ANALYSIS AND DESIGN OF SANDWICH PANEL RESIDENTIAL ROOF SYSTEMS

by

Mark John Kucirka

B.A./B.S. Lehigh University, Bethlehem, Pa, 1987

SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN CIVIL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1989

Copyright (c) 1989 Massachusetts Institute of Technology

Signature of Auth	or	
		Department of Civil Engineering
		May 19, 1989
Tartified by		
Certified by		I ama Cilar
		Lorna Gibson Thesis Supervisor
		Thesis Supervisor
	•	•
Accepted by		
		Ole S. Madsen
•	MARCACUMOTTO	Department Committee on Graduate Studies
	MASS: CHUSETTS INSTITUTE OF TECHNOLOGY	
	JUN 0 1 1989	
	JUN U 1 1303	

ARCHIVES

LIBRARIES

ANALYSIS AND DESIGN OF SANDWICH PANEL RESIDENTIAL ROOF SYSTEMS

by

Mark John Kucirka

Submitted to the Department of Civil Engineering on May 19, 1989 in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering.

Abstract

Advantages of the use of sandwich panels in housing construction are: high specific stiffness and strength, good thermal insulation properties, improved quality control and product consistency as a result of employing industrialized manufacturing methods. flexibility in architectural design, and usable space in the enclosed roof cavity. In addition, there are reductions in: cost, labor, number of building components, operations and time for erection, enclosure, and finishing. Such attributes make sandwich panels excellent load carrying components in buildings. This thesis explores the use of sandwich panels in residential roofing systems. The structural analysis and design of the roof is developed and explored for various joining options and roof geometries: sandwich panel folded plate, panels supported by a ridge beam and panels tied by the floor system. An upper limit load case, as determined by the Uniform Building Code, is computed by an interactive fortran program giving load tables for various roof geometries. The critical effects of thermal and hygroscopic gradients on sandwich panel behavior are examined. Closed form solutions of the affect of thermal or hygroscopic gradients on two-way rectangular sandwich panel behavior indicate a severe impact on panel design. Large edge reactions and stresses are developed if panel slab edges are restrained from bowing. Deformations due to thermal and hygroscopic gradients are inversely proportional to the panel depth, and severely reduce panel stiffness performance. The importance of the effect of thermal and hygroscopic gradients on panel design and behavior has been overlooked by the code bodies. A fortran program, accounting for thermal and hygroscopic behavior, designs sandwich panels for a folded plate and ridge beam system. A preliminary joining system is developed for sandwich panel with an insulating structural core exposed to thermal or higroscopic gradients. The proposed system is adaptable to a folded plate, ridge beam or floor tied system. The system is compatible with both wood frame and panelized wall systems. The joint design allows for the mis-alignment of wood frame construction to be dealt with at critical connections. Tolerance limitations, joint loads, preliminary joint design calculations, panel dimensions, construction sequencing and crane deployment are examined.

Thesis Supervisor:

Lorna Gibson

Title:

Winslow Associate Professor of Civil Engineering

Dedication

To my dog, Penny.

Table of Contents

Abstract	2
Dedication	3
Table of Contents	4
	8
List of Figures	10
Symbols and General Terms	
Definitions	16
1. Introduction	18
PART I. Analysis and Design of Residential Roof Sandwich Panels	22
2. Folded Plate Analysis	25
2.1 Review of Folded Plate Behavior	25
2.2 Plate Action	27
2.2.1 Plate Action Stresses	29
2.2.2 Plate Action Deflections	34
2.3 Slab Action	37
2.3.1 Influence of Support Connections	40 41
2.3.2 One-Way Slab Action	42
2.3.2.1 One-Way Slab Action Stresses 2.3.2.2 One-Way Slab Action Deflections	42
2.3.2.3 One-Way Monolithic Ridge Joint	43
2.3.3 Two-Way Slab Action	44
2.3.3.1 Two-Way Monolithic Ridge Joint	48
2.3.3.2 Short Folded Plates	49
2.3.4 Face Wrinkling	49
2.4 Roof Complexities	50
2.4.1 Roof Openings	50
2.4.2 Salt Box Roofs	51
2.4.3 Hipped Gable Roofs	52
3. Ridge Beam System	53
3.1 Review of One-Way Slab Action	53
3.1.0.1 One-Way Slab Action Stresses	54
3.1.0.2 One-Way Slab Action Deflections	54
3.2 Review of Plate Action	55
3.2.1 Plate Action Stresses	55
3.2.2 Plate Action Deflections	56
3.3 Ridge Beam Design	57
3.3.1 Ridge Beam Design Example	59 59
3.3.1.1 structural glued laminated beam 3.3.1.2 laminated veneer lumber beam	59 60
3.4 Comparison of Ridge Beam to Folded Plate System	61
4. Floor Tied System	63
4.1 Buckling of Sandwich Panels	63

4.2 Combined Loads	64
5. Thermal and Hygroscopic Stresses and Deflections in Sandwich Panels	65
5.1 Introduction	65
5.2 Thermal Analysis of a Sandwich Beam	66
5.2.1 Unrestrained Sandwich Beam Behavior	66
5.2.2 Restrained Sandwich Beam Behavior	67
5.2 Restrained bandwich Beam Bondwich 5.3 Thermal Analysis of a Two-way Sandwich Slab	67
5.3.1 Two-way Sandwich Slab Assumptions	68
5.3.2 Two-way Slab with Two Opposite Edges Simply Supported and	68
Remaining Edges Free	
5.3.3 Two-way Sandwich Slab with Four Edges Simply Supported	71
5.4 Precision	72
5.5 Infinite Comer Reactions	73
5.6 Effect of Panel Width	73
5.7 Computer Programs	74
5.8 Effect of Core Depth	74
5.9 Changes in Length	75
	77
6. Code Design	
6.1 Uniform Building Code 88	77
6.2 Uniform Building Code 88 Design Loads	78
6.2.1 Roof Snow Loads	78
6.2.1.1 Alternate Roof Snow Load Design Procedure	79
6.2.2 Roof Wind Loads	81
6.2.3 Roof Earthquake Loads	83
6.3 Joint Loads	85
6.4 Proposed Code Revisions	85
6.5 Factor of Safety	86
6.6 Design Method	87
PART II. Sandwich Panel Residential Roof System	89
Introduction	90
	Δt
7. Joint Design	91
7.1 Introduction	91
7.2 Tolerances	91
7.2.1 Tolerance Limitations	93
7.2.1.1 Summary of Tolerance Limitations	96
7.3 Ridge Line Connection	97
7.3.1 Edge Stiffener	97
7.3.1.1 Edge Stiffener Summary	105
7.3.2 Ridge Edge Fastener	105
7.3.2.1 Separation Block	106
7.3.2.2 Ridge Beam Accessories	109
7.3.2.3 Folded Plate and Floor Tied Ridge Edge Fastener	112
7.3.2.4 Preliminary Hinge Design	113
7.3.2.5 Redundant Ridge Edge Fastener	119
7.3.2.6 Ridge Fastener Noise	122
7.3.2.7 Ridge Edge Fastener Summary	122
7.3.3 Insulation	123

7.3.4 Weather Sealing	123
7.3.5 Edge Stiffener Tension Splice	124
7.3.5.1 Tension Splice Summary	126
7.4 Longitudinal Wall Connection	127
7.4.1 Eave Overhangs	127
7.4.2 No Eave Overhangs	128
7.4.3 Eave Edge Fastener	129
7.4.3.1 Panelized Longitudinal Wall System	132
7.4.3.2 Wood Frame Longitudinal Wall System	133
7.4.3.3 Tied Floor System Accessory	134
7.4.3.4 Tension Cables	137
7.4.3.5 Eave Edge Fastener Summary	140
7.4.4 Insulation	140
7.5 Gable Connection	141
7.5.1 Trussed Gable Endwall	142
7.5.2 Gable Edge Stiffener	142
7.5.2.1 Gable Edge Stiffener Summary	144
7.5.3 Gable Edge Fastener	144
7.6 Panel to Panel Connection	146
7.6.1 Panel Web Concept	151
7.6.1.1 Preliminary Web Design	154
7.6.1.2 Utilities	155
7.6.1.3 Frostlines and Thermal Bridge	155
•	
8. Construction Sequence	157
8.1 Introduction	157
8.2 Redundancy in Folded Plate	159
8.2.1 Construction Assembly Sequencing	160
8.3 Crane Specifications	161
8.4 Roof Panel Width	162
8.4.1 Handling	163
8.4.2 Crane Limitations	163
8.4.3 Waste	164
8.4.4 Edge Stiffner Dimensions	164
8.4.5 Joining System	165
8.4.6 Transportation Limitations	166
8.5 Crane Deployment	166
8.5.1 Lifting and Hooking	176
8.5.1.1 Ridge Crane Hook	176
8.5.1.2 Double-Action Crane Winch	178
9. Conclusions	180
9.1 Recommendations for Further Research	183
Computer Program Appendix	184
Appendix A. Program Panel.f	186
A.1 Program Variables	186
A.2 Program Description	192
A.3 Panel.f Hard Copy	198
A.4 Panel.f Output	220
Appendix B. Program S.f Hard Copy	225

.

,

C.1 B.f Output	
Appendix D. Program Sep.f Hard Copy	
D.1 Sep.f Output	
Appendix E. Program Comb.f Hard Copy	
E.1 Comb.f Output	

List of Figures

Figure 1: Single Bay, Simple Span, Folded Plate	17
Figure 1-1: Panel Types	20
Figure 1-2: Roof Structural Systems	23
Figure 2-1: Schematic of Folded Plate Action	26
Figure 2-2: Force Diagram of Transverse Cross Section	28
Figure 2-3: Uniform In-Plane Load	29
Figure 2-4: Deep Girder Beam	30
Figure 2-5: Geometry of Deflections	38
Figure 2-6: Plan View of Folded Plate Panel	45
Figure 2-7: Wrinkling of the Compression Face (after Allen 1969)	50
Figure 5-1: Two-way Sandwich Slab with Two Opposite Edges Simply	y 69
Supported and Remaining Edges Free	
Figure 5-2: Panel with Four Edges Simply Supported	72
Figure 7-1: Joint Conditions	92
Figure 7-2: Roof Tolerances	94
Figure 7-3: Edge Fastener Location and Stiffener Loads	99
Figure 7-4: Ridge Edge Fastener	107
Figure 7-5: Hinged Panel Units with Ridge Edge Fastener	108
Figure 7-6: Ridge Beam Ridge Line Connection	111
Figure 7-7: Folded Plate and Floor Tied Ridge Line Connection	112
Figure 7-8: Pull Loads on the Hinge Plate Section	115
Figure 7-9: Push Loads on the Hinge Plate Section	116
Figure 7-10: Hinge Load Forces	117
Figure 7-11: Redundant Ridge Edge Fastener	121
Figure 7-12: Edge Stiffener Tension Splice	125
Figure 7-13: Lateral Longitudinal Wall Kick Out	130
Figure 7-14: Hinge Pair with Eave Edge Fastener	131
Figure 7-15: Panelized Longitudinal Wall Eave Connection	133
Figure 7-16: Wood Frame Longitudinal Wall Eave Connection	135
Figure 7-17: Mis-aligned Wood Frame Longitudinal Wall Eave Connection	136
Figure 7-18: Mis-aligned Wood Frame Longitudinal Wall Eave Connection Figure 7-19: Tied Floor System Eave Connection	137
·	138
	139
	143
Figure 7-22: Thermal and Hygroscopic Bowing of the Gable Edge Stiffener Figure 7-23: Detail of Panel Gable Endwall as Viewed Along the Gable Line	145
Figure 7-24: Detail of Stud Gable Endwall as Viewed Along the Gable Line	146 147
Figure 7-25: Panel to Panel Geometry	147
Figure 7-26: Panel to Panel Web Accessories	152
Figure 7-27: Panel to Panel Connection	156
Figure 8-1: Crane Deployment Sequence	169
Figure 8-2: Crane Deployment Sequence	170
Figure 8-3: Crane Deployment Sequence	171
Figure 8-4: Crane Deployment Sequence	172
Figure 8-5: Crane Deployment Sequence	173
Figure 8-6: Crane Deployment Sequence	174
Figure 8-7: Crane Deployment Sequence	175

Figure 8-8:	Ridge Crane Hook (refer to Figure 7-5 for hinge orientation)	177
	Eave Crane Hook	178
Figure A-1:	Program Panel.f Flowchart	193

Symbols and General Terms

 α = Angle between the roof surface and the horizontal (degrees).

$$\alpha_m = \frac{m \pi b}{2H}$$

 α_r = Thermal coefficient of expansion for the face material ((-)/°F).

 $\alpha_{i,i}$ = Coefficient of thermal expansion of the *i* face $((-)/^{\circ}F)$).

 δ_1 = Flexural "one-way slab" deflection (in.).

 δ_2 = Shear "one-way slab" deflection (in.).

 δ_h = Eave line member splice "plate" deflection (in.).

 δ_f = Flexural "plate" deflection (in.).

 δ_h = Horizontal "plate" deflection (in.).

 δ_s = Shear "plate" deflection (in.).

 δ_{ss} = Seam slip "plate" deflection (in.).

 $\delta_v = Vertical "plate" deflection (in.).$

 $\varepsilon_1,\,\varepsilon_2$ = Unit dimensional change of opposite faces (-).

 ε_i = Strain due to thermal effects of *i* face (-).

$$\gamma_m = \frac{p_m b}{2}$$

 v_f = Poisson's ratio of the face material (-).

$$\lambda_m = \frac{m \pi}{H}$$

 σ_{all} = Allowable unit stress (p.s.i.).

 σ_c = Bending stress in the core in the transverse direction (p.s.i.).

 σ_{cp} = Bending stress in the core in the longitudinal direction (p.s.i.).

 σ_e = Axial stress in the longitudinal line member (p.s.i.).

```
\sigma_f = Bending stress in the face in the transverse direction (p.s.i.).
\sigma_{fp} = Bending stress in the face in the longitudinal direction (p.s.i.).
\tau_c = Out-of-plane shear stress in the core (p.s.i.).
\tau_{cp} = In-plane shear stress in the core (p.s.i.).
\tau_{fp} = In-plane shear stress in the faces (p.s.i.).
b = Width of panel element (in.).
b_r = Width of ridge beam (in.).
c = Thickness of sandwich core (in.).
corner error = maximum error in corner layout (in.).
d = Distance between the centerlines of the two sandwich faces (in.).
d_r = Depth of ridge beam (in.).
diagonal<sub>error</sub> = difference between diagonals from opposite corners (in).
ei = Flexural rigidity of the composite panel in the transverse direction (lb.*in.<sup>2</sup>).
f = \text{Allowable displacement factor (i.e. Length of span}/f = \text{Allowable displacement) (-)}.
f_b = Actual unit stress for extreme fiber in bending (p.s.i.).
f_c = Actual unit stress in compression parallel to the grain (p.s.i.).
f_i = Actual unit stress in tension parallel to the grain (p.s.i.).
f_{y} = Actual unit horizontal shear stress (p.s.i.).
h = \text{Overall depth of sandwich panel (in.)}.
p_m = {\lambda_m^2 + [2 G_c t_c/(1 - v_f) ei]}^{1/2}
p_w = Design wind pressure (p.s.i.).
q_s = Wind stagnation pressure at the standard height of 30 feet as set forth in
    Table No. 23-F [U.B.C., 88] (-).
t = Thickness of the faces of the sandwich panel (in.).
```

```
t_c = Distance between the centerlines of the two sandwich faces (in.).
t_e = Thickness of the edge stiffner (in.).
x = Longitudinal distance with origin at gable line (in.).
y = Transverse distance with origin at midspan (in.).
w = Deflection of panel including shear deflections (in).
w' = Deflection of "two-way slab" neglecting shear deflections (in.).
w'' = Deflection of "two-way slab" neglecting shear deflections due to
    a moment, M,, applied to the ridge line (in.).
w_d = Dead load per unit area of sandwich panel (p.s.i.).
w_e = Transverse deflection of the edge stiffner due to girder action (in.).
w_i = Live load per unit horizontal projected area (p.s.i.).
w_{px} = weight of the diaphragm and tributary elements connected thereto at
    level x (lbs.).
w_s = Total out-of-plane slab load per unit area of sandwich panel (p.s.i.).
A_e = Area of high strength continuous longitudinal line member at the eave (in.).
A_m = \text{Constant } (-).
A_n = Transformed transverse cross sectional area of
    sandwich panel (in.^2).
B = \text{Horizontal projected distance between fold line an and eave line (in.)}.
B_m = \text{Constant } (-).
C_{exp} = Snow exposure coefficient (-).
C_e = Combined height, exposure and gust factor coefficient as given in
    Table No. 23-G [U.B.C., 88] (-).
C_f = Size factor for beams deeper than 12 inches (-).
C_s = Snow reduction coefficient for slope friction (-).
```

 C_q = Pressure coefficient for the structure or portion of structure under consideration as given in Table No. 23-H [U.B.C., 88] (-). D = Vertical projected distance between fold line and eave line (in.). E_c = Young's Modulus of core material in transverse direction (p.s.i.). E_{cp} = Young's Modulus of core material in longitudinal direction (p.s.i.). E_e = Young's Modulus of edge stiffner (p.s.i.). E_f = Young's Modulus of face material in transverse direction (p.s.i.). E_{f_0} = Young's Modulus of face material in longitudinal direction (p.s.i.). $E_m = \text{Constant (-)}.$ E_r = Young's modulus of ridge beam material (p.s.i.). F_b = Allowable unit stress for extreme fiber in bending (p.s.i.) F'_b = Allowable unit stress for extreme fiber in bending, adjusted for slenderness (p.s.i.). F_c = Allowable unit stress in compression parallel to the grain (p.s.i.). F'_{c} = Allowable unit stress in compression parallel to the grain adjusted for buckling (p.s.i.). F_{px} = Roof diaphragm force (lbs.). F_t = Allowable unit stress in tension parallel to the grain (p.s.i.). F_v = Allowable unit horizontal shear stress (p.s.i.). G_c = Out of plane shear modulus of core material (p.s.i.). G_{cp} = In-plane shear modulus of core material (p.s.i.). G_f = In-plane shear modulus of face material (p.s.i.). H =Slope distance between the fold line and the eave line (in.). I = Occupancy importance factor (-). I_e = Moment of inertia of edge stiffner (in.4).

 I_p = Transformed moment of inertia of transverse cross section

of sandwich panel (in.4).

```
I_{reg} = Required moment of inertia of the ridge beam (in.<sup>4</sup>).
K_e = Design buckling factor (-).
L = \text{Horizontal distance between gable lines, folded plate span (in.)}.
L_r = Length of the ridge beam (in.).
M_e = Moment of the edge stiffner due to girder action (lb.*in.).
M_r = \text{Maximum moment of the ridge beam (lb.*in.)}.
M_r = Longitudinal "two-way slab" moment (lb.*in.).
M_{xy} = Twisting "two-way slab" moment (lb.*in.).
M_{\rm w} = Transverse "two-way slab" moment (lb.*in.).
P = Concentrated load per unit length in the longitudinal direction (lb./in.).
P_{\sigma} = Ground snow load (p.s.i).
P_f = \text{Roof snow load (p.s.i)}.
Q_n = In-plane shear force (lb.)
Q_r = \text{Out-of-plane "two-way slab" shearing forces in the longitudinal plane (lb.).}
Q_v = \text{Out-of-plane "two-way slab" shearing forces in the transverse plane (lb.).}
R = Reaction forces at the corners of a folded plate due to "two-way slab" action (lb.).
R_c = Radius of panel curvature (in.).
R_s = Snow load reduction in pounds per square foot per degree of pitch
    over 20 degrees.
S = \text{Total snow load (p.s.f.)}.
S_{reg} = Required section modulus for the ridge beam (in.<sup>3</sup>).
T = Difference between the average temperature of the two faces (°F).
T_i = Temperature change of the i face from the reference condition (°F).
V_e = Vertical panel edge reaction at the eave line (lb./in.).
V_r = Vertical panel edge reaction at the ridge line (lb./in.).
```

 V_x = The reaction along the eave and ridge line (lb.).

 W_p = Total in-plane plate load per unit length (lb./in.).

Z =Seismic zone factor (-).

Definitions

Individual "panel elements" are butted and joined together to form the two roof "panels" of the folded plate structure (refer to Figure 1).

The "length", (L), of a panel is the horizontal distance between gable lines, in the longitudinal direction (Figure 1).

The "height", (H), of a panel is the slope distance between the fold line and the eave line, in the transverse direction (Figure 1).

The "aspect ratio" is the ratio of the length to height of the panel (L/H).

In conformance with the terminology introduced by Winter & Pei (1947), "slab" action refers to the flexure of individual panels out of their planes, and "plate" action refers to the in plane extensional deformation of the panels.

Figure 1: Single Bay, Simple Span, Folded Plate

Chapter 1

Introduction

This thesis is part of a larger research effort at M.I.T. entitled "Innovative Housing Construction Technologies." The major goal of the project is to identify and propose new technologies capable of radically improving both the quality and affordability of newly constructed housing in the U.S.

As a starting point, the initial research has focused on the roof structural system for the following reasons:

- 1. The roof can be defined as a single building subsystem, allowing for the detailed study of an individual system, while recognizing that this system must be integrated into the whole.
- 2. Roof panels represent a challenging problem of long span structures under transverse loading; encompass issues of weather sealing, and present complex joint conditions.
- 3. The roof design minimizes the complicating aspects of integrating building utilities (electrical, plumbing, mechanical) when evaluating the structural, thermal, and environmental aspects of the building envelope.
- 4. Improving the technology of roof systems is a specific need that has been identified by builders in the marketplace.

The technology developed in the study of roofing systems can easily be transferred into panelized wall or floor systems. Presently there are many panelized wall systems available on the market, but few sandwich panels capable of spanning long distances required of floors and roofs.

The apparent market trend in residential homes is toward complex roof shapes and cathedral ceilings. An inspection tour of a recent, higher-end, housing construction will support this statement. Architectural roof shapes, and the interior spaces created are a powerful marketing tool used to personalize and customize homes. Customers in the high-

end of the home market demand an individualized product. American home builders are meeting market needs with conventional building systems which are ill-suited for these complex shapes. The cost, number of parts and steps involved in the constructing a conventionally framed complex roof are large. Moreover, the number of skilled carpenters in the labor force capable of performing such work is shrinking. Sandwich panel roof construction could offer a solution to this dilemma. Sandwich panels are constructed by bonding strong, stiff faces to either side of a thick lightweight core. Conceptually, sandwich panel roof structure could be constructed like a cardboard architecture model. Sheets of foamcore (conceptual sandwich panels) are laid on top of, and joined to the underlying boxed structure of the house. A simple and easily assembled roof system gives immediate enclosure to the building shell. A roof system which meets the constructibility issues of complex roofs may also bridge the gap with affordable housing.

Advantages of the use of sandwich panels in housing construction are: high specific stiffness and strength, good thermal insulation properties, improved quality control and product consistency employing industrialized manufacturing methods, flexibility in architectural design, and usable space in the enclosed roof cavity. In addition, there are reductions in: cost, labor, number of building components, operations and time for erection, enclosure, and finishing. Such attributes make sandwich panels excellent load carrying components in buildings. This thesis explores the use of sandwich panels in the roofing system of housing.

There are three types of panel construction available to residential roofing (see Figure 1-0.

Panel type one is correctly referred to as a stressed-skin construction, while the others are strictly referred to as sandwich panels. The scope of the thesis will be narrowed to the discussion of sandwich panel types two and three.

Figure 1-1: Panel Types

The Housing Construction Technology Consortium of MIT sponsored this research. The six members, as of May 1989, are: USG, Mobay, ITW, ALCAN, Weyerhaeuser, and GE Plastics. A Building Advisory Group was formed to help in establishing the direction of the research. Members were drawn from the leaders in American home building: Wood Structures, Inc., Gebhardt Associates, Acom Structures, Winchester Homes Inc., Winter Panel Corporation, and Ryan Homes Inc.. Academic advisors to the project are: Prof. Lorna Gibson of the Civil Engineering Department, Mr. John Crowley of the Laboratory

for Architecture and Planning, and Prof. Leon Glicksman of the Building Technology Group. Students under the project at this time are: Tim Tonyan, a Ph.D. candidate in Civil Engineering, who is working on materials selection, defining panel requirements, and developing cementitious foamed cores; Gebran Karam, a S.M. student in Civil Engineering, who is studying the structure and properties of wood cement composites, and Adil Sharag Eldin, a Ph.D. candidate in Building Technology, Department of Architecture, who is studying the architectural, geometric, code and economic aspects of usable space in the roof cavity; defining the complexity, constructibility, costs of various conventional roof systems by surveying the Building Advisory Group, and is responsible for the developing eave and rake overhang details and accessories.

The thesis is divided into two parts. Part one covers the analysis and design of sandwich panels employed in various residential roof systems. The second part of the thesis deals with the development of a roof system, where a preliminary joining system is developed for panel type 3. The appendix includes computer programs utilized in analysis and design.

PART I

Analysis and Design of Residential Roof Sandwich Panels

The state of art in sandwich panel design and analysis is well advanced, and fully developed. Early theories were first developed for "stress-skin" construction, and have, over the years, been refined and extended for sandwich construction as applications for sandwich construction have grown: garage doors, aerospace, refrigeration, skis, building construction, furniture, etc. [Structural Plastics Design Manual, 84]. The objective of the first part of the thesis is to present the significant considerations of the structural analysis and design of flat sandwich panels, the problems associated with thermal and hygroscopic expansion and contraction, as well as examining the guidelines for design as set forth in the codes.

The analysis and design of sandwich panels are developed for the three structural systems shown in Figure 1-2.

- 1. Folded plate roof spanning between endwall gables (Figure 1-2-a).
 - a. Two options of joint connections at the fold line are examined.
 - i. Hinged
 - ii. Monolithic
 - b. Two options of panel to panel joints are examined.
 - i. Simple shear connection, with no moment-rotational rigidity provided.
 - ii. Monolithic joint with moment-rotational rigidity.
- 2. Sandwich panels spanning between the longitudinal wall (the eave) and the ridge beam, which spans between the two endwall gables (Figure 1-2-b).
- 3. Sandwich panels connected to the floor unit which acts as a cross tie to resist lateral thrust (Figure 1-2-c).

The faces of the panel are assumed to be made of the same material of equal

Figure 1-2: Roof Structural Systems

thickness. Panel faces are flat, not formed. Although formed faces have the attribute of decreasing shear deformations of panels in transverse bending, they will not be considered for the following reasons:

- 1. Joining of contoured faces to edge supports and panel to panel connections are difficult, especially when panels intersect at angles.
- 2. Contoured faces do not accommodate flat roof coverings.
- 3. Formed faces are aesthetically industrial in nature and relatively inflexible to customized and individualized roof textures.
- 4. Bending strength is developed in one direction only.
- 5. Thermal performance of the panel is reduced.

Chapter 2

Folded Plate Analysis

2.1 Review of Folded Plate Behavior

The folded plate design involves using the plates of a pitched roof as beams. Two plates in a single bay roof act as an inverted "V" to carry the vertical loads to the end supports at the gables. Folded plate action eliminates the need for trusses, ridge beams, collar ties or tension ties which typically carry the vertical loads.

The behavior of folded plates is conveniently separated into two independent actions. Loads applied normal to the roof surface are carried to the fold, eave and gable lines by the bending strength of the faces and the shear resistance of the core. This out-of-plane flexure is referred to as "slab" action. The longitudinal wall and the fold line at the ridge serve as lines of support for this "slab" action. Loads applied in the plane of the sandwich panel are carried through "plate" action, analogous to that of an inclined deep girder, laterally braced by the "plate" action of the adjacent panel and spanning between endwall gables. The key to grasping folded plate behavior is in understanding how the fold line, through "plate" action, acts as one line of support for "slab" action.

Figure 2-1 graphically depicts the folded plate behavior. The uniform projected load is distributed to the eave and fold line supports by the "slab" action of the panel elements. The eave line load is carried by the longitudinal wall. The ridge line load is resisted by forces developed in the plane of the roof panel. It is through this "plate" action that the ridge line load is carried in the plane of the roof panel to the gable line where the outward thrust is resolved by a tension tie and the downloads are distributed on corner posts.

Figure 2-1: Schematic of Folded Plate Action

For small deflections, "slab" action carries only normal components of the load, while, "plate" action carries only the in-plane loads. Thus, a folded plate may be divided

into a "slab" structure offering no resistance to in-plane loads, and a "plate" structure offering no resistance to out-of-plane loads. Because of this, there is no difficulty in ensuring that the two structures have compatible deformations; they may be assumed to act independently.

The only interaction between the "slab" and "plate" structures is at the fold lines, where equal and opposite loads are imposed. If the "slab" and "plate" structures deform identically at the fold line, the assumption of compatible deformations is correct. It follows that, a folded plate with a hinged fold line may be regarded as a flexural "slab" simply supported along the fold line by a "plate" structure. Thus, a hinged folded plate is analogous to a slab with support movement along the longitudinal edges. This is because a displacement at the fold line will induce a displacement at the eave line. A monolithically joined folded plate differs from a hinged folded plate only in that the monolithic panel is rigidly fixed to one of its longitudinal supports, rather than simply supported, as in the hinged panel. Longitudinal support displacements result in a cord rotation of the panel, which is resisted by the flexural stiffness of the "slab".

2.2 Plate Action

In order to analyze "plate" action it is necessary to determine the loads transferred into the plane of the panel which spans as a deep girder between the endwall gables. Let P equal the total concentrated external load on a panel per unit length in the longitudinal direction.

$$P = [w_t \cos(\alpha) + w_d] H$$

where.

 α = Angle between the folded plate and the horizontal (degrees). w_i = Live load per unit horizontal projected area (p.s.i.).

 w_d = Dead load per unit area of sandwich panel (p.s.i.). H = Slope distance between the fold line and the eave line (in.).

Figure 2-2: Force Diagram of Transverse Cross Section

The reaction from the panel elements, if conservatively represented as beam strips spanning between the eave and ridge line, is one-half the concentrated load P, or P/2 (see Figure 2-2). Edge reactions along the eave line are carried directly by the longitudinal edgewall. In a folded plate, the reactions along the ridge line are not resisted by a ridge beam or cross-tie floor unit. Therefore the only edge reaction inducing in-plane loads is the total reaction of P along the ridge line. This vertical edge reaction can be resisted only

by forces developed in the plane of the roof panel. A force resolution diagram (refer to Figure 2-2), of the in-plane load per unit length, W_p , gives:

$$W_p = \frac{P}{2\sin(\alpha)} = \frac{[w_l\cos(\alpha) + w_d]H}{2\sin(\alpha)}$$

The summation of this in-plane load per unit length along the ridge line results in an uniform in-plane load (see Figure 2-3).

Figure 2-3: Uniform In-Plane Load

2.2.1 Plate Action Stresses

To carry in-plane loads, folded plate structures act as inclined girders. The "plate" structure can be analyzed as a girder beam simply supported at either end by the endwall gables, and subject to a uniform in-plane load. Both shear and flexural stresses arise from these in-plane loads (see Figure 2-4).

Figure 2-4: Deep Girder Beam

The flexural moments can be resisted by relying on the edge-wise bending of the panel faces. The "plate" structure may be analyzed with respect to its longitudinal neutral

axis with the overall section effective in bending, with plane sections remaining plane. This method of analysis generally proves adequate for most designs, but particular geometries may require modifications [Benjamin, 82]. For example:

- 1. In folded plate structures of sandwich construction, where the ratio of plate width to plate thickness is relatively high and compressive stresses in the face materials are near buckling failure, the entire transverse cross section of the sandwich faces may not be considered effective in the analysis.
- 2. For short folded plates, where the aspect ratio of length to height is less than 1.5, the assumption of a straight line stress distribution due to bending is no longer valid due to shear effects in a deep beam, and deep beam theory must be used [Benjamin, 82].

In long folded plates of typical sandwich construction, there is little deviation from the assumption of the overall section being effective in bending, with plane sections remaining plane. In the longitudinal direction, the normal bending stresses are proportional to the moment; the maximum bending stresses occur at the midspan. The bending stresses also vary linearly in the transverse direction, from zero at the neutral axis to a maximum value a distance of H/2 from the neutral axis. The maximum bending stress in the face in the longitudinal direction is:

$$\left(\sigma_{fp}\right)_{max} = \frac{W_p L^2 H}{16 \, I_p}$$

where.

 I_p = Transformed moment of inertia of transverse section of sandwich panel.

= $[2(t) + (E_{cp}/E_{fp}) c] H^3/12$

t =Thickness of the faces of the sandwich panel (in.).

 E_{cp} = Young's Modulus of core material in longitudinal direction (p.s.i.).

 E_{fp}^{r} = Young's Modulus of face material in longitudinal direction (p.s.i.).

c = Thickness of sandwich core (in.).

The maximum bending stress in the core in the longitudinal direction is:

$$(\sigma_{cp})_{max} = \frac{E_{cp}}{E_{fp}} [(\sigma_{fp})_{max}]$$

The resulting flexural stresses are critical, especially the maximum tension forces at the midspan region of the folded plate. Fastening thin faces of a sandwich panel subjected to high tension loads is a difficult problem. Moreover, an economic joining system would require the variability in fastening strength to match the varying flexural stresses, although this would produce additional complexity in the construction process.

The addition of longitudinal line members at the fold and eave line solves the above problems. Furthermore, in the case of dormers and turned gables, where openings are cut into the folded plate, it becomes mandatory that line members be added to increase the transverse sectional moment of inertia.

Longitudinal line members at the ridge and eave act as I-beam flanges to resist the parabolic moment distribution. The eave line carries tension loads. The maximum axial stress in the line member in the longitudinal direction is calculated from beam theory assuming that only the longitudinal line members contribute to the moment of inertia:

$$\left(\sigma_{e}\right)_{max} = \frac{W_{p}L^{2}}{8A_{e}H}$$

The required cross-sectional area of the longitudinal eave line member, A_e , to carry these axial loads can be estimated on the basis of strength requirements, by the formula:

$$A_e = \frac{W_p L^2}{8 \sigma_{aH} H}$$

where,

 σ_{all} = Allowable unit stress (p.s.i.).

The fold line carries compressional loads. The required area of the longitudinal fold line member is twice that required for the eave line member.

The diaphragm action of the panels carry the shear loads to the gable line. The

shear varies linearly from the maximum value at the gable lines to a minimum value at the midspan. The maximum shear value at the gable line due to a uniformly loaded folded plate is:

$$(Q_p)_{max} = W_p(L/2)$$

The shear at the midspan would equal zero for the load case of a uniform in-plane load over the complete length of the "plate", however, an unbalanced uniform load over one-half the "plate" span results in a non-zero shear value. The minimum shear value at the midspan, due to a uniform load over one half of the folded plate span is:

$$(Q_p)_{min} = W_p(L/8)$$

The longitudinal line members, or flanges, can be assumed as concentrated at the edges of the plate diaphragm. The overall depth of the section, H, is very large when compared to the depth of the longitudinal line member. This assumption yields an essentially uniform shear stress distribution throughout the depth of the panel. All regions of the face act effectively as one homogeneous web in resisting these shear forces. Hence the maximum in-plane shear stress in the faces at the gable lines can be found as:

$$(\tau_{fp})_{max} = \frac{W_p L}{2 A_p}$$

where,

L =Span between end walls in the longitudinal direction.

 A_p = Transformed transverse cross sectional area of sandwich panel.

 $= [2(t) + (G_{cp}/G_f) c] H$

t =Thickness of the faces of the sandwich panel (in.).

The maximum in-plane shear stress in the core is:

$$(\tau_{cp})_{max} = \frac{G_{cp}}{G_f} \left[(\tau_{fp})_{max} \right]$$

where,

 G_{cp} = In-plane shear modulus of core material (p.s.i.). G_f = In-plane shear modulus of face material (p.s.i.).

If no longitudinal line member is incorporated into the folded plate, the shear stress distribution is no longer uniform, but parabolic. The shear stresses must be increased by a factor of 3/2.

2.2.2 Plate Action Deflections

The deflection of the roof system is of primary concern from both the aesthetic viewpoint and the possibility of structural interference with secondary building systems. The most stringent code requires that vertical ridge deflections be limited to L/240 for live loads only (controlling case), and to L/180 for live and dead loads. Lateral deflections along the longitudinal edge wall are limited to L/240 for 2X4 construction [U.B.C., 88].

The method of analysis is similar in concept to that used in determining truss deflections. The folded plate structure is conceptually separated at the fold line and the in-plane "plate" deformations are calculated. The panel edges at the fold line are then brought back into coincidence and the vertical deflection of the fold line is determined by the use of a Williot diagram (Figure 2-5). The horizontal eave deflections are found from simple geometry.

The in-plane deflection of the "plate" is the sum of four parts: shear deflection of the "plate" (δ_s) , seam slip deflections (δ_{ss}) , eave line member splice deflections (δ_e) , and flexural deflection (δ_f) of the "plate" acting as a deep beam girder.

In-plane "plate" deformation due to shear can be found by established methods. The faces in the transverse cross section act as one homogeneous web. The midspan shear deflection, δ_s , is:

$$\delta_s = \frac{W_p L^2}{8 A_p G_f}$$

Additional shear deflections occur due to the seam slip at the joints between individual panel elements, and are estimated using an empirical relationship between applied shear and the resulting seam slip. The total midspan deflection due to seam slip, δ_{ss} , can be found by summing the seam slip deflections at each joint between the support and the midspan. For a "plate" under a uniform load, shear decreases linearly from the support to the midspan; the principal contribution to the overall seam slip occurs at the joints nearest to the endwall gable supports.

Deflections occur due to the slip at the splice between eave line members. This deflection is estimated using an empirical relationship between applied tension and the resulting slip in the tension splice. The total midspan deflection due to splice deflections, δ_e , can be found by summing the deflections at each splice in the eave line member multiplied by H and divided by the distance of the splice from the gable line. For a "plate" under a uniform load, tension decreases with the parabolic moment distribution which is a maximum at the midspan; the principal contribution to the overall eave line deflection occurs at the splices nearest to the midspan.

If no longitudinal line members are incorporated into the panel, the flexural deflection, δ_p , is calculated from beam theory assuming plane sections remain plane. For a uniformly loaded simple span, the midspan flexural deflection is:

$$\delta_f = \frac{5 W_p L^4}{384 E_{fp} I_p}$$

In the case of no longitudinal line members, the ratio of shear to flexural deflections (neglecting seam slip) is given by:

$$\frac{\delta_s}{\delta_f} = \frac{W_p L^2}{8 \frac{A_p G_f}{G_f}} \frac{384 E_{ff} I_p}{5 W_p L^4}$$

for an isotropic panel with anti-plane core and faces of equal thickness. Assuming a Poisson's ratio of 1/3 for the face material and using the relationship between the two moduli:

$$G_f = \frac{E_{fp}}{2(1+v_f)}$$

where,

 v_f = Poisson's ratio of the face material.

The ratio of shear to flexural deflections, neglecting the core, becomes:

$$\frac{\delta_s}{\delta_f} = 2.08(H/L)^2$$

For the aspect ratio of the *Brentwood* home (L/H = 2.67) flexural deflections are 29% of the shear deflections. This calculation of flexural deflections does not include the additional slip between panel to panel joints. If panel to panel joints are glued, the slip is non-existent.

The flexural deflection, δ_f , of a folded plate using longitudinal line members is calculated from beam theory assuming that only the longitudinal line members contribute to the moment of inertia. For a uniformly loaded simple span, the midspan deflection is:

$$\delta_f = \frac{5W_p L^4}{384 E_e I_p}$$

where,

$$I_p = A_e H^2/2$$

The true deflection surface of a folded plate is complicated, since the plates of the

roof must warp to achieve compatible deflections, and rotations. In a single bay folded plate, the ridge deflects downward and the walls outward. The effect of "plate" deformations on the vertical ridge deflection and lateral eave deflection can be determined geometrically. Using a Williot diagram (Figure 2-5) the vertical ridge deflection is:

$$\delta_{v} = \frac{\delta_{s} + \delta_{ss} + \delta_{f}}{\sin(\alpha)}$$

From geometry the horizontal eave deflection is (Figure 2-5):

$$\delta_b = (H^2 - (D - \delta_v)^2)^{1/2} - B$$

where,

D = Vertical projected distance between fold line and eave line (in.). B = Horizontal projected distance between fold line and eave line (in.).

A simplified expression for horizontal eave deflections utilizing linear geometry, which assumes small angle rotations, is:

$$\delta_{\nu} = \delta_{\nu}(D/B)$$

It should be noted that any longitudinal edge wall deflections or settlements decrease the horizontal eave deflections due to the "plate" deformations.

2.3 Slab Action

"Slab" action depends on the out-of-plane load per unit area of sandwich panel.

$$w_s = [w_t \cos(\alpha) + w_d] \cos(\alpha)$$

The "slab" action of the panel under normal loads can be analyzed in either one-way or two-way action. In one-way action, a representational beam spanning between eave and ridge line is analyzed. Alternatively, two way slab behavior considers one-half of the roof as a continuous monolithic slab, assuming a moment rigid joint between panel elements.

Figure 2-5: Geometry of Deflections

Two-way "slab" action is calculated analytically by the use of classical plate theory or numerically by a matrix formulation, such as the finite element method.

If the span of a monolithic panel, L, is large compared to its slope dimension, H, it can be analyzed by considering the behavior of a representational beam spanning between the eave and the ridge. As the ratio of L/H is reduced there is a transition from one-way beam action to two-way plate action.

Although it is feasible to construct an effective monolithic joint between panels in situ, the benefit gained from the added costs must be examined. One-way and two-way slab action are compared in Table 1-0 which shows the advantage to be gained from the use of monolithic panel joints in folded plates. In general, the panel design is controlled by the deflection criteria. For short folded plates, the increased stiffness to be gained by the monolithic joint system acting in two-way slab action is substantial. A folded plate with an aspect ratio of length to height of 2.0 has a 22% reduction in deflections with monolithic panel joints over joints designed for shear capacity only. For long folded plates the value added by moment rigid panel to panel connections is not significant. Timoshenko (1959) suggests that for L/H = 3 the difference between the two methods of analysis in deflections is 6%; in moments it is 5% (Table). Weighing these small reductions in moments and deflections against the added cost and difficulty of assuring a moment rigid connection between panel elements in situ, and the added complexity involved in calculations, value engineering leads to the abandonment of the two-way concept. If the concept of short folded plates is to be developed, the costs, deterioration over time, and quality control of monolithic panel joining systems must be researched. If the joining system is less than perfectly monolithic, the behavior of the folded plate deviates from ideal two-way slab action. The finite element method is an effective tool for studying this intermediate behavior. The boundary conditions between panels can be input into the model.

Odd shaped roof panels, however, may be analyzed with greater accuracy, and, hence, be designed with greater economy by two-way analysis. If the classical method of plate analysis is chosen, a great number of exact and approximate solutions are readily available for plates of various shapes. The finite element method can easily accommodate odd shapes. One could assume, however, that the panel sections would not be optimized for each panel shape, but remain the same section throughout the roof. Changing panel

sections throughout the roof would be uneconomical from a manufacturing standpoint and create problems in the joining system.

Table 1-0: Two-Way Slab Action in Percentage of One-Way Slab Action								
L/H	w' _{max}	$(M_x)_{max}$	$(M_y)_{max}$	$(Q_x)_{max}$	$(Q_y)_{max}$	$(V_x)_{max}$	$(V_y)_{max}$	R
1.0	31.1	38.3	127.7	67.6	90.9	84.0	84.0	68.4
1.1	37.3	44.3	131.5	72.0	93.3	88.0	88.0	73.7
1.2	43.3	50.2	133.6	76.0	94.9	91.0	90.6	77.9
1.3	49.0	55.5	134.1	79.4	96.0	93.6	92.8	83.2
1.4	54.1	60.4	133.9	82.2	97.0	95.6	94.2	87.4
1.5	59.3	65.0	132.8	84.8	97.6	97.2	96.0	89.5
1.6	63.7	69.0	131.2	87.0	98.1	98.2	97.0	90.5
1.7	67.8	72.6	129.6	88.8	98.7	99.2	97.6	92.6
1.8	71.5	75.8	127.7	90.4	98.9	99.8	98.2	94.7
1.9	74.8	78.8	125.6	91.8	99.2	100.4	98.8	95.8
2.0	77.8	81.4	123.7	93.0	99.5	100.6	99.2	96.8
3.0	93.9	95.1	108.3	98.6	100.0	101.0	99.6	97.9
4.0	98.5	98.8	102.4	99.6	100.0	100.4	100.0	98.9
5.0	99.6	99.7	100.0	100.0	100.0	100.2	100.0	100.0
00	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

2.3.1 Influence of Support Connections

The analysis of folded plates is dependent on the type of connection between the panel and supports. Ideally, the relative motion between the support and panel is restrained against horizontal and vertical movement, but angular rotation is allowed. For the hinged joint at the fold line, there is little deviation from this assumption. If the site connections at the eave and gable lines are simply bolted one may assume that they have little moment-rotational rigidity and act as a continuous hinge. Rotational stiffness at these particular supports would have the unfavorable result of imposing an end moment on the axially loaded 2X4 studs or panelized wall, disastrously affecting deflections and critical buckling strength. The connections along the longitudinal edge wall, and the end

gables must be designed so as to allow for this rotational flexibility. After deployment of the folded panel, there exists the possibility of rigidly fixing the hinged fold line in situ. This could be achieved by the use of metal plates, epoxy adhesives, or keyed joints. The effect of a monolithic joint at the fold line will be explored in Section 2.3.2.3 and Section 2.3.3.1.

2.3.2 One-Way Slab Action

The sandwich beam consist of two stiff faces of thickness t, bonded to either side of a low density core of thickness c. The overall depth of the beam is h; the width of beam is b. If the beam is wide (b >> c) the lateral expansions and contractions in the longitudinal direction are restricted by the shear resistance of the face and core; it is reasonable to assume that the strains in the longitudinal direction are zero. The ratio of stress to strain in the transverse direction is therefore $E/(1-v^2)$ for both membrane and local bending stresses. This value replaces E in all slab action equations [Allen, 69].

The flexural rigidity of a sandwich is the sum of the flexural rigidity of the face and core, measured about the centroidal axes:

$$ei = \frac{E_f b t^3}{6} + \frac{E_f b t d^2}{2} + \frac{E_c b c^3}{12}$$

where

b = Width of panel beam (in.).

c =Thickness of sandwich core (in.).

h = Overall depth of sandwich panel (in.).

d = Distance between the centerlines of the two sandwich faces (in.).

= c + i

 E_c = Young's Modulus of core material in transverse direction (p.s.i.).

 E_f = Young's Modulus of face material in transverse direction (p.s.i.).

The first term in the flexural rigidity equation dominates. The second term amounts to less than 1% of the first if:

$$3(d/t)^2 > 100$$

A ratio of d/t > 5.77 satisfies this condition. Thick, compliant faces may not pass this criteria.

The third term is less than 1% of first term if:

$$6 \frac{E_f}{E_c} \frac{t}{c} (d/c)^2 > 100$$

There is no guarantee that this limiting condition will be satisfied for all possible material combinations.

2.3.2.1 One-Way Slab Action Stresses

The stresses in the face and core may be determined by ordinary bending theory modified to account for the composite nature of the sandwich cross section. The maximum stress in the face and core are, respectively:

$$\sigma_{(f)max} = \frac{w_s H^2 E_f}{8 e i} \frac{h}{2}$$

$$\sigma_{(c)max} = \frac{w_s H^2 E_c}{8 e i} \frac{c}{2}$$

The shear stress in the core is given by:

$$\tau_c = \frac{w_s H}{2 e i} [E_f t d/2 + E_c c^2/8]$$

If the sandwich panel is to be employed in a folded plate, the face thickness may be determined by the strength requirement of the shear diaphragm, $(\tau_{fp})_{max}$.

2.3.2.2 One-Way Slab Action Deflections

In general, the displacements of a statically determinant system can be found by superimposing the bending and shearing deflections. For a simply supported beam of span H, under a uniformly distributed load of w_s , the maximum bending deflection is:

$$\delta_1 = \frac{5 \, w_s \, H^4}{384 \, ei}$$

The maximum shear deflection is:

$$\delta_2 = \frac{w_s H^2}{8 A G_c}$$

where,

$$A = \frac{b d^2}{c} \approx b c$$

 G_c = Shear modulus of core material in transverse direction (p.s.i.).

The final maximum deflection is:

$$w_{max} = \delta_1 + \delta_2$$

2.3.2.3 One-Way Monolithic Ridge Joint

Should the fold line be made monolithic, one way slab behavior is modified. Due to a rotationally rigid joint at one end support, the flexural deflections are reduced by 58% when compared to a hinged fold line. The maximum shear stress is increased by 25%. While the maximum moment remains at the same value as that for a hinged fold line, the maximum moment occurs at the fold line. The in-situ connection of a monolithic joint at the fold line capable of resisting this maximum moment is feasible, but, the benefit of increased panel stiffness must be weighed against the difficulty of assuring joint quality, the fixity of the joint over time, and the cost of fixing the joint. In addition there are significant penalties with respect to thermal and hygroscopic behavior which are related to the length of panel span. A monolithic fold line doubles the eave to ridge panel span of a hinged fold line. Refer to Chapter 5 for details.

2.3.3 Two-Way Slab Action

The analysis of two-way "slab" action assumes the following: These are:

- 1. Due to the structural and aesthetic constraints on deflections, it can be assumed that deflections will be less than the thickness of the sandwich panel. Hence, simplified formula for curvature is assumed valid, and small deflection theory applies.
- 2. Bending moments, twisting moments, reactions, and shears can be approximately determined using classical plate theory by neglecting the effect of shear deformations in the sandwich core. Displacements, however, must be corrected by a shear factor to account for the deformations of the sandwich core in shear.
- 3. The edge support displacements of the "slab" due to in-plane "plate" deformations can be considered negligible.
- 4. No face wrinkling or dimpling occurs in the panel (Must be checked in the design).
- 5. The boundary conditions at the supports are determined by the type of connection employed.
- 6. Butt joints between panel elements are assumed to have a moment-rotational rigidity and transfer shear capacity comparable to the panel itself.

Consider an isotropic sandwich panel with simple bolted support connections, monolithic joints between panels, and a hinged fold line. The out of plane "slab" action can be determined by considering plate *QRST* (see Figure 2-6) as simply supported along all four edges). The bending moments, twisting moments, and reactions can be approximated using ordinary bending theory which neglects shear deformations. Reissner [1949] and Ericksen [1958] have proven this approach valid with specific cases. As the method of analysis, the small deflection plate theory of Levy [Timoshenko et al., 59] was chosen for its rapid convergence, and suitability for hand calculations.

The moments M_x and M_y per unit length can be calculated by the equations given below:

$$M_{x} = \frac{4 w_{s} L^{2}}{\pi^{3}} \sum_{m=1,3,5,...}^{\infty} \frac{1}{m^{3}} \left[1 - \frac{(1 - v_{f}) \alpha_{m} \tanh}{\alpha_{m} + 2} \cosh y_{m}\right]$$

Figure 2-6: Plan View of Folded Plate Panel

$$+ \frac{(1 - v_f)\alpha_m}{2\cosh\alpha_m} \frac{2y}{H} \sinh y_m \int \sin x_m$$

$$M_y = \frac{4w_s L^2}{\pi^3} \sum_{m=1,3,5,\dots}^{\infty} \frac{1}{m^3} \left[v_f - \frac{(v_f - 1)\alpha_m \tanh\alpha_m + 2v_f}{2\cosh\alpha_m} \cosh y_m + (v_f - 1) \frac{\alpha_m}{2\cosh\alpha_m} \frac{2y}{H} \sinh y_m \right] \sin x_m$$

Where,

$$\alpha_m = \frac{m \pi H}{2L}$$

$$X_m = \frac{m \pi x}{L}$$

$$y_m = \frac{m \pi y}{L}$$

The shearing forces per unit length are:

$$Q_x = \frac{w_s (L - 2x)}{2} - 2 \pi^3 w_s L \sum_{m=1,3,5,...}^{\infty} m^3 B_m \cosh y_m \cos x_m$$

$$Q_y = -2 \pi^3 w_s L \sum_{m=1,3,5,...}^{\infty} m^3 B_m \sinh y_m \sin x_m$$

where,

$$B_m = \frac{2}{\pi^5 \, m^5 \cosh \alpha_m}$$

The reaction along side x = 0 is given by the expression:

$$\begin{split} V_{x} &= \frac{w_{s}L}{2} - \frac{4 w_{s}L}{\pi^{2}} \sum_{m=1,3,5,\dots}^{\infty} \frac{\cosh y_{m}}{m^{2} \cosh \alpha_{m}} \\ &+ \frac{2 (1 - v_{f}) w_{s}L}{\pi^{2}} \sum_{m=1,3,5,\dots}^{\infty} \frac{1}{m^{2} \cosh^{2} \alpha_{m}} (\alpha_{m} \sinh \alpha_{m} \cosh y_{m} - y_{m} \cosh \alpha_{m} \sinh y_{m}) \end{split}$$

The reactive forces due to the twisting moments, M_{xy} , are concentrated at the corners of the folded plate panel. The reactions are directed downward to prevent the corners of the panel from rising.

$$R = \frac{4(1-v_f)w_s L^2}{\pi^3} \sum_{m=1,3,5,\dots}^{\infty} \frac{1}{m^3 \cosh \alpha_m} [(1+\alpha_m \tanh \alpha_m) \sinh \alpha_m - \alpha_m \cosh \alpha_m]$$

The deflected surface, neglecting shear deformations, is given by:

$$w' = \frac{4 w_s L^4}{\pi^5 ei} \sum_{m=1,3,5,...}^{\infty} \frac{1}{m^5} \left(1 - \frac{\alpha_m \tanh \alpha_m + 2}{2 \cosh \alpha_m} \cosh \frac{2\alpha_m v}{H} + \frac{\alpha_m}{2 \cosh \alpha_m} \frac{2 v}{H} \sinh \frac{2\alpha_m v}{H}\right) \sin x_m$$

The expression for the maximum deflection, neglecting shear deformations, is:

$$w'_{max} = \frac{4 w_s L^4}{\pi^5 e^i} \sum_{m=1,3,5,\dots}^{\infty} \frac{(-1)^{(m-1)/2}}{m^5} \left(1 - \frac{\alpha_m \tanh \alpha_m + 2}{2 \cosh \alpha_m}\right)$$

The above deflection equations are formulated with the assumption that the shear modulus of the core is infinite. Shear deformations have been ignored. March (1955) has shown that if shear deformations have been neglected, the deflection of the panel, including the effect of shear deformation, can be approximated as:

$$w_{max} = w'_{max}(1+\eta)$$

where,

 w'_{max} = Maximum deflection of the panel neglecting shear deformations in the core (in.). $\eta = A$ correction factor.

The correction factor is:

$$\eta = \frac{ctr}{k'}$$

In the case of a rectangular panel with all four edges simply supported:

$$r = \frac{\pi^2}{2 \lambda H^2} (E_f L^2 / H^2 + E_{fp} H^2 / L^2 + 2 A)$$

and

$$k' = G_c(1 + L^2/H^2)$$

and

$$\lambda = (1 - v_f^2)$$

$$A = E_f v_f + 2 \lambda G_f$$

2.3.3.1 Two-Way Monolithic Ridge Joint

Should the fold line be made monolithic, the slab must be analyzed as simply supported along three edges and rigidly fixed along the fourth edge *ST*. The slab analysis is then calculated in two steps [Benjamin, 82]:

- 1. Slab is simply supported on all four edges.
- 2. Edge ST is subjected to moment M_y , such that the slope at y = H/2 due to the external loading is equal and opposite to the slope at the same edge due to M_y .

$$\left(\begin{array}{c} \frac{\partial w'}{\partial y} \end{array}\right) \bigg|_{y=H/2} = -\left(\frac{\partial w''}{\partial y}\right) \bigg|_{y=H/2}$$

The first step is carried out using the analysis of the previous section 2.3.3. The equations for second step follow:

The moment M_v applied along the edge ST can be expressed as:

$$(M_y)_{y=H/2} = \sum_{m=1,3.5,...}^{\infty} E_m \sin x_m$$

The value of E_m is given by:

$$E_{m} = \frac{-8 \, w_{s} L^{2}}{\pi^{3} \, m^{3}} \, \frac{\alpha_{m} - \tanh \alpha_{m} \, (1 + \alpha_{m} \tanh \alpha_{m})}{(\alpha_{m} \tanh^{2} \alpha_{m} - \tanh \alpha_{m} + \alpha_{m} \coth^{2} \alpha_{m} - \coth \alpha_{m} - 2 \, \alpha_{m})}$$

The expression for the deflection is then:

$$w'' = \frac{L^2}{4 \pi^2 e^i} \sum_{m=1,3,5,...}^{\infty} \frac{E_m \sin x_m}{m^2}$$

$$\times \left[\cosh^{-1} \alpha_m \left(\alpha_m \tanh \alpha_m \cosh y_m - y_m \sinh y_m \right) + \sinh^{-1} \alpha_m \left(\alpha_m \coth \alpha_m \sinh y_m - y_m \cosh y_m \right) \right]$$

2.3.3.2 Short Folded Plates

Short folded plates deviate from the assumptions used in analyzing long folded plates. For long folded plates the reactions along the eave line are nearly constant at P/2, except in the vicinity of the endwall gables. In short folded plates the distribution of reactions along the fold line shows more variation, and consequently, the variation in edge reaction effects the in-plane loads of the folded "plate". Furthermore, the moment rigidity of panel to panel connections effects the variation in edge reactions. Short folded plate behavior is also influenced by the deep beam behavior of low aspect ratios, L/H. While these effects are difficult to quantify in a closed form solution, a finite element investigation would accurately predict the physical response.

2.3.4 Face Wrinkling

The compression face of a sandwich beam with an isotropic core is examined for face wrinkling utilizing a method described by Allen [69]. The mode of failure is represented in Figure 2-7. The wrinkling is assumed to occur only in the compression face since the tensile face remains flat. The wrinkling stress is given by:

$$\sigma_w = B_1 (E_f E_c G_c)^{1/3}$$

For practical sandwich panels with thin faces the value of B_1 may be conservatively assumed as 0.5. The face thickness obtained for face wrinkling is then compared to the existing value for the face thickness.

Figure 2-7: Wrinkling of the Compression Face (after Allen 1969)

2.4 Roof Complexities

The folded plate concept experiences some construction difficulties when complex roof shapes are incorporated into the structure. Generally the most difficult aspect is to suspend the panel element pieces in their aligned position so that they can be joined together to develop folded plate behavior. Not until all panel to panel joints and edge supports are connected will the folded plate develop any rigidity. Puncturing of the roof diaphragm can interfere with folded plate behavior.

2.4.1 Roof Openings

Placement of skylights, turned gables, dormers, and other openings in a folded plate are much more critical than in normal residential roof construction. It becomes necessary to transfer shear as well as bending stresses through reinforcement around openings cut in the roof diaphragm. Bending loads can be transferred to adjacent framing panels through structural headers. These structural members can inserted within the depth of the panel core. Shear stresses are carried around openings by the placement of strut collectors at the

edge of the cut outs. The general problem of providing natural light, ceiling clearance, and ventilation can be solved through the following design recommendations:

- 1. The triangular areas of the endwall gable at either end of the span may be opened up to fenestration.
- 2. Openings may be cut in the panels near the center of the folded plate where shear stresses are at a minimum.

It is recommended that complex roof forms, such as turned gables, and dormers be positioned so as to line up with the center of the maximum in-plane moment, corresponding to the point of zero shear. To align the centerline of the turned gable or dormer with the midspan of the folded plate, a long folded plate may be segmented into two short folded plates with an intermediate diaphragm support. Typically, the shape of the roof form which is to be cut out of the folded plate to create a turned gable is triangular. In the special case of the valley line running from the centerline of the folded plate at the ridge to the point where the gable line intersects the eave line, the in-plane shear stresses remain constant. It becomes necessary, however, to add a high strength continuous longitudinal line member to deal with the compressive and tensile forces due to in-plane bending.

2.4.2 Salt Box Roofs

Salt box construction is a term referring to the modified geometry of a single bay roof. The roof form is distinguished by the horizontal projected ridge to eave distance differing on either side of the roof. Additionally, the pitch may vary from one side of the roof to the other. This roof form is commonly found in New England, but is gaining in nation-wide popularity, primarily where the roof cavity is employed as habitable space. Light can enter the roof cavity from windows punctured in the height of the wall extending into the roof cavity space. The folded plate is well-suited for adaptation to the salt box roof geometry. The analysis is modified only in the magnitude of the in-plane load. The

total ridge line reaction from both roof panels is distributed according to the roof slopes. Let α_1 and α_2 represent the angles of the respective sides of the roof. The ratio of the in-plane load of roof side one to the in-plane of roof side two is equal to $\cos(\alpha_2)/\cos(\alpha_1)$. Hence the steeper of the roof panels carries a greater load.

2.4.3 Hipped Gable Roofs

Hipped gables refer to the sloping inward of the endwall gable from a vertical plane. The sloped, triangular hipped gable is subjected to projected live and dead loads. The hipped gable effects the folded plate behavior by depositing an edge reaction in the plane of the longitudinal roof panels. This in-plane force is resisted by the "plate" action of the roof panel in the longitudinal direction. Bending and shear stresses are developed. Simplifying assumptions with regard to the edge reaction can be made for the triangular hipped gable, however, further study into hipped gable behavior is recommended.

Chapter 3

Ridge Beam System

The ridge beam system depends on a primary framing element at the fold line to carry the ridge line loads to gable end supports. The panel elements span from the eave line to the ridge line in one-way beam action. The roof behaves as a diaphragm in resisting wind and seismic loadings. This diaphragm behavior is similar to the "plate" action of the folded plate. Longitudinal line members perform the same function of resisting flexural forces as in the folded plate. Similarly, panel to panel shear is carried out to the gable line supports. The analysis of analysis and design of the roof panels with respect to one-way "slab" and "plate" action is summarized in the following sections for convenience.

3.1 Review of One-Way Slab Action

The flexural rigidity of a sandwich is the sum of the flexural rigidity of the face and core, measured about the centroidal axes:

$$ei = \frac{E_f b \, t^3}{6} + \frac{E_f b \, t \, d^2}{2} + \frac{E_c \, b \, c^3}{12}$$

If the beam is wide (b >> c) the lateral expansions and contractions in the longitudinal direction are restricted by the shear resistance of the face and core; it is reasonable to assume that the strains in the longitudinal direction are zero. The ratio of stress to strain in the transverse direction is therefore $E/(1-v^2)$ for both membrane and local bending stresses. This value replaces E in the above flexural rigidity equation [Allen, 69].

3.1.0.1 One-Way Slab Action Stresses

The stresses in the face and core may be determined by ordinary bending theory modified to account for the composite nature of the sandwich cross section. The maximum stress in the face and core are, respectively:

$$\sigma_{(f)max} = \frac{w_s H^2 E_f}{8 ei} \frac{h}{2}$$

$$\sigma_{(c)max} = \frac{w_s H^2 E_c}{8 ei} \frac{c}{2}$$

The shear stress in the core is given by:

$$\tau_c = \frac{w_s H}{2 ei} [E_f t d/2 + E_c c^2/8]$$

3.1.0.2 One-Way Slab Action Deflections

In general, the displacements of a statically determinant system can be found by superimposing the bending and shearing deflections. For a simply supported beam of span H, under a uniformly distributed load of w_s , the maximum bending deflection is:

$$\delta_1 = \frac{5 \, w_s H^4}{384 \, ei}$$

The maximum shear deflection is:

$$\delta_2 = \frac{w_s H^2}{8 A G_c}$$

where,

$$A = \frac{b d^2}{c} \approx b c$$

The final maximum deflection is:

$$w_{max} = \delta_1 + \delta_2$$

3.2 Review of Plate Action

The plate action of the roof diaphragm for a roof system which incorporates longitudinal line members at the eave and ridge is summarized. The in-plane loads, W_p , are a result of the roof system resisting predominately horizontal wind and seismic loads as a roof diaphragm behavior of the roof system. The determination of roof diaphragm loads is discussed in Chapter 6.

3.2.1 Plate Action Stresses

The maximum axial stress in the line member in the longitudinal direction is calculated from beam theory assuming that only the longitudinal line members contribute to the moment of inertia:

$$\left(\sigma_{e}\right)_{max} = \frac{W_{p}L^{2}}{8A_{e}H}$$

The required cross-sectional area of the longitudinal line member, A_e , to carry these axial loads can be estimated on the basis of strength requirements, by the formula:

$$A_e = \frac{W_p L^2}{8 \, \sigma_{ell} H}$$

The diaphragm action of the panels carry the shear loads to the gable line. The shear varies linearly from the maximum value at the gable lines to a minimum value at the midspan. The maximum shear value at the gable line due to a uniformly loaded folded plate is:

$$(Q_p)_{max} = W_p(L/2)$$

The minimum shear value at the midspan, due to a uniform load over one half of the folded plate span is:

$$(Q_p)_{min} = W_p(L/8)$$

The maximum in-plane shear stress in the faces at the gable lines can be found as:

$$(\tau_{fp})_{max} = \frac{W_p L}{2 A_p}$$

where,

 A_p = Transformed transverse cross sectional area of sandwich panel. = [2(t)+(G_{cp}\ /G_f)\ c]\ H

The maximum in-plane shear stress in the core is:

$$(\tau_{cp})_{max} = \frac{G_{cp}}{G_f} \left[(\tau_{fp})_{max} \right]$$

3.2.2 Plate Action Deflections

The in-plane deflection of the "plate" is the sum of four parts: shear deflection of the "plate" (δ_s) , seam slip deflections (δ_{ss}) , eave line member splice deflections (δ_e) , and flexural deflection (δ_f) of the "plate" acting as a deep beam girder.

The midspan shear deflection, δ_s , is:

$$\delta_s = \frac{W_p L^2}{8 A_p G_f}$$

The total midspan deflection due to seam slip, δ_{ss} , can be found by summing the seam slip deflections at each joint between the support and the midspan.

The total midspan deflection due to splice deflections, δ_e , can be found by summing the deflections at each splice in the eave line member multiplied by H and divided by the distance of the splice from the gable line.

For a uniformly loaded simple span, the midspan deflection is:

$$\delta_f = \frac{5W_p L^4}{384 E_e I_p}$$

where,

$$I_p = A_e H^2/2$$

The effect of "plate" deformations on the vertical ridge deflection and lateral eave deflection can be determined geometrically. Using a Williot diagram (Figure 2-5) the vertical ridge deflection is:

$$\delta_{v} = \frac{\delta_{s} + \delta_{ss} + \delta_{f}}{\sin(\alpha)}$$

A simplified expression for horizontal eave deflections utilizing linear geometry, which assumes small angle rotations, is:

$$\delta_h = \delta_v(D/B)$$

3.3 Ridge Beam Design

The ridge beam carries the reactions from the upper end of the rafters, or a tributary load area equal to one-half the roof area. The load per unit length along the ridge beam, V_r , is:

$$V_r = [w_l \cos(\alpha) + w_d] H$$

The maximum moment for a simply supported ridge beam is:

$$M_r = \frac{V_r L_r^2}{8}$$

where,

 L_r = Length of the ridge beam (in.).

The required section modulus for the ridge beam, S_{req} , is [A.I.T.C., 85]:

$$S_{req} = \frac{M_r}{C_f F_b}$$

where,

 $C_f = (12/d_r)^{1/9}$

= Size factor for beams deeper than 12 inches. As the depth of the beam increases, there is a slight decreases in the bending strength.

 d_r = Depth of ridge beam (in.).

 F_b = Allowable flexural stress for extreme fiber in bending (p.s.i.).

The required moment of inertia determined by deflection constraints, I_{req} , is:

$$I_{req} = \frac{5 \, V_r \, L_r^{\ 3} f}{384 \, E_r}$$

where,

f = Allowable displacement factor (i.e. length of span/f = Allowable displacement) (-). $E_r = \text{Young's modulus of ridge beam material (p.s.i.)}.$

The allowable design value for shear stress, F_{ν} , must not be exceeded by the maximum shear stress in the rafter, f_{ν} :

$$f_v = \frac{3 V_r L_r}{4 b_r d_r}$$

where,

 b_r = Width of ridge beam (in.).

3.3.1 Ridge Beam Design Example

Two options of ridge beam construction will be examined: structural glued laminated beam, and a laminated veneer lumber beam. The beam is laterally supported along its length and is fixed to prevent side movement at the top and bottom of the beam ends.

The transverse load per unit length resulting from a live load of 40 p.s.f, a dead load of 9.6 p.s.f., an eave to eave width of 28 feet, and a pitch of 6/12 is:

$$V_r = \left[\frac{40}{144}cos(26.57) + \frac{9.6}{144}\right]187.8 = 59.19(\text{lbs./in.})$$

The maximum moment is:

$$M_r = \frac{(59.19) 240^2}{8} = 426,200 \text{(lbs.*in.)}$$

3.3.1.1 structural glued laminated beam

Structural glued laminated timber, S.G.L., is used as load carrying structural framing and refers to an engineered stress-rated product of a timber laminating plant. S.G.L. is comprised of assemblies of suitably selected and prepared wood laminates bonded together with adhesives. The grain of all laminates is oriented approximately parallel in the longitudinal direction. The individual laminates are typically, and do not exceed, standard dimensional two inch lumber. The properties of Southern Pine as used in structural glued laminated beams are as follows:

$$F_b = 2400 \text{ p.s.i.}$$

 $F_v = 200 \text{ p.s.i.}$
 $E_r = 1,700,000 \text{ p.s.i.}$

The required section modulus for the beam is [A.I.T.C., 85]:

$$S_{req} = \frac{426,200}{2400} = 177.6(\text{in.}^3)$$

The required moment of inertia determined by deflection constraints is:

$$I_{req} = \frac{5(59.19)(240)^3 240}{384(1,700,000)} = 1504(\text{in.}^4)$$

A 3x19.5 inch structural glued laminated ridge beam with a section modulus, reduced by the size factor of 0.95, of 180.1 (in.³) and a moment of inertia of 1854 (in.⁴) satisfies the design requirements.

The check on the allowable design value for shear stress of 200 p.s.i. is also satisfied.

$$f_v = \frac{3(59.19)240}{4(3.0)19.5} = 182.1(\text{p.s.i.})$$

To summarize the design: a structural glued laminated beam of Southern Pine, 3.0 inches thick and 19.5 inches deep, comprised of 13 laminations.

3.3.1.2 laminated veneer lumber beam

Laminated Veneer Lumber, L.V.L., is a continuous, laminated veneer product. L.V.L. is manufactured with the grain running parallel to the beam. The random distribution of any defects such as knots, as in ordinary sawn lumber, results in much greater carrying capacity, less variability, and no warp or twist. Produced in lengths up to 80 feet, it is available in 3.5 to 48 inch depths and thicknesses from 0.75 to 3.0 inches. The properties of L.V.L. are:

$$F_b = 2800 \text{ p.s.i.}$$

 $F_v = 250 \text{ p.s.i.}$
 $E_r = 2,000,000 \text{ p.s.i.}$

The required section modulus for the beam is [A.I.T.C., 85]:

$$S_{req} = \frac{426,200}{2800} = 152.2(\text{in.}^3)$$

The required moment of inertia determined by deflection constraints is:

$$I_{req} = \frac{5(59.19)(240)^3}{384(2,000,000)} = 1278.5(\text{in.4})$$

A 3x18 inch laminated veneer lumber ridge beam with a section modulus, reduced by the size factor of 0.96, of 154.8 (in.³) and a moment of inertia of 1458 (in.⁴) satisfies the design requirements.

The check on the allowable design value for shear stress of 250 p.s.i. is also satisfied.

$$f_v = \frac{3(59.19)240}{4(3.0)18.0} = 197.3$$
(p.s.i.)

A summary of the design is a laminated veneer lumber ridge beam, 3.0 inches wide and 18.0 inches deep.

3.4 Comparison of Ridge Beam to Folded Plate System

The ridge beam enables roof complexities to be constructed with greater ease than in the folded plate. The ridge beam provides a primary frame on which the panel elements can be supported. Dormers can be incorporated into the panel element in the factory before shipment to the site. Stringers along either edge of the panel element reinforce the panel in bending to compensate for areas of the panel element removed to place the dormer. In the case of turned gables and hipped gables, timbers are placed along the valleys and hips to act as lines of support for the panel elements. The introduction of this primary frame reduces the design flexibility of the building system.

In comparison to a folded plate, the ridge beam improves the redundancy for the system. The failure of any one component in the folded plate would result in the failure of the entire system, while, in the ridge beam system the failure of one panel element does

not result in the collapse of the entire roof structure. The issue of redundancy is discussed in greater depth in Section 8.2.

Chapter 4

Floor Tied System

The use of roof cavity as usable space implies the presence of a floor unit, which may be incorporated into the structural system of the roof. The floor unit can be used as a tension tie to resist the lateral thrust of the roof. The in-plane loads of the floor tied system are the same as in the case of the folded plate. Rather than resisting these in-plane loads through "plate" action, the floor tied structural system behaves as a truss. The horizontal thrust component of the in-plane loads are resisted by the floor unit acting as a tension tie between eave lines. The roof panels act as compression struts and are subjected to compressional axial loads equal to the in-plane loads. The analysis and the design of the roof panels must include both the axial compression and transverse bending of the sandwich panels.

4.1 Buckling of Sandwich Panels

In the process of buckling, an axially compressed, simple pin-ended column deflects laterally in bending. The curvature of the column due to lateral bending produces both an eccentricity of the load relative to the axis, and a shear component transverse to the column axis. In most conventional columns the shear stiffness of the column is very high relative to the bending stiffness, and the deformations due to shear are small enough to be neglected. In sandwich construction shear distortions are not insignificant and may reduce buckling capacity from loads calculated from classical Euler theory. The following equations determine the critical buckling load, P_{cr} in terms of shear and bending deformations for a pin-ended column [Structural Plastics Design Manual, 84].

$$\frac{1}{P_{cr}} = \frac{H^2}{\pi^2 ei} + \frac{1}{bd G_c}$$

The first part of the right hand equation is the critical buckling load with infinite shear stiffness and finite bending stiffness. The second part of the equation is the critical buckling load for a column of finite shear stiffness and infinite bending stiffness, and either a symmetrical or anti-symmetrical buckling mode with respect to the column midlength.

The critical buckling load, including shear deformations can be written as:

$$P_{cr} = \frac{\pi^2 \, ei/\, H^2}{1 + \pi^2 \, ei/\, (H^2 b \, d \, G_c)}$$

4.2 Combined Loads

The maximum combined stress will occur at the midspan of the panel element. It is the sum of the axial stresses in the concave side of the panel. Generally the actual compression stresses must be less than the allowable compression stress and less than one third of the critical wrinkling stress. The wrinkling stress is given by:

$$\sigma_w = 0.5 (E_f E_c G_c)^{1/3}$$

Chapter 5

Thermal and Hygroscopic Stresses and Deflections in Sandwich Panels

5.1 Introduction

Face materials of sandwich panels undergo dimensional changes when subjected to moisture or temperature changes. The associated linear expansion and contraction of the faces can cause significant bowing in sandwich panels which are free to move; significant stresses in panels which are restrained. Thermal and hygroscopic stresses and deflections are an important consideration in sandwich panel applications in the building industry for the following reasons:

- 1. Low- or non- water-absorbing face materials typically have large coefficients of thermal expansion.
- 2. Water-absorbing face materials greatly expand and contract with varying moisture content. Exterior finish coats are typically water permeable; furthermore, vapor drive, with the accompanied water buildup, may occur.
- 3. During summer and winter seasons, extreme temperature differences between the faces may approach 100 degrees Fahrenheit.
- 4. In unrestrained panels, thermal deformations are often of the same order of magnitude as deformations due to external loads, and are a critical component in the stiffness design of the panel. Water leakage and air infiltration due gaps created by thermal deformations lower the panel's utilitarian properties.
- 5. In restrained sandwich panels, thermal stresses may exceed allowable values.
- 6. Special attention must be paid to the edge reactions required of the fastening system.

While the effects of temperature are used to illustrate these critical effects, the principles developed are applicable to the analysis of hygroscopic (moisture) effects, or dimensional changes resulting from other environmental exposures or time dependent effects.

5.2 Thermal Analysis of a Sandwich Beam

The thermal behavior of small width sandwich beams differ from that of isotropic sandwich panels of substantial width (slab). It is helpful, however, to introduce thermal behavior with simplified beam behavior, before entering into more complex two-way sandwich slab behavior. Moreover, beam analysis is useful for preliminary investigations as an approximation of the severity of deflections and stresses for the more complex two-way behavior of wide panels.

5.2.1 Unrestrained Sandwich Beam Behavior

When opposite faces of an unrestrained sandwich beam undergo different dimensional changes, a strain differential is imposed across the beam thickness. The unrestrained sandwich beam bows to a radius of curvature, R_c , equal to:

$$R_c = \frac{t_c}{\epsilon_2 - \epsilon_1}$$

where,

 t_c = Distance between the centerlines of the two sandwich faces (in.). = $(t+c)^2/c \approx d^2/c \approx c$ ϵ_2 , ϵ_1 = Unit dimensional change of opposite faces (-).

The unit dimensional change, or strain, is typically taken from a reference condition such as completion of manufacture, when the faces are incorporated into the composite structure. If the strain is assumed constant over the beam length, H, the effect is analogous to a beam subjected to equal bending moments at either end (a constant moment applied over the length of the beam). The maximum deflection occurring at the midspan is:

$$(w)_{max} = \frac{(\epsilon_2 - \epsilon_1)H^2}{8d}$$

In the case of a uniform temperature change,

$$\varepsilon_i = \alpha_{i} T_i$$

where,

 ε_i = Strain due to thermal effects of *i* face (-).

 α_{i} = Coefficient of thermal expansion of the *i* face $((-)/^{\circ}F)$).

 T_i = Temperature change of the i face from the reference condition (°F).

5.2.2 Restrained Sandwich Beam Behavior

Continuously spanning sandwich beams may be supported by primary framing at intermediate points along the panel length. In a roof system the intermediate support may be either a purlin or a bearing wall connecting to the roof plane. When opposing faces undergo differing dimensional changes, reactions develop at the supports to prevent deflections. These restraining reactions generate bending and shear stresses. Given the typically weak strength properties of core material, shear stresses are of critical importance, but critical deformations and moments must also be checked for these indeterminate structures.

5.3 Thermal Analysis of a Two-way Sandwich Slab

Thermal two-way slab behavior differs from one-way beam behavior in that a wide unrestrained beam (a slab) warps to a two-dimensional curved surface. The unrestrained isotropic slab would conform in shape to a spherical surface with double curvature. The radius of curvature of the plate, R_c , is equal to:

$$R_c = \frac{t_c}{\varepsilon_2 - \varepsilon_1}$$

In their practical use, however, rectangular sandwich panels are held in place by edge fasteners. Significant edge reactions are developed to restrain the panel edges from bowing.

5.3.1 Two-way Sandwich Slab Assumptions

The average temperature of one face is assumed to be *T* degrees higher than other face. Equations describing deflections, bending and torsional moments, transverse shear, and edge reactions of a rectangular sandwich panel are listed for two differing boundary conditions: the case of two opposite edges simply supported and the other two free, and the case of four edges simply supported. Since transverse shear forces occur, shear deformation of the core must be considered. The assumptions made in the analysis are:

- 1. Plate is assumed to be free to expand in its plane.
- 2. Thickness of the faces is small in comparison to the core.
- 3. Deflections of the panel are small in comparison to the panel thickness.
- 4. Bending stiffness of the core is negligible compared to that of the face.
- 5. Thermal gradient in the core results in negligible normal bending stresses which are neglected.
- 6. Distance between faces remains constant.
- 7. Face and core materials are isotropic.
- 8. Constant temperature distribution throughout each face.
- 9. Equal in-plane biaxial expansion of the faces due to thermal and moisture expansion.

5.3.2 Two-way Slab with Two Opposite Edges Simply Supported and Remaining Edges Free

The case for which the edges x=o, x=H are simply supported and the edges $y=\pm b/2$ are free, approximate the boundary conditions of a panel element in the mid-section of the roof system (see Figure 5-1). The simply supported edges correspond to the ridge and eave line; the two free edges correspond to the panel to panel connection. The roof system can be idealized as a series of connected panel elements extending for infinity with the free edges connected to one another in joints which are free to rotate. In reality, the panel to panel joints possess some degree of rotational stiffness, and are restrained in freedom of

vertical deflections by their eventual connection to the gable line. This approximation of the panel's boundary conditions will result in deflections slightly larger than those resulting from real-world boundary conditions.

Figure 5-1: Two-way Sandwich Slab with Two Opposite Edges Simply Supported and Remaining Edges Free

The deflection is given by [Bijlaard, 69]:

$$w = -[\alpha_t T(1+v_f)/t_c][x(H-x)/2] + \sum_{m=1,3,5,\dots}^{\infty} [A_m \cosh(\lambda_m y) + B_m \lambda_m y \sinh(\lambda_m y)] \sin(\lambda_m x)$$

where,

$$B_{m} = \frac{8 \alpha_{t} (1 - v_{f}^{2}) T}{\lambda_{m}^{3} H t_{c}} \times \frac{\sinh(\alpha_{m})}{\left[3 + v_{f} + 2 (1 - v_{f}) \lambda_{m}^{2} ei/G_{c} t_{c}\right] \sinh(2 \alpha_{m}) - 2 (1 - v_{f}) \alpha_{m} - \left[2 \lambda_{m} (1 - v_{f}) ei/G_{c} t_{c}\right] p_{m} \coth(\gamma_{m}) \left[\cosh(2 \alpha_{m}) - 1\right]}$$

 α_r = Thermal coefficient of expansion for the face material ((-)/°F).

T = Difference between the average temperature of the two faces (°F).

$$\lambda_m = \frac{m \pi}{H}$$

$$\alpha_m = \frac{m \pi b}{2H}$$

$$p_m = \{\lambda_m^2 + [2 G_c t_c/(1 - v_f) ei]\}^{1/2}$$

$$\gamma_m = \frac{p_m \, b}{2}$$

$$E_m = [2 \lambda_m^3 ei sinh(\alpha_m)/sinh(\gamma_m)] B_m$$

$$A_m = \{ [(1 + v_f)/(1 - v_f)] - \alpha_m \coth(\alpha_m) \} B_m$$

The shear forces are:

$$Q_x = \sum_{m=1,3,5,\dots}^{\infty} \left[(E_m p_m / \lambda_m) \cosh(p_m y) - 2 \lambda_m^3 ei B_m \cosh(\lambda_m y) \right] \cos(\lambda_m x)$$

$$Q_y = \sum_{m=1,3,5,\dots}^{\infty} \left[E_m \sinh(p_m y) - 2 \lambda_m^3 ei B_m \sinh(\lambda_m y) \right] \sin(\lambda_m x)$$

The bending and twisting moments are:

$$\begin{split} M_{x} &= ei \; \sum_{m=1,3,5,\dots}^{\infty} \; (\lambda_{m}^{2} \left\{ \left[(1-v_{f}) \, A_{m} - 2 \, v_{f} \, B_{m} \right] \, cosh(\lambda_{m} \, y) + (1-v_{f}) \, B_{m} \, \lambda_{m} \, sinh(\lambda_{m} \, y) \right\} \, + \\ & \left[(1-v_{f})/G_{c} \, t_{c} \right] \left[E_{m} \, p_{m} \, cosh(p_{m} \, y) - 2 \, \lambda_{m}^{4} \, ei \, B_{m} \, cosh(\lambda_{m} \, y) \right]) \, sin(\lambda_{m} \, x) \\ M_{y} &= \left[\alpha_{t} \, T \, ei (1+v_{f}^{2})/t_{c} \right] - ei \; \sum_{m=1,3,5,\dots}^{\infty} \; (\lambda_{m}^{2} \, v_{m}^{2} \, v_{m}$$

The tensile forces transmitted through the attaching bolts are:

$$\begin{split} -(V_{y})_{x=0} &= ei \; \sum_{m=1,3,5,\dots}^{\infty} B_{m} \; \lambda_{m}^{3} \left[\left\{ 5 - \mathsf{v}_{f} - (1 - \mathsf{v}_{f}) \; \alpha_{m} \, coth(\alpha_{m}) + \left[2 \; (1 - \mathsf{v}_{f}) \, ei \; \lambda_{m}^{2} / G_{c} \, t_{c} \right] \right\} \; \times \\ & cosh(\lambda_{m} \; y) + (1 - \mathsf{v}_{f}) \; \lambda_{m} \; y \, sinh(\lambda_{m} \; y) - \\ & \left[2 \; p_{m} \, sinh(\alpha_{m}) / \lambda_{m} \, sinh(\gamma_{m}) \right] \left\{ \left[(1 - \mathsf{v}_{f}) \, ei \; \lambda_{m}^{2} / G_{c} \, t_{c} \right] + 2 \right\} \; cosh(p_{m} \; y) \right] \end{split}$$

5.3.3 Two-way Sandwich Slab with Four Edges Simply Supported

The case for which the edges x=0, x=H, $y=\pm b/2$ are simply supported, approximates the boundary conditions of a panel element attaching to the gable line at the end-section of the roof system (see Figure 5-2). The three opposite, simply supported edges correspond to the ridge, eave and gable line for a panel element at the end-section of the roof system. The boundary condition along the edge connecting to the adjacent panel is in actuality neither free nor simply supported. If this edge is assumed simply supported a more severe state of stresses is imposed. This approximation of the panel boundary conditions results in stresses slightly greater than those found with real-world boundary conditions.

The deflection is given by [Bijlaard, 69]:

$$w = -4 \; \alpha_t \, T \; (1 + v_f) \, H^2/\pi^3 \; t_c \; \sum_{m=1,3,5,\dots}^{\infty} \; sin(\lambda_m \, x)/m^3 \; [1 - cosh(\lambda_m \, y)/cosh(\alpha_m)]$$

The bending and twisting moments are:

$$M_x = 4 \alpha_t T (1 - v_f^2) ei/\pi t_c \sum_{m=1,3,5,\dots}^{\infty} sin(\lambda_m x) cosh(\lambda_m y)/cosh(\alpha_m) m$$

$$\begin{split} M_{y} &= \alpha_{t} T \left(1 - v_{f}^{2} \right) ei/t_{c} - 4 \; \alpha_{t} T \left(1 - v_{f}^{2} \right) \, ei/\pi \; t_{c} \; \sum_{m=1,3,5,\dots}^{\infty} \; sin(\lambda_{m} \; x) \; cosh(\lambda_{m} \; y)/cosh(\alpha_{m}) \; m \\ M_{xy} &= 4 \; \alpha_{t} \; T \left(1 - v_{f}^{2} \right) \, ei/\pi \; t_{c} \; \sum_{m=1,3,5,\dots}^{\infty} \; cos(\lambda_{m} \; x) sinh(\lambda_{m} \; y)/cosh(\alpha_{m}) \; m \end{split}$$

The twisting moment, M_{xy} becomes infinite at the corners. The corner reactions, R, are infinite and are directed upwards.

$$(R)_{x=0, y=b/2} = 2 (M_{xy})_{x=0, y=b/2}$$

Figure 5-2: Panel with Four Edges Simply Supported

The statically equivalent reactions continuously distributed along the edge are:

$$V_x = -4 \alpha_t T (1 - v_f^2) ei/H t_c \sum_{m=1,3,5,...}^{\infty} cosh(\lambda_m y)/cosh(\alpha_m)$$

5.4 Precision

The precision of the numerical solution depends on the summation limits. Computers are limited in the range of summation by limitations on number size. The hyperbolic functions rapidly approach large values over a small domain. Therefore to achieve greater precision, terms which approach a limit as summation limits become large, are replaced by their final values so as to prevent floating number errors.

5.5 Infinite Corner Reactions

Variations in the twisting moment create a singularity at the corner. As the summation limits approach infinity, the corner reactions approach infinity. In calculating the edge reactions for fasteners, this inconsistency in the solution of a mathematical model can be remedied by applying the laws of equilibrium and symmetry. The outer fastener reaction nearest the corner is set equal to the negative value of the edge reaction obtained from integrating from the midpoint of the outer fastener and the adjacent fastener to the midpoint of the panel length. Reactions of fasteners inside of the outer corner fastener are found by integrating the edge reactions over the respective tributary areas of the fastener.

5.6 Effect of Panel Width

There is a transition in thermal behavior from a sandwich beam to a two-way sandwich slab as panel width increases. For a sandwich slab (exposed to a gradient) with opposite edges simply supported, the uniform bending stresses along the simply supported edge do not vary with the panel width. This fact follows from the uniform curvature induced on the panel edge from the thermal or hygroscopic gradient. The reactions required to induce this uniform moment are dependant on panel width. For a sandwich slab with opposite edges simply supported, the panel reactions can be measured as a function of the midspan reactions of the simply supported edge. The idea behind measuring the reaction at the midpoint is that this parameter for monitoring panel width effects on edge reactions is not sensitive to the summation limits. The equations show that fastener reactions increase as the panel width is decreased. This is contrary to common engineering sense and is due to the infinite corner reactions. The equations become ill-conditioned due to the division of very large numbers by less large numbers. This mathematical error in the approximate equations result in erroneous output. In reality, a sandwich beam is not restrained from from bowing along its supported edge.

5.7 Computer Programs

Included in the appendix are two programs to study the thermal and hygrosopic behavior of rectangular sandwich slabs. S.f is a fortran program which calculates the deflections, shear stresses, bending stresses, twisting stresses for a rectangular isotropic sandwich panel with: two edges simply supported, the other two edges free; four edges simply supported. Program B.f is a fortran program which calculates the reaction along the panel edges for a rectangular isotropic sandwich panel with: two edges simply supported, the other two edges free; four edges simply supported. Oriented strand board, and a polyurethane foam core are the materials input into the programs: face thickness is one inch, the core thickness is twelve inches. The thermal coefficient of expansion used for O.S.B. is parallel to the transverse direction of the panel. The thermal gradient is $100^{\circ}F$. The programs are run for two panel geometries: 96 and 48 inch panel width; 240 inch panel length. The effect of varying the summation limits for each case is studied.

5.8 Effect of Core Depth

Core depth is a controlling parameter in the thermal behavior of sandwich structures. From examination of the thermal deflection equation for an unrestrained sandwich beam of given length and strain, deflections are inversely proportional to the core depth (more precisely, the distance between the centerlines of the two sandwich faces).

$$(w)_{max} = \frac{(\epsilon_2 - \epsilon_1)H^2}{8d} \alpha \frac{1}{d}$$

Assuming that the face materials are linear elastic, the same relationship applies to forces resulting from restrained sandwich beam behavior.

Dimensionally sensitive face materials require larger core thicknesses if exposed to

thermal and hygroscopic gradients. For example, at a core depth of 9.54 inches, an aluminum faced sandwich beam exposed to a 100° F temperature gradient and spanning twenty-feet thermally bows to the deflection criteria of L/240. At a core depth of twelve inches 80% of the allowable deflections are due to thermal bowing. Therefore, if the panel design is controlled by stiffness, the load capacity of the panel is reduced to 20% of the load capacity of a panel not exposed to a thermal gradient. Selection of dimensionally sensitive face materials for use in composite action with structural insulating cores should be avoided. Furthermore, inexpensive core materials possessing less effective insulating qualities are well suited for deep cores.

5.9 Changes in Length

A strain gradient imposed across the sandwich panel results in a change in the overall panel length, measured at the mid-depth of the panel core, of:

$$\Delta H = \frac{(\epsilon_2 - \epsilon_1)H}{2}$$

Panel joints must allow for this differential movement along their length. Joint sealants, connections and roof membranes must be designed to accommodate such movements, which can become significant for long panels. A twenty five foot long, steel faced panel subjected to a 100 °F thermal gradient results in a change of overall length of 0.0975 inches.

Expansion joints should be provided along the roof panel length, otherwise, significant movements in the longitudinal direction will occur. Panel joints must allow for for expansion and contraction between panel to panel joints. Joint sealants, connections and roof membranes must be designed to accommodate such movements. If expansion joints are not periodically provided at panel to panel connections, the change in roof span can be significant. A steel faced panel with a roof span of fifty feet, subjected to a 100 °F

thermal gradient results in a change of overall length of 0.195 inches at the panel middepth. The thermally exposed exterior face, expands in longitudinal length by 0.39 inches.

Chapter 6

Code Design

There are three major code bodies in the United States: Uniform Building Code (UBC), Council of American Building Officials (CABO), and the Building Officials and Code Administrators (BOCA). The Uniform Building Code is the most exhaustive and extensive of the three codes and will be used as the design code.

6.1 Uniform Building Code 88

UBC specifies:

- 1. Calculation of design loads
- 2. Stresses < allowable
- 3. Deflection constraints
- 4. Joint design

Every building component should be provided with strength adequate to resist the most critical effect resulting from the following combination of loads:

- 1. Dead plus roof live (or snow).1
- 2. Dead plus wind¹ (or seismic).
- 3. Dead plus wind plus snow/2.1
- 4. Dead plus snow plus wind/2.1
- 5. Dead plus snow² plus seismic.

¹Crane hook loads need not be combined with roof live load nor with more than three fourth of the snow load or one-half wind load.

²Snow loads over 30 psf may be reduced 75 percent upon approval of the building official, and snow loads 30 psf or less need not be combined with seismic.

All allowable stress values specified for working stress design may be increased one-third when considering wind or earthquake forces either acting alone or when combined with vertical loads. No increase is allowed for vertical loads acting alone.

For live loads, deflections are limited to be less than the length of span divided by 240; for live and dead loads, deflections must be less than the length of span divided by 180.

Every device designed to connect prefabricated assemblies should be capable of developing the strength of the members connected, except in the case of members forming part of a structural frame designed as specified in Chapter 23 [U.B.C., 88]. Roof panel elements qualify as part of a structural frame. Connections between roofs and supporting walls should be capable of withstanding uplift and shear forces of seismic and wind origin.

6.2 Uniform Building Code 88 Design Loads

6.2.1 Roof Snow Loads

Snow loads full or unbalanced are considered in place of minimum roof live loads set forth in Table No. 23-C, because such loadings result in larger members or connections. Additionally, the potential accumulation of snow at valleys, parapets, roof structures and offsets in roofs of uneven configuration needs to be considered. Where snow loads occur, they shall be determined by the building official. Snow loads in excess of 20 pounds per square foot may be reduced for each degree of pitch over 20 degrees by R_s as determined by the following formula:

$$R_{c} = S/40 - 1/2$$

where,

 R_s = Snow load reduction in pounds per square foot per

degree of pitch over 20 degrees. S = Total snow load in pounds per square foot.

A roof snow load of 40 p.s.f. is assumed for prototype design. This snow load exceeds the requirements of approximately 85% of the geographical land area of the contingenuous United States. Face and core thicknesses of the panel are designed for local live roof loads, in the region of the manufacture of the panel elements. A single pair of face and core thicknesses could be used with each standard length of the panel which would be tailored to the local requirements. Panels manufactured in standard lengths, and designed to resist this an average live snow load, can be utilized in areas of greater snow fall by shortening the length of span (fall-off would be added waste and cost); in areas of lesser live roof load, the sandwich panels would be over designed.

6.2.1.1 Alternate Roof Snow Load Design Procedure

An alternate roof snow design procedure is given in the UBC 88 Code. Ground snow load, P_g to be used in the determination of design snow loads for buildings is shown in Figures Nos. A-5-A, A-5-B, A-5-C [U.B.C., 88]. For areas in Figure No. A-5-A, the basic ground snow shall be determined by a building official, which is the majority of the geographical land area of the United States. This undetermined parameter creates difficulties in utilizing this method for a generalized investigation, but is listed below to show that the alternate method is not in conflict with the simplified snow load analysis.

The value of roof (or other member) snow load, P_f is determined by the following formula:

$$P_f = C_{exp} I P_g$$

From inspection of the Figures No. A-5-A through A-5-C, a basic ground snow of 30 p.s.f. is chosen. This snow load corresponds most closely to the land area covered by a 40 p.s.f. snow load in the simplified analysis (refer to Section 6.2.1). For structures located in

densely forested or sheltered areas the snow exposure coefficient, C_{exp} , is equal to 0.9 (Table No. A-23-S [U.B.C., 88]) and represents the worst exposure. The value for occupancy importance factor, I, is equal to 1.0 (Table No. A-23-T [U.B.C., 88]) since residential structures are non-essential facilities.

The roof load is assumed to act vertically upon the area projected upon a horizontal plane.

Roof loads between 20 and 70 pounds per square foot are multiplied by C_s given in the formula:

$$C_s = 1 - (\alpha - 45)/25$$
 for all surfaces

This C_s factor results in an increase in the roof snow load, unlike the snow load reduction factor of the simplified snow load analysis. In addition to the balanced load condition, the unbalanced loading is considered for gable roofs. Single-gable roofs with slopes greater than 3:12 are designed to sustain a uniformly distributed load equal to 1.25 P_f applied to one slope only. Eave overhanging roof structures are designed to sustain a uniformly distributed load of 2.0 P_f , to account for ice dams and snow accumulation.

It is recommended that the alternate method be used for specific building design. The Alternate Roof Snow Load Design Procedure provides important information with regard to roof obstructions and snow drifting. Exposure and importance factors are accounted for in the determination of the roof snow load. The roof snow load is related directly to the ground snow, allowing more accurate load assessment by the building official from weather records. The analysis accounts for the frictional quality of the roof surface. Nonetheless, the load design criteria for a single bay roof with no eave overhang differs from the simplified roof snow analysis only in the magnitude of uniform distributed load. A snow load of 40 p.s.f. was chosen for this case study, whereas, the assumptions described in this alternative roof snow load procedure, for the worst case assumptions, result in a snow load of 67.5 p.s.f..

6.2.2 Roof Wind Loads

The minimum basic wind speed for determining design wind pressure is taken from Figure No.1 [U.B.C., 88]. A minimum basic wind speed of 100 m.p.h. includes roughly 95% of the geographic United States. An exposure factor is assigned at each site for which a building is to be designed. Exposure C has terrain which is flat and generally open, extending one-half mile or more from the site in any full quadrant and represents the most severe exposure. The design wind pressure for structures or elements of structures shall be determined for any height in accordance with the following formula:

$$p_w = C_e C_q q_s I$$

where,

 p_w = Design wind pressure (p.s.i.).

 C_e = Combined height, exposure and gust factor coefficient as given in Table No. 23-G [U.B.C., 88] (-).

 C_q = Pressure coefficient for the structure or portion of structure under consideration as given in Table No. 23-H [U.B.C., 88] (-).

 q_s = Wind stagnation pressure at the standard height of 30 feet as set forth in Table No. 23-F [U.B.C., 88] (-).

I = Importance factor as set forth in Section 2311 (i) [U.B.C., 88] (-)

For any primary frame or load resisting system the Normal Force Method may be used. In the Normal Force Method, the wind pressures act normal to all exterior surfaces simultaneously. For pressures on roofs, C_e is evaluated at the mean roof height. The design wind pressure for each element or component of a structure is determined from the wind pressure formula and C_q values from Table No. 23-H [U.B.C., 88], and is applied perpendicular to the surface. For outward acting forces the value of C_e is obtained from Table No. 23-G [U.B.C., 88] based on the mean roof height and applied over the entire height of the structure. Each element is designed for the more severe of the following loadings:

- 1. The pressures determined using \boldsymbol{C}_q values for elements and components acting over the entire tributary area of the element.
- 2. The pressures determined using C_e values for local areas at discontinuities such as corners, ridges and eaves. The local pressures shall be applied over a distance from a discontinuity of 10 feet or 0.1 times the least width of the structure, whichever is less. In residential homes, 0.1 times the least width of the structure controls, and is the value used.

Table 6-1: Pressure Coefficient

Structure, description C_{q} Primary frame and systems Normal Force Method Walls: Windward 0.8 inward Leeward 0.5 outward Roofs: Wind perpendicular to ridge Leeward roof or flat roof 0.7 outward Windward roof less than 2:12 0.7 outward Slope 2:12 to less than 9:12 0.9 outward or 0.3 inward Slope 9:12 to 12:12 0.4 inward Slope > 12:120.7 inward Wind parallel to ridge and flat roofs 0.7 outward

Elements and components Roof elements Enclosed structures	
Slope<9:12	1.1 outward
Slope 9:12 to 12:12	1.1 outward or 0.8 inward
Slope>12:12	1.1 outward or inward
Local areas at discontinuities Canopies or overhangs	·
at eaves or rakes Roof ridges at ends of buildings or eaves and roof edges at	2.8 upward

the building corners

3.0 upward

The wind pressure from the Normal Force Method and elements and components need not be combined.

The wind stagnation pressure at a standard height of 30 feet is given as 26 p.s.f. in Table No. 23-F [U.B.C., 88]. Assuming a height of 20-40 feet above average level of adjoining ground, C_e is equal to 1.3. An importance factor of 1.0 is used, since residential buildings are not essential facilities.

The design of individual sandwich panels as elements and components is controlled by either local pressure areas at discontinuities, or outward or inward wind pressures applied over the tributary areas; the joints resist the uplift of these wind loads. The panels also function as a primary load resisting frame in their behavior as folded plates or roof diaphragms: the panel-panel joints carry shear forces to the gable line; longitudinal line members resist bending moments.

6.2.3 Roof Earthquake Loads

A diaphragm is defined as a horizontal or nearly horizontal system acting to transmit lateral forces to a vertical resisting element. Roof diaphragms are designed to resist forces determined by the following formula:

$$F_{px} = \frac{\sum_{l=x}^{n} F_{l} w_{px}}{\sum_{l=x}^{n} w_{l}}$$

where, w_{px} is the weight of the diaphragm and the tributary elements connected to it at level x. Where the snow load is greater than 30 p.s.f., the snow load shall be included. When configuration and load duration warrant, the load may be reduced up to 75%, when approved by a building official. To represent design limits, w_{px} includes a snow load of 30 p.s.f. and a dead load of 10 p.s.f.. The force F_{px} need not exceed 0.75 ZIw_{px} , but shall not be less than 0.35 ZIw_{px} . Each site is assigned to a seismic zone in accordance to Figure No. 2 [U.B.C., 88] and is assigned a zone factor, Z, in accordance with Table No. 23-I

[U.B.C., 88]. A seismic zone of 4, with a corresponding zone factor, Z = 0.4 has been selected to represent the most severe design criteria. From Table No. 23-K [U.B.C., 88], a residential structure is a Standard Occupancy Structure, category IV; occupancy requirements of Table No. 23-L [U.B.C., 88] assigns an importance factor, I, of 1.0. The design seismic forces are assumed to act nonconcurrently in the direction of the principal axis. Choosing the worse case of $0.75 ZIw_{px}$, a Zone 4 site, F_{px} is equal to 0.3 times w_{px} .

At each level designated x, the force F_r is applied over the area in accordance with the mass distribution of that level. To account for uncertainties in locations of loads, the mass at each level is assumed to be displaced from the calculated center of mass in each horizontal direction a distance equal to 5 percent of the building dimension at that level perpendicular to the direction of force considered. Connection of diaphragms to the vertical elements and to collectors and connections of collectors to the vertical elements in structures in Seismic Zones 3 and 4, having a plan irregularity of Type A, B, C, or D in Table No. 23-N, shall be designed without considering the one third increase usually permitted in allowable stresses for elements resisting earthquake forces. irregularities are where diaphragms are not flexible and torsional irregularity is to be considered. Torsional rigidity exists when the maximum story drift at one end of the structure is more than 1.2 times the average story drift of the two ends of the structure. Structural plan irregularities type B correspond to projections of the structure beyond a reentrant corner of length greater than 15 percent of the plan dimension of the structure in the given direction. Irregularity type C are diaphragms with cutouts or open areas greater than 50 percent of the gross area of the diaphragm, or changes in the effective diaphragm stiffness of more than 50 percent from one story to the next. Type D irregularities are discontinuities in the lateral force path due to out-of-plane offsets of vertical elements. A typical home in the North American market place is likely to have at least one of the above irregularities in structural plan.

6.3 Joint Loads

Included in the appendix are two fortran programs which analyze joint loads according to UBC '88. In both programs the live, dead, wind and seismic loads and their respective parameters are interactively input, and the resulting load tables for varying pitch, gable to gable length, and eave to eave width are calculated. Program *sepf* generates load tables for the individual effect of dead, live, seismic, and wind loads on the eave, gable and ridge line. Program *comb f* combines the separated load effects according to UBC '88 specifications. When wind and seismic forces are combined with other forces, the loads are multiplied by 0.75 to reflect the one third increase in allowable stresses (except in the case of plan irregularities of type A,B,C, or D, U.B.C. 1988 Table No. 23-N). Roof diaphragm and folded plate behavior is compiled in a table form, where geometric multipliers determine the final loads. The joint load output for the worse case load assumptions described in this chapter are included and will be referred to throughout the second half of the thesis as the standard load case. These loads represent an upper limit for which the roof system must be designed.

6.4 Proposed Code Revisions

The present body of codes are found to be lacking with respect to thermal and hygroscopic behavior. Foamed cores can provide a very high degree of thermal insulation. The solar gain on the outside face exposed to the sun cannot be readily dissipated, and large thermal gradients can be developed between the exterior and interior faces. During winter, similar thermal gradients can be developed when the exterior face is exposed to cold air and the interior face is at ambient room temperature. The British practice regarding the temperatures for which sandwich panels should be designed is found in a PSA publication, "Technical Guidance in Sheet Cladding" [Davies, 87]. Clause 2.4.11

states: " for composite sheet cladding in steel and aluminum external surface temperature varies with surface color and orientation. Cladding should be able to resist the following:

black and dark colors	80°C
medium colors	65°C
white or bright colors	50°C
minimum external	
surface temperature	−20°C

Sandwich panels should generally be designed for the most unfavorable combination of dead, live, wind, and seismic bearing in mind the effects of creep. The critical load cases are generally.

- 1. Dead and live load (snow) with consideration of creep and an appropriate winter thermal gradient.³
- 2. Dead load, wind suction, and maximum summertime thermal gradient.
- 3. Dead load, inward wind pressure, and maximum summertime thermal gradient.

³Due to the insulating value of the overlaying snow load, it seams reasonable to assume a temperature for the exterior face which is greater than the minimum temperature.

Current codes do not suggest any temperature gradient be used in combination with other loadings. The Uniform Building Code makes no mention of thermal gradients in its Plywood Sandwich Panel Design Section [U.B.C. Standards, 88].

6.5 Factor of Safety

A large factor of safety in the joint design is desirable. The building system strength is only as good as the joints. Lack of quality control and inspections in the field, variability in material properties, tolerance conflicts, fatigue, corrosion, long term

environmental exposures, and other unaccounted effects could result in premature failure of the joining system. For the above reasons, a factor of safety of 3.0 is proposed for mechanical joining systems. Since adhesive joints are more critically effected by the above factors, a safety factor of 7.0 is chosen. The above safety factors are generic to connections of this type.

Further exploration into the structural reliability of the roofing system is required. Variability of resistance offered by the joining system (fatigue, corrosion, tolerance conflicts, probability of future cutouts made in the roof diaphragm, dimensional and material property variations) must be established. Variability in the load: dead load variations (new roofing applied over existing roof membrane, loads attached to the ceiling undersurface), live load variations (snow drifting, wind), and load uncertainties (thermal and hygroscopic gradients, settlements, statically indeterminacy, assumed stiffness, assumptions about behavior). Acceptable limitations as to the consequences of failure must be established: cost of repair or replacement (insurance value of structure), loss of life (aversion function), importance of connection (redundancy provided), and the type of failure (warning or abrupt).

6.6 Design Method

The allowable stress method is the predominate design method for wood, steel and sandwich panel design in the present codes. The computer programs developed for panel and joint load analysis are based on the allowable stress method. Although the allowable stress method is completely satisfactory for purposes of meeting code requirements, the load factor reduction method may represent a more accurate and representational design method with respect to loads determination.

The load factor reduction method applies safety factors to the material and load The load factor reduction method is more systemized and rational in its approach to calculating loads than the allowable stress method.

The load factor reduction method increases loads and stresses to account for potential overloads, and other unknowns related to the loads and analysis. A load factor of 1.7 is assigned to wind loads. This safety factor accounts for inaccuracies in pressure distributions, uncertainties in wind gust magnitude, and other inaccuracies in analysis. Most building codes allow for a reduction in the wind load factor when combined with other loads. A lower load factor of 1.4 may be assigned to temperature effects. This lower factor of safety reflects the probability that the occurrence of significantly lower temperatures is improbable. Some building codes allow a reduction in temperature stress when combined with other loads.

Capacity reduction factors (CRF) account for mode and consequences of failure under imposed loads, low strength materials under maximum stress, and other factors. For instance, a CRF of 0.6 may be assigned to a organic/inorganic face materials, since this material may be manufactured with good material property reproducibility under adequate quality control. A CRF of 0.4 may be assigned to the shear strength of a polymer foam, recognizing that the continuous in-place foaming results in varying cell orientation, and density which may produce significant variations from assumed ultimate strength. A CRF of 0.6 may be assigned to face wrinkling strength recognizing that modulus varies less than strength, and the chance of core and foam having their lowest modulus is very remote [Structural Plastics Design Manual, 84].

PART II

Sandwich Panel Residential Roof System

Introduction

At the time of this thesis writing, the project team had not selected the final face or core material. Therefore the roof system has been developed independent of specific face and core materials. Research and development of core materials has been focused primarily on structural, insulating foams. Due to this directional push by the research group, a roof system of this panel type will be dealt with exclusively. The primary design consideration inherent in a panel type with a structural insulating core is the thermal stresses. To provide the greatest amount of flexibility, the joining system is designed to be adaptable to the three structural systems (refer to Figure 1-2):

- 1. Sandwich panel folded plate.
- 2. Sandwich panels supported by a ridge beam.
- 3. Sandwich panels tied by a floor system.

Chapter 7

Joint Design

7.1 Introduction

Sandwich panels must be joined to create useful structures. The joining process is a determining factor in the practicality, economy, efficiency and suitability of such components as a building system. Joint design should ideally avoid: premature failures, thermal bridges, tolerance conflicts, fatigue, excessive weight and costs, aesthetic interference, and allow for: ease of fabrication, constructibility, weather sealing, inspection, quality control, and maintenance.

In sandwich panel roof structures there are four primary joint conditions (refer to Figure 7-1):

- 1. Ridge line
- 2. Eave line
- 3. Gable line
- 4. Panel to Panel connection

7.2 Tolerances

Tolerances have a major impact on joint design, and construction assembly sequencing. The overriding premise is that the roof panel elements are precisely dimensioned and joined in the field. The panels are assumed to be fabricated to within a tolerance of one hundredth of an inch. Tolerances are examined to understand how this precise roof system will be assembled precisely on top of and joined to a less precisely constructed supporting structure. Allowable tolerance criteria must be established for the

Figure 7-1: Joint Conditions

building system. Stick built construction offers an existing model to characterize the outer bounds of tolerance limits. The roof system is designed so as to be compatible with Western platform wood frame construction utilizing rafter or truss components, since this construction method represents the overwhelming majority of U.S. residential construction. A panelized roof system, installed over a wood frame structure, serves as a means of introducing a new technology to the construction industry. This roof system can be viewed as an evolutionary step (rather than a quantum jump) toward widespread acceptance of a completely panelized building system in the residential construction industry.

7.2.1 Tolerance Limitations

All dimensional tolerances can be referenced to a straight line segment of a determined length drawn through the peaks of the opposite gable ends. This reference ridge line is line segment AB of Figure 7-2-a. The length of this reference ridge line is equal to the length of the assembled roof panel span.

Sighting longitudinally along this reference ridge line, the gable lines of the opposite gable ends are not perfectly aligned, but rotated by a small angle due to elevation differences of the four corners as shown in Figure 7-2-b. Sandwich panel elements offer little torsional resistance and conform easily to this slightly twisted plane of the overall roof panel shape. If a roof span of 30 feet, a core depth of 11 inches, a face of one inch oriented strand board, a panel element length of 15 feet, and a half inch out-of-plane warping of one corner is conservatively assumed, a torque force of 438 lbs. is required at the roof panel corners; a shear stress of 18.3 p.s.i. is developed in the face. Tolerance limitations on this twisting of the roof panel need be established for aesthetic reasons only, and are typically not visually perceptible given the ratio of the angle of twist to the length of span.

The gable line tolerances (ACF and BDE) can be measured as the variation in the horizontal perpendicular distance from a line drawn normal to and through the endpoints of the reference ridge line segment AB and lying in the plane of the roof panel. Due to differences in height between gable peaks, a line drawn perpendicular to the reference ridge line in the horizontal plane differs from the horizontal projection of a line drawn perpendicular to the reference ridge line in the plane of the roof panel as shown in Figure 7-2-c. One-half inch may represent a maximum difference in gable peak heights. The resulting horizontally projected error at the corners between a line drawn horizontally and a line drawn in the plane of the roof panel is equal to the difference in gable peak heights multiplied by the eave to gable endwall height and divided by the length of span. This

Figure 7-2: Roof Tolerances

error can become significant for short roof spans of great width or steep pitch. For

instance, a span of 20 feet, an eave to eave width of 36 feet, and a pitch of 12/12, results in an error of approximately 5/8". If gable peak elevations differ, a practical solution is to tilt the gable endwalls out of the vertical plane to permit alignment of the roof panel with the corners. Discrepancies between gable peak distances and the assembled panel roof span can usually be corrected by applying a small lateral force (pushing or a sledge-hammer).

Common construction practice limits the error in corner layout, the difference between line segment DF and CE of Figure 7-2-d, to less than one-half inch difference between diagonals from opposite corners. The maximum error in corner layout, $corner_{error}$, in the longitudinal direction due to this error in diagonal lengths, $diagonal_{error}$, and assuming that opposite transverse endwalls and longitudinal walls are of equal length, is:

$$corner_{error} = \frac{L^2 - (2\,B)^2 + [(L^2 + (2\,B)^2)^{1/2} + diagonal_{error}]^2}{2\,L} - L$$

For low aspect ratios the $corner_{error}$ can be significant. If the eave to eave width is 36 feet, the span length is 20 feet, and the $diagonal_{error}$ is equal to 1/2", the $corner_{error}$ is approximately one inch.

The plan of the top edge of the longitudinal walls and the gable endwalls deviate from rectilinear geometry due to errors in wall layout and wall curvature, arising from dimensionally unstable materials and poor workmanship (Figure 7-2-e). Both of these deviations in the plan result in a misalignment of the roof panel edges from precise fastener attachment points. The magnitude of this error can be corrected to less than $\pm 1/4$ " by laterally aligning and bracing the top plate after the wall have been erected.

The longitudinal wall errors are measured as the variation in the perpendicular distance measured from the reference ridge line to the fastener location on the longitudinal wall minus the length from ridge line to eave fastener location on the fabricated panel element. With the reference ridge line running from gable peak to gable peak, and the

assumption that the gable peaks are located at the midpoint of the gable endwall and opposite transverse endwalls are of equal length, the corners are equidistant from the reference ridge line. Walls in the vicinity of the corner points are relatively fixed in their location, whereas, mid-sections of gable endwalls and longitudinal walls, if not laterally braced by interior wall partitions, are generally flexible to re-positioning. The variation in the lateral position of the transverse endwalls and longitudinal wall is referred to as yaw. From discussions with numerous builders, the yaw tolerances have been set at plus or minus a quarter inch.

Roll refers to the variation in the vertical projected distance from the reference ridge line to the top edge of the longitudinal wall. Commonly, this roll is limited to $\pm 1/4$ ". Unlike the lateral horizontal tolerances in the longitudinal wall where corrections are resisted by lateral bracing, the variation in height (roll) along the longitudinal wall can be corrected by shimming. After shimming to adjust wall height, the longitudinal wall is a controlled vertical projected distance and unknown horizontal projected distance from the reference ridge line. The eave line connection should localize this vertical height adjustment, and allow for lateral horizontal error.

7.2.1.1 Summary of Tolerance Limitations

A summary of tolerance limitations for stick built construction is as follows:

Difference in gable peak elevations = 1/2" Difference in diagonal distance between corners = 1/2" Lateral error in top plate = $\pm 1/4$ " Error in top plate elevation (roll) = $\pm 1/4$ "

7.3 Ridge Line Connection

In its attachment at the ridge line the panel element is subjected to large uplift forces, downloads; shear loads, axial tension and compression forces in the longitudinal direction due to roof diaphragm or folded plate action.

Loads at Ridge Line (standard load case, Chapter 6)

Load along (parallel to) ridge line (longitudinal direction) divide by length of span to obtain shear pitch = 12/12 eave width = 36' 1685 lbs.

Download (vertical) pitch = 12/12 eave width = 36' 553 lb./ft. pitch = 3/12 eave width = 36' 453 lb./ft.

Uplift (vertical) pitch = 12/12 eave width = 36' 396 lb./ft. pitch = 3/12 eave width = 36' 161 lb./ft.

The thin faces of the panel are primarily designed to carry in-plane stresses; the core material to carry low shear stresses. Neither component of the sandwich panel is well suited for transfering concentrated loads. Attachment of the interior face to a rigid support along the ridge line would result in the face delaminating from the core or core failure due to the large corner reactions resulting from thermal gradients on a rectangular sandwich panel. A bolted connector through the depth of the core would require a large load spreading washer to prevent the compression failure of the core. Considering the large corner reactions due to thermal or hygroscopic slab behavior, the bolted connector solution appears impractical.

7.3.1 Edge Stiffener

A proposed solution of rectangular edge stiffeners inserted between and bonded to the panel faces provides a fastenable, high strength material. The edge stiffener is installed after the net shape part has been produced in the factory. After the panel element is cut to a specified length from what could be a continuous production line, the core is routered out to accept the edge stiffener. The stiffener is adhered to the faces to collect in-plane shear forces and to tie the two faces together; adhered to the core, to provide continuous shear transfer. Ideally, the edge stiffener should be produced of a material having a coefficient of expansion near that of the face material. In the case of oriented strand board or waferboard face, a suitable edge stiffener material might be glulam, parallam, or laminated veneer lumber. All of these products have compatible thermal coefficients, high strength, high modulus, and dimensional stability (ease of insertion).

Examinations of thermal and hygroscopic behavior determined that substantial reactions are required to resist the two-way bowing of a rectangular sandwich panel simply supported along opposite edges (see Chapter 5). If the element employed to resist these reactions is not in line with the required direction of the reaction force (perpendicular to the panel), the required reaction forces are magnified. This geometric problem occurs at the the fold line of folded plate roofs where the required reaction force (perpendicular to the panel) is divided by the $cos(90^{\circ}-(2.0)\alpha)$. These magnified reaction forces become critical for low pitched roofs. At the ridge line of ridge beam supported roofs the required reaction force exerted on the fastener is divided by the $cos(\alpha)$, and becomes critical for steeply pitched roofs. A proposed solution of supporting the edge stiffener at two points removes the problem of resisting these magnified reactions generated by the thermal behavior of a two-way slab (see Figure 7-3). The thermal reaction forces are resisted internally by the edge stiffener and not transfered by the fastening system.

As a result of being supported at two points the edge stiffener functions as a girder in carrying the shear reactions from the one-way slab action of the panel elements to the fastening points (Figure 7-3). The optimal symmetric location of these two support points, in terms of minimizing moments, is at 0.25 the overall length from the edge stiffener end. The sandwich panel is analyzed and designed as spanning from the eave to ridge in one-

Figure 7-3: Edge Fastener Location and Stiffener Loads

way slab action between two simply supported edges. The panel's true behavior is that of a one-way slab on elastic supports (the edge stiffener) resulting in a slight redistribution of moments and shears from the idealized design approach. The extent of this variation in the edge reaction is assumed to be insignificant, but needs to be investigated with the aid of the finite element analysis.

The edge stiffener resists the bending of thermal or hygroscopic bowing and the bending moment and shears of the edge reactions from one-way slab action to the two support points. Additionally, the ridge edge stiffener functions as a longitudinal line member in carrying the axial compression and tension loads due to roof diaphragm or folded plate action. Depending on the direction of the roof diaphragm loading, the ridge edge stiffener may be subjected to compression or tension loads. The net result is a combined axial and bending load criteria. The buckling mode of the edge stiffener approximates the ideal boundary conditions of a pin-ended column. Thus, the design buckling factor, K_e , is equal to one, and the effective length of the edge stiffener column is the panel width, b.

For axial tension and bending of wood or wood composite structures:

$$\frac{f_t}{F_t} + \frac{f_b}{F_b} \le 1.0$$

and

$$\frac{f_b - f_t}{F_b'} \le 1.0$$

where,

 f_t = Actual unit stress in tension parallel to the grain (p.s.i.).

 F_t = Allowable unit stress in tension parallel to the grain (p.s.i.).

 f_b = Actual unit stress for extreme fiber in bending (p.s.i.).

 F_b = Allowable unit stress for extreme fiber in bending (p.s.i.).

 F'_{b} = Allowable unit stress for extreme fiber in bending, adjusted for beam depth by the following formula (p.s.i.).

If the depth of a rectangular sawn bending member exceeds twelve inches F'_{b} is:

$$F'_b = F_b (12/c)^{1/9}$$

For axial compression and bending of wood or wood composite structures:

$$\frac{f_c}{F'_c} + \frac{f_b}{F'_b - Jf_c} \le 1.0$$
 where,

 f_c = Actual unit stress in compression parallel to the grain (p.s.i.). F'_c = Allowable unit stress in compression parallel to the grain, F_c , adjusted for buckling as determined by the column slenderness, b/c (p.s.i.).

$$J = \frac{(b/c) - 11}{K - 11}$$

where,

K is determined by column slenderness, and J shall not be less than zero nor greater than one.

For short columns (b/c of 11 or less):

$$F'_{c} = F_{c}$$

For intermediate columns (b/c greater than 11 but less than K):

$$K = 0.671 \ (\frac{E_c}{F_c})^{1/2}$$

$$F'_{c} = F_{c} \left[1 - \frac{1}{3} \left(\frac{b/c}{K} \right)^{4} \right]$$

For long columns (b/c) of K or greater):

$$F'_{c} = \frac{0.30 E_{e}}{(b/c)^{2}}$$

When machine stressed lumber is used (short columns are designed as previously described):

For intermediate columns:

$$K = 0.792 \, (\frac{E_e}{F_c})^{1/2}$$

For long columns:

$$F'_{c} = \frac{0.418 E_{e}}{(b/c)^{2}}$$

If supports are located at the quarter points of the edge stiffener the allowable unit horizontal shear stress, F_v , shall not exceed the actual horizontal shear, f_v , in a prismatic member:

$$f_{v} = \frac{15 \, V_{e} \, b}{32 \, I_{e} \, c}$$

where,

 V_e = Vertical panel edge reaction at the eave edge stiffener (lb./in.). t_e = Thickness of the edge stiffener (in.).

The maximum moment on the edge stiffener due to girder action is:

$$(M_e)_{max} = \frac{V_e \cos(\alpha)b^2}{32}$$

The maximum transverse deflection of the edge stiffener due to girder action is:

$$(w_e)_{max} = \frac{11 \, V_e \cos(\alpha) b^2}{768 \, E_e \, I_e}$$

An example of edge stiffener proportioning for a laminated veneer lumber (LVL) follows. LVL has the following material properties allowing for ICBO acceptance:

```
F_t = 2300 \text{ (p.s.i.)}.

F_b = 2800 \text{ (p.s.i.)}.

F_c = 2200 \text{ (p.s.i.)}.

F_v = 250 \text{ (p.s.i.)}.

E_s = 2,000,000 \text{ (p.s.i.)}.
```

Example edge stiffener calculations are made to compare a four and eight foot panel width under a very severe load case and geometry. The core thickness shall be assumed equal to eight inches. A maximum axial load of 19,160 lbs. will be considered acting in compression. This load results from a folded plate pitch of 6/12 and a span of 40 feet. A maximum axial tension load of 5,676 lbs. will be considered. This value is found for the roof diaphragm behavior of a ridge beam roof system with a pitch of 12/12 and a length of 40 feet. A vertical edge reaction of 453 lb./ft. results from a 40 p.s.f. live load, 10 p.s.f. dead load, the critical wind and seismic loadings described in Chapter 6, a 3/12 pitch, and an eave to eave width of thirty-six feet.

The face material is unknown, and is not considered effective in edge stiffener bending, but does offer lateral restraint to edge stiffener bending (ie. no slenderness factor applied, even though beam depth exceeds its breadth). The degree to which the face material participates in edge stiffener bending, or the effective flange area, is dependent on the material properties and thickness of the faces. Therefore, the moment of inertia of the edge stiffener is conservatively:

$$I_e = t_e (c)^3 / 12$$

and,

$$f_b = \frac{{}_{3} V_e \cos(\alpha) (b)^2}{{}_{16t_e (c)^2}} = \frac{{}_{3} (453) \cos(14^\circ)(48)^2}{{}_{16t_e (8)^2}} = 2966.5/t_e \text{ (p.s.i.)}.$$

For a four foot panel width b/c is equal to 6.

$$F'_{c} = F_{c} = 2200$$
 (p.s.i.).

For axial tension and bending:

$$\frac{f_t}{F_t} + \frac{f_b}{F_b} = \frac{5675}{2300 \, t_e \, 8} + \frac{2966.5}{t_e \, 2800} = 1.0$$

$$t_e = 0.73$$
 (in.).

$$\frac{f_b - f_t}{F_b} = \frac{2966.5/t_e - 5675/(t_e \, ^8)}{2800} = 1.0$$

$$t_e = 0.81$$
 (in.).

For axial compression and bending:

$$\frac{f_c}{F_c} + \frac{f_b}{F_b} = \frac{19,160}{2200 \, t_e \, 3} + \frac{2966.5}{t_e \, 2800} = 1.0$$

$$t_e = 2.15$$
 (in.).

A check for shear:

$$f_v = \frac{15 \, V_e \, b}{32 \, t_e c} = \frac{15 \, (453) \, 4}{32 \, (2.15) \, 8} = 49.4 \, (\text{p.s.i.}).$$

The final thickness of the edge stiffener is 2-1/4", resulting in a cross sectional area of 18.0 square inches. This case represents the most severe loads that are likely to be encountered, the most critical roof geometry, and a lower minimum of panel core depth. A twelve inch core results in a cross sectional area of 6.0 square inches, due to a more efficient flexural section.

Note that because the face material is not known, the bending stresses due to

thermal or hygroscopic gradients and the effective flange area of the panel faces have not been included in these sample calculations.

For an eight foot panel width b/c is equal to 12. The core depth remains at eight inches.

$$f_b = \frac{{}_{3} V_{e} \cos(\alpha) (b)^{2}}{{}_{16} I_{e} (c)^{2}} = \frac{{}_{3} (453) \cos(14^{\circ}]) (96)^{2}}{{}_{16} I_{e} (8)^{2}} = 11,866/t_{e} (p.s.i.).$$

$$K = 0.671 \left(\frac{E_{e}}{F_{c}}\right)^{1/2} = 0.671 \left(\frac{2,000,000}{2200}\right)^{1/2} = 20.23$$

$$F'_{c} = F_{c} \left[1 - \frac{1}{3} \left(\frac{b/c}{K} \right)^{4} \right] = 2200 \left[1 - \frac{1}{3} \left(\frac{12}{20.23} \right)^{4} \right] = 2109 \text{ (p.s.i.)}.$$

For axial tension and bending:

$$\frac{f_t}{F_t} + \frac{f_b}{F_b} = \frac{5676}{2300 \, t_e \, 8} + \frac{11,866}{t_e \, 2800} = 1.0$$

$$t_e = 4.55$$
 (in.).

$$\frac{f_b - f_t}{F_b'} = \frac{11,866/t_e - 5676/(t_e \ 8)}{2800} = 1.0$$

$$t_e = 3.98$$
 (in.).

For axial compression and bending:

$$J = \frac{(b/c) - 11}{K - 11} = \frac{12 - 11}{20.23 - 11} = 0.0494$$

$$\frac{f_c}{F'_c} + \frac{f_b}{F'_b - Jf_c} = \frac{19,160}{2109 \, t_e \, 8} + \frac{11,866/t_e}{2800 - 0.0494(19,160/(t_e \, 8))} = 1.0$$

$$t_e = 5.41 \text{ (in.)}.$$

A check for shear:

$$f_v = \frac{15 V_e b}{32 t_e c} = \frac{15 (453) 8}{32 (5.41) 8} = 39.3 \text{ (p.s.i.)}.$$

Increasing the panel width to eight feet results in a edge stiffener thickness of 5-1/2", resulting in a cross sectional area of 44.0 square inches. The net result of the panel width increasing from four to eight feet is a 244% increase in edge stiffener cross sectional

area. This comparison does not consider the effect of thermal or hygroscopic bowing. It is important to note that these edge stiffener proportions are for a very severe load case, roof geometry and core depth.

7.3.1.1 Edge Stiffener Summary

In summary, edge stiffeners:

- 1. are made of a material with a coefficient of thermal expansion near that of the face material.
- 2. provide a fastening material.
- 3. act as a shear diaphragm strut collector by tieing the opposite faces of the panel together.
- 4. are designed as a girder to support the one-way slab action of the panel spanning from the eave to ridge line.
- 5. are designed as a column to carry the compression and tension loads of a longitudinal line member; resist bending moments due to roof diaphragm or folded plate action.
- 6. are designed as a beam to resist thermal bowing.
- 7. remove the problem of resisting large corner uplift reactions generated by the thermal behavior of a two-way slab. If the edge stiffener is supported at two points, the thermal reaction forces are resisted internally by the edge stiffener and not the fastening system.

7.3.2 Ridge Edge Fastener

The ridge edge fastener design, shown in Figure 7-4, is the result of numerous demands. The ridge edge fastener is a hinged connection to rotate to any pitch. A pitch specific ridge fastener would add to the roof fastening accessory inventory, and limit roof angles to standard pitches. Therefore, a universal ridge hinge has been developed. The edge fasteners are attached in the factory, and the panels are shipped to the site in a hinged panel configuration. The interior surfaces of the panels face one another, and are thereby protected from damage. The edge fasteners can be easily detached and re-attached should re-alignment be required in the field. The fasteners provide two discrete points of attachment by the crane hooks. A crane deployment sequence is addressed in a later

section. The ridge edge fastener can be utilized in a folded plate, tied floor, or a ridge beam structural system. In the folded plate and tied floor system, the ridge edge fastener transfers downloads and wind uplift from one panel element to the other.

7.3.2.1 Separation Block

The addition of a separation block (Figure 7-4) which is attached to the hinge fastening plates before the ridge edge fastener is joined to the panel pairs has several attributes. The interior faces of the panel element are separated to allow fastening of the hinge to the ridge beam and access for crane hook attachment. The separation blocks also facilitate assembly of the hinged panel units (see Figure 7-5). Edge stiffeners are inserted in the panel element before the eave edge fasteners are attached to the edge stiffener. Separation blocks are adhered to the interior panel faces. The interior hinge fastener plate (Figure 7-4) is mechanically fastened to the edge stiffener face, and the weight of the upper horizontal panel element clamps the assembly together while the glue sets. The separation block also distributes the concentrated load of the ridge edge fastener over the area of the adhered block surface to prevent stress concentrations in the interior panel face. Separation of the two interior faces removes the possibility of damage of the interior finish surfaces by particle abrasion or stresses normal to the finished faces arising from transportation impact loads.

The separation block has the following disadvantage on the assumption that shipping is controlled by volume and not weight limitations: panel separation increases transportation costs. For example, a panel depth of 12 inches and a panel separation of 1.5 inches results in a 6.25% increase in transportation costs.

The dimensions of the separation block can be determined as follows. The minimum longitudinal length of the separation block is determined by the allowable inplane stress for the face material. The separation block longitudinal length can be conservatively calculated as the bearing area of one face required to carry the maximum

Figure 7-4: Ridge Edge Fastener

in-plane load carried by the ridge edge fastener as a result of transfering downloads or

Figure 7-5: Hinged Panel Units with Ridge Edge Fastener uplift across the fold line discontinuity divided by the face thickness. The transverse

width of the separation block is determined by the adhesion area required to transfer these forces into the face with an adequate factor of safety (7.0). The constraints on block thickness are determined by the depth penetration requirements for the mechanical fastener attaching the hinge plate to the separation block, as well as the geometry of the eave edge fasteners. To facilitate crane attachment the area adjacent to the hinge pin ends must be chamfered.

7.3.2.2 Ridge Beam Accessories

In the ridge beam system, a secondary accessory, referred to as a shoe, transfers loads to the ridge beam (refer to Figure 7-6). The shoe is a symmetric, prismatic trapezoidal element with two faces forty-five degrees to the vertical. With such a geometry, a shoe can accommodate any slope roof up to a 12/12 pitch. The shoe accessories are, however, specific to ridge beam widths (standard width is 3-1/2" and 5-1/4"). The top edge of the shoe is concave to mate with the barrel of the hinge. The material chosen for these shoes must be of a strength capable of resisting the download of the ridge edge fastener over the contact area of the hinge barrel with the shoe. Given the standard load case, a pitch of 12/12 and an eave width of 36 feet, the down load on the shoe for a panel element four feet wide is 2212 lbs. and 4424 lbs. for an eight foot panel element width.

The trapezoidal shoes are attached to the ridge beam before installing the beam on the roof. The trapezoidal shoes are aligned precisely with the center line of the ridge beam. This alignment process is aided by the width of the shoe being equal to the ridge beam width. The longitudinal positioning of the shoes need not be so precise. The length of the shoe is extended beyond the required length for the ridge edge fastener to allow for uncertainty in positioning the shoe in the longitudinal direction, lack of control in precise positioning of the panel during deployment, and to allow the panel element to slide in the longitudinal direction when butting adjacent panel elements together. For ease of

assembly the shoes could be coated with a lubricant in the factory to reduce friction between the metal barrel of the hinge and the shoe.

The shoes separate the panel from the ridge beam. If the panel were placed directly against the ridge beam any outward thermal or hygroscopic bowing would create a thin but noticeable gap. By widening the gap to create a reveal, the differential in gap thickness is less noticeable. Furthermore, if the panel were in direct bearing on the ridge beam the restraint of the beam to inward bowing would exert substantial uplift reactions on the edge fasteners.

The shoe is held to the ridge beam by a pre-formed and pre-stamped light gauge metal strap plate which is placed over either end of the shoe (refer to Figure 7-6). Nailing the metal strap to the ridge beam and not to the shoe allows the panel elements, which are attached to the shoe, to shift in relation to the ridge beam due to differential thermal movement between the roof panel and ridge beam in the longitudinal direction. The ridge beam is dimensionally stable in the controlled environment of the house interior. The roof panels are subjected to thermal expansion, contraction and moisture changes, if vapor drive is not properly controlled.

The ridge edge fastener is clamped down to the shoe by a ductile iron component which is flat on one side and concave on the other to mate with the radius of the ridge edge fastener hinge. This accessory is referred to as a hold-down in Figure 7-6. Holes are placed at either end for the passage of two lag screws to resist the wind uplift at the ridge line.

In the ridge beam system, field connections are limited to the attachment of shoes to the ridge beam while the beam rests on the ground and the installment of four lag bolts per hinged panel unit, after placed on the roof.

Figure 7-6: Ridge Beam Ridge Line Connection

7.3.2.3 Folded Plate and Floor Tied Ridge Edge Fastener

In the folded plate and tied floor system there are no field connections at the ridge line (see Figure 7-7). The hinge transfers downloads, wind uplift, and shear in the longitudinal direction form one edge stiffener to the adjacent edge stiffener.

Figure 7-7: Folded Plate and Floor Tied Ridge Line Connection

In the folded plate and tied floor system a negative moment is induced on the panel element due to eccentricity of the ridge edge fastener. The moment is at a maximum at the ridge connection and decreases linearly to zero at the eave connection. Given a ridge edge fastener eccentricity of six inches, and a in-plane load of 1878 lb./ft. (resulting from the standard load case described in Chapter 6, a 3/12 pitch, and an eave to eave width of thirty-six feet) the resulting maximum negative moment is 934 lb.ft. To establish a

reference of comparison, a panel element length of 12'-3" would result in an equal positive maximum moment due to one-way slab action under the same transverse loading. The opposite sign of these superimposed moments diminishes the effect of the fastener eccentricity. In the above loading case, bending stress levels and deflections are decreased by the eccentricity. Superimposing the negative moments due to the eccentricity with the outward wind pressure does not have this beneficial effect. A check regarding stresses and deflection must be performed for this loading condition.

7.3.2.4 Preliminary Hinge Design

The hinge design is performed according to the Cold-Formed Steel Design Manual [A.I.S.I., 83], in conjunction with the Manual of Steel Construction [A.I.S.C., 87]. An example hinge design for a four foot panel width (standard load case of Chapter 6) follows:

In service loads are multiplied by a factor of 2.0 (F.S.), to arrive at an equivalent safety factor of 3.0 (assuming that a minimum safety factor of 1.5 is applied to general steel design).

The loads for the crane are determined as 1.25 times the total load, where the total load includes an impact factor [U.B.C., 88]. A conservative impact factor of 2.0 is chosen. Assuming a panel weight of 10 p.s.f., and a panel length of 25 feet, the dead load per ridge edge fastener is 1000 lbs.. The resulting design load is 2500 lbs. per ridge edge fastener, or 1250 lbs. acting on the shear area of the pin. Multiplied by a factor of safety of 2.0, yields a design shear load of 2500 lbs..

Given the standard load case of Chapter 6, a 3/12 pitch, and an eave width of 36 feet, the vertical download on the ridge edge fastener is 453 lb./ft. and 553 lb./ft. for a pitch of 12/12. The maximum in-plane load collected along a two foot ridge line length is 1868 lb./ft.. The resulting shear across the hinge pin is twice this value, 3736 lbs.. After

multiplication by the service factor of safety (2.0), the resulting maximum in-plane design load to be carried by shear across the hinge is 7472 lbs.

The number of knuckles per hinge is determined by the comparing crane deployment loads to in-plane loads which the hinge resist after its deployment. The number of hinge knuckles should be an even number so that the hinge half can be manufactured out of the same stamped steel plate blank (see Figure 7-4). The shear area for in-plane loads is equal to the pin cross-sectional area multiplied by the number of knuckles per hinge minus one. The shear area for the crane attachment is equal to two times the pin area. The number of knuckles is that which best approximates:

number of knuckles per hinge =
$$(1 + 2(in-plane\ load/crane\ load))$$

= $(1 + 2(7472/2500)) = 7$

Since pin diameter is not critical, a six knuckled hinge is chosen.

If the steel selected for the pin is a A490 steel with an allowable shear value of 40 k.s.i., the required diameter of the pin to carry in-plane loads loads is 0.25 inches. If the steel selected for the pin has a minimum tensile strength of 70 k.s.i., the allowable shear is 15.4 k.s.i., and the resulting diameter is 0.375 inches. Depending on the thickness and workability of the hinge plate steel, a larger pin diameter might be desired.

The loads on the hinge plates are conservatively determined by assuming that the hinge plates can only resist forces which lie in the plane of the hinge plate. These lateral loads are described as either a pull or push. Pull loads rely on the hinge plate being wrapped around the pin to transfer loads into the hinge plate (Figure 7-8). In push loads the pin directly bears on the hinge plate (Figure 7-9).

The hinge plate which is attached to the interior of the panel is referred to as the interior hinge plate; the hinge plate which is attached to the ridge edge stiffner is referred to as the edge hinge plate (Figure 7-4).

Figure 7-8: Pull Loads on the Hinge Plate Section

The maximum pull design load for the interior hinge plate is found by comparing the crane load (Figure 7-10-a), a pull load of 2500 lbs. (includes safety factor), to the maximum pull load equal, $F.S. V_r b \cos(\alpha)/2.0$, resulting from a ridge beam system (Figure 7-10-b). A V_r of 453 lbs./ft. (a pitch of 3/12 and an eave to eave width of 36), collected over a two foot length and multiplied by a safety factor of 2.0, yields a pull load equal to 1760 lbs. In this case, the crane pull load of 2500 lbs. controls.

The maximum push load to be resisted by the interior hinge plate is determined by examining the loads which result in transferring the downward thrust of the panel edge stiffner in a folded plate system, F.S. $V_r b/(2.0 \sin(\alpha))$ and subtracting out the pull load of

Figure 7-9: Push Loads on the Hinge Plate Section

transfering the panel edge reaction, F.S. $V_r b \sin(\alpha)/2.0$ (Figure 7-10-c). The maximum interior hinge plate load is 7032 lbs. for the case of a 3/12 pitch and an eave to eave width of 36 feet.

The maximum pull load on the edge hinge plate (Figure 7-10-b) is found by $F.S. V_r b \cos(\alpha)/2.0$, which has a maximum value of 1760 lbs. at a pitch of 3/12 and an eave to eave width of 36 feet.

The maximum push load on the edge hinge plate is found by $F.S. V_r b cos(\alpha)/2.0$, where the edge stiffner reaction is the wind uplift (reverse force directions of Figure 7-10-b). This load has a maximum value of 1148 lbs. at a pitch of 12/12 and an eave to eave width of 36 feet.

Figure 7-10: Hinge Load Forces

Since the pull and push loadings are carried in identical action for either the interior or edge hinge plate, only the most critical load need be examined. The most critical push load is 7032 lbs.; the most critical pull load is 2500 lbs.

The steel chosen for the hinge plates is a A606 hot-rolled and cold-rolled high strength low-alloy sheet or strip steel with improved corrosion resistance [Yu, 85]. The yield strength of the A606 is 50 k.s.i. and the minimum ultimate strength is 70 k.s.i.. The

allowable flexural and tension stress in the steel is 0.6 of the yield strength, or 30 k.s.i.. The attachment of the hinge plates to the edge stiffener and the separation block by screws is assumed to prevent localized crippling or buckling of the hinge plates. Therefore, the allowable compression stress is assumed to be 0.6 of the yield stress. The allowable shear is 0.4 of the yield strength, or 20 k.s.i..

The pull load is designed by conservatively assuming that forces are transmitted into the interior plate by the hinge plate acting as an a loop bent around the hinge pin (Figure 7-8). The interior and edge hinge plate are welded together at the point of near contact. The critical sections to be designed for are a cut through section A-A for a combined flexural bending and tension criteria, and a cut through the shear plane of the hinge plate at section B-B of Figure 7-8. The maximum pull load due to crane loads is 2500 lbs.

The eccentricity of the pull load on the interior hinge plate is equal to one-half the thickness of the hinge plate (Figure 7-8). The resulting bending moment is equal to the eccentricity times the pull load or 0.0625 inches times 2500 lbs., 156.25 lbs.in.. The axial tension and bending criteria [A.I.S.C., 87] is:

$$\frac{f_t}{F_t} + \frac{f_b}{F_b} \le 1.0$$

An 5.0 inch wide, 0.125 thick hinge plate satisfies the constraints:

$$\frac{2500}{0.125(2.75)30,000} + \frac{156.25(6)}{0.125^2(2.75)30,0000} = 0.97$$

The required shear area at section B-B (assuming a parabolic stress distribution) is 3 (1250 lbs.)/(2 (20,000 p.s.i.)) or 0.094 inches². A effective hinge plate width of 2.75 in. and a thickness of 0.125 in. satisfies this constraint (area equals 0.344 in.²).

The push load is designed by considering that the minimum section through the hinge plate be able to transfer forces though bearing on the pin (section C-C of Figure 7-9). The edge stiffner, separation block and adjacent hinge plate restrain the bending of

the hinge plate due to the eccentricity of load. The minimum effective area is equal to 7032 lbs./30,000 p.s.i. or 0.2344 inches². A effective hinge plate width of 2.75 in. and a thickness of 0.125 in. satisfies this constraint.

The hinge plate depth is controlled by the fastening schedule. The greatest pull or push load determines the number of fasteners for the hinge plate. Allowable loads for fasteners include a factor of safety. Thus the maximum loads for the interior hinge plate of 7032 lbs. is divided by the safety factor to result in a fastener design load of 3516 lbs.; likewise, the edge hinge plate a load of 1760 lbs. is reduced to 880 lbs. If the separation block is of a material comparable to a Group I wood, and of a thickness of 1.0 inches, the allowable lateral load for a 14 gage screw penetrating four times its diameter (0.968 inches) is 160 lbs. [U.B.C. Standards, 88]. Eleven screws would be required on the interior plate hinge; six screws on the edge hinge plate. Not considered in the preliminary fastening schedule are the loads along the ridge line (longitudinal direction) due to wind and seismic roof diaphragm behavior.

7.3.2.5 Redundant Ridge Edge Fastener

The folded plate is a non-redundant structure. Failure of any one critical component of the folded plate structure results in the sudden collapse of the entire roof system. A moment rigid ridge edge fastener could provide redundancy for the folded plate. Given a moment rigid ridge connection, and adequate panel strength, the panels could span from eave to eave, simply supported. Spanning from eave to eave rather than from eave to ridge line, as in the folded plate, increases moments by a factor of four; shear stresses by a factor of two. Typically, sandwich panel design is controlled by stiffness; not strength constraints. The strength requirements of this system may be met with little or no increase in demands on practical panel design.

The proposed moment rigid ridge fastener is a modification of the previous ridge fastener (refer to Figure 7-11). The transfer of large tension and compression forces

across the panel faces is achieved by the addition of a compression member (referred to as a strut), and extending the length of the hinge plate attaching to the ridge edge stiffener (referred to as the edge hinge plate) to the exterior face of the panel element. The edge hinge plate resolves the vertical component of the compressional and tension loads in the panel faces. The strut fits loosely between the bent outer edges of the edge hinge plates. The strut is slipped into the redundant ridge edge fastener after the hinged panel unit has been deployed, and is mechanically fastened to the hinge plate by one or two nails to prevent it ever working free. By hinging the strut at one end to a edge hinge plate in the factory, the strut would slide into its final position as the panels are deployed and splayed apart. As an accessory piece, the geometry of the compression strut is dependent on the pitch of the roof. The fabrication of this element is relatively straight forward. The length and bevel of the edge are the only variables in the strut's proportions. The compactness of the strut dimensions reduces storage demands.

The length of the redundant ridge edge fastener is extended in the longitudinal direction as compared to the previous ridge edge fastener. This stretching of the ridge edge fastener geometry spreads the sizable tension and compression loads into a larger net area of the panel faces. The strength capabilities of the panel faces may require that reinforcement be added to faces in the region of the redundant hinge to decrease the stresses.

Only after folded plate failure would the redundant ridge edge fastener catch the load after a substantial drop in ridge line elevation. The physical dropping of the ridge line would serve as an indicator to the homeowner that a failure in the folded plate has occurred.

Given an eave to eave distance of 36 feet, a horizontal projected live load of 40 p.s.f., and a horizontal projected dead load of 15 p.s.f., the resulting moment at the ridge line per linear foot is 8910 lbs. If the panel element width, b, is four feet, the moment

Figure 7-11: Redundant Ridge Edge Fastener

carried by each redundant ridge edge fastener is 17,820 lb.ft. If the distance between

centerlines of the sandwich panel faces, d, is assumed as one foot, the axial tension and compression load on the faces is 17,820 lbs. The compressive load in the strut is equal to $cos(\alpha) + sin^2(\alpha) / cos(\alpha)$ times the load on the faces, where α , is the angle between the roof surface and the horizontal. The maximum compressive strut force of 25,200 lbs. occurs for the maximum roof pitch of 12/12. The tension load on the edge hinge plate is equal to $tan(\alpha)$ times the load on the faces. This tensile load has a maximum value equal to the load on the faces, 17,820 lbs., for a pitch of 12/12.

7.3.2.6 Ridge Fastener Noise

Noise generated from the ridge fastener is a concern. This potential concern can be validated by the irritating problem of nail squeak resulting from dynamic loading in residential floors. Wind gust or vortex shedding can generate dynamic loading on a roof panel. The hinge is rigidly clamped to the shoe, preventing movement. If movement should develop over time, for instance, due to fastener stress relaxation, the lubricated metal to non-metal interface between the shoe and hinge should dampen acoustic vibrations. Likewise, the ridge beam and shoe interface should not present potential problem given the probable nature of their materials (wood or plastic on metal). The squeaking of the metal hinge due to vibratory movement is a major concern for sound generation. Coating the hinge pin with a teflon coating would reduce friction. Teflon washers placed between the hinge knuckles would prevent chattering and rubbing arising from dynamic flexing. A coating on the component which connects the ridge edge fastener to the shoe should again abate any noise problem.

7.3.2.7 Ridge Edge Fastener Summary

In summary, ridge edge fasteners:

- 1. provide attachment points for the crane hooks to deploy the roof panels.
- 2. connect edge stiffener of one panel to edge stiffener of adjacent panel, joining the discontinuity at the ridge line.

- 3. localize and limit the number of connections made in the field.
- 4. can be utilized in a ridge beam, folded plate, or tied floor system.
- 5. adjust in angle to any pitch.
- 6. can be pre-attached in the factory for shipping.
- 7. are easily detached and re-attached in the field if re-aligning is required.

7.3.3 Insulation

The triangular void between the edge stiffeners is a cold spot in the roof envelope which is also vulnerable to air infiltration. In the factory, a flexible adhesive tape is applied along the ridge line to seal the gap between the edge stiffeners and prevent air infiltration. Applying foam on site/in place with aerosol cans provides an insulating, air tight seal which has elastic properties to conform to the bowing of the edge stiffeners. Taping the gap between edge stiffeners prevents foam from falling through the crevice before hardening. The cost of filling the significant volume of the triangular void and CFC issues, however, make the use of polymer foam questionable.

 $Void = (insulation \ depth)^2 \ tan(\alpha)L$

A roof length of 60 feet, a pitch of 12, and a foam depth of five inches results in a sizable void volume of 10.4 cubic feet. An alternative, and possibly more economical solution, is to use loose mineral wool, fiberglass batts or blown insulation. There exist the possibility of attaching the fiberglass batt insulation to the edge stiffner in the factory. The fiberglass batts would merge as the panel is deployed and splayed apart. This method removes the need for on site insulation installment.

7.3.4 Weather Sealing

A continuous ridge cap with integral rain screen overlapping the panel faces seals the area from water penetration. Additionally, the ridge cap could act as a container for insulation blown in from the ridge ends. The ridge cap is placed after the ridge edge fastener connections have been completed and inspected.

7.3.5 Edge Stiffener Tension Splice

Depending on the direction of the roof diaphragm loading, the ridge edge stiffener may be subjected to compression or tension loads. End bearing of adjacent edge stiffeners is able to transfer axial compression forces, however, the transfer of axial tension loads requires a tension splice.

If edge fasteners are located near the edge stiffener ends, the possibility of directly connecting the edge fastener of one panel with the adjacent edge fastener exists. Reasons not to pursue this joint concept are two fold: relocating supports from their more optimal location, at edge stiffener quarter points, increases edge stiffener dimensions; adding the duty of tension splice increases the demands on an already highly loaded ridge edge fastener.

The preliminary design of the tension splice is dependent on several factors. Plate connectors nailed or screwed in the field are a labor intensive job. Assuming an allowable lateral load of 280 lbs. per fastener (group III wood, size 18 screw, embedded to 1.876" [U.B.C. Standards, 88]) 136 screws are to be installed for a 19,160 lb. capacity tension splice. Gang-Nail connectors employed in wood truss tension splices can not be used in the field because of the large compressional forces required to drive them. Specially modified plate-type connectors, however, could be hydraulically driven into the edge stiffener in the factory, before the edge stiffeners are inserted into the panel edge. This accessory is referred to and labeled as a splice-nail in Figure 7-12. Integral to this plate-type connector are several reinforced threaded nuts, which are welded on the underside of the plate-type connector. Blind holes would be drilled into the edge stiffener to make room for the projecting nuts. A secondary accessory, referred to as a splice-plate and shown in Figure 7-12, joins the two edge stiffeners at the prepared end conditions. The steel splice-plate with slotted holes serves as a structural link in joining adjacent edge stiffeners. The slotted holes allow imprecise location of the splice-nail by taking up the

Figure 7-12: Edge Stiffener Tension Splice

play so that the two edge stiffeners are in direct contact to transfer compressional loads.

The holes are slotted at either end of the metal plate are slotted in orthogonal directions. The tie would be effective in resisting shear between the edge stiffeners which is normal to the roof panel. A special clamping tool might be developed to pull and temporarily hold the two edge stiffeners together during assembly so that the friction bolts can be tightened, without the joint alignment slipping.

The proposed tension splice has numerous benefits in constructibility and economy. The tension splice reduces the number of field connections from a large number for the nail driven fasteners to a small number of high strength metal to metal fasteners. The axial loads vary parabolically along the length of the folded plate or roof diaphragm. For greater economy, the capacity of the tension slices should be stepped down to reflect this variation in moment. The plate-type connector could be produced in a limited number of capacities, similar to the wood truss tension splices. Furthermore, the number of high strength connectors installed in the field could vary with the tension loads.

The proposed joint is prepared in the factory and is integral to the edge stiffener before insertion into the panel edge. A secondary accessory joins the two edge stiffeners at the prepared end conditions.

7.3.5.1 Tension Splice Summary

Tension splices are:

- 1. hydraulically pressed to the edge stiffener ends at the factory.
- 2. produced in varying load capacities.
- 3. joined together by a secondary accessory which is fastened by high strength friction bolts (where number installed depends on load requirements).

7.4 Longitudinal Wall Connection

Eaves are subjected to loads equal to or slightly greater than the ridge line connection.

Loads at Longitudinal Wall (standard load case, Chapter 6)

Load along (parallel to) longitudinal wall (longitudinal direction) divide by length of span to obtain shear pitch = 12/12 eave width = 36' 6741 lbs.

Download (vertical) pitch = 12/12 eave width = 36' 553 lb./ft. pitch = 3/12 eave width = 36' 453 lb./ft.

Uplift (vertical) pitch = 12/12 eave width = 36' 406 lb./ft. pitch = 3/12 eave width = 36' 197 lb./ft.

An edge stiffener is desirable at the eave line for the same reasons as at the ridge line: thermal and hygroscopic bowing, wind uplift resistance, shear strut collector, and longitudinal line member.

7.4.1 Eave Overhangs

Eave overhangs are a predominant feature of residential construction. Upon first examination, the obvious solution to eave overhangs with a panelized roof system is to cantilever the panel element over the longitudinal wall. Placement of an edge stiffener a distance in from the panel end during fabrication, however, adds great complexity to the panel production, particularly with continuous panel production. The problem of eave overhang can be solved in one of two ways. A structural roof accessory, which may include gutter, ventilation, insulation, soffit, fascia, and drip cap is attached to the eave edge stiffener, and the longitudinal wall. This accessory may be manufactured in the factory, roll-formed on the site (a technique presently employed for forming seamless gutters on the job site), or built as a boxed construction on the site. This accessory

solution to the eave detail provides maximum design flexibility and conforms to the increasing trend towards individualized and personalized home design. An alternative solution is to rigidly adhere a short length of panel onto the eave edge stiffener before inserting the eave stiffener into the routered panel element edge. The adhesion of the eave edge stiffener to the faces and the panel core in a controlled factory environment ensures a moment rigid, continuous connection able to resist the significant moments due to wind uplift ($C_a = 2.8$ upward). Difficulties encountered with this concept are:

- 1. Access to the eave edge stiffeners ends must be provided to connect the tension splices.
- 2. Overhanging panel physically interferes with the longitudinal wall connection.
- 3. Eave does not require insulation or such high strength capacities as provided by the overhanging sandwich panel element.
- 4. A secondary edge stiffener is required at the overhang edge to attach fascia, soffit and gutter.
- 5. Panel overhangs reduce the flexibility in customizing the eave detail.

7.4.2 No Eave Overhangs

In the case of no eave overhang, a beveled edge stiffener would have the desirable effect of creating an eave flush with the longitudinal wall, but would require complex millwork specific with each pitch. Fabrication considerations suggest that the edge stiffener be square to the panel element, and hence, be fabricated identical to the ridge edge stiffener.

Thermal and hygroscopic behavior of a two-way slab creates many difficulties at the eave connection. Due to the longitudinal wall not being aligned with the direction of the required thermal and hygroscopic edge reactions, these reaction forces are magnified by the division of the $cos(\alpha)$ (problematic in steep roofs). Again, the proposed solution of supporting the edge stiffener at two points removes the problem of resisting large corner

uplift reactions generated by the thermal behavior of a two-way slab. The optimal location of these two support points, in terms of minimizing bending stresses, is at 0.25 the overall length from the end of each panel element. This finding is arrived at by examining various load cases. The case of a uniform load acting over the cantilever portion of the edge stiffner results in a moment equal to a uniform load acting over the span between supports only if the cantilever span is equal to one half of the span between the two support points.

As in the case of the ridge edge stiffener, the eave edge stiffener resists the bending caused by thermal or hygroscopic bowing, and the bending moment from transfering one-way slab action of the panel to two support points. Additionally, the edge stiffener carries axial tension and compression forces as a longitudinal line member. The net result is a combined axial and bending load criteria, Section 7.3.1.

7.4.3 Eave Edge Fastener

The requirements of a eave edge fastener are multifaceted.

The fastener needs to adjust in height to remove any variation in the longitudinal wall height (roll). This discrepancy in construction is typically in the range of plus or minus one quarter of an inch. The roll results from foundation inaccuracies and varying wall height, and should not be carried into the roof line where longitudinal wall height variations may effect the alignment and constructibility of panel to panel connections.

Another issue of constructibility is that of lateral thrust on the longitudinal wall. Unless a positive stop is provided for the panel element to engage the longitudinal wall in a pitched roof panel system, the wall may be pushed laterally inward, Figure 7-13. Wall kick out will occur if the longitudinal wall is not properly laterally braced and frictional forces between the roof panel and the wall are overcome. Lateral wall bracing, typically provided every six or eight feet during construction may deflect under this lateral thrust, which is not present in the deployment of wood trusses.

Figure 7-13: Lateral Longitudinal Wall Kick Out

The longitudinal wall is typically not designed to carry bending forces. The eave joint should not possess rotational stiffness, since an end moment placed on the edge wall decreases the axial load capacity. Another concern of the eave edge fastener is eccentricity. In the case of stud construction, an axial load deposited one and three-quarter inches off the centerline of a nine foot yellow pine stud (kiln-dried, stud quality), reduces the axial capacity by 37%.

The proposed preliminary design for the eave edge fastener is depicted in Figures 7-14 through 7-19. The secondary element attached to the eave edge stiffener is referred to as a foot in Figure 7-14.

Figure 7-14: Hinge Pair with Eave Edge Fastener

Ideally, the eave edge fastener should have the ability to adjust to any roof slope,

thus limiting the number of parts in inventory. All eave accessories except the foot have this feature. The impact on the roof accessory inventory, however, is not appreciable. Since eave edge fasteners are attached in the factory, the inventory stock pile is limited to the panel manufacture site. The prismatic geometry of the foot, fabricated by extrusion or linear milling, is straight forward to produce and relatively compact to store.

The geometry and proportions of the foot are controlled by various factors (refer to Figure 7-14). The foot should provide a panel spacing which is equal to the spacing at the ridge edge fastener, since it is desirable to transport the paired panel units in a horizontal plane. Furthermore, the width and depth of the foot is determined by the panelized wall system in which it is to be inserted. The length of the foot in the longitudinal direction is controlled by the bearing area of one one face needed to carry the the compressional load resulting from a floor tied system divided by the face thickness. Additionally, the longitudinal length is determined by the bearing strength of the foot material in transfering eave download and wind uplift.

7.4.3.1 Panelized Longitudinal Wall System

The foot is inserted into the routered edge of a panelized wall system (see Figure 7-15). Blocking is provided inside the routered edge to serve as a positional stop and load spreader for the foot, and to tie the two wall panel faces together. Recall that the edge of the foot is beveled to mate with the opposite foot of the hinged panel unit. This chamfered edge aids in the alignment and fitting of the foot into the routered edge of the panelized wall system. The other exposed edge of the foot is chamfered for the same purpose. The panelized wall system is assumed to be built such that tolerance errors are negligible (\pm 0.01). Nails are driven through the wall panel faces into the foot to resist longitudinal shear and wind uplift.

Figure 7-15: Panelized Longitudinal Wall Eave Connection

7.4.3.2 Wood Frame Longitudinal Wall System

The foot is set on top of the top plate of a wood frame wall (see Figure 7-16). The chamfered edges of the foot reduce the eccentricity of the axial load and end moment on the 2x4 wall system. The variation in the top plate elevation is corrected by the use of shim stock at the area of contact of the foot with the top plate. This height adjustment is performed before the deployment of the panels since the task is easier at this stage and top plate height variation may interfere with panel to panel alignment. A taut string running from gable line to gable line along the eave serves as a alignment aid in shimming. A light

gage metal nailing plate connector is nailed to the foot and the top plate. The standard load case (Chapter 6) with a pitch of 12/12 and an eave to eave width of 36 feet represents the maximum wind uplift that is likely to be encountered. For a four foot panel element width the maximum wind uplift is 818 lbs. per eave edge fastener. The allowable lateral load for a 8d common nail driven in species group IV is 51 lbs. [U.B.C. Standards, 88]. A 20 gage galvanized steel nailing plate connector measuring 3-1/8 inches by 9 inches provides 41 nail holes [Sweet's Catalog File, 88], of which 32 are required. Ideally, the eave edge fastener will be located over the stud, which will allow the nailing plate connector to be nailed into the stud to better resist wind uplift. The variation in the horizontal projected distance of the top plate from the reference ridge line is corrected by forcing a flexible wall system laterally in or out. If bracing or a comer detail restrains lateral re-alignment of the longitudinal wall, there are two proposed solutions: pack out the foot or the top plate to create a flush surface (see Figure (eavepack)), or insert a lag bolt from a hole drilled from the underside of the top plate into the foot and eave edge fastener (see Figure (eavelag)). Both the nailing plate connector and the lag screw resist wind uplift and longitudinal shear.

7.4.3.3 Tied Floor System Accessory

The foot is set on top of and connected to the floor unit to resist lateral roof thrust as shown in Figure 7-19. A secondary attachment accessory, referred to as a floor tie, is formed from a rectangular plate of light gage steel into which fastening holes are prepunched. The floor tie is fastened into the floor unit before the roof panels are deployed. At the time of fastening, any variation in elevation and horizontal projected distance from the reference ridge line is corrected for using shims. Elevations are corrected by shimming under the floor units. If horizontal alignment is a problem, shims may be used to pack out the surfaces approximately flush. The floor tie can be bent to small angles if the surfaces are nearly flush.

Figure 7-16: Wood Frame Longitudinal Wall Eave Connection

The floor tie is of double thickness in the region of the connection to the foot. The floor tie serves a double duty of resisting the wind uplift and longitudinal shear forces, and the lateral thrust component of in-plane roof panel forces. The outward thrust is equal to the in-plane fold line forces multiplied by the $cos(\alpha)$, which can become large for low pitched roofs. The force is transfered into the foot by breaking the edge of the floor tie over the edge of the foot.

A negative moment is induced on the panel element due to floor tie eccentricity.

The resulting moment is a maximum at the eave connection and decreases linearly to zero

Figure 7-17: Mis-aligned Wood Frame Longitudinal Wall Eave Connection at the ridge connection. The eccentricity at the floor tie is slightly less than the ridge edge fastener eccentricity. The moment magnitude due to the ridge edge fastener eccentricity was calculated in Section 7.3.2.3, where the moment decreases linearly to zero at the eave line. Superimposing these two negative moments results in an approximately uniform negative moment over the panel element. The opposite sign of live (snow) and dead moments diminish the effects of these fastener eccentricities. Outward wind suction on the panel elements, however, generates moments of the same sign, and a check regarding stresses and deflections must be performed for this loading condition.

Figure 7-18: Mis-aligned Wood Frame Longitudinal Wall Eave Connection

7.4.3.4 Tension Cables

Tension cables provide a positive stop to eave distance separation and indicate when the correct pitch for the hinged panel unit has been achieved (see Figure 7-20). Tension cables also resist lateral thrust of the folded plate until all connections are made to the edge supports. In the folded plate the tension cables may be left permanently in place and fire proofing added to provide redundancy in the structure.

Only one tension cable need be attached to each hinged panel unit. This tension cable should be located near the edge of the panel to panel connection which is opposite

Figure 7-19: Tied Floor System Eave Connection

the panel to panel connection to be aligned and joined. The addition of a tension cable near the panel to panel edge to be aligned would be redundant with the tension cable of the neighboring panel element. Moreover, tension cables provide a positive stop to eave distance separation and fix the roof slope angle, α . The eave to eave distance determined

Figure 7-20: Tension Tie for Cables

by the tension cable of the hinged panel unit being deployed might not correspond to the exact eave to eave distance of the hinged panel unit which is already set on the roof, due to installment errors and cable stretch. An inserted panel to panel joint would present considerable problems with respect to redundant tension cables. Panel to panel joint types are discussed in Section 7.6. Adjustment in the tension cable length would have to be fine tuned before adjacent panels both have the same slope required for insertion. An additional crew member would be required since this adjustment would take place on the

interior of the roof or at the eave location. An overlaid or butted panel to panel connection would be less critical in terms of assembly, but would complicate the panel to panel connection by the possibility of the panel to panel connection not being flush.

7.4.3.5 Eave Edge Fastener Summary

In summary, eave edge fasteners:

- 1. localize connections made in the field.
- 2. provide discrete locations where height variation of the longitudinal wall is corrected.
- 3. provide fastening points for floor tie to the floor unit.
- 4. are compatible with stick built construction or panelized wall systems.
- 5. possess little eccentricity.
- 6. possess little moment rigidity.
- 7. provide positive seating for the panel element on the longitudinal wall.
- 8. allow for lateral mis-alignment of the longitudinal wall.

7.4.4 Insulation

There are multiple methods of insulating the eave line.

In the eave connection to a panelized wall, the routered region of the top edge provides a trough into which foam can be injected. The foam rises against the surface of the panel eave edge, seals against air infiltration, and is flexible to the thermal bowing of the eave edge stiffener. Alternatively, loose insulation or fiberglass batts could be stuffed into the void, a messy solution. The eave overhang might incorporate an insulating jacket into its construction.

In the stick built wall, a strip of closed cell polyethylene foam could fill the void between top plate and the panel eave edge. This highly compressible material was originally used in housing construction as a seam sealer between the sill and the uneven top surface of the foundation. The foam strip could be pre-attached in the factory to the

panel edge. The foam extends a measured distance beyond the eave edge fastener, and compresses once placed on top of the top plate. The foam would expand and contract to fill the gap created by the thermal or hygroscopic bowing of the eave edge stiffener.

7.5 Gable Connection

The gable line is subjected to the in-plane shear loads of roof diaphragm or folded plate action, as well as loads transverse to the panel element arising from wind forces on local areas of discontinuities, dead, live and seismic loads. The loads on the rake are as follows:

Loads at Rake (standard load case, Chapter 6)

Uplift (vertical)

pitch = 12/12 eave width = 36'

pitch = 3/12 eave width = 36'

238 lb./ft.

In a folded plate, the gable endwalls resist significant-in plane loads. A 6/12 pitch roof results with a length of 40 feet results in a maximum in-plane shear load of 1916 lbs./ft. at the gable line. A comparison of roof diaphragm behavior of a floor tied or a ridge beam system to a folded plate system normalized about a 6/12 pitch and an eave to eave distance of 20 feet follows:

Normalized Roof Diaphragm and Folded Plate Loads with Respect to a 6/12 Pitch Folded Plate (standard load case, Chapter 6)

Pitch $(x/12)$	Roof Diaphragm	Folded Plate
3	0.093	2.10
4	0.095	1.58
5	0.115	1.24
6	0.137	1.00
7	0.159	0.831
8	0.181	0.706
9	0.223	0.613

10	0.248	0.559
11	0.272	0.554
12	0.296	0.554

An examination of the above table shows how the demands on the "plate" action of the roof for a folded plate compare to the roof diaphragm behavior of a ridge beam or floor tied system. Lower pitched roofs are more efficient at resisting roof diaphragm loads, while steeper pitched roofs are more efficient in folded plate action. At a pitch of 12/12, the roof diaphragm loads are 53% of the folded plate loads. Although the in-plane forces of the folded plate are roughly twice that of the roof diaphragm, the need for a ridge beam, or a floor system has been removed in the folded plate design. A comprehensive economic comparison of the folded plate to the ridge beam and floor tied system must weigh increased in-plane joint demands against ridge beam and floor systems costs.

7.5.1 Trussed Gable Endwall

The trussed gable endwall resist the lateral thrust of the folded plate or diaphragm behavior by a tension tie between opposite corner posts (see Figure 7-21). The trussed configuration transfers the download resulting from the folded plate or diaphragm action to the corner posts. This download is equal to the tributary ridge line load typically carried by the ridge beam end support in the folded plate. The transverse endwall must still be designed to transfer the wind and seismic roof diaphragm forces to the ground plane by preventing racking in the corner posts.

7.5.2 Gable Edge Stiffener

The gable edge stiffener has several functions and design criteria. The gable edge stiffener is made of a material with a coefficient of thermal expansion near that of the face material. Otherwise, differential strain between the two components would stress the face and edge stiffener bond. Aside from providing a material which can be fastened to, the

Figure 7-21: Trussed Gable Endwall

gable edge stiffener collects the in-plane loads from the panel faces, and ties the two panel faces together. This duty is critical at the gable line where in-plane shear forces are at a maximum. The means of fastening the gable edge stiffener to the gable endwall determines the forces that the stiffener will experience.

The edge stiffener performs several duties if allowed to bow or deflect as a beam. The gable edge stiffener reinforces the one-way slab action of the panel element in resisting large wind loads due to local roof discontinuities at the rake. These forces, which are normal to the roof panel, are resisted by the ridge and eave fasteners. Due to the increases in loads at the rake discontinuity, a double pair of standard ridge and eave fasteners might be located nearest the gable line. Additionally, the gable edge stiffener resist the thermal and hygroscopic bowing of the panel element. If a tension tie running from gable and eave line intersections resists the lateral thrusts, the edge stiffener behaves like a column pinned at either end.

7.5.2.1 Gable Edge Stiffener Summary

In summary, gable edge stiffeners:

- 1. are made of a material with a coefficient of thermal expansion near that of the face material.
- 2. provide a fastening material.
- 3. act as a shear diaphragm strut collector by tieing the opposite faces of the panel together.
- 4. are designed as a beam to reinforce the one-way slab action of the panel element in resisting wind loads due to local roof discontinuities at the rake, if allowed to deflect.
- 5. are designed as a beam to resist thermal bowing, if allowed to deflect.
- 6. are designed as a column to carry the in-plane shear loads which are carried out to the gable line, and resolved at the tension tie.

7.5.3 Gable Edge Fastener

If the gable edge stiffener is fastened continuously and rigidly along its length to a gable endwall, the edge stiffener does not undergo column action as a compression member in a truss. The in-plane shear loads are distributed evenly along the length of the gable endwall edge. Since the gable edge stiffener is not allowed to deflect as a beam, the thermal and hygroscopic edge reactions, the normal live, dead, wind and seismic forces are transferred into the gable endwall by the the gable edge fasteners. The gable endwall, and not the gable edge stiffener, resists the the edge reaction of thermal and hygroscopic bowing, since the gable edge stiffener is never allowed to deflect. As discovered in the study of rectangular plates with four edges simply supported, the corner edge reactions can become very large, pointing to the impracticality of this scheme.

In the case of a trussed gable endwall, a solid backing is required for infill. The infill, however, should not come into conflict with the thermal and hygroscopic bowing of the gable edge stiffener. Resistance to panel bowing would result in significant reaction forces being exerted on the ridge and eave fasteners (refer to Figure 7-22). The desired

connection to the gable endwall allows for the sliding of the gable endwall structure with regard to the edge stiffener, and still resists the wind forces normal to the gable endwall, while providing a weather tight seal.

Figure 7-22: Thermal and Hygroscopic Bowing of the Gable Edge Stiffener

The variations in the proposed gable endwall detail are shown in Figure 7-23 and 7-24. The spacers are rigidly attached to the gable edge stiffener in the factory. The fascia is nailed in the field to the the spacers after the gable endwall has been placed. As the gable edge stiffener deflects and bows, it slides in relation to the gable endwall. Molding, attached to the interior of panel face, aesthetically covers the expansion joint. The detail provides an ornamental fascia board. If a rake overhang is desired, a secondary component, similar to the eave overhang, would provide design flexibility, and insulation to the gable edge stiffener.

Figure 7-23: Detail of Panel Gable Endwall as Viewed Along the Gable Line

7.6 Panel to Panel Connection

The ability of sandwich panel faces to resist racking loads establishes the transfer of shear across the panel to panel joint as a problem which is universal to all sandwich panel construction. The constructibility of this connection in the field is of crucial importance to the viability of a building system. Panel to panel shear is present in roof diaphragm action, but becomes the critical design parameter in folded plate construction. The panel to panel shear can be calculated from the loads given in Section 7.5. The panel to panel in-plane shears for the different load cases vary linearly from a maximum at the gable line to one quarter this value at the midspan. Therefore the maximum in-plane panel to panel load might be considered 1916 lbs./ft. as a result of a 6/12 pitch roof and a length of 40 feet with standard load case.

Figure 7-24: Detail of Stud Gable Endwall as Viewed Along the Gable Line

In sandwich panel to panel joint design, the critical connection is between adjacent

panel faces. The core material has minimal impact on the joint behavior, but does concern the fabrication process. The face material may be divided into four generic groups, according to the manufacturing and material processing:

- 1. Sheet facing (plywood, waferboard, oriented strand board, etc.).
- 2. Malleable facing (steel, aluminum, etc.).
- 3. Molded facing (includes organic/inorganic, structural fiberglass, etc.)
- 4. Extruded facing (includes polymers, structural fiberglass, cementitious materials etc.)

Several preliminary panel to panel joint geometries for the above face material categories are described. Panel to panel connections can be divided into three types: inserted, overlaid, or butted (refer to Figure 7-25.

Utilizing a crane in the construction assembly suggest that the overlaid and butted panel to panel connection may be the more forgiving methods of roof panel assembly. When compared to overlaying and butting, panel to panel insertion requires alignment along an additional axis. Inserted panel to panel joints require that the exact pitch of the adjacent panel be matched before panels can be joined. Variations in longitudinal wall height would interfere with this alignment. Furthermore, varying wind forces can complicate the deployment of large panels by crane.

An important issue in panel to panel connections is symmetry. If panel to panel connections are of a female and male pairing, as with the insertion joint, differing fabrication techniques are required for either panel edge. With the overlaid joint the panel connections may be identical, but rotated 180°. These anti-symmetric geometries create a left and a right panel, where the orientation of the panel must always be considered before placement. This differentiation in placement complicates the production of the panel elements, and can be a major handicap on the job site, especially if workmen are not adept at spatially visualizing the panels present and final positions.

Figure 7-25: Panel to Panel Geometry

If exposed to thermal and hygroscopic gradients, a panel to panel joint should not possess great flexural rigidity. Moment rigid panel to panel connections create a

monolithic slab over the entire roof panel. From the study of thermal and hygroscopic behavior of two-way slabs, large edge reactions on the ridge, eave and gable line connections result from the panel behaving as a rectangular plate simply supported along four sides.

Expansion and contraction should be permitted at each panel to panel connection. If expansion joints are not provided at the panel to panel connections, buckling of the panel elements along their widths might occur. The edge stiffeners along the eave and ridge may not be subjected to the same thermal or hygroscopic effects, because of their thermal mass. The linear dimensional stability of the edge stiffeners can be depended upon to control the overall behavior of the roof panel in the longitudinal direction. The tension splices restrain the edge stiffeners, so that if spacing between panel to panel edges is not provided for, the panels may reach buckling loads. This could result in failure of the roof covering or the face materials. Panel edges are properly spaced at every panel to panel joint to de-couple their influence on dimensional stability of the roof panel in the longitudinal direction.

The fragility of the panel to panel connection is also a consideration. Inserted and overlaid joints have panel faces which extend beyond the support of the panel core. These panel faces are subject to edge damage, or fracture depending on the material properties of the faces. Deploying the panels by crane may subject these edges to large, accidental impact loads.

There are many possible variations in the joint geometry within the three major panel to panel types of overlaid, butted and inserted which are partially dependent on the face materials. Variations in the joint geometry occur due to differences in the processing and workability of the four face material divisions. The research team has, at the time of this thesis writing, not selected the face material. Therefore, the panel to panel joint will be developed independent of the face material.

The geometric restraints on the panel to panel connection are multifaceted. A gap should be provided between the panel to panel connections to provide for face expansion along the panel's width. Additionally, there is a problem of differential thermal movement along the length of the panel to panel connection line. This differential strain might occur if one panel element is exposed to the sun, and the adjacent panel element is in the shade. The differential linear contraction and expansion along the joint line will lead to over stressing in the outer region of the panel to panel connection which could result in joint fatigue, or ultimate failure. This difference in thermal gradients for adjacent panels would induce bowing in the panel element exposed to the sun, while the adjacent panel would be unaffected, resulting in shears across the panel to panel connection. Movement perpendicular to the panel to panel connection line and normal to the roof must be prevented. Panel faces must remain flush across the joint for appearances as well as preventing fatigue in the roof coverings.

The inserted panel to panel connections present difficulties in joining hinged panel units, because they require alignment along an additional axis. Inserted and overlaid panel to panel connections are not symmetric and are fragile. For these reasons the butted panel to panel connection is selected as the concept to be developed.

7.6.1 Panel Web Concept

The panel to panel connection concept is depicted in Figure 7-26. Opposite faces of the panel are connected by a thermally non-conductive, high strength material, referred to as a web. The joining together of the opposite panel faces distributes in-plane shears between faces, transfers in-plane loads between panels, resist shear forces normal to the plane of the panel element, and protects the core from damage.

The web is produced of a hypothetical material, referred to as material X. The material has the flexibility of a heavy duck cloth before it is processed to create its

Figure 7-26: Panel to Panel Web Accessories

stiffness and high strength. Material X is a hypothetical material which has the strength of aluminum at a quarter of aluminum's price. The modulus of material X is approximately

that of a good plywood, and is assumed to be very moldable. Material X is assumed to possess very good fire performance, and have a thermal conductivity comparable with a dense wood.

Material X is well suited for use as a panel web due to the material's high strength, low modulus, low cost, low thermal conductivity, and good moldablilty. The material is formed into a male and female accessories which are attached in an identical fashion to the panel faces and core. The panel edge treatment is the same for both male and female webs. The web is molded with edges for adhering to the panel faces. Rectangular boxes project from the mid-depth of the panel web. These male and female boxes insert into one another, to transfer shear across the panel to panel connection. The rectangular boxes are chamfered on the exposed edges to allow for ease of alignment and insertion in the field. A expansion gap between the panels is provided between webs to allow for expansion and contraction of the panel faces in the transverse direction. The rectangular boxes project beyond and perpendicular to the flat surface of the web to allow the rectangular projections to slide into one another.

A thin layer of compressible, foamed elastomeric, non-permeable material, referred to as filler in Figure 7-26, seals the gap between adjacent panel webs. The filler acts as a compressible non-permeable seal. It allows the gap between adjacent panels to expand and collapse, while guarding against air infiltration and a subsequent vapor control problems. The filler is adhered to the adjoining panel edge when the panel to panel connection is made on the site. Glue, applied with a roller to the web, is the only field work that is required. The panels are simply butted together. No mechanical fastening or adhering is required to develop joint strength.

7.6.1.1 Preliminary Web Design

The suitability of material X for the panel web application can be verified by a few simple calculations. Simplifying assumptions are made for these "back of an envelope" calculations. Since the panel web is adhered to the panel core to transfer shears normal to the panel faces across the panel to panel connection, the panel core is assumed to prevent web crippling and compressive buckling of the panel web. The projecting boxes must be designed to bear on one another to transfer in-plane loads between adjacent panels. The projecting boxes are assumed to be capable of bearing on their mated box to the loads required. Should this not be the case, the projecting boxes could be reinforced by a filler added inside the projecting box in the case of the male web, and filleted with a filler material outside of the projecting box volume in the case of the female web. A more sophisticated analysis, such as the finite element method, is strongly recommended for the study of the transfer of transverse shears (normal to the roof surface) across the panel to panel connection which result from one panel element's exposure to a thermal gradient, while the adjacent panel is not exposed (in the shade).

If one panel is exposed to a thermal gradient, and the adjacent panel is not, differential movement at the panel element ends occur. The panel webs must be able strain to absorb this differential relative motion with the stresses remaining below their allowable level. If the face material is assumed to have a thermal coefficient of expansion equal to that of steel (an upper limit), the length of the panel element is 25 feet, and one panel is exposed to a thermal gradient of 100 °F while the adjacent panel is not exposed, the differential movement at the panel end, measured at the panel mid-depth of the panel is 0.04875 inches. If both webs of the adjoining panels are identical in design, the differential movement at the midspan of either web is one half this value, or 0.02438 inches. The projecting boxes of the male and female webs are conservatively assumed to be a distance of four inches from the panel faces. The resulting shear strain in the panel

web is 0.2438 inches divided by four inches, or 0.00609375. Assuming a shear modulus of 700,000 p.s.i. for Material X, the shear stress due to this differential movement between adjacent panels is 4220 p.s.i. A factor of safety of 3.0 yields a design load of 12,660 p.s.i., which is well below the probable ultimate shear strength of the panel web. A maximum in-plane panel to panel shear of 1916 lb./ft. with a factor of safety of 3.0, results in a panel to panel shear of 5748 lb./ft. This shear is distributed equally between the two attaching panel faces. The resulting shear is 240 lb./in. in the panel web section. A panel web thickness of 0.05 results in a shear stress of 4800 p.s.i. from in-plane panel to panel loads alone. If the shear stress arising from the differential thermal gradient is added to this value, the total sear stress in the panel web would be 17,460, which is well below the probable ultimate shear stress of material X. It may be noted that this superimposed load is highly improbable. The maximum in-plane loads infers a snow load, which would insulate the roof panel from a differential thermal gradient between adjoining panels.

7.6.1.2 Utilities

Placement of utilities within the thickness of the roof elements can be provided for in the panel to panel connection. Ceiling lighting requires electrical conduit to be installed within the roof panel depth. Providing a channel at every panel width of four or eight feet, would provide enough flexibility to meet most designers needs. This utility channel is integrated into the panel to panel connection at fabrication. The utility channel is a groove which is integrated into the panel web (refer to Figure 7-27). The filler is indented from being flush with the interior panel face. Electrical conduit can be fed and adhered in this utility groove.

7.6.1.3 Frostlines and Thermal Bridge

Builders point out that on a cold winter day frost lines form on top of panelized foam-core roof panels where 2x lumber is used as a spline to join panels together. This indicates that there is some short circuiting of the thermal resistance of the panel. This

Figure 7-27: Panel to Panel Connection

problem must be examined for the web which connects panel faces. Given a highly thermally conductive web, this could be a problematic area which needs to be studied in further depth. Is the problem any different from batt filled un-vented conventional roofs? Will this phenomenon effect the long term durability of the roof panel system? The thermal analysis of the joint could be studied with the aid of finite element analysis, or thermal testing.

Chapter 8

Construction Sequence

8.1 Introduction

Five methods of building a single bay, simple span, sandwich panel roof are proposed. A simplified outline of the construction sequences follows:

- 1. Rectangular sandwich panel elements are produced as net-shaped parts in the factory with exterior roofing membrane and interior finish applied.
- 2. Panel elements are hinged at the fold line in pairs (interior faces are adjacent and protected from damage during handling).
- 3. Hinged panel units are transported to the site.
- 4. Three folded plate erection sequences are considered:

a. Method 1:

- i. Tension cable is pre-attached from eave line to eave line to create an "A" shaped, trussed hinged panel unit.
- ii. Deployed by crane, the lateral thrust of the hinged panel unit is resisted by the tension cable.
- iii. Hinged panel units are butted and joined to create, in situ, a folded plate panel.
- iv. Panels are connected to edge supports.
- v. Tension cables are fire-proofed if exposed.

b. Method 2:

- i. A camber ridge beam, designed to carry the dead load of the panel elements, is installed.
- ii. Deployed by crane, the hinged panel units are supported by the ridge beam which acts as a centering.
- iii. Hinged panel units are butted and joined to create, in situ, a folded plate
- iv. Panels are connected to edge supports.

c. Method 3:

i. Tension cable is pre-attached from eave line to eave line to create an "A" shaped, trussed hinged panel unit.

- ii. Deployed by crane, the lateral thrust of the hinged panel unit is resisted by the tension cable.
- iii. Hinged panel units are butted and joined to create, in situ, a folded plate panel.
- iv. Panels are connected to edge supports.
- v. Compression struts are placed in the redundant ridge edge fastener.
- vi. Tension cables are removed.

One ridge beam erection sequence is considered:

a. Method 4:

- i. Ridge beam (either a laminated veneer lumber or a gluelam) is installed.
- ii. Deployed by crane, the hinged panel unit is supported and aligned on the ridge beam.
- iii. Hinged panel units are butted and joined to create, in situ, a roof diaphragm.
- iv. Panels are connected to edge supports.

And a tied floor system is considered:

a. Method 5:

- i. Floor system is deployed on top of the longitudinal wall
- ii. Deployed by crane, the hinged panel unit is aligned on top of and attached to the floor system to resist lateral thrust.
- iii. Hinged panel units are joined to create, in situ, a roof diaphragm.
- iv. Panels are connected to gable supports.
- 5. Finally, the roof is weather sealed and the interior is finished along the joint seams.

8.2 Redundancy in Folded Plate

Redundancy typically found in traditional roofing systems is not present in the folded plate system. The failure of a single wood truss does not result in the sudden collapse of the total roof system. Wood trusses are constructed with a factor of safety of 2.5, and load re-distribution allows neighboring trusses to catch the load preventing a progressive failure. Similarly, the failure of a single rafter supported by a ridge beam does not result in total roof collapse. Whereas, in a folded plate, the failure of any one critical component results in the sudden collapse of the entire roof. The failure of a panel element, a tension splice in a longitudinal line member, or the deterioration of a panel to panel joint, gable line, or ridge line connection would result in catastrophic roof failure. These failures could arise from any number of effects: corrosion of fasteners, dry rot or brittle failure of the face material, core de-bonding, faulty workmanship, or combustion. The issue of fire safety in residential construction is gaining in importance. Collapse of the total roof system as a result of fire damage to one region poses an unacceptable threat to fire personnel and inhabitants under the roof structure. In a worst case scenario: a folded plate extends over the garage where a fire burns undetected; the entire roof suddenly collapses from the failure of a panel element in the region of the garage. The liability of a nonredundant, untested structure may possess too great a risk to all parties involved: panel producers, builders, developers, and home owners.

The lack of redundancy in folded plates can be addressed in a number of ways. Tension cables attached from eave line to eave line to deploy the folded plate might be left permanently in place (folded plate erection Method 1). The tension tie would be designed to carry the full load of the live and dead loads. This solution does have the drawback of aesthetic interference since the cables could be visually obstructive to a cathedral roof space. Fire insulation of the metal cables would be required to prevent failure due to exposure to high temperature. Alternatively, if a ridge beam is employed as a centering in

the deployment of the folded plate, the ridge beam could also function as a redundant structure in catching the weight of a failed folded plate (erection Method 2). Installation of a compression strut with redundant ridge edge fasteners would serve as a failsafe in case of folded plate failure (erection Method 3).

The indeterminacy of a redundant structures can be avoided. The redundant system to the folded plate must be designed to carry the full roof load. Failure of the folded plate would result in a load transfer to the redundant system. The dropping of the roof would alert the home owner of the structural failure of the folded plate. Otherwise, if the tension tie is stressed, the folded plate action may not be wholly engaged. After the folded plate has been constructed, the tension cables could be slackened, so that in case of the failure of the folded plate, the tension cables would catch the load, with an accompanied drop in the roof line. A folded plate constructed on the centering of a ridge beam, could be raised above the ridge beam by temporary blocking which would be removed after the folded plate structure is completed.

In certain cases a non-redundant folded plate may be deemed acceptable. Increasing safety factors reduces the risk of catastrophic failure. Tension cables used to deploy the folded plate could be removed after the folded plate is constructed. Alternatively, a collapsible centering jig in the building interior could support the hinged panel units until connections are made to create a folded plate.

8.2.1 Construction Assembly Sequencing

Panel assembly is sequenced to allow for the precise fitting and alignment of the roof building system independent of tolerances in the supporting structure.

In ridge beam systems, the ridge beam guarantees the proper alignment of the ridge line with the reference ridge line. Proper seating of the ridge fasteners with the center line of the ridge beam allows panels to be joined smoothly together in succession. The floor tied system requires that the floor units be shimmed to a consistent vertical projected distance from the ridge reference line. Proper layout of eave ridge fasteners along lines which are parallel to and the correct perpendicular distance from the reference ridge line assure alignment of the hinged panel units in the horizontal plane.

In the deployment of the folded plate system with tension cables, the positive stop offered by the cables aligns the ridge line vertically if the longitudinal variation in height has been corrected by shimming. Tension cables do not, however, guarantee proper ridge line alignment in the horizontal plane. This alignment is accomplished by butting and joining hinged panel units prior to their attachment to edge supports. By deploying and properly seating the first hinged panel unit at one gable endwall, the reference ridge line segment is fixed at one gable peak. By visually sighting on the opposite gable peak in a gunsight manner along the ridge edge fasteners, the alignment of the projected ridge line can be brought into coincidence with the reference ridge line by laterally shifting the panel on its edge supports. Following proper alignment of the first hinged panel unit, the adjacent hinged panel unit is deployed, butted and joined. The alignment of the ridge line to the reference ridge line is checked with the addition of every hinged panel unit. Alternatively, an alignment string is run along the longitudinal edge wall to offer a reference line for alignment in the horizontal plane. Only after the attachment of all hinged panel units is completed, and the proper seating of the panel elements to the gable line is assured are the longitudinal wall and gable supports connected.

8.3 Crane Specifications

For single family residential construction, cranes are typically limited to carrier mounted types. These self-contained units are mounted on a truck or carrier chassis. These hydraulically operated cranes are typically in the 12 to 18 ton range. They are not designed to either pull or transport trailers.

Carrier Crane Specifications and Capacities			
	12 TON	18 TON	35 TON
Width	8'	8'	8'
w/Outriggers	12'	16'	17'
Length	32'-10"	32'-6"	36'-0"
Height	10'	11'-4"	11'-9"
Weight	26 TON	27.5 TON	39.0 TON
Jig length	20'	25'-30'	32'
Cable diameter	1/2"	1/2"	5/8"
Boom length	50'	65'	104'
10'	24,000lbs	36,000lbs	70,000lbs
20'	11,000lbs	14,400lbs	46,800lbs
25'	8,250lbs	12,300lbs	29,400lbs
30'	6,000lbs	10,400lbs	20,560lbs
35'	4,400lbs	9,500lbs	15,450lbs
40'	3,400lbs	8,700lbs	11,400lbs
50'	2,300lbs	6,400lbs	6,600lbs
55'	N/A	5,500lbs	5,280lbs
60'	N/A	4,800lbs	4,0901bs

NOTE: Capacity is reduced when lifting over the sides or front. Reference: Ryan Homes, Inc.

8.4 Roof Panel Width

Roof panel width is dependent on several factors outside of the manufacturing process:

- 1. Handling
- 2. Crane limitations
- 3. Waste
- 4. Edge stiffner dimension
- 5. Joining system
- 6. Transportation limitations

8.4.1 Handling

The size and weight of the roof panels has been developed with the assumption that the construction method will rely on crane assembly. Assuming a minimum panel dead weight of 6 p.s.f. (including roof covering and interior surface), the approximate limiting size of the panel element which can be handled by two men is a twenty-five foot length by one foot width (150 lbs.).

Establishing the role of mechanical lifting devices in panelized roof assembly, the effects of panel size on constructibility needs to be investigated with regard to crane assembly. As panel elements are increased in size, alignment and positioning becomes more difficult, particularly when coupled with increasing vulnerability to wind forces. Full size roof mockups of varying panel widths may be the only method of quantifying the effect of panel widths on constructibility.

8.4.2 Crane Limitations

Considering the common foot prints of detached single family housing, and the difficulty of positioning cranes on tight sites, a boom reach of fifty feet is a required minimum. The load capacity for a fifty foot reach of a twelve and eight-teen ton crane is 2,300 and 6,400 lbs, respectively. No reduction in capacity will be considered from lifting over the sides or front of the carrier vehicle. Assuming a panel dead weight of 10 p.s.f.. (including roof covering and interior surface), a maximum panel length of twenty-five feet, and the deployment of the panel elements in hinged panel units, the twelve ton and the eighteen ton crane are restricted to a panel width of 4'-7" and 12'-9", respectively. Limiting the cranes size to a twelve tons restricts the panel width of hinged panel units to four feet.

8.4.3 Waste

The amount of waste for a simple single bay roof is a function of panel width. Assuming that manufactured panel widths may be cut in half to reduce waste on the total roof area, the average fall-off for a roof of random length can be established. If the panel width is four feet, the half panel width can accommodate roofs of two foot increments. Assuming an uniform distribution in roof lengths (equal probabilistic frequency), the average waste is one-half the incremental roof length, or one-quarter the panel width, or one foot. Similarly, an eight foot panel width results in an average panel waste of one-quarter the panel width, or two feet. One may deduce that the average waste for a simple single bay roof is proportional to the panel width. The effect of panel width on waste for roof complexities such as dormers, turned gables, bastard hips, hipped roofs, etc. are more difficult to characterize.

8.4.4 Edge Stiffner Dimensions

The proportions of the edge stiffner are affected by two factors: girder action, and buckling. The study of thermal and hygroscopic behavior established no effect of panel width on edge stiffener moments. As the aspect ratio of panel length, H, to panel width, b, varied the uniform moment on the edge stiffener remained unchanged. Hence, the area of the edge stiffner with regard to resisting thermal bowing is uneffected by the panel width.

Panel width affects the dimensions of the edge stiffner with regard to its behavior as a girder. The edge stiffner moment increases in proportion to the panel width squared. For a fixed panel depth, the section modulus of the edge stiffner is proportional to edge stiffner width. Thus, the area of the edge stiffner with respect to girder behavior is proportional to the panel width squared.

In practical sandwich designs, panel width does not affect the buckling behavior of the edge stiffner. The allowable unit stress in compression remains unchanged if the b/c

ratio does not exceed 11. For a panel width of eight feet, a panel depth less than 9.6 inches exceeds this criteria. Given the effect of core depths on thermal and hygroscopic behavior, and the long span requirements, this lower limit on core depth cutoff appears reasonable.

8.4.5 Joining System

Panel width affects the joining system. As panel width is increased, loads transferred by the ridge and eave fasteners proportionally increase, however, the number of fasteners proportionally decreases. An eight foot panel width distributes the equivalent tributary load of a single wood truss spaced on twenty-four inch centers. The loads on a four foot panel are one-half this amount with twice the number of ridge and eave fasteners over the entire roof system. As panel widths increase the required number of panel to panel connections decrease proportionally. One could assume a direct correspondence between the number of panel to panel connections and time or cost factors; however, the efficiency of connecting a greater number of fasteners, and the complexity of handling a greater number of building parts may complicate this simplified assumption.

Recall that the optimal location of the two support points for the edge stiffner in terms of minimizing moments, is at the quarter points. Fortunately, this coincides with the modular and dimensional standards of construction. Given a standard roof panel width of four feet, fastener supports occurring at quarter points coincide with a standardized stud spacing of two feet. In this way, loads are collected by the edge stiffner and deposited directly on top of the studs, similar to wood trusses spaced on twenty-four inch centers. Given a panel width of eight feet, fastener supports occurring at quarter points coincide with a standardized sandwich wall panel spacing of four feet. Four foot panel widths in wall panel elements represent the limiting size that a two man crew can handle and are a dimension common to many wall panel systems. Numerous structural sandwich panel wall systems available on the market insert vertical two by four studs into routered panel

edges to join adjacent panels. Loads collected by the edge stiffner could be transferred directly onto these stud reinforced joints. Alternatively, load spreaders inserted horizontally in the top edge of the wall panel element could distribute the concentrated eave edge fastener reactions. For a folded plate or ridge beam system with an eight foot roof panel width, the load collected by the eave edge fastener is comparable to the tributary load of wood trusses on two foot centers.

8.4.6 Transportation Limitations

Transporting panel elements vertically, standing on edge, exposes the fragile panel to panel connections to large impact loads. The alternative solution is to transport the hinged panel units in a horizontal plane. Federal and state statutes on interstate highway transportation place limitations on width dimensions. Extending beyond a panel width of 105 inches entails special permits, limitations on routes, or mandatory escort vehicles, resulting in prohibitive transportation costs and restrictions on site accessibility and scheduling. Thus eight feet and nine inches is established as an upper bound on panel width. The maximum length limit is forty-five feet.

8.5 Crane Deployment

A crane is a necessity in the assembly of these heavy roof panels. The availability of cranes on large scale residential housing projects is increasing. The ability to deploy the hinged panel units rapidly enables a delivery truck equipped with a crane to deploy the panels immediately onto the completed understructure. This building system delivery process is similar to dry wall delivery systems, where a carrier mounted crane transfers the billet of dry wall. Roof trusses are delivered in a similar fashion. The bundled roof trusses are set on top of the longitudinal walls, and are individually positioned by workmen.

Ideally, a trained and certified crew would install the roof system. In this way, the quality of the roof structure can be assured to reduce liability risks for the component manufacturer. The delivery truck driver would also function as the crane operator. The proposed system of crane deployment would require two crew members in addition to the crane operator: one person stationed on the ground, to aid in the attachment of roof panels to the crane jig and assist in panel eave alignment and edge support connections; one person stationed on the roof to position and guide the roof panels into position and make the ridge beam and panel to panel connections. For greater efficiency an additional crew member may be stationed on the roof to assist in roof panel alignment and panel to panel fastening.

The crane deployment sequence is depicted graphically in Figures 8-1 to 8-7. The roof panels are delivered to the site in hinged units. The two ridge edge fasteners and four eave edge fasteners are already attached to the roof panels, Figure 8-1. The crane operator lowers the crane jig to a position where the ground crew member can attach the jig to the two ridge edge fasteners, Figure 8-2. The crane operator raises the jig, Figure 8-3, to a height where the panel eave edge stiffner is located a few feet above the ground within easy reach of the ground crew member. The ground crew member installs the eave crane hooks and attaches the cables which are hanging from the jig to these eave hooks, Figure 8-4. The crew member stationed on the roof then activates, via remote control the lower winch of the double-action winch, Figure 8-5. The jig fixed to the ridge edge fasteners is lowered away from the attachment points of the cables which are fixed to the eave hooks, splaying the panel apart until the proper pitch is achieved, Figure 8-6. If the panel is to be installed on a ridge beam system there are no tension ties between eave edge fasteners to prevent the panel from splaying beyond the proper pitch. A string of determined length could be attached in the factory between eave ends. A taut sting would serve as an indicator that the approximate pitch has been achieved. Splaying the panel beyond the proper pitch would snap the string. The crane operator positions the hinged panel unit to the approximate ground plan coordinates and a slight distance above the final position. The crew member stationed on the roof activates the upper winch via remote control to adjust the height of the hinged panel unit, Figure 8-7. In this way the person who can most easily observe the needed corrections in height and pitch of the hinged panel unit can fine tune their adjustment by activating, via remote control, the double action winch. After correct alignment of the roof panel, the crew member stationed on the roof detaches the ridge hooks. The sequence is repeated for the remaining roof panel elements.

Figure 8-1: Crane Deployment Sequence

Figure 8-2: Crane Deployment Sequence

Figure 8-3: Crane Deployment Sequence

Figure 8-4: Crane Deployment Sequence

Figure 8-5: Crane Deployment Sequence

Figure 8-6: Crane Deployment Sequence

Figure 8-7: Crane Deployment Sequence

8.5.1 Lifting and Hooking

The hinge panel units are lifted and rotated open by attaching crane hooks to the ridge edge fastener (refer to Figure 8-8). The hinge pin extends beyond the cylindrical barrel of ridge edge fastener to facilitate crane attachment. The hinge pin is crimped or mushroomed at either end after insertion in to the hinge to prevent the pin from working free. The crane ridge hook is fabricated from a bent rectangular steel bar. The two halves of the ridge hook are joined by an offset ridge hook hinge which allows the ridge hook to spread apart. An enlarged hole in the ridge hook passes over the crimped or mushroomed pin diameter. This enlarged hole constricts to an elongated slot the width of the hinge pin shank. The mushroomed hinge pin ends keeps the ridge hook plates against the point of emergence of the pin from the hinge. If the ridge hooks were to move away from direct contact with the hinge, bending stresses could result in failure of the hinge pin. It is also required that the eave ridge hook be prevented from disengaging the ridge edge fastener if the load were unintentionally released. This load release might occur if tension cables are attached from eave to eave. The tension cables would resist the lateral thrust of the panel dead weight should the lower winch continue to be let down beyond the proper pitch. Ridge hook release in the event of load release is prevented by the addition of a flip down guard which fills the remaining portion of the enlarged hole and prevents the pin from being jarred out of the elongated slot.

8.5.1.1 Ridge Crane Hook

The eave crane hook is designed with regard to constructibility (refer to Figure 8-9). The eave hook attaches to the eave edge stiffner by the insertion of a round metal stub into a hole pre-drilled in the eave edge stiffner. The hole is located at midspan of the panel width to balance the suspended weight and at mid-depth of the edge stiffner to be in a region outside of the critical stresses due to combined axial and bending loads. The eave edge stiffner should be designed considering this reduced section. The eave hook is held

Figure 8-8: Ridge Crane Hook (refer to Figure 7-5 for hinge orientation)

in place by the tension load of the cables extending to the double-action winch. To hold the eave hooks in place before the cables can be tensioned, a double headed scaffold nail is driven through a pre-drilled hole in the eave hook into the eave edge stiffner.

Figure 8-9: Eave Crane Hook

8.5.1.2 Double-Action Crane Winch

The double action winch would be activated by a two channel remote control. Two servos would activate the control of upper and lower winch action. One motor could drive both upper and lower winches by a bendix switch gear. A variable speed motor controlled by the servos would decrease deployment times and aid in fine adjustments of pitch and

height. The motor could be driven by either an electric generator, or power hook up on site. The retractable power cable is suspended off the crane boom, so as not to interfere with deployment.

Chapter 9

Conclusions

In Part I, the structural analysis and design of sandwich panels for folded plate, ridge beam and floor tied systems were developed and explored for various joining options and roof geometries. The critical effects of thermal and hygroscopic gradients on sandwich panel behavior were examined. Closed form solutions of restrained two-way slabs exposed to thermal or hygroscopic gradients indicated that both had a severe impact on panel design. Large edge (infinite corner) reactions and stresses develop if panel slab edges are restrained from bowing. Deformations due to thermal and hygroscopic gradients are inversely proportional to the panel depth, and severely reduce panel stiffness performance. Joint loads as determined by the Uniform Building Code were examined for critical parameters to establish a representative upper limit load case and are compiled in the form of load tables for various roof geometries (Appendix E.1).

Program *panel.f* designs sandwich panels for a folded plate and ridge beam system incorporating into its program code the body of the knowledge presented in Part I. This fortran program provides the capability to quickly analyze and study roof system performance for various materials, panel types, geometries, loads, and roof systems. Included in Appendix A.4 are hard copies of program output for the case of a composite panel with an oriented strand board face (O.S.B.) and a rigid polyurethane core (P.U.) for a typical roof geometry and the standard load case (see Chapter 6).

The importance of the effect of thermal and hygroscopic gradients on panel design, which has been overlooked by the code bodies, can be examined by relaxing the thermal gradient criteria of program *panel.f.* Two load cases are examined for O.S.B. faces and a P.U. core: a panel exposed to a typical thermal gradient (*panel.f* output pages 1-2); a panel

with no thermal gradient exposure (panel.f output pages 3-4). The impact of thermal gradients deformations on panel design, which is typically controlled by stiffness, is significant. The face thickness is increased by 60% when considering the affects of thermal gradients for a core depth of 12 inches. The effect of thermal gradients on panel design increases as the core depth is reduced. The face thickness is increased by 70% when considering the affects of thermal gradients for a core depth of 9 inches. The panel design which is subjected to a thermal gradient is more costly and heavier than a panel design which is not.

The success of the proposed roofing system is directly linked to the development of suitable materials. The output of *panel f* questions the use of materials common to the foam sandwich market in long span sandwich panels (*panel f* output pp. 1-2). One inch thick O.S.B. faces are required for a P.U. core depth of twelve inches. Shear deflections due to the polyurethane core are large (shear deflections are 500% of the flexural deformations for a 12 inch core depth, with a creep factor of four), thermal requirements of R30 are exceeded (R74.5 for a 12 inch core), material costs are high, and the fire performance of polymeric material is low. Hence, research on core materials is in concert with the structural explorations of long span sandwich panels.

Thermal and hygroscopic behavior controls the selection of core and face and materials. Since deformations due to gradients are inversely proportional to the core depth, the panel design is driven towards deeper panel sections. A stiffer, less expensive and less thermally efficient core material than P.U. is desirable. Current research into reinforced, polymer cementitious foams could provide an insulating structural foam core which is low cost, has good insulating value, fire performance, shear stiffness, and creep properties. Face material selection is controlled by the thermal and hygroscopic expansion coefficients. Gradient deflections are proportional to the expansion coefficients. Materials which are thermally and moisture sensitive are either less efficient in composite design, or must be protected from such effects.

A sandwich panel type utilizing a structural non-insulating core (such as a phenolic-impregnated paper honeycomb) with supplemental insulation added to the exterior of the panel (P.U.) removes the problematic thermal gradient. The outside face is protected from exposure by the exterior insulation. Unlike a panel with a structural insulating core, this panel type allows for the venting of the non-structural exterior insulation without interfering with the structural performance of the sandwich core.

The proposed roof system of thesis Part II is a prototype for a commercially viable roof system. The system provides an elegant, simple and constructible roof system for the residential market. The basis for the roof system's development was to reduce the number of parts in the field, allow for joint intolerance, increase flexibility and adaptability to various structural roof and wall systems, and to provide a quick, non-labor intensive joining system. The attributes of the system are as follows:

- 1. Time required for the roof enclosure would be drastically reduced from that of traditional roofing systems.
- 2. Exterior roof membranes and interior finishes can be incorporated in the composite panel structure.
- 3. The proposed system is adaptable to a folded plate, ridge beam or floor tied system.
- 4. The system is compatible with both wood frame and panelized wall systems.
- 5. Joint design allows for mis-alignment of wood frame construction to be taken out at critical connections.
- 6. Redundancy in the folded plate is provided by a number of construction alternatives.
- 7. On-site connections are limited to: a small number of high strength bolts at the tension splice, installation of two lag bolts per hinge and the shoe attachment in the ridge beam system, fastening of the gable fascia board, and the shiming and fastening of the eave connection.

9.1 Recommendations for Further Research

Recommendations for continued work on the subject of this thesis are as follows:

- 1. Construct and test the proposed joint designs, or improved versions. Test full-scale joints on a small frame testing machine (60 kips) to verify design assumptions. Erect full-scale mockup designs to study constructibility and the crane deployment sequence.
- 2. Study the tolerance limitations of the panel elements and their effect on panel fabrication and roof system precision with the joining system.
- 3. Quantify the thermal exposure of the exterior panel face. Study the performance of roof membranes subjected to these temperatures. Investigate means of alleviating the problem by exterior surface coatings or venting.
- 4. Continue the finite method analysis of the thermal behavior of rectangular sandwich panels supported at the quarter points of an edge stiffner.
- 5. Study the transverse shears (normal to the roof surface) which developed due to the exposure of one sandwich panel element to thermal gradients while the adjacent panel element is not exposed.
- 6. Study the problem of vapor control in the roof system, and its effect on longterm panel performance and hygroscopic behavior. Examine various methods of abating the problem: vapor barriers, venting, wicking, selfdrying, etc.
- 7. Examine roof complexities: dormers, turned gables, hipped gables, bastard gables, skylights, etc., and how they can be incorporated into the roof system.
- 8. Investigate the thermal short-circuiting of the panel by the panel web with the aid of finite element analysis or thermal testing
- 9. Continue the development on a joining system for a stress-skin panel and a non-insulating structural core sandwich panel construction.
- 10. Establish the desired level of structural reliability for the system. Determine the governing variability of resistance, load, and the consequences of failure.
- 11. Examine interior finishes and roofing membranes to be incorporated into the fabricated sandwich panel. Address the problem of sealing and finishing the joints on site.
- 12. Transfer the technology learned from the roof system into a floor and wall system.

Computer Program Appendix

The appendix includes computer programs utilized in analysis and design.

Panel f, a fortran program, designs a sandwich panel for a single bay residential roof (Appendix A). The program designs a roof panel spanning from ridge to eave in beam action, but can optionally design a single bay, simple span, folded plate. The program optimizes the design of a sandwich panel with respect to cost for a given required R value, load, geometry, material properties, thermal and hygroscopic bowing, and deflection constraints. The user is presented with the choice of two design concepts: faces plus either an insulating core, or a non-insulating core with insulation added to the exterior of the panel.

Included in the appendix are two fortran programs which analyze joint loads according to UBC '88. In both programs the live, dead, wind and seismic loads and their respective parameters are interactively input, and the resulting load tables for varying pitch, gable to gable length, and eave to eave width are calculated. Program *sep.f* generates load tables for the individual effect of dead, live, seismic, and wind loads on the eave, gable and ridge line (Appendix D). Program *comb.f* combines the separated load effects according to UBC '88 specifications (Appendix E).

S.f is a fortran program which calculates the deflections, shear stresses, bending stresses, twisting stresses for a rectangular isotropic sandwich panel with: two edges simply supported, the other two edges free; four edges simply supported.

Program B.f is a fortran program which calculates the reaction along the panel edges for a rectangular isotropic sandwich panel with: two edges simply supported, the other two edges free; four edges simply supported.

Hard copies of the computer programs utilized and developed for the roof system

analysis are included in this appendix. Example output for the various programs are attached behind each file hard copy. The data input in the programs is given in the hard copy of the program output. Oriented strand board, and a polyurethane foam core are the materials input into the *panel.f* program. The standard load case parameters established in Chapter 6 are input into program *sep.f* and *comb.f*.

The attached 1.2M double sided, high density floppy disks containing the programs panel f, sep.f and comb.f. The programs are written in Athena Fortran f77 (UNIX program) and compiled on a VAX station 2000.

Appendix A

Program Panel.f

A.1 Program Variables

```
ap = Transformed area of transverse cross section through the panel (in.<sup>2</sup>).
adefl = Allowable flexural deflection for live load only (in.).
adefld = Allowable flexural deflection for live and dead load (in.).
arcf = Ratio of core to face thickness (-).
b1 = Constant in the face wrinkling equation (-).
b2 = Horizontal distance between gable lines (in.).
c = Constant in the quadratic equation solution (-).
ca = Cost of structural adhesive per square foot ($.s.f.).
cai = Cost of non-structural adhesive per square foot ($.s.f.).
cc = Cost per board foot of core material (\$.b.f.).
ccost = Least cost for panel solution, initially set to be very high ($.).
cf = Cost per board foot of face material (\$.b.f.).
ci = Cost per board foot of exterior insulation material ($.b.f.).
copy = Does the user want a hard copy of the data sent to file hard? (y/n)
cq = Wind coefficient factor from U.B.C. code for roof elements (-).
cr = R value of the core (hr*ft<sup>2</sup>*°F/BTU*in).
creepc = Creep factor for out-of-plane shear modulus of core material based on transient
         live load (-).
creepf = Creep factor for Young's modulus of face material in transverse direction based
         on transient live load (-).
csigpx = Stress in the core due to "plate" action in the longitudinal direction (p.s.i.).
```

```
ctaupxy = In-plane shear stress in the core due to "plate" action (p.s.i.).
ctr = R value of the core and faces (hr*ft<sup>2</sup>*°F/BTU*in).
cut = Would you like to examine stresses in a transverse cut through the folded plate?(y/n)
d = Vertical projected distance between fold line and eave line (in.).
de = Total "plate" deflection due to splice deflections in eave line member (in.).
dep = "Plate" deflection due to splice deflections in eave line member (in.).
      NOTE: Splice deflection for eave line slip must be entered into the program
              for the panel joining system.
defl = Calculated deflection of the composite panel for live load only (in.).
defld = Calculated deflection of the composite panel for dead and live load (in.).
deflm = Maximum deflection of the composite panel (in.).
df = Flexural "plate" deflection (in.).
dh = Calculated horizontal eave deflection (in.).
ds = Shear "plate" deflection (in.).
dseg = Distance between points where stresses are examined in a transverse cut through
       a folded plate. (in.).
dss = Total seam slip "plate" deflection (in.).
dssp = Seam slip calculated from equation relating seam slip to in-plane shear.
       NOTE: Seam slip equation must be entered into the program
             for the panel joining system.
              Seam slip does not occur if the panel elements are glued together.
dtc = Incremental production thickness of the core material (in.).
dtf = Incremental production thickness of the face material (in.).
dti = Incremental production thickness of the exterior insulation material (in.).
dv = Calculated vertical ridge deflection (in.).
e = Young's modulus of the face material in the transverse direction (k.s.i.).
eavea = Area of eave line member (in.^2).
```

```
eavee = Young's modulus of the longitudinal line member material (k.s.i.).
ec = Young's modulus of the core material in the transverse direction (k.s.i.).
eco = Young's modulus of the core material in out-of-plane direction (k.s.i.).
ecp = Young's modulus of the core material in the longitudinal direction (k.s.i.).
ef = Increased Young's modulus of the face material (e) due to wide beam effects (k.s.i.).
ei = Flexural rigidity of the composite panel in the transverse direction (lb*in.²).
ep = Young's modulus of the face material in the longitudinal direction (k.s.i.).
eratio = Ratio between Young's modulus of the core and the face material for the
        longitudinal direction (-).
exit = Do you really want to leave the program? (y/n)
ext2 = 1, Faces and an insulating, structural core. (-).
     = 2, Faces, structural core, and a non-structural insulation added to the exterior (-).
fcoeff = Thermal coefficient of expansion for face material (10^{-6})^{\circ}F).
fctaulyz = Out-of-plane shear stress in the face and core due to
          "one-way slab" action (p.s.i.).
fdh = Final horizontal eave deflection of least cost panel (in.).
fdv = Final vertical ridge deflection of least cost panel (in.).
fh = Allowable horizontal deflection at the eave line (in.).
fhygro = Hygroscopic strain gradient for face material (-).
fl = Allowable displacement factor for panel bending for live load only,
     i.e. defl.=span/factor (-).
fdl = Allowable displacement factor for panel bending for dead and live load,
      i.e. defl.=span/factor (-).
fold = Is the designer interested in folded plate design? (y/n).
fsig1 = Calculated stress in the face of a composite panel (k.s.i.).
fsigly = Stress in the face due to "one-way slab" action in the transverse direction (p.s.i.).
fsigpx = Stress in the face due to "plate" action in the longitudinal direction (p.s.i.).
```

```
ftaupxy = In-plane shear stress in the face due to "plate" action (p.s.i.).
ftc = Final core thickness of least cost panel (in.).
ftf = Final face thickness of least cost panel (in.).
fti = Final exterior insulation thickness of least cost panel (in.).
fwd = Final dead weight of least cost panel (p.s.f.)
fvaluer = Final R value of the least cost panel (hr*ft<sup>2</sup>*°F/BTU*in).
fv = Allowable vertical deflection at ridge line (in.).
fx = Tension load in eave line member (lbs.).
gc = Out-of-plane shear modulus of the core material (k.s.i.).
gcp = In-plane shear modulus of the core material (k.s.i.).
gf = Shear modulus of the face material (k.s.i.).
gratio = Ratio between in-plane shear modulus of the core and the face material (-).
h = Slope distance between the fold line and the eave line (in.).
hard = Name of file to which hard copy output is sent, sequentially (-).
       Note: Must be removed from the directory before executing beam.f
ien = Integer value of the number of panels needed to cover half the roof minus one (-).
ip = Moment of inertia of a transverse cross section of the panel (in.4).
1 = Longitudinal length of span between gable lines (in.).
line = Does the folded plate utilize longitudinal line members? (y/n)
mode = Number assigned to the controlling design constraint (-).
mp = Maximum moment created by the in-plane load (lb.*in.).
mrcf = Minimum ratio of thickness of core to thickness of face to be considered (-).
       A ratio of 3 is recommended.
mtc = Maximum depth to be considered for the core (in.).
mtf = Minimum thickness of the face material (in.).
```

```
nseg = Number of points at which stresses are examined in a transverse cut through a
        a folded plate (-).
p = Pitch of roof, i.e. 6, means a slope of 6 to 12 (-).
page = Page number of the output (-).
pip = Pitch ratio of roof (-).
pw = Width of the panel element (in.).
q = Calculated out-of-plane shear stress in the core (k.s.i.).
quad(a,b,c,t) = Subroutine to solve quadratic equation (-).
r = R value required for the roof panel (hr*ft<sup>2</sup>*°F/BTU*in).
rad = Angle between the folded plate and the horizontal in radians (-).
rc = R value per inch of the core material (hr*ft<sup>2</sup>*°F/BTU*in).
reanal = Would the user like to change panel configuration? (y/n)
recut = Would the user like to make another transverse cut? (y/n)
rf = R value per inch of the face material (hr*ft<sup>2</sup>*°F/BTU*in).
ri = R value per inch of the exterior insulation material (hr*ft<sup>2</sup>*°F/BTU*in).
ss = Maximum shear stress in the face at the gable line (k.s.i.).
scost = Calculated cost of the panel (no roof or interior finishes) per board foot ($.b.f.).
switch = Would you like to switch from a panel with no exterior insulation to one with,
        or visa versa? (y/n)
tc = Thickness of core (in.).
tempaw = Appropriate winter difference in average temperature of the
         outer and inner face (°F).
temp = Maximum summer difference in average temperature of the
        outer and inner face (°F).
tempw = Maximum winter difference in average temperature of the
         outer and inner face (°F).
tf = Thickness of face (in.).
```

```
tfd = Face thickness determined by the deflection constraint (in.).
tfdead = Face thickness used to calculate dead weight of panel (in.).
tfi = Thickness of the face material as required to meet the required R value of
   the panel (in.).
tfp = Face thickness determined by the folded plate deflection constraint (in.).
tfu = Face thickness determined by the all design constraints, not rounded up (in.).
tfw = Face thickness determined by the face wrinkling criteria (in.).
tfy = Face thickness determined by the face yielding criteria (in.).
tidead = Exterior insulation thickness used to calculate dead weight of panel (in.).
trr = Intermediate value to round up material thicknesses (in.).
valuer = Calculated R value of the panel (hr*ft^2*°F/BTU*in).
vc = Poisson's ratio of the core material (-).
vf = Poisson's ratio of the face material (-).
vx = In-plane shear at a distance x from the midspan (lbs.).
wcc = Weight of core material (p.c.f.).
wd = Dead weight of panel (p.s.f.).
wfc = Weight of face material (p.c.f.).
wfs = Constant to determine the critical face wrinkling thickness (-).
wic = Weight of exterior insulation material (p.c.f.).
wis = Weight of interior finish material (p.s.f.).
wl = Reduced live (snow) load per unit horizontal projected area (p.s.i.).
wli = Imputed live (snow) load per unit horizontal projected area (p.s.i.).
wlc= Controlling live load (p.s.f.).
wp = In-plane load carried by "plate" action (lbs./in.).
wrs = Weight of roofing material (p.s.f.).
```

ws = Total transverse load per unit width (lb./in.).

ww = Wind pressure normal to the roof (p.s.f.).

x = Longitudinal distance from origin at midspan of the roof (in.).

xl = Longitudinal distance from the left gable line of the roof (in.).

y = Transverse distance from the midspan of the folded plate roof (in.).

ysc = Design value for the critical shear stress of the core material (k.s.i.).

ysf = Design value for the critical flexural stress of the face material (k.s.i.).

ysl = Design value for the critical tension or compressional stress of the longitudinal line member material (k.s.i.).

yss = Design value for the critical shear stress of the face material (k.s.i.).

A.2 Program Description

Panel.f, a fortran program, designs a sandwich panel for a single bay residential roof. The program designs a roof panel spanning from ridge to eave in beam action, but can optionally design a single bay, simple span, folded plate. The program optimizes the design of a sandwich panel with respect to cost for a given required R value, load, geometry, material properties, thermal and hygroscopic bowing, and deflection constraints. The user is presented with the choice of two design concepts: faces plus either an insulating core, or a non-insulating core with insulation added to the exterior of the panel.

The user inputs the geometry, loads, deflection constraints, thermal or hygroscopic gradient, required R value, and material properties. Additionally, the user inputs the minimum production thickness and the incremental production thickness of the materials. The program yields solutions which are of production stock. The user is required to enter the maximum thickness to be considered for the core. This value is commonly dictated by

Figure A-1: Program Panel.f Flowchart

architectural constraints (a value of 12" is suggested). A maximum ratio of core to face

thickness to be considered in the panel solutions is required of the user. A very low core to face thickness ratio results in inaccurate analysis, due to shear lag, and a heavy, inefficient sandwich panel (a value > 3 is recommended).

The program begins by setting the core thickness equal to the maximum core thickness to be considered. The algorithm solves for the face thickness meeting the design constraints of: deflection, face yielding, face wrinkling, thermal R value, and if a folded plate: ridge and eave deflections, and in-plane shear yielding of the faces. Before a solution is deemed viable, a check is made on the ratio between the core to face thickness, and core shear failure. If the panel passes both of these checks, the panel solution is displayed on the screen. Following this, the core thickness is reduced by an incremental production thickness, and the algorithm for solving for face thickness (checking failure) is repeated. This loop continues until the panel either violates the core to face thickness ratio or the core fails in shear. The details of the program follow.

After the data has been imputed into the program interactively, the headings for the solution output are created. The increase in the Young's modulus due to wide beam action is calculated. The program calculates various geometric and material parameters. The program begins by setting the core thickness equal to maximum core thickness to be considered. The face thickness is set equal to the minimum face thickness produced. The live snow load, if over 20 p.s.f. is reduced for each degree of pitch over twenty degrees, according to UBC 88 code. The dead weight of the panel and the most critical transverse load is calculated. Next, deflections are computed from deflection constraints. Each constraint is assigned a respective mode number:

- 1. Mode 2.1 = Live load deflection constraint, including: controlling live load, a creep factor, and appropriate winter temperature differences.
- 2. Mode 2.2 = Dead and live load deflection constraint, including: controlling live load, dead load, a creep factor, and appropriate winter temperature differences.

- 3. Mode 2.3 = Live and dead load deflection constraint, including: outward wind pressure, maximum summer temperature differences, and dead load.
- 4. Mode 2.4 = Live and dead load deflection constraint, including: outward wind pressure, hygroscopic gradient, and dead load.
- 5. Mode 2.5 =Live and dead deflection constraints, including: inward wind pressure, maximum winter temperature differences, and dead load.

The deflection of the panel is the movement of the panel away from a straight line drawn from eave to ridge. If the deflection criteria is satisfied the program continues, otherwise the face thickness is increased by an incremental production thickness; the program returns to recompute the deflection and re-compares it to the deflection constraint. Following this the program compares the stresses in the face material to their design critical flexural stress value. If the critical stress is exceeded, the program increments the face thickness of the face until this constraint is satisfied (mode equals 3.0); the program next checks face wrinkling. The compression face of a sandwich beam with an isotropic core is examined for face wrinkling utilizing a method described by Allen [69]. The face thickness obtained for face wrinkling is then compared to the existing value for the face thickness. The face thickness is set equal to the larger value (mode equals 4.0). If the user choose the design concept of faces and core with no non-structural insulation added to the exterior the only possible way to satisfy the R value requirement is to increase the face thickness since the core thickness is held constant (mode equals 5.0). Additionally, if the designer choose a folded plate concept the ridge and eave deflections may exceed the allowable deflections and the face thickness must be increased incrementally until deflections are within acceptable limits (mode equals 6.0). The program calculates the area of the longitudinal line members based on strength requirements. NOTE: The equation for the seam slip deflections as a function of in-plane shear is not entered into the program, and must be entered for the specific panel joining system. Seam slip does not occur if the panel elements are glued together. Additionally, the equation relating eave line splice

deflection to tension force must be entered. Following this, the program calculates the maximum shear stress in the faces at the gable line to determine if the design value is exceeded. If the faces are overstressed, the face thickness is increased and the shear stresses are recalculated (mode equals 7.0).

At this point, the program rounds up the thickness of the face and exterior insulation to a produced thickness. The program checks whether the correct thicknesses were used to calculate the dead weight of the panel. If not the program is returned to the point of initial dead weight computation, otherwise the program drops through and continues by calculating the panel cost, R value, and maximum deflection. If the ratio of core to face thickness has been exceeded, or the core stress has exceeded the critical design shear stress value the program exits to the output stage. If neither of these two criteria are violated, the program displays the solutions on the screen for the user's review. Next, the program compares the cost of this panel solution to the cost of the previous panel solution (initially set at the beginning of the program at a very high cost). If the present solution is cheaper than the previous solution then the values for the R value, cost, material thicknesses, and in the case of a folded plate, ridge and eave deflections are stored for final output as the optimal solution. Next the core thickness is reduced by an incremental amount and the program is returned to the the beginning of the algorithm where the dead weight of the panel is computed. The program continues decreasing the core thickness until either the ratio of core to face thickness or the design value for shear stress in the core is exceeded. What results from this section of the program is a screen display of possible panel solutions.

Following the list of panel solutions, the user is asked whether he/she would like to change the panel configuration. If the reply is yes, the data previously imputed by the user is displayed on the screen terminal with a number assigned to each data entry. The user enters the number of the data entry he/she would like to modify, followed by the corrected

data value. The program responds with the question, "Are there more changes to be made?" If no additional changes are desired, the program computes the panel solutions for the new panel configuration.

The user is asked whether a hard copy of the panel solutions is desired. If so, the data is sent to a file named *hard*. This file is backspaced internally within the program, making it possible to add additional panel configuration solutions to the output file. A hard copy of the file *hard* may be printed after exiting the program. Before the program can be executed, however, this file must be removed from the directory or an error message will be displayed.

The next section of the program can calculate the stresses and deflections in a sandwich panel folded plate roof. If the user decides to utilize this section, the face and core thickness of the panel, and, if employed, the area of the eave line member must be input interactively. The material properties, loads, and geometry are the same as originally input. The ridge and eave deflections are displayed on the screen. The user is then asked if he/she desires to examine stresses in a transverse section cut through the folded plate. If answered yes, the user is asked at what distance from the left gable line should the cut be made; how many points equally spaced along the transverse cut should the stresses be calculated at. The output displayed on the screen is coded as follows:

y = Transverse distance from the midspan of the folded plate roof (in.).

fsig1y = Stress in the face due to "one-way slab" action in the transverse direction (p.s.i.).

fctaulyz = Out-of-plane shear stress in the face and core due to "one-way slab" action (p.s.i.).

fsigpx = Stress in the face due to "plate" action in the longitudinal direction (p.s.i.).

csigpx = Stress in the core due to "plate" action in the longitudinal direction (p.s.i.).

ftaupxy = In-plane shear stress in the face due to "plate" action (p.s.i.).

ctaupxy = In-plane shear stress in the core due to "plate" action (p.s.i.).

The folded plate stress analysis results in a biaxial stress condition which must be checked by a failure criteria which is dependent on the material properties. Following any number of repeated cuts, the program inquires whether the user would like to switch from a folded plate with no longitudinal line members to one with, or visa versa? If the switch is requested, the program is returned to point requesting the area of eave line member.

If the user would like to change from a panel with non-structural exterior insulation to one without, or vice versa, the program is returned to the beginning of the program where the user inputs data for the external insulation. Additionally, should the user desire to switch from a folded plate to a ridge beam system, or visa versa, the program is routed to the point of data entry for the folded plate If both of these options are bypassed the user is asked whether he/she desires to exit the program. If the reply is no, the program is returned to where the user is questioned about changing the panel configuration. If the reply is yes, the program execution ends.

A.3 Panel.f Hard Copy

```
c23456789012345678901234567890123456789012345678901234567890123456789012
          implicit real(a-h,s-z), integer(i-r)
          real 1, mtf, mom, mtc, mrcf, rf, rc, ri, r, p, ip, rad, mp, pw, q
          real pip, mode
 5
          integer ext2, page
          character*1 fold, reanal, exit, switch, recut, cut, skip, copy
          character*1 line
 8
          open(unit=1, file='hard', form='print', status='new')
10
          This program optimizes the design of a sandwich beam with
   C
11
          respect to costs, for a given required R value, load, geometry,
12
          thermal or hygroscopic expansion, and deflection
   С
          constraints. There are two design concepts for sandwich
13
   С
          panel construction. Additionally, the program will analyze
14
          folded plate for deflections and stresses.
15
   C
16
17
          print*, 'This program optimizes the design of a sandwich beam'
          print*, 'with repect to cost, for a given: required R value,' print*, 'load, geometry, thermal or hygroscopic expansion, and'
18
19
          print*, 'deflection constraints.'
20
          print*, '
21
          print*, ' '
22
23
   С
          Give the user a choice of design concepts.
24
    С
25
          print*, 'There are two possible design concepts for sandwich panel
26
27
          + construction.'
          print*, '1. Faces and an insulating, structural core.'
print*, '2. Faces, structural core, and a non-structural'
28
29
30
                        insulation added to the exterior.'
          print*, 'Enter number of choice.'
31
          read*, ext2
print*, ''
32
33
          print*, ' '
34
          print*, 'Additionally, this program will analyze folded plate'
35
          print*, 'structures for stresses and deflections.'
36
          print*, ' '
37
          print*, ' '
print*, 'Are you interested in folded plate design? (y/n)'
38
39
40
          read*, fold
41
          print*, ' '
          print*, ' '
42
43
   С
44
   C
          Set page number equal to 0
45
   C
46
47
   С
48
   С
          Set initial answer to hard copy request as 'no'
49
    С
50
          copy='n'
51
   С
52
    С
          Input data.
53
          print*, 'Enter horizontal distance between eave lines (in.).'
54
55
          read*, b2
          print*, 'Enter slope of pitch of roof (i.e. 6, means a pitch of 6
56
57
          +to 12).'
          read*, p
58
         print*, 'Enter live load per horizontal projected area of roof (p.
+s.f.).'
59
60
61
          read*, wli
62
          print*, 'Enter wind pressure normal to roof (p.s.f.).'
63
          read*, ww
          print*, 'Enter allowable displacement factor for panel bending (de
64
65
         +fl.=span/factor).'
          print*, 'live load only, dead and live load (i.e. 240.0, 180.0).'
66
```

```
67
            read*, fl,fdl
            print*, 'Enter difference in average temperature of the outer and
 68
           +inner face for:'
 69
 70
            print*, 'maximum summer, appropriate winter, and maximum winter (de
 71
           +grees F)'
            print*, '(i.e. 100,70,100).'
 72
 7.3
            read*, temps, tempaw, tempw
            print*, 'Enter R value required for roof panel.'
 75
            read*, r
            print*, 'Enter maxium depth to be considered for the core (in.).'
 76
            read*, mtc
print*, 'Enter minimum ratio of thickness of core to '
 77
 78
            print*, 'thickness of face to be considered.'
print*, 'A ratio of 3 is recommended.'
 79
 80
            read*, mrcf
 81
            print*, 'Enter weight of roofing material (p.s.f.).'
 82
            read*, wrs
print*, 'Enter weight of interior finish material (p.s.f.).'
 83
 84
            read*, wis
            print*, 'Enter thermal coefficient of expansion (x10-06 strain/deg
 86
           +ree F.).'
 87
            print*, 'and the hygroscopic strain gradient (-) of the face mater
 88
           +ial.'
 89
            read*, fcoeff, fhygro
print*, 'Enter youngs modulus of the face material in transverse d
 90
 91
           +irection (k.s.i.).
 92
 93
            print*, 'and a creep factor based on a transient live load (-).'
 94
            read*, e, creepf
print*, 'Enter poisson ratio for the face material.'
 95
            read*, vf
print*, 'Enter design value for critcal flexural stress of the fac
 96
 97
 98
           +e material (k.s.i.).'
 99
            read*, ysf
print*, 'Enter minimium thickness of face material (in.).'
100
101
            read*, mtf
            print*, 'Enter incremental production thickness '
print*, 'of face material (in.).'
102
103
104
            read*, dtf
            print*, 'Enter cost per board foot of face material ($.b.f.).'
105
106
            read*, cf
107
            print*, 'Enter R value per inch for the face material.'
108
            read*, rf
            print*, 'Enter weight of face material (p.c.f.).'
109
110
            read*, wfc
            \operatorname{print}^{\star}, 'Enter youngs modulus of the core material in transverse d
111
112
           +irection (k.s.i.).
113
            read*, ec
114
            print*, 'Enter youngs modulus of the core material in out-of-plane
115
           + direction (k.s.i.).
116
            read*, eco
           print*, 'Enter out-of-plane shear modulus of the core material (k
+.s.i.).'
117
118
            print*, 'and a creep factor based on a transient live load (-).'
119
            read*, gc, creepc
120
            print*, 'Enter poisson ratio for the core material.'
121
            read*, vc
print*, 'Enter design value for critical shear stress of the core
122
123
124
           +material (k.s.i.).'
            read*, ysc
125
            print*, 'Enter incremental production thickness '
print*, 'of core material (in.).'
126
127
            read*, dtc
128
            print*, 'Enter cost of core material per board foot ($.b.f.).'
129
130
            read*, cc
            print*, 'Enter R value per inch for the core material.'
131
132
            read*, rc
```

```
print*, 'Enter weight of core material (p.c.f.).'
133
134
           read*, wcc
           print*, 'Enter cost of structural adhesive per square foot ($.s.f.
135
136
           +).'
137
           read*, ca
           if(ext2.eq.2)then
  print*, 'Enter incremental production thickness of exterior'
  print*, 'insulation material (in.).'
      20
138
139
140
               read*, dti
141
142
               print*, 'Enter cost of exterior insulation material per board'
               print*, 'foot ($.b.f.).'
143
               read*, ci
144
1.45
               print*, 'Enter R value per inch for exterior insulation'
               print*, 'material.'
146
147
          print*, 'Enter weight of exterior insulation material (p.c.f.).
+'
148
149
150
               read*, wic
               print*, 'Enter cost of non-structural adhesive per square'
print*, 'foot ($.s.f.).'
151
152
153
               read*, cai
154
            endif
155
            If the program has been re-routed to line 20 by a request to
156
    C
157
            switch panel type at the end of the program, skip the data input
     C
158
     С
            section on the folded plate.
159
160
            if(switch.eq.'y')go to 100
           if(fold.eq.'y')then
    print*, 'Enter longitudinal length of span between gable lines
161
162
163
           +(in.).'
               read*, 1
print*, 'Enter the width of the panel element (in.).'
164
165
               read*, pw
166
           print*, 'Enter the in-plane shear modulus of the face material +(k.s.i.).'
167
168
               read*, gf
169
           print*, 'Enter design value for critcal shear stress of the fac +e material (k.s.i.).'
170
171
172
           read*, yss
               print*, 'Enter in-plane shear modulus of the core material (k.
173
174
           +s.i.).'
175
               read*, gcp
               print*, ' '
print*, ' '
176
177
               print*, 'Does the folded plate utilize longitudinal line member
178
179
           +s? (y/n)'
180
               read*, line
181
               print*, '
               print*, ' '
182
183
               if (line.eq.'y')then
                  print*, 'Enter design value for critcal tension or compressi
184
185
           +on stress'
186
                 print*, 'of the longitudinal line material (k.s.i.).'
187
                  read*, ysl
188
                  print*, 'Enter youngs modulus of the eave line member (k.s.i
189
           +.).'
190
                  read*, eavee
191
               else
                  print*, 'Enter youngs modulus of the face material in longit
192
193
           +udinal direction (k.s.i.).
                  read*, ep
194
                  print*, 'Enter youngs modulus of the core material in longit
195
196
           +udinal direction (k.s.i.).
197
                  read*, ecp.
198
               endif
```

```
199
            endif
200
           print*, ' '
           print*, ' '
201
202
     C
203
            Create headings for the panel solutions.
     С
204
205
      100
           if(ext2.eq.1)then
206
               if (copy.eq.'n') then
207
                  write(*,110)
                  write(*,120)
208
                  write(*,150)
209
210
               endif
      105
211
               format ('1')
               format (' Page', i4)
format (' core
212
      106
                                                                  defl.
213
      110
                                    face
                                              weight
                                                                            cost
214
              fail.')
      120
               format(' (in.)
                                              (p.s.f.)
                                                                  (in.)
                                                                            ($.s.f.)
215
                                    (in.)
216
             mode')
               if(copy.eq.'y')then
217
218
                  page=page+1
                  write (1,105)
219
                  write (1,106) page
220
221
                  write (1,150)
222
                  write (1,110)
223
                  write (1,120)
224
                  write (1,150)
225
               endif
226
            else
227
               if (copy.eq.'n')then
                  write(*,130)
write(*,140)
228
229
230
                  write(*,150)
               endif
231
232
      130
               format('
                         core
                                    face
                                              ins.
                                                        weight
                                                                           defl.
233
                    fail.')
           +ost
               format (' (in.)
      140
234
                                    (in.)
                                              (in.)
                                                        (p.s.f.)
                                                                           (in.)
                                                                                    (
      +$.s.f.) mode')
150 format(' ')
235
236
237
               if(copy.eq.'y')then
238
                  page=page+1
239
                  write(1,105)
                  write(1,106)page
240
241
                  write (1,150)
                  write(1,130)
242
243
                  write (1,140)
244
                  write (1,150)
245
               endif
246
            endif
247
     С
            Calculate the increased in young's modulus due
248
     С
249
            to wide beam action.
     С
250
     С
251
            ef=e/(1.0-vf**2)
252
     С
253
            Calculate the ratio between the young's modulus of the core and
     C
254
     С
            the face material for the longitudinal direction.
255
     С
256
            if (ep.eq.0.0) then
257
               eratio=0.0
258
            else
259
               eratio=ecp/ep
260
261
    С
262 c
            Calculate the ratio between in-plane shear modulus of the core and
263
            the face material.
    С
264 c
```

```
265
           if (qf.eq.0.0) then
266
              gratio=0.0
267
           else
268
              gratio=gcp/gf
           endif
269
270
    С
271
           Calculate geometry of the roof.
    С
272
    C
273
           pip=p/12.0
274
           rad=atan(pip)
           h=b2/(2.0*cos(rad))
275
276
           d=h*sin(rad)
277
    С
278
           Calculate the allowable maximum deflection for live load.
    C
279
    С
280
           adefl=h/fl
281
    С
           Calculate the allowable maximum deflection for live and dead load.
282
    C
283
    С
           adefld=h/fdl
284
285
    С
286
           Set the first pass through at a very, very high cost.
    С
287
    С
288
           ccost=10000000.
289
    C
290
    C
           Set the core thickness to the maximum core depth.
291
    С
292
           tc=mtc
293
    С
294
           If user sets minimium thickness of face material to be zero,
    С
295
           increase it to a finite value.
    С
296
    С
297
          if(mtf.eq.0.0)mtf=0.001
298
    С
299
    С
           Set face thickness to the minimum face thickness.
300
    С
301
              t.f=mt.f
302
303
           Set the mode failure initially equal to 1, or no mode failure.
    C
304
    С
305
              mode=1.0
306
    С
307
           Store the value of the face thickness as a variable,
    С
308
           to determine if the true dead weight for the panel has been
    С
309
           used in calculating the face thickness.
    C
310
311
     250
              tfdead=tf
312
    С
313
    С
           Store the value of the exterior insulation thickness as a variable
           to determine if the true dead weight for the panel has been
314
    С
315
           used in calculating the face thickness.
    С
316
    С
317
              tidead=ti
318
    С
319
          Reduce the snow load if it is greater than 20 p.s.f.
    С
320
    С
321
           if(wli.gt.20.0.and.rad.gt.0.3490659)then
322
              wl=wli-(atan(real(p)/12.0)
                   *45.0/atan(1.0)-20.0)*(wli/40.0-0.5)
323
324
           else
325
              wl=wli
           endif
326
327
    С
328 c
          Calculate the dead load of panel (p.s f.).
329 c
330
              wd=tf*wfc/6.0+tc*wcc/12.0+ti*wic/12.0+wrs+wis
```

```
331
           Calculate the most critical total transverse load per unit
332
    С
333 c
           width (lb./in.).
334
    С
335
               if (p.lt.9.0) then
336
                  cq = 0.0
337
               elseif (p.ge.9.0.and.p.le.12.0) then
                  cq=0.8
338
339
               e1 se
340
                  cq=1.1
341
               endif
               ws1=((\cos(rad)*wl+wd)*\cos(rad))/144.0
342
               ws2=0.75*((cos(rad)*wl+wd)*cos(rad)+ww*cq/2.0)/144.0
343
               ws3=0.75*((cos(rad)*w1/2.0+wd)*cos(rad)+ww*cq)/144.0
344
               ws4=0.75*(ww*1.1-wd*cos(rad))/144.0
345
               if (wsl.gt.ws2.and.wsl.gt.ws3.and.wsl.gt.ws4) then
346
347
                  ws=ws1
348
               elseif(ws2.gt.ws3.and.ws2.gt.ws4)then
349
                  ws=ws2
               elseif (ws3.gt.ws4) then
350
351
                  ws=ws3
352
               else
353
                  ws=ws4
354
               endif
355
     C
            Calculate face thickness from both live load deflection
356
     C
357
            constraints, and dead and live load deflection constraints,
     С
           including, controlling live load, creep factor, and appropriate winter temperature differences. If the face thickness needs
358
     C
359
     С
360
     С
            to be increased, set themode equal to 2.1 or 2.2,
            the stiffness constraint.
361
     C
362
     С
      300
               ei=ef/creepf*tf**3/6.0+ef/creepf*tf*(tc+tf)**2/2.0+
363
          +ec/creepc*tc**3/12.0
364
365
               if (p.lt.9.0) then
366
                  cq = 0.0
               elseif (p.ge.9.0.and.p.le.12.0) then
367
                  cq=0.8
368
369
               else
370
                  cq=1.1
371
               endif
372
               wlc1=wl+cq*ww/(2.0*cos(rad)**2)
373
               w1c2=w1/2.0+cq*ww/cos(rad)**2
374
               if (wlc1.gt.wlc2) then
375
                  wlc=wlc1
376
               else
377
                  wlc=wlc2
378
               endif
379
               defl=(5*h**4/(384.0*ei*1000.0)+
380
          +h**2*tc/(8.0*(tc+tf)**2*gc/creepc*1000.0))*cos(rad)**2*wlc/144.0+
          +tempaw*0.000001*fcoeff*h**2/(8.0*(tc+tf))
381
               defld=(5*h**4/(384.0*ei*1000.0)+
382
          +h**2*tc/(8.0*(tc+tf)**2*gc/creepc*1000.0))*(cos(rad))**2*
383
384
           +(wlc+wd/cos(rad))/144.0+
           +tempaw*0.000001*fcoeff*h**2/(8.0*(tc+tf))
385
386
               if (defl.gt.adefl) then
387
                  mode=2.1
                  tf=tf+dtf
388
389
                  go to 300
390
               endif
391
               if (defid.gt.adefid) then
392
                  mode=2.2
393
                  tf=tf+dtf
                  go to 300
394
395
               endif
396
               deflm=0.0
```

```
397
              if (defld.gt.defl) then
398
                  deflm=defld
399
              else
400
                  deflm=defl
401
              endif
402
           Calculate face thickness from live and dead load deflection
403
     C
           constraint, including outward wind pressure, maximum summer
404
     C
405
     С
           temperature differences or hygroscopic gradient, and dead load.
           If the face thickness needs to be increased, set the
406
     С
407
           mode equal to 2.3 or 2.4, the stiffness constraint.
     С
408
    С
409
              cq = 1.1
              ei=ef*tf**3/6.0+ef*tf*(tc+tf)**2/2.0+
410
      310
          +ec*tc**3/12.0
411
              defld1=(5*h**4/(384.0*ei*1000.0)+
412
          +h**2*tc/(8.0*(tc+tf)**2*gc*1000.0))*(-cos(rad)*wd+ww*cq)/144.0+
413
          +temps*0.000001*fcoeff*h**2/(8.0*(tc+tf))
414
              defld2=(5*h**4/(384.0*ei*1000.0)+
415
          +h**2*tc/(8.0*(tc+tf)**2*gc*1000.0))*(-cos(rad)*wd+ww*cq)/144.0+
416
          +fhygro*h**2/(8.0*(tc+tf))
417
418
              if (defld1.gt.adefld) then
419
                 mode=2.3
420
                 tf=tf+dtf
421
                  go to 310
              endif
422
                  go to 310
 421
422
              endif
              \verb|if(defld2.gt.adefld)| then|\\
423
424
                 mode=2.4
425
                 tf=tf+dtf
426
                  go to 310
427
              endif
428
              if (defld1.gt.deflm) then
429
                  deflm=defld1
430
              elseif (defld2.gt.deflm) then
                  deflm=defld2
431
432
              endif
433
    C
434
           Calculate face thickness from live and dead deflection
           constraints, including inward wind pressure, maximum winter
435
    C
436
    С
           temperature differences, and dead load.
437
           If the face thickness needs to be increased, set the
438
    C
           mode equal to 2.5, the stiffness constraint.
439
440
              if(p.lt.9.0)cq=0.0
              if (p.ge. 9.0. and.p.le. 12.0) cq=0.8
441
442
              if (p.gt.12.0) cq=1.1
443
      320
              defld=(5*h**4/(384.0*ei*1000.0)+
          +h**2*tc/(8.0*(tc+tf)**2*gc*1000.0))*(cos(rad)*wd+ww*cq)/144.0+
444
          +temps*0.000001*fcoeff*h**2/(8.0*(tc+tf))
445
446
              if (defld.gt.adefld) then
447
                  mode=2.5
448
                  tf=tf+dtf
449
                  go to 320
450
              endif
              if (defld.gt.deflm) deflm=defld
451
452
453
           Calculate face thickness based on face yielding
    С
454
      350
              ei=(ef*tf**3/6.0)+(ef*tf*(tf+tc)**2/2.0)+(ec*tc**3)/(12.0)
455
                 fsigly=((ws*(tc+2.0*tf)*ef*h**2))/(16.0*ei*1000.0)
456
457
                  if (fsigly.gt.ysf) then
458
                     mode=3.0
                     tf=tf+dtf
459
                     go to 350
460
                  endif
461
```

```
463 c
            Calculate face thickness based on face wrinkling.
464
     C
465
               b1 = 0.5
               wfs=(b1*((ef*1000.0*eco*1000.0*gc*1000.0)**(1.0/3.0)))
466
467
               c=-mom/wfs
468
               call quad(1.0, tc, c, tfw)
469
            If face thickness required to prevent face wrinkling is larger
470
     C
471
     С
            than that required from other constraints, set face thickness
            equal to the face wrinkling thickness.
472
     С
473
     C
474
               if (tfw.gt.tf) then
475
                  tf=tfw
476
                  mode=4.0
477
               endif
478
            Calculate thickness of face to satistfy insulation constraints,
479
     С
480
            only if there is no exterior insulation.
     С
481
     С
482
               if (ext2.eq.1) then
483
                  cr=tc*rc
484
                  If(cr.ge.r)cr=r
485
                  tfi=(r-cr)/(2.0*rf)
486 c
            If face thickness required for insulation needs is larger than
487
           that required by other constraints, set the face thickness equal to the face thickness determined by insulation needs.
488
     С
489
     С
490 c
491
                  if(tfi.gt.tf)then
492
                     tf=tfi
493
                     mode=5.0
494
                  endif
495
               endif
496
           If one is designing for a folded plate, check whether the face thickness meets the folded plate deflections.
497
     С
498
     С
499
            Skip this section if one is not concerned with folded plate.
     С
500
     С
501
               if(fold.eq.'y')then
502
    С
            Set skip equal to 'n' to prevent an exit from program, which
503
     С
504
            occurrs if previously sent to line 400 by plate stresses and
     С
505
     C
            deflections section.
506
     С
507
                  skip='n'
508
     C
509
           Calculate allowable deflections at ridge and eave.
     С
510
     С
511
                  fv=1/240.0
                  fh=1/240.0
512
513
     С
514
     С
            Calculate in-plane load, and moment.
515
     C
516
      400
                  wp = ((\cos(rad)*wl)/144.0+wd/144.0)*h/(2.0*sin(rad))
517
                  mp = (wp*1**2)/8.0
518 c
519
    С
            Calculate the area of the eave line member based on strength,
520 c
            only if not referred from folded plate stress and deflection
521
            section, where the eave line member area is inputed
     С
522
            (skip equals 'n'), and only if longitudinal line members are used.
    С
523
     С
524
                  if (skip.eq.'n'.and.line.eq.'y') eavea=
           +wp*1**2/(8.0*ys1*1000.0*h)
525
526
                  if(line.eq.'n')then
527
           Calculate plate deflections with no longitudinal line member.
528
    C
```

```
529 c
530
                   ap=(tf*2.0+gratio*tc)*h
531
                   ds = mp/(ap*qf*1000.0)
                  ip=((2.0*tf+eratio*tc)*h**3)/12.0
532
                   df = (5.0 \text{ wp} \times 1 \times 4) / (384.0 \text{ ep} \times 1000.0 \text{ ip})
533
534
                  dss=0.0
                  ien=1/(2.0*pw)
535
536
                   do 410 j=0, ien
537
                     x=j*pw
538
                     x*qw=xv
539
540
    С
541
    С
          Enter the equation relating seam slip to in-plane shear.
542
    C
          Seam slip does not occur if the panel elements are glued together.
543
    С
544
    c*
545
                      dssp=f(vx) note: vx is shear in pounds
    С
546
    547
                     dss=dss+dssp
548
     410
                   continue
549
                   dv=(df+ds+dss)/(sin(rad))
550
                  dh = sqrt (h**2 - (d-dv)**2) - b2/2.0
551
                else
552
553
          Calculate plate deflections with longitudinal line member.
    С
554
555
                  ap=(tf*2.0+gratio*tc)*h
                  ds=mp/(ap*gf*1000.0)
556
                  ip=(eavea*h**2/2.0)
557
558
                  df = (5.0 \text{ wp} \times 1 \times 4) / (384.0 \text{ eavee} \times 1000.0 \text{ ip})
559
                  dss=0.0
560
                  de=0.0
                  ien=1/(2.0*pw)
561
                  do 420 j=0, ien
562
563
                     x=j*pw
564
                     vx=wp*x/h
    C*********
565
566
    С
567
          Enter the equation relating seam slip to in-plane shear.
    С
568
          Seam slip does not occur if the panel elements are glued together.
    С
569
          Note: vx is shear per length of joint (lb./in.)
    С
570
    С
571
         ********************
    C**
572
                      dssp=f(vx)
    С
573
    574
                     dss=dss+dssp
575
576
                     fx=wp*(1-2.0*x)**2/(8.0*h)
577
    c*
578
    С
579
    С
          Enter the equation relating eave line splice deflection to
580
    C
          tension force.
581
          Note: fx is in pounds
    С
582
    C
583
    C**
584
                      dep=((1/2.0-x)/h)*f(fx)
585
    586
                     de=de+dep
587
     420
                  continue
588
                  dv=(df+ds+dss+de)/(sin(rad))
589
                  dh = sqrt(h**2 - (d-dv)**2) - b2/2.0
590
                endif
591
                if(skip.eq.'y')go to 1100
592
    С
593
    С
          If folded plate deflection constraints are not met, increase
594
          face thickness and recalculate folded plate deflections.
```

```
595
    С
                  if(dh.gt.fh.or.dv.gt.fv)then
596
597
                     mode=6.0
598
                     trr=tf/dtf
599
                     tr=trr-int(trr)
600
                     if(tf.gt.mtf.and.tr.gt.0.0)then
                        tf=int(trr)+2*dtf
601
602
                        go to 400
603
                     elseif(tf.gt.mtf.and.tr.eq.0.0)then
604
                        tf=tf+dtf
605
                        go to 400
                     elseif(tf.eq.mtf)then
606
                        tf=mtf+dtf
607
608
                        go to 400
609
                     endif
                  endif
610
611
           If the maximum shear stress in the face at the gable line
612
    C
           is exceeded, increase face thickness.
613
     С
614
      430
                  ap=(tf*2.0+gratio*tc)*h
615
616
                  if (line.eq.'n') then
617
                     ss=3.0*wp*1/(4.0*ap*1000.0)
618
                  else
619
                     ss=wp*1/(2.0*ap*1000.0)
620
                  endif
621
                  if(ss.gt.yss)then
622
                    mode=7.0
623
                     trr=tf/dtf
624
                     tr=trr-int(trr)
625
                     if(tf.gt.mtf.and.tr.gt.0.0)then
626
                        tf=int(trr)+2*dtf
627
                        go to 430
628
                     elseif(tf.gt.mtf.and.tr.eq.0.0)then
629
                        tf=tf+dtf
630
                        go to 430
631
                     elseif(tf.eq.mtf)then
632
                        tf=mtf+dtf
633
                        go to 430
634
                     endif
635
                  endif
636
              endif
637
     С
638
           Round face thickness up to a thickness produced.
     C
639
     C
640
              trr=tf/dtf
641
              tr=trr-int(trr)
642
               if(tf.gt.mtf.and.tr.gt.0.0)then
643
                  itf=tf/dtf
644
                  tf=(itf+1)*dtf
645
               endif
646
    С
647
           Calculate thickness of exterior insulation to satisffy insulation
    С
648
    С
           requirements, only if exterior insulation is added to the panel.
649
    С
650
               if (ext2.eq.2) then
651
                  ctr=tc*rc+tf*rf*2.0
652
                  if(ctr.ge.r)ctr=r
653
                  ti=(r-ctr)/ri
654
    С
655
           Round exterior insulation thickness up to a thickness produced
656 · c
657
                  if(ti.gt.dti)then
658
                     iti=ti/dti
659
                     ti=(iti+1)*dti
660
                  elseif(ti.lt.dti.and.ti.gt.0.0)then
```

```
ti=dti
661
                  endif
662
663
              endif
664
665
           If the correct face thickness has been used to calculate the
           dead weight of the panel continue. If not, recalculate the dead
666
     C
667
     С
           dead weight of the panel and the face thickness.
668
     С
669
              if(tf.gt.tfdead)go to 250
670
     С
671
           If the correct exterior insulation thickness has been used to
     С
672
     С
           calculate the dead weight of the panel, continue. If not,
673
     С
           recalculate the dead weight of the panel and the face thickness.
674
     С
675
              if (ti.gt.tidead) go to 250
676
     С
677
     C
           Calculate cost of panel.
678
     C
              scost=2.0*cf*tf+cc*tc+ci*ti+2.0*ca+cai
679
680
     С
           Calculate the R value of the panel.
681
     C
682
     С
683
              valuer=2.0*tf*rf+tc*rc+ti*ri
684
     С
685
     С
           Check if faces are exceptionally thick compared to core.
686
           Analysis becomes inaccurate, and the panel too heavy.
     С
687
     С
688
              arcf=tc/tf
689
              if (arcf.lt.mrcf) go to 600
690
691
           Check if there is core yielding.
     С
692
     С
693
              q=(ws*h)/(2.0*(tc+tf)*1000.0)
694
              if(q.gt.ysc)go to 600
695
696
           Print out various panel solutions.
     С
697
     С
698
      470
              if (ext2.eq.1) then
                  if(copy.eq.'n')write(*,500)tc, tf, wd, valuer, deflm, scost,
699
700
          +mode
701
      500
                  format(' ', 6g9.3, 1x, f3.1)
                  if(copy.eq.'y')then
702
703
                     write(1,500)tc, tf, wd, valuer, deflm, scost, mode
704
                  endif
705
              else
706
                 if(copy.eq.'n')write(*,510) tc, tf, ti, wd, valuer, deflm, s
707
          +cost, mode
                 format(' ', 7g9.3, 1x, f3.1)
708
                  if(copy.eq.'y')then
709
710
                     write(1,510)tc, tf, ti, wd, valuer, deflm, scost, mode
711
                  endif
712
              endi.f
713
714
     С
           See which is cheapest.
715
716
              if (scost.lt.ccost) then
717
                 fvaluer=valuer
                  ccost=scost
718
719
                  ftf=tf
720
                 ftc=tc
721
                  fti=ti
722
                  fwd=wd
                  fdv=dv
723
724
                  fdh=dh
725
              endi.f
726
              tc=tc-dtc
```

```
go to 200
727
728 c
729 c
            Display output on screen.
730 c
731
       600 if (copy.eq.'n') then
            print*, '1=No constraint 2.1-.5=Stiffness 3=Face yielding 4=Fac
732
733
           +e wrinkling
            print*, '5=R value requirements 6=Folded plate deflections 7=Fol
734
735
            +ded plate shear'
            print*, ' '
print*, 'The final thickness of the core is', ftc, '(in.).'
print*, 'The final thickness of the face is', ftf, '(in.).'
736
737
738
739
             if (ext2.eq.2) then
                print*, 'The final thickness of the exterior'
740
                print*, '
741
                                 non-structural insulation is', fti, '(in.).'
742
            endif
            print*, 'The final weight of the panel is', fwd, '(p.s.f.).'
print*, 'The final R value of the panel is', fvaluer
743
744
            print*, 'The final cost of the panel is ', ccost, '($.s.f.).'
745
            print*, ''
746
747
            if(fold.eq.'y')then
               print*, 'Allowable vertical ridge deflection is', fv, '(in.).' print*, 'The final vertical ridge deflection is', fdv, '(in.).' print*, 'Allowable horizontal eave deflection is', fh, '(in.).' print*, 'The final horizontal eave deflection is', fdh, '(in.).
748
749
750
751
752
                print*, ' '
753
754
            endif
755
            endif
756
757
            Send data to a hard copy file if requested.
     C
758
     C
759
            if(copy.eq.'y')then
            write(1,*)'
760
            write(1,*)'
761
            write(1,*)' 1=No constraint 2.1-.5=Stiffness 3=Face yielding 4=
762
           +Face wrinkling'
763
764
            write(1,*)' 5=R value requirements 6=Folded plate deflections 7=
           +Folded plate shear'
765
766
            write(1,*)'
            write(1,*)'
767
            write(1,*)'
768
            write (1,*)' The final thickness of the core is', ftc, '(in.).'
769
            write(1,*)' The final thickness of the face is', ftf, '(in.).'
770
771
            if(ext2.eq.2)then
772
                write(1,*)' The final thickness of the exterior'
                write(1,*)'
773
                                     non-structural insulation is', fti, '(in.).'
774
            endif
            write (1,*)' The final weight of the panel is', fwd, '(p.s.f.).'
775
            write(1,*)' The final R value of the panel is', fvaluer
776
            write(1,*)' The final cost of the panel is ', ccost, '($.s.f.).'
777
            write(1,*)' '
778
            if(fold.eq.'y')then
779
               write(1,*)' Allowable vertical ridge deflection is', fv, '(in.)
780
781
782
                write(1,*)' Final vertical ridge deflection is', fdv, '(in.).'
783
                write (1,*)' Allowable horizontal eave deflection is', fh, '(in.
784
                write (1, *)' Final horizontal eave deflection is', fdh, '(in.).'
785
                write (E, *))'
786
            emadii fi
787
788
            endif
789
    С
790 c
            Set the answer for the copy question equal to no, after all
791
            copying to hard file has been completed.
     С
792
```

```
793
              copy='n'
       700 print*, 'Would you like to change panel configuration' print*, 'and reanalyze? (y/n)'
794
795
796
              read*, reanal
797
              if(reanal.eq.'n')go to 1000
       750 print*, ' 1. = Horizontal distance between eave lines = ', b2, '(i
798
799
             +n.)'
             print*, ' 2. = Slope of pitch of roof = ', p
print*, ' 3. = Live load per horizontal projected area of roof = '
+, wli,' (p.s.f.)'
800
801
             print*, ' 4. = Wind pressure normal to roof = ', ww, '(p.s.f.)'
print*, ' 5. = Allowable displacement factor for panel bending:'
print*, ' live load only, dead and live load = ' fl fall
802
803
804
                                  live load only, dead and live load = ', fl, fdl, 'r
805
806
             print*, ' 6. = Difference in average temperature of the outer and
807
             +inner face for:'
808
              print*, '
809
                                  maximum summer, appropiate winter, and maximum wint
             +er = (degrees F)'
810
811
             print*, '
                                 ', temps, tempaw, tempw, ' respectively.'
             print*, ' 7. = Require R value for roof panel = ', r
print*, ' 8. = Maxium depth to be considered for the core = ', mtc
812
813
814
             +, '(in.)'
              print*, ' 9. = Minimum ratio of thickness of core to thickness of
815
816
             + face to be'
             print*, ' considered = ', mrcf
print*, '10. = Weight of roofing material = ', wrs, '(p.s.f.)'
817
818
              print*, '11. = Weight of interior finish material = ', wis, '(p.s.f
819
             +.)'
820
821
              print*, '12. = Youngs modulus of the face material in transverse d
822
             +irection. (k.s.i.)'
             print*, '
                                  and a creep factor (-) = ',e, creepf, ' respectivel
823
824
             +y.'
              print*, '13. = Thermal coefficient of expansion (x10-06 strain/deg
825
826
             +ree F.).'
             print*, '
827
                                  and the hygroscopic strain gradient (-) of the face
             + material = '
828
829
             print*, '
                                  ', fcoeff, fhygro, 'respectively.'
             print*, '14. = Poisson ratio for the face material = ', vf
print*, '15. = Design value for the critical flexural stress of th
830
831
             +e face material = '
print*, ' ', ysf, '(k.s.i.)'
832
833
              print*, '
             print*, '16. = Minimium thickness of face material = ', mtf, '(in.)
834
835
            print*, '17. = Incremental production thickness of face material =
+ ', dtf, '(in.)'
print*, '18. = Cost per board foot of face material = ',cf, '($.b.
836
837
838
839
             print*, '19. = R value per inch for the face material = ', rf
print*, '20. = Weight of face material = ', wfc, '(p.c.f.)'
print*, '21. = Youngs modulus of the core material in transverse d
840
841
842
843
             +irection = '
             print*, ' ', ec, '(k.s.i.).'
print*, '22. = Youngs modulus of the core material in out-of-plane
844
845
846
             + direction = '
             print*, ' ', eco, '(k.s.i.).'
print*, '23. = Out-of-plane shear modulus of the core material (k.
847
848
849
             +s.i.), and'
850
                                  a creep factor (-) = ', gc, creepc, ' respectively.
851
             print*, *24. = Poisson ratio for the core material = ',vc print*, '25. = Design value for the critical shear stress of the
852
853
             +core material =
854
                                 ', ysc, '(k.s.i.)'
855
             print*, '
              print*, '26. = Incremental production thickness of core material
856
             += ', dtc, '(in.)'
857
              print*, '27. = Cost of core material per board foot = ',cc, '($.b.
858
```

```
859
           +f.)'
            print*, '28. = R value per inch for the core material = ', rc
print*, '29. = Weight of core material = ', wcc, '(p.c.f.)'
print*, '30. = Cost of structural adhesive per square foot = ', ca
860
861
862
863
              '($.s.f.)'
864
            if(ext2.eq.2)then
865
               print*, '31. = Incremental production thickness of exterior ins
           +ulation material = '
print*, ' ', dti, '(in.).'
866
867
               print*, '32. = Cost of exterior insulation material per board f
868
869
           +oot = '
870
               print*, '
                                 ', ci, '($.b.f.)'
               print*, '33. = R value per inch for exterior insulation materia
871
872
           +1 = ', ri
               print*, '34. = Weight of exterior insulation material = ', wic,
873
874
           +'(p.c.f.)'
           print*, '35. = Cost of non-structural adhesive per square foot
+= ', cai, '($.s.f.).'
875
876
877
            endif
            if(fold.eq.'y')then
    print*, '36. = Longitudinal length of span between gable lines
878
879
           += ', 1, '(in.)'
880
               print*, '37. = Width of the panel element = ', pw, '(in.)'
881
               print*, '38. = In-plane shear modulus of the face material = ',
882
           +gf, '(k.s.i.)'
883
               print*, '39. = Design value for critcal shear stress of the fac
884
885
           +e material = ', yss, '(k.s.i.)'
               print*, '40. = In-plane shear modulus of the core material = ',
886
887
           +gcp, '(k.s.i.)'
               if(line.eq.'y')then
    print*, '41. = Design value for critcal tension or compressi
888
229
890
           +on stress of the'
891
                   print*, '
                                    longitudinal line material = ', ysl,'(k.s.i.)
892
           print*, '42. = Youngs modulus of the eave line member = ', e +avee, '(k.s.i.).'
893
894
895
               else
           print*, '43. = Youngs modulus of the face material in longit +udinal direction = ', ep, '(k.s.i.)'
896
897
                  print*, '44. = Youngs modulus of the core material in longit
898
           +udinal direction = ', ecp, '(k.s.i.)'
899
900
               endif
901
            endif
902
            print*, ' '
            print*, 'Enter number of desired change.'
903
904
            read*, k
905
            if(k.eq.1)then
906
            print*, 'Enter horizontal distance between eave lines (in.).'
907
            read*, b2
908
            elseif(k.eq.2)then
           print*, 'Enter slope of pitch of roof (i.e. 6, means a pitch of 6 +to 12).'
909
910
            read*, p
911
912
            elseif(k.eq.3)then
913
            print*, 'Enter live load per horizontal projected area of roof (p.
914
           +s.f.).'
915
            read*. wli
916
            elseif(k.eq.4)then
917
            print*, 'Enter wind pressure normal to roof (p.s.f.).'
918
            read*
                   ww
919
            elseif (k.eq.5) then
920
            print*, 'Enter allowable displacement factor for panel bending (de
921
           +fl.=span/factor).
922
            print*, 'live load only, dead and live load (i.e. 240.0, 180.0).'
            read*, fl,fdl
923
924
            elseif(k.eq.6)then
```

```
print*, 'Enter difference in average temperature of the outer and
925
926
          +inner face for:'
927
           print*, 'maximum summer, appropriate winter, and maximum winter (de
          +grees F) (i.e. 100,70,100).
928
929
           read*, temps, tempaw, tempw
           elseif(k.eq.7)then
930
           print*, 'Enter require R value for roof panel'
931
932
           read*, r
933
           elseif(k.eq.8)then
           print*, 'Enter maxium depth to be considered for the core (in.)'
934
935
           read*, mtc
936
           elseif(k.eq.9)then
937
           print*, 'Enter minimum ratio of thickness of core to '
           print*, 'thickness of face to be considered.'
print*, 'A ratio of 5 is recommended.'
938
939
940
           read*, mrcf
           elseif (k.eq.10) then
941
           print*, 'Enter weight of roofing material (psf)'
read*, wrs
942
943
944
           elseif (k.eq.11) then
           print*, 'Enter weight of interior finish material (psf)'
945
946
           read*, wis
947
           elseif (k.eq.12) then
948
           print*, 'Enter youngs modulus of the face material in transverse d
          +irection (k.s.i.).'
949
950
           print*, 'and a creep factor based on a transient live load (-).'
           read*, e, creepf
951
952
           elseif (k.eq.13) then
953
           print*, 'Enter thermal coefficient of expansion (x10-06 strain/deg
          +ree F.).'
954
955
           print*, 'and the hygroscopic strain gradient (-) of the face mater
956
          +ial.'
957
           read*, fcoeff, fhygro
958
           elseif (k.eq.14) then
           print*, 'Enter poisson ratio for the face material'
read*, vf
959
960
           elseif(k.eq.15)then
961
           print*, 'Enter design value for the critical flexural stress of th
962
963
          +e face material (ksi)'
964
           read*, ysf
965
           elseif (k.eq.16) then
966
           print*, 'Enter minimium thickness of face material (in.)'
967
           read*, mtf
           elseif(k.eq.17)then
968
           print*, 'Enter incremental production thickness '
print*, 'of face material (in.)'
read*, dtf
969
970
971
972
           elseif (k.eq.18) then
           print*, 'Enter cost per board foot of face material ($.s.f.)'
973
974
           read*, cf
975
           elseif (k.eq.19) then
           print*, 'Enter R value per inch for the face material'
976
977
           read*, rf
978
           elseif(k.eq.20)then
           print*, 'Enter weight of face material (pcf)'
read*, wfc
979
980
981
           elseif (k.eq.21) then
982
           print*, 'Enter youngs modulus of the core material in the transver
983
          +se direction (ksi)'
           read*, ec
984
           elseif(k.eq.22)then
985
           print*, 'Enter youngs modulus of the core material in out-of-plane
986
987
           + direction (ksi)'
988
           read*, eco
989
           elseif(k.eq.23)then
990
           print*, 'Enter out-of-plane shear modulus of the core material (k
```

```
+.s.i.).'
             print*, 'and a creep factor based on a transient live load (-).'
 992
 993
             read*, gc, creepc
             {\tt elseif}\,({\tt k.eq.24})\,{\tt then}
 994
             print*, 'Enter poisson ratio for the core material'
read*, vc
 995
 996
 997
            print*, 'Enter design value for the critical stress of the core ma
+terial (ksi)'
 998
 999
1000
             read*, ysc
             elseif (k.eq.26) then
1001
             print*, 'Enter incremental production thickness '
print*, 'of core material (in.)'
1002
1003
1004
             read*, dtc
1005
             elseif(k.eq.27)then
             print*, 'Enter cost of core material per board foot ($)'
1006
1007
             read*, cc
1008
             elseif (k.eq.28) then
             print*, 'Enter R value per inch for the core material'
1009
1010
             read*, rc
             elseif (k.eq.29) then
1011
             print*, 'Enter weight of core material (pcf)'
read*, wcc
1012
1013
             elseif(k.eq.30)then
1014
             print*, 'Enter cost of structural adhesive per square foot ($)'
read*, ca
1015
1016
1017
             elseif(k.eq.31)then
             print*, 'Enter incremental production thickness of exterior'
print*, 'insulation material (in.).'
read*, dti
1018
1019
1020
1021
             elseif(k.eq.32)then
1022
             print*, 'Enter cost of exterior insulation material per board'
print*, 'foot ($.s.f.).'
1023
1024
                    ci
             read*.
             elseif(k.eq.33)then
1025
             print*, 'Enter R value per inch for exterior insulation'
print*, 'material.'
1026
1027
1028
             read*, ri
1029
             elseif(k.eq.34)then
             print*, 'Enter weight of exterior insulation material (pcf)'
1030
1031
             read*, wic
1032
             elseif(k.eq.35)then
1033
             print*, 'Enter cost of non-structural adhesive per square'
             print*, 'foot ($.s.f.).'
1034
1035
             read*, cai
1036
             elseif(k.eq.36)then
             print*, 'Enter longitudinal length of span between gable lines (in
1037
1038
            +.).'
1039
             read*, 1
1040
             elseif (k.eq.37) then
             print*, 'Enter the width of the panel element (in.)'
1041
1042
             read*, pw
             elseif(k.eq.38)then
1043
1044
             print*, 'Enter the in-plane shear modulus of the face material (ks
1045
            +i)'
1046
            . read*, gf
1047
             elseif(k.eq.39)then
1048
             print*, 'Enter design value for critcal shear stress of the face m
1049
            +aterial (k.s.i.).
1050
             read*, ys.s
             elseif (\bar{k}.eq.40) then
1051
1052
             print*, 'Enter in-plane shear modulus of the core material (ksi)'
1053
             read*, gcp
1054
             elseif (k.eq.41) then
1055
             print*, 'Enter design value for critcal tension or compressi
1056
            +on stress'
```

```
1057
             print*, 'of the longitudinal line material (k.s.i.).'
1058
             read*, ysl
             elseif (\hat{k}.eq.42) then
1059
1060
             print*, 'Enter youngs modulus of the eave line member (k.s.i
1061
            +.).'
1062
             read*
                    eavee
1063
             elseif(k.eq.43)then
1064
            print*, 'Enter youngs modulus of the face material in longitudinal
1065
            + direction (ksi)'
1066
             read*, ep
             elseif(k.eq.44)then
1067
            print*, 'Enter youngs modulus of the core material in the longitud
+inal direction (ksi)'
1068
1069
1070
             read*, ecp
1071
             endif
1072
             print*,
1073
             print*, 'Are there more changes to be made? (y/n)'
1074
             read*, reanal
1075
             if(reanal.eq.'y')go to 750
1076
             copy='no'
1077
             go to 100
1078
1079
             Send data to an output file called hard
      С
1080
       1000 print*, 'Would you like the resulting data sent to' print*, 'a hard copy file (named hard)? (y/n)'
1081
1082
1083
             read*, copy
1084
             if (copy.eq.'y') then
1085
1086
             Backspace the output file so that more data may be added.
      С
1087
      C
1088
             backspace (unit=1)
1089
             page=page+1
1090
             write(1,105)
1091
             write (1,106) page
1092
             write (1,150)
1093
             write(1,*)' Horizontal distance between eave lines=', b2, '(in.)'
             write (1,*)' Slope of pitch of roof (i.e. 6, means a pitch of 6 to
1094
1095
            +12) = ', p
1096
             write(1,*)' Live load per horizontal projected area of roof=', wli
1097
            +,'(p.s.f.)'
            write(1,*)' Wind pressure normal to roof=', ww,'(p.s.f.)'
1098
            write (1,*)' Allowable displacement factor for panel bending (i.e.
1099
1100
            +defl=span/factor)'
1101
             write(1,*)' live load only, dead and live load=', fl, fdl
             write(1,*)' Difference in average temperature of the outer and inn
1102
1103
            +er face for:'
            write(1,*)' maximum summer, appropriate winter, and maximum winter=
1104
1105
1106
            write(1,*) temps, tempaw, tempw, '(degrees F) respectively'
            write(1,*)' Require R value for roof panel=', r
1107
1108
            write(1,*)' Maxium depth to be considered for the core=', mtc, '(i
            +n.)'
1109
1110
            write(1,*)' Minimum ratio of thickness of core to thickness of fac
1111
           +e to be
            write(1,*)' considered=', mrcf
1112
1113
            write(1,*)' Weight of roofing material=', wrs, '(p.s.f.)'
            write(1,*)' Weight of interior finish material=', wis, '(p.s.f.)'
1114
1115
            write(1,*)'
1116
            write (1,\star) ' Youngs modulus of the face material in transverse dire
1117
           +ction (k.s.i.)'
            write (1,*)' and a creep factor based on a transient live load (-) =
1118
1119
1120
            write(1,*) e, creepf
1121
            write(1,*)' Thermal coefficient of expansion (x10-06 strain/degree
1122
           +F.), and'
```

```
write(1,*)' the hygroscopic strain gradient (-) of the face materi
1123
1124
            +al=',fcoeff, fhygro
             write (1,*)' Poisson ratio for the face material=', vf
1125
             write (1,*)' Design value for the critical flexural stress of the f
1126
1127
            +ace material=', ysf, ' (k.s.i.)'
             write(1,*)' Minimium thickness of face material=',mtf, '(in.)'
1128
              write(1,*)' Incremental production thickness of face material=', d
1129
            +tf, '(in.)'
1130
             write(1,*)' Cost per board foot of face material=', cf, '($.b.f.)'
1131
             write(1,*)' R value per inch for the face material=', rf
1132
             write(1,*)' Weight of face material=', wfc, '(p.c.f.)'
1133
1134
             write(1,*)'
             write (1,*)' Youngs modulus of the core material in transverse dire
1135
1136
            +ction=', ec, ' (k.s.i.)'
            write(1,*)' Youngs modulus of the core material in out-of-plane di +rection=', eco, ' (k.s.i.)' write(1,*)' Out-of-plane shear modulus of the core material (k.s.i
1137
1138
1139
1140
            +.),'
1141
             write (1,*)' and a creep factor based on a transient live load (-)=
1142
             write (1,*) gc, creepc write (1,*)' Poisson ratio for the core material=', vc write (1,*)' Design value for the critical shear stress of the core
1143
1144
1145
            + material=', ysc, ' (k.s.i.)'
write(1,*)' Incremental production thickness of core material=', d
1146
1147
            +tc, '(in.)'
1148
             write(1,*)' Cost of core material per board foot=', cc, '($.b.f.)'
1149
             write(1,*)' R value per inch for the core material=', rc write(1,*)' Weight of core material=', wcc, '(p.c.f.)'
1150
1151
             write(1,*)' Cost of structural adhesive per square foot=', ca, '($
1152
            +.s.f.)'
1153
1154
             write(1,*)'
1155
             if(ext2.eq.2)then
                 write(1,*)' Incremental production thickness of exterior insula
1156
            +tion material=', dti, ' (in.).'
1157
                write(1,*)' Cost of exterior insulation material per board foot
1158
1159
            +=', ci, '($.b.f.)'
1160
                write(1,*)' R value per inch for exterior insulation material='
1161
            +, ri
1162
                write(1,*)' Weight of exterior insulation material=', wic, '(p.
1163
            +c.f.)'
1164
                write(1,*)' Cost of non-structural adhesive per square foot=',
1165
            +cai, '($.s.f).'
                write(1,*)'
1166
1167
             endif
1168
             if(fold.eq.'y')then
1169
                write (1,*)' Longitudinal length of span between gable lines=',
1170
            + 1, '(in.)'
1171
                 write(1,*)' Width of the panel element=', pw, '(in.)'
                write(1, ^{\star})' In-plane shear modulus of the face material=', gf,
1172
            +'(k.s.i.)'
1173
                write (1,*) Design value for critical shear stress of the face m
1174
            +aterial=', yss, ' (k.s.i.).'
1175
1176
                write(1,*)' In-plane shear modulus of the core material=', gcp,
1177
            + '(k.s.i.)'
1178
                 if(line.eq.'y')then
1179
                   write (1,*)' Design value for critcal tension or compressi
1180
            +on stress of the ^{\prime}
1181
                    write(1,*)' longitudinal line material=', ysl,'(k.s.i.)'
                    write (1, *)! Youngs modulus of the eave line member=', eavee,
1182
1183
            + '(k.s.i.).'
1184
                    write (1,*)' Area of the eave line member=', eavea, '(in.**2).
1185
1186
                    write(1,*)' Youngs modulus of the face material in longitudi
1187
1188
            +nal direction=', ep, ' (k.s.i.)'
```

```
write(1,*)' Youngs modulus of the core material in longitudi
1189
1190
             +nal direction=', ecp, ' (k.s.i.)'
1191
                 endif
1192
              endif
              write(1,*)'
1193
              write(1,*)' Slope distance between eave and ridge=', h, '(in.)'
1194
1195
              write (1,*)' Allowable maximum deflection for the live load; liv
1196
             +e and dead load'
1197
              write(1,*)' acting on the horizontal projected area of roof (in.)=
1198
             +', adefl, adefld
1199
              go to 100
1200
       1050 endif
1201
      С
1202
              This section of the program calculates stresses and deflections
1203
              for a folded plate.
      С
1204
      С
1205
              if(fold.eq.'y')then
                 print*, 'This section of the program calculates stresses' print*, 'and deflections for a folded plate.'
1206
1207
                 print*, 'The material properties and geometry are the same as'
1208
                 print*, 'above, but the material thicknesses must be inputed.'
print*, '
1209
1210
                 print*, 'Would you like to look at stresses and deflections? (y
1211
1212
             +/n)'
1213
                 read*, skip
                 if(skip.eq.'n')go to 1470
print*. ''
1214
                 print*, ''
Print*, 'Enter thickness of the faces (in.)'
1215
1216
1217
                 read*, tf
                 print*, ' '
print*, 'Enter thickness of the core material (in.)'
1218
1219
                 read*, tc print*, ' '
1220
1221
1222
      С
1223
              Calculate the dead load of panel.
      С
1224
      C
1225
                 wd=tf*wfc/6.0+tc*wcc/12.0+ti*wic/12.0+wrs+wis
1226
      С
1227
      С
              Calculate in-plane load, and moment.
1228
      С
                 wp=((\cos(rad)*wl)/144.0+wd/144.0)*h/(2.0*sin(rad))
1229
1230
                 mp = (wp*1**2)/8.0
1231 c
1232 c
              Calculate teh transverse load.
1233
      С
1234
                 ws=((\cos(rad)*wl+wd)*\cos(rad))/144.0
1235
1236
              Calculate the area of the eave line member based on strength.
      С
1237
                 if(line.eq.'y')then
1238
       1060
                     eavea=wp*1**2/(8.0*ys1*1000.0*h)
1239
                     print*, 'Enter area of the eave line member (in.**2).'
print*, 'Minimum area of eave line member calculated from st
1240
1241
1242
             +rength requirements of'
                     print*, 'plate action is,',eavea,'(in.**2).'
1243
                    read*, eavea
print*, ' '
1244
1245
1246
                 endif
1247
1248
              Go to plate deflection section at line 400.
                                                                    Program returned
1249
              to line 1100 if skip equals 'y'.
1250
      C
1251
                 go to 400
                 print*, 'Allowable vertical ridge deflection is', fv, '(in.)'
print*, 'Vertical ridge deflection is', dv, '(in.)'
print*, 'Allowable horizontal eave deflection is', fh, '(in.)'
1252
        1100
1253
1254
```

```
1255
                print*, 'Horizontal eave deflection is', dh, '(in.)'
1256
                print*, ' '
                print*, 'Would you like to examine the stresses in a '
1257
                print*, 'transverse cut through the folded plate? (y/n)'
1258
1259
                read*, cut
1260
                if(cut.eq.'n')go to 1500
1261
       1300
                print*, 'At what distance from the left gable line do you want'
                print*, 'to examine streses in a tranverse section?'
Print*, 'The length of span between gables is,', 1 ,'(in.)'
1262
1263
                read*; xl
1264
                print*, 'At how many points, equally spaced along a transverse'
print*, 'cut would you like to examine stresses?'
1265
1266
1267
                read*, nseq
1268
                dseg=h/(nseg-1)
                print*, 'The distance from the left gable is,', xl, '(in.)' print*, ' '
1269
1270
                print*, ' y
1271
                                       fsigly
                                                  fctaulyz fsigpx
                                                                        csianx
                                                                                   ft
                    ctaupxy'
1272
            +aupxy
1273
                print*, ' (in.)
                                       (p.s.i.) (p.s.i.) (p.s.i.)
                                                                       (p.s.i.)
                                                                                   (p
1274
            +.s.i.) (p.s.i.)'
1275
                print*, ' '
                do 1400 ns=1, nseg
1276
1277
                   y=(h/2.0)+dseg-ns*dseg
1278
                   ei=((ef*tf**3/6.0)+(ef*tf*(tf+tc)**2/2.0)+(ec*tc**3/12.0))
1279
                   ip=((2.0*tf+eratio*tc)*h**3)/12.0
                   fsigly=ws*(h**2/4.0-y**2)*ef*(tc+2.0*tf)/(4.0*ei)
1280
1281
                   fctaulyz=(ws*y)/(tf+tc)
                   ap=(tf*2.0+gratio*tc)*h
1282
1283
                   if (line.eq.'n') then
1284
                       fsigpx=(ws*xl*(l-xl)*y)/(4.0*ip)
                       csigpx=eratio*fsigpx
1285
1286
                       ftaupxy= (ws*((1/2.0)-x1)*3.0)/(2.0*ap)*
            +(1.0-(y**2)/(h/2.0)**2)
1287
1288
                       ctaupxy=gratio*ftaupxy
1289
                   else
1290
                       fsigpx=0.0
1291
                       csigpx=0.0
1292
                       ftaupxy=(wp*(1/2.0)-x1)/(ap)
1293
                       ctaupxy=gratio*ftaupxy
1294
1295
                   write(*,1350) y, fsigly, fctaulyz, fsigpx, csigpx, ftaupxy,
1296
            +ctaupxy
1297
       1350
                   format (7f10.2)
1298
                   print*,
1299
       1400
                continue
1300
                print*, 'Would you like to make another transverse cut? (y/n)'
1301
                read*, recut
1302
                if(recut.eq.'y')go to 1300
1303
       1470
                print*, 'Would you like to switch from a folded plate with no I
           +ongitudinal'
1304
1305
                print*, 'line members to one with, or visa versa? (y/n)'
1306
                if(line.eq.'y')print*, 'Presently, there are longitudinal line
1307
            +members.'
1308
               if (line.eq.'n')print*, 'Presently, there are no longitudinal li
1309
           +ne members.'
1310
                read*, switch
                if(switch.eq.'y')then
1311
                   if(line.eq.'y')then
1312
1313
                      line='n'
1314
                   else
1315
                      line='y'
1316
                      print*, 'Enter design value for critcal tension or compre
1317
           +ssion stress'
1318
                      print*, 'of the longitudinal line material (k.s.i.).'
1319
                      read*, ysl
1320
                      print*, 'Enter youngs modulus of the eave line member (k.
```

```
1321
                +s.i.).'
                              read*, eavee
1322
1323
                          endif
                          go to 1060
1324
1325
                      endif
1326
                 endif
         1500 print*, 'Would you like to switch from a panel with no exterior' print*, 'insulation to one with, or visa versa? (y/n)' if(ext2.eq.1)print*,'Presently, there is no exterior insulation.' if(ext2.eq.2)print*,'Presently, there is exterior insulation.'
1327
1328
1329
1330
1331
                 read*, switch
                 if(switch.eq.'y')then
1332
1333
                      if (ext2.eq.1) then
1334
                         ext2=2
1335
                      else
1336
                          ext2=1
                      endif
1337
1338
                      ti=0.0
1339
                     go to 20
1340
                 endif
                 print*, 'Would you like to switch from a folded plate to a' print*, 'ridge beam system, or visa versa? (y/n)'
1341
1342
                 if(fold.eq.'y')print*, 'Presently, there is a folded plate.'
if(fold.eq.'n')print*, 'Presently, there is a ridge beam.'
1343
1344
1345
                 read*, switch
                 if(switch.eq.'y')then
   if(fold.eq.'y')then
   fold='n'
1346
1347
1348
1349
                      else
                         fold='y'
1350
1351
                      endif
                     go to 30
1352
1353
                 endif
1354
          2000 print*, 'Do you really want to leave the program? (y/n)'
1355
                 read*, exit
1356
                 if(exit.eq.'n')go to 700
1357
                 end
1358
1359
                 Subroutine is for solving quadratic equation
        С
1360
        С
1361
                 subroutine quad(a,b,c,t)
1362
                 t=(-b+sqrt(b**2-4.0*a*c))/(2.0*a)
1363
                 return
1364
                 end
```

A.4 Panel.f Output

Oriented strand board, and a polyurethane foam core are the materials input into the panel f program. The creep factor of four has been established for rigid polyurethane foams under quasi-permanent loads by H. Just [Structural Plastics Design Manual, 84], and has been verified by creep studies at M.I.T.

```
Page
   Horizontal distance between eave lines=
                                               384.000 (in.)
   Slope of pitch of roof (i.e. 6, means a pitch of 6 to 12)=
                                                                   9.00000
   Live load per horizontal projected area of roof=
                                                         40.0000 (p.s.f.)
  Wind pressure normal to roof= 33.8000 (p.s.f.)
   Allowable displacement factor for panel bending (i.e. defl=span/factor) live load only, dead and live load= 240.000 180.000
   Difference in average temperature of the outer and inner face for:
  maximum summer, appropriate winter, and maximum winter= 100.000 70.0000 100.000 (degrees F) respectively
   Require R value for roof panel = 30.0000
   Maxium depth to be considered for the core= 16.0000 (in.)
   Minimum ratio of thickness of core to thickness of face to be
   considered= 3.00000
   Weight of roofing material=
                                 3.00000
                                           (p.s.f.)
   Weight of interior finish material = 2.00000 (p.s.f.)
   Youngs modulus of the face material in transverse direction (k.s.i.)
   and a creep factor based on a transient live load (-)=
   850.000
            1.00000
   Thermal coefficient of expansion (x10-06 strain/degreeF.), and
  the hygroscopic strain gradient (-) of the face material= 5.00000 0. Poisson ratio for the face material= 0.300000
  Design value for the critical flexural stress of the face material= 0.950000
   (k.s.i.)
   Minimium thickness of face material= 0.250000 (in.)
   Incremental production thickness of face material= 0.125000 (in.)
  Cost per board foot of face material= 0.570000 ($.b.f.)
  R value per inch for the face material= 1.25000
  Weight of face material=
                              40.0000 (p.c.f.)
   Youngs modulus of the core material in transverse direction= 0.800000
   (k.s.i.)
  Youngs modulus of the core material in out-of-plane direction= 0.800000
   (k.s.i.)
  Out-of-plane shear modulus of the core material (k.s.i.),
  and a creep factor based on a transient live load (-)=
  0.800000 4.00000
  Poisson ratio for the core material= 0.300000
  Design value for the critical shear stress of the core material=
  3.30000e-02 (k.s.i.)
  Incremental production thickness of core material= 0.500000 (in.)
  Cost of core material per board foot= 0.220000 ($.b.f.)
R value per inch for the core material= 6.00000
  Weight of core material= 2.00000 (p.c.f.)
  Cost of structural adhesive per square foot= 0. ($.s.f.)
  Longitudinal length of span between gable lines=
                                                         480.000 (in.)
  Width of the panel element 96.0000 (in.)
  In-plane shear modulus of the face material=
                                                    210.000 (k.s.i.)
  Design value for critcal shear stress of the face material=
                                                                   1.04500
   (k.s.i.).
  In-plane shear modulus of the core material= 0.800000 (k.s.i.)
  Design value for critcal tension or compressi
                                                    on stress of the
  longitudinal line material= 2.30000 (k.s.i.)
  Youngs modulus of the eave line member=
                                              2000.00 (k.s.i.).
                                   3.61730 (in.**2).
  Area of the eave line member=
```

Slope distance between eave and ridge= 240.000 (in.)

Allowable maximum deflection for the live load; liv e and dead load acting on the horizontal projected area of roof (in.) = 1.00000 1.33333

n		_	^
ч	ag	e	

core (in.)	face (in.)	weight (p.s.f.)	R	defl. (in.)	cost (\$.s.f.)	fail. mode
16.0 15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.50	0.375 0.375 0.500 0.500 0.625 0.625 0.750 0.875 1.00 1.25 1.38 1.50 1.75 2.00 2.13	10.2 10.1 10.8 10.8 11.5 11.4 12.2 12.9 13.7 15.3 16.0 16.8 18.3 19.9 20.7	96.9 93.9 91.3 88.3 85.6 79.9 77.2 74.5 72.1 66.8 64.4 659.3	1.12 1.16 1.12 1.17 1.15 1.20 1.21 1.23 1.23 1.23 1.25 1.28 1.29 1.30	3.95 3.84 3.87 3.76 3.79 3.68 3.71 3.75 3.78 3.95 3.99 4.02 4.20 4.20 4.40	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
8.50	2.50	23.1	57.3	1.32	4.72	2.2

1=No constraint 2.1-.5=Stiffness 3=Face yielding 4=Face wrinkling 5=R value requirements 6=Folded plate deflections 7=Folded plate shear

```
The final thickness of the core is 13.5000 (in.). The final thickness of the face is 0.625000 (in.). The final weight of the panel is 11.4167 (p.s.f.). The final R value of the panel is 82.5625 The final cost of the panel is 3.68250 ($.s.f.).
```

Allowable vertical ridge deflection is 2.00000 (in.). Final vertical ridge deflection is 0.420603 (in.). Allowable horizontal eave deflection is 2.00000 (in.). Final horizontal eave deflection is 0.314743 (in.).

```
Page 3
```

```
Horizontal distance between eave lines=
                                          384.000 (in.)
Slope of pitch of roof (i.e. 6, means a pitch of 6 to 12) =
                                                             9.00000
                                                   40.0000 (p.s.f.)
Live load per horizontal projected area of roof=
Wind pressure normal to roof= 33.8000 (p.s.f.)
Allowable displacement factor for panel bending (i.e. defl=span/factor)
                                               180.000
live load only, dead and live load= 240.000
Difference in average temperature of the outer and inner face for:
maximum summer, appropriate winter, and maximum winter=
0. 0. (degrees F) respectively
Require R value for roof panel= 30.0000
Maxium depth to be considered for the core= 16.0000 (in.)
Minimum ratio of thickness of core to thickness of face to be considered= 3.00000
                              3.00000 (p.s.f.)
Weight of roofing material=
Weight of interior finish material = 2.00000 (p.s.f.)
Youngs modulus of the face material in transverse direction (k.s.i.)
and a creep factor based on a transient live load (-)=
850.000 1.00000
Thermal coefficient of expansion (x10-06 strain/degreeF.), and
the hygroscopic strain gradient (-) of the face material= 5.00000 0.
Poisson ratio for the face material = 0.300000
Design value for the critical flexural stress of the face material = 0.950000
 (k.s.i.)
Minimium thickness of face material= 0.250000
Incremental production thickness of face material= 0.125000
Cost per board foot of face material = 0.570000 ($.b.f.)
R value per inch for the face material = 1.25000
                           40.0000 (p.c.f.)
Weight of face material=
Youngs modulus of the core material in transverse direction= 0.800000
Youngs modulus of the core material in out-of-plane direction= 0.800000
(k.s.i.)
Out-of-plane shear modulus of the core material (k.s.i.),
and a creep factor based on a transient live load (-)=
0.800000
         4.00000
Poisson ratio for the core material = 0.300000
Design value for the critical shear stress of the core material=
             (k.s.i.)
3.30000e-02
Incremental production thickness of core material= 0.500000 (in.)
Cost of core material per board foot= 0.220000 ($.b.f.)
R value per inch for the core material= 6.00000
Weight of core material = 2.00000 (p.c.f.)
Cost of structural adhesive per square foot= 0. ($.s.f.)
Longitudinal length of span between gable lines=
                                                   480.000 (in.)
Width of the panel element 96.0000 (in.)
In-plane shear modulus of the face material=
                                               210.000 (k.s.i.)
Design value for critcal shear stress of the face material = 1.04500
(k.s.i.).
In-plane shear modulus of the core material= 0.800000 (k.s.i.)
Design value for critcal tension or compressi on stress of the
longitudinal line material= 2.30000 (k.s.i.)
Youngs modulus of the eave line member=
                                         2000.00 (k.s.i.).
Area of the eave line member=
                               3.41802 (in.**2).
Slope distance between eave and ridge= 240.000 (in.)
Allowable maximum deflection for the live load; liv e and dead load
acting on the horizontal projected area of roof (in.) = 1.00000 1.33333
```

Page	4					
core (in.)	face (in.)	weight (p.s.f.)	R	defl. (in.)	cost (\$.s.f.)	fail. mode
16.0 15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5	0.250 0.250 0.375 0.375 0.375 0.500 0.500 0.625 0.625	9.33 9.25 10.0 9.92 9.83 9.75 10.5 10.4 11.2 11.1	96.6 93.6 90.9 87.9 84.9 81.9 79.3 76.3 73.6 70.6	1.11 1.16 1.04 1.09 1.13 1.19 1.13 1.19 1.16 1.22	3.81 3.70 3.73 3.62 3.51 3.40 3.43 3.32 3.35 3.24 3.28	1.0 1.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
10.5 10.0 9.50 9.00 8.50 8.00 7.50 7.00	0.875 1.00 1.13 1.25 1.38 1.63 1.88 2.13	12.6 13.3 14.1 14.8 15.6 17.2 18.8 20.3	65.2 62.5 59.8 57.1 54.4 52.1 49.7 47.3	1.22 1.24 1.26 1.29 1.32 1.31 1.31	3.31 3.34 3.37 3.40 3.44 3.61 3.79 3.96	2.1 2.1 2.1 2.1 2.1 2.2 2.2 2.2

1=No constraint 2.1-.5=Stiffness 3=Face yielding 4=Face wrinkling 5=R value requirements 6=Folded plate deflections 7=Folded plate shear

```
The final thickness of the core is 11.5000 (in.). The final thickness of the face is 0.625000 (in.). The final weight of the panel is 11.0833 (p.s.f.). The final R value of the panel is 70.5625 The final cost of the panel is 3.24250 ($.s.f.).
```

Allowable vertical ridge deflection is 2.00000 (in.). Final vertical ridge deflection is 0.420482 (in.). Allowable horizontal eave deflection is 2.00000 (in.). Final horizontal eave deflection is 0.314651 (in.).

Appendix B Program S.f Hard Copy

S.f is a fortran program which calculates the deflections, shear stresses, bending stresses, twisting stresses for a rectangular isotropic sandwich panel with: two edges simply supported, the other two edges free; four edges simply supported. The geometry, material properties, thermal gradient and summation limits are interactively input. The results are tabulated in column form, where the location in the table correspond to the x and y location of one quarter of the rectangular panel element (refer to shaded area of Figure 5-1 and 5-2). The output is grouped in a vertical column for each (x,y) data point.

```
c234567890123456789012345678901234567890123456789012345678901234567890123
          implicit real(a-h,s-z), integer(i-r)
          real p, pw, pi, pip, rad, lm, pm, mx11, my11, mxy11, mx1, my1
3
          real mxyl, ml, ml1
 5
          integer m, k, j
          dimension xy(0:10), xw(0:10), xsx(0:10), xsy(0:10), xvx(0:10)
 6
7
          dimension xmx(0:10), xmy(0:10), xmxy(0:10)
          open(unit=1, file='therm', form='print', status='new')
 9
10
          Program calculates the deflections, shear stresses, bending
          stresses, twisting stresses, and uplift corner reactions
11
   C
12
   С
          for a rectangular isotropic sandwich panel with: two edges simply
13
   С
          supported, the other two edges free; four edges simply supported.
1.4
   С
          print*, 'Program calculates the deflections, shear stresses,'
15
          print*, 'bending stresses, twisting stresses, and uplift corner'
16
          print*, 'reactions for a rectangular isotropic sandwich panel'
17
          print*, 'with: two edges simply supported, the other two edges' print*, 'free; four edges simply supported.'
18
19
20
          print*, ' '
          print*, ' '
21
          print*, 'Enter horizontal distance between eave lines (in.).'
22
          read*, b2
23
         print*, 'Enter slope of pitch of roof (i.e. 6, means a pitch of 6
+to 12).'
24
25
26
          read*, p
print*, 'Enter the width of the panel element (in.).'
27
28
          read*, pw
print*, 'Enter youngs modulus of the face material in transverse d
29
30
         +irection (p.s.i.).
          read*, e
31
32
          print*, 'Enter poisson ratio for the face material.'
33
          read*, vf
         print*, 'Enter out-of-plane shear modulus of the core material (p.
+s.i.).'
34
35
          read*, gc
Print*, 'Enter thickness of the faces (in.)'
36
37
38
          read*, tf
39
          print*, 'Enter thickness of the core material (in.)'
40
          read*, tc
print*,'Enter thermal coefficient of expansion (strain/degrees F)'
41
42
          read*, alp
43
          print*, 'Enter thermal gradient (degrees F)'
44
          read*, te
45
          b2 = 384.
          p=9.
46
47
          e=850000.
48
          qc = 800.
49
          tf=1.
50
          tc=12.
51
          alp=.000005
52
          te=100
53
          vf=0.3
54
          pi=atan(1.0)*4.0
55
          pip=p/12.0
          rad=atan(pip)
57
          h=b2/(2.0*cos(rad))
58
          ef=e/(1.0-vf**2)
          ei=(ef*tf**3/6.0)+(ef*tf*(tf+tc)**2/2.0)
60
          a=h
61
          b=pw
62
          t=(tc+tf)**2/tc
          print*, ' Enter the ultimate value for m (odd)'
63
     47
64
          read*, r
          print*, ''
65
66
```

```
67
    С
           Let the summation begin.
 68
 69
    С
           Two edges simply supported, the other two edges free.
 70
 71
           do 10 k=0,4,1
 72
              x=real(k)*a/8.0
 73
              do 100 j=0,4,1
                 y=b*j/8.0
 74
 75
                 xy(j)=y
 76
                 w11=0.0
 77
                 sx11=0.0
 78
                 sy11=0.0
 79
                 v11=0.0
 80
                 mx11=0.0
 81
                 my11=0.0
 82
                 mxy11=0.0
 83
                 do 1000 \text{ m=1,r,2}
 84
                     lm=pi*m/a
 85
                     am=lm*b/2.0
                     pm=sqrt(lm**2+((2.0*gc*t)/((1.0-vf)*ei)))
 86
 87
                     gm=pm*b/2.0
 88
                     bbm=(8.0*alp*(1.0-vf**2)*te/(lm**3*a*t))*
 89
                          sinh(am)/((3.0+vf+2.0*(1.0-vf)*lm**2*ei/(gc*t))*
 90
                          sinh(2.0*am)-2.0*(1.0-vf)*am-
 91
                          2.0*lm*(1.0-vf)*ei/(gc*t)*pm*
 92
                          (\cosh (2.0*am) -1.0) / \tanh (gm))
 93
                     eem=bbm*2.0*lm**3*ei*sinh(am)/sinh(gm)
 94
                     aam=bbm*(((1.0+vf)/(1.0-vf))-am/tanh(am))
                     w1=(aam*cosh(lm*y)+bbm*lm*y*sinh(lm*y))*sin(lm*x)
 95
 96
                     sx1=(eem*(pm/lm)*cosh(pm*y)-
 97
                          2.0*lm**3*ei*bbm*cosh(lm*y))*cos(lm*x)
 98
                     syl=(eem*sinh(pm*y)-
 99
                          2.0*lm**3*ei*bbm*sinh(lm*y))*sin(lm*x)
                     v1=bbm*1m**3*((5.0-vf-(1.0-vf)*am/tanh(am)+
100
101
                          (2.0*(1.0-vf)*ei*lm**2/(gc*t)))*cosh(lm*y)+
102
                          (1.0-vf)*lm*y*sinh(lm*y)-
103
                          (2.0*pm*sinh(am)/(lm*sinh(gm)))*
104
                          (((1.0-vf)*ei*lm**2/(gc*t))+2.0)*cosh(pm*y))
105
                     mx1 = (1m**2*(((1.0-vf)*aam-2.0*vf*bbm)*cosh(1m*y)+
106
                          (1.0-vf)*bbm*lm*sinh(lm*y))+
107
                          ((1.0-vf)/(gc*t))*(eem*pm*cosh(pm*y)-
108
                          2.0*lm**4*ei*bbm*cosh(lm*y)))*sin(lm*x)
109
                     my1 = (1m**2*(((1.0-vf)*aam+bbm)*cosh(1m*y)+
110
                          (1.0-vf)*bbm*lm*y*sinh(lm*y))-
111
                          ((1.0-vf)/(gc*t))*(eem*pm*cosh(pm*y)-
                          2.0*lm**4*ei*bbm*cosh(lm*y)))*sin(lm*x)
112
113
                     mxy1=(1m**2*((aam+bbm)*sinh(1m*y)+
114
                          bbm*lm*y*cosh(lm*y))-
115
                          (1.0/(2.0*lm*gc*t))*
116
                          (eem*(pm**2+lm**2)*sinh(pm*y) -
117
                          4.0*lm**5*ei*bbm*sinh(lm*y)))*cos(lm*x)
118
                     w11=w11+w1
119
                     sx11=sx11+sx1
120
                     syll=syll+syl
121
                     v11=v11+v1
122
                     mx11=mx11+mx1
123
                     my11=my11+my1
124
                     mmy11=mmy11+mmy1
125
      1000
                     continue
126
                 xw(j) = w11 - (alp*te*(1+vf)/t)*(x*(a-x)/2.0)
127
                 xvx(j)=v11*ei
128
                 xsx(j)=sx11/(tc+tf)
129
                 xsy(j) = syl1/(tc+tf)
130
                 xmx(j)=mx11*ei*t*ef/(ei*2)
                 xmy(j) = ((alp*te*ei*(1.0+vf)/t)-ei*myll)*t*ef/(ei*2)
131
132
                 xmxy(j) = (1.0-vf) *ei*mxy11*t*ef/(ei*2)
```

```
100
133
                   continue
134
               if(k.eq.0)then
                   print*, ' panel height (x) is', a, '(origin at s.s. edge)'
135
                   print*, ' panel width (y) is', pw, '(origin at midwidth of
136
137
           +s.s. edge)'
138
                   print*,
                   print*, 'Listed sequentially (vertically):'
print*,' Deflection (in.)'
139
140
                   print*,' Core shear in the xz plane (p.s.i.)'
141
                   print*,' Core shear in the yz plane (p.s.i.)'
142
                   print*,' Normal stress in face in x direction (p.s.i.)'
143
                   print*,' Normal stress in face in y direction (p.s.i.)'
144
                   print*,' Twisting stress in face (p.s.i.)'
145
                   print*, '
146
                   print*, '
147
148
                   write(*,600)xy(0),xy(1),xy(2),xy(3),xy(4)
                   print*, '(in.)
149
150
151
               endif
152
               write(*,700) x, xw(0), xw(1), xw(2), xw(3), xw(4)
153
               write (*,600) xsx (0), xsx (1), xsx (2), xsx (3), xsx (4)
154
               write(*,600)xsy(0),xsy(1),xsy(2),xsy(3),xsy(4)
155
               write (*,600) xmx (0), xmx (1), xmx (2), xmx (3), xmx (4)
               write(*,600) \times my(0), \times my(1), \times my(2), \times my(3), \times my(4)
156
157
               write(*,600) \times mxy(0), \times mxy(1), \times mxy(2), \times mxy(3), \times mxy(4)
               print*, ' '
158
                if(k.eq.0)then
159
160
                   write(1,*)' Two simply supported, the other two edges free.'
                   write(1,*)'
161
                   write(1,*)' Temperature gradient is (degree Fahrenheit)', te
162
                   write(1,*)' Coefficient of expansion is,', alp, '(strain per
163
164
           + degree Fahrenheit)'
165
                   write(1,*)' Face thickness is', tf, '(in.)'
                   write(1,*)' Modulus of elasticity is', e, '(p.s.i.)'
166
                   write(1,*)' Core thickness is', tc, '(in.)'
167
                   write (1, *)' Shear modulus of core is', gc, '(p.s.i.)'
168
                   write(1,*) '
169
170
                   write (1,*)' Panel height (x) is', a,' (origin at s.s. edge)'
                   write (1,*) ' Panel width (y) is', pw, '(origin at midwidth o
171
172
           +f s.s. edge)'
173
                   write(1,*) ' Ultimate value for m is,', r
                   write(1,*) '
174
                   write(1,*)'Listed sequentially (vertically):'
175
                   write(1,*)' Deflection (in.)'
176
177
                   write(1,*)' Core shear in the xz plane (p.s.i.)'
                   write(1,*)' Core shear in the yz plane (p.s.i.)'
178
                   write(1,*)' Normal stress in face in x direction (p.s.i.)'
179
180
                   write (1,*)' Normal stress in face in y direction (p.s.i.)'
                   write(1,*)' Twisting stress in face (p.s.i.)'
181
                   write(1,*) '
182
                   write(1,*) '
183
                                                               y (in.):'
184
                   write (1,600) \times y(0), \times y(1), \times y(2), \times y(3), \times y(4)
185
                   write(1,*)' (in.)
                   write(1,*) '
                    write(1,*) ' Edge reactions (lb./in.):'
187
                    write(1,600)xvx(0),xvx(1),xvx(2),xvx(3),xvx(4)
188
189
                    write(1,*) '
190
                endif
191
               write (1,700) x, xw(0), xw(1), xw(2), xw(3), xw(4)
192
                write (1,600) xsx (0), xsx (1), xsx (2), xsx (3), xsx (4)
               write (1,600) \times sy(0), \times sy(1), \times sy(2), \times sy(3), \times sy(4)
193
194
                write(1,600)xmx(0),xmx(1),xmx(2),xmx(3),xmx(4)
                write(1,600) \times my(0), \times my(1), \times my(2), \times my(3), \times my(4)
195
196
               write (1,600) xmxy (0), xmxy (1), xmxy (2), xmxy (3), xmxy (4)
197
                write(1,*) '
198
       10
              continue
```

```
199
            write (1,8)
200
     С
201
            Let the summation begin.
     С
202
     С
203
     С
            Four edges simply supported.
204
     С
205
            do 30 k=0,4,1
206
               x=k*a/8.0
207
               do 300 j=0,4,1
208
                   y=b*j/8.0
209
                   xy(j)=y
210
                   w11=0.0
                   sx11=0.0
211
212
                   sy11=0.0
                   v11=0.0
213
                   m11=0.0
214
215
                   mxy11=0.0
                   do^{3000} m=1,r,2
216
217
                      lm=pi*m/a
218
                      am=lm*b/2.0
219
                      w1 = (\sin(1m^*x)/m^**3) * (1.0 - \cosh(1m^*y)/\cosh(am))
                      v1=cosh(lm*y)/(cosh(am))
220
221
                      ml = sin(lm*x)*cosh(lm*y)/(m*cosh(am))
222
                      mxy1=cos(lm*x)*sinh(lm*y)/(m*cosh(am))
223
                      w11=w11+w1
224
                      sx11=sx11+sx1
225
                      syll=syll+syl
226
                      v11=v11+v1
227
                      m11=m11+m1
228
                      mxy11=mxy11+mxy1
      3000
229
                      continue
230
                   xw(j) = -4.0*alp*te*(1+vf)*a**2/(pi**3*t)*w11
                   xvx(j) = -v11*4.0*alp*te*(1-vf**2)*ei/(a*t)
231
232
                   xmx(j) = ml1*4.0*alp*te*(1-vf**2)*ei/(pi*t)*t*ef/(ei*2)
233
                   xmy(j) = (alp*te*(1-vf**2)*ei/(t)-m11*4.0*alp*te*
           +(1-vf**2) *ei/(pi*t)) *t*ef/(ei*2)
234
235
                   xmxy(j) = mxy11*4.0*alp*te*(1-vf**2)*ei/(pi*t)*t*ef/(ei*2)
236
      300
                   continue
237
               if (k.eq.0) then
                   print*, ' Four edges simply supported.'
print*, ' '
238
239
                  print*, ' panel height (x) is', a, '(origin at s.s. edge)' print*, ' panel width (y) is', pw, '(origin at midwidth of s
240
241
242
           +.s edge)'
243
                   print*, '
                  print*, 'Listed sequentially (vertically):'
print*,' Deflection (in.)'
244
245
                   print*,' Normal stress in face in x direction (p.s.i.)'
246
                   print*,' Normal stress in face in y direction (p.s.i.)'
247
                   print*,' Twisting stress in face (p.s.i.)'
248
                  print*, ' x y (in. write(*,600)xy(0),xy(1),xy(2),xy(3),xy(4)
249
250
                                                           y (in.):'
251
                   print*, '(in.)
print*, '
252
253
254
                    print*, ' edge reactions:'
     С
255
                    write(*,600)xvx(0),xvx(1),xvx(2),xvx(3),xvx(4)
     С
256
                    print*,
257
               endif
               write(*,700)x,xw(0),xw(1),xw(2),xw(3),xw(4)
258
259
               write(*,600) xmx(0), xmx(1), xmx(2), xmx(3), xmx(4)
               write(*,600) xmy(0), xmy(1), xmy(2), xmy(3), xmy(4)
260
261
               write(*,600) xmxy(0), xmxy(1), xmxy(2), xmxy(3), xmxy(4)
               print*, '
262
263
               if (k.eq.0) then
264
                   write(1,*)' Four edges simply supported.'
```

```
write(1,*)' '
265
                     write (1,*)' Temperature gradient is (degree Fahrenheit)', te write (1,*)' Coefficient of expansion is,', alp, '(strain per
266
267
268
            + degree Fahrenheit)'
                     write(1,*)' Face thickness is', tf, '(in.)'
write(1,*)' Modulus of elasticity is', e, '(p.s.i.)'
write(1,*)' Core thickness is', tc, '(in.)'
269
270
                     write(1,*)' Shear modulus of core is', gc, '(p.s.i.)'
write(1,*)'
271
272
273
                     write (1,*)' Panel height (x) is', a, '(origin at s.s. edge)' write (1,*)' Panel width (y) is', pw, '(origin at midwidth of
274
275
276
            + s.s. edge)'
                     write(1,*) ' Ultimate value for m is,', r
277
                     write(1,*) '
278
                     write(1,*)'Listed sequentially (vertically):'
279
                     write(1,*)' Deflection (in.)'
280
                     write (1,*)' Normal stress in face in x direction (p.s.i.)'
281
                     write(1,*)' Normal stress in face in y direction (p.s.i.)'
282
283
                     write(1,*)' Twisting stress in face (p.s.i.)'
                     write(1,*) '
284
                     write(1,*) '
                                                                      y (in.):'
285
                     write(1,600)xy(0),xy(1),xy(2),xy(3),xy(4)
286
                     write(1,*)' (in.)
write(1,*)'
287
288
                       write(1,*) ' Edge reactions:'
289
290
                       write (1,600) xvx(0), xvx(1), xvx(2), xvx(3), xvx(4)
      С
                       write(1,*) '
291
      С
292
293
                 write(1,700) x, xw(0), xw(1), xw(2), xw(3), xw(4)
                  write(1,600)xmx(0),xmx(1),xmx(2),xmx(3),xmx(4)
294
295
                  write(1,600) xmy(0), xmy(1), xmy(2), xmy(3), xmy(4)
296
                  write(1,600)xmxy(0),xmxy(1),xmxy(2),xmxy(3),xmxy(4)
297
                  write(1,*) '
       30
298
                  continue
299
              write (1,8)
300
              go to 47
       800
             format(14x,5(1x, g10.3))
301
302
              format(1x, f5.1, 6(1x, g10.3))
                  format (6x, 5(1x, g10.3))
format (1x, f5.1, 5(1x, g10.3))
303
        600
304
       700
305
       8
              format('1')
306
              end
```

B.1 S.f Output

Oriented strand board, and a polyurethane foam core are the materials input into the s.f program. The face and core thicknesses have been selected from the output of program panel.f: face thickness is one inch, the core thickness is twelve inches. A panel element width of 96 inches and 48 inches is run through the program. The panel length is 20 feet. The thermal coefficient of expansion is that of O.S.B. parallel to the transverse direction of the panel. The thermal gradient is $100^{\circ}F$. The summation limits are set just under the number of summations which creates number overflow (10^{34}). For the second run of the program, the summation limit is reduced by a value of two, to characterize the precision and estimate the error in summation limits.

Two simply supported, the other two edges free. Temperature gradient is (degree Fahrenheit) 100.000 Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit) Face thickness is 1.00000 (in.) Modulus of elasticity is 850000. (p.s.i.) Core thickness is 12.0000 (in.) Shear modulus of core is 800.000 (p.s.i.) Panel height (x) is 240.000 (origin at s.s. edge) Panel width (y) is 48.0000 (origin at midwidth of s.s. edge) Ultimate value for m is, 125 Listed sequentially (vertically): Deflection (in.) Core shear in the xz plane (p.s.i.) Core shear in the yz plane (p.s.i.) Normal stress in face in x direction (p.s.i.) Normal stress in face in y direction (p.s.i.) Twisting stress in face (p.s.i.) y (in.): 0. 6.00 12.0 18.0 24.0 (in.) 0. 0. 0. 0. 0. 0. -0.281 -0.243 -0.116 0.931 0.160 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 304. 304. 304. 304. 304. 27.7 Ο. 57.5 92.1 -0.523e-0130.0 -0.115 -0.105 0. -0.293e-01 -0.452e-01 -0.365e-01 -0.608e-06 -38.1 -31.3 -11.7 17.9 84.0 161. 163. 168. 177. 184. 0. -6.92-11.5-10.2-0.521e-02 60.0 -0.195 -0.195 0. -0.106e-02 -0.135e-02 -0.725e-03 -0.166e-05 -0.945 -1.470.294 1.39 1.17 172. 172. 172. 173. 173. -0.610 0. -0.599 -0.864-0.553e-0290.0 -0.243 -0.242 -0.241 -0.237 -0.233 0.145 0.124 0.610e-01 -0.515e-01 -15.4 173. 173. 173. 173. 173. 0. 0.180e-01 0.324e-01 0.304e-01 0.597e-02 120.0 -0.259 -0.259 -0.258 -0.257 -0.253 -0.249 -0.441e-08 -0.506e-08 -0.455e-08 0.188e-08 0.585e-07 0.155e-04 0.217e-04 0.125e-04 -0.587e-06 0. 0.212e-01 0.15le-01 -0.129e-03 -0.214e-01 -19.7

173.

0.

173.

173.

173.

0.276e-05 0.382e-05 0.626e-05 0.280e-07

```
Four edges simply supported.
```

```
Temperature gradient is (degree Fahrenheit) 100.000
Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit)
Face thickness is 1.00000 (in.)
  Modulus of elasticity is 850000.
                                            (p.s.i.)
   Core thickness is 12.0000 (in.)
   Shear modulus of core is 800.000 (p.s.i.)
  Panel height (x) is 240.000 (origin at s.s. edge)
Panel width (y) is 48.0000 (origin at midwidth of s.s. edge)
   Ultimate value for m is, 125
 Listed sequentially (vertically):
   Deflection (in.)
   Normal stress in face in x direction (p.s.i.)
   Normal stress in face in y direction (p.s.i.)
   Twisting stress in face (p.s.i.)
                               y (in.):
           0.
                     6.00
                                 12.0
                                              18.0
                                                           24.0
   (in.)
           0.
                       0.
                                   0.
                                                0.
                                                             0.
           0.
                      0.
                                   Ο.
                                               0.
                                                            0.
        213.
                     213.
                                 213.
                                              213.
                                                           213.
                     54.5
                                                           608.
           0.
                                 119.
                                              218.
 30.0 -0.114e-01 -0.107e-01 -0.861e-02 -0.508e-02
                                                             0.
                                                           211.
        175.
                    178.
                                185.
                                              198.
        37.7
                     35.0
                                  27.0
                                              14.8
                                                           1.94
           0.
                     14.3
                                 26.7
                                              35.2
                                                           36.2
 60.0 -0.130e-01 -0.122e-01 -0.978e-02 -0.571e-02
                                                             0.
                                 209.
        207.
                     208.
                                              210.
                                                           213.
         5.33
                     4.93
                                  3.77
                                              2.04
                                                         -0.121e-01
           0.
                     2.04
                                  3.77
                                              4.92
                                                           3.81
 90.0 -0.133e-01 -0.124e-01 -0.994e-02 -0.580e-02
                                                             0.
        212.
                    212.
                                 212.
                                             212.
                                                           213.
        0.763
                    0.705
                                0.540
                                             0.292
                                                        -0.825
           0.
                    0.281
                                0.519
                                             0.678
                                                        -0.856e-01
120.0 -0.133e-01 -0.125e-01 -0.996e-02 -0.581e-02
                                         212.
0.803e-01 -1.07
        212.
                    212.
                                212.
        0.210
                    0.194
                                0.149
```

0.508e-06 0.154e-05 0.393e-05 0.117e-03

```
Two simply supported, the other two edges free.
  Temperature gradient is (degree Fahrenheit) 100.000
  Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit)
  Face thickness is 1.00000
                                (in.)
  Modulus of elasticity is 850000.
                                      (p.s.i.)
  Core thickness is 12.0000 (in.)
  Shear modulus of core is 800.000 (p.s.i.)
  Panel height (x) is 240.000 (origin at s.s. edge)
Panel width (y) is 48.0000 (origin at midwidth of s.s. edge)
  Ultimate value for m is, 123
 Listed sequentially (vertically):
  Deflection (in.)
  Core shear in the xz plane (p.s.i.)
  Core shear in the yz plane (p.s.i.)
  Normal stress in face in x direction (p.s.i.)
  Normal stress in face in y direction (p.s.i.)
  Twisting stress in face (p.s.i.)
                           y (in.):
         0.
                  6.00
                                        18.0
                                                    24.0
                             12.0
   (in.)
         0.
                    0.
                                          0.
                                                      0.
 0.
                                0.
     -0.281
                -0.243
                            -0.116
                                        0.160
                                                   0.931
         0.
                    0.
                                0.
                                         0.
                                                      0.
         0.
                    0.
                                                      0.
                                0.
                                          0.
       304.
                   304.
                              304.
                                         304.
                                                    304.
                                                  -0.571e-01
         0.
                  27.7
                              57.5
                                         92.1
30.0 -0.115
                -0.115
                           -0.113
                                       -0.110
                                                  -0.105
      -0.559e-01 -0.417e-01 -0.400e-02 0.410e-01 0.655e-01
         0.
                -0.293e-01 -0.452e-01 -0.365e-01 -0.608e-06
       -38.1
                                       17.8
                 -31.3
                            -11.7
                                                   47.7
       161.
                  163.
                             168.
                                        177.
                                                    183.
                 -6.92
                                        -10.2
                                                  -0.705e-02
         0.
                             -11.5
 60.0 -0.195
                -0.195
                           -0.193
                                       -0.189
                                                  -0.185
      -0.250e-03 0.769e-04 0.601e-03 0.218e-03 -0.211e-02
         0.
                -0.106e-02 -0.135e-02 -0.725e-03 -0.166e-05
       -1.47
                           0.294
                                                 -26.6
                 -0.945
                                        1.39
       172.
                  172.
                             172.
                                         173.
                                                   172.
         0.
                -0.610
                            -0.864
                                       -0.598
                                                  -0.215e-02
 90.0 -0.243
                -0.242
                            -0.241
                                       -0.237
                                                  -0.233
       0.261e-03 0.201e-03 0.338e-04 -0.189e-03 -0.159e-03
         0.
                 0.145
                 0.124
                            0.610e-01 -0.500e-01 -0.362
       173.
                  173.
                             173.
                                        173.
                                                   173.
                  0.180e-01 0.324e-01 0.315e-01 0.104e-01
         0.
120.0 -0.259
                -0.258
                           -0.257
                                      -0.253
                                                  -0.249
      -0.441e-08 -0.506e-08 -0.455e-08 0.188e-08 0.614e-07
         0.
                 0.155e-04 0.217e-04 0.127e-04 -0.587e-06
       0.212e-01
                                                  19.5
                 0.151e-01 -0.129e-03 -0.175e-01
```

0.

173.

173.

173.

0.276e-05 0.382e-05 0.627e-05 0.639e-07

```
Four edges simply supported.
```

0.194

0.210

0.

212.

0.149

212.

0.508e-06 0.154e-05 0.393e-05 0.133e-03

0.804e-01

211.

```
Temperature gradient is (degree Fahrenheit)
                                                  100.000
  Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit) Face thickness is 1.00000 (in.)
   Face thickness is 1.00000
  Modulus of elasticity is 850000. Core thickness is 12.0000 (in.)
                                         (p.s.i.)
   Shear modulus of core is 800.000
                                         (p.s.i.)
   Panel height (x) is 240.000 (origin at s.s. edge)
   Panel width (y) is 48.0000 (origin at midwidth of s.s. edge)
   Ultimate value for m is, 123
  Listed sequentially (vertically):
  Deflection (in.)
   Normal stress in face in x direction (p.s.i.)
   Normal stress in face in y direction (p.s.i.)
   Twisting stress in face (p.s.i.)
                             y (in.):
                    6.00
                                           18.0
                                                       24.0
          0.
                                12.0
   (in.)
                                                         0.
 0.
                                  0.
          0.
                      0.
                                              0.
          0.
                      0.
                                  0.
                                              0.
                                                         0.
                    213.
        213.
                                            213.
                                                        213.
                                213.
          0.
                    54.5
                                119.
                                            218.
                                                        606.
 30.0 -0.114e-01 -0.107e-01 -0.861e-02 -0.508e-02
                                                          0.
        175.
                   178.
                               185.
                                           198.
                                                       213.
                                27.0
                    35.0
                                            14.8
                                                     -0.554e-01
        37.7
          0.
                    14.3
                                26.7
                                            35.2
                                                       35.4
 60.0 -0.130e-01 -0.122e-01 -0.978e-02 -0.571e-02
                                                         0.
        207.
                    208.
                               209.
                                           210.
                                                       214.
        5.33
                    4.93
                                3.77
                                            2.04
                                                       -1.54
          0.
                    2.04
                                3.77
                                            4.92
                                                       5.34
 90.0 -0.133e-01 -0.124e-01 -0.994e-02 -0.580e-02
                                                         0.
        212.
                    212.
                               212.
                                           212.
                                                       212.
                                           0.292
                                                      0.380e-02
       0.763
                   0.705
                               0.540
          0.
                   0.281
                               0.519
                                          0.678
                                                       1.91
                                                         0.
120.0 -0.133e-01 -0.125e-01 -0.996e-02 -0.581e-02
```

```
Two simply supported, the other two edges free.
```

0.

-2.24

171.

-3.24

171.

```
100.000
  Temperature gradient is (degree Fahrenheit)
  Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit) Face thickness is 1.00000 (in.)
  Face thickness is 1.00000
  Modulus of elasticity is 850000.
Core thickness is 12.0000 (in.)
                                       (p.s.i.)
                            800.000
  Shear modulus of core is
                                      (p.s.i.)
  Panel height (x) is 240.000 (origin at s.s. edge)
  Panel width (y) is 96.0000 (origin at midwidth of s.s. edge)
  Ultimate value for m is, 63
 Listed sequentially (vertically):
  Deflection (in.)
  Core shear in the xz plane (p.s.i.)
  Core shear in the yz plane (p.s.i.)
  Normal stress in face in x direction (p.s.i.)
  Normal stress in face in y direction (p.s.i.)
  Twisting stress in face (p.s.i.)
                            y (in.):
                  12.0
                              24.0
                                         36.0
                                                     48.0
   (in.)
         0.
                                0.
                                           0.
                                                      0.
                                        0.287
                                                     1.79
     -0.518
                -0.451
                            -0.224
         0.
                    0.
                                0.
                                           0.
                                                      0.
                                                       0.
         0.
                     0.
                                0.
                                           0.
                              304.
                                         304.
                                                    304.
       304.
                   304
         0.
                  30.0
                              61.4
                                         96.1
                                                   -0.123e-01
                                       -0.107
                                                  -0.920e-01
30.0 -0.122
                -0.120
                            -0.116
                            -0.751e-01 0.237
     -0.325
                 -0.264
                                                    0.578
                 -0.109
                                       -0.187
                                                   -0.132e-06
         0.
                            -0.191
      -68.8
                 -66.0
                             -51.4
                                       -0.252
                                                     218.
                  181.
                              177.
                                        183.
                                                     207.
       183.
                                                   -0.772e-03
         Ω.
                  1.79
                             -1.73
                                        -9.55
 60.0 -0.205
                 -0.203
                            -0.196
                                       -0.184
                                                   -0.166
                 -0.782e-01 -0.904e-02 0.761e-01 0.129
      -0.104
         0.
                 -0.532e-01 -0.822e-01 -0.667e-01
                                                    0.385e-11
       -35.2
                 -29.2
                            -11.5
                                         15.7
                                                    101.
       165.
                  166.
                             170.
                                         176.
                                                     183.
          0.
                  -5.18
                             -8.78
                                        -8.11
                                                   -0.117e-01
 90.0 -0.254
                 -0.251
                            -0.244
                                       -0.231
                                                   -0.213
      -0.212e-01 -0.149e-01 0.425e-03 0.156e-01 0.178e-01
                 -0.142e-01 -0.206e-01 -0.150e-01 -0.185e-05
         0.
       -9.67
                 -7.37
                                         5.97
                             -1.33
                                                     54.3
       169.
                  170.
                                         174.
                                                     175.
                             171.
         0.
                  -2.05
                             -3.16
                                        -2.54
                                                   -0.357e-02
120.0 -0.270
                 -0.267
                            -0.260
                                       -0.247
                                                   -0.229
```

-0.457e-02 -0.615e-02 -0.380e-02

0.217

172.

2.64

173.

0.360e-06 0.237e-05 0.414e-05 -0.130e-07

0.117e-05

43.5

```
Four edges simply supported.
```

```
Temperature gradient is (degree Fahrenheit) 100.000
  Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit) Face thickness is 1.00000 (in.)
  Modulus of elasticity is 850000.
                                          (p.s.i.)
  Core thickness is 12.0000 (in.)
  Shear modulus of core is 800.000 (p.s.i.)
  Panel height (x) is 240.000 (origin at s.s. edge) Panel width (y) is 96.0000 (origin at midwidth of s.s. edge)
  Ultimate value for m is, 63
 Listed sequentially (vertically):
  Deflection (in.)
  Normal stress in face in x direction (p.s.i.)
  Normal stress in face in y direction (p.s.i.)
  Twisting stress in face (p.s.i.)
                              y (in.):
                    12.0
                                24.0
                                            36.0
                                                        48.0
          0.
   (in.)
          0.
                     0.
                                  Ο.
                                                           0.
  0.
                                              0.
          0.
                      0.
                                  0.
                                              0.
                                                          0.
                                                        213.
        213.
                    213.
                                213.
                                            213.
                                                         610.
          0.
                    54.5
                                119.
                                            218.
 30.0 -0.327e-01 -0.308e-01 -0.252e-01 -0.153e-01
                                                           0.
                                                        207.
        115.
                    121.
                                138.
                                            169.
        97.2
                    91.9
                                74.9
                                            43.6
                                                         5.51
                    34.6
                                67.8
                                                         106.
          0.
                                            95.0
 60.0 -0.453e-01 -0.426e-01 -0.343e-01 -0.203e-01
                                                          0.
                                                         210.
        174.
                    177.
                                185.
                                            197.
        38.5
                    35.7
                                27.5
                                            15.0
                                                         2.99
          0.
                    14.0
                                26.1
                                            34.5
                                                         37.4
 90.0 -0.499e-01 -0.468e-01 -0.375e-01 -0.220e-01
                                                           0.
                                                         210.
        196.
                   198.
                                201.
                                            206.
        16.2
                    15.0
                                11.5
                                            6.22
                                                         2.29
          0.
                                8.64
                    4.67
                                            11.3
                                                        12.2
120.0 -0.510e-01 -0.478e-01 -0.383e-01 -0.224e-01
                                                           0.
        202.
                    203.
                                205.
                                            208.
                                                         210.
        10.7
                    9.85
                                7.54
                                            4.08
                                                        2.11
```

-0.180e-05 -0.300e-05 -0.198e-05 0.555e-04

Two simply supported, the other two edges free. Temperature gradient is (degree Fahrenheit) 100.000 Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit) Face thickness is 1.00000 (in.) Modulus of elasticity is 850000. (p.s.i.) Core thickness is 12.0000 (in.) Shear modulus of core is 800.000 (p.s.i.) Panel height (x) is 240.000 (origin at s.s. edge) Panel width (y) is 96.0000 (origin at midwidth of s.s. edge) Ultimate value for m is, 61 Listed sequentially (vertically): Deflection (in.) Core shear in the xz plane (p.s.i.) Core shear in the yz plane (p.s.i.) Normal stress in face in x direction (p.s.i.) Normal stress in face in y direction (p.s.i.) Twisting stress in face (p.s.i.) y (in.): 0. 12.0 24.0 36.0 48.0 (in.) 0. 0. 0. 0. 0. 0. -0.518 -0.451 -0.224 0.287 1.79 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 304. 304. 304. 304. 304. 61.4 0. 30.0 96.1 -0.913e-02 30.0 -0.122 -0.120 -0.116 -0.107 -0.920e-01 -0.325 -0.264 -0.751e-01 0.237 0.577 -0.132e-06 0. -0.109-0.191 -0.187 -68.8 -0.254 187. -66.0 -51.4 183. 181. 177 183. 207. 0. 1.79 -1.73 -9.56 0.217e-02 60.0 -0.205 -0.203 -0.196 -0.184 -0.166 -0.104 -0.782e-01 -0.904e-02 0.761e-01 0.128 0. -0.532e-01 -0.822e-01 -0.667e-01 0.385e-11 -35.2 -29.2 -11.5 15.6 44.0 165. 166. 170. 176. 182. 0. -0.944e-02 -5.18 -8.78 -8.11 90.0 -0.254 -0.251 -0.244 -0.231 -0.213 -0.212e-01 -0.149e-01 0.425e-03 0.156e-01 0.172e-01 0. -0.142e-01 -0.206e-01 -0.150e-01 -0.185e-05 -9.67 -7.37 5.96 -1.33-20.2169. 170. 171. 174. 174. 0. -2.05 -3.16 -0.235e-02 -2.54120.0 -0.27.0 -3.24 2.63 -2.24 0.217 171. 171. 173. 172. 173.

0.360e-06 0.237e-05 0.413e-05 0.605e-08

Four edges simply supported.

```
Temperature gradient is (degree Fahrenheit)
                                                   100.000
   Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit)
   Face thickness is 1.00000 (in.)
   Modulus of elasticity is 850000.
Core thickness is 12.0000 (in.)
                                          (p.s.i.)
                              800.000
   Shear modulus of core is
   Panel height (x) is 240.000 (origin at s.s. edge)
Panel width (y) is 96.0000 (origin at midwidth of s.s. edge)
   Ultimate value for m is, 61
  Listed sequentially (vertically):
   Deflection (in.)
   Normal stress in face in x direction (p.s.i.)
   Normal stress in face in y direction (p.s.i.)
   Twisting stress in face (p.s.i.)
                              y (in.):
          0.
                    12.0
                                24.0
                                            36.0
                                                        48.0
   (in.)
  0.
          0.
                      0.
                                  0.
                                                          0.
                                              0.
          0.
                      0.
                                 0.
                                             0.
                                                         0.
        213.
                    213.
                                213.
                                            213.
                                                        213.
          0.
                    54.5
                                119.
                                            218.
                                                        606.
 30.0 -0.327e-01 -0.308e-01 -0.252e-01 -0.153e-01
                                                          0.
        115.
                    121.
                               138.
                                                        209.
                                            169.
        97.2
                    91.9
                                74.9
                                            43.6
                                                        3.86
          0.
                    34.6
                                67.8
                                            95.0
                                                        102.
 60.0 -0.453e-01 -0.426e-01 -0.343e-01 -0.203e-01
                                                          0.
        174.
                    177.
                                185.
                                        197.
                                                        213.
        38.5
                    35.7
                                27.5
                                            15.0
                                                      -0.496e-01
          0.
                    14.0
                                26.1
                                            34.5
                                                        34.4
 90.0 -0.499e-01 -0.468e-01 -0.376e-01 -0.220e-01
                                                          0.
        196.
                   198.
                               201.
                                          206.
                                                        214.
        16.2
                    15.0
                                11.5
                                            6.22
                                                       -1.68
          0.
                    4.67
                                8.64
                                            11.3
                                                       10.6
120.0 -0.510e-01 -0.478e-01 -0.383e-01 -0.224e-01
        202.
                    203.
                               205.
                                           208.
                                                       215.
        10.7
                    9.85
                                7.54
                                            4.08
                                                       -2.18
          0.
                  -0.180e-05 -0.300e-05 -0.198e-05 0.298e-04
```

Appendix C Program B.f Hard Copy

Program b.f is a fortran program which calculates the reaction along the panel edges for a rectangular isotropic sandwich panel with: two edges simply supported, the other two edges free; four edges simply supported. The geometry, material properties and thermal gradient, fastener location and summation limits are interactively input. The location of the fastener and the fastener reaction are listed in column form (refer to Figure 5-1 and 5-2)).

```
implicit real(a-h,s-z), integer(i-r)
 3
          real p, pw, pm, pi, pip, rad, lm
 4
          integer m
 5
          open(unit=1, file='hard', form='print', status='new')
 6
   С
          Program calculates the fastener reactions for a rectangular
    С
          isotropic sandwich panel with: two edges simply supported,
 8
    С
 9
          the other two edges free; four edges simply supported.
    С
          Variations in the twisting moment create a singularity at the
10
    С
11
    С
          corner. As the summation limits approach infinity, the corner
          reactions approach infinity. In calculating the edge reactions
12
    С
13
    С
          for fasteners, this inconsistency in the solution of a
          mathematical model can be remedied by applying the laws of equilibrium and symmetry. The outer fastener reaction nearest
14
    C
15
    С
16
    С
          the corner is set equal to the negative value of the
17
          edge reaction obtained from integrating from the midpoint of
    С
18
    С
          the outer fastener and the adjacent fastener to the midpoint
19
          of the panel length. Reactions of fasteners inside of the
    С
20
    С
          outer corner fastener are found by integrating the edge
21
    С
          reactions over the respective tributary areas of
22
          the fastener.
    С
23
24
          print*, ' Program calculates the fastener reactions for a '
25
                    rectangular isotropic sandwich panel with: two'
          print*, '
26
                    edges simply supported, the other two edges free;'
          print*, '
27
                    four edges simply supported. Variations in the'
28
          print*, '
                    twisting moment create a singularity at the'
          print*, ' corner. As the summation limits approach infinity,'
29
          print*, ' the corner reactions approach infinity. In'
30
31
          print*, ' calculating the edge reactions for fasteners, this'
32
          print*, '
                    inconsistency in the solution of a mathematical'
          print*, ' model can be remedied by applying the laws of'
33
          print*, '
34
                    equilibrium and symmetry. The outer fastener'
35
          print*, '
                    reaction nearest the corner is set equal to the'
          print*, ' negative value edge reaction obtained from'
36
          print*, '
37
                    integrating from the midpoint of the outer fastener'
38
          print*, '
                    and the adjacent fastener to the midpoint'
39
          print*, '
                    of the panel length. Reactions of fasteners inside'
40
          print*, '
                    of the outer corner fastener are found by integrating'
          print*, ' the edge reactions over the respective tributary areas'
41
42
          print*, '
                    of the fastener.'
43
          print*,
44
          print*, ' '
45
                  'Enter horizontal distance between eave lines (in.).'
          print*,
          read*, b2
print*, 'Enter slope of pitch of roof (i.e. 6, means a pitch of 6
46
47
48
         +to 12).'
          read*, p
print*, 'Enter the width of the panel element (in.).'
49
50
          read*, pw
51
          print*, 'Enter youngs modulus of the face material in transverse d
52
53
         +irection (p.s.i.).
54
          read*, e
print*, 'Enter poisson ratio for the face material.'
55
          read*, vf
print*, 'Enter out-of-plane shear modulus of the core material (p
56
57
5.8
59
          read*, gc
60
          Print*, 'Enter thickness of the faces (in.)'
61
          read*, tf
          print*, ' '
print*, 'Enter thickness of the core material (in.)'
62
63
64
65
          print*,'Enter thermal coefficient of expansion (strain/degrees F)'
66
          read*, alp
```

```
print*, 'Enter thermal gradient (degrees F)'
67
68
           read*, te
 69
           b2 = 384.
70
           p=9.
71
           e=850000.
 72
           gc=800.
73
           tf=1.
74
           tc=12.
           alp=.000005
75
 76
           te=100.
 77
           vf=0.3
 78
           t=(tc+tf)**2/tc
 79
           pi=atan(1.0)*4.0
80
           pip=p/12.0
 81
           rad=atan(pip)
           h=b2/(2.0*cos(rad))
 82
 83
           ef=e/(1.0-vf**2)
           ei=(ef*tf**3/6.0)+(ef*tf*(tf+tc)**2/2.0)
 84
           a=h
 85
 86
           b=pw
           print*, 'fastner reactions for two edges simply supported and the
 87
 88
          +other two edges free'
 89
           print*,
                     panel width (y) is', b, '(origin at mid-width)'
enter the number of fastners along width'
 90
           print*, '
           print*, '
 91
 92
 93
           print*, ' enter the edge distance for the fastners'
 94
           read*, ed
           print*, '
 95
                     enter the ultimate value for m (odd)'
 96
           read*, k
 97
           print*, '
 98
           print*,
                        Fasteners along width'
           print*,
 99
                         y(in.)
                                      R(lbs.)'
100
           print*,
101
           bd=(b-2.0*ed)/(n-1)
102
           dint=b/2.0-ed-bd/2.0
103
           write(1,*)' Program calculates the fastener reactions for a '
104
           write(1,*)' rectangular isotropic sandwich panel with: two'
           write(1,*)' edges simply supported, the other two edges free;'
105
106
           write (1,*)' four edges simply supported. Variations in the'
107
           write(1,*)' twisting moment create a singularity at the'
108
           write (1,*)' corner. As the summation limits approach infinity,
           write(1,*)' the corner reactions approach infinity. In'
109
110
           write (1,*)' calculating the edge reactions for fasteners, this'
111
           write (1,*)' inconsistency in the solution of a mathematical'
           write (1,*)' model can be remedied by applying the laws of
112
           write(1,*)' equilibrium and symmetry. The outer fastener'
113
           write (1,*)' reaction nearest the corner is set equal to the
114
           write(1,*)' negative value edge reaction obtained from'
115
           write (1,*)' integrating from the midpoint of the outer fastener'
116
           write (1,*)' and the adjacent fastener to the midpoint'
117
118
           write (1,*)' of the panel length. Reactions of fasteners inside'
           write (1,*)' of the outer corner fastener are found by integrating'
119
           write (1,*)' the edge reactions over the respective tributary areas
120
121
122
           write(1,*)' of the fastener.'
           write(1,*)'
123
124
           write(1,*)'
           write (1,*) 'fastner reactions for two edges simply supported and t
125
126
          +he other two edges free'
127
           write(1,*) '
128
           write (1,*)' Temperature gradient is (degree Fahrenheit)', te
           write(1,*)' Coefficient of expansion is,', alp, '(strain per
129
130
          + degree Fahrenheit)'
131
           write(1,*)' Face thickness is', tf, '(in.)'
132
           write(1,*)' Modulus of elasticity is', e, '(p.s.i.)'
```

```
133
             write(1,*)' Core thickness is', tc, '(in.)'
            write(1,*)' Shear modulus of core is', gc, '(p.s.i.)' write(1,*)' panel width (y) is', b, '(origin at midwidth)' write(1,*)' Panel height (x) is', a, '(origin at s.s. edge)' write(1,*)' ultimate value for m is,', k
134
135
136
137
138
             write(1,*) ' edge distance for the fastners is,', ed
             write(1,*) '
139
             write(1,*) '
140
                               y(in.)
                                             R(lbs.)'
141
             write(1,*) '
142
143 c
             two edges simply supported, the other two edges free
144
145
             sb = 0.0
146
             do 100 i=0,200
147
                y=dint-bd*i
148
                if (y.1t.0.0) go to 100
149
                dloc=y+bd/2.0
                b11=0.0
150
151
                do 1000 \text{ m=1,k,2}
152
                   lm=pi*m/a
153
                   am=lm*b/2.0
154
                   pm=sqrt(lm**2+((2.0*gc*t)/((1.0-vf)*ei)))
155
                   gm=pm*b/2.0
156
                   bbm=(8.0*alp*(1.0-vf**2)*te/(lm**3*a*t))/
157
                          ((3.0+vf+2.0*(1.0-vf)*lm**2*ei/(gc*t))*
158
                         2.0 \cdot \cosh(am) - 2.0 \cdot (1.0 - vf) \cdot am/sinh(am) -
                         2.0*lm*(1.0-vf)*ei/(gc*t)*pm*
159
160
                         2.0*sinh(am)/tanh(gm))
161
                   eem=bbm*2.0*lm**3*ei*sinh(am)/sinh(gm)
162
                   aam=bbm*(((1.0+vf)/(1.0-vf))-am/tanh(am))
163
                   bl=eem/lm*sinh(pm*y)-2.0*lm**2*ei*bbm*sinh(lm*y)-
                         (1.0-vf) *ei* (lm**2*((aam+bbm) *sinh(lm*y)+
164
165
                         bbm*lm*y*cosh(lm*y)) -
166
                         (1.0/(2.0*lm*gc*t))*
167
                          (eem*(pm**2+1m**2)*sinh(pm*y)-
168
                          4.0*lm**5*ei*bbm*sinh(lm*y)))
169
                   b11=b11+b1
170
       1000
                   continue
171
                bolt=-b11-sb
172
                sb=sb+bolt
173
                write(*,3) dloc, bolt
174
                write(1,3) dloc, bolt
175
       100
            continue
176
            print*, ' '
177
            print*, '
write(*,7) sb
                                     Sum of R(lbs.)'
178
179
            write(1,*)
180
            write(1,*)
                                     Sum of R(lbs.)'
181
            write(1,7) sb
182
            write(1,8)
            print*, '
183
                        fastner reactions for four edges simply supported'
            print*, '
184
185
            print*, '
                        panel height (x) is', a, '(origin at s.s. edge)'
            print*, '
186
                        enter number of fastners along the height?'
187
            read*, o
188
            print*, '
                        panel width (y) is', b, '(origin at midwidth)'
            print*, '
189
                        number of fastners along the width?'
190
            read*, n
191
            print*, '
                        enter the edge distance for the fastners (in.)'
192
            read*, ed
193
            print*, '
                        enter the ultimate value for m (odd)'
            read*, r
print*, ' Fasteners along height
194
195
                                                               Fasteners along width'
196
            print*, 'x(in.)
                                    Rx(lbs.)
                                                              y(in.)
                                                                           Ry(lbs.)'
197
            print*,
198
            write (1,*)' Program calculates the fastener reactions for a '
```

```
write (1,*)' rectangular isotropic sandwich panel with: two' write (1,*)' edges simply supported, the other two edges free;'
199
200
             write(1,*)' four edges simply supported. Variations in the'
201
             write(1,*)' twisting moment create a singularity at the'
202
             write(1,*)' corner. As the summation limits approach infinity,'
203
             write (1, *)' the corner reactions approach infinity. In'
204
             write(1,*)' calculating the edge reactions for fasteners, this'
205
             write(1,*)' inconsistency in the solution of a mathematical'
206
             write(1,*)' model can be remedied by applying the laws of'
207
             write (1,*)' equilibrium and symmetry. The outer fastener' write (1,*)' reaction nearest the corner is set equal to the'
208
209
             write (1, *)' negative value edge reaction obtained from'
210
             write(1,*)' integrating from the midpoint of the outer fastener'
211
             write(1,*)' and the adjacent fastener to the midpoint'
212
             write (1,*)' of the panel length. Reactions of fasteners inside'
213
             write(1,*)' of the outer corner fastener are found by integrating'
214
215
             write(1,*)' the edge reactions over the respective tributary areas
216
217
             write(1,*)' of the fastener.'
             write(1,*)'
218
             write(1,*)'
219
             write (1,*) ' Fastner reactions for four edges simply supported'.
220
             write(1,*) '
221
             write(1,*)' Temperature gradient is (degree Fahrenheit)', te
222
                    write(1,*)' Coefficient of expansion is,', alp, '(strain per
223
224
            + degree Fahrenheit)'
             write(1,*)' Face thickness is', tf, '(in.)'
225
             write (1,*)' Modulus of elasticity is', e, '(p.s.i.)' write (1,*)' Core thickness is', tc, '(in.)'
226
227
             write(1,*)' Shear modulus of core is', gc, '(p.s.i.)'
write(1,*)' Panel height (x) is', a, '(origin at s.s. edge)'
write(1,*)' Panel width (y) is', b, '(origin at midwidth)'
228
229
             write(1,*) '
230
             write(1,*) ' Ultimate value for m is,', r
231
232
             write(1,*) ' Edge distance for the fastners is,', ed, '(in.)'
233
             write(1,*) '
234
             write(1,*)' Fasteners along height
                                                                   Fasteners along widt
235
            +h'
236
             write(1,*) ' x(in.)
                                                                                    Ry(lbs
                                            Rx(lbs.)
                                                                     y(in.)
237
            +.)'
238
             write(1,*) '
239
             bdy=(b-2.0*ed)/(n-1)
240
             bdx=(a-2.0*ed)/(o-1)
             dinty=b/2.0-ed-bdy/2.0
241
242
             dintx=ed+bdx/2.0
243
             half=a/2.0
244
             if (n.gt.o) then
245
                k=n
246
             else
247
                k=o
248
             endif
249
             bx=0.0
250
             by=0.0
251
             sbx=0.0
252
             sby=0.0
253
             do 300 i=0, k
254
                 y=dinty-bdy*i
255
                 dlocy=y+bdy/2.0
256
                 x=dintx+bdx*i
257
                 dlocx=ed+bdx*i
258
                b11::=0.0
259
                 b11y=0.0
                do 3000 m=1,r,2
260
261
                    lm=pi*m/a
262
                    am=lm*b/2.0
263
                    check=lm*y
264
                    if(am.gt.50.0.or.check.gt.50.0.or.check.le.-80.0)then
```

```
265
                      b1x=(cos(lm*x))/m*
266
                            4.0*alp*te*(1-vf**2)*ei/(pi*t)
267
                   endif
268
                   if (am.gt.50.0.or.check.gt.50.0.or.check.le.-80.0) \ go \ to \ 37
269
                   bly=sinh(lm*y)/(m*cosh(am))*
270
                         4.0*alp*te*(1-vf**2)*ei/(pi*t)
271
                   blx=(cos(lm*x))*sinh(am)/(m*cosh(am))*
272
                         4.0*alp*te*(1-vf**2)*ei/(pi*t)
273
                   blly=blly+bly
274
                   b11x=b11x+b1x
275
       3000
                   continue
276
                bolty=blly-by
277
               boltx=bllx-bx
278
               by=b11y
279
               bx=b11x
280
                if (dlocy.lt.0.0.and.dlocx.gt.half) then
281
                   go to 23
282
                elseif (dlocy.lt.0.0.and.dlocx.le.half) then
283
                   write(*,3)dlocx,boltx
284
                   write (1,3) dlocx, boltx
285
                   sbx=sbx+boltx
286
                elseif(dlocx.gt.half.and.dlocy.ge.0.0)then
287
                   write (*,2) dlocy, bolty
288
                   write (1,2) dlocy, bolty
289
                   sby=sby+bolty
290
                elseif (dlocy.ge.0.0.and.dlocx.le.half) then
291
                   write (*,5) dlocx, boltx, dlocy, bolty
                   write(1,5)dlocx,boltx,dlocy,bolty
292
293
                   sbx=sbx+boltx
294
                   sby=sby+bolty
295
                endif
296
       300
            continue
            print*, ' '
297
       23
298
     С
             print*,
                                     Sum of Rx(lbs.)
                                                                           Sum of Ry(1b
299
     С
            +s.)′
             write(*,6) sbx,sby
print*,''
300
     С
301
     С
302
     С
             write(1,*) ' '
303
     С
             write(1,*) '
                                     Sum of Rx(lbs.)
                                                                           Sum of Ry(1b
304
     С
            +s.)'
             write(1,6) sbx,sby
305
     С
306
             write(1,*) ' '
     С
307
            write(1,8)
308
            format(35x, f6.2, 8x, g10.3)
format(1x, f6.2, 8x, g10.3)
309
      3
            format(1x, f6.2, 8x, g10.3, 10x, f6.2, 8x, g10.3) format(15x, g10.3, 10x, 14x, g10.3)
310
311
       6
            format(15x, g10.3)
312
       7
313
            format('1')
314
            go to 47
315
            end
```

C.1 B.f Output

Oriented strand board, and a polyurethane foam core are the materials input into the s.f program. The face and core thicknesses have been selected from the output of program panel f: face thickness is one inch, the core thickness is twelve inches. A panel element width of 96 inches and 48 inches is run through the program. The panel length is 20 feet. The thermal coefficient of expansion is that of O.S.B. parallel to the transverse direction of the panel. The thermal gradient is 100°F. The summation limits are set just under the number of summations which creates number overflow (10³⁴) for the case of two edges simply supported, the other two edges free. For the second run of the program in this boundary case, the summation limit is reduced by a value of two, to characterize the precision and estimate the error in summation limits. The summation limits are set at a reasonably high value for the case of four edges simply supported. For the second run of the program in this boundary case, the summation limit is reduced by a value of 1000, to characterize the precision and estimate the error in summation limits. As the summation limits are increased in both boundary cases the load carried by the outside fastener approaches an ever larger number. This behavior is modified by the integration over the tributary area of each fastener location.

Program calculates the fastener reactions for a rectangular isotropic sandwich panel with: two edges simply supported, the other two edges free; four edges simply supported. Variations in the twisting moment create a singularity at the corner. As the summation limits approach infinity, the corner reactions approach infinity. In calculating the edge reactions for fasteners, this inconsistency in the solution of a mathematical model can be remedied by applying the laws of equilibrium and symmetry. The outer fastener reaction nearest the corner is set equal to the negative value edge reaction obtained from integrating from the midpoint of the outer fastener and the adjacent fastener to the midpoint of the panel length. Reactions of fasteners inside of the outer corner fastener are found by integrating the edge reactions over the respective tributary areas of the fastener.

fastner reactions for two edges simply supported and the other two edges free

```
Temperature gradient is (degree Fahrenheit) 100.000 Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit)
Face thickness is 1.00000 (in.)
Modulus of elasticity is 850000. (p.s.i.)
Core thickness is 12.0000 (in.)
Shear modulus of core is 800.000 (p.s.i.)
panel width (y) is 48.0000 (origin at midwidth)
Panel height (x) is 240.000 (origin at s.s. edge)
ultimate value for m is, 243
edge distance for the fastners is, 2.00000
```

```
y(in.)
                  R(lbs.)
22.00
               0.137e + 04
20.00
               -157.
18.00
               -149.
16.00
               -141.
14.00
               -135.
12.00
               -130.
               -126.
10.00
 8.00
               -122.
 6.00
               -120.
 4.00
               -118.
 2.00
               -117.
```

Sum of R(lbs.) 58.4

Program calculates the fastener reactions for a rectangular isotropic sandwich panel with: two edges simply supported, the other two edges free; four edges simply supported. Variations in the twisting moment create a singularity at the corner. As the summation limits approach infinity, the corner reactions approach infinity. In calculating the edge reactions for fasteners, this inconsistency in the solution of a mathematical model can be remedied by applying the laws of equilibrium and symmetry. The outer fastener reaction nearest the corner is set equal to the negative value edge reaction obtained from integrating from the midpoint of the outer fastener and the adjacent fastener to the midpoint of the panel length. Reactions of fasteners inside of the outer corner fastener are found by integrating the edge reactions over the respective tributary areas of the fastener.

Fastner reactions for four edges simply supported

Temperature gradient is (degree Fahrenheit) 100.000
Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit)
Face thickness is 1.00000 (in.)
Modulus of elasticity is 850000. (p.s.i.)
Core thickness is 12.0000 (in.)
Shear modulus of core is 800.000 (p.s.i.)
Panel height (x) is 240.000 (origin at s.s. edge)
Panel width (y) is 48.0000 (origin at midwidth)
Ultimate value for m is, 5000
Edge distance for the fastners is, 2.00000 (in.)

x(in.) Rx(lbs.) y(in.) Ry(lbs.) 2.00 0.379e+04 22.00 0.377e+04 4.00 -828. 20.00 -840. 6.00 -538. 18.00 -561. 8.00 -392. 16.00 -428. 10.00 -303. 14.00 -351. 12.00 -244. 12.00 -302. 14.00 -202. 10.00 -269. 16.00 -172. 8.00 -246. 18.00 -146. 6.00 -231. 20.00 -125. 4.00 -221. 22.00 -106. 2.00 -215. 24.00 -91.6 0. -213. 26.00 -80.0 -80.0 -213. 28.00 -70.5 -213. -213. 38.00 -35.4 40.00 -28.0 44.00 -28.0 -24.3 46.00 -20.7 -24.3 46.00 -20.7 -24.3 46.00 -17.9 -20.7 48.00 -17.9		along height		along width
4.00 -828. 20.00 -840. 6.00 -538. 18.00 -561. 8.00 -392. 16.00 -428. 10.00 -303. 14.00 -351. 12.00 -244. 12.00 -302. 14.00 -202. 10.00 -269. 16.00 -172. 8.00 -246. 18.00 -146. 6.00 -231. 20.00 -125. 4.00 -221. 22.00 -106. 2.00 -215. 24.00 -91.6 0. -213. 26.00 -80.0 -80.0 -213. 28.00 -70.5 -30.0 -213. 30.00 -61.9 -30.0 -213. 38.00 -35.7 -40.0 -31.6 42.00 -28.0 -44.0 -24.3 46.00 -24.3 -24.3 46.00 -20.7 -17.9	x(in.)	Rx(lbs.)	y(in.)	Ry(lbs.)
6.00 -538. 18.00 -561. 8.00 -392. 16.00 -428. 10.00 -303. 14.00 -351. 12.00 -244. 12.00 -302. 14.00 -202. 10.00 -269. 16.00 -172. 8.00 -246. 18.00 -146. 6.00 -231. 20.00 -125. 4.00 -221. 22.00 -106. 2.00 -215. 24.00 -91.6 0. -213. 26.00 -80.0 -80.0 -213. 28.00 -70.5 -30.0 -213. 30.00 -61.9 -20.7 -213. 40.00 -31.6 -22.0 -22.0 44.00 -28.0 -24.3 -24.3 46.00 -20.7 -24.3 -22.7 48.00 -17.9 -17.9	2.00	0.379e+04	22.00	0.377e+04
8.00 -392. 16.00 -428. 10.00 -303. 14.00 -351. 12.00 -244. 12.00 -302. 14.00 -202. 10.00 -269. 16.00 -172. 8.00 -246. 18.00 -146. 6.00 -231. 20.00 -125. 4.00 -221. 22.00 -106. 2.00 -215. 24.00 -91.6 0. -213. 26.00 -80.0 -213. 28.00 -70.5 30.00 -61.9 32.00 -53.7 -34.00 -35.4 40.00 -31.6 42.00 -28.0 44.00 -24.3 46.00 -20.7 48.00 -17.9 -17.9	4.00	-828.	20.00	-840.
10.00 -303. 14.00 -351. 12.00 -244. 12.00 -302. 14.00 -202. 10.00 -269. 16.00 -172. 8.00 -246. 18.00 -146. 6.00 -231. 20.00 -125. 4.00 -221. 22.00 -106. 2.00 -215. 24.00 -91.6 0. -213. 26.00 -80.0 -213. 28.00 -70.5 -213. 30.00 -61.9 -32.0 -35.7 34.00 -46.2 -36.0 -40.0 38.00 -35.4 -40.0 -28.0 44.00 -24.3 -24.3 46.00 -20.7 -24.3 46.00 -20.7 -17.9	6.00	-538.	18.00	-561.
12.00 -244. 12.00 -302. 14.00 -202. 10.00 -269. 16.00 -172. 8.00 -246. 18.00 -146. 6.00 -231. 20.00 -125. 4.00 -221. 22.00 -106. 2.00 -215. 24.00 -91.6 0. -213. 26.00 -80.0 28.00 -70.5 30.00 -61.9 32.00 -53.7 34.00 -46.2 36.00 -40.0 38.00 -35.4 40.00 -28.0 44.00 -24.3 46.00 -20.7 48.00 -17.9	8.00	- 392.	16.00	-428.
14.00 -202. 10.00 -269. 16.00 -172. 8.00 -246. 18.00 -146. 6.00 -231. 20.00 -125. 4.00 -221. 22.00 -106. 2.00 -215. 24.00 -91.6 0. -213. 26.00 -80.0 28.00 -70.5 30.00 -61.9 32.00 -53.7 34.00 -46.2 36.00 -40.0 38.00 -35.4 40.00 -31.6 42.00 -28.0 44.00 -24.3 46.00 -20.7 -24.3 46.00 -20.7 48.00 -17.9	10.00	-303.	14.00	-351.
16.00 -172. 8.00 -246. 18.00 -146. 6.00 -231. 20.00 -125. 4.00 -221. 22.00 -106. 2.00 -215. 24.00 -91.6 0. -213. 26.00 -80.0 -80.0 -213. 28.00 -70.5 -213. -213. 30.00 -61.9 -9 -22.00 -32.7 34.00 -46.2 -46.2 -46.2 -46.2 36.00 -40.0 -35.4 -40.0	12.00	-244.	12.00	-302.
18.00 -146. 6.00 -231. 20.00 -125. 4.00 -221. 22.00 -106. 2.00 -215. 24.00 -91.6 0. -213. 26.00 -80.0 -213. 28.00 -70.5 -213. 30.00 -61.9 -61.9 32.00 -53.7 -73.0 36.00 -46.2 -40.0 38.00 -35.4 -40.0 40.00 -28.0 -24.3 46.00 -20.7 -24.3 46.00 -17.9	14.00	-202.	10.00	-269.
20.00 -125. 4.00 -221. 22.00 -106. 2.00 -215. 24.00 -91.6 0. -213. 26.00 -80.0 0. -213. 28.00 -70.5 30.00 -61.9 32.00 -53.7 34.00 -46.2 36.00 -40.0 38.00 -35.4 40.00 -31.6 42.00 -28.0 44.00 -24.3 46.00 -20.7 48.00 -17.9	16.00	-172.	8.00	-246.
22.00			6.00	
24.00	20.00	- 125.	4.00	-221.
26.00 -80.0 28.00 -70.5 30.00 -61.9 32.00 -53.7 34.00 -46.2 36.00 -40.0 38.00 -35.4 40.00 -31.6 42.00 -28.0 44.00 -24.3 46.00 -20.7 48.00 -17.9			2.00	
28.00			0.	- 213.
30.00 -61.9 32.00 -53.7 34.00 -46.2 36.00 -40.0 38.00 -35.4 40.00 -31.6 42.00 -28.0 44.00 -24.3 46.00 -20.7 48.00 -17.9				
32.00				
34.00				
36.00 -40.0 38.00 -35.4 40.00 -31.6 42.00 -28.0 44.00 -24.3 46.00 -20.7 48.00 -17.9				
38.00				
40.00 -31.6 42.00 -28.0 44.00 -24.3 46.00 -20.7 48.00 -17.9				
42.00 -28.0 44.00 -24.3 46.00 -20.7 48.00 -17.9				
44.00 -24.3 46.00 -20.7 48.00 -17.9				
46.00 -20.7 48.00 -17.9				
48.00 -17.9				
52.00 -14.5				
54.00 -12.9				
56.00 -11.2				

58.00	-9.33
60.00	-7.95
62.00	-7.15
64.00	-6.70
66.00	-6.09
68.00	- 5.19
70.00	-4.16
72.00	-3.43
74.00	-3.17
76.00	-3.15
78.00	-2.99
80.00	-2.46
82.00	-1.81
84.00	-1.40
86.00	-1.37
88.00	-1.54
90.00	-1.57
92.00	-1.21
94.00	-0.769
96.00	-0.494
98.00	-0.567
100.00	-0.828
102.00	-0.922
104.00	-0.700
106.00	-0.305
108.00	-0.103
110.00	-0.243
112.00	-0.546
114.00	-0.685
116.00 118.00	-0.503
120.00	-0.170
120.00	-0.489e-02

Program calculates the fastener reactions for a rectangular isotropic sandwich panel with: two edges simply supported, the other two edges free; four edges simply supported. Variations in the twisting moment create a singularity at the corner. As the summation limits approach infinity, the corner reactions approach infinity. In calculating the edge reactions for fasteners, this inconsistency in the solution of a mathematical model can be remedied by applying the laws of equilibrium and symmetry. The outer fastener reaction nearest the corner is set equal to the negative value edge reaction obtained from integrating from the midpoint of the outer fastener and the adjacent fastener to the midpoint of the panel length. Reactions of fasteners inside of the outer corner fastener are found by integrating the edge reactions over the respective tributary areas of the fastener.

fastner reactions for two edges simply supported and the other two edges free

```
Temperature gradient is (degree Fahrenheit)
                                             100,000
Coefficient of expansion is,
                              5.00000e-06
(strain per
                degree Fahrenheit)
Face thickness is 1.00000 (in.)
Modulus of elasticity is
                          850000.
                                    (p.s.i.)
Core thickness is 12.0000 (in.)
Shear modulus of core is 800.000 (p.s.i.)
panel width (y) is 48.0000 (origin at midwidth)
Panel height (x) is 240.000
                              (origin at s.s. edge)
ultimate value for m is, 241
edge distance for the fastners is,
                                    2,00000
```

```
y(in.)
                   R(lbs.)
22.00
                0.137e + 04
20.00
                -157.
                -149.
18.00
16.00
                -141.
14.00
                -135.
12.00
                -130.
10.00
                -126.
 8.00
                -122.
 6.00
                -120.
 4.00
                -118.
 2.00
                -117.
```

Sum of R(lbs.) 58.4

Program calculates the fastener reactions for a rectangular isotropic sandwich panel with: two edges simply supported, the other two edges free; four edges simply supported. Variations in the twisting moment create a singularity at the corner. As the summation limits approach infinity, the corner reactions approach infinity. In calculating the edge reactions for fasteners, this inconsistency in the solution of a mathematical model can be remedied by applying the laws of equilibrium and symmetry. The outer fastener reaction nearest the corner is set equal to the negative value edge reaction obtained from integrating from the midpoint of the outer fastener and the adjacent fastener to the midpoint of the panel length. Reactions of fasteners inside of the outer corner fastener are found by integrating the edge reactions over the respective tributary areas of the fastener.

Fastner reactions for four edges simply supported

Temperature gradient is (degree Fahrenheit) 100.000

Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit)

Face thickness is 1.00000 (in.)

Modulus of elasticity is 850000. (p.s.i.)

Core thickness is 12.0000 (in.)

Shear modulus of core is 800.000 (p.s.i.)

Panel height (x) is 240.000 (origin at s.s. edge)

Panel width (y) is 48.0000 (origin at midwidth)

Ultimate value for m is, 4000

Edge distance for the fastners is, 2.00000 (in.)

Fasteners x(in.)	along height Rx(lbs.)	Fasteners along width y(in.) Ry(lbs.)
x (111.)	WY (IDS.)	y(III.) Ny(IDS.)
2.00	0.378e+04	22.00 0.377e+04
4.00	-827.	20.00 -840.
6.00	-524.	18.00 - 561.
8.00	-395.	16.00 -428.
10.00	-307.	14.00 -351 .
12.00	-241.	12.00 - 302.
14.00	-205.	10.00 -269.
16.00	-172.	8.00 -246.
18.00	-142.	6.00 -231.
20.00	-126.	4.00 -221.
22.00	-108.	2.00 -215.
24.00	-90.3	0. –213.
26.00	-81.5	
28.00	-70.9	
30.00	- 59.2	
32.00	- 54.2	
34.00	-47.4	
36.00	- 39.2	
38.00	-36.4	
40.00	-31.9	
42.00	-26.0	
44.00	-24.7	
46.00	-21.7	
48.00	-17.2	• ,
50.00	-16.8	
52.00	-14.7	
54.00	-11.4	
56.00	-11.5	

58.00	-10.1
60.00	-7.41
62.00	-7.86
64.00	-6.94
66.00	-4.74
68.00	-5.45
70.00	-4.81
72.00	-2.96
74.00	-3.79
76.00	-3.79 -3.37
78.00	-1.78
80.00	-2.69
82.00	-2.40
84.00	-0.972
86.00	-1.94
88.00	
90.00	-1.75 0.451
	-0.451
92.00	-1.42
94.00	-1.32
96.00	-0.934e-01
98.00	-1.11
100.00	-1.02
102.00	0.135
104.00	-0.894
106.00	-0.832
108.00	0.284
110.00	-0.769
112.00	-0.731
114.00	0.353
116.00	-0.699
118.00	-0.684
120.00	0.374

Program calculates the fastener reactions for a rectangular isotropic sandwich panel with: two edges simply supported, the other two edges free; four edges simply supported. Variations in the twisting moment create a singularity at the corner. As the summation limits approach infinity, the corner reactions approach infinity. In calculating the edge reactions for fasteners, this inconsistency in the solution of a mathematical model can be remedied by applying the laws of equilibrium and symmetry. The outer fastener reaction nearest the corner is set equal to the negative value edge reaction obtained from integrating from the midpoint of the outer fastener and the adjacent fastener to the midpoint of the panel length. Reactions of fasteners inside of the outer corner fastener are found by integrating the edge reactions over the respective tributary areas of the fastener.

fastner reactions for two edges simply supported and the other two edges free

100.000 Temperature gradient is (degree Fahrenheit) Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit) Face thickness is 1.00000 (in.) 850000. Modulus of elasticity is (p.s.i.) Core thickness is 12.0000 (in.) Shear modulus of core is 800.000 (p.s.i.) panel width (y) is 96.0000 (origin at midwidth) Panel height (x) is 240.000 (origin at s.s. edge) ultimate value for m is, 123 edge distance for the fastners is, 2.00000

```
R(lbs.)
46.00
               0.154e + 04
44.00
               -37.9
42.00
               -58.0
40.00
               -62.1
38.00
               -64.6
36.00
               -66.4
34.00
               -67.8
32.00
               -68.9
30.00
               -69.8
               -70.5
28.00
26.00
               -71.0
               -71.4
24.00
22.00
               -71.8
20.00
               -72.1
18.00
               -72.3
               -72.5
16.00
               -72.6
14.00
12.00
               -72.7
10.00
               -72.8
 8.00
               -72.9
 6.00
               -72.9
 4.00
               -73.9
 2.00
               -73.0
           Sum of R(lbs.)
                36.5
```

Program calculates the fastener reactions for a rectangular isotropic sandwich panel with: two edges simply supported, the other two edges free; four edges simply supported. Variations in the twisting moment create a singularity at the corner. As the summation limits approach infinity, the corner reactions approach infinity. In calculating the edge reactions for fasteners, this inconsistency in the solution of a mathematical model can be remedied by applying the laws of equilibrium and symmetry. The outer fastener reaction nearest the corner is set equal to the negative value edge reaction obtained from integrating from the midpoint of the outer fastener and the adjacent fastener to the midpoint of the panel length. Reactions of fasteners inside of the outer corner fastener are found by integrating the edge reactions over the respective tributary areas of the fastener.

Fastner reactions for four edges simply supported

Temperature gradient is (degree Fahrenheit) 100.000
Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit)
Face thickness is 1.00000 (in.)
Modulus of elasticity is 850000. (p.s.i.)
Core thickness is 12.0000 (in.)
Shear modulus of core is 800.000 (p.s.i.)
Panel height (x) is 240.000 (origin at s.s. edge)
Panel width (y) is 96.0000 (origin at midwidth)
Ultimate value for m is, 5000
Edge distance for the fastners is, 2.00000 (in.)

	along height	Fasteners	along width		
x(in.)	Rx(lbs.)	y(in.)	Ry(lbs.)		
2.00	0.491e+04	46.00	0.488e+04		
4.00	-834.	44.00	-817.		-
6.00	-548.	42.00	-549.		
8.00	-405.	40.00	-413.		
10.00	- 319.	38.00	-332.		
12.00	-263.	36.00	-279.		
14.00	-224.	34.00	-241.		
16.00	-196.	32.00	-213.		
18.00	-172.	30.00	- 192.		
20.00	-152.	28.00	-175.		
22.00	-135 .	26.00	-161.		
24.00	-122.	24.00	-151.		
26.00	-111.	22.00	-142.		
28.00	-102.	20.00	-134.		
30.00	-93.9	18.00	-128.		
32.00	-85.8	16.00	-123.		
34.00	-78.3	14.00	-119.		
36.00	- 72.0	12.00	-115.	•	
38.00	-66.9	10.00	-112.		
40.00	-62.7	8.00	-110.		
42.00	-58.5	6.00	-108.		
44.00	-54.1	4.00	-107.		
46.00	-49.8	2.00	-107.		
48.00	-46.1	0.	-106.		
50.00	-43.3	•			
52.00	-40.9				
54.00	-38.4				
56.00	- 35.7				

58.00	-32.9
60.00	-30.6
62.00	-28.9
64.00	-27.5
66.00	-26.0
68.00	-24.2
70.00	-22.4
72.00	-20.8
74.00	-19.8
76.00	-19.0
78.00	-18.1
80.00	-16.9
82.00	-15.6
84.00	-14.6
86.00	-14.0
88.00	-13.6
90.00	-13.2
92.00	-12.3
94.00	-11.5
96.00	-10.8
98.00	-10.5
100.00	-10.4
102.00	-10.2
104.00	-9.74
106.00	-9.12
108.00	-8.71
110.00	-8.69
112.00	-8.85
114.00	-8.88
116.00	-8.63
118.00	-8.25
120.00	-8.07
120.00	-8.07

Program calculates the fastener reactions for a rectangular isotropic sandwich panel with: two edges simply supported, the other two edges free; four edges simply supported. Variations in the twisting moment create a singularity at the corner. As the summation limits approach infinity, the corner reactions approach infinity. In calculating the edge reactions for fasteners, this inconsistency in the solution of a mathematical model can be remedied by applying the laws of equilibrium and symmetry. The outer fastener reaction nearest the corner is set equal to the negative value edge reaction obtained from integrating from the midpoint of the outer fastener and the adjacent fastener to the midpoint of the panel length. Reactions of fasteners inside of the outer corner fastener are found by integrating the edge reactions over the respective tributary areas of the fastener.

fastner reactions for two edges simply supported and the other two edges free

Temperature gradient is (degree Fahrenheit) 100.000 Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit)

Face thickness is 1.00000 (in.)

Modulus of elasticity is 850000. (p.s.i.)

Core thickness is 12.0000 (in.)

Shear modulus of core is 800.000 (p.s.i.)

panel width (y) is 96.0000 (origin at midwidth)

Panel height (x) is 240.000 (origin at s.s. edge)

ultimate value for m is, 121

edge distance for the fastners is, 2.00000

```
y(in.)
                  R(lbs.)
46.00
               0.154e + 04
44.00
               -37.9
42.00
               -58.0
40.00
               -62.1
38.00
               -64.6
36.00
               -66.4
34.00
               -67.8
32.00
               -68.9
30.00
               -69.8
28.00
               -70.5
26.00
               -71.0
24.00
               -71.4
22.00
               -71.8
20.00
               -72.1
18.00
               -72.3
               -72.5
16.00
14.00
               -72.6
               -72.7
12.00
10.00
               -72.8
 8.00
               -72.9
 6.00
               -72.9
 4.00
               -73.0
2.00
               -73.0
```

Sum of R(lbs.) 36.5 Program calculates the fastener reactions for a rectangular isotropic sandwich panel with: two edges simply supported, the other two edges free; four edges simply supported. Variations in the twisting moment create a singularity at the corner. As the summation limits approach infinity, the corner reactions approach infinity. In calculating the edge reactions for fasteners, this inconsistency in the solution of a mathematical model can be remedied by applying the laws of equilibrium and symmetry. The outer fastener reaction nearest the corner is set equal to the negative value edge reaction obtained from integrating from the midpoint of the outer fastener and the adjacent fastener to the midpoint of the panel length. Reactions of fasteners inside of the outer corner fastener are found by integrating the edge reactions over the respective tributary areas of the fastener.

Fastner reactions for four edges simply supported

Temperature gradient is (degree Fahrenheit) 100.000

Coefficient of expansion is, 5.00000e-06 (strain per degree Fahrenheit)

Face thickness is 1.00000 (in.)

Modulus of elasticity is 850000. (p.s.i.)

Core thickness is 12.0000 (in.)

Shear modulus of core is 800.000 (p.s.i.)

Panel height (x) is 240.000 (origin at s.s. edge)

Panel width (y) is 96.0000 (origin at midwidth)

Ultimate value for m is, 4000

Edge distance for the fastners is, 2.00000 (in.)

Fasteners	along height	Fasteners	along width
x(in.)	Rx(lbs.)	y(in.)	Ry(lbs.)
2.00	0.490e+04	46.00	0.488e+04
4.00	-834.	44.00	-817.
6.00	- 535.	42.00	-549.
8.00	-408.	40.00	-413.
10.00	- 323.	38.00	- 332.
12.00	-260.	36.00	-279.
14.00	-227.	34.00	-241.
16.00	-196.	32.00	-213.
18.00	-168.	30.00	-192.
20.00	-153.	28.00	-175.
22.00	-137.	26.00	-161.
24.00	-120.	24.00	-151.
26.00	-113.	22.00	-142.
28.00	-103.	20.00	-134.
30.00	-91.2	18.00	-128.
32.00	-86.3	16.00	-123.
34.00	-79. 5	14.00	-119.
36.00	-71.1	12.00	-115.
38.00	-68:.0	10.00	-112.
40.00	-6 30	8.00	-110.
42.00	-56.5	6.00	-108.
44.00	-54-5	4.00	-107.
46.00	-5 0:.7	2.00	-107.
48.00	-45.4	0.	-106.
50.00	-44.1	•	
52.00	-41.2		
54.00	-36.9		
56.00	-36.0		

58.00	-33.7
60.00	-30.1
62.00	-29.6
64.00	
	-27.8
66.00	-24.7
68.00	-24.5
70.00	-23.0
72.00	-20.4
74.00	-20.4
76.00	-19.2
78.00	-16.9
80.00	-17.2
82.00	-16.2
84.00	-14.2
86.00	
	-14.6
88.00	-13.8
90.00	-12.0
92.00	-12.5
94.00	-12.0
96.00	-10.4
98.00	-11.0
100.00	-10.6
102.00	-9.17
104.00	-9.94
106.00	-9.64
108.00	-8.33
110.00	-9.21
112.00	-9.04
114.00	-7.85
116.00	-8.82
118.00	-8.76
120.00	- 7.69
120.00	-/.09

Appendix D Program Sep.f Hard Copy

Program *sep f* generates load tables for the individual effect of dead, live, seismic, and wind loads on the eave, gable and ridge line. The live, dead, wind and seismic loads and their respective parameters are interactively input, and the resulting load tables for varying pitch, gable to gable length, and eave to eave width are calculated.

```
c234567
 2
          implicit real(a-h,s-z), integer(i-r)
          real rad, pip
 3
          integer p
          character*1 z, plan
 5
 6
          dimension a (20)
          open(unit=1, file='co', form='print', status='new')
 8
   C
 9
          This program calculates the effect of dead, live, wind and seismic
   C
1.0
          loads applied seperately to the roof structure.
   С
11
12
          print*, 'Enter seismic zone factor'
13
          read*, zone
         print*, 'Enter live load per horizontal projected area of roof (p.
+s.f.).'
14
15
          read*, wli
16
17
          print*, 'Enter dead load of the roof (p.s.f.).'
18
          read*, wd
19
          print*, 'Enter live load per horizontal projected area of roof in
20
         +earthquake (p.s.f.).'
          print*, 'Snow load may be reduced to 75% if approved by building o
21
         +fficial'
22
          read*, wde
if(wli.le.30.0)wde=0.0
23
24
          print*, 'Enter dead load of the wall element (p.s.f.).'
25
          read*, wwall print*, 'Enter height of attaching wall height element (ft.).'
26
27
28
          read*, dl
         print*, 'Enter wind stagnation pressure at standard height of 30
29
30
         +feet (p.s.f.).'
         read*, qs
print*, 'Enter combined height, exposure and gust factor coefficie
32
33
         +nt'
          read*, ce
34
          wpr=qs*ce
35
          print*, 'Are there any plan irregularities of type A,B,C, or D'
36
          print*, 'U.B.C. 1988 Table No. 23-N (y/n)?'
37
38
          read*, plan
          write(1,*)' '
39
40
          write (1, *)' This program calculates the effect of dead, live,'
          write (1, *)' wind and seismic loads applied seperately to the roof'
41
          write (1,*)' structure, given the following parameters: write (1,*)'
42
43
44
          write(1,*)' '
          write(1,*)' Seismic zone factor = ', zone
45
          write(1,*)' Live load per horizontal projected area of roof = ', w
46
47
         +li,'(p.s.f.).'
          write(1,*)' Dead load of the roof = ', wd,'(p.s.f.).'
write(1,*)' Live load per horizontal projected area of roof in a'
48
49
          write(1,*)' earthquake = ', wde,'(p.s.f.).'
50
          write(1,*)' Dead load of the wall element = ', wwall,'(p.s.f.).'
51
52
          write(1,*)' Height of attaching wall height element = ', dl,'(ft.)
53
         +.'
54
          write(1,*)' Wind stagnation pressure at standard height of 30 feet
         + = ', qs
55
56
          write(1,*)' (p.s.f.).'
57
          write(1,*)' Combined height, exposure and gust factor coefficient'
58
         +, ce
          if(plan.eq.'y')then
write(1,*)' There is a plan irregularity of type A,B,C, or D'
59
60
61
          else
62
          write(1,*)' There is no plan irregularity of type A,B,C, or D'
63
          endif
   65
          print*,'
          print*,' To continue, enter any letter.'
66
```

```
67
            read*, z
            write(1,1850)
 68
 69
 70
            Calculate various tables
     C
 71
 72
            write(1,*)'
                                          Download at longitudinal wall (lb/ft),
 73
           + dead load'
 74
            write(1,*)'
                                                         Pitch of the roof'
 75
            write (1, *)'
 76
            write(1,*)'
            write(1,*)' Width
                                                                        8
                                                                               9
 77
                                 3
 78
           + 10
                    11
                             12'
           write(1,*)'
 79
                         (ft)
                                          Download at longitudinal wall (lb/ft),
 80
           print*,
 81
           + dead load'
 82
           print*,'
               print*,'
                                                         Pitch of the roof'
 83
               print*,'
 84
               print*,' Width
 85
                                                 5
                                                         6
                                                                7
                                                                        8
                                                                               9
                              12'
                      11
 86
              10
 87
               print*,' (ft)
            do 100 iw=20, 40, 1
 88
 89
               j=0
               do 10 p=3, 12, 1
 90
 91
                  pip=p/12.0
 92
                  rad=atan(pip)
 93
                  j=j+1
 94
                  a(j)=iw*wd/(4.0*cos(rad))
 95
      10
               continue
 96
               write (1,1750) iw, a (1), a (2), a (3), a (4), a (5), a (6), a (7), a (8), a (9)
 97
          +,a(10)
 98
               write(*,1750) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
 99
          +, a(10)
      100 continue
100
101
            write (1, *)'
           write(1,*)'
102
            write(1,*)'
                                          Download at longitudinal wall (lb/ft),
103
104
           + live load'
           write(1,*)'
105
            write(1,*)'
106
                                                         Pitch of the roof'
107
            write(1,*)'
            write(1,*)' Width
                                                                7
                                                                        R
                                                                               9
108
109
            10
                    11
                             12'
           write(1,*)'
print*,''
110
                         (ft)
111
112
           print*,'
113
           print*,
                                          Download at longitudinal wall (lb/ft),
114
           + live load'
115
           print*,'
               print*,'
116
                                                         Pitch of the roof'
               print*,'
117
118
               print*,' Width
                                                 5
                                                                7
                                                                               9
                              12'
                      11
119
            10
               print*,' (ft)
120
121
           do 101 iw=20, 40, 1
122
               j=0
123
               do 11 p=3, 12, 1
                  if(wli.gt.20.0.and.p.gt.4)then
124
125
                     wl=wli-(atan(real(p)/12.0)
126
                           *45.0/atan(1.0)-20.0)*(wli/40.0-0.5)
127
                  else
128
                     wl=wli
                  endif
129
                  pip=p/12.0
130
131
                  rad=atan(pip)
132
                  j=j+1
```

```
133
                 a(j) = real(iw) *w1/(4.0)
134
      11
              continue
135
              write (1,1750) iw, a (1), a (2), a (3), a (4), a (5), a (6), a (7), a (8), a (9)
136
          +,a(10)
137
              write(*,1750) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
138
          +,a(10)
139
      101 continue
140
     141
           print*,'
           print*,' To continue, enter any letter.'
142
143
           read*, z
144
           write(1,1850)
                                      Wind download at longitudinal wall (lb/f
145
           write(1,*)'
          +t), wind load'
146
           write(1,*)'
147
           write(1,*)'
148
                                                      Pitch of the roof'
           write(1,*)'
149
           write(1,*)' Width
                                                            7
                                                     6
                                                                   8
                                                                          9
150
                                              5
                               3
                           12'
151
          + 10
                    11
152
           write(1,*)'
                       (ft)
                                      Wind download at longitudinal wall (lb/f
153
           print*,
154
          +t), wind load'
           print*,'
155
156
              print*,'
                                                     Pitch of the roof'
157
              print*,'
              print*,' Width
                                              5
                                                     6
                                                            7
158
                                       4
                                                                   8
                                                                          9
                            12'
159
            10
                     11
              print*,' (ft)
160
           do 102 iw=20, 40, 1
161
162
              j=0
              do 12 p=3, 12, 1
163
164
                 pip=p/12.0
165
                 rad=atan(pip)
166
                 h=iw/(2.0*cos(rad))
167
                 j=j+1
                 if (p.lt.9) then
168
169
                    a(j) = 0.0
170
                 else
171
                    a(j) = wpr*0.8*h/(cos(rad)*2.0)
172
                 endif
173
      12
              continue
174
              write(1,1750) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
175
          +, a(10)
176
              write(*,1750) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
177
          +, a(10)
178
      102 continue
179
           write(1,*)'
           write(1,*)'
180
181
           write(1,*)'
                                    Wind uplift at longitudinal wall (lb/ft),
182
          + wind load'
183
           write(1,*)'
184
           write(1,*)'
                                                      Pitch of the roof'
185
           write(1,*)'
           write(1,*)' Width
186
                               3
                                              5
                                                                          9
                           12'
                   11
187
          + 10
188
          write(1,*)'
                       (ft)
           print*,'
189
190
           print*,'
191
           print*,
                                    Wind uplift at longitudinal wall (lb/ft),
192
          + wind load'
193
           print*,'
194
              print*,'
                                                     Pitch of the roof'
              print*,'
195
              print*,' Width
196
                               3
                                              5
                                                            7
                                                                 . 8
                                                                          9
                            12'
                     11
197
            10
198
              print*,' (ft)
```

```
do 103 iw=20, 40, 1
199
              j=0
200
201
             do 13 p=3, 12, 1
202
                pip=p/12.0
203
                rad=atan(pip)
                h=real(iw)/(2.0*cos(rad))
204
205
                wdis=h*cos(rad)/5.0
206
                 j=j+1
                bl=((h*cos(rad)-wdis/2.0)*wdis*2.8*wpr
207
208
                     /(h*cos(rad)))
                b2=wpr*1.1*real(iw)/(4.0*cos(rad)**2)
209
210
                if(b1.gt.b2)then
                   a(j)=b1
211
212
                 else
213
                   a(j)=b2
214
                endif
215
      13
              continue
              write(1,1750) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
216
217
          +,a(10)
              write(*,1750) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
218
219
          +, a(10)
220
      103 continue
     221
          print*,'
222
          print*,' To continue, enter any letter.'
223
          read*, z
224
225
          write (1, 1850)
                              Wind load along (parallel to) longitudinal wal
226
          write (1, *)'
         +1 (lb), wind load'
227
228
          write(1,*)'
                                 Divide by the length of span to obtain wind
229
          + shear (lb/ft)'
          write(1,*)'
230
          write(1,*)'
                                                     Pitch of the roof'
231
          write(1,*)'
232
          write(1,*)' Width
                                                          7
                                                                8
                                                                       9
                                            5
233
                              3
                                     4
234
                   11
                          12'
          + 10
235
          write(1,*)'
                      (ft)
236
          print*,
                              Wind load along (parallel to) longitudinal wal
237
          +1 (lb), wind load'
238
                                 Divide by the length of span to obtain wind
          print*,
          + shear (lb/ft)'
239
240
          print*,'
             print*,'
                                                     Pitch of the roof'
241
             print*,'
242
             print*,' Width
                                                          7
                                                                       9
243
                                     4
                                            5
                                                                8
                           12'
244
           10
                    11
             print*,' (ft)
245
246
          do 104
                 iw=20, 40, 1
247
              j=0
248
              do 14 p=3, 12, 1
249
                pip=p/12.0
250
                 rad=atan(pip)
251
                 j=j+1
252
                 a(j) = 0.65*wpr*(d1*real(iw)/2.0+(real(iw))**2*sin(rad)/4.0)
253
      14
              continue
254
             write (1,1750) iw, a (1), a (2), a (3), a (4), a (5), a (6), a (7), a (8), a (9)
255
          +, a(10)
256
             write(*,1750) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
257
          +,a(10)
258
     104 continue
259
     260
          print*,'
          print*,' To continue, enter any letter.'
261
262
           read*, z
           write(1,1850)
263
264
           write(1,*)'
                                    Seismic shear along (parallel to) longit
```

```
265
          +udinal wall'
266
           write(1,*)'
                                                (lb/ft), endwall tributary loa
          +d'
267
                                  Divide by the length of span to obtain seism
268
           write(1,*)'
          +ic shear (lb/ft)'
269
           write(1,*)'
270
271
           write(1,*)'
                                                        Pitch of the roof'
           write(1,*)'
272
           write(1,*)' Width
                                                              7
                                                                     8
273
                  11
                           12'
274
          + 10
           write(1,*)' (ft)
275
276
           print*,
                                       Seismic shear along (parallel to) longit
277
          +udinal wall'
                                                (lb/ft), endwall tributary loa
278
           print*,
279
          +d'
                                  Divide by the length of span to obtain seism
           print*,
280
281
          +ic shear (lb/ft)'
           print*,'
282
              print*,'
                                                        Pitch of the roof'
283
              print*,'
284
              print*,' Width
                                3
                                        4
                                               5
                                                              7
285
                            12'
286
            10
                    11
              print*,' (ft)
287
288
           do 106 iw=20, 40, 1
289
              j=0
290
              do 16 p=3, 12, 1
291
                 pip=p/12.0
292
                 rad=atan(pip)
293
                  j=j+1
294
                 a(j)=0.55*0.75*zone*wwall*
295
          +(d1*real(iw)+(real(iw))**2*sin(rad)/2.0)
296
      16
297
              write (1,1750) iw, a (1), a (2), a (3), a (4), a (5), a (6), a (7), a (8), a (9)
298
299
              write(*,1750) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
300
          +, a(10)
301
      106 continue
           write(1,*)'
302
           write(1,*)'
303
           write(1,*)'
                                       Seismic shear along (parallel to) longit
304
          +udinal wall'
305
306
           write(1,*)'
                                                   (lb/ft), roof tributary load
307
308
           write(1,*)'
309
           write (1, *)'
                                                        Pitch of the roof'
           write(1,*)'
310
           write(1,*)' Width
311
                                3
                                               5
                                                              7
312
          + 10
                            12'
313
           write(1,*)'
                        (ft)
314
           print*,'
           print*,'
315
                                       Seismic shear along (parallel to) longit
316
           print*,
          +udinal wall'
317
          print*,
318
                                                   (lb/ft), roof tributary load
319
           print*,' '
320
321
              print*,'
                                                        Pitch of the roof'
              print*,'
322
              print*,' Width
323
                                        4
                                               5
                                                       6
                                                              7
                            12'
                     11
324
            1.0
              print*, (ft)
325
           do 107 iw=20, 40, 1
326
327
               j=0
              do 17 p=3, 12, 1
328
                 pip=p/12.0
329
330
                  rad=atan(pip)
```

```
331
                 j=j+1
                a(j)=0.55*0.75*zone*wde*real(iw)/cos(rad)
332
333
     17
              continue
334
             write (1,1750) iw, a(1), a(2), a(3), a(4), a(5), a(6), a(7), a(8), a(9)
335
          +,a(10)
336
             write (*, 1750) iw, a(1), a(2), a(3), a(4), a(5), a(6), a(7), a(8), a(9)
337
         +.a(10)
338
     107 continue
339
     340
          print*,'
          print*,' To continue, enter any letter.'
341
342
          read*, z
343
          write (1,1850)
344
          write(1,*)'
                          Seismic download or uplift at longitudinal wall (1
          +b/ft), tributary load'
345
          write(1,*)'
346
347
          write (1, *)'
                                                    Pitch of the roof'
          write(1,*)'
348
          write(1,*)' Width
                                                          7
349
                              3
                                            5
                                                                 R
350
          + 10
                  11
                          12'
          write(1,*)'
                      (ft)
351
                    ٠,
352
          print*,
                          Seismic download or uplift at longitudinal wall (1
         +b/ft), tributary load' print*,'
353
354
355
             print*,'
                                                   Pitch of the roof'
             print*,'
356
             print*,' Width
357
                              3
                                     4
                                            5
                                                          7
                                                                 8
                                                                        9
                          12'
358
           10
                    11
             print*,' (ft)
359
360
          do 108 iw=20, 40, 1
361
             i=0
362
             do 18 p=3, 12, 1
363
                pip=p/12.0
                rad=atan(pip)
364
365
                h=real(iw)/(2.0*cos(rad))
366
                j=j+1
367
                a(j)=0.75*zone*tan(rad)*(wde*h/2.0+wwall*d1/2.0)
368
     18
                continue
369
             write (1,1750) iw, a(1), a(2), a(3), a(4), a(5), a(6), a(7), a(8), a(9)
370
         +,a(10)
371
             write (*, 1750) iw, a(1), a(2), a(3), a(4), a(5), a(6), a(7), a(8), a(9)
372
         +,a(10)
     108
373
             continue
374
    375
          print*,'
          print*,' To continue, enter any letter.'
376
377
          read*, z
378
          write (1,1850)
379
          write(1,*)' Download at ridge line is same as Download at longitud
         +inal wall.'
380
          write(1,*)'
381
382
          write (1, *)'
          write(1,*)' Wind download at ridge line is same as wind download a
383
384
         +t longitudinal wall.'
          write(1,*)'
385
          write(1,*)'
386
          write(1,*)' Seismic download or uplift at ridge line is same as at
387
388
         + longitudinal wall.
389
          write(1,*)'
          write(I,*)*
390
             print*,' Download at ridge line is same as Download at longitud
391
392
         +inal wall.'
393
          print*,'
          print*,'
394
395
             print*,' Wind download at ridge line is same as wind download a
396
         +t longitudinal wall.'
```

```
print*,'
397
          print*,'
398
             print*,' Seismic download or uplift at ridge line is same as at
399
400
         + longitudinal wall.'
          print*,'
401
          print*,'
402
403
          write (1,*)'
                                         Wind uplift at ridge line (lb/ft), w
          +ind load'
404
405
          write(1,*)'
          write(1,*)'
                                                      Pitch of the roof'
406
          write(1,*)'
407
          write(1,*)' Width
                                                           7
408
                           12'
         + 10
                   11
409
410
          write(1,*)'
                      (ft)
          print*,
411
                                         Wind uplift at ridge line (lb/ft), w
412
         +ind load'
413
          print*,'
             print*,'
                                                     Pitch of the roof'
414
             print*,'
415
             print*,' Width
                                             5
                                                           7
416
                           12'
417
           10
                    11
             print*,' (ft)
418
419
          do 203 iw=20, 40, 1
420
              j=0
              do 23 p=3, 12, 1
421
                pip=p/12.0
422
                 rad=atan(pip)
423
424
                 j≔j+1
425
                b1=(real(iw)/20.0)*2.8*wpr/5.0
426
                b2=wpr*1.1*real(iw)/(4.0*cos(rad)**2)
                 if(b1.gt.b2)then
427
428
                   a(j)=b1
429
                 else
430
                   a(j)=b2
                 endif
431
432
      23
             continue
             write(1,1750) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
433
434
         +, a(10)
435
             write (*,1750) iw, a(1), a(2), a(3), a(4), a(5), a(6), a(7), a(8), a(9)
436
         +,a(10)
437
      203 continue
438
          write (1, *)'
          write(1,*)'
439
440
          write (1, *)'
                         Wind shear along ridge line is 1/4 the wind shear al
441
         +ong the'
442
          write (1, *)'
                         longitudinal wall.'
             print*,'
443
             print*,'
444
445
             print*,'
                         Wind shear along ridge line is 1/4 the wind shear al
         +ong the'
446
447
             print*,'
                        longitudinal wall.'
          write(1,*)'
448
          write(1,*)'
449
450
          write(1,*)'
                         Seismic shear along ridge line is 1/4 the seismic sh
451
          +ear along the'
452
           write (1, *)'
                         longitudinal wall.'
             print*,'
453
             print*_{n}
454
             gainst*,"
455
                         Seismic shear along ridge line is 1/4 the seismic sh
456
          +ear allower ther
             print*,"
457
                        longitudinal wall.'
    458
459
          print*,'
          print*,' To continue, enter any letter.'
460
          read*, z
461
          write (1, 1850)
462
```

```
Wind uplift at rake (upward) (lb/ft),
463
           write(1,*)'
464
          +wind load'
           write(1,*)'
465
466
           write(1,*)'
                                                         Pitch of the roof'
           write(1,*)'
467
           write(1,*)' Width
                                                             7
                                                                     8
                                               5
                                                      6
                                                                            9
468
                           12'
469
          + 10
                   11
           write(1,*)'
                        (ft) '
470
471
           print*,
                                        Wind uplift at rake (upward) (lb/ft),
472
          +wind load'
           print*,'
473
474
              print*,'
                                                         Pitch of the roof'
475
              print*,'
              print*,' Width
                                                             7
                                               5
                                                      6
                                                                     8
476
477
             10
                     11
                            12'
              print*,' (ft) '
478
           do 303 iw=20, 40, 1
479
              j=0
480
481
              do 33 p=3, 12, 1
482
                 pip=p/12.0
                 rad=atan(pip)
483
484
                 j=j+1
485
                 a(j)=iw*2.8*wpr/10.0
486
      33
              continue
              write (1,1750) iw, a(1), a(2), a(3), a(4), a(5), a(6), a(7), a(8), a(9)
487
488
          +, a(10)
              write (*,1750) iw, a (1), a (2), a (3), a (4), a (5), a (6), a (7), a (8), a (9)
489
490
          +,a(10)
491
      303
           continue
492
     493
           print*,' '
           print*,' To continue, enter any letter.'
494
495
           read*, z
496
           write (1, 1850)
          write(1,*)' Distribut
+ (lb/ft**2), wind load'
497
                          Distributed wind load along (parallel to) gable line
498
           write (1, *)'
499
                                    Multiply by length of span to obtain wind
500
          +shear (lb/ft)'
501
           write(1,*)'
502
           write (1, *)'
                                                        Pitch of the roof'
           write(1,*)'
503
504
           write(1,*)' Width
                                3
                                       4
                            12'
505
          + 10
                    11
506
           write(1,*)' (ft) '
507
              print*,'
                         Distributed wind load along (parallel to) gable line
          + (lb/ft**2), wind load'
508
509
              print*,'
                                    Multiply by length of span to obtain wind
          +shear (lb/ft)'
510
511
              print*,'
              print*,'
512
                                                        Pitch of the roof'
              print*,'
513
              print*,' Width
514
                                       4
                                               5
                                                      6
                                                                            9
515
             10
                     11
                            12'
              print*,' (ft) '
516
517
           do 304 iw=20, 40, 1
518
              j=0
519
              do: 34 p=3, 12, 1
                 pip=p/12.0
520
521
                 rad-atan(pip)
                 if(p.1t.9)then
522
523
                    cq≈.3
524
                 else
525
                    cq≈.4
                 endif
526
527
                 j=j+1
528
                 a(j) = (0.65*d1/real(iw) + (cq+0.7)/2.0*wpr*tan(rad))
```

```
529
      34
               continue
530
               write(1,1700) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
531
           +, a(10)
532
               write(*,1700) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
533
           +, a(10)
534
      304 continue
535
           write (1, *)'
           write(1,*)'
536
537
           write(1,*)' The panel to panel shear varies linearly from a maximu
538
           +m value'
539
           write (1,*)' at the gable line, to one fourth, (1/4), this maximum
540
           +value at'
           write(1,*)' the midspan of the roof.'
541
           write(1,*)'
542
543
           write(1,*)' To calculate the maximum load in the longitudinal line
544
           + member'
545
           write(1,*)' due to roof diaphragm bending, multiply the values tak
546
          +en'
547
           write(1,*)' directly from the above table by the length of span sq
548
          +uared'
549
           write (1,*)' divided by four, (L*L/4.0).'
550
           write(1,*)'
           write (1,*)' In the case of no longitudinal line members carrying b
551
552
          +ending loads:'
553
           write(1,*)' Multiply the values taken directly from the above tabl
554
          +e by'
555
           write(1,*)' three times length of span squared divided by two time
556
          +s the eave to ridge' write (1,*)' slope distance, (3.0*L*L/(2.0*H), to calculate the max
557
558
          +imum normal stress'
           write (1,*)' per panel thickness due to roof diaphragm bending.' write (1,*)' Multiply values taken directly from the above table by
559
560
561
562
           write (1,*)' 1.5 times the length of span, (3/2*L), to determine th
563
          +e maximum shear'
           write (1,*)' stress due to a parabolic stress distribution.'
564
565
    566
           print*,'
           print*,' To continue, enter any letter.'
567
568
           read*, z
569
           write (1, 1850)
570
           write(1,*)'
                                     Distributed seismic load along (parallel t
571
          +o) gable line'
572
           write(1,*)'
                                                     (lb/ft**2), tributary load'
573
           write (1, *)'
                                     Multiply by length of span to obtain wind
574
          +shear (lb/ft)'
575
           write(1,*)'
576
           write (1, *)'
                                                         Pitch of the roof'
           write(1,*)'
577
           write(1,*)' Width
578
                                                                             9
                            12'
579
                    11
          + 10
580
           write(1,*)'
                        (ft)
581
              print*,'
                                     Distributed seismic load along (parallel t
582
          +o) gable line'
583
              print*,'
                                                     (lb/ft**2), tributary load'
              print*,'
584
                                     Multiply by length of span to obtain wind
585
          +shear (lb/ft)'
              print*,'
586
              print*."
print*."
587
                                                         Pitch of the roof'
588
              print*,' Width
589
                                        4
                                               5
                                                              7
                                                                      8
590
            10
                     11
                             12'
              print*,' (ft) '
591
592
           do 306 iw=20, 40, 1
593
              j=0
594
              do 36 p=3, 12, 1
```

```
595
                 pip=p/12.0
                 rad=atan(pip)
596
597
                 j=j+1
598
                 a(j)=0.55*0.75*zone*(wde/cos(rad)+d1*wwall/real(iw))
      36
599
              continue
600
              write(1,1700) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
601
          +,a(10)
              write(*,1700) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
602
603
          +, a(10)
      306 continue
604
          write(1,*)'
605
606
          write(1,*)'
          write(1,*)' The panel to panel shear varies linearly from a maximu
607
608
          +m value'
          write (1,*)' at the gable line, to one fourth, (1/4), this maximum
609
610
          +value at'
          write(1,*)' the midspan of the roof.'
611
          write(1,*)'
612
           write(1,*)' To calculate the maximum load in the longitudinal line
613
614
          + member'
          write(1,*)' due to roof diaphragm bending, multiply the values tak
615
616
          +en'
617
          write(1,*)' directly from the above table by the length of span sq
618
          +uared'
          write (1,*)' divided by four, (L*L/4.0).'
619
620
          write(1,*)'
          write (1,*)' In the case of no longitudinal line members carrying b
621
622
          +ending loads:
623
          write(1,*)' Multiply the values taken directly from the above tabl
624
          te bv'
          write(1,*)' three times length of span squared divided by two time
625
626
          +s the eave to ridge'
          write (1,*)' slope distance, (3.0*L*L/(2.0*H)), to calculate the max
627
628
          +imum normal stress'
          write (1,*)' per panel thickness due to roof diaphragm bending.
629
          write (1,*)' Multiply values taken directly from the above table by
630
631
          write (1,*)' 1.5 times the length of span, (3/2*L), to determine th
632
633
          +e maximum shear'
634
          write (1, *)' stress due to a parabolic stress distribution.'
635
    636
          print*,'
          print*,' To continue, enter any letter.'
637
638
          read*, z
          write(1,1850)
639
640
          write(1,*)'
                                                        FOLDED PLATE'
          write(1,*)'
641
                             Distributed load along (parallel to) gable line
642
          + due to plate action'
643
          write (1, *)'
                                                     (lb/ft**2), dead load'
644
          write(1,*)'
                                       Multiply by length of span to obtain s
645
          +hear (lb/ft)'
646
          write(1,*)'
          write(1,*)'
647
                                                      Pitch of the roof'
          write(1,*)'
648
          write(1,*)'
                                             5
                                                           7
649
                                                                  8
                                                                         9
                              3
                           12'
650
          + 10
                   11
651
          write (1, *)'
             print*,'
652
                                                        FOLDED PLATE'
             print*,'
                             Distributed load along (parallel to) gable line
653
654
          + due to plate action'
655
             print*,'
                                                     (lb/ft**2), dead load'
             print*.'
656
                                       Multiply by length of span to obtain s
          +hear (lb/ft)'
657
658
             print*,'
             print*,'
659
                                                      Pitch of the roof'
             print*,'
660
```

```
6
                                               5
              print*,'
661
                                3
             10
                    11
                            12'
662
              print*,'
663
664
              j=0
              do 40 p=3, 12, 1
665
666
                 pip=p/12.0
                 rad=atan(pip)
667
668
                  j=j+1
669
                 a(j)=wd/(2.0*sin(rad))
      40
670
              continue
              write(1,1900) a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
671
          +, a(10)
672
              write(*,1900) a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
673
674
          +, a(10)
           write (1, *)'
675
           write(1,*)'
676
                                                           FOLDED PLATE'
           write(1,*)'
677
           write(1,*)'
                               Distributed load along (parallel to) gable line
678
679
          + due to plate action'
           write(1,*)'
                                                         (lb/ft**2), live load'
680
                                         Multiply by length of span to obtain s
           write(1,*)'
681
682
          +hear (lb/ft)'
           write(1,*)'
683
                                                         Pitch of the roof'
684
           write(1,*)'
           write(1,*)'
685
           write(1,*)'
                                                5
686
                                3
                            12'
                     11
687
          + 10
           write(1,*)'
688
              print*,'
689
              print*,'
690
              print*,'
                                                           FOLDED PLATE'
691
692
              print*,'
                                Distributed load along (parallel to) gable line
          + due to plate action'
693
                                                         (lb/ft**2), live load'
694
              print*,'
695
              print*
                                         Multiply by length of span to obtain s
          +hear (lb/ft)
696
697
              print*,'
              print*,'
                                                         Pitch of the roof'
698
              print*,'
699
              print*,'
                                                5
                                                       6
                                                               7
                                                                      8
                                                                              9
700
                                3
                            12'
701
             10
                    11
              print*,'
702
703
               j=0
704
              do 41 p=3, 12, 1
                  if(wli.gt.20.0.and.p.gt.4)then
705
                     wl=wli-(atan(real(p)/12.0)
706
707
                          *45.0/atan(1.0)-20.0)*(wli/40.0-0.5)
708
                  else
709
                     wl=wli
                  endif
710
711
                 pip=p/12.0
712
                  rad=atan(pip)
713
                  j=j+1
                  a(j)=wl*cos(rad)/(2.0*sin(rad))
714
      41
715
              continue
716
              write(1,1900) a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
717
          +,a(10)
              write(*,1900) a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
718
719
          +,a(10)
           write(1,*)'
720
           write(1,*)'
721
           write(1,*)' The panel to panel shear varies linearly from a maximu
722
723
           +m value'
           write (1,*)' at the gable line, to one fourth, (1/4), this maximum
724
          +value at'
725
726
           write(1,*)' the midspan of the roof.'
```

```
write(1,*)'
727
728
                     write(1,*)' To calculate the maximum load in the longitudinal line
729
                    + member'
                     write(1,*)' due to roof diaphragm bending, multiply the values tak
730
                    +en'
731
732
                     write(1,*)' directly from the above table by the length of span sq
733
                    +uared'
                     write (1,*)' divided by four, (L*L/4.0).'
734
735
                     write(1,*)'
736
                     write (1,*)' In the case of no longitudinal line members carrying b
737
                    +ending loads:'
738
                     write(1,*)' Multiply the values taken directly from the above tabl
739
                    te bv'
740
                     write(1,*)' three times length of span squared divided by two time
741
                    +s the eave to ridge'
742
                     write (1,*)' slope distance, (3.0*L*L/(2.0*H)), to calculate the max
743
                    +imum normal stress'
                     write(1,*)' per panel thickness due to roof diaphragm bending.'
744
                     write (1,*)' Multiply values taken directly from the above table by
745
746
                     write (1,*)' 1.5 times the length of span, (3/2*L), to determine th
747
748
                    +e maximum shear'
749
                     write(1,*)' stress due to a parabolic stress distribution.'
750
          \tt accesses accesses
751
                     print*,'
                     print*,' To continue, enter any letter.'
752
753
                     read*, z
                     write(1,1850)
754
755
                     write(1,*)'
756
                     write (1, *)'
                     write (1, *)'
757
                                                                                                                FOLDED PLATE'
758
                     write (1, *)'
                                                 Distributed wind load along (parallel to) gable line
                    + (lb/ft**2), wind load'
759
760
                     write (1, *)'
                                                 Negative sign denotes loads opposite those imposed f
761
                    +rom dead and live loads'
                     write(1,*)'
762
                                                                     Multiply by length of span to obtain wind
763
                    +shear (lb/ft)'
764
                     write (1, *)'
                     write(1,*)'
765
                                                                                                            Pitch of the roof'
766
                     write (1, *)'
                     write(1,*)'
                                                                                                                      7
767
                                                                                          5
                                                                                                                                                  9
                                                             3
                                                     12'
768
                    + 10
                                       11
769
                     write (1, *)'
                           print*,'
770
771
                           print*,'
                           print*,'
772
                                                                                                                FOLDED PLATE'
773
                           print*,'
                                                 Distributed wind load along (parallel to) gable line
                    + (lb/ft**2),
774
                                               wind load'
775
                          print*,'
                                                 Negative sign denotes loads opposite those imposed f
776
                    +rom dead and live loads'
777
                           print*,'
                                                                     Multiply by length of span to obtain wind
778
                    +shear (lb/ft)'
779
                           print*,'
780
                           print*,'
                                                                                                            Pitch of the roof'
781
                           print*,'
                           print*,'
782
                                                                                          5
                                                                                                                      7
783
                        10
                                      11
                                                     12'
784
                           print*,'
785
                            j=0
786
                     do 404
                                    iw=20, 40, 1
787
                            j=0
788
                           do 44 p=3, 12, 1
789
                                 pip=p/12.0
790
                                 rad=atan(pip)
791
                                 if (p.lt.9) then
792
                                       cq = 0.3
```

```
793
                  else
                     cq=0.4
794
795
                  endif
                  b1=(0.65*d1/real(iw)+(cq+0.7)/2.0*wpr*tan(rad)+
796
          +(0.7-cq)/2.0*wpr*cos(rad)/(2.0*sin(rad))
797
798
                  if(p.lt.9)then
799
                     cq=0.9
800
                  else
                     cq = 0.7
801
802
                  endif
                  b2=(0.65*d1/real(iw)+(-cq+0.7)/2.0*wpr*tan(rad)+
803
804
          +(0.7+cq)/2.0*wpr*cos(rad)/(2.0*sin(rad)))
                  b3=(0.65*d1/real(iw)+0.7*wpr*cos(rad)/(2.0*sin(rad)))
805
806
                  j=j+1
807
                  if (b1.gt.b2.and.b1.gt.b3) then
                     a(j) = -b1
808
809
                  elseif(b2.gt.b3)then
                     a(j) = -b2
810
811
                  else
812
                     a(j) = -b3
                  endif
813
814
      44
               continue
               write(1,1700) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
815
816
817
               write(*,1700) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
818
           +,a(10)
819
      404
           continue
820
           write (1, *)'
           Write(1,*)'
821
822
           write (1, *)'
                                                            FOLDED PLATE'
           write(1,*)'
                          Distributed wind load along (parallel to) gable line
823
824
           + (lb/ft**2),
                          wind load'
825
           write(1,*)'
                                     Multiply by length of span to obtain wind
           +shear (lb/ft)
826
827
           write(1,*)'
           write(1,*)'
                                                          Pitch of the roof'
828
           write(1,*)'
829
830
           write(1,*)'
                                         4
                                                5
                                                        6
                                                                       8
                                                                              9
                             12'
                     11
831
             10
832
           write(1,*)'
              print*,'
833
              print*,'
834
835
               print*,'
                                                            FOLDED PLATE'
               print*,'
                          Distributed wind load along (parallel to) gable line
836
837
            (lb/ft**2), wind load'
                                     Multiply by length of span to obtain wind
               print*,'
838
839
           +shear (lb/ft)
840
              print*,'
               print*,'
                                                          Pitch of the roof'
841
               print*,'
842
               print*,'
                                                                       8
                                                                              9
843
                             12'
844
              10
                     11
845
               print*,'
               j=0
846
847
           do 405
                    iw=20, 40, 1
848
               j=0
849
               do 45 p=3, 12, 1
                  pip=p/12.0
850
851
                  rad=atan(pip)
852
                  if (p.lt.9) then
853
                     cq=0.3
854
                  else
855
                     cq=0.4
856
                  endif
857
                  b1=(0.65*d1/real(iw)+cq*wpr*tan(rad)+
           +(cq)/2.0*wpr*cos(rad)/(2.0*sin(rad)))
858
```

```
b2=(0.65*d1/real(iw)+(cq+0.7)/2.0*wpr*tan(rad)+
859
860
           +(0.7-cq)/2.0*wpr*cos(rad)/(2.0*sin(rad))
                   if (p.lt.9) then
861
862
                      cq=0.9
863
                   else
                       cq=0.7
864
865
                   endif
                   b3=(0.65*d1/real(iw)+(-cq+0.7)/2.0*wpr*tan(rad)+
866
           +(0.7+cq)/2.0*wpr*cos(rad)/(2.0*sin(rad)))
867
                   j=j+1
if (b1.gt.b2.and.b1.gt.b3) then
868
869
870
                      a(j) = b1
                   elseif(b2.gt.b3)then
871
872
                      a(j)=b2
873
                   else
874
                      a(j)=b3
875
                   endif
       45
876
                continue
                write(1,1700) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
877
           +,a(10)
878
                write(*,1700) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
879
           +,a(10)
880
       405
            continue
881
      1700 format(5x, i2, 1x, 10(1x, f6.2))
1750 format(5x, i2, 1x, 10(1x, f6.0))
882
883
      1800 format(5x, i2, 2x, f6.0)
1850 format('1')
884
885
886
      1900 format(8x, 10(1x, f6.2))
887
            end
```

D.1 Sep.f Output

The standard load case parameters established in Chapter 6 are input into program.

This program calculates the effect of dead, live, wind and seismic loads applied seperately to the roof structure, given the following parameters:

Seismic zone factor = 0.400000

Live load per horizontal projected area of roof = 40.0000 (p.s.f.).

Dead load of the roof = 10.0000 (p.s.f.).

Live load per horizontal projected area of roof in a earthquake = 30.0000 (p.s.f.).

Dead load of the wall element = 10.0000 (p.s.f.).

Height of attaching wall height element = 10.0000 (ft.).

Wind stagnation pressure at standard height of 30 feet = 26 (p.s.f.).

Combined height, exposure and gust factor coefficient 1.30000

There is no plan irregularity of type A,B,C, or D

Download at longitudinal wall (lb/ft), dead load

Pitch of the roof

Width	3	4	5	6	7	8	9	10	11	12
(ft) 20	52.	53.	54.	56.	58.	60.	63.	65.	68.	71.
21	54.	55.	57.	59.	61.	63.	66.	68.	71.	74.
22	57.	58.	60.	61.	64.	66.	69.	72.	75.	78.
23	59.	61.	62.	64.	67.	69.	72.	75.	78.	81.
24	62.	63.	65.	67.	69.	72.	75.	78.	81.	85.
25	64.	66.	68.	70.	72.	75.	78.	81.	85.	88.
26	67.	69.	70.	73.	75.	78.	81.	85.	88.	92.
27	70.	71.	73.	75.	78.	81.	84.	88.	92.	95.
28	72.	74.	76.	78.	81.	84.	88.	91.	95.	99.
29	75.	76.	79.	81.	84.	87.	91.	94.	98.	103.
30	77.	79.	81.	84.	87.	90.	94.	98.	102.	106.
31	80.	82.	84.	87.	90.	93.	97.	101.	105.	110.
32	82.	84.	87.	89.	93.	96.	100.	104.	109.	113.
33	85.	87.	89.	92.	96.	99.	103.	107.	112.	117.
34	88.	90.	92.	95.	98.	102.	106.	111.	115.	120
35	90.	92.	95.	98.	101.	105.	109.	114.	119.	124.
36	93.	95.	98.	101.	104.	108.	113.	117.	122.	127.
37	95.	98.	100.	103.	107.	111.	116.	120.	125.	131.
38	98.	100.	103.	106.	110.	114.	119.	124.	129.	134.
39	101.	103.	106.	109.	113.	117.	122.	127.	132.	138.
40	103.	105.	108.	112.	116.	120.	125.	130.	136.	141.

Download at longitudinal wall (lb/ft), live load

Width	3	4	5	6	7	8	9	10	11	12
(ft)										
20	200.	200.	193.	184.	174.	166.	158.	150.	144.	138.
21	210.	210.	203.	193.	183.	174.	166.	158.	151.	144.
22	220.	220.	213.	202.	192.	182.	174.	166.	158.	151.
23	230.	230.	222.	211.	201.	191.	181.	173.	165.	158.
24	240.	240.	232.	220.	209.	199.	189.	181.	172.	165.
25	250.	250.	242.	229.	218.	207.	197.	188.	180.	172.
26	260.	260.	251.	239.	227.	216.	205.	196.	187.	179.
27	270.	270.	261.	248.	235.	224.	213.	203.	194.	186.
28	280.	280.	271.	257.	244.	232.	221.	211.	201.	193.
29	290.	290.	281.	266.	253.	240.	229.	218.	208.	199.
30	300.	300.	290.	275.	262.	249.	237.	226.	216.	206.
31	310.	310.	300.	285.	270.	257.	245.	233.	223.	213.
32	320.	320.	310.	294.	279.	265.	253.	241.	230.	220.
33	330.	330.	319.	303.	288.	274.	260.	248.	237.	227.
34	340.	340.	329.	312.	296.	282.	268.	256.	244.	234.
35	350.	350.	339.	321.	305.	290.	276.	263.	252.	241.
36	360.	360.	348.	330.	314.	298.	284.	271.	259.	248.
37	370.	370.	358.	340.	323.	307.	292.	278.	266.	254.
38	380.	380.	368.	349.	331.	315.	300.	286.	273.	261.
39		390.	377.	358.	340.	323.	308.	293.	280.	268.
	390.									200. 275.
40	400.	400.	387.	367.	349.	332.	316.	301.	287.	410.

Wind download at longitudinal wall (lb/ft), wind load

Pitch of the roof

Width	3	4	5	6	7	8	9	10	11	12
(ft)				_				222	240	270
20	0.	0.	Ο.	Ο.	0.	0.	211.	229.	249.	270.
21	0.	0.	0.	0.	0.	0.	222.	241.	261.	284.
22	0.	0.	0.	0.	0.	0.	232.	252.	274.	297.
23	0.	0.	0.	0.	0.	0.	243.	263.	286.	311.
24	0.	0.	0.	0.	0.	0.	253.	275.	299.	324.
25	Ō.	0.	0.	0.	0.	0.	264.	286.	311.	338.
- 26	Ö.	0.	o.	0.	Ο.	0.	275.	298.	323.	352.
27	Ö.	Ö.	ŏ.	Ö.	0.	0.	285.	309.	336.	365.
28	Ö.	Ö.	ŏ.	Ö.	o.	0.	296.	321.	348.	379.
	Ö.	0.	Ö.	Ö.	ŏ.	Ö.	306.	332.	361.	392.
29					0.	0.	317.	344.	373.	406.
30	0.	0.	0.	0.			327.	355.	386.	419.
31	0.	0.	0.	0.	0.	0.				
32	0.	0.	0.	0.	0.	0.	338.	367.	398.	433.
33	Ο.	0.	0.	0.	0.	0.	349.	378.	411.	446.
34	0.	0.	0.	0.	0.	0.	359.	389.	423.	460.
35	0.	0.	0.	0.	Ο.	0.	370.	401.	435.	473.
36	0.	0.	0.	0.	0.	0.	380.	412.	448.	487.
37	Ō.	O.	0.	0.	0.	0.	391.	424.	460.	500.
38.	Ŏ.	Ö.	o.	0.	0.	0.	401.	435.	473.	514.
39	ŏ.	Ö.	Ö.	Ö.	0.	0.	412.	447.	485.	527.
40	0.	0.	0.	0.	0.	Ö.	423.	458.	498.	541.
• •	••	•••		• •						

Wind uplift at longitudinal wall (lb/ft), wind load

Width	3	4	5	6	7	8	9	10	11	12
(ft)										
20	198.	207.	218.	232.	249.	269.	290.	315.	342.	372.
21	207.	217.	229.	244.	262.	282.	305.	331.	359.	390.
22	217.	227.	240.	256.	274.	295.	320.	346.	376.	409.
23	227.	238.	251.	267.	287.	309.	334.	362.	393.	428.
24	237.	248.	262.	279.	299.	322.	349.	378.	411.	446.
25	247.	258.	273.	290.	311.	336.	363.	394.	428.	465.
26	257.	269.	284.	302.	324.	349.	378.	409.	445.	483.
27	267.	279.	295.	314.	336.	363.	392.	425.	462.	502.
28	277.	289.	305.	325.	349.	376.	407.	441.	479.	521.
29	286.	300.	316.	337.	361.	389.	421.	457.	496.	539.
30	296.	310.	327.	349.	374.	403.	436.	472.	513.	558.
31	306.	320.	338.	360.	386.	416.	450.	488.	530.	576.
32	316.	330.	349.	372.	399.	430.	465.	504.	547.	595.
33	326.	341.	360.	383.	411.	443.	479.	520.	564.	613.
34	336.	351.	371.	395.	424.	456.	494.	535.	582.	632.
35	346.	361.	382.	407.	436.	470.	508.	551.	599.	651.
36	356.	372.	393.	418.	448.	483.	523.	567.	616.	669.
37	365.	382.	404.	430.	461.	497.	537.	583.	633.	688.
38	375.	392.	415.	442.	473.	510.	552.	598.	650.	706.
39	385.	403.	425.	453.	486.	524.	566.	614.	667.	725.
40	395.	413.	436.	465.	498.	537.	581.	630.	684.	744.

Wind load along (parallel to) longitudinal wall (lb), wind load Divide by the length of span to obtain wind shear (lb/ft)

Width	3	4	5	6	7	8	9	10	11	12
(ft)										
20	2730.	2892.	3042.	3180.	3304.	3416.	3515.	3603.	3682.	3751.
21	2894.	3073.	3238.	3390.	3527.	3650.	3760.	3858.	3944.	4020.
22	3061.	3257.	3439.	3606.	3756.	3891.	4012.	4119.	4213.	4296.
23	3231.	3445.	3644.	3826.	3991.	4138.	4270.	4387.	4490.	4581.
24	3404.	3637.	3853.	4051.	4230.	4391.	4535.	4662.	4774.	4873.
25	3579.	3832.	4067.	4281.	4476.	4650.	4806.	4944.	5066.	5174.
26	3757.	4030.	4284.	4517.	4727.	4916.	5084.	5233.	5365.	5482.
27	3937.	4232.	4506.	4757.	4983.	5187.	5368.	5529.	5672.	5797.
28	4120.	4438.	4732.	5002.	5246.	5464.	5659.	5833.	5986.	6121.
29	4306.	4646.	4962.	5251.	5513.	5748.	5957.	6143.	6307.	6452.
30	4494.	4859.	5197.	5506.	5786.	6038.	6261.	6460.	6636.	6791.
31	4686.	5074.	5435.	5766.	6065.	6333.	6572.	6784.	6972.	7138.
32	4879.	5294.	5678.	6030.	6349.	6635.	6890.	7116.	7316.	7492.
33	5076.	5517.	5926.	6300.	6639.	6943.	7214.	7454.	7667.	7854.
34	5275.	5743.	6177.	6574.	6934.	7257.	7544.	7800.	8025.	8225.
35	5477.	5972.	6433.	6854.	7235.	7577.	7882.	8152.	8391.	8602.
36	5681.	6206.	6692.	7138.	7541.	7903.	8226.	8512.	8765.	8988.
37	5888.	6442.	6956.	7427.	7853.	8235.	8576.	8878.	9145.	9381.
38	6098.	6682.	7225.	7721.	8171.	8574.	8933.	9252.	9534.	9782.
39	6310.	6926.	7497.	8020.	8494.	8918.	9297.	9632.	9929.	10191.
40	6525.	7173.	7774.	8324.	8822.	9269.	9667.	10020.	10332.	10608.

Seismic shear along (parallel to) longitudinal wall (lb/ft), endwall tributary load Divide by the length of span to obtain seismic shear (lb/ft)

Pitch of the roof

Width (ft)	3	4	5	6	7	8	9	10	11	12
20	410.	434.	457.	478.	496.	513.	528.	541.	553.	563.
21	435.	462.	486.	509.	530.	548.	565.	579.	592.	604.
22	460.	489.	517.	542.	564.	584.	603.	619.	633.	645.
23	485.	518.	547.	575.	599.	622.	641.	659.	674.	688.
24	511.	546.	579.	609.	635.	660.	681.	700.	717.	732.
25	538.	576.	611.	643.	672.	699.	722.	743.	761.	777.
26	564.	605.	644.	678.	710.	738.	764.	786.	806.	823.
27	591.	636.	677.	714.	749.	779.	806.	831.	852.	871.
28	619.	667.	711.	751.	788.	821.	850.	876.	899.	919.
29	647.	698.	745.	789.	828.	863.	895.	923.	947.	969.
30	675.	730.	781.	827.	869.	907.	941.	970.	997.	1020.
31	704.	762.	816.	866.	911.	951.	987.	1019.	1047.	1072.
32	733.	795.	853.	906.	954.	997.	1035.	1069.	1099.	1125.
33	762.	829.	890.	946.	997.	1043.	1084.	1120.	1152.	1180.
34	792.	863.	928.	988.	1042.	1090.	1133.	1172.	1205.	1235.
35	823.	897.	966.	1029.	1087.	1138.	1184.	1224.	1260.	1292.
36	853.	932.	1005.	1072.	1133.	1187.	1236.	1278.	1316.	1350.
37	884.	968.	1045.	1116.	1180.	1237.	1288.	1334.	1374.	1409.
38	916.	1004.	1085.	1160.	1227.	1288.	1342.	1390.	1432.	1469.
39	948.	1040.	1126.	1205.	1276.	1340.	1396.	1447.	1491.	1531.
40	980.	1077.	1168.	1250.	1325.	1392.	1452.	1505.	1552.	1593.

Seismic shear along (parallel to) longitudinal wall (lb/ft), roof tributary load

Width (ft)	3	4	5	6	7	8	9	10	11	12
20	102.	104.	107.	111.	115.	119.	124.	129.	134.	140.
21	107.	110.	113.	116.	120.	125.	130.	135.	141.	147.
22	112.	115.	118.	122.	126.	131.	136.	142.	148.	154.
23	117.	120.	123.	127.	132.	137.	142.	148.	154.	161.
24	122.	125.	129.	133.	138.	143.	149.	155.	161.	168.
25	128.	130.	134.	138.	143.	149.	155.	161.	168.	175.
26	133.	136.	139.	144.	149.	155.	161.	168.	175.	182.
27	138.	141.	145.	149.	155.	161.	167.	174.	181.	189.
28	143.	146.	150.	155.	160.	167.	173.	180.	188.	196.
29	148.	151.	156.	160.	166.	173.	179.	187.	195.	203.
30	153.	157.	161.	166.	172.	178.	186.	193.	201.	210.
31	158.	162.	166.	172.	178.	184.	192.	200.	208.	217.
32	163.	167.	172.	177.	183.	190.	198.	206.	215.	224.
33	168.	172.	177.	183.	189.	196.	204.	213.	222.	231.
34	173.	177.	182.	188.	195.	202.	210.	219.	228.	238.
35	179.	183.	188.	194.	201.	208.	217.	226.	235.	245.
36	184.	188.	193.	199.	206.	214.	223.	232.	242.	252.
37	189.	193.	198.	205.	212.	220.	229.	238.	248.	259.
38	194.	198.	204.	210.	218.	226.	235.	245.	255.	266.
39	199.	203.	209.	216.	223.	232.	241.	251.	262.	273.
40	204.	209.	215.	221.	229.	238.	248.	258.	269.	280.

-280-

Seismic download or uplift at longitudinal wall (lb/ft), tributary load $Pitch \ of \ the \ roof$

Width (ft)	3	4	5	6	7	8	9	10	11	12
20	15.	21.	27.	33.	39.	46.	53.	61.	70.	79.
21	16.	22.	28.	34.	41.	48.	56.	64.	73.	82.
22	17.	22.	29.	35.	42.	50.	58.	66.	75.	85.
23	17.	23.	30.	36.	44.	51.	60.	69.	78.	88.
24	18.	24.	31.	38.	45.	53.	62.	71.	81.	91.
25	18.	25.	32.	39.	47.	55.	64.	74.	84.	95.
26	19.	26.	33.	40.	48.	57.	66.	76.	86.	98.
27	19.	26.	34.	41.	50.	59.	68.	78.	89.	101.
28	20.	27.	35.	43.	51.	60.	70.	81.	92.	104.
29	21.	28.	36.	44.	53.	62.	72.	83.	95.	107.
30	21.	29.	37.	45.	54.	64.	75.	86.	98.	110.
31	22.	30.	38.	46.	56.	66.	77.	88.	100.	114.
32	22.	30.	39.	48.	5 7 .	68.	79.	91.	103.	117.
33	23.	31.	40.	49.	59.	69.	81.	93.	106.	120.
34	23.	32.	41.	50.	60.	71.	83.	95.	109.	123.
35	24.	33.	42.	52.	62.	73.	85.	98.	112.	126.
36	25.	33.	43.	53.	63.	75.	87.	100.	114.	130.
37	25.	34.	44.	54.	65.	77.	89.	103.	117.	133.
38	26.	35.	45.	55.	66.	79.	91.	105.	120.	136.
39	26.	36.	46.	57.	68.	80.	94.	108.	123.	139.
40	27.	37.	47.	58.	70.	82.	96.	110.	126.	142.

Download at ridge line is same as Download at longitudinal wall.

Wind download at ridge line is same as wind download at longitudinal wall.

Seismic download or uplift at ridge line is same as at longitudinal wall.

Wind uplift at ridge line (lb/ft), wind load

Pitch of the roof

Width (ft)	3	4	5	6	7	8	9	10	11	12
20	198.	207.	218.	232.	249.	269.	290.	315.	342.	372.
21	207.	217.	229.	244.	262.	282.	305.	331.	359.	390.
22	217.	227.	240.	256.	274.	295.	320.	346.	376.	409.
23	227.	238.	251.	267.	287.	309.	334.	362.	393.	428.
24	237.	248.	262.	279.	299.	322.	349.	378.	411.	446.
25	247.	258.	273.	290.	311.	336.	363.	394.	428.	465
26	257.	269.	284.	302.	324.	349.	378.	409.	445.	483.
27	267.	279.	295.	314.	336.	363.	392.	425.	462.	502.
28	277.	289.	305.	325.	349.	376.	407.	441.	479.	521.
29	286.	300.	316.	337.	361.	389.	421.	457.	496.	539.
30	296.	310.	327.	349.	374.	403.	436.	472.	513.	558.
31	306.	320.	338.	360.	386.	416.	450.	488.	530.	576.
32	316.	330.	349.	372.	399.	430.	465.	504.	547.	595.
33	326.	341.	360.	383.	411.	443.	479.	520.	564.	613.
34	336.	351.	371.	395.	424.	456.	494.	535.	582.	632.
35	346.	361.	382.	407.	436.	470.	508.	551.	599.	651.
36	356.	372.	393.	418.	448.	483.	523.	567.	616.	669.
37	365.	382.	404.	430.	461.	497.	537.	583.	633.	688.
38	375.	392.	415.	442.	473.	510.	552.	598.	650.	706.
39	385.	403.	425.	453.	486.	524.	566.	614.	667.	725.
40	395.	413.	436.	465.	498.	537.	581.	630.	684.	744.

Wind shear along ridge line is 1/4 the wind shear along the longitudinal wall.

Seismic shear along ridge line is 1/4 the seismic shear along the longitudinal wall.

-282-

Wind uplift at rake (upward) (lb/ft), wind load

Width (ft)	3	4	5	6	7	8	9	10	11	12
20	189.	189.	189.	189.	189.	189.	189.	189.	189.	189.
21	199.	199.	199.	199.	199.	199.	199.	199.	199.	199.
22	208.	208.	208.	208.	208.	208.	208.	208.	208.	208.
23	218.	218.	218.	218.	218.	218.	218.	218.	218.	218.
24	227.	227.	227.	227.	227.	227.	227.	227.	227.	227.
25	237.	237.	237.	237.	237.	237.	237.	237.	237.	237.
.26	246.	246.	246.	246.	246.	246.	246.	246.	246.	246.
27	256.	256.	256.	256.	256.	256.	256.	256.	256.	256.
28	265.	265.	265.	265.	265.	265.	265.	265.	265.	265.
29	274.	274.	274.	274.	274.	274.	274.	274.	274.	274.
30	284.	284.	284.	284.	284.	284.	284.	284.	284.	284.
31	293.	293.	293.	293.	293.	293.	293.	293.	293.	293.
32	303.	303.	303.	303.	303.	303.	303.	303.	303.	303.
33	312.	312.	312.	312.	312.	312.	312.	312.	312.	312.
34	322.	322.	322.	322.	322.	322.	322.	322.	322.	322.
35	331.	331.	331.	331.	331.	331.	331.	331.	331.	331.
36	341.	341.	341.	341.	341.	341.	341.	341.	341.	341.
37	350.	350.	350.	350.	350.	350.	350.	350.	350.	350.
38	360.	360.	360.	360.	360.	360.	360.	360.	360.	360.
39	369.	369.	369.	369.	369.	369.	369.	369.	369.	369.
40	379.	379.	379.	379.	379.	379.	379.	379.	379.	379.

Distributed wind load along (parallel to) gable line (lb/ft**2), wind load Multiply by length of span to obtain wind shear (lb/ft)

Pitch of the roof

Width 3 4 5 (ft)	6 7	8	9 10	11	12
	3.77 10.18	11.59 14	1.27 15.82	17.37	18.92
	3.76 10.17	11.58 14	1.25 15.80	17.35	18.90
	3.75 10.15	11.56 14	1.24 15.79	17.34	18.89
	3.73 10.14	11.55 14	1.23 15.77	17.32	18.87
	3.72 10.13	11.54 14	1.21 15.76	17.31	18.86
	3.71 10.12		1.20 15.75	17.30	18.85
	3.70 10.11		1.19 15.74	17.29	18.84
	3.69 10.10	11.51 14	1.18 15.73	17.28	18.83
	3.68 10.09	11.50 14	1.17 15.72	17.27	18.82
	3.67 10.08	11.49 14	1.17 15.72	17.26	18.81
	3.67 10.07	11.48 14	1.16 15.71	17.26	18.81
	3.66 10.07	11.48 14	1.15 15.70	17.25	18.80
	3.65 10.06	11.47 14	1.15 15.69	17.24	18.79
	3.65 10.06	11.46 14	1.14 15.69	17.24	18.79 .
	3.64 10.05	11.46 14	1.13 15.68	17.23	18.78
35 4.41 5.82 7.23 8	3.64 10.04	11.45 14	1.13 15.68	17.23	18.78
	3.63 10.04	11.45 14	1.12 15.67	17.22	18.77
	3.63 10.03	11.44 14	1.12 15.67	17.22	18.77
	3.62 10.03	11.44 14	1.11 15.66	17.21	18.76
	3.62 10.02	11.43 14	1.11 15.66	17.21	18.76
	3.61 10.02	11.43 14	1.11 15.65	17.20	18.75

The panel to panel shear varies linearly from a maximum value at the gable line, to one fourth, (1/4), this maximum value at the midspan of the roof.

To calculate the maximum load in the longitudinal line member due to roof diaphragm bending, multiply the values taken directly from the above table by the length of span squared divided by four, $(L^*L/4.0)$.

In the case of no longitudinal line members carrying bending loads: Multiply the values taken directly from the above table by three times length of span squared divided by two times the eave to ridge slope distance, $(3.0 \times L \times L/(2.0 \times H))$, to calculate the maximum normal stress per panel thickness due to roof diaphragm bending. Multiply values taken directly from the above table by 1.5 times the length of span, $(3/2 \times L)$, to determine the maximum shear stress due to a parabolic stress distribution.

Distributed seismic load along (parallel to) gable line $(lb/ft^{**}2)$, tributary load Multiply by length of span to obtain wind shear (lb/ft)

Pitch of the roof

Width (ft)	3	4	5	6	7	8	9	10	11	12
20 21	5.93 5.89	6.04 6.00	6.19 6.15	6.36 6.32	6.56 6.52	6.77 6.73	7.01 6.97	7.27 7.23	7.54 7.50	7.83 7.79
22 23	5.85	5.97 5.94	6.11 6.08	6.28 6.25	6.48	6.70 6.67	6.94 6.90	7.19	7.47	7.75
25	5.79	5.91 5.88	6.05	6.22	6.42	6.64	6.88	7.13	7.40	7.69 7.66
26 27 28	5.74 5.71 5.69	5.85 5.83 5.81	6.00 5.97 5.95	6.17 6.15 6.12	6.37 6.34 6.32	6.58 6.56 6.54	6.82 6.80 6.78	7.08 7.05 7.03	7.35 7.33 7.30	7.63 7.61 7.59
29 30	5.67 5.65	5.79 5.77	5.93 5.91	6.10	6.30 6.28	6.52	6.76 6.74	7.01 6.99	7.28	7.57 7.55
31 32	5.63 5.62	5.75 5.73	5.89	6.07 6.05	6.26	6.48	6.72 6.70	6.98 6.96	7.25 7.23	7.53 7.52
33 34	5.60 5.59	5.72 5.70	5.86 5.85	6.03 6.02	6.23 6.22	6.45 6.43	6.69 6.67	6.94 6.93	7.22 7.20	7.50 7.49
35 36	5.57 5.56	5.69 5.68	5.83 5.82	6.01 5.99	6.20	6.42	6.65	6.91 6.90	7.19	7.47
37 38 39	5.55 5.54 5.53	5.66 5.65 5.64	5.81 5.80 5.79	5.98 5.97 5.96	6.18 6.16 6.15	6.40 6.38 6.37	6.63 6.62 6.61	6.89 6.88 6.87	7.16 7.15 7.14	7.45 7.43 7.42
40	5.51	5.63	5.78	5.95	6.14	6.36	6.60	6.86	7.13	7.41

The panel to panel shear varies linearly from a maximum value at the gable line, to one fourth, (1/4), this maximum value at the midspan of the roof.

To calculate the maximum load in the longitudinal line member due to roof diaphragm bending, multiply the values taken directly from the above table by the length of span squared divided by four, $(L^*L/4.0)$.

In the case of no longitudinal line members carrying bending loads: Multiply the values taken directly from the above table by three times length of span squared divided by two times the eave to ridge slope distance, $(3.0^{\circ}L^{\circ}L)/(2.0^{\circ}H)$, to calculate the maximum normal stress per panel thickness due to roof diaphragm bending. Multiply values taken directly from the above table by 1.5 times the length of span, $(3/2^{\circ}L)$, to determine the maximum shear stress due to a parabolic stress distribution.

FOLDED PLATE

Distributed load along (parallel to) gable line due to plate action (lb/ft**2), dead load Multiply by length of span to obtain shear (lb/ft)

Pitch of the roof

3	4	5	6	7	8	9	10	11	12
20.62	15.81	13.00	11.18	9.92	9.01	8.33	7.81	7.40	7.07

FOLDED PLATE

Distributed load along (parallel to) gable line due to plate action (lb/ft**2), live load Multiply by length of span to obtain shear (lb/ft)

Pitch of the roof

3	4	5	6	7	8	9	10	11	12	
80.00	60.00	46.43	36.72	29.89	24.87	21.04	18 06	15 68	13 75	

The panel to panel shear varies linearly from a maximum value at the gable line, to one fourth, (1/4), this maximum value at the midspan of the roof.

To calculate the maximum load in the longitudinal line member due to roof diaphragm bending, multiply the values taken directly from the above table by the length of span squared divided by four, (L*L/4.0).

In the case of no longitudinal line members carrying bending loads: Multiply the values taken directly from the above table by three times length of span squared divided by two times the eave to ridge slope distance, $(3.0^*\text{L*L}/(2.0^*\text{H}))$, to calculate the maximum normal stress per panel thickness due to roof diaphragm bending. Multiply values taken directly from the above table by 1.5 times the length of span, $(3/2^*\text{L})$, to determine the maximum shear stress due to a parabolic stress distribution.

FOLDED PLATE

Distributed wind load along (parallel to) gable line (lb/ft**2), wind load Negative sign denotes loads opposite those imposed from dead and live loads Multiply by length of span to obtain wind shear (lb/ft)

Pitch of the roof

FOLDED PLATE

Distributed wind load along (parallel to) gable line (lb/ft**2), wind load Multiply by length of span to obtain wind shear (lb/ft)

	3	4	5	6	7	8	9	10	11	12
20 21 22 23 24 25 26 27 28 29 30 31 32 33	3 53.56 53.54 53.53 53.52 53.51 53.49 53.48 53.47 53.46 53.45 53.44 53.44 53.44	39.76 39.74 39.73 39.72 39.70 39.69 39.67 39.67 39.66 39.65	5 31.36 31.35 31.34 31.32 31.31 31.30 31.29 31.28 31.27 31.26 31.26 31.25 31.25 31.24 31.24	6 25.67 25.66 25.65 25.63 25.62 25.61 25.60 25.59 25.58 25.57 25.56 25.55 25.55	7 21.53 21.52 21.50 21.49 21.47 21.46 21.45 21.44 21.43 21.42 21.42 21.40 21.40	8 18.35 18.34 18.32 18.30 18.29 18.28 18.27 18.26 18.25 18.24 18.24 18.23 18.23	9 17.65 17.63 17.62 17.59 17.58 17.57 17.56 17.55 17.55 17.55 17.53 17.53 17.53 17.53	10 18.86 18.84 18.83 18.82 18.79 18.77 18.77 18.77 18.76 18.75 18.74	11 20.13 20.12 20.09 20.09 20.06 20.05 20.04 20.03 20.02 20.02 20.01 20.00 20.00	12 21.45 21.43 21.42 21.41 21.40 21.39 21.38 21.37 21.36 21.35 21.34 21.33 21.33 21.33
35 36	53.42	39.62	31.23	25.54 25.53	21.39	18.21	17.51 17.50	18.72 18.71	19.99 19.99	21.31
37 38 39 40	53.41 53.41 53.40 53.40	39.61 39.60 39.60 39.60	31.22 31.21 31.21 31.20	25.53 25.52 25.52 25.51	21.38 21.38 21.37 21.37	18.20 18.20 18.19 18.19	17.50 17.49 17.49 17.49	18.71 18.70 18.70 18.70	19.98 19.98 19.97 19.97	21.30 21.30 21.29 21.29

Appendix E Program Comb.f Hard Copy

Program *comb*, f combines the separated load effects according to UBC '88 specifications. The live, dead, wind and seismic loads and their respective parameters are interactively input, and the resulting load tables for varying pitch, gable to gable length, and eave to eave width are calculated.

```
c234567
          implicit real(a-h,s-z), integer(i-r)
 2
          real rad, pip, qs
 3
 4
          integer p
          character*1 z, plan
 5
 6
          dimension a(20)
 7
          open(unit=1, file='co', form='print', status='new')
 8
    С
 9
    C
          This program calculates the most critical effect from the
10
          combination of dead, live, wind, and seismic loads.
   C
11
12
          print*, 'Enter seismic zone factor'
13
          read*, zone
         print*, 'Enter live load per horizontal projected area of roof (p.
+s.f.).'
14
15
16
          read*, wli
          print*, 'Enter dead load of the roof (p.s.f.).'
17
          read*, wd
18
19
          print*, 'Enter live load per horizontal projected area of roof in
         +a earthquake (p.s.f.).'
20
          print*,
21
                   'Snow load may be reduced to 75% if approved by building o
         +fficial'
22
          read*, wde
23
24
          if(wli.le.30.0)wde=0.0
          print*, 'Enter dead load of the wall element (p.s.f.).'
25
26
          read*, wwall
          print*, 'Enter height of attaching wall height element (ft.).'
27
28
          read*, d1
29
          print*, 'Enter wind stagnation pressure at standard height of 30
         +feet (p.s.f.).'
30
          read*, qs
31
          print*, 'Enter combined height, exposure and gust factor coefficie
32
         +nt'
33
34
          read*, ce
          wpr=qs*ce
35
         print*, 'Are there any plan irregularities of type A,B,C, or D' print*, 'U.B.C. 1988 Table No. 23-N (y/n)?'
36
37
38
          read*, plan
39
          write(1,*)'
          write (1,*)' This program calculates the most critical effect from
40
          write (1,*)' the combination of dead, live, wind, and seismic loads
41
42
         +,'
          write (1,*)' given the following parameters:' write (1,*)''
43
44
          write(1,*)' '
45
          write (1, *)' Seismic zone factor = ', zone
46
47
          write (1,*)' Live load per horizontal projected area of roof = ', w
         +li,'(p.s.f.).'
write(1,*)' Dead load of the roof = ', wd,'(p.s.f.).'
48
49
          write (1,*)' Live load per horizontal projected area of roof in a'
50
          write(1,*)' earthquake = ', wde,'(p.s.f.).'
51
          write (1,*)' Dead load of the wall element = ', wwall,'(p.s.f.).'
52
          write (1,*)' Height of attaching wall height element = ', d1,'(ft.)
53
54
55
          write(1,*)' Wind stagnation pressure at standard height of 30 feet
56
         + = ', qs
          write(1,*)' (p.s.f.).'
57
          write(1,*)' Combined height, exposure and gust factor coefficient'
58
59
         +, ce
          if(plan.eq.'y')then
write(1,*)' There is a plan irregularity of type A,B,C, or D'
60
61
62
63
          write(1,*)' There is no plan irregularity of type A,B,C, or D'
          endif
65
   print*,'
66
```

```
67
           print*,' To continue, enter any letter.'
 68
           read*, z
 69
           write (1,1850)
 70
 71
           Calculate various tables
     C
 72
     С
 73
                                               Download at longitudinal wall (lb
           write(1,*)'
 74
           +/ft)'
 75
           write(1,*)'
 76
           write(1,*)'
                                                         Pitch of the roof'
           write (1,*)'
 77
           write(1,*)' Width
                                                               7
 78
                                                5
                                                                       8
                                                                              9
 79
           + 10
                     11
                             12'
 80
           write(1,*)' (ft)
                                               Download at longitudinal wall (lb
 81
           print*,
           +/ft)'
 82
 83
           print*,'
 84
              print*,'
                                                         Pitch of the roof'
               print*,'
 85
               print*,' Width
                                                               7
                                                5
                                                        6
                                                                       8
                                                                              9
 86
                                 3
                                         4
 87
             10
                      11
                             12'
               print*,' (ft)
 88
           do 500 iw=20, 40, 1
 89
 90
               j=0
 91
               do 50 p=3, 12, 1
 92
                  if (wli.gt.20.0.and.p.gt.4) then
 93
                     wl=wli-(atan(real(p)/12.0)
                          *45.0/atan(1.0)-20.0)*(wli/40.0-0.5)
 94
 95
 96
                     wl=wli
 97
                  endif
 98
                  pip=p/12.0
 99
                  rad=atan(pip)
100
                  h=real(iw)/(2.0*cos(rad))
101
                  j=j+1
102
                  a10=iw*wd/(4.0*cos(rad))
103
                  all=real(iw)*wl/(4.0)
                  if(p.lt.9)then
104
105
                     a12=0.0
106
                  else
107
                     a12=wpr*0.8*h/(cos(rad)*2.0)
108
                  endif
109
                  a18=0.75*zone*tan(rad)*(wde*h/2.0+wwall*d1/2.0)
110
                  dl=a10+a11
111
                  dw=0.75*(a10+a12)
112
                  dw12=0.75*(a10+a12+a11/2.0)
                  d1w2=0.75*(a10+a11+a12/2.0)
113
                  if(plan.eq.'y')then
114
115
                     dls=a10+a11+a18
116
                  else
117
                     dls=0.75*(al0+al1+al8)
118
                  endif
119
                  if (dl.gt.dw.and.dl.gt.dwl2.and.dl.gt.dlw2.and.dl.gt.dls)
120
           +then
121
                     a(j)=dl
122
                  elseif(dw.gt.dwl2.and.dw.gt.dlw2.and.dw.gt.dls)then
123
                     a(j)=dw
124
                  elseif(dwl2.gt.dlw2.and.dwl2.gt.dls)then
125
                     a(j) = dw12
126
                  elseif(dlw2.gt.dls)then
127
                    a(j) = dlw2
128
                  else
129
                     a(j) = dls
130
                  endif
      50
131
               continue
132
               write (1,1750) iw, a(1), a(2), a(3), a(4), a(5), a(6), a(7), a(8), a(9)
```

```
133
          +,a(10)
134
              write(*,1750) iw, a(1), a(2), a(3), a(4), a(5), a(6), a(7), a(8), a(9)
135
          +,a(10)
136
      500 continue
137
           write(1,*)'
           write(1,*)'
138
           write (1, *)'
139
                                            Uplift at longitudinal wall (lb/ft
140
          +) '
           write(1,*)'
141
                                                      Pitch of the roof'
142
           write(1,*)'
           write(1,*)'
143
           write(1,*)' Width
                                              5
                                                                          9
                                                            7
                                                                   8
144
                                       4
145
          + 10
                   11
                           12'
           write(1,*)'
                       (ft)
146
           print*,'
147
           print*,'
148
                                            Uplift at longitudinal wall (lb/ft
149
           print*,
          +) '
150
           print*,'
151
              print*,'
                                                     Pitch of the roof'
152
              print*,'
153
              print*,' Width
                                                                          9
154
                               3
                                       4
                                              5
                                                     6
                                                                   8
                            12'
                     11
155
            10
              print*,' (ft)
156
           do 501 iw=20, 40, 1
157
158
              j=0
              do 51 p=3, 12, 1
159
160
                 pip=p/12.0
161
                 rad=atan(pip)
                 h=real(iw)/(2.0*cos(rad))
162
                 wdis=h*cos(rad)/5.0
163
164
                 j=j+1
165
                 al0=iw*wd/(4.0*cos(rad))
166
                 bl=((h*cos(rad)-wdis/2.0)*wdis*2.8*wpr
167
                      /(h*cos(rad)))
                 b2=wpr*1.1*real(iw)/(4.0*cos(rad)**2)
168
                 if (bl.gt.b2) then
169
170
                    a13=b1
171
                 else
172
                    a13=b2
173
                 endif
174
                 a18=0.75*zone*tan(rad)*(wde*h/2.0+wwall*d1/2.0)
175
                 dw=0.75*(a13-a10)
176
                 if (plan.eq.'y') then
177
                    dls=a18-a10
178
                 else
179
                    dls=0.75*(al8-al0)
180
                 endif
181
                 if (dw.gt.dls) then
182
                    a(j) = dw
183
                 else
184
                    a(j)=dls
185
                 endif
186
      51
              continue
187
              write (1,1750) iw, a(1), a(2), a(3), a(4), a(5), a(6), a(7), a(8), a(9)
188
          +;a(10)
189
              write(*,1750) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
190
          +,a(10)
191
      501 continue
192
     193
          print*,"
           print*,' To continue, enter any letter.'
194
195
           read*, z
196
           write(1,1850)
197
           write (1, *)'
                                       Load along (parallel to) longitudinal
198
          +wall (lb)'
```

```
write(1,*)'
                                                                                   Divide by the length of span to obtain s
199
200
                      +hear (lb/ft)'
                        write(1,*)'
write(1,*)'
201
                                                                                                                         Pitch of the roof'
202
203
                        write(1,*)'
                        write(1,*)' Width
                                                                                                                                     7
                                                                                                                                                    8
                                                                                                                                                                    9
204
                                                                     3
                                                            12'
205
                       + 10
                                            11
206
                        write(1,*)' (ft)
                        print*,
                                                                                        Load along (parallel to) longitudinal
207
208
                       +wall (lb)'
209
                        print*,
                                                                                   Divide by the length of span to obtain s
                      +hear (lb/ft)'
210
211
                        print*,'
                              print*,'
                                                                                                                          Pitch of the roof'
212
                               print*,'
213
                               print*,' Width
                                                                                                                                     7
                                                                                                                                                    8
                                                                                                                                                                    9
214
                                                                                      4
                                                                                                      5
                                              11
                                                            12'
215
                            10
                               print*,' (ft)
216
217
                        do 502 iw=20, 40, 1
218
                               j=0
219
                               do 52 p=3, 12, 1
                                      pip=p/12.0
220
                                      rad=atan(pip)
221
222
                                      j=j+1
223
                                      a14=0.65*wpr*(d1*real(iw)/2.0+(real(iw))**2*sin(rad)/4.0)
                                      a16=0.55*0.75*zone*wwall*
224
225
                      +(d1*real(iw)+(real(iw))**2*sin(rad)/2.0)
226
                                      a17=0.55*0.75*zone*wde*real(iw)/cos(rad)
                                      dw=0.75*(a14)
227
228
                                      if (plan.eq.'y') then
                                             dls=a16+a17
229
230
                                      else
231
                                            dls=0.75*(a16+a17)
232
                                      endif
233
                                      if (dw.gt.dls) then
234
                                            a(j)=dw
235
                                      else
236
                                            a(j) = dls
237
                                      endif
238
             52
                               continue
239
                               write(1,1750) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
240
                      +, a(10)
241
                               write (*, 1750) iw, a (1), a (2), a (3), a (4), a (5), a (6), a (7), a (8), a (9)
242
                      +,a(10)
243
             502 continue
                        write(1,*)'
244
                        write(1,*)'
245
                        write(1,*)'
246
                                                        Shear along ridge line is 1/4 the wind shear along t
247
                       +he'
248
                         write (1, *)'
                                                        longitudinal wall.'
249
                               print*,'
                               print*,'
250
251
                              print*,'
                                                        Shear along ridge line is 1/4 the wind shear along t
                      +he'
252
                               print*,'
253
                                                        longitudinal wall.'
254
           \tt coccedence coccede
255
                        print*,'
                        print*,' To continue, enter any letter.'
256
257
                        read*, z
258
                         write(1,1850)
259
                         write(1,*)' Download at ridge line is same as Download at longitud
                      +inal wall.'
260
                         write(1,*)'
261
262
                        write(1,*)'
                               print*,' Download at ridge line is same as Download at longitud
263
                      +inal wall.'
264
```

```
print*,'
265
          print*,' '
266
           write(1,*)'
                                                Uplift at ridge line (lb/ft)'
267
          write(1,*)'
268
                                                      Pitch of the roof'
          write(1,*)'
269
          write(1,*)'
270
          write(1,*)' Width
                                                           7
                                             5
                                      4
271
                               3
272
          + 10
                   11
                           12'
                      (ft)
          write(1,*)'
273
          print*,
print*,'
                                                Uplift at ridge line (lb/ft)'
274
275
                                                     Pitch of the roof'
             print*,'
276
             print*,'
277
              print*,' Width
                                                           7
                                                                  8
                               3
278
                           12'
279
           10
                    11
             print*,' (ft)
280
           do 503 iw=20, 40, 1
281
282
              j=0
              do 53 p=3, 12, 1
283
                pip=p/12.0
284
                 rad=atan(pip)
285
                 h=real(iw)/(2.0*cos(rad))
286
287
                 j=j+1
                 b1 = (real(iw)/20.0)*2.8*wpr/5.0
288
                 b2=wpr*1.1*real(iw)/(4.0*cos(rad)**2)
289
290
                 if(b1.gt.b2)then
291
                    a23=b1
292
                 else
                    a23=b2
293
294
                 endif
295
                 a18=0.75*zone*tan(rad)*(wde*h/2.0+wwall*d1/2.0)
                 dw=0.75*(a23-a10)
296
297
                 if (plan.eq.'y') then
298
                    dls=(a18-a10)
299
                 else
300
                    dls=0.75*(a18-a10)
301
                 endif
302
                 if (dw.gt.dls) then
                    a(j)=dw
303
304
                 else
305
                   a(j)=dls
                 endif
306
307
      53
              continue
              write(1,1750) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
308
309
          +,a(10)
310
              write (*, 1750) iw, a(1), a(2), a(3), a(4), a(5), a(6), a(7), a(8), a(9)
311
          +,a(10)
312
      503 continue
     313
314
           print*,' '
           print*,' To continue, enter any letter.'
315
316
           read*, z
317
           write (1,1850)
                                               Uplift at rake (upward) (lb/ft
           write(1,*)'
318
319
          +) '
           write(1,*)'
320
                                                       Pitch of the roof'
           write(1,*)'
321
           write(1,*)'
322
                                                              . 8
           write(1,*)' Width
                                      4
                                             5
                                                     6
                                                           7
323
                               3
324
          + 10
                    11
                           12'
           write(1,*)' (ft) '
325
                                               Uplift at rake (upward) (lb/ft
326
           print*,
          +) '
327
           print*,' '
328
              print*,'
329
                                                       Pitch of the roof'
              print*,' '
330
```

```
print*,' Width
                                                                                                                           6
                                                                                                                                           7
                                                                                                                                                            8
                                                                                                                                                                            9
                                                                                                          5
331
                                                                       3
                                                                                         4
332
                                l0 11 1
print*,' (ft) '
                       + 10
333
334
                         do 504 iw=20, 40, 1
                                 j=0
335
336
                                 do 54 p=3, 12, 1
337
                                       pip=p/12.0
                                        rad=atan(pip)
338
339
                                        j=j+1
340
                                        a(j)=0.75*((iw/10.0)*(2.8*wpr-wd/cos(rad)))
             54
341
                                 continue
342
                                 write (1,1750) iw, a(1), a(2), a(3), a(4), a(5), a(6), a(7), a(8), a(9)
343
                       +, a(10)
                                 write(*,1750) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
344
345
                       +,a(10)
346
             504 continue
           \tt cocceded cocceded
347
348
                         print*,'
                         print*,' To continue, enter any letter.'
349
350
                         read*, z
351
                         write (1, 1850)
                                                                                                                                        RIDGE BEAM'
352
                         write (1, *)'
                         write (1, *)'
                                                                                Distributed load along (parallel to) gable
353
354
                       +line (lb/ft**2)'
                         write(1,*)'
                                                                                           Multiply by length of span to obtain s
355
356
                       +hear (lb/ft)'
357
                         write (1, *)'
                         write(1,*)'
                                                                                                                               Pitch of the roof'
358
359
                         write(1,*)'
                         write(1,*)' Width
                                                                                                          5
                                                                                                                                           7
                                                                                                                                                            8
                                                                                                                                                                            9
360
                                                                                         4
                                                                       3
                                                               12'
                                              11
361
                        + 10
                         write(1,*)'
                                                     (ft) '
362
                                print*,'
363
                                                                                                                                        RIDGE BEAM'
364
                                print*,'
                                                                                Distributed load along (parallel to) gable
365
                        +line (lb/ft**2)'
                                print*,'
366
                                                                                           Multiply by length of span to obtain s
367
                        +hear (lb/ft)'
                                print*,'
368
                                print*,'
369
                                                                                                                               Pitch of the roof'
370
                                print*,'
                                print*,' Width
371
                                                                                         4
                                                                                                          5
                                                                                                                           6
                                                                                                                                           7
                                                                                                                                                            8
                                                                                                                                                                            9
                                                                        3
                                                               12'
                                               11
372
                             10
                                print*,' (ft) '
373
374
                         do 505 iw=20, 40, 1
375
                                 j=0
376
                                 do 55 p=3, 12, 1
377
                                        pip=p/12.0
378
                                        rad=atan(pip)
379
                                        if (p.lt.9) then
380
                                              cq=0.3
381
                                        else
382
                                              cq = 0.4
383
                                        endif
384
                                        j=j+1
385
                                        a34=0.75*(0.65*d1/real(iw)+(cq+0.7)/2.0*wpr*tan(rad))
386
                                        if(plan.eq.'y')then
                                               a36=0.55*0.75*zone*(wde/cos(rad)+d1*wwall/real(iw))
387
388
                                        else
                                               a36=0.75*(0.55*0.75*zone*
389
390
                                                           (wde/cos(rad)+dl*wwall/real(iw)))
391
                                        endif
                                        if(a34.gt.a36)then
392
393
                                              a(j) = a34
394
                                        else
395
                                               a(j) = a36
396
                                        endif
```

```
397
              continue
              write(1,1700) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
398
399
          +,a(10)
400
              write(*,1700) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
401
          +,a(10)
      505 continue
402
          write(1,*)'
403
          write(1,*)'
404
405
          write(1,*)' The panel to panel shear varies linearly from a maximu
406
          +m value
           write (1,*)' at the gable line, to one fourth, (1/4), this maximum
407
408
          +value at'
           write(1,*)' the midspan of the roof.'
409
           write(1,*)'
410
          write(1,*)' To calculate the maximum load in the longitudinal line
411
412
          + member
          write(1,*)' due to roof diaphragm bending, multiply the values tak
413
414
          +en'
          write (1,*)' directly from the above table by the length of span sq
415
          +uared'
416
          write (1,*)' divided by four, (L*L/4.0).'
417
418
          write(1,*)'
           write (1, *)' In the case of no longitudinal line members carrying b
419
420
          +ending loads:'
          write (1,*)' Multiply the values taken directly from the above tabl
421
422
          +e bv'
423
           write(1,*)' three times length of span squared divided by two time
          +s the eave to ridge' write(1,*)' slope distance, (3.0*L*L/(2.0*H), to calculate the max
424
425
          +imum normal stress'
426
           write (1,*)' per panel thickness due to roof diaphragm bending.' write (1,*)' Multiply values taken directly from the above table by
427
428
429
           write (1,*)' 1.5 times the length of span, (3/2*L), to determine th
430
          +e maximum shear'
431
          write(1,*)' stress due to a parabolic stress distribution.'
432
433
    434
          print*,'
           print*,' To continue, enter any letter.'
435
436
           read*, z
           write (1,1850)
437
438
           write (1, *)'
                                                          FOLDED PLATE
439
           write (1, *)'
                                   Distributed load along (parallel to) gable
          +line (lb/ft**2)'
440
           write (1, *)'
                                        Multiply by length of span to obtain s
441
          +hear (lb/ft)'
442
443
           write(1,*)'
444
           write (1, *)'
                                                        Pitch of the roof'
           write (1, *)'
445
           write(1,*)' Width
                                               5
                                                                            9
446
                    11
                             12'
447
          + 10
           write(1,*)' (ft) '
448
              print*,'
                                                          FOLDED PLATE'
449
              print*,'
450
                                   Distributed load along (parallel to) gable
451
          +line (lb/ft**2)'
452
              print*,'
                                        Multiply by length of span to obtain s
          +hear (lb/ft)'
453
454
              print*,'
              print","
455
                                                        Pitch of the roof'
              primt*,"
456
              print*," Width
                                                             7
457
                                       4
                                               5
                                                                     ρ
                                                                            9
458
          + 10
                     11
                            12'
              print*,' (ft) '
459
           do 506 iw=20, 40, 1
460
              j=0
461
462
              do 56 p=3, 12, 1
```

```
463
                  if(wli.gt.20.0.and.p.gt.4)then
464
                      wl=wli-(atan(real(p)/12.0)
465
                           *45.0/atan(1.0)-20.0)*(wli/40.0-0.5)
466
467
                     wl=wli
468
                  endif
469
                  pip=p/12.0
470
                  rad=atan(pip)
471
                  j=j+1
472
                  a36=0.55*0.75*zone*(wde/cos(rad)+d1*wwall/real(iw))
473
                  a40=wd/(2.0*sin(rad))
474
                  a41=w1*cos(rad)/(2.0*sin(rad))
475
                  if (p.1t.9) then
                     cq=0.3
476
477
                  else
478
                     cq=0.4
479
                  endif
480
                  b1 = (0.65*d1/real(iw) + (cq+0.7)/2.0*wpr*tan(rad) +
481
           +(0.7-cq)/2.0*wpr*cos(rad)/(2.0*sin(rad))
482
                  if (p.1t.9) then
483
                     cq=0.9
484
                  else
485
                     cq = 0.7
486
                  endif
487
                  b2=(0.65*d1/real(iw)+(-cq+0.7)/2.0*wpr*tan(rad)+
488
          +(0.7+cq)/2.0*wpr*cos(rad)/(2.0*sin(rad)))
489
                  b3 = (0.65*d1/real(iw)+0.7*wpr*cos(rad)/(2.0*sin(rad)))
490
                  if (b1.gt.b2.and.b1.gt.b3) then
491
                     a44=b1
492
                  elseif(b2.gt.b3)then
493
                     a44=b2
494
495
                     a44=b3
496
                  endif
497
                  if (p.lt.9) then
498
                     cq=0.3
499
500
                     cq=0.4
501
                  endif
502
                  b1=(0.65*d1/real(iw)+cq*wpr*tan(rad)+
503
          +(cq)/2.0*wpr*cos(rad)/(2.0*sin(rad)))
504
                  b2 = (0.65*d1/real(iw) + (cq+0.7)/2.0*wpr*tan(rad) +
505
          +(0.7-cq)/2.0*wpr*cos(rad)/(2.0*sin(rad)))
506
                  if (p.lt.9) then
507
                     cq = 0.9
508
                  else
509
                     cq = 0.7
510
                  endif
511
                  b3 = (0.65*d1/real(iw) + (-cq+0.7)/2.0*wpr*tan(rad) +
512
          +(0.7+cq)/2.0*wpr*cos(rad)/(2.0*sin(rad))
                  if (b1.gt.b2.and.b1.gt.b3) then
513
514
                     a45=b1
515
                  elseif(b2.gt.b3)then
516
                     a45=b2
517
518
                     a45=b3
519
                  endif
520
                  dl = a40 + a41
                  dw=0.75*(a44-a40)
521
522
                  dw12=0.75*(a40+a45+a41/2.0)
523
                  dIw2=0.75*(a40+a41+a45/2.0)
524
                  if (plan.eq.'y') then
525
                     dls=a40+a41+a36
526
527
                     dls=0.75*(a40+a41+a36)
528
                  endif
```

```
if(dl.gt.dw.and.dl.gt.dwl2.and.dl.gt.dlw2.and.dl.gt.dls)
529
530
          +then
531
                     a(j) = dl
532
                  elseif (dw.gt.dwl2.and.dw.gt.dlw2.and.dw.gt.dls) then
533
                     a(i) = dw
534
                  elseif(dwl2.gt.dlw2.and.dwl2.gt.dls)then
535
                     a(j) = dw12
                  elseif(dlw2.gt.dls)then
536
537
                     a(j) = dlw2
538
                  else
539
                     a(j) = dls
540
                  endif
541
      56
              continue
542
              write(1,1700) iw,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)
543
544
              write(*,1700) iw, a(1), a(2), a(3), a(4), a(5), a(6), a(7), a(8), a(9)
545
          +,a(10)
546
      506 continue
           write(1,*)'
547
           write (1, *)'
548
           write (1,*)' The panel to panel shear varies linearly from a maximu
549
550
          +m value'
           write (1,*)' at the gable line, to one fourth, (1/4), this maximum
551
          +value at'
552
           write (1,*)' the midspan of the roof.
553
554
           write(1,*)'
555
           write(1,*)'
                       To calculate the maximum load in the longitudinal line
556
          + member'
557
           write(1,*)' due to roof diaphragm bending, multiply the values tak
558
          ten'
559
           write (1,*)' directly from the above table by the length of span sq
560
          +uared'
           write (1,*)' divided by four, (L*L/4.0).'
561
562
           write(1,*)'
563
           write(1,*)' In the case of no longitudinal line members carrying b
564
          +ending loads:'
565
           write(1,*)' Multiply the values taken directly from the above tabl
566
          +e bv'
           write(1,*)' three times length of span squared divided by two time
567
568
          +s the eave to ridge'
           write (1,*)' slope distance, (3.0*L*L/(2.0*H), to calculate the max
569
570
          +imum normal stress'
           write (1,*)' per panel thickness due to roof diaphragm bending.
571
           write (1,*)' Multiply values taken directly from the above table by
572
573
           write(1,*)' 1.5 times the length of span, (3/2*L), to determine th
574
575
          +e maximum shear'
           write (1,*)' stress due to a parabolic stress distribution.'
576
      1700 format (5x, i2, 1x, 10(1x, f6.2))
577
      1750 format(5x, i2, 1x, 10(1x, f6.0))
578
579
      1800 format(5x, i2, 2x, f6.0)
580
      1850 format('1')
      1900 format(8x, 10(1x, f6.2))
581
582
           end
```

E.1 Comb.f Output

The standard load case parameters established in Chapter 6 are input into program.

This program calculates the most critical effect from the combination of dead, live, wind, and seismic loads, given the following parameters:

Seismic zone factor = 0.400000

Live load per horizontal projected area of roof = 40.0000 (p.s.f.).

Dead load of the roof = 10.0000 (p.s.f.).

Live load per horizontal projected area of roof in a earthquake = 30.0000 (p.s.f.).

Dead load of the wall element = 10.0000 (p.s.f.).

Height of attaching wall height element = 10.0000 (ft.).

Wind stagnation pressure at standard height of 30 feet = 26.0000 (p.s.f.).

Combined height, exposure and gust factor coefficient 1.30000

There is no plan irregularity of type A,B,C, or D

Download at longitudinal wall (lb/ft)

Pitch of the roof

Width (ft)	3	4	5	6	7	8	9	10	11	12
20	2 52 .	253.	248.	239.	232.	226.	264.	277.	291.	307.
21	264.	265.	260.	251.	244.	237.	278.	291.	306.	323.
22	277.	278.	272.	263.	255.	248.	291.	305.	321.	338.
		291.	285.	275.	267.	260.	304.	319.	335.	354.
23	289.				279.	271.	317.	332.	350.	369.
24	302.	303.	297.	287.					364.	384.
25	314.	316.	310.	299.	290.	282.	331.	346.		
26	327.	329.	322.	311.	302.	294.	344.	360.	379.	400.
27	340.	341.	334.	323.	314.	305.	357.	374.	393.	415.
28	352.	354.	347.	335.	325.	316.	370.	388.	408.	430.
29	365.	366.	359.	347.	337.	328.	384.	402.	422.	446.
30	377.	379.	371.	359.	348.	339.	397.	416.	437.	461.
31	390.	392.	384.	371.	360.	350.	410.	429.	452.	476.
32	402.	404.	396.	383.	372.	361.	423.	443.	466.	492.
33	415.	417.	409.	395.	383.	373.	436.	457.	481.	507.
34	428.	430.	421.	407.	395.	384.	450.	471.	495.	523.
35	440.	442.	433.	419.	406.	395.	463.	485.	510.	538.
					418.	407.	476.	499.	524.	553.
36	453.	455.	446.	431.						569.
37	465.	468.	458.	443.	430.	418.	489.	513.	539.	
38	478.	480.	470.	455.	441.	429.	503.	526.	554.	584.
39	491.	493.	483.	467.	453.	440.	516.	540.	568.	599.
40	503.	505.	495.	479.	464.	452.	529.	554.	583.	615.

Uplift at longitudinal wall (lb/ft)

Pitch of the roof

Width (ft)	3	4	5	6	7	8	9	10	11	12
20	109.	115.	123.	132.	143.	156.	171.	187.	206.	226.
21	115.	121.	129.	139.	151.	164.	180.	197.	216.	237.
22	120.	127.	135.	146.	158.	172.	188.	206.	226.	248.
23	126.	133.	141.	152.	165.	180.	197.	216.	237.	260.
24	131.	138.	148.	159.	172.	188.	205.	225.	247.	271.
25	137.	144.	154.	165.	179.	195.	214.	234.	257.	282.
26	142.	150.	160.	172.	186.	203.	222.	244.	267.	294.
27	148.	156.	166.	179.	194.	211.	231.	253.	278.	305.
28	153.	162.	172.	185.	201.	219.	239.	262.	288.	316.
29	159.	167.	178.	192.	208.	227.	248.	272.	298.	327.
30	164.	173.	185.	199.	215.	234.	256.	281.	309.	339.
31	170.	179.	191.	205.	222.	242.	265.	291.	319.	350.
32	175.	185.	197.	212.	230.	250.	274.	300.	329.	361.
33	181.	190.	203.	218.	237.	258.	282.	309.	339.	373.
34	186.	196.	209.	225.	244.	266.	291.	319.	350.	384.
35	192.	202.	215.	232.	251.	274.	299.	328.	360.	395.
36	197.	208.	221.	238.	258.	281.	308.	337.	370.	406.
37	203.	213.	228.	245.	265.	289.	316.	347.	381.	418.
38	208.	219.	234.	251.	273.	297.	325.	356.	391.	429.
39	213.	225.	240.	258.	280.	305.	333.	365.	401.	440.
40	219.	231.	246.	265.	287.	313.	342.	375.	411.	452.

Load along (parallel to) longitudinal wall (1b) Divide by the length of span to obtain shear (lb/ft)

Pitch of the roof

Width (ft)	3	4	5	6	7	8	9	10	11	12
20	2047.	2169.	2281.	2385.	2478.	2562.	2636.	2703.	2761.	2813.
21	2171.	2305.	2429.	2543.	2645.	2738.	2820.	2893.	2958.	3015.
22	2296.	2443.	2579.	2704.	2817.	2918.	3009.	3089.	3160.	3222.
23	2423.	2584.	2733.	2869.	2993.	3104.	3202.	3290.	3367.	3436.
24	2553.	2728.	2890.	3038.	3173.	3293.	3401.	3496.	3581.	3655.
25	2684.	2874.	3050.	3211.	3357.	3488.	3604.	3708.	3799.	3880.
26	2817.	3023.	3213.	3387.	3545.	3687.	3813.	3925.	4024.	4111.
27	2953.	3174.	3379.	3567.	3738.	3890.	4026.	4147.	4254.	4348.
28	3090.	3328.	3549.	3751.	3934.	4098.	4245.	4374.	4489.	4591.
29	3229.	3485.	3722.	3939.	4135.	4311.	4468.	4607.	4730.	4839.
30	3371.	3644.	3898.	4130.	4340.	4528.	4696.	4845.	4977.	5093.
31	3514.	3806.	4077.	4324.	4549.	4750.	4929.	5088.	5229.	5353.
32	3659.	3970.	4259.	4523.	4762.	4976.	5167.	5337.	5487.	5619.
33	3807.	4137.	4444.	4725.	4979.	5207.	5410.	5591.	5750.	5891
34	3956.	4307.	4633.	4931.	5201.	5443.	5658.	5850.	6019.	6168.
35	4107.	4479.	4824.	5140.	5426.	5683.	5911.	6114.	6293.	6452.
36	4261.	4654.	5019.	5353.	5656.	5927.	6169.	6384.	6573.	6741.
37	4416.	4832.	5217.	5570.	5890.	6177.	6432.	6659.	6859.	7036.
38	4573.	5012.	5419.	5791.	6128.	6430.	6700.	6939.	7150.	7337.
39	4733.	5194.	5623.	6015.	6370.	6689.	6972.	7224.	7447.	7644.
40	4894.	5380.	5831.	6243.	6617.	6952.	7250.	7515.	7749.	7956.

Shear along ridge line is 1/4 the wind shear along the longitudinal wall.

Download at ridge line is same as Download at longitudinal wall.

Uplift at ridge line (lb/ft)

Pitch of the roof

Width (ft)	3	4	5	6	7	8	9	10	11	12
20	42.	49.	58.	68.	81.	95.	112.	130.	151.	173.
21	49.	57.	66.	77.	90.	105.	123.	142.	163.	187.
22	57.	64.	74.	86.	99.	115.	134.	154.	176.	201.
23	64.	72.	82.	94.	109.	126.	144.	166.	189.	215.
24	72.	80.	90.	103.	118.	136.	155.	177.	202.	229.
25	79.	88.	98.	112.	128.	146.	166.	189.	215.	242.
26	87.	95.	107.	120.	137.	156.	177.	201.	227.	256.
27	94.	103.	115.	129.	146.	166.	188.	213.	240.	270.
28	101.	111.	123.	138.	156.	176.	199.	225.	253.	284.
29	109.	119.	131.	147.	165.	186.	210.	236.	266.	298.
30	116.	126.	139.	155.	174.	196.	221.	248.	279.	312.
31	124.	134.	148.	164.	184.	206.	232.	260.	292.	326.
32	131.	142.	156.	173.	193.	216.	242.	272.	304.	340.
33	138.	150.	164.	181.	202.	226.	253.	284.	317.	354.
34	146.	157.	172.	190.	212.	236.	264.	296.	330.	368.
35	153.	165.	180.	199.	221.	246.	275.	307.	343.	382.
36	161.	173.	188.	208.	230.	256.	286.	319.	356.	396.
37	168.	181.	197.	216.	240.	267.	297.	331.	369.	410.
38	175.	188.	205.	225.	249.	277.	308.	343.	381.	424.
39	183.	196.	213.	234.	258.	287.	319.	355.	394.	438.
40	190.	204.	221.	242.	268.	297.	330.	366.	407.	452.

Uplift at rake (upward) (lb/ft)

Pitch of the roof

Width	3	4	5	6	7	8	9	10	11	12
Width (ft) 20 21 22 23 24 25 26 27 28 29 30	3 126. 133. 139. 145. 152. 158. 164. 171. 177. 183. 190.	4 126. 132. 139. 145. 151. 158. 164. 170. 177. 183. 189.	5 126. 132. 138. 145. 151. 157. 163. 170. 176. 182. 189.	6 125. 131. 138. 144. 150. 156. 163. 169. 175. 182.	7 125. 131. 137. 143. 150. 156. 162. 168. 174. 181.	8 124. 130. 136. 143. 149. 155. 161. 167. 174. 180.	123. 129. 136. 142. 148. 154. 160. 172. 179.	122. 129. 135. 141. 147. 153. 159. 165. 171. 178.	122. 128. 134. 140. 146. 152. 158. 164. 170. 176.	121. 127. 133. 139. 145. 151. 157. 163. 169. 175.
31 32 33 34 35 36 37 38 39	196. 202. 209. 215. 221. 228. 234. 240. 247. 253.	196. 202. 208. 214. 221. 227. 233. 240. 246. 252.	195. 201. 207. 214. 220. 226. 233. 239. 245. 251.	194. 200. 207. 213. 219. 225. 232. 238. 244. 250.	193. 199. 206. 212. 218. 224. 230. 237. 243. 249.	192. 198. 204. 211. 217. 223. 229. 235. 242.	191. 197. 203. 209. 216. 222. 228. 234. 240. 246.	190. 196. 202. 208. 214. 220. 227. 233. 239. 245.	188. 195. 201. 207. 213. 219. 225. 231. 237. 243.	187. 193. 199. 205. 211. 217. 223. 229. 235. 241.

RIDGE BEAM Distributed load along (parallel to) gable line (lb/ft**2) Multiply by length of span to obtain shear (lb/ft)

Pitch of the roof

Width (ft)	3	4	5	6	7	8	9	10	11	12
20 21	4.45	4.53	5.52 5.51	6.58 6.57	7.64 7.63	8.69 8.68	10.70	11.86	13.02 13.01	14.19 14.17
22	4.39	4.48	5.50	6.56	7.62	8.67	10.68	11.84	13.00	14.16
23	4.36	4.45	5.49	6.55	7.61	8.66	10.67	11.83	12.99	14.15
24	4.34	4.43	5.48	6.54	7.60	8.65	10.66	11.82	12.98	14.15
25 26	4.32	4.42	5.48 5.47	6.53 6.53	7.59 7.58	8.65 8.64 8.63	10.65 10.64 10.64	11.81 11.81 11.80	12.98 12.97 12.96	14.14 14.13 14.12
27 28 29	4.29 4.27 4.25	4.41 4.40 4.39	5.46 5.46 5.45	6.52 6.51 6.51	7.57 7.57 7.56	8.62 8.62	10.63	11.79	12.95 12.95	14.12 14.12 14.11
30	4.24	4.39	5.44	6.50	7.56	8.61	10.62	11.78	12.94	14.11
31	4.23	4.38	5.44	6.49	7.55	8.61	10.61	11.78	12.94	14.10
32	4.21	4.38	5.43	6.49	7.55	8.60	10.61	11.77	12.93	14.09
33	4.20	4.37	5.43	6.49	7.54	8.60	10.60	11.77	12.93	14.09
34	4.19	4.37	5.42	6.48	7.54	8.59	10.60	11.76	12.92	14.09
35	4.18	4.36	5.42	6.48	7.53	8.59	10.60	11.76	12.92	14.08
36	4.17	4.36	5.42	6.47	7.53	8.59	10.59	11.75	12.92	14.08
37	4.16	4.36	5.41	6.47	7.53	8.58	10.59	11.75	12.91	14.07
38	4.15	4.35	5.41	6.47	7.52	8.58	10.59	11.75	12.91	14.07
39	4.14	4.35	5.41	6.46	7.52	8.57	10.58	11.74	12.91	14.07
40	4.14	4.35	5.40	6.46	7.52	8.57	10.58	11.74	12.90	14.06

The panel to panel shear varies linearly from a maximum value at the gable line, to one fourth, (1/4), this maximum value at the midspan of the roof.

To calculate the maximum load in the longitudinal line member due to roof diaphragm bending, multiply the values taken directly from the above table by the length of span squared divided by four, $(L^*L/4.0)$.

In the case of no longitudinal line members carrying bending loads: Multiply the values taken directly from the above table by three times length of span squared divided by two times the eave to ridge slope distance, $(3.0^{\circ}L^{\circ}L)/(2.0^{\circ}H)$, to calculate the maximum normal stress per panel thickness due to roof diaphragm bending. Multiply values taken directly from the above table by 1.5 times the length of span, $(3/2^{\circ}L)$, to determine the maximum shear stress due to a parabolic stress distribution.

FOLDED PLATE Distributed load along (parallel to) gable line (lb/ft**2) Multiply by length of span to obtain shear (lb/ft)

Pitch of the roof

Widtl (ft)	n 3	4	5	6	7	8	9	10	11	12
20	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.77	26.53	26.55
21	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.76	26.52	26.54
22	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.75	26.51	26.52
23	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.74	26.50	26.52
24	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.73	26.49	26.51
25	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.72	26.48	26.50
26	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.72	26.47	26.49
27	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.71	26.46	26.48
28	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.70	26.46	26.48
29	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.70	26.45	26.47
30	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.69	26.45	26.47
31	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.69	26.44	26.46
32	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.68	26.44	26.46
33	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.68	26.43	26.45
34	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.67	26.43	26.45
35	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.67	26.42	26.44
36	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.67	26.42	26.44
37	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.66	26.42	26.44
38	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.66	26.41	26.43
39	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.65	26.41	26.43
40	100.62	75.81	59.43	47.90	39.81	33.88	29.38	26.65	26.41	26.43

The panel to panel shear varies linearly from a maximum value at the gable line, to one fourth, (1/4), this maximum value at the midspan of the roof.

To calculate the maximum load in the longitudinal line member due to roof diaphragm bending, multiply the values taken directly from the above table by the length of span squared divided by four, $(L^*L/4.0)$.

In the case of no longitudinal line members carrying bending loads: Multiply the values taken directly from the above table by three times length of span squared divided by two times the eave to ridge slope distance, (3.0*L*L/(2.0*H), to calculate the maximum normal stress per panel thickness due to roof diaphragm bending. Multiply values taken directly from the above table by 1.5 times the length of span, (3/2*L), to determine the maximum shear stress due to a parabolic stress distribution.

References

Ramsey & Sleeper. [A.G.S., 70] Architectural Graphic Standards. John Wiley & Sons, 1970. American Institute of Steel Construction. [A.I.S.C., 87] Manual of Steel Construction. American Institute of Steel Construction, Inc., 1987. [A.I.S.I., 83] American Iron and Steel Institute. Specification for the Design of Cold-Formed Steel Structural Members. American Iron and Steel Institute, Inc., 1983. [A.I.T.C., 85] American Institute of Timber Construction. Timber Construction Manual. John Wiley & Sons, 1985. [Allen, 69] Allen, Howard G. Analysis and Design of Structural Sandwich Panels. Pergamon Press, 1969. [Benjamin, 82] Benjamin, B. S. Structural Design with Plastics. Van Nostrand Reinhold Company, 1982. [Bijlaard, 69] Bijlaard, P. P. Thermal Deformations and Stresses in Rectangular Sandwich Plates. Journal of the Aero/Space Sciences, April, 1969. [Carney, 71] Carney, J. M. Plywood Folded Plates: Design and Details. Technical Report 121, American Plywood Association, 1971. [Davies, 87] Davies, J. M. Design Criteria for Structural Sandwich Panels. The Structural Engineer 12, 1987. [Ericksen, 58] Ericksen, W. S. Effects of shear deformation in the core of flat rectangular sandwich Technical Report, Forest Products Laboratory Report 1583-D, 1958. [March, 55] March, H. W. Effects of shear deformation in the core of flat rectangular sandwich panel. Technical Report, Forest Products Laboratory Report 1583, 1955. [Pogorzelski, 69] Pogorzelski, Jerzy. Thermal Deformations and Stresses in Rectangular Sandwich Panels with Non-Rigid Cores. Building Science 4, 1969.

[Reissner, 49]

Reissner, E.

Small bending and stretching of sandwich type shells. Technical Report 1832, N.A.C.A. Technical Note, 1949.

[Structural Plastics Design Manual, 84]

American Society of Civil Engineers. Structural Plastics Design Manual. American Society of Civil Engineers, 1984.

[Sweet's Catalog File, 88]

Sweets Division.

Sweet's Catalog File: General Building and Renovation. McGraw-Hill INformation Systems, 1988.

[Timoshenko et al., 59]

Timoshenko, S. and Woinowsky-Krieger, S. *Theory of Plates and Shells*. McGraw-Hill Book Company, Inc., 1959.

[U.B.C. Standards, 88]

U.B.C.

Uniform Building Code Standards. , 1988.

[U.B.C., 88] U.B.C.

Uniform Building Code.

, 1988.

[Winter, 47] Winter, G. and Pei, M.

Hipped Plate Construction.

American Concrete Inst. 43:505-532, January, 1947.

[Yu, 85]

Yu, Wei-Wen. Cold-Formed Steel.

john Wiley & Sons, 1985.