FAULT DETECTION EXPERIMENTS

IN SEQUENTTIATL MACHTINES

by
Jacques Andre Rivierre

SUBMITTED IN PARTTAL FULFILIMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1968

Signature of Author y: fff; :

Department éiégéfigél ﬁﬂé?ﬁéé¥1£éf May 17, 1968

Certified by

e e e e Gt e h et —m A R e e e e e e e e o e . e o e e —

Accepted by

Chairman, Departmental Committee on Graduate Students

Archives
GASS. INST, TECy,

JUL 24 1968

LIBRARIES




e

&
e

Yoo

“h /1-"

>,

dr———




FAULT-DETECTION EXPERIMENTS

IN SEQUENTIAL MACHINES

by
JACQUES ANDRE RIVIERRE

Submitted to the Department of Electrical Engineering
on May 17, 1968 in partial fulfillment of the require-
ments for the Degree of Master of Science

ABSTRACT

The design of fault-detection experiments for sequential machines
is based upon the use of distinguishing or characterizing sequénces. Sys-
tematic procedures to build fault-detection experiments from these sequences
have been devised by Hennie.

OQur objective in this thesis is to show that fault-detection
experiments can be greatly improved by an appropriate choice of the above
sequences.

First, we will discover that a sensible improvement can be
achieved by the use of adaptive sequences rather than preset ones. Se-
cond, for machines which do not have ditinguishing sequences, we will in-
vestigate the relationship between the structure of the partition asso-
ciated with a set of characterizing sequences, and the complexity of the
generated locating sequences. A procedure to select the best partition

will be given.
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I. INTRODUCTTIONN

The ability to determine whether or not a given machine operates
correctly, from terminal measurements alone, becomes increasingly impor-
tant as more and more machines are being manufactured in integrated form.
Moreover, it is useful to try to shorten the length of such terminal mea-
surements, especially when many units of the same machine have to be tested.

The first method to determine whether or not a finite-state
machine operates in accordance with its state-table, has been devised by
Moore ;1;. However, Moore's method, which is based on the construction of
the direct sum table, leads to extremely long experiments and is therefore
impractical.

A more efficient approach has been developed by Hennie 2.
Hennie used two slightly different procedures according to whether or not
the machine possesses distinguishing sequences. A summary of these pro-
cedures is given herein.

Kohavi 3, proposes still another procedure for the design of
checking experiments. His method consists of modifying the original
design of the machine as well as introducing additional output logic so
as to provide the machine with special distinguishing sequences which
lead to short fault-detection experiments.

The overall design of fault-detection experiments in this thesis
will foliaw Hennie's procedures. The objective here is to show how the
use of more appropriate sequeﬁces than those used up to now can lead to

much shorter fault-detection experiments and a more flexible design.




IT. BACKGROUND

IT. 1. Basic Definitions:

An experiment on a machine is the application of input sequences
to the input terminals and the recording of the corresponding responses
from its output terminals. If the experiment is designed to take the
machine through all possible transitions in such a way that a definite
conclusion can be reached as to whether or not the machine operates cor-

rectly, it is said to be a fault-detection experiment.

An experiment is said to be preset when the entire input sequence
is specified in advance. An experiment is said to be adaptive when the
choice of the input symbols to apply next is influenced by the way in
which the machine has responded to the previous input symbols.

An experiment that can be used to determine the machine's initial

state is called a distinguishing experiment. A distinguishing experiment

can be preset or adaptive. The input sequence used in a preset distin-

guishing experiment is called preset distinguishing sequence (PDS). When

we use an adaptive distinguishing experiment, the total input sequence used
to pin down the initial state depends upon the initial state itself. We

then have a set of sequences that we will call a set of adaptive distin-

guishing sequences (ADS). WNot all machines have distinguishing experi-

ments. It is sometimes possible to find both preset distinguishing exper-
iments teach of which is associated with one PDS) and adaptive distin-
guishing experiments (each of which is associated with'a set of ADS) for
a'giVen machine. Some machines have only adaptive distinguishing experi-

ments, and some machines have no distinguishing experiment at all.




A sequence whose application forces the machine into a specific

final state is called a synchronizing sequence. Some machines have syn-

chronizing sequences, others do not.
A sequence whose application makes it possible to determine the
final state of the machine by observing the output sequence is called a

homing sequence. Every reduced machine has a homing sequence.

An extensive discussion of various sequences and experiments can

be found in Gill 4, or Hennie (55.

IT. 2. Summary of Hennie's Paper:

Since we will follow the general design of fault-detection exper-
iments developed by Hennie, it is appropriate to summarize the general
ideas and the different steps of the procedure.

Throughout this thesis we will make the following assumptions:
the correctly operating machine is reduced, strongly-connection and does
not suffer any malfunction that increases the number of its states.

The design of fault-detection experiments is divided into two
parts. The first part brings the machine into some desired starting state.
This part can be preset if the state table has a synchronizing sequence.
Otherwise, we apply a homing sequence, deduce the present state and then
apply an additional input sequence which will bring.the machine into the
desired starting state.

The choice of method for the second and main part of the experi-
ment depends on.whether or not the machine has a PDS.

In both methods the pverall‘design is the same: first we iden-
tify all the states, then check all transitions. Although these two steps

can be intermingled, we will keep them in that order for the sake of




simplicity.

Before explaining the methods used, let us introduce some nota-
tion. §,, SZ""’ S, denote the states of a n-state machine--the appli-
cation of the input sequence Xk to this machine in state Si leaves the

machine in state Q- T(S Sj) denotes an input sequence that takes

i=

the machine from state Si to state Sj‘

II. 2a. First Method (Machine with preset distinguishing sequence)

Step 1: Choose a particular PDS Xp, and begin the experiment by the

following sequence, the machine being assumed to be in state Syi:

Xg T(Qqg> S2) Xg T(Qyp, 83)"'T(Qn-1,0’ Sp) %y T(QnO’ S,) Xy

If the machine operates correctly, the corresponding output
sequence Z will contain the output respomses XO for all the n states of
the machine, which we can then identify. If the output is different from

Z, the machine is faulty.

Step 2: We now have to check, for each state, the transitions under
all the input symbols. To check the x-transition from state Sj’ when the

machine is in state QiO’ we use the following sequence:
The sequence T(Q;q, Sj_l) brings the machine in state S, _

| -1
‘then by the first step, the machine will certainly be in state Sj if it

has just received Xy T(Qj 1 »5.) and responded to the Xy part of this

07 ]

sequence by producing Zj-l‘




IT. 2b. Second Method (Machines not having preset distinguishing sequences)
Even if the machine does not have PDS's, it is always possible
to identify its states by their responses to an appropriately chosen set

of input sequences, called characterizing sequences. The number of se-

quences in this set does not have to exceed n-1.

i) Machines having two characterizing sequences (X1 and X2)

Step 1: We build from Xy and X5 a locating sequence (LS)for each

state - the LS for state Si is the following:
' n+1
[xl T(Q; ;> si)] X,

From the corresponding output sequence, it can be shown that
the machine, just before the application of X5, was in the same state as
before at least one of the ntl applications of Xy

A locating sequence built up from two characterizing sequences

will be called a locating sequence of second order ( A PDS is a locating

sequence of first order).

Step 2: We then begin the fault-detection experiment by a sequence

which is built up of alternating LS's and transfer sequences

L]_ T(lea 82) L2 T(sz’ 53) LS"-T(QH-].,Z’ Sn) Ln

The transfer sequences bring the machine to the proper state

for the next LS. At the end of this sequence, the machine is in Q

Step 3: Select a convenient LS, say Ly (associated with Sk) to be

used in the remainder of the experiment.

— . S e — e e e e 1 e o e———



The machine being in state Qn’ we determine the state it will

be in at the end of Lk by the sequence
T S Iy Xy T(Qy10 S0 Iy Xy

This sequence emables us to identify the state Si in which

the machine is at the end of L by the responses of §; to X; and X2'

Step 4: Check the transitions, beginning by those fromSi - the

following sequence performs this function:
L, x X T(Q, Sp) L x X,

According to step 3, the machine is in Si just before each
application of x. Sj’ the x-successor of Sj» is then determined by its
responses to Xl and X2‘

We can now check the transitions from S  in the same manner,

]
the same procedure applies then for the remaining transitions.

—_— e - — _—— e — — T

The design of fault-detection experiments, in this case,
differs from the process described in the preceding section in two ways.
First, the design of LS's becomes more complicated. Second, each transi-
tion has to be examined k times, k being the number of characterizing
sequences.

For a machine having 3 characterizing sequences X5 Xy, X3,

For .
the LS state Sy is




where Yj (j =1, 2, 3) is the seguence that has Xj as its initial portion

and takes the correctly operating machine from.si back to Si'

The above sequence is obtained by repeating Y1n+2

Y2 n+2
times, Y, being replaced by Y3 in the last repetition.

The process repeats itself to obtain LS's of higher order.

ITT MACHINES HAVING A SET OF ADAPTIVE

DISTINGUISHING SEQUEDNGCES

The main tool used in the design of preset checking experiments
is the P.D.S., for each state produces, in response to this sequence, a
different output sequence. We can then discover the state the machine was
in just before the application of the PDS by looking at the response. We
also know this result can be achieved with adaptive distinguishing sequences
(ADS), and that these sequences are more powerful than preset omes, requir-
ing in general less input symbols.

It is thus appropriate to try to design fault detection experi-
ments with ADS rather than with PDS. At first sight, the use of adaptive
DS may seem incompatible with preset fault-detection experiments. We will
see in the discussion to follow that this is not so, and that we actually

obtain better results.

ITI. 1. An Analysis Example

Suppose we are given a machine and that the only information
available about this machine is that it has at most four internal states.
We now apply the input sequence X to this machine which responds

by producing the output sequence Z (fig. 1).




Time: 1234567891011 12 13 14 15 16 17 18 19 20 21 22 23
X: 111010111 1 0 0 1 0 1 1 010 1 0 1 1
Z: 601110001 1 0 O 1 1 1 1 1 1 0 0 0 0 1

- fig. 1 -

The notation S{(t) will denote the state of the machine at time t.

From this experiment, what can we say about the state - table
that represents the machine?

First, we observe that at times t=1 and t=2 the machine is sup-
plied with the input sequence 11 and produces two different output se-
quences: 00 and 0l. Therefore S(1) and S(2) must be distinct states.

At times t=3 and t=5, the machine is supplied with the input
sequence 10, but again produces different output sequences: 11 and 10.
Therefore S(3) and S(5) must be distinct states.

Moreover S(3) and S(5) respond to a 1l by producing a 1, while
S(1) and $(2) respond to a 1 by producing a 0. Therefore S(1), S(2), S(3),
and 3(5) must be distinct from each other.

At this point we have identified four distinct states, and be-
cause the machine is assumed to have at most four states, we have identi-
fied all its states. Let us name the states A, B, C and D.

Further let S(2) be state A, S(3) state B, 5(1) state C and
S(5).state D.

Suppose then that at some time t, later in the experiment, the
machine is presented with the input sequence 1l and produces the output
sequence Ol. Then S(t) can not be B or D, these two states responding to
albya l.r Neither can S(t).be C, for C responds to 11 by 00. Hence;

S(t) must be A. So S(8) = $(22) = A, By similar reasoning S(7) = C,




S(13) = 5(16) = B, S(10) = S(18) = D.
From this it is now a simple matter to recover the states at
each step of the experiment and deduce the complete state-table (fig. 2)

of the machine (see details in appendix I).

- fig. 2 -

The above reasoning is very close to the reasoning used to
recover the state-table of a machine from a fault-detection experiment
built up from a PDS.

The main difference stems from the fact that we have been able
to identify the four states of the machine with the use of two different
sequences rather than simply one (namely a PDS): 11 to identify A and C,
10 to identify B and D. Our experiment requires 23 input symbols.

The shortest experiment I have been able to construct for this
machine with a PDS(011) requires 44 symbols. The question then arises as
to what property of the sequences 10 and 11 makes them particularly use-
ful. The answer to this is that 11 and 10 form a set of ADS, as the

reader may verify from the state table in fig. 2.

ITI. 2. A General Property

We will now turn to prove that this feature is a general pro-

perty: for a machine having a set of ADS, a fault detection experiment




can be designed with Method 1, in which XO (which stood for a PDS) will

now stand for ADS.

Proof: Let us comsider a strongly-connected, reduced, N-state mach-
ine, and assume there exists an adaptive distinguishing experiment for

this machine. This experiment can be represented by the tree in fig. 3.

Bo = (Sys--+» Sp)

X1
1
Z11 21
1
Bi1 By
X91 X9
Z91 221 Z,, 252
Ba1 B1 Baa E%z
; | ‘ 3
] ] ] .
1 I \ :
1 K31 1X32 'X33 | X3y,
1 " ] 1
IR S . . ¥ _.____  _.3 S
- fig. 3 -

The letters Bij or Blij represent blocks of states. Each block

represents our knowledge of the initial state of the machinéféach step of
the experiment. For example if 3121 = (Sl, S4s 85), this means that after
applying the input sequence Xll Xyy (see fig. 3), if the machine responds
by producing the output sequence Zjj Zzl, it must have been in Sy or S,

or Sg'at the beginning of the experiment.

Recall that Xij is an input sequence which may have more than

one input symbol. Recall also that each branch in the tree is terminated

10




when the block associated with it is a single state block.
According to this tree, the adaptive distinguishing experiment

is to be executed in the following order:

Apply X
pp 11
1. TIf the output sequence is Zjy:

Apply XZl

1.1 If the output sequence is Zjy:

Apply X4,

2. TIf the output sequence is lel:

Apply X22

2.1 If the output sequence is Z

---------------------------

Every state of the machine, then is associated with a sequence

of input sequences Xi » and a corresponding sequence of output sequences

|
zij or 2 ij'

For our proof, we have now to consider the extremities of the
tree of fig. 3. They can be of the form represented either in fig. 4a or
in fig. 4b, in which X (resp.'xl) is the input sequence which leads to the

block B .1 g (resp. Blln ) from the block Bj, the machine producing
]

_1,‘ g

11




the output sequence Z (resp. le).

Let us consider the case of fig. 4a. The ADS's associated with

Sgs Sty SC, and Sgq and their corresponding output sequences are:

z z
Bn']~, g Bn_lﬁ g
'
(]
Xnp
1
Zop 2t p
1
Bop B o
Xs 2p-1 X, 2p
u,2p-1 Zn,2p-1 %n,2p 20, 2p
S, St Se S4
- fig. 4a -
BO = (Sls st T Sn)
|
11 Lo
z ; M
11
glll
n-1, g
%11 :
np '
1
1 4
n,2p-1 % n,2p-1
11 1
B np 5%
11
X n, 2p-1
11 111
Z277n, 2p-1 Z° ", 2p-1
st, slb
- fig. 4b -
12




X an Xn,2p-1 X an Xn,2p—1

ADS(S,)+ ADS(Sp): .
Z an zn,2p-1 Z an Z n, 2p-1
XX X 5 XX X
ADS(S.): P ADS(S4): P m,Zp
Z 2., 7 ' z zb 7l
np “n,2p np n,2p

Let us now return to our fault-detection experiment problem,
and build a fault-detection experiment E using Method 1 where we now

replace X_ by the ADS associated with each state.

0
Provided with E and the response of the machine, which is sup-
posed to operate correctly, we will see that we can recover the N states
of the machine:

First, in the experiment E, the input sequence X an Xn,Zp-l
will figure once with the output sequence Z an Zn,2p—1 and once with the
output sequence Z an Zln,Zp—l'

From these two different output sequences for the same
input sequence, we can identify two states. TFor the sake of clarity, we
will call them S, and Sp.

Further, we can conclude that the two distinct states Sa
and Sb respond to X an by the same output sequence Z an-

By the same reasoning we can say that two distinct states,
we call them éc and 5S4 respond to X an by the same output sequence Z Z:ﬁ.

From their different responses to the input sequence X an,
we then know that S, and Sy are distinct from S, and 54, and, by looking
at those fesponseq,that the ﬁachine has four distinet states that respond
to X by the same output sequence Z.

| In the case of fig. 4b, we would first deduce that Sla is
1

Xl and

. 1 e , . -
different from §7y, from their different responses to X np X'n,2p-1°

13




1
then that Slc is different from S a and Slb, from its different response
to X .
np
tow
From the nature of the tree, it becomesAobVious that

the above reasoning may be repeated as many times asnecessary to finally
reach the conclusion that the machine has N states.

In the same way, if during the experiment the same ADS is
applied several times, and each time the machine yields the same output
sequence, then we can say, that before each application of this input

sequence, the machine was in the same state.

From these conclusions, the fact that we can design fault-
detection experiments with ADS's instead of PDS should be now clear.

We may then expect these fault detection experiments to be
in general much shorter. This is true because ADS's are shorter than
PDS's and therefore repeated use of ADS's multiplies this gain. Further,
use of shorter sequences in general increases the number of shortcuts.
The above analysis example clearly demonstrates this Ffact.

Another appealing feature of ADS's is that some machines
which do not have PDS's, and for which a fault-detection experiment would
require the use of characterizing and locating sequences, do have ADS.
Consequently, for those machines, a fault-detection experiment can be

designed following Method 1, with the use of ADS's.

ITI. 3. A synthesis example

We will design a fault-detection experiment for the machine

represented by the state-table of fig. 5:

14




- fig. 5 -

This machine does not possessany PDS. But there exists an adap-

tive distinguishing experiment represented by the tree of fig. 6.

ABCDE
(ABCDE)
x =0
z =0 z =1
BCE ' AD
{ACD) (EB)
x =1 x = 01
z =20 z =1 z = 00 z = 01
E AE
o)) (AC) E A
: (B) (E)
=20
z =0 z =1
B A
(4) ()
- fig. 6 -

-

In this tree, at each step in the course of the distinguishing
experiment, the letters in parentheses represent our knowledge of the

initial state if this step 1s actually reached in the experiment. The

15
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letters just above represent the corresponding present state, under the
same conditions. For example, if after applying a 0, the output is a 1,
then the initial state was B or E and the present state is D or A, res-
pectively.

From the tree, we deduce the ADS associated with each state,

and its corresponding output response (fig. 7)

State ADS Response
A 010 010
B 00l 100
c Q10 011
D 01 00
E ' 001 101

- fig. 7 -

With this set of ADS we can design a fault detection experiment
by applying Method 1, where XO will stand for these ADS's.

This experiment will begin with the machine in state C (we will
see why later). Noting that 111 is a synchronizing sequence which leaves
the machine in state E, the sequence 11101 will take the machine to state
C, whatever the initial state was.

The first part of the experiment will consist of applying the
ADS for each state, so as to identify all the states. This first part

is represented in fig. 8:

16




ADS(C) ADS (A) ADS (B)
T — T 1 T
ADS (E) ADS (D)
— L
X 0 1 0 0 1 0 0 0 1
C E A B D
Z 0 1 1 0 1 0 1 0 0
Time 1 2 3 4 5 6 7 8 9 10
- fig. 8 -

From this, we see, first, that S(3) and $5(7) afe different
(different respomses to 001); secdnd that S(1) and S(4) are different
(different responses to 010), and that they are both different from S(8)
(different responses to 01); third that S(3) and S(7) respond to a 0 by
a 1, while S(1), S(4) and S(8) respond to a zero by a 0. Hence S(1),
S(3), S(4), S(7) and S(8) are five different states.

Since the particular name assigned to each of the above states
is unimportant, we will name them by the letters that are assigned to the
corresponding states in the given state-table (fig. 5).

We have chosen to begin the experiment with the machine in
state C, because this leads to an important overlapping of the ADS's and
gives rise to free tramnsition checkings.

We may now begin the second part of the experiment. TFor this,
we need to know first which state is S(10). To check that S(10) is state
E, we apply the ADS 001 which gives the response 101. S(10), which is
then E,_followea by a 0 implies that S(11) is A (same situation than from

S(3)). So, if at t = 13, we apply a 0, s (1l4) must be B. (fig. 9)

17




T ime 1 2 3 4 5 6 7 8 9 10 11 12 13 14

X 0 1 0 0 1 0 0 0 1 0 0 1 0
State C E A B D E A B
A 0 L 1 0 1 0 1 0 0 1 0 1 0

- fig. 9 -

Before starting checking transitions, it is appropriate to make
the following remarks: |

Since S(1l) is C and S(3) is E, if we check that the O-transitiomn
from C leaves the machine is C, we will consequently know that the 1-
transition from C leaves the machine in E (just by looking at fig. 9).

In the same way, S(8) being D and S(1D) being E, checking that the 0~
transition from Dyleaves the machine in E, will tell us that the l-tran-
sition from E leads the machine to E.

By the same remark, the O-transition from A will be also use~-
ful knowing, because S(4) = A and the state only three units of time later
is known to be B. So, if we design our experiment according to these
remarks we will gain some free transition checks.

It is generally worth keeping the preceding observations in
mind when designing a fault-detection experiment, because they appear
to be useful in may cases (at least when some ADS is relatively short).

Let us now return to ove example. Recall that we left the
design éfourexperiment at t = 14 with s(14) = B. 'The state-table tells
us that S(13) should equal A, but we have not yet been.able to deduce it
from the experiment; this information would be useful for checking the
O-transition from A, because we know that S(14) = B. TIn order to do so

apply 10 from S(14), this tells us that S(13) = A from the response of

18
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S(13) to 010. This checks the O-transition from A. Froﬁ this we deduce
that S(12) = B, and then, S(13) being A, that under an input of 1 the
machine goes from B to A and produces a 1.

We have now designed the experiment up to t = 16, with S(16) = B.
An ipnput of O will lead the machine‘to D, from which we can check the 0-
transition by applying a 0, followed by 001 (ADS(E)). The l-transition
from E is then checked, as noted in the above remark.

This leaves the machine in S{21) which is A. We check the 1-
transition from this state by applying a 1, followed by 010 (ADS(C)).
This leaves the machine in S(25) which is A. At this point the experi-
ment iIs represented in fig. 10, and the knowledge of the state-table we

have gained so far, in fig. 11.

Time 1 2 3 4 5 6 7 8 9 10 11 12

X 0 1 0 0 1 0 0 0 1 0 0 1
State C E A B A B D E E A B
Z 0 1 1 0 1 0 1L 0 0 1 Q0 1

Time 13 14 15 16 17 18 19 20 21 22 23 24 25

X 0 1 0 0 0 0 0 1 1 0 1 0
State A B A B D E A C E A
Z : 0 1 0 1 0 1 0 1 0 0 1 1
- fig. 10 -
0 1




From fig. 10, S(2) 1s a state which responds to a 1 by a 1 and
leaves the machine in E. We then deduce from the state-table of fig. 11

that S(2) cannot be A or B or E. Hence, either S(2) = C or S(2) D.

il

Therefore, if we check that the l-transition from D leads us to C, and
not to E (S(3)), we will then conclude that S(2) = C. This is done from
S(25) by applying 00, which brings the machine in D, then a 1, followed
by 010 (ADS(C)). Afterthis we know that S(2) = C. Since S(1) is C, and
S5(3) is E, the last transitions (0- and l-transitionms from C) are checked
free.

The complete experiment is thus the following (Recall that 11101

brings the machine in state C):

X 1 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1
State E A c C E A B A B D E E A B A
Z 1 0 0 1 1 0 1 0 1 0 0 1 0 1

X 0 0 0 1 1 0 1 0 0 0 1 0 1 0
(Cont.)

State A B D E A B A ¢ C E A B D € C A A
(Cont.)

Z 0
(Contl)

Iv. MACHINES NOT HAVING A SET OF ADAPTIVE

DISTINGUISHING SEQUENCES

We now consider the problem of designing checking experiments
for machineé which do not have a set of ADS's, i.e. those for which we
have to apply Method 2 (see part TII).

Ouf goal will be to show how the choice of an appropriate set

of characterizing sequences (CS) can influence the length and simplify

20
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the design of checking experiments.
Each of the three following examples will develop several inte-

resting points.

V. 1. Example 1

Let us consider the following machine:

- fig. 12 -

For this machine, Hennie 24 selects the CS's 0 and 10, which

are the shortest ones, and deduces the locating sequences (LS):

DO0OO0OO0ODODO01O 00000010
A B
600000001 00000000
0101010110 000010
C D
1010101000 111101

The complete experiment using these LS's requires 152 input

symbols.

Another set of CS's for this machine is 010 and 10. The re-

sponses of each state to those sequences are:

21
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Response to Response to
State 010 10
A 000 01
B 001 00
C 101 00
ﬁ 101 01

Let us design the LS's from this set of CS's.

First, A is the only state that responds to 010 by 000. It can
then be distinguished from the others by the saquence 010 alome. The same
reasoning applies for state B. The 1S's for A and B, which are then of

first order, are:

From this we know that at least two states (A and B) respond
to a 0 by a 0. Since from the 1LS's of C and D, we will discover that
C and D respond to a 0 by a 1, the input sequence 0 (instead of the
complete 010) will be sufficient to distinguish these states from both
A and B, The CS 10 will distinguish C from D. From this the IS's for

C and D are: .

A fault detection experiment, using these LS's requires only 35
symbols (see. Appendix II)
The reason why we have been able to achieve such a short experi-

ment is the existence of some LS's of first order. In general, such short
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sequences are very useful for the following reasons: first, every LS has

to be applied at least once, thus, the shorter, the better; second, in

the transition checking part of Method 2, we use a LS (named L) twice
in each tramsition check,~the existence of a short LS will then give a
very convenient Lk; third, a transition leading to a state associated
with a 1S of first order needs only to be checked omce.

It follows that the choice of a good set of CS's is a very influ-
ential factor in the design and the length of an experiment.

Before searching for a good set of CS's, it is worthwhile to indi-
cate the convenience of utilizing the partitions associated with every in-
put sequence:

Every input sequence can be associated with a partition

P=(Bl, Bz, ;..,B)

p

L]
In which the B; s represent blocks of states, two states being

in the same block if they respond to the input sequence by the same out-
put sequence.
In our example, the partitions associated with the CS's 010 and

10 are respectively:

I

P, = (A, B, CD)

Il

P, = (AD, BG)

The fact that 010 and 10 are a set of CS8's means in this nota-

tion that*

Pl . PZ = (A, B, C, D) =0
* Recall that the product of two partitions P1 and Py is a partition P3 such
thagntwo states are in the same block in P4 if they are in the same block
both,Py and in Pj.
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Looking at the partition Py associated with 010, the fact that
A and B require L§'s of first order is clearly represented by the pre-
sence of A and B im a single-state block of Py,

In the same way, the partitions associated with the CS's 0 and

10 (utilized in Hennie's paper) are respectively:

vl
I

(AB, CD)

la~]
I——I
]

(AD, BC)

pl . P12 = 0 since 0 and 10 form a set of CS's,

None of these partitions possesses a single-state block; conse-
quently there are no LS's of order one.

We see from this that partitions can represent in a convenient
way the properties associated with a set of CS's. We will use them for

that reason in the remainder of the discussion.

Remark
Recall that the general formula for a LS of second order is,

with the notations of II. 2b:

] n+1
[%l T(Qil’ Si) X2

0f course, the following formula is valid as well:

- n+l
[Xz T(Q5, si)] X4

Using the first (second) formula, Hennie r 2, concluded that
the state before the application of XZ (Xl) is identical to the state
before some application of Xl-(Xz) in the LS. The deduction process that

enables us to reach that conclusion is based solely on the use of Xl (Xz).
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In other words, a more important role is given to X, (X5) than to X (Xl).

In one example, where Xy = 010, and X, = 10, the LS's have
been obtained from the first formula. Had we chosen the second formula,
all the LS's would have been of second order, because there is no single

state block in the partitiom P, associated with X, = 10.

IV. 2. Example 2

The most convenient way to list all the partitions for a given
machine is to draw a homing tree. From what we have learned, it is rea-
;onable to draw an adaptive tree rather than a preset omne.

In this example we will see how, from this tree, we can deduce
the partitions. Since we dériVe these partitions from an adaptive tree,
they may now be associated With a set of adaptive sequences rather than
with a single preset sequence.

We will then show how the LS's are built in thié case.

Let us consider the following machine, and draw it adaptive

tree:
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ABCDE

(ABCDE)

z =0 z =1
DAA CBB DD
(BCE) (ABE) {CD)
0 1 0 \ 0/ \
0 1 z =0 z =1
EBB cC D DA BB ADD BB D
(BCE) (CE) (B) (AD) (AD) (ABE) (BE) (A)
0 1
0 1
EB C D
(@) (&)
- fig. 14 -

‘Recall that the letters in parentheses represent the initial state
in which the machine was at the beginning of the experiment, and the let-
ters directly above represent the corresponding present state.

In this tree, we are not interested in finding homing sequehces.
Consequently, a branch associated with an homogeneous uncertainty is not
to be stopped, except:

1. When all the states in this uncertaintly are the same
(for example: we can stop at DD on the right of the tree, because we will
never split C and D from that point), or

2. When this uncertainty will lead to a splitting of the
states which has already been met in the tree. (for example, we stop
after EBB, on the left of thé tree, because at this point we cannot expect
to obtain bétter than the splifting ofA(BCE) in (CE) and (B) already got-

ten by the sequence 01).
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From this tree we deduce the following six partitioms:

P, = (4D, BCE)

P, = (A, D, BCE)
P, = (4D, B, CE)
P, = (4, B, CE, D)
P, = (ABE, CD)

P, = (4, BE, CD)

The partition P1 is obtained by remarking that there exists a
sequence (namely: 0) which distinguishes between the blocks AD and BCE.

P4 is obtained by remarking that there exists a set of adaptive

sequences (namely: 0l and 001) which distinguishes between A, B, CE and D.

The other partitions are obtained in the same way.

It is important at this point not to confuse a set of adaptive
sequences, associated with one partition, and a set of CS's, associated:
with several partitions Pl’ s Pp such that Pl . P2 Toeeat Pp = 0.

The design of LS's using the partitions P, and Pg (P * Pg = 0)
will make this point clear:

Pa is associated with the set of adaptive sequences 01 and 001.

The table below, deduced from the tree indicates which sequence is to be

used for each state, and gives the corresponding output sequemnce.

Initial State | Input Segquence Qutput Sequemnc
A 001 101
B 01 01
c 01 | 00
D 001 100
E 01 00 ]
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The sequence associated with P5 is 1; the output is 0 if the ini-
tial state is A or B or E, 1 if the initial state is C or D.

For designing the 1S's we will use the formula e¥g Tjn+1 X9 Xl
being either 001 or Ol, and X, being 1.

The states A, B, and D being in a single-state block of P4 pos-

sess a LS of first order:

From this we deduce that at most two states can respond to 01

and 00. Consequently, the LS's for C and E are

X1 X2 ,

0 )3 T 01 01 0 1 1
C: ) that is

0 0 1 00 00 0 0 1

XL 3 X2

o T 1 o\ 1 01 1001100110 1
E: that is

00 1 1/ 0 ¢ 01 10011007110

Remark

A fault detection experiment taking advantage of thesé LS's
requires 45 symbols. (see Appendix IITI).
The‘reader may verify that every other fault-detection experi-
ment which does not use the partition P, leads to a much larger number of
symbols. Noting then that R; cannot be obtained from a preset tree, we

show once more the advantage of adaptive sequences over preset ones.

iv. 3. Example 3

Recall (see remark of IV. 1) that to deduce, from the IS
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n+l
Xy T, X,, that the state just before X; is the same as the state before

some application of X, in this LS, we use only X

1 1’
X, is used then to distinguish between all the states that res-
pond to X, by the same output sequence, i.e., the states in a same black

of the partition P, associated with Xy -

1
In other words, Xj is used to split the states into blocks, and

X9 is used to split the states within eacﬁ block. But, in this deduction

process, nowhere is it required to use the same X, for all the blocks of Py.
All that we really need is, associated with Py = (Byy «vns Bq) a

set of partitions Py, +nt, PP such that*:

1" P28y 0
P P_=p O
L= % "Bq
A very important role ig then attributed to Pl, we will call this

partition a principal partition.

The following example illustrates this point.
Let us draw the adaptive tree and deduce the partitions for the

reduced and strongly connected machine of fig. 15:

Fla, 1{p, 1 - fig. 15 =

* Py - Pp =g, O means that no two states of block By, belonging to Py, are
in the same b}ock‘of Py; in other words, Py - Py is the O-partition rela-
tively to the states in Bj.
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ABCDEF
(ABCDEF)

z =0 1
AAAAA
(ABCDE) (CF)
z = ( =1
AAA DD
(ABD) (BE)

- fig. 16 -

The partitions are:

' P, = (ABCDE, F)
P, = (ABDE, CF)
P, = (ABD, CF, E)
P, = (AD, BE, CF)
P, = (A, BE, CF, D)

For this machine, we see that it does not exist partitions Pi
and P, such that P; - P. = 0.
J ]
Hence, without the above discussion, LS's of order at least three
would have been needed.

But we may now notice that, Pg playing the role of the princi-

pal partition:

PS.P].:CFO and PS'P3=BEO
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A and D being in a single block of PS’ no LS of order higher
than two is now needed.
As an illustration we will now build these LS's.
P5‘is associated with the sef of sequences 1, 11, 110 (referred
as X; in fig. 17)
P1 is associated with the sequence Q (referred as Xy in fig. 17)
Py is associated with the sequence 10 (referred as X3 in fig. 17)

The LS's generated from these partitions are the following:

Xl Xl
1 1 0O 1 1 0O
A D
0O 0 O 0 0 1
T 0 1 1 0 ’1‘11 1 "62
C F:
1 0 0 0O 0 1 0 O 1
X1 X3 Xl X3
L 1 0 1 1 0 1 1 1 1 0
B: E:
0O 1 0 O 0 O 0 1 O 0 1
- fig. 17 -~

In the LS's for C and F, the "exponent" is 4 (3+1), because from
the set of LS'S, we deduce that at most 3 states can respond to a 1 by a 1.

When C and F will have been distinguished, we will knbw that at
most two states can respond to‘ll by 01; this explains the "exponent':

3 (2+1) in the I8's for B and E.

Let us now be concerned in 1S's of order higher than two, and
design, for the machine of fig'(15) again, a new set of LS8's this time
using Py = (ABCDE, F) as the principal partition. Since we will get
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longer LS's than above, this design is not interesting for itself, but it
will illustrate another interesting property.
First, we note that F is a single-state block of P;, associated

with the sequence 0. Hence, the T8 for F is

We cannot find any partition P; such that

Py " P = apepe O

= (A, BE, C, D, F) =Q

however

o
[
d
I

A, C and D are now each in a single block of Q, and are consequently com-
pletely distinguished by X1 and X,, associated with P1 and Py respectively;
where X1 is the sequence 0, and X, the set of sequences 1, 11, 110. The
LS's for A, C and D, which are then of second order, are the following:
X X2 X1 6 X2 X X
6TTUO (ﬁ‘l 1) T (”611 11)6 0
A: C: D:

0/ 000 000 1 0001 001

In order to distinguish B from E, we need now a partition Pi

such that
Q - Pi =g O

The only such partition is P3, associated with the sequence
X3=10
The LS's for B and E can now be built by the Method developed

by Hemnie r27 for IS's of third order. We then have:
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X]. XZ 2 Xy X3
(O 1) 1 1 0 1 (O 1) 1L 0
B
0 0 0 1 0 0 0 0O O
Xl X2 Xl X3

— — _—
o111 ® 11 P 01111 1o
E:
0

¢ 0 0 1 0

From the LS for F, at most 5 states can respond to a O by a 0,
this explains the "exponent" 6.

From the LS's for F, A, C and D, only two states can respond to
0 by O and to 11 by 01. This explains the "exponent" 3.

Of course, it would be foolish to use this last set of 1LS's in
a fault-detection experiment, because we have préviously found a set of
much shorter ones; the main intent of this example was to show that even
if a block of states from the principal partition requires p partitions
to distinguish between all its states, some states from this block may
be associated with LS's of order less than p + 1.

More precisely, if in order to distinguish between all the states
1 22

P3, e ns Pq, such that

of a block B., belonging to the principal partition Pl’ the partitions P

| P1 . P2 T Pq = B, 0, are required, then: the states
in a single-state block of the partition Pl * Py possess L3's of order two;
the states in a single-state block of the partition Pl TPy - P3 possess

1S's of order three, and so on.

Remark. From the fact that at most g-1 input sequences are neces-
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sary to distinguish between q states, it follows now that the states in
a g-state block of the principal partition have locating sequences of

order at most q.

V. 4. The choice of the principal partition'

It follows from the above discussion that the choice of the
best principal partition is a determining factor in thg design of fault
detection experiments. A general procedure whicﬁ would tell us which is
the best principal partition would then be very useful.

Unfortunately, it appears that selecting the best principal
partition for any one given machine is am intricate problem, whose gene-
ral solution is made harder by our poor knowledge of finite-state machines
with a large number of states,

The procedure given below is a first attempt to solve this pro-
blem. We may expect from it to give the principal partition which leads
to the shortest experiment for many machines, even if it does not for
every ome.

Before explaining this procedure, we will define the order of

a partition:

"A partition P is said to be of order p if p is the order
of the LS of highest order, generated by P, when P is chosen as the prin-

cipal partition".
Procedure
Step 1: From the stéte-table, draw the adaptive tree, and list all

- the partitions.
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Step 2:

‘Step 3:

Step 4:

Step 5:

Step 6:

Dgtermine the ordef of each partition.

Select the partitions of the lowest order r. They form the
set Sl' (For obvious reasons: the length of a LS increases
at a very high rate, with its order; further, a transition
leading to a state associated with a 1S of order p has to
be checked p times).

If Sl contains only one partition, take it as a principal
partition. Otherwise, go to step 4.

Among S,, select the partitions associated with the LS's of

1°
the lowest order m. They form the set 85. (reason: recall
that to check the transitions, a particular LS (called Ly in
II) is needed twice for each checking, it is then essential
to possess at least one very short LS).

If 52 contains only one partitiom, take it as principal
partition. Otherwise go to step 5.

Among S92, select the partitions which generate the least
number of L8's of the highest order r. They form the set

53 (same reasons as in step 3).

If S3 contains only one partition, take it as principal
partition. Otherwise go to step 6.

r # m: go to step 5, replacing S2 by S, and r by r-1.

3
r =m: If only one partition remains take it as principal
partition. If we still have to choose among several parti-

tions, then compute the total length of the LS's and take

as principal partition, the partition for which this length
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is the smallest. (reason: 1In this last case, all the
partitions will have the same structure, consequently
the length of the experiment is influenced only by the

length of the LS's).
V. CONCLUSION

Several ways of improving the design of fault detection experi-
ments have been presented.

First, we have seen that the systematic use, for all machines,
of adaptive sequences, leads to shorter experiments; and that for every
machine which possesses a set of adaptive distinguishing sequences, fault-
detection experiments can be designed following Method 1.

Second, for machines which do not have adaptive distinguishing
sequences, we have derived the concept of principal partitionm, associated
with a set of adaptive characterizing sequences. We have seen how the
design of locating sequences is influenced by the structure of the princi-
pal partition, and then come to the conclusiqn that this principal parti-
tion is a determining factor of the length and the complexity of a fault-

detection experiment. A first attempt to a general procedure to select

the best principal partition has been presented. This procedure has been

deduced from the properties of the partitions illustrated in this thesis.

It is believed that some work is needed in order to acquire a

 deeper understanding of the relationship between the structure of the

" This
principal partition and the design of locating sequences.would help to

. design a better procedure and achieve still shorter experiments.
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APPENDIX I

{ related to IIT. 1. )

In IIT. 1., we left the experiment with a knowledge of the

states as shown by the following pattern:

Time 1 234567 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23

X li11010111 1 0 01 0 1 1 0 1 0 1 0 1 1
S(6) CAB D CA D B B D A
Z colrl110001 1 0 0 1 1 1 1 1 1 0 0 0 01

At this point  gur knowledge of the state table is the following:

0 1

A B, 0
B , 1
c A, O
D , 1

From this state-table, we now deduce that S(9) = S(23) = B,
this tells us that an input of 1 causes a transition from B toD '(be-

cause 5(10) is known to be D). This in turn tells us that S(4)

8(14) =
S(17) = D, and that an iﬁput of 0 causes a transition from D to D with
an output of 1 (becaﬁse S(5) is known to be D).

vfrom this, S(15) = D, and S(16) being B, we deduce that an in-
put of 1 causes é transition from B to D. |

At this point, our knowledge of the states in the course of the

experiment, and of the state table are:
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Time: 1 23 4567 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

X: 111010111 1 0 0 1 0 1t 1 0 1 0 1 0 1 1
s¢): CAB D CA D B B D A
Z oo1110001 1 0 0 1 I 1 1 1 1 0 0 0 0 1
0 1

A B, 0

B D, 1

C A, 0

DD, 1|B, 1

From this, 5(6) = S(11) = S(19) = B, so an input of O causes
a transition from B to C with an output of C (beéause S(7) is known to
be C).

Then, $(12) = S(20). Thus, an input of 0 causes a transition

from C to B with an output of O.

S(20) being state C, it follows that S(21} = A. And, from S(22) =

A, we deduce that an input of 0 causes a transition from A to A with an

output of 0.

Our knowledge of the state table is now complete:
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APPENDTIX II

( related to IV. 1)

The experiment for the machine of fig. 12 is to be started with

the machine in state A, and is the following:

LS (C) LS(B)
1 4 ¥ |
LS (D) \ LS (A)
X 100010101 0 1 1 0 1 0 1 0 1
7 011101010 1 000 0001 0

Time 1234567891011 12 13 14 15 16 17 18

~ LS(A) LS (A) LS (B)
X 1 010010001 01T1T1T1TU00
Z 000000 O0O0UO0OCT1O0GO0GO0TO0QT11

Time 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

We will now explain how, from this experiment, we can fecover_
the state fable.
a) First from LS(A), LS(B), LS(C) and ILS(D) we recover the fouy
states of the machine. We shall name them by the same name assigned to

the cbrresponding states in the state-table of fig. 12:

S(13) =5(20) = 5(23) = A
S(15) = 5(27) =8B
S(12) = G
S(S) =D
39
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Trom this*: C ——» A
0

010
b) 5(20) = S(23) = A 1implies A —5p0™ A-
Thus S(16) = S(26) = A

We deduce from this that

, 0 0
B—TT—AL and A-jy—vB.

1

This implies that $(14) = B from which we deduce that B-—ﬁ—-B.
At this point we have deduced the following state-table:
0 1

AlB, 0

B|A, 0|B, O

C , L1A, O

D , 1 , 0

01011 s -
¢c) We see from S(15) that B—7ﬁTﬁﬁT—A' Then, since S(27) = B,

S(32) s A.

Now S({16) = S(32) A imply that S{17) and S(33) are the same

n

state. This state responds to O by 1, and to 10 by 0l. Tt can

only be D:

1
A——=D.

0

i

d) We see that 5(11)-%—-0, for we know that 5(12) C. But A, B and
C under an input of 1 lead to D, B and A respectively. Hence, S(1ll) must

be D:

D——-—C

0

e) By the same reasoning S(19) é -A. Hence S(19) = C. From this,

* In this appendix and in the following, the notatiomn Srﬁf-sj means that an

input x causes a transition from state S; to state S; with an output z.
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the same reasoning again tells us that $(18) = D. S(17) being known to

be D, we deduce that

f) We know that S(5) s S(33) = D. It follows that S(6) = S(34) = C,
and that S( 7) and 5(35) are the same state. This state responds to 0 by
1 and to 10 by 0Ll. It can only be D. Hence C—%%—D.

Our knowledge of the state-table is now complete.
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APPENDTIZX III

( related to IV. 2 )

The experiment for the machine of fig. 13 is to be started in

state A, and is the following:

 LS(AY
LS (B)LS (D) L8 (C) LS (D)
X 001001010 1 0 1 1 0
yA 101100000 0 0 0 1 1

Time 1234567891011 12 13 14 15

LS(E)
LS (D L3S (D) LS (B)
X 0 1 10 0 100110 10T1 0
z 001 1001100110011

Time 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

LS (A LS (B) LS (D)
X 00 01T 01 10710 100%9o0T
z 0O 1L 01 100071100100

Time . 31 32 33 34 35 36 37 38 39 40 &1 42 43 44 45

- We shall now explain how from this experiment we can recover
the state table.. |
a) From the LS's we can recover the five states of the machine. We
will name thém by the name assigned to the corresponding state in the state

table:
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b)

c)

d)

e)

£)

g)

h)

S(1) = S(32) = A

S(2) = S(28) = 5(38) =B

s(13) = ¢

S(4) = S(14) = S(18) = S(22) = 5(43) =D
S(27) = E

From this we know three transitions:

0 _p. 1 .o L
A—F—=3B; C D3 £ ——=B. |
We see from S(18) that D %——D, hence 8(26) =D

So D —f—=E. From this, S(15) = S(19) = §(23) = E.

We see from S§(2) that B—S}—-—-D, hence S(30) = D, which implies
that S(31)= E, from which we deduce that E+—A.

From this, S(16) = S(20) = S(24) = A

From (1), A —$Jt—= D, hence $(35) = D, so that 5(36) = E, which
implies 8(37) = B. S(38) being B, we deduce: B—é-B.

S(38) = B implies S(40) D, which implies S(41) = E, which in

B. 5(43) being D, we deduce: B—3 oD,

0
D. §(4) being D, this implies that D —}—=D.

turn implies that S(42)

From this, $(3)

1]

We see from the experiment that S(12) C. We know now that

1
4]

B, C, D, and E under an input of 1 go to B, D, D, and B, respec-

tively. Hence S(12) must be A. So A —Tl)-—-—c.
S(11) —8—-A. Hence S(11) can only be either C or E. Now

1

8{10) —5™ S(11). But there is no transition which leads to

state E. Hence S(11) = C. Consequently, S(12) being A, C—8--A.

This completes the reconstitution of the state-table.
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