned to introduce the children to the Logo

Brick, and teach the children how hook the Brick up to an Apple IIGS

computer, how to send it commands, and how to write Logo programs for

it.

We wanted to introduce the children to the Programmable Turtles using

a sensor that they were already familiar with, so we chose a project using

the touch sensors. The task for the children was to write a program that

would make the Turtle back up and change direction after it had run into

something.
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We then introduced the directional light sensor. As mentioned earlier,

this light sensor indicates direction of brightest light (either towards the

left or towards the right) by lighting a small lamp and reporting a value to

the Logo Brick.

We asked the children to uise this sensor to make the Turtle either seek

the light or avoid the light.

When this had been accomplished, we began a series of sessions to

explore the behavior of the light-seeking turtle. Children were given several

sorts of lights, including blinking lights, steady lights, and flashlights. We

suggested experiments such as positioning two lights of equal brightness at

different distances from the Turtle, or placing a bright light far away and a

dimmer light nearby. The children were invited to think aloud about these

problems, and then perform an experiment to see what the turtle would

do. We expected these experiments would allow us to explore the children's

theories about how the turtle "follows the light."

After about six weeks of sessions, we began more in-depth projects with

each of the two groups of children.

In the group of four children, I encouraged them to think about a project

that would use more than one Logo Brick. The previous series of exper-

iments involved one Turtle performing a certain behavior, with a fairly

fixed environment. I expected to encounter interesting issues in projects

that involved interactions between two Logo Bricks.

4.4.1 The Baseball Game

After discussing several ideas, we decided upon a "Baseball Game," in

which a Programmable Turtle would be the base-runner, and another Logo

Brick would control the outfield.

34



The children's plan was to have the turtle run around a baseball dia-

mond, with lights mounted at each of the four bases. The Programmable

Turtle would run a light-following program that would cause it to head

toward the nearest lighted base. A Logo Brick "outfield" would sequence

the lights so that the turtle would would head for each base in the proper

order.

As the children were discussing the project, I conceived of a new sensor

that would be very useful for the project. I then explained this idea to the

children.

The project could use a sound sensor for signalling from the turtle to

the outfield. I suggested how the sound sensor could be incorporated into

the project: when the turtle hit one of the bases, it would sound a beep.

The outfield Logo Brick would use the sound sensor to "hear the beep,"

and switch the light to the next base.

4.4.2 The Turtle Racetrack Game

In the other group of (now two) children, I brought in a "Turtle Race

Track," with a plastic-tape road and styrofoam cup pylons. I gave the

children the task of placing and then programming a series of lamps on the

edge of the road so that a light-following Programmable Turtle would stay

on the course. In this experiment, I hoped to test further the children's

notions about the light-following properties of the turtle, and have the

children explore interactions between the Turtle and another Logo Brick.

4.4.3 Two-Turtle Experiments

The experiments described so far took place through December of 1987.

We took a break from the sessions and resumed in March of 1988. I then
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encouraged the children to think about projects involving two or more in-

teracting turtles. I felt that interactions between mobile creatures would

reveal even more interesting phenomena than we had seen the the previous

projects.

Some of the ideas we generated were:

* A "turtle ballet" with several turtles performing dances. orchestrated

by a turtle maestro."

* Turtle hide-and-go-seek with two turtles.

* Turtle tag, with several turtles. One turtle would be it," and would

chase the other turtles. When it hit one of them, then that turtle

would be it."

We decided to work on a two-turtle version of the tag game. One turtle

would chase another turtle, and when the first "caught" the second, the

first would beep. The second turtle would hear the beep," and then would

begin to chase the first turtle, which would be trying to escape. The turtles

would carry lights and use a light-following procedure in order to find each

other.

I suggested to the children that they could use the "brightness sensor"

(the threshold light sensor) in this project. -This sensor could be used to

help the chasing turtle know if it had hit the other turtle, rather than some

other obstacle. After it had collided with something, the turtle could check

if the brightness sensor were on, in which case it would be likely to have

hit the other turtle, which would be emitting light.
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4.4.4 Braitenberg Experiments

In my last session with the Hennigan children, I brought them a turtle

equipped with the Braitenberg apparatus described earlier. I wired the

turtle for two different behaviors - follow and avoid - and asked the children

to experiment with the turtle and describe its behaviors. I encouraged them

to make comparisons with the Logo Brick turtles.

I expected the experiment with the Braitenberg turtle to test the ro-

bustness of the children's theories about the light-following process, and

to show if they could generalize from their experience with the Logo Brick

turtles.

4.5 Description of Experiments: Newton Chil-
dren

These sessions were led by me, with assistance from Philip Ivanier. They

took place in a computer classroom at the Newton school. with a group of

six boys in the seventh and eighth grades.

4.5.1 LogoWriter Screen Robots

This activity was intended as an introduction to robots and robotic sensors,

prior to work with the Logo Brick and Programmable Turtles.

I suggested that the Logo screen turtle could be thought of as a robot.

It had several sensors with which it could explore its environment (the Logo

graphics screen). We would focus on the use of COLORUNDER, a LogoWriter

primitive which reports the value of the color currently underneath the tur-

tle. The turtle could navigate around the screen, and treat one color (black)
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as free space," while another color (white) would indicate an obstacle to

be avoided.

The next stage of the activity consisted of developing movement strate-

gies for the turtle. Once the children could teach the turtle to sense white

space as an obstacle, they could try to teach it to maneuver around those

obstacles.

The final stage of the project was a competition. I wrote software to pit

the children's turtles against each other in a race. Several turtles played

the game at once; the first turtle to make it across the screen, successfully

navigating around obstacles, would be the winner.

This screen robot project served several purposes:

1. It gave the children a Logo refresher."

2. It was an introduction to the ideas of robots and sensors, in a domain

(software and screen graphics) in which the students were already

familiar.

3. It allowed the children to engage in problem-solving activity as they

developed strategies for their turtles.

4.5.2 Programmable Turtles

These children had no prior experience with LEGO/Logo. I planned the

first session to be a thorough introduction to the Logo Brick, covering the

following topics:

* LEGO/Logo primitives of motor control and sensor input;

* the Logo Brick and the Apple IIGS user interface;
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. the Programmable Turtle as a vehicle for Logo Brick projects;

* the Tools Words for ease of interaction with the Turtle.

As with the Hennigan children, I chose a touch sensor project for the

boys' first programming project for the Programmable Turtles. I thought

that touch sensors would be the easiest for them to understand.

The following session, I planned light sensor projects using the direc-

tional light sensor. I gave the boys the challenge of writing programs to

make the turtles follow the light.

In the final session, I introduced the sound sensor and beeper, and

encouraged the children to write programs to make two turtles interact.

The Braitenberg materials were not tested with the Newton school chil-

dren.
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Chapter 5

Narrative of Experiments

In this chapter I tell the story of the experiments that were done with the

children.

5.1 Experiments with Hennigan Children

The Hennigan children began in two groups of four children each':

I Patti, Jeanne, Larry, and Sam

* Elizabeth, Claudia, Bill, and Matt

After one month of work, Bill and Matt left the series of experiments.

In the spring, at the beginning of the two-turtle projects, I split the group

of four into two groups: Patti and Jeanne, and Larry and Sam. I was not

able to meet with the other two girls in the spring because of scheduling

difficulties.

5.1.1 Introductory Work

Our first sessions were with original LEGO/Logo. We set up a few machines

for the children to experiment with: a LEGO car and a LEGO ferris wheel.

'These are not their real names.
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The children were given the LEGO/Logo primitives and asked to do

some simple tasks, such as making the ferris wheel spin a certain number

of times, or making the car rebound when it hit a wall. They reviewed

many of the same LEGO/Logo primitives that they would use with the

Logo Brick: TALKTO, ON, OFF, ONFOR. RD. SENSOR.

5.1.2 Logo Brick: Motors, Touch Sensor, and Light
Sensor

In these sessions the children were introduced to the Logo Brick. They

were told that it was a full computer and that to communicate with it,

they would connect it to a "big" computer - the Apple IIGS. We opened

one up for them so they could see the circuitry inside.

With the Logo Brick mounted on the back of a turtle, the children were

shown how the connect it to the Apple IIGS computer. They learned the

syntax of the interface while sending motor commands to the turtle, getting

it to move in different ways. The first challenge was how to get the turtle

to turn, which was solved by either turning on only one motor at a time,

or turn both motors on, but in opposite directions.

I asked the children what the turtle could do, using the touch sensors

mounted on the front of the turtle. They responded with the obvious thing:

Make it turn when it hits something. However, the task of specifying this

in Logo was not so easy.

With considerable help, the children came up with a procedure that

would make the turtle go backwards for a few seconds after it hit something.

Then it would go forwards again.

The children immediately fell in love with the little animal" that they

had just designed. They crawled around the floor chasing it and pressing
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its bumpers to watch it go backwards. Then they forced it into retreat

with their enthusiasm, making it go backwards repeatedly so it backed up

underneath a cabinet! Finally they let it get away.

Next we began a series of sessions making use of the directional light

sensor. The children began to explore the behavior of the light sensor,

using a flashlight I gave to them. They saw that when the flashlight was

aimed from the left-hand side, the left-mounted lamp would light, and when

the flashlight was aimed from the right-hand side, the right-mounted lamp

would light. Also, they saw that if they shined the flashlight head on, they

could get both lamps to light. Continuing, they found that by using their

hands to block the overhead room lighting, the "other-side" lamp would

light, indicating that the other side was brighter, which was the case.

I asked the children if they could think of any uses for the light sensor.

Patti, remembering how the turtle would crash into things and then back

away from them, said, It [the turtle] might crash into it [a light], and then

when it senses the light it heads away." In the other group, I gave the

suggestion of using the sensor to follow a light.

I helped the children towards a procedural description of how to follow

or avoid the light, by asking: Suppose the light's here, coming in from the

left (I pointed the light from the left, to light the left lamp), what would we

want the turtle to do? And then, if the light is coming in from the right,

what would we want the turtle to do?"

Soon the children saw that when the light was coming from the left side,

we would want the turtle to move towards the left, and when the light was

coming in from the right, we would want it to move to the right. The final

step was to see that these actions would have to be repeated, so that the
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turtle would continually check whether it should take a step to the left or

a step to the right. The resulting program we made was essentially this:2

TO FOLLOW

IF LEFT.BRIGHTER? [STEP.LEFT]

IF RIGHT.BRIGHTER? [STEP.RIGHT]
FOLLOW

END

The children began to explore the behavior of the turtle using the flash-

light, their hands (blocking the light sensor), and a few hand-held lamps.

With four children sticking objects into the turtle's nose" there was total

chaos, and no one could tell what was going on. So we told the children to

use only one lamp, and see if they could tell what the turtle was doing.

Soon they found that it was avoiding the light; that it was turning in

the opposite direction that the light was held. They changed the program

so that it would turn on the other motor depending on the sensor, and tried

again.

Over the next several sessions, we asked the children to consider various

modifications to the turtle's environment, while keeping the turtle's pro-

gram the same. What would happen if there were two lights on the table,

both of equal brightness? Which one would the turtle follow? What if one

were closer than the other, or if one were brighter than the other? The

children were invited to think aloud about these problems, and then run

the experiment to see what the turtle would do.

One of the child-en, Bill, saw that once the turtle got closer to one of

the two equal-brightness lamps, it would then follow that one. But Matt

21 have modified the copy of the program for readability but the content is the
same. In our first versions of this program, the sensor words LEFT.BRIGHTER? and
RIGHT .BRIGHTER?, and the motor words STEP. LEFT and STEP . RIGHT were done by specific
commands to numbered sensor and motor ports.
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explained that the turtle would follow the real light" while ignoring the

"fake one." He was more mystified as to how the turtle chose which light

it would follow, attributing it more to a random selection.

When asked how to make the turtle turn in a circle, Elizabeth invented

an interesting way of modifying the turtle, using hardware rather than

software. She attached one of the small battery-lights, which she had been

holding in her hand, onto the turtle's ear" - adjacent to the light sensor.

With the light constantly shining on the light sensor, the turtle kept turning

towards that side, and made a circle.

Then she made the light flash, so that when it flashed on, the turtle

would turn in that direction, and when it flashed off, it would follow the

room light. The turtle manifested a -very random wandering effect.

5.1.3 The Baseball Game Project

Over the course of several sessions, the children constructed a playing-field

out of cardboard, paper, and tape, with styrofoam cups for the bases. They

mounted two LEGO light bricks (small flashlight bulbs encased in plastic)

on each base. Meanwhile, back at M.I.T., an undergraduate student and I

worked on developing the sound sensor and its matching beeper.

Figure 5.1 shows a sketch of the children's creation.

As the children were building their playing field, they spent time dis-

cussing the tasks to be performed by the base-running turtle and the out-

field computer. This was a challenging problem, and I suggested that the

children role-play the two parts in order to help them understand how the

two Logo Bricks would interact.

In the role-play they seemed to use knowledge about how they would give

messages to each other, rather than considering how the Logo Bricks could
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Figure 5.1: Sketch of the Baseball Game Board
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receive and transmit information. So it became difficult for the children to

formalize their strategies into computer programs.

The key to helping the children write Logo procedures was to use sub-

procedures. They first made a main procedure, which read like a script.

Later, they wrote the code for the sub-procedures, filling in the details of

the script.

5.1.4 The Turtle Racetrack Game

Figure 5.2 shows a drawing of the racetrack board.

This project had two phases. In the first phase, I gave the children five

lights and a switch panel to turn them on. The children positioned some

of the lights along the edge of the track, and used the switch panel to flash

the lights in sequence. It was an easy task to guide the turtle along the

path.

In the second phase of the project, the children plugged the lights into

a Logo Brick. They then wrote a Logo program to turn the lights on in

sequence. But, they paid little attention to the timing.

After discussion with the researchers, the children ran an experiment

where they timed the length of time the turtle took to navigate the course

from lamp to lamp. Then they converted those measurements into ONFOR

statements in Logo. The project was eventually a success.

5.1.5 Two-Turtle Experiments

These experiments just got going near the end of the school year. I worked

with two groups of the fifth grade children with this project, developing

strategies for the chasing turtle."
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As we were discussing how the two turtles would interact, Patti observed

that the two of them could use exactly the same program, except that one

would be doing the chase part while the other would be doing the escape

part.

We had gotten to the stage of being able to recognize" the other turtle,

using the threshold light sensor, when the school year ended.

5.1.6 Braitenberg Experiments

I explained each of the components to the children - the light sensors, the

motor control bricks - and how to wire them together (we did not use

the inverter bricks). I then showed them how to wire both of a turtle's

motors to the same light sensor, making a vehicle like Braitenberg's vehicle

no. 1 (Figure 2.1). The turtle would move straight forward, with its speed

dependent upon the amount of light that the children delivered to it using

a flashlight.

After they discovered the basic relationship of more light to more speed,

I wired the turtle for either a Braitenberg follow" or Braitenberg avoid"

scheme. I asked the children if they could figure out what the turtle would

do.

At first it seemed like the turtle was following the light, no matter how

it was wired, because any light shined on the sensor would cause the turtle

to advance. I asked them to check if it were following the light, and Patti

made a comparison to the follow scheme performed by the Programmable

Brick turtle. She blocked off one of the turtle's light sensors ("no light")

and shined the flashlight directly into the other light sensor. Then she

checked if the turtle were turning towards the flashlight or away from it. In
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this case, the turtle turned towards the light, so she concluded, correctly,

that it was following the light.

I asked the children if they saw any other similarities between this turtle

and the Logo Brick turtles they had used. Sam commented that UYes, they

are similar, because they follow the light in the same way. But they are

different because the Logo turtle you have to program, and this turtle you

just wire up."

5.2 Experiments with Newton School Chil-
dren

5.2.1 LogoWriter Screen Robots

Most of the children had a considerable background in computers, including

Pascal, Logo, and word-processing. However, I surmised that most of their

experience was of the cut-and-dried programming class variety.

I started the boys off with a review of Logo and and introduction to

the special features of LogoWriter. Each of the six boys was given his own

LogoWriter disk, so that he could continue work after our sessions.

In the first session we covered the basic turtle movements, and reviewed

how to draw geometric objects using REPEAT statements. Then I showed

them how to use FILL to color in their figures. They also asked for the

set color primitive (SETC), and they learned how to make their own shapes

using the shape editor.

I then led a discussion in which we talked about robots and robotic

sensors. I held up one of the LEGO turtles, and pointed out its touch

sensors. We named some other devices that had sensors: electric doors
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that used a weight sensor, door-bells that used a light sensor. Then I told

them that the Logo turtle also had a "sensor": the COLORUNDER primitive.

I suggested to the boys that the turtle could use COLORUNDER to navigate

around the screen. Suppose black, the background color, were considered

free territory, but white objects were obstacles. When the turtle encoun-

tered a COLORUNDER equal to white, then it would know that it had hit an

obstacle.

We set off to make procedures that would draw a smattering of white

geometric obstacles on the screen. When all of the boys had accomplished

this, I gave them a Logo procedure that would cause the turtle to advance

slowly, until it hit a white object. Then the turtle would stop.

WVe called the procedure HUNT:

TO HUNT
FD 2
IF COLORUNDER = :WHITE [STOP]
HUNT

END

The procedure begins by advancing the turtle two steps. Then it checks

if the color under the turtle is equal to the white color. If it is, the procedure

exits and the turtle stops moving. Otherwise, the procedure "runs itself"

again, causing the process to repeat.

The boys were terribly excited as they each got this working. Sure

enough, the turtle would creep across the screen, and as soon as it hit

something - presto! - it would stop. It was quite a thrill.

Their assignment between sessions was to continue this project. They

were to write procedures to draw a few obstacle patches on the screen.

Then they would write a HUNT procedure for the turtle. They said, "This
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is too easy," and it was, since that was what they had just done in class,

so I asked them to think about how to make the turtle find the obstacles,

not just wunder around.

When I came back in two days, the children had been working furiously

on their turtle programs. They all had procedures that would cause the

turtle to turn when it found an obstacle, not simply stop. I pointed out

to them how they had each invented different strategies for dealing with

the obstacles. One child's turtle would turn left ninety degrees when it hit

an obstacle, one would turn right one hundred degrees, and another would

make an about-face, turning one hundred and eighty degrees.

Now I gave them a new task: Make a turtle that can advance from the

left side to the right side of the screen, running around obstacles that it

may encounter. I posed it as a race: pretend there were a "finish line" on

the right-hand edge of the screen, and the first turtle to get there would

win.

The children set to work. Within a half-hour, most of them had invented

algorithms that would successfully steer their turtles around square-shaped

and circle-shaped obstacles. They all invented variations of the same theme:

Go forward, until your turtle hits something. Then move backwards and

upwards, and then try to go forward again. (In this case, forwards" means

left-to-right, i.e., towards the finish line.)

At that point, I gave them a new kind of obstacle to think about, one

that was not so friendly as a circle or a square. It was a trap: once the

turtle got in, it would have to go diagonally backwards to get out (see

Figure 5.3).

This obstacle provided a difficult challenge for all of the children. None

of them were able to solve it completely; the best solutions were only able
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Turtle aduancing to right...

Figure 5.3: Trapping Obstacle

to retreat at some diagonal angle to the forward advance. If the wedge of

the trap were at an angle greater than the maximum retreat angle, then

the turtle would not be able to retreat successfully, and would pass through

the interior of the obstacle (see Figure 5.4).

At the next session, I brought in a master race program that would allow

the children's turtles to compete against each other. The program drew a

race-track with a start line, three obstacles, and a finish line. It loaded

the children's procedures as tools," and assigned each of the children's

procedures to one of the LogoWriter turtles.

Up to four procedures could compete at the same time. The master

race program called each of the children's procedures sequentially. The

children's procedures were allowed to advance their turtle up to four turtle

steps per turn. After each round, the master program checked for turtles

that might have crossed the finish line or run into an obstacle.

The first turtle to cross the finish line would win! Turtles that strayed
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maximum
retreat angle

Figure 5.4: Wedge and Retreat Angle

deep in the middle of obstacles were eliminated from the competition. Fig-

ure 5.5 shows a picture of the race game screen.

It was a hectic session; children kept bringing their procedures up to

me for loading into the computer that was running the race program. But

all of them got a chance to watch their turtle in competition. I finished the

session by showing them how the race program worked. When I came back

next time one of the students had fixed a bug in it.3

5.2.2 Programmable Turtles

We began the next session with Logo Bricks mounted on turtles. In a

classroom-style discussion, I introduced them to the LEGO/Logo primi-

tives: TALKTO, ON, OFF, ONFOR, RD, SETEVEN, SETODD, and SENSOR. I also

illustrated an if-then control structure using a sensor primitive.

3 Two of obstacles that my race program would place on the screen were frequently
drawn so that they slightly overlapped. One of the boys modified the code to ensure that
this would not happen.
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Figure 5.5: Turtle Race Game Screen Display

With one child at the keyboard and the other children watching, we

hooked up a Logo Brick to the Apple IIGS, downloaded Logo, and sent

the Brick some commands. Their first task was simply to make the turtle

move.

After most of them had gotten a chance to type a command to the

Brick, I introduced the Tools Words. The boys quickly adopted the use of

the new "primitives' for moving the turtle around.

As with the Hennigan children, I started the Newton boys off with a

touch sensor project: Make the turtle turn away from obstacles that it

might hit. The boys were primed from their LogoWriter robot work and

easily wrote a procedure to make the turtle turn back away and turn when

it collided w ith something.

At the next session I introduced them to the directional light sensor

(Figure 3.2). I gave them the same challenge I had given the younger
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children: Can you use this sensor to make the turtle follow a light?

I surmised that the Newton children had a more facile command of the

Logo language and had more of a basis to solve this sort of problem that

the Hennigan children had had. For this reason I abstained from helping

them solve the challenge of writing a procedure to make the turtle follow

the light.

The children invented a several strategies before converging on the same

one that the Hennigan children used. Their early strategies performed

rather poorly, and that encouraged them to find better ones. When they

did discover the check-left, turn left, check-right, turn right" approach, it

also performed badly. But, the children saw it had promise, and modified

the size of the turtle steps to fine-tune the algorithm into good performance.

I suggested to the boys to have the two turtles chase each other, by

carrying lights and using the light sensor to find the other turtle. They

were thrilled with the idea and set to work. Two boys worked on one turtle

while I helped a third boy with the other turtle (there were only three

children present at this session). By the end of the hour, we had turtles that

avoided obstacles while hunting down light sources. The turtles performed

quite well, banging into each other, backing away and turning, and then

finding each other again.

In the final session, I introduced the sound sensor and beeper. The

children successfully implemented a communications scheme between two

turtles. One turtle would try to find the other turtle, but it would occa-

sionally beep along the way. The other turtle used a light sensor to avoid

the first turtle. Also, when it heard" the beep, it went into hiding, turning

off its lights and sitting still for a short while. Then, it would "wake up"

and continue trying to get away.

55



Braitenberg turtle experiments were not performed with the older group

of children due to lack of time.
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Chapter 6

Analysis of Experiments

In this chapter I present an analysis of the experiments described in the

preceding two chapters.

I begin with one very special quality I have observed in working with

the Programmable Turtles: the human participant's propensity to anthro-

pomorphize the turtles into living creatures. This inclination helped to

motivate the children's excitement and involvement in the experiments.

6.1 Turtle Anthropomorphism

I will tell a story to impress upon you how easily we are seduced by small

animal-like robots. It is recounted from a scene in the film Victim of the

Brain by Piet Hoenderdos.

A woman, who is a technical professional, is taking a male
humanist on a tour of a robotics factory. The man is speaking of
his reverence for living things, and how he could never imagine
treating a machine with the care and respect that he does with
animals. The woman takes him into a lab room; on the shelves
are a series of small devices, platforms on wheels with tortoise-
like shells. She takes one down, flips a switch mounted on its
underside, and places it on the floor.

57



The device flashes on two red "eye" lights, makes some cute
beeping noises, and dances around the floor a bit before coming
to rest underneath a table. The man is quite charmed.

The woman reaches on the lab bench and produces a large
steel hammer. She approaches the man, and extends to him the
hammer. "Now kill it," she says invitingly.

A look of horror crosses the man's face. Kill it? Why should
he want to harm an innocent creature...

The children treat their Logo Brick turtles in a similar way as does the

man in the film, not wanting to "hurt" the mobile robot.

The human is like the parent of an artificial animal. One of the MIT

researchers commented, when the turtle's link to the keyboard-and-screen

computer was detached: "It is like cutting the umbilical cord."

After the children have written a program that causes the turtle to back

up when it hits something, they began to chase the turtle around on the

floor. They forced the turtle to retreat underneath a cabinet, in the same

way that an overly-excited child will chase away a house-pet.

This anthropomorphism of the turtle into an animate creature underlies

many of the children's interactior L with it. Because many children have an

affinity for animals, they have strong emotional ties with the "animals"

that they create. This leads the children to interactions with the turtles

that are meaningful to them and interesting to observers.

Also, the children gain an inclination to talk about the turtle's 'behav-

ior," and use psychological descriptions when explaining it. These descrip-

tions allow the children to explain something in a way that is meaningful to

them. Using terms they apply to themselves, anthropomorphism becomes

a useful style of inquiry.
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6.2 Multiple Levels of Interpretation

Using psychological theories to explain how the turtle works are but one of

many styles of inquiry. Low-level, mechanistic theories can also be used.

Knowing how and when to apply different levels of analysis is a key skill in

problem-solving.

The use of the term "level" to express these different avenues of approach

is not wholly satisfactory, because it can imply that one level subsumes the

previous, which is often not the case. Choice of a certain level depends on

the context of the problem and the style of the problem-solver.

The cybernetic approach hinges on distinguishing different levels of anal-

ysis. It is therefore interesting to examine the children's use of different

levels of explanation in the experiments.

An example is the case of how Matt described the turtle as following

the real light" and ignoring the fake light." This description gave him a

way of explaining a response that he did not have another way of doing.

Later on in the experiments, the children developed more sophisticated

behavioral metaphors for explaining the turtle, and also became more fluent

in moving between different behavioral metaphors and mechanistic expla-

nation.

When Patti was pondering whether the turtle would sound a beep when

its touch sensor were pressed, she spanned several levels within a few sec-

onds of thought:

"It depends on whether the machine wants to tell ... if we want
the machine to tell us ... if we tell the machine to tell us."

First she viewed the machine psychologically, giving it autonomy and

intention. Then she shifted to the intention to that of the programmer.
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Finally she concluded that the programmer had control, and could tell the

machine what to do.

This playful shifting between levels helped her to come to a satisfying

explanation of the turtle's behavior. All of these explanations helped her

come to a fuller understanding of the object she was studying.

I think several different factors contributed to the children's ability to

use these different levels:

1. The children were encouraged by the M.I.T. researchers to use differ-

ent styles of explanation to express their ideas.

2. The children became more comfortable with the "lowest level" of

Logo primitives: how a Logo command related to a specific physical

or symbolic action.

3. The children gained a sense that the turtle had an internal state.

They realized that it knew something (it had an internal state which

changed), and that its state could affect its behavior. This suggests

the use of psychological metaphors to describe the turtle's "state of

being."

In general, "shifting amongst levels" is a very powerful way to appro-

priate and. relate to ideas. Often the different views afforded by different

levels allow the learner to connect ideas in novel ways.

6.3 Feedback and Following the Light

The feedback process is a central theme of cybernetics because it is a pow-

erful example of a system that involves properties of emergence and orga-

nization.
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Wh n the children were first guided to write the "follow-the-light" pro-

gram, they were required to think about the problem mechanistically. That

is, they had to break the problem down into two cases, determined by pos-

sible states of the light sensor. For each of these two states (left brighter

or right brighter), they had to make a rule for the action of the turtle (step

left or step right).

The younger children needed help from the researchers to generate this

algorithm. They needed reminders or clues to help them re-create the

algorithm in sessions after the one in which it was first done.

I think it was difficult for them because the rules did not seem to describe

a process. When they observed the turtle in operation, the children used

process words to describe it. When they said, "It follows the light," they

were using a theory of process.

In several of the experiments, the children were asked to predict and

explain which light the turtle would follow when presented with multiple

lights. Matt's explanation that The turtle follows the real light and ig-

nores the fake ones," captures the discriminatory behavior of the feedback

process, but uses a kind of magic to explain the choice. One of the other

children observed that the turtle would wander when it was far from the

lights, and then "lock in" when it got close to one.

At first, the children found these two styles of description - the procedu-

ral, behaviorist one, and the mechanistic, rule-based one - very disparate.

They tended toward the process description - "it follows the light" - and

used the rule-based description only when queried by researchers, or when

they had to write a Logo program.

Over time the children gained more confidence in their understanding

of the mechanistic description. They understood the iterative nature of the
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feedback process; that the repeated application of the two sensor-to-motor

rules would lead to the response displayed by the turtle. The Tools Words

helped to make the rules clear to them.

When the children were testing the Braitenberg turtle, they used a

mechanical test to see if it would follow the light, and determined that it

worked in a similar fashion to the Programmable Turtle. Patti concluded

that the Braitenberg turtle was similar to the Programmable Turtle because

it used the same sensor to motor rules.

The Newton school children invented several algorithms as they tried

to make the turtle follow a light. They needed little or no help from me in

order to discover the simple strategy which the Hennigan children used. I

think that their work with the LogoWriter Robots developed their problem-

solving ability, and that they used body-syntonic thinking (they imagined

themselves as the turtle) in both situations.

When I introduced the children to the sound sensor, they generalized

the process of following the light by expecting the sensor to help them

follow the sound. Unfortunately, the sound sensor was non-directional, so

this was not possible, but the idea was correct. This generalization, which

was made by both the younger and older children, shows a transferable

understanding of the feedback idea.

6.4 Multi-Processing and Environment Pro-
gramming

Single turtles often gave the appearance of multi-processing machines. For

example, one of the Newton boys' projects involved two turtles that would

chase each other (using the directional light sensor), rebound off of obstacles

using the touch sensors, and halt if a tone were detected by the sound sensor.
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The Newton boys were using a programming technique, called time-

slicing, which allowed Logo, a serial language, to appear to do several things

at once. The boys built a program loop that would check for several types

of sensory input: light, touch, and sound. If any of those inputs triggered

the respective sensors, then the boys' program would branch to the proper

action, perform it, and then re-enter the loop again. It was as if there were

a demon' attached to each sensor that would fire when that sensor were

triggered.

True multi-processing involves more than one independent processor, or

at least a programming language that supports multiple interpreters. Ex-

amples of the children's projects that used multi-processing are the Baseball

Game and the Turtle Race Game.

The Baseball Game project was considerably more complex of the two.

The children were very confused as to who knew what, that is, which Logo

Brick was responsible to know what about the state of the game. For

example, the Outfield Brick was responsible to know which base to turn

on, but it seemed to the children that the Turtle, who signalled to the

Outfield when it hit a base, should know which base were on.

Synchronization between the Outfield and the Turtle was a problem.

The Turtle would "think" that it had completed four bases and would stop,

but the Outfield had just lit up second base! This surprised the children;

they had not anticipated it. This out-of-phase phenomena was picked up

by Patti, when she was exploring the turtle tag game: she proposed that

both turtles run the same program, out of phase, so that one would chase

while the other followed.

'A demon is a process that continually runs, checking for a certain condition to be
true. If that condition becomes true, the demon activates and executes a corresponding
action.
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Another phenomenon involves interactions between one processor and a

dynamic environment. I shall call this phenomenon environment program-

ming.

We encountered an example of this in the early follow-the-light exper-

iments. I had asked the children, How could you make the turtle go in a

circle?" while the turtle was running a follow-the-light program. Elizabeth

picked up one of the hand-held lamps and clipped it on the turtle's right

side, forcing the light sensor to stay in the "right brighter" state. The turtle

started going in a circle.

Then she switched the lamp so that it would blink. When it blinked on,

the light sensor would be in the 'right brighter" state. When it blinked off,

the light sensor responded to the room light to determine its state. The tur-

tle started to wander in a very erratic fashion that was not anticipated by

either the children or the researchers. It was a wonderful case of a hard-

ware program" and a change in the environment having an unexpected

emergent effect.

In the Turtle Race game, there were two processors, but they did not

interact in an especially interesting way. The interaction that existed was

uni-directional: the Light-Timer's actions affected the Turtle, but the con-

verse was not true. It more a case of programming the turtle's environment:

the Light-Timer set up a situation for the Turtle to respond to.

Both of these types of interactions, multi-processing and environment

programming, convey the importance of thinking about objects in relation

to their environment. A turtle's behavior is determined by its program and

features of its environment. Either or both of these can be modified to

create different behaviors in the turtle. Also, unexpected phenomena may

result from interaction between turtles and their environment.
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Chapter 7

Conclusion

This chapter discusses future directions for technology development, sug-

gests different styles of experimentation using the Logo Brick, and recom-

mends an approach for incorporating cybernetic study into the classroom.

7.1 Future Directions

7.1.1 Sensor and Actuator Development

In the original version of LEGO/Logo, two sensors were available: a touch

sensor and a light sensor. Actuators, or output devices consisted of motors

and lights.

New sensors were developed for the Logo Brick, such as the sound sensor

and directional light sensor. The beeper for the sound sensor is an example

of a new actuator.

Several more devices are presently in development. These are:

* color directional light sensor. This sensor will be especially sensitive

to a certain color of light, for example, red. It will enable a vehi-

cle to track red lights, while ignoring green ones. Several pairs of

light/sensor combinations using different colors will be built.
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· ultrasonic range sensor. Like the device used in Polaroid auto-focusing

cameras, this device uses ultrasound waves to measure distance. When

hooked up to a Logo Brick, it will measure the distance from the sen-

sor to the nearest large obstacle. Project examples using this sensor

are a maze-running vehicle and vehicles that run around without hit-

ting objects.

* linear stereoscopic vision sensor. This ambitious project is being un-

dertaken by Professor Alex Pentland and his students of the M.I.T.

Media Laboratory. Using a pair of linear CCD arrays, the sensor will

provide a one-dimensional view of the world. Software will be writ-

ten to perform pattern recognition and stereo matching. Objects in

the sensor's viewing span could be identified and distances to them

calculated.

o speech output brick. This device will allow Logo Bricks to talk" by

transforming English sentences into recognizable speech.

7.1.2 Inter-Brick Communications

The sound sensor and beeper were the first attempt at communications

devices between Bricks, and were used in the children's Baseball Game.

They provided rudimentary communications at best, but communications

nonetheless.

The sound sensor/beeper system was good because it used a signal

audible to human observers. However, the range of the sensor was limited

to about six feet, and the communications channel was low-bandwidth (it

was limited to a very low density of information).

As Bricks can sense more of their world, there will be more for them

to "talk about"; that is, there will be more data available to each Brick

66



for sharing with other Bricks. For this reason, we have begun to develop

communications devices that have both a long range and a high bandwidth

capacity.

Underway is an AM radio transceiver that allows two Bricks to com-

municate bidirectionally. We expect the device will provide good range

and bandwidth; however, if this is not the case, we will consider other

transmission media, such as FM radio, infra-red light, and ultrasonic.

Alan Blount, an undergraduate working at the LEGO/Logo Lab, has

written Logo procedures that transmit and receive character strings. A

procedure called send will transmit a Logo word as a series of flashes and

pauses, and a procedure called receive will decode the information. The

receive procedure must be running before the send begins, which means

that a Brick must "hang" while it is waiting for information.

T his preliminary version of communications software is for "proof-of-

concept" purposes, because concurrent programming issues must be ex-

plored before more sophisticated software is written. O7Gr example, should

a Brick have to wait for incoming information or should it get interrupted

when the data arrived?

Mitchel Resnick has studied similar questions in his Master's thesis on

MultiLogo, a concurrent Logo programming language he designed (Resnick

1988). In this language, separate agents, each with its own (virtual) Logo

interpreter, communicated using two different levels of requests: a gentle

ask and an insistent demand. The "ask" primitive's request was done at the

receiver's convenience, while the "demand" request interrupted the recipi-

ent to get an immediate reply. There also were primitives that instructed

the message initiator to wait until it received a reply.
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Communications issues become more interesting when one starts to

think about multiple Logo Bricks in communication. For example, a Brick

may want to broadcast a message to all of the surrounding Bricks, or it

may want to send a message to one specific Brick. Bricks must take turns

talking in some orderly fashion or there will be mass confusion.

It would be a good idea to give each brick a unique name, so that

each Brick may prefix its message with it, and name the recipients of the

message.

In the best of worlds, all communication styles should be supported

with appropriate Logo commands. Metaphors to explain to users (children

programmers) the communication methods should be developed to make it

easier for them to understand how the communication works.

7.1.3 Programming Metaphors

The Logo Brick is presently programmed in Logo, a serially-executed pro-

gramming language. Logo is a very explicit and powerful language for

organizing and expressing programming ideas.

However, some of the projects we have done with Programmable Turtles

have suggested the value of an agent-based concurrent programming lan-

guage. A good example is the turtle strategies constructed by the Newton

boys (described in Section 5.2.2). Their programs branched to a differ-

ent behaviors dependent upon which sensory input was active. They had

invented an agent-like approach within Logo.

Given the processing capability of the Logo Brick, it may not be pos-

sible to implement a full concurrent language (such as MultiLogo) for it.

However, a language with simpler forms of concurrency may be possible.
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For example, a receive primitive could be a demon dedicated to re-

ceiving incoming messages. When the information would begin to arrive, it

would automatically interrupt Logo in order to receive it. When the trans-

mission were complete, the agent would signal to Logo by (for example)

running some specially named procedure, or changing the state of a global

variable.

Concurrency could be extended by tying sensor inputs to named pro-

cedures. For example, a procedure called SENSORI could be run whenever

the device attached to the first sensor port changed state.

A wholly different tack can be taken towards the issues of concurrent

languages through the use of iconic programming.

Iconic languages are not new. With the popularity of the Macintosh

user interface, it is clear that the visual paradigm appeals to a wide range

of people. It is certainly appropriate for novice users; there is general

agreement that the Macintosh is far easier to learn than a traditional MS-

DOS-like machine.

However, there are drawbacks. Text-based languages are more succinct

than iconic ones. Certain abstractions, such as sub-procedures and naming,

are more difficult in a visual metaphor.

Even within an iconic language, there are trade-offs. An iconic language

called Hookup (Levitt 1986) is very good at handling parallel signal flows,

but not at specifying sequentiality. Other languages might be good at

ordering things, but not able to handle concurrency.

Despite these complications, there are special reasons why a visual lan-

guage would make sense for the Logo Brick. Children's programs are often

not very complex; a simple arrangement of icons would suffice for many of
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the tasks that children like to do. In these cases, using a visual representa-

tion would make programming more easy and more fun.

Children often think that sensor stimulation drives the action of a Pro-

grammable Turtle; it appears to them that a turtle changes direction be-

cause they hit its touch sensor. It would be nice to have a programming

language that makes explicit their intuitive ideas about such causality. An

icon-based language that used wires to connect from sensor to motor would

allow for this kind of expression.

7.2 Research Experimentation

The experiments described in this thesis were conducted in a strongly di-

rected fashion. Several other strategies for using the materials have yet

to be explored. Choice of these strategies depends on the intentions of

researchers leading the experiments.

Because I wanted an in-depth experience with the Logo Brick and sup-

porting materials, I conducted experiments with small numbers of children.

Because I wanted to structure the sort of problems the children would en-

counter, I guided the experiments.

Another research style could place the Logo Brick back into the undif-

ferentiated bin of LEGO parts. Then children could build what they want,

and use the Brick when they want. This would not have been possible in my

experiments because of the fragility of the Brick, but now it is approaching

the stage where this would be possible.

Children are certainly more involved with projects when they are their

own constructions. Part of the success of the Baseball Game project was due

to the fact that the children built the game-board themselves. Conversely,
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the Turtle Racetrack game was less successful, partly because I built the

racetrack.

More time would be needed for the experiments if children were given

more freedom in choosing and constructing projects. It would be interest;ng

to see what children would create given LEGO parts and the Logo Brick

without other direction.

Another set of experiments could emphasize children's analytical abili-

ties rather than constructive skills. The researchers could present children

with fully built and programmed machines and ask them to experiment with

the machines and try to explain what sort of program could direct their

behavior.

These experiments could progress from using a single Programmable

Turtle to a small society of turtles. This would be a natural way to expose

emergent phenomena. Interactions that were not observable with only one

or a few turtles would emerge when more of them were present.

Both competitive activities, such as the LogoWriter screen turtle game,

and cooperative activities pique children's interest. Their game-like as-

pects make them fun and engaging. As children learn the capabilities of

Logo Bricks and Programmable Turtles, I would expect that by consulting

them, one would generate a wide range of such amusing and challenging

projects. These projects would involve interactions between the creatures in

the game, and would be likely to contain high-quality conceptual content.

I would like to see all of these avenues of further study explored, in order

to learn more about children's own ways of thinking, and to understand how

to best engage them in learning activity.
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7.3 Pedagogy

In the popular view, "scientific literacy" means being able to recognize the

vocabulary of science, and memorize a collection of definitions and facts.

The traditional classroom approach based on this definition has not had

much success; in a recent New York Times article, an expert is quoted who

claims that only 2.7% of Americans are capable of scientific reasoning.1

A strategy of involving the learner in the process of science seems more

promising. The Technical Education Research Centers (TERC) in Cam-

bridge, Massachusetts have designed a series of experiments for grade-school

children based around a microcomputer-based laboratory (MBL). Children

run experiments using the computer to take data, often from sensors at-

tached directly to the computer. Then they chart and analyze the data.

Children use the computer as a tool for experimentation, and are involved

in a process of scientific inquiry. Tests have shown the system to be suc-

cessful when used as intended.2

Roy Pea's Creatures of Habit" has a similar goal. Pea explains that

by involving the learner in scientific exploration, the Creatures of Habit

system can encourage a wide range of reasoning and learning central to

scientific methodology - pattern observation, hypothesis formation, exper-

imentation, data collection and analysis, and deduction." (Pea et al. 1988)

Science projects based on the Logo Brick and Programmable Turtles could

take advantage of many properties of the materials that lend themselves

well to inquiry oriented science."

l'About Education, The New York Times, August 3, 1988.
2"Real Science Education," "Emerging MBL Research," and 'Coping with Inquiry,"

in Hands On.', a publication of Technical Education Research Centers, vol. 10, no. 1.
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Most classroom science is flawed in that it promotes one preferred style

- mechanistic and technical - over all others. This alienates many chil-

dren whose personal styles do not match this one. If children are allowed to

use their own styles and approaches to gain understanding, they are likely

to feel more capable and be more successful.

Different styles can be used when doing "science" with the Logo Brick

materials. The children in my study made use of different styles of think-

ing in their interpretations of Programmable Turtle behavior. Their use of

these different levels of explanation allovwed them to gain access to under-

standing that would have been difficult otherwise.

Also, it makes sense to use different levels of analysis in explaining

activity or solving a problem. This is one of the main messages of the

cyberneticians. For example, in analyzing an ant colony, one must study

the individual ant, how ants in the colony relate to each other, and how

the ant colony relates to its surrounding environment. Clearly, one level

of analysis will not do; many different models must be used to gain an

understanding of the workings of the colony.

These models are often based on the idea of a system, and systems of

interacting systems. Other examples of this sort of modeling can be found

in animal physiology, environmental analysis, chemistry, social sciences -

practically all avenues of scientific inquiry.

Projects using Programmable Turtles provide a concrete model for this

principle of "systems thinking," that is, understanding phenomena in terms

of systems and interacting systems. In this way, they can help a learner to

develop scientific ways of thinking.
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Appendix A

The Logo Brick

A.1 History of the Brick

Work on the Logo Brick began in the fall of 1986. The initial design team

were (in alphabetical order) Fred Martin, Steve Ocko, Seymour Papert,

Mitch Resnick, Brian Silverman, and Allan Toft (on loan from LEGO).

Our first decision was whether to build fine-grained, low-level bricks

or coarse-grained, more powerful bricks. We opted for the coarse-grained

approach to allow programmability in software rather than in hardware.

Later, we tried the fine-grained approach and designed the set of Braiten-

berg bricks.

To expedite the design process, we decided to use processor chip that

is used in the Apple II. A version of LEGO/Logo, written by Brian Silver-

man and other members of Logo Computer Systems, Inc. (LCSI), already

existed for the Apple II. Brian began the work of converting that code to a

version that would run on the Brick, using a Lisp development system that

LCSI had built for the Apple IIGS.

In the spring of 1987, we built our first breadboard prototype of the

Brick. The first mobile version of the Brick was mounted on a large platform

car built by Allan. It carried its batteries behind it on a cart.
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This version used a dedicated serial communications chip for interfacing

with the Apple IIGS. Using the prototype design, we eliminated this chip

by writing software to perform the serial input and output functions.

During the summer of 1987 we began work on the production version

of the Brick. Philip Ivanier joined our team at that time.

We decided to build the Brick using a dual circuit board design. One

board would house the complete microprocessor circuit, and the other board

would contain all motor and sensor circuits.

Our next major design choice was to allocate the sensor and motor

ports. The LEGO interface box, used in the original LEGO/Logo system,

had ports for three motors and two sensors. Three motors seemed to be

adequate for most projects, but it was sometimes desirable 'to have more

than two sensor inputs.

We had a total of twelve I/O lines available for both sensors and motors.

Each motor required two lines so that the motor could run forwards and

backwards.

We chose to implement four motor ports and four sensor ports. We

also decided that two of the four sensor ports would support the LEGO

optosensor device. The other two could be used for custom sensors or

touch sensors.

Reflecting on this choice, I think that it was a good one. Programmable

Turtles use two motor ports for their left and right motors, leaving two

more for lights and other devices. Their touch bumpers take up either one

or two sensor ports (the left and right bumpers can be joined together to

make a single front bumper), leaving two free sensor ports for other devices.

When we build the communications hardware described in Section 7.1.2,
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we will use up an additional motor and sensor port, leaving one of each free

for other devices.

With the design complete, we proceeded with the production. We chose

a LEGO brick that was originally a battery box to house the design. We

hired a PC board layout firm to do the circuit layout. Because of our tight

space constraints, we used some unconventional layout techniques, such a

mounting one IC chip underneath another one.

We received the first PC boards in August 1987. Having procured the

necessary parts, we built and debugged the first Logo Brick in that month.

We proceeded to build a few Bricks, battery packs, and the directional light

sensor, for use in our early experiments.

A.2 How to Use the Brick

This section explains how to operate the Logo Brick. It is written as a

"Logo Brick User Manual."

A.2.1 Hardware Requirements

The following equipment is required to operate a Logo Brick:

1. A Logo Brick, charged battery brick, and a battery cable;

2. An Apple IIGS computer with at least 1Mbyte RAM;

3. Logo Brick system software;

4. Communications hardware consisting of a serial line converter box,

and a printer or modem cable.
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A.2.2 Setting Up

Begin by plugging the serial line box into your GS's modem port, using the

printer/modem cable. If your serial converter box has a switch, select the

proper cable type. If not, assume that you have the right cable.

Plug the Brick into its battery box using the battery cable. Reset the

Logo Brick by pressing its recessed red button.

Boot the Logo Brick software. It will load into the GS, send Logo to

the Brickl, and then place you in the "Table of Contents".

If you get the message Brick not connected, see the section on de-

bugging for help.

Select the Logo page you want to use from the table of contents using the

up 8 down arrow keys, and pressing <Return>. Or, just press <Return>

over New Page to get a blank Logo page.

A.2.3 User Interface

The screen you will see on the GS is divided to two portions: an upper

portion and a lower portion. The upper portion is called the Logo Page;

this is where you compose Logo programs to send to the Brick.

The lower portion is called the Command Center. All commands that

you type here are Logo words that are sent to the Brick for execution. If

the Brick sends a message back, it is printed here. The GS will also print

its own error messages in this area.

To move the cursor up into the Logo page, type Apple-u (for up). To

move the cursor down into the Command Center, type Apple-d (for down).

'While it is doing this, the message Changing the Brick's mind will be displayed.
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You use the Apple key like a control key: you hold it down, and then type

the letter for the function you want.

IMPORTANT NOTE: Make sure that the Caps-Lock key is NOT de-

pressed. The Apple functions will not work with capital letters!

To send the Logo page to the Brick, type Apple-b (for Brick). You can

type this when the cursor is either in the Command Center or in the Logo

page area. After the page is sent to the Brick, the cursor will return in the

Command Center.

The GS does not check that the Brick is there receiving the Logo page.

If the Brick stops working, the GS will "hang": the cursor won't return!

When this happens, type Apple-s (for stop) and the cursor will return,

along with an error message.2

To initialize a Brick with Logo (after it has been reset), type Apple-

SHIFT-1 (same as Apple-.). This tells the GS to send a copy of Logo to

the Brick.

A.2.4 Naming and Saving Logo Pages

You can name the page that you are working on in order to save it. To do

this, type Apple-n (for name). The GS will prompt you to type in a name

for that page. It must start with a letter and be less than nine characters

long.

To save the page after you have named it, press the Esc key (for Escape).

If you had given the page an invalid name, an error message will appear at

this point.

2The error message that you get after typing Apple-s is arbitrary and should be ignored.
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You can copy a page by selecting it at the Table of Contents, and then

changing its name using Apple-n. When you press Esc, it will be saved by

the new name.

To erase a page, type Apple-e (for erase). The GS will prompt you for

the name of the page to be erased.

A.2.5 Text Editing Functions

The user interface includes several helpful keys for text editing.

Both the Command Center and the Logo page are treated as regions of

text. All of the text functions work the same in both of these regions. You

will be able, for example, to copy text from the Command Center to the

Logo page.

To move around text, you simply use the arrow keys. But, when you

combine the Apple key with the arrow keys, you get different functions:

· Apple-E Move to top of the text region.

* Applef Move to the bottom of the text region.

* Apple-[1 Move backwards by one screenful of text.

* Apple-y Move forwards by one screenful of text.

Four keys have been defined to cut, copy, and paste text. These are:

SELECT To begin selecting a region of text, type Apple-1. After this, when

you move the cursor, the region from where you have selected to the

current position of the cursor will be highlighted in inverse video.

This region may be cut or copied using the next two function keys.
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CUT To cut the highlighted region of text, type Apple-2. The text will be

removed from the screen and placed into the clipboard, which is an

invisible place in the GS's memory.

coPY If you type Apple-3 over a highlighted text region, the region will

be copied into the clipboard. But it will not be removed from the text

buffer, like it is with Cut.

PASTE To paste the clipboard into the text buffer, type Apple-4. This

leaves the clipboard intact; you can paste multiple copies of the same

clipboard.

To move text from the Command Center to the Logo page, you would

first select it using Apple-i and the cursor movement arrows. Then you

could cut it or copy it, using Apple-2 or Apple-3, respectively. Then, you

would move up to the Logo page with Apple-u. Finally, you paste the text

back with Apple-4.

There is an obscure bug that can be troubling. Here is a fix when it

happens.

The Command Center has only a finite amount of space in its text area.

When this space gets filled up, the GS won't print any more characters to

the Command Center. If you are running procedures that cause the Brick

to do a lot of printing to the Command Center, you are likely to fill up all

of the available space.

When this happens, it will seem like the Brick has died, because the GS

just stops printing. But then it will seem like the GS is dead too, because

you won't be able to type any more in the Command Center!! Clear the

Command Center by typing Apple-c.
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A.2.6 Brick LEGO/Logo

Here is a non-exhaustive list of the LEGO/Logo words in Brick Logo.

Motor Stuff

talkto "Talks to" motor and light ports. Examples: talkto "a, talkto
[a 3, tto 7.

on Turns motors and lights on.

off Turns motors and lights off.

onfor -- Turns motors and lights on for specified amount of time.
Example: onfor 50.

rd Reverses Direction of motors that are currently being talked to.

seteven, setodd Sets motor ports for even or odd directions, respectively.

flash -- -- Flashes light ports. Does not work with motor ports. Give
Flash two inputs: first is flash-on-time, second is flash-off-time. Ex-
ample: flash 10 20.

alloff or ao Turns off all motors and lights, resets ports to untalked to"
state, and resets port polarity to seteven" position.

Sensor Stuff

sensor -- Returns value of sensor, as "true or "false. Example: pr
sensor 3 will print the value of sensor number three.

level -- Returns the length of a pulse read from the sensor port, as a
value from 0 to 255. Example: pr level 3.
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Logo Control Stuff

repeat num <Logo expression> 
Repeats Logo expression by the number of times specified. Example:
repeat 10 [onf or 30 rd]

if condition [ <Logo expr-if-true> 
Executes Logo expression if condition evaluates to true. Example:
if sensor 3 = "false talkto "a rd onfor 50]

if else condition ( <Logo expr-for-true> [ <Logo expr-for-false> 
Executes first Logo expression if condition evaluates to true, or second
Logo expression otherwise. Example:
ifelse (level 2) > 100 talkto 3 on] talkto 3 off]

wait -- Waits for specified amount of time. Example: wait 30

A.2.7 Operating the Brick

The Logo Brick has three switches on it. If you look at the end panel of a

Brick, you will see one recessed red switch and two other switches.

The recessed red switch is the Brick Reset Switch. You must press this

switch after first connecting the Brick to its battery. If you are having

trouble with your Brick, it is often helpful to press this reset switch and

try downloading Logo ("changing the Brick's mind") over again.

Pressing the red switch causes the Brick to lose all of its Logo proce-

dures.

The other two switches cause the Brick to start and halt the running of

its Logo procedures.

The middle switch is the Start Switch. To make this switch work, you

must give the Brick a Logo procedure that has the name start. Then,
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when you press this switch, the Brick begins running that procedure.3

For example, suppose you have a procedure called follow. the. light

that you would like to run when you press the Start Switch. You can make

the procedure start that will run your procedure:

to follow. the. light

-- code for follow proc. --

end

to start
follow.the. light

end

Then, when you press the Start Switch, your turtle will begin to follow

the light! (Hopefully...)

The third switch, in the right-hand position when you are looking at

the Brick's end panel, is the Stop Switch. When you press this switch,

the Brick interrupts the procedure or command that it was running, and

executes an alloff command.

A.2.8 Debugging

If the message "Brick not connected" is displayed, then you have one of the

following problems:

1. You have not reset your Brick. Press the recessed red button, and

try to send Logo again.

3Older Bricks may have ; toggle switch in the middle pcsition instead of a pushbutton
switch. This is because of an earlier pause" function that hacx been implemented. If your
Brick has the toggle switch, you should leave the toggle in the right,-hand position, and
flick it to the left and back to the right to perform the start function.
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2. There is a communications problem between the GS and the Brick.

Here are some possibilities:

(a) Make sure that you have plugged the serial converter box into

the modem port of the GS.

(b) Your serial converter may not have power. Make sure its bat-

teries/AC adapter are plugged in correctly.

(c) You may have the wrong type of cable. Try switching the toggle

switch on the serial converter box to its other position, or try

the opposite kind of cable (the opposite of a printer cable is a

modem cable and vice-versa.)

3. Your Brick's battery box is dead. Recharge it.
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A.3 Technical Specifications

Figure A.1 presents the technical specifications of the Logo Brick.

Feature Specification
microprocessor 65C802

system clock speed 1 MHz
RAM 32K byte
ROM 2K byte

communications rate 9600 baud, TTL-level standard serial
power supply logic: 7.2v (1.2v NiCad x 6)

motor & sensor: 6v (1.2v NiCad x 5)
motor ports 4 ports x 2 output lines per port

4.5v (nom.), 1A (max.)
sensor ports 2 LEGO optosensor

2 TTL-level input, internal pull-up resistor
switches system reset (red, recessed)

"Stop" (black, pushbutton)
Start" (black, pushbutton)

Figure A.1: Logo Brick Technical Specifications
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