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ABSTRACT

This thesis describes a set of decision models designed
to aid a consumer lending institution in performing its credit
granting function. The four models presented incorporate most
of the factors relevant to the decision to grant credit. In
order to support this contention, decision rules are formu-
lated for both installment loan and revolving credit instru-
ments. In addition, the installment loan formulation is ap-
plied to actual loan data supplied by the National Shawmut
Bank of Boston. Model performances are compared with an ex-
isting credit scoring system and found to result in signifi-
cantly more profitable decisions.

In the course of this research, particular emphasis is
placed on the theoretical issues of the underlying pattern
recognition and multivariate estimation problems. An informa-
tion maximizing procedure for feature selection is presented
that requires no assumptions about the multivariate probabil-
ity distribution of feature vectors. A number of pattern rec-
ognition algorithms of varying complexity are evaluated within
the context of default probability estimation. Their perfor-
mances are presented both in terms of probability of misclas-
sification and economic expected net present value.

The descriptive Markov process model of delinquent pay-
ment behavior requires the estimation of a transition proba-
bility matrix P(x) as a function of a feature vector x. This
novel estimation problem, which has application in other
fields of interest, is addressed in detail. It is shown to
be solvable by general multivariate estimation techniques.

The results obtained here suggest that multiperiod deci-
sion rules with Bayesian probability updating and detailed
outcome spaces can be designed to yield improved performance



over "state-of-the-art credit scoring" decision rules. More-
over, these decision models provide the necessary framework
for evaluating policy level decisions. Finally, this class
of decision models is shown to be applicable to problems in
areas other than credit granting.
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Chapter 1

INTRODUCTION

Consumer credit evaluation, or credit scoring as

it is sometimes popularly called, has been a topic of
interest to the OR/MS'community for the past ten years.
As a result of the increasing availability to the con-
sumer of a number of forms of credit and the concurrent
widening appeal of management science techniques,
credit managers have begun to view quantitative credit
evaluation tools as both helpful and necessary.

Cole [6]1 provides a comprehensive description of
the consumer credit function of a lending institution.
The description that follows will serve to define the
major aspects of the consumer credit function as well as
to provide a standard vocabuléry for the remainder of
this thesis.

Initially, the customer submits a completed appli-
cation which contains information relevant to the credit
granting decision. This information usually includes
demographic information (e.g., age, address, occupation),
income information, and other information such as years

at present address, car ownership, etc. In addition,
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past and current credit history is included, as well as
a mention of other accounts (checking, savings, etc.)
he may have with the institution.

The application is usually made for a particular
credit instrument (installment loan or revolving credit)
and for a given loan amount or credit line. The term

installment loan includes any loan where the loan

amount is given to the customer who then makes equal

monthly payments over the term of the loan. The

interest charged depends on the actual type of loan,
e.g., signature loans generally are made at higher
rates than home improvement or car loans. The term

revolving credit includes charge card accounts (e.g.,

Master Charge, travel cards, gasoline credit cards,
etc.). The customer is permitted to make charge pur-
chases up to a predetermined credit limit or credit

line. At any time he may make payments to reduce the

amount of his outstanding balance at a rate somewhat
above that for installment loans.

Given this initial information on the application,
a lending officer will conduct whatever credit investi-
gation seems appropriate. He then makes a decision to

accept or reject the application based on application

11



and credit investigation information and any additional
information he may have. Hereafter, this additional
information, since it is not quantified in the applica-

tion process, will be called subjective information.

Geﬁerally, if the application is rejected, the
consumer will be lost as a customer, as he will prob-
ably find credit elsewhere. At the very least he
will be ill-disposed to further any relationship with
the institution that rejected his application. If
the application is accepted, the customer begins to
make the appropriate monthly payments. Should he not
make a payment by the prescribed due date, he is con-

sidered a one month delinquent account. Should no

payment be made by the following month, he is considered
two months delinquent, and so .on.

When an account becomes delinquent, affirmative
collection action is taken to bring it back to a paying
or on-time state. Depending on the amount of time
delinquent, this action may take the form of a letter,
telephone call, perscnal visit, or>legal action. An
account which is frequently delinquent can generate

more collection expense than the interest received from

the account.

12




Should the account become seriously delinquent (3
to 6 months, depending on accounting practices), it is
usually considered to have defaulted and is charged
against a reserve for bad debts. The account is none-
theless pursued and on the average about one-~fourth
to one-half of the charged-off balance is‘eventually
recovered.

Assuming the account does not default, its payment
history is periodically reviewed. In the case of in-
stallment loans, this review does not occur until the
customer applies for a subsequent loan. In the case
of revolving credit accounts, this review comes at a
predetermined interval. At this time a second decision
to grant credit is made. However, here the decision
can be made with the additional information of the
first loan or first review period actual payment
history.

Each credit granting decision affects the cus-
tomer's use of related services of the institution.
For example, if a customer's application is accepted,
he will be more likely to open a new savings account
at a bank than if his application is rejected. This

cross-selling effect plays a significant role in the

credit granting decision.

13




Another often neglected aspect of the process 1is
the evaluation of revenue from revolving credit accounts.
The credit line simply places an upper limit on the
amount of the outstanding balance. Revenue is gen-
erated on the actual average outstanding balance,
which, although related to credit line, is more a
function of the customer's credit attitudes and needs.
For example, it is possible to segment the credit
card market by social class and income levels, which,
in turn, will be useful in identifying some of the
behavioral characteristics of customers in each market
segment. Given these characteristics (e.g., degree
of apathetic attitude toward shopping, perceived risk
in buying decisions, etc.), we can attempt to predict

actual credit card usage.
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Outline of the Material That Follows

This thesis describes a general quantitative approach
to the decision to grant credit. The models presented were
developed with a view toward incorporating the factors most
relevant to the decision. Among the factors included are
the revenues and costs associated with uncertain outcomes of
both the loan applied for and subsequent loans. Loan out-
comes are first considered to be either default or non-default
and are later expanded to include a detailed description of
delinguent behavior. Several pattern recognition techniques
are used to estimate outcome probabilities as a function of
a set of features or attributes describing the applicant.
Loan characteristics (term, interest rate, etc.) are used
to parametrically determine rewards for correct classifica-
tion. The resulting credit granting decision rules have as
their objective the maximization of expected net present
value.

The thesis is presented in three parts. Part I, which
includes Chapters 2 through 5, develops the decision models
and the accompanying estimation theory.

Chapter 2 examines some of the published literature in
the area that is relevant to the credit granting decision.

Chapter 3 presents four models for the credit decision.

Model 1 considers only the initial loan, and only the two

15




outcomes of default and non-default. Model 2 considers the
same two outcomes but incorporates the probable effects of
subsequent loans. Mocdel 3 expands the outcome space to
include delinquent payment behavior for the one loan case.
Finally Model 4 presents a theoretical treatment of Model 3
extended to include subsequent loans.

Pattern recognition techniques for default probability
estimation are discussed in Chapter 4. A set of algorithms
of varying complexity is suggested.

Chapter 5 considers the general problem of estimating
the transition probability matrix of a first-order stationary
Markov chain as a function of a vector of features. The
pattern recognition approach to this problem is necessary
for the application of Models 3 and 4.

Part II, including Chapters 6 through 14, presents the
results of an application of the models for installment loan
credit granting. The data for this case study were supplied
by The National Shawmut Bank of Boston (NSB). The analysis
of Part II serves as an outline of the steps to be followed
to implement the set of decision models. In particular,
Chapter 7 proposes an information theoretic approach to
feature selection.

Chapters 8 and 9 present the results of a pattern rec-
ognition approach to default probability estimation. A

significant effect of subsequent loan revenues on the credit




granting decision is suggested by the analysis of Chapter
10.

Chapters 11 and 12 demonstrate the feasibility of esti-
mating and applying a detailed state outcome decision model.
In the course of estimating the transition probability matrix,
a sequential state expansion method for removing second and
higher order memory within a Markov process is suggested.

A heuristic solution to the detailed-outcome multi-loan
decision model (Model 4) is presented in Chapter 13, with a
discussion of its performance on actual loan cases.

Part III reconsiders the decision to grant credit in
the light of the models developed in Part I and the insights
gained through the empirical analysis of Part II. Chapter
15 proposes a method that permits the evaluation of alterna-
tive decision rules without having to observe the unknown
outcomes of previously rejected loans. Chapter 16 demon-
strates the adaptability of the models by formulating the
revolving credit decision problem in terms of Model 4. This
formulation provides the necessary framework for answering
the related question of setting credit limits and determining
account review periods. The implications of the models for
operational and organizational policy decisions are discussed
in Chapter 17. A case is made for variable interest rates
on consumer loans based on the gquantitative assessment of

default risk. Finally, the models presented in the thesis

17




are suggested to have applications for decision making in

>

areas other than consumer credit.
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PART I

MODEL DEVELOPMENT

Part I presents a set of general models for consumer
credit decision making. The relationship of the proposed
models to previous results in the area is given in a review

of the literature. The models require the estimation of

outcome probabilities as a function of applicant attributes.

These multivariate estimation problems are addressed in

detail.

19
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Chapter 2

PREVIOUS RESEARCH

A number of previous works relating to the decision
to grant credit can. be found in the MS/OR literature.
Most are addressed to‘a singie aspect of the problem,
such as the initial decision, the delinquent account

process, or the pursuit of defaulted accounts.

The majority of those works dealing with the ini-
tial credit granting decision have been largely con-
cerned with discriminating between "good" (non-
defaulting) and "bad" (defaulting) credit risks. Myers
and Forgy [21] use both discriminant and regression
analysis to predict the final state of the account, but
do not take costs and revenues into account for select-
ing an economically optimal trade off between Type I
and Type II errors. Bogess [2] and Weingartner [25]
give less technical descriptions of such a linear dis-
crimination procedure and indicate a simplified means
of optimizing the trade off between rejecting a good
account and accepting a bad one. They do not, however,
consider the effect of delinquency behavior, post-

default recoveries, or potential profit from subsequent

loans.
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Smith [2u4] suggests the use of linear discriminant
analysis to develop what he calls a "risk~index'". The
analysis 1s conducted marginally on a number of appli-
cant variables, and the risk index is then defined to
be the sum of the posterior probabilities of default
from each variable. In a critical commen% on Smith's
paper, Cohen and Hammer [5] point out that this compu-
tation is not justified since the variables are not
equally important as implicitly assumed. They also
comment on Smith's failure to validate his estimates

on an independent data sample.

Majone [15, 16] reviews the assumptions implicit
in linear discriminant analysis, and indicates that the
assumption of normally distributed random variables
with common covariance matrices is probably not appro-
priate in the credit-scoring situation. Chatterjee and
Barcun [3] employ a nearest-neighbor rule to perform
the good/bad loan discrimination based on eight
dichotomous variables and a sample of 774 applications.
The economics of the situation are inadequately sum-
marized in a single parameter, the ratio of misclassi-

fication costs.

21




Orgler [22] extenés the credit-scoring concept to
the review of existing accounts; In addition to the
variables available initially, he includes the number
of overdue notices, number of early or late payments,
and a three-valued subjective evaluation of the payment
performance. The probability of default is then esti-
mated by multiple regression, but Orgler does not indi-

cate how this i1s to be used in the review process.

Several works are addressed to the description of
the delinquent account process. Cyert, Davidson and
Thompson [9] and Cyert and Thompson [10] set forth a
Markovian model. Customers are assumed to move among
several delinquent states according to a stationary
transition probability matrix. They allow for different
customer types by defining several different transition
matrices and indicate that "A potential technique for
determining which risk category a credit applicant
should go into is multiple regression'". Liebman [1u4]
describes a similar model, but his concern is more with
the optimal action to be taken in each delinquent state

(e.g., send letter, telephone call, etc.).

22



Mitchner and Peterson [20] present the results of
a study on the recovery of defaulted loans. They
derive results which indicate the optimal time for

which non-paying accounts should be pursued.

Greer [13] presents a model which alliows for the
inclusion of future profits after initial credit
granting, but this is a function of the number of appli-
cants accepted and assumes that a ranking of customers
from good risks to bad risks is available. He also
allows the expected total collection expense to be a

function of the number of applications accepted.

The value of initial information is also discussed -
by Greer [12]. A related paper by Mehta [19] derives
sequential sampling rules for credit investigation.
These works éddress an interesting although relatively ~

minor aspect of the credit granting decision problem.

Bierman and Hausman [1] present a multi-period
analysis of the decision problem which contains a
Bayesian updating of default probability as payment
experience is gained. They present a dynamic program-

ming formulation of the multi-period problem, and

23




indicate the importance of considering more than a
single time period. Considerable information about
the applicant's payment behavior is gained during

the first period, which, by resolving some of the un-
certainty(about the applicant, places the institution
in a potentially more profitable position for the

second period decision.

The usage aspect éf revolving credit is dis-
cussed in Mathews and Slocum [17, 18, 23], Curtis [8]
and Fazio [11]. These works use factor analysis and
multiple regression to perform credit and market seg-
mentation and then predict actual credit card usage

as a function of an applicant's credit attitudes.

Crane [7] addresses the issue of bank service in-
teraction. He presents a Markov model which describes
the probability that the next service applied for will
be of a certain type given the last service type.

The model as it is presented has several shortcomings,
but it serves to point out the importance of interac-

tion among different services.

24




In summary, previous papers in this field have gen-
erally been directed at a single important factor in
the credit granting decision. The development of credit
scoring formulas has received much attention, but has
been limited in application because of assumptions of
linearity, inadequate modeling of the economics of the
process, the lack of attention to the effects of
delinquency behavior, and the failure to consider
potential profit from subsequent loans and other bank
services. Consequently, several papers have been

addressed to these shortcomings.

In‘particular, one paper has considered the multi-
period aspect of the problem after recognizing that
significant information about the applicant's payment
behavior is gained after each loan period. Several
others have modeled the delinquency and post-default
recovery aspects, but still leave unanswered the pro-
blems of classifying potential customers into delin-
quency classes and then estimating their transition
probabilities'among delinquent states. Several authors
have investigated with some success the sub-problem of

trying to predict actual credit card usage. Finally,

25




this author is aware of one article which tries to
model the interaction or cross-sell effect among
the services offered by the lending institution, of

which the consumer loan is a major one.
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Chapter 3

CREDIT GRANTING DECISION MODELS

Model Development

The major aspects of the credit granting decision process
are considered to be

1) the initial prediction of default as a function of the
applicant's attributes, with the inclusion of associated costs
and revenues due to the loan itself;

2) the potential profit from subsequent loans;

3) the prediction of an applicant's delinquency behavior
and the inclusion of delinguency related costs; and

4) the combined effect of considering both subsequent
loans and delinquency behavior.
In this part of the thesis these aspects will be incorporated
into a set of models which represent a significant advance
over the models described in Chapter 2. In Part II, the models
will be tested at The National Shawmut Bank of Boston (NSB)
through the solution of several estimation and classification
problems. The nature of these problems will become apparent
as the models are discussed in detail. 1In Part III, we will
discuss the more general applications of these types of deci-
sion models.

The models will be developed in four increasing stages of

complexity.

27




1. 1Initially, a single period binary outcome (default/
non-default) model will serve as a basis for further extension.
2. Then a multi-period binary outcome model will be
described to incorporate the expected net present value of

second and subsequent period outcomes.

3. The third stage of development will replace the two-
valued outcome of default/non-default with a state transition
history of payment and delinguency behavior. These states will
be of the form on-time, 1 month delinquent, 2 months delin-
quent, etc. At this stage, the state transition model and the
associated estimation problems will be discusséd in detail.

4. Finally, at the fourth stage, the probability updating
aspects of the multi-period case will be discussed in relation
to the state transition description of possible outcomes.
Although this final stage model captures the important factors
of the problem, it will be computationally necessary to develop

an approximate solution for practical decision making.

28



3.1 Model 1 - Single Period, Two Outcome

This first stage model is structurally similar to the
two-outcome credit scoring models found in the literature.
However, consideration will be given to the nonlinear nature -
of the classification problem as well as to the profit impli-
cations of default and non-default. '
A loan applicant will be characterized by a vector x of ~
attributes or '"features", which has components age, income,
years at current address, etc. The loan amount or credit line
applied for will be denoted as A. If the loan is rejected, -
then no loss due to non-payment is possible. On the other
hand, if the loan is accepted, the customer will either even-
tually pay the loan or will default after having paid less -
than the full amount of the loan. The probability of default
is assumed to depend on both the applicant's features x and
the loan amounf'A, and will be expressed as p(x,A). .
Given the customer pays the loan, the net present value
of his payments will be denoted by Vl(A,é). The functional
dependence on the loan amount or credit line is obvious. The -
loan vector L is included to provide further description of
the loan itself, to include the term of the loan (T), the
interest rate (r), the expected credit line usage (for revolv-
ing credit), etc.
Given that the customer defaults, the net present value
of this outcome will be denoted by Vo(AaE)' For example, -
29



suppose L describes a $2000 installment loan for 24 months
at 13.5% interest and we know tha% historically default occurs
(given that it does occur) on the average after about 11
months. Then by discounting the appropriate cash flows at the
relevant cost of capital, we might find the expected net pres-
ent value to be approxiﬁately Vo(A,L) = -$700.

Thus, apart from future loan considerations and interac-

tions with other services, the expected net present value of

accepting the loan is:
7 = p(x,A) Vy(A,L) + [1 - p(x,A)] V,(A,L). (3.1.1)
Cf course, if the loan is rejected, % = 0.

Given this model, the one-loan or one-period decision

rule should be:
Accept if and only if ¥ > o. (3.1.2)

Determination of VO(A,E) and Vl(A,E) is essentially
straightforward in the case of installment loans (see Appendix
A). TFor revolving credit, however, usage must be predicted,
which poses an interesting estimation problem but one that
will not be addressed in the thesis. The other significant
problem is the estimation of p(x,A). Since there are strong
a priori reasons to believe that default probability may not

be linear in x and A, this problem will be formulated in

30




Chapter U4 as a nonlinear statistical classification (pattern
" recognition) problem. In the case study, the results of this
approach will be compared with those obtained by a multiple

regression benchmark model in use at NSB.
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FIGURE 3.1
Single Period Model

paid
Vl(A,E)
accept
applicant
XA, L
defaulted
VO(A,E)

reject
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3.2 Model 2 - Multi-Period, Two Outcome

The single period model of Section 3.1 fails to account
for the present value of loans that may be made subsequent to
the one applied for. If the first installment loan is success-
fully paid (or if the revolving credit payments are satisfac-
torily made during the first review period), the lending
institution will be in a better position (i.e., a more profit-
able posture) to re-extend credit for the second period. This
reflects the updating of the initial default probability esti-
mate on the basis of the first period outcome. We will assume
that once default occurs no further credit will be granted.l

In order to extend the single period model to the multi-
period case, we need to specify a probability updating rule.
Let Pj(ESA) be the probability of default in period j (the
(j'*‘l)SJC loan) given no defaults in periods 0,1,...,j-1. Thus,
the multi-period model requires the additional estimation of
second and subséquent period conditional default probabilities.
These could be either estimated directly if sufficient data

were available (it is usually not available), or estimated

lThe assumption is justified both by a quantitative analysis

in Chapter 10 and by the actual lending policy at most finan-

cial institutions.
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via a probability updating rule.2

The rule that will be proposed is similar to that of
Bierman and Hausman [1]. The initial default probability
estimate, p0(§,A), will be estimated by a nonlinear pattern
recognition technique. A beta natural conjugate prior3 will
be assumed with parameters ro(g,A) and no(g,A) such that
r0(§,A)/n0(§,A) = po(g,A). That is, the pattern recognition
approach will specify the ratio r/n, leaving only the
"diffuseness" (n) of the prior to be determined. To make
this determination, the value of actual payment information
relative to application information could be investigated.
In the absence of such relative information, the diffuseness
parameter (n) can be approximately determined by interviewing
experienced iending personnel and then testing the sensitivity
of the resulting decision rules to different values of a
constant n.

Given the above formulation, an optimal decision rule
can be found by considering a finite horizon and then solving

the appropriate dynamic programming problem.

2Because our expected net present value criterion includes a
discounting operation with discount factor of about 0.9 annual-
ly (or about 0.75 for a second loan applied for three years

later), accuracy in Pg(iaA) will be more important than in
pl(g,A), pz(g,A), etc.
3See Raiffa and Schlaifer [36] for a discussion of Bayesian

probability updating.
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Let 6 be our decision variable, i.e.,»@ = 0 means do not
grant credit,_@ = 1 means grant credit. If VJ is the expected

net present value of the next J loans, then our decision rule

becomes:

. 0 (reject) if ﬁJ <0
6 = (3.2.1)

1 (accept) if gJ > 0.

VJ can be determined in a manner described below.

Let pj(ﬁ,A) be the probability that the customer defaults
in period j given he did not default on the previous j loans.
Actually, pj(g,A) is considered to be the mean rj(gg,A)/nj of
the beta prior density describing the updated default proba-
bility after j repaid loans, where rj(g,A) and n. are the
parameters of the beta density for the random variable pj(§,A).
Initially, we estimate po(g,A) using pattern recognition tech-
niques. The diffuseness parameter, ng, for po(g,A) is assumed
to be constant and given. ro(g,A) is equal to nopo(g,A) since
po(g,A) is the expected value (r/n) of the beta distribution.

If, given PO(E’A) and n,, we observe one repaid loan,
the revised default probability density will have parameters
rl(g,A) = nopo(E,A) + 0 = nOpO(g,A) and ny = ng * 1. This

revised density has expected value:

rl(g,A)

P (x,A) n,

i nopo(g,A)
- fn0+13 '
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If we observe two repaid loans, the revised default probability
density will have parameters

P2(§9A> = nOpO(E’A) + 0+ 0 = nOpO(E,A)
and

9 n0+l+l=n0+2.

3
1"

In general, if the a priori estimate of the default probability

is beta-distributed with parameters ro(g,A) = n (x,A) and n

0P
and j loans are repaid, the a posteriori default probability

03

will be beta-distributed with parameters rj(§,A) nOPO(E’A)

and nj = ng * j. This jth period estimate is then given by

the probability updating rule:

nOpO(E’A)

pj(g,A> = jo= 1,..,J-1, (3.2.2)

ng + J
where ng, is assumed constant and given, and po(g,A) is the
default probability estimate obtained by an application of
an appropriate pattern recognition technique.

Now define event Ei to be the successful repayment of
i loans, with default on loans i+l. Let E§ be the successful
repayment of i+l loans. If V(Ei) represents the net present

value of event Ei, then

V(E;) = z oV (A,L) + a;Vg(A,L) (3.2.3)

and
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V(Eé{) =

j AV, (A,1) (3.2.4)

0

wnere aj is the appropriate discount factor.

If & is the probability that the customer does not re-
apply for a loan in period j, T is the number of years between
periods, and p is the cost of capital, then the jth period

disccunt factor is given by
as = 23 (1+p) 73T, (3.2.5)

The prcbability of events Ei and Eg are given by

i-1 :
p(E.) = { nili - pQ(x,A)]}p.(x,A) (3.2.6)
i 520 3= it&
and
p(E¥) = I [1 - p.(x,A)]. (3.2.7)
i 5=0 =

The expected net present value of J loans is then given

jal
[92]

J-1

vy o= izo V(EIP(E;) + V(B¥_Ip(B}_;). (3.2.8)

This is then used in the decision rule (3.2.9):
Accept if and only if_VJ > 0,

that is,

6 = .' (3.2.9)




to obtain a credit granting decision 8 which considers the

expected net present value due to J loans.

39




3.3 Model 3 - Single Period, Detailed Outcome

Keeping in mind the basic multi-period model of Section
3.2, we now want to more realistically describe the outcome
space for an accepted loan. The binary valued outcome of
paid/defaulted is a simplification that ignores an account's
delinquency behavior and the associated costs. Control of the
outcome of an account does not consist solely of an accept/
reject decision, but also includes the degree of collection
effort applied to a delinquent account to return it to a
paying status. This allocation of collection effort influences
the probability of default and the overall profitability of
the account.

To sufficiently model this important aspect of the pro-
cess, the simple outcome description of paid/defaulted will
be replaced by the state description shown in Figure 3.3.
For installment loans, a paid or non-defaulted loan is one
which has made a pre-specified number of payments; a defaulted
loan is one which becomes more than a given number of months
delinquent. The actual number of months delinquient until
write-off (default) is a matter of policy negotiated with a
board of federal examiners. At NSB, for example, it is cur-
rently three months for all loans except Mastercharge, which
is six months. The default probability p(x,A) is really the
probability that the account makes the transition to the de-

fault trap state during the term of the loan or the loan review
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FIGURE 3.3

Typical Payment/Delinquency State Description

accent on-time
p payment
y
applicant
X,8,L 1 month
delinquent
reject
(no further
action)
2 months
delinquent
3 months
delinguent
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period. p(g,A) can thus be considered to be a function of
the transition probabilities of the delinquent process.

We will assume that the process can be described as a
first-order discounted Markov process with stationary transi-
tion probability matrix P(x,A). That is, the delinquency
behavior (and hence the default probability) is seen to be a
function of the applicant's feature vector x and the loan
amount A. The problem of estimating the transition matrix
P(x,A) as a function of x and A will be addressed in detail
in Chapter 5. For the case study, the assumptions of the
stationarity and the first-order nature of the process will
be investigated.

Given the preceding state description, we must identify
the costs and revenues associated with the process. Costs
associated with the current policy of trying to collect de-
linquent payments can be straightforwardly obtained. For
installment loans, each occupancy of the paying state produces
a net revenue of one payment. These costs and revenues are
used as elements of a transition reward matrix R(A,L), where
the transition rewards depend on the locan amount A, and other
loan parameters summarized in L (e.g., interest rate, term,
etc.).

If T is the term of an installment loan, the expécted
net present value of the loan is given by Vd(OlT), the expecta-

tion of total discounted rewards given the account is at the
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decision state d at time t=0 with T transitions occurring
during the loan term. As outlined in Howard [30] this expec-

tation can be computed recursively using the relation (3.3.1):

Vot = § pij[rij + BVj(t+1|T)] (3.3.1)
where
Vi(tIT) = present value of being in state i after t

transitions given the process will terminate
after T transitions
i3 = probability of a transition from state i to
state j [(i,j)th element of P(x,A)]
rij = reward obtained when a transition from state i
to state j is made
B = (1 + p/l2)-l = monthly discount factor, where
o is the annual cost of capital.
If a loan account makes a transition from i to j, the bank
will earn the amount r; s plus the discounted amount it expects
to earn if the account is in state j after the transition.

These earning due to a transition to state j are weighted by

Piys the probability that the transition occurs.

Thus, given x and A we estimate P(x,A) to obtain the
required transition probability matrix. The reward matrix
R(A,L) is computed from the loan parameters. ‘Vd(OIT) is then
computed recursively using (3.3.1). The credit granting de-

cision can then be made using the decision rule:
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. 0 (reject) if Vd(OlT) <0
g = . (3.3.2)
1 (accept) if Vd(OlT) >0
It should be noted that we are assuming that current col-
lection policy remains unchanged. In fact, for each possible
post-default recovery policy and, conditional upon a given
recovery policy for each possible collection policy, we could
derive a set of optimal credit granting decision rules. In
this way we would be solving the larger joint optimization
problem of recovery policy, collection policy, and credit grant
granting policy given a fixed (over all applicants) collection
and recovery policy. This optimization problem provides a
topic for future investigation but will not be addressed in
any detail in this thesis. However, this model would provide

the necessary framework for such an investigation.
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3.4 Model 4 - Multi-Period, Detailed Outcome

Ideally, we would like to take the detailed state descrip-
tion of Section 3.3 and allow for multi-period updating in
theory, although for practical and computational reasons an
approximate solution will be necessary.

The applicant is characterized by his feature vector x
and loan amount/credit line A. Based on this information,
we estimate the transition probability matrix go(g,A), where
the subscript is used to index the macro-period. The term

macro-period will be used to indicate a review period, i.e.,

the decision to grant credit is made at the beginning of each

macro-period. The term micro-period refers to the (one month)

period of the discrete-time Markov process. For installment
loans the macro-period will be on the order of 24 months.
For revolving credit, it is quite possible (although costly)
to review accounts each month, i.e., a macro-period of one
month. In this context, the optimal setting of the review
period for revolving credit accounts can be treated as an
optimization of the trade-off between the cost of reviewing
an account and the expected value of additional information
obtained upon review.

The first macro-period transition matrix Po(gﬁA) is a

random variable and will be assumed to have matrix beta prior
ﬂo(g,A) which can be estimated by pattern recognition tech-
niques (see Chapter 5). Since the rows of P are independent,
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each row of M corresponds to a multivariate beta or Dirchlet
prior that can be estimated independent of the other rows.
This reduces to a univariate beta prior for the case where
the only two transitions that are possible are to return to
paying status or go one more month delinquent.

Conaitional upbn‘accepting the application, the account
will make T transitions within the paying/collection/default
process, where T is the number of months in a macro-period.
The transition history can be described by a transition count
matrix 51' Each time a transition from state i to state j

occurs, the (i,j)th element of F. is incremented by one. F

1 =1
is a matrix random variable with matrix beta-Whittle distribu-
tion with parameters go(g,A) and T.

The transition count matrix E, is a sufficient statistic
describing the outcome of the first macro-period. Given this
observed payment behavior of the account, we are now ready to
update this transition probability matrix go(z,A), and based
on this updated estimate, we again face the decision to grant
credit for the second macro-period. The updating rule is
M, (x,A) = M (x,A) + E; since the transition count matrix E,
is a sufficient statistic for the matrix-beta natural conjugate
prior. This updating rule is the matrix analogy of the uni-
variate beta case where r" = »' + r and n" = »' + n. Further

discussion of the distribution theory involved can be found in -

Martin [34].
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Given the relevant costs and revenues of state occupancies
or state transitions, we can compute the net present value
accruing during the macro-period for any transition count
matrix F. This computation is only approximate, although a
rather close one, since F only summarizes the number of occu-
pancies of any state and does not indicate the micro-periods
in which they occurred.

In a manner like the updating for the macro-period 1
decision, we could continue for periods 2,3,...,J. If we con-
sidered a finite number of periods, then we could in theory
(via dynamic programming) make an optimal intial credit grant-
ing decision that accounted for both the detailed payment/
delinquency behavior of the account and the multi-period
nature of the decision.

In practice, however, such a model would not be computa-
tionally feasible. We must focus our attention toward an
approximate solution which captures as much as possible the
important aspects of payment/delinquency detail while not
neglecting the importance of modeling the multi-period nature
of the process. Apart from defaults, lending institutions
are particularly concerned with the delinquent collection ex-
penses that accounts create, and should these expenses be too
great they will refuse to re-extend credit. That is, in any

given macro-period, the detailed transition behavior of the

account is quite relevant to the subsequent decision to grant
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credit. As for the multi-period nature of the process, one

hears policy statements of the type, "We're willing to take
more risk with new, particularly young customers because if
they prove to be a good risk, we have probably gained a life-
time account." A useful decision model should reflect both

these concerns.

48




3.5 Characteristics of the Models

- This chapter has presented a set of increasingly complex
models for credit granting decision making. Model 1, the
single period two outcome model, is representative of the
class of models now being employed in the credit industry.
Although the structure of this model is relatively simple,
the requirements for its implementation include the estimation
of a number of parameters, the somewhat involved computation
of outcome rewards, and the multivariate estimation of default
probability.

Model 2, the multi-period two outcome model, incorporates
the expected net present value of subsequent loans by means
of a Bayesian default probability updating rule. In addition
to the problems presented by Model 1, this multi-period model
requires the estimation of four additional parameters: the
number of loans considered, the time between locans, the re-
application probability, and the "diffuseness" parameter of
the beta-distributed default probability.

Models 3 and 4 differ from Models 1 and 2 in their de-
tailed description of the set of possible outcomes. The de-
linquency state outcome description permits a more exact
treatment of the events preceding default. This treatment
allows explicit consideration of both the costs associated
with the collection of delinquent accounts and the effect of

the term of the loan on the probability of default. These
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considerations have never been treated to any degree in the
published literature of the field. In addition, Model U4
allows for the Bayesian updating of the state transition
probabilities after each loan (or after each review period)
for the.purpose of re-evaluating the decision to extend
credit. As previously'indicated, Model 4 will not be compu-
tationally practical, and approximate solutions for a multi-
period detailed outcome description must be found. One such
solution is presented in Chapter 13. As we will discuss in
Chapter 16, Model 4 includes all of the important ingredients
for revolving credit decision-making.

The remainder of this chapter will focus on what might
be considered key properties and sensitivities of the models.
In Section 3.5.1 we present a parametric analysis of Models
1 and 2 for installment loan decision-making. In Section
3.5.2 we analyze the structure'of the-state ocutcome model
with a view toward uncovering those aspects of the process

that have most significance for the credit granting decision.
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3.5.1 Models 1 and 2

In the case of installment lending, Models 1 and 2 are
specified by the structure shown in Figures 3.1 and 3.2,
and by the following set of parameters:

P0(59A> probability of default on the initial loan

given the feature vector x and the loan amount A

A loan amount

r interest rate

P cost of capital

T loan term (number of monthly payments).

In addition to the above single-period parameters the

four multi-period parameters are:

J number of loans considered

L probability of re-application

T time between applications (in years)
ng ~diffuseness parameter for the initial

default probability.

As mentioned previously, we are assuming that collection
costs and pursuit costs and recoveries are given. Theée
costs and revenues are parametrically specified in Appendix
A. We feel that including these additional parameters will
not significantly contribute to this analysis.

Both Models 1 and 2 are described by equations (3.2.1)
through (3.2.9). The outcome rewards VO(A,E) and Vl(A,E),

are parametrically given by equations (A.1l) through (A.12).

51




We begin this analysis of Models 1 and 2 by considering these
reward equations, since the key issue is that of the tradeoff
between the relatively small non-default profit, Vl(A,E),
with large probability of occurrence and the relatively large
default loss, VO(A,Q), with lesser probability of occurrence.
That is, considering just one loan period, the expected net

present value of the loan is given by (3.1.1) as
V= p(x,A)V,(A,L) + [1 - p(x,A)]V,(A,L). (3.1.1)

Neglecting the fixed administrative costs, Vl(A,Q) is

given by (A.1) and (A.2) to be

| T N
v (A,L) = A{-l + Do HIP,] L(lrpT) 13}, (3.5.1)
P P [(1+r')"-1]
where r' = r/12 and p' = p/12 are monthly rates. Inspection

of (3.5.1) reveals that rewards are proportional to loan
amount A, and for large T, are positively related to the
ratio r/p.

VO(A,E), the default loss, is given by (A.7) through

(A.11). These formulas give the default loss conditional

upon the period in which default occurs, and then sum these
conditional losses scaled by the probability that default
occurs in that period given default occurs. This additional
operation does not make VO(A,E) amenable to the same compact
expression given by (3.5.1) for Vl(A’£>' Our analysis of
the expression for V,(A,L) reveals that the only insight to
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be gained is that it has as its components the same terms
found in (3.5.1), namely the dependence on A and r/p.

The effect of the loan term T on the outcome rewards is
less easily seen by inspection. To demonstrate the nature
of this T dependence, both VO(A,Q) and Vl(A,E) were computed
for a range of T values. Typical values wére assigned to
the other parameters of A = $2000, p = .1, and r = .135.
The results of this computation are shown below. Both V,(A,L)
and Vl(A,&) increase almost linearly with T, since the prin-
ciple of the loan earns a net interest (in the approximate

ratio of r/p) over a longer loan period.

Net Present Value

Loan Term no default default
T Vl(A,&) VO(A,E)
12 27.22 ~755
24 60.74 -677
36 93.39 -617
ug 125.14 -562
60 155.93 -509

(A = $2000, » = .135, p = .10)

Thus far, we have seen that the outcome rewards (neg-
lecting fixed administrative costs) are proporational to

loan amount A, and are approximately linearly related to the
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ratio r/p and to the loan term T. For the single period
case, the rewards for default and non-default, VO(A,Q) and
Vl(A,E) respectively, are weighted by their respective out-
come probabilities, Po(ﬁaA) and 1 - PO(EaA)a to determine the
expected net present value of granting credit. In general,
there is little that we can say regarding the manner in
which po(g,A) depends on the feature vector x and the loan
amount A. The nature of this dependence may vary from loca-
tion to location, depending, in part, on the characteristics
of the local population and the local economy. We will
leave further discussion of this issue to Chapter 4, which
considers the pattern recognition aspects of default probabil-
ity estimation.

In the multi-period case, we consider the expected net
present value of J loans applied for every 1 years. The
estimate of the probability of default is decreased after

every repaid loan according to updating rule given in (3.2.2)

nopo(g,A)
Pj(E(_,A) = _I‘{F‘_:j* Y (3.2-2)
where po(g,A) is the initial estimate of the beta-distributed

default probability with diffuseness parameter n and

03
pj(g,A) is the updated estimate given j repaid loans. De-
fault and non-default rewards are computed as described

above and then discounted by the factor %55

54



o = 23 (1+p)73T ' (3.2.5)

if the reward is obtained in period j. The reapplication
probability, %, is included in the discount factor aj. These
discounted rewards for period j outcomes are then weighted by
their probability of occurrence (pj(g,A) or 1 - pj(g,A)) to
obtain the expected net present value of J loans, ﬁJ.

The diffuseness parameter*no determines the rate at which
the default probability is updated, as seen by (3.2.2). If
n, is large (relative to j) little updating results since

n, appears in both the numerator and denominator of (3.2.2).

Of course, a large value for n, implies greater weight on

0
initial application information relative to payment perfor-
mance. If ng is small relative to j, repayment of the first

loan decreases pl(g,A) to nearly n (x,A), which will be

oPo
nearly zero if po(g,A) is typically small. The implication
here is that "first loan performance tells all'.

The parameters ¢ and 1T influence GJ through the discount
factor uj given by (3.2.5). Increasing 1, the reapplication
interval, further discounts the expected net present value
of subsequent loans. Increasing %, the reapplication proba-
bility, increases the probability of obtaining these cash
flows from subsequent loans. The effect of considering one

more subsequent loan (by incrementing J) is diminished by

the discount factor. From a decision viewpoint, if J
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(say J=5) loans have positive expected net present value,
then it is likely that J+1 loans will also have positive ex-
pected net present value, and the decision will not be al-
tered.

So as to provide insight intd the relative sensitivities
of Models 1 and 2 to these parameters, we consider the follow-
ing brief example. Parameters are initially set to what might
be considered typical values for the average lending institu-
tion. The parameter values are then varied over a range cen-
tered about these typical values for which the expected net
present value, ﬁJ, is computed from (3.2.2) through (3.2.8)
and (A.i) through (A.12). In this manner, the sensitivity
of ﬁJ to each parameter can be determined.

Typical values and the range of values considered for

each parameter are given in Table 3.5.1.
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Parameter Typical Value
po(g,A) .05

A $2000

r .135

p .10

T 24 months

2 .7

T 2 years

ng, 5

TABLE 3.5.1

.01, .09]
[$1000, $3000]
(.12, .15]

[.08, .12]

[12 months, 36 months]
[.5, .9]

[1 year, 3 years]

[.3, .71

Typical Parameter Values and Ranges

For a loan with these typical values the expected net

present valuevof considering J loans, VJ,

3.5.2. The discount factor oo

for the Jth

A

is given in Table

loan 1s also -

presented to show the diminishing effect of loans further

in the future.
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A

1 o

J Yy %
1 23.86 1.0000
2 50.48 .5785
3 67.17 . 3347
i 77.10 .1936
5 82.92 .1120
6 86,32 . 0648
7 88.29 .0375
8 89,44 .0217
9 50.10 .0125
10 90.48 .0073
11 90.71 .0ou?2
12 90.83 .o0o24
13 80.91 L0014
1y 90.95 .0008
15 90.98 .0005
16 890.99 .0003
17 91.00 .0002
18 31.00 .0001
19 91.01 .0001
20 81.01 .0000

TABLE 3.5.2
Typical Expected Net Present Values of J Loans

These typical results reveal that about 90% of the
present value is obtained in the first five loans, and
virtually all present value is obtained after 15 loans.
Thus, the credit granting decision is unlikely to be af-
fected by considering only a five-loan horizon. This is
considered to be a fortunate result, since management is
often seen to be unwilling to consider longer planning
horizons.

Table 3.5.3 presents the sensitivity of Model 1 and
Model 2 expected net present values to variations of the

parameters over the ranges given in Table 3.5.1. We should
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.point out that changing either the loan amount (A) and the
loan term (T) may also affect the default probability. The
magnitude of this effect can only be determined by investiga-
tion on actual data of the particular lending institution.
The entries in Table 3.5.3 for A and T assume that po(g,A)

remains unchanged.

Change in expected
net present value of

Typical Parameter
Parameter Value Change 1 loan 5 loans
po(g,A) .05 .01 -7.37 -10.23
A $2000 $500 9.00 27.50
r 135 .01 20.10 43.37
0 .10 .01 -20.16 -45.84
r/p 1.35 .1 15.30 34.50
T 24 months 6 months 17.40 36.60
L ) 1 - 16.40
T 2 years .5 years - -5.43
n .5 .1 - -1.63

All parameters at typical
values gives V1 and V5 as 23.86 and 82.92

TABLE 3.5.3

Sensitivity of Models 1 and 2 to Parameter Changes

These results for a typical loan suggest that almost
all of the parameters can significantly influence the credit

granting decision. The only exceptions seem to be the
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reapplication interval, 1, and the diffuseness parameter,
ng- Of all the parameters that are relevant to the decision
te grant credit, ny seems to bé the least critical.l

The results presented in Table 3.5.3 hold true over
the entire parameter ranges given in Table 3.5.1. In fact,

these marginal sensitivities are very nearly linear (R2>.98)

over the ranges given.

11n practice, n, is alsc found to be one of the more difficult

0
parameters to accurately estimate.
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3.5.2 Models 3 and Ui

Models 3 and 4 are specified by

1) the state outcome description,

2) the transition probability matrix P(x,A),

3) the transition reward matrix R(A,L), and

4) the macro-period length, T.
One typical state outcome description for installment loans
is shown in Figure 3.3 to contain the decision state, the
on-time payment state, three delinquent states, aﬁd the de-
fault trap state. In general, if a loan is allowed to become
at most M months delinquent after which it is considered to
have defaulted, then with the decision, on-time, and default
states, the state description will have at least N = M+3
states. Since we assume that the state description represents
a first order Markov chain, the minimal state description may
have to be expanded to more than M+3 states to model any
second or higher order "memory" in the process.2

The transition probability matrix, P(x,A), can be esti-
mated as a function of the applicant's feature vector and loan
amount A. In general, we can say little about this depen-

dence. For the purposes of this analysis, we will assume that

2This state expansion will probably be necessary for most

applications. For example, the case study presented in Part
II required an expansion from 6 states to 13 states (see
Section 11.1)
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either P has been so estimated or that P represents a typical
(a priori) transition probability matrix for the given state
description. The relevant elements of the transition reward
matrix, R, will be indicated as we analyze the transition
behavio:,of the process over its duration of T transitions.

We begin by considering the simplified 4 state descrip-
tion in Figure 3.5.1 below. We note that the first loan pay-
ment is, in general., not due until one month after credit is
granted. - This is shown as a one-period delay from state D
(the decision state) to the on-time state 0 (0 month delin-
quent). Since this delay is inherent in the process, we need
not include state D in the P matrix description.

Since the decision to grant credit depends on loan pay-
ment revenues, delinguency-related costs and default losses,
we might pose the following questions:

What is the probability of default, given P?

How many payments can we expect to obtain before

default, should it occur?

How many times will the account be one month delinquent?

two menths delinquent? and so on.
These questions will first be addressed in the context of the
4 state model, after which we will extend the analysis to show

the effect of adding or expanding states.




decision

Poo Pp1 0
£ = |P1g 0 P1o
0 0 1

FIGURE 3.5.1

4 State Description

63

1 month delinquent

default

o




Transform Analysis

The geometric transform or "z-transform" of a Markov

chain with transition probability matrix P is defined as3

(Pz)™ = [I - pz17%, (3.5.1)
0

gg(z) =

He~18

n

% is the n-step

where I is the identity matrix, and @(n) = P
transition probability matrix for the first order Markov
chain. The inverse transform of g?(z> is simply the n-step
transition probability matrix @(n). For the analysis of this
section, we will find it convenient and insightful to employ
transform analysis techniques.

The z-transform of the state description of Figure 3.5.1

can be shown to take the form

2
l1-z pOIZ(l—Z) Pg1P19Z
€00 y= 1 - - _ _

2 (Z)-(l—z)(lﬁaz)(l—bZT:%ﬂZ(l z) (A-pgpz)(1-2)  py,2(1-py,z)
2

0 0 1-Pyp2 Pg1P10?

where a = =[ + Vpon® + UD. D]
7-Poo 00 Pg1Pi1g
b = X[ - Vpap2 T U ] (3

3See Howard [32] for a more detailed discussion of Markov

process transform analysis.
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The denominator of (3.5.2) is presented in factored form to

show that the eigenvalues of the process are

These eigenvalues represent the geometric "decay" factors of
the multi-step transition probability matrix $(n). That is,
®(n) can be expressed as

o(n) = A A

n n
1 + (kz) éQ + (XS) é3,

1

and A, are constant

where A. is the steady-state matrix and éQ Ag

=1
matrices.

We are now prepared to answer the questions that were
posed above. The probability of default during T+1 periods is
equal to the T-step transition probability ¢02(T), where
¢02(n) is the (0,2) element of $(n). The z-transform of
¢

the z-transform of ¢02(n) is

ij(n), namely ¢%j(z), is the (i,j)th element of gg(z). Thus,

2
Pg1P10%

g _ .
¢D2(Z) T (I-z)(1I-az)(1-bz) (3.5.3)

¢02(n) can be obtained from tables of the z-transform if we

first expand ¢%2(z) as the sum of partial fractions and then
separately invert each term of the sum. Before obtaining the
partial fraction expansion we recognize that the numerator of

(3.5.3), , represents the probability of immediate de-

Pg1P12%
fault. That is, the probability that the account never makes
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a payment is Pg1Pioe If this is the case, it will enter the
default trap state 3 months afte£ credit is granted (the 3
month delay is given by the 22 term, the z-transform of a

2 period delay, and the 1 month delay from the decision state

to state 0). The inverse of ¢%2(z) can then be obtained as

0 n < 2
¢02(n) = ’ ) (3.5.4)

n n
a D
1”P01p12[(1¢a)(a—bi ¥ (l—b)(a—b)] n 22

Inspection of (3.5.4) shows that the probability that
the account will have defaulted by period n approaches 1 as
n increases (if Pyy > 0). The geometric rate at which the
default probability increases is determined by the eigenvalue
(a or b) with greatest magnitude. The definition of a and b

in (3.5.2) reveals (after some algebra) that
la] > |b] if pyg > 0

a = -b = YP1 g if Pgg * 0.

We would thus always expect a to be the "dominant component"
of the transfer function since the on-time self-transition
always has positive probability (pOO > 0).

What is the probability that the account defaults in
period n? his "first-passége time" probability, fOZ(n)’

can be shown to have z-transform
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f%z(z) = ¢%2<z>/¢§2<z>. (3.5.5)

From (3.5.2) we obtain

2
Pg1Pq1p%

g
£5,(2) (1-2z)(1-bz)

If |a] > |p| and a is nearly 1, then the inverse transform

of £%_(z) is approximately
02

fOZ(n) X pOlpléan—z, for n 2 2.

If a is close to one, the ratio

f02(n+1)/f02(n) ~ a

will be close to one. That is, the probability of default
in any one period will be approximately equally likely.
(This was indeed found to be the case for a sample of 200

defaulted loans considered in Appendix A.)

Example
The following numerical example should help to clarify

these results. Let

g .1 0
P(x,A) = P = |.8 0 2
0 o 1

represent the delinquency process where there is a .1
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probability of delinquency on any given payment, and a .2
probability of default in the next period if the account is

delinquent. The eigenvalues of the process are

The n-step transition probability to the default state,

(n) = ¢5,(n-1), and first passage time probability f_., (n)

Y42 a2
are given below for n=1l,...,10. In addition, to demonstrate
the effect of the eigenvalues on the geometric rate at which
the default probability increases, we have included the

second and third terms of ¢d2(n) as given by (3.5.4) (with

a one-period delay from state d to state 0).

n ¢d2(n) fdz(n) a" ! term b%1 term
1 .000 .000 - -
2 .000 .000 -.9986 -.001Y4
3 .020 .020 -.9801 . 0001
Yy .038 .018 -.9620 -.0000
5 . 056 .018 -.944L2 . 0000
6 .073 .017 -.9267 -.0000
7 .090 .017 -.9096 .0000
8 .107 .017 -.8828 -.0000
9 w124 .017 -.8763 .0000
10 .140 .016 -.8601 -.0000

Note that the first passage time to the default state, f.,,(n),

dz2
is nearly equal in each period. For Pgg .9 and P1g * .8,
there is one eigenvalue that dominates the transient behavior

of the process.
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State Occupancy

How many payments can we expect to obtain before default?
How many times do we expect the account to be one month delin-
quent? These questions are equivalent to asking for the ex-
pected number of occupancies of states 0 and 1 respectively.
If Uaj(T) is the expected number of times state j is occupied
(given the process starts in state d, the decision state),

then its z-transform ng(z) is given by

...g - l g
V3i(2) = 15 455, (3.5.6)

where ¢§j(z) is the z-transform of the multi-step transition

probability ¢dj(n). Using (3.5.2) to obtain ¢§j(2)’ we obtain

—g _ Z
de(Z) T (1-z)(1-az)(1-bz)

o 22 (3.5.7)
—g _ 01
Va1'2) = oy man (mee

which when inverted gives

1 JT+1 ST+ 1
V.. (T) = - + = ¢ ., (T+2)
do Py1P10 | (1-a) (a-b) (1-b) (a-b) ] Pg1P1p 942
- -
T T

= I a b _ 1 +
Vg (T) = b,  PolltTmay@E® ' T HEwY] T 5y, 0qp (THL).
For the numerical example where Pgg = .9 and Pig ~ .8 we find

de(T=10) = 8.6

vdl(Tzlo) = .8 .
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Effect of Adding Delinquent States

We will now consider a 5 state description as shown in
Figure 3.5.2, which includes an additional 2 month delinquent
state. The structure of the transition probability matrix
is similar to that of the 4 state description, namely non-zero
elements in both the first column (j»0 transitions) and the
upper diagonal (Jj»+j+1 transitions). This structure leads to
an analogous z-transform of ¢d3(n), the multi-step transition
probability from the decision state d to the default trap

state 3, namely
/

4
Pg1P19Po32
(1-z)(1-az)(1-bz)(1-cz)

g -
¢d3(z) = s (3.5.8)

where a, b, ¢ are the non-unity eigenvalues of P. As before,

the numerator represents the probability, that the

Pg1P12P23>
account never makes a payment and defaults four months after
credit granting (zq delay term).

The probability of default in T periods will be approxi-

mately
aT—l
%q3{™) = 1 - Pg1P1yPr3 Iy (a)(asey for T 2 3, (3.5.9)
where a is the dominant eigenvalue (closest to 1). If Pgg =
+85 Pyg 85 Pyg = .7, then a = .9945, The other two eigen-

values are the other roots of the characteristic polynomial

[;—gz[. In general, if thewre are M delinquent states
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o

decision

1 month delinquent

2 months delinquent

default
Pog Po1 0 0
Pio 0 P12 0
Pog 0 0 Po3
L0 0 0 1]

FIGURE 3.5.2

Addition of a Delinguent State
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(resulting in a (M+2) by (M+2) P matrix with non-zero upper-

diagonal and first column), then :|I-Pz| has the form

M+1

|I-Bz| = (1-2)(1-pgy,z ).

2
“Pg1P10%2 "+ "Pg1P12"t*PyM-1,MPM, 07

This result follows directly from a "flow graph" analysis of
the process. We alsb know that the number of positive real
roots can not exceed the number of variations in the signs of
the coefficients. There is only one variation in the sign of
|I-Pz|/(1-z) so there is only one positive real root. If M
is odd there will also be one negative real root and M-1 com-
plex roots. If M is even there will be one positive real root
and M complex roots. The complex roots occur in conjugate
pairs and determine the magnitude and frequency of oscilla-
tions in the multi-step transition probability matrix $(n).
The negative real root represents a decaying oscillation with
periodicity n=2.

To demonstrate that the positive real eigenvalue domi-
nates the delinquency behavior, we start with the process of
Figure 3.5.1 (M=1 delinquent state) and then add states of
increasing delinquency (M=2,3,...). We assume that as we
add states, the transition probability from the last delinquent
state to the default state increases by .1. That is, we take

‘l,

.2, = .3

Pjg s «++s Pgo T .7. This example

gives the eigenvalues shown in Table 3.5.4 for different

Pg1 P1g

numbers of delinquent states. Note that the (non-unity)
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M
number of

delinguent states magnitude of complex
(excluding default) real roots conjugate pairs

1 .9815 -.08

2 .9946 .12

3 .9979 ~.15 .16

4 .9989 .19 .18

5 .9994  -.21 .23 .21

6 .9996 .26 .24 .23

TABLE 3.5.4

Typical Eigenvalues of the Delinquent Process
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positive real eigenvalue (Az) is very nearly one and so domi-
nates the transient behavior of the process. Equation (3.5.9)
implies that the default probability can be approximated by

. T-1
(A,)

(T) = l - p p "'p -
01P12 MLMAL TI=X, T TOh =R ) e s (R Ry )

Pa,M+1

for T 2 M+1.

This result provides computationally efficient means of
computing the default probability in terms of the "direct
transmission" from state d to M+l (i.e., p01p12"'pM,M+l)
and the eigenvalues AQ""’AM+2' Of course, for the credit
granting decision where we estimate P(x,A) for each applicant,
we would have to resolve for the dominant eigenvalue for each
applicant. Computationally, it will prove more economical to

compute the T-step transition probability of default recur-

sively from Q(E,A) using the relationship

@(n+1) = 2(n)B(x,A). (3.5.10)

Effect of Expanding States

We now consider the effect of expanding the state de-
scription to remove second order memory. Consider the ex-
ample of Figure 3.5.3 where the on-time state has been ex-
panded as two states, a "never delinquent" state 0 and a
"previéusly delinquent" state 1. The expanded transition

probabilitiy matrix P' can be partitioned as shown in

Th




Ppo
Pi1
decision
0,1: on-time
1 2 1 month
delinquent
3: default
™ 1 [~ 7
Pog! 0 Pp2 0 Pgg! O Pgp O
._...__.: ____________________ Jl ________________
0 1 P13 Py 0 01
£ i 0 ) E P
0 | Poq Py3 0 | £
| }
| 0 ! 0 0 1 | | 0 ! |

FIGURE 3.5.3

Expansion of the On-Time State
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Figure 3.5.3.

as

This partitioning implies that the determinant
[;—g’zl can be expressed in terms' of the un-expanded process

l;—f:'zl (1"POGZ)|£’£21-

Hence, an additional positive decay factor of Poo affects the
transient behavior of the process.

The z-transform of the multi-step default probability
¢d3(n) is

3
PanPraz (1-p,-2)
68, (2) - 0223 11

(T-p,2) 11-2z]

3
PgyPp32 (1-Pyq2)
(1-pooz)(l—az)(l—bz)(l-z)

where a

1
5Ly * VP

1
5lpyq -

dg3(n) =
PrenDola. * 0paa = asal - a,b]
0272370 1700 2 3
where Qgse

n =z 3.
+ 505

are constant functions of a, b, Pgo» and Pyj-
For this case, the dominant components of the transient

process are P, and a, where a depends on P17 and to a lesser
degree on Psq-
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Summary

This section presents an analysis of the credit granting
decision models that considers the important structural ele-
ments and parameters of each model. Section 3.5.1 considered
the key parameters of Models 1 and 2 as they affect the esti-
mation of expected net present value. The parameters were
all seen to be important for this estimation, with the re-
application interval and the diffuseness parameter of the
default probability distribution being the least critical.

Section 3.5.2 considered the sfructure of the Markov
process description of delinquent payment behavior. A number
of aspects of the process were investigated, including the
probability of default, the period in which default occurs,
and the occupancy of delinquent states. Transform analysis
techniques were emﬁloyed to determine the relationship of
these statistics to the estimated transition probabilities.
Finally, the analysis was extended to demonstrate the effect
of including additional delinquent states, as well as the
effect of expanding the state description to remove second

and higher memory in delinquent payment behavior.
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Chapter &

PATTERN RECOGNITION TECHNIQUES FOR
DEFAULT PROBABILITY ESTIMATION
The two-outcome models require the estimation of the

probability of default, p(x,A), as a function of a loan ap-
plicant's feature vector x and the amount of the loan, A.
Multivariate estimation problems of this sort frequently
occur in "pattern recognition" or claésification problems,
and consequently research in the pattern recognition field
has produced a number of techniques or algorithms that are
useful for default probability estimation. In this chapter
we will review several of these algorithms and attempt to
provide some insight into their essential similarities and

differences.

4.1 Problem Statement and Complexity Considerations

Let p(8|x) be the probability that a loan applicant
with feature vector x is from class 6§ (e.g., 6=0 for bad

loans, 6=1 for good loans). Bayes' theorem gives
p(a|x) « p(x|6)p(e). (4.1)

That is, p(8|x) can be estimated by first detérmining the
class probability density of x conditional on 6, p(x|8),
and then scaling that density estimate by the a priori

probability of class 6, p(8). This result suggests that we
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focus on techniques for estimating p(x|6), and independently
resolve the issue of a priori probability determination
(this issue is addressed in Chapter 9). The proportionality
constant in (4.1) is simply

) p(x|8)p(o).
0

Complexity Considerations

The choice of a pattern recognition algorithm for esti-
mating p(x|08) should depend, to some degree, on the "complex-
ity" of the probability density function itself. This con-
cept of complexity and its relation to probability density
estimation will be clarified in the discussion that follows.

Consider the following three hypothetical pattern rec-
ognition problems characterized by the densities p(x]|6)
shown in Figure 4.1. To keep the example simple, we assume
equal a priori probabilities and equal misclassification
costs. The "well-behaved" unimodal densities of Figure
4.1(a) can be considered less complex than the multi-modal
densities of Figure 4.1(b). However, while multi-modal
densities are more complex, it is not the density complexity
per se that contributes to classification errors. For
example, the densities of Figure 4.1(c), although exhibiting
more modes than those of Figure 4.1(b), present little if

any additional problems for deciding class membership.
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p(x]6=0) p(x|6=1)

I

(b)

[=

(c)

FIGURE 4.1

Densities of Varying Complexity and Interleavedness
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This is because the additional modes occur away from the

decision boundaries and do not increase the interleavedness

of the densities; that is, the number of regions in X space
needed to specify the decision rule is not increased.
These qualitative notions of individual density com-

plexity and relative density interleavedness are considered

to be important factors in the choice of pattern recognition
algorithms.l Unfortunately, we never have knowledge of the
densities themselves, but instead have only a set of samples,

.): i=1,..,N}, for which we know the class membership,

{(x;,6,

ei, and the feature vector §i.2 The samples provide the
input for a pattern recognition algorithm whose output will
be estimates of the class densities.

If the densities p(x|6) are complex and we are unsure
of their degree of interleavedness, we will want to use an
algorithm that has the capacity for estimating complex
probability densities. This, of course, assumes that we

have a sufficient number of samples to distinguish density

1Personal communications with Dr. Thomas M. Cover contri-

buted greatly to this discussion of complexity considerations.

2We may not even know all of the components of the feature
vector. For example, the marital status of a loan appli-

cant may never have been recorded.
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complexity from sampling noise. The number of samples
required increases with the number of features being con-
sidered. Without further research, we can only speculate
on how many samples constitute a sufficiently large data
base for a particular algorithm.

For the credit granting problem, these uncertainties
of complexity, interleavedness, and sample size requirements
suggest that we try a number of pattern recognition algo-
rithms of varying complexity. A comparison of the results
obtained will provide the best indication of which algo-
rithm most accurately captures the information about 6 con-

tained in x for the given data set {(gi,ei)}.

82




4.2 Pattern Recognition Algorithms

Four different pattern recognition techniques will be
used in estimating the probability default p(6=0|x). The
techniques are:

K-Nearest Neighbor Rules (K—NNR),3

Sebestyen and Edie's algorithm (S & E).,.l+

Discriminant Analysis,5 and

Multiple Regression.

The applicability of each algorithm for probability densi-
ties of varying complexity will be discussed, as well as any

computational considerations for implementation.

K-Nearest Neighbor Rule (K-NNR)

Let d(x,y) be a metric by which we measure the
"similarity" between two feature vectors x and y. For
example, the standardized Euclidean metric is

2
= =V, . 4.2
d(x,y) ]Z[(xj y])/cj] , ( )

where Uj is the standard deviation of the jth feature.
Suppose we are trying to estimate p(gle) at some point

x in feature space. K nearest neighbor estimation suggests

See Cover [30]1 and Patrick [371, Chapter k.
See Sebestyen and Edie [38].

See Anderson [26]1, Chapter 6, and Patrick[37], Chapter 3.
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that we find the K samples of {(gi,ei)} that are '"nearest"

to x, i.e., those K samples with minimum d(x,x;). Let kg

be the number of samples from class § contained in the toler-

h

ance region about x out to the Kut nearest neighbor. A

local estimate (in the neighborhood of x) for p(x|6) is then
p(x|0) = kg/ng, (4.3)

where Ny is the total number of samples from class 6. The
proportionality constant is simply the volume of the toler-
ance region about x. Since this constant is the same for
all classes, it vanishes in the computation of p(G]E) by
Bayes' theorem.

If we use K=1 (the 1-NNR), the estimate of p(8|x) will
be either 0 or 1 depending on the class of the sample nearest
X. Because p(elg) is determined by only this single nearest
neighbor, the 1-NNR can be considered a very local probabil-
ity estimation technique. If we use a large value of K
(large relative to the sample size), ﬁ(eli) will be influ-
enced by samples more distant from x. This might be con-
sidered a more global density estimate, where in the extreme
case of K=N we obtain simply the a priori probability p(8).

If p(gle) is a very complex density we would want to
choose a small value of K so as not to "over-smooth" the
estimate P(x[6). On the other hand, if p(x|8) is not very

complex (e.g., a normal probability density function) a




larger value of K will pfoduce a more accurate estimate
ﬁ(gl@) by averaging out the sampling noise in the region
about x.

The K-NNR is easily pfogrammed, but unfortunately it
is computationally slow. To obtain ﬁ(gle) we must compute
d(g,gi) for all training samples (§i,6i), i=l,..,N and then
find the K samples with the smallest values of d(g)gi).
This procedure is particularly slow if the data set is too
large to fit in core memory and must be accessed from disk
storage.

Performance of the K-NNR for various values of K pro-
vides insight into the complexity of the class densities
p(x|6). TFor this reason, it serves as an appropriate tool

for exploratory data analysis.

Discriminant Analysis

Discriminant analysis algorithms assume that the
samples are normally distributed in feature space with dif-
ferent class means Mg - If the covariance matrices for each
clasé are assumed to be equal, that is Zg = L, then the
technique is called "linear discriminant analysis" since
the decision boundary reduces to a hyperplane in feature
space. If the covariance matrices are unequal, then the
decision boundary is a quadratic form in x, and the tech-

nique is referred to as ''quadratic discriminant analysis."
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The probability density functions for both cases given
below, where p, is the mean vector for class 6, Ly is the
covariance matrix for class 6, and I is the joint covariance

matrix if both classes have equal covariance.

Linear Discriminant Analysis: 2, = Z; = L

-1/72 1

px[0) « |27 Pexpltx-ug) L (xpg) /2] (bt

Quadratic Discriminant Analysis: L, # L

0 1

p(x|6) « lzel"l/z

expE(x-pg) 2ot (x-pg) /2] (4.5)

The constant of proportionality is (2m)"T/ 2

where r is the
dimensionality of the feature vector x.
In order to implement these techniques, we must estimate

N - 3
class mean vectors ue = me, class covariance matrices

[l{ne)3

o = 2g°

density estimate ﬁ(gle) can be obtained using (4.4) or (4.5).

fiea>

and joint covariance matrix = 8. For any x, the
By applying Bayes' theorem we‘obtain the class probabilities
p(o]x).

Discriminant analysis provides optimal density esti-
mates if the samﬁles from each class are actually normally
distributed. If the dehsifies arevonly apprpximately normal
(i.e., not very complex and roughly unimodal) discriminant
analysis may still provide relatively good classification

results. Since py and Zg (or L) are estimates for all of
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feature space, discriminant analysis can be considered a
global estimation procedure. The algorithms are easily
programmed, and density estimates can be computed with

little more than one matrix multiplication.

Sebestyen and Edie's Algorithm (S & E)

We have reason to believe that the class densities are
perhaps more complex than the multivariate normal densities
assumed by discriminant analysis. Market researchers tend
to identify several different market segments of the con-
sumer loan population. These segments might be labeled
young renters, homeowners, retired persons, and sc forth.
The implication here is that clusters of loan candidates
exist in feature space that are somewhat homogeneous with
respect to expected loan payment behavior. If these clus-
ters or market segments do exist, the densities p(x|6) may
be more compléx than unimodal multivariate normal densities.
It would be desirable to identify these clusters in feature
space using a clustering technique, and then estimate a
density pm(§|e), where m is the cluster index. To cobtain
p(ﬁle) we would find the cluster to which x is '"nearest"
and use that cluster probability density pm(§|6).

Sebestyen and Edie [38] suggest such a clustering pro-
cedure that "grows" clusters in x space, and simuitaneously

updates cluster densities pm(ile). Training samples of
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known classification (6) are introduced sequentially and
cluster locations, shapes, and sgzes are adaptively deter-
mined. The introduction of a new sample point that is
"close" to an existing cluster is identified with that
cluster. The cluster center is then updated to reflect the
influence of the new ﬁoint x. If S is the center of the
mth cluster near which x falls, and n. is the number of

points previously falling into the cluster, then the updated

cluster center becomes

+ x).

el = (n_c
mn =

In a similar manner the cluster size and shape (the variance
of the points in the cluster along each feature dimension)
are also updated.

Training samples that fall far enough away from exist-
ing clusters are used to define new clusters Qith preset
initial variance. Some training samples are determined to
fall within a '"guard zone'", that is, neither too distant
nor too near existing clusters. These samples are stored
until the clustering becomes more well-defined by the intro-
duction of the next batch of samples. At that time they
are re-introduced and are more likely to be included in a
then existing cluster. At the end of the training process
any saved samples are forced to merge with the nearest clus-

ter. Clusters with only a few points can then be merged
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with nearby clusters to reduce the complexity of the proba-
bility density estimate.

This pattern recognition algorithm has the interesting
capability of variable complexity. That is, depending on
the preset initial variances chosen, "guard zone" thresholds,
and post-training cluster merging, probability density esti-
mates of varying complexity can be obtained. In one extreme,
if we allow only one sample per cluster, the algorithm func-
tions like the 1-Nearest Neighbor Rule. On the other ex-
treme, if we set the initial variances so large that all
samples of a class fall within one cluster, we in effect
have the quadratic discriminant algorithm (if distance is
measured using the quadratic metric d(x,y) = (g—z)téél(i—z)).

The S & E algorithm has the disadvantage of being quite
sensitive to these initial parameters, and requires that some
degree of art be exercised in its application to obtain
density estimates of intermediate complexity (not too many
but not too few clusters). Once reasonable ranges of these
initial parameters are found, however, it has the advantage
of &ariable complexity, reduced storage requirements rela-
tive to K-NNR techniques, and reasonably fast density esti-

mation for samples of unknown classification.
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Multiple Regression

Multiple regression techniques can also be used to
obtain probability density estimates. If {(3{_i ei)} is a set
b

of training sample, then a linear model of the form

- t
6., = by *+bx, te ' (4.6)

is solved for minimum mean-square estimates of the coeffi-
cients bO and b. Given these estimates, we can obtain a

"score", S(x), for any vector x as

S(x) = by + b'x. (4. 7)

The training sample is then used with (4.7) to obtain the
set of observations {[s<§i>,ei]}. Using this scoring
dimensionality reduction, ﬁ(gle) reduces to p(S(x)|6),
which can be obtained from the empirical distribution of
S(gi) constructed from those samples for which 6, = 6.
Because of its simplicity of computation and the

familiarity of most researchers with regression analysis,
this technique is frequently used to develop linear credit
scoring formulas of the form S = b, + gtzg This form
represents a linear transformation of feature space to a

scalar score variable. Our experience (see Section 9.2)

indicates that this score is approximately normally
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distributed for each class.6

Regression analysis bears a close resemblance to dis-
criminant analysis in its linear transformation of feature
space and approximately normally distributed score. Both
techniques are suitable for estimating probability densities

p(x|6) that are not complex.

P

6Keeping in mind the Central Limit Theorem [of statistics],

this might reasonably be expected since score is a weighted

sum of a number of features. In fact, if x has multivariate
normal distribution so will S since it is a linear trans-

formation of x.
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4.3 Evaluating Algorithm Performance

This chapter presents a number of pattern recognition

algorithms of varying comlexity that will be used to estimate
the a posteriori probability p(6]|x) that a sample with fea-
ture vector x is from class 6. This probability then becomes
the input to a decisidn rule B[p(6|x)] with output 6, where

8 can be considered a decision-oriented prediction of the
outcome € for the sample x. For example, D[+] may be the

maximum a posteriori probability decision rule of the form

& = DIp(o|x)] = max[p(8|x)]. (4.8)
6

Or, as indicated in Section 3.2, it could be the multi-
period credit granting decision rule given by equation
(3.2.9).

Let R(e,@) be the reward earned if the decision 8§ is
made and the actual class is 6. We would like to choose a
pattern recognition algorithm that gives the maximum ex-

pected reward. Letting Rk

by using the kth pattern recognition algorithm, we would

be the expected reward obtained

chose the algorithm with maximum ﬁk provided this expected
average reward is significantly greater than that obtainable
by the other algorithms. If we actually train the set of
algorithms on one data set and evaluate them on another

data set we will be able to compute average rewards ﬁk.




However, if we repeat the experiment using a new data set

we may get different average reward estimates due to sampling
variations. This implies a degree of uncertainty about any
assertion that one particular algorithm will perform better

than the rest on independent data. Before going to the

expense of implementing one of the algorithms as part of a
decision rule, we should want to "statistically test" the
validity of this assertion of superior performance. Two
tests are proposed below.

Suppose that N samples of known classification are
available. Randomly select N/2 samples and label them data
set 1, and then label the unselected samples data set 2.
Train eaéh of the K algorithms on data set 1 and then
compute ﬁﬁZ)
set 2. Then "criss-cross" the data sets, training on data

set 2 and testing on data set 1, to obtain ﬁél), the average

, its average reward on the samples of data

reward on the sample of data set 1. This procedure gives
two sample performance measures for each algorithm, which
can be used to test the assertion of superior performance
by one particular algorithm.

For one test, we can define the mean reward

= _ 1 =(1) =(2)
Rk~-2—[R + R ] (4.9)

and the reward range

1]

0, = IR - r(2)) (4.10)




for each algorithm. Experimental evidence would suggest
choosing the pattern recognition algorithm with maximum ﬁk.
However, if this mean reward exceeds the second greatest
mean reward by only a fraction of either reward range, we
could not confidently predict that it will outperform the
second ranking algorithm on another set of samples.

A second test that might be performed is an Analysis
of Variance7 to test the hypothesis that there is no signifi-
cant difference among the performance of the set of algo-

rithms. Formally stated, we can test the hypothesis

To apply the analysis of variance test, we will want to use
two blocking factors, one for each measure ﬁil) and §£2),
and K treatments, one for each algorithm. The F-statistic

can be computed for treatments to test H This F-statistic,

0"
with (K-1,K-1) degrees of freedom, will call for rejection
of HO if its value is significantly large. If H0 is re-
jected, we can assert that the algorithms do not have the
same mean performance.

We should peint out, however, that we are not fully

justified in using this F-test, since an Analysis of Variance

assumes that the reward measurements have the same normal

7See Mendenhall [351].

9L




distribution for each algorithm. We know that this assump-
tion will be violated to some degree. A complex algorithm
applied to small sample sizes is likely to give more varied
rewards from data set to data set than is an algorithm that
is less complex. Nonetheless, this analysis may provide
some insight into the hypothesis of equal ralgorithm per-

formance.
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Chapter 5

PATTERN RECOGNITION TECHNIQUES »
FOR TRANSITION PROBABILITY ESTIMATION
The detailed state outcome model requires the estimation
of the ffansition probability matrix P(x,A). All Markov pro-
cess models require transition probability estimation, but,
in general, the transition probability matrix is not considered
to be a function of a set of variable features. To the best
of this author's knowledge, the structure of this estimation
problem is not addressed in the published literature of the
field. This chapter will demonstrate that this matrix proba-
bility estimation problem is solvable using general pattern
recognition techniques. In addition, a linear discriminant
technique will be shown to yield a computationally efficient
means of estimating the transition probability matrix of a
Markov process for which it is known that at most two proba-

bilities in each row are non-zero.

Problem Statement

Let B(x) be the transition probability matrix of an N-
state discrete-time Markov process. Assume that P(x) is first-
order and stationary for all x g X c EY. Let pij(g) be the
(i,j)th element of P(x).

Let g(g) be an estimate of P(x), with ﬁij(x) an estimate

~of pij(ﬁ)' We wish to develop a technique for obtaining P(x)
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from a sample {(§k,§k): k=1,..,K}, where X is the feature

vector of the kth sample, and s, is the corresponding state

=k
occupancy vector; that is, Sy is a vector whose nth element

is the state at which the kth sample was observed to be at
time n. The number of elements in 8y depends on the number

of periods the sample was observed. This number may vary from
sample to sample.

Let c§§) be the number of state i to state j transitions

observed for the kJCh sample. Let

and

Result 1
pij(ﬁ) is independent of pkl(i) for i#k and all j and %,

1,9,k,8 = 1,..,N.

SinceP(x) is assumed to be first-order for all x, its

rows are independent.

This result allows us to consider P(x) row by row, so
that instead of a single N x N estimation problem we have N
independent N x 1 estimation problems. We will show below

that this problem can be transformed into N N-class pattern
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recognition problems. To help make this transformation more

clear, we make the notational correspondences:

m

P-.

i3 p(ei=3)

p..(x)

33 p(6i=j|§). (5.1)

That is, the columns of row i are identified with class indices
6, = 1,..,N. The probability associated with column j of row

i then becomes the probability that the row i class index Gi
takes the value j, with this probability a function of the

feature vector x. This identification leads to the following

result.

Result 2

ol
—~
| X
s
1

= P(ei:jlﬁ)

f

p(§!6i=j)p(6i=j)

R

p(glei=j)pij (5.2)

where p(6i=j) = p; is simply the a priori transition proba-

]
bility from state i to state j.

Proof:

Result 2 follows directly from (5.1) and Bayes' theorem.
Based on Result 2, an estimate for pij(g) is

Py3(x) = p(§I6i=j)pij. (5.3)
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Given a reasonably large sample we can estimate the a priori
transition probabilities P 3 by the relative frequency maximum

likelihood estimate

(5.4)

ok
Il

~

0

The quantity §(§|6i=j) is the estimate of a multi-variate

probability density that can be obtained as follows.

Obtaining §(§|6i=j)

For each sample (§k,§k), k=1,..,K let wk(i,j) be the
number of state i to state j transitions‘givén'by Sy- Then
consider % to be a point in feature space with "weight"
wk(k,j), or equivalently consider there to be wk(i,j) points
in feature space at position X - Given this set of weighted
samples, §(§l6i=j) can be obtained by any of a number of pat-
tern recognition (multivariate probability density estimation)
techniques. One such technique, namely linear discriminant

analysis, will be illustrated below.

Estimating P(x) Dby Linear Discriminant Analysis

Linear discriminant analysis provides a computationally
efficient means of estimating p(§|6i=j) which can be used in
the manner described above to obtain P(x). This technique
assumes that for given i and j, x is normally distributed

with mean vector uij and covariance matrix éi' That is,
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= t.-1
p(ﬁ(ei—j) o exp[—l/2(§—gij) ;i (E—Hij

)] (5.5)

Given the set of "weighted" samples {gk,wk(i,j)} we can

obtain estimates m.,. and S. for u.. and L. respectively.
—i3 =i =ij =]

Given these estimates we can use (5.5) to compute §(§{61=j)

and then use this value in (5.3) to obtain ﬁij(ﬁ).

If the transition matrix P(x) is known to have at most
two non-zero elements in each row, we can further develop this
estimation procedure to produce a concise computational formu-
la. Let jl and j2 be the non-zero columns of row i. Since
the matrix P(x) is stochastic, pi,jl(f) =1 - pi,jz(g).

If we now take the natural logarithm of the ratio of

P (x) to pi,jQ(E) we obtain, using (5.3), (5.4), and (5.5)

i,j1 =

and simplifying,

ln[pi’jl(g)/pi’jz(g)] = (mi,jl Qi’jz)téglE
- Fmy 4 - My ge) 85 my sy om0 Inleg si/c; 5,0 (5.6)
Defining
ay = (mg sy - m; 5087t (5.7)
by = -gmy gy - omy 5y 8 Ly ¢ Bi,i2° (5.8)

we obtain
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t
1 .o .o = d.x + b, + .. - = Q..
n[pl,jl(ﬁ)/pl,j2(§)] d;x + b ln(cl’:l /01,32) Lie (5.9)
Since pi,jl(z) + Pi,j2(§) = 1, it follows that
24
1
C Lo (x) = 2 5 Dy 2o (x) = — 5.10
pl,jl o 1 + ejz'i 3 plgjz _}S) l + R i ( 1 )

With N states and x an (rxl) vector, a computer program
that will estimate these probabilities must store the follow-

ing numbers of parameters for each row:

dF r
=i
.+ .. ..
bl ln(cl,]l/clajz) 1

r+l1 total parameters.

Thus storing N(r+l) parameters and performing slightly more
than one matrix multiplication are all that is required to

obtain P(x).

To summarize this procedure, P(x) is estimated row by
row. For row i, the set of weighted samples {§k,wk(i,j)} is
used to obtain thg sample mean vectors Eij’ 3=31,32 and joint
sample covariance matrix éi' The ith row discriminant vector

(bi,g§> is then computed from m.

My 5p0 mi o490 and S. using (5.7)

and (5.8) For any choice of feature vector x and a priori

transition counts 5,31 and c. the transition probability

2 15j2’

estimates ﬁi jl(g) and B, j2(§) are determined from (5.9)
M

b
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and (5.10) by only r+1 multiplications and one exponentiation,

where r is the number of features.
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PART IT

APPLICATION TO INSTALLMENT LOAN CREDIT GRANTING

Part II presents the results of an application of the
decision models developed in Part I. The analysis presents
results obtained from installment loan data provided by
The National Shawmut Bank of Boston. This céSe study serves
as an outline of the steps to be followed in implementing

the set of decision models.
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Chapter 6
INTRODUCTION TO THE CASE STUDY

The models presented in Part I are applied to actual
case histories of installment loans.. The purpose of the
case study is threefold. First, the application serves as
an outline of the modeling and estimation problems that are
encountered in the course of an application of the models.
Second, the empirical analysis provides additional insight
into the nature of the decision models. And third, the
successful application of the models to actual data demon-
strates their value for consumer credit decision making.

Section 6.1 outlines the requirements for the practical
application of the models for real-time decision making.
Particular attention is paid to the multivariate estimation
problems that are inherent in fhe model descriptions.

The data for the study were supplied by The National
Shawmut Bank of Boston (NSB). 'A description of the data
sets is given in Section 6.2. The decision models themselves

were implemented on NSB's time-shared computer system.
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6.1 Requirements for Application

The process of making a credit granting decision requires
that consideration be given to

1) outcome rewards,

2) outcome probabilities, and

3) other parameters of the decision model being used.
In the case of Models 1 and 2, outcome rewards are given by
the expected net present values of default and non-default.
The computation of fhese rewards for the installment loan
decision 1s outlined in detail in Appendix A. These rewards
depend on a number of loan parameters (e.g.,>loan term, inter-
est rate, etc.) and must be computed for each decision.
Decision rules that use the same average reward values for
all decisions result in an unnecessary loss of information
about individual loan applicants. This is often the case
with decision rules of the "credit scoring" variety.

Outcome probabilities are estimated as a function of
the applicant's features or characteristics. The determina-
tion of which features are most relevant for predicting the
outcome is often referred to as "feature selection". One
method for selecting a set of features is presented in
Chapter 7. TFeature selection requires a data base consist-
ing of loans whose outcomes are known. For each loan in the

sample, the value of each potentially relevant feature must
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be ascertained.l

Once the feature set is selécted, default probabilities
can be estimated by any of a number of multivariate estimation
techniques. As illustrated in Chapters 8 and 8, this estima-
tion procedure reqpires a "training data set'" whose samples
consist of loans whose outcome is known and for which the
selected feature values are recorded. In order to test the
reliability of the default probability estimates, an inde-
pendent "test data set" is also required. Typically one set
of data is collected and then randomly divided into training
and test subsets.

The other parameters that must be considered include
the a priori probability of default, and in the multi-period
case, the reapplication interval, the reapplication probabil-
ity, the number of loan periods, and the diffuseness parameter
of the Bayesian probability updating rule. A discussion of
the relative importance of these parameters was given in

Section 3.5.

11n practice, some of the feature values may be missing.
This poses no real conceptual problems for either feature
selection or outcome probability estimation. The existence
of unknown feature values does, however, require that all
statistical routines be modified to account for this possi-
bility.




In the case of Models 3 and 4 outcome rewards take the
form of a delinquent state transition reward matrix. Chap-
ter 12 illustrates how these rewards are determined for in-
stallment loans. Chapter 16 discusses the important con-
siderations of the reward matrix for revolving credit instru-
ments. |

Outcome probabilities are described by a transition
probability matrix estimated as a function of the applicant's
features. As in the binary outcome case, training and test
data sets are required. It is no longer sufficient to know
only the default or non-default outcome of the loans in the
training data set. As presented in Chapter 5 and illustrated
in Chapter 11, the multivariate estimation of transition

probability matrices requires that we know actual transition

counts for each loan sample. However, since Models 3 and 4

assume that the outcome states represent a first-order sta-

tionary Markov chain, actual transition histories are required

to verify that the proposed state description satisfies these
assumptions. The necessity for actual transition histories
is made clear in the analysis of Sections 11.1 and 11.2.

The other parameters required by Models 3 and 4 include
the a priori transition probabilities (Section 11.3), the
discount factor, and a specification of the macro-period
length and number Qf macro-periods to be considered (Chapters

12 and 13).
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6.2 Data Description

»

Three sets of data are available for testing the
credit granting decision models. The first set of
data, which will be labeled Data Set A, was collected
in 1970 for use in developing NSB's credit scoring
formula. The second éet of data, Data Set B, is a
payment history record from July, 1972, to January,
1974, of a sample of installment loan accounts. The
third set, Data Set C, is a complete sample from appli-
cations that were processed from June, 1972 to August,

1972.

Data Set A

Data Set A, collected in 1970, includes 672 de-
faulted or "bad" loans and 1009 non-defaulted or "good"
loans. The bad loans are a 100 percent sample of all
loans that defaulted from 1967 to 1969; the good loans
represent a random sample of accounts tﬁat did not
default during the same period. Twenty-~two features
(or variables) are recorded for each loan in the sample.
The NSB credit score was also computed and becomes the
twenty-third feature. A brief description of each
feature is given in the following Table 6.1 with more

detailed descriptions given in Appendix B.
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10.

11.

12.

13.

4.

15.

16.

17.

18.

19.

20.

21.

22.

23.

TABLE 6.1

List of Features in Data Set A

Occupation

Years at Occupation
Loan Amount

Term

Purpose

Marital Status

Age

Dependents

Own/Rent

Years of Residence
Income

Mortgage/Rent

Total Debt

Telephone

Years at Former Residence
Years with Former Employer
Other Income

Checking

Savings

Auto

Total Monthly Payments
Ability to Pay Ratio

NSB Credit Score
109
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Unfortunately, many of the sample loans contain
missing observations in one or more of the features.
When a particular feature was not known (such as
years at former residence), it has been coded with a
value of 999 so that all statistical routines can
process it accordingly.

Data Set A is used in estimation and evaluation
of the pattern recognition algorithms used in conjunc-
tion with Models 1 and 2. It was randomly divided
into two subsets of equal size, Data Set Al and Data
Set A2. Because the nearest neighbor pattern recogni-
tion techniques require equal numbers of bad and good
loans, and only 672 bad loans are available, both data
subsets contain 336 bad loans and 336 good loans.

It is interesting to note that the feature set
includes an assortment of feature types. For example,
feature 9 (own/rent) is a 0/1 feature. TFeature 1
(occupation class) is a grouped variable with a small
number of discrete values. And feature 3 (loan amount)
is an approximately continuous variable. This combina-
tion of feature types makes for an interesting appli-

cation of general pattern recognition techniques.

116




Data Set B

Data Set'B was collected for the purﬁose of test-
ing Models 3 and 4. The delinquency behavior of a
sample of NSB installment loan accounts was monitored
from July, 1972 to January, 1974. The sample includes
any loan granted after June, 1972 for which credit
scoring information was available (i.e., for which the
demographic features listed above were previously
recorded). In July, 1972, approximately 15 percent
of all loans entering the Collection Department were
being monitored. By January, 1974, with more out-
standing loans having been made after June, 1972, well
over 50Apercent of the loans entering the Collection
Department were being monitored.

These manually collected payment history records
were placed into a computer data file and transformed
into a state occupancy history for each account, with
the account number retained as a key field for each

record.

For the same set of accounts, 15 credit scoring
variables, keyed by the account number, were contained

in separate data file. These features were recorded
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and stored at the time the loan was granted by NSB's
installment loan management information system. These
15 features, essentially a subset of the features of

Data Set A, are listed in Table 6.2.




10.

11.

12.

13.

1y,

15.

TABLE 6.2

List of Teatures in Data Set B

purpose group

age |

telephone

occupation risk class

net monthly income

years employed

former employer

other monthly income
checking/savings account
auto

owner: mortgage x years of residence
renter: years of'residence
ability to pay

loan amount

loan term (months)
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A sort-merge operation was then performed by
matching account numbers from tﬂe state—occupancy'
history file and the credit scoring feature file to
produce a merged file with both sets of information.
The resulting file contains 3956 delingquent loan
accounts.

Once again, since some of the‘credit scoring
variables may not have been ascertained at credit
granting time, the missing observation problem pre-

sents itself with Data Set B as well.

As opposed to Data Set A, only discrete (i.e.
quantized) features are present in the data (with the
exception of loan amount and term) since the NSB
credit score worksheet traﬁslates all continuous

variables into one of a small number of intervals.

Data Set C

Data Set C consists of the 15 credit scoring
variables of Table 6.2 for the 2716 installment loans
that were applied for during June, July and August,
1972. It was collected for the purpose of estimating
the a priori probability of default (Section 9.1).

Data Set CR is a sub-sample of the loans in Data Set

C.




Data Set CR

Data Set CR consists of the 15 credit scoring
variables of Table 6.2 recorded for 63 loan applica-
tions that were rejected by NSB during June, 1972.
This data set has been collected to complement Data
Set B, which includes only loans that had been pre-
viously accepted by NSB. Data Set B and CR together
will permit an evaluation of Model 4 using accepted
loans of good and poor quality as well as rejected

loans of unknown quality.
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Chapter 7

S

FEATURE SELECTION - THEORY AND APPLICATION

Any time that the samples of a data set have high dimen-
sionality, the pattern recognition researcher will be consider-
ably slowed in his anaiysis. This holds true for the credit
granting data set in particular. As we have seen, the loan
samples have 23 features. This high dimensionality makes for
excessive computer storage problems and perhaps loss of per-
formance. Performance can be adversely affected because fewer
experiments with 23 features can be conducted than with, say,
ten features; and if the ten features are carefully chosen so
as to contain most of the information about the sample classes,
then by increased experimentation the researcher may be more
likely to obtain a superior classification performance.

We then are faced with the‘problem of which features to
select. The pattern recognition literature contains a number
of suggested techniques for feature selection. Many, if not
most of these techniques are suggested by characteristics of
linearly-structured classification models. For example, one
can choose those features which have the largest t-statistics,
since with normally distributed samples a large t-statistic
implies wide separation of the class means. Factor analysis
(also known as principal component analysis, eigenvector pro-

jection, or Karhunen-Loevé expansion) is another such attempt
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to reduce the numbef of features while paying particular
attention to the correlations among the original features.
Once again this form of analysis is motivated by an under-
lying hypothesis of normally distributed samples.

The hypothesis of normality is not the only disconcert-
ing aspeét of these feature selection techmiques. More seri-
ously they do not allow for local behavior, but rather lead
one to choose features that contain only global information.
To illustrate this point, consider the following two claés—two
feature problem. Features Fl and F2 are negligibly correlated.
For both classes Cl and C2, Fl is marginally normal with mod-
. erately different means for each class. Feature F2, on the
other hand, is widely distributed such that the class means
in the direction of F2 are approximately equal. However, F2
ié such that it provides almost perfect discrimination between
the classes because there are intervals along the F2 axis that
contain either samples from Cl or C2, but not both. This
multi-modal nonlinear nature of F2 would not be recognized by
the above mentioned feature selection techniques, yet if any
feature is to be selected,.it should be F2 and not Fl.

We mentioned previously that one of the aims of this
research is to investigate the credit granting problem without
restricting the analysis to linear models. In keeping with
this goal, a feature selection technique has been devised

which is not restricted to global characteristics of the

.
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class probability densities. The criterion for feature selec-
tion 1s not the mcre common one of separation of classes in
feature space, but one of separation of classes in the actual
outcome space. That is, we wish to choose features that most
correctly classify the samples with respect to their class
membership, and to choose them in a manner which is flexible
enough to allow for local as well as global density behavior.
The technique is based on the information theory cohcept

of average information. Consider the jJCh

feature Xj which may
take on discrete or continuous values. Xj can be used as a
predictor of the class (8) of any particular sample. We would
like a measure of how well, on the average, Xj resolves the
uncertainty about 8, or in other words, how much mutual infor-
mation there is between Xj and 6. This measure will be defined
below, but first we must partition the range of Xj'

If Xj is continuous (or takes on a large number of dis-
crete values), we first partition it into a manageable number
of intervals. O0Of course, if Xj takes on a small number of dis-
crete values, we have no need to partition it further. Let
K be the number of intervals in the partition of Xj. Let
{(E’e)i: i=1,..,N} be a set of N samples with known classifi-
cation 6. Now define sze to be the conditional probability
that a sample from class 0 will have the value of Xj fall

within the Kt interval of its partition. Let Py be the

h

marginal probability that Xj falls in the k™ interval regard-

less of class, and let py be the a priori probability of class 8.
118




The mutual information1 of Xj and 6 is defined to be

I(Xj,e) will be zero if pkle = Py for all k, i.e., if the
interval into which Xj falls does not alter the probability of

6 given the kth

interval (which, by Bayes' rule, is propor-
tional to the probability of the i th interval of Xj given 0).
I(Xj,e) will take on the maximum value of

H(8) = —g Py log pg (7.2)
if one of the Pk{e = 1 for each class 6, where H(8) is the
"uncertainty" existing about 6 before X. is known.

In choosing the intervals for quantitative Xj we should

be careful not to make them too wide, thus averaging out any

1see Fano [31], Chapter 2.

This logarithmic information measure is considered appropriate
for the feature selection problem since it provides a measure
of statistical constraint. That is, the information provided
about 6 by the pair of features Xi and Xj is equal to the sum
of the information provided about 6 by Xi and the informaticn
provided about © by Xj when Xi is known. If X. and Xj are
statistically independent then the information about 6 pro-
vided by the pair Xi and Xj is simply the sum of the informa-
tion provided by Xi and the information provided by Xj' These
properties hold even in a non-metric feature space, e.g., if -

Xi and Xj are gqualitative variables.

=
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local behavior in the density f(lee). For qualitative
(nominal) features, we have a natural interval definition
already given. '~ Having chosen the intervals, and given a set
of samples, we can evaluate I(Xj,e) for all features j=1,..,23.
The features can then be chosen in order of decreasing infor-
mation content.

For quantitative features, I(Xj,e) was computed using
intervals obtained by dividing the range of Xj into 16 inter-
vals of equal length. A random sample of 336 bad loans (6=0)
and 504 good loans (6=1) from Data Set A was used in the
computation. So as not to favor the classification of good
loans over bad lcans, a priori probabilities were set to be
Pg = .5 for 6=1,2. The results are summarized in Table 7.1.

Feature 0 is actually 6, the class index which is a
perfect discriminator. Since natural logarithms were used,

the maximum information content is observed to be

H(8) = -) pg log py = -[.5 In(.5) + .5 1In(.5)] = .693.
5

The above ordering of features might be referred to as
a "first-order" selection method, since we selected the
features one by one without taking into account feature inter-
actions. Ideally we would like to be able to choose, for any
number of features r, the set of features le, ij,..., Xjr
which maximizes the average mutual information between 6 and

X. . Since the

the jJointly considered set le, Xj2""’ jp
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] I(X.30
3 (3>

0% 0.693
23 0.207
16 0.167

2 0.158
15 0.121
10 0.111

7 0.038
18 0.037

9 0.035
11 0.032

1 0.030
19 0.029
12 0.027

3 0.025
22 0.020
20 0.018
17 0.015

6 0.013

8 0.012

5 0.011
14 0.011
13 0.010

Y 0.009
21 0.004

Table 7.1

Information Content of Each Feature in Data Set A

*Feature 0 1s the class index.
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combinatorial nature of this problem makes its solution

computationally infeasible, we must look for alternative

heuristic methods.2

Consider the following npth_oprder" method.

Step 1: Choose the feature jl with greatest I(lege).
Step 2: Choose the feature j2 which maximizes I(ij,

X 6); that is, the second feature will be

1’
one with the greatest information conditional

on the previously chosen features.

Step 3: Choose the feature j3 which maximizes I(Xj3,

X X 0).

j2>y1°
Continue in this manner until r features are selected.

Unfortunately, the number of cells in the Joint partition

of le’XjQ""’Xjr grows exponentially with r. This makes

computation of I(X.

5p0 6) impractical.

.,le;

?One such heuristic approach presented in Christensen [28,29]
closely resembles the methods presented here. Christensen
uses an information measure to partition the feature space

and then estimate class probabilities.

I(ijalese) = Z Pk g pkle log pkle - g pe l.og Pe

k
where k now indexes a region in the (ij,le) plane. The

following relationship holds:

T(X le;e) = I(ijaelle) *I(X5430).

j2°? ]
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th—order” method

As a further approximation to this "r
consider the following heuristic %hich uses only 1o opder!
information.

Step 1: Choose the feature jl with greatest I(le;e).

Step 2: Choose thg feature j2 with greatest I(ij,

lese). |

Step 3: Choose the feature 33 with greatest I(Xj3,

ij;e).

And so forth.

This second order heuristic results in the ordering of
features in Table 7.2.

The issue now remaining is how many features to choose?
From Table 7.1 of first order information, it is clear that
we want to include down through feature 10, years of residence.
For reasons of ﬁaking the resulting model more intuitive to
its end users, features 11 (income) and 7 (age) are also in-
cluded. Feature 3 (loan amount) is also included because it
appears in the profitability equations.

In their original crder, the features selected by the
information measure process are summarized in Table 7.3 and
are renumbered for reference within the feature sub-set.

The selection of features by this second-order heuristic
may be sensgitive to the first feature selected. Our confi-

dence in the feature sub-set would be increased if we found

that choosing the second most informative feature to start
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i I(X.38|X.) I(X.:8)
] 5301%; 3

23 0.000 0.207
16 0.117 0.167
12 0.055 0.027
2 0.162 0.158
15 0.043 0.121
1 0.041 0.030
10 0.113 0.111
11 0.038 0.032
7 0.054 0.038
17 0.057 0.015
3 0.060 0.025
22 0.060 0.020
8 0.057 0.012
13 0.050 0.010
21 0.0y7 0.00u
9 0.05y4 0.035
19 0.02Y4 0.029
18 0.030 0.037
20 0.012 0.018
L 0.015 0.009
5 0.03Yy 0.011
6 0.025 0.013
1y 0.009 0.011
Table 7.2

Feature Ordering Obtained Using Second Order Information
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Order of Original

Selection Number
Occupation 8 1
. - Years at Occupation 3 2
Loan Amount | 10 3
Age 6 7
" Years of Residence 5 10
Income 7 | 11
Mortgage/Rent 9 12
Years at Former Residence 4 15
Years with Former Employer 2 16
NSB Credit Score 1 23

Table 7.3

Features Selected Using Second Order Information




the process led to the selection of very nearly the same sub-
set. This experiment was tried b§ starting the selection
process with each of the next four features in Table 7.1.
The orderings that result are shown in Table 7.4. It can be
seen that very nearly the same sub-set appears at the top of
the ordering, thus indicating that the selection process is
not very sensitive to the starting feature.

As a further check on the feature selection process,
we computed the t-statistic for each of the 23 features.
These are summarized in Table 7.5. It is interesting to note
that those features with the highest information measure also
had a large and statistically significant t-value. The t-
statistic, however, is a measure computed in feature space,
whereas the information measure is computed in outcome space.
The high rank order correlation between features selected using
t-values and information measures may lead us to speculate
that pattern recognition algorithms that use Euclidean metrics

may be appropriate for this feature space.
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starting

feature: 23 16 2 15 10
16 23 23 23 23
12 2 16 16 16

2 15 12 12 12
15 1 15 22 ‘ 2
1 10 1 10 15
10 11 10 11 1
11 7 11 7 7
7 12 7 17 17
17 3 17 3 11
3 22 3 22 22
22 8 22 8 3
8 17 ‘ 8 1 12
13 5 13 13 8
21 13 21 21 21
9 21 9 9 9
19 9 19 19 19
18 19 18 - 18 18
20 18 20 20 20
Iy 20 Iy Iy 4
5 b 5 5 5
6 9 .6 6 6
1y iy 14 1y 14
Table 7.4

Feature Orderings Obtained Using Second Order
Information and Different Starting Features
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% of samples
for which feature
3 t-statistic was not recorded

23 19.4

2 11.
10 10.
16
15
18

w =

NMNOOOOHONOUOHRHKFNMHMHMEEMFE®ODO G OO

19
11

. .

20
1y
12

22

H
HHEHWEFEFTO OO ~I~3~20 0

17

u

2

4

7

9

5

3

9

8

3

3

.3

3

0

1

9

8

9

21 6
n
I
2

13

Table 7.5

Feature Ordering Using t-Statistic
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Chapter 8

PATTERN RECOGNITION RESULTS FOR
DEFAULT PROBABILITY ESTIMATION
The pattern recognition algorithms described in Chapter
4 are used to estimate the default/non-default probability
density function p(x,A[6), where (x,A) represents the ten
features listed in Table 7.3, and 6 is the class index. As
indicated in Chapter 4, the default probability p(x,A) can

be written as p(@zolg,A) and computed using Bayes' theorem,
p(6=0]x,A) = p(x,A[8=0)p(6=0),
where the proportionality constant is the reciprocal of
p(x,A|0=0)p(8=0) + p(x,A|6=1)p(6=1).

Thus, given estimates p(x,A|[6=0) and p(x,A|06=1), and given
the a priori probability of default, p(6=0), we can determine
the default probability p(8=0|x,A).

This chapter concentrates on pattern recognition per-
formance per se. That is, our primary concern here is to
make accurate estimates of the probability of default. The
decision rules for credit granting that use these estimates
7111 be discussed in Chapters 9 and 10. At that time, a
priori probabilities are estimated and misclassification
costs are determined so that the decision rules result in

economically optimal credit granting decision. Our interest
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in classification performance with a minimum probability of
error criterion arises from the belief that if we cannot make
accurate classifications, then it is unlikely that we will be

able to make economically profitable decisions.

Experimental Design

Data Set A is randomly divided into two data sets of
336 good loans and 336 bad loans each. These data sets are
labeled Data Set Al and Data Set A2. A sample loan from the

data set is of the form (gi,G ), where .93 is the 1l0-feature

5

vector of applicant characteristics, and 6, is the actual

default (6i=0) or non-default (ei=1) outcome of the loan.
Initially, the 672 samples of Data Set Al are used in

conjunction with the set of pattern recognition algorithms

to provide estimates, p(x|6), of the class probability densi-

ties. The 672 samples of Data Set A2 are then considered

th

one at a time. TFor the i~ sample (x.,8.), its classification

is obtained as the class ei with maximum likelihood, that is,

using the maximum likelihood decision rule

6. = DIB(x,|6)] = mgx[ﬁ(ggilﬁ)]. (8.1)

)
The "reward" or "risk" function for predicting Gi when

the sample is from class Giis taken to be

0 if 8, = @i _
= . (8.2)
1 if 6. # 8.

1 1

R(6;,6.) = [0,-0

i°71 il
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.

This "reward" function actually counts the number of errors.
The pattern recognition algorithmEthat minimizes the average
reward on the data set is the algorithm that yields the mini-
mum expected probability of error. The decision rule and
reward function were purposely chosen to give this minimum

probability of error criterion for algorithm performance.

This criterion is equivalent to the maximum a posteriori ex-
- pected value criterion if we assume equal misclassification
costs and equal a priori probabilities. The average reward
on Data Set A2 for a given pattern recognition algorithm is

then computed as

N,
=(2) 1 A
R = =— ) R(8,,8.), -
k N2 = 1’71
where the sum is taken over all N2 = 672 loans of Data Set A2.

The data sets are then "criss—crossed", and éi determined
using (8.1) for each loan in Data Set Al. The density esti-
mates p(§|e) are determined, in this case, from the samples
of Data Set A2 uéing each of the pattern recognition algo-
rithms. The average reward for each algorithm on Data Set Al

is then computed as

where the sum is now taken over all Nl=672 loans of Data Set

Al.




The average rewards are computed as the misclassification

error rates of the three pattern fecognition algorithms:

1) K-Nearest Neighbor Rule (K-NNR) (K=1,11,55,399),
2) Sebestyen and Edie's algorithm (S & E), and

3) Discriminant Analysis (Quadratic and Linear).

Multiple regression was not considered since it bears a close
resemblance to linear discriminant analysis. The algorithms
are listed in an approximate order of decreasing complexity.
That is, the 1-NNR might be considered to give the most local
estimates of the densities p(x|6), whereas linear discriminant
analysis'provides the least complex description of the unknown
densities. We first present the classification results for
the algorithms, then briefly outline the manner in which the
algorithms were applied, and finally evaluate the results

obtained.
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Results

Table 8.1 presents the average error rates, ﬁé‘), on
both Data Sets Al and A2 for each of the algorithms. In
addition to the average error rate, the misclassification
rates Pp. (bad loans classified as good) and PGBA(good loans
classified as bad) are presented. After reviewing the manner

in which these results are obtained, we address the question

of superior performance on the part of any one algorithm.

K-Nearest Neighbor Rule

K-NNR estimation is performed using values of K=1, 11,
55, and 99. This range of "smoothing factors" is chosen to
provide insight into the relative complexity of the two densi-
ties, p(x|6=0) and p(x|6=1). The metric is chosen to be the
standardized Euclidean distance

2
X, = =Y 17 8.3
d(x,y) g[(xj vi)/s5] (8.3)

where s§ is the training sample variance of the jth feature.
In Chapter 4 we mentioned that the K-NNR provides a tool

for exploratory data analysis. Its application to both Data

Sets Al and A2 reveals that the density of good loans (6=1)

appears relatively more complex than the density of bad

loans (6=0). That is, a larger smoothing factor (larger K)

favors the correct classificaition of bad loans at the expense

of an increased misclassification of good loans. Equivalently,

=
(O8]
w




Data Set A2 Data Set Al

=(2) =(1)
| Pags Pep Rk Ppg Pep Ry
1 NNR .21 .33 272 .33 .27 .302
11 NNR .10 .39 244 .17 .31 .243
55 NNR .06 . U6 . 263 .11 .36 .235
99 NNR .04 .50 .268 .09 .43 .263
S & E .22 .21 .219 not evalﬁated
Quad. Discr. .04 43 .237 .19 .29 . 240
Lin. Discr. L12 .31 214 W27 .22 . 249
TABLE 8.1

Pattern Recognition Performance on Data Set A
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local density estimates (smaller K) result in better per-
formance for good loans, whereas %ore global estimates (larger
K) result in better performance for bad loans. The relative
complexity of p(x|6=1) is perhaps indicative of the existence
of clusters of good loans in feature space (e.g., the exis-
tence of homogeneous mérket segments). The evidence that

bad loans are not as complex may suggest that the population

of loan applicants who default can not be so conveniently de-

scribed.

Sebestyen and Edie's Algorithm (S & E)

This clustering approach is further motivated by the
K-NNR results. Because these results suggest that the class
of good loans (6=1) is relatively more complex, the S & E
algorithm parameters are chosen to favor the growth of
smaller clusters for class 6=1 and larger clusters for 0=0.
Smaller, more numerocus clusters are obtained with smaller
guard zone thresholds and smaller preset initial cluster
variances.

The results presented in Table 8.1 are obtained after
using the samples of Data Set Al to adaptively define 21
clusters for class 6=0 and 48 clusters for class 6=1. The
standardized Euclidean metric (8.3) is used. A large number
of clusters for 6=1 results in a more complex description of
the density estimate p(§[6:l). When equal clustering parame-

ters are used for each class, the classification performance
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is significantly affected—the error rate increases from .22
(as in Table 8.1) to almost .30. The implication here is
that the advantages of variable complexity of the S &€ E
algorithm can only be realized by an artful approach to its
application. The exploratory results obtained with the

K-NNR provide some insight into the approach that should be

taken.

Discriminant Analysis

Both linear and quadratic discriminant analysis are also
used to estimate the densities p(x|6). Equations (4.4) and
(4.5) indicate that Mo s ée,

mates of the class mean vectors, Mg and the class covariance

and S must be estimated. Esti-

matrices S, are computed from the 336 training samples of

©
class 6. The estimate of the pooled covariance matrix, S,
is computed from all 672 training samples.

To obtain a linear discriminant density estimate,

th

ﬁ(gjle), for the i~ test set sample, the estimates m, and

S are used with Xs in (4,4). To obtain a quadratic discrimi-
nant density estimate, the estimates my and‘§_e are used with
x. in (4.5).
=i

Table 8.1 indicates that quadratic discriminant analysis
has slightly poorer performance than linear discriminant

analysis (its mean error rate is .01l greater). One explana-

tion for this poorer performance might be that quadratic
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discriminant analysis requires the estimatiop of two 10-by-10
covariance matrices from 336 Sampies each (as opposed to a
single pooled covariance matrix from 672 samples). These
somewhat insufficient sample sizes may result in spurious

estimates of many of the covariance elements.
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Performance Evaluation

Section 4.3 suggests two methods for evaluating these
performance results of the various algorithms. The first

method requires the comparison of mean rewards

R, =

=(1) =(2)
K (Rk + Rk )

Nj -

relative to the reward ranges

AR

=(1 =(2
L= D R

Rk
Figure 8.1 graphically presents these reward ranges centered
about the mean reward. Since the S & E algorithm was not
used on Data Set Al (due to computer time availability), its
reward range is shown as the average of the other six ranges.
The algorithms are presented from left to right in ap-
proximate order of decreasing complexity. The performance of
all algorithms lies roughly betﬁeen error rates of .21 and
.30, indicating that, in all likelihood, the Bayes' errorl
for the good loan/bad lcan pattern recognition problem is
quite high (say .15 to .20). Figure 8.1 suggests that the

S & E algorithm may slightly outperform linear discriminant

analysis (by about .01) but not significantly so.

lThe minimum classification error, achieved by knowing the
class probability densities, is often called the Bayes'

error.
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The analysis of the variance test suggested in Section
4.3 is applied to the results of fable 8.1. The resulting

F-statstic for differences in algorithm mean rewards is

P6,6 = 4,39

with (6,6) degrees of freedom. 2 This exceeds the .95 percen-
tile value of 4.28. Although the assumption of equal variance
of algorithm performance (i.e., equal reward ranges) does not
hold, this result suggests that there is a significant differ-
ence among the performance of the various algorithms. The
best performance is attained by S &€ E and linear discriminant
analysis.

The F-statistic for differences between mean performance
on the two data sets (.250 and .245) is F1,6 = .36. We thus
conclude that there is no significant difference between the
samples of the two data sets wifh respect to our ability to
predict class outcomes éi'

Finally, we should point out that these performance re-
sults are obtained with sample sizes of 336 loans of each

class. Larger sample sizes might tend to improve the per-

formance of the more complex algorithms relative to the rest,

2The S & E rewards were taken to be ﬁ(l) = §(2) = .219. This

results in a slightly reduced variance of the means and hence
a slightly enlarged value for the F-test.
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as well as reduce the magnitude of the reward ranges. Since
we use all the data available, we are unable to investigate
these suggested effects of larger sample sizes. Nonetheless,
sample size sensitivity remains a point worth remembering

in future pattern recognition experiments of this type.
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A
Chapter S
MODEL 1 RESULTS

-

Model 1, the single-period two-outcome model, was
presenfed in Section 3.1. In order to apply the de-

- cision model to actual loan data, we need to estimate
a number of parameters. Chapter 8 presented the
pattern recognition results for Data Set A. These

- alternative pattern recognition algorithms, along with
an estimate of the a priori default probability, will
be used to provide estimates for the default probability,

~ p(x,A). In addition to the default probability esti=-
mate, Model 1 requires estimates of V,(A,L) and Vl(A’é)’
the expected net present value for a defaulted (bad)

-~ and repaid (good) loan, respectively. These estimates
are given in Appendix A as a function of the loan
amount, A, and the loan vector, L (term, interest rate,

-~ ’ etc.).

| In this chapter we evaluate the credit granting
performance of Model 1 on Data Set A, and compare its

P performance to the NSB benchmark credit scoring rule.
Before making these evaluations, we must determine an
estimate for the a priori probability of default.

-
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9.1 Estimating The A Priori Probability of Default

Since the probability of default given x and A,
p(6=0|x,A), is proportional to p(x,A|6=0) p(6=0), we
are faced with determining the a priori probability of
default p(8=0). This determination is non-trivial
when we realize that all of the sample loans in Data
Set A (good/bad loans) are loans that were once pre-
screened by the bank and accepted. This pre-screening
is also present in Data Set B (delinquency tracked
loans). What is needed then is a set of loan applica-
tion data that is a true cross-section of all applicants
prior to the credit granting decision, and not just
loans that were accepted.

For this purpose Data Set C was collected from all
installment loans applied for during June, July and
August, 1972. These 2716 loans were all scored using
the NSB credit scoring formula. Since the probability
of default can be expressed as a function of score, S,
we have an estimate of p(8=0|S) for each of the 2716
loans. From Data Set C we can also obtain the a priori
probability, p(S), of observing a score S by using a

relative frequency estimate.
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Given p(0=0|S) and p(S) we can obtain the un-

conditional probability of default prior to any pre-

screening as
p(6=0) = [ p(8=0]S)p(sS)ds. (9.1.1)
4S

The estimate obtained using Data Set C is p(6=0) = .048.

9.2 Benchmark Results

When confronted with a consumer credit granting
decision, most large lending institutions apply a
quantitative decision rule which takes the form of a
weighted credit scoring formula. Currently in use at
The National Shawmut Bank is one such scoring formula

developed in 1971. A stepwise multiple regression

technique1

was applied to Data Set A to obtain a set
of credit score weights for each of 14 features.
Weights for selected features are presented in Appendix

B, with higher scores indicative of better loan quality

(lower default probability).

1 . . .
The regression analysis was conducted in a manner
similar to that outlined in Myers and Forgy [21].
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When a customer applies for’a loan, the values of
each of his 14 features are transcribed to a coded
credit score worksheet containing scores for each
feature. The individual feature scores are then added
manually to obtain a total credit score S. The score
obtained is then compared to a cutoff score S*, and if
S is greater than S%* credit is usually granted. If
S is less than S*, the application for credit is re-
jected. The lending officer can override this credit
scoring decision, but is required to document his
reasons for doing so?.

This thesis presents a series of decision models
that are intended to more accurately model the important
aspects of the credit granting decision. In order to
consider them to be an improvement, we would expect
them to provide decision rules which result in greater
overall profit than can be obtained with the best of
alternative rules actually in use. The NSB credit
scoring formula is one such "state-of-the-art'" alterna-
tive decision rule. For this reason, it provides a

good benchmark model with respect to which Models 1

2A high scoring loan, for example, may be rejected be-
cause of a derogatory credit bureau report. A low
scoring loan may be accepted if it is secured by
collateral or is guaranteed by a reliable co-maker.
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through 4 can be evaluated. In this section we
evaluate the actual performance of this benchmark

credit scoring model on Data Set A.

Optimizing the Cutoff Score - Empirical Approach

Tﬂe weighted.sum,of the 14 features provides a
credit score that falls within the range of -150 to
+250. For the loans of Data Set Al the score is ob-

served to have the following characteristics:

Bad Loans Good Loans
mean ’ T 46.6
standard deviation 34.8 36.7
range -390 to 96 -55 to 140

The credit scoring decision rule requires a cutoff
score S%: the loan application is accepted if its
score S exceeds S*, and rejected otherwise. Since the
performance of this decision rule is sensitive to the
choice of cutoff score S*, the optimal setting of S%*

‘was empirically determined using Data Set Al. Cutoff
scores were varied over the range -40 to +80, with total
profit computed for each cutoff score value. If a loan
scores less than or equal to S*, it is rejected (§=O)
and has no effect on profit. If it scores greater than
S*, it is accepted (5=1) and its "weighted value" is
added to total profit. By "weighted value" we mean the

value of the loan (which will be explained below)
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weighted by either p(f=0) if the loan was actually a
bad loan or by p(6=z1) if the loan was actually a good
loan. Weighting by the a priori probability, p(8),
provides a realistic total profit figure that is not
influenced by relative sample proportions of good and
bad loans. As given by the results of Section 9.1,
the a priori probability of default, p(6=0) was téken
to be .048, with p(6=1) the complementary probability.
The value of the loan was determined in the manner
outlined in Appendix A. In Appendix A the value of a
good loan, Vl(A,E) and the value of a bad loan, VO(A,L)
are given as a function of the loan amount, A, and the
vector of loan attributes, L (e.g., term, interest
rate, cost of capital, etc.). Vl(A,E) is simply the
net present value of the monthly payment stream dis-
counted at the appropriate cost of capital, minus the
loan amount itself and any administrative costs.
VO(A,Q) represents the default loss to the lending
institution. The detailed analysis of Appendix A
suggests that this loss, appropriately discounted,

amounts to about one-third of the original loan amount.
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In Data Set Al, for example, the average loan amounts

for good and bad loans are 31369 and $1112, respectively,
with an average term of 20 months. Typical interest
rates are currently 13.5%. If we assume a 10% cost

of capital and these average loan characteristics, we
obtain (using Appendix A) good and bad loan values of:

Vq (A,L) $ 30.81

n

-$435.00

i

Vy(A,L)

To evaluate a given cutoff score S*, we consider
each loan one by one. The two possible values of the
ith loan, V4(A;,L) and Vq(A;,L), are computed using
the actual amount of the loan, an average loan term of
20 months, an interest rate of 13.5%, and a cost of

capital of 10%. The loan's score, S is compared

ia
with S*, and if Si<8* the loan is rejected (8=0); if

N

S >S* the loan is accepted (6=1). If 6 is the actual
loan class (6=0 for a bad loan, 6=1 for a good loan),

the effect of the decision 6 is given by the reward

function R(8,6) in Table 9.2.1 below.




D>

0 1
0 0 Vy(A,L)
o]
1 0 Vo (A,L)
R(6,8)

Table 9.2.1

Reward Function R(6,8) for Deciding

® When Actual Class is ©

That is, if the credit scoring rule rejects the loan,
it has no effect on prefit. If it accepts the loan,
either a loss of VO(Ai,E) occurs if it is a bad loan
or a gain of Vl(Ai,g) is realized if it is a good loan.
Table 9.2.2 presents the results for the range
cof cutcff scroes from -40 to +100. The two error

probatilities P (classifying a bad loan as a good

BEG
leoan) and Fop (classifying a good lcan as a bad loan)
are given, as well as the total prefit obtained using

S*. Total precfit is then normalized to adjust for the

discrepancy between the true a priori probabilities

1a9




o,

Average
Cutoff . PBG PGB ' Total Prof%t per
Score S% - - * Profit Applicant
=40 .86 .003 3895 11.58
=20 .72 .03 4556 13.56
0 .Sé | .10 5374 15.99
10 W40 .17 6184 18.41
- 15 .32 .20 8776 20.17
20 .25 .23 6935 20.64 (max)
25 .21 .27 6817 20.29
30 .17 .31 6738 20.05
35 .13 .36 6704 19.95
40 .09 41 6750 20.09
50 .Oh .52 6171 18.37
60 .02 .61 5046 15.02
80 .003 .82 ' 2595 7.72
100 .000 .93 1045 3.11
perfect 0 0 10311 30.69
information
accept all 1.0 0 3168 9.43
TABLE 9.2.2

Benchmark Performance on Data Set Al

as a Function of Cutoff Score
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of bad and good loans (.048 and ..952) and the actual
numbers of bad and good loans in the data set (336
each). This normalized profit will be properly re-
ferredkto as "average profit per applicant". Average
profit$per applicanf is a more useful measure since
the bank can determine total annual profit’by multi-
plying average profit per applicant by the number of
loans applied for in one year.

Maximum profit of $20.64 per applicant is achieved
with a cutoff score of S*=z20. If we had perfect infor-
mation about each locan (i.e., @:e), we would realize
an average profit of $30.69. On the other hand, if we

accepted all applicants, we would realize an average

profit of only $9.u3.

Optimizing the Cutoff Score - Analytical Approach

If we know the score probability density for each
class, p(S|8), and were willing to use an average loan
amount, A, instead of the actual amount for each loan,
we could analytically determine S%. A probability paper
plot (Figure 9.2.1) of the cumulative distribution of
good loans and bad loans of Data Set Al indicates that

score is approximately normally distributed given 6.
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Bad loans (6=0) are observed to have mean score Hy=-4.2
and standard deviation 0,=34.8; good loans have mean
score W;=46.6 and standard deviation 0,=36.7.

For this analysis we will use the following typical

loan parameter values:

term T = 20 months
interest r = 13.5%

cost of capital p = 10%

average bad loan amount KO = $1112
average good loan amount Kl = $1368

The a priori probability of default will be taken as:
py = P(H=0) = .0u8
The misclassification costs are:

-VU(AO,L) = $435.08 for false acceptance, and

Vi (A,L) $ 30.81 for false rejection.3

If p;(8) = p(S|8=1i) is the probability density of
score given class 6=i (0 or 1), then then decision rule

which minimizes expected costs is:

3This form of analysis dictates the use of an opportunity

cost for false rejection, since we are assuming no re-
wvard is obtained for correct acceptance.

LLSee Anderson [26], Chapter 6.3.
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pO(S) 5 Vl(-Anl,_Ii) P1
p1(S) V(K .L) Py

if

D>
1

(9.2.1)

1 otherwise
Substituting the values given above for the right-
hand side and assgming pO(S) and pl(S) to be the normal
density functions with means and variances as
given above, this reduces to:
N 0 if S S 13.3
6 =
1 otherwise
That is, the analytically determined optimal cutoff
score is S* = 13.3.
Because this analytical approach requires that
we use an average loan amount instead of actual amounts
for each loan in the data set, and because we assumed
that scores were normally distributed, we will use the
empirically determined cutoff score of S* = 20. The
analytical approach, however, does permit a convenient
means of analyzing the sensitivity of S* to the choice
of a priori default probability, py = p(€=0). Table

9.2.3 gives the cutoff score as a function of p(8=0).
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p(0=0) S

.01 ~-30

.03 1
.0 8
048 13 -
.06 19
.08 27
.10 33
.15 Ly

Sensitivity of Cutoff Score to A Priori Probability of
Default

TABLE 9.2.3

Performance on Data Set A2

Using Data Set Al, the optimal benchmark decision
rule was determined to be:
0 (reject) if S < 20
1 (accept) if S > 20
This rule was then applied to the loans of Data Set
A2, using the same loan parameters of:
20 (term in months)

.135 (interest rate)
.10 (cost of capital)

o B
oo

The results obtained are presented in Figure 9.2.2 below.




Confusién Matrix
Predicted Class (8)
0 1
Actual o | 252 74
Class
(6) 1 | 9L 261

Total profit on

Average profit per applicant

Data Set A2

Error Rate

.22

.28

Perfect Information on Data Set A2
yields an average profit of

FIGURE 9.2.2

Benchmark Performance on Data Set A2

$5782.00
$ 17.21
$ 27.37



Cutoff Score Range

The empirical optimization of cutoff score on Data Set Al
gave the optimal cutoff score as S*=20. If Data Set A2 is
used the optimal cutoff score is found to be S*=35. This
implies that, for this case study, a sample size of 336 loans
from each class only pefmits the determination of the optimal
cutoff score to within a range of 15 points.

When we consider the combined 1344 loans of Data Sets
Al and A2, the optimal cutoff score is determined to be
S%*=20. The results of this analysis are presented in Table

9.2.4 below.

‘Cutoff, P P Prof%t per
Score S*® _BG _gg Applicant
10 .36 .18 17.28
15 .29 .21 18.8689
20 24 .25 18.92 (max.)

25 .21 .28 18.80
30 .17 .33 18.45
35 .12 .38 18.66
40 .09 JU43 18.46
45 .06 .48 18.01
50 .04 .54 17.00

TABLE 9.2.4

Cutoff Score Optimization Using
Data Sets Al and A2
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9.3 Model 1 Pattern Recognition Results

The pattern recognition algorithms described in
Chapters 4 and 8 were evaluated with respect to their
economic performance using Model 1, the basic single
period; two-outcome model summarized in equation
(3.1.1):

~

Vo= p(x,A) V (A,L) + [1 - p(x,A)] V, (A,L).

G is the expected net present value of accepting the
loan characterized by its amount A, loan vector L,
and applicant feature vector x. Vg(A,L) is the net
present value of a defaulted (bad) loan and Vy(A,L)
is the net present value of a non-defaulted (good)

loan.

(3.1.1)

Let 68 be the indicator variable for the loan, i.e.

0 if the loan was bad

1 if the loan was good,
and let 5 be the predicted value of 6, that is, 5:0
means we predict that the loan will default and we do
not grant credit, and =1 means we predict the loan
will not default and we grant credit. To maximize ex-
pected net present value, our decision, as expressed

~

by the value of 6, should be:

<> o
in

0 if 0

<>

1 if > 0
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A

The reward for deciding © (reject/accept) when
the loan belongs to class 6 is given by the reward
function R(@,g) summarized in Table 9.2.1. That is,
if we reject the loan (8=0), then there is no profit
or loss incurred. If we accept the loan (g=l) and
the loan defaults'(erd), then a loss of R(0,1) =
Vo(A,L) is incurred. If we accept the loan and the

loan does not default, then a profit of R(1,1) =

V1 (A,L) is realized.

Chapter 8 described the pattern recognition
estimation of p(x,A), the probability of default
(6=0), for each of the N=672 loans in Data Set A2. -
Using these estimates we can now evaluate the per-
formance of the various algorithms using profit as
a criterion. ' -
Table 9.3.1 presents the performance of the set
of pattern recognition algorithms on Data Set A2. The
results are given both in terms of total profit on the ~
data set, as well as average profit per applicant. In
addition, the two probabilities of error are given,
where P is the frequency with which a bad loan is -

BG

predicted to be good (accepted) and PGB is the fre-
quency with which a good loan is predicted to be bad

(rejected). o
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Total Average

ALGORITHM Pos  Pgg Profit Profit 3
1 NNR .16 .u2 5095  15.16 55.1
11 NNR . .09 .48 5628  16.75 61.2
55 NNR .09 .57 5370  15.98 58.14
99 NNR .08 .81 5432 16.17 59.1
S §E .15 .3y 5768  17.17 62.7
Quad. Disc. .03 .51 4708 14.01 51.2
Lin. Disc. .12 .us 5970  17.77 64,0
Benchmark W22 .28 5782 17.21 62.9
(S% = 20)
Perfect 0 0 9196  27.37 100.0
information
Accept all 1.0 o0 2199 6.55 3.9

TABLE 9.3.1

Model 1 Performance on Data Set A?
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Because the loan vector L is not known for each
of the loans of Data Set A, the following typical
values were used:

r = .135 (simple annual interest rate)

it

T = 20 (loan term in months)
The cost of capital was assumed to be
o = .10
and the a priori probability of default, as computed

in Section 9.1, was taken to be

p(6=0) = .0u48.

The column labeled (%) presents the performance as
a percent of the average profit that would be obtained
if the actual outcome (8) were known (i.e., if we had
perfect information about 6). For comparison purposes,
the algorithms are also ranked according to their per- -

formance.




As suggested in Chapter 4, we can determine the signifi-
cance of these results by "criss-crossing" the data sets.
This cross-cross experimental design is analogous to that
presented in Chapter 8. However, instead of the maximum
likelihood decision rule we use the decision rule implied
by Model 1. The reward function, R(@,@), is given by
Table 9.2.1.

Table 9.3.2 presents the results obtained by training
the pattern recognition algorithms on Data Set A2 and test-
ing their performance on Data Set Al. The benchmark cutoff
score was empirically optimized on Data Set A2, and in this
case was found to be S%*=35. This implies that for N=672
training samples the range of optimal cutoff scores is ap-
proximately 15 points (S%*=20 on Data Set Al). The reward
ranges for the pattern recognition algorithms are plotted
in Figure 9.3.1. The rewards are presented as the percent
of the reward obtained by perfect information about 6.

Examination of Figure 9.3.1 reveals that no single
algorithm significantly outperforms the others. This con-
tention is supported by an anlysis of variance, which gives
an insignificantly small F-statistic of F6,6 = .77 for the
hypcethesie ¢f no significant difference among the mean
rewards. An increased sample size might permit a more
accurate training of the more complex algorithms. Judging

by the relatively large reward range for the quadratic
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Total Average

Algorithm PBG PGB Profit Profit i
1 NNR .28 .34 5902 17.57 57.
11 NNR .17 .39 6964 20.73 67.
55 NNR' R _ .43 7114 21.17 69.
99 NNR S1U .46 6980 20.77 67.

S & E n o t evaluated

Quad. Disc. .14 .40 7325 21.80 71.

Linc. Disc. .24 .37 6693 19.92 6.
Benchmark .13 .36 6704 19.95 65.
(8% = 35)

Perfect 0 0 10312 30.69 100.
information

Accept all 1.0 0 3168 9.43 30.

TABLE 9.3.2

Model 1 Performance on Data Set Al
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discriminant algorithm, it would appear that 336 loans per
class might not be a sufficientlyﬁlarge sample size (given
ten features). However, given training data sets of this
size, the choice of a pattern recognition algorithm might
well be influenced by computational costs and other costs

of implementation.




Chapter 10
MODEL 2 RESULTS

The preceding chapter presented the results of a credit
~granting policy based on a single loan's outcome. Howéver,

as pointed out in Section 3.2, the customer's relationship
with the lending institution does not end after the first loan
if it is successfully repaid. Instead, the customer can be
expected to return for subsequent loans. If the first loan
was successfully paid, we expect an even greater probability
of his repaying a second loan should he apply for it. Similar-
ly, if two loans are repaid, the third is still more likely to
be paid. Model 2 is intended to account for these subsequent
loans, on a discounted basis, so that the decision to grant
credit reflects the applicant's expected multi-loan profit.
The assumptions and relationships of Model 2 will be reviewed

briefly before presenting the results obtained on Data Set A.

We consider J loans (the loan applied for and J-1 subse-
.quent loans), with loan parameter vector L and amoﬁnt A,
VO(A,E) and Vl(A,E) represent the net present value (relative
to the time the loan was granted) of a defaulted and non-
defaulted lcan, respectively. We assume that subsequent loans
will be applied for every T years, with some probability &
that the customer will reapply for loan j given he applied
for loan j-1. The cost of capital for the lending institution

is denoted by p. 165




Let pj(g,A) be the probability that the customer defaults
in period j given he did not default on the previous j loans.
As explained in Chapter 3.2, the probability updating rule is

nOpD(K,A)

nO + ] jzlgoth"'l (3v2o2)

ps (X,A) =

where pj(z,A) is the probability the customer defaults in

period j, and n, is the parameter of the beta distribution on

0
pO(E’A)’ the probability of default on the first loan.
Define event Ei to be the successful payment of i loans,

with default on loan i+l. Let Ei be the successful payment

of i+l loans. If V(Ei) represents the net present value of

E.., then
1
i-1
V(E)) = jZO oy Vy (A,L) + .V, (A,L) (3.2.3)
and
i ,
V(E$) = jzg s Vy (A1), (3.2.4)

where the discount factor % is given by

oy = 23 (1+p) 3T, (3.2.5)
The probability of event Ei is given by

1-1
p(Ei) = { I [1 - pj(g,A)]}pi(g,A) (3.2.6)
3=0
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p(E%) =

TR=N=B

[1 - py(x,a)]. (3.2.7)

j=0

The expected net present value of J loans is then given
as

J-1

Vo= izi V(E)p(E;) + V(E% . )p(E%_ ;). (3.2.8)

The decision rule becomes:
Accept if and only if QJ > 0,

that is,

~

0 (reject) if V. £ 0

. (3.2.9)
>0

J
1 (accept) if §J

Model 2 uses the same initial loan default probability
p(x,A) = PU(E’A)' This default probability was estimated in
precisely the manner described in Chapter 8.3 for the loans
in Data Set A2. As described in Chapter 3.2 the first loan
default probability is assumed to be beta-distributed with
parameters [r0(§,A),nO]. We estimate p(x,A) and consider it
to be the expected value of this default probability. This
implies that rO(E,A) = nOPD(E’A)'

We must now determine the "diffuseness" parameter ng, of
the default precbability beta distributicn. Since no sample

information is available for this determination, we are forced

to estimatez%]using subjective information only. To accomplish
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this, several installment loan managers were questionéd regard-
ing the relative importance of "credit scoring" information
(i.e., x,A) versus loan payment information. The consensus
was that information regarding the customer's payment behavior
on one loan is "approximately twice as valuable" as knowing

his credit scoring attributes. Based on this finding, n, was

0
taken to be 0.5,

It is interesting to note that any value of ng, less than
2 implies a convex beta prior distribution. That is, if
p(x,A), the expected value of the beta default probability
distribution, is, for example, .048 (the a priori default
probability), and n, = 0.5 the shape of the beta distribution
is roughly as shown in Figure 10.1.

The expected default probability is po(g,A) = ,048. If

one repaid loan is observed the updated default probability

Lecomes

py(x,4) = ﬁ-é-—-%ff—i—)— = .016,

but if one defaulted loan is observed the updated default

probability becomes

.\‘ e +
pl(g,A) = 5(.guf)l L - .683.

Observing the payment performance on one loan causes us to
significantly alter our default probability estimate. This

is particularly true if a loan is defaulted. No reasonable

169




et

L
~
v

UOTINGTAISTIQ AFTTTQRQOodd 3INeJsq TAOTId V - T 0T TANODI4

170




values of VO(A.Q) and Vl(A,E) would make a loan with default
probability p(x,A) = .683 seem préfitable. This result
strongly supports the simplifying assumption in Model 2 that
once a default occurs, the customer is not considered for
subsequent locans. The beta natural conjugate prior to Ng = .5
and PO(E,A) = nOpO(E,A) results in the updated default proba-

bilities Pj(E:A) (given j repaid loans) presented in Table

10.1.

In order to test Model 2 on Data Set A2, we assumed a
five-loan horizon (J=5) with two years between loans (T=2).
A value of 2=.7 was taken as the probability that the customer
reapplies. Two years between loans is approximately
the average reapplication interval experienced at NSB. Five
loans were chosen to extend the horizon to a total of 10 years.
After 10 years the discount factor (with .10 cost of capital)

ig (1.1)710

.38, which significantly diminishes the effect
of loans 10 years in the future. In addition it was felt that
management of most banks would be reluctant to consider more
extended horizons. The probability of reapplication of 2=.7
represents a subjective estimate by an installment loan execu-
tive.

Since we do not know the actual outcome for the loans of
Data Set A2 beyond the first loan, we are forced to evaluate

Model 2 performance in terms of first loan profit only.

Table 10.2 presents the vesults of applying the Model 2

17
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p(x,A)

.0u48

.02
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1 2 3 I
.1333 .0800 L0571 LOobuh
.0677 L0400 .0286 0222
.0333 .0200 L0183 .0111
0160 .0096 .0069 .0053
.0067 . 0040 .0029 .N022

p.(x,A)
5 =
TABLE 10.1

Bayesian Default Probability Updating




decision rule to Data Set A2 using each of the set of pattern
recognition algorithms to estimate p(x,A). The two error

rates for bad loans accepted, P and good loans rejected,

BG?
PGB’ are given, as well as the average profit per applicant on
the initial loan. Since we do not know the outcome of loans
2 through 5, we can only give an updated projected figure.
The "average expected.additional profit per applicant" was

determined as follows. If the loan was a good loan, we update

our default probability according to the formula

) NPy (x,A)

) T e
pq(x,A) np F I

If the loan was a bad loan, we update using

n0p0(§,A) + 1

Py (%,A) = Ry ¥ 1 .

We then evaluate the expecfed net present value of loans
2 through 5 using this updated value of pl(g,A). This ex-
pected net present value is then considered to be the expected
additional profit on loans 2 through 5. The total multi-period
profit is then given as the sum of the known first loan profit
(or loss) and the expected additional profit of the subsequent
loans.

Model 2 simulates the willingness on the part of install-
ment loan managers to take a chance on the first loan with the

hope that the customer will prove to be a worthy future loan
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Average Expected

profit per . add'l
Algorithm P P applicant profit Total
—_— BG GB
1 NNR .16 Y 15.16 32.65 47.81
11 NNR .17 .40 16.07 37.02 53.08
55 NNR .19 43 16.32 37.05 53.37
99 NNR .20 iy 16.24 36.76 53.00
S &€ E .17 .32 17.03 36.85 53.88
Quad. Discr. .03 .50 14.28 26.21 40.49
Lin. Discr. 24 .35 16.79 39.99 56.78
Knowledge of 0 27 .37 48,05 75.65
first loan
outcome
Accept all .0 0 6.55

TABLE 10.2

Model 2 Performance on Data Set A?



customer in spite of a marginal credit score. In this sense,
Model 2 provides a more liberal decision rule than Model 1
because it is able to trade off future possible profit against
first loan default risks. Table 10.3 presents the expected
net present values given by Model 1 (upper value) and Model 2
(lower value). Two éeparating lines are shown. The region
between the two lines represents initial default probabilities
as a function of loan amount for which the account shows an
expected one loan loss but an expected fivé loan profit. The
range of default probabilities for which this is the case be-
comes broader as the loan amount increases because of fixed

administrative costs.




p(x,A)

0.0
.025
.05
075
.10
.125
.15
.175

.20

Amount

2000

500 1000 3000 4000
5 19 50 79 108
11 Ly 110 176 243
-2 9 30 52 an
2 30 8L 138 183
-8 -1 12 26 39
-6 15 58 101 14y
-14 -12 -5 -1 by
-14 1 33 Bl 96
-20 -22 -25 ~28 -31
-22 -12 8 28 49
-32 -43 -55 -66
-25 -16 -7 2
-63 -82 ~101
-41 -43 -Ly
upper value: 1 loan ~136
lower value: 5 loans -390
-171
-135

TABLE 10.3

Expected Net Present Values for 1 Loan
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Chapter 11
TRANSITION PROBABILITY ESTIMATION

The 6 state model of Chapter 3.3 will now be applied to
Data Set B. However, before we begin to consider delinquency
behavior summarized in the transition probability matrix
P{x,A) as a function of the feature vector x and loan amount
A, we should determine the appropriateness of the 6 state
model itself. 1In review, the 6 basic states are:

decigion

0 months delinquent (on time)

1 month delinquent

2 months deliﬁquent

3 months delinquent

default (more than 3 months delinquent).

The state transition diagram isbgiven below as Figure 11.1.

11.1 First Order Test

Model 3 assumes that P(x,A) is the transition proba$ility
matrix of a first order Markov chain. Let us define P to be
the a priori transition probability matrix. That is, P char-
acterizes the transition behavior of the average loan uncondi-
tional on the feature vector x and loan amount A.

We would like to determine if P(x,A) is first order for
all ranges of (x,A), but unfortunately this requires a sample

considerably larger than that of Data Set B. Consequently,

we will test the hypothesis that P is first-order.
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FIGURE 11.1

6 State Description

decision state

1 month
delinquent

2 months
delinquent

3 months
delinquent

@ default

178




As an estimate for i we use the relative frequency, maxi-
mum likelihood estimate obtained from Data Set B. Table 11.1
gives the actual transition count matrix and transition proba-
bility matrix for the 6 state model. Since we are concerned
with the_predicted_payment behavior if an account is accepted,
we need consider only the last five states.

The second order transition count matrix was computed in
order to test the first order assumption. The appropriate
chi-square testl was applied, with a resulfing chi-square
value of x* = 1300. Such a large chi-square value (p < .00L)
indicates that the 6 state model is not first order, and that,
instead, the next state of delinquency depends on more than
simply the current state.

This finding suggests that we eXpand our state description
in an attempt to more accurately model the memory retained in
the process. However, we would prefer to keep the number of
states as small as possible, so that the model is efficient
from both an estimation and a computation standpoint. Fortu-
nately, the chi-square test itself provides us with insight
into where states should be added.

The chi-square test for equality of two transition proba-
bility matrices is performed on a row-by-row basis. For

example, the actual results from the above test were:

tsee Billingsley [27], Chapter 5.
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0
decision 956
0 7714
1 1480
2 270
3 6
m

6 State Model Transition Count Matrix

L 2 3

1805 0 0

0 311 0

6 0 37

0 0 0
Table 11.1
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State i x 2

_ pES
0 628

1 384

2 238
3 50
1,300

There is no contribution from the trap state 4 since the
only possible transition is the self-transition.

These x? values indicate that an account's transition
from state 0 depends more heavily on its previous state his-
tory than its transition from states 1, 2, or 3. An examina-
tion of the second-order transition count matrix reveals that
a 0 » 1 transition is much more probable if the acount was
previously in states 1, 2, or 3. That is, once a delinguency
pattern is established it is more likely to reappear even after
the account returns to a current paying status. This finding
suggests addihg state 5, as shown in Figure 11.2, with the
interpretation that it is an on-time stafe»given previous de-
linquency. The right-hand number 0 in the diagram for state 5
indicates that the state is an on-time state (0 months delin-
quent).

The addition of state 5 gives a first-order test y? value
cf 703, with state 5 this time the principal contribution.,

This suggests adding an additional on-time state 6 (see Figure
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Number to the right of the state index
is the number of months delinquent.

Y

FIGURE 11.2

7 State Description
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11.3), since, apparently, previous delinquent behavior is

N

"remembered" for more than one on-time payment.

This procedure of adding states where appropriate, so as

to model the memory still remaining, was continued, with the

following x? results.

State added

Initial model

5

10

11

1,300
703
81

53

Iy

51

20

17

After adding state 11 (an on-time state), it became ap-

parent that little further reduction of ¥x2 could be obtained

by adding another state. No.single state seemed to overly

contribute to the total x? value, as can be seen by the follow-

ing breakdown by state.

State 1

11
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Number tc the right
of the state index is
the number of months
delinquent.

FIGURE 11.3
13 State Description
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It was felt that attempting to further improve the model
might be an exercise in trying to'fit the data rather than
modeling the underlying Markov process. With the state de-
scription expanded to 12 states (plus the decision state),
the second order transition counts become small to the point
where diluting them further by adding more sfates begins to
invalidate the large sample requirements of the chi-square
test. Moreover, there is little statistical need to reduée
the fit of the model. A x? value of 17.5 is not large enough
to reject the first-order hypothesis at the .95 confidence
level (ngs = 19.7 with 11 degrees of freedom).

From the point of view of obtaining a descriptive model
of delinquency behavior, we are pleased with the actual state
description obtained. The model has the capability of describ-
ing all of the recognized types of delinguency behavior. For
example, the customer who becomes delinquent because he forgot
to send in his payment before going on vacation will make the
transitions

08+ 10~»>6 > 7 > 9 > 11 »,..~ 11.
The chronic delinquent who pays every other month will make
the transitions

0»8~-»>10~+1~>5~>1 5
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11.2 Stationarity Test

The 13 state model resultinngrom the analysis of the
previous section is seen to be approximately first-order.
We now wish to test it for stationarity. In other words, we
want to know if the transition probability matrix P remains
constant throughout thé term of the loan. This amounts to

testing the hypothesis

Hy: B(t=1) = B(t=2) = ... = P(t=T),

where P(t) is the transition probability matrix at time t,
for t=1 to the number of payments, T.

Since T can range from 6 to 60 or more monthly periods,
to test HO we would have to estimate a large number of 13 by
13 transition probability matrices. Many of the elements of
the matrices, e.g., p23(t=15), would be estimates based on a
very small number of samples (fewer than 5). Since the chi-
square test 1s essentially a large sample test, it was decided

to modify H, as follows:

0

HO: P(t=1-5) = P(t=6-10) = P(t=11-15) = P(t=16-20) = P(t=21+).

Rather than consider each payment period separately, group the
periods into 5 times frames: t = 1 to 5, t = 6 to 10, t = 11
to 15, t = 16 to20, and t = 21+. This grouping requires the
estimation of 5 transition probability matrices, yet it still
provides a reasonable test of the hypothesis that payment be-

havior does not vary during the course of the loan.
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Using Data Set B, the appropriate chi-square test for
stationarity2 was used to test this hypothesis. Chi-square

values were computed on a row-by-row basis with the following

results.
State 1 Xzi
0 76 .4
1 .6
2 -
3 .5
4 0.0 (trap state)
5 8.5
6 5.4
7 5.9
8 5.5
9 .7
10 6.5
11 6.8
117.3

The degrees of freedom for the test are:
d.f. = R(C-1)(T-1) = 12(2-1)(5-1) = 48,

where R is the number of rows,
C is the number of columns estimated for each row, and

T is the number of time frames considered.

23ce Billingsley [27]1, Chapter 5.
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The .95 percentile of the x? distribution with 48 degrees of
freedom is about 65, which is less than the observed value

of 117. This would suggest rejecting the stationarity hypo-

e thesis HO'

However, if we only consider states 1 through 11 and ex-
clude state 0, the total chi-square value would be 40.9 with
L4 degrees of freedom. This is less than the .50 percentile
of the x? distribution with u4l4 degrees of freedom (X%SO = 43.3
with 44 d.f.). Thus, any non-stationarity in the process is
due only to the transition behavior from state 0 (on-time and
not previously delinquent).

Taking a closer look at state 0 non-stationarity we sus-
pect that it is not significant enough to affect our model from
a decision modeling (as opposed to a statistical modeling)
point of view. This belief is supported by the following
table of results, which gives tﬁe time-dependent estimates for
poo(t) and the number of samples used to estimate this on-time

self-transition probability.

Estimate Value Number of Samples

POO(t = 1-5) .982 30038

- | Dyt = 6-10) .988 24472

poo(t = 11-15) .993 11620

= 16- 9
Pyg(t = 16-20) .999 1598

- S Poo(t = 20+ .897 29

(all t©) . 987 67758

Pgo
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These values indicate that an account that establishes
a perfect payment record early in the loan term will tend to
maintain that perfect record later in the loan. Nonetheless,
this tendency does not appear to be strong enough to warrant
the additional modeling complexity as well as estimation and
computation expense that would be required to accurately in-
corporate it into the decision model. To support this conten-
tion, Model 3 was actually programmed with a transition proba-
bility matrix for which Poo (and Pgg = 1 _'POO) was time vary-

ing according to the Doo(t) values given below.

by

t poo(t) Poo
1-5 .982 .987
6-10 .988 .987

11-15 .993 .987
16+ .999 .987

The standard (stationary) Model 3 was also programmed
with the time-averaged 0 - 0 transition probability of Pgyo
.987.

The remainder of the P matrix was takenvfrom the a
priori transition probability matrix estimated in the follow-
ing section. Using an average loan term of T = 20 months,

[l

the default probability was computed as the T-step transition
probability from the decision state to the default trap state
4. When the timewvarying poo(t) were used, the default proba-

bility was computed to be .007993; when the time-average Poo
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was used, the default probability was computed to be .007996.
This close agreement leads us to conclude that what non-
stationarity exists is insignificant. The observed discrep-
ancy in default probability of less than 0.04% is much too

small to alter the model's credit granting decisions.

11.3 The A Priori Transition Probability Matrix

Given the samples in Data Set B and the 13 state model
shown in Figure 11.3, we now are prepared to estimate P, the
a priori transition probability matrix. This matrix is of
particular importance for estimating P(x,A). As outlined in

Chapter 5, the (i,j)th element of P(x,A) can be written as
p(ei:jlgc_,A) o p(§,AISi=j)p(ei=j). (5.2)

The a priori probability p(6i=j) is simply the (i,j)th element,
pij , of P.

An estimate for P; is given by the relative frequency

j
maximum likelihood estimate

pij = cij/ci’ (5.4)

where Cij is the number of i+j transiticons observed, and
c., = ) C...
i et
3 ]

Unfortunately, Data Set B is a pre-screened data set.
That is, it contains only accounts that had previously been

accepted by NSB. Since the bank tries to screen out loan
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applications that are probable delinquent or even defaulting
accounts, the relative frequencies seen in Data Set B will
tend to give a priori transition probabilities that character-
ize a better-than-average account.

Ideglly, we would like to have transition histories for
rejected applicants, and use these transition counts to aug-
ment those of Data Set B. Since this is not possible, we are
forced to make certain assumptions regarding the probable
delinquency behavior of unobserved rejected applicants. A
reasonable simplifying assumption is that rejected accounts
differ from accepted accounts only in the on-time self transi-
tion probability Pyg+ That is, a sample of rejected accounts
would have transition counts for states 1 through 11 in the
same relative frequency as accepted accounts, but the ratic

/cO would be smaller. The important question is how much

€00
smaller?

The results of Section 9.1 indicated that the a priori
probability of default is about .048. This would suggest that
adding a proportionate number of rejects of Data Set B (and
hence lowering COO/CO) should result in a default state trapping
probability of .048. That is, if T is the average term of all

locans, we want to be such that the probability of being in

Poo
a trap state U at period t = T to be .048. With T = 20 months,

and P given by the Data Set B relative frequencies, a value of

Pog .73 gives the desired .048 default probability. The
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L

complete a priori transition probability matrix is given in

Table 11.2 (only non-zero entries are shown).



10

11

it Pi,i1
0 - .733
2 .213
3 121
L .829
4 1.0
1 .541
1 .1u6
1 .100
2 .136
1 .079
1 .287
1 LOu2
Table 11.2

10

11

11

459

. 854

. 900

.86k

921

. 713

.958

A Priori Transition Probability Matrix



11.4 Pattern Recognition Application to Transition

Probability Estimation

Chapter 5 developed the correspondence between transition
probability estimation of P(x,A) and the classification proba-
bility determination common to pattern recognition problems.

In particular a concise linear discriminant formulation was
given in equations (.7) through (5.10).

This technique is applied to the 12 delinquency states
of the Markov process model (see Figure 11.3). Equations (5.7)
and (5.8) specify the (r+l) vector (i.e., [g;, bil) that must

be determined for each row i:

t

af = g gy - my 500" 8] (5.7)
- _ 1 _ tao-1

by == 7y g1 7 By 520 8@y 51 Y By 500 (5.8

where Ei,j is the weighted mean.vector of all samples that
made i »+ j transitions (weighted by the number of i + j transi-
tions observed), and éi is the weighted covariance matrix com-
puted from all samples that made transitions from state i
(to both j1 and j2).

In keeping with the feature selection analysis of Chapter

7, the transition probability matrix P(x,A) will be estimated

as a function of the following r» = 10 features.




feature description

1 occupatién

2 years at occupation

3 amount (A)

4 age

5 ‘ years of residence

6 income

7 mortgage/rent

8 years at former résidence

9 years with former employer
10 NSB score

Note that the loan amount is actually the third component
of the feature vector x.

Unfortunately, Data Set B is not large enough to permit
the estimation of the (10 x 10) covariance matrix éi for some
states i. TFor example, there were only 35 transitions observed
out of state 3. We would be over-fitting the data if we tried
to use the x vectors of the accounts that made these 35 transi-
tions to estimate the 55 elements of §3 and the two mean vec-
tors Mgy and Mage

If instead of considering all 10 features in estimating
p34(§,A) and pSS(E,A), we considered only the three most impor-

tant features, we would have to estimate only six elements of

a (3 x 3) ég and the two mean vectors.
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-~ A prudent approach to this estimation problem is to let
the number of features used to estimate row i of P(x,A) depend
on the number of samples that are available to estimate éi

- R " . .

, and m; .31 and m 52 If we let ¥ be an "over specification
factor" and there are c. transitions from state i, then we can
safely estimate a total number of mean-covariance parameters

- of at most ci/w. That is, for a given number of observations
c,, a larger over-specification factor Y allows more accurate
estimation of a smaller number of components of m., .., M., ..,

—-1,31% =i,32

- and S3..

=1
The estimation of mean vectors and covariance matrices
was performed with two over-specification factors, y = 2 and

-~ ¢ = 10. The following number of features r were selected for

each row i of P(x,A).

row i r (P = 2) r (yp = 10)
- LU EAS. ST
0 10 10
1 10 4
2 4 1
- 3 | 3 1
4 (trap state) - -
5 10 6
6 2
- 7 5 1
8 8 3
9 3 1
10 10 4
o~ 11 4 1
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If fewer than 10 features are to be selected we must
decide which to choose. An examination of the t-statistics
for 0+0 and 0+8 transitions (most frequently observed) suggests
the following ranking of features in order of decreasing dis-

ciminatory power:

feature description : B

10 NSB score

3 amount (A)

4 age

6 income

8 years at former residence

2 years at occupation -
9 years with former employer

1 occupation

5 years of residence -
7 mortgage/rent

Thus if we have only enough samples to use three features, we
would choose features 10, 3, and Uu.

This feature reduction and estimation procedure was per-
formed for both over-specification factors ¢ = 2 and ¢ = 10.
Mean vectors m. .. and m. .

—1,]1 —1,]2
computed, from which (5.7) and (5.8) were used to determine

QE and bi‘ The computed values of QE and bi corresponding to

and covariance matrices éi were

states 0 through 11 are presented in Tables 11.3 and 1l.4 for
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over-specification factors of ¢ = 2 and ¥ = 10, respectively.
An N x (r+l) discriminant function matrix and the N a priori
probabilities determined in Section 11.3 are all that are
needed to determine P(x,A) for any applicant's features (x,A).
Equations (5.9) and (5.10) indicate that first we

compute

2. = d'x + b. + 1n(p. ) (5.9)
i 1

i,517P1,52

i
and then obtain p. jl(g,A) and P, j2(3{_,A) as
b] b
et
v e (XGA) = (5.10)
Pl,]l =? 1+ eg'i
pi’jz(é,A) = l - pi,jl(Z{"A)'
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Chapter 12

MODEL 3 RESULTS

Model 3 was developed to more realistically des-
cribe the outcome space for an accepted loan. To
sufficiently model thé delinquency behavior and
associated costs of a loan, the simple outcome des-
cription of default/non-default is replaced by the
state description presented in Chapter 11. Since
this 13 state model was seen to be approximately first
order and stationary, we can consider a loan applicant
to be completely characterized by his expected transi-
tion probability matrix P(x,A), by the loan reward
matrix R(A,L), and by the term of the loan T. Given
these estimates, the single-loan decision to grant
credit can be evaluated as a discounted Markov process
decision model.?t

Chapter 5 indicated the transition probability
matrix P(x,A) could be estimated using pattern recog-
nition techniques. One such technique based on linear
discriminant analysis was developed in detail and

applied in Chapter 11. It was seen that P(x,A) could

See Howard [32], Chapters 2 and 7
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be determined as a function of (x,A) by little more
than one matrix multiplication of (x,A) and a discri-

minant function matrix.

Transition Reward Matpix

The transition reward matrix R(A,L) depends on
both the loan characteristics (A,L) and previously
determined costs of collection. Let Pij be the reward
associated with an i+3j transition, wvhere for notational
simplicity, the dependence on (A,L) is assumed. The
values of ri3 will now be presented on a transition

by transition basis.

Credit granting to on-time

When the loan is granted, the account moves to the
on-time state and a cash outflow of -A occurs.

On-time to on-time

This includes the following i+3j transitions: 0-0,
56, 6>7, 79, 9-11, 11~11, and.10+6. When an account
makes an on-time to on-time transition a cash inflow of
one payment is made. Appendix A shows how payment size
is determined as a function of loan amount A, loan term

T, and the simple annual interest rate r of the loan.
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On-time to 1 month delinquent

This includes the transitions 0-+8, 5-1, 6->1, 7-1,
9+»1, 10»1, and 11+1. An account becomes delinquent
when no payment is'received by the payment due date
(plus an undisclosed grace period). At this time
éollection action is initiated at the "fifst call level".
A previous cost study performed by the author indicated
that the cost of collection effort at the first call
level is approximately $2.40 per month per delinguent

account. Thus for these transitions we set Pij = =2.40.

1 month delinquent to on-time

This includes the transitions 1-5 and 8-+10. Typi-
cally the customer must make two payments on the next
due date to return to on-time status, and collectors
are instructed to telephone the customer and ask that
he send his iate payment with the current payment that
is due. This produces a cash inflow of two payments.

1 month delinquent to 2 months delinquent

This includes 12 and 8-2 transitions. The same
cost study alluded to above determined the per month
cost of 2nd level collection effort to be $3.30 per
account. Since no payment is received, we set r;. =

]
-3.30 for these transitions.
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2 months delinquent to on-time (2-5)

Here, two delinquent payments plus the currently
due payment are received for a total cash inflow of

Tog = 3 payments.

2 months delinquent to 3 months delinguent (2-3)

The cost study determined that the more intense
3rd level collection effort costs $7.50 per month per

account, giving P,y = -7.50.

3 months delinguent to on-time (325)

Here, three delinguent payments plus the currently
due payment are received for a total cash inflow of

r35 = 4 payments. We would note, however, that seldom

are four payments simultaneously received. Nonetheless,
this minor discrepancy leads to only insignificant
effects on the total net present value of the process,
and is most unlikely to change the credit granting
decision.

3 months delinquent to default (3-4)

When an account becomes more than 3 months delin-
quest, it is considered to have defaulted. The account
is then charged-off against a reserve for bad debts,
and a separate recovery. department attempts to collect

the charged-off balance. Typically, they recover about
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37% of the balance (on a discounted basis), but at an
average recovery effort cost of $106 per account.
Yodel 3 takes this recovery cost into account as soon
as the account makes the transition to the default

trap state. This gives rgy = -106.

Default state to Default state (4=>U4)

"hen a loan enters the default trap state at time
t, the charged-off balance is (T-t+3)-a where T is the
loan term and a is the payment size. The value of 3 is
included since the account did not make its last 3
scheduled payments. The results of Appendix A indicate
that about 37% of this balance will be recovered.

We can approximately model the post default
recoveries by including a positive reward on U-h transi-

tions of ry, = .37a and continuing to run the Markov

process model for a full T periods.

Evaluating Model 3

The discriminant function matrix was determined2
using all loans in Data Set B. A subset, hereafter
referred to as Data Set Bl, was then used to test the
model's performance. Data Set Bl consists of all 28

"had" loans in Data Set B (i.e., loans that defaulted) and

2See Table 11.3.
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100 randomly selected "good" loans (i.e., loans that
were never delinguent during the 15 month observation
period). For each of these 128 loans, P(x,A) and
R(A,L) were estimated and the expected net present
value of all rewards for T transitions was computed.
T was taken to be the actual term of the loan being

tested.

Let Vd(OIT) be the expected net present value of

all rewards over T periods, given the loan starts at

the decision state d. We can compute V4(0[T) re-

cursively using (3.3.1.), with the transition reward
matrix R(A,L) given above and the transition proba-
bility matrix P(x,A) estimated in the manner outlined
in Chapter 11. The monthly discount factor is taken
to be B = (1 + p/lZ)-l , with b = .10 the annual cost
of capital.
The single loan decision rule is then
0 (reject) if Vd(OIT) <0

é\ = (30312)
1 (accept) if Vd(D[T) > 0.
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For the loan that is actually from class 6 (6=0 for bad
loans, 6=1 for good loans) and Model 3 giving the deci-

sion 6, the reward function R(A,6) (not to be confused

with the transition reward matrix R(A,L)) is given in

Table 9.2.1.

In a manner similar to that of Chaptef 9.3 for
Model 1, we can compute the weighted total profit of
applying the Model 3 decision rule to Data Set Bl.

This weighted total profit can then be normalized to
give the average profit per applicant. Table 12.1
presents these results, along with the misclassifica-
tion probabilities for Model 3. In addition, we present
the performance of the benchmark decision rule (credit
scoring) and the profit given perfect knowledge of 6.

The results in Table 12.1 show that although Model 3
tends to rejeét'a large proportion of good loans, those
that are rejected have small average profit relative to
those that are accepted ($11.99 compared to $51.99).
Further examination of the loans of Data Set Bl reveals
a significant number of good lcans with small loan amounts
and short loan terms (e.g., A = $800, T = 6 months). Even
with a perfect payment record, these loans are only
marginally profitable (if not actually unprofitable) since

the net interest earned barely offsets the administrative
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PN
Average Profit on
Average -
- 5 5 Profit per Good Loans
Decision Rule BG GB Applicant Rejected Accepted
Model 3 .07 .73 10.85 11.99 51.99
A,
Benchmark 1.00 0 -1,72 - 22.79
(accept all)
N
Benchmark . 86 .03 1.76 7.65 23.26
(S* = 20)
Perfect 0 0 21.92 - 21.92
~ Information
i)
TABLE 12.1
Model 3 Performance on Data Set Bl
Lo
i
LY

208



processing costs.3 Model 3 tends to reject these small
loans when additional expected delinquency costs are
considered. On the other hand, the benchmark credit
scoring rule considers only the score, regardless of the
loan amount of term. This partially accounts for the
performance of Model 3 relative to the benchmark decision
rule.

The loans of Data Set Bl have all been accepted by
the NSE benchmark decision rule. This pre-screening
implies that these loans are probably of better quality than
the average loan applied for. The a priori probability of
default, given the loans were previously screened and
accepted, should be somewhat less than the estimate of
p(6=0) = .048. The effect of this pre-screening bias

will be considered in detail in Chapter 15.

3These loans are mcre economically processed as a revolving

credit cash advance.
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Chapter 13

MODEL 4% RESULTS

If we try to extend the detailed outcome descrip-
tion of Model 3 to more than a single loan period, the
set of possible outcomes expands so rapidly that even
considering a two-loan case is computationally impossi-
ble with 13 states. The outcome of any one loan is
described by its T month state occupancy history. From
this history we can compute a transition count matrix
F . Depending on the transitions we observe, we update
our estimate of P(x,A) and decide whether to re-extend
credit. The distribution theory behind this Bayesian
updating can be found in Martin [34]. With Model 2, the
only outcomes considered were .default and non-default.
In this case, however, the outcome space becomes the
entire range set of the transition count matrix F. For
a 13 'state model and 20 transitions an extremely large
number of different transition count matrices are possi-
ble. Still worse, we must then evaluate the decision to

re-extend credit conditiconal upon each of these transi-
1

b

tion count outcomes. As Martin indicates

LYiartin [341, p. 179



"It does seem clear, however, that, for pro-
blems with a large number of states in which a
high degree of accuracy is required, we must
think in terms of hours, not minutes, of com-
puter time. This is not to say that the
Bayesian method of dealing with Markov chains
with uncertain transition probabilities must
be abandoned as impractical. But it must be
recognized that, for the present state of the
art, the Bayesian treatment is probably most
practical for problems with two or three states,
loose prior distributions, and large differences
in the rewards associated with different ac~-
tions. As problems tend to differ from these
criteria, the decision maker must balance in-
creasing computation time against the required
accuracy of the solution and choose an '
appropriate approximation."

Clearly, we must focus our attention toward an
approximation to Model Y4 which captures as much as
possible the important aspects of payment/delinquency
detail while not neglecting the importance of modeling
the multi-loan nature of the process. One such
approximatioﬁ,'Model LA, is presented in this chapter.

Its economic performance is then tested on a sample

of loans from Data Set B.

13.1 Model Y4A Description

Model UBA is intended to model delinquency behavior
with its related costs in the context of a credit grant-
ing decision which considers the significant present

value contribution of subsequent loans. The Markov
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process model presented in Chapters 3 and 11 was motivated
by the desire to include delinguency-related costs. The
previous analysis of Chapter 11 indicates that it is
descriptive of delinquency behavior and thus delinquency-
related costs. The T-etep transition probability from
state d (the decision state) to state 4 (default) pro-
vides an alternative pattern recognition determined
estimate for the probability of default p(x,A).

Moreover, the Markov process model implicitly
gives this default probability as a function of the
loan term T. Model 2, on the other hand, does not in-
clude loan term as a component of the feature vector x
because loan term ranked 22nd out of 23 features in
terms of information content about the loan class 6
(see Table 7.1)

The analysis presented in Appendix A tends to
support a dependence of the default probability p(x,A)
on T. The conclusion reached there was that default
is equally likely to occur at any time during the term
of the loan. This was expressed quantitatively by

(A.6) as:

T/(T-1) 0 <y £ (T-1)/T
ply) = (A.6)
0 (T-1)/T < v £ 1
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where Yy is the fraction of payments made before default.
If t = time of default, then the probability that de-
fault occurs before time t (given default occurs) is

given by
t/T
p(y<t/T|T) = J p(y|T)dy = t/(T-1).. (13.1)
0

This result implies that the probability of default
increases linearly throughout the term of the loan.
This conclusion is indeed consistent with the Markov
process model of delinquency behavior. In fact, the
Markov process model apparently implies that, given
(x,A), p(x,A) increases almost linearly with T.

In light of this evidence that p(x,A) increases
with T, we might reasonably wonder why a lending
institution doés not discourage longer term loans.
The answer lies in the increased profitability to the
lender from a longer term obligation. For a given
loan amount, interest rate, and cost of capital the
net present value of payment cash flows, Vl(A,L), in-
creases with T. TFor example, the profitability
formulas of Appendix A applied to a $2000 loan made
at13.5% interest with 10% cost of capital gives the
following net present values (excluding delinquency

costs):
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Net Present Value

Term (Months) given no default given default
12 27.22 -755
24 60.74 -R77
36 93.39 -617
48 125.14 -562
60 | 155.93 -509

In fact, these net present values increase almost
‘linearly with loan term T.

Thus as T increases, so does both the lender's
risk and his return; that is, p(x,A), V1<A:E) and
VO(A’E) all increase with T. The Markov process des-
cription of payment behavior properly incorporates
this dependence on loan term, as evidenced by the
following experiment. The payment behavior of this
same $2000 loan was simulated using the a priori
transition probability matrix described in Chapter 11.
The transition reward matrix Qas computed using the
same 13.5% interest rate and 10% cost of capital, but
with varying loan terms. Transition rewards were

computed to include only delinquency costs. The follow-

ing T-step default prcbability and the expected net

present value of delinquency costs were observed.




12
24
36
48
60

Default Delinguency

Probability Costs = D
.029 - 9.49
.055 -12.23
.076 ~14.53
.097 ~16.65
117 ~18.57

It thus seems appropriate to use the-

Markov pro-

cess description to obtain both an initial estimate of

the probability of default and an estimate of expected

delinquency costs.

. As indicated above, the detailed

outcome description of a single loan is exploited to

obtain a delinquency cost estimate.

Having obtained

this cost estimate, we then map the set of possible

transition histories into one of two outcomes, a

transition to the default trap state and no default

after T transitions.

That is, since there are a

multitude of possible (NxN) transition count matrices

F, we will partition the range of I into the two classes

0(E) = 0 and 0(F) = 1, where

0 if F includes a transition to
the default trap state

1 otherwise.

This mapping of F to 8 provides the approximation

needed to make Model 4 computationally manageable.

Instead of estimating PrlE|(x,A),T1 for all F indivi-

dually, we can now estimate
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Pri6(E)=0](x,A),T] = ) PrlE|(x,A),T]
VE 36(E)=0

This probability Pr[6(F) =0|x,A,T] is simply the ex-
pected probability of default given (x,A) and T.

Thié reduction to a two outcome description permits
a consideration of subsequent loans through the use of
the multi-period two outcome model described in Chapters
3.2 and 10. The Markov process description provides
the necessary term-dependent default probability for
the first loan

Pri6(E)=0{(x,A),T] = py(x,A)

which then is updated as in Model 2 as each subsequent
loan is repaid. In addition, since the detailed state
description provides an estimate of expected delinquency
- costs, D, we can adjust the net present value of default
and non-default to be VD(A,Q)—D and Vl(A,L)—D respective-

ly.

- 1 ' This approximation assumes that delinquency costs
D will be the same for all subsequent loans, when in
fact we might expect them to become less with each sub-
-~ sequent loan. Fowever, since delinquency costs of
future loans are discounted at the relevant cost of

capital, we expect that this assumpticn will have a

216




negligible effect on the multi-period expected net pre-
sent value. As presented in Chapters 3.2 and 10, VJ
will denote the expected net present value of J loan

periods.

13.2 Model 4A Results

Model 4A was used to estimate the J-period ex-
pected net present value, GJ’ for all 28 defaulted lcans
and a random sample of 100 never-delinquent "good"
loans from Data Set B. These 128 test loans are the
same loans used in Chapter 12 to test Model 3.

The transition probability matrix P(x,A) was esti-
mated in the manner described in Chapter 11. The
transition reward matrix R(A,L) was computed in a
manner similar to that described in Chapter 12, except
that only collection effort costs and "float" costs
associated with late payments were considered. For ex-
ample, the float cost associated with a 1+5 transition
(1 month delinquent to on-time) is the difference be-
tween the present value of one payment at time t+1 and
one payment at time t (when the payment was due). If p
'is the cost of capital and a is the payment amount, this

difference is

float cost (1-5) = =-a(p/12) , (13.
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For a $2000 loan with 24 month term at 13.5% simple
annual interest, the payment Sige is $95.55. With
p=.10, the float cost incurred due to this payment
received one month late (a 1+5 or 8~+10 transition) is
given by (13.2) as ~$.78.

The default probaﬁility p(x,A) was then computed
as the T-step transition probability to state U using
the pattern recognition estimate for P(x,A). Actual
sample loan amounts A and loan terms T were used.
Expected delinquency costs, D, were obtained from
P(x,A) and R(A,L) using the recursion relation (3.3.1.).
Default and non-default expected values, VO(A,L) and
V,(A,L), were computed as indicated in Appendix A,
from which the expected loss due to delinquency (D)
was subtracted.

The multi-period model described in Chapter 3.2
(Model 2) was then used to estimate QJ. The number
of locans, J, was set to 5 initially and then later to
1 for comparison purposes. The probability of
reapplying was chosen to be f?=.7. The typical interest
rate of r=.135 was used, and the cost of capital was
taken to be p=.10. Loan reapplications were assumed
to occur every 2 years (T1).

Figure 13.1 illustratec the application of Model

YA to a typical installment loan.
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FIGURE 13.1. Example of Model 4LA
FEATURE VECTOR 25 10 1500 -5 999 15 0 -5 -5 55

P MATRIX .914 .234 .157 .982 1.000 .574
.139 .075 .153 .070 .335 .oh1

MONTH DELINQ COSTS P(DEFAULT)
0 0.00 _ .000
1 -0.20 .000
2 ~-0.U48 .000
3 -0.84 .000
4 -1.22 .002°
5 -1.63 .004
6 -2.06 .006
7 -2.50 .009
8 -2.95 .012
S ~-3.39 .016
10 -3.83 .019
11 -4.27 .N23
12 -b.70 .026
13 -5.13 .030
14 -5.54 .033
15 -5.95 .037
16 -6.35 .040
17 -6.73 .ohL
18 -7.12 .o47
DEFAULT PROBABILITY = .0472
AMOUNT = 1500 PAYMENT SIZE = 92.52
DELINQ COSTS = -7.12
NPV OF DEFAULT = -566.84 NPV OF NO DEFAULT = 23..45
EVENT I P(I) V(1)
DEFAULT IN PERIOD 1 0.047 -567
NO DEFAULT THRU 1 0.953 23
ENPV = -4.42 ( 1 PERIOD MODEL)
EVENT I P(I) V(1)
DEFAULT IN PERIOD 1 0.047 -567
DEFAULT IN PERIOD 2 0.015 -304
DEFAULT IN PERIOD 3 0.009 -153
DEFAULT IN PERIOD 4 0.006 -65
DEFAULT IN PERIOD 5 0.005 -14
NO DEFAULT THRU 5 0.918 52
ENPV = 14.60 ( 5 PERIOD MODEL)
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Table 13.1 presents the results obtained on the 100
"good" loans and 28 "bad" loans from Data Set Bl. When five
loans are considered, Model 4A significantly outperforms the
benchmark credit scoring model. The loans of Data Set B had
all previously been accepted by NSB. This leaves unanswered
the question of how well Model 4A performs on locans that NSB
rejected.' Unfortunately, we do not know the outcome of a
rejected loan. Nevertheless, we would expect Model HA to
reject a substantial proportion of the loan applications
that NSB rejected. To verify this expectation, Model LA was
used to make credit granting decisions on the 63 rejected
loans of Data Set CR. With a five loan horizon, Model LA
rejected 61% of these loans, and with a one loan horizon it
rejected 76% of them. Chapter 15 illustrates how performance
can be evaluated without actually knowing the outcomes of

these rejected loans.




Average Profit on

Average
. . Profit per Good Loans
Decision Rule BG GB Applicant Rejected Accepted
Model LA .32 .61 6.05 6.93 47.60
(5 loans)
Model HA .18 .71 7.78 10.20 53.60
(1 loan)
Benchmark 1.00 0 -1.72 - 22.789
(accept all)
Benchmark .86 .03 1.76 7.65 23.26
(S* = 20)
Perfect 0 0 21.92 - 21.92
Information
TABLE 13.1

Model 4A Performance on Data Set Bl
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Chapter 14
CASE STUDY SUMMARY

The installment loan case study of Part II represents
a typical application of the decision models to a particular
lending institution. In the course of presenting the case
study analysis, we have outlined the steps that must be
taken to implement the models. Chapter 6 reviewed the data
requirements of the mocdels and described the three data sets
actually collected. The feature selection problem was dis-
cussed in detail in Chapter 7. We should caution the reader
that the set of ten features selected represents the result
obtained for a particular credit instrument at a given bank.
These features may not be the appropriate ones to use for
revolving credit instruments, or for installment loan deci-
sions at another institution.

Chapters 8 and 9 presented a general pattern recogni-
tion approach to the multivariate estimation of default
probability. The algorithms presented do, however, assume
that the similarity between loan applicants can be expressed
as the weighted Euclidean distance between their feature
vectors. Evidence that partially supports this assumption

is presented at the end of Chapter 7. Nonetheless, a




non-metric approachl to this estimation problem is suggested
as a possible subject for future investigation.

The clustering pattern recognition algorithm suggested
by Sebestyen and Edie [38] was seen to perform at least as
well as the other algorithms used. The complexity of the
algorithm suggests that its relative performance might im-
prove with larger training sample sizes. If this were found
to be the case, we might further investigate the clusters
that are defined with a view toward identifying them with

consumer sub-populations (market segments).

i

Chapter 10 demonstrated the significant present value
contribution of potential future loans. The mechanics of
the Bayesian probability updating rule were illustrated,
and shown to agree in spirit with management's belief in
the importance of long-term customer relationships. Con-
sumer loan managers often speak of "reaching" to grant credit
to new customers. Quantitatively, they are trading-off an
increased probability of default on the initial loan for

expected future revenues. The results presented in Table 10.3

1The theory presented in Chapter 7 provides a basis for such

a non-metric approach. The techniques presented by
Christensen [28,29] represent a similar non-metric approach

based on feature-outcome mutual information.
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indicate that for a $2000 installment loan, this tradeoff

can be quite significant in terms of the acceptable level of
default risk. A default probability of .07 is unacceptable
if only the first loan is considered (it has negative ex-
pected present value). However, if five loans are considered
and the probability of default is updated as each loan is
repaid, a default probability of up to .11 still yields a
positive expected net present value.

The formulation of Model 2 assumes that the outcome of
any loan represents an observation from a Bernoullili process.
This assumption permits the use of the beta natural conjugate
prior for the specification of the probability updating rule.
Although this assumption seems plausible from a theoretical
standpoint, its validity should perhaps be verified by fur-
ther investigation. An investigation of this nature requires
that a sample of accounts be obéerved over the course of
several loans. In the absence of such a verification, we
nonetheless feel that the results obtained are representative
of the significant effect of future loans on the initial

credit granting decision.

Chapter 11 considered the problem of estimating the
transition probabilities of a Markov process as a function
of the applicant's feature vector. Section 11.1 presented
evidence that the initial state description was not at all
first order. The higher order memory in the process was
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modeled by expansion of the appropriate states. This expan-
sion was performed in a sequential manner, whereby states

are added one at a time so as to maximally reduce the total
second order memory of the process. The final state descrip-
tion of Figure 11.3 shows that delinquent/payment behavior
contains up to sixth order memory.

Once delinquency occurs, the process is seen to be
approximately stationary. The transition probability from
the "never-delinquent" on-time state to one month delinquent
decreases slightly over time as a perfect payment record is
accumulated. However, this small degree of non-stationarity
was seen to have a negligible effect on the accept/reject
decision.

In general, transitions from a more delinquent to a
less delinquent state are possible. These transitions are
not observed in Data Set B because the installment loan
collection department at NSB attempts to induce a delinquent
customer to return to an on-time payment schedule as soon
as possible. This type of collection effort is not as
prevalent in the case of revolving credit instruments, es-
pecially for charge cards, with the result that more than
two transitions are possible from delinquent states. However,
this possibility poses no conceptual problems for the esti-
mation of the transition probability matrix. Computationally,

we must simply estimate an increased number of probabilities.
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-
Chapter 12 presents the results obtained by Model 3 on
the 128 loans of Data Set Bl. These results indicate that

- Model 3 significantly outperforms the benchmark credit
scoring rule. However, in analyzing the performance of
Model 3 we assumed that the loans of Data Set Bl are repre-

- sentative of the applicant population. In fact, we know
that they are of a better average quality since they were
previously scored and accepted. This pre-screening of Data

- Set Bl serves to decrease the relative frequency of bad
loans. The effect of pre-screening on the results obtained
is discussed in Chapter 15.

- Chapter 13 develops an approximate solution to the
multi-period detailed outcome model. This approximation
uses the Markov process model to estimate the default proba-

- bility and expected delinquency costs. These delinqguency
costs are then subtracted from the default and non-default

, outcome rewards to obtain delinquency-adjusted rewards.

’“, These estimates are then used as input to the multi-period
binary outcome Model 2. As with Model 3, the results pre-
sented somewhat overstate the relative performance of

- Model 4A due to the pre-screening of Data Set B.

-~
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In summary, the results of the application of the
decision models to the NSB installment loan case study sug-
gest that the proposed models can be efficiently programmed
to yield improved credit granting decisions. The presenta-
tion of the analysis serves to outline the steps that are
required for the application of the models to similar de-
cision problems in other contexts. Finally, the analysis
itself has provided a number of insights into the relevant

components of the decision to grant credit.
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PART TIT,
FURTHER DISCUSSION OF THE MODELS

Part I presented a theoretical development of a general
set of consumer credit decision models. Part II presented
the results of an application of these models to actual
loan histories. Part III reconsiders the models in light
of the insights gained by the theoretical and empirical
analysis of Parts I and II. In particular, the problems
presented by the pre-screening of available data are dis-
cussed, and a procedure for removing these biases is pre-
sented. In general, the decision models are shown to be
readily adaptable to revolving credit instruments. The
implications for operational decisions and organizational
level policy decisions of the lending institution are dis-
cussed. A case 1s made for Vafiable interest rates on con-
sumer loans based on the quantitative assessment of default
risk. Finally, the basic structures of the models are
reviewed and shown to have possible application for decision

- problems in areas other than consumer credit granting.
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Chapter 15
SAMPLING FROM A PRE-SCREENED POPULATION

A common characteristic of problems requiring an accept/
reject decision rule is that samples, whose outcomes are
known, had to have beeh previously accepted. Had they
been previously rejected, they would have never entered the
process in the first place. Consequently, the data that is
available for evaluating the decision model is of better
caliber than the population in general. This bias, due to
what will be referred to as "pre-screening", presents prob-
lems for model evaluation. Frequently, these biases are
simply ignored. This chapter addresses this issue of sampling
from a pre-screened population. The nature of the problem
is discussed in the context of the credit granting models,
and a procedure for explicitlyvconsidering the effects of

this bias is presented.

Consider the two-outcome description for installment »
loans that is described by Model 4A of Chapter 13. The out-
comes are denoted as 6=0 for bad (default) and 6=1 for good
{non-default). A decision rule can be developed as in
Part II that gives the decision 6=0 for rejection or 6=1
for acceptance. To evaluate the decision rule's performance,
we can compare its decisions (8) with the actual known loan

outcomes (8) of a given data set. Given R(S,@), the reward

229




function for deciding 8§ when the true outcome is 6, we can
compute the average expected rewéfd per applicant by normal-
izing the total reward on the data set both by the number

of lcans in the set from class 6 and by the a priori proba-
bility of class 6.

But here we must Be careful to specify what we mean by
the a priori probability of class 6. Figure 15.1 indicates
that we conly cbserve the cutceome 6 of loans that were pre-
viously accepted (§=1) by the screening rule in use when the
lcan applicaticn was made. We should also be coricerned with
our model's performance on lcans that the screening rule re-
jected (8=0), since if our model is used in place of the
screening rule, it must be able to make decisions on these
screened rejects as well. The a pricri probability of de-
fault appropriate for evaluating the model's performance on
accepted screened lcans (8=1) is p(0=0|8=1). If the screen-
ing rule has any merit (presumably 1t does or else it would
not be used), then we expect that the default probability
for accepted screened lcans p(8=0|8=1) is somewhat less
than the default probability p(8=0) for the applicant pcpu-
laticn in general. Conversely, the default probability for

rejected screened lcans i1s somewhat greater.
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We can decompose the a priori default probability as:

]

p(6=0) = p(0=0|68=0)p(S=0) + p(6=0|6=1)p(6=1), (15.1)

where
p(8=0) is the default prcbability for the population,

p(8=0) is the reject rate cf the screening rule,

f

p(s=1) 1-p(8=0) is the accept rate of the screening
rule,

p(6=0|6=0) is the default probability for rejected
screened loans, and

p(6=0|68=1) is the default prcbability for accepted
screened loans.
All tut one of these parameters can be cbtained directly.
The default probability p(€=0) for the applicant population
can be determinecd by the methed shown in Section 9.1. The
reject rate p(6=0) of the screéning rule is easily ascer-
tained, as is its complement. The default prdbability.for
accepted screered loans can be computed as the lending
institution's ratic of defaulted loans to total accepted
loans. This leaves the & priori cdefault probability for
rejected screened loans p(6=0|8=0) to be computed from (15.1)
as a function of p(8=0), p(8=0), and p(8=0|8=1). This a
priori probability is thus computed without having to observe
the outcome of rejected screened loans. Using this probabil-

ity as the proper normalizing factor, we can evaluate the
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model's expected performance on rejected screened loans.

This evaluation is accomplished in the following manner.

Estimating Performance on Pre-screened Rejected Loans

Since we do not know the outcomes (86) of these rejected
screened loans, we are forced to evaluate performance using
average reward values. That is, interpret R(6,§|6=0) to be
the reward obtained by the decision & on rejected screened

loans (6=0) if the loan had outcome 6. The average reward

for rejected screened loans could be obtained from the sample
of rejected loans if we apply the model to each loan to ob-
tain 6 and first assume that 6=0. We will denote this avérage
reward as II,. We then repeat the procedure assuming 6=1 for

0

each loan to obtain Hl, the average reward realized by the

model on rejected screened loans if the loans had outcome
6=1. The expected average reward on rejected screened loans

is then given by
I = T, p(6=0|6=0) + I,[1-pCe=0]6=0)1, (15.2)

where p(6=0]6=0) is computed using (15.1)

This expected average reward on rejected screened loans
is then added to the average expected profit on accepted
screened loans (as computed in Part II for each model) to

obtain the average expected profit per unscreened applicant.

This measure is indicative of the performance we could expect
if the present screening rule were replaced by the decision

rule being evaluated. 233




Case Study Results

This bias-compensating proceﬁure was used to evalute
the performance of Models 3 and 4 on Data Set B. Data Set B
was pre-screened using the NSB benchmark credit scoring rule;
that is, the loans in Data Set B were previously accepted
by the benchmark screeﬁing rule. Because NSB allows its
lenders to override the credit écoring decision, the screen-
ing rule does not correspond exactly to the strict cutoff
score that was optimally determined to be S* = 20. To
investigate the performance of the NSB credit scoring de-
cision rule if the cutoff score were strictly adhered to,
we include an evaluation of the decision rule "Accept if and
only if S* > 20" in the analysis.

Figure 15.2 presents the results obtained after consider-
ing the 63 rejected screened loans of Data Set CR. These
performance measures represent'the average profit per appli-
cant (unscreened) that can be expected on the first loan
only. That is, since we do not know the outcome of subsequent
loans, we can not make the multi-period evaluation to verify
the long-run performance of Model 4 when the planning horizon
is extended to J=5 loans.

For the NSB case study, the post-screen default probabil-
ity, p(#=0]8=1), was determined to be about .02. This repre-
sents a reduction of about 60% from the a priori probability

of default p(6=0) = .048. The screen reject rate, p(8=0),
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is observed to be about 15%. We then evaluated performance
for the range of post-screen a pr}ori default probabilities,
p(8=0[8=1), from 0.0 to 0.048. This form of analysis demon-
strates the effects of ignoring pre-screened rejected loans
in evaluating performance. As can be seen from Figure 15.2,
as the screening rule decreases the post-screen a priori
default probability, ignoring screening-induced bias over-
states the performance of the proposed decision rule.

Figure 15.2 gives the following performance measures

for the alternative decision rule given p(8=0|é=1) = .02.

Average Expected Profit

Decision Rule per Unscreened Applicant
Model 3 13.50
Model 4
(1 loan) 11.40
(5 loans) . 12.20
Benchmark
(S* = 20) 12.10
(Actual) 10.70
Perfect Information 21.92

Models 3 and 4 appear to significantly outperform the
actual benchmark screening rule on the sample of 100 good
loans and 28 bad loans in Data Set Bl. The strict cutoff
score of S* = 20 also seems to outperform the actual screen-
ing rule. The implication here is that, on the average, the

lending officer's subjective information has negative




expected value. Of course, the sample size is not suffi-
ciently large to make these assertions with a strong degree
of confidence.

Performance differences on the order of $1.00 per appli-
cant may not seem significant at first, but consumer credit
granting is a large volume operation. At NSB, for example,
over 30,000 loans are applied for annually. This represents
an annual increase in earnings of over $30,000. For larger
banks and finance companies, similar performance improvements
can realize over one million dollars in additional annual

earnings.




Chapter 16

GENERALIZATION TO NEW CREDIT INSTRUMENTS

Historically, consumer credit decision models have been
developed to model fixed-term installment loans. Recently,
however, credit instruments of a new variety have experienced
increasing demand from the consumer population. One such
instrument, often referred to as "revolving credit", has
progressed from retail charge cards (e.g., Master Charge
or Bank Americard) to lines of credit of several thousand
dollars that are accessed on demand by simply writing a check
on a special account. These '"check loans" are predicted to
increase in popularity, even to the extent where major pur-
chases such as automobiles may no longer be financed by in-
stallment loans.

These new forms of revolving credit cannot be properly
modeled by simple credit scoring techniques. The failure of
these techniques results from the continuing or "revolving"
nature of this form of credit. The definition of a "good"
or "bad" loan becomes fuzzy. By "bad" do we mean default
within one year after credit granting? Within five years
after credit granting? Even if the customer defaults after
five years, he may have used his line of credit enough so
that the finance charges he has paid more than exceed the

amount lost through default.
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The revenues from a revolving credit customer depend on
the extent to which he uses his line of credit. An account
with a high usage factor will be significantly more profitable
to the lending institution. In order to make a credit grant-
ing decision, it is not sufficient to simply compute loss
probabilities. An additional prediction of usage is required
to determine expected profit.

For the case of revolving credit, the treatment of delin-
quent payments warrants reconsideration. On one hand, delin-
quency is a step in the direction of default and costly col-
lection effort is expended to bring the account up to date.

On the other hand, delinquent payments increase the finance
charges received and so increase the gross profitability of
the account. Consumers are aware of this increased profita-
bility to the lending institution and have been seen to ex-
hibit a more relaxed attitude toward revolving credit delin-
quency. This behavior makeé it highly desirable for creﬁit
granting decision rules to properly account for risks and
returns associated with delinquency.

Models 3 and 4 can be vreadily applied to give credit
granting decision rules for these newer credit instruments.
Delinguency behavior, as it relates to the risk of default,
is summarized in the applicant's transition probability matrix
P(x,A), where now A denotes the ceiling on the line of credit.

The revenues from finance charges are summarized in the
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transition reward matrix R(A,L,U(x,A)) where the additional
parameter U(x,A) represents the prediction of usage given

the applicant's feature vector x and the credit limit A.
Operationally, we may define U(x,A) to be the average fraction
of the credit line A that is maintained as a balance in the

account. For example: A $2,000 line of credit with U = .5

means that an average balance of $1,000 will be maintained.
This balance will result in a monthly finance charge (at 12%
annual interest) of $10. If the account becomes one month
delinquent, an additional finance charge on the late payment
will be due. This additional revenue tends to offset the
additional expected loss due to increased default risk. Most
banks recognize this aspect of reveolving credit and do not
initiate delinquent collection procedures until an account
becomes two months delinquent.

When a revolving credit‘cﬁstomer experiences financial
difficulty, he will generally draw on his line of credit
until he is no longer able to make the necessary minimum
monthly payments. In these cases, default losses tend to be
near the credit limit. The state transition Models 3 and 4
can account for this phenomenon through the addition of an
appropriate cash outflow as part of the transition reward

to the default trap state.

The rapid growth of revolving credit has left managers

used to thinking in terms of installment lending with several
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unanswered questions. The three most frequently asked ques-
tions are:

1) How should the initial credit granting decision

be made?

2) How should we set the credit limit?

3) How often should the account be reviewed?
In the remainder of this section we will outline how the
more complex Models 3 and 4 are well suited to providing

these answers.

The Initial Credit Granting Decision

The parameter T, which previously denoted the install-
ment loan term, here represents the planning horizon. The
expected net present value Vd(OIT) of T monthly periods
provides the appropriate decision criterion, Vd(O[T) is
determined recursively using (3.3.1):

Vi (] = % pij[rij + BVj(t+l[T)]. (3.3.1)

The monthly discount factor, B, can also include the proba-
bility that the customer maintains his credit line in an
active status. Because revolving credit customers are more
varied in their banking habits, this activity factor can

play an important role in the credit decision.
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Setting Credit Limits

Credit limits must be set on an individual basis, de-
pending on the features of the applicant. A low credit limit
reduces the default risk to the lending institution, but a
limit below an amount which the applicant can financially
maintain as an average balance will unnecessarily reduce
finance charge revenues. A limit above the applicant's
"financial capability" only serves to expose the lender to
additional default risk. The applicant's financial capability
can be defined in terms of his feature vector x. Too high a
credit limit (given his features x) may encourage financial
irresponsibility which will be reflected in his transition
probability matrix P(x,A). Too low a credit limit will re-
duce the finance charge revenue components of R(A,L,U(x,A)).
The model's explicit consideration of these aspects permits
the formulation of a decision rule for revolving credit of
the form:

Accept with credit limit A% if mzx Vd(OIT) > 0,

where A% is the credit 1imit which maximizes Vd(OlT).

Determining the Review Period

The multi-period extension to Model 4 provides the neces-
sary structure for evaluating the time of next account review.
Payment performance is rev?ewed periodically to determine

whether the credit line should be renewed (continued) and
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whether a credit limit increase is warranted. In terms of
our credit granting models, this review process permits an
updating of the payment transition probability matrix P(x,A)
(see Section 3.4). The usage factor U(x,A) can also be re-
estimated in light of observed credit usage, and an updated
transition reward matrix R(A,L,U(x,A)) can be obtained.

These updated parameters can then be used to re-determine
the optimal credit limit. If the new credit limit represents
an increase over the old limit, the customer is notified.

However, if the new limit is less than that initially granted,

it may not be advisable to lower it for reasons of good-will.
Nonetheless, the lending institution is made aware that the
account may represent a more risky customer and can take
whatever action it feels is prudent. This action may take
the form of more frequent future reviews, or tighter delin-
quent‘collection action. If the account's updated expected
net present value is negative, the lender may decide not to
renew the loan.

Account review, if done manually, can be costly relative
to the gains made by credit limit changes. If automated,
these costs may be on the order of from a few cents up to a
dollar per account per review, depending on the sophistica-
tion of the review process. The more costly the review

process, the less frequently will we want to review accounts.

243



In terms of Model 4, the macro-period corresponds to

the review period. The model itself does not restrict the

macro-periods to have equal length, T. In fact, we might
expect that, initially, reviews should be more frequent until
the estimates of payment behavior become more stable (reduced
variance in the estimates of P(x,A) and U(x,A)). If Tj is

the length of the jth review period, we would expect

T1 < T2 <onw < TJ,
where Tl + T2 + ... 4 TJ is the length of the planning horizon
divided into J macro-periods. In this way, we would be pay-

ing decreasing sampling costs for decreasing amounts of in-
formation as our estimates become tighter.

The immediate issue is the setting of the next review
period T,. It should be pointed out that this depends con-
2,...,TJ, and that the

optional solution can only be obtained by a computationally

ditionally upon the review periods T

involved method of successive approximations.l It is clear
that approximations to Model Y4 must be investigated in order
to answer this issue. One such approximation, Model 4A, is

suggested in Chapter 13. We believe that the approximation

1See Martin [34], Chapter 5. Martin proves that as the
macro-periods become longer, the expected net present value
during that period approaches the total expected net present
value that results from a terminal decision after which no

review is taken.
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suggested provides an interesting subject for future investi-

gation into solution methods to the problem of review period
determination.
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Chapter 17
IMPLICATIONS OF THE MODELS

The research presented in previous chapters has wide-
ranging implications for lending and other risk-selection
industries, as well as for the nature of credit instruments
themselves. This chapter is devoted to a discussion of
these implications from a variety of viewpoints. For in-
stance, operational credit policy questions can be answered
by appropriate parametric analysis of the models presented.
These credit granting models further serve as sub-models
for decision making at a higher organizational level (e.g.,
capital budgeting and marketing decisions). Taking the con-
sumer's point of view, we suggest some possible variations
on existing credit instruments and credit policies that
could increase the availability of credit to the general
population. Finally, we indicate that the models presented

here have possible application in other industries.
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17.1 Operational Credit Policy

Collection Policy

Models 3 and 4 permit the investigation of effects on
profitability due to collection policy changes. The transi-
tion prdbabilities of the delinquent Markov process can be
partially controlled by the allocation of collection effort
at different collection levels or by increased or decreased
collection effort in general. The effect on total profita-
bility can be ascertained and weighed against any additional
costs associated with these policy changes. On an even more
operational level, the models provide the necessary quantita-
tive tools for determining the best allocation of the efforts
of an individual collector among the delinquent accounts he

is charged with.

Sequential Decision Making

The decision to grant credit can be made in a sequential
manner. For example, loans that show very large positive
(or negative) expected net present value by Model 1 will also
probably be shown to be profitable (or unprofitable) by Model
4. TFor these cases there is no need to more accurately pre-
dict profitability since the decision will not be altered.
By applying simple, less costly models first, we may be able
to achieve economies within the evaluation and decision

process itself. Continuing this sequential approach one



step further, we may want to gather feature information about
an applicant sequentially. If a credit bureau report, whether
,favorable or unfavorable, will not change the decision, then
it should not be obtained. A savings of over a dollar (on

the order of 5% of average expected profit on the first loan)
will thus be achieved. This sequential approach can be easily
incorporated in a model whose probability estimation proce-

dures have the capability of handling unknown features.

Subjective Information

Although quantitative decision rules are becoming more
familiar to credit managers, many find it difficult not to
allow the lending officer to exercise some degree of subjective
judgement in the final credit granting decision. This "over-
ride" option is found to be more prevalent where decision
making is decentralized (e.g., a branch banking system). The
assumption here is that the human lending officer may have at
his disposal information that is not or cannot be captured
in a quantiative model. This may be something as insignificant

' or something as relevant as

as "The customer seems honest,'
"He may have difficulty making the payments now, but in two
months he will finish medical school and has a job waiting."
Given that circumstances of this nature are not uncommon,
we would want to have the lending officer consider the model's

decision in the light of any additional subjective informa-

tion he might have. If he has none (e.g., a mail order
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application) he should grant credit strictly on the basis of
the objective model's decision (apart from some pattern rec-
ognition of his own). If the applicant is extremely atypical
(i.e., an outlier in feature space) he might almost completely

disregard the model and make his own subjective decision.

Thus, in every credit granting decision there will be
this mix of objective and subjective information. We might
argue that better (more experienced) lenders should be per-
mitted to more heavily weigh the value of sﬁbjective informa-
tion. An untrained lender, on the other hand, should initial-
ly be constrained to follow the model's decision. It is clear
that any effective management decision system must also pro-
vide methods for measuring both the objective/subjective mix
being employed by each lender and the value of his subjective

information.

Including Exogenous Economic Conditions

Most credit granting models do not include the effects
of exogenous economic conditions on the earnings of éonsumer
credit operations. These effects can be readilyvmodeled by
the inclusion of selected economic indicators in the esti-
mation of default probabilities or transition probabilities.
Since economic conditions and local demographic characteris-
tics vary over time, any practical credit granting decision
system shculd be able to track these changes in the applicant

population.
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Modeling Costs

Models 1 through U4 represent four models of both increas-
ing complexity and increasing cost of applicatioh. As with
any modeling effort, we must remain aware of the cost effec-
tiveness of the modeling process itself. A model, such as
Model 4, that is costly to parameterize ana implement should
provide performance increases that at least compensate for
these costs. It seems quite likely that the complexity of
the model that will be cost effective will depend on the
volume of credit applications processed and the availability

of the data needed for model parameterization.
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17.2 Organizational Decision Making

Related Consumer Services

The models are also sufficiently flexible to allow for
the effect of inter-related consumer services. At a bank,
for example, if a customer's credit application is accepted,
he will be more likely to open a new savings account than if
his application is rejected.

This cross-sell effect of the loan decision on other

services will be included as follows. Let si = 1 if service
type 1 is subscribed to at the time of the credit granting
decision; Sé = 0 if it is not. Similarly let sg be the indi-
cator variable for service type i shortly after the decision.
Let 6 = 1 if credit is granted, and 0 if it is not. Let
p(sglsi,@) be the appropriate probability of service i after
the decision given the state before the decision itself.
Finally, let Yi be the expected net present value of service
type i for the particular customer in question. Then the

crogss-sell effect of the loan decision is given by

t A it 1
st,8)(st - s!)Y..
" 1’ i 1771

"
]I, pesy
1 st
i
Thus, the additional contribution to other service revenue

due to acceptance (relative to rejection) is given by

Cross-Sell Effect = § z"[p(sglsi,8=l) - p(sglsi,6=0)](sg—si)Yi.
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Considering the credit granting decision in the context
of related services will have the effect that some applicants
that before appeared marginally unprofitable will now be

accepted.

Marketing Policy Decisions

These models also provide excellent tools for marketing
policy decisions. The demographic characteristics of an appli-
cant are explicitly incorporated through his feature vector X.
The credit granting model computes the expected net present
value of an applicant, and if this value is positive credit
is granted. Let V#(x) be this value for an applicant with
features x (V#(x) = 0 if credit is not granted). Let N(x) be
the number of applicants with features x. Then total profit

will be given by

v V#(x)IN(x)dx.

%otal - IX

If marketing policy is to be re-evaluated (e.g., by ad-
vertising to a particular market segment), the effect of

alternative policies on consumer credit profits is given by

AV VE(x)IN' (x)-N(x)]dx,

total ~ jX

where N'(x) is the number of applicants with features x
that are expected if the alternative policy is adopted.

This formulation permits market planners to evaluate the
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effect of alternative marketing strategies given the credit

granting decision rules being used.

Capital Budgeting

Credit granting decision models of the type presented
in this thesis provide the tools needed to evaluate policy
alternatives that affect more than just the consumer credit
department of the organization. If capital must be rationed,
the models can be used to determine which applicants repre-
sent the most profitable lending opportunities. If addi-
tional sources of capital are available, but at a higher
cost, the models can be used to evaluate the expected return
on this capital if it is used for consumer loans as opposed

to other investment opportunities.
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17.3 Credit Instruments From The Consumer's Viewpoint

From an investment theory viewpoint, it appears that
decision rules of the type suggested above result in ineffi-
ciencies in the consumer loan market. That is, the expected
return dh a consumer loan is only partially related to the
risk inherent in granting the loan. To the extent that dif-
ferent risk categories of loans carry different interest rates
(r), the lending institution is compensated for risk. How-
ever, within a loan type the compensation for the riskiness
of an individual applicant takes only the form of a binary
accept/reject decision. Perhaps one can argue that the con-
sumer loan market as a whole is efficient because of the ex-
istence of finance companies and other such institutions that
charge relatively higher interest rates. However, we feel a
case can still be made for an inefficient market on the
grounds that the banking industry within a loan risk class
only compensates for risk to the extent that it accepts or
rejects a particular applicant.

From the consumer's point of view, this inefficiency can
have disconcerting consequences. Take, for example, the con-
sumer whose car loan at r = 14% is rejected because the net
present value of expected cash flows is -$10. His disutility
of doing without a car or of seeking out other loan sources

may be significantly greater than $10. In fact, such a
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customer may be quite willing to pay a "risk-compensating
charge" of $11 so as to raise hié:expected value to +S1.

By such a transfer, the inefficiency inherent in the binary
credit granting decision rule would seem to be resolved in

a manner whereby both the bank and the consumer would bene-
fit. Of course, the "fisk—compensating charge" of $11 could
be amortized over the term of the loan by an increase in the
interest rate, which is what is likely to happen if the con-
sumer seeks other loan sources.

As the consumer demonstrates his "credit-worthiness"
tﬁrough payment behavior, an updating of his default proba-
bilities (as implied by the multi-period models) would soon
reduce his interest rate to the normal level. ‘In this manner,
a consumer who was previously denied the chance to obtain
credit can, with only a small risk-justified expense, estab-
lish credit with which to finaﬁce both immediate and future
needs.

The risk-adjusting of interest rates could work in the
opposite direction for low-risk consumers. Individuals who
demonstrafe good payment performance over a period of time
are in effect being discriminated against by current credit
practices. As they demonstrate their reliability for handling
crédit obligations, they should be charged lower risk premiums

in the form of reduced interest rates.
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These variable interest rate adjustments can be deter-
mined parametrically from the credit granting models presented
in Chapter 3. In fact, many banks and other finance institu-
tions feel a social responsibility to make credit available
to consumer sub-populations who might otherwise be denied
credit. Models such as these would enable ‘the lending insti-
tution to quantify the extent to which they, in effect, are
subsidizing these high risk groups. Such a quantification
might open the door to a government subsidized minority lend-
ing program. Such programs already exist on a piecemeal basis,
but are generally restricted to educational and home mortgage
loans.

The concept of variable interest rates based on the
assessed risk of the customer is only novel to consumer credit

granting — such practices are commonplace for commercial

credit grantirig. The primary obstacles in the consumer area
have been the difficulty of making the risk assessment eco-
nomically for a large volume of applicants. Automated credit
granting decision rules may provide the means for implementing

these concepts in the area of consumer credit granting.
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17.4 Application To Other Problem Areas

We have previously indicated how the models presented
can be parameterized for application to any lending institu- ~
tion. This parameterization is necessary to account for
demographic variations due to both geographical location and
the particular credit instrument being modeled. With re- -
parameterization, these models can be used for credit grant-
ing decisioné of banks, finance companies, retail companies,
airlines, gasoline credit sales, and so-called "luxury" credit
cards. Moreover, the general structure of this class of
models finds applications in areas other than credit granting.
A brief review of the model structure will be given and its
potential applicability to three unrelated areas will be sug-

gested.

General Structure of the Model

Model 4, the multi-period detailed outcome model, is the
decision model that includes all the properties of Models 1,
2, and 3. Although computationally impractical, approximate
solutions can be devised to capture the most important aspects
of a given problem. Oné such approximation, Model WA, is
suggested in Chapter 13.

The decision maker is faced with a binary accept/reject
decision. If he rejects the applicant, no further action

takes place. If he accepts him, the applicant makes
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transitions among the states of a Markov chain. The decision
maker's state of knowledge about the applicant is summarized
in a transition probability matrix P(x) and transition reward
matrix R(x), Where both matrices are coﬁditionéd on a vector
of features x characterizing the applicant, and any other
relevant parameters. |

The reward matrix R(x) is estimated. It may or may not
be known with certainty. The transition probability matrix
is assumed to have a matrix-beta distribution. The expected
value of this distribution is used in evaluating expected
discounted rewards. We have shown in Chapter 5 how this ex-
pected transition probability matrix P(X) can be estimated
for a particular applicant by pattern recognition techniques.

The decision maker has the option of observing transi-
tions over a specified macro-period to update his estimates
of the transition probability ﬁatrix. If the reward matrix
is not known with certainty, it too can be updated in the
light of the account's behavior during the review period. At

this time, the decision maker can re-evaluate his decision.

In addition to the feature vector x, the transition
probability and reward matrices can be conditioned upon a
set of policy parameters. Such a parametric formulation per-
mits the investigation and possible optimization of poliecy

alternatives.




Other Areas of Application

A model of this general nature was shown to be appropri-
ate for installment loan credit granting decisions through the
case study application of Part II. Chapter 16 showed how it
could be readily applied to revolving credit. In addition,
it appears that the model has a potential application for
insurance underwriting, school admission, and criminal
justice-related decisions. The nature of these applications

will be briefly discussed.

The insurance underwriting decision is somewhat similar
to the credit granting decision. An applicant for automobile,
fire, or health insurance is either rejected or accepted by
the insurance underwriter. If accepted, the customer makes
transitions among different outcome states, which may repre-
sent different accident categories. These transition proba-
bilities P(x) can be initially estimated as a function of the
applicant's features, which may include his age, geographical
location, driving record (in the case of automobile insurance),
occupation, etc. The reward matrix can be computed as a
function of insurance liability limits and premium assessmehts.

A periodic review of the insurance customer allows for
updating his transition probability matrix. In the case of
automobile insurance, a successful driving record during the

review period might warrant a premium reduction. This class
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of models might serve in this manner as the basis for a

merit rating system.

The school admission problem of determining which appli-
cants to accept and which to reject is suggested as another
problem area that may be amenable to analysis by the methods
presented here. Candidates can be characterized by a vector
of features or attributes that may include previous grades,
test scores, reference evaluations, and interview impressions.
If admitted, the student "outcome" may be grossly described
by either eventual graduation or else failure or dropout.

On a more detailed level, we might describe his outcome on

a semester—by-semester basis, where his outcome in any one
semester could be given by a set of states (e.g., good stand-
ing, marginal standing, and failure or dropout). We would
then be faced with the problem of predicting his transitions
among these states as a function of the features ascertained

at the time of application.

Within the criminal justice system, we find decision
problems of a nature similar to credit granting. One problem
is the decision to grant pre-trial release of an individual
arrested for alleged wrongdoing. If he is released on his
own recognizance, there is a certain probability that he will
not appear at his arraignment. This probability can be esti-

mated as a function of the individual's features, and then
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used to weigh show/no-show outcome rewards that might be
determined by an appropriate cost-benefit analysis.

A second problem is the decision to grant parole. If
parole 1is granted, the individual may later be rearrested
for another (possibly different) crime.l The possibility
of rearrest may be poséd as a pattern recognition problem.
The multi-period aspects of the problem, namely the poten-
tial for subsequent crimes, suggest that a probability up-

dating scheme similar to Models 2 and 4 may be appropriate.

Further discussion of these applications will be left
as topics for possible future investigation. It has only
been our intent to suggest these particular problems as ex-
amples of the applicability of the pattern recognition based
Markovian decision model to problem areas other than credit

granting.

1A, Blumstein and R. Larson ["Models of a Total Criminal
Justice System," Operations Research (March-April 1969),
pp. 199-232] present an excellent introduction to this
problem area.
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Appendix A

Y

LOAN PROFITABILITY ANALYSIS

This appehdix serves to quantify‘in economic terms the
expected net presenf,value to the lending institution of both
defaulted and non—defauited installment loans. The analysis
identifies the revenue and cost components as a function of
loan parameters (A,&), where A is the loan amount and L 1is a
vector of other loan attributes (e.g., interest rate, term,
etc.). The following table defines and summarizes the parame-

ters explicitly considered.

A loan amount

a monthly payment

r simple annual interest rate

0 annual cost of capitai

T loan term (number of monthly payments)

t number of months between the time the locan is
granted and the first payment is due.

tq number of months from receipt of last payment to

default
r' = r/12 monthly interest rate
p' = p/12 monthly cost of capital
Y fraction of the original loan amount (A) that will

be charged off given the loan defaults

Z present value of the fraction of the charged-off
amount (YA) that is recovered after default
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present value of costs associated with post-default
recovery efforts

RO(A,E) expected net present value of cash flows until the
loan defaults, given that it defaults

Rl(A,k) present value of cash flows of a non-defaulting loan

VO(A,&) expected net present value of a loan with parameters
- (A,L), given the loan defaults

Vl(A’E) net present value of a loan with parameters (A,L),
) given the loan does not default '

A.l1 ZTLconomic Components of Installment Loan Profitability

The primary components of an account's profitability are:
1) net discounted revenues

2) charge-off or default losses

3) recovery revenues after default

4) delinquency-related costs

5) loan processing costs.

A brief description of a possible account history will clarify
the meaning of these components.

An installment lcan is made for a fixed amount (A) and
usually for a given purpose, e.g., car purchase, home improve-
ment, etc. Repayment of the loan is usually in equal monthly
installment payments for a specified number of payments called
the term of the loan (T), typically 12 to 36 months. The sum
of the payments exceeds the loan amount A so as to yield a net
positive return to the bank.

During its term *the account may be delinquent in making

a payment. If the delinquency continues, collection effort in




the form of letters and telephone calls is initiated. This
collection effort thus incurs costs which detract from the
overall profitability of the account. These expected
delinquency-related costs will be expressed as D.
Should the account become more than 90 days delinquent
it is removed from the books as an asset through an accounting
procedure known as "charge-off" or "write-off". It is at this
point that the loan i1s considered to be & bad or defaulted
loan. Usually a number of installments will have been paid,
the fraction remaining will be denoted by y and the charge-off
balance will be YA.
Although such a charged-off loan is considered a bad debt

and has been removed from the active account books, it is

still legally recoverable for up to seven years. A separate
recovery section then attempts to recover the charged-off
balance, YA. Typically, the section will recover a fraction
(about one-third) of the charged-off balance. The actual value
of these recovery revenues is the present value of the recov-
.ered cash flows minus the present value of the costs associated
with the recovery effort. The present value of the expected
recovered cash flows as a fraction of the charge-off balance,
YA, will be denoted by Z, so that the present value of recov-
eries will be Z(yA). The present value of the expected associ-

ated costs will be denoted by C.
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A.2 Net Discounted Revenues

Revenue on a loan account is dependent upon the annual
interest rate r at which the loan is made. This interest rate
fluctuates with the business cycle, and is often qguoted as a
'simple annual rate. This rate is currently seen to be about
r = 13.5% for the average loan.

The lending institution itself is typically highly lever-
aged (debt /equity ratio in excess of 10.0). Capital is typi-
cally borrowed from depositors or in the Federal money market.

The annual cost of capital p is the appropriate discount
factor to use in computing the net present value of loan re-
lated cash flows. Rather than concern ourselves with a de-
tailed estimation of p, we reiy on an estimate quoted by the
bank of p * .10. This estimate seems reasonable in light of
the risk characteristics of a large commercial bank.

The cash flows of an installment loan are of the follow-
ing nature. A cash outflow of -A at time t=0 is made when
credit is granted. T egual monthly payments of size a are
made, with the first payment due one month after the loan

is made. The payment size is given by the formula

T
1 1 .
a = A ) (A.1)
(1+r')” - 1
where r' = r/12 is the monthly interest rate.

Cash TFlow Given No Default

If the loan does not default, the net present value of

its cash flows will be 269




T-1

R (A,L) = -A + (1+0")770 ] a(l+p")7F, (A.2)
t=0
.where p' = p/12 is the monthly cost of capital. The factor
t
(1+p") 0 in the denominator adjusts the present value to the

time of loan granting since t, is the average delay from loan
granting to the first payment date.

Cash Flow Given Default

If the loan defaults, these revenue cash flows will term-
inate at the last payment made. If ¥y is the average fraction
of the loan charged off, then the expected number of payments
made will be approximately M = (1-y)T. The net present value

of these M payments as a function of y is given by

—'to M"l _.t
Ro(A,LIY) = -A + (1+p") ZO a(l+p') (A.3)
tT=

where M = (1-v)T.
If p(y) is the probability that the fraction y will be

charged off given that the loan defaults, then the expected

net present value of these cash flows given default is

1
Ry(A,L) = f RO(A,gly)p(y)dy. (A.4)
vy=0

The distribution p(y) will be estimated in the folldﬁing sec-

tion on charged-off losses.
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A.3 Charge-0ff Or Default Losses

Part of the loss due to the loan defaulting can be con-
sidered to be the expected opportunity loss Ry (A,L) - Ry(A,L)
equal to the expected net present value of payments that should
have been received but were not. As pointed out above in
equation (A.4) this opportunity loss is dependent upon the
distribution of vy, the fraction of payments not received.

In order to obtain an estimate for p(y), a sample of de~-
faulted loans was collected. All 220 installment loans charged
off during the period January 1972 through October 1972 were
evaluated and the following information was recorded.

1) account number and loan type

2) approved date

3) loan amount (A)

4) charge-off amount (yA)

5) date at which account became delinquent

6) date of charge-off

7) loan term (T)

Given this information we were able to compute the fraction
charged off y = (yA)/A, the delay from credit granting to first
payment (to), and the delay from last payment to charge-off

(t,).

1

We are interested in ty and t, so as to properly time the

cash flows. The average values for these delays were found to
be

tO = .89 months, tl = 3.6 months.
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These delays-reflect delays inherent in the loan administratioﬁ
process. Explicitly including them in the model allows for
later sensitivity analysis on the effect of administrative
policy changes.

The more critical problem is that of estimating p(y).

The following linear models were explored:

Y = ¥ ) (A.5.1)

<
T

bO + blT + bzA.- (A.5.2)

The coefficients of (A.5.1) and (A.5.2) were estimated by

multiple linear regression, with the following results:

Y =¥ = .472 (A.5.1a)
(.289)
Y = .48 - .084T + 0.0A (A.5.2a)
(.26) (.10)
2 _ -
(R® = .07, F = ,03Y4)

Values beneath the coefficient estimates are standard errors
of the estimate.

A visual examination of scatterdiagrams of y versus T and
Y versus A suggest that default is likely to occur uniformly
throughout the loan term. That is, conditional upon the oc-
currence of default, the bank is likely to receive anywhere
from 0 to T-1 payments with equal probability. This suggests

the distribution:
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T/(T-1) 0 < vy £ (T-1)/T
ply) = : (A.6)
0 (T-1)/T <y £ 1
The average loan term for the sample was 24.1 months. If vy

is uniformly distributed between 0 and T-1 according to (A.6)

then the expected value of y is:
Elyl = (T-1)/2T

which for T = 24.1 months is E[y] = .481. This agreement with

Y = .472 given by (A.5.la) supports the hypothesis that vy is
uniformly distributed according to (A.6).

We can now rewrite (A.4) as

-tq T-1 1 M-1 —t
Rg(A,L) = -A + (1+p") L oy L oall+p) . (A.7)
M=0 t=0

A.4 Recovery Revenues After Default

Two of the required paramefers, the average discounted
recovery cost per loan (C) and the present value of the aver-
age ratio (Z) of discounted recovery revenues to charge-off
amount were estimated from information provided by the Install-
ment Loan Recovery Section (LRS) of NSB. The average dis-

counted cost of collecting a defaulted loan is estimated by

9.5 -
C= ] e (l+o) 7, (A.8)
t=.5
where c is the annual cost of pursuing a defaulted loan t
years after default. The midpoint (t = .5, 1.5, 2.5,...) of
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F)
the recovery year is used since, for example, 0 to 1 year-old
loans have average age of 0.5 yeafs.
Four loan adjusters pursue all defaulted loans, with the
- following division of labor.
Loan Worked by an Adjuster
- Number of Adjusters by Year Charged Off
1 1971
1 13970
- 1 1965, 1967, 1968 (1/2), 1872 (1/2)
1 1966, 1968 (1/2), 1969, 1972 (1/2)
1964 loans receive about 3 hours effort per month.
1963 loans receive about 1 hour effort per month.
™~
From this table, we can estimate es the proportion of
the LRS's effort spent on lcans of average age t.
L
Average Time Loan Proportion of LRS Time Spent
Has Been in LRS on Loan of Average Age t
-~ .5 .30
1.5 .25
2.5 .24
3.5 .10
4.5 .05
5.5 .03
-~ 6.5 .02
7.5 .01
8.5 .005
9.5 .003
-~ Table A.1

Proportion of LRS Time Spent on Loan of Average Age t
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At the time of this survey, the loan recovery section was
pursuing 534 defaulted loans. The annual budget for the section
was $75,000. This implies that on a fully allocated basis the

cost of pursuit after t years since default is

c,_ = e, . (A.9)

Since we use (A.9) and the ey values of Table A.l1 to ob-

tain c., we can estimate C from (A.8). Using p = .10 we obtain
C =~ $106.

The data of Table A.2 provides a means for estimating Z,
the average ratio of discounted recovery revenues to charge-

off amount.

Year of Recovery
Year
Charged-0ff 1968 1969 1370 1971
1962 .0019 .01k .013 .004
1963 .0ugs .0210 .0074 .0033
1964 L0247 .0167 .0135 .0074
1965 .0u403 .0313 .0250 .0187
1966 .0762 .0533 .0302 .0200
1967 .1560 .0806 .0582 . 0345
1968 .0930 .1515 .0585 .0387
1969 - 1420 .0991 .0582
1370 - - .0873 .1100
1971 - - - .1238

Table A.2

Proportion of Loan Recovered
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This distribution of recovery revenues is plotted in Figure
A.1 as the fraction Zy recovered t years after default. If
we let Zy be the average fraction recovered t years after

default we estimate 7 using

9.5 ¢
Z = ) z, (1+p) (A.10)
t=.5
Using p = .10 and Z. values from Figure A.l we obtain:
Z = .37.

A.4 Delinquency Costs and Processing Costs

Delinquency costs are extremely difficult to estimate on
an average loan basis, and are only mentioned in this appendix
for the sake of completeness. Model 3 was developed for the
express purpcocse of accounting for delinquency related costs.

Administrative costs associated with putting the loan
onto the books and processing monthly payments are also diffi-
cult to identify. For the purpose of this thesis they are

estimated at $10 per loan.

A.5 Obtaining VO(A,E) and Vl(A,é)

The results obtained in sections A.l1 through A.4 are now
combined to give VO(A,E) and Vl(A,E), the expected net present

value given default and non-default respectively. These are:
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Vo(A,L) = Ro(A,L) + (ZyA-C)(1+p1) LCI-MIT¥tortyd g (4 11

N

where the first term is the expected discounted revenues com-
puted using (A.1l) and (A.7); the second term is the recovery
revenues net of purspit costs discounted to the average time
at which the loan enters the recovery section, i.e., (1-y)T

oty t tl; and the third term is the administrative process-

ing costs.

where the present value of T monthly payments, Rl(A,E) is
given by (A.1) and (A.2), and administrative processing costs

are taken to be $10.
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1.

Occupation

. Code

1

Appendix B

FEATURE DESCRIPTIONS

sales managers
retired

foreman

professional workers

management
middle management
elected officials
craftsmen

lower middle management
clerical workers
operatives

semi-skilled

technical workers

proprietor, self-owner
laborers, sales workers

other service workers
transportation drivers

Years at Occupation - (.1 yrs.)

Loan Amount

- (108%)

Term - Months
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25

15




Purpose

Code Score
1 taxes, boat, education,
vacation, auto, insurance 20
2 home improvement, cycle 15

3 business § investment, home

furnishings 10
b funeral, personal 5
5 bills, medical, moving 0
6 renewal -5

Marital Status

1. single 4. separated
2. married 5. divorced
3 widowed

Age

Code Range Score

1 18-24 0
2 25-386 -5
3 37-42 2
4 43-50 11
5 51-56 15
6 57-862 20
7 62+ 10

Dependents -" (number of)

Own/Rent -~ (residence)

Years of Residence - (.1 yrs.)

280




11.

12.
13.
14,
15.
16.
17.
18.
19.
20.
21.

22.

23.

Income
Code Range Score
1 0-300 -5
2 301-420 0
3 421-540 5
4 541-700 10
5 700-1000 15
6 1000+ 20

Mortgage/Rent - ($)

Total Debt - (10$%)

Telephone - 1 Yes; 2 No

Years at Former Residence - (.1 yrs.)

Years with Former Employer - (.1 yrs.)

Other Income - ($)

Checking - 1 Yes; 2 No
Savings - 1 Yes; 2 No

Auto - 1 Yes; 2 No

Total Monthly Payments - (8)

Ability to Pay

net mo. income + 1/2 (other income)

total mo. payments + rent or + 20 (dependents)
mortgage

IiSB Credit Score
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