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Abstract

The forcing of climate states by eddy transports of heat and momentum, their
interactions and feedbacks, and their responses to changes in the external param-
eters are studied by systematic numerical experiments. The model used is a low
order model with intermediate complexity between simple climate models and so-
phisticated GCMs. It has two vertical levels and a reasonable horizontal resolu-
tion, typically, five zonal waves with fundamental planetary wavenumber 3 and five
meridional modes on a hemisphere. Newtonian cooling, surface drag and interfacial
friction are inciuded. In addition, the static stability is variable. The eddy fluxes of

heat and momentum are calculated explicitly.

In addition to meridional eddy transports of heat and momentum, we emphasize
the interaction of the vertical eddy heat flux and the static stability, and the effect

of spherical geometry. Whether the static stability is fixed or not, and whether the
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model is on a S-plane or on a sphere, the models are similar in many features. For
example, the meridional eddy heat flux plays the most important role in the eddy
forcing of climate states. However, there are essential differences in the climate
sensitivity between the models with fixed or variable static stability, and the models
with or without spherical geometry. For instance, the meridional eddy heat flux
is proportional to a power of ~ 15 of the midlatitude temperature gradient in the
B-plane model with fixed static stability; the power is reduced to ~ 6 on a sphere,
and is further reduced to 2 ~ 4 when the static stability is variable. The baroclinic
adjustment and the energy cascade mechanisms are more effective in the model with
variable static stability. As a result, the isentropic slope is very insensitive to the

change in the diabatic forcing, and the slope is much closer to observations.

Thesis supervisor: Peter H. Stone

Title: Professor of Meteorology



Acknowledgments

I wish to thank my advisor, Prof. Peter Stone, for his insightful and inspirational
guidance throughout the course of this research. I also wish to thank Prof. Kerry

Emanuel, Prof. Glenn Flierl and Prof. Ronald Prinn for their helpful suggestions

and comments.

I would like to thank many of my fellow students for their friendship, encour-
agement and assistance. Among them, Nilton Renno, James Risbey, Kuanman Xu,
Changsheng Chen, Zhengyu Liu, Dezheng Sun and Zhongziang Wu deserve consid-
erable thanks. T also wish to express my deep thanks to Jane McNabb at the CMPO
headquarter, who made international students feel like home; to Diana Spiegel, who
gave me a lot of assistance in the computer work; and to June Tankel ai the English
class of the US-China Friendship Association, who volunteered teaching Students

from China (including me) for many years.

Most of all, I would like to thank my wife, Yingying, and my parents for their

love, care and support. Without their unselfish commitment it would almost be

impossible for me to finish this research.

Nanjing Institute of Meterology (NIM, China) gave me the precious opportunity
to study in the Unite States. I am grateful to the support and encouragement from

President Peichang Zhang and the Dept. of Meteorology of NIM.

This work was supported in part by the National Aeronautic and Space Adminis-
tration (NASA) Goddard Space Flight Center under Grant NASA NGR 22-009-727
and in part by the National Science Foundation under Grant No. ATM-8803446.






Contents

Abstract
Acknowledgments
List of Figures
List of Tables
List of Symbols

1 Introduction

2 Background

3 Model description
3.1 Basicequations . ... .. ... .. .. e

3.2 Spectral representations . . .. .. ... ... oo

4 Hadley regime

4.1 Introduction . . . v v v v ot e e e e e e e e e e e e e e s

11

17

19

21

27

37

37

43

47



4.2 Equations in the Hadleyregime . . . . ... ... ... .. ... ... 48
4.3 Numericalsolutions . . . . .. ... ... ... . .. o L, 53
4.4 Instability amalyses . . .. ... .« i i i e 55
Eddy regime — the Phillips system 65
51 Introduction . . . . .. .. . . . e 65
5.2 Equations in the Phillipssystem . . . . . . ... .. ... ... .. .. 67
52.1 Thenumerics . . . . .« v o v v v v v ittt e e e e 67
52.2 Thephysics . . . . . .« o v i i it e 69
53 The “standard” run . . .. ... .. .. .. ... ..... e 7
5.3.1 The equilibriumstates . . ... .. ... ... .. ..... .. 17
5.3.2 The momentumbudgets .. ... ................ 78
533 Theheat budget . ... ... ... . ... 80
534 Theenergetics . . . . . . . . . . . o i i 81
5.3.5 Additional experiments . . . . . . . .. ..o 87
5.4 The “optimal” horizontal resolution . . . . .. ... .. ... ..... 91
54.1 Introduction . . . . . . . . . i i e e 91
5.4.2 Truncationlevels . ... .... .. ... ... ........ 92
5.4.3 Fundamental wavenumbers. . . . . .. ..o o000 105
5.4.4 Dynamical constraints . . ... .. ... ... 115
5.5 Effects of changes in the external parameters . . . . . ... .. .. .. 117

5.5.1 Introduction . . e 117



5.5.2 Parameterexperiments . . . .. . ... ... ... ... 118

553 Thefeedbackfactor. .. . ... .. ... ......... ... 132

554 SUMIMATY .« v« ¢ v v v vt bt o e vttt e e e e 135

6 Eddy regime — the Lorenz system 141
6.1 Imtroduction . . . . . . . v i o i i i e e e e e 141
6.2 Equations in the Lorenz system . . ... ... ... .. ... ..., 142
6.3 The equilibrium static stability . . ................. .. 145
6.4 The maintenance of the staticstability . . . . ... .. ... .. ... 148
6.4.1 Comparison with the “standard” run . . ... ... ... ... 148

6.4.2 The budget of static stability . .. ............... 160

6.5 The parameter experiments . . . . ... ... ... ... ... ... 164
6.5.1 Diabaticforcing ATE . . . . . v v v v v i v 164

6.5.2 Newtonian cooling time 7, . . . . . . . . . ... 168

6.5.3 Surfacefriction k . . .. ... . .. . ..o e, 169

7 Adjustment of the temperature structure 179
7.1 Introduction . . . . . .« c o i i e 179
7.2 Isentropic siope adjustment . . . . . ... ... ... . 0o 181
7.2.1 Fixed staticstability . . ... ... .. ... ... .. .. 181

7.2.2 Variablestaticstability . . . ... ... ... .. ..., 183

7.3 Temperature gradient and eddy heat flux B I 187
7.4 The main heat-transporting wave . . . .. ... . ... .. ... ... 191

9



8 Summary and Conclusions 199

References 207

10



List of Figures

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

Zonal winds and MMC stream functions in the Hadley regime for T
= 20, 40, 80 days, where T is the dissipative time for the interfacial
friction. The contour intervals are 5m/s for [u] and 2mb.m/s for [x].

As in Figure 4.1 but for T = 160, 320, 640 days and the contour
interval for {x]is Imbm/fs. . . ... .. .. . .. 0

The upper layer wind fields for T = 20, 40, 80, 160, 320, 640 days.

Also shown are the thermal wind, Ug, in the radiative equilibrium

. . 2
and the momentum conserving wind, Un(Un = 9—“5—‘;51’-3—9-)

-------

Meridional momentum fluxes for various T. The theoretical curve is
shown by thesolidline. . . . ... ... ... ... ........

As in Figure 4.4 but for meridional heat fluxes. .. ... ... .. ..
As in Figure 4.4 but for temperature adjustments, [Ts(¢) — T(¢)]- - -

Wave growth rate (w,) as a function of ATz and zonal wavenumber
(n). The e-folding time for wave growth is (w, Q)71 .. .. .. .. ..

As in Figure 4.7 but for doubled static stability. . ..........

As in Figure 4.7 but the growth rate is a function of static stability
(N2)and m. . oo vt et e e

The profile of interfacial friction &’ (solid line) and the distribution of
the “hot tower” precipitation in the GISS model {cross signs). The
model results are for January conditions in which the “heat equator”

isat about 10%S. . . . . . . e e e e e e e e e e e e e e e e

58

62

63



5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

The vertical shears of zonal wind fields, the upper layer meridional
winds, the eddy heat fluxes and the eddy momentum fluxes in the
sensitivity experiments with varying k., the maximal dissipative rate
due to the vertical mixing process. . . .. .. ... .. ... ...,

As in Figure 5.2 but for (k.)~* = 0.1day. The solid line is for the
case with &’ profile of P2, and the dashed line is for the case with %’

profile of Po8. . . . . o e

The vertical shears of zonal wind fields, the upper layer meridional
winds, the eddy heat fluxes and the eddy momentum fluxes in the
experiments with varying h., the maximal Newtonian cooling rate
due to the convective heat exchange. . . . .. ... .. ... .. ...

The equilibrium states of [U], [V], [T] and [x] fields in the “standard”
run. Ty is the temperature in radiative equilibrium . The contour
interval of [x] is 10mbm/fs. . . . . .. ... o o o,

The momentum budgets in the “standard” run. a) the upper layer;
b) the lower layer; ¢) the vertical mean; d) the eddy momentum flux.

Detailed explanations are given in thetext. . . . . .. ... ... ...

a) The heat budget in the “standard” run. The solid line is the
convergence of the eddy heat flux, the dotted line is the MMC heat
transport and the dashed line is the diabatic heating; b) The heat
fluxes by eddies ( solid) and by the MMC (dotted). . ... ... ...

The energy cycle diagram in the “standard” run. The unit in the
boxes is 105 J m~2; the unit beside the arrows is Wm™2. . . ... ..

Surface wind fields, temperature fields, eddy momentum fluxes and
eddy heat fluxes obtained from the linear (solid lines) and nonlinear
(dotted lines) balancemodels. . . . .. .. ........... . ...

The zonal wind, the meridional wind , the mean momentum balance
and the eddy momentum flux in the experiment similar to the “stan-
dard” run but with a fourth order horizontal diffusion (AV*, A =

107 mA/s). . o e

The equilibrium zonal wind fields in the truncation experiments. The
solid, dotted and dashed lines denote U3, Us and Uy respectively. . . .

12

74

89

97



5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

The vertical mean momentum budgets in the truncation experiments.
The meanings for the lines are the same as those of Figure 5.6(c). . . 98

The vertical mean eddy momentum fluxes in the truncation experi-
MENES. + v v o o vt e e e e e e e e e e e e e e e e e e 99

The heat budgets in the truncation experiments. The meanings for
the lines are the same as those of Figure 5.7 (a). . . . . . . . ... .. 100

The heat fluxes by eddies and by the MMC in the truncation exper-
iments. The meanings for the lines are the same as those in Figure

BT (b)e e o o e 101
The MMC stream functions in the truncation experiments. The con-

tour interval is 10mb.m/s. . . . . . . . ... o oo o 102
The energy cycle diagrams in the truncation experiments.. . . . . . . 103

The eddy kinetic energy spectrum in the truncation experiments. The
X-axis is the zonal wavenumber and the Y-axis is the amount of
energy. The numbers 5, 6, 7 denote resolutions 5 x 5,6 x 6,7 x 7
respectively. . . . . . Lo e 104

The equilibrium zonal wind fields in the fundamental wavenumber
experiments. FN is the fundamental wavenumber. The meanings for
the lines are the same as those of Figure 5.5 (2). . . . . . . .. ... 107

The vertical mean momentum budgets in the fundamental wavenum-
ber experiments. The meanings for the lines are the same as those of

Figure 5.6(c). . . v v o v v i vt e 108

The vertical mean eddy momenturn fluxes in the fundamental wavenum-
ber experiments. . . . . . . . ...t o e e e 109

The heat budgets in the fundamental wavenumber experiments. The
meanings for the lines are the same as those of Figure 5.7 (a}. . .. . 110

The heat fluxes by eddies and by the MMC in the fundamental
wavenumber experiments. The meanings for the lines are the same

as those of Figure 5.7 (b). . . . . .. . .. ... o oL 111

13



5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

6.1

6.2

6.3

The MMC stream functions in the fundamental wavenumber experi-
ments. The contour interval is 10mbm/s. . . ... . ... ... ... 112
The energy cycle diagrams in the fundamental wavenumber experi-
IEALS. « « o 4 v e e e e e e e e e e e e e e e e 113

The eddy kinetic energy spectrum in the fundamental wavenumber
experiments. The X-axis is the zonal wavenumber and the Y-axis is
the amount of energy. The numbers 1, 2, 3, 6 denote fundamental
Wavenumbers. . . . . . v o i e e e e e e e e e e e e 114

The surface winds, the upper layer meridional winds, the eddy mo-
mentum fluxes and the eddy heat fluxes in the ATg experiments. . . 128

The surface winds, the upper layer meridional winds, the eddy mo-
mentum fluxes and the eddy heat fluxes in the 7, experiments. . . . . 129

The surface winds, the upper layer meridional winds, the eddy mo-
mentum fluxes and the eddy heat fluxes in the I'g experiments. . . . . 130

The surface winds, the upper layer meridional winds, the eddy mo-
mentum fluxes and the eddy heat fluxes in the 7, experiments. . . . . 131

The feedback factors in the experiments without interfacial friction.
The abscissa is Rg, the predicted value from the scaling method; the
ordinate is R, the calculated value from the definition. . ... .. .. 137

The feedback factors in the experiments without interfacial friction.
The ordinate is R; the abscissa is Rg_p, the ratio of the horizontal
to the vertical component of the E-P flux. .. ... .......... 138

The schematic diagram for the dynamical processes and the effects of
changes in the external parameters in the Phillips system. . ... .. 139

The static stability Oz (T @E) used in the model. Curve A is a
radiative equilibrium; Curve B is a radiative-convective equilibrium. . 151

The equilibrium states of [u], [v], [T] and [x] in experiment A(S). The
contour interval of [x]is 10mbm/s. . . . . .. ... . o 152

The momentum budgets in experiment A(S). The curves have the
same meaning as those in Figure 5.6. . . . .. ... ... ... .... 153

14



6.4

6.5

6.6
6.7
6.8
6.9

6.10

6.13

6.14

6.15

7.1

7.2

The heat budget in experiment A(S). The curves have the same mean-
ing as those in Figure 5.7. . . . . ... ... ... ... 154

a) The static stability; b) the budget of static stability; c) the compe-
nents of the ageostrophic temperature advection; and d) the vertical
eddy heat flux in experiment A(S). Detailed explanations are given

imthetext. . . . . . i i i it e e e e e e 155
As in Figure 6.2 but for experiment B(S). . .............. 156
As in Figure 6.3 but for experiment B(S). ............... 157
As in Figure 6.4 but for experiment B(S). ............... 158
As in Figure 6.5 but for experiment B(S). . .............. 159
The equilibrium states of zonal mean surface winds, upper layer

meridional winds, eddy momentum fluxes, meridional eddy heat fluxes,
vertical eddy heat fluxes and MMC heat fluxes in experiments A (ATg).173

As in Figure 6.10 but {or experiments B (ATg). . . . ... ... ... 174
The equilibrium states of zonal mean surface winds, upper layer
meridional winds, eddy momentum fluxes, meridional eddy heat fluxes,
vertical eddy heat fluxes and MMC heat fluxes in experiments A (73). 173
As in Figure 6.12 but for experiments B (74).. . . . . . . . . ... .. 176
The equilibrium states of zonal mean surface winds, upper layer

meridional winds, eddy momentum fluxes, meridional eddy heat fluxes,
vertical eddy heat fluxes and MMC heat fluxes in experiments A (k). 177

As in Figure 6.14 but for experiments B (k). . . . ... ... ... .. 178
The variation of the temperature gradient at 45° with ATg. . . . .. 185
The vertical shears at 45° as a function of static étability N2%. The

cross signs are model results calculated with the Phillips system; the
dashed line is U = 9.87 x 10*N?; the dotted line is the criterion for
baroclinic instability; the dot-dashed line is the shear in radiative
equilibrivmstate. . . . ... ..o e 186

15



7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

As in Figure 7.2 but the model results are calculated in the Lorenz
system (T'g is set to curve A, i.e., radiative equilibrium). The dashed
lineis U =486 x 108N2. . . . . . . . .. i

As in Figure 7.2 but the model results are calculated in the Lorenz
system (T'z is set to curve B, i.e., radiative-convective equilibrium).
The dashed lineis U =4.40 x 10*N2. . . . . . ... ... ... ...,

The eddy heat fluxes as a function of the temperature gradient in
the mid latitudes. “A” and “B” are the model results with variable
static stability (T'g is set to be curve A and B respectively); “C” is
calculated with constant static stability. . . ... ... .... .. ..

The exponents in the power relationship between the eddy heat flux
and the temperature gradient, as a function of ATg.. . . . .. .. ..

The eddy heat fluxes by individual zonal wavenumbers for ATg =
30, 48, 72, 144 K. The dashed line indicates the flux by wavenumber
3; the dotted line is by wavenumbers 3 and 6; ..., the solid line is the
total flux. . . . . .o e e e e

The peak values of eddy heat flux by individual wavenumbers as a
function of ATg. The solid line is for the total wavenumbers, the
dashed, dotted and dot-dashed lines are for wavenumber 3, 6, 9 re-
spectively. . . . o o o e

The peak values of eddy heat fluxes in the wavenumber domain. a)
5 x 8(2), fixed static stability; b) 5 x 8(2), variable static stability; c)
5 x 15(1), fixed static stability; d) 5 x 15(1), variable static stability.

The eddy kinetic energy in the wavenumber domain. a) 5 x 8(2), fixed

static stability; b) 5 x 8(2), variable static stability; ¢) 5 x 15(1), fixed
static stability; d) 5 x 15(1), variable static stability. . .. ... ...

16

195

196



List of Tables

9.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

3.11

5.12

5.13

5.14

6.1

The spectrum of kinetic energy (unit: 10° Jm™2). . .. ... ... .. 83
Some characteristic quantities in the resolution experiments. . . . . . 96
Some characteristic quantities in the ATy experiments. . .. .. .. 120
The energetics in the ATy experiments. . . . . . . ... ... ... .. 120
The spectrum of eddy kinetic energy in the ATE experiments. . . . . 121
Some characteristic quantities in the 7, experiments. . .. ... ... 122
The energetics in the 74 experiments. . . .. .. ... .. .. .. .. 122
The spectrum of eddy kinetic energy in the 7, experiments. ... .. 123
Some characteristic quantities in the I'g experiments. . . . .. .. .. 124
The energetics in the 1‘9 experiments. . . . . .. .. ..o oo 125
The spectrum of eddy kinetic energy in the I'g experiments. . . . . . 125
Some characteristic quantities in the 7, experiments. . .. ... ... 127
The energetics in the 7, experiments. . . . . .. ... ... ... ... 127
The spectrum of eddy kinetic energy in the 7, experiments. . . ... 132

Some characteristic quantities in the resoltion experiments with the
Lorenz syStem. . . « v v v v v v vt e e e e e e e e e e 150



6.2

6.3

6.4

6.5

Dynamical time scales (days). . ... ... .. ... .. ..., 163

Some characteristic quantities in the experiments varying ATg. . . . 167
Some characteristic quantities in the experiments varying 7,. . . . . 170
Some characteristic quantities in the experiments varying 7,. . . . . 172

18



s e
@
bt

RSSO RYTOQOe

e
@
-2

List of Symbols

Radius of the earth

Eigenvalue of spherical harmonic function
Coriolis parameter

Magnitude of gravity

Newtonian cooling rate

211.;

= BN

Sufface drag coeflicient

Interfacial friction coefficient

Ekman pumping coefficient

1) Meridional mode; 2) Fundamental wavenumber

1) Zonal wavenumber; 2) Exponent of the power relationship

Pressure
_ aT/o8
= B3Tgj08

Time

Eddy time scale for momentum
Eddy time scale for heat

Eddy time scale for static stability
Zonal wind

Meridional wind

Eastward, northward and upward distance respectively
Horizontal diffusion coeflicient
Energy conversion

Energy dissipation

Friction

Eddy efficiency at heat transport
Eddy heat flux

Eliassen-Pulm flux

Energy generation

Scale height

Interaction coefficient

Jacobian operator

Kinetic energy

Interaction coefficient
Interaction coeflicient

19



b@@*—.l;e E@X*Se-g,;\; Q™= »de\oﬁ‘.gmg%%q

1) Angular momentum; 2) Number of meridional modes

Interaction coeflicient

1) Brunt-Vaisdlla frequency; 2) Number of zonal waves

Potential energy

Surface pressure (1,000 mb)

= P,{jf’ , associated Legendre function
Quasi-geostrophic potential vorticity
Diabatic heating

1) Gas counstant for dry air; 2) Feedback factor
Rossby number

Solar constant

1) Temperature; 2) Frictional relaxation time
Meridional eddy heat flux

MMC heat flux

Vertical shear of zonal flow

Spherical harmonic function

Isentropic slope

= df /dy

Divergence

Vorticity

Colatitude

Longitude

= cos 0

Air density

Static stability parameter

= 1/h, Newtonian cooling time

= 1/(2k), dissipative time by surface drag
= 1/(2kg), dissipative time by Ekman pumping
Latitude

Velocity potential

MMC stream function

Geostrophic stream function

= dp/dt, vertical velocity in p-coordinates
Wayve growth rate

Static stability parameter

Potential temperature

Geopotential

Augular velocity of the earth

20



Chapter 1

Introduction

The capability of the atmosphere to adjust itself to external changes is very
impressive. These adjustments occur on a large range of time scales: Buoyant
oscillations take only a few minutes (Brunt, 1927); geostrophic adjustments may
take several hours (Phillips, 1963); baroclinic adjustments have a time scale from
days to seasons (Stone, 1978; Mole and James, 1990); climate fluctuations range
from decades to centuries. Despite different physical mechanisms involved in these
adjustments, the common feature is that the atmosphere tends to remain at some

dynamical or statistical equilibrium state.

In this study we are mainly concerned about the long-term, large-scale atmo-
spheric equilibrium which is referred to as climate equilibrium. The climate equilib-
rium is ultimately determined by such basic elements as the mass and composition
of the atmosphere, the rotation rate and surface features of the earth, as well as
the flux of solar radiation. From the dynamical point of view, although we do not
rule out the importance of oceans and atmospheric axisymmetric circulation, it is

recognized that large-scale atmospheric eddies play a very active and important role

21



in the general circulation and climate, especially in the troposphere of mid-high

latitudes (Lorenz, 1967; Palmén and Newton, 1969; Oort and Rasmusson, 1971).

A climate state may be characterized by its temperature structure, which is
determined by the diabatic heating and the dynamical transports. The observations
show that a major portion of the atmosphere’s meridional heat transport (~ 85%)
is associated with eddies (Qort, 1971). The role of large-scale eddies has been
investigated in terms of the meridional eddy heat transport ([0*©*]). In general, the
large-scale eddies transport heat poleward. As a result, the temperature gradient
and the vertical wind shear are reduced from their radiative equilibrium states. Since
transports are fundamentally a Lagrangian process (Mclntyre, 1980) and potential
temperature is a conservative quantity, heat transport would be better described
in the Lagrangian framework. Unfortunately, the Langrangian method is almost
intractable in practice. On the other hand, in the Eulerian framework, the heat
transport is conventionally divided into two parts: the eddy flux and the MMC
(mean meridional circulation) flux. Clearly, the eddy heat flux alone is not a proper
measure of the eddy forcing on zonal mean states. Specifically, the heat flux by
the MMC in the mid-latitudes is observed to be equatorward, due to the indirect
Ferrel cell. This is opposite to the poleward heat flux by eddies. Thus, the net heat

transport depends on the relative importance of the eddy flux and the MMC flux.

Alternatively, the role of eddies can be better understood by using the Eliassen-
Palm theorem. In this framework, the quasi-geostrophic eddy forcing of mean states
is represented by the divergence of the Eliassen-Palm flux (E-P flux), F = (—[u**,
flv*©*]/8,) (Edmon et al., 1980). It combines the effects of both eddy heat trans-

port and eddy momentum transport. In the midlatitudes, the contributions of these
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transport processes are observed to be opposite in sign in the long-term mean state.
The effect of the eddy heat flux outside the boundary layer is to increase the con-
vergence of the E-P flux, but the effect of the eddy momentum flux is to increase
the divergence of the E-P flux. This feature is very similar to the heat transport
by eddies and by the MMC. In other words, the eddy momentum flux is a negative
feedback to the eddy heat flux. Therefore, the eddy forcing of mean states is depen-
dent on the relative importance of the eddy momentum flux and the eddy heat flux.
For the earth’s troposphere, the eddy heat flux is more important. However, for an
adiabatic and inviscid atmosphere, V - F = 0. This means that the eddy heat flux
is exactly compensated by the eddy momentum flux. One must ask how much the
effect of the eddy heat transport would be offset by the eddy momentum transport
if the external forcing varies over a broad range. Essentially, this is equivalent to
trying to understand how the eddies interact with the mean states to adjust the

climate to the external forcing. This is the first goal of the present study.

The eddy forcing is also related to the static stability. As is seen in the vertical
component of the E-P flux, the static stability (©,) appears in the denominator.
Strong static stability suppresses the role of the eddy heat flux. In quasi-geostrophy,
the static stability is treated as a constant. But its temporal and spatial variations
must undoubtably affect the eddy forcing. The interaction between the vertical eddy
heat flux ( [w*©*]) and the static stability is an important physical mechanism. The
eddies transport heat upward to increase the static stability, which in turn inhibits
the eddy growth. Therefore, the effect of the vertical eddy heat flux is implicitly
included even in the quasi-geostrophic form of the E-P flux if the static stability is
not fixed. It is another negative feedback to the meridional eddy heat flux. The

question is how important would this feedback be when the external forcing varies,
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and to what extent is a constant static stability an appropriate approximation. This

is the second goal of the present study.

The vertical eddy transport of momentum ( [#*w*]) is omitted in the quasi-geo-
strophic theory. Unlike the vertical eddy transport of heat, [u*w*] plays very little
role in the general circulation, especially in the mid-high latitudes (Stone and Yao,

1987). Therefore, it can be neglected reasonably in studying the role of eddies.

It is clear from the Eulerian framework that the different components ([v*0*],
[u*v*], [w*©*]) of the eddy transports interact in a very complicated way. The
conservation principle is more or less obscured by the complex interactions. For some
purposes, one may not need to know precisely the amount of these eddy transports
in detail. Instead, one only needs to know the overall effect of eddies, which can be

parameterized in terms of the mean states. This has been demonstrated in many

simple climate models as discussed below.

There have been many attempts to parameterize heat transports by eddies. A
simple parameterization is that the eddy heat flux is proportional to some power
of the meridional temperature gradient, i.e., F' = A(6T)", where F is the eddy
heat flux, A is a proportionality constant, 6T is the temperature gradient, and » an
empirical exponent. For instance, in Budyko’s and Sellers’ energy balance models
(Budyko, 1969; Sellers, 1969) n = 1. Thus, the empirical power relation is simply
a diffusion law In Stone’s radiative-dynamical model (Stone, 1972, 1973) n = 2,
which is derived from the theory for baroclinic waves on an f-plane. Empirical rela-
tions from observations indicate that F' is approximately proportional to the square
of the gradient in the midlatitudes, but to the third or fourth power of the gradient

near 30°N (Stone and Miller, 1980). Another simple form of parameterization is to
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assume that the heat transport is carried by a hypothetical meridional circulation
(Eliasen, 1982). This circulation is similar to the “residual meridional circulation”
in the transformed Eulerian system (Andrews and Mecluntyre, 1976), although it is
determined from the mean temperature field. The third type of parameterization is
to assume a baroclinic adjustment (Stone, 1978), i.e., without explicit calculations
of eddy heat transports. In this scheme, the mean temperature gradient in the mid-
latitudes is always adjusted by eddies to the critical value for baroclinic instability

in the sense of Phillips’ two-level model (Phillips, 1954).

Although these parameterizations were, to some extent, successful in assessing
the overall role of eddies in climate, they are based on empirical relationships that
may not apply to more general conditions. We want to know to what extent the
power relation and the baroclinic adjustment hypothesis are still valid when the
external conditions, e.g., the diabatic forcing, vary. This is the third goal of the

present study.

Our approach in this study is to use a reasonably simplified and relatively real-
istic model to calculate various characteristics of the statistical equilibrium states,
such as the zonal mean flow and the temperature structure, the angular momentum
and heat budgets, and the energetics, among others. Especially, we will calculate
[v*T*], [u*v*], [w*T™] explicitly and examine their interactions and feedbacks. We
will also change the external parameters systematically to study the climatic sensi-

tivity and the response of the eddy forcing.

Three steps will be taken to accomplish these goals. In the first, we will suppress
all eddies artificially to find out the steady state, i.e., the solution of the Hadley

regime. This will provide a background or reference frame for the eddy regime.
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Then, we introduce large-scale eddies into a two-level system with constant static
stability — the Phillips system (Phillips, 1954) or the P-model (Hollingsworth, 1975).
Because the vertical eddy heat flux is neglected in the Phillips system, we will only
focus on the meridional eddy fluxes of heat and momentum, and fix the static
stability and treat it as an external parameter. Finally, we will relax this constraint
by using another two-level system with variable static stability — the Lorenz system
(Lorenz, 1960) or the L-model (Hollingsworth, 1975), so that the effect of vertical
eddy heat flux can be included, along with meridional eddy fluxes of heat and

momentum.

This paper is organized as follows. In chapter 2 a background review is given.
Chapter 3 gives a description of the model equations, physics and numerics. The
Hadley regime is discussed in chapter 4, where we show model results of experiments
in the nearly inviscid limit. The experiments in the Phillips system are described in
chapter 5, which include horizontal resolution experiments and external parameter
experiments. In chapter 6 similar experiments in the Lorenz system are illustrated
and compared with those in the Phillips system. In chapter 7 we examine the
baroclinic adjustment hypothesis and the relationship between the meridional eddy
heat flux and the temperature gradient in the mid latitudes, based on the model

results. Then we summarize and conclude in chapter 8.
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Chapter 2

Background

The importance of large-scale eddies has been recognized for a long time. It is
highly visible on daily weather maps, in general circulation statistics and in various
diagnostic studies. Previous studies about the role of eddies were usually associ-
ated with their dynamic transports of conventional quantities, such as momentum,
heat and energy. In many aspects, the observed climate state is related to these
transports. For instance, the maintenance of tropical easterlies and midlatitude
westerlies is due to the eddy momentum transport (Starr, 1948); the adjustment of
midlatitude temperature structure is attributed to the eddy heat transport {Stone,

1978; Stone and Carlson, 1979).

Quasi-geostrophic potential vorticity (QGPV) is a more useful property which
has been increasingly used in theoretical and diagnostic studies of eddy transports.
In the absence of diabaticity and dissipation, QGPYV is conserved in the Fulerian
framework (Charney and Stern, 1962). Similarly, the E-P flux (Eliassen and Palm,
1961) is also a powerful tool in studying the eddy forcing of zonal mean states. It

"combines both the meridional eddy momentum flux and the meridional eddy heat
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flux. The divergence of the E-P flux is in fact proportional to the meridional flux
of QGPV (Edmon et al., 1980). Both QGPV and the E-P flux are superior to the
conventional properties in diagnosing meridional eddy transports. However, quasi-
geostrophy can not describe the effect of vertical eddy heat transports because it

assumes a constant static stability.

In addition to the diagnostic studies, the role of eddies in climate has been studied
by using a variety of models. Those models may be divided into three classes: 1)

very sophisticated, 2) very simple, and 3) intermediate.

The first class of models is referred to as the state-of-the-art general circulation
models (GCMs) which usually have multiple vertical layers, high horizontal resolu-
tions and three-dimensional structure. They are based on the primitive equations
and include sophisticated schemes for diabatic heating and dissipation. They cal-
culate large-scale eddy transports explicitly instead of parameterizing them. Their
advantage is to allow one to compare the three-dimensional structure of model re-
sults to the real atmosphere. But, the computation quantity is tremendous in those
models, so that it is impractical to carry out numerical experiments that require
very long time integrations or varying multiple parameters. Besides, the GCM re-
sults are very sensitive to the subgrid scale parameterizations. For instance, in the
GISS (Goddard Institute for Space Studies) “Model I” GCM, the vertical eddy heat
fluxes were very different when the moist adiabatic adjustment was used from those
when the penetrative convection scheme was used to parameterize cumulus convec-
tion. In the latter, the small scale (subgrid) flux was 75% larger and the large scale
(explicitly resolved) flux was 50% smaller (Stone and Risbey, 1990). In fact, the

subgrid scale parameterizations are different from each other in current GCMs. All
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of the GCMs are tuned to the current climate, explicitly or implicitly. In this sense,

the GCMs are not much superior to simple climate models in simulating climate

and climate changes.

The second class of models consists of the simple climate models (e.g. Budyko,
1969; Sellers, 1969; Stone, 1972; Saltzman, 1968; Eliasen, 1982). Those models have
only one or two spatial dimensions. They are used in studying the climatic sensi-
tivity, e.g., how the climate is sensitive to changes in the solar constant, in surface
features, in radiative absorbing materials and in the planet’s rotation rate. The
effects of large-scale eddies are parameterized in these models. These parameteriza-
tions, by and large, are based on empirical relationships and differ from each other.
Even though they are plausible and give reasonable results, none of them can be

said to have a rigorous theoretical basis or wide acceptance.

The third class of models is of intermediate complexity, represented by the two-
level, highly truncated models which are often referred to as low order models.
They also explicitly calculate eddy transports, although, only for some leading com-
ponents. They usually incorporate simple parameterizations of diabatic heating and
friction. Like the second class of models, their main use is not to simulate the real
climate. Instead, they belong to the “process-study models”. Although the low or-
der model results are not directly comparable to observations, they allow for easier

interpretation of the dynamics involved, longer integrations, and more parameter

experiments.

Depending on which eddy-mean flow interactions they have included, low order
models can be further divided into three subclasses. The simplest one includes single

zonal wave models with a single meridional mode, which has a constant static sta-
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bility (e.g., Salmon, 1980; Thompson, 1987; and Vallis, 1987). The meridional eddy
momentum flux and the vertical eddy heat flux are precluded. The effects of ed-
dies in those models are entirely represented by the meridional eddy heat transport.

Clearly, there are no wave-wave interactions in these models.

Another subclass includes models with more meridional modes but also with a
constant static stability (e.g., Charney, 1959; Galin and Kirichkov, 1979a; Cehelsky
and Tung, 1987; O'Brien and Branscome, 1989). Those models include meridional
eddy fluxes of both heat and momentum. Some of them with more zonal waves
also include wave-wave interactions. Therefore, the dynamics of eddy transports
are better represented. But, they preclude interactions between the vertical eddy

heat flux and the static stability.

The more complicated subclass is similar to the second one but the models have
variable static stability (e.g., Bryan, 1959; Lorenz, 1963; Held and Suarez, 1978).
Thus, they include the vertical eddy heat flux in addition to the meridional eddy
fluxes of heat and momentum. They are the most reasonably simplified models
to study the role of large-scale eddies. However, it should be pointed out that
Held and Suarez’s model has reached the edge of the GCM class in spite of its
two vertical layers and two zonal waves. It is based on the primitive equations.
It has a relatively high meridional resolution and complicated parameterizations of
diabatic heating and dissipation. In order to carry out comprehensive parameter

experiments, a simpler model is more desirable.

Compared to the sophisticated GCMs, low order models have much coarser res-
olutions in both horizontal and vertical directions. This seems not to be a serious

problem in climate studies of large-scale processes. Diagnostic studies of atmo-
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spheric energetics (e.g., Saltzman, 1971; Oort and Peixoto, 1974; Kung and Tanaka,

1983) have shown two important features:
1) Most of the eddy-mean flow interactions take place in a few large-scale waves;

2) Interactions between different zonal waves are weaker than the direct interac-

tions of individual waves with the mean flow.

The first feature implies that the waves with short vertical wavelengths, which
can not be well resolved by two-level models, are not important because they are
associated with small horizontal scales. These small-scale and shallow waves are
not efficient in transporting heat and momentum. They are usually confined to
the lower part of the atmosphere and are prone to dissipation. The second f=ature
implies that nonlinear wave-wave interactions play a relatively small role, therefore,

low-order truncations of the zonal wavenumber spectrum are reasonable.

However, very low horizontal resolutions did cause problems in low order models.
Even though the meridional eddy heat transport may be satisfactorily represented
in very low order models, the eddy momentum transport and kinetic energy spec-
trum are often distorted due to insufficient resolution. Moreover, Cehelsky and Tung
(1987) have shown that the multi-equilibrium phenomenon, which appears in very
low order models but disappears in the relatively high order model (“full nonlinear
model”), might be due to the very high truncations. O’Brien and Branscome (1989)
found that, in a model with only two zonal waves and two meridional modes, most
of the energy was built up in the shortest scale — a phenomenon termed “spectral
blocking”. As argued by Cehelsky and Tung (1989), the problems with very low

order models are due to the fact that the energy and enstrophy undergo numer-
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ous reflections in the limited spectral domain, and bounce around among the few

retained modes.

Compared to sophisticated GCMs, most low order models have much simpler
physics. Diabatic heating and friction are often incorporated in some simple formu-
lations, such as Ekman pumping and Newtonian cooling. Topography and hydrology
are often omitted. When topography is omitted, the models exhibit a single well-
defined mean state. Although the transports by stationary eddies associated with
the topography are precluded, they are relatively weak in annual mean states com-
pared with the transports by transient eddies. This has been shown in observations
and model results. For instance, in Cehelsky and Tung (1987)’s calculations, topog-
raphy seems to have little effect on the fotal eddy heat transport, partly because of
the dominance of transient eddies and partly because of the feedback mechanism in
the model. When hydrology is omitted, the main differences are found in the low
latitudes. For instance, in Held and Suarez (1978)’s experiments, the maintenance of
static stability in low latitudes was markedly different in the dry and moist models.
However, the differences between the dry and moist models, in either meridional or

vertical eddy heat fluxes, were more likely quantitative rather than qualitative.

Low order models have been extensively used in climate studies. The numerical
results with low order models can be used as a guidance for sophisticated climate
modeling with the complex GCMs, because many parameter experiments and long
time integrations can be done rapidly and inexpensively with low order models.
They can also be used to validate empirical parameterizations used in simple climate

models, because eddy transports can be calculated explicitly.
Although the role of eddies was embodied in the climate studies with various
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models, only the overall effect of eddy transports was considered. The question of
how different eddy transport processes interact with each other to affect the mean
states has not yet been comprehensively studied. Simmons and Hoskins (1978, 1980)
noted that the eddy momentum transport plays an important role in the barotropic
stabilizing process of a life cycle of baroclinic waves. This role is the opposite of that
played by the eddy heat transport. It restores the meridional temperature gradient
which has been reduced by the poleward eddy heat flux. But, the time scale of the
life cycle of waves is much shorter than that of climate variations. The role played

by eddies on the time scale of climate variations is still not clear.

There is another question which has not been adequately addressed by the pre-
vious diagnostic and modeling studies, i.e., how the eddy transports are affected by
the external parameters, such as diabaticity and dissipation. In particular, how do
the meridional eddy momentum transports interact with the meridional eddy heat
transports, and how do the vertical eddy heat transports influence the meridional
heat transport, when those external parameters are changing? The significance
of understanding these dynamical processes is to clarify the physical mechanisms

behind climatic sensitivities and climate changes.

Recently, Stone and Branscome (1991) have investigated the role of eddies in
the diabatically forced nearly inviscid eddy regime. The approach they used is a
scaling analysis and numerical calculations with a low order model. The scaling
analysis was performed in the quasi-geostrophic system. They defined a feedback
factor which equals the ratio of the equatorward heat transport by the Ferrel cell
to the poleward heat transport by eddies. If this factor equals unity then there

is a complete feedback, i.e., there is no net eddy forcing of mean states. If the
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factor equals zero then there is no feedback at all, i.e., the eddy heat transport is
totally dominant. Stone and Branscome have shown that this factor is determined

primarily by the strength of diabatic heating and other internal parameters.

The model they used is a 3-plane model with constant static stability. It retained
(typically) five zonal waves and five meridional modes. It was used to calculate nu-
merically the feedback factor in a number of parameter experiments. The varying
external parameters included the pole-to-equator temperature gradient in the ra-
diative equilibrium, the Newtonian cooling time, the surface drag and the static
stability. The model calculations supplemented and confirmed the scaling method.
When the diabatic heating was enhanced, either by increasing the forcing tempera-
ture gradient or by decreasing the Newtonian cooling time, the feedback factor was
reduced. In fact, this factor is very small for the midlatitude atmosphere. In other

words, the poleword eddy heat transport is dominant in the forcing of zonal mean

states.

The concept of feedback factor used by Stone and Branscome is identical to the E-
P flux. The feedback by the Ferrel cell heat transport is equivalent to the feedbacx by
the eddy momentum transport (Stone and Branscome, 1991). Although this concept
is a useful tool in diagnosing interactions associated with meridional transports, it
says nothing about vertical eddy heat transports if the static stability is fixed. Since
the interaction between the vertical eddy heat transport and the static stabilty is
an integral part of the eddy forcing of mean states, it is necessary to include this
effect in the diagnostics and modeling studies. Perhaps because of the absence of
this effect in Stone and Branscome’s model, the meridional temperature gradient in

the climate equilibrium is appreciably supercritical to that for baroclinic instablity,
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in the sense of Phillips’ two-level model; the eddy heat flux is extremely sensitive
to the temperature gradient in that model, being proportional to the gradient to a

power of about fifteen.

Clearly, more complete low order models, which allow the vertical eddy heat
transport to interact with the static stability, are desirable to carry out numeri-
cal experiments similar to those performed by Stone and Branscome (1991). This
mechanism can be included only in the vertically mean sense, because the vertical
structure of static stability can not be resolved by two-level models. Nevertheless,
the temporal and horizontal variations of static stability will bring out insights which
were obscured by the models with fixed static stability. The conrcepts of feedback
factor and the E-P flux are still useful in this kind of model, but the results will
be modified by involving a variable static stability. More importantly, in this kind
of model, static stability is an internal variable rather than an external parameter.
It is determined by other “real” external parameters such as diabatic heating and
friction. We will see if the model results would be significantly different from those

calculated in the models with fixed static stability.

In the present study, we will use two kinds of low order models to extend Stone
and Branscome’s study: one is similar to their model except that it is on a sphere;
the other is also on a sphere but with variable static stability. The purpose of
including spherical geometry is not an attempt to simulate the general circulation
in low latitudes. Instead, it is for better describing the meridional eddy momentum
flux, which may be distorted in the S-plane models due to the rigid lateral walls.
The first kind of model can be used to check the results obtained from the S-plane

model of Stone and Branscome, and to understand the effect of spherical geometry.
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Our main interest is in the second kind of model and in the effect of interactions
associated with the vertical eddy heat flux. Similarly, we will carry out a series of
parameter experiments to examine how eddies and zonal mean states are sensitive
to external changes. The emphasis is put on the interaction between large-scale

eddies and the midlatitude temperature structure.
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Chapter 3

Model description

3.1 Basic equations

There has been a variety of two-level models in the literature, based on different
simplifications of the basic equations, spatial domains, vertical coordinates, bound-
ary conditions, horizontal resolutions, included physics, etc. The models used in this
study are “filtered”, in spherical-pressure coordinates, without vertical motion at the
top, and without topography and hydrology. Nonlinear and linear balance equation
approximations are used in two different dynamical regimes, i.e., the Hadley regime
and the eddy regime, respectively. Ageostrophic temperature advection is omitted
or included according to whether static stability is fixed or variable. Symmetry with
respect to the equator is assumed. The spectral truncation is highly variable and

will be discussed in detail in the relevant chapters.

Following conventional notations, the horizontal wind V can be written as
V=V, +V.=kxV¢+ Ve, (3.1)
where V; is geostrophic wind, vV, is ageostrophic wind, % is stream function, ¢ is
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velocity potential, and k is a vertical unit vector. The vorticity ¢ and the divergence

 are expressed as

(=V%, &=V (32)

Simplified vorticity and divergence equations, instead of momentum equations,
are commonly used in “filtered” models. The order of approximation of a system
is indicated by the simplification of the divergence equation. For instance, if the
nonlinear balance equation approximation is used in the two-level model, the nondi-

mensionalized divergence equation becomes:

V2$ =2V - (uV) + V- [V + VVE - V(VH-VE)],  (3.3)

where & is the geopotential; () = O+ sl (A) = 3[0)1 = ()s]. The subscripts
1 and 2 denote the upper level (i.e., 250 mb) and the lower level (i.e., 750 mb)

respectively. The associated vorticity equations, also in nondimensionalized form,

are

- - - N R o _
SV = JG,V) - I, V)~ 258 -2V (uV) 4 D
— V. [VHVé + VPV + V2V + 2V3EVi), (3.4)
F; SN N f - LY .
2= — I,V - I, V) - 255 0V (uVp) + D
— V- [VV$ + Ve — VeV, (3.5)
where J is the Jacobian operator, i.e.,
JABB 0BoA
J(A,B) = O Ao’
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where p = cosd, 8 is colatitude and X is longitude. Vertical velocity w has been

eliminated in Equations (3.4) and (3.5) through use of the continuity equation:

Ow
Vig+ —=0. (3.6)

P
The independent and dependent variables are all nondimensionalized in the
spherical - pressure coordinates, in which 27! is chosen as the characteristic time
scale, a as the characteristic horizontal scale and P, as the characteristic vertical

scale, where 2 is the angular velocity of the earth, @ is the radius of the earth, and

Py = 1,000 mb. Then, t is divided by 072, 1 and ¢ by Qa?, & by Q%¢?, w by QF.

The friction terms are represented by D in the vorticity equations. We assume a
Rayleigh form of friction on the lower boundary, which is linearly damping the sur-
face vorticity. It can be interpreted as a surface drag or Ekman pumping, depending
on whether there are vertical motions on the lower boundary. We also include an
interfacial stress which is proportional to the vertical shear. This is equivalent to
incorporating vertical viscosity. We do not incorporate horizontal diffusion because

it is relatively small. Therefore, the friction terms can be written as
D = k(@2V%) - V), ' (3.7)
D = —k2V — Vi) — KV, (3.8)
where k and k' are specified damping coefficients on the lower boundary and on

the interface respectively, being nondimensionalized by Q. The surface vorticity is

linearly extrapolated from level 1 and 3.

If the linear balance equation approximation is used, then those terms in the
square brackets of Equations (3.3), (3.4) and (3.5) are discarded, in order to con-

serve total energy (Lorenz, 1960). Further simplification can be made by setting the
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Coriolis parameter f and its meridional derivative 8 to be constant. This simplifi-

cation is often used in B-plane gquasi-geostrophic models.

The thermodynamic equation kas two different formulations in two-level models.
In Phillips’ (1954) model, the thermodynamic equation is written on the interface;
the temperature advection by ageostrophic wind is omitted; the static stability is

treated as a constant:

09, = 90
Ft-+ng-ve2+wg§-1-;= Q. (3.9)
Through the hydrostatic relation
__po®_2;
T = Rop R(I) (3.10)
and the definition of potential temperature
O="T (5;2) , (3.11)

where R is gas constant for dry air and &« = R/C, ~ 2/7, and using the boundary

condition wy = wy = 0, Equation (3.9) can be written as

) s 3
%-t- = —J(, &) - ToV?p + G, (3.12)

where
N2H?2 [L?
0= 902qr T a2’

N is the Brunt-Vaisalla frequency, H is a scale height, and L, is the Rossby defor-

r

mation radius. Similar to Equations (3.4) and (3.5), Equation (3.12) is nondimen-

sionalized.

In Lorenz’s (1960) model, the thermodynamic equation is written on the two
levels; the ageostrophic advection term is retained; the vertical mean potential tem-
perature is represented by © = 3(©; + ©a), and the static stability is represented

by & = 2(©1 — ©3). The equations on the two levels are
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80 80
6tl +Vi-VO; +w apl =@, (3.13)
80

Bta + I’E} vea +w3-(?-%3 = Qs, (314)

where T-/; and V; are total horizontal velocity. The equation for © is obtained by
adding Equations (3.13) and (3.14). The equation for © is obtained by subtracting
Equation (3.14) from Equation (3.13). They are written as

80 = __ A o .
57 TV VO+V V6 - —wrgs =6, (3.15)
%(f)- V-vO+V.-ve=20, (3.16)

where Ap = p; — p;.

There is an essential difference between Lorenz’s formulation and Phillips’ for-

mulation. For éxample, if we assume in Equation (3.15) Ois constant, Vis replaced

by V,, and = = —g—l‘fﬂ- o — %%‘3, then the equation becomes
3 180
%9 +7,.VO+ wz(—g—) - (3.17)

Compared to Equation (3.9), the static stability is reduced by a half. This differ-
ence has been noticed by Hollingsworth (1975) and Arakawa and Moorthi (1988).
The reason is that Equation (3.9) is just for the interface of the model, while Equa-
tion (3.17) is for the vertical mean of the model. Because of the higher vertical
resolution for @, Lorenz’s formulation is superior to Phillips’ formulation in two
aspects: 1) the static stability is variable; 2) the vertical mean potential tempera-

ture equation is more reasonable. When Phillips’ formulation is used to study the
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vertical mean heat budget, one must take caution in interpreting the value of static

stability.

Likewise, we use nondimensional ® to represent ©, and introduce a nondimen-

sional parameter

NH?
= 4022
to represent ©. Equations (3.15) and (3.16) can be written as
b T ; s . .
5 = “JBH-JGBD -V -0V -V (899 +Q,  (3.18)
ar - s s . X
5 = “JBD I8 -V -0Vp)-Ve.-Vo+Q  (319)

\Q represents diabatic heating in the system. We use the Newtonian cooling form,
ie, (Tg — T)/ Th, a8 the differential heating. Tg is a specified equilibrium {or “tar-
get”) temperature which may be regarded as the temperature in either radiative equi-
librium or radiative -convective equilibrium, depending on which scheme is used to
calculate Tg. We are mainly concerned about the pole-to-equator temperature gra-
dient in the equilibrium state because it is the most important factor in the climate.
Therefore, we represent Tg in terms of a second order Legendre function, which
is the dominant component in either radiative equilibrium or radiative-convective
equilibrium. 7, is a thermal relaxation time, which is inversely proportional to the
Newtonian cooling rate, 2. In our notations, the diabatic heating terms can be

written as
Q= h(dg - $), (3.20)
Q= h(lz - T), (3.21)
where h is nondimensionalized by 1. & g and I'g are equivalent to the mean tem-
perature and the static stability in the equilibrium.
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We note that there are six variables (%, D, B, P, @,F), but only five basic equa-
tions in the model with variable static stability. Lorenz (196i) assumed that there
were no vertical motions on the top and bottom boundaries, so that ¢ vanished.
These boundary conditions would yield vertically symmetric mean meridional cir-
culations with centers at the middle level. Another way to close the equations is to
assume a nonzero vertical velocity on the lower boundary introduced by an Ekman

pumping. In this case, the mean meridional circulations are no longer vertically

symmetric.

3.2 Spectral representations

We will solve the system in the spectral domain. The spectral form is convenient
to represent eddies explicitly and easy to adjust horizontal resolutions of the model
by adding or substracting wave modes. It also has many advantages in numerical

computations, e.g., eliminating aliasing and conserving integral constraints such as

1

energy and enstrophy.

We represent all variables in terms of spherical harmonics,
$=3 6, (0% (N p),
ki

where ¢ = (¢, D, 3, @, 3, T'), ¥ = n, +il, represents a wave vector index in terms

of rank and degree of the solid harmonic,
Yo (A 1) = Py(m)e™, (3.22)
which is the eigenfunction on a sphere and satisfies the equation

V?Y, = —n,(n, +1)Y,. (3.23)
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For I, = 0, the spectral coefficient is real, and it represents a meridional mode of the
zonal mean state. For I, # 0, the spectral coefficient is complex, and it represents

a wave component with zonal wavenumber 1,.

In our model, the stream function is assumed to be antisymmetric to the equator
and represented by odd spherical harmonics (n, is odd). The geopotential and
the velocity potential are assumed to be symmetric to the equator and have even
parity of harmonics (n, is even). These spectral representations are self-consistent

in the equations. They describe approximately the distributive characteristics of

the annual mean atmosphere.

We use a rhomboidal truncation with M zonal wavenumbers and /N merid-
ional modes. The fundamental zonal wavenumber is denoted by m, i.e., all of the
zonal wavenumbers are multiples of m. The truncation level is then indicated by
M x N(m). Here we will not specify M, N and m a priori. The appropriate
truncation level and fundamental wavenumber will be investigated in the resolution

experiments.

The procedure of spectral transformation is essentially the Galerkin method,
which has been described by Siberman (1954), Platzman (1962), and others. In the
equations, all linear terms transform to be a constant times the spectral coefficient,
while the nonlinear terms transform into a sum of the product of two spectral coef-
ficients modified by a constant which is referred to as the “ interaction coeficient”.
Basically, only two types of interaction coefficient are generated. They are integrals
of trigonometric polynomial representations of associated Legendre functions, i.e.,

Katr = [ PulaPs D= = P, (3.24)
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1
Mogy = j_ PaFsPyip. (3.25)

The procedure for calculating the first type of integrals (X) has been discussed by

Baer and Platzman (1961). The second type (M) can be calculated in a similar

way.
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Chapter 4

Hadley regime

4.1 Introduction

Although the main focus of this study is the eddy regime rather than the ax-
isymmetric or Hadley regime, it is interesting to know the basic flow which is driven
by a simple diabatic forcing, while large-scale baroclinic and barotropic instabilities
are absent. Since large-scale eddies arise from these instabilities of the basic flow,
it is important to know the structure of the basic flow in the Hadley regime. This
basic flow will be used in linear analyses of instability, and in the initialization of

the nonlinear eddy regime in time integrations.

There have been many theoretical and numerical works on the axisymmetric
regime. Among them, Held and Hou (1980) proposed an approximate theory, in
which the fluid is nearly inviscid and the poleward flow of the Hadley cell is nearly
angular momentum conserving. They used a simple Newtonian cooling form of
radiative forcing, and assumed conservation of potential temperature, O, as well as

continuity of © at the polar boundary of the Hadley cell. They also assumed that
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the static stability is unaffected by the circulation, and that the vertical profiles of
zonal wind, u, and © are self-similar. Their theory predicted such features of the
tropospheric circulation as the width of Hadley cell, the position of the subtropical
jet, the distribution of the surface wind and the meridional heat and momenturn
fluxes. They also used a primitive equation model with a fine resolution mesh to
calculate the numerical solutions in the inviscid limit. Their theoretical predictions

are in good agreement with the numerical results.

It is not our intention to explore the theory of axisymmetric circulation in this
study. However we did repeat Held and Hou’s numerical experiments with our two-
level model, to see whether it can reproduce their results. This is an indirect test of

the adequacy of our model’s vertical resolution and the balance equation.

4.2 Equations in the Hadley regime

We use the nonlinear balance equation system to calculate the numerical solu-
tions of the axisymmetric circulation. The basic equations are simplified by omitting
all terms related to zonal eddies. Consistent with the theory and numerical calcu-
lations of Held and Hou (1980), we assume that the Newtonian cooling rate, the
interfacial friction coefficient and the static stability parameter are all constants.
We also assume a similar structure of radiative equilibrium temperature (the second
order Legendre polynemial) but with a more realistic pole-to-equator temperature

difference. The simplified equations are:

gsz‘, = —V-[VHVE + VPVE + VeV + 2V
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~V - (2uV@) - (VP —2V%), (4.1)

Svip =~V (V4 + VTR - VRV - V- (2679)
+ k(V% — 2V2) — k', (4.2)
24 = rVe+9)+h(bs - b), (4.3)
V2% = V-(2uVY)+ V- [VHVP+ VIV - V(VY-VY)], (4.4)
2= _ @_ 2.7 _ 2,7,
Vi = % (V) — 2V3). (4.5)

Zonal averaging has been performed on the equations. Therefore the Jacobian
terms and the zonal derivative terms have disappeared. The gradient, the divergence
and the Laplacian operators have actually become only meridional derivatives. The

continuity equation has been used, particularly,
wp = —=V¥¢+¢), (4.6)
wqg = —-Vzga. (4:7)

where w, is the vertical velocity on the lower boundary, introduced by an Ekman

pumping formulation and proportional to the surface vorticity.

The reason for using the Ekman friction, instead of assuming @ = 0, to close
the equations is to simulate more realistic mean meridional circulations which are
not necessarily vertically symmetric. In addition, in two-level models with quasi-
geostrophic or linear balance equation approximations, the formulation for the Ek-
man friction is identical to that for the surface drag. For instance, in Equations (4.1)
and (4.2), the terms associated with vertical velocities are —2uV?@ and —2uV23.

By using Equations (4.5), (4.6) and (4.7), we can show
—2uV?G = —kg(Vh — 2V), (4.8)
—2uV2p = ~2uVH($ + @) + ku(V?§ — 2V*4). (4.9)
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The Ekman friction appearing in the vorticity equations has the same formulation as
the surface drag. Therefore, we will omit the surface drag by setting & = 0. However,
the different lower boundary conditions do lead to different vertical structures of

mean meridional circulations.

The Ekman damping rate is represented by %ﬁ-, where kg is a specified constant.
In the conventional formula for the Ekman pumping, the Coriolis parameter is as-
sumed to be constant. This is equivalent to replacing g by a constant gy in our
formulation. Thus, the Ekman damping rate is independent of latitude. However,
because ¢ (and w) is symmetric to the equator and v is antisymmetric to the equa-
tor, p has to be an odd function of latitude in order to satisfy Equation (4.5). This
requires the Coriolis parameter f, which enters the Ekman damping coefficient, to
be a function of latitude. Similar treatment has been used by Baer and Alyea (1971)
to represent a heating function. Although p = 0 at the equator, it is not a singular

point in our model because the vorticity also vanishes at the equator.

The external parameters are chosen as the realistic values for the earth’s atmo-

sphere, i.e.,
1 = 20days, 75 = 5days, N> =10"*s7%, AT = 48 K,

where 7g is the relaxation time for the Ekman damping (75 = 3i=), and ATE is the
pole-to-equator temperature difference in the radiative equilibrium. In our inviscid
limit experiments, the relaxation time for interfacial friction is chosen to vary from
20 to 640 days, which is equivalent to a vertical viscosity coefficient varying from 32
to 1m?/s. The system of equations is truncated by keeping 20 meridional modes on
a hemisphere. Higher resolution is required when the viscosity is weaker. Therefore,

we represent the stream function and the velocity potential as:
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The spectral forms of Equations (4.1)-(4.5) in the steady state are:
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where ® has been eliminated through the nonlinear balance equation.

cients are defined as follows:

'¢’=?Z'1P1+1;3P3+"'
$="/;1P1+1Z'3P3+“‘

@ =@ Py + @y Py + -

h Ca+1

+ ?;39}’ 39,
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)
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(4.10)
(4.11)
(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

The coefhi-

(4.18)
(4.19)
(4.20)

(4.21)



1
HE), = 22 /  PaPopdp, (4.22)

L ca
Ca = Nal(na+1), (4.23)
L, = 2/1 P, (1 - pz)dpa—l — ca—1pPa-t] dps. (4.24)
o 1 [} d[.‘ - o-

All together we have 80 quadratic equations. The summation terms in these equa-

tions include all retained meridional modes of ¢ and ¢.

The zonal mean flow, [u], [v], temperature, [T, and vertical velocity , [w], can

be readily constructed from the spectral coefficients of ¥, ¢ and ®. By definition,

[u]. = 03;-.: %zajzﬁa 881;“,‘ (4.25)
[W] = %%(%l = %;z&ag%, (4.26)
[b] = —é%%%]- = "%gﬁ‘—’oﬁl 61;;“, (4.27)
f = 22 s, (428)
6] = 5V + 0] = g T con(Por + Gain) Pussy (429
T = Fd =5 benPon (4.30)

Through the continuity equation we can define a stream function, x, for the

mean meridional circulation.

alx] ,
——ag[ ]= —[w]asind, (4.31)

X .
—a—p- = —[’U] sin 9. (4.32)
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4.3 Numerical solutions

There are two kinds of numerical methods to solve Equations (4.14)-(4.17). One
is by integrating the time-dependent version of these equations until a steady state
is achieved. The other is by using the Newton-Raphson iterative method (Press et
al., 1986) to solve the steady equations. Because of its fast convergence rate, the
Newton-Raphson method is more efficient for this particular set of equations. The
iteration converges very rapidly if the initial guess is close to the solution. Different
initial values have been tested, but the values always converged to a unique solution.

Therefore, we use the Newton-Raphson method for the following experiments.

The experiments are similar to the inviscid limit experiments by Held and Hou
(1980). We decrease the interfacial friction gradually to see how the numerical solu-
tions approach the theoretical solutions. The zonal wind, [u}, and the MMC stream
function, [x], are shown in Figures 4.1 and 4.2. Here [x] has been calculated by
vertical integrations of Equation (4.32). To represent a complete vertical structure
of [v], we need to know the values of [vo] and [vy] at the boundaries in addition to [v1]

and [vs]. They can be estimated from the steady zonal mean momentum equations:

- [Ui]%%%] + [wz‘]'a—é‘?]’ — flvi] = —kiludl, 1 =10, 4. (4.33)

At the upper boundary wy = 0, ko = 0, thus, [vo] = 0. At the lower boundary, the

advection terms are relatively small, thus,

f['04] o k4[‘lt4], k4 = ZkE (434)

In general, there are broad westerlies occupying most of the area, except in the

lower equatoral latitudes where easterlies are prevailing. There are deep, vertical
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asymmetric Hadley cells in the low latitudes. When the interfacial friction is de-
creased, the subtropical jet becomes stronger and steeper, the Hadley cell becomes
weaker and more narrow, and a shallow Ferrel cell on the polar side of the Hadley
cell gets stronger. Although the peak of the jet and the core of the Hadley cell shift
somewhat toward the equator, they seem to approach a limiting latitude, never vio-
lating Hide's theorem (Hide, 1969). This feature is more clearly seen in Figure 4.3.
The profile of zonal wind in the nearly inviscid case is confined by the wind required
for the conservation of angular momentum, Uy, on the equatoral side, and by the

thermal wind in radiative equilibrium, Ug, on the polar side.

Figure 4.4 shows the momentum fluxes in the upper layer, and Figure 4.5 shows
the vertically integrated heat fluxes. The solid curves are the theoretical results

calculated according to Held and Hou (1980), i.e.,

%/oyvedz _ %(i)%eoaAHR% [_?_Hz(_‘é_)3+/—‘é—)5}, (4.35)

3 Th bu bu \¢u
1 rH Qag? 1 [H
T /(; wwdz ~ A0 F/o v0 dz, (4.36)

where ©p i1s the mean potential temperature, ¢ is latitude, Ay and A, are,
respectively, the fractional change in the potential temperature from equator to
pole and from the top to the bottom boundaries in the radiative equilibrium.
R = (gHAg)/(N%a?); ¢g = (5R/3)}F,- is the width of Hadley cell. They can be
readily calculated from the given set of parameters in our experiments. Particu-
larly, here ¢y o~ 20°, beyond which there is neither momentum fluxes nor heat
fluxes. The numerical solution for a nearly inviscid flow is very close to the theo-

retical prediction. When the interfacial friction is decreased, the magnitudes and
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positions of these fluxes gradually approach the theoretical values. The tempera-
ture adjustment [Tg(¢) — T(¢)] is shown in Figure 4.6. The numerical solutions
show that the adjustment occurs in the low latitudes, supporting qualitatively the
“equal-area” hypothesis by Held and Hou (1980). In the mid-high latitudes, ex-
cept for some wiggles which are apparently caused by the spectral truncation, the

temperature is basically in radiative equilibrium.

The features of our numerical solutions are very similar to those calculated by
Held and Hou, although their model is more sophisticated and its vertical resolution
is much higher. The agreement implies that the two-level model can resolve the
Hadley regime very well. The vertical resolution in our model does not seem to be
a serious problem, since axisymmetric circulations have Jarge vertical scales. How-
ever, a rather high meridional resolution is needed, i)articula,rly when the interfacial
friction is weak, because in this case, the subtropical jet becomes very narrow. We
also note that the nonlinear balance equation approximation, if not the primitive
equations, must be used to obtain reasonable solutions in the Hadley regime, due to

the importance of ageostrophic motions.

4.4 Instability analyses

Traditionally, linear analyses of baroclinic instability are performed on a merid-
ionally uniform flow. Considering the sharpness of the subtropical jet in the Hadley
regime, we wish to include both baroclinic and barotropic mechanisms in our anal-
yses. In order to include the barotropic mechanism in a truncated spectral model,
there must be at least two meridional modes for the zonal flow and for the eddy flow

(O’Brien and Branscome, 1989). Therefore, we include meridional modes m = 3 and
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m = 5 which have the la.rgest‘; components of eddy kinetic energy in the atmosphere
(Eliasen and Machenhauer, 1965). We also noted that the instability analyses are
not sensitive to the choice of meridional modes, probably due to the fact that the

baroclinic mechanism is generally dominant.

The procedure for the linear analyses of instability is straightforward. At first,
we linearize the basic equations in chapter 3 with respect to the steady state of the
Hadley regime, and obtain a set of ordinary differential equations for the spectral
components of a specified zonal wavenumber. The coefficients of the equations are
functions of external parameters and the zonal wavenumber, which are all specified;
therefore, they are constants in each case. Then we find eigenvalues of the equations,
which correspond to wave growth rate (and phase speed). There are several pairs
of eigenvalues, which are usually complex. Unless all of them have negative real
parts the perturbation will grow with time and the basic flow is unstable. In the
parameter space, those eigenvalues with real parts < 0 form a boundary separating
stable and unstable regions. Because there are many external parameters, e.g.,
ATg, T, - -, the parameter space is indeed multi-dimensional. For convenience, we
only consider its projections on individual parameter surfaces, so that the neutral

boundary becomes a curve on those surfaces.

The wave growth rate in one of the parameter surfaces, i.e., wavenumber vs.
diabatic forcing, ATg, is shown in Figure 4.7. Other parameters are fixed at the

realistic values for the earth’s midlatitude atmosphere, i.e.,
7, = 20days, T, = 5days, N* =10"%7% k' =0,

where 7, = ;’; is the dissipative time for the surface drag (there is very little difference

when using the Ekman friction in the analysis). Figure 4.7 looks like traditional

LY
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diagrams of baroclinic instability. There is a criterion for radiative equilibrium
temperature gradient (ATg, ~ 23 K) and a short wave cut-off. The growth rate
increases with increasing diabatic forcing. The most unstable wave is n = 5, where
n is the zonal wavenumber. However, the characteristics of instability are subject
to changes of other parameters. For instance, if fhe static stabilty parameter is
doubled, then the critical temperature gradient increases (ATg, ~ 40 K) and the

most unstable wave becomes n = 3 (see Figure 4.8).

A similar figure, i.e., wavenumber vs. static stability is shown in Figure 4.9.
There is also a criterion for static stability. Supercritical static stabilities stabilize
the basic flow and suppress wave growth. In less statically stable situations, the short
wave growth rate increases dramatically. This feature is approximately similar to

the analysis based on the inviscid S-plane model (Reinhold, 1986).

The Hadley regime and its instability in this chapter are preliminary studies for
the role of eddies in the climate. They provide a background for eddy regimes which
will be studied in the following chapters. They also show the capability of our model
to study large-scale processes. The numerical results from our two-level model is
surprisingly similar to those from Held and Hou’s complicated model. This indicates

that a properly “filtered” and “truncated” model is as useful as complicated models.
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= 20, 40, 80 days, where T is the dissipative time for the interfacial friction. The
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Chapter 5

Eddy regime — the Phillips
system

5.1 Introduction

In this chapter, we will study an eddy regime in which large-scale eddies arise
from baroclinic or barotropic instabilities of the Hadley regime. In this regime we
only consider meridional transports of heat and momentum. The effect of vertical
eddy heat transport is neglected by assuming a constant static stability, and vertical
eddy momentum transport is also omitted. This simplification, which is based on the
quasi-geostrophic theory, has been commonly adopted in theoretical and numerical

studies.

Such an eddy regime can be described by Phillips’ two-level model (Phillips,
1954). However on a sphere one necessary modification is that the Coriolis parameter
f should be a function of latitude. In addition, the quasi-geostrophic approximation
should be modified by the balance equation approximation. Unlike in the Hadley

regime, we use the linear instead of the nonlinear balance equation approximation for
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the eddy regime. Although the omitted terms in the vorticity equation associated
with nonlinear ageostrophic motions are important in the Hadley regime, they are
negligible in the eddy regime, because their magnitudes are at least one order smaller
than the remaining terms (Holton, 1979). Furthermore, the eddy regime is in mid
latitudes, where most of the eddy energy and maximal eddy transports are observed
(Peixoto and Qort, 1974); while the Hadley regime is in low latitudes. Since the
dynamics in the two regimes are very different, it is reasonable to use different
“filtered” models. This will be demonstrated later by comparisons of numerical

solutions of the linear and nonlinear balanced models.

We will use this simplified model to carry out a series of numerical experiments,
which include long-term time integrations to achieve statistical equilibrium states,
calculations of the model’s general circulations and dynamical transports, and ex-
aminations of the effects of changing external parameters on the model’s climate
and climatic sensitivity. In particular, this chapter comprises three major parts: 1)
the “standard” experiment; 2) horizontal resolution experiments; and 3) external
parameter experiments. The goals are to clarify how the eddy transports of heat and
momentum interact with each other in the climatic processes, how the numerical
results depend on the horizontal resolution of the model, and how the transports
of heat and momentum by eddies and by the MMC are affected by changes in the

external parameters, such as diabatic heating, surface friction, etc.
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5.2 Equations in the Phillips system

5.2.1 The numerics

From chapter 3, the equations in this eddy regime are written as follows:

] 6¢

7V = —J (%, V*P) = J (3, V) — 2+ + D,

d_, 2 2 6¢ - >

b.;v,p = —J($, V) — J(, V) - 2——2V (V@) + D,
%’. = —J(%,&)-ToVi + 9,

V2 = 2V.(uV).

The corresponding spectral forms of Equations (5.1) - (5.4) are:

—'i,b., = 1{ ZZ Iqaﬁ(¢a¢ﬁ + "/’ad’ﬂ) + 20-11 ¢'y] + 'ﬁ'ya

=%y = Y Las(Pas + Pao) + 267 Libo)
a g

+c_;1 (LyirPatr + Ly@y1) + ﬁ’ya
d . . - . -
7 =0, = i[)) Kyrrasr¥a®sia] + Tocya1Pyrs + Ly,
= B
‘i)“f+1 = "‘c—;-:—l(L'v-&-lJ"r + Lw+2¢1+2)7
where

v = ny+ily, [v+7=(ny +75) +il],

ny, = 1,3,5,.-,2M -1,
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(5.7)
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L, = m(0, £1, £2, ---, £N),
v~-1,

Iyap = c;l(ca — ¢8)Koyap-

[
il

The definitions for ¢, and L. have been given in Equations (4.23) and (4.24).
In general, L, is a multiple of the fundamental wavenumber, m. Particularly, when
I, =0, it represents zonal mean equations. In the summation terms, the subscripts
a and 8 denote those spectral components which satisfy the requirement I, = I, +13.
Through a little algebra we can eliminate ® and ¢ and obtain a set of equations
only for the stream functions % and z,Zv Altogether there are 2M + AM N spectral
equations for a resolution M x N. They form an initial value problem of ordinary

differential equations.

We initialize the system with a basic flow, which is obtained from the Hadley
regime, plus a random perturbation. Then, we integrate the model equations for an
adequately long time, until a statistical equilibrium is achieved. The timeintegration
scheme adopted here is that developed by Shampine and Gordon (1975), which is
based on the “predictor-corrector” method, and is able to adjust time steps internally
according to the desired accuracy, so that computational instabilities are prevented.
Cehelsky and Tung (1987) compared this scheme with others and demonstrated its
" advantage in the §-plane model. We also tested this scheme in our spherical model
and found it to be very stable. In our integrations double precision was used. The

accumulated computational error was negligible.
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5.2.2 The physics

i) Surface drag

For convenience, we assume that there are no vertical motions at the top and
the bottom boundaries so that ¢ = 0. The surface friction is assumed to have a
drag form, which has the same formulation in the two-level model as the Ekman
pumping (both are proportional to the surface vorticity). This assumption simplifies
the analysis of the dynamical heat transport, because the meridional heat transport

by the MMC is identically represented by the adiabatic term if w; =0, Le.,
— 00
V- ([v][0]) = [LU]*;,

where { ) denotes vertical average; otherwise it needs to be modified by a surface

flux (—[w4][©4)/ Po)-
it) Interfacial friction

In order to parameterize the effects of small-scale vertical mixing of horizontal
momentum, we have included an interfacial friction in our model, except for special
cases. In the tropical atmosphere, because the frictional effect of convective mixing
is very strong, the dissipative time scale is much shorter than that in the mid-
high latitudes. Although it may be neglected in the quasi-geostrophic system with
a midlatitude domain, this mixing term has the same order as other large-scale
processes in the iropical region (Houze, 1973). Therefore, it must be incorporated

in a spherical model to simulate realistic tropical circulations.

Stone et al. (1974) have investigated the role of vertical mixing with the GISS

GCM (Somerville et al., 1974). They used a vertical diffusion law to parameterize
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this mixing process. When the viscosity was absent or small, the vertical shear in
the tropics became unrealistically strong and the Hadley cell became very weak.
When a large, meridionally uniform viscosity was 'included, the vertical shear was
reduced and the Hadley cell became stronger, but meanwhile the eddy activity in mid
latitudes was also suppressed. Therefore, Stone et al. suggested that the viscosity
coefficient should be very large (~ 100ms™2) in the tropics but very small (~
1ms~?) in the mid-high latitudes, in order to simulate realistic global circulations.
Helfand (1979) extended Stone et al’s investigation, also with the GISS model
(now known as the GLAS model), but using a sophisticated cumulus convection
scheme instead of a diﬂ'usign law. He found that not every type of convective cloud
could contribute to the ﬁrocess of the vertical mixing. Only “ hot towers” were
responsible for the dramatic changes due to cumulus friction. Schneider and Lindzen
(1976, 1977) also recognized the importance of cumulus friction in simulating tropical
circulations. They derived a parameterized form of vertical momentum exchange by
cumulus friction and used it in the study of axially symmetric circulations. They
found that inclusion of cumulus friction produced more realistic structure of tropical

circulations.

In our model, the interfacial friction plays the same role as the vertical viscosity
in the GISS model. We assume its coefficient, K, to be a function of latitude.
Unfortunately, there is a large uncertainty in the distribution and magnitude of
k. For instance, the diagnostic and modeling studies (Holton and Colton, 1972;
Colton, 1973) have suggested that the dissipative time scale varies from less than
one day to several days. In this study we specify a profile similar to the “hot tower”
precipitation in Helfand (1979)’s experiments, represented by a single associated

Legendre function, P2)(p), as shown in Figure 5.1. This distribution is also similar
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to that of the zonal mean cumulus precipitation assumed by Schneider and Lindzen
(1977). We specify (k.)~! =1 day, a priori, in our model, where £ is the maximal

dissipation rate at the equator.

We have carried out several sensitivity experiments to examine the effect of the
“uncertain” interfacial friction. Fortunately, this effect on the mid-high latitudes
is very smal! when the magnitude and the distribution vary on a reasonable range.
Figure 5.2 shows the vertical shear, the meridional wind, the eddy heat flux and the
eddy momentum flux for different k.. The solid curves represent the case without
any interfacial friction, and the other curves represent the cases with (k})~! = 0.5, 1
and 2 days respectively. With interfacial friction the vertical shear in low latitudes
is appreciably reduced; the strength of the Hadley cell is greatly increased; the eddy
heat flux in the mid latitudes is enhanced; and the eddy momentum flux is reduced in
the low latitudes but increased in the mid-high latitudes. Clearly, the characteristics
of the mid-high latitudes are not sensitive to k, when (k,)~! is doubled or halved
from 1 day. Specifically, the vertical shear and the meridional circulation (the Ferrel
cell) in mid latitudes show little difference; the eddy fluxes of heat and momentum

have almost not changed. The differences are significant only in the low latitudes.

However, if the interfacial friction is too strong, its effect on the mid latitudes
can not be neglected. For example, we have run two cases with (k.)™! = 0.1day.
The model results are shown in Figure 5.3. In one case we used the profile of P2
in the other we used the profile of P38 which declines poleward more sharply. In

both cases, the eddy momentum fluxes were greatly suppressed.

ii1) Digbatic forcing
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Figure 5.1: The profile of interfacial friction k' (solid line) and the distribution of
the “hot tower” precipitation in the GISS model (cross signs). The model results
_are for January conditions in which the “heat equator” is at about 10°5.

The diabatic heating in the eddy regime has an identical form to that used in
the Hadley regime, i.e., Newtonian cooling with a specified, axisymmetric equilib-
rium temperature gradient. We have assumed the Newtonian cooling time 7, to
be constant. More realistically, 74 should be a function of latitude. In mid-high
latitudes, 74 can be interpreted as the time scale for radiative cooling. In low lati-
tudes, however, the small-scale convective process plays a very important role. It is
responsible not only for the vertical mixing of momentum, but also for the vertical
exchange“‘of heat. In order to include this effect we need a different time scale for

7 in low latitudes, which should be much smaller than that in mid-high latitudes.

To examine the effect of the meridional variation of 7, on the model’s results, we
have also carried out a few experiments. The meridional distribution of & (A = 1/74)
in these experiments is the same as that of &'. Different time scales for 7, have been

used, i.e, k has a maximum A, = (1,2, 4days)~', respectively, at the equator, and
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Figure 5.2: The vertical shears of zonal wind fields, the upper layer meridional winds,
the eddy heat fluxes and the eddy momentum fluxes in the sensitivity experiments
with varying k., the maximal dissipative rate due to the vertical mixing process.
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approaches gradually the value of (20days)~" 'in the mid-high latitudes. Figure 5.4
shows the vertical shear, the upper layer meridional wind, the eddy heat flux and
the eddy momentum flux, similar to Figure 5.2. Compared with the results with
a constant 7, = 20 days (solid curve), the most remarkable difference is that the
eddy fluxes of heat and momentum in the mid latitudes increase appreciably when
h. increases. This feature is due to the fact that the gradient of differential diabatic
heating (A Q) is increased by enhancing the tropical heat exchange rate, despite
the fact that ATz has not changed. It is AQ rather than ATg that determines
the intensity of eddy transports. Therefore, the effect of increasing A, is similar to
that of increasing ATg or increasing the value of a meridionally uniform A (which
will be shown in section 5.5). Even though the time scale of Newtonian cooling
is highly latitude-dependent, the meridional structures of equilibrium states and
dynamical transports are very similar to those with meridionally uniform A. This
implies that the overal] effect of the heat exchange by small-scale convection can
be approximately incorporated by using a proper aud constant 7 (7 should take a

value between radiative time scale and convective time scale).
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5.3- The “standard” run
5.3.1 The equilibrium states

To illustrate the characteristics of general circulations in the eddy regime, we
have run an experiment with this model in which the external parameters are set

to realistic values for the “standard” atmosphere. Particularly,
ATg = 48 K, 7, = 20days, 7, = 5days, N* = 107* 572,

The statistical equilibrium states of this “standard” run can be directly compared
with those obtained in the Hadley regime, to highlight the effect of eddies. They
. can-also be compared with observations as well as the results from GCMs, to check
the model’s performance, although we do not attempt to simulate the real climate
with this simplified model. In addition, the “standard” experiment will serve as a

“control” run in the parameter experiments.

The model equations are truncated by keeping 5 meridional modes and 5 zonal
waves with fundamental wavenumber 3, i.e., the horizontal resolution is denoted by
5 x 5(3). In two-level B-plane models, this resolution is sufficient to allow energy
and enstrophy to cascade among different scales of eddies (Cehelsky and Tung, 1987;
O’Brien and Branscome, 1989). However, it might not be adequate in the spherical

model. This resolution will be justified later.

The equilibrium states of [u], [v], [T} and [x] fields (the square brackets denote
zonal mean) are shown in Figure 5.5. Generally, their characteristics resemble the
observed atmospheric states very well. Due to the existence of eddies, the narrow

subtropical jet in the Hadley regime is broadened, the pole-to-equator tempera-
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ture contrast is weakened. The Hadley and the Ferrel cells have relatively realistic
strength and positions, associated with easterly surface wind in the tropics and

westerly surface wind in mid latitudes.

The main difference between the model’s circulations and observations is the
westerlies instead of easterlies appearing in the upper and lower layers of the tropics.
This is due to the linear balance equation approximation and insufficient meridional
resolution, which are not appropriate to describe tropical circulations. Nevertheless,
this is not a serious problem since the eddy regime is in mid latitudes. Moreover,
the coupling between low and mid latitudes in our model is obviously superior to

that in the S-plane model where a rigid wall is assumed.

5.3.2 The momentum budgets

The relative angular momentum (u-momentum) is defined as
M = uasind

The dimensional momentum budget equations in the upper layer and in the lower

layer can be written as:

1 8 , ‘ .
—nggpMivilsing + fasinf[v,] — K[M] =0, (5.9)
10 . | »
oo agMsuslsind +  fasinOlvs] + K[M] - 2k[My]=0.  (5.10)

In these equations, the first term is the meridional convergence of eddy flux
of u-momentum (“*” denotes zonal deviation). The second term represents the

convergence of §:-momentum (Qa?sin’? §) flux by the mean circulation (Galin and
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Kirichkov, 1979b), i.e.,

fasinf[v] = L9 v]Qa’sin’ @ — -(%[L..’]Qa2 sin” 4. (5.11)

asind 55[
The other terms involving k and k' stand for the frictional dissipation of u-momen-

tum.

The characteristics of these terms are shown in Figure 5.6 (a), (b). In the upper
layer, the convergence of eddy u-momentum flux (solid line) is approximately bal-
anced by the MMC transport of 2-momentum (dotted line) in the mid latitudes,
because the interfacial friction (dashed line) is very small. This implies that the
strength of the Ferrel cell can be estimated from the eddy momentum transport
in the upper layer. In the lower layer, the MMC transport of {2-momentum (dot-
ted line), which is exactly opposite to its upper layer counterpart, is approximately
balanced by the surface friction (dot-dashed line) in mid latitudes, while the conver-
gence of eddy u-momentum flux (solid line) and the interfacial friction (dashed line)
are relatively small. Therefore, the strength of the Ferrel cell can also be estimated

from the surface drag.

The vertical mean momentum budget becomes very simple in the two-level sys-

tem:

1 00
asinﬂ—c'?.—H-[M v*|sind — k[M,] =0, (5.12)

where
[M*v*] = [Myv] + M3v3]/2.
The vertical mean eddy momentum transport is exactly balanced by the surface

friction, because the MMC transport and the interfacial friction terms have vanished.
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This feature is shown in Figure 5.6 (c). The meridional eddy momentum flux can
be calculated by integrating the first term of equation (5.12). It is poleward in all

latitudes and peaks at ~ 35° of latitude, as shown in Figure 5.6 (d).

5.3.3 The heat budget

The dimensional heat budget equation is written as

1 a Pt 2sats I - i 'l
asinﬂﬁ[v T*)sin6 + o@] + h [T — T] = 0, (5.13)

where o (0 = 4Q%a’Ty/ RP) is a static stability parameter which is proportional
to ['p. The first term is the meridional convergence of the eddy heat flux, the second
term represents the heat transport by the MMC, and the last term is the diabatic
heating. These terms are depicted in Figure 5.7 (a). In the low latitudes, the eddy
heat transport is relatively small. Therefore, the diabatic heating is mostly balanced
by the MMC heat transport, which is the adiabatic cooling caused by the rising
branch of the Hadley cell. In the mid-high latitudes, the balance is approximately
between the eddy heat transport and the diabatic cooling. However, the MMC heat
transport (by the Ferrel cell) also cools the atmosphere, giving a negative feedback
to the eddy heat transport. This negative feedback is demonstrated more clearly in

terms of the heat fluxes by eddies and by the MMC, as shown in Figure 5.7 (b).

In the mid-high latitudes, the feedback 6f the MMC heat transports can be
viewed as a result of the eddy momentum transports. We have seen, from the
momentum budgets, that the strength of the Ferrel cell is closely related to the

convergence of eddy momentum flux in the upper layer. The dynamical scenario
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can be described as follows: In the upper layer the convergence of eddy momentum
flux accelerates the zonal wind. The meridional wind speed increases due to the
Coriolis effect. Consequently, the vertical motions of the Ferrel cell are strengthened
through the continuity of mass. Thus, there is more adiabatic cooling on the polar
side of the Ferrel cell, and more adiabatic heating on the equatorial side of the Ferrel
cell. The meridional temperature gradient, which has been reduced by the poleward

eddy heat transport, is then restored to some extent.

In another point of view, the lower layer zonal wind does not change much
compared to the upper layer zonal wind, because the eddy momentum transport
is very weak in the lower layer. Therefore, the vertical shear (or the meridional
temperature gradient, from the thermal wind relation) increases. This is consistent

with the up-gradient heat transport by the Ferrel cell.

5.3.4 The energetics

We define zonal kinetic energy Kz, eddy kinetic energy Kg, zonal potential

energy Pz and eddy potential energy Pg as follows:

1 _ .
Kz = 53 calba+¥2), (5.14)
Kg = Y cy({thaf* + 9], (5.15)
S
1 N
PZ = Ef;za:(bi‘*-l, (5'16)
1 N
Ps = =Y |&ul, (5.17)
I'o 5

where the subscripts a and v denote spectral components for the zonal mean and

for eddies respectively. The energy equations in the spectral domain are:
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dKz

di
dKg

dt
4Py

dt
dPg

dt

= O(Pz,Kz) -+ C(I{E, Kz) + D(Ifz), (5.18)

Il

C(Pg,Kg) —~ C(Kg,Kz) + D(Kg), (5.19)
= -—~C(Pgz, Pg) — C(Pz,Kz) + G(Pz), (5.20)

= C(Pgz,Pg)—~C(Pg,Kg)+ G(PE), (5.21)

where the energy conversion (C), dissipation (D) and generation (G) terms are

defined as:

C(Kg,Kz) = Z Z Z 2ca]aﬁ'¥["z'a : Im('/;ET»b—'r + ?BB":Z'V)
a g

+ o - Im (B + By, (5.22)

C(Pgz,Pg) = —%;Xﬁ:;’cﬁnﬂ.aﬂ‘i’aﬂ - Im(Psdysa), (5.23)
C(Pz,Kz) = —Za:ca+1(i’a+1¢’a+17 (5.24)
C(Pg. Kg) = ~§:2Q+1Re(@1+1¢;+1), (5.25)
G(Pz) = -I—%;i’aﬂém, (5.26)
GPs) = £ X Bellra@u), (5.27)
D(Kz) = Zajca(%ﬁawa@a), (5.28)
D(Kg) = ;%yﬁe(zﬁ,ﬁ;w,ﬁ;), (5.29)

where “x” denotes a complex conjugate, “He” and “Im” denote real and imagi-

nary parts of a complex quantity respectively.

The energy diagram is shown in Figure 5.8. The main energy conversion pro-
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Table 5.1: The spectrum of kinetic energy (unit: 10° Jm™2).

m\ n 0 3 6 9 12 15 | sum
1 1575 .30 .48 .15 .07 .03 |1.03
3 260 | 77T .66 .19 .08 .05} 1.75
5 72 64 39 17 .09 .06 |1.35
7
9

55 | 50 24 .14 .08 .05]1.01
21 |27 a7 10 o7 05| .66
sum || 19.83 | 248 1.94 .15 .39 .24 | 5.80

cesses are very similar to those computed from observations {Oort and Rasmusson,
1971), i.e., the zonal potential energy is converted to the eddy potential energy
through baroclinic processes, which in turn is converted to the eddy kinetic energy.
‘The eddy kinetic energy is pa.rtljr dissipéted and paftly converted to zonal kinetic
energy through barotropic processes. The baroclinic conversion is much larger than
the barotropic conversion, consistent with the fact that the eddy heat transport
is more important than the eddy momentum transport in the earth’s atmosphere.
Some differences from the observations, such as the very small Pg and the negative

Gg, are due to the zonally symmetric diabatic forcing.

The spectrum of kinetic energy is given in Table 5.1. Most of the eddy energy
is in zonal wavenumber 3, implying that there is a nonlinear upscale cascade in our
model. In agreement with the observations (Eliasen and Manchenhauer, 1965), the
meridional mode m = 1 has the largest part of the zonal kinetic energy, while the

meridional modes m = 3 and m = 5 have largest part of the eddy kinetic energy.
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5.3.5 Additional experiments

i) The nonlinear balance model’s results

In the introduction of this chapter we discussed briefly why we use the linear
instead of the nonlinear balance model in the eddy regime. To further justify the
simplification we have carried out an experiment similar to the “standard” run, but
with the nonlinear balance model. The features of the general circulation from the
nonlinear balance model are very similar to those from the linear balance model.
In Figure 5.9 we compare surface winds, temperature fields, eddy momentum fluxes
and eddy heat fluxes obtained from the two models. The quantitative differences
are generally within 10 % in the mid latitudes for each of these quantities. The

differences are even smaller in the low latitudes, although the nonlinear terms as-
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sociated with ageostrophic motions are more important in low latitudes than in
mid-high latitudes. This is probably due to the fact that we have incorporated a
strong interfacial friction in the low latitudes, which plays a dominant role in the

low latitude momentum balance.
i) The effect of horizontal diffusion

We have not included any horizontal diffusion in the “standard” run. However,
high order selective horizontal diffusions are often used in other models to pre-
vent “spectral blocking” and to accelerate the convergence of model results (Baer
and Alyea, 1971; Cehelsky and Tung, 1987; Eliasen and Laursen, 1990; Held and
Phillipps, 1991). In order to examine the effect of horizontal diffusion on our model’s
fésulté, we add a V* diffusion with a coefficient 1017 m*/s in our model to modify
the “standard” run. Sigce we are mainly interested in the effect on the momen-
tum balance, we only show [u], [v], [u*v*]sin®@ and the mean momentum budget
in Figure 5.10. In general the effect is small. Compared with the “standard” run
(see Figure 5.5 and 5.6), the jet position shifts somewhat poleward; easterlies and
a direct meridional cell appear in high latitudes. The eddy mometum flux is not
poleward everywhere, rather, it becomes equatorward on the polar side of the jet,
although the amplitude is very small. The horizontal diffusion is in phase with the

surface drag, but its role in the momentum balance is much weaker.

These additional experiments indicate that the lnear balance model is adequate
and the horizontal diffusion is negligible. Therefore we will use the same kind of
model as that used in the “standard™ run in the parameter experiments. In other
words, the model’s simplification and physics will not change. However, the model’s

horizontal resolution needs to be tested.
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Figure 5.9: Surface wind fields, temperature fields, eddy momentum fluxes and eddy
heat fluxes obtained from the linear (solid lines) and nonlinear (dotted lines) balance

models.
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5.4 The “optimal” horizontal resolution
5.4.1 Introduction

A proper horizontal resolution is the key to success in numerical experiments
with two-level low order models. Special caution must be taken with highly trun-
cated models. Explicitly, wave-wave interactions are excluded in a single zonal wave
model; eddy momentum transports are inhibited if only one meridional mode is
kept. Implicitly, more than a few wave modes are needed to provide a path for en-
ergy and enstrophy cascades, otherwise it may lead to a spurious chaotic behavior
(Cehelsky and Tung, 1987) and eddy kinetic energy build-up on the smallest scale
(O’Brien and Branscome, 1989).

In the Hadley regime we have truncated the spectrum by keeping 20 meridional
modes on a hemisphere, in order to resolve the structure of the narrow subtropical
jet. It should not be necessary to use as much meridional resolution in the eddy
regime as that in the Hadley regime, because eddies can diffuse the subtropical jet,
as shown in the “standard” run. In addition, since most of the atmospheric energy
falls into the spectrum of long waves, it may not be necessary to have very much

zonal resolution either.

Although there might be a critical truncation level or a minimal resolution in a
specific model, there is no universal criterion for the choice of an adequate resolution.
A necessary and sufficient resolution depends not only on the model’s physics and
geometry, but also on the nature of the problem to be studied. A proper resolution
for a midlatitude channel model may differ from that for a spherical model. A

time mean solution may require different resolution from a time-dependent solution.
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For example, in the two-level spherical model of Baer and Alyea (1971, 1974), the
general circulation could be predicted with 12 zonal waves and 8 meridional modes
(8 x 12), whereas detailed prediction for shorter periods (15-20 days) required at
least a resolution of 10 x 16. In simulations of the general circulation with a semi-
spectral primitive equation model, Held and Suarez (1978) included only two zonal
waves (wavenumber 3 and 6) and a rather high meridional resolution. When a
third zonal wave (wavenumber 9) was added, the total amount of eddy kinetic
energy and eddy heat transport did not change much; although the portion for
each wave was quite different from that in the two-wave experiment. Recently,
O’Brien and Branscome (1989) have done a series of resolution experiments in the
quasi-geostrophic 3-plane model. They concluded that a minimal resolution of 3 x
3 is necessary for modeling the zonal mean and time mean states of the general
circulation (their fundamental wavenumber is _a.pproximately 3). Therefore, in order
to determine a proper resolution in a specific problem, one needs to do experiments
by progressively modifying the resolution and comparing the model’s results. If the

results “converge” at some resolution, then this resolution should be appropriate.

5.4.2 Truncation levels

We first fix the fundamental wavenumber, a priori, m = 3, and modify the zonal
and meridional truncation levels. A series of experiments has been carried out, in
which the external parameters are set to the same values as in the “standard” run.
The model’s results in which we are interested include the equilibrium states of zonal
mean flow and MMC, the dynamical transports and budgets of heat and momentum,
the energy cycle and the kinetic energy spectrum, among others. They are shown

in Figures 5.11 - 5.17 for nine different resoiutions: 2 % 2, 3 X 3,4%x4,5%x5,6x
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6, 7TxT7,7x5,9x5and 11 x 5. Obviously, ‘the lowest resolution, 2 x 2, exhibits
very different features from higher resolutions. The main qualitative difference of
the 3 x 3 from the higher resolutions is on the momentum budget in the tropics.
The qualitative characteristics of the model’s climatology are very similar when the

resolution is beyond 4 x 4.

The spectral distribution of eddy kinetic energy is shown in Figure 5.18 for
resolutions 5 x 5, 6 x 6 and 7 x 7. If a model correctly simulates nonlinear wave-wave
interactions, the eddy kinetic energy cascades toward long waves and its distribution
in an inertial subrange follows an inverse cube law (Wiin-Nelson, 1967; Julian et al.,
1970). In our experiments, these features are satisfactorily simulated for resolutions
beyond 4 x 4. Higher resolutions hardly change either the total eddy kinetic energy

or the characteristics of energy distribution in the spectral domain.

Some characteristic quantities, which will be considered in later analyses, are
listed in Table 5.2. They generally “converge” very well beyond the resolution
4 x 4. In some other models, e.g., those primitive equation models with sophisticated
physics, the numerical results do not “converge” until very high horizontal resolution
(Eliasen and Laursen, 1990; Held and Phillipps, 1991). The momentum budget and
the zonal wind field in those models are very sensitive to the horizontal resolution,
especially the meridional resolution. For instance, the eddy momentum flux was
increased by a factor of 2 by increasing the resolution from M36 to M72 in Eliasen
and Laursen’s two-level model (M36 stands for a triangular truncation with 36 zonal
wavenumbers). A similar feature was found in Held and Phillipps’ multi-level model
when the resolution was increased from R15 to R30 (R15 stands for a rhomboidal

truncation with 15 zonal wavenumbers). In our model, the eddy momentum flux is
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not so sensitive to the horizontal resolution as in those models. For example, it is

increased only by 10 % from the resolution 7 x 5 to 11 x 5.

Detailed examination of Eliasen and Laursen’s model results (their Figures 5, 6,
7) indicates that the Ferrel cell in their model is extremely sensitive to the horizontal
resolution and the high order selective horizontal diffusion. The Ferrel cell is hardly
seen, if any, in the M36 model without the diffusion, but is strong enough in the M72
model without the diffusion, or in the M36 model with the diffusion. The results
of Held and Phillipps’ model are also similar. However, the Ferrel cell in our model
is insensitive to the horizontal resolution beyond 4 x 4. If a high order horizontal
diffusion is included in our model, as shown in Figufe 5.10, the Ferrel cell as well as

the eddy momentum flux are slightly weakened rather than strengthened.

It is difficult to explain the differences between the results from our model and
the aforementioned models, because the simplifications, physics and numerics in our
model and those models are different. In particular, the nonlinear terms in our model
are calculated through direct evaluations in the spectral space, as stated in chapter
3. However, in the aforementioned models, the nonlinear terms were calculated
through spectral grid transforms, i.e., the nonlinear products were evaluated on a
grid-point mesh and then transformed back to the spectral space (Orszag, 1970;
Bourke, 1974). The transform method is economical but may not be as accurate
as the direct evaluation, especially for long time integrations. For instance, in the
momentum budget of Eliasen and Laursen’ model (their Figure 7), the horizontal
diffusion (which was not explicitly shown but can be easily estimated from the
balance) seems to accelerate the zonal flow in the mid latitudes, contrary to common

sense. In our model, the horizontal diffusion decelerates the zonal fow (Figure 5.10).
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In our model, it seems that at least a resolution of 4 x 4 is required. Compared
the resolution 5 x 5 with higher resolutions sucfl as Tx 7 and 11 x 5, most feat»res are
similar except that the jet position is more poleward for higher resolutions, and that
the heat budget is different in high latitudes, where the direct polar cell disappears
for the resolution 5 x 5. However, we are more concerned about some features such
as vertical shear (or 67°), heat and momentum transports in the mid latitudes. They
are not very different for the resolution of 5 x 5 and higher resolutions. For example,
there is little difference in 6T and [v*M*],; the differences in other quantities are
generally within 10 ~ 20%. These differences are much smaller than those in the
parameter experiments, which will be described in next section. Therefore we have
used the resolution of 5 x 5 in the “standard” run. The insight of climatic sensitivity
will not be obscured by using the regplution of 5 x 5, although 7 x 5 would be
better. When the truncation is further relaxed, the features of the model’s general
circulation do not change much, even the magnitudes of dynamical transports and

energetics “converge” very well.
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Table 5.2: Some characteristic quantities in the resolution experiments.

2%x2]3x3[4x4[5x5|6x6[7x7[7x5[9x5[11x5

AT 31.5 { 32.1 | 33.3 | 34.0 | 364 | 37.8 | 36.3 | 36.6 38.0
6T 10.8 | 12.7 | 129 | 14.1 § 133 | 14.0 | 13.7 | 14.7 14.0
M 13 97 | 1.04 | 1.19 ) 1.03 | 1.07 | 1.04 | 1.14 1.07
[, | 7.6 | 163 | 21.4 | 24.5 | 180 | 196 | 217 | 25.1 | 24.3
tar 110.0 | 68.8 | 56.2 | 56.0 | 66.4 | 63.0 | 55.5 | 51.3 50.7
[l 50 | 58 | 82 | 118 | 142 | 154 | 143 | 132 | 15.7
(lat.) (59) | (55) | (52) | (55) | (59) | (63) | (61) | (58) (61)
[oT: 09 | 38 | 21 | 26 | .25 | 2¢ | 24 | 25 25
(lat.) (24) | (17) | (24) | (23) | (24) [ (26) | (26) | (25) (25)
[u*v™] 2.9 6.2 5.7 7.2 7.9 8.4 8.3 7.7 8.9
(lat.) (27) | (26) | (36) | (36) | (40) | (39) | (40) | (39) (39)
Ted 844 | 8.17 | 6.49 | 6.20 | 5.69 | 5.00 | 5.37 | 4.74 4.82
Tmmc .53 [-2.74 | -2.06 | -1.88 | -1.95 | -1.84 | -1.89 | -1.58 | -1.76
R .06 34 32 .30 .34 37 .35 .33 37

AT : the pole-to-equator temperature difference (K)

6T : T35° - T550(I{)

M: the vertical mean angular momentum at 45°(10% m?/s)

[v*M*],: the convergence of eddy momentum flux at 45°(m?/s?)

ta e M/[v*M*], (days)

[u]s : the peak value of the zonal surface wind (m/s)

[v]: the peak value of the meridional wind (m/s}

[w*v*]:  the peak value of [u*v*]sin® 8(m?/s?)

(lat.): the latitude of the peak value

Tea : the peak value of {v*T*]sin 8(/.m/s)

Tumc:  the peak value of the MMC heat flux

R: ~Tmmc/Tea
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Figure 5.13: The vertical mean eddy momentum fluxes in the truncation experi-

ments.
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EDDY KINETIC ENERGY
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Figure 5.18: The eddy kinetic energy spectrum in the truncation experiments. The
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5.4.3 Fundamental wavenumbers

Although many studies have been done on truncation levels, there has been
little attention to the choice of fundamental wavenumbers. Here we examine the
impact of variations of the fundamental wavenumber. First, we choose a reference
resolution, e.g., 5 x 5(3), which has the fundamental wavenumber 3 and is truncated
at zonal wavenumber 15. Then, we fix the meridional resolution at the same level
(i.e., 5 meridional modes) and vary the fundamental zonal wavenumber. Three more
experiments, 5 X 15(1), 5 x 8(2) and 5 x 5(6), have been done with the fundamental
wavenumber m = 1, 2, 6 respectively. The 5 x 15(1) is also truncated at zonal
wavenumber 15, while the 5 x 8(2) is truncated at zonal wavenumber 16, and the

5 x 5(6) is truncated at zonal wavenumber 30.

The model’s results of these experiments are shown in Figures 5.19 - 5.25. There
is very little difference for m = 1, 2, 3. However, for m = 6, the upper layer zonal
wind seems to have a double-jet structure. This feature is similar to that found in
the wavenumber experiments by Held and Suarez (1978). Furﬂthermore, for m =6
the dynamical transports and energy conversion processes are slightly weaker than
those for m = 1, 2, 3. This behavior is probably due to the short wave cut-off in
the two-level model. Held and Suarez suggested that because of the convergence of
meridians m = 6 is too small to be strongly baroclinically unstable poleward of ~ 70°
of latitude, thus, heat is transported into high latitudes very inefficiently. From the
point of view of wave-wave interaction. In the case of m = 6, zonal wavenumber
6 is the longest wave .  ussibly the only unstable wave. Unlike the cases of
m =1, 2, 3 which contain at least two unstable waves, the zonal wavenumber 6 can

not interact actively with other higher wavenumbers because they are all stable. As
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a result, the eddy transports are less efficient in the case of m = 6.

Furthermore, the total amount of eddy kinetic energy is about same for m =
1, 2, 3 but smaller for mm = 6. For all these cases, the eddy kinetic energy is allo-
cated to each zonal wavenumber following approximately the inverse cube law in the
inertial range of wave spectrum (Figure 5.26). Clearly, fundamental wavenumber
3 is a better choice to calculate the climatic equilibrium accurately and economi-

cally. Thus, most of the numerical experiments are carried out by using models with

m = 3 in this study.
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5.4.4 Dynamical constraints

From the resolution experiments we might conclude that 5 x 5(3) is the “opti-
mal” horizontal resolution for our model. But these experiments are carried out with
the “standard” values for the external parameters. If the parameters are allowed
to vary, like in the climatic sensitivity studies, we still do not know whether or not
this resolution is adequate. Instead of repeating those resolution experiments for
each set of parameters, we will check to what extent of parameter changes the “op-
timal” horizontal resolution meets the condition for the simplification of the basic

equations, and is consistent with the vertical resolution.

We have used the linear balance equation as the basis of the “filtered” model.
This assumes that the Rossby number, Ro (Ro = -}gz), is of the order 107! or less.
Obviously, the balance equation breaks down near the equator. In spectral models
with fixed zonal wavenumber, the wavelength shrinks near the poles due to the
convergence of meridians. In very high latitudes the Rossby number can be very

large and the balance equation can also break down.

In the “standard” run, R, can be estimated from the model results. If we consider
the latitude range from 20° to 70° (encompassing the mid latitudes and subtropics),
the smallest horizontal wavelength L = 2wasinf/n, where n = 15 is the largest

zonal wavenumber, and the mean zonal wind U ~ 20m/s, then

=2 <ois.

fL—
The balance equation is a reasonable simplification for the “standard” run. But, if
the external parameters change, for instance, AT increases or k decreases, U will

increase due to stronger forcing or weaker dissipation. Rp increases with U, so that
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to some limit the lnear balance equation approximation will break down. In fact,
for any given resolution the parameter changes are confined by the balance equation

approximation.

In order to calculate the dynamical processes accurately, the model must be able
to resolve the vertical scale, ko, of the most unstable baroclinic wave (Held, 1978),

lLe.,

y=—=<1, (5.30)

&

where H is a scale height, hy = -';TU;-, U, = %‘;f-. If N? is very large (or U, is
very small), then A becomes too small to be resolved by the model. Since U, is
determined by the external parameters, such as the diabatic forcing, when we specify

the values of those parameters we need to consider this constraint.

Besides, in a model the horizontal resolution should match the vertical resolution,
in order to calculate the physical processes accurately. This is because the horizontal
scale of a baroclinic wave is related to its vertical scale. For instance, in a modified
Charney model with a normal Ekman friction, the most unstable wavelength is
about three times the Rossby deformation radius (Lin and Pierrehumbert, 1988).
However, the Rossby deformation radius is not a constant. In continuous or multi-
level models each vertical mode is associated with a deformation radius (Gill, 1982).
Even though in two-level models there is only one vertical scale AZ a2 H, therefore,
only one deformation radius, the radius is still a function of latitude and static

stability. Its variation must be taken into account as these parameters change.

We denote the highest zonal wave number in the model as k. (k. = 27/L,

where L, is the shortest wavelength which can be resolved by the model’s horizontal
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resolution). The consistent horizontal and vertical resolutions require
NH
7

This implies that the static stability parameter, N (or I'p), can not take very small

1
=< .
PR (5.31)

values; otherwise the horizontal resolution must increase. For example, in the reso-

lution of 5 x 5(3), we calculated the lower limit of I'g, which is ~ 0.0022.

According to above discussions, for a horizontal resolution to meet the require-
ment of small Rossby number, all external pafameters which affect the strength of
mean flow are confined to certain ranges; to be consistent with the vertical resolu-
tion, the static stability can not be very small. In any case, v < 1 must be satisfied.
This implies that all parameters which affect the baroclinity (both U, and N?) are
confined in the model. One can not choose a value of each parameter arbitrarily
without considering these constraints. We will keep this in mind in the following

parameter experiments.

5.5 Effects of changes in the external parameters
5.5.1 Introduction

We have carried out a series of numerical experiments to examine the effects of
changes in the external parameters, i.e., ATg, T, l'o, and 7;, on the climatic equi-
librium and eddy transports. The parameters were changed separately, with other
remaining parameters fixed at the “standard” values. The ranges of the parameters
were chosen carefully, such that the horizontal resolutions remain appropriate and

the dynamical constraints are not violated. Most of the experiments were carried
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out with the resolution of 5 x 5(3). A few required higher resolutions, e.g., 7 x 7(3),

for very small static stability.

In general, these experiments are very simi.la,r to those carried out by Stone and
Branscome (1991), except that their model is on a 8-plane and without interfacial
friction, whereas our model is on a sphere and has a specified interfacial friction.
We have calculated the statistical equilibriﬁm states for each set of parameters. The
integration time to arrive at statistical equilibrium is different for each experiment.
Some of the experiments have been integrated from 500 to 1,000 days, while others
have been integrated even longer, e.g., for very large 7, the integration time exceeds

5,000 days. The results are described in the next subsection (5.5.2).

In order to compare our results directly with those obtained by Stone and
Branscome (1991), particularly, to compare the variations of the feedback factor
(R), we carried out several parameter experiments without any interfacial friction.
These experiments are used to check the effect of spherical geometry. The results

are presented in subsection 5.5.3. A schematic summary is given in subsection 5.5.4.

5.5.2 Parameter experiments

i) Diabatic forcing ATg

We have varied ATg from 24 K to 144 K. For values of ATg smaller than
24 K the system is stable and in radiative equilibrium , therefore, eddies can not
grow. For very large values of ATE the zonal wind is so strong that Rg becomes
too large to justify the “filtered” model. The surface zonal wind, the meridional

flow, the eddy momentum flux and the eddy heat flux are shown in Figure 5.27
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for ATg = 30, 48, 72, 144 K. The strength of all these quantities increases with
ATg. The surface winds are linearly extrapolated from the upper layer and lower
layer winds. In fact, the vertical shear is much less sensitive than the vertical mean
wind to ATg, implying that baroclinic adjustment takes place. This feature will be

examined in detail in chapter 7.

Some characteristic quantities are shown in Table 5.3 for various values of ATE.
The meanings and units of symbols in this table are the same as in Table 5.2. We
note that the feedback factor, R, decreases with ATg. The energetics are given in
Table 5.4. The units are conventional, i.e., 10°J/m? for energy storage terms and
W/m? for other terms. When AT increases, all forms of energy storage increase;
the energy generation, dissipation and conversion terms also increase monotonically.
The distribution of eddy kinetic energy in the wavenumber domain is given in Ta-
ble 5.5. Most of the energy is concentrated at wavenumber 3 and 6. When ATy
increases, the energy of the longest wave in the model - wavenumber 3 becomes
more and more dominant (as will be discussed in chapter 7, the proportion in the
eddy heat transport by wavenumber 3 also becomes more and more dominant).
This feature is consistent with that found by Cehelsky and Tung in their 3-plane
model (Cehelsky and Tung, 1991). They calculated the heat transport by each wave
component, and found that when the diabatié forcing is strong most of the heat is

transported by the longest wave.

119



Table 5.3: Some characteristic quantities in the AT experiments.

ATz(K) 30 | 48 | 72 | 144

AT 25.2 | 34.0 | 44.3 | 59.5
5T 169 | 141 | 16.2 | 204
M 58 | 1.19 | 1.46 | 2.96
[o°M], | 10.9 | 245 | 32.8 | 70.8
tar 61.4 | 56.0 | 51.7 | 36.9
[uls 47 | 11.8 | 21.1 | 39.0
(lat.) (61) | (55) | (58) | (58)
vl 13| .26 | .72 | 2.08

tat) | @5 ] @) | @) | (29)
[wv] | 24 | 7.2 | 129 | 268
Gat) | (a1) | 36) | 37) | (30)

Ted 1.75{ 6.20 | 15.1 | 42.0
Tyvmce -.60 | -1.88 | -3.99 | -7.84
R .34 30 .26 .19

Table 5.4: The energetics in the ATE experiments.

ATg(K) 30 | 48 | 72 | 144
Pz 23. | 45. | 62. | 104.
Pg 2 |12] 24| 54
Kg 2. 16 | 11.| 26
Kz 8. [20.]30. | 66.
C(Pz,Pg) || 2 {1133 [128
C(Pg,Kz) | 2 1.0 3.0 |120
C(Kg,Kz)| 1 |3 .9 | 36
C(Pz,Kz) | 1 | 3|13/ 58
Gz 3 | 14|46 185
e 04 |-1]-3] -6
Dg 1 b-7]21]-85
Dy .2 1-6]-22]-93
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Table 5.5: The spectrum of eddy kinetic 'énergy in the ATg experiments.

T\ATe(K) 30 ] 48 [ 72 [ 144
3 68 | 2.48 | 5.66 | 16.39
6 52 11.94 {283 | 5.53
9 22| .75 | 112 2.01
12 09| .39 | .56 | 1.04
15 05| .24 | 35| .62

ii) Newtonian cooling time T,

We have varied the Newtonian cooling time 7, from 5 to 5120 days. The
lower value is more phisically plausible, while the higher value was chosen to test
the nearly adiabatic case. Some of the equilibrium states and eddy transports, i.e.,
the surface zonal wind, the meridional flow, the eddy momentum flux and the eddy
heat flux, are shown in Figure 5.28 for 7 = 5, 20, 80, 320 days. They all increase
when 15, decreases. These features are very similar to those found in the experiments
with increasing AT, probably due to the overall effect of diabatic heating. This
happens because Q can be strengthened either by increasing ATy or by decreasing

13, in the Newtonian cooling form.

The characteristic quantities are listed in Table 5.6 for different 4. The feedback
factor, R, increases with 7. The energetics and the spectrum of eddy kinetic energy
are given in Tables 5.7 and 5.8 respectively. Again, they are similar to those in the

ATg experiments.
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Table 5.6: Some characteristic quantities in the 7, experiments.

T (days) 5 20 80 | 320

AT 42.0 | 34.0 | 265 | 24.9
5T 156 | 141 | 11.8 | 10.0
M 134 [ 110 | .73 | .52
"M, || 306 | 245 | 12.5| 6.2
thr 50.0 | 56.0 | 67.5 | 96.4
[ul 160 | 118 | 5.2 | 2.9
(lat.) (57) | (85) | (57) | (59)
oh 32 | .26 | .16 | .05

Gat) || (20) | @3) | @0 | 26)
[@o] | 108 72 | 28| 1.5

(lat.) (37) | (36) | (39) | (41)
Tea 9.70 | 6.20 | 2.32 | .86
Trvmc -2.32 (-1.88 | -.79 | -.37
R 24 1 30 | 34| 43

Table 5.7: The energetics in the 7, experiments.

71 (days) 5 20 | 80 | 320
Py 62. | 45. | 25. | 16.
Pg 14 {12 .5 3
Kg 7. 6. 3. 1.5
Kz 29, 120.] 9 3.
C(Pz, Pg) 21 (111 3 1
C(Pg,Kg) || 14 |10 .3 N
C(Kg,Kz) || -6 3 1 02
C(Pz,f{z) 4 3 2 1
Gz 25 |144) .5 A
Gg -7 1-11-.021-00
Dg -9 1-7% -2 -01
Dz f-1.0([-61 -3 -1

122



Table 5.8: The spectrum of eddy kinetic energy in the 7, experiments.

n\7x(days) || 5 20 | 80 | 320
3 3.44 1248 (.70 | .24
6 2.14 | 1.94 [ .76 | .28
9 .68 | .75 {.10 | .02
12 35 | .39 .04 | .01
15 22| .24 |.01] .00

iti) Static stability parameter I'g

The static stability parameter I'p has been varied from .003 to .026 (equiv-
alent to N? varying from .25 x 10~% s~2 to 2.0 x 10~*s72). If Ty is too large, the
instability will be inhibited and eddies can not grow. On the other hand, if I'g is too
small, it requires very high horizontal resolution to meet the dynamical constraint
(as discussed in subsection 5.4.4). The computation time will increase drastically.
For instance, we have used a resolution of 7 x 7(3) to carry out experiments with

To < .010. The computation time increased about a factor of 8 from 5 x 5(3).

The model’s results for Iy = .010, .013, .016, .023 are shown in Figure 5.29.
When Ty decreases, the eddy fluxes of momentum and heat increase appreciably.
This is consistent with the linear analysis of instability, which shows that smaller
static stabilities favor greater wave growth rate. Although the strength of the MMC
increases when I'y decreases, the intensity of the MMC heat flux, Tarmc, does not
change much. This is because Tamc is represented by I'ow and a larger T is always

associated with a smaller @.

Similarly, Table 5.9 shows variations of the characteristic quantities with To.
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Table 5.9: Some characteristic quantities in the I'y experiments.

To 010 | .013 | .016 | .023
AT 33.6 | 34.0 | 36.9 | 41.0
5T 12.3 | 14.1 | 159 | 16.6
M 116 | 1.19 | 1.07 | .96
[o"M"], || 38.3 | 24.5 | 18.9 | 129
tar 35.1 | 56.0 | 65.4 | 86.0
[, 170 | 118 | 101 | 7.5
(lat.) || (60) | (55) | (60) | (65)
[Vl 32 | 26 | 20 | .14

aat) | @2 | @) | @26) | ©30)
[urv™ 11.8 7.2 5.2 2.8
Gat) || (35) | 36) | (42) | (46)

Ted 6.59 | 6.20 | 4.03 | 247
Turc -1.73 1 -1.88 | -1.53 | -1.31
R .26 .30 .38 %

R increases when the static stability increases. Table 5.10 shows the energetics in
these experiments. All forms of the energy and the main energy processes, such as
C(Pz, Pg) and C(Pg, Kg), increase when 'y decreases. In this respect, decreasing
the static stability has the same effect as increasing the diabatic heating. However,
their effects on the eddy kinetic energy cascade are different. Asis seen in Table 5.11,

the proportion of eddy kinetic energy in the longest wave seems insensitive to the

change in static stability.
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Table 5.10: The energetics in the I'o experiments.

To 010 | .013 ] .016 [ .023
P; 55. | 45. | 40. | 31.
Pz 17|12t 7 3
Kg 8. | 6. | 3. 1.
Kz 22. | 20. | 18. | 16.

C(Pz, PE) 1.6 1.1 .6 2
C(Pg, Kg) 151 1.0 5 2
C(I{E, Kz) {f .53 | .29 21 12

C(Ps,Kz) || 3| 3| 3 3
Gy 21 (14| 1.0 5
Gg -20 (-4 |-.08]-.03
Dg -9 -7 -.3 -1
Dz -8 -61|-5] -4

Table 5.11: The spectrum of eddy kinetic energy in the I's experiments.

s ettt e

n\To || .010 | .013 | .016 | .023
3 3.53 [2.48 [ 1.63 | .81
6 2.16 [ 1.94 [ 1.11 | .29

9 80 { .75 | 37 .09
12 43 1 .39 1 .19 | .06
15 25 1 .24 | .11 .03
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v) Surface drag k

We have varied the dissipative time scale associated with the surface drag,
T,, from 1.25 to 40 days (equivalent to varying k from .0025 to .08). For very large
values of 7, the zonal wind becoms very strong, therefore, Ry becomes too large
to justify the simplified equations. In Figure 5.30 we only show the results for
1, = 2.5, 5, 10, 20 days. When 7, increases, i.e., the surface drag weakens, the
surface wind increases appreciably. In fact, the increase of surface wind is due to the
increase of the vertical mean wind . The vertical shear is insensitive to the change
in 7,. The eddy heat flux and the the meridional flow are also insensitive to the

change in 7,.

The characteristic quantities in the 7, experiments are shown in Table 5.12. We
note that R decreases slightly and the eddy time scale, iy, increases drastically
when 7, increases. The energetics are given in Table 5.13. Most of the energy
forms and the main energy conversion processes are insensitive to the change in 7.
However, when T, increases, Kz and C(KE, Kz) increase correspondingly. Though
the dissipation terms vary slightly, Dz and Dg vary in opposite direction. When
T, increases, the zonal mean surface wind becomes stronger, therefore Dz increases.
The decrease in D is associated with the increase in C(KXg, Iz). The spectrum of
eddy kinetic energy is given in Table 5.14. When 7, decreases, the proportion of eddy
kinetic energy in wavenumber 3 also decreases but the proportion in wavenumber 6
increases. In other words, strong surface drag (small 7;) prevents upscale cascades

of eddy kinetic energy (Rhines, 1975; Williams, 1978).
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Table 5.12: Some characteristic quantities in the 7, experiments.

7,(days) || 2.5 5 10 20
AT | 35.3 | 34.0 | 36.0 | 36.6
5T M3.8 [ 141 | 135 | 133
M 1.01 | 1.19 | 1.23 | 1.56
[v*M*], || 26.0 | 24.5 | 16.7 | 14.2
tar 44.8 | 56.0 | 85.1 | 127.
[u), 7.1 | 11.8 | 20.1 | 27.8
(lat.) (55) | (55) | (60) | (58)
o] 27 | 26 | 23 | 22
(lat.) (24) | (23) | (23) | (23)
[u*v*] 79 | 7.2 | 6.0 4.9
(lat.) (37) | (36) | (85) | (34)
T.q 6.51 | 6.20 | 5.66 | 5.64
Tumc -2.19 | -1.88 | -1.69 | -1.66
R .34 .30 .30 29

Table 5.13: The energetics in the 7, experiments.

Ts 25 1 5. | 10. | 20.
Pz 45. | 45. | 46. | 47.
P 1.2 {12113 ] 1.3
Kg 9. 6. 6. 6.
Kz 19. | 20. { 23. | 31.
C(Pz,Pg) | 1.1 (11| L1} 11
C(Pg,Kg) || 1.0 1.0 | 1.0 9

C(KE,I{z) 2 3 3 A4

C(Pz,Kz) .3 .3 3 3
Gz 1414 | 14| 14
Ge -13]-.14]-151}-.15
Dg -8|-7-61] -5
Dy -51-6|-61] -7
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Figure 5.27: The surface winds, the upper layer meridional winds, the eddy momen-

tum fluxes and the eddy heat fluxes in the ATg experiments.
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Figure 5.28: The surface winds, the upper layer meridional winds, the eddy momen-

tum fuxes and the eddy heat fluxes in the 7, experiments.
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Table 5.14: The spectrum of eddy kinetic energy in the 7, experiments.

n\7, | 25} 5. | 10. | 20.
3 231 1248 | 2.76 | 3.13
6 1.91 |1.94 | 1.76 | 1.65
9 .63 | .75 | .80 .76
12 32 | .39 | 42 | 4T
15 A7 1 .24 | 28 | .32

5.5.3 The feedback factor

In order to describe quantitatively how much the MMC heat flux offsets the
eddy heat flux in the mid-high latitudes, Stone and Branscome (1991) have defined

a feedback factor:

R= _Tumc (5.32)
Ted

where Tayamc and T.y denote characteristic heat fluxes (e.g., the maximal magni-
tudes) by the MMC and by eddies respectively. By using a quasi-geostrophic scaling

analysis, Stone and Branscome have shown that R can be estimated by

or
where

4Lg Th

R (5.34)

- (U]

" s ﬁ_o'a%lu‘vﬂsinza’ (5.35)
9T /00

T T 9Te/00 (5.36)

Rs is the predicted feedback factor from the scaling method; . is the eddy time

scale associated with the forcing of the zonal mean flow by the zonal mean eddy

fluxes of momentum.
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From the numerical solutions of a two-level #-plane model, Stone and Branscome
calculated the values of R and Rs. In their calculations, Thramc, Tea, (U] and
—L—2[u7v"] sin’ 0 are evaluated at the center of the channel. The relationship

between R and Rg is well defined in broad parameter ranges, except that R is

systematically larger than Rs (about 2.5 times).

In order to compare with Stone and Branscome’s calculations, which neglected
interfacial friction, we have carried out several numerical experiments without any
interfacial friction. In our calculations of R and Rs, we calculated Taare and Teq at
the latitudes where they peak. Although those latitudes are somewhat different for
each experiment, usually they are around 45°. To estimate % and %ﬂ we chose § =
45° as the reference colatitude, i.e., % ~ Tss0 — T3s0, %Tf ~ Tg, .o — TE,,., because
the maximal gradient of Tg is at 45°. Since the profiles of (0] and oy 25 [uv¥] sin® 8

are irregular in the spherical model, we also calculate their characteristic values at

45°.

The calculated R and Rg are shown in Figure 5.31, in which the abscissa is Rs,
and the ordinate is R; each letter represents the results from one of the experiments,
specially, “H”, “T” and “F” refer to experiments varying 74, ATg and 7, respec-

tively. The straight line shows what the results would have been if the values of R

and Rs had been identical.

First, we note that all the letters are very close to the straight line, implying
that R and Rs are in good agreement with each other. Unlike the results in the
B-plane model, the values of calculated R are not significantly larger than the values
of predicted Rs. The difference between the spherical and the §-plane models is

probably due to the calculations of eddy momentum fluxes, which are closely related
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to the strength of the Ferrel cell. In the S-plane model, because of the absence
of the earth’s curvature and the unrealistic lateral boundary conditions, the eddy

momentum transport is distorted.

Next, we note that, like the results with .the B-plane model, R increases and
approaches unity when 7, increases or ATg decreases. In the limit of the diabatic
heating vanishing, a complete MMC feedback would occur, and there would be no
net eddy forcing on the zonal mean flow in the mid-high latitudes. On the other
hand, R decreases and approaches zero when the diabatic heating increases or the

surface friction decreases.

Finally, we should mention that the dependence of R on the external parameters
is similar when an interfacial friction is included. This has been demonstrated
in the parameter experiments described in the previous subsection. However, the
calculated values of R can not be directly compared with the predicted values of

Rs, because they are modified when the interfacial friction is included. .

In their scaling analyses, Stone and Branscome (1991) have shown that the
magnitude of R is equivalent to the ratio of the horizontal component to the vertical
component of the divergence of the E-P flux. Therefore R is a measure of how
accurately the E-P theorem is satisfied. We have calculated this ratio, Rg_p, and
compared it with R. Their relationship is shown in Figure 5.32, which is similar to
Figure 5.31 except that the abscissa is Rg_p and the ordinate is R. Clearly, the

model’s results are consistent with the scaling analyses.
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5.5.4 Summary

Figure 5.33 summarizes schematically the processes of temperature adjustment
and the effects of changes in the external parameters. The thick arrows denote the
basic dynamical processes: The diabatic heating (Q) drives the temperature gradi-
ent (AT) away from its climatic equilibrium state, meanwhile it energizes large-scale
eddies through baroclinic instability. The eddies develop and transport heat and
momentum poleward. The eddy heat transport adjusts the temperature gradient
directly, while the eddy momentum transport regulates the strength of the MMC
(the Ferrel cell), and influences the temperature field indirectly through the equa-
torward MMC heat transport. For the earth’s atmosphere, the eddy heat transport
dominates, and the net effect of heat transport is to bring the temperature gradient

back to its climatic equilibrium state.

The thin arrows in Figure 5.33 indicate the effects of changes in the external
parameters on the eddy efficiency in transporting heat, E, where E is defined as the

ratio of the net heat flux to the eddy heat flux, i.e.,

TatTume _; _p. (5.37)

E Tcd

It

A small feedback factor means a large eddy efficiency. The inward arrows to a
parameter denote positive effects, e.g., increasing ATg or h enhances the eddy effi-
ciency. The outward arrows to a parameter denote negative effects, e.g., increasing
k or T reduces the eddy efficiency. Compared with changes in the diabatic heating,

the change in the surface drag has only secondary effects.

Furthermore, the thin arrows also indicate the climatic sensitivity to the external

parameters. Particularly, AT increases with ATg; eddy amplitudes get larger when
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h or k gets larger; the strength of the MMC increases when k increases or I'o
decreases. Because static stability is fixed in the Phillips system, the interaction

between AT and Iy remains unclear. It will be examined in next chapter.
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Figure 5.31: The feedback factors in the experiments without interfacial friction.
The abscissa is Rs, the predicted value from the scaling method; the crdinate is R,

the calculated value from the definition.
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Figure 5.33: The schematic diagram for the dynamical processes and the effects of

changes in the external parameters in the Phillips system.
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Chapter 6

Eddy regime — the Lorenz system

6.1 Introduction

Although the static stability is treated as a constant in many simple climate
models, there is no doubt that the interaction between vertical eddy heat fluxes and
the static stability is one of the important mechanisms in climate equilibrium. Mod-
els that omit this mechanism may be missing an important part of the atmospheric
physics. Based upon a highly simplified model and the Charney-Stern theorem,
Gutowski (1985b) has shown that the observed midlatitude temperature structure
could be understood in terms of such a mechanism. Held and Suarez (1978) calcu-
lated explicitly the vertical eddy heat flux and the static stability using a two-level
primitive equation model. They found that the static stability in the mid latitudes
was maintained mainly by the vertical eddy heat transport and diabatic heating
processes. In a continued study with the same model, Held (1978b) found that the

static stability played an important role in the climate sensitivity to changes in the

solar constant.
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In this chapter, we relax the constraint of constant static stability, by allowing
the vertical eddy heat flux to interact with the static stability. The model we use
is Lorenz’s two-level system: (Lorenz, 1960). This model differs from the Phillips
system only in the formulation of the thermodynamic equation. In the Lorenz
system, the static stability can vary temporally and horizontally, but can not vary
vertically due to the two-level constraint. Therefore, the temperature difference
between the two levels only represents the “bulk” static stability. The role of the
“bulk” static stability (or the vertical temperature gradient) is parallel to the pole-
to-equator temperature contrast (or the meridional temperature gradient), although

the vertical structure of static stability may also be an important feature (Gutowski,

19852).

We have carried out a series of parameter experiments in the Lorenz system.
In addition to those features we have studied in the Phillips system, these exper-
iments provide us with the information on the equilibrium state of static stability
and vertical eddy heat transports. We compare the relative importance of the dy-
namical processes in the vertical direction with those in the meridional direction,
and examine their connections in order to get a two-dimensional picture of the role

of large-scale eddies in regulating the climate state.

6.2 FEquations in the Lorenz system

Although the formulation of the thermodynamic equation in the Lorenz system
is different from that in the Phillips system, the status of static stability does not
affect the formulation of vorticity and balance equations. Similarly, the linear bal-

ance equation approximation is adopted in the Lorenz system. As shown in chapter
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3, the equations in this system are written as:

8P

5V = I, V) - I($, V') - 25+ +D, (6.1)
39 = —3G.9) - 16, V%) - 2—’ﬁ —2V . (uV) + D, (62)
%ifl —J($,®) = J(@&,T) - V- (TVH) + 0, (6.3)
%1;- ~J(,T) - I, &) - Vé- Ve + Q, (6.4)
v2d 2V - (uV). (6.5)
The corresponding spectral equations are:
28, = il Z ¥ healiudo + Badbp) + 265 L) + D (6.6)
% = T huslhadat bt + 27115
+ & (Las1$tr + LyPy-1) + Di, (6.7)
%‘i’-ﬁl if ; Zﬁj Kyt1,ap41(Ba®oss + Palo41)] + crs1lobms
+ ; %: Mfr.:-)l,a+l,ﬂ+lri3+lsaa+1 + Qi1 (6.8)
'j_t vl if ;%: Koytr,opi1(Balpi1 + baBps)]
+ ;; M i1 ®er1Batt + Do, (6.9)
bpr = —Ch(Lysrthy + Lyvatdoa), (6.10)
where

1
M, s = 5(er1 + ot — cor1) Mytiari oy

1
y+le+1,6+1 = '2‘(C-v+1 — Cat1 — Cp41)Mot1,a41,541
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M) and M) are spectral coefficients associated with operators V - (AVB)
and VA - VB respectively, where A and B are any scale quantities. The subscripts
a, B and 7 are wave vector indicies, and n4, ng and n, are all odd numbers, which
are consistent with the symmetry of $, ¢, I' and the antisymmetry of , P. Except
for Equation (6.9), n, = 1, 3, 5,:--, 2M — 1. In Equation (6.9) v = —1 (dlo/dt)

should be included, which represents the equation for global mean static stability.

Because there is neither zonal variation of the thermal forcing nor topography in

our model, further simplication can be made by assuming that the static stability

is zonally symmetric, i.e.,

T'=T(t,4) =To(t) + > Tapr(f) Para(p), (6.11)

where ['g() is the global mean static stability, and I'y;1(%) is a meridional compo-
nent. Unlike the global mean temperature, To, which does not interact with eddies
and remains constant, I'o(¢) interacts with the vertical eddy heat flux and plays an
important role in the dynamics. For the real atmosphere, the meridional variation
of the static stability is also larger than its longitudinal variation according to the

88

thermal wind relation and observations (Oort and Rasmusson, 1971). If we use 52

to represent the static stability, where © is the mean potential temperature, then

o 00 _ f@ 0%u foOolU —10
Iay 6z)|_l_ 90221 gH? = 6 x 107,
I5-(500=1- p azzl” e ~ 6 x 107",

where we have assumed annual mean and zonal mean conditions for the midlatitude
atmosphere, typically, fo = 107%s7}, @ = 300K, H = Tkm, U = 10m/s, V =

1m/s. Therefore, the longitudional variation of I' can be neglected. The simplified
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static stability equation becomes

%[)f_] = I, &) - [V - Vo] +[4]. (6.12)

This simplification greatly reduces the computation time while having little effect

on the budget of static stability.

The spectral form of the energetics in the Lorenz system is similar to that in the
Phillips system, except that Pz, Gz and C(Pg, Pz) are modified as shown below in

order to conserve the total energy.

1 -

Pz = ﬁ (@§+1+I‘§+1), (6-13)
1 - = R

Gz = F—OZ(‘I’aHQaH + Cot1Qa+1), (6.14)

y -
CPePr) = LXE S Kamno x

0 o 8

@0 s1 Im(P38o41) + Larr Im($50141)]

- Mg:i-)l.ﬁ+1,‘v+1 Lat1Re(Pp1 i’;+1)} (6.15)
6.3 The equilibrium static stability

In the Lorenz system, we need to specify the external forcing of the static
stability, Tg. Similar to ATg, 'z can be regarded as the static stability in the
radiative equilibrium state or ir the radiative-convective equilibrium state. For in-
stance, Bryan (1959) simply assumed that 'z = 0, which means that the equilibrium
atmosphere always remains at a dry neutral state. In other cases, 'z was calcu-
lated from various models, simple or sophisticated. For instance, the temperature
structures in radiative-convective equilibrium have been calculated by integrating in

time the thermodynamic equations with an explicit forcing, such as radiative fluxes,
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boundary fluxes and convective adjustment, until a steady state was achieved (Held
and Suarez, 1978; Eliasen, 1982). Because the explicit forcing was parameterized in
different formulations, the obtained equilibrium states were also different. None of
them can be said to be robust except for their basic characteristics. Nevertheless,
common features are shown by these calculations, and they seem to be physically
meaningful, e.g., the atmosphere is more stable in the high latitudes than in the low
latitudes; the radiative-convective equilibrium state is more stable than the pure

radiative equilibrium state, etc.

Without loss of generality, we specify two typles of T'g in our model, which
are shown in Figure 6.1 by the curves A and B respectively. Curve A represents
a pure radiative equilibrium state. We used a simple earth-atmosphere coupled
model (Saltzman, 1968; Wiin-Nielson, 1969) to calculate it. This model includes two
radiative balance equations, one for the atmosphere and the other for the earth’s
surface. The solar radiation forcing (Q-az) is given by its annual mean distribution,

which can be approximately expressed as

Oraa() =~ %2[1 — 0.3017P5()],

where Sp is the solar constant, and P;(p) = \/%‘ - 2(3u® —1) is the normalized second
order Legendre function (Coakley, 1979). Other parameters, such as albedos of the
atmosphere and the earth’s surface, the opacity and the long-wave absoptivity of
the atmosphere, etc., are given empirical values similar to those used by Saltzman
(1968). From the model we can calculate the mean atmospheric temperature TE
and the surface temperature T, in the radiative equilibrium state as a function
of latitude. In fact, the equilibrium temperature gradient (ATs = 48K) used in
the “standard” run presented in chapter 5 is obtained from the same model. Thus

this equilibrium gradient represents the gradient in the absence of any meridional
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transports by the atmosphere or oceans.

We assume that T, ., = T and TEygems =2 Tsp- In general, the surface tem-
perature is not equal to the air temperature above the surface, but the difference is
small. The equilibrium static stability in the lower layer of the model is calculated
from Tg,p., 20d TEye0qms- We further assume that the vertical mean static stability
equals the lower layer static stability. This assumption somewhat overestimates the
magnitude of the equilibrium lapse rate (or underestimates the static stability), be-
cause the radiative equilibrium atmosphere is more stable in the upper troposphere
than in the lower troposphere (Goody, 1964). Therefore it gives a sharp contrast to

the second type of I'g — Curve B,

Curve B represents a radiative-convective equilibrium state. It was obtained
from a numerical experiment with the GISS zonal mean statistical- dynamical model
(Stone and Yao, 1990). In that experiment, the lower boundary condition was speci-
fied by the observed ocean surface temperature; the equilibrium state was calculated
for January conditions by incorporating all dynamical processes (e.g., the mean cir-
culation heat fluxes, the moist convection, etc.) except for the large-scale vertical
eddy transports (Stone, 1990). The annual mean lapse rate was calculated by aver-
aging Northern and Southern hemispheric values. The equilibrium static stability
has a relatively uniform meridional structure. The atmosphere is more stable than
that in the pure radiative equilibrium (curve A), especially in the low latitudes.
The standard value of ATg used when 'z was given by curve B was again chosen
to be 48K . Although this value of AT% is calculated from the radiative equilibrium
model, we used it for easier comparison with the “standard” run in the Phillips

system. The value of ATy in the radiative-convective equilibrium is somewhat dif-
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ferent. However, because our model is a “process-study” model, and because we
will run a series of experiments varying ATy over a broad range, it is not necessary

to use a consistent value of ATy with I'g in the radiative-convective equilibrium.

6.4 The maintenance of the static stability

6.4.1 Comparison with the “standard” run

In order to compare the model results in the Lorenz system with those in the
Phillips system, we have carried out two experiments in which Ug was specified as
the state in radiative equilibrium (curve A) and in radiative-convective equilibrium
(curve B) respectively. All other external parameters have been set to the same val-
ues as those used in the “standard” run with constant static stability. In particular,
ATg = 48K. In addition, the horizontal resolution for these experiments is again

5 x 5(3). We hereafter refer to these two experiments as A(S) and B(S).

First, we look at the model results of A(S). The calculated statistical equilibrium
states of the zonal flow, the meridional wind, the temperature and the MMC stream
function are shown in Figure 6.2. The general characteristics are similar to those
in the “standard” run with constant static stability (see Figure 5.5), although the
Hadley cell is stronger than that in the “standard” run (It might be due to the very
weak T'g in the low latitudes). The momentum budgets and the heat budget are
shown in Figures 6.3 and 6.4. Their qualitative features are also similar to those in

the “standard” run (see Figures 5.6 and 5.7).

The equilibrium static stability in the eddy regime is shown in Figure 6.5 (a).
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Compared with that in the radiative equilibrium state (dotted line), the global mean
static stability in the eddy regime (solid line) has increased appreciably; whereas the
meridional structure of the static stabilty has only slightly changed. This feature is

similar to that found by Held and Suarez (1978) in their “dry model” experiment.

Next, we look at the model results of B(S) which are shown in Figures 6.6 - 6.9.
Likewise, the characteristics of the equilibrium states and the budgets of momentum
and heat are very similar to those obtained in the “standard” run. Furthermore, in
many aspects, e.g., the strength of the Hadley cell, B(S) is even closer than A(S) to
the “standard” run. This is because the static stability in B(S) has little meridional

variation, and its mean value is very close to the constant static stability used in

the “standard” run.

Owing to the similarities between the results in the Lorenz system and in the
Phillips system, especially in the mid-high latitudes, it may not be necessary to re-
peat all resolution experiments which have been done in the Phillips system. There-
fore, we have only tested a few of higher resolutions, such as 7 x 7(3), 5 % 8(2) and
5 x 15(1), with I'g in radiative equilibrium (curve A). The results are very similar
to those calculated with the resolution 5 x 5(3), implying that 5 x 5(3) is also appro-
priate in the Lorenz system. We will use this resolution in most of the parameter

experiments which will be described in the next section.’

149



Table 6.1: Some characteristic quantities in the resoltion experiments with the
Lorenz system.

————

5x5(3) | 7TxT7(3) |5 x8(2) |5 x15(1)
AT 61.6 59.8 54.8 57.4
oT 18.9 19.9 19.0 21.2
M 2.04 2.08 1.83 2.12
[v*M~], 68.8 84.4 52.3 65.8
tym 34.3 28.4 40.4 37.3
[u]s 27.8 35.3 23.2 28.5
(lat.) (55) (63) (56) (58)
[vh .67 67 .60 63 .
(lat.) (20) (20) (20) (18)
[u*v¥] 23.6 25.3 188 | 22.1
(lat.) (34) (35) (32) (33)
T.q 22.9 19.2 22.0 20.1
Tyace -7.8 -5.7 -6.4 -5.9
R 34 .30 .29 .29
Oo 24.4 24.2 23.6 24.3
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Figure 6.1: The static stability &g (Tz  O5) used in the model. Curve A is a
radiative equilibrium; Curve B is a radiative-convective equilibrium.
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6.4.2 The budget of static stability

The balance of steady static stability, [['], is maintained by three different

physical processes, i.e.,
@, ) +[Ve- V] - [Q] =0. (6.16)

The first term represents the geostrophic temperature advection by the thermal
wind {eddies); the second term is the temperature advection by all ageosirophic
motions; the last term denotes the diabatic forcing of static stability. It should be
pointed out that the first term would vanish if the quasi-geostrophic approximation
were used. As shown in Figures 6.5 (b) and 6.9 (b), whether in A(S) or in B(S),
the geostrophic term (solid line) is relatively small compared fo the other terms.
Therefore, the balance of static stability is primarily between the ageostrophic term
(dotted line) and the diabatic term (dashed line). The ageostrophic heat transport
tends to increase the static stability in all latitudes, with peaks in the subtropics
rather than in the mid latitudes. The diaba.ti!c heating term tends to decrease the

static stability.
The ageostrophic heat transport can be decomposed into three parts, i.e.,
[Vé- V¢ = V[ V[§] + [V - (&"Ve™)] - [&"V7¢"]. (6.17)

The first term on the right hand side of Equation (6.17) represents the heat transport
by the MMC; the second term represents the meridional heat transport by ageostro-

phic eddies; the third term represents the vertical heat transport by ageostrophic

eddies.

Alternatively, if we use [O] as the static stability parameter, then the dimensional
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budget equation for static stability can be written as:

d[6;0*]sin b 0[O]sin 0 3[1‘)'0“] sin 8 [w"E)"]

a sin 800 + [P} asin 980 a sin §04 Ap +[Q] =0. (6-18)

The characteristics of the ageostrophic terms are shown in Figures 6.5 (c) and

6.9 (). The common features found in A(S) and B(S) include:

1) The vertical eddy heat transport (dashed line) dominates in the mid-high

latitudes;

2) The MMC heat transport (dotted line) is always out of phase with the vertical
eddy heat transport. The direct Hadley cell tends to increase the static stability in
the low latitudes, while the indirect Ferrel cell tends to decrease the static stability
in the mid latitudes. The role of the MMC in the maintenance of static stability
is similar to its role in the maintenance of the meridional temperature gradient. In

other words, the MMC heat transports are always negative feedbacks to the eddy

heat transports;

3) The meridional heat transports by ageostrophic eddies (solid line) are small
and out of phase with the transports by geostrophic eddies [solid line in Figures 6.5
(b) and 6.9 (b)]. Thus, the total meridional heat transports by eddies are negligible

in the balance of the static stability.

The vertical eddy heat flux, {w*T* sin 8], is shown in Figures 6.5 (d) and 6.9 {d).
The magnitudes of vertical eddy heat fluxes are at least two orders smaller than
that of the meridional eddy heat flux. However, the change rate of I' due to the
differential convergence of the vertical eddy heat flux (8*w*T")/3p%) has the same

order of magnitude as tl.- change rate of T due to the convergence of the meridional
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eddy heat flux (%ﬁl). For example, in A(S) the maximal change rate of [@]
by the vertical eddy heat transport is 5.6 x 10~® K/sec. [see Figure 6.5 (c)], and the

maximal change rate of T by the meridional eddy heat transport is 6.0 x 1078 K/sec.

[see Figure 6.4 (a)].

In order to compare the relative importance of vertical and meridional eddy heat

transports, we define

a

o r
ir= = = , 6.19
AT
tr = |- —smrTamay (6.20)
A( asin 898 )

where tr is the e-folding time for the static stability change due to the vertical eddy
heat transport, and tr is a measure of the time scale for the temperature gradient
change due to the meridional eddy heat transport. Similarly, we have defined in
chapter 5 an eddy time scale
M
tv = | spear g |

asin890

(6.21)

which is the time scale for the meridional eddy momentum transport to adjust the

angular momentum [ty is equivalent to ¢, in Stone and Branscome (1991)).

These time scales are calculated from the model results of A(S) and B(S) and

are shown in Table 6.2. The values of I', AT, M and eddy transports at # = 45°

are used.

In both A{S) and B(S) tr is much shorter than ¢p. This implies that the merid-
ional eddy heat transport is more important than the vertical eddy heat transport.
This may not necessarily be true if the external parameters change. Since we have

used “standard” values of the external parameters for the earth’s atmosphere, it
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Table 6.2: Dynamical time scales (days).

RUN [ ¢r [ ir [ tar
A(S) 1713742
B(S) 197753

seemns that, for the earth’s atmosphere, the meridional eddy heat transport is domi-
nant among other dynamical transporting processes. The meridional eddy momen-
tum transport and the vertical eddy heat transport, though giving some negative
feedback, are of secondary importance. Therefore, in spite of requiring a constant
static stability, the quasi-geostrophic theory has been successfully used in diagnos-
tic and modeling studies for the earth’s midlatitude atmosphere. However, it is not

suitable for climatic sensitivity studies, as will be discussed in chapter 7.

We also note that the meridional eddy transports of heat and momentum are not
sensitive to the forcing of static stability, [z. But the vertical eddy heat transport is
very sensitive to ['g. The I'z used in A(S) is less stable than that used in B(S). The
model results have shown that the vertical eddy heat flux in A(S) is much stronger
than that in B(S). The dynamical time scale tr in A(S) is much shorter than that in
B(S) (less than 2 half). As a result, the static stability has increased more drastically
for the smaller I'r. The global mean static stability in A(S) has increased more than

100% from that of the radiative equilibrium. In B(S) the increase of ' from ' is

only about 20%.
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6.5 The parameter experiments
6.5.1 Diabatic forcing ATg

Using parameter experiments like those we have carried out with the Phillips
system, we will examine the effects of changes in the external parameters on climate
states and eddy transports, while not fixing the static stability. The first parameter
we look at is ATg. Two groups of experiments, in which AT is varied, have been
done in the Lorenz system. One group is denoted by A (ATg) in which I'g is
specified as the radiative equilibrium state (curve A). The other group is denoted
by B (ATE) in which I's is specified as the radiative-convective equilibrium state

(curve B). The other parameters are all fixed at the “standard” values.

The model results are shown in Figures 6.10 and 6.11 for A (ATg) and B (ATg)
respectively. Those results include the zonal mean surface wind, the upper layer
meridional wind, the meridional eddy fluxes of momentum and heat, the vertical
eddy heat flux and the MMC heat flux. Except for the vertical eddy heat flux
and the MMC heat flux, other quantities can be directly compared with the ATg
experiments in the Phillips system (see Figure 5.27). Infact, the midlatitude features
are very similai to those obtained from the Phillips system. When ATg is very
small, the mean flow is stable and eddies can not develop. When ATEg increases,
the zonal mean surface wind and the meridional wind increase in strength; the eddy

transports, [u*v*], [v*T*] and [w*T™], all increase.

However, the effect of changes in ATy on the Hadley cell and its heat transport
are very different between the Lorenz system and the Phillips system. In the Lorenz

system, changes in ATg does not change much the strength of the Hadley cell. For
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instance, when AT} increases from 48 K to 144 K, the peak meridional wind in low
latitudes only increases by: a factor of 2.5 in B (ATg). But in the Phillips system the
change in the strength of the Hadley cell is more dramatic. For the same increase in
ATg, the peak meridional wind increases by about 8 times, This difference is due
to a negative feedback between the static stability and the strength of the Hadley
cell, which is omitted in the Phillips system. In low latitudes, the heat balance is
primarily maintained by the Hadley cell heat transport and the diabatic heating,

whereas the eddy heat transport is relatively small. It is approximately given by
—2T[@] ~ Q. (6.22)

If T is fixed, then the magnitude of [©]) (which measures the strength of Hadley cell)
increases with @ proportionally. However, if T is variable, both I' and [@] increase
with O when ATy increases. Thus, [@] does not need to increase as much as is

required in the case with fixed static stability.

In Table 6.3 we list some characteristic quantities for various values of ATg. The
notations for these quantities are the same as those in Table 5.2, except that we add
a parameter for the global mean static stability, @,. Both AT and O increase with
ATg. It implies that the temperature structure varies in a subtle way by which the
ratio of AT and O, a proper measure of baroclinity, is not sensitive to the change in
ATg. We will further examine this feature in next chapter. Compared to the results
with constant static stability (see Table 5.3), most of the quantities vary with ATg
in a similar way. However, the feedback factor, R, increases with ATg, contrary to
its variation when the static stability is fixed. This behavior can be explained by
two reasons: first, as ATg increases the meridional eddy heat flux, T.q, increases
less when T is variable than it does when T is fixed, because the vertical eddy heat

flux can cooperate in adjusting the temperature structure; second, as ATg increases
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the MMC heat flux, Tarme, increases more when I is variable than it does when I
is fixed, because Ty is proportional to the magnitude of I' which also increases
with ATE in the Lorenz system. This is a significant difference between the Phillips

system and the Lorenz system.
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Table 6.3: Some characteristic quantities in the experiments varying ATg.

RUN ATg(K)] 24 [ 30 ] 48 | 72 144
AT 71.6 [24.2 | 33.4 | 46.8 | 92.6
&T 74 | 8.4 | 109 | 144 | 27.5
M 35 | .76 | 1.06 | 1.52 | 2.94
["M*], | 5.1 [20.1] 26.6 | 59.1 | 116.
ta 778 | 440 | 41.5 | 20.8 | 29.2
[ul, 33|60 | 10.2]17.6 | 38.6

A (ATg) || (1at.) (43) | (45) | (48) | (51) | (57)
[o]1 25 | 33 | .43 | .56 76
(lat.) (13) | (13) | (14) | 19) [ (20)
[w*v*] 28 | 58 | 8.0 | 16.4 | 31.0
(lat.) (27} | (29) | (31) | (33) | (34)
Ted 1.35 [2.87 | 7.51 | 15.6 | 34.1
Taimc | --26 | -.60 | -1.82 | -4.96 [ -12.8
R 19 | 24 | 24 | 32 .37
O, 75 | 9.5 | 12.6 | 17.9 | 35.2
AT 21.4 | 26.6 | 34.7 | 49.0 | 89.4
8T 86 |10.0 | 13.1 | 16.5 | 28.3
M 60 | 75 | 1.12 | 152 | 2.73
[o"M°], | 5.4 | 10.5 | 24.7 | 40.6 [ 75.6
tas 128. [83.0 | 52.6 | 43.3 | 41.8
[u], 33 | 49 | 12.6 | 19.4 | 36.8

B (ATE) | (lat.) (57) | (56) | (56) | (56) | (56)
[o]: 1] .16 | .27 | .42 .68
(lat.) (23) | (23) | (23) | (23) | (24)
[u*v*] 10 | 33| 7.5 | 137 | 264
(lat.) (38) | (36) | (36) | (36) | (37)
Tea 1.36 | 245 | 6.85 | 14.3 | 35.8
Tvsc | -AL | -.74 | -2.07 | -4.66 [-13.2
R 30 ] .30 | .30 | .33 37
O 18.4 [18.9] 21.6 | 26.4 | 426
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6.5.2 Newtonian cooling time 7,

Likewise, the experiments varying 74 are denoted by A (73) and B (7), ac-
cording to which type of I'g is used. The model results are shown in Figures 6.12
and 6.13. The zonal mean surface wind, the meridional wind and the eddy fluxes of
momentum and heat simply increase when 7, decreases. In this aspect, the effects
of decreasing 75, and increasing ATE are very similar. The effects of the change in
7, on the climate equilibrium are qualitatively consistent with those found in the

Phillips system (see Figure 5.28).

Table 6.4 exhibits the variations of some important quantities with 7, same as
those in Table 6.3. There is no qualitative difference from the results with fixed
static stability (see Table 5.6). In particular, the feedback factor, R, increases with
7, whether the static stability is fixed or variable. When 7, increases, the static
stability increases and the temperature gradient decreases. The dynamical meaning
is clear; slowing down the diabatic heating tends to enhance baroclinic stability.
Meanwhile all eddy transports are reduced. On the other hand, when 7, decreases,
' — g, AT — ATg. The climate equilibrium in the eddy regime approaches
the specified state of radiative or radiative-convective equilibrium. Meanwhile, the
eddy transports are enhanced due to the strong forcing. In this aspect, the effects

of decreasing 7, and increasing ATg are totally different.
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6.5.3 Surface friction &

The experiments in which the surface drag coefficient k is varied are denoted
by A (k) and B (k) respectively, for the two types of I'g. The results are shown
in Figures 6.14 - 6.15 and Table 6.5. They are very similar to those obtained
from the experiments in the Phillips system (see Figure 5.30 and Table 5.12). The
zonal mean surface wind increases appreciably when k decreases (or T, increases).
Although the eddy momentum flux changes slightly with &, the eddy time scale
increases considerably as k decreases, due to the strenghthened zonal mean wind.
The meridional and vertical eddy heat fluxes, the strength of the MMC and the
MMC heat flux are all insensitive to the change in k. Consequently, the temperature
structure, which is represented by the meridional temperature gradient and the static
stability, has not significantly changed by the change in k. The feedback factor R

is slightly reduced when the surface drag gets weaker.

The external parameters are reduced by one in the Lorenz system because the
static stability is no longer an external parameter. The effect of the interaction
between the vertical eddy heat flux and the static stability has been discussed in
the previous text. In short, the variable static stability plays a significant role in
regulating the strength of the MMC and the feedback of meridional heat transport.
It also plays a role in adjusting the baroclinic instability, which controls the intensity
of eddy fluxes of heat and momentum. The baroclinity in the climate equilibrium

will be studied in next chapter.

Y.
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Table 6.4: Some characteristic quantities in the experiments varying 7;.

RUN || rn(days) | (Equil.) | 5 20 80 | 320
AT (48.0) | 39.9 | 33.4 | 27.7 | 20.6

| 6T (16.4) 1125|1109 | 11.1 | 8.8
it M 1.55 | 1.06 | .91 .52
[v*M=], 70.8 1 29.6 | 162 | 7.8
im 25.4 | 41.5 | 64.9 | 77.1
[u]s 21,2 1102 | 58 | 3.3
A (m) || (lat.) (33) | (48) | (50) | (59)
[l 142 | 43 | 32 | .08
(lat.) (14) | (19) | (20) | (24)
[u*v”] 217 80 | 4.0 1.4
(lat.) (29) | (31) | (33) | (43)
Ted 19.0 § 7.51 | 2.95 | .86
Tymmc -3.90 [-1.82 | -1.06 | -.39
R 21 [ .24 | .36 45
0o (6.4) | 11.2 | 126 | 14.2 | 15.1
AT (48.0) | 42.0 | 34.7 | 26.2 | 16.5
5T (16.4) | 14.4 | 131 | 11.9 | 7.2
M 1.34 | 1.12 | .78 40
w*M*], 36.5 | 24.7 | 14.6 | 4.2
ty 42.6 | 52.6 | 61.8 | 111,
[u]s 189 | 12,6 | 6.6 1.6
B (7) || (lat.) (58) | (56) | (58) | (59)
[vh B3 | 2T | .16 .06
(lat.) (21) | (23) | (27) | (35)
[u*v] 126 | 75 | 3.3 T
(lat.) (35) | (36) | (41) | (44)
Ted 13.5 | 6.85 | 2.69 .11
Tvmc -3.24 1-2.07 -.94 | -.22
R 24 1 30 | .35 .31
B0 (18.1) | 19.8 | 21.6 | 23.2 | 23.6
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Table 6.5: Some characteristic quantities in the experiments varying 7,.

"RUN || rn(days) | 1.25 | 25 | & 10 20
AT 35.6 | 35.7 | 33.4 | 322 | 32.8
6T 12.6 | 10.8 | 10.9 | 11.3 | 11.6
M o1 | .83 | 1.06 | 1.39 | 1.91
[v"M*], | 442 | 35.2 | 29.6 | 20.0 | 25,5
tar 238 | 27.3 | 41.5 | 55.7 | 86.7
[u], 38 | 5.5 | 10.2 | 174 | 30.6
A (k) | (lat.) (50) | (51) | (48) | (48) | (51)
R 55 | 41 | .43 | .46 48
(lat.) 18) | (15) | (14) | (19) | (19)
O 116 | 9.6 | 8.0 | 8.0 | 8.0
(lat.) (33) | (33) | (31) | (32) | (28)
Ted 763 | 7.13 | 7.51 | 7.31 | 7.00
Tumc | -2.62 | -1.85 | -1.82 | -1.68 | -1.67
R 34 | .26 | .24 | .23 24
_ B 12.6 [ 123 [ 12.6 | 12.6 | 12.8
AT 370 | 36.2 | 34.7 | 37.1 | 358
5T 134 | 13.4 | 13.1 | 12.5 | 13.0
M 65 | .95 | 1.12 | 1.21 | 1.60
[0"M"], | 30.1 | 25.5 | 24.7 | 19.4 | 14.8
tar 25.1 | 43.3 | 52.6 | 72.0 | 125.
], 29 | 8.0 | 12.6 | 19.5 | 28.6
B (k) || (1at.) (55) | (57) | (56) | (58) { (57)
[oh 27 | 28 | .27 | .24 | .2¢
(lat.) (24) | (24) | (23) | (23) | (22)
[u*v* 65 | 89 | 75 | 6.6 5.2
(lat.) (38) | (39) | (36) | (35) | (33)
Ted 6.49 | 6.60 | 6.85 | 6.39 | 6.19
Tumc | -2.00 | -2.18 | -2.07 | -1.89 | -1.75
R 3T | 33 | 30 | .30 28
B0 214 | 215 [ 216 | 215 | 215
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Figure 6.10: The equilibrium states of zonal mean surface winds, upper layer merid-
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Figure 6.11:

As in Figure 6.10 but for experiments B (ATEg).
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Figure 6.14: The equilibrium states of zonal mean surface winds, upper layer merid-
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Chapter 7

Adjustment of the temperature
structure

7.1 Introduction

According to diagnostic studies (Stone, 1978; Mole and James, 1990} the zonal
mean midlatitude temperature gradient, 67", tends to equilibrate at the critical
value, 87, for baroclinic instability in the sense of two-level models, despite strong
seasonal changes in the radiative forcing. Stone has pointed out that this critical
gradient corresponds to a transition from conditions where the dominant baroclinic
instabilities are inefficient in transporting heat to conditions where they are efficient.
By examining the correlation between the eddy flux of sensible heat and the excess
of the mean shear over the critical shear, Stone hypothesized that the heat trans-

port by long and deep baroclinic waves is responsible for the process of baroclinic

adjustment.

There have been many attempts to explore the mechanism of baroclinic adjust-

ment. For instance, Lindzen and Farrell (1980) and Gutowski (1985b) assumed that
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the effect of baroclinic eddies is to reduce the meridional gradient of quasi-geostro-
phic potential vorticity (@), so that the gradient of [Q] vanishes in the adjustment

layer, 1.e.,

_g fluld Py _
(@l=8- =" =0

where p is the air density, y and z are meridional and vertical coordinates. In their
calculations, Lindzen and Farrell fixed N? to compute [u,], whereas Gutowski fixed
[u,] to compute V2. Even if the assumption of vanishing [Q,] is valid, neither of
their calculations can be said to be appropriate since the adjustments of [u,] and

N? should take place simultaneously.

Another attempt to explore the mechanism of baroclinic adjustment was made
by the use of two-level models to calculate the temperature gradient and the eddy
heat transport (Cehelsky and Tung, 1991; Stone and Branscome, 1991). Cehelsky
and Tung found that the calculated 6T was indeed supercritical to the most unstable
wave. They postulated that a nonlinear baroclinic adjustment mechanism may ex-
ist, by which the temperature gradient equilibrates at a critical value for which the
longest wave is neutral and the most unstable wave is saturated. They attributed
this mechanism to nonlinear upscale energy cascades. Stone and Branscome (1991)
also found that the calculated 67 is supercritical. They suggested a modified baro-
clinic adjustment, i.e., 8T « 8T, instead of 8T ~ §T%. Of course, this modification is
more general and appropriate, if we consider that 67 is dependent on the arbitrary
depth of a two-level model. Nevertheless, the observed 6T is not appreciably super-
critical. The discrepancy of the observations and the model results may be related
to errors in the estimates of 6T, which is proportional to the static stability. The
static stability in the diagnostic studies is calculated from observed data and is not

a constant, but in the models it is fixed as a constant.
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In this chapter, we use our model results to investigate the interactions between
large-scale eddies and the midlatitude temperature structure. The zonal mean tem-
perature structufe can be better repr;asented by the slope of isentropic surfaces,
which combines the meridional temperature gradient and the vertical lapse rate.
We first examine how baroclinic adjustments occur in the Phillips system and in
the Lorenz system. Then we check the empirical relationship between the eddy heat
flux and the temperature gradient. Finally, we study the eddy heat transports in

the wavenumber domain, to identify the main heat-transporting waves.

7.2 Isentropic slope adjustment

7.2.1 Fixed static stability

The isentropic slope, a, is defined as

_(9z) __(09/oy) ST U
“‘(ay)@“ (80/3z) ~ N~ WE (T1)

Since in the Phillips system N? is fixed « is proportional to 67'. First, we show the
model results for experiments in which N? is set to the realistic value (107*s7%)
and ATg is varied. The adjustment of 8T is shown in Figure 7.1 for experiments in
which ATz is varied. The abscissa represents ATE, the pole-to-equator temperature
contrast in the radiative equilibrium. The dashed line represents 6Tg at 45° of
latitude in radiative equilibrium. The solid line represents the calculated 61" at 45°
of latitude, which is the midlatitude temperature gradient in the model’s climate
equilibrium. When ATy < 23 K, there are no eddies, so 67T is identical to 67%.
This is a Hadley regime in which the mid la.titudés are in radiative equilibrium.

When AT increases, 8T deviates gradually from 6T but it also increases slightly.
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This feature is very similar to that found in B-plane models (e.g., Cehelsky and
Tung, 1991). The relative insensitivity of 6T is obviously attributed to the active

meridional eddy heat flux.

Next, we present the model results for experiments in which ATy is fixed at the
realistic value (48 K) and the static stability is varied. For convenience we use N?
instead of Ty as the static stability parameter in the following illustrations. N? is
set to be constant in each of the experiments. Correspondingly, for each experiment

there is a critical shear U, (or 6T¢):
g .

0, ~ (4—1(;%) N? (7.2)
(Phillips, 1954). The calculated shears, U, at 0 = 45° are shown in Figure 7.2
as a function of N%. Each cross sign represents one experiment. The dotted line
stands for the critical shear, U,, at 8 = 45°, i.e.,, U, = 4.17 x 10*N?. Its slope
is proportional to the critical isentropic slope .. The horizontal dot-dashed line
represents the vertical shear in the radiative equilibrium, /g, which has been fixed
for all of the experiments. The dashed line through the origin is a best fit to the

calculated points, which corresponds to 7 = 9.87 x 104N?2,

The figure exhibits two different regimes: one for N? > 1.3 x 107* s~2, in which
case the calculated shear is similar to the shear associated with the radiative equi-
librium state; the other for N? < 1.3 x 10~ 572, in which case the calculated shear
varies linearly with N2. These results imply that the isentropic slope is insensitive
to the change in static stability, but the slope is appreciably supercritical to the

critical slope for baroclinic instability.
The transition value of N? from the Hadley regime to the eddy regime seems to
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be somewhat small compared with the values observed in the real atmosphere. This
is due to the formulation of thermodynamic equation in the Phillips system (see
chapter 3). The effective static stability in the Phillips system should be amplified

by a factor of 2.
7.2.2 Variable static stability

In the Lorenz system, when the forcing ATEg varies, U and N? vary simultane-
ously. The variations of isentropic slope are shown in Figures 7.3 and 7.4, for the two
types of equilibrium static stability (curve A and B) used in chapter 6. Here we have
included several experiments with very small values of ATx (e.g., ATg = 16, 20 K).
This was done because baroclinic instability is possible when the static stability is
very small. For each experiment with a speciﬁed ATg, we calculate the values of
U and N? at 45° correspondingly. The values of U are represented by a cross sign
in the figures, in which N?, instead of AT, is the abscissa for easier comparison
with Figure 7.2. Indeed, U is an implicit function of N2. U. is still a linear function
of N2 and is represented by the dotted line. g is represented by the dot-dashed
line and is determined by the controling parameter ATg. Likewise, the dashed line
is a best fit to the calculated points, represented by U = 4.86 x 10°N? in case A
(Figure 7.3) and by 7 = 4.40 x 10*N? in case B (Figure 7.4).

When ATg (or U g) increases, both 7 and N? increase. This feature has been
demonstrated in chapter 6. When ATg gets smaller, the calculated N % approaches a
limiting value of N2, which is the equilibrium static stability in the diabatic forcing
(N% is proportional to I'g). The calculated U also approaches Ug. One of the

noticable features is that the isentropic slope is insensitive to the change in ATEg.
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The adjustments of U and N? compensate each other to maintain the isentropic
slope at some statistical equilibrium state. Another feature is that the equilibrium

slope is much closer to the critical value as defined in the Phillips system.

In fact, these features are robust. They appear for a large range of ATg values.
They are not dependent on the forcing of static stability (I'g) either. They are
not sensitive to changes in other parameters. For instance, we have repeated the
same experiments but with a surface drag half as strong. The obtained features
of isentropic slope are very similar to the former experiments (figures not shown).
Since the model results are calculated with sufficient horizontal resolutions, further

increasing the resolution has little effect on these features.

The sharp contrast of isentropic slopes in the Phillips and the Lorenz system is
partly due to the different formulations of thermodynamic equation, and partly due
to the effect of the vertical eddy heat flux. The critical shear (C7c = 4.17 x 10°N?)
is derived from the Phillips system. Because of the difference in the formulations of
thermodynamic equation in the Phillips and the Lorenz system, the critical shear is
not unique. If we fix the static stability in the Lorenz system, and perform similar
analysis of baroclinic instability as in the Phillips’ model, then the critical shear will
decrease by a factor of 2. After this modification, the calculated isentropic slope
in the Lorenz system is still less supercritical than that in the Phillips system. For
example, the supercriticality is ~ 137% in the Phillips system (Figure 7.2), and ~
110% in the case B of the Lorenz system (Figure 7.4). This difference becomes more

significant when ATE increases.

The critical shear defined in the modified Lorenz system should be more rea-

sonable, because the thermodynamic equation is better represented in the vertical
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Figure 7.1: The variation of the temperature gradient at 45° with ATg.

mean form. In this sense, the observed shear is indeed very supercritical. The fact
that the observed shear is near the critical value defined in the Phillips’ model ap-

pears to be a coincidence. Moreover, the effects of diabatic forcing, friction and

meridional structure of mean flow were not taken into account in the conventional

analysis of baroclinic instability. In our model, these effects are included in numer-

ical integrations. The model results in the Lorenz system are in better agreement

with observations (Stone, 1978; Stone and Carlson, 1979; Mole and James, 1990).
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7.8 Temperature gradient and eddy heat flux

Empirical power relationships between temperature gradient (6T) and the
meridional eddy heat flux (T.q), i.e., Tea (6T)", have been used in simple cli-
mate models to parameterize eddy heat transports. It is interesting to check if any
power relationship exists in the model results. If a model describes correctly the
important physics and dynamics in the atmosphere, it should simulate the basic
features of observed climatology. It should also reflect some implicit information
embodied in the atmosphere, such as the relationship between the eddy heat flux
and the temperature gradient. We will examine how sensitive the eddy heat flux is
to the change in the temperature gradient in our model. Because 6T is relatively
insensitive to the change in ATg, whereas Teq is very sensitive to the change in
ATg, T.q should be very sensitive to §T. Moreover, we will compare the sensitivity

study in the Phillips system with that in the Lorenz system to determine the effect
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of interactive static stability.

Figure 7.5 shows the model results for various ATg (ATg = 30, 36, 48, 72, 96,
144 K). The abscissa represents the midla.titude temperature gradient, 6T, and the
ordinate represents the eddy heat: flux, T.q. Both coordinates are in logarithmic
scale, so that a power relationship between 6T and Tq is indicated by a straight
line in the figure, and the slope of the line is the exponent n. The letters “A” and
“B” denote those experiments with variable static stability, identical to A(ATg )
and B(ATEg). The letter “C” denotes the experiments with constant static stability.
In general, these calculated points are aligned very well, showing that the power
relationship is a good approximation. However, the slopes of those lines are quite
different between the Phillips system and the Lorenz system. The slope of the “C”
line is much steeper than the slope of “A” or “B” line. Even within the same systems

the slope varies slightly with ATE.

The exponent n is explicitly shown as a function of ATg in Figure 7.6. When
the static stability is fixed n is appreciably large, ranging from 5 to 8. When
the static stability is variable, n varies between 1 and 5. In the realistic range of
radiative forcing for the earth’s atmosphere (ATg ~ 30 — 60 K), n is between 2
and 4, which is very close to the empirical relationships obtained from observations
(Stone and Miller, 1980). Although the model is simple, it describes the eddy heat
transport process very well. The magnitude of the eddy heat flux is comparable
to observations (Qort, 1971) even the static stability is fixed at the realistic value.
But, the relationship between T.q and 8T is similar to the empirical one only when
the static stability is allowed to vary. In this aspect, the interaction between the

vertical eddy heat flux and static stability is a key process. We also note that n
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decreases with ATg. When ATE is very large and the static stability is variable, it
seems that the diffusion law (n = 1) may be applicable. But, if the static stability
is fixed, n is about 6 for large ATg; then, neither the diffusion law nor the square

relationship is applicable.

This result implies that the meridional eddy heat flux is very sensitive to the
change in the tenuperature gradient if the effect of the vertical eddy heat flux is ne-
glected. The meridional eddy heat flux is even more sensitive to the change in 67 in
the quasi-geostrophic §-plane model, e.g., Stone and Branscome (1991) found that
n is about 15 in their model results. This may be related to the eddy momentum
transport, which is not properly described on the f-plane. Although it does not
directly affect the eddy heat flux and the temperature gradient, it has significant
influence on the net heat transport through the negative feedback mechanism, as
discussed in chapter 5. Therefore, both variable static stability and spherical geom-
etry are very important to the study of climatic sensitivity. The former affects the
vertical eddy heat transport, and the latter affects the meridional eddy momentum

transport.
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7.4 The main heat-transporting wave

The spectrum of eddy kinetic energy has shown that the longest wave in our
model (wavenumber 3) becomes dominant when ATy increases. If a wave possesses
the largest part of the energy, it also has the largest amplitude. But we can not
simply say that it transports the largest part of the heat, because the amount of
heat transport is also determined by the phase correlation between v* and T*, in
addition to the wave amplitude. In order to determine which wave transports most
of the heat, we have calculated the individual eddy heat transport by each zonal
wavenumbers. Figure 7.7 shows the portions of eddy heat fluxes by individual zonal
wavenumbers in the experiments with constant static stability (denoted by “C”)
and with variable static stability (denoted by “A” and “B” according to the type
of Tg). When AT% is small, both wavenumber 3 and 6 are responsible for most of
the heat transport. The maximal flux by wavenumber 3 is considerably poleward of
that of the total eddy heat flux. The transport by wavenumber 9 is relatively small,
and the contribution by higher wavenumbers is negligible. When AT increases, the
portion of heat transported by wavenumber 3 becomes dominant, and its maximum

amplitude shifts equatorward.

The peak values of the eddy heat fluxes for wavenumber 3, 6, 9 and total heat
flux are shown in Figure 7.8 as a function of AT, for the experiments with fixed
and variable static stability respectively. In general, the spectral features are very
similar to those found in the B-plane model by Cehelsky and Tung (1991). Ac-
cording to Cehelsky and Tung, this is due to energy cascades to the longest wave
through nonlinear wave-wave interactions. When the diabatic forcing increases to

some extent, the heat transport by the most unstable wave (near wavenumber 6)
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becomes saturated. Consequently, the longest wave is mainly responsible for the

required heat transport.

The upscale energy cascade mechanism seems to be more effective in the model
with variable static stability. For example, the portion of eddy heat flux carried by
wavenumber 3 becomes more dominant in the Lorenz system than that in the Phillips
system when ATE increases. The portion carried by wavenumber 6 increases slightly
with AT% in the Phillips system. But in the Lorenz system this portion increases
with ATy only when ATg < 72K; it decreases when ATy is larger. Moreover, the
portion carried by wavenumber 9 is smaller in the Lorenz system than that in the
Phillips system. This implies that when the static stability is variable there is more

eddy energy cascade toward the longest wave in the model.

However, wavenumber 3 is not the longest wave in the real atmosphere or in more
complete models. It is interesting to know which wavenumber is the main heat-
transporting wave if wavenumber 1 and 2 are included. Since with the resolution of
5 x 5(3) wavenumber 3 transports most of the heat when ATy is large enough, we
have chosen a strong forcing (i.e., ATr = 96 K') and carried out some experiments
with higher resolution. The resolutions used in these experiments are 5 x 8(2) and
5 x 15(1), with the fundamental wavenumber 1 and 2 respectively. The experiments

were carried out in both the Phillips system and the Lorenz system (A).

The peak values of the eddy heat fluxes by individual wavenumbers are shown in
Figure 7.9. In the experiments with the resolution of 5x8(2), the second longest wave
(wavenumber 4) transports the largest amount of the heat, although the transport
by the longest wave (wavenumber 2) is comparable. The contribution by small-

scale waves (n > 6) is relatively small. In the experiments with the resolution of
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5 x 15(1), the most heat-transporting wave is also wavenumber 4, along with other
large-scale waves {(n < 6). The longest wave (wavenumber 1) does not transport the
largest amount of the heat. This feature appears to be similar whether the static
stability is fixed or variable. Accoding to the linear analysis of instability, the most
unstable wave is wavenumber 5. Therefore, the main heat-transporting wave is close
to the most unstable wave rather than the longest wave. However, the spectrum of
eddy kinetic energy is different from that of the eddy heat flux. In all of the cases,
the longest wave has the largest part of the energy (Figure 7.10). This feature is

obviously the result of upscale cascade by wave-wave interactions.
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Figure 7.7: The eddy heat fluxes by individual zonal wavenumbers for ATg =
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Chapter 8

Summary and Conclusions

We have used a two-level spherical model with variable static stability, simple
diabatic forcing and friction to study the role of large-scale eddies in climate. By
progressive relaxation of the model constraints, we have carried out systematic nu-
merical experiments in different dynamical regimes. One major conclusion we can
draw from this study is that spherical geometry and variable static stability are two
very important factors in studies of climate equilibrium and sensitivity. In other
words, the quasi-geostrophic theory is largely limited in climate studies. Spherical
geometry affects the eddy momentum flux which gives a negative feedback to the
eddy forcing by the eddy heat flux. Variable static stability allows interactions be-
tween the vertical eddy heat flux and the temperature structure, which also affects

the meridional eddy heat transport and temperature gradient.

If these two factors are missed in climate models, some important features related
to climate equilibrium and sensitivity will be distorted. For instance, if spherical
geometry is missed, the feedback by the Ferrel cell heat transport will be overesti-

mated. This has been demonstrated in chapter 5 of this paper and by the comparison
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of our spherical model results with the #-plane model results obtained by Store and
Branscome (1991). In our spherical model, the calculated values of the feedback
factor, R, is very close to the predicted values of Rs; whereas in the F-plane model
R is systematically larger, being ~ 2.5 times Rs. The sensitivity of the meridional
eddy heat flux to the midlatitude temperature gradient is also overestimated in the
B-plane model. In the approximate power relationship between T,y and 67 the

power is ~ 15 in the §-plane model and ~ 6 in the spherical model with fixed static

stability.

The effect of variable static stability is more significant. The variations of R with
ATg are of opposite directions for models with fixed and variable static stability.
If the static stability is fixed, the meridional eddy heat flux is exaggerated and the
isentropic slope is very supercritical to the “threshold” slope for baroclinic instability
in the sense of the two-level model. On the other hand, with a variable static
stability, the isentropic slope is closer to the critical value and similar to observations.
The sensitivity of the eddy heat flux to the temperature gradient is also more realistic
when the static stability is variable, with a power of 2 to 4, in good agreement with

the empirical analysis (Stone and Miller, 1980).

In order to study the role of large-scale eddy transports, [v*T™], [u*v*]and [w*T*],
we have investigated three different dynamical regimes. The first is the Hadley
regime in which all eddies are artificially suppressed. We obtained an equilibrium
state which is very similar to that predicted by Held and Hou (1980)’s theory.
The low latitudes are occupied by a Hadley cell which approaches a limit in a
nearly inviscid atmosphere. The heat and momentum fluxes by the Hadley cell are

very small. The temperature gradient is only slightly reduced from the radiative
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equilibrium state in the low latitudes, and is almost unchanged in the mid-high

latitudes. Through linear instability analyses we found that the Hadley regime is

unstable.

Next we studied an eddy regime in which the static stability is fixed (the Phillips
system). Taking the realistic values of the external parameters for the earth’s at-
mosphere, we calculated the equilibrium states of zonal mean flow and temperature
fields, the momentum and heat budgets and the energetics. We also carried out a
series of experiments to examine the effects of horizontal resolution of the model.
Based on a reasonable resolution, then, we studied the climatic sensitivity by varying

the external parameters separately.

The third regime is also an eddy regime in which the static stability is variable
(the Lorenz system). This regime allows us to study the interaction between eddy
heat fluxes and midlatitude temperature structure in both meridional and vertical
direction. We chose two types of equilibrium states, i.e., a radiative equilibrium and
a radiative-convective equilibrium, as the forcing of static stability. With this more
realistic model we carried out a series of parameter experiments, similar to those in
the Phillips system. The role of vertical eddy heat flux was studied by examining

the balance of the static stability equation, and by comparing the model’s results

with those in the Phillips system.

In our parameter experiments we confirmed that, in general, the eddy forcing is
more sensitive to the diabaticity than to the dissipation, which has been pointed out
by Stone and Branscome (1991) from their 3-plane model results. Hence, the eddy
regime can be divided into two subregimes according to the intensity of diabatic

forcing: one is “strong” eddy regime, characterized by small values of R and asso-
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ciated with strong diabatic heating; the other is “weak” eddy regime, characterized
by large values of R (R ~ 1) and associated with weak diabatic forcing. The mid-
latitude atmosphere belongs to the former subregime. It is forced by the strongest
temperature gradient in radiative equilibrium. On the other hand, the lowlatitude
atmosphere may be within the latter subregime because the forcing temperature

gradient is weak.

In terms of the model results we studied the interaction between the eddy heat
flux and the temperature structure in the mid latitudes. Specifically, we examined
the baroclinic adjustment hypothesis and the empirical power relationship of the
eddy heat flux and the temperature gradient. We emphasized the climatic sensifiv-
ity of the isentropic slope and the meridional ‘'eddy heat flux. In the mid latitudes,
baroclinic adjustment seems to be the most important r;lecha.nism. QOur model
results support two main ideas in the baroclinic adjustment hypothesis: 1) the mid-
latitude temperature gradient is not sensitive to the change in diabatic forcing; and
2) the eddy flux of sensible heat correlates very well with the temperature gradient
(Stone, 1978). We have demonstrated that the nature of baroclinic adjustment is
the isentropic surface adjustment rather than the meridional temperature gradient
adjustment only. We also found that the longest wave does not necessarily transport
most of the heat although it has most of the eddy kinetic energy (e.g., wavenumber
1). The main heat-transporting wave(s) is within the wavenumber subrange of the

most unstable wave and the longest wave, and is close to the most unstable wave.

The emphasis of this study is on how the interaction of the vertical eddy heat flux
and the temperature structure affects the climate equilibrium. In order to highlight

the role of the vertical eddy heat flux, we compare the model results in the Phillips
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and the Lorenz system. The similarities and differences are summarized as follows.

Similarities:

The qualitative features of the general circulation, such as the zonal wind, the
temperature field, the momentum budget, the heat budget and the energetics,

are very similar.

When 7, increases, the eddy fluxes of heat and momentum decrease. B — 1

as Tp — 0.

The climate states and eddy transports are insensitive to the change in the

surface drag. However, when 7, increases R decreases.

Baroclinic adjustment occurs in the sense that the isentropic slope is propor-

tional to the critical value for baroclinic instability.

T.; and 6T satisfy approximately a power relationship over a broad range of

ATg.

Eddy kinetic energy cascades to the largest scale.

Differences:

The static stability increases due to the vertical eddy heat flux in the Lorenz

system.

The strength of the Hadley cell in the Phillips system is much more sensitive

to the change in ATg than that in the Lorenz system (3 ~ 4 times).
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6T is more sensitive, but the isentropic slope is less sensitive, to the change in

ATy in the Lorenz system than in the Phillips system.

When ATy increases, R decreases in the Phillips system, but increases in the

Lorenz system.

The isentropic slope in the Lorenz system is less supercritical than that in the

Phillips system. In other words, baroclinic adjustment is more effective in the

Lorenz system.

T.q is less sensitive to 6T, with a power of 2 ~ 4 in the Lorenz system; the

power is ~ 6 in the Phillips system.

When ATg increases, the portion of T,y carried by short waves decreases more

drastically in the Lorenz system, implying a more effective cascade mechanism.

The effective static stability in the Lorenz system is half as much as that in
the Phillips system; therefore, the baroclinity in the Lorenz system is in better

agreement with observations.

Therefore, when the goal is just to simulate the qualitative characteristics of

climate states and processes, such as the temperature field and the meridional

eddy heat flux, quasi-geostrophic theory is usually adequate. This has been demon-

strated by a number of numerical results obtained from §-plane models (O’Brien and

Branscome, 1989; Stone and Branscome, 1991). This means that spherical geometry

can be neglected and the static stability can be fixed in a first approximation. How-

ever, if the goal is to study interactions of climate processes or climatic sensitivities,

quasi-geostrophic theory is no longer very good. Neither quasi-geostrophic S-plane

models nor simple climate models with constant static stability are appropriate,
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because the spherical geometry and the interaction of vertical eddy heat fluxes and
static stability are absent in those models. Due to the fact that the important feed-
back mechanisms are distorted or neglected, the eddy forcing of climate states can

not be correctly described by those models.

A successful model should, at least, be able to describe principal climate prop-
erties, such as the temperature structure, eddy transports of heat and momenturm,
the energy cycle, etc. Moreover, it should be able to describe correctly the vari-
ation of these principal climate properties with the external parameters, which is
the basic requirement for climate sensitivity studies. Furthermore, it should be
able to describe not only an individual climate property and its variability but also
the dynamical correlations and connections among these properties. For example,
the feedback factor R, the exponent n in the power relationship of T.q and 6T,
the inverse cube law in the eddy kinetic energy spectrum, etc., all belong to these

correlations and connections.

According to these “standards”, our two-level spherical model is successful. It
is reasonably simplified and relatively realistic. The resolution of the model is low
but enough to capture the dynamics of zonal mean flow and large-scale eddies. The
physics of the model are simple but represent the basic sources and sinks. The eddy
fluxes are calculated explicitly and inexpensively. Therefore, this model has a strong
potential in studies of climate and climatic changes. For example, an easy extension
of this study can be done by incorporating topography, hydrology, zonal or annual
variations of the diabatic forcing. This model can also be coupled to a simple ocean

model to study the effect of air-sea interactions on climate.
One shortcoming of this model is that the tropical dynamics can not be described
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satisfactorily, although including a meridionally varying interfacial friction can make
some improvement. This problem is related to the balance equation approximation
and insuflicient meridional resolution. It may also be related to the simple formu-
lation of diabatic forcing, e.g., convective adjustments are not included. Besides,
the limitation of two levels only allows one to consider the “bulk” or vertical mean
thermal properties, such as temperature, static stability, heat fluxes by eddies and

by the MMC. To study their vertical structures a multi-level model is desirable.
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