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Abstract

We study two aspects of cash management for a bank. First, we formulate a con-
strained dynamic programming problem that takes into account a fixed lead time for
the delivery of cash, a known holding and ordering cost and a limit on the extent
of shortage that is tolerable. We implement an algorithm for the optimal ordering
policy and present numerical results. Secondly, we study a non-stationary inventory
model for developing the optimal stocking policy for an automatic teller machine.
Demand is assumed to follow a cyclic pattern during the week. An efficient algorithm
is implemented for exponentially distributed demand taking into account no delivery
lead times or set-up costs. Finally, we propose two heuristics for the generalization
of this model to include set-up costs and present numerical results supporting their
validity and their relative effectiveness.
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Chapter 1

Introduction

Large banks have a large network of local branches. These branches perform a number
of activities involving cash. As a result, they need to maintain large amounts of cash.
In each branch, the main characteristic of the daily demand for cash is that it is
stochastic and time varying.

Maintaining excessive amount of cash is uneconomical simply because one could
invest it. On the other hand, maintaining small amounts of cash can be disasterous
in the event that a certain branch runs out of cash. As a result, it is intuitively
clear that there is an optimal amount of cash that a branch should maintain. On
a daily basis, given the stochastic and dynamic variability of the demand for cash,
the optimal level will vary from day to day or even within the same day. Hence, the
optimal level will be time varying and one could continuously control the level of cash
and adaptively decide when to increase the level of cash maintained.

The problem this thesis addresses is to decide how much cash to order at regular
time intervals so as to meet the depositor’s demand for cash every day. This is similar
to most of the mathematical inventory models, in which the two fundamental issues
are: when should a replenishment order be placed, and how much should the order
quantity be. The complexity of the model depends on the assumptions that one
makes about the demand, the cost structure and the physical characteristics of the
system.

In Chapter 2, we present and solve the problem of optimal cash allocation of a



branch of the bank. This problem can be viewed ir terms of inventory theory as an
infinite time horizon problem with independent and identically distributed demands
each week, known holding and ordering costs, fixed non zero delivery time lags and a
constraint on the expected level ( or probability) of shortage that may arise if demand
exceeds available supply. We review the related literature and consider how existing
models may be modified so as to be applied to the current problem. We present an
efficient algorithm for computing a close approximation to the optimal policy and
present the computational results from the implementation of the algorithm.

In Chapter 3, we analyze a special demand pattern. Specifically, we study the
impact of non-stationary demand patterns on the optimal stocking policy of automatic
teller machines. Clearly, during the ordering cycles (days) the demands for ATMs
are certainly not identically distributed. These demands may be assumed to be
independently distributed. The cost structure analyzed in this chapter is similar to
that studied in the earlier chapter. We assume, however, that there is no time required
for the delivery of cash when ordered. We review the related literature that treats
such problems. We provide an efficient algorithm for computing the optimal policy
for the ATM problem. We implemented the algorithm and present computational
results for computing the optimal stocking policy.

In Chapter 4, we study the following generalization of the model presented in
Chapter 3: we assume that there is a set-up cost that is incurred every time an
order is placed. This assumption would be necessary when designing the optimal
stocking policy for an automatic teller machine that is remotely located and would
therefore involve an additional fixed expense every time the machine has to be re-
stocked. We propose two heuristic approaches and present computational results for

their performance.



Chapter 2

The I. I. D. Demand Model

2.1 The Problem

The problem we discuss here is as follows: how to optimally order quantities of cash
at the fixed time intervals, say, each Friday of the week, to meet the weekly stochastic
cash demand, so as to minimize the total cost of this particular operation of a branch
of the bank.

The assumptions we make are:

(1) The demands which are not satisfied during each period (i.e., week) are lost.
So the on hand inventory at the end of each period is always non-negative (as opposed
to the case of backlogging of excess demand).

(2) There is a time lag 7 for cash delivery from the central bank to an individual
branch. For example, if the branch orders the cash this Friday, it will arrive on
Wednesday the week after (i.e., in 12 days). We have considered = 0,1,2.

(3) The model can be over a finite or an infinite time horizon. We have focused
primarily on the infinite time horizon, since we assume that the bank is operating
under stable conditions.

For tractability purposes, our model does not include set up costs. Although there
are cases in which this is an important limitation, one could assume that the costs
incurred by the bank in distributing cash to its various branches is largely unaffected

by the specific ordering patterns of an individual branch. This would suggest that the



fixed set up cost may be negligible, but this is an area that needs further exploration.

We use a dynamic programming model, where the stage is the period, the state
is the cash level on hand at the beginning of the period, the control variables are the
amount of cash that needs to be ordered at the beginning of every period. We assume
the holding cost of excess cash in the inventory is linear. There is no set up cost, but

there is linear ordering cost.

2.2 The Model Formulation

We assume that orders for cash that are placed at the beginning of period t will
arrive at the beginning of period t+2. This deviates somewhat from the real situation
described above. A survey of available inventory models reveals that, in general, it is
assumed that orders are placed and deliveries are received at the beginning (or end
of ) fixed periods. We use the following notation:

y:: inventory on hand at the end of period t.

z,: amount ordered at the beginning of period ¢ —2, this amount will be delivered
at the beginning of period t.

d;: demand in period t, which is 2 bounded random variable such that 0 < d, < D
and has a known p.d.f of f;(d) for all t.

a: safety factor which is assumed to be given; this is an upper bound on the
expected level of shortage during any pericd.

h: cost per dollar held in the inventory. This represents the interest that can be
attained if the cash in the inventory were invested.

¢: cost per dollar ordered.

B: discount factor used in computing present values of future costs incurred.

n: number of periods in the time horizon.

The cost incurred during each period t consists of two components: (1) ordering
cost cz, and (2) the holding cost for excess inventory ny,. So the total expected cost
over n periods is: E(X7i) 3'(hy: + cz,)); our objective is to minimize this cost by

proper choice of the orders zo,;,....z,~; subject to the natural constraint z, > 0,



t=0,1,2,..,n — 1 and the constraint that the expected cash shortage in period t
should be less than a given safety factor a. The reason we include this as a constraint
is due to the difficulty of assigning penalty cost to the shortage of cash. Finally, y_,,
the opening inventory at the beginning of period 0, is assumed to be given. The

model can be formulated as follows:

Problem P
Min  Z = E(TX5) Bi(hyi + cxy)) (2.1)
Subject to  y; = max(0,yi-1 +2; ~d;}) fori=0,.n—1 (2.2)
E(max(0,d; ~yicy —2)) <a fori=0,..n—1 (2.3)
z; >0 Jor 1=0,.n-1 (2.4)

There are several things we should address in the formulation. First, we have
used an approximation for computing the expected holding cost. We use the on hand
inventory at the end of the period instead of using precisely the average on hand
inventory level during the period. Secondly, we assume that the ordering cost will
be incurred when the amount is ordered. Thirdly, in contrast with most inventory
models, instead of having a service level constraint, we have a constraint which re-
quires that the expected inventory shortage be less than «. The major question here
is what will be the proper choice of o. An intuitive relation between the value of
a and the service level can be stated as follows: the smaller the value of a is, the
better the service should be. We have to admit that this constraint is weaker than
constraints on the probability of shortage. Clearly, the constraint in the above form
is considerably harder to conceptualize as opposed to the constraint on the proba-
bility of a shortage. But formulating it in this fashion proves to be advantageous in
later analysis. Morever, in Section 2.7 we will include results from the case in which
we impose constraints on the probability of shortage. In the following section, we

introduce the idea of the penalty method for solving the problem P .
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2.3 The Relaxation Problem

Problem P is a stochastic and dynamic problem with nonlinear constraints (2.3). Our
approach is to relax constraints (2.3) multiplying each constraint by A\; = Ag'. We

thus obtain:

The Problem P, :

Min Z,\ = :ﬁ_:g ﬂ‘{E(h X ma:c(O,y‘-ul + z; — d,) + CZ;)

+AE(maz(0,d; — z; — y;—y) — @)} (2.5)
Subject to  y; = max(0,yi~y +zi —d;) fori=0,.n-1 (2.6)
2;>0, i=0,.n—1 (2.7)

The parameter A has a natural interpretation as a penalty of shortage of cash. As
we will see in the later section, A can be seen as a parameter to control the tradeoff
among the cost of holding, ordering and the shortage. The constraints (2.2) in the
original problem P are not convex over the variables z;. As a result, the solution
to the relaxation problem P, will only provide a lowar bound to the solution of the

original problem, i.e. Z, < Z, forall A > 0.

2.4 The DP Algorithm to solve P, :

Let s denote the total available cash at the beginning of period k. Then s; =
Yk-1 + 2. Let L{s;) denote the one period expected holding and shortage cost. Then

L(sy) = E{h x maz(0, s, — di) + Amaz(0,di — sz)}

We define:

(Sk, Tk41): the state variable at the beginning of period k.

Treo: the decision variable at the beginning of period k.

k: the stage of the system.

Ji(8ky Zg41) ¢ the minimum total discounted cost incurred in period k through

n — 1 given that (si,Zr+1) 15 the state variable at the beginning of the period k.
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Observe that z, and z,,_; is 0 in tke case of the finite time horizon problem with
n periods and 2 periods time lag. In other words, there is no decision to be made at
the beginning of the last two periods.

The DP equation is:

Ji(sk, Ths1) = ming, ,>0{L(sk) + Zip2 + BE(Jkp1(Sk41, The2))} (2.8)

Notice that whenever demand di exceeds s in period k, 44, represents the total
cash available at the start of the following period, otherwise, s; + Ti41 — dy is the

available stock size for the next period. Then:

Tht1 if sx < dp
k41 =

Sk +.’Ek+1 —dk if S > dk

Hence, the dynamic recursive equation for Ji (s, z+1) satisfied is:

Je(si, Tiewr) = ming, ,o0{cTisr + L(sk) + BIis1(Ths1s Thsa) / f(€)d¢
3K

+ ﬂ/:k Jerr(sk + zhs1 — &, zr42) F(E)dE} k=0,1,...,n —2 (2.9)

Jn-1(8n-1,Zn) = L(Sn-1). (2.10)

2.5 The Existence and The Structure of The Op-
timal Solution of P,

Now we fix A and solve problem P,. In Karlin[3] the existence and the structure of
the optimal solution of (2.9) for the one period time lag has been well studied. In
this section, we will state that result and Morton’s[4] extension.

The dynamic recursive equationwhen the time lag is one period is given by:

Je(sk) = ming,, >o{ezes1 + L(sk) + BIes1(h41) /: f(&)dé

+ ﬂ/osk Jesa(sz + Topr — E)F(E)dE} k=0,1,..,n—2 (2.11)
Jn-1(Sn1) = L(sn-1). (2.12)

12



To perform the minimization operation, we differentiate (2.11) with respect to

Zr41. This gives:

e+ Bia(m) [T QA+ B [ I 1ok + 2rin — E)F(E)E = Galon, zans)
) 1]

Let 77 ,(3%) denote the solution of Gi(sky Tyq) = 0.

Theorem 2.1 (Karlin[3]) If there ezist Sk such that Gi(sg,x3,,) = 0, then the op-
timal policy z3,,(st) has the property that T341(Sk) s continuous in s; and of the

form:
>0 ifs < Sk
=0 ifsp > s

5"'2+1(5k) = {

: : , oz}
Moreover, zi,(sk) is strictly decreasing for s, < s; and ]—%}s"—)] < lL.

The previous theorem provides a characterization of the optimal policy for the
case in which the time lag is 7 = 1 and there is a finite time horizon n. Morton[4]
has proven also the analog of theorem 2.1 for 7 = 2. Unfortunately, these theorems
are not useful computationally.

In order to propose useful implementable policies, we now consider infinite time
horizon problems and use the approach of Morton [4] in order to provide bounds for the

optimal policy. In the infinite horizon case, Morton[4] proves the following theorem:

Theorem 2.2 Let FO)(z) = [F FG-1(z — £)f(¢£)de, i = 1,2,3, with FO(z) = 1,
ie. FO(z) is the cdf of the demand after ¢ days. Let P = Wﬁ%z_)i—ﬁé' Let ¢ =
(F(‘))“I(P), t = 1,2,3. For 1 = 2, if the state of the sytem is (Sky Tky1), then the

!

optimal order amount z} ., satisfies
0 < $;+2 < max{oa min(fl)gz - $k+1,€3 — Tk42 — Sk)}

This theorem provides an adaptive algoruthm to calcualte approximately the op-
timal policy (for fixed X ), where we have already order z,,, and the on hand cash is
Sk-

Algorithm A, (7 = 2, infinite time horizon)

1. Calculate £7,£2, ¢°,

13



2. Find £ = maz{0,min(€,£® — £p41, €% — Tp42 — s2)} .

3. Order 23, = ¢~

For 7 = 1, the algorithm becomes:
Algorithm A, (7 =1, infinite time horizon)
1. Calculate £1,£2.

2. Find £* = maz {0, min(£,£% — s;)}.

3. Order z}, = £".

For r = 0, the algorithm becomes:
Algorithm A, (7 = 0, infinite time horizon)
1. Calculate £!.

2. Find & = maz{0,£'}.

3. Order s; = £~.

The above algorithms, for 7 = 0,1,2 do not find the optimal cash order exactly.
They rather overestimated the optimal order, trying to be more conservative. This
means that the probability of stockout under this approximate policy will be lower
than under the optimal policy.

We have also explored the possibility of improving the previous policy. Since under
the proposed policy, the optimal ordering amount is overestimated, we experimented

with decreasing the ordering amount. In particular we used
Trye = F x maz{0,min(€',¢% — £441,8° — 2140 — sk)} (2.13)

with 0 < F < 1. For 7 = 0, algorithm A, is eract, since in this case, the problem
becomes the newsboy’s problem.

Another important issue is that we do not know the penalty ) of stockout. In
the following section, we used simulation and a search technique to provide a tradeoff

curve between cost and probability of stckout.
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2.6 Computational Results

The underlying assumption in the previous section is that the penalty cost A is a
known parameter. Unfortunatly, the penalty cost associated with the shortage of
funds is not easily computable. Instead, we have used a constraint on the expected
shortage of funds in each period in the formulation of the problem. By using the
relaxation approach, we have transformed the constrains of the allowable shortage
to a penalty A. We first notice that the larger we set A, the lower the expected
shortage will be; however, extremely large values of A would result in an excessively
conservative policy. The basic idea is to find the smallest value of the penalty cost A
that ensures that the constraint on expected shortage cost is satisfied. In order to do
that, we establish a range within which we expect the best value of A to lie.

We achieve this as follows: Lower bounds on A are established by using the fact
that both the numerator and denominator of the probability m—i}_)‘,\_)%ﬁ; for ™=

0,1,2 should be greater than 0. Notice that when 7 = 0, the above probability
becomes TE:—L»\.TC:E’ which is the probability of no stockout in the newsboy’s problem.

TA—c

B
BT (A+X)—Be

Hence, the upper beund for A is computed by chocsing a value such that
l-a for 7=0,1,2

Having established a range for A, we narrow the range iteratively by computing
the optimal policy for the chosen value of A, simulating the system for a fixed but long
period of time, and checking to see if the constraint on expected shortage is satisfied.
Several replications of each simulation are performed to get an accurate estimate of
the expected shortage per period. Eliminating ranges of values to be searched, the
range for the optimal A can be narrowed to a desirable of accuracy.

Our computational results were obtained under the assumption that the demand
during each week was gamma distributed with a mean of 500 and a standard deviation
of 33 (all figures are expressed in thousands of dollars). The gamma distribution is
clearly more acceptable than the normal for such an application, since it is a non-
negative random variable.

We assume that the annual internal rate of return is 15%. This is converted to a

15



weekly interest rate by using (1 + fweekty)®> = (1 + annuai). In order to convert to the
infinite stream of costs into a present cost, the appropriate discount factor is e —
The holding cost is the same as the weekly interest rate since the commodity for which
we are computing the holding cost is itself cash. The ordering cost was assumed to
be linear with a rate of $0.001 per thousand dollars.

We repeat the above procedure for different values of lead time . Specifically, we

compare the results of no lead time (7 = 0) with those of 7 = 1 and 7 = 2 periods.

The results of our numerical computations are presented in the form of six graphs.

Path of Lambda during the search v/s
P(Stockout) : Tau=1

1.2 1
14 By
0.8 -+
Lambda Q.6 <+
c.4r L]
] ’_5.
02 - - 3
0 4 { i 4
0 0.005 0.01 0.015 0.02
P(Stockout)
Fig. 2.1

Figure 2.1 indicates the search path of A to solve a typical problem. At the
conclusion of the simulation for a particular value of ), the estimate of the probability
of stock out (the fraction of periods in which a stock out is observed in the course
of the simulation) is compared with the prespecified limit of 0.01. If the constraint
is violated we increase A, while if it is satisfied we decrease A. In this particular
case, this procedure takes seven steps before the range of search is narrowed beyond
a prespecified precision. Notice that the check for constraint satisfaction involves a
certain amount of error, since we can only compare an estimate of the probability

of stockout or the expected stockout. This often results in a termination of the

16



procedure at a point where the constraint is slightly violated or at a point which

appears to correspond to a more conservative policy than strictly required by the

constraint. Total Cost v/s F(Stockoyt)
350 ¢ .
300+ w. Tau2
."——-..,._. Tau=1
250 + . BB T (=0
200+
Total cost

150+

1004

50 +

0 ; } t ; } i
0 0.05 0.1 0.15 0.2 0.25 0.3
E(Stockout)
Fig 2.2

We next study in Figure 2.2 the tradeoff between the total discounted cost (order-
ing+holding cost) and the expected amount of stockout in a period. The two main
observations that one can make follow our intuition; first, for a given delivery lead
time, the total cost decreases as we permit larger values of expected stock out; sec-
ondly, for a given level of permissible stock out, there is a significant increase in the
total cost for longer delivery times. The first observation is intuitive, since a higher
level of permissible stockout would permit less conservative ordering policies. The
second observation is also intuitive, since a longer lead time is equivalent to planning
for a later time in the future. This would imply that the decisions are subject to a
greater number of unknown factors, namely, the demand in the delivery period. This
would require a more conservative policy for longer delivery lead times in order to
stay within the same bounds of expected stock out.

The Figure 2.3 results from performing the procedure outlined above except that
the choice of A was governed by constraints on the probability of stockout instead of

expected stockout. We continue to apply the rule for optimal ordering policy from

17



3507 .
\0“‘—-_....._.
5004 T —O—pag T Tauw2
[ a — Tau=1
250 + e ® Tau=0
200 4+
Total cost
1504
100+
S50+
0 4 ¢ } i
0 0.005 0.01 0.015 0.02
P(Stockout)
Fig. 2.3

section 2.5 for different values of the penalty cost; at each step we check to see if the

estimate of the probability of stock out is within the permissible limit of 0.01. As

expected, the results are very similar to those obtained in the case of the constraint

on expected stock out.

0.01

0.009

0.008

0.007

0.006
P(Stockout) 0.005
0.004

0.003

0.002

0.001

O

P(Stockout) v/s E(Stockout)

= tau=0

tau=1
s tau=2

0.05 0.1

E(Stockout)
Fig. 2.4

0.15 0.2

We next studied in Figure 2.4 the correlation of of the probability of stockout and

the expected stockout under the proposed policy. It can be seen that increasing the
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penalty cost produces decreasing effects on both the probability and the expectation
of stock out. It also reveals a highly linear relationship between the probability
and the expectation. This would imply that at least under our assumptions one
can translate a probability constraint into a constraint on the expectation without
introducing any substantial error. Another interesting observation is that, for a given
expected amount of stockout, the probability of stockout is highest for the case with
the shortest lead time. This leads one to conclude that there is a larger number
of smaller shortages when the lead time is shorter; this again indicates that under

shorter lead time conditions, one has greater control over the operations including

hortages. '
shortages Total cost v/s tau (varying lambda)
3657 A
]
Total cost

Increasing Lambda

265 % ; :

0 1 2
Tau
Fig. 2.5

We investigate in Figure 2.5 the dependence of the total cost on different lead
times for various values of the penalty cost. We conclude that higher penalty costs
lead to diminishing changes in the total cost. A similar observation can be made from
Figure 2.6 where we investigate the dependence of the expected amount of stockout
on different lead times.

Finally, we investigated whether we can further improve the proposed policy by
using a factor F < 1, (see equation (2.13)). In Figs. 2.7 and 2.8 we see that the total

cost function does decrease very slightly when the reduction factor is reducted to 0.99
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0.12 = Increasing Lambda
E(Stockout) a
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0‘06 /
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0+ { {
0 1 2
Tau
Fig. 2.6
Plot of total cost v/s Reduction factor used on Morton's bounds
on optimal policy (tau=1)
311
]
310+
309+
Totalcost 308+
| |
307+ /
]
\-
3064
305 } ¢ -
1 0.99 0.98 0.97
Reduction factor
Fig. 2.7

20



Plot of total cost v/s Reduction factor used on Morton's bounds
on optimal policy (tau=2)

33757 u
337+
3365+
Total cost
336 ;r ]
335.5--\\\ /
{ ]
335 ¢ : i
1 0.99 0.98 0.97
Reduction factor
Fig. 2.8
Piot of E(Stockout) v/s Reduction factor used on Morton's
bounds on optimal policy
0.5
. ] =
0.45 4 tau=]
0.4+ tau=
0.35 + e ‘
034
E(Stockout) 0.25 +
0.2 0O
0.15
0.1
0.05
O ] : _=_ :
1 0.99 0.98 0.97
Reduction Factor
Fig. 2.9
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but rises rapidly if we decrease F in both cases. This suggests that the optimal order
quantity is very close to the proposed policy. Moreover, from Figure 2.9 it is evident
that when we use a reduction factor that is less than 1.0, the expected stockout rises
rapidly. This implies that in order to achieve the same level of expected shortage we
would need to use a larger penalty cost. In general, this sensitivity analysis strongly

suggests that the proposed algorithm is quite robust as well as being near optimal.

2.7 Conclusions

Our analysis demonstrated:

1. Our method gives interesting tradeoffs between cost and service (i.e. probability
of stockout or expected stockout).

2. Shorter delivery times are preferable under this model; they produce lower cost
and lower probability of stockout.

3. There is a roughly linear relationship between the probability of stockout and
the expected stockout under the proposed policy. This is useful since it allows us to use
either of the two measures to control the service level of the system. If the decision
maker prefers to state his or her preferences in terms of a maximum permissibile
average shortage or in terms of a maximum permissible frequency of shortage, then
we would be able to derive an approximately optimal policy by converting it to a
corresponding implicity penalty cost and then applying our techniques.

4. Although the proposed method is approximate, it is very close to the optimal
policy as shown in our sensitivity analysis.

It has to be noted that the problem in real life would involve some additional
factors that have not been inciuded in the present model. First, in all the literature
related to inventory control under delivery lead time assumptions that was reviewed,
orders are placed and received only at the beginning of periods. In the real situa-
tion, the bank places its orders on Fridays and receives the ordered amount on the
Wednesday of the following week. Such a situation has not been studied due to the

resulting complications,
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Chapter 3

The Cyclic Demand Model

Another aspect of the bank cash management problem is the control of the amount
of cash in the Automatic Teller Machines (ATM). At the beginning of each day the
bank reviews the amount of cash in an ATM. Depending on the distribution of the
projected demand for cash during that day, the implicit cost of shortage of cash during
that day, the cost of holding a certain amount of cash and the cost of ordering cash,
the decision maker has to determine the amount of cash to be ordered. It is clear
that the amounts of cash demanded on different days at an ATM are not necessarily
identically distributed. But it is a reasonalbe assumption that the demand for cash
on different days is independent. Further, from our knowledge of demand for cash, we
could assume that the demand for cash on specific days (say, Mondays) is identically
distributed. Of course, there are other factors that influence demand for cash (like
the incidence of long weekends, holidays etc.), but the demand pattern may be seen
primarily as a weekly pattern. Since we formulate the problem for the ATM on a
weekly basis, the demand pattern for the ATM is cyclic each week, hence it is suitable
that we assume the demand for cash seeing by the ATM is cyclic. The model we apply
here is again an inventory model with infinite planning time horizon, periodic review,
stochastic cyclic daily demand, no delivery lead time and lost sales.

The crucial difference with the model of the previous chapter is that we assumed
the demand during each period for cash is cyclic. For example, during the weekend,

one would expect a heavier demand for cash than during a week day. Hence we assume
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the demand for each day is independent but not necessary identically distributed. On
the other hand, we assume that the demand for each day-type (i.e., Monday, Tuesday,
etc.) is identically distributed. In other words, the demand pattern is cyclic with a

period of one week.

3.1 The Cyclic Demand Model

The model we use is similar to that of Iglehart and Karlin [1]. In their model, they
consider the situation where the demand is not i.i.d. but correlated. They have
assumed that there is a finite number of states of demand; further, the transitions
between states of demand obey a Markov transition law. Our problem is a special
case of the problem they studied in the sense that the transition matrix is a simple
permutation matrix. The notation we use in this model is as follows:

d,: demand on day n,n =1,2,...7.

fn(dn): the demand density function for day n.

¥n: cash available at the beginning of day n.

Zn: cash level at the end of day n — 1.

B: discount factor.

The decision we need to make at the beginning of day n is how much to order,
given the the on hand inventory, z,_;. There are three main costs that influence
the ordering decisions. There is a linear ordering cost ¢ per unit ordered; holding
cost is charged at the rate of A for the stock of inventories on hand and the shortage
cost associated with the failure to meet the demands is proportional to the extent
of shortage with the rate of A. We assume that the holding and shortage cost are
charged at the end of each period. The expected holding and shortage cost as L:(y;)

is then:

Lilw) = b "6 = 5@+ A [ (€ - w)fde

Let J;(z) denote the minimum discounted expected cost incurred during an infinite

sequence of time periods if z is the cash available and an optimal ordering rule is used
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at each ordering opportunity. Assuming that excess demands are lost and there is no

time lag in delivery, the system of the DP equations is:

Ji(z) =mings-{c(yi = =) + Li(y:) + BJi41(0) f7 fi(€)dE +
B Jipa(yi — €)fi(€)dE} i=1,..,6 (3.1)

Jr(z) = mingy-{c(yr — z) + La(yz) + BL(0) [ fo(€)dE +
BLs" Nyr — £) f>(£)dE} (3.2)

These equations can be explained as follows: J;(z) is the optimal total discounted
cost given that we have z at the beginning of a day of type i. The inventory can
be raised to y; by the immediate delivery of an order of size y; — z. Clearly y; > z.
The expected cost incurred on the first day is then the cost of ordering y; — z and
the expected holding and penalty cost resulting when the starting inventory is y;. If
the demand £ exceeds y;, then the closing inventory is going to be 0 (since we are
assuming that demand is not backlogged); on the other hand, if the demand £ is less
than the closing inventory is y; — {. The subsequent cost is then the optimal total
discounted cost given that we have these quantities at the beginning of a day of type

¢+ 1 (or 1, if i=7) discounted by the appropriate discounting factor.

3.2 The Algorithm

Notice that Li(y;) = (h+ A)Fi(y:) — A and L; (%:) = (A + A)fi(3;) > 0, hence the func-
tion L;(y;) is always convex. We impose the following additional technical conditions

on the model:

h+A—Bc>0 (3.3)

Li(0)+c<0, (i=1,2,..7) (3.4)
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Notice the second condition is intuitive since L(0) is the holding plus penalty cost
given the current openning inventory is zero. Therefor if we order 1 unit and raise
the inventory from 0 to 1, the increases in the cost is ¢ + L'(0) and if this quantity is
greater than zero, there is no point even ordering at the first place.

For:=1,2,..7, let

Gi(vi) = cyi+ Li(y:) + BJi31(0) w JiE)E+ B[ Jia(yi — €) fi(€)dE  (3.5)

(Note that the above equation needs to be modified for the case of i=7; as in the
earlier section, Js should be replaced by J; in this case. Similar modifications should
be intreduced in the arguments that follow wherever necessary.)

Then

Ji(z) = minys.{—cz + Gi(y:)} = —cz + miny,.Gi(:) (3.6)

Taking the derivative of function G;(y;) with respect to y;, we get:

Gily) =+ L) +8 [ Jinn - RO i=1,..,7 (37)

Define y} such that Gi(y}) = 0. We can actually solve the following equations to

get vy
e+ L) +8 [ Tl - Of(©d =0 i=12.7

We will show in section 3.3 that these roots are indeed the optimizers of the functions
Gi(y:). Therefore, the optimal policy calls for ordering of cash to the level of y}, when
r <y; and not ordering when z > y;.

The Algorithm

We now state the algorithm that can be used to calculate these critical numbers.

For ease of exposition we assume that the yf, 7 =1...7 are distinct. We denote the

smallest critical number by ypj, second smallest by Y[z and so on.

Step 1 Calculate the smallest number Y

Consider the equations
1 ! Y 0 .
HYy) = c+ L) + 8 [ Toaly —Ofi(Ode =0 i=1..7
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where T?(y) = —c, for i = 1...7. Differentiating each function H(y) , we get:

%Hg(y) = L;(y) - Befily)

= (h+A—Be)fi(y)

By assumption (3.3), it is easy to verify that each H}(y) is strictly increasing. Us-
ing assumption (3.4) it follows that H}(0) < 0 for each ;. Moreover, we have
liminfy, H}(y) > ¢(1 — B) > 0 for i = 1...7. Hence each H(y) = 0 has a unique
root. Now determine the root of each H}(y) = 0 and denote these roots by y!, 32, ...y!
and let :

Y = minigjcr(y;)
The subscript [1] simply stands for the index value equal to that j for which y} is

minimum.

Step 2 Calculate the second smallest number Y

To calculate the second smallest critical number we construct the functions

20, — ’ YTl _af =
Hig) =c+ L)+ 8 [ Tha(y—Ofi(Ode  i=1,..7

where

Ty) = — (5 # 1)

—c if 0 <y <y,
O
9y(y) ifyy <y,

and the function gfy;(y) is determined as the solution of the integral equation

gly@) = Lyy(y) + ﬂJ{)y Tiyer (v — E) Sy (€)de (¥ > yy)

It is clear that by using assumption (3.3) and the fact that L;(y) is convex, 9y ()
is nondecreasing, and in particular that T[ll](y) > —cfory > 0. Moreover, T[(lll)’(y) >0
for all nonnegative y with the possible exception of the point y = ypyj, where only left

and right-hand bounded deritives may exist. The above facts ensure that
liﬂg}fo(y) 2c(l=8)>0  for i=1,..7
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and each H(y) is nondecreasing. Also we know by condition (3.4) that H?(0) < 0
for each i. Hence each equation H?(y) = 0 has a unique root. Denote these roots
by 33,93, ..y7. Observe that y? < y}, since H¥(y) > H}y) for all y. Moreover, the
minimum of the y? is exactly yy), since H}!(y) = H2(y) for y < yp;. Now define

Y = Minagick and 2] (Y7)

Step r+1 Calculate the (r + 1)* smallest number y, 4
Suppose that the r smallest critical numbers are determined: Yy < Y < e <

Y- Construct the functions
r+1 ! Y r .
H(y) = e+ L) + 8 [ Tra(-Of(©d  i=1.1

where

Ti(y) = —c (G # [12]..[7])

[ —c if0 <y <y,
ahv)  ifyy <y < ygaa,s
gf,'](y) if i+ <y < Yii42)»

| 977 (W) iy <,

Ii(y) = S

Here the g["j](y) for: =1,2,..r—jand j = 1,2,...r — 1 were determined during the
analysis of the previous steps of the algorithm. Now we solve for g{;"]"lhj (y}, where

J = 1,2,...r as the solutions of the system of equations:

- ' v .
97 () = Liy(y) + B8 /ﬂ Ty —Of(€)de (v > yp) and j=1,2,..r) (3.8)
Determine the root of each H7*'(y) = 0 and denote these roots by yitt y3tl, . y5tt
and let :

Yir41] = MINAG<T and 52D (H5 )

We get the r 4+ 1th smallest critical number.
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3.3 Proof of The Correctness of The Algorithm

In this section we show that Iglehart and Karlin’s algorithm of section 3.2 correctly

calculates the optimal y7. We first show that (3.8) indeed has a solution.

Proposition 3.1 There ezists a unique solution to the system of equations:
r ' y -
91 () = Li(v) + 8 fo Ta(y — €) f(€)de (y >y and j=1,2,..r)

Proof:
Observe that the construction of g[;Tl'j (y) compels T’“_’ (y) to be continuous at
y['j']"1 , since H[;)(y;;1) = 0. Now introduce the function h”‘l-J (y), which is the trans-

lation of g/~ 7 given by:

M @) =g T w+ye)  for y>0

We reduce g[’;-']H_j (y) to a system of renewal equations as follows:

W) = Ly )+ B [ T+ v - (€ y >0

Liz(y + vp1) — BeFii(y + ypy) if not 3m : [m] = [j]+1
form=1,2,..r
r+1—J(y) = ¢ L[J](y -+ y[r])
+B [T Ay + v — O F(E)de if Im

[m] =1=[j]+1

.

Now consider the second case of hr"'l'J (y):

Substituting u = y + ypy — £, we have:

y+yir) . o
/0 Tmly + 3601 = Of1(€)de = _c/ Jin(y + ¥ — u)du
[n+1] m
+nz,,,/ o S @Ml + v - w)du

vty rlemn
+ /y[ ] 9fm (W) fia(y + vy — w)du
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Substituting back £ = y + y,j — u, we have:
v+41r] Y+
/0 Temy + 411 = ()6 = —c / fin(6)dg
Y+¥ir}~¥jm])

=1 rytulri-vm n+1—m
X o Kt = O fin(€)de

+ [ B - &) fn(e)de
So,

hr+1 J( ) = a[j](y) + 8 x / f:,']l-m(y f)fb](f)d‘f

where

y+y[r]

ap = Lyly+um) =be [ ()it

=1 rytylrl-yn
8 [T hpeny - ) f(6)de

n=m U+y["l_3’[n+

Differentiate hr"'1 I(y) with respect to y, we have:

Liy(y +yi) — Befu(y + vn) if not 3 [m] = [j] +1
d —j form=1,..,7
—hi W =1 ) 4 rarm (3.9)
y a(¥) + B IS Hhim "y = E)fiy(€)dé
| +8 hlr,:]l—m (0) fi51(w) otherwise
Where

a(¥) = Lyy(y+up) — Befuly +v) — BATE™(0) f(y)
+6 g(h%‘“m(yw — )Y + v — Ypng)
~hi T (Yne1) — YD S (¥ + V) — Y1)
wo T [ L ey ) e (3.10)

n=m Jy+ulrl—yma1] dy
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By using the continuity of I7,(y) at the critical points, the assumption that
h 4+ A — Bc > 0 and observing that hf,,";]l"“(ﬂ) is —c, a;ﬂ(y) can be simplified as:

ay(y) = Ly + i) — Befia(y + 1) — BRIH ™ (0) f(w)

r—1 y+ylri=vn) +1
ﬂ bt /i 4 d
ﬂn;n ‘/l-f+y[r]-!l[n+l [m] =)
= (h+2—pBo)f(y + y[r]) + Befii(y)
=1 rytulvl-ypm)
+8Y [ A prtiomiy _ 6y (6)d
ﬂn;m y+lrl=vin s Y ] v = Ofin()de
Now by induction, we have that a%hi::]l’"‘ is positive in the range of integration;
hence we have a;jl(y) > 0.

In order to show equation (3.9) has a solution, we will use the following theorem

of Feller[3]

Theorem 3.1 ( Feller[5]) Let f; denote density functions and suppose that the func-
tions a;(z) are continuous on the positive real azis. Then the system of renewal
equations
(pmu+2/%@4ﬂmﬁx>0w1 Sk
Jj=1
possesses a unique set of solutions. Moreover, if a(z) >0 forz >0 andi=1,...,k,

then u;(z) 2 0 fori=1,.., k.

Now applying the above theorem to (3.9), we conclude that 2 h'“"’(y) >0, ie.,
h’l:;l"l i(y) is a non-decreasing function of y and that -2 hL']H i(y) are unique. Since
h is a translated version of g, we can conclude that g, hence T, is a non-decreasing
unique function of y. a

Figure 3.1 shows that T} for y =1,...,7, 7=1,2,...7 are indeed continuous and
non-decreasing.

Notice that there is a significant difference among T’s. Ignoring these differences
by averaging the demand over the days or any other such technique which leads one
to not take the difference between days into account in constructing an policy will be
misleading.

Under the conditions of section 3.2, we now establish the following proposition.
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———a—T:Mon.
—O—T:Tue.
em—s— T:Wed.
—0—T:Thu.
——s—TFri.

——A— T:Sat

T:Sun.

Critical Points Y
Fig. 3.1

Proposition 3.2 Let J;(z) denote the minimum disccunted expected cost if the initial
stock level is z. If y* is the optimal critical number for the first period, then J;(x) is

conver and has a continuous derivative and that J;(z) = —c for (z < y?).

Proof:
See Karlin[3] (pp.142-49). O

Proposition 3.3 If the functions Li(y) — fBc [;° (€ —y) fi(§)dE (i = 1,...T) are convez
in y, the optimal policy when we do not backlog excess demand is characterized by a

set of T critical numbers yy,y3,....y7.

Proof:
For details, see Karlin[3] (pp149-53, 162-69). O

Proposition 3.4 The function G;(y;) is convez, and Gi(y;) = 0 has a unique solu-

tion.

Proof:
Recall

Gi(y) = cyi + Li(y:) + BJia(0) 7 fil€)dE + B [ Jewr (i — ) fil§)dE i =1,.,7
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Since the function L;(y;) is convex, by proposition (3.2) Ji(y;) is convex, hence Gi(y;)

is convex. Moreover,

Gil) = e+ Liw) + B [ Fia(wi - KO i=1,..,7

hence, G;(y;) are monotone-increasing and by assumption (3.4) , we have G;(0) < 0.

Hence the equations G(y;) =0, i = 1,...,7 have unique roots. O

Thecrem 3.2 (Iglehart and Karlin [1]) The (r+1)th smallest critical number is
Yir+1), Where Yp4n) i8 the (r+1)th smallest root of the equations H!*'(y) = 0, for
t=1,2,..7.

Proof:

The optimal critical number y; should occur at the absolute minimum of G;(y),

since Gi(y:) = e+ Li(yi) + B L Jia(ys — O)fi(€)dE i=1,..,7
and G;(0) < 0, we infer that y} is a root of the equation :

Gilw) = e+ Liy) + 8 [ Ta(ys — OO =0 i=1,..,7

We now show that y; can be evaluated by the algorithm given above. Since Ji(z) =
miny> {—cz+Gi(y)}, J;(z) = —c, for T < min,c;ci{y}}. Hence the smallest root
of the equations H}(y) = 0 is yp) = mini<ick{y!} Now when y ranges on the interval
from ypy; to yz), the second smallest critical number, we have J;(y) = —c for y < Y]

i # [1], and
Jy(y) = Liy(y) + ﬂ/oy T2y — O fu(€)de for y > yp

Observe that gfy)(y) = Jiy(y) on the range yy < y < yp, hence Gi(y) = HA(y)
for y < ypz. Thus the second smallest root of H?(y) = 0 is yp). At step three, we
note that J;(y) = —c for y < yiz; and 7 # [1],[2]. From step 2, we already have J['I](y)
for y > ypy; and for y > ypy

+ ’ Y r
Ja(y) = Ly (y) + 3/0 Iy — ) fi(€)dE
Observe that J(,u(y) with y > yp;) and Jpy(y) with ¥ > yp) can be now written as:
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—c  ify <yn,
J(v) = g ifyy <y <yp,
(v) ifyg <y < yp),
and

’ - if ¥ < ¥p)
Jywy=4 7=
Q[z](y) if yiy < ¥ < ypa),

Hence Gi(y) = H}(y) for y < yja}, and the third smallest root of H(y) =0 is ypy.

Repeating the above argument, we prove the theorem. 0

3.4 The Exponential Cyclic Demand Case

The algorithm outlined in the section 3.2 is quite complex primarily because of the
need to solve the integral equation (3.9). In order to get insight about the behavior of
the algorithm, we will further assume that the demand is exponentially distributed.
In this case, we will show that the system of simultaneous renewal equations (3.9)
reduces to a system of simultaneous first order ordinary differential equations with

constant coefficients, which we solve numerically.
Proposition 3.5 Let fi(y) = \ie™*¥, then equation (3.9) reduce to

d ) . ,
RN Y) = BAGIREST™(Y) — kit (v) + a(y) + Again(y)
for k=1,2,..r

Proof:

It is obviously true when

d r ._ I
i y) = Lii(y + yp1) — Befis(y + yip)

For the second case of 4 hE’Tl—j(y), it is:

d r - Trl-m - r4+l1-m -
W) = a(y) + 8 / h[,;t]‘ (y — &) Ape ™ MI%dE + BRTH™(0) Mg e~ a1
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Integrating by parts, we have
- v r4l—j
B SHA = e = —p [ apeutditi=iy - )
—ﬁ/\u]c"'"b"l"h"+]l—j(0) + Blmhf,:]l_j(y)
+A1(hGT " (9) — ag(y))

Hence the differential equation is given by:

d - m
O = BAhHTE) Mokl (@) + apy(v) + Adgan(s)  (3.11)
for £=1,2,...r

a
Therefore the algorithm in section 3.2 in the case of exponential dewnand reduces

to:

Initialization (i.e., set demand parameter values, costs etc.);

it = ¥h—-1,
2

;
Set A range to (Amin, Amaz);
While (Anaz — Amin > €)
{
A= Amin + (1 = 1) * (Anaz = Amin)i
Initialize T; = —~cfor y =1, ..., T;
Iteration_count = 1;
Solved_set = ¢;
While(r <7)
{
Solve successively the equations /; =0forj=1,...,7;
for (7 not in Solved_set)
Denote the r** smallest root as the rt* critical number;
If( the solution of equation j produced the r** smallest root )
then include j in Solved_set;

Update T; for z > r** critical point and j in Solved_set by solving
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the system of simultaneous differential equations for h;;

Increment Iteration.count by 1;

}

Simulate the system with current iterate of critical numbers computing an
estimate of the expected amount of stock out by cumulating the amount of
stock out on each day (if any) and dividing by the
total length of the simulations;

If ( the estimate of E(Stock out) exceeds prespecified bound) then

Amin = A}

Else

Ama::: = /\;

3.5 Computational Results

The algorithm described in the earlier sections was implemented in FORTRAN due
to the need to access a library routine for the solution of simultaneous differential
equations. The package chosen was Numerical Algorithms (NAG). The implementa-
tion of this algorithm required the use of numerical techniques to compute solutions
to transcendental equations, computing and storing solutions to differential equations
by constructing a suitably chosen grid of points that included the range of interest.

The approach to choose the penalty used here was similar to that used in chapter
2 (see section (2.6). The proposed algorithm is clearly valid when the value of the
penalty cost is known. In our case, the desire for no shortage (or small stockout
instances) is expressed in terms of a constraint on the probability of stockout. We
use an identical procedure of searching for the value of the penalty that results in an
acceptable probability of stockout at the lowest possible cost.

As we mentioned we have assumed that daily demand was exponentially dis-

tributed with different means on different days of the week. The exact values of the
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parameters chosen were selected to reflect an increased demand on Friday and Sat-
urday with Tuesday and Wednesday representing the slowest of the days. For the
specific values of these parameters, see the following table. (In this case we used
the following values of the input parameters : the discounting factor is the daily
equivalent of a 15% annual interest rate, the ordering cost is 0.001 per unit of cash
ordered, the holding cost is computed using the daily interest rate, and the maximum

permissible value for the probability of shortage is 0.01.)

Day MeanDemand($ x 10%) Critical Number($ x 103)

Mon 0.35 1.53
Tue 0.30 1.32
Wed 0.25 1.13
Thu 0.45 2.04
Fr: 0.70 2.82
Sat 0.50 2.17
Sun 0.45 1.89

In the above table, the critical numbers are those which are optimal for a case
in which the penalty cost was 90.3; this corresponds to a probability of stock out of
approximately 1%. It is clear that the critical numbers are significantly larger than
the mean demand for that day; this can be explained by the fact that the exponential
distribution has a long tail and our constraint requires that the probability of stock
out be very small.

Some observations can be made from the following figures.

Figure 3.2 plots critical numbers for each day as the function of the penalty cost.
Notice that the critical numbers do not change a lot as the penalty changes.

In figure 3.3 and 3.4 we investigated the depence of the total cost and the prob-
ability of stockout as a function of the penalty cost. The total cost was computed
from the simulation experiment. As expected the total cost is increasing while the

probability of stockout is decreasing with A.
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In order to further understand the behavior of the system, we have ploted in
Figure 3.5 the total cost as a function of the probability of stockout. This curve could
be useful in operating the ATM system.

3.6 Summary

We believe that our study reached the following conclusions:

1. The algorithm we used is an exact algorithm which provides the optimal solu-
tion to the cyclic demand model (infinite time horizon, ne delivery time)

2. We have implemented the algorithm with the exponential demand case.

3. We have provided the tradeoff curves between the total cost and the probability
of stockeut, which is useful for the decision maker to operate the ATM system.

4. In its current form, our implementation may not seem to have much practical
utility since the exponential assumption is highly unrealistic but we believe that the
procedure can be extended to include all distributions of the gamma family.

A limitation of this model is that it ignores set-up costs. This assumption may
be considered to be tolerable only in the case in which ATM machines which are
located at or near a source of cash so that re-stocking can be done at small or no
cost. It would not be very applicable for remotely located machines which would
require substantial cost and effort to refill.

Hence in the next chapter, we develop this model to include the set up cost
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Chapter 4

The Cyclic Demand Model with
Set-up Cost

In the preceding chapter, we considered the problem of control of the amount of cash
in the Automatic Teller Machine (ATM). As we stated there, we have assumed that
at the beginning of each day the supervisor of the bank reviews the amount of cash
in an ATM. In this chapter we attempt to study the following variation: once the
decision maker places an order, there will be a fixed cost. The relevant model is an
inventory model with infinite planning time horizon, periodic review, stochastic daily
demand, no delivery lead time, lost sales and set-up costs.

As we did in the previous chapter, we assume that the demand for cash during each
period is cyclic. We also assume that the demand for each day-type (i.e., Monday,

Tuesday, etc.) is independent but not identically distributed.

4.1 The Formulation of Cyclic Demand Model
with Set-up Cost

We will use the following natation:
d,: demand on day n, n =1,2,...7.

Jn(dy): the demand density function for day n.
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Yn: cash available at the beginning of day n.

Tn: cash level at the end of day n — 1.

B3: discount factor.

K: Cost to be incurred for each instance of re-ordering.

The decision we need to make at the beginning of day n is how much to order,
given the on hand inventory is z,_;. There are four main costs that influence the
ordering decisions. There is a linear ordering cost ¢ per unit ordered; holding cost is
charged at the rate of & for the stock of inventories on hand at the end of the period;
the shortage cost associated with the failure to meet the demands is proportional to
the extent of shortage with the rate of A; and a fixed amount of K that is charge
everytime an order is placed. We assume that the holding and shortage cost are
charged at the end of each period. Now denote the one-day expected holding and
shortage cost as L;(y:), the demand density on that day is fi(di) and the excess

demand is lost. Then:

Litw) = h [ (5 = 01O + A [ (€ v fi€)de

Let Ji(z) denote the minimum discounted expected cost incurred during an infinite
sequence of time periods if  is the initial level of stock, f; is the demand density in
the first period, and an optimal ordering rule is used at each ordering opportunity.
Assuming that excess demands are lost and there is no time lag in delivery, the system

of functional equations are:

Ji(z) =ming> {K8(yi — z) + e(yi — 2) + Li(w:) + BJi41(0) [ fi(€)dE +
ﬁfo ,+1(y, f)ﬂ(f)df} t=1,..,6

Jo(2) = ming>:{K8(yr — 2) + c(yr ~ 2) + L1(yr) + BI1(0) [;7 f2(£)dE +
B 1" N(yr — €)f2(£)dE}

0 fz<0
where 6(z) =
1 otherwise
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Unlike in the previous case, these functions do not possess the convexity property
even when the functions Li(y;) are convex. Specifically, the purchasing or ordering
cost, if one should include the set-up cost in the ordering cost, is no longer convex.

If we should replace the infinite time horizon assumption with a finite time horizon
assumption, this problem can be re-formulated as a finite time horizon dynamic pro-
gramming problem. Clearly, without further work, it would be impossible to establish
even the form of the optimal policy for the cyclic model with set-up cost. The litera-
ture has not addressed this problem. Given the cyclic nature of the demand pattern,
it also appears likely that this approach would be computationally very complex.

This suggests that we should explore heuristic solutions to our problem,

4.2 Two Proposed Heuristjc Approaches

The only known variation of this problem whose solution appears to have been re-
ported in the literature is the infinite time horizon case with i.i.d. demand distri-
bution. Under these assumptions, it has been shown that the optimal policy can be
characterized by two numbers s and § i when the closing inventory at the end of 2
period is less than s, we order upto 5, else no order is placed. Specifically, when the

demand is exponentially distributed, Scarf [7] shows that

- [B= s

_ k. Q
= S01+%) (4.2)

O

o
=

where K=set-up cost, Q = § — 8, m=mean daily demand, h=holding cost per
day, p=penalty cost for shortage.

We propose to use (4.1) and (4.2) as guidelines for our proposed heuristic ap-
proaches. We calculate the values of s and S for each day, ignoring the fact that we
have a cyclic demand pattern (and denote them s; and S; for day ). We now argue
intuitively that for any policy of this kind, the values of $; would remain the same as

those computed using (4.1) and (4.2).
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Consider the value of 3;, according to the policy, if at the beginning of the day of
type i, the inventory is below s;, we place an order to raise the stock level upto S;.
Therefore, this number can be viewed as the inventory level at which the tradeoff be-
tween placing an order (and incurring the resulting costs) and the expected shortage
cost that is saved is balanced. Therefore, s; could be viewed as being affected only
by the demand for that day. Hence, the value of s; would remain unchanged even if

the demand pattern for the succeeding day is different from that of this day.

Heuristic I:
We adopted (4.1) a,nd.(4.2) for our cyclic demand case. For each day, the mean

demand m; is known. Hence we calculate Q);, the order amount for day of type i and

2Km,-
Qi = \—5— (4.3)

s; by:

-2 _ h Q,‘
e m = /\(1+-TIT; (4.4)

The limitation of the heuristic I is that we have applied (4.1) and (4.2) to the cyclic
demand case. This policy would be clese to the optimal policy, if the variation in the
demand between the periods is not very large, since (4.1) and (4.2) is derived for the
i.i.d demand case. The quality of this solution will degenerate when the differences
become large.

Consider the value of S; used in heuristic I. This number was derived from the
optimal policy for the i.i.d. demand case and it reflects a certain probability of needing
to re-order on each of the days following the day on which one places an order. For
instance, if one places an order at the beginning of day of type i, the probability that
one will not need to re-order at the beginning of next is equal to the probability that
the demand for today is less than S; — s;; similarly, the probability that one will not
need to re-order in two days is equal to the probability that the demand for two days
is less than S; — s;, and so on. In general, we denote: F,-(k)(S,- - 8;), the probability of
no re-order after k days of an order on day of type i given i.i.d. demand, where F,-(k)

is the k-fold convolution of the demand distribution function of day type .
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Denote by S;, the modified S;. We attempt to alter the order upto points S; in
such a way that overcome the shortcoming of heuristic I. An intuitive approach would
be to ensure that there is an increase in the values of the order upto points for days

that precede days of heavier demands.

Heuristic II:

1. Compute (s;,S5;) from heuristic I;

2.k=1,5;,=0;

3. Compute (F; * ... * Fip 5 1)(Si — sivi);

4. fori=1to T;

if (Fi %o Fipeo1) (8 — sipr) < FO(S; — 5);

increase S;;

go to step 3;

5. Find 5;

Heuristic II will ensure that the probabilities of stock out on each of the days
succeeding the placing of an order s at least as large as the corresponding probabilities
in the case of i.i.d. demands. The Motivation is that if one should take into account
the future in making our current ordering decisions, we are more likely to reduce the
number of orders thus reducing the number of times that the set-up cost is incurred.

The limitation of this heuristic is that it ignores the holding costs. Notice that
by ordering larger quantities in anticipation of days with larger demands, we risk
increasing the holding cost to a point that the reduction in set-up cost can no longer
justify this approach. The other limitation is that heuristic II works well only for a
certain range of K, (see Figure 4.1). For larger K, we need to look few more days

ahead instead of just consider the next day.

4.3 Computational Results

Since there is no available literature that describes an optimal policy for an inventory

problem of this kind, our approach was to compare the two proposed heuristics. We
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ran simulations similar to those described in the previous chapter. The value of the
penalty cost, A, is set at the same value that was found to be optimal for the cyclic
demand model studied in the previous chapter, i.e., we set A = 90.3. The holding
cost A = # and the ordering cost ¢ = 0.001 per unit.

The systems were simulated for a period of 10000 days and the total discounted
cost was computed by summing the discounted costs of ordering and holding. Also,
for each simulation, we estimate the expected stockout per day by computing the total
amount of shortage experienced during the simulation and dividing by the length of
the simulation.

In order to compare the policies for the case of no set-up costs and also the
validation of these two heuristics, we set K = 0. In this case, heuristic I and heuristic
IT are indentical, since there is no need to modify the S;. Notice that when K = 0,

S; = s; and we expect that S; is roughly y? which we get from chapter 3.

Heuristic critical numbers S; Optimal critical numbers y!

1.5762 1.5300
1.3511 1.3200
1.1259 1.1300
2.0266 2.0400
3.1525 2.8200
2.2518 2.1700
2.0266 1.8900

Clearly the policies are somewhat different but the similarity would suggest that
the heuristic policies are reasonably good approximations and can be used as a basis
to extend our results to the case of the problem with set-up costs.

In order to compare the two heuristics, we consider a certain range of set-up costs.

Because the ordering cost and the holding cost are very small, both less than 1.0, we

46



initially considered the range 0 < K < 5 with increments of 0.5. The result are
summarized in the figures 4.1 through 4.3.

The overall picture we get from plotting the results for heuristic I and II is that
for a certain range of K , heuristic II behaves better than heuristic I in terms of total
cost. Hence, we narrowed the range to 0 < K < 2 with increment 0.01 to get a better

idea of the behavior over the range of interest.
Total cost v/s cost per set-up for Heuristics | and 1

4900 +
4700 -
4500 -

Heuristic H

Total cost
4100 A
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1.5 &
1.8

-~ o ¥ o ™~ o © M 0 o
o o o - — — —
K
Fig. 4.1

Figure 4.1 is the plot of total cost {described above) as the function of the cost per
set-up, K. Clearly, for both heuristic I and heuristic II, as the set up cost increases,
the total cost increases. Comparing heuristics I and II for the range of 0.75 < K < 1.5
we notice that heuristic II results in a lower total cost. An intuitive explanation of
this behavior is as follows: When the set-up cost is small in comparison to the other
costs, frequent ordering is not very expensive. So any attempt to reduce ordering
frequency is not economical due to the larger increase in holding costs. On the other
hand, when set-up costs are large the levels to which inventory is raised on re-order
are so high that the probability of demand exceeding the difference between S; and
Si+1 18 so small that there is almost no difference between S; and S;. Hence heuristic
IT is not expected to make any improvement on the total cost. As a result it is only

in the intermediate values of K that heuristic II improves upon heuristic .

47



Total set-up cost v/s cost per set-up

800
700
600
500
400 4
300
200
100 4

Total set-up
Cost

1.6 8

1.08
1.26
.44
1.62
1.98 2

® O T N

— "~ o

o O O O
K
Fig. 4.2

Mean * of days between orders in simulation v/s cost per set-up

6T Heuristic 1!

5 - '-"'—-l—.-—'_'-'-'
‘_.’_‘,_ﬂ—""

4 ,_-f""""‘-’

E(# days bet.
orders)

Heuristic |

Figure 4.2 investigates the behavior of the total set-up cost as a function of K. It

is very clear that heuristic II always has lower total set-up cost than heuristic I has.

The reason is because that by modifying S; to S;, heuristic II’s policy tends to order

less frequently than heuristic I's policy does.

Figure 4.3 investigates the dependence of the expected number of days between

orders on K for both heuristics I and II. We conclude that the policy provided by

heuristic II results in less frequent orders than Heuristic I, since the number of ex-

pected days between orders is always larger for heuristic II than heuristic L.

Figure 4.4 investigates the tradeoff between total cost and expected stockout.
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Corresponding to each value of A that is chosen to calculate the parameters of each
heuristic policy, there is a total discounted cost and an expected shortage. Choosing
an extremely large value of the A would result in a highly conservative ordering policy,
that would result in a relatively small expected shortage but high costs. This graph,
which has been plotted with K = 1.0, shows the tradeoff between cost and shortages.
It appears that the heuristic II dominates the heuristic L.

In figure 4.5 we investigated the dependence of the expected stockout on A.
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4.4 Further Generalizations

Additional features can be included such as:

1. Nonstationary demands with set up cost and delivery times.

2. Existence of exceptional days (periods in which the demand violates the regular
pattern).

3. Non-integer lead times. Although our current methods provide good approx-
imate solution we believe that some theoretical work is needed if we include these

features in our model.
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