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Abstract

The rcsonant interaction of low frequency turbulence with oxygen ions has pro-
vided a satisfactory explanation for the formation of ion conics at auroral altitudes.
These waves, found along ciosed field lines which emanate from the central plasma
sheet, energize ionospheric oxygen to magnetospheric energies and thus provide a
major release mechanism for ionospheric oxygen. Although the source of the tur-
bulence is not particularly clear, it is apparently not co—located with ion heating. We
have suggested that the turbulence may originaie in the equatorial region. Waves gen-
erated at frequencies both above and below the equatorial hydrogen cyclowon fre-
quency propagate along field lines to auroral altitudes where they provide substantial
ion heating. At low altitudes, where the waves resonant with oxygen, paraliel gradients
in the magnetic field couple the two propagating cold plasma modes so that right-hand
polarized waves exchange energy with the left-hand polarized mode (and vice versa).
We determine the transmission coefficients associated with this coupling process
analytically by implementing a phase-integral analysis. Moreover, we substantiate
these calculations using a numerical technique which involves analytic continuation of
the solutions into the complex plane. We determine that wave power generated in the
equatorial region of the central plasma sheet contributes substantially to ion heating at
auroral altitudes.

Thesis Supervisor: Tom Chang
Title: Director, Center for Theoretical Geoplasma Physics
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CHAPTER 1

INTRODUCTION

L Ion Conics—Remarkable Agreement with Theory

One of the more interesting phenomena observed in the space environment is the
outflow of heavy, gravitationally bound ions from the ionosphere into the magneto-
sphere. This upflow of ions has been inferred from measurements of ion beams and
conics—ions which seem to lie on a cone in velocity space [Klumpar et al., 1986;
Burch, 1988]. Conic formation may be easily understood qualitatively in terms of adi-
abatic folding of perpendicular velocity into parallel velocity in the presence of a
parallel magnetic field gradient given an appropriate heating source—typically some
form of wave activity which energizes ions through wave-particle interactions [Chang
and Coppi, 1981; Crew and Chang, 1989; Lysak, 1986]. One particular variety of
conic which has provided remarkable confirmation of theory is that which is observed
along closed field lines which emanate from the auroral region into the central plasma
sheet (CPS) [Chang e: al., 1986). These conics are generally observed in association
with a broadband spectrum of downcoming waves which peaks at low frequencies
(Pcl ie. 0.2 < f < 5 Hz) and contains substantial wave energies at the local oxygen
cyclotron frequency [Gurnett er al, 1984]. A typical electric field spectral density
observation of these waves (which we shall refer to as turbulence) is shown in Figure

1.1. Such wave spectra are observed all along magnetic field lines up to 4Rg in

Introduction 4
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Figure 1.1. Typical electric field speciral density in the central plasma sheet (L = 2.0Rg)
[Chang et al., 1986], courtesy of Gurnett and Mellott.

altitude [Gurnett er al., 1984]. One might naturally suspect that the left-hand circu-
Jarly polarized (LHCP) component of the observed spectrum might resonate with the

ions, thus providing the necessary mechanism for energizing the particles.

In order to understand the relationship between the ions and the broadband elec-
tromagnetic spectrum, Chang et al. [1986] considered the behavior of a generic ion
situated in an ambient magnetic field, B, under the influence of these waves. For

resonant interaction, the net increase of the velocity vector v in the time &t is

Sv, = 5—;—5: (1.1)
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where E, is the perpendicular component of the wave electric field in the LHCP mode
(the effects of the fluctuating magnetic field are negligible provided that the paticle
velocities are much smaller than the Alfvén speed). The net increase in the perpendic-

ular energy of the jon in the time ot is
s, = L a1, 1 s
1= ~2—m (Vl+5Vl) —-imvl =m vl-8v1+—2—m (8vl) (1.2)

For a gyrotropic ensemble of identical ions, we will find that for each generic ion with
velocity v there is always another ion with equal and opposite velocity —v; so that the
first term on the right hand side of equation (1.2) cancels for the two ions. Then for

each generic pair of ions the net incremental increase of W) is
22
E
W, s = i%(&ﬂ (1.3)

We may relate the perpendicular component of the resonant electric field to the
observed wave electric field spectral density at the local cyclotron resonance,
NI (1)8f = E2, for the bandwidth, 8f , where m is the fraction of LHCP and [ is the
field line coordinate. The spectrum is smooth enough near the local gyrofrequency
and the Doppler shift small enough to be ignored so that we may rearrange (1.3) to

estimate the net heating rate
W e = g2 (13 8212m (1.4)
where a dot denotes time differentiation. Because the actual spectrum is sufficiently

broad in frequency that the resonance time is limited by the correlation time of the

incoherent electric field at frequencies near the local gyrofrequency, in effect
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Sf 8t ~ 1, the heating rate takes the simple form
W pes = NG2E (1)/2m (1.5)

As the ion moves adiabatically along the field line it continues to resonate with that
part of the spectral density near the gyrofrequency so that this expression applies con-
tinuously. In the guiding center approximation, the evolution for the mean particle
motions are

W, = Wy dinB dI+W
my = QE"-"WJ_d InB/dl

(1.6

where vy is the parallel component of the velocity and E) is the field aligned electric
field. The effect of the broadband spectrum, then, is to energize the particles in the
perpendicular direction. Moreover, the parallel velocity adiabatically increases in the
direction of decreasing field strength at the expense of this increasing perpendicular
energy. Hence, when a population of particles is enveloped by a broadband elec-
tromagnetic field, the particles are energized and flow upwards along the field lines in
the form of conics. These results are, of course, obtainable usirg more rigorous

quasilinear arguments [Sagdeev and Galeev, 1969].

When the observations are compared rigorously with this theory there is remark-
able agreement [Retterer et al., 1987; Chang er al, 1988; Crew and Chang, 1988;
Crew ef ai., 1990]. The observed distributions may be obtained starting with a thermal
distribution at ionospheric altimdes. The particles are ailowed to evolve according to a

Monte Carlo model in which the particle orbits are periodically perturbed by the



Intreduction 8

60 : : :
30F .
X 0 i 80
>=
5 430
522
— ! ' o
-60 =30 Q 30 60

v, (km/s)

Figure 1.2. The top panel is the result cf = Monte Carlo calculation for the day 81318
oxygen-dominated conic obtained with the HAPI instrument which is displayed in the bot-
tom panel. The contours in both panels are uniformly spaced with an increment of 0.4 in
the logarithm of the phase space density.

observed electric field spectral intensity. In Figure 1.2 we show the results of such a
Monte Carlo simulation. The upper panel is the result of a Monte Carlo model which
is to be compared with the observed ion conic distribution displayed in the lower
panel. The results of the Monte Carlo simulation are in remarkabie agreement with
the observations [Retterer et al., 1987]. The most striking aspect of this calculation is
that only one free parameter was required, namely the fraction of LHCP in the spec-
trum (about 10 percent was sufficient). It is also interesting that :he power law nature
of the electric field spectrum gives rise to certain scale invariance in the kinetic equa-

tions. As a result, the shape of the ion distribution remains the same at all altitudes
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along the field line, although the velocities rescale [Chang er al, 1988; Crew and
Chang, 1988]. In sum, when the observations are compared rigorously with theory
there is remarkable agreement. Nevertheless, certain fundamental questions remain

unanswered.

I1. Unanswered Questions

Although the mechanism by which the conics are formed seems to be well
understood, the origin and nature of the ambient turbulence remain uncertain. Because
these conics are observed in a rather quiet region of the magnetosphere the existence
of a local source is questionable. Indeed, all of the careful scrutiny of the data to date
has failed to reveal the presence of any such source [Chang er al., 1986; Gumett et al.,
1984]. Electron beams and field aligned currents, which in fact do give rise to waves
associated with conics in other regions of the magnetosphere, are rather sporadic in
both intensity and direction and are therefore an unlikely candidate for the source of
the turbulence. Moreover, because these low-frequency waves are Alfvén-like as the
observations suggest [Gurnett er al., 1984], it would be natural to identify them with a
large structure which could sustain waves of reasonably long wavelength (the Alfvén
wavelength is of order Earth radii). At present, no such structures have been
identified. These considerations strongly suggest that a more global non-local analysis
is required to explain the presence of turbulence observed at auroral altitudes. Such an
analysis will not only provide important information regarding the nature of the waves,

but will also be a significant step towards understanding the coupling between the
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magnetosphere and ionosphere.

There are several areas of uncertainty in our present understanding of the nature
of the auroral turbulence. In particular, in our theory of ion-cyclotron resonance
heated conics, we assumed that a particular portion of the electric field spectrum was
LHCP and could therefore contribute to ion conic heating [Chang et al., 1986; Retterer
et al., 1987). It is therefore important to understand the polarization of the observed
waves and to determine the fraction of wave energy that will be absorbed near the

OXygen resonance.

In light of these questions, we intend to construct a dztailed model to explain the
origin of the auroral turbulence. Because the magnetosphere is, of course, a very
dynamic system with much free energy available to excite all manner of instability, it
is not unlikely that the spectrum actually consists of a collage of waves emanating
from a number of source regions which could give rise to the observed broadband
spectrum.  In particular, we will find that energetic distributions of particles in the
equatorial region of the central plasma sheet give rise to a variety of instabilities which
can generate waves. Having identified a promising source for waves, we will consider
the evolution of the waves using a ray tracing analysis. We will find that waves gen-
erated in the equatorial region do propagate into the region where ion heating occurs

along field lines ranging from 2-5 or more Rg.

Once we have determined that waves are accessible to the auroral region, we

will address fundamental questions concerning the nature of the turbulence. In particu-
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lar, we will solve the full wave equations niear the oxygen resonance, and from these
solutions we will determine a definite absorption. In addition, ion-cyclotron waves
which are transmitted through an evanescent region will be strongly damped by the
thermal component of oxygen. In solving the wave equations near the resonance, we
will necessarily address a fundamental phenomenon of basic plasma physics, namely
that of the behavior of waves near a minority ion resonance. Our discussion will be
such that our method and results may be easily applied to other similar fundamental

problems associated with a plasma with several ion species.

In summary, having considered the fundamental questions detailed above, we
will have provided a plausible scenario which wouid explain the origin of the auroral
turbulence, and we will have also addressed the relationship between ion heating and

the behavior of waves in a plasma medium near a minority resonance.



CHAPTER 2

EQUATORIAL SOURCE OF WAVES

1. Wave Qbservations

The low frequency, broadband waves (see Figure 1.1) which have been associ-
ated with the particular ion conic events described in the previous chapter have been
observed continuously across auroral latitudes at radial distances up to 2 Rp [Gurnett
et al., 1984] with the DE 1 wave instrument. Cther wave measurements at higher alti-
tudes have been associated with similar ion conic events [Crew er al., 1990 and refer-
ences therein]. The observations seem to indicate that the waves are observed at all
latitndes and at longitudes for which data is available. Gurnerr et al. [1984] found
much support for the notion that the turbulence was electromagnetic and that the
waves observed were Alfvén-like. Because the ratio of the magnetic field to the clec-
wric field could be obtained, it was possible to determine the index of refraction for
these waves. This data strongly suggested that the waves were were compatible with
an Alfvénic rather than an electrostatic model. The polarization of the waves, how-
ever, was not determined in this instance. The data from similar broadband waves
observed in other regions of the magnetosphere seem to indicate that such waves exhi-
bit varying polarizations ranging anywhere between right-hand polarization (RHCP) to
left-hand polarization (LHCP) [André et al., 1990]; These observations would seem to

suggest that it is more than likely that both ion-cyclotron and magnetosonic Alfvén

Equatorial Source 12
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waves are present. A somewhat more revealing observation was that the Poynting
flux, when measurable, was directed earthward [Gurnett et al., 1984]. Although no
single mode probably accounts for all of the observations, the modes are apparently
constrained to originate at higher altitudes than the observations in the absence of a

local source.

Although a subject of debate, careful scrutiny of the data suggests a non-local
source [Gurnett et al., 1984; Chang et al., 1986]. As previously mentioned, the lack of
correlation beltween the sporadically observed beams and field aligned currents sug-
gests that the waves are not generated by bearns or currents—a major source of tur-
bulence in other regions of the magnetosphere. One might on the other hand suggest
that the highly unstable ion conic distributions themselves generate the waves. It
should be noted, however, that the ions which are predominately observed are oxygen,
and the only source for this oxygen is the ionosphere. Moreover, cold oxygen is grav-
itationally bound to ionospheric altitudes within a few hundred kilometers of the
Earth’s surface. The most reasonable mechanism for accelerating the oxygen to mag-
netospheric energies is the wave-particle interaction discussed in Chapter 1, particu-
larly in light of the absence of strong field aligned potential drops in the central plasma
sheet (CPS). Certainly ion conic disuibutions do excite waves as they relax from their
highly anisotropic state; however, the ion conics are observed along field lines up to at
least 4 Ry and continue to become more energetic as they are drawn up higher into
the magnetosphere [Crew er al., 1990]. Without the waves in the first place, the ions

could not be heated to magnetospheric energies. Moreover, if the waves are Alfvenic
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as the observations indicate [Gumett ef al., 1984], the local wavelengths are on the
order of Earth radii. The size of a local source should probably be the order of the
wavelength in which case one might question any suggestion that the waves originat-
ing from small scale shears [Ganguli et al., 1985] or higher latitude instabilities associ-
ated with electron precipitation [Ashour-Abdalla er al., 1981; Winglee et al., 1987].
We therefore direct our attention to a non-local source for waves observed along field

lines which emanate into the CPS.

II. Waves Observations in the Equatorial Region of the CPS

Because the auroral turbulence is cobserved to have a Poynting flux directed
downward along field lines, we are naturally led to look for a source at a higher alti-
tude along that field line. Indeed, the equatorial region of the central plasma sheet
contains much free energy in the form of unstable ion distributions. Anisotropic ion
distributions are often observed in the nightside equatorial region at geosynchronous
orbit [Perraut et al., 1982]. As ions are injected earthward from the magnetotail, they
drift adiabatically about the Earth along drift shells. Because the shell on which a par-
ticle is constrained to move depends on the equatorial pitch angle, initially isotropic
distribution functions tend to develop thermal anisotropies (T} > T)) and acquire
anomalous loss cones (significantly enlarged over the ionospheric 3° ionospheric loss
cone) [Ashour-Abdalla and Cowley, 1974; Sibeck et al, 1987]. In addition, observa-
tions reveal that these distributions ofien contain a large energetic population with 90

degree pitch angle (somewhat like a ring-beam) [Perraut ef al., 1982]. Moreover the
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proton gyrofrequency near geosynchronous orbit matches the oxygen cyclotron fre-
quency over the range where ion heating occurs. Because anisotropic distributions
excite waves near the proton gyrofrequency, both above and below, we have suggested
that much or the observed auroral turbulence originates in the equatorial region [John-
son et al., 1989]. Indeed, the observation that waves detected by ground based instru-
ments often have signatures of waves observed to be generated in the equatorial region

[Perraut et al., 1984] substantiates such a claim.

Ton distributions with loss-cones or temperature anisotropies excite waves below
the proton gyrofrequency [Oscarsson and Andre, 1986]. Indeed, such instabilities have
been studied comprehensively in the equatorial region in connection with Pcl1 (0.2 < f
< 5 Hz) wave generation and helium heating [Young et al., 1981]. Waves generated
with frequencies below the helium gyrofrequency (typically < 1 Hz) are guided along
field lines to the ground [Rauch and Roux, 1982; Perraut er al., 1984]. On the other
hand, it is believed that waves generated above the helium gyrofrequency but below
the hydrogen cyclotron frequency (1 < f < 5 Hz), rather than péﬁeuating directly to the
ground, travel between geomagnetic conjugate points near the magnetic equator which
correspond to the ion-ion or Buchsbaum frequency. Although the growth rates for
these waves are smaller than those for the waves near the helium gyrofrequency, the
power in the waves may be comparable because they amplify as they bounce back and
forth through the equatorial plane [Rauch and Roux, 1982]. Furthermore, when the
concentration of helium is low enough, these waves tunnel through the reflection layer

to lower altitedes in the right hand circularly polarized (RHCP) mode (see Figure 6 of
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Perraut et al. [1984]). In fact, ground based instruments often detect both types of
waves. We have therefore suggested that these waves contribute to the auroral tur-

bulence [Johnson et al., 1989].

Propagating waves generated below f.» may explain a significant part of the
wave power observed at auroral altitudes, but much of the wave power has f > 5 Hz.
Because some of the heating takes place at lower altitudes where the local oxygen
cyclotron frequency is larger than Pcl frequencies it is important to consider the gen-
eration and propagation of waves with f > f i in the equatorial region. Observations
indicate that ion distributions with loss-cone character (9F /dv; > 0) can generate waves
at multiples of f.% [Perraut et al., 1982]. We have investigated instabilities which
might arise in such a plasma environment by solving the dispersion relation of linear
waves using the WHAMP code [Ronnmark, 1982a,b]. The WHAMP code solves the
dispersion relation for a plasma consisting of several species with Maxwellian therrial
distributions. By carefully adding and subtracting Maxwellian distributions, we can
construct an ion distribution function which retains the characteristics of the observed
equatorial distribution function—an enlarged loss cone and a large energetic population
with 90 degree pitch angle. Using the WHAMP code, we have found that in addition
to electrostatic ion cyclotron harmonic waves, a broad band of ‘oblique electromagnetic
modes arises with slightly smaller growth rate {Johnson et al., 1989]. In Figure 2.1 we
plot the dispersion surface of the real frequency in a two dimensional wave vector
space, and in addition, we indicate the growth rates for this particular mode with shad-

ing. The surface corresponds to the magnetosonic-whistler mode, and waves are
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Figure 2.1, Dispersion relation (o vs, logw(k_lp,-}, Iogm(k,,pi) where p; is the ion 8yroradius)
for a sum of Maxwellian distributiong which mimjc the observationg, Shading Indicates the
growth rates (whige for growing, dark for damping) for waves on the surface. Notice thar
electrostatic Waves are generated g multiples of S oy Which are largest a; ky = 0 whereas the
waves at larger ky tend 1o be electromagnetic and occupy a mych larger region of k-space,

through one of the harmonic bands in Figure 2.1 g fixed k. We have Plotted one
curve which corresponds to maximum growth at ky =0 and another curve slightly
offset from the first curve. This figure illustrates thay although the maximum growth

may be for modes which are electrostatic and propagate perpendicular to the magnetic
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Figure 2.2. Growth rates (a) and group velocity ratio r (b) for a plasma with parameters
listed in Table I. The curves are taken at constant k;p; where p; is the ion gyroradius. The
dashed curve corresponds to maximum growth for ky = 0 modes near the fourth harmonic of
the proton gyrofrequency with k. The solid curve comresponds 10 modes with
logio(kp;) = —0.800 which are slightly offset from maximum growth at ky=0. Itis to be
noted that these modes have a slightly smaller growth rate, but they also have vy, /v, >1.

mately the Alfvén velocity). In this case the e-folding distance is the order of 1/10 Rg
which is reasonably small compared to the region throughout which the waves grow.
Indeed, the observations indicate that waves are generated within a wedge the order of

10° with respect to the equatorial plane (that is, the order of Rg) [Young et al., 1981}

If we compare the power in the equatorial and auroral waves using the observed
wave amplitudes, we may determine whether the free energy in the equatorial region is
a viable source for the turbulence. With the assumptions that the auroral waves are

essentially Alfvén waves and that the WHAMP results accurately reflect the
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relationship between the observed magnetic field and the electric field in the equatorial
region, we find that the Poynting fluxes are comparable. Clearly if the Poyniing flux
was substantially less than that flux observed at lower altitudes there would be reason
to doubt the relationship between equatorially generated waves and the auroral tur-
bulence. Although detailed ray tracing calculations will be required to confirm the
notion that the auroral turbulence originates in the equatorial plane, this simple com-

parison elicits some confidence.

III. Summary

The low frequency waves observed at auroral altitudes are associated with a
downward Poynting flux. In the absence of a local source, we have identified a plausi-
ble non-local source for these waves. The equatorial region in the central plasma sheet
is characterized by much free energy which gives rise to instabilities along both the
jon-cyclotron and magnetosonic branches of the dispersion relation. In the following
chapters we will investigate the iniricacies involved in determining the accessibility of

these equatorial waves to the auroral region.



CHAPTER 3

BASIC CONSIDERATIONS

I. Approach

Having thus identified waves excited in the equatorial region of the magneto-
sphere with frequencies near the local hydrogen gyrofrequency as a plausible source
for the turbulence observed at auroral altitudes, we now turn our attention to the more
relevant questions of whether these waves are, in fact, accessible to lower altitudes
and, if they are, how much wave power will be available to heat ions. In order to get
useful answers to these questions, we must carefully understand the details of the
medium in which the waves propagate and incorporate the relevant aspects into our

analysis.

In a reasonably uniform medium (such as the magnetosphere) wave propagation
is best described in terms of the WKB analysis. In this approach, wave propagation is
described in terms of the evolution of a wave packet which propagates in space
according to the local group velocity while satisfying the local dispersion relation
[Lighthill, 1978; Swanson, 1989]. As a wave packet evolves, it follows a definite tra-
jectory in space and momentum known as a ray. The evolution of an initial wave

packet is described by tracing the position and momentum of the packet along a ray.

Basic Considerations 20
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In certain regions, however, simple ray tracing does not adequately describe
wave propagation. Such is the case near cutoffs where the wavelength of the distur-
bance typically exceeds the scale length of the relevant plasma parameters, such as
density or magnetic field. In addition, the linear dispersion relation occasionally
admits two propagating modes with the same frequency and wavelength. When this is
the case, mode conversion may occur and the two branches of the dispersion relaticn
exchange energy. Plasma resonances also involve linear mode conversion to some
extent. As we consider how waves propagate from regions where the local gyrofre-
quency matches the hydrogen cyclotron frequency to regions where it matches the oxy-
gen gyrofrequency, we will find that the analysis involves a set of regions where the
WEKB analysis is adequate and a set of regions which must be analyzed separately
from the crude WKB approximation. In regions where the WKB approximations are
inadequate, we will carefully solve a suitable approximation of the full wave equations
both numerically and analytically. Moreover, the wave equations fail most dramati-
cally in the region where ion heating takes place. Therefore, by carefully solving the
wave equations near the cyclotron resonance, we will also obtain information pertain-

ing to ion heating.

I1. Dispersion Relations

In order to understand wave propagation and the important mode-conversion
processes involved in the present analysis, it is important to understand the relevant

dispersion relations. In the crudest approximation, we can ignore all ion species
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except hydrogen, which is the dominant species above ionospheric altitudes. In this
case, the dispersion relaton consists of two modes—the magnetosonic and shear
Alfvén modes, ak.a. ion-cyclotron waves [Stix, 1962]. These modes remain uncou-
pled and propagate independently according to the ray equations. At frequencies near
the oxygen cyclotron frequency, such an approximation fails to adequately describe
wave propagation. Indeed, the topology of the dispersion surfaces changes dramati-
cally with the inclusion of a secondary ion species [Smith and Brice, 1964; Gumett et
al., 1965]. Figures 3.1 and 3.2 contrast the difference between the propagating modes
with the inclusion of a heavy ion species (in this case helium). It should be noted that
similar effects appear if particles have the same mass but different ionization. For such
a plasma, waves near the ion gyrofrequencies are characterized by five important fre-
quencies: the two ion gyrofrequencies, £,.1,Q.4; the cutoff frequency, ®,,; the cross-

over frequency, @, ; and the ion-ion hybrid frequency, ®;;, where

o = n1Q o428 3.1)
co nytny )
mz _ n 1QC22-H1 2931 (3.2)
e nitng
0)2 - o chgcz(” 1+n 2) (33)
N “ n igc 1tn ZQC2

The structure of the dispersion equations is readily apparent from their algebraic

form. In a cold plasma it is well known [Stix, 1962] that for low frequencies the solu-
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tions to the dispersion relation are of the form

2 172
R-L|” N
> ] e ] (3.4)

R+L le:t

Ni'= 2 2

where Ny and N, are the indices of refraction with respect to the magnetic field and the

functions R and L are defined by Stix

mzs ()
— 1P
R=1 %mz o0, (3.5)
2
iy
L=1-32-—"2— . 3.6
where @,, and Q; are the plasma and cyclotron frequencies for each species s. In the

low frequency limit it is most convenient to rescale these indices to the Alfvén velo-
city

2 4nn.m
C s'ts
_.2_ —_ Z .._5__ (3.7)
V4 species B

rather than the speed of light. Then the dispersion equation takes the form

1/2
o rH & | r=1? 3.8
where
v v
n=N— ., x=N-— (3.9)
I C

and for a two species plasma the analogue of equations (3.5, 3.6) are the normalized
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Figure 3.1. Dispersion relation for a cold single ion plasma, with with perpendicular
wavevector K held fixed (k=0). On the right is the fraction of left-hand circular polarization
as a function of frequency.

Stix functions

Q.1Q oo,
LT ) (3.10)
l o, @Q NotQ. ;)

The relevance of ion-ion hybrid frequency, ;; is nested in the sum function

r+l Q402 (0*-0})
s = = S EPCIVICIPY) 3.1
2 miz' (o _Qc 1)(0) _QCZ)
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Figure 3.2. Dispersion relation for a cold, two ion species plasma with mass ratio four and
density ratio about 0.05 (minority species is the heavy ion). Here we plot frequency vs.
wavevector and frequency vs. fraction of LHCP at fixed X (K=0).

while the relevance of the crossover frequency, ®,,, is manifest in the difference func-
tion

r—l Qc 19'4:2 )] ((’32"0)(:2;-)
d= = 3 3 > ; (3.12)
2 0,  (@-Q2)(@?-Q2)

It is then evident from equation (3.8) that for parallel propagation (x=0) the indices
reduce to r and /. The mode r remains well behaved and remains virtually indepen-
dent of the minority ion species. The mode I, on the other hand, is characterized by

two resonances and a cutoff. It is also to be noted that the two modes coalesce when
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Figure 3.3. Dispersion relation for a cold single ion species. Here we plot frequency vs.
wavevector and frequency vs. fraction of LHCP at fixed X (k=0.3).

d=0 at the crossover frequency. The importance of @y; arises for perperdicular propa-

gation (c>d ) in which case the mode n, has a cutoff at 5 0.

In Figures 3.1-8 we plot frequency vs. parallel wave vector at fixed perpendicu-
lar wave vector, and in addition we plot the fraction of left-hand circular polarization
(LHCP) for the various modes at each frequency. We can make a number of relevant
observations concerning the case of two ion species. For nearly parallel propagation
the two modes are either strictly right-hand circularly polarized (RHCP) or LHCP, and
they cross at the crossover frequency. The LHCP mode resonates with ions at the ion

gyrofrequencies and has a cutoff at the cutoff frequency. For non-parallel propagation,
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Figure 3.4. Dispersion relation for a cold two ion species plasma. Here we plot frequency
vs. wavevector and frequency vs. fraction of LHCP at fixed K (x=0.3).

the two modes couple near the crossover frequency so that they no longer cross, and
the predominately RHCP mode becomes predominately LHCP across this frequency.
For larger angles of propagation the two modes separate substantially, and the magne-

tosonic mode is cutoff near the lower hybrid frequency

[(l)z +‘Q IQ Iy ]
(D[%g = che chHl Pem2 _::22 = J
pe ce

(3.13)

(well above the hydrogen gyrofrequency) so that the only relevant modes are the two

downgoing ion-cyclotron branches which have resonances at the two ion gyrofrequen-
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Figure 3.5. Dispersion relation for a cold single ion plasma. Here we plot frequency vs.
wavevector and frequency vs. fraction of LHCP at fixed ¥ (k=0.9).

cies as shown in Figure 3.8. The mode which is asymptotic to the hydrogen gyrofre-
quency has a lower cutoff which increases from zero frequency to the ion-ion hybrid
frequency as X increases. For perpendicular propagation, the cutoff is for this mode is

the ion-ion hybrid frequency, and a small gap exists between this mode and the mode

which is asymptotic to the heavy ion gyrofrequency.

1. Consequences of Dispersioi: Relations

We may draw a number of conclusions relevant to our analysis from these

dispersion relations, First of all, it is clear that the presence of the minority species is
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Figure 3.6. Dispersion relation for a ccld two ion species plasma. Here we plot frequency
vs. wavevector and frequency vs. fraction of LHCP at fixed K (K=0.9).

important only near the heavy ion gyrofrequency. As an important consequence, any
analysis at frequencies not near the minority cyclotron frequencies need not include the
presence of minor species. Thus, in considering the propagation of waves we may, for
example, concentrate on the more important aspects of the problem such as field line

curvature and density gradients.

A second, more disturbing, implication of the dispersion relation is that even if
waves do propagate to regions where their frequencies match the heavy ion gyrofre-
qﬁency, e.g. from equatorial to auroral regions, there are a number of obstacles in the

way of ion heating. Most notably, if ions are incident on the magnetosonic branch at
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Figure 3.7. Dispersion relation for a cold single ion plasma. Here we plot frequency vs.
wavevector and frequency vs. fraction of LHCP at fixed K (k=5.0).

the hydrogen cyclotron frequency, then they will propagate to a point where their fre-

quency matches the local cutoff frequency and be reflected before they can reach alti-

tudes where they can heat ions.

Waves incident on the LHCP ion cyclotron branch appear to have a more pro-
found deficiency. Although they would appear to be accessible to lower altitudes, at
the local heavy ion cyclotron frequency they are completely RHCP. However, the
heating rate was shown to be directly proportional to the fraction of LHCP. This then
means that heating along this branch could only result from thermal effects or via

Doppler shift. The plasma in this region is not particularly thermal, so one would
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Figure 3.8. Dispersion relation for a cold two ion species plasma. Here we plot frequency
vs. wavevector and frequency vs. fraction of LHCP at fixed K (K=5.0).

expect the heating resulting from these waves to be small.

Another salient feature is that for large angle of propagation (large x) the ion
cyciol:ron wave develops a “‘gap’’ or ‘‘stop band’’ between the ion-ion hybrid (Buchs-
baum) frequency and the heavy ion resonance. Therefore, in order for perpendicularly
propagating ion-cyclotron waves to heat ions, they must tunnel through an evanescent
region.

Finally, it is important to note that near the crossover-cutoff-resonance triplet the

dispersion relation is not valid and we would expect substantial coupling between the
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modes leading perhaps to some absorption and some tunneling to the LHCP ion-

cyclotron branch which may then heat ions.

IV. Determination of Accessibility and Heating

After considering the cold plasma dispersion relation it seems clear that the
question of wave accessibility to the auroral region naturally lends itself to a twofold
analysis. First we shall consider wave propagation from the equatorial region using
the well known ray-equations. Presumably, a sizable fraction of these waves will be
guided earthward. At some point the waves will encounter a localized region in space
where the WKB analysis is no longer valid. In this case we shall solve the electric
field equations to determine the behavior of the electric fields across this region. The

appropriate boundary conditions will, of course, be the WKB solutions.

It is to be noted that although the equatorial and auroral regions contain much
free energy available in the form of unstable distribution functions, the intervening
region through which waves propagate in order to reach auroral altitudes (the central
plasma sheet) is relatively quiet. In this intervening region, thermal effects are not
significant, and the dispersion properties are reasonably described in terms of a cold
plasma model. The ray-racing equations therefore imply that energy is conserved, and
the fraction of waves which finally reach the auroral region is primarily determined
from the behavior of the waves near the heavy ion gyrofrequency where the WKB
approximation is inadequate. In the following chapters we will explore whether waves

propagate to auroral altitudes using the WKB approximation when applicable. In
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regions where the WKB approximaticn is not appropriate, we will determine the
amount of wave power apportioned in each mode by solving a suitable approximation

of the full wave equations.



CHAPTER 4

RAY TRACING

L. General Theory

In homogeneous media, the solutions to Maxwell’s equations are simply plane
waves. Such waves are best described in terms of a phase function, k-x—f, which

remains constant along a wavefront. The wave may then be visualized as a wavefront
which travels at a phase velocity, ? In an inhomogeneous medium in which varia-

tions in the typical scale lengths of the medium far exceed that of the local
wavelength, the waves are best described in terms of eikonals or the WKB approxima-
tion [Weinberg, 1962; Stix, 1962; Lighthill, 1978; Swanson, 1989]. In this approach,
a wave packet of frequency ®, localized in wavevector and space, then behaves locally

as a plane wave while its position and spectrum change according to the ray equations

dx _ do
dt ~ ok @.1)
which is the group velocity, and
dk 0w
B I el 4,
de ox “42)

This represents a simple Hamiltonian system describing the conservation of w which,

in the absence of dissipation, implies conservation of energy.

Ray Tracing 34
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In a plasma, the local properties of the medium are best described by the Fourier
transform of Maxwell’s equations which takes the form D;;E; = 0 where D;; is the the
Dispcrsion function and E; is the electric field. The local properties of the medium
are then contained in the function D = det(D;;) = 0 which relates the frequency, w,
wavevector, k, and the local values of various quantities at the position x. In a plasma
system with an imposed zeroth order magnetic field, it is easiest to evaluate the disper-
sion equation in a coordinate system in which the magnetic field specifies a preferred

direction. In this case, the dispersion relation is of the form,
D (kpkyx,0) =0 (4.3)

where ky = k-b and kl:\fkl—kuz and b is the unit vector of the magnetic field. The

ray-tracing equations expressed in terms of the dispersion function are then simply

D
dx _odw _ ok
Pl S} (4.4)
ou
F12)
dk _ dao _ dx
FTiir .y (4.5)
ow

The derivatives of the dispersion function may be expressed in terms of the natural

variables, ky, &}, X, and o to be

oD _ oD (kj—kubj) N oD

ok;

ok, k| oky bj 4.6)
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ab;
d ox 5]

oD ky oD

oD _ 3D ki
oky k) oky

ox g ox '

(4.7)

where the summaton convention is used. The effects of field line curvature are mani-

fest in the last term of Eqn (4.7). Alternatively, we can express the curvature term as

L 198 _ st 4.8
xaxj -(.'-nb.')B'é§j——1 B (4.8)

where IL g Lis the magnetic scale length tensor. The magnetic field magnitude scale

length, Lg, is also simply related to this tensor

1 98 -1
— 2 bl
B ax,- B 4.9)

LB—I =
The above equations adequately describe the evolution of waves in a medium in which
the scale length of the relevant plasma quantities is much longer than that of the local

wavelet. The details of wave propagation are thus contained in the form of the disper-

sion function, D which we will now consider.

I1. Specific Model

The Central Plasma Sheet (CPS) is a quiescent region characterized by an
absence of free energy when compared with the auroral or equatorial regions. Stream-
ing electron beams and field aligned currents which characterize the auroral region are
conspicuously absent, and particle distributions in the CPS are more stable than those
found in the equatorial region. In the CPS, typical cold ions might have gyroradii the

order of meters, and even the most energetic ions might at best have gyroradii the
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order of kilometers. In contrast, local wavelengths for low frequency Alfvén waves
tend to be on the order of tens or even hundreds of kilometers. Hence, thermal effects
are negligible (except near the resonances which we will not consider using the WKB

approximation), and the medium is best described using a cold plasma model.

For a cold plasma, the dispersion relation is well known to be of the form

S-Ni¢ —iD N,
D =det|] iD S$-N?2 0 (4.10)
NN, 0 P-N?

where the functions S, D, and P defined by Stix [1962] are

2

@
S=1-—FL _ 4.11
%mZ—Qsz @1

Q. w2
D=V (4.12)
zszmz—Qsz

Oy
P=1-% (4.13)

Here N is the index of refraction, kc/m, with directions defined with respect to the
magnetic field, and the local properties are manifest in the plasma frequency,
oags = 4ng2n (x)/m, and gyrofrequency, X =g,B(x)/msc, for each species s.
Clearly wave propagation is then determined entirely by the density and magnetic field
models relevant to the region of propagation, and Eqn (4.7) may then be expressed

explicitly in terms of the magnetic scale length vectors and the density scale length
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-1 1
L.~ = n, ox (4.14)
to be
aD aD k“ aD -1 2 aD ._1 BD 0
= —_—— R L
ox aky k| akqul]LB + ?OJPS ampzs L, + gﬂs aq, B 4.15)

The magnetic field of the Earth is to first approximation a dipole. As the solar
wind flows past the Earth, however, the field is stretched and distorted into an
elongated tail-like configuration which can be rather dynamic: superquiet, quiet, dis-
turbed, superdisturbed. The magnetic field has been carefully classified empirically by,
for example, Mead and Fairfield [1975]. Nevertheless, within 7 or 8 L of the Earth,
where L is the equatorial crossing of a particular magnetic field line in Earth radii
(that field line is referred to as an ‘‘L-shell’’) a dipole field adequately describes the
Earth’s magnetic field. For our present purposes, then, it seems reasonable to model

the magretic field as a dipole with

4.16)

where r is measured in Earth radii and By = 0.35 gauss is the approximate field

strength at equatorial latitudes near the Earth.

The density profile, on the other hand, remains somewhat more uncertain. As
discussed by Moore et al. [1987], the only reliable data for low energy “‘core’” plasma
at present is in regions of high density such as the plasmasphere. Measurements of

electron density appear to be more reliable and at least give reasonable estimates of the
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cold ion density although nc information concerning the proportion of species can be
known for certain. Most measurements of ion composition instead concentrate on
energetic ion populations which are easier to measure and are perhaps more interesting
in that they provide evidence in the perennial question of the origin of thermal
plasma—*‘from the solar wind or the ionosphere?”’. However, it is apparent that these
thermal populations throughout most of the region of interest constitute less than 1 per-
cent of ion species [Olsen et al., 1987; Strangeway er al., 1986], and such information
is not particularly useful except for understanding instabilities associated with the ori-
gin of waves. The most suiking feature of the density profile is, of course, the
existence of a plasmapause around 4.5 Rg. Plasma measurements although somewhat
uncertain seem to indicate plasma falloff as r 7, where p ~ 3-4 near the Earth, that is,
within the plasmasphere (although closer to the Earth there is an apparent trough of
decreased density) [Moore et al., 1987; Olsen et al., 1987; and references therein]. At
the edge of the plasmasphere, the plasma density falls off exponentially from the
plasma density in the plasmasphere to the plasma density in the central plasma sheet.
Except near the Earth, the plasma density appears to remain essentially constant along

field lines and the abrupt gradients occur mainly across field lines.

In light of these considerations, a natural density model, suitable for a qualita-
tively correct theoretical analysis, would be a profile in which the density depends pri-
marily on L-shell. Because the waves that are of interest in this analysis interact most
strongly with the boundary of the plasmasphere rather than with the plasmasphere

itself, it is most convenient to take a model in which density variations inside the
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plasmasphere are ignored. An appropriate model for the density is

L L
n(x) = _;'(nps_ncps)[l—tanh [—%9'] } + nps 4.17)

where n,; is the plasma sphere density, ng,s is the central plasma sheet density, Lo is
the L-shell of the plasma pause, and « is the gradient scale length. The L-shell is

related to the dipole coordinates through the field line equation

_ T
X) = Sn2©) 4.18)

where © is the angle with respect to the dipole axis. In Figure 4.1 we plot such a
profile for typical values of the parameters. It should be noted that the value of densi-
ties in the plasmasphere and plasma sheet, location of the plasmapause, scale length of
the density falloff may vary substantially depending on the magnetic activity, ie.
whether there is a substorm or a quiet period. It is, however, fair to say that the quali-
tative aspects of the density configuration should remain essentially the same [Car-

penter and Park, 1973].

II1. Qualitative Discussion

The general characteristics of wave propagation in our model may be understood
heuristically in terms of the approximate dispersion relations for low frequency waves.
For a cold proton-electron plasma two propagating modes exist at low frequencies—
shear Alfvén waves ak.a. ion-cyclotron waves, and compressional magnetosonic

waves. Shear Alfvén waves are characterized by the approximate dispersion relation
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Figure 4.1. Density as a function of L-shell for the density model (4.17). This density
profile mimics the plasma falloff at the edge of the plasmasphere. The density is assumed
to be constant along each L-shell as shown in Figure 4.2.

w= k||VA 4.19)

where the Alfvén velocity varies as Bn~'2. The appropriate ray equations (4.4, 4.5)

then take the form
dx
E = VAI) (4.20)
dk 1 1,
o -o)[LB 1—-2—L,, 1] (4.21)

These equations clearly describe rays which travel along a field line because the group

velocity is always along the magnetic field direction, and as they travel along the field
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line they refract according to equation (4.21). It should be clear that the waves refract
out of regions of larger magnetic field and into regions of larger density. Thus, as
shear Alfvén waves propagate earthward, we expect them to remain tied to a field line,
and we expect the direction of the wavevector to be determined by a delicate balance
of the magnetic field and density gradients. It is easy to conceptualize this balance

from Figure 4.1 in which we plot lines of constant magnetic field and lines of constant
density ‘‘L-shells.”’ In our model, the density gradient is largest near Ly = 4.5. Waves

generated in the equatorial region have L=»L, so that we can expect the effects of the
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Figure 4.2. Lines of constant density and magnetic field for our model. The z-axis is along
the dipole field while the x-axis extends tailward. Density is taken io be constant along
magnetic field lines—L-shells. The gradients are perpendicular to the constant surfaces as

indicated. The magnetic field gradient tends to expel the waves while the density gradient
draws them earthward.
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density gradients to be negligible as the waves propagate earthward.

On the other hand, magnetosonic waves obey the approximate dispersion relation
W = kvy (4.22)

and the ray equations (4.4, 4.5) are of the form

dx 2

Ft- = VAIC (423)
dk -1 1.
Ez" = —ﬁ)[LB 1-‘514" 1] (4.24)

In contrast to ion-cyclotron waves, the group velocity of magnetosonic waves is
directed along the direction of the wavevector rather than the magnetic field which
implies that magnetosonic waves propagate and refract in the same direction. If we
ignore density gradients it is clear that magnetosonic waves are repulsed from regions
of large magnetic field, in which case it is not possible for those waves to reach
auroral altitudes in that they refract tailward and propagate into the region of smaller
magnetic field. This behavior can be inferred from Figure 4.2 if we realize that ray
trajectories follow magnetic field gradients and propagate perpendicular to surfaces of
constant magnetic field. On the other hand, we see that density gradients oppose the
magnetic field to some extent everywhere. In particular, the density gradient is
directed earthward at the equator and near auroral altitudes the density gradient is
directed downward toward the equator. The waves that we have identified in the equa-

torial region which are generated above the proton gyrofrequency propagate earthward
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with wavevector oblique to the magnetic field. These waves may in fact reach the
boundary of the plasmasphere in which case the density gradients may balance the
magnetic field gradient and essentially ‘‘guide’ the waves along the edge of the

plasmapause boundary to auroral altitudes.

IV. Results

In order to investigate the ray paths of the waves of interest, we solve the ray-
tracing equations (4.4, 4.5) numerically using various integration codes. In particular
we have used three different integrators based upon the Bulirsch-Stoer, Runge-Kutta
and predictor-corrector metheds [Press er al., 1986]. The predictor-corrector method is
much more efficient in that it requires the least number of function evaluations. The
results from all three integrators agree to acceptable precision, and as an additional
check, ray paths may be traced backwards to determine the validity of the integration

procedure. All results are correct to within acceptable numerical accuracy.

A. LHCP Waves Guided by Magnetic Field

It is well known that LHCP ion-cyclotron waves are guided along field lines as
indicated in our heuristic analysis. Indeed, a number of studies have contributed to our
understanding of the propagation of this variety of wave along dipolar field lines. The
seminal work of Rauch and Roux [1982] clearly demonstrated the guiding effects of
the magnetic field on ion-cyclotron waves. In their analysis, they determined that
waves of this variety, generated near the helium gyrofrequency or the hydrogen

gyrofrequency are guided along field lines. Their results clearly showed that LHCP
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waves are accessible to auroral altitudes where they contribute to ion heating. On the
other hand, their calculations were inadequate in that the waves that they traced
reflected at lower altitudes and thus bounced back and forth between conjugate points
in the two hemispheres. The analysis inadequately treated the behavior of the waves
at the reflection point near the plasma resonances where mode coupling occurs and
substantial wave power tunnels through the *‘stop gap’ which occurs when the wave
frequency is the order of the local heavy ion gyrofrequencies. We shall discuss the

proper treatment of this problem in detail in the following chapters.

In this section we present a brief review of the predictions of our model, which
we expect to be similar to the analysis of Rauch and Roux [1982], and we also discuss
and critique some of the recent work concerning tracing of LHCP waves in the area

between the plasmapause boundary and the magnetotail.

In the following figures we present ray paths for waves incident in the LHCP
mode propagating toward auroral altitudes. In all the figures z is taken to be the coor-
dinate along the dipole axis of the magnetic field while x is taken as an equatorial
coordinate. In addition, we also superimpose the field lines to more easily indicate the
location of wave packets. Waves are launched in the equatorial region tailward of the
plasmapause boundary. The waves propagate earthward to lower altitudes where they
presumably contribute to ion-heating. We terminate ray-tracing when the eikonal
approximation becomes suspect and/or the presence of multiple ion species Becomes

important.
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Figure 4.3. Ray paths for ion-cyclotron waves with a constant density model. Wave packets
follow rays indicated by dots. The spacing of the dots indicates the velocity of the wave
packet along the ray path.

In these figures we plot the paths of waves which originate at a particular loca-
tion in the equatorial region. In this instance all waves are launched at 5.5 Rg. The
paths differ according to the angle of the initial wavevector. We increment the angle
of the wavevector with respect to the magnetic field by n/20 thus investigating all ini-
tial waveveciors between 90 degrees with respect to the magnetic field direction, Z.
In Figure 4.3 we have assumed a constant density model and the dipole field model. It
is clear that the waves are guided along the field lines to auroral altitudes. Moreover,
the spread about the field line resulting from different initial wavevector is negligible.

On the other hand, in Figure 4.4, we take the density to fall off according to the model
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Figure 4.4. Ray paths for ion-cyclotron waves with a density mode! which mimics the den-
sity gradients at the plasmapause boundary.

given by equation (4.17). We have investigated this model taking as typical ranges for
the parameters [Carpenter and Park, 1973; Moore et al., 1987; Olsen et al., 1987; and

references therein]

a=1-2
LO =4-5
X (4.25)
nps = 200-2000cm™
fps = 20-100cm ™

In the case of Figure 4.4 we have taken & =2, Lo =4, n, = 2000 and ng,, = 60.
The results are not strongly dependent on these numbers and provide a reasonably

representative qualitative as well as quantitative description of waves incident from the
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Figure 4.5. Ray paths for ion-cyclotron waves traced backwards from the aworal region.
Note that the source for the waves is restricted to a narrow spatial range in the equatorial re-

gion.
equatorial region. As is readily apparent, density gradients do not affect the ray path
substantially. As expected, the wavevectors refract so that they are more oblique to the
magnetic field [Rauch and Roux, 1982]. In Figure 4.5, we trace backward from a
point in the auroral region to determine the location of the source for such waves. In
this case, initial conditions are specified in the auroral region. As before, we sample
all wavevector directions from Z to ~Z. It is clear ihat the source for LHCP waves is
a very localized source tailward of the plasmasphere. From these results it is obvious
that LHCP gencrated in the equatorial region propagate to altitudes where the WKB

solutions are inadequate. At these altitudes, we must leave the primitive WKB solu-
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Figure 4.6. Ray paths for magnetosonic waves with a constant density model. The waves
are launched at 5.5 Earth radii. Note that the waves tend to be unguided.

tions behind and address the question of accessibility by considering the asymptotic

solutions to a suitable approximation to the full wave equations.

In recent work which stems from our suggestion that waves generated in the
equatorial region arz the source of waves observed at auroral altitudes, Ronnmark and
André [1991] have investigated the focusing of waves due to the effects of the con-
verging field line geometry. Their calculation is based upon the conservation of a dis-
tribution function of waves from which the spectral density may be obtained. This
wave distribution function is conserved along ray paths and thus provides an effective

tool for comparing real satellite data at different altitudes along the ray path. They



Ray Tracing 50

4lllilllllllf.lII—IIIII‘.'_r'lIII1]___1,--1]1][1

el

Figure 4.7. Ray paths for magnetosonic waves with a constant density model. The waves
are launched at 6.5 Earth radii.

determined that as waves propagate down along field lines that the spectral density

increases by a factor of approximately 10.

Numerous other ray-tracing calculations have indicated a similar behavior for
LHCP waves in a thermal plasma. Unfortunately, simple ray tracing near the ion
gyrofrequencies and even near the harmonics of those cyclotron frequencies are con-
spicuously deficient in that the amplitudes of those waves changes rapidly in stark con-
trast to the assumptions of the WKB approximation. Thus any ray tracing code which
predicts strong absorption or reflection must be considered suspect [Home and Thorne,

1990]. Indeed, any such analysis which traces waves through the crossover frequency
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Figure 4.8. Ray paths for magnetosonic waves with a density model which mimics the den-
sity gradients at the plasmapause boundary. The waves are launched at 5.5 Earth radii. A
much larger range of initial wavevectors are directed along field lines towards the auroral

region,

where substantial mode conversion occurs is simply wrong [Mei, et al., 1992).

B. Magnetosonic Waves Ducted by Density Gradients

Magnetosonic waves, on the other hand, have generally been assumed to not
reach auroral altitudes because the refract away from field lines [Rauch and Roux,
1982). It is useful, however, to consider the analogy of whistler waves. Whistler
waves are simply related to magnetosonic waves in that they are the same mode, but at
a 16wer frequency. Because they obey a similar dispersion relation, they should have

similar properties of propagation. Whistlers are well known to be ducted along field
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Figure 4.9. Ray paths for magnetosonic waves with a density model which mimics the den-
sity gradients at the plasmapause boundary. The waves are launched at 6.5 Earth radii.

lines between opposite hemisphere particularly after lightning [Helliwell, 1965; Al’pert,
1990]. However, whister waves behave in the same manner as magnetosonic waves in
that they are not guided along magnetic field lines and instead are refracted into
regions of smaller magnetic field. Nevertheless, because whisters propagate along the
boundary at the outer edge of the CPS, they are subject to a phenomenon termed duct-
ing in which the density gradients in fact duct or guide the waves along the edge of a
density boundary. Such ducting is easy to imagine if we consider equations (4.23,
4.24). Waves are clearly refracted into regions of large densities. As they try to
escape from a region of large density, they encounter a negative density gradient and

are thus refracted back into the region of large density (providing the density gradient
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Figure 4.10. Evolution of the wavevector along ray paths associated with Figure 4.8. Note
the correspondence between the direction of wavevector and the direction of wave propaga-
tion. Zeros of the components of the wavevector correspond to reflection in the x or z
direction,

is sufficient to overcome the magnetic field gradient). In this manner, whistler waves

are ducted along field lines.

In an analogous manner, we expect to find that near another plasma boundary,
namely at the plasmapause inierface between the plasmasphere and the central plasma
sheet, RHCP waves may again be ducted. In the following plots we establish that per-
pendicularly propagating modes generated in the equatorial region are to some degree

accessible to auroral altitudes and clearly accessible to altitudes where they can
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Figure 4.11. Wave paths for magnetosonic waves traced backwards from the auroral region.
Note that the source for the waves encompasses a substantial region outside of the
plasmapause boundary. The scale length o is taken 10 be 2.

undergo mode conversion to LHCP waves at the helium gyrofrequency.

In Figures 4.6-9 we consider ray paths for waves which can propagate to auroral
altitudes. In Figures 4.6 and 4.7 we plot ray paths for waves in the absence of density
gradients. These two cases differ in that the waves are launched from 5.5 and 6.5 Rg
respectively. It is clear that the waves are somewhat guided for the first Rg and then
suffer strong refraction and are lost to the magnetotail [Rauch and Roux, 1982]. The
reason that the waves are somewhat guided initially is that wave normal surface is
actually an ellipse rather than a sphere as in the heuristic model (4.22). In Figures 4.8

and 4.9 we include the effects of density gradients taking typical parameters as for the
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Figure 4.12. Wave paths for magnetosonic waves traced backwards from the auroral region.
Note that the source for the waves encompasses a substantial region outside of the
plasmapause boundary. The scale length  is taken to be 1.

ion-cyclotron case (4.25). It is apparent that waves with a much larger range of initial
angles penetrate deeper into the auroral region of the CPS than without the gradients.
In Figure 4.10, we plot the behavior of the wavevector associated with Figure 4.8.
The initial wavevectors lie on the wave normal surface at the equator which is an
ellipse. The components of the wavevectors are in the directions x and z. The
wavevectors with an initial negative k, are associated with the leftmost contours of
Figure 4.8. As the waves evolve, the group velocity tends to be in the direction of the
wavevector. It is interesting to note the relationship between the the spatial turning

points for the ray paths in Figure 4.8 and the zeroes in the components of the
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wavevector in Figure 4.10. This relationship confirms the heuristic argument that the

group velocity lies along the direction of the wavevector.

In Figures 4.11 and 4.12 we trace waves backwards from a location in the
auroral region to determine the source. Figures 4.11 and 4.12 differ in the value of the
scale length of the density gradient. Increasing the ratio of n,, to n., has a similar
effect to decreasing the scale length. As is the case for ion-cyclotron waves, the
source appears to be in the region outside of the plasmapause. Decreasing the scale
length, @, leads to a much more defined source outside of the plasmapause. In con-
trast to Figure 4.5, we see that the source would appear to be a more extensive area of
the equatorial region. Indeed, this elicits some confidence that some of the waves at
auroral aldtudes may be RHCP waves. Nevertheless, this result should be tempered by
the observation that it is only oblique modes which are guided to auroral altitudes
(waves which are generated with wavevectors aligned to the field sill tend to be
pushed into the tail by the magnetic field gradient), however, we should keep in mind
that it is also the perpendicular modes which are primarily generated in the equatorial
region, and, indeed, the equatorial region provides a large source from which to focus

energy to auroral altitudes.

The waves observed at auroral altitudes tend to be broadband in frequency. If
waves are generated in ihe equatorial region near the harmonics of the hydrogen
gyrofrequency, then sources ranging over several Ry would vary substaniially in fre-
quency. As a result one would expect that such an admixture of waves would result in

broadband spectrum. In contrast, ion-cyclotron waves generated by the ion-cyclotron
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instability tend to be excited in a small range of frequencies. Because waves in the
equatorial region are strongly tied to field lines, one would not expect to find as broad

a spectrum as is observed.
C. Summary

In this chapter we have discussed ray-tracing at some length, and we have inves-
tigated whether waves generated in the equatorial region are accessible to auroral alti-
tudes in light of a well approximated cold plasma model which retains magnetic field
curvature and the essential features in the density profile at the plasmapause boundary.
It is quite clear that LHCP waves, regardless of density profiles, propagate to auroral
aldtudes. This behavior is easily understood from the guiding influence of the mag-
netic field because the group velocity for these waves tends to be field aligned. On the
other hand, we have also demonstrated that although RHCP waves at first glance
appear to not be guided along field lines, they may be ducted by means of density gra-
dients. We have studied a simple model which retains the essential features of the
plasmapause boundary, and we have found that the effect of such a boundary is to
cancel the competing effects of the magnetic field gradient so that waves generated in

the magnetosonic mode may, in fact, be found at lower altitudes.

We have thus established that much wave power is available in both the LHCP
and RHCP modes all along auroral field lines and can contribute to ion heating. The
determination of accessibility of waves and determination of wave power available to

heat ions then boils down to a detailed consideration of what happens as waves pro-
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pagate into regions where their frequency matches the heavy ion gyrofrequencies. It is

this subject to which we shall direct our attention in the following chapters.



CHAPTER 35

MODE CONVERSION—ANALYTICAL CONSIDERATIONS

1. Inadequacies of Ray Tracing

In the previous chapter we have demonstrated that waves generated along both
the ion-cyclotrqn and the magnetosonic branches of the dispersion relation propagate to
altitudes where they may, in fact, be responsible for ion heating to some extent. The
questions tegarding accessibility, however, remain uncertain in that the preceding
analysis did not consider the presence of a minority ion species. Indeed, it is impossi-
ble to study the detailed behavior of such waves in the vicinity of the ion resonances
using the eikonal approximation. The existence of a cutoff most certainly indicates
that the local scale of the disturbance far exceeds the scale length of the magnetic
field. Moreover, the presence of a resonance generally indicates that the four pro-
pagating modes couple to some extent and that significant wave energy may be
wransferred between the modes [Gumett, et al., 1965]. This energy transfer may be
quantified by determining the coefficients of the various propagating modes on either
side of the region where the WKB approximation is inadequate. Unless these
coefficients indicate either the absence of energy transfer or complete energy transfer,
it is neither useful nor correct to trace ray paths through these frequencies. Such has
been the case in a number of recent studies of low frequency wave behavior in mul-

tispecies plasma. As we shall see, there are regimes in which the coefficients are such

Mode Conversion—-Analytical 59



Mode Conversion-—Analytical 60

that ray-tracing may be proper; however, to a large extent the admixture of energy

between the modes can be rather complicated and somewhat non-intuitive.

In regions where ray-tracing is unacceptable we must instead solve the full wave
equations for the solution {Swanson, 1989]. The boundary conditions for this solution
will, of course, be the wave solutions described by the WKB analysis. In the next two
chapters we will consider carefully the full wave equations both analytically and
numerically, and we will thus obtain reasonable estimates of the power apportioned to

each of the WKB solutions on either side of the resonance.

In order to understand more completely the processes which we are examining,
consider the dispersion relation of Figure 5.1 (for a full review of the dispersion rela-
tions associated with this problem see Chapter 3). This dispersion relation is charac-
terized by three separate modes which we have labeled I, II, and II. Mode I is the
magnetosonic branch and is predominately right-hand circularly polarized at high fre-
quency whereas mode II, which is the hydrogen ion-cyclotron branch, is predominately
LHCP. Below the oxygen cyclotron frequency mode II continues to propagate as the
RHCP magnetosonic branch and mode I represents the LHCP ion-cyclotron branch.
Near the crossover frequency, modes I and II couple and exchange energy. Mode I
also suffers a cutoff at the cutoff frequency and is separated from mode III by an
evanescent region. As waves move into regions of larger magnetic field they move
“‘down’’ along the dispersion curves according to the WKB approximation in that they
satisfy the local dispersion relation. The scenario in which waves propagate earthward

into a region of larger magnetic field (as is the case for waves propagating from the
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Figure 5.1. Dispersion relation for a cold two ion component plasma for nonparallel propa-
gation. The various branches are labeled according to their predominate polarization with
RHCP dashed and LHCP solid. Coupling occurs at the crossover frequency (w,,) where
the polarization of branches I and 1 switches abruptly [Smith and Brice, 1964]). Tunneling
occurs across the shaded ‘‘gap™ between the cutoif frequency (w.,) and the heavy ion

gyrofrequency Q).

equatorial region to the auroral region) corresponds to waves incident from ‘above’’
the coupling-evanescent region. Some of the incident wave power is then reflected
back along branches I and II, some wave power is transmitted along branches II and
IT “‘below”’ the heavy ion cyclotron frequency, and some wave power is absorbed in
the evanescent region. Particle heating may result from ion-cyclotron damping of
branch IT (for a thermal plasma) and from the calculated absorption which typically

corresponds to mode conversion to a thermal plasma wave which is strongly damped.
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II. Relevant Equations

Our goal is to describe the behavior of low frequency waves near the series of
crossover cutoff and resonance frequencies found in a multispecies plasma. The essen-
tial feature that we wish to retain, then, is the variation of the magnetic field strength
along field lines {density gradients do not affect the location of the resonances and
only density ratios affect the location of the other special frequencies). The
differential equations are most tractable and still retain the essential features which we
wish to incorporate into our analysis if we consider a plasma in which the mode
conversion processes are dominated by the variation in the strength of the magnetic

field along one dimension and the density is taken to be constant.

At low altitudes where the heating and mode conversion processes are presumed
to occur, the primary variation in the magnetic field strength is along the direction of
the magnetic field (see Figure 4.2) thus we will assume that the only magnetic field
variations are along the field line, and we will neglect the variations perpendicular to
the field line. In doing so, we also neglect the effects of curvature which were critical
for ray-tracing. Such an approximation is reasonable if the conversion process is
localized in some sense with respect to the scale length of the magnetic field. Indeed,
the scale over which the mode conversion occurs is asymptotically small compared

with variations in the magnetic field so that such an approximation is valid.

Maxwell’s equations combined with the momentumn transfer equations describe

wave propagation in a plasma medium [Stix, 1962]. In light of the approximations



Mode Conversion—Analytical 63

detailed above, these equations reduce to a set of coupled ordinary differential equa-
tions for the components of the electric field [Forsterling, 1942]. For low frequencies,
the electric field parallel to the magnetic ficld becomes negligible [Stix, 1962] so that
the equations for the circularly polarized electric field components perpendicular to the

magnetic field

E, = E,E, (5.1
take the simple form
d’E_ 2 K2
2 (. =—_F
£ 2 (2 rE._ 5 Es
J2E 2 2 (5.2)
2 +
—(— -NE  =——
€ 7 (2 YE 2E_
with
E= 1 x=k /k
SkyLg T HTA
(5.3)
ky=wiv L E_l__ﬁ
A=A > TBT R gp

The rescaled Stix functions take the form

+
pl' -+ Qc IQCZ (0) ._(Dco) (5.4)
W,y (0) ch 1)(“) ch 2)

and the Alfven velocity v, has been defined previously. We have taken the Fourier
transform in the direction perpendicular to the magnetic field. In addition, we have
rescaled the coordinate variable to some length scale Lp which appropriately describes

the scale length of the magnetic field.
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These equations are related to the dispersion relation discussed in Chapter 3 and
are related to *he Fourier transform of the matrix equation (4.10). Indeed, the substitu-

tion ied/dz —>n recovers the related dispersion relations

2 1
nl= r;—l Kzi[[r—l] +ﬁ] 2 . (5.5)

2 2 4

These dispersion relations have been discussed at length in Chapter 3.

We can make a number of observations concerning the differential equations
(5.2). These equations are primarily characterized by the quantities €, K, and the rela-
tive spacing of the cyclotron frequencies and the cutoff. The essence of the WKB
approximation is contained in the parameter €. For small &€ the WKB solutions most
nearly approximate the correct sqlution in the regions where r and ! are well behaved.
The parameter ¥, on the other hand characterizes the coupling between the two modes.
Indeed, from equations (5.2) it is obvious that for k = 0, the two equations are com-
pletely uncoupled and each mode may be described separately. In this case, the equa-

tions simply describe the parallel propagating r and / modes.

The functional dependence of r and / on the altitude, z, which is shown in Fig-
ure 5.2, also greatly influences the behavior of the solutions. The function r is well
behaved at low frequencies and varies slowly over the range of z for which the cou-
pling occurs. The function, r, is well approximated by a linear function or even a
constant. On the other hand, the function / is characterized by a pole at the cyclotron

frequencies and a zero at the cutoff frequency. A suitable approximation for the func-
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Figure 5.2. The functional dependence of  and / as a function of altitude. The coordinate
is scaled so that z=1 corresponds to the oxygen resonance.

tion ! must include the pole at the gyrofrequency as well as the zero at the cutoff fre-

quency.

ITI. Analytical Considerations
A. General Discussion of Mcde Conversion

Mode conversion is generally characterized by the coalescence of two propagat-
ing modes [Budden, 1965; Fuchs er al., 1981; Swanson, 1989]. In a region where
mode conversion occurs, the propagating modes which coalesce may, in fact, exchange
substantial energy. The local properties of a medium in one dimension are character-

ized by the dispersion relation
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D(k,z)=0 (5.6)
Saddle points of the dispersion relation where at least two roots coalesce are given by

D
ok

=0 (5.7
Equation (5.7) is satisfied for the mapping k = k.(z) which clearly dencads upon the

spatial coordinate, z. To see that at least two modes coalesce along the saddle point

contours, expand the dispersion function about some k& =k, which satisfies equation

é.7.

Dk,z)= D(kc,z)+ (k—k )+i—a£;(k-kc)2+0{(k—kc)3] (5.8)

Then at a point, z,, where the dispersion relation is satisfied k. (z,) becomes a double
root of the dispersion relation. The point, z,, is referred to as a branch point. Near
the coupling point, the dispersion equation may be described in terms of an embedded

dispersion relation
Dk, .z )+%(k —k, YDy ko rz) =0 (5.9)

Then a differential equation describing the two mode coupling may be obtained from

the Fourier transform in & so that
VW) @)y =0 (5.10)

where
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Dk, ,z)
Dkk(kc’z)

Q@)=-2 (5.11)

By definition, the potential Q vanishes at branch points z, where D = (0. When cou-
pling points are well separated, the embedded equation contains sufficient information
to describe the coupling between the embedded modes. Such coupling is typically
very strong if the coupling point z, occurs close to the real axis and is weak if the

coupling point is far from the real axis.

The particular dispersion relation that we are considering for low frequency
waves may be obtained from the Fourier transform of equations (5.2) which is then of

the form

D (k.2) = (k2= )k )+1c2(1c2-—’-i+—’) (5.12)

where it is understood that  and ! are explicit functions of z. The saddle points

where the waves may be stfongly coupled are located along contours for which
D, (k,2) = 2k k> ~(r+ ) =0 (5.13)
Saddle points lie along the contours

k(2)=0, —;-(r+z—m2) (5.14)

The branch points in space related to these saddle points may be obtained by solving
the dispersion relation (5;12) along the saddle point contours, k,(z). For the coupling

point at k, = 0 we find the cutoff condition
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rl=+-';i(r+l) (.15)

which occurs at the position at which the magnetic field satisfies the condition

K

1———

2
P

2
;= ) Wy

o? = 0o (5.16)
This is simply the cutoff condition for the dispersion relation. For small values of x,
this cutoff occurs at the cutoff frequency, ®,,, which for parallel propagation is the
cutoff of the LHCP L-mode. As k increases this frequency increases as is clear if we

write it in the form

2
2 2 2
W =W "5 5.17
c 1—-'52—0’)‘:20 ( )
2 m,%

where @, >®;—the numerator is always larger than the denominator for ®<V2. Near
2 = 2 the denominatior diverges. (Actually the root approaches the lower hybrid fre-
quency, but our approximations, suitable for low frequencies do not adequately
describe this.) On the other hand, for 1>V2 a cutoff appears at low frequencies which
increases as a function of k¥ up to the ion-ion resonance. This can be clearly seen if

we express equation (5.16) in the form
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2
1__._
o = af—E (5.18)
1-—1 wF '
© 0l

where the numerator is smaller than the denominator. At some critical K the cutoff

passes through the resonance.

The coupling point k. = é—(r+l -k2), when substituted into the dispersion rela-

tion, yields the coupling point condition

d2+~§i =0 (5.19)

where d is the difference function discussed in Chapter 3 and takes the form

g Q.0 (0’ -w2
q= r—i _ c19¢c2 (2 or) - (5.20)
2 W (@P-QHN?-Q2)

This condition simply correspends to a double root of the dispersion relation for the
modes given in equation (5.5). For x =0, this condition is satisfied at the cutoff and
crossover frequencies which are the zeros of the function d. As K-, this conditicn
may only be satisfied near the ion gyrofrequencies. For x#0 it is clear that this condi-
tion may be satisfied only for values of complex d which correspond to complex
values of the magnetic field in which case the branch points, z,, are complex. It
should also be clear from the complex conjugate of equation (5.19) that the complex
branch points always occur in complex conjugate pairs. In Figure 5.3 we plot values

of the complex frequency along which equation (5.19) is satisfied. Equation (5.19) is



Mode Conversion—Analyticai 70

4 T LI ISLLILAN N L ANLENL S B L SN SRR
p— ﬂ - -1
2 - L —
~~ - -7 -

™~

DR b -
L] — —> —
-2 —
a N —

N A bovoa o b by s e by biaan
0 5 1 1.5 2 2.5 3 3.5 4

Re(z)

Figure 5.3. The locus of solutions to equation (5.19) for varying x. The coordinate z
corresponds to the ratio w€,;. For x = 0, the condition is satisfied at crossover frequency
and at zero frequency while for large values of x the condition is satisfied near the oxygen
resonances and the hydrogen resonance (not shown). The arrows indicate the direction of
increasing %. For very small densities (less ihan 0.2%) the topology changes and the cross-
over frequency is connected to the oxygen gyrofrequency whereas the zero frequency solu-
tion is connected to the hydrogen gyrofrequency.

an cighth order equation in frequency with four complex conjugate pair solutions
except at kK = 0 and K—eo where the modes coalesce into a pair of real double roots.
For reasonable ionospheric values of the oxygen density, the crossover frequency con-
nects to the oxygen cyclotron frequency and the double root at ® = 0 connects to the
heavy ion gyrofrequency. From the topology, we expect coupling to be largest when
the coupling points lie near the real axis. In this sense, we see that ihe largest cou-
pling takes place for small values of K near the crossover frequency and near the

® = 0 root (whick corresponds physically to very low altitudes). On the other hand,
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for large values of x the coupling occurs near the two gyrofrequencies (the other

gyrofrequency at z=16 is not shown in Figure 5.3).

In the following sections we will carefully consider the problem at hand, and
using suitable approximations, we will extract the behavior of the coupling coefficients
analytically. Finally, we will solve the differential equations (5.2) numerically and

obtain coefficients valid for all relevant k.

B. Mode Coupling at Crossover Frequency

For k<1, the two modes coalesce near the crossover frequency and couple
strongly. We may describe this coupling in a number of ways. In doing so, we shall
demonstrate that a substantial amount of energy will be exchanged between the two
. propagating modes near iﬁe crossover frequency for k1. For x>1 the magnetosonic
mode is cut off at the lower hybrid frequency which lies above the light ion cyclotron
frequency so that only two modes propagate near the heavy ion gyrofrequency. The
character of the problem therefore changes as the value of x changes across some criti-
cal value. In this section, we will concentrate on values of x below this critical value
such that four modes propagate in the vicinity of the heavy ion gyroresonance. In a

later section, we address propagation for larger values of K.

One way in which to understand coupling near the crossover frequency is to
consider a perturbation about parallel propagation [Budden, 1965). Such an analysis is
particularly insightful because it is then quite clear that the coupling results from the

presence of finite k. Indeed, the coupling between the two modes is found from
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equations (5.2) to be of order k2.

For small x the fields may be expanded in the parameter
Ey=EQ+ED+ - -
To zeroth order in K, the equations (5.2) take the form

d’E®
g2 +r EQ =0
dz?
,d’EQ
£

—2 + E®=0
Z

72

(5.21)

(5.22)

The functions r and [ vary slowly in altitude (in particular near the crossover fre-

quency), so that we may apply the WKB analysis, which is valid for 1, to solve the

zeroth order equations. The zero order electric fields are then simply the 7 and [/

modes with

EQ=pO[r @) exp( ——é—j [r (s)]1Y2ds )
h

EQ = E° @I exp( - L [ U 2as )
h

(5.23)

(5.24)

where h is a suitably chosen reference altitude. The parameter ik couples the two

parallel propagating modes so that we may solve for the electric field perturbatively.

To first order in K, the coupled equations for the electric fields are
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2 - n — (0) 0)
£ + EVY = «(EVY'-E
Tt 2 ™
JdED

e +IGED = %(Ei‘”-ES‘”)

dz
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(5.25)

The solution to the homogeneous part of these differential equations is indeed, just the

WKB solutions

Ly — - i
0k = E° U@ Mexp( < J [ (s)12ds )

for E 4(_1) and

of@) = E'lr 2 )]*1/4exp( - -é- { [r (s)1"2ds )

(5.26)

(5.27)

for ED. The particular solutions for the first order equations are then of the form

EMD = ARGR + ARGR

and
EMD = ALoL + ALoL
where
2 Zrhs.(5.25a) x ¢§
Az ‘—'I R +R
p WIOReR
and
L 2 rhs.(5.25b) x ¢;L
Ax = j L. L
h W[¢;’¢;{;]

(5.28)

(5.29)

(5.30)

(5.31)
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and W is the Wronskian of the homogeneous solutions.

For the case of downcoming RHCP magnetosonic waves, the zero order electric

fields are of the form
E@Q=0 E®z0 (5.32)

whereas for the case of downcoming ion-cyclotron waves, the zero order electric fields

are of the form
EO®z0 EO=0 (5.33)

In the following analysis, we will concentrate on downcoming magnetosonic waves
consistent with the zero order fields (5.32). Coupling to the LHCP ion-cyclotron

wave, E , is first order in %% and may be determined by evaluating the coefficients

Loy _ 1 -4
Abk@@) = —4i€£ds [1(s)r (s x
(5.34)

(-4 (@I +0@1"™) dg )

The amplitudes of the downgoing coupled waves Aﬁ involve integrals over rapidly
oscillating functions with scale length €. The integral over such a function is asymp-
totically small except in the region where the oscillations become stationary. Therefore,
coupling between the modes is negligible except at the stationary point where the
integrand in the exponential vanishes. The function, Aﬁ, has no stationary point in the
region of interest so that there is no reflected LHCP wave to first order. On the other

hand, the function, AZ, has a a stationary point at the crossover frequency, ®,, where
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d=(r-1)/2 = 0. Because the contribution to the overall integral in (5.34) is exponen-
tially small except near the stationary point, we may expand the integral in the
integrand of (5.34) about the stationary point and evaluate it using the standard
methods of stationary phase [Bender and Orszag, 1978]. The overall integration may
then be extended to +e= which introduces only exponentially small errors. Then we

find that the coupling coefficient, up to an unimportant phase, is given by

i —i d'(o,,) s?
AL(~c0) = ——I—R—stexp( = — ) (5.35)
de[ri{on, )" 2 g[r{w,)]
where
, 203019,  (n1+ny)?
d'(w=0,) = (5.36)

2 2
mco(ch_Qc?Z) niny

The integral may then be rotated in the complex plane in which case it becomes a
trivial Gaussian integral. We have thus obtained, to first order in K the asymptotic

form of the coupling to the LHCP mode.
By ccmparing the Poynting flux along the magnetic field
#§ ~ 2 ExB ~ Im(ELE,+EE_) (5.37)

of the incident wave above the coupling region to that of the coupled wave below the

coupling region we may obtain the coupling coefficient

78S 4 k4
CEA—bﬂw—-z—n—;, ~ =Ly Ky (5.38)
28 gbove 88 Nrd’lo=o. ki

It is also obvious from the preceding equations thai the coupling between an incident
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LHCP wave and a coupled RHCP is described by the same coupling coefficient, C.
Although less straightforward, by keeping terms to second order in k (recall that the
Poynting flux involves the square of the wave amplitudes) we may also show that the

wave energy which remains on the incident branch is found to be 1-C.

As is clear from the preceding analysis, the coupling occurs as the resuit of finite
k and increases rapidly for small angles of propagation. For infinite magnetic field
scale length -0 so that coupling only occurs at x =0 and the modes are well
separated for all other k. In that sense, thenm, it is not acceptable to trace waves
through the crossover frequency for those k for which C<1 in which case coupling is

strongly dependent upon the angle of propagation.

This result may, indeed, be naturally extended to larger values of x if we con-
sider the embedded dispersion relation discussed in equation (5.12). The coupling
which occurs at the crossover frequency arises from the branch point which is the

solution to equation

d%% =0 (5.19)

As discussed previously, two of the solutions to this equation correspond to two com-
plex conjugate roots which occur near the crossover frequency. Moreover, the cou-
pling may be described in terms of the embedded equation (5.10) with

it

D(k,,z) = ~d2-7 (5.39)

and
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Dy (k. .2) = 425 —x%)

so that

k?
2,
d+4

1
2 252

Q@)=

The function d has a zero at the crossover frequency, so that locally

d =d, +dcr ’g

where d,, = 0. The coupling is described by the potential equation

d’ 2§2+—K4
1« 4
W ——— Ly =0
VE+5 PR v
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(5.40)

(5.41)

(5.42)

(5.43)

where the sum function has been evaluated at the crossover frequency (the shape of

the potential is not affected too muach by the expansion of s, and in particular the com-

plex turning points are independent of the form of 5). With the appropriate substitu-

tion
k 3 = _d;_l.c_’j_.
S, —K42
=%
16d°,,2

equation (5.43) takes the form of a Weber equation

(5.44)

(5.45)
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2
W'z ﬁk&(i—ﬂsﬁ)w =0 (5.46)

The transmission coefficient for this equation is well known [Heading, 1962; Fuchs et

al., 1985; Lashmore-Davies et al., 1985] and takes the form

T = exp|—=; Ly (5.47)
8e 4’5, —x2 '
For small values of x
T «*
T=1 = (5.48)

so that

(5.49)

as obtained in equation (5.38).

C. Tunneling Phenomena
1. Budden's Equation

The dispersion relations for the propagating modes of the differential equation
(5.2) are characterized by various cutoffs (k —0) and in particular by a cutoff-
resonance gap. For parallel propagation, the modes are uncoupled and the LHCP ion-
cyclotron exhibits the characteristics of the ** gap’’ while the RHCP magnetosonic
branch remains essentially constant. The LHCP branch is characterized essentially by

the dispersion relation n_ =/ where ! has a zero at the cutoff frequency, @, and a
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resonance at the heavy ion gyrofrequency, Q.;. For non-parallel propagation the situa-
tion is more complex in that the refraction indices

1

2 1
2 r+l K2 r-l i 2 (5.5)
e |

suffer a discontinuity at the gyrofrequency where / diverges. Across this discontinuity,

[ varies as L which changes sign. Hence, although the magnetosonic solution
c1 )

appears to be continuous across the resonance, there is in fact a change in branch
ny—n-. The existence of such a discontinuity signals one of the most critical aspects
of the problem which we are considering to which we shall return many times.
Namely, the solution is not continuous, is multivalued, and is characterized by a
branch cut. We must work to carefully understand both the physics and mathematics
involved in the multivalued nature of the solution and realize that the proper choice of
the branch of this solution is essential to our analysis. The proper continuation of the
dispersion relation is such that the magnetosonic branch is net continuous across the
resonance. Hence, although the ion-cyclotron branch apparently mode converts into
the magnetosonic branch, the asymptotic behavior of the ion-cyclotron branch below
the resonance is determined primarily by the asymptotic behavior of the ion-cyclotron

branch above the resonance.

The existence of 2 ““gap”’ in the dispersion relation indicates that the WKB solu-
tions for a particular mode are cut off and are decaying exponentials over some region

of space. In general, the solutions of the dispersion relation across this “‘gap’” decay
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such that only exponentially small amplitude may be found on the other side of the
“gap.” In such a case, the mode will have been reflected. However, if the “‘gap™ is
sufficiently small such that it is only a fraction of a wavelength in size, substantial tun-
neling may occur in which case large wave amplitude will be found on the other side

[Budden, 1965].

One particular example of the Budden equation in which a cutoff-resonance
occurs is the case of parallel propagation (k = 0) for the differential equation (5.2) in
which case the lower component of that equation

2

d2E
g? y -+ E,=0 (5.50)
Z

adequately describes the behavior of this mode. The function ! may be expanded

about the resonance as

Q,=Q)lz) ., Q=0 (5.51)
Then
d’E, a
-+ kz 1-— = 5.52
7 §a-TE, 0 (5.52)
where
1 Oy 9 ""ch (m 1_m7)
kE = — , 4 = ——— =N ———— (5.53)
0T g2y Q. om,

where 1, is the concentration, n,/n,,, of a particular species. This is the well known

Budden equation [Budden, 1965].
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It will be useful at this juncture to review the Budden equation. Although the
solutions to the Budden equation are well tabulated, we will present an alternative
method for obtaining the asymptotic properties of the the Budden equation which
requires no information with regard to the exact solution. It will become clear that
although the Budden equation itself has a complicated solution, substantial information
may be garnered from the asymptotic behavior of its solutions which may indeed be
applied to the fourth order equation under consideration. Moreover, the Budden equa-
tion involves the concept of *‘missing’” wave flux which is apparently absorbed by the
medium. It will be of substantial interest for us to understand the concept of ‘‘miss-
ing’’ wave energy, how it relates to the physics of the problem and how it may be

applied to the behavior of the fourth order equation that we are investigating.

Budden first solved this problem when considering the behavior of plasma waves
near a resonance. The existence of a pole in the differential equation is troublesome in
that it is not physically correct, and, in addition, it involves the complications of a reg-
ular singular point which generally leads to muldvalued solutions of a differential
equation except under extraordinary circumstances. As far as physical correcmess is
concerned, it is obvious that a higher order expansion of the Z-functions in terms of
the thermal velocity will introduce corrections to the dispersion relation that will
remove the singularity (the Z-functions are well defined at the plasma resonance,
hence the corresponding differential equation is also well defined). These corrections
arise in the form of a higher order terms in the differential equation which contain the

essentials of the physics. Physically, the pole corresponds to dissipation which may be
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understood in terms of strong ion cyclotron damping. In order to understand this, con-

sider the conserved function which is the Poynting flux

J =ity ") (5.54)
For a differential equation of the form (5.10) we find

I =i@-0*)wy' (5.55)
where ’ denotes real derivatives along a contour with fixed imaginary part (recall that
dvy' idz # (dyidz )" except along a line, z =x +i7, with v fixed). The conserved

quantity J, however corresponds identically to the flux of wave energy in the system.

The function
Q= k&[l—%—} (5.56)

is real along the real axis so that J takes a constant value along the real axis on either
side of the pole at z = 0. Equation (5.55) is not well defined at the point z = 0 so that
it is not clear that the conserved quantity J takes the same value on either side of the
real axis. Indeed, as it shall become clear, the total energy flow undergoes a discon-
tinuous change A across the branch point z = 0. (The pole in the differential equations
turns out to be a branch point of the multivalued solution to the differential equation
(5.52).)

Near the gyrofrequencies, the cold plasma dispersion relations exhibit an unphy-
sical resonance. If we were to incorporate more physical considerations into our

analysis, such as the thermal effects, we would find that the solution to the dispersion
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relation near the gyrofrequencies is of the form w = Q. =iy, ¥>0, such that the mode
is strongly damped. In light of our approximation for the magnetic field the actual
pole should be at a location w—(Q,;—iY) = @-w(1-z)+iy=0, that is, at the location
z=—iy/® which lies below the real axis rather than at z=(0. The potential, O, then

takes the form

zHy

0 =k3[1— 2 ] (5.57)

so that

*

(5.58)

I = —k&a{Z—z—ﬁ?—}W

from which it is obvious that given an mmdem J at oo, that an amount of energy flow

*

A =2kia j 72 (5.59)

will be lost. That is J* < J~ where the superscript refers to the value along the posi-
tive (negative) real axis. Then if there is no flux in or out on the positive real axis
(J* = 0) there is a positive energy flow from the left (J~>0), which is absorbed. On
the other hand, if there is no flux from the left (/~ = 0), then there is a negative flux
from the right (J*<0) sending wave energy, which is absorbed, into the system. The
value of this energy loss clearly depends on the details of the boundary conditions in
that the solution Wy must be known in order to calculate the energy loss. Physically, we
may interpret this energy loss as resulting from resonant absorption at the gyrofre-

quency. Such absorption typically occurs because the cold plasma wave mode
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converts into a thermal wave which is readily absorbed. Conversely, if the pole lies

above the real axis, a similar procedure results in an energy gain which is not physical.

Budden recognized equation (5.52) to be of the form of a hypergeometric equa-

tion

s | 1, x QD]
w+[ 4‘§T ]w 0 (5.60)

with the appropriate choices & =iz/2kq, kX =—ia/2, and p=1/2 [Abramowitz and
Stegun, 1964]. Solutions to this equation are then expressible in terms of the confluent
hypergeometric function. After an elaborate asymptotic expansion of these functions
as E—¥eo Budden obtained the coefficients for various boundary conditions. From the
form of the equation (5.52), it is clear that as z—deo the solutions of the differential
equation are plane waves e % which correspond to upgoing and downgoing waves.
. Referring to_the dispersion relation for the Budden problem in Figure 5.4, there arc
two possible situations. A wave may be incident from the right of the resonance so
that it encounters the cutoff before the resonance. Presumably if the evanescent layer
between the modes is large then all the wave power is reflected as at a cutoff. The
other situation is that of incidence from the left in which case the resonance is encoun-
tered first. In this situation, if the ‘‘gap’’ is very large no wave power is expected to

be transmitted. For incidence from the right, Budden [1965] found the coefficients to

be of the form

T=e¢™M , R =(-T)y> (5.61)
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-n
=g

R=(1-T)

z=0

-n
=e

yA

Figure 5.4. Dispersion relation for the Budden equation which illustrates the general feature
of a cutoff-resonance pair. Waves are either incident from ‘‘above,” (the right-hand side)
or ‘‘below’” (the left-hand side).

while for incidence from the left

T=eMm,R=0 (5.62)

with 1} = Tk ea.

2. Phase integral Solution of Budden's Equation

Budden’s solution of this equation is interesting; however, in general, it is not
straightforward to obtain the exact solution of a differential equation, particularly if it
is of fourth order. However, as we shall see, for this problem it is rather unnecessary

to know the exact solution to the equation. The transmission coefficients follow
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immediately from the consideration of asymptotic dominance, and consideration of the
conserved energy flow, J, leads immediately to a complete soluton of the Budden

coefficients in which the work required is minimal.

For an equation of the form (5.10), the leading order WKB solutions are of the

form
z

@F = exp|+ik,[Q 2ds (5.63)
0

for the Budden potential, it is not difficult to integrate the potential to obtain

z (
o125 = [\/z (z—a)-alog N i—+\/ %—1“ (5.64)

a

from which it is clear that for Iz |—e> we recover the plane wave solutions as previ-
ously mentioned. For large z we see that the branch of the square roots are unimpor-
tant, but the branch of the logarithm characterizes the entire tunneling process. The
WKB solution contains much information. For example, the expansion of the WKB
solutions (5.64) about the cutoff, z = a, behaves like Airy functions (exponential
behavior as z>/?) as is typical for wave solutions near a cutoff, while at the resonance,
z =0, the solutions take the form of the Hankel function (exponential behavior as z112)
which is characteristic of a resonance. The form (5.64) is reasonably cumbersome and
contains much more information than is necessary to compute the asymptotic proper-

ties of the solution to the Budden equation. Indeed, the function Q may simply be

expanded for large z, for which we find from equation (5.56)
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QY2 = kg[l—--%—] (5.65)

so that for large z, the WKB solutions are of the form
@t - eiiko(z-—alog(z)l2) (5.66)

From this form it is clear that the important branch is that of the logarithm, and ir is
convenient to take the branch cut along the branch cut of the multivalued solution to
(5.52). We shall in the following sections take the branch cut to lie along the negative
real axis, and it is to be noted that the solution to (5.52) is not continuous across the

branch cut.

The general form of the solution, y = E, of (5.52) along the positive real axis

is given by
y=AO0+BO" , Arg(z)=0 (5.67)

The WKB approximations in the complex plane, however, are at best limited to vali-
dity within certain sectors due to the Stokes phenomenon which results from the fact
that the exponential solutions are too simple to adequately describe the qualitative
behavior of the actual functions [Heading, 1962]. Indeed, for z complex, one of the
WKB solutions will, in fact, become dominant over the other WKB solution and hence
dominate the behavior of y. From the form of the WKB solutions it is clear that the
greatest dominance occurs for purely imaginary z so that Stokes lines occur at
Arg(z) = (n+1/2)x. The Anti-Stokes lines correspond to the real axis along which

both solutions are of equal dominance. Thus, we find that the asymptotic behavior of
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the solution, ¥ of the differential equation is given by

v~ 8= g kolz—alog(z)/2) . Im@)>0 (5.68)

v~ 8= ¢ Hkolz—alog(z ¥2) L Im(z) <0 (5.69)

in the various sectors of interest. It is clear that the coefficient of the dominant solu-
tion must remain the same throughout its region of dominance; however, the
coefficient of the subdominant solution is liable to change. Moreover, on the grounds
of continuity we expect that if the coefficient of the dominant solution is zero, the
coefficient of the subdominant WKB solution must remain unchanged. To accommo-
date this phenomenon, we make a discontinuous adjustment of the subdominant term
along the Stokes line where the subdominant term is least significant. The adjustment
should be proportional to the amplitude of the dominunt solution, so that it will vanish
if the dominant solution vanishes. Thus we introduce the Stokes multiplier S, associ-
ated with a Stokes line such that the coefficient after crossing the Stokes line equals
the coefficient of the subdominant term before crossing the Stokes line + § x the

coefficient of the dominant term on the Stokes line.

Accordingly, suppose that the solution (5.67) describes the asymptotic behavior
of the solution along the real axis for z>0. Then, accordingly, the solution for z<0 is
given by

Y =AOHB+AS))@" , Arg(z)=m (5.70)

according to the Stokes phenomenon. On the other hand, the solution may be contin-
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ued through the lower half plane in which case the solution takes the form
Y =(A-BS,)@+BO" , Arg(z)=-x (5.71)

where the subscripts mean that the Stokes constants may not be the same although it
turns out that 15,1 = IS,|. (Heading has tabulated the values of the Stokes constants
based upon the exact form of this differential equation [Heading, 1962]; however, for
our purposes the only necessary information required is that the solutions undergo a

Stokes phenomenon and the exact values are irrelevant.)

We may now solve the Budden problem. For a wave incident from “‘below”
the resonance we require there to be no downward propagating wave at z—eo. This
then means that the coefficient of ® must be null, hence A = 0. This means that
there is no reflected wave so that R = 0. We may then immediately read the Budden
coefficient for transmission by comparing the values of J, which correspond to the

Poynting fluxes, to be given by

oz .\ _
= A=l (5.72)

B 2
I®+|Arg(z) =7
We now see that the coefficients are in fact determined by the logarithmic behavior of

the WKB solutions.

p e.o
So that we find immediately that

T =e™ |, 1 =nkea (5.74)
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which is identically the Budden result.

For a wave incident from ‘‘above’’ on the other hand, more information is
required. Appropriate boundary conditions for this case require that no upgoing wave
be found at z —>—oo. This condition means that the coefficient of ©* must be null at

Arg (z) =7, hence B = —AS. In this case, the transmitted flux is given by

712 .y
_ Arg(z)== (5.75)

0712,y =0

whereas the reflected wave amplitude is given by

le+i2 -
R =15, P—EE=0 = 45, 2 (5.76)
le tArg (z)=0

Thus without further effort we may determine that
T =e™M (577)
as found by Budden. The reflection coefficient, however, requires more work.

If we refer to the conserved quantity J, we know that J is constant along the
real axis. However, across the point x=0, J suffers a discontinuity. Let us consider
how the quantity J changes across this discontinuity. Along the path z =xHiy, J

satisfies the differential equation (3.54) and undergoes the discontinuity

*

4oo
A, =12%kEa [ —L=wy (5.78)

x 2y

The discontinuity for the differential equation under consideration then is
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Mode Conversion
limA, = 32nkda hylZ_o=7A , A>0 (5.79)
T

where we have recognized the form of the delta-function

lim—Y— = n8(x) (5.80)

-0 chi*y2

We should note that for small z the solutions of the differential equation are of the

form
Y=z I’Z[aH 0 (2¥z +BH P2z )] (5.81)

where H® and H® are the Hankel functions which take the limiting forms

[Abramowitz and Stegun, 1964] for small z

HOVZ) ~HP2N7) ~ —"j‘f (5.82)
TNz

so that y is well defined at the origin. We find then that the discontinuity A depends
upon which branch we continue the solution (i.e. whether Arg (z) = =r). However, if
we take the boundary conditon B =0 and A = 1 in (5.70) and (5.71) we may express

the value of J/k to be

1 Arg (z)=0
Jikg = e Arg (z)=—m (5.83)
e — 1§, %en Arg(z)=r

But then we have

~A = 1-eM = —1+¢™ IS 12" (5.84)
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so that
R = 18,12 = (1-e™? (5.85)

which is the reflection coefficient obtained by Budden.

3. Phase Integrals and the Fourth Order Equation

The method just presented may be applied in some limited sense to obtain infor-
mation concerning the solutions of the fourth order equation under consideration. In
partiéular, we shall find a close correlation between the transmission coefficients and
the mode coupling previously considered. Moreover, when two of the modes are
decaying or growing exponentials along the real axis, a case which occurs for large X,

the coefficients can be recovered unambiguously.

The coupled differential equation (5.2) is of the form

Y+MY =0 (5.86)
where
_r—ﬁ 52_ .
M= _é 1_252_ (5.87)
L 2 2 E

and the vector ¥ consists of two components \ and ¢ which correspond to the electric

field amplitudes. From the adjoint of equation (5.86)

M = 0 (5.88)
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we can form the analogous conserved quantity

J =i (¥ (5.89)
which is conserved in space according to

J’ = ¥ (M-M"¥ (5.90)

so that J, which corresponds to the Poynting flux along the z-axis, Z-(ExB), is con-
served along the real axis because the functions r and / are real. The function /, how-
ever is singular at the heavy ion gyrofrequency so that as for the previous Budden
problem, we expect a discontinuous jump in the value of J across the singularity. The
simplest model which approximates the functions r and ! near the resonance and

retains the essential characteristics of the dispersion relation is one in which
r=k?, I =k*l-al 5.91
=Kk-, =Ky Z) ( . )

where the form of the magnetic field (5.51) has been used, with the expression for l
the same as in (5.53), and r some suitable constant chosen to retain the location of the
crossover frequency where r = . Near the resonance, the behavior of J is completely
dominated by the singularity in / so that higher order terms in z are unimportant for
determining the jump in J across the cyclotron resonance. As for the Budden equa-
tion, we may determine the discontinuity across the resonance by considering the
change in J along the path z = x*iy. Then we find from equation (5.90) that the

discontinuity is given by
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Apz2kla | —1-—¢¢ (5.92)

where ¢ the lower component of ¥. For small z ¢ behaves like the Hankel functions,
which are regular [Abramowitz and Stegun, 1964], so that the discontinuity is as

before

li = 2nklalol?2_, = , A>0
Y_rpOAy 2rkfalol o= FA (5.93)

As before, we see that energy flux is lost if we continue the solution above the branch
point whereas energy would be gained if we were to continue the solution below the

branch point.

We may also obtain a substantial amount of information concerning the asymp-

totic behavior of the solutions. The WKB solutions in this case are of the form

.z
= +L ] 5.94
® = exp|— [nsds (5.94)

where the indices n, are the solutions to the dispersion relation (5.5). For large values
of z the indices may be expanded using the approximation (5.91) to give

o kila +5+Vett4

ny = ni— —
4z 9% k4

(5.95)

where

172

B [

2
nd= c——%—i [5%51] (5.96)
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and the zero order sum and difference functions are

k2+k,? kP—k2
= ’zk’ , 8= 'Zk’ >0 (5.97)
so that the four WKB solutions take the form
0= e:tilE{nJ—BJong)
t =
eF = eiiIE(n.z—B_logz/z) (5.98)
where
kg +5+N5% x4
Be = ks (5.99)

2 niO \/82+K4/ 4

so that once again the coupling is characterized by the multivalued nature of the loga-

rithm.

From these expressions we can immediately determine the transmission
coefficients for the case of incident magnetosonic waves or ion-cyclotron waves. We
may once again extend the WKB solutions into the complex plane and use the domi-
nance of the various solutions to determine transmission properties. The solutions on

the positive real axis are of the form
v=AOH+BOHCOMD O] , Arg(z)=0 (5.100)

where we have written them in order of dominance in the upper half complex plane.
The lower component of ¥ is of the same form with coefficients which are related to
A.B.C,and D by the dispersion relation. The Stokes lines in this case are along the

positive imaginary axis while the anti-Stokes lines are along the positive real axis.
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According to the Stokes phenomenon we would then expect to find that on the positive
imaginary axis the solutions undergo a Stokes phenomenon and on the negative real
axis take the general form

W = AO+B -AS )O+(C -AS ,-BS ;)0

(5.101)
+(D -AS 4—BS5—CS 6)@): , Arg (Z) =7

We have added Stokes constants across the region of least dominance according to a
reasonable prescription which retains the continuity of the equations in the absence of
the more dominant solutions. The boundary conditions for downgoing ion-cyclotron

waves are given by
A=1,B=8,,C=D=0 (5.102)
while for downgoing magnetosonic waves the boundary conditions are
A=0,B=1,C=D=0 (5.103)

We may immediately write down the asymptotic form of the transmission coefficients
in terms of the logarithmic singularity. The leading order coefficient for downgoing

ion-cyclotron waves is given by

e712
Tie = — 22—~ Argle) =2 (5.104)

I®:I..%rg(z) =0
which is given immediately to be

Ty = e P (5.105)

whereas for downgoing magnetosonic waves in the absence of an incident ion-
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cyclotron wave has no transmitted flux in the ion-cyclotron mode and transmission to

the magnetosonic mode given by

@12, ) =
Tys = ——o 3228 (5.106)
I®— lArg(z) =0
which may be written in the form
Tys = e P (5.107)

We can make a number of observations concerning these two results. First, for
k<« 8, we find from equation (5.99) that Ty is simply the Budden coefficient

described previously. That is
B, = kia(1-0 (x*) (5.108)

which has little dependence on x so that transmission for this mode may be considered
to be essentially Budden tunneling and should have that character. With increasing K,
the tunneling diminishes. For large k, we find that the coefficient approaches another

constant, namely

B, = —— (5.109)

indicative of Budden tunneling for nearly perpendicular propagation near the ion-ion
hybrid frequency.

On the other hand, for the downgoing magnetosonic wave we find that for small

x equation (5.99) gives an intriguing result. The transmission coefficient then takes
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the form

k 120
el6k, 8%

-np e -~

Tys =€ exp (5.110)

We may relate this transmission coefficient to the coupling coefficient which we

obtained in section B. If we recognize that difference function is of the form

2
4=s 2 (5.111)
2z
we find that
4= 282
o = P2 (5.112)

which then demonstrates that the transmission coefficient is the same as the coupling

coefficient established in the section B, namely

T K

T =exp —
8¢ ., s, 12

(5.49)

We may make a physical interpretation of this result For parallel propagation
ransmission of the magnetosonic mode is complete (T = 1). However, coupling
increases rapidly with larger values of x, and we find that the transmission in the mag-

netosonic mode falls off substantially.

The values of the Stokes constants may not be unambiguously determined using

the methods of the previous section although a number of relationships between the
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amplitudes of the various waves may be determined. For the case of a “‘large” gap,
however, we may actually determine the coefficients unambiguously. In the case of a
large gap, the WKB solution, ®; has negligible amplitude at —eo, i.e. B,—e= so that
there will be no transmission in that mode. Furthermore, the restriction that no upgo-
ing ion-cyclotron wave, @, be found at —oo implies that A—0 so that no absorption
occurs. In this case, after substantial and lengthy algebra detailed in Appendix A, it is
possible to show that in the limit of a large ““gap’’ the transmission and reflection
coefficients, as defined in the appendix o be the ratio of the Poynting flux of a partic-

ular wave to that of the incident wave, are givea by

CEL =1-e ™% =1-C (5.113)
Ric = ™= C? (5.114)
CI% =e—ni3J£(1_e—nBJe) =C(1-C) (5.115)

where the meaning of the coefficients are illustrated in Figure 5.5. For a magnetosonic

wave incident from above we find that

Tys =€ P =C (5.116)

as before and
Rys = (1-e ™52 = (1-C )2 (5.117)
CEs = e ™1 = c(1-C) (5.118)

This process is again illustrated in Figure 5.6.



Mode Conversion—Analytical 100

02
n
SRR
P 7 R .
3 IC
e HI
Ql <_TIC
k,va/Qu

Figure 5.5. Ilustration of the meaning of the coefficients for a downgoing ion cyclotron
wave. Waves are reflected back along the two upward propagating modes while a wave is
transmitted on the downgoing magnetosonic branch.

As stated previously, in the case of large gap, wave propagation is entirely deter-
mined by the interaction at the crossover frequency which, as we have just shown, is
characterized by the coefficient C = ¢ Ty order to understand these results in an
intitive manner, consider the situation of Figure 5.5. A downgoing ion-cyclotron
wave with unit flux encounters the crossover frequency at which point a fraction, C, is
transferred from branch II to branch I. A fraction, 1-C, continues down along mode
I and is the coupled transmission coefficient Ci.. The wave which couples to branch
I reflects at the cutoff frequesicy and once again ercounters the crossover frequency as

an upgoing wave. This reflected wave has amplitude C. Upon coupling, a fraction, C,
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Figure 5.6. IHustration of the meaning of the coefficients for a downgoing magnetosonic
wave. Waves are reflected back along the two upward propagating modes while a wave is
transmitted on the downgoing magnetosonic branch.

of this reflected wave flux is coupled to branch II comprising the reflection coefficient
R;c = C?% The fraction, 1-C, remains on branch I and is the coupled reflected wave
CR = C(1-C). Although in the limit of a small ‘‘gap’’ the transmission coefficient

Tyc is a Budden tunneling term, in the limit of a large “‘gap’” Tjc vanishes.

The case of an incident magnetosonic wave is illustrated in Figure 5.6. In this
case, a magnetosonic wave of unit amplitude is incident along branch L Coupling
occurs at the crossover frequency and a fraction, C, of the incident wave is coupled to
branch II and comprises the transmission coefficient, Tyg = C. The fraction, 1-C,

remains on branch I, is reflected at the cutoff frequency, and again encounters the
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crossover frequency as an upgoing wave. The amplitude of this reflected wave is 1-C.
Again coupling occurs at the crossover frequency and a fraction, C, of the reflected
wave is coupled onto mode II giving the coupled reflected wave Cfis = C(1-C), and
the remaining wave power, Ry = (1-C )2 is reflected along branch L There is no cou-
pled mode c},s in the limit of large ‘‘gap.”” As one can see, for the case of a large
frequency gap, the coefficients are well described in terms of the coupling at the cross-

over frequency.

In the case of a small “‘gap’’ it is not possible to determine the Stokes parame-
ters unambiguously although a number of relationships between them may be derived
using symmetry properties. In the following chapter we will determine the coefficients
numerically. The results which we have obtained, however, are useful in that they
provide both physical insight and a check of our numerical procedure. The method
which we have used for the Budden equation is, however, sufficient to determine the

coefficients for large x in which case only one mode propagates at feo.

4. Phase Integral Solution for Large x—Two Propagating Modes

As one can see from equation (5.95), for large enough X, 0 < 2, so that two of
the solutions become complex. That is, we find that n, is real and n_ is imaginary.
This means that two of the asymptotic solutions are growing along the real axis (a not-
ably unphysical situation). When this is the case, the positive and negative real axes
become Stokes lines for two of the solutions while the positive and negative imaginary

axes remain the Stokes lines for the other two solutions. The anti-Stokes lines are to
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be found asymptotically along the rays
n% =+nY (5.119)

where z = x-+iy is the complex coordinate. This situation is easier to evaluate because

each solution is dominant in one of four sectors in the complex plane.

At this point, we need to consider the concept of Stokes phenomena in some-
what more detail. Tracing Stokes coefficients in reality is only valid in the sense that
in the region of maximum dominance, the coefficient of the exponential term must
agree with the exact solution in an asymptotic sense. As will become clear, however,
we actually require further information concerning the asymptotic behavior of the sub-
dominant terms in order to extract the reflection and transmission coefficients. This
information is important because we must determine the value of the oscillatory solu-

tions along the real axis in the presence of an unphysical growing mode.

The WKB solutions which we have obtained are, in fact, only the terms of lead-
ing order in an asymptotic series. The conczpt of converging factors has lead to great
improvement in accuracy of asymptotic expansions to such a degree that the subdom-
inant series must be retained in order to obtain accurate solutions for finite values of
argument. As a result, it has been determined that at least in the case of second-order
equations that the changes in the coefficients take place at definite values of arg z
[Heading, 1957 and references therein]. In the case of the Airy equation, for example,
this change actually takes place in two definite jumps (much like a Fourier series

across a discontinuity). In order to better understand this phenomena, consider the the
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behavior of the asymptotic solutions to a simple parabolic cylinder equation

y H112-z44)y = 0 (5.120)
for which the exact solutions
yy = (5.121)
and
:
yo = et [872dL (5.122)
v,

may be obtained. The leading order WKB solutions are found to be

) 622/4
O, =e, 9= (5.123)
Z

In the range —w/4 < arg z < w4, the asymptotic behavior for the exact solution is
governed almost completely by the behavior of the descending series associated with

4)2. That iS,

¥ = (140 () (5.124)
and the coefficient multiplying the subdominant solution although nonzero (something
of the order of —z—), is asymptotically small (as opposed to being a Stokes constant)

and for all practical computational purposes need not be considered. On the other
hand, for 3n/4 > arg z > m/4, an abrupt change in the coefficient of ¢; occurs as it
becomes dominant across the ray arg z = /4. The contour of integration may then be

taken up the positive imaginary axis and then back along a ray. That is



Mode Conversion—Analytical 105

z ioo z
[e¥2dt—s [SRdt+[eS2dl+ [ €57 (5.125)
0 0 r

iargzeo

where the contour I' is an arc at oo connecting the rays along the imaginary axis and
the ray arg z. This is practical because the integral taken along the contour, I, van-

ishes for 3n/4 > arg z > n/4. In this region it is not difficult to show that
Y2 = iN2mpH+0,(1+0 (z7%) (5.126)

The integral along the imaginary axis provides the first term whereas the subdominant
series arises from the integral along the ray arg z. It should be noted that the descend-
ing series for ¢, is the same as for the region in which it is dominant, demonstrating
that no Stokcs phenomena occurs for the asymptotic solution which is dominant along
the real axis. Moreover, at the anti-Stokes line the coefficient of ¢; undergoes a
discontinuous increment of i V27. This behavior arises because the contour between 0
and z is dominated by the behavior near the upper limit, z, for arg z < 7/4, but is
dominanted by its behavior near the lower limit, 0, for 3n/4 > arg z > n/4. This fact
is manifest by the deformation of the contour along the imaginary axis (the arc at
infinity along I' contributes nothing for arg z > n/4 but is exponentially large and not
useful for arg z < w/4). Similarly, another discontinuous jump in the coefficient occurs

for arg z = —m/4 so that in the range —3n/4 < arg z < -7/4
¥ = i 210+, (1+0 (27%) (5.127)

For this case the Stokes coefficient occurs as the result of two discontinuous jumps

along the anti-Stokes lines.
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In Appendix B we demonstrate using an integral equation, that the Stokes
coefficients for the asymptotic solutions of the fourtn order equation which we are con-
sidering change abruptly at definite values of arg z in the region of maximum subdom-
inance. It would appear that these jumps occur at three distinct values of arg z—along
the Stokes lines and the bounding anti-Stokes lines of the maximally subdominant
region. The change only occurs in the coefficient of the most subdominant solution.
We may therefore determine the appropriate asymptotic behavior of the solution of
interest if the relevant WKB sotutions involved in the analysis are not maximally sub-
dominant in the region where they must be evaluated. Because the solutions with
growing (decaying) exponential behavior do not contribute to the Poynting flux on the
real axis, we need only evaiuate the coefficients of the oscillatory solutions in order to
determine the transmission and reflection coefficients. The oscillatory solutions are not
maximally subdominant along the real axis, and therefore, we may determine the
coefficients unambiguously. In order to incorporate the Stokes phenomena we intro-
duce the Stokes multipliers such that upon crossing a Stokes line on which a WKB
solution is maximally subdominant the coefficient of that term equals the coefficient

before crossing the Stokes lines + 37 §;x the coefficients of the jth dominant term on
i

the Stokes line.
Appropriate boundary conditions require that at teo the exponentially growing
modes be absent. In addition, appropriate boundary conditions require that no upgoing

wave be found at —e. In order to satisfy these conditions, we assume along or above
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the positive real axis that the solution ‘akes the form
Y =AO+BOI+HCOI+D O} , Region II (5.128)

Using the rules stated above we may continue the solution into the following sectors

illustrated in Figure 5.7.

v =AB+BO+C'®}+D O} , Region Il (5.129)
with
C = C-AS 1—BS2—DS4 (5 130)
\\\\\ v "/(
\‘\\‘I I I/,’
6= 8=0
s, ,” ]
l/ \\\
f=—m ad Sa

Figure 5.7. Sectors of the complex plane divided according to regions of dominance and
subdominance of the asymptotic WKB solutions. The Stokes lines and anti-Stokes lines are
solid and dashed respectively.
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w=A9;+BO+C'@X+DO; , Region IV

with
A’ = A-BU,—C'U3-DU
and
Yy =AO+BO+COD’'O] , Regionl
with

D’ =D+AV +BV +CV 4
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(5.131)

(5.132)

(5.133)

(5.134)

where S, U, and V are Stokes constants. In order to satisfy the boundary conditions

for downgoing waves, we require that

R=C=D"=0,A=1

(5.135)

Then we may immediately write down the transmission and reflection coefficients

-2
18 )=
Tie = 1712

o5 Arg(z)=0

which as before takes the form

and

92
— g(z)=0 2
Ric v, 2= 1v,?

18714, )=0

(5.136)

(5.137)

(5.138)

In order to determine the Stokes constant V, we may consider the situation with
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B=C=D =0,A =1 from which we can compute the Stokes constant if we again
invoke the conservation law (7.89). As it turns out, on the real axis, the exponentially
growing solutions do not contribute to the Poynting flux so that the conserved quantity

Jin is found to be

1 Arg (z2)=0
Jin, = "B Arg (2)=—n (5.139)
¢ TBYE _ |y 12 ™BE Arg(z)=n

Once again, from the energy discontinuity

“A = 1-e™VE = 14e 7™ _ |y, 2P (5.140)
we obtain the Budden-like reflection coefficient

Ric = V12 = (1-Tyc)? (5.141)

D. Mode Coupling at Low Frequencies, Large

The result which we have just obtained for large values of k does not depend
critically on the crossover frequency in that the factor B, depends weakly on the Ioca-
tion of the crossover frequency. From the analysis described in §5.II1.A, we find that
for large values of x, the saddle point associated with the crossover frequency is
located far from the real axis and is near the hydrogen cyclotron frequency. As a
result, coupling is not strongly dependent upon the location of the saddle point associ-
ated with the crossover frequency. However, in Figure 5.3, we find “hat the coupling

point associated with zero frequency at small X, approaches the oxygen resonance for
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large values of x and is therefore of primary interest. As described previously, the
transition from four propagating modes to two propagating modes occurs at a critical
value of k. Assuming that » and / take a simple form such as in equation (5.91), the

cutoff condition (5.15) implies that

1-x%/4k,2 5.142)
Z., =aQ———F———"+—"F+ .
O 1—oik

We then find that the abrupt change in the behavior of the modes occurs at the critical

value

212
2 ki (5.143)

o

For values smaller than this value of K, the mode conversion processes are determined

primarily from the coupling point associated with the crossover frequency. For inter-

k22

mediate values of K, <x2<2k,, four modes propagate in the vicinity of the heavy

jon resonance although the magnetosonic branch is cut off at some point below the
gyrofrequency and does not propagate above the gyrofrequency. In this case, the dom-
inant saddle point is that associated with zero frequency at small x and the oxygen
resonance at large k. For larger ¥, x%>2k,, the downgoing ion-cyclotron wave is
cutoff above the oxygen resonance at a frequency which approaches the ion-ion hybrid
frequency and only two modes propagate. In this case the transmission properties may
be obtained by expanding about the coupling point associated with the cutoff condition

ri—x%s = 0. In the ensuing analysis we will follow the reasoning of Lashmore-Davies
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et al. [1985] and Fuchs er al. [1981, 1985] as described in §5.IIL.A, and we will con-

sider the cases of intermediate and large x separately.

The expression for the location of the saddle point in the complex plane is, as

before, given by the condition

d2+7ii =0 (5.19)

As discussed in §5.II.A, the solutions to this condition are complex conjugate pairs
which satisfy a quartic equation as plotted in Figure 5.3. In this case the potential
again takes the form (5.41). The fact that the roots occur in complex conjugate pairs
means that the function, d%+x%/4, will have the form of a complex conjugate barrier
equation described by the Weber equation. It is once again both tractable and some-
what reasonable to assume the form of r and / as assumed in equation (5.91). In this

case, the potential takes the form

82+K4/4 2.¢£2
= e : 5.144
00 = e (et (5.144)
where
kla §ii22
—f 4f, = 0K TL 5.145

is the location of the complex conjugate roots (for large x the imaginary part dom-
inates as is the case for the actual solutions to the third order equation). Once again
the essential asymptotic features of the embedded dispersion relation are retained if we

evaluate the constant factor in equation (5.144) at some convenient point, such as the
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real frequency above. If we then make the judicious choice for the variables

5%+ict4
kg = —OtK
* 7 g, 0-146
and
_ 2
B= S _ ke o (5.147)
2 2(5%ta) 4

(wheie the index r indicates that the function is to be evaluated at E,) then the embed-
ded equation is of the form of the Weber equation (5.46) which has the transmission

coefficient [Fuchs, et al., 1985; Lashmore Davies et al., 1985]

T = ¢ 2Wobe (5.148)

where the argume:t of the exponential takes the form

kja %45
kop? = 5.149
° 8 (B2 4) (KA + 22—k, %) G-199)

Near the upper limit of validity, the two results have a reasonably simple limit. For
K22 = k2

k,za

b= e

(5.150)

whereas the equivalent coefficient from the saddle point becomes

k2
2kB? = B, 2‘}3 (5.151)
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yielding roughly the same expression. Over the range of densities for which absorp-
tion is strong (0.5-5%), the ratio, k,%/2V8 takes values ranging from 1.3 to 0.6 depend-
ing on the density ratio and the two results are in reasonable agreement. Hence, we
can understand that the coupling which arises at low frequencies results from coupling

at the saddle point which occurs near the oxygen resonance for large values of x.

The form of the reflection coefficient may be understood physically in the same
manner that we understood coupling for smaller k. In this case, coupling between the
modes occurs below the heavy ion gyrofrequency. As illustrated in Figure 5.8,

incident waves along mode I couple at the complex coupling point. A fraction,

oF

-

<Tc

K, v,/ Qx

Figure 5.8. Illustration of the physical meaning of the coefficients for a downgoing ion-
cyclotron wave for large angle of propagation. Waves are transmitted onto mode III and
reflected back along mode I
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Tic =T = e““B", is transferred to branch III. The remaining wave energy, 1-T, con-
tinues along brench II, is reflected at the cutoff frequency for mode II and once again
encounters the coupling point. The two waves couple again and a fraction, 1-T, of
the remaining wave power is found on branch II giving the reflection coefficient,

Ric =(1-T 2. The rest of the wave power is absorbed at the resonance.

For larger values of k¥ we must expand zbout the cutoff-resonance pair which

arises near the ion-ion hybrid frequency. In this case,
Dk, z) = rl-x%s (5.152)
and
Dy (k. ,2) = =2(r+l-x?%) (5.153)
so that the coupling potential then takes the form

_r -

N r+l -

(5.154)

Once again, the functions may be expanded about the gyrofrequency, Q.1 =w(l-z),in

which case the potential takes the form

_ ctdz
Q= Frez (5.155)

where
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¢ =vZ-1-x*(v3-1)
d =2(v2-vic?)

f =2vE1)

g = 2((v3-1)x%2v?)

(5.156)

and
Vv =81/820 . Voo =¢ et/ » Vi = Q. /0

are various mass and density ratios. We recognize this potential to be a Budden equa-

tion with a cutoff and resonance. With the appropriate change of variables
x =—(f+gz) (5.157)
we recover the traditional form of the Budden equation (5.52) with
k§ =dig® , a=cgld-f (5.158)
The transmission coefficients for the Budden equation are well known

T=¢ ™ R =(1-T) (5.159)

In the limit of large k the potential takes the form

040k @2-0d)

Q =5 ~
o} (@-Q4)*-Q2)

(5.160)

which exhibits a cutoff at the ion-ion hybrid frequency and a resonance at the oxygen

gyrofrequency. Expanding s about the gyrofrequency

s = o(l-k2ai26z) (5.161)
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we find that the coefficient takes the form

k 12(1

koa = [3_,_ = ZTE— (5.162)

in agreement with (5.109) of the previous section.

Comparing both this result and the result for intermediate k, we find that both
coefficients are of the Budden form with transmission and reflection coefficients given
by T and (1-T)? respectively. These results compare well with the form (5.137,
5.141) which we obtained using the phasc-integral analysis. In this analysis, we have
three parameters: k., k; and a. These three parameters are sufficient to retain the loca-
tion of the resonance (£2.,), crossover frequency (@), cutoff frequency (®,,), and
ion-ion hybrid frequency (w;). Thus, in some sense we can form a uniform approxi-
mation which retains the characteristics of the crossover and cutoff frequencies for
small ¥ but retains the characteristics of the ion-ion hybrid resonance for perpendicular
propagation. This linear approximation is good if the coupling is dominated by one or
the other of the two coupling points, but if both coupling points are of significant
importance, one suspects that the linear approximation will fail for the phase-integral

approach.

IV. Summary

In this chapter we have explored the analytic properties of the mode conversion
processes. We have found that near the crossover-cutoff-resonance triplet the pro-

pagating modes couple strongly, and substantial energy may be exchanged between
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modes. For small values of k, we have determined that the ion-cyclotron mode tun-
nels in a manner described by the Budden equation, and substantial wave power will
be transmitted and absorbed for nearly parallel propagation. We have also shown that
this tunneling factor drops off with larger k, vanishing as k becomes the order of 1 (in
which case the approximation is not valid). For larger angles of propagation, this
mode continues to be characterized by Budden tunneling; however, in this case, the
mode does not interact with the nonpropagating magnetosonic wave. For large angles
of propagation, the mode is described by a simple expression for tunneling at the ion-
ion hybrid resonance. Because the ‘‘gap”’ which characterizes this tunneling is smaller
than that for parallel propagation, we expect that the tunneling and absorption will be

of the same order as for parallel propagation.

Incident magnetosonic waves are only of interest for reasonably small k because
for larger x they do not propagate. For parallel propagation the coupling is negligible
and the mode propagétes without much interaction. However, the coupling increases
rapidly as «*. For large ¥ the coupling is reasonably complete and all the wav}, power
is reflected. The reflection occurs because the magnetosonic mode couples completely
to the LHCP wave which is cutoff far above the oxygen resonance so that the tunnel-

ing barrier becomes insuperable.

In the next section, we will explore the numerical value of these coefficients. In
particular, we will solve the differential equations numerically in the regimes where we
have not obtained the coefficients. As we shall demonstrate, the basic features of the

analytical results are retained.



CHAPTER 6

MODE CONVERSION—NUMERICAL CONSIDERATIONS

In the preceding chapter we have discussed the asymptotic behavior of the modes near
the crossover-cutoff-resonance triplet of frequencies for the given model. We deter-
mined that the behavior of the modes across this region which corresponds to some
localized region in spatial altitude would be characterized by various transmission and
absorption coefficients. We have in all cases determined the primary transmission
coefficient, and in the case of a large ‘‘gap,”” we have determined the reflection
coefficients as well. For the case of large angle of propagation, we have also unambi-
guously determined the coefficients for the ion-cyclotron mode (the magnetosonic
mode does not propagate in that regime). In all cases, the transmission was described
by Budden-like transmission coefficients and a definite absorption characterized the
transmission process. Ion heating (particularly of the cold bulk plasma population)
may be inferred from the wave power which is absorbed. In addition, the thermal
population should also damp on the transmitted ion-cyclotron wave providing an addi-
tional source for heating.

In order to expand upon the results which we have obtained analytically and to
unambiguously determine the wave power associated with each mode, we will obtain a

numerical solution to the differential equation associated with this problem. In particu-

lar, in the regime where the tunneling ‘‘gap™ is small we can obtain the exact solu-

Mode Conversion—Numerical 118
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tions to the differential equation and from these extract coefficients. The advantages
of a numerical solution are primarily that we can retain the presence of both reso-
nances in the solution, and secondarily, we can model the variations in the magnetic
field in a more realistic manner with a cubic dependence on altitude rather than a sim-
ple linear calculation. As we shall sze, the presence of the extra terms does compli-
cate the mode conversion process slightly. In addition, we shall see that at low alti-
tudes the magnetosonic and ion-cyclotron branches couple strongly (this is the result of
the coupling point at zero frequency described in the previous chapter) so that the

transmitted wave amplitudes tend to be functions of altitude.

In the following sections we will develop and implement a reasonable procedure
for extracting the values of the coefficients numerically. These coefficients can then

be compared with the analytical results presented in the preceding chapter.

1. Numerical Procedure
A. Basic Equations

We wish to obtain numerical solutions to the fourth order coupled differential

system (5.85) described in the preceding chapter, namely

LR @
ely+(r— SV =0

k2. K
2” ki, e—— — =
¢ +(! 2)<;>+2\41 0

6.1)

with the small parameter € and functions r and [ as defined previously. I we assume

a functional dependence of the magnetic field
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Q.1 =0g () (6.2)

then the functions r and / depend only on the function g and the various mass and

density ratios. In particular, the rescaled Stix functions take the form

r Veotg g
=+ 6.3
1= ¥ 05)022) 2 (63

where the constant ratios v are defined to be
Vg = Q.10 , Vo = Q. /0, (6.4)

and the function g, contains the dependence of the parameter € along the field line,
namely the dependence of k4, which varies as the inverse of the Alfvén velocity
(B~1n12), For simplicity, we shall assumme throughout the analysis that g, remains
constant (i.e. that the Alfvén velocity remains ﬁxcci). Such an assuinption is certainly
reasonable if the region of coupling is localized. In addition, such an assumption also
allows us to match the WKB solutions more easily in the region of high field (low alti-
tude). A more realistic manner in which to incorperate the actual decrease in the
Alfvén velocity would be to incorporate mode solutions on the low altitude side of the
resonance whose eigenvalues are determined by appropriate ionospheric boundary con-
ditions [Lysak and Dum, 1983; Lysak, 1985]. Although perhaps slightly less realistic,
our assumption, g4 = 1, should be sufficient to determine the coefficients to first order,
and it is to be understood that inclusion of ionospheric boundary conditions is beyond

the scope of the present work.
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The function g contains all the esseatial information with regard to magnetic
field variations. The most reasonable dependence for g on altitude would be that of a
dipole field. We also require that g = 1 at the altitude at which the frequency of the
wave matches the local oxygen gyrofrequency. Thus we expect that in physical coor-

dinate r and scaled coordinate z the function f take the form

Li _ 1

= —=— (6.5)
E§="53 773

where Lg is the factor which appears in & Then the proper choice for Lg in this

instance is the altitude at which coupling occurs (the order of Rg).

Having thus relegated all functional dependence into the functions r and /
through the function g we may solve the differential equation (6.1) numerically. How-
ever, as discussed at length in the preceding chapter, the differential equation has a
regular singular point at the location of the plasma resonance, namely where z = 1.
We have plotted the functions » and / in Figure 5.2 of the previous chapter. For large
values of z we see that [ > r, and at the local crossover frequency r =/. The func-
tion { is characterized by a zero at the local cutoff frequency and a pole at the heavy
ion resonance. The solution to the differential equation (6.1) is multivalued and has a
branch poirt at z = 0, so that as we have seen in the previous chapter, in order to
retain the appropriate physical behavior, we must continue the solution above the pole
which may be physically interpreted as damping. The differential equation (6.1) must
therefore be suitably extended into the upper half of the complex plane so that the pole

may be circumvented.
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B. Numerical Technique

In order to solve the differential equation (6.1) numerically we scive the four

first order ODE’s

Y =MY (6.6)
where
’ h
] 0 1 0 0
::’IJ ﬁ—r 0 _l;i 0
- - 6.7
Y=lg| M= 9 o o0 1 ©.7)
4 LSRN
> 0 > {0

This system of equations constituies two fourth order equations for for the real and

imaginary part of Y. If we wish to solve this differential equation along some

_ - 2 - e | warevatoar A Yxr
L U

parameterized path in the compiex plane, z (%), characicrized by a m

may change solution vectors according to the prescription

dy dz ,
YI=YE®) Y= —— =Y os L y=9E@) y4=¢% 6.8)

then the differential equation (A2) takes the form

2
dy dz d?z '
2 MY+ =] M, Y+—M,Y .

where the matrices, M j» are
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0 0 0 0
0100 2 o 2y 0000
0000 2 2 0100 oo
Mi=lgo001l>M2=[ o0 0 0o o' ™M=lg000
0000 0001
——2“3 0322——10

Note that in the case that T =2z equation (6.9) reduces to equation (6.6). The
differential equation (6.9) may then be integrated in the real variable, T, by means of a
well known integrating scheme such as the Runge-Kutta, Bulirsch-Stoer, or the
predictor-corrector method. At some point, we may decide to make a discontinuous
change in parameterized paths. That is, we may change from the solution, Y,, along
one parameterized path, z,(T), to the solution, Y,, along another parameterized path,
z,(%), such that z,(tg) = z4(tg). In order that Y, and Y, describe the same solution,
we must match the solutions according to the continuity of the analytic functions

and ¢ so that

NZYI = N1Y2 » T=T (6.11)
with
. \
1 0 0 0
de
0 —L 0 0
| an (6.12)
Ni=lo 0 1 0 :
0 0 0%
d‘tJ
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In order to obtain the correct branch of the multivalued solution of the
differential equation (6.9) we must solve the differential equation along a path which
passes above the pole at z = 0 in the complex plane. Suppose that we know the solu-
tion, Y, at some point, z(, along the negative real axis. In order to determine the
value of the solution at some point, z, along the real axis, we may integrate the

differential equation (6.9) along the parameterized path as illustrated in Figure 6.1

Figure 6.1, The parameterized path along which we solve the differential equation consists
of three contours. The first integrates along the real axis to some point p. To continue the
solution to the positive real axis, we take a contour along a circular arc above the pole. Fi-
nally the solution may be obtained by continuing the solution along the real axis.



Mode Conversion—Numerical 125

zi(t)=1 , zg<T<1l-p
2,(T) = pexp[i-’zl(H-l-l?—)] , l-p<T<i+p 6.13)

z3(t) =1 , l+p<T<2

which consists of integration along the real axis from zy to 1-p (recall that the pole is
at z = 1) followed by integration along a circular arc above the pole to 14+p on the real
axis. Finally, the solution at z may be obtained from further integration along the real
axis. The solution must not depend on the choice of p or for that matter upon the
choice of parameterized path. This requirement provides an additional check on the

reliability of the procedure.

A general solution to the differential equation may then be obtained by taking
four different initial conditions at the point zy which correspond to four linearly
independent solutions. Once we have found a general solution to the differential equa-
tion we may decompose it into its constituent WKB solutions @© as discussed in the
previous chapter. Far from the coupling region, the WKB solutions are asymptotically

close (in the parameter €) to the actual solutions.

C. Extracting the Coefficients

In the region where the WKB approximation is valid, far from the coupling
region, the solutions to the differential equation are asymptotically close to the set of

basis functions
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r~ '

.,z
- i
O, =n;2exp —E‘[n+(z )dz
]

.2
©, =n;2exp +éj'n+(z )dz
- 3 (6.14)

. Z
= p-12 _i d:
Oy =n_""“exp . _[n (2) zJ

“-
r D

4
O =n2exp +€fn_(z Ydz

which are egnivalent to the WKB solutions in the asymptotic regime (the WKB solu-
tions are the same but have a common factor, n2-n2, in the denominator). The func-
tions n, have been defined previously in Chapter 3 and have nontrivial spatial depen-
dence according to the fanction g. For parallel propagation these WKB solutions
correspond to a downgoing LHCP wave, upgoing LHCP wave, downgoing RHCP
wave, and an upgoing RHCP wave respectively. This set of WKB solutions provides
a suitable set of basis functions in the asymptotic regime far away from the pole in the

complex plane.

In some region far to the left of the coupling region along the negative real axis
and far to the right along the positive real axis the WKB solutions are reasonable
approximations to the actual solutions. In the region near the pole, we may obtain the
exact solution numerically. The boundary conditions which we will impose on the
exact solutions are related to the coefficients of the WKB solutions in the regions
where they are valid. What we must do then is to patch together the two regions

where the WKB solutions are valid using the exact solution as illustrated in Figure 6.2.
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Figure 6.2. In regions far from the pole the WKB solutions are asymptotically valid. The
numerical solution connects the regions in which the WKB solutions are accurate.

Suppose that we have obtained four linearly independent solutions, y;, to the
upper component of the differential equation (6.1) using the numerical techniques

described in the previous chapter. Then we may construct a general solution
v = Xo;y; (6.15)
j

to the differential equation, where the coefficients, o;, are chosen to satisfy the
appropriate boundary conditions. In order to determine the ¢;, we must decompose
the solution y into the WKB solutions above and below the coupling region and
impose the boundary conditions consonant with physical considerations. In other

words
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EDXATTEDY Y0, , z—skeo (6.16)
j 1

where the decomposition will be different along the positive and negative real axis in

light of the Stokes phenomena which we already discussed in Chapter 5.

The values of ¥* must be consistent with the boundary conditions related to our

problem. For a downgoing magnetosonic wave we require that

0 Cr
Cr 0
R 0

Physically, these conditions correspond to no upgoing waves from below the coupling
region, and above the coupling region, the only incident wave is the downcoming
approximately RHCP mode. The coefficients refer to transmission in the incident
mode, T; reflection in the incident mode, R; transmission in the coupled mode, Cr;
and reflection in the coupled mode, Cp. For an incident ion-cyclotron wave, we

require that the coefficients, 7, take the form

1 T’

.| R 10
Y= 1 » ¥ = CUT (6‘18)

C'r 0

consonant with the physical boundary conditions.

In order to determine the coefficients, ¢ ;, we must decompose the linearly

independent functions, y;, into the constituent WKB solutions on both the positive and
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negative imaginary axis. Again, in light of the Stokes phenomena, the expansions are

not the same. Then

Y = %Bﬁ‘“)k » 2t (6.19)

which determines the relationship between the coefficients

¥ = XoiBji (6.20)

J

The equations (6.20) constitute a system of 8 complex equations in 8 unknown
complex variables. The variables which must be determined are the values of o; and
the coefficients £, T, Cg, and Cr. The values of o are obtained from the four equa-

tions with definite boundary conditions. The values of the coefficients follow.

Once we have determined the coefficients for y we must obtain the conserved
quantity, J, as described in the previous chapter

J =ipy”" +00" -y v'-0"¢) (6.21)

which corresponds to the Poynting flux along the magnetic field. As before, Y and ¢
are the upper and lower components of equation (1). In the region where the WKB
solutions adequately describe the actual solutions, we find that the coefficients of the
WKB solutions ¢ and y are algebraicly related by equation (6.1). Then to first order
the Poynting flux above is proportional to

J* = —lf Pl f Rl 2y 2 1P 6.22)

and the Poynting flux below is analogously
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J™ = =Wif 7 Pl f 7 P=lysf - P lygf 2 12 (6.23)

where the factors f describe the relationship between y and ¢. That is
. 2 2
fi= 1+[F(n§—r+v;2/2)] (6.24)

and the superscript j refers to the location at which this expression is to be evaluated,

namely at the location where the B* have been determined.

Finally, we are able to determine the the appropriate values for the coefficients
for an incident magnetosonic waves. Using the boundary conditiors for a downcom-
ing magnetosonic wave as found in equation (6.17), we find

TMS = Iff:/fjlz
RMS = |jé l2

Chs = 1CrfTIf X1
Cls = 1Cpfiif 2P

(6.26)

Using the boundary conditions for a dcwncoming ion-cyclotron wave as in equation

(6.18) we find

Tie = 1TF7IFE P
Ric = IR’1?
C=ICTfify P
CR = 1C o fXIf 1 I2

(6.27)

In either case, the absorption coefficient is of the form

A = 1-T+R+CR+CT) (6.28)
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for either case.
II. Numerical Complications

In studying the ideal system of equations (6.1) with the well approximated spa-
tial dependence on the magnetic field, it is important for us to address some basic iimi-
tations in the numerical analysis. Numerically, the equations are sufficiently tractable
that the exact solution to the well approximated differential equation (6.1) may be
determined to arbitrary accuracy (witnin the limits of computer accuracy). We can
make a statement such as this for a number of reasons. We have solved the
differential equation using three different techniques, Bulirsh-Stoer, Runge-Kutta and
predictor-corrector [Press, et al., 1986]. All techniques produce the same results to
within the limitations of double precision accuracy. Moreover, we have transformed
the equations (6.1), using a Ricatti Transform, into a set of first order non-linear
differential equations [Smith and Whitson, 1978]. (Such a transformation is particu-
larly useful for suppressing exponentially growing solutions.) The numerical solution
ihat we have obtained to the transformed Ricatti equation is again consistent with the
numerical solution of (6.1) to arbitrary accuracy. In principle, then, the accuracy of the
coefficients that we determine is limited to the accuracy of the imposed boundary con-
ditions.

The boundary conditions which we impose upon the numerical solution are at
best limited to the validity of the WKB solutions. That is, the accuracy of the

coefficients is limited by the accuracy of Bji. Once a numerical solution y; is
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obtained, the most straightforward manner in which to determine the coefficients, Bf,
is to compare the value of the numerical solution, ¥;, with the four WKB solutions,
©;, at four different locations, Alternatively, we could match y; and its derivatives at
a single point with the ®; and their derivatives. More elaborate schemes are also con-
ceivable in which y; is matched in a number of locations and an average taken.
Moreover, because we consider only the leading order WKB approximation, it is
important that we martch the numerical and WKB solutions in a region small compared
to a typical wavelengih. On the other hand, if this region is taken too small, then the
values of ©; do not vary sufficiently to determine the coefficients Bf to the required
accuracy. Indeed, the quality of the matching is a basic limitation of our analysis. In
the results which follow, we have matched the solutions in a region such that the
WKB approximation is reasonably valid, and we have varied the width of the match-

ing region and found that within the upper and lower limits mentioned above devia-

tions from the presented results are not substantial.

For large values of k, the RHCP magnetosonic mode has very small z_ so that
matching to the WKB solutions becomes somewhat suspect. One should therefore
question the exact manner in which the coefficients behave near the critical x, which
corresponds to the transition from four propagating WKB modes to two propagating
modes, because the meaning of matching to WKB boundary conditions is questionable.
However, we should point out that the coefficients do behave reasonably smoothly and
it is not unreasonable to assume that the asymptotic solutions are reasonably accurate

even when the WKB smallness parameter, €, is of order 1 [Bender and Orszag, 1978].
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We should also mention the dependence of the solutions on the parameter, p,
which was introduced to circumvent the pole at z = 1. The solutions y; have virtually
no dependence on the parameter p as long as p is taken sufficiently small. In the case
of very large p, the exponentially growing solution in the upper half plane dominates
the subdominant solution to the machine precision in which case an inaccurate numeri-
cal solution is obtained. For all results presented, the value of p is taken sufficiently

small so that numerical stability is retained.

Finally, as z—0 so that g —o we find that r = ! which corresponds to the lower
crossover frequency. Coupling associated with this crossover frequency occurs
between z =0 and z = 1. Moreover, the strong dependence of the magnetic field on
z~3 means that this coupling occurs over an extended range of z (r =/ over a large
range). As a result, the numerical values of the coupling coefficients are functions of
altitude. However, the physical boundary conditions which we impose on the upgoing
waves below the heavy ion resonance are independent of the location at which we
match the solutions. Then it turns out that the reflection and absorption coefficients do
not depend upon the iocation at which the solution is matched for z < 1; however, the
relative value of the transmission coefficients will depend upon the location at which
they are evaluated to a slight degree because the two downgoing Alfven modes couple
at low altitudes. In the following analysis we maich to the slowly varying WKB solu-
tions at some point between z = 0 and z = 1. In all cases, we have chosen to evaluate
the coefficients in a range over which the variation of the coupling coefficients with

altitude is small. Indeed, this range is identically the altitude range over which the
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boundary conditions may be optimally described in terms of the coefficients of the

WKB solutions.

II. Results
A. Budden Equation

As a test of the reliability of our numerical procedure, we consider the
coefficients of a well known equation, namely the Budden equation (5.52). In this
case, we have a second order equation with coefficients determined from the two
WKB solutions. A similar prescription to that described in section II, may be imple-
mented to integrate the equation around the pole. As mentioned previously, we may
obtain the numerical solution to arbitrary machine accuracy. In the case of the Budden
equatior, it is possible to specify the boundary conditions up to the specified accuracy,
O (z"2), where z is the location at which the WKB solutions are evaluated and
matched to the numerical solution. In Figure 6.3 we plot the coefficients obtained
from the numerical solution of the Budden equation for specific values of the parame-
ter N = kga. The analytical results are superimposed upon the numerical results. The
curves are not distinguishable. Moreover, the results do not depend in any noticeabie
way upon the value of the numerical parameters which we have introduced into the
problem such as the radius of the contour above the pole, p, or the relative location at

which we match the WKB solutions to the numerical solutions.
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Figure 6.3. Budden coefficients for a downward propagating wave. The Transmission,
Reflection, and Absorption cocfficients have values of the parameter N = k4.

B. Fourth Order Equation
1. Parameter Regime

In the following sections we determine the coefficients for several cases of
incidence as described previously. The parameters which are of greatest interest are
the magnetic field, magnetic field scale length, and the masses and densities of the
various constituent ions. The masses are fixed parameters which we take to be hydro-
gen and oxygen (both singly ionized). The magnetic field and densities are embedded
in the WKB parameter € and the functions r and ! depend only upon the density

ratios. Hence a particular solution is determined from the specification of € and the
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concentration of the minority species 1. Typical values for the parameter € are

- 1
kaLp

£ = 0.5r"1p™! (6.29)

where r is the scale length in esrth radii (~ 1-3) and p is the mass density of ions
(~ 1-100) [Moore et al., 1987 and references therein]. We will explore the parameter
space for € ranging from approximately 0.2 to 0.03. In this range, the WKB approxi-
mation is good and should provide reasonable matching conditions to the WKB solu-
tions. We will in all cases concentrate on that range of oxygen concentration con-
sistent with reasonable absorption levels. We have found this range to vary from 0.5
to 5 percent. In order to consider the limiting case of a large “‘gap’’ we will take € to

be small and M to be large.

2. Incident Magnetosonic Waves

For the results of this section, we impose the boundary conditions for downcom-
ing magnetosonic waves and obtain the coefficients (6.26). In order to understand, the
physical meaning of the coefficients, consider Figure 5.6 from Chapter 5. A wave is
incident on the magnetosonic branch with unit flux. The fractions of wave flux Ty
and Ry are transmiited and reflected on the magnetosonic branch while the fractions
CR¢ and CJjs are transmitted and reflected along the ion-cyclotron branches as indi-

cated.

3

We have obtained full analytical solutions for the limit of a large ‘‘gap.”” In

Figure 6.4 we show the numerical solutions to the differential equation. Superimposed
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on the graph we have shown the analytical results (5.116-118) which we have
obtained frem a phase integral analysis consistent with a large “‘gap’’ for which there
is no absorption. The resulis are in very good agreement. The most striking
difference is that the coefficient Cjig is non-zero in contrast to the analytic situation.
However, the analytical results only incorporate the existence of the coupling point
near the crossover frequency. As discussed in the last chapter, coupling between the

two Alfvén waves can be very strong at frequencies below the heavy ion-cyclotron fre-

1_ T T LR <MLL I —
rd 7

Coefficients

Figure 6.4. For the limit of large ‘“‘gap” the numerical solutions and the analytical results
are in reasonable agreement. We have taken £=0.03 and n=5% for which there is no ab-
sorption. The numerical solutions are plotted in heavy set type and the analytical resuits are
indicated in light type. Note that for the numerical results the coefficient exp(~nfl,/€)
although small is nonzero in contrast to the analytical results. This behavior is the result of
coupling between the two Alfvén waves below the ion resonance corresponding to the cou-
pling point at zero frequency.
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quency. It is this coupling which gives rise 1o the wave power found on the ion cyclo-

tron branch.

In Figure 6.5 we compare the numerical transmission coefficient for a small
“gap’’ with the analytical result (5.107). We have plotted the numerical transmission
coefficient in heavy solid and the analytical coefficient in light solid. The analytical
results predict no coupled wave Cfg. However, coupling between the two modes does
occur below the heavy ion resonance. Because this coupling does not involve
reflection one might expect the total transmission Ty +Cflis to match the analytical

transmission coefficient. We have plotted this sum as a dashed line. Indeed the sum

Coefficients

Figure 6.5. Transmission coefficient for the magnetosonic wave in the limit of small *‘gap”
with £=0.2 and 11=1%. Note that the total transmission is in good agreement with analytical
resuit.
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compares well with the analytical results.

[

In the regime which corresponds to a large ‘‘gap’” our numerical results are in
good agreemeni with the analytical results. Moreover, even in the limit of a small
““gap,” the analytical results are in reasonable agreement. Let us now explore the
parameter space. In Figure 6.6 we have plotted the coefficients for the case € = (.2
and 1 = 1%. For parallel propagation, no coupling occurs. As the K increases strong
coupling between the two transmitted Alfvén waves occurs, and the sum of of those
coefficients reproduces the analytical transmission coefficient found in the last chapter.

For large k waves are reflected in the two upward propagating modes. The cutoff fre-

quency increases substantially for large enough x and the ‘‘gap’’ becomes too large to
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Figure 6.6. Coefficients for the case £=0.2 and N=1%.
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penetrate (see for example the sequence of dispersion relations discussed ir chapter 3).
In this case the reflection coefficient grows rapidly, and for k¥ = 0.95 the magnetosonic
wave no longer propagates (the wave is reflected at the lower hybrid frequency well
above the hydrogen gyrofrequency). For a substantial range of x strong absorption

occurs peaking at 20% for large x.

For smaller densities, the absorption increases to about 25% although it tends to
sharpen and occur mostly at large x. Indeed, as the minority species density tends to
zero, the transmission coefficient, Ty, is approximately 1 and all other coefficients
vanish. This means ir effect that for very small oxygen densities the waves propagate

as if there were no oxygen presenti.

For larger densities (1=5%), as illustrated in Figure 6.7, we find that the absorp-
tion diminishes rapidly although the waves still couple at low altitude. In addition, we
find that total refiection occurs at a much smaller value for X. Absorption appears to
be very small. However, one should keep in mind that in the case of a large gap all
power upcoming in the LHCP mode will be absorbed. If perfect reflection were to
occur at jonospheric altitudes, it is conceivable that a substantial portion of Clis would

also be absorbed.

For smaller values of £ (=0.08), as illustrated in Figure 6.8, we find that less
coupling occurs between the two downgoing transmitted waves. In addition, reflection
is much stronger at intermediate values of k. This is because the ‘‘gap’’ contains

more wavelengths and transmission is substantially diminished. Reasonably strong
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Coefficients

0 2 4 .8 .8 1
K

Figure 6.7. Coefficients for the case €=0.2 and N=5%.

absorption still occurs over a vast range of x and is typically about 7 percent. It
should alsc be noted that a substantial portion of the reflected wave Cils can also con-
tribute to heating upon reflection. For even smaller values of the parameter € (=0.03)
we find that the absorption becomes negligible for 1 >1%, however, the absorption

remains reasonably significant for n = 0.5%.

In summary, we have found that incident magnetosonic waves couple strongly
near the crossover frequency for reasonable values of the minority species density.
For larger values of k the waves are completely reflected, and strong absorption occurs

over a substantial range of k.
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Coefficients’

Figure 6.8. Coefficients for the case ¢=0.08 and n=1%.
3. Incident Ion-Cyclotron Waves

For the results of this section, we impose the boundary conditions for downcom-
ing magnetosonic waves and obtain the coefficients (6.27). For values of k smaller
than the critical x for which the magnetosonic mode is cut off we determine these
values numerically. For larger values of k we use the analytical results obtained in the
previous chapter. Numerical extraction of the coefficients in the case of large x
involves substantial complications. In this section we will obtain correct estimates of
the absorption for both small and large values of x, and we will discuss the meaning

and correctness of evaluating the coefficients for intermediate .
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First, let us consider the coefficients for values of x smaller than the critical
for which the magnetosonic mode is cut-off. In order to understand the meaning of
these coefficients, consider Figure 5.5 from Chapter 5. A wave is incident on the ion-
cyclotron branch with unit flux. The fractions of wave flux Tyc and Rjc are transmit-
ted and reflected on the ion-cyclotron branches while the fractions CR and CL are

transmitted and reflected along the magnetosonic branch as indicated.

»

We have obtained full analytical solutions for the limit of a large “‘gap.”” In
Figure 6.9 we show the numerical solutions to the differential equation. Superimposed
on the graph we have shown the analytical results (5.113-115) which we have
obtained from a phase integral analysis consistent with a large ‘*gap’’ for which there
is no absorption. As for the case of an incident magnetosonic wave, the results are in

very good agreement. Again a small amount of wave flux is found in the coupled

transmitted wave.

In Figure 6.10 we compare the analytic solution for a small *‘gap’’ with the
numerical calculation. Once again coupling between the iwo transmitted modes dimin-
ishes the power found on the transmitted ion-cyclotron mode. However, the results are
certainly quantitatively correct for small values of k in which case the low frequency
coupling point does not enter into the calculation. For larger x, the results are qualita-
tively correct and are good for an order of magnitude estimate; however, the existence
of two different coupling points (low frequency and crossover—see Figure 5.3 from
Chapter 5) cannot be incorporated into a linear model and the analytic results are most

accurate when the coupling is dominated by one of the two coupling points.
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Coefficients

Figure 6.9. For the limit of large *‘gap’” the numerical solutions and the analytical results
are in reasonable agreement. We have taken £=0.03 and N=5% for which there is no ab-
sorption. The numerical solutions are plotted in heavy set type and the analytical results are
indicated in light type.

In Figure 6.11 we have plotted the coefficients for the case € = 0.2 and N = 1%.
For parallel propagation, the problem is described as a Budden tunneling problem for
the ion-cyclotron branch, and the ion-cyclotron and magnetosonic branches do not cou-
ple. For larger angles of propagation, the tunneling increases as, in fact, predicted by
the analytical analysis in Figure 6.10. For larger values of K, coupling between the
downgoing modes occurs at the crossover frequency, and substantial wave energy is
transferred to the coupled magnetosonic wave. Indeed, for the case of a small ‘‘gap’’
as in Figure 6.9, coupling to the coupled transmitted wave, C,{-, is complete for large

values of k. Substantial absorption occurs over a very large range of K taking a value
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Figure 6.10. Transmission coefficient for the ion-cycloiron wave in the limit of small
““gap” with £=0.2 and n=5%. Note that the transmission is in best agreement for small x,

over 20% over most of the range. In Figure 6.12 we explore the transmission
coefficients for parallel propagation for € = 0.2 (for parallel propagation the two modes
are uncoupled so that C& = CL = 0). As is clear, substantial absorption occurs over a
large range of densities ranging from n = 0.5% to N = 4%. For larger values of X, the
absorption remains essentially the same as for parallel propagation up to reasonably
large values of x.

As for the magnetosonic case, substantial absorption still occurs for € = 0.08 as

indicated in Figure 6.13. In this case, the ‘‘gap’’ is large so that most of the wave

power is reflected at small angles of propagation rather than transmitted; however, for



Mode Conversion—Numerical 146

1 T ! T I T T T T T T T I T T T T T T
~ C 1c - -
» R 4
- C Ic — -
8 -
u T;c - . =
p— ”’t"- —
n - R - e ]
It iC e
c 8 — L -
o
= " A o A
3 b - i
"‘,‘0'_5‘ » T B - .
o 4 |— “~-‘__.__‘__-_-‘ﬁ_’__,—-" —_
(@) | _

Figure 6.11. Coefficients for the case £=0.2 and N=1%.

larger angles of propagation, tunneling in both modes increases substantially until most
of the power is coupled into the magnetosonic branch. For the case of parallel propa-
gation with £ = 0.08, the peak absorption levels are skewed toward smaller values of
density ( = 0.5%). For smaller values of € the absorption is completely negligible

and the wave is completely reflected.

For large values of x, we have shown using a variety of meti'lods that the
transmission properties are described as a Budden tunneling problem at the ion-ion
hybrid frequency. Let us consider the analytical results. In Figure 6.14 we have plot-
ted in bold type the transmission factors found in equations (5.137, 5.141) along with

the corresponding absorption factor. Physically, the coefficients correspond to Figure
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Figure 6.12. Coefficients for parallel propagation with £=0.2. Strong absorption occurs for
0.5%<m<4%.

5.8 from Chapter 5. In light type we have plotted the transmission factors obtained
from the embedded differential equation (5.160). They are in good agreement in the
regime in which they are both valid. It is to be noted that there is reasonable agree-
ment between the transmission factor, Tjc, near the upper bound of the numerical
solution of Figure 6.11 and the large x solutions of Figure 6.14. The absorption and
reflection coefficients do not match well. While it is to be expected that the dominant
WKB solution would be continuous in x it is not necessarily expected that the

coefficient of the subdominant solutions would remain continuous.
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Coefficients

Figure 6.13. Coefficients for the case £=0.08 and n=1%.

For large x the transmission coefficients approach a constant value determined
from Budden tunneling at the ion-ion hybrid frequency. In Figure 6.15 we plot the
coefficients against the concentration of oxygen. As for the case of parallel propaga-
tion strong absorption occurs for a large range of densities ranging from n = 0.5% to

N = 7%. In all cases the absorption remains essentially constant for x> 1.

For smaller values of € the absorption still remains very large for reasonable
densities. As illustrated in Figure 6.16 although the reflection is now much larger than
the transmission, the absorption remains over 20%. Moreover, the transmission factor,
T)c, again matches reasonably well with that coefficient for small k (see Figure 6.13),

but the other coefficients are again discontinuous. From Figure 6.17, it is clear why
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Figure 6.14. Analytical approximations for the transmission coefficients for e=0.2 at large X
(which corresponds to large angles of propagation). We have plotted the coefficients related
to the phase iniegral transmission, exp(—nB,/€), in dark type. The transmission coefficients
found from the embedded Budden equation for tunneling through the ‘‘gap’” are indicated in

light type.
the transmission has not diminished from the case with € = 0.2. The absorption is
strongly peaked around M = 1. For smaller values of € the region of strong absorption

moves to very small (probably unphysical) values of 7.

In summary, we have found that incident jon-cyclotron waves undergo Budden-
like tunneling at the cutoff frequency for nearly parallel propagation and at the ion-ion
hybrid frequency for nearly perpendicular propagation. The absorption is very strong
over a large range of x and for a reasonable range of 1. For intermediate values of x,

coupling near the crossover frequency becomes important and a substantial amount of



Mode Conversion—Numerical

1 L T T | T T T T T T T T T 1
=Y |
\‘ o P
b- %
\‘ _ // —
- \‘ o -
LY e
8 \ P |
— S // -
\ /
i A e Te — §
5 i 3 / T
6 — \ 4 -
a : \ /
1) L hY // -
— \
AY
é - \\ // R]C —_— .
Gy - \\ / =
[\ N/
o 4 b —
) L /(\\ 4
/ “
f— / / \\\ AIC ....... -
bt Py 7 ~~~~~~~~~~~~~ -, \\ -
S/ T ]
-/ e -
_/_,' // ~ -..-'-':.,'-,-;_:___‘_\‘_1:_ |
= / ﬁ.m"‘-- —
[ Te————
0 e i i | ) ] | ] 1 I ! L 1 I | L ] N
0 2 4 6 a8 10
n

Figure 6.15. Coefficients for large x with €=0.2. Strong absorption occurs for 0.5<n<6.
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wave power is transmitted in the magnetosonic mode. However, for large enough K,

the magnetosonic mode is cut-off and that wave power is reflected back into the sys-

tem.

4. Physical Considerations

We have found that the analysis of an incident ion-cyclotron wave is somewhat

more complicated than the magnetosonic case in that it involves an interesting change

in the behavior for the coefficients for small and large x. In particular, it is important

to realize that the continuity of the the transmission properties for these waves is

somewhat dependent upon the model from which boundary conditions are obtained.
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Figure 6.16. Analytical approximations for the transmission coefficients for €=0.08 at large
k (which corresponds to large angles of propagation). We have piotted the coefficients re-
lated to the phase integral transmission, exp(-nB,€), in dark type. The transmission
coefficients found from the embedded Budden equation for tunneling through the *‘gap’” are
indicated in light type.

The fact that two different regimes exist for k<1 and x>1 is represented by the transi-
tion of the cutoff frequency as described in (5.142) where a cutoff appears below the
ion-cyclotron frequency (instead of above). Then the boundary conditions at *e are
determined by two WKB solutions rather than four. One expects that such a sudden
transition in the behavior of the modes is not physically meaningful although it is cer-
tainly mathematically feasible (recall the discussion of the sudden jump in the Stokes

coefficients across a definite value for arg z).
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Figure 6.17. Coefficients for large x with £=0.08. Strong absorption is peaked about n=1.
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In light of our present model, simply from physical considerations we would

expect to find a discontinuous jump in the absorption coefficient as the cutoff moves

from +o to —ee, If the magnetosonic mode propagates at —oo then one expects to find

that all the wave power on the magnetosonic mode is transmitted; however, if that

mode is reflected above the region where the coefficients are evaluated, then ail of the

wave power, CJ-, on that branch is reflected back into the system. Because ck

increases substantially at large k where coupling at the crossover frequency is most

complete, this amount of reflected energy is substantial. Such reflection greatly

modifies the reflection and absorption coefficients although it should not affect the

transmission coefficient.

As we have seen, the transmission coefficient actually
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matches reasonably well across the critical K.

Physically, we might expect more continuous behavior for the coefficients; how-
ever, producing a more continuous result does not mean solving the present equations
more accurately. Rather, it means incorporating more physics into the boundary condi-
tions of the model. For example, we have solved a problem in which the coefficients
correspond to transmitted wave flux. However, when these waves reach ionospheric
altitudes, they interact with a conducting ionosphere. Wave reflection, transmissién,
mode coupling and absorption at the magnetosphere-ionosphere boundary are at
present a vigorous subject of active research. If, for example, the waves were com-
pletely reflected at that boundary, then a transition at & critical ¥ does not appear
because waves are reflected at all k and, hence, there is no discontinuous jump. If, on
the other hand, the transmitted waves are absorbed, then we would expect an abrupt
transition at some value of x which corresponds to reﬂectio;] at the altitude of the
absorbing layer. Moreover, density gradients play a substantial role in determining the
exact location of the reflection layer and thus of the exact behavior of the coefficients

with K.

As an example of the importance of boundary conditions, suppcse we werc 1o
assume that waves incident on the ionosphere are completely reflected. Then from the
phase integral analysis of the previous section, we find trivially that for an incident
upgoing ion-cyclotron wave from below the ion-gyrofrequency the amount of wave
flux Tjc = exp(—np,/e) continues upward. Because this mode is completely subdom-

inant, it couples to no other modes and hence, the remaining wave power is completely
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absorbed. Thus, for example, in the case of Figure 6.7 where no absorption occurs,
we would find that 60-70% of the flux transmitted on the coupled branch as Cjfg
would be reflected at the ionosphere and then absorbed at the oxygen resonance so that

in actuality the coefficients which we have obtained serve as a lower bound.

In sum, our results provide insight with regard to a lower bound estimate of the
absorption near the resonance-cutoff-crossover frequency triplet. The results will be
somewhat modified if we include more physics into our analysis, but it is certainly
clear that substantial wave power is available to heat minority species ions such as

oxygen.



CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

1. Conclusions

Ton heating associated with conic formation has provided perhaps the meost strik-
ing example in space physics of a ‘‘theory that works.”” In the preceding chapters we
have investigated one of the most important aspects of the ion conic prblem—namely,
the location of the source of energy that induces the ionospheric oxygen outflow and
whether such a source is consistent with the ion heating model described in the first
chapter. The strong theoretical correlation between the conics and a concomitant
broadband electromagnetic wave spectrum suggests that the wave energy is the source
of ion energization. Because there is apparently no local source for the waves, we
have constructed a global scenario in which waves are generated in a region where
free energy is available to excite waves. These waves then propégate into the region

where the conics are observed and provide the necessary energization,

The magnetosphere is a vast and varied object with many sources and sinks for
energy. Indeed, it is quite conceivable that the source of the broadband spectrum actu-
ally consists of a collage of waves patched together from a number of source regions.
The equatorial region is one of the most prominent candidates to be a source of the
auroral turbulence. Thermal anisotropies and anomalously large loss cones provide a

substantial reservoir of free energy which excites waves in the two propagating low
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frequency modes. These waves are observed to attain substantial amplitude in the

equatorial region and have been correlated with ground based measurements.

Having identified a substantial source of wave activity, we investigated the evo-
lution of these waves using a non-local model for wave propagation. We incorporated
both a realistic magnetic field with curvature and a density profile which approximates
the plasmapause boundary. Using typical values for the relevant parameters, we inves-
tigated ray paths in detail for waves in the two propagating low frequency modes.
JIon-cyclotron were guided along field lines, and in all cases, waves generated in the
equatorial region are found at lower altitudes virtually independent of the density
profile. These waves provide a substantial fraction of the power observed at auroral
altitudes. Moreover, magnetosonic waves, although not guided by the magnetic field
may be guided much like a whistler wave in the presence of density gradients. The

boundary of the plasmasphere provides such a guiding effect.

As these equatorial waves propagate to lower altitudes, the ray tracing equations
do not adequately describe their behavior, and we must solve Maxwell’s equations for
the full wave solution. The behavior of the modes near the resonance-cutoff-crossover
triplet of frequencies is the most critical aspect of our whole analysis in that this
behavior determines the amount of wave power available to heat ions and specifies, in
particular, the apportionment of wave flux above and below the heating region.

Indeed, the transmission coefficients are the heart of the matter in our scenario.
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Because parallel magnetic field gradients are more substantial than perpendicular
gradients at auroral altitudes, we have simplified the relevant plasma equations and
have extracted a fourth order equation which describes coupling between the two cir-
cularly polarized components of the electric field. We have studied these equations in
detail and we have estimated and determined coefficients which relate the Poynting
flux of the wave modes above and below the coupling region. We demonstrated
analytically that the ion-cyclotron and magnetosonic modes couple strongly near the
crossover frequency. This coupling is a strong function of the perpendicular wavevec-
tor. Using a phase integral analysis, we determined that downgoing ion-cyclotron
waves tend to tunnel through a cutoff-resonance ‘‘gap’’ in a manner similar to that
described by Budden. On the other hand, downgoing magnetosonic waves tend to pro-
pagate through the “‘gap’’ and strongly couple to the ion-cyciotron wave for large
angles of propagation. In both cases, strong absorption is expected to occur over a
range of angles of propagation. In the limit of a large ““gap’® this absorption becomes

negligible and we determined the coefficients analytically without ambiguity.

In order to incorporate the presence of coupling both above and below the heavy
ion gyrofrequency, check our analytical results, and extract the values of all
coefficients, we have solved the system of coupled differential equations numerically.
In order to integrate the equations around the singularity, we incorporated physical
considerations into our analysis. This prescription involved continuing the multivalued
solution to the differential equation ‘‘above’ the pole. By imposing boundary condi-

tions on the numerical solution consistent with downcoming waves in a particular
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mode, we were able to determine the coefficients associated with wave propagation
near the heavy ion gyrofrequency.

We found that our numerical solutions were in reasonable agreement with the
analytical solutions that we obtained. Incident magnetosonic waves couple strongly
near the crossover frequency for reasonable values of the minority species density, and
for large angle of propagation the waves are completely reflected. Strong absorption
(the order of 10-20%) occurs over a substantial portion of the spectrum peaking near
perpendicular propagation. Ion-cyclotron waves, on the other hand, undergo Budden-
like tunneling at the cutoff frequency for nearly parallel propagation and at the ion-ion
hybrid frequency for nearly perpendicular propagation. The absorption is very strong
(~ 20%) over most angles of propagation for reasonable values of the minority species
concentration. In either case the absorption levels are consistent with the power

required to heat ion conics.

In summary, the scenario which we have presented is quite plausible. Waves are
generated in the equatorial region and then propagate Earthward along field lines. As
they reach auroral altitudes, the two downward propagating modes undergo strong cou-
pling near the heavy ion gyrofrequency, and substantial wave power is absorbed. The
absorbed wave power is significant and energizes oxygen conics to magnetospheric

encrgies.
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II. Future Considerations
A. Thermal Effects

Our analysis has provided us with an estimate of absorption levels which occur
in a multispecies plasma near the minority cyclotron frequency. Our analysis, how-
ever, remains somewhat inadequate in that the equations which we studied are singular
at the resonance. Budden [1965] has suggested a number of interpretations of the
absorption ranging from collisional absorption to ion-cyclotron damping. Swanson
[1989] and Fuchs er al. [1985] have incorporated thermal effects into the Budden
analysis, and they have shown that near the resonance, the Budden equation should
actually be approximated by a fourth order equation which introduces two thermal
modes in addition to the two cold plasma mode. They have demonstrated that the
wave power rather than being mysteriously absorbed is mode converted to a thermal

wave which strongly damps on the ions.

It is natural, then, to believe that the absorption processes which we have studied
have their predication in mode conversion processes which involve thermal branches
such as the various ion Bernstein modes. In order o understand the absorption physi-
cally, we must incorporate thermal effects into our analysis. In doing so, we will
obtain a higher order system. Given that our original system is of fourth order, the
physical resolution of the problem will involve at least a sixth order equation. Solving
such an equation will be a formidable task. Moreover, it is conceivable that as the

Bernstein modes are excited, nonlinear effects which couple the cyclotron harmonics
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will become important. Thus, although our linear calculations have given us some
physical insight and suggested a definite absorption, the final resolution of this problem

will probably involve a full nonlinear analysis of mode conversion.

B. Ionospheric Boundary Conditions

As we have discussed at length, ionospheric boundary conditions can be an
important aspect of the problem particularly for waves waves which encounter the oxy-
gen resonance at very low altitudes. The strong coupling between the two Alfvén
waves is substantial at low altitudes, and most wave power reflected in the LHCP
mode tends to be absorbed. Boundary conditions at ionospheric altitudes, however, are
not trivial. Although the ionosphere is a good conductor, substantial currents flow
along the surface of the ionosphere. The currents on the ionosphere, however, are
related to currents in the magnetosphere [Lysak and Dum, 1985; Lotko er al., 1987].
Waves in the ionosphere couple to waves in the magnetosphere [Keskinen ez al., 1988;
Seyler, 1990]. A complete investigation of the effects of ionospheric-magnetospheric

coupling is an enormous task which at present remains a field of active research.

Our model is a starting point for understanding wave processes in the magneto-
sphere. Imposing simplistic boundary conditions which specify the ionosphere as a
conductor with imposed currents on that boundary would provide a first step toward
understanding the effects of the ionospheric boundary conditions. More realistic boun-
dary conditions must incorporate the circuit-like nature of the ionosphere in which

height integrated conductivities relate currents in the ionosphere to the electric field.
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Eventually, an ionospheric code which incorporates the dynamics of a collisionally
dominated ionosphere should be combined with a magnetospheric code which is dom-
inated by the behavior of the electromagnetic fields. Such a code would ot only pro-
vide the solution to the specific problem involving ion heating, but would also substan-
tially enhance the present understanding of coupling between the magnetosphere and

ionosphere.

C. Nonlinear Effects

In its crudest form, ray tracing demonstrates whether wave power, generated in
some region of the magnetosphere, might propagate into another region where it may
be observed. Ray-tracing is, of course, founded upon the assumption that a small
wave packet behaves linearly and moves about as a particle. On the other hand, the
observed spectrum is somewhat suggestive of turbulence in that it is very broadband in
nature. The waves generated in the equatorial region tend to be excited in narrow
bands of frequency. Nevertheless, the observed spectrum is somewhat broadband. We
have already alluded to the fact that the focusing geometry of the Earth’s magnetic
field might lead to a smearing of the generated spectrum, but it is also reasonable that
the waves which are generated reach sufficiently large amplitudes for nonlinear effects
to couple the modes, thus leading to a broadband spectrum. Indeed, the suggestion
that the waves bounce back and forth between conjugate points [Rauch and Roux,
1982] is suggestive of a driven oscillator and would suggest that at some point some

of the waves may saturate. Moreover, some of the observations of waves generated
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above the local hydrogen cyclotron frequency appeared to consist of not only waves
generaied at the harmonics of the proton cyclotron frequency, but also waves generated
via harmonic-harmonic coupling. All this would suggest that there is a need to under-

stand some of the nonlinear aspects of this problem.

The broadband nature of spectra has often led to the conclusion that the waves
are in fact turbulence [Keskinen and Kintner, 1978; Keskinen, et al., 1988]. However,
it is very difficult to compare present models of MHD turbulence with observation in
that spatial structure is difficult if not impossible to resolve at the present time, and
mapping frequency spectra into wavevector spectra seems somewhat inadequate
[Labelle and Kintner, 1989). If the waves, do indeed, interact nonlinearly in the
region, then nonlinear parametric coupling might explain some of the spread in fre-
quency that is observed. This topic is certainly of great interest and one which we

shouid continue to explore.

D. Non-Resonant Heating

The relationship between low frequency turbulence and ion heating has been a
confusing issue over the course of the last few years. The observation that wave spec-
tra seem to peak at frequencies well below the ion gyrofrequency has led some to sug-
gest that the random kicks associated with this enormous amount of field activity may
indeed interact with the particles and, in fact, heat them in some non-resonant manner
[Lundin and Hultqvist, 1989]. Simple plasma theory, on the other hand, suggests that

particles are only adiabatically heated by the non-resonant wave activity and are
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sloshed around by the waves with no net heating. Indeed, a careful calculation based
on the modeling of ion heating in a ‘‘weakly turbulent’’ plasma demonstrates clearly
that in the framework of a quasilinear model with stationary turbulence heating only
results from the interaction of those waves which are in a frequency range which may
resonant with particles {Ball er al., 1991]. On the other hand, it might be suggested
that nonlinear coupling of waves at frequencies below the resonant frequency may
indeed produce second order resonant heating of ions [Temerin and Roth, 1986].
Although such theories have some appeal in that they suggest that the large low fre-
quency fields may heat ions, they are conspicuously deficient in that higher order
resonant coupling involves higher order contributions in terms of the electric field
spectral density which is small. We believe that careful scrutiny of the data precludes

such mechanisms from efficiently energizing particles of ionospheric origin.

In the presence of gradienis, however, we expect that the non-resonant sloshing
of particles will no longer proceed in a adiabatic manner. Indeed, the gradients would
act in such a manner as to push the more energetic particles to higher altitude in order
to conserve the magnetic moment in the presence of a magnetic field gradient—much
like water in a bucket sloshes over the rim if it is shaken. Moreover, the waves are
observed all along the field lines so that we would expect this sloshing to have a
cumulative effect and perhaps cause a net energization of ionospheric particles to mag-
netospheric energies. Once the ions have been drawn out of the ionosphere, to alti-
tudes where their local gyrofrequency has sufficiently decreased so that they may

interact resonantly with the waves, wave particle interactions will then be able to



Conclusions and Future Directions 164

dominate the energization process. Moreover, similar processes may draw ions out of
the ionosphere into the boundary plasma sheet where resonant interaction with lower-
hybrid waves accelerates the ions to magnetospheric energies [Chang and Coppi, 1981;
Retterer et al., 1983,1986]. Although these resonant energization is reasonably well
understood and the observations agree with well with theory, the initial energization of

ionospheric particles remains, at present, a mystery.

It would be of interest to study the role of gradients in non-resonant ‘‘heating™
processes to detcrmine whether ions of ionospheric origin may, in fact, be drawn out
of the ionosphere to altitudes where resonant interactions dominate. This process
could be modeled using a Monte Carlo simulation to determine the evolution of ions
immersed in a non-resonant electric field spectrum evolving spatially in a realistic
magnetic field geometry. Because observational capacities at present limit our under-
standing of the spatial character of the observed wave spectrum, we would need to
explore a number of spatial models for the electromagnetic field quantities. In addi-
tion, to unambiguously attribute any heating to non-resonant waves, we could filter out
that part of the spectrum which may interact resonantly with the particles near their
gyrofrequency. As we followed the evolution of the particles we could then determine

the character of the outflow attributable to these low frequency waves.

E. Shear Instabilities

Transverse velocity shears associated with convective flows at lower altitudes

appear to also be an attractive source for generating instabilities associated with jon
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heating and conic formation. In particular, the kinetic instability studied by Ganguli et
al. [1985a,b,1988] does generate a broadband of waves near the ion cyclotron frequen-
cies with small wavelength. We believe that in this manner, energy may be extracted
from bulk fiow and transferred to ion thermal energy. Moreover, small scale shears in
the electric field structure excite this instability in contrast to the large scale structure
required to generate Alfvén waves which obviates one of the objections to a local
source. Such waves would then be available to heat conics via a wave-particle interac-
tion and thus provide an efficient preheating mechanism for extracting oxygen from the

ionosphere.

Waves generated as the result of inhomogeneities in the ionospheric electric field
should therefore be understood in detail. As a first step we could extend the nonlocal
analysis of Ganguli er al. [1988] to include the presence of multiple ion species.
Because such a mechanism is local in origin, the instability generates waves near the
cyclotron resonance of the species which we are considering—in this case oxygen. In
light of the previous work we expect such waves to arise in the region where oxygen
is the dominant species, and it is not unlikely that such waves will also be generated at
higher altitudes where oxygen becomes less dominant but is still appreciable. At
lower altitudes, it is certainly conceivable that collisional effects might also play an
important role with regard to the instability, and it would be important for us to even-

tually incorporate such effects into our model.

These kinetic ion-cyclotron modes were first understood in light of a simple

top-hat potential which was later smoothed to allow direct comparison with the
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Kelvin-Helmoltz instability. At this point, the theory was cast into the form of an
integral equation. Such a formulation was important in that the fluid modes and the
ion-cyclotron modes were described by two different limits of the same equation.
Because many of the ion-cyclotron modes have wavelengths the order of or greater
than the ion gyroradius, it is important to study this problem using the full integral
equation rather than limits thereof. By solving the full integral equation, one would be

able to elucidate the problem more completely than has been done before.

Once we demonstrate that waves could be generated near the oxygen gyrofre-
quency in a multispecies plasma and understand the characteristics of such waves, we
could then calculate the heating of oxygen which results through wave-particle interac-
tion. We believe that a heating rate based upon quasilinear theory would be adequate
to explain how energy is transferred between waves and particles. In this manner, we
could determine whether sheared electric fields in the ionosphere contribute ion

preheating in the topside ionosphere.
F. Summary

In summary, there are a number of new and exciting directions which can be
explored in light of this present work. The questions surrounding the physical
interpretation of the absorption process may be resolved if we incorporate thermal
effects into the analysis. Moreover, at lower altitudes, these results can be improved if
we incorporate realistic ionospheric boundary conditions into the model. Finally, there

are a number of other possible sources for the auroral turbulence which can and should
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be studied in greater detail particularly with regard to the initial energization of oxy-

gen.
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APPENDIX A

TUNNELING FOR A LARGE “GAP”

I. Approximation of a Large Gap

The differential equation

¥'+MY¥ =0 (A.1)
where
R
™% 7
= (A.2)
o
2 2

determines wave propagation in a cold plasma. Near the oxygen gyrofrequency, it is
reasonable expand the functions r and / in a Laurent series. The functon, r, then

takes the form
r=rotriz+coc (A.3)
and the funiction, [, which exhibits a pole near the gyroresonance is of the form
I =1 27 gt yz4 - - (A.4)

The upper component, , of equation (A.1) then satisfies the equation

ey — (k2 1 )Ry Hrl =<H2(r +1))y2er ‘ey+elr "y = 0 (A.5)
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In light of the WKB approximation, the last two terms are asymptotically small and
need not be considered in the asymptotic regime. The last two terms are also well
behaved near the resonance where they remain small. Near the resonance, the
differential equation is dominated by the behavior of /. A consideration of dominant
balance yields the four linearly independent solutions. The first two terms balance to

give
”r l—l
ey +—y” =0 (A.6)
¥4

The solutions to this equation are Hankel functions and contain the characteristics of
the decaying exponentials in the ‘‘gap’ region while exhibiting sinusoidal behavior

below the resonance. That is
w” = az2H (U (2¥uz WBz V2H {PVpz ) (A7)

where p = [/e?, and y is obtained by quadrature. These two solations represent the
jon-cyclotron branch near the origin in that this branch is “‘cut-off’’ above the reso-
nance but propagates below which is the asymptotic behavior that the Hankel functions
and the integrals of the Hankel function exhibit. The dominant balance of the second

and third terms yields a second differential equation
e Hr g=X2)y = 0 (A.8)

which provide the other two linearly independent solutions

\II - eif (ro—x"/2)z /e (A.9)
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These waves approximate the downcoming magnetosonic branch near the origin.
Indeed, this is the first term in the WKB expansion for the magnetosonic branch near
the origin. The behavior of the lower component, ¢, may be determined from the

upper component of equation (A.1)
2 ,
¢=—§(82\v’ Hr—x42)y) (A.10)

Near the origin the leading behavior of ¢ is dominated by the behavior of the Hankel
function solutions. If we substitute the solutions obtained for y into the above equa-
tion, we find that the magnetosonic like solutions are of first order in z vanishing at
the origin. The leading behavior of ¢ is then dominated by the Hankel functions H D

and H {2 and their integrals which are well behaved.

The asymptotic form of the Hankel function solutions is such that they describe
the ion-cyclotron wave. In the limit of a large gap, the amplitude of the decaying
exponential in the gap is vanishingly small. The further requirement requirement that
no upgoing ion-cyclotron wave be found below the resonance (consistent with the
boundary conditions for our solutions) specifies that the coefficients of the Hankel
function solutions vanish. Because the other two solutions also vanish at the origin
(they are of order z) we find that the energy loss A which is proportional to q>¢* l, =0

must also vanish.

In the following sections, we will assume that as in chapter 5, the differential

equation has the solutions
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e 3; - e:ti (n,2—B,logz2)/e

@2 = ptilnz—B-logz/2ye (A.11)

where the factors ny and By have been defined in chapter 5. Along the negative real

axis the solution is of the form
y=A0;+BO+CO+D O/} (A.12)

The solution undergoes a Stokes phenomena so that the solution found on the positive
real axis is of the form

v = A O +B-AS)OHC -AS ~BS 3)©

(A.i3)
+(D -AS 4~BS s~CS )®}

--We- may -then proceed-to-calculate the appropriate- Stokes-constants- for-the case-of 2 - .

large energy gap using the information that A =0 if the ion cyclotron wave is not
found below the coupling region. In the following sections we will make use of the

conserved quantity
I =ityy" +90" -y y-0"9) (A.14)
In the asymptotic regime along the negative real axis, the quantity J is of the form
flARe ™ ir B 2™ —f_IC12e™—f ID %™ (A.15)
while along the positive real axis, the solutions are of the form

f A P+f _IB+S A P—f _IC+S,A+5 4B 1>~

(A.16
fD+S,A+SsB+S¢C 12 )

where the constants f, are factors which relate the lower and upper components,
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and ¢, of the differential equation (A.1)

fi= ni[1+[%(ni2—r+lc2/2)]2} (A.17)
and
Ny = 7Py (A.18)

is related to the change of the argument of the logarithm. In all subsequent sections,
we shall assume that the factor 1, is very large corresponding to a large ‘“‘gap.”’ This

being the case, we shail assume that J is constant along the real axis.

1. Incident Magnetescnic Wave

For an incident magnetosonic wave, we may determine the coefficients from four

initial conditions. The boundary conditions for dewngoing magnetosonic waves are
A=0,B=1,C=0,D=0 (A.19)

For which we find

ffAS3P=F IS5 Arg (z)=0
J= .o Arg (1) (A.20)

The ratios of these terms correspond to the coefficients. Thus

f+ |2

Tyus =€ 7, Rys =183 , Cfs = }—IS5 (A.21)

In order to determine the actual values of the Stokes constants we must consider three
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other initial conditions.

A=0,B=0,C=1,D=0

for which
J = ~f —f IS6l? Arg (z)=0
- —f_e™ Arg(z)=r
A=0,B=1,C=-S3 ,D=0
for which
J f-"4f-153|2" +|SS'SB'5'6l2 Arg(z)=0
T feTv—f IS, 1%e™ Arg(z)=n
and
A=0,B=8¢ ,C=Ss,D=0
for which

J =

FISg2—f _1S5=858 6141 IS5 PISE2  arg(2)=0
f_ISGIZe_“‘—f_ISspen“ Arg z)=n

183

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

We may equate the coefficients on the positive and negative real axis in each case in

which case we obtain four equations for four unknowns. Then after substantial alge-

bra, we determine
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f-
Sgl? = ==(e™-1
o =g ey

1552 = L2 e 1) (A.28)
f+
15412 = (e -1)?
so that
Tys =€ ™ , Rys =(1-e™? , CRs =e™(1-e™™) (A.29)

IIL Incident Ion-Cyclotron Wave

For the case of an incident ion-cyclotron wave, substantial more work is

required. The boundary conditions for downgoing magnetosonic waves are
A=1,B=8 ,C=0,D=0 (A.30)

for which we find

;- f ISo#8183Pf 1S #8185 Arg(2)=0 (A3D)
- f_Is,1%e™ Arg(z)=n '
where it is to be noted that we have ignored the term with the factor e™™ along the

negative real axis in that it is exponentially small. We may then identify the

coefficients to be the ratios of the downgoing fluxes to the incident flux

f- _ f-
Cl% = 7:'5'1'28 - s CIIE' =‘f—+—

1S,+8,5512 , Ric = 15,485,852 (A32)

It is possible to determine a relationship between the remaining Stokes constants, 1541,
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IS, |, and 184! from three initial conditions
A=1,8=0,C=-$,,D=0 (A.33)

for which we find

f o 18 2=4f 1S, P~f 1S,-8586*  Arg(2)=0

J = _f IS 2™ Arg(z)=nt (A.34)
A=S¢ ,B=0,C=8,,D=0 (A.35)

for which we find
F S\ 2F 1811218 g2=F _1S ;=S58 61%-4f IS JPIS61*  Arg(z)=0 A6
J = —f_|S4|Zen‘ Arg (z)=n (A.36)

and

A=1,B=0,C=0,D=0 (A.37)

for which we find
{ ++f_lSll2—f_|S2|2— 18417 Arg(z)=0 (A38)

J = 0 Arg(z)=m

Equating the fluxes on both sides of the real axis, it is possible to determine the rela-

tionships
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15,12 = —i—*l(e“~—1)ls4l2

1§,1? = ;{-i(e"-ls4l2—1)

In order to make further progress, let us consider the case
A=1 , B=S1 s C=S2+SIS3 N D=0
for which we find

fof P Arg(2)=0

J =
oIS Pe™—f _IS,45,5412%™ Arg(2)=

186

(A.39)

(A.40)

(A.41)

where we have defined % = S4+SS5HS,+5153). To extract the value of X, we may

consider the case with D =% and the preceding initial conditions with A=1, B=§,

and C=S,+S5,S3. Because @ is maximally subdominant in the lower half plane we

may, in fact, determine the value of the solution at Argz = —x. The coefficient of the

maximally subdominant solution must remain unchanged in the absence of any of the

more dominant solutions so that we may determine

-

I+ Arg (z)=0

fe™ Arg (z)=—x

7= e v r s, 1%e™™ Arg(z)=n
.._f _|S2+S 1S3 |2e n_—f+ ixlzen*

(A.42)

where we have explicitly kept the dependence of M,. Moreover, we realize that for

this situation A rather than vanishing takes a large value. For the case of non-zero A
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the conservation law yields

A= f(e™=1) = £ (1—e "+ ly PeM 1S (1S 248155 Pe™ IS ™)

187

(A.43)

In the limit of large 7,, we realize that the Stokes constants which appear in the equa-

tion are finite so that
|2 =1
Then, we determine from equation (A.41) that
1S ,+8 5512 = 15,127

Finally, let us consider the two boundary conditions

A=Ss ,B=-S,,C=0,D=0

for which we find

F S 5124f 18 4818512 15,8 5838 412
J = 2,-M-
f_|S4I €

and

Arg (z)=0
Arg(z)=n

A=S; ,B=-S,,C=0,D=0

for which we find

£S5 24f _1S+8 18 312F 15,8 583841

J -
F_IS,12e™

Arg (z)=0
Arg(z)=n

(A.44)

(A.45)

(A.46)

(AAT)

(A.48)

(A.49)
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These two equations may be combined to yield an equation relating 15,1, 1S,4l, 1S51,
IS5), 1S,+5,55l, and IS,+S,Ssl. The coefficients 1S3l and ISs| are known. The
coefficients 1S,l, and 1§,+S,S;| may be eliminated in favor of IS,l. Then the above
equation along with the physical equation (A.30) is sufficient to specify the

coefficients. We find that

IS,12= 15,12 = f—“‘-’—(e“-—l)
f-
f (A.50)
S 45,8512 = }—ie“"-(1~e‘“-)
|S4+S 155'2 = e_zn'
The coefficients may be immediately determined from equation (A.32)
Ch=1-e™ , R =", Cf =eM(1-eT) (A51)

The physical interpretation of these results is discussed in chapter 3.
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ADJUSTMENT OF STOKES MULTIPLIERS

L. Integral Equation

We consider the system of differential equations

ezv'+(r—§w+§¢ =0
(B.1)

2 2
2. rr K X
£ +(] —— —w =0
LA Gl et
Under the assumption that the reduced Stix functions take the well approximated form

r=k%, 1=kXl-alz)

we may cast the solutions into the form of an integral equation. Taking the Fourier

transform of the equations (B.1), we find

- 2 . 2.
- 2k2w+(k,2—“7>w+§¢ =0 (B.2)
and
_ W2 - K2- -
—82k2¢+(k,2~—-2—)¢+—2—w = —ikj*a [ § dk (B.3)

where we have defined the Fourier transform of a function, f, to be f. We have

assumed that the inverse transform
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_[F ik
f= 2‘: fe®dk (B.4)

is taken along a contour, C, which is either a closed contour or a contour for which

the integrand vanishes at the endpoints.

The first equation (B.2) implies an algebraic relationship between vy and 6,

namely
Y= LS ¢ (B.5)
2k 2—(k 2~K2/2)) |
whereas the second equation (B.3) is a first order differential equation
k,2(k,2-x%2)
A g (B.6)
dk k+n )k—n Yk4n2)k~n2)

for the function [ = _[ 17) dk, and the functions nf are defined in (7.95). The first order

differential equation for / is trivially solved by quadrature. From the derivative of [

we find that
°- 3 (B.7)
2(k+n2)1+iﬂ+(k_n£ )1—fB+(k+n9)1+iﬂ,(k_n-(-))1..,‘ﬂ_ .
where Py is defined in (7.98). The solution ¢ then takes the form
2 eikz
o0=—|dk - : : . B8
2 G an gty B

and the contour is such that the integrand vanishes at the endpoints.
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II. Relation of Asymptotic Behavior to Stokes Adjustment

Asymptotically, the branch points, i-nj?, which appear in the integrand of equa-
tion (B.8) are related to the four WKB solutions. That is, the asymptotic expansion of
a contour which encircles one of the branch pnints yields one of the WKB solutions
which behaves as exp(+inz). The asymptotic expansion of the integral is found for a

particular value of z by deforming the contour of integration to follow the path of
steepest descent which has endpoints along the ray argk = -;t——argz ensuring maximum

convergence at large lk|. Paths which encircle each individual branch point

correspond to one of the four linearly indeperdent solutions. The paths of steepest

descent descend from a branch point k, along the line, arg(k—ko)z—g——argz. The

0 +inlz

branch points, tn}, correspond to the waves e 0,

whereas the branch points, tn

.0
correspond to the waves e, If all four branch points are real then the asymptotic

expansion of the integral corresponds to upgoing (downgoing) waves. On the other
hand, if two of the branch points are imaginary, the branch points, » 9. correspond to
upward (downward) propagating waves along the real axis, and the imaginary branch

points, +n?, correspond to exponentially decaying (growing) solutions along the posi-

tive real axis.

In order to continue a solution from one value of argz to another, the path must
be continuously deformed such that endpoints remain along the path of sicepest des-
cent. Frem the topology of the branch points we find that as a contour is continuously

deformed across the line which connects two branch points an additional contribution
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to the asymptotic behavior of the more subdominant solution is obtained as in the
example discussed in equation (7.119). To see this behavior, consider the the illustra-
tion of Figures B.1 and B.2. In this figure we indicate the manner in which a contour
is deformed as the argument of z passes across a Stokes line. The contour to the left
of the negative imaginary axis encircles only the upper, n 9, branch point descending
the valley to the left of the branch point —n®. The branch cut for the branch point n?

is taken to lie between the two segments of the contour so that the path remains on the

same Riemann sheet. The two segments of the contour differ in that along the ascend-

~T4 n,.

m(k)
!
+

-

Re(k)

Figure B.1. A solution asymptolic 10 exp(infz) is obtained from a comtour which encircles
the pole nd. For-m<arg z< _31/2, the path of steepest descents follows a valley between
the branch points —n and -n? following the ray arg (k - n0) = n/2 — arg z as shown. The
branch cut has been chosen 0 be along the path of steepest descent.



Appendix B 193

-n, n,

Re(k)

Figure B.2. As the solution is continued across arg z = &, the path of sieepest descent now
lies in a valley between the branch points —n0 and n?. However, the path must remain on
the same Riemann sheet so that the branch point, -n2, is now encircled as well. The path
of stecpest descent from —n 0 follows the ray arg (k + n) = ©/2 — arg z parallel w the path
of steepest descent from 20 as shown, Thus as the solution is continued across the ray, arg
z = 1, the coefficient of the subdominant solution changes discontinuously by a factor pro-
portional to the amplitude of the dominant solution with branch point n.

ing and descending segments arg (k-n2) differs by 2n. As argz passes through the
Stokes line, the valley of steepest descent lies to the right of the imaginary axis and
thus to the right of the branch point —n O rather than on the left as before. However,
the topology of the branch points with respect to the contour must not change as the
contour is continuously deformed. That is, the contours must remain on the same
Riemann sheet, i.e. the branch cut cannot be deformed through the branch point at

-n®. Hence the contour wraps around the lower branch point at —n% and descends
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along the path of steepest descent from there. Then in addition to the asymptotic
expansion about the branch point at n?, we find that upon traversing the Stokes line
the coefficient of the subdominant solution undergoes an abrupt change proportional to
the coefficient of the maximally dominant solution. Likewise, along the anti-Stokes
lines, similar adjustments occur between tne two dominant solutions and two subdom-
0

inant solutions. Similar arguments apply to the case with four real values for *n

although in that case, all adjustmems occur along the Stokes lines.

For the case of four real values of n all branch points lie on the real axis.
Then the lines which connect any two solutions are argk =nm. The discontinuous
adjustments in the Stokes constants occur along the lines argz =(n+1/2)r, that is,

along the Stokes lines.

On the other hand, for the case of two purely real and two purely imaginary
roots, the discontinuous adjustments occur along the real axis (arg k =nx) for interac-
tion between +nf and -n?0 or along the imaginary axis (argk = (n+1/2)m) for interac-
0

tion between +1°0 and —n%. The mixed interactions between in 9 and tn? occur

along the lines argk =+tan"!(n_/n Hnmn. The Stokes adjustment between the asymp-
totic solutions represented by n0 and —n2 should be added to the subdominant solu-
tion along the lines argz =(n+1/2)n i.c. along the Stokes line for which the WKB
solution is maximally subdominant. Similarly, the adjustment between the asymptotic
solutions represented by n¢ and -n0 should be added along the lines argz =nn. That

is, along the Stokes lines where one of the WKB solutions is maximaily subdominant.

The discontinuous adjustment between the asymptotic solutions represented by *n,
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and *n_ occurs along the rays argk =+tan"!(n%/n8)+nm. That is, along the lines
nOx=tn® (z = x+iy) which we have already identified as the anti-Stokes lines in

equation (7.118).

In all cases adjustments between the maximally dominant solution and the maxi-
maliy subdominant solution occurs along the Stokes lines. Along the anti-Stokes lines,
one of the solutions asymptotic to sxp (xn?) and one of the solutions asymptotic to
exp(#n?) are equally dominant while the other two are equally subdominant. Along
these lines a Stokes adjustment occurs between the two dominant solutions and the two
subdominant solutions where the adjustment mixes the two modes represented by n?
and n°%. The Stokes adjustments therefore only occur within or on the border of the

region of maximum subdominance.

In Figure B.3 we illustrate the Stokes adjustment to a solution continued from
the positive real axis to the negative real axis. The solution may be expressed in terms
of the WKB solutions, @fz‘, from equation (7.97). Along the positive real axis the
solution is

Y =AO+BO+COY+D O] , Region IV (B.9)

as the anti-Stokes line is crossed into Region I, the coefficients of the two equally

subdominant solutions, ®} and ©* change discontinuously so that in Region III
v =A'@/+BO+C'O+D’'G; , Region IV (B.10)

with
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Im(z)

Re(z)

Figure B.3. Sectors of the complex plane. The WKB solutions are continued from Region
IV along the positive real axis to region I along the negative real axis. Stokes lines are in-

dicated in solid while the anti-Stokes lines are dashed.

Across the stokes line, the WKB solution,

D ’=D +BV2
C’'=C+AS 1

+

196

(B.11)

+. is maximally subdominant and its

coefficient changes abruptly by an amount proportional to coefficient of the maximally

dominant solution, ®,. In region II, the solution becomes

with

v =AO +BO-+C’'QX+D "6} , Region Il

D” =D’+AV,

(B.12)

(B.13)
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Across the next anti-Stokes line, the two subdominant solutions again undergo a
discontinuous change so that in Region I the solution is of the form

Y =A@ +BO+C'®*+D B} , Regionl (B.14)
with

D" =D"+C'V4 =D+AV +BV+C V4
A’=A+BT,

(B.15)

At this point, we can rote that if we were to continue the solution into the rest of the
plane, the coefficient of ®; would not change. Hence, the Stokes phenomena may be
simply represented by a discontinuous adjustment in the coefficient of the maximally
subdominant solution in the region of maximum subdominance. Outside the region of

maximal subdominance, the coefficient of that WKB solution rem2ins unaltered.
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