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Abstract

Treatment of meniscal pathology through removal of the meniscus (meniscectomy)
is one of the most common intra-articular procedures. Clinical studies have demon-
strated a link between meniscectomy and degenerative joint disease. Quantitative
knowledge of meniscal mechanics is crucial to understanding the mechanisms of menis-
cal lesions, the effects of meniscectomy, and the pathogenesis of osteoarthritis in the
knee. Modeling of the meniscus is needed to estimate variables which cannot be
measured experimentally, such as subchondral bone stresses.

A two-dimensional axisymmetric model of the meniscus has been developed by
Brown [12]. The goal of this project was to develop a three-dimensional, non-
axisymmetric finite element model of the meniscus to further investigate the role
of the meniscus in load bearing. A three-dimensional model allows the use of more
realistic meniscal geometry, and significantly expands the meniscal functions which
can be examined. The results of the two- and three-dimensional models were com-
pared in order to evaluate the efficacy of modeling the meniscus as an axisymmetric
structure. The parameters used for the comparison were contact pressure in the tibial
articular cartilage, overall joint stiffness, meniscal displacement, meniscal circumfer-
ential strain, and subchondral bone stress.

The three-dimensional meniscus model was verified by comparing the model pre-
dictions for peak articular cartilage contact pressures, meniscal circumferential strains
and meniscal radial displacements to experimental values from the literature. The
three-dimensional meniscus model predicitons demonstrated better agreement with
experiment than the axisymmetric meniscus model. Although axisymmetric mod-
eling is effective in providing a qualitative description of meniscal mechanics, non-
axisymmetric modeling is necessary for quantitative description of the role of the
meniscus in knee joint load transmission.

Thesis Supervisor: Derek R. Rowell
Title: Professor
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Chapter 1

Introduction

The knee is a six degree-of-freedom synovial joint whose complex design fulfills the
competing requirements of stability, range of motion, and load transmission. The
articular surfaces of the femur and tibia are highly incongruous and therefore require
several passive and active elements to maintain joint stability. In addition to main-
taining a high degree of mobility, the knee is capable of transmitting large dynamic
loads. The relatively simple act of walking requires the knee to transmit loads of 3-5
times body weight (Harrington,1976[27]). Impact loads sustained by the knee during
more strenuous and sudden movements can be significantly higher. Thus it is evi-
dent that the knee joint has a tremendous capacity for transmitting loads as well as
maintaining mobility and stability. The meniscus is an extremely important structure
which contributes to the knee’s ability to perform these competing functions. The
menisci are highly mobile, crescent-shaped wedges of fibrocartilage located between
the femur and tibia. Geometrically, the menisci serve to increase the congruence

between the femoral and tibial articular surfaces (MacConaill,1932[41]).

1.1 Meniscal Pathology and Treatment

The delicate biomechanical balance within the knee joint makes the meniscus a com-
mon site for difficulties. Meniscal pathology can take several forms, and can be

brought on by acute injury or can develop over time due to degeneration. Appel re-
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ported that meniscal lesions were the most common intra-articular injuries, and that
meniscectomy was therefore the most common intra-articular procedure (1970[4]).
This report reflected the trend in the past of complete removal of damaged menisci.
A common belief was that the damaged meniscus caused erosion of the articular car-
tilage, which could be halted or even reversed by meniscectomy (1959[29]). Since
no weight-bearing role had ever been ascribed to the meniscus, total meniscectomy
appeared to be a relatively benign procedure. The lack of belief in any load bearing
meniscal function lead to the belief that “a normally functioning knee usually results
when one or both menisci are removed at operation {1941{11]).” The belief of the

time is also described in a 1932 paper by MacConaill [41]:

... it 1s a well-known fact the the removal of the internal meniscus of the
knee is an operation not necessarily followed by discomfort of the patient in
the use of the limb. There exists, then, the paradox that structures clearly
of great importance for the normal working of a part can be removed (at

least to the extent of one-half) without the production of ill effects.

1.2 Clinical Effects of Meniscectomy

The first investigator to lend support to the idea of a load-bearing role for the meniscus
was Fairbank in 1948. Fairbank’s radiological study of knees following meniscectomy
led him to conclude that meniscectomy was not a benign procedure, and that the
menisci play an integral part in weight-bearing in the knee joint. He also suggested
that meniscectomy could predispose the knee to degenerative changes [21].

- Since the time of Fairbank, several investigators have examined the possible link
between meniscectomy, joint degeneration, and osteoarthritis. There have been a
number of clinical, long-term follow-ups of meniscectomized knees which have shown a
correlation between meniscectomy and degenerative joint disease [30, 63, 4, 32, 2, 34].
Although there is still debate concerning the precise mechanisms of joint degeneration
following meniscectomy, it is now well-established that meniscectomy is not a benign

procedure as was once thought. Clinically, there is a fair amount of agreement that
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meniscectomy should be approached conservatively, and that the meniscus should be

spared or repaired whenever possible (2, 17, 30, 32]|.

1.3 The Meniscus as a Load-Bearing Structure

Clinical studies showing the correlation between meniscectomy and degeneration in
the knee joint have been accompanied by several investigations attempting to quan-
tify the biomechanical effects of meniscal removal. A large proportion of these studies
focused on quantifying the role of the meniscus as a weight bearing and load trans-
mitting structure. Techniques used to evaluate the load transmission characteristics
of the meniscus include contact stress and area studies of cadaver knees and load-
deflection tests during joint compression. For example, a study performed by Seedhom
et al. (1979[56, 58]) examined the amount of load carried by the menisci in cadaver
knees at different degrees of flexion, and used a staining technique to estimate contact
areas. The authors concluded that knees with no meniscus have significantly reduced
contact areas and increased stress, and calculated that the menisci support 70% to
99% of the total joint load.

Numerous other in vitro studies have been performed in an attempt to further
understand and quantify the effects of meniscectomy. Although studies such as these
provide valuable information, they are limited. There are few relevant parameters
which can be directly measured without interfering with the normal function of the
joint. The stress values that can be calculated based on contact area estimates are
only average stresses; they give little information regarding the distribution of stress.
Such studies can give estimates of the percentage of load carried by the meniscus;
however, they do not further our understanding of the mechanisms by which the
meniscus transmits loads.

The essential first step in truly understanding the effects of meniscectomy is a
better understanding of how the meniscus transmits loads. Modeling of the meniscus
under normal conditions is needed in order to evaluate important quantities which

cannot be directly measured, such as subchondral bone stresses and internal meniscal
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stresses. An effective model is also extremely helpful in understanding the mechanisms
of meniscal tearing and joint degeneration. Once established, a model which uses
fundamental engineering and physiological principles to understand meniscal behavior
can be verified by experiments. This approach is significantly more effective than
performing invasive experiments first and then working backwards to describe general
behavior. In addition, once an effective model has been developed, parameters such

as geometry, material properties, and loading conditions can be varied with relative

€ease,

1.4 Previous Modeling of the Meniscus

Brown (1990[12]) has developed a two-dimensional, axisymmetric finite element model
of the meniscus using the approach described above. The model includes articular
cartilage layers on the femoral and tibial surfaces, as well as anisotropic ineniscal
material properties. The philosophy behind the work was to derive as much mean-
ingful information as possible from a relatively simple model. The model succeeds
in providing significant insight into the mechanisms of meniscal load-bearing while
maintaining relatively simple axisymmetric geometry and loading.

The next logical step in the modeling process is to expand the meniscus model
into three dimensions. A three-dimensional model with non-axisymmetric meniscal
geometry can be used to evaluate the two-dimensional model, and to determine if
the two-dimensional model is sufficient to describe the general behavior of the system
under simple 'oading conditions. This is an extremely important issue, given that the
cost of three-dimensional analysis is significantly higher than two-dimensional anal-
ysis. In addition to allowing for more realistic geometry, a three-dimensional model
can be used to study a much greater range of proposed meniscal functions. While an
axisymmetric model can be used primarily for the study of meniscal weight bearing
under axial loading, a three-dimensional model can provide insight into many areas
including the meniscus’s role in joint stability, the mechanisms of meniscal tearing,

as well as normal load bearing under both axial and non-axial loading conditions.
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1.5 Research Objectives

The meniscus is clearly an important functional structure within the human knee
joint. Its proposed functions are numerous, as are the types of meniscal pathologies.
The role of the meniscus in prevention of joint degeneration has been well established
clinically; however, the precise mechanisms by which the meniscus transmits loads
and “protects” underlying bone are not sufficiently quantified. Modeling of knee
joint contact with the meniscus is needed in order to elucidate quantitatively the
mechanisms of meniscal load-bearing. Knowledge of these mechanisms will provide
insight into normal meniscal function, the causes and effects of meniscal pathology,
and biomechanical changes that occur as a result of meniscal surgery.

Based on these observations, the goal of this project is to develop a three dimen-
sional finite element model of the human knee meniscus, including non-axisymmetric
meniscal geometry. Development of such a model will serve a dual purpose. First,
the model will provide an accessible environment for the quantitative study of menis-
cal mechanics. A realistic, working model can calculate subchondral bone stresses
and internal meniscal stresses, which are extremely difficult to measure experimen-
tally. Secondly, the model will be used to evaluate the efficacy of two-dimensional
axisymmetric modeling in describing general meniscal behavier. This will be ac-
complished by comparing results from Brown’s axisymmetric model to results of the
three-dimensional model and using the same material properties, geometry, and loa;i-
ing conditions. Going from two to three dimensions, then, will provide both a means
of verification of two-dimensional modeling and a significant expansion of the type of

meniscal functions that can be examined.
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Chapter 2

Review of Meniscal Functions

2.1 Meniscectomy and Joint Degeneration

Since the first suggestion of the possible link between meniscectomy and degenerative
change by Fairbank (1948[21]), there have been several clinical studies of meniscec-
tomized knees performed in an attempt to quantify such a connection. Several of
these studies are long-term follow-ups of meniscectomy patients. Jackson (1968[30])
performed a radiological review of 577 meniscectomized knees at a minimum of five
yearsv post-operatively, and concluded that a significantly higher proportion of menis-
cectomized knees underwent degenerative changes than did normal knees. The qual-
itative nature of the study made it difficult to establish the causes of degeneration,
but the author suggests that the degenerative changes were a direct result of loss of
the meniscus.

Some investigators have attempted to evaluate the effect of numerous factors
on joint degeneration following meniscectomy (Tapper & Hoover, 1969[63]; Appel,
1970{4); Johnson et al, 1974[32]; Allen et al., 1984]2]). These factors include age
at operation, sex, varus or valgus deformity, and type of lesion, just to name a few.
These studies were retrospective in nature, making it difficult to account for how
symptoms change over time. Jorgensen (1987[34]) attempted to relate clinical find-
ings to time elapsed since operation in athletes. He found that degenerative changes

increased in amount and severity with time since operation. The differences in ex-
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perimental methods and the subjéctiveness of symptoms and clinical findings makes
it very difficult to draw many consistent conclusions from these studies. All of these
studies, however, came to the same general conclusion that degeneration is more likely
to oceur in a meniscectomized knee than in a normal knee. The difficulty in inter-
preting these observational studies is that they only establish a correlation between
meniscectomy and knee degeneration. Modeling of the meniscus is needed to clarify

a pathophysiologic etiology of knee degeneration following meniscectomy.

2.2 The Meniscus as a Load-Bearing Structure

Investigators have used several experimental methods in an attempt to quantify the
load-bearing role of the meniscus. One of these techniques is measurement of con-
tact areas. Contact area measurements provide an indirect measure of average stress
within the joint. The techniques for measuring contact area include the use of poly-
methylmethacrylate castings (Walker & Hajek, 1972(68)), radiographic contrast tech-
niques (Kettelkamp & Jacobs, 1972(35]; Maquet, 1976[42]), articular cartilage staining
techniques (Krause et al., 1976(36]; Seedhom and Hargreaves, 1979(58]), silicone rub-
ber castings (Fukubayashi ef al., 1980[24]; Kurosawa et al, 1980[38]), and pressure
sensitive films (Baratz et al., 1986[9]; Riegger et al., 1987[52]). It is very difficult to
compare the quantitative results of these experiments because of differences in exper-
imental procedures, in particular the loading conditions and specimen preparation.
It is also difficult to extrapolate the results to what occurs in vivo because of the
non-physiologic nature of the loading constraints. The only consistent qualitative
conclusion that can be drawn from these studies is that the contact area of the knee
joint decreases following meniscectomy.

Several investigators have also attempted to measure the contact pressure within
the joint directly. Walker and Erkman (1975[69]) used a miniaturized pressure trans-
ducer to measure contact pressure. Ahmed and Burke (1983[1]) used a micro inden-
tation transducer to determine the pressure distribution and calculate the percentage

of joint load transmitted by the meniscus. Pressure sensitive films have been used
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by Fukubayashi and Kurosawa (1980[24]), Baratz et al. (1986(9]), and Riegger et
al. (1987[52]). Brown and Shaw (1984[13]) used miniature piezoresistive pressure
transducers set in the femoral articular cartilage to measure contact pressure. Due
to the nature of the piezoresistive transducers used by Brown and Shaw, low fre-
quency dynamic measurements were possible. This significantly reduced the error
due to poroelastic effects of articular cartilage. Brown and Shaw’s technique is an
improvement over pressure-sensitive films due to the ability to measure pressure in-
stantaneously; however, the method provides very low spatial resolution. As with the
contact area studies described above, the invasiveness of the experiments casts doubt
on the applicability of the results to in vivo load bearing.

Another experimental technique used to evaluate the load-bearing role of the
meniscus is the use of load deflection measurements with and without the meniscus
(Seedhom et al., 1974[57], 197956, 58]; Shrive, 1574[60]; Walker & Erkman, 1975[69];
Krause et al., 1976[36]; Kurosawa et al., 1980[38]; Newman et al, 1989[46]). These
studies provide estimates of the percentage of joint load carried by the meniscus.
The values reported range from 40% to 100%. The experiments are difficult to com-
pare quantitatively because of the high variability of the loading rates and kinematic
constraints imposed during loading. There is general agreement, however, that the
menisci play an important load-bearing role in the knee joint.

Other investigators have used meniscal load-deflection and strain measurements
to characterize meniscal behavior. Krause et al. (1976[36]) used a hump-backed dis-
placement transducer to measure the circumferential displacement of the meniscus,
and calculated circumferential strain. Bylski et al. (1986{16]) measured the motion
and deformation of intact menisci using lead markers cemented to the superior sur-
faée of the menisci. These investigators found that meniscal deformation is highly
dependent on the integrity of the peripheral attachments. Thompson (1990[64]) used
magnetic resonance imaging to determine meniscal kinematics. Brown (1990(12]) used
x-ray stereophotogrammetry to measure circumferential strains and displacements of
the meniscus under axial joint loading.

Several investigators have performed photoelastic studies of planar knee modeis
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to study stress patterns (Chand ef al, 1976[18]; Maquet, 1976[42]; Nishizaki et al.,
1981[47);Radin et al., 1984[49]). These models give qualitative assessments of stress
patterns but are limited by their two-dimensional nature.

As can be seen from the investigations described above, accurate quantification of
the load-bearing role of the meniscus is extremely difficult to achieve experimentally.
All of the experiments described above were highly invasive, and the preparations
often did not undergo physiological loading and constraints. In many of the exper-
iments, the joints were disarticulated during preparation. This interferes with soft
tissue and ligamentous constraints. In addition, the use of cadaverous tissue loses the
effect of muscular co-contraction, which can have a significant effect on the magni-
tude and direction of joint loads. The placement of transducers and pressure-sensitive
films within the joint space interferes significantly with the natural lubrication and
functioning of the joint. Another factor which can cause problem is the loading rate
used. The time-dependent behavior of articular cartilage makes the loading rate and
time between loading and taking of measurements extremely important issues. The
issue of cartilage time-dependency was often omitted from these studies. All of these
experimental difficulties emphasize the need to model the meniscus in order to learn

more about meniscal mechanics without disrupting the joint integrity experimentally.

2.3 The Role of the Meniscus in Joint Stability

Besides helping to quantify the role of the meniscus in knee joint load transmission,
a three-dimensional model of the meniscus can aid in understanding the role of the
meniscus in joint stability. This 1s a subject of significant debate, which several
investigators have examined experimentally. Several different techniques have been
used to assess joint stability. Investigators have used force versus displacement re-
sponses for anterior/posterior motion of the tibia (Markolf et al., 1981[43]; Levy et
al., 1982[40], 1989(39]; Shoemaker & Markolf, 1986[59), Askew et al., 1987[6]), force
versus displacement responses for medial/latéral motion of the tibia (Markolf et al.,

1981[43]), rotatory laxity tests (Markolf et al., 1981[43]; Wang & Walker, 1974[70);
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Seale ef al., 1981[54]; Askew et al., 1987[6]), and varus/valgus laxity tests (Seale et
al., 1981[54]; Askew et al., 1987[6]). Several of these studies focused on the role of
the meniscus in stabilization of knees from which the anterior cruciate ligament has
been removed (Levy et al., 1982(40, 39]; Askew et al., 1987(6]; Seale et al., 1981[54];
Shoemaker and Markolf, 1986[59]). All of the experiments used different constraints
and loading techniques, and significantly different applied joint loads. This makes
direct comparison of results extremely difficult. The widely varying results of these
studies emphasize the need for a model in which parameters can be easily adjusted to
a particular physiological situation (for example, a meniscal lesion or meniscectomy).
This would allow for consistent, direct comparison of stability measurements from
different physiological situations. The use of a model is also helpful in that it avoids

the invasiveness of experiments, and also the inconsistencies associated with cadaver

knee geometry.
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Chapter 3

Finite Element Modeling of the

Meniscus

3.1 The Finite Element Method

Given that the objective of this research is to develop a model of knee joint contact
that will elucidate the load-bearing role of the meniscus, it is clear that the major
emphasis of the model should be to predict pressures, stresses, and strains within
the joint. It is useful, therefore, to approach the questions involved in modeling
as questions in solid mechanics. The finite element method is extremely useful in
examining systems from a solid mechanical point of view and is thus the method of

choice for the model developed here. A general definition of the finite element method

1s as follows:

The FEM (finite element method) is a computer-aided mathematical tech-
nique for obtaining approximate numerical solutions to the abstract equa-
tions of calculus that predict the response of physical systems subjected

to external influences (Burnett, 1987[15]).

The method is thus directly applicable to the problem of developing a model to predict

stresses and strains within the knee joint.
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The analysis of a system using the finite element technique begins with division
of the continuous system into subdivisions called elements. The geometry of each
element is defined by a set of nodal points. The finite element discretization reduces
the set of differential equations which describe the continuous physical system into a

set of algebraic equations of the form
KU=R

where K is the structural stiffiness matrix, U is the vector of nodal point displace-
ments, and R is the vector of applied loads. The stifiness matrix is formed by lumping
the material properties of each element at the nodal points. The boundary conditions
on the system take the form of prescribed displacements.

The solution to the finite element system of equations is the vector U of nodal
point displacements. The strains within elements are calculated directly from the
displacements, and the stresses are calculated from the strains based on the appro-
priate constitutive relations. This is a highly simplified explanation of the solution
of the finite element equations, particularly given the fact that the contact surfaces
in the meniscus model render the model non-linear. For a thorough treatment of the

non-linear solution scheme, the reader is rferred to Bathe (1982(10]).

3.2 Practical Modeling Considerations

A useful and practical approach to finite element modeling is to begin with the sim-
plest model that can provide meaningful information. To that end, Brown (1990[12))
has developed a two-dimensional axisymmetric finite element model of the meniscus.
The axisymmetric model showed that the meniscus transmits a significant portion of
the joint load when loaded axially. The next logical step in the modeling process,
then, is to create a model which facilitates the study of meniscal mechanics under
non-axisymmetric loading conditions and with more realistic geometry. Since this

situation cannot be idealized in two dimensions, it is necessary to model the joint
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contact problem in three dimencions.

The expansion from a two-dimensional to a three-dimensional finite element model
involves a tremendous increase in the number of nodes and elements needed to ad-
equately represent both the geometry and the state of stress within the system. A
standard procedure is to begin with a relatively coarse mesh to qualitatively assess
the state of stress within the system, and then to refine the mesh by shrinking the
element size where necessary, thus increasing the number of nodes. In general three-
dimensional analysis, a standard node contains three translational degrees of freedom.
A mesh refinement which merely doubles the number of nodes in the model results
in an eightfold increase in the number of degrees of freedom and thus the size of the
stiffness matrix. Assuming the size of the stiffness matrix is roughly proportional
to the computing time and temporary storage required to solve the equations of the
medel, it is not difficult to imagine the solution of a three-dimensional model becom-
ing infeasible without tremendous amounts of expensive supercomputing time. The
expansion to a three-dimensional model brings with it the competing requirements of
computing cost and adequate mesh refinement which are significantly less important
issues in two-dimensional analysis. Given these practical constraints, great care was
taken in the discretization stage to provide sufficient mesh refinement in high-stress
areas, and less refinement in low stress areas.

The fact that the problem to be examined is by natnre a contact problem also
significantly contributes to the cost of solution. One reason is that the contact regions
require a relatively high degree of mesh refinement in order to adequately represent
the state of stress. Secondly, the presence of contact surfaces renders the model
non-linear, since the boundary conditions change as higher loads are applied and the
contact areas change. Solution of the non-linear contact probiem therefore requires a
step-by-step, iterative scheme which is considerably more costly than the solution of

a linear model.
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3.3 Model Accuracy and Verification

The term ‘adequate mesh refinement’ has been used above to describe an important
requirement of the finite element model to be developed. What exactly is meant by
‘adequate mesh refinement’, and how does one know when it has been achieved? Even
more importantly, how does one verify that the finite element results obtained are
meaningful to the problem being studied? It is not sufficient to merely accept numer-
ical results without some form of verification and recognition of potential sources of
error.

From a theoretical standpoint, finite element modeling involves the mechanical
idealization of an actual physical problem (represented by the differential equations
describing the system), followed by the finite element solution of the equations (Bathe,
1982[10}). An in-depth discussion of convergence of finite element results is not ap-
propriate here; it suffices to state that the finite element solution will converge to
the exact solution of the mechanical idealization as the mesh is refined provided the
requirements of completeness and compatibility are met. Completeness of a finite ele-
ment is the ability of the element to represent rigid body displacements and constant
strain states. This requirement is inherently satisfied by the element formulation
implemented within the finite element software used. Compatibility requires that
displacements across element boundaries are continuous, and is achieved by using ad-
jacent elements which employ the same displacement interpolation functions (Bathe,
1982[10]).

Given that the model meets the completeness and compatibility requirements, it
remains to determine how much mesh refinement is sufficient to obtain meaningful
information from the model. Compatibility requires that displacements across ele-
ment boundaries are continuous. This requirement, however, does not guarantee that
stresses will be continuous between elements since stresses are calculated from the
derivatives of displacement (Sussman & Bathe, 1986[62]). Therefore, the continuity
of stre#ses across element boundaries is a useful indicator of mesh refinement suffi-

ciency and will be helpful in determining optimal mesh characteristics for the finite
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element model.

Analytical solutions can be an extremely useful tool in the verification of finite
element results. Of course, most problems cannot be solved using purely analytical
methods (otherwise the FEM solution would not be necessary ); their solutions must
be approximated numerically. 1t is at times possible, however, to simplifiy the problem
at hand in such a way that an analytical solution can be used as a basis for comparison
to finite element results. Convergence of finite element results of the simplified system
to the analytical solution can then be used as a basis for extrapolating the convergence

of a more complicated system which cannot be solved analytically.

3.4 Hertz Theory of Elastic Contact

The system that will be used for verification of mesh characteristics consists of an
elastic sphere in contact with a planar surface. This general class of problems is known
as Hertzian contact. Although highly simplified, the Hertzian contact problem can
provide significant insight into how much mesh refinement is needed to model knee
joint contact. The problem of & sphere in contact with a flat surface is a reasonable
simplification of unicondylar contact without the meniscus under axial loading. The
analytical solution for Hertzian contact problems is based on the following assump-

tions:

1. The bodies in contact are infinite elastic half-spaces.
2. The surfaces are frictionless, continuous, and non-conforming.

3. The strains are small.

4. The radius of the contact area is much smaller than the radius of curvature of

the sphere (a << R).

It is important to bear these assumptions in mind when comparing the analytical

solution to the finite element results.

The analytical solution for stresses at the contact of two elastic bodies was first

presented by Hertz in 1881. The following are the results for the case of an elastic
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sphere in contact with an elastic semi-infinite half-plane. The equations presented
here were taken from Johnson (1985[31]) and Timoshenko and Goodier (1970{65]), to
which the reader is referred for a more complete derivation.

A downward compressive Joad P is applied to the sphere, and a hemispherical

pressure distribution is created in both bodies near the area of contact:

2
(2) () -5 o
where pg is the peak pressure and a is the radius of the contact area. Solving for the

peak pressure, we find that it is equal to 1.5 times the uniform pressure:

3 P 3

Po = 571'—(12- = Epum'form (3.2)

In the case where one of the bodies is planar and the material constants are identical,

the contact pressure distribution is

o= mfi () = 2 ()

The contact radius is given by

o= \’/3(—12;—”—)1931 (3.4)

where E is Young’'s modulus, v is Poisson’s ratio, and R; is the radius of the spherical
surface. The contact pressure distribution from the finite element solution will be
compared to the analytical expression for contact pressure.

The stiffness of the system can be determined by considering the mutual approach

of two points far from the contact region as a function of applied load. This distance

is given by

_ 3 9(1 - Vz)zﬁ
o= \/ i R (3.5)

The load-displacement curve of the finite element model will be compared to this

expression.
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The vertical displacement of the planar surface as a function of radial distance »

from the original contact point is given by

(47) (%) 2 - %) r<a (3.6)
(152) (&) [(207 = ) sin=) (2) + oV =] v >a

2a

The stresses along the axis of symmetry in the planar solid through the original

contact point will also be compared to the finite element results. The analytical

expressions are

0)}+%‘1(1+-§)—1 (3.7)

-2 -1
G2 = —Po (1 + ‘a—z) (3.8)

Orr = 0g9 = —po(l +v) [1 - (i) tan™! (
a.

n |

Since these are principal stresses, the maximum shear stress is given by
1
Tmaxr = 5 lo'zz - Urr' (3-9)

These analytical expressions, along with interelement pressure band continuity, will

serve as criteria for finite element mesh optimization and verification of results.

3.5 Previous Finite Element Models

Sauren et al. (1984[53]) were the first investigators to use the finite element method
to study meniscal mechanics. The axisymmetric model employed isotropic meniscal
material properties, and no articular cartilage. The authors used the model to perform
a parametric analysis of bone and meniscal material properties. Sauren’s mesh is
shown in Figure 3-1. The mesh is composed of triangular elements, and the meniscus
and femur are fully ccnforming. Brown (1990{12]) developed a model using Sauren’s
geometry for comparison purposes and found that the sharp corner at the inner edge
of the meniscus caused stress concentrations which are non-physiological, since the

normal meniscus has a tapered inner edge.
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Figure 3-1: Finite element mesh used by Sauren et al. {53}

Sauren ef al. concluded that the meniscus transmits a significant portion of the
total joint load, with the inner half of the meniscus accounting for most of the meniscal
load transmission: the meniscus serves to considerably reduce tibiofemoral contact
stresses; and the axial joint stiffness and radial meniscal displacement are non-linear
functions of applied axial load. The conclusion of the parametric study was that
the combination of meniscal and bone material properties are more of a factor in
meniscal load bearing than the meniscal dimensions. The authors caution against
the extrapolation of numerical results to reality due to the highly simplified geometry
and material properties used. This warning is reasonable since the model contained
no articular cartilage, producing unrealistic hone on hone contact.

Hefzy et al. (1987(28]) developed an axisymmetric model of the meniscus using the
same geometry as Sauren. The model included direct hone-on-hone contact, as well
as isotropic meniscal material properties. The tmesh was generated using triangular
elements which were highly distoried near the contact surface, which is clearly an
area of high stress. Figure 3-2 shows the finite element mesh used by Hefzy et al. In

addition, the point load applied to the top of the femoral section does not accurately
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Figure 3-2: Finite element mesh used by Hefzy et al. The mesh contains highly
distorted elements in the tibiofemoral and meniscotibial contact regions [28).

FEMORAL DISPLACEMENT
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Figure 3-3: Results of Hefzy’s finite element mode!l for displacement of the top femoral
surface [28].

represent physiological loading conditions. (The results for the displacewment of the
top femoral surface are precisely what one would expect from the application of a point
load along the axis of symmetry, see Figure 3-3). It is doubtful that the application of
the load in this manner caused contact conditions that are physiologically meaningful,
casting doubt on the reported resylts.

Aspden (1985(8)) developed an axisymmetric finite element model of the meniscus
to investigate the response of the meniscus to a compressive load. The meniscus is

modeled as a wedge-shaped toroid resting on a compliant base, which tepresents



the articular cartilage of the tibial plateau (see Figure 3-4). Aspden presents only
qualitative results due to the absence of experimental values for meniscal material
properties. The meniscus was modeled as anisotropic, so the three elastic parameters
(Young’s modulus, shear modulus, and Poisson’s ratio) were varied independently.
The results predict development of positive circumferential strain throughout the
entire meniscal cross-section. In addition, the author qualitatively correlates regions
of radial and shear strain with common types of meniscal tears.

Spilker et al. (1990[61]) developed an axisymmetric finite element model of the
meniscus using a biphasic model for soft hydrated tissue. The authors compared
results from biphasic and isotropic material models. The meniscal geometry is trian-
gular in cross section, and the proximal surface of the meniscus is sub Jected to a time-
dependent parabolic displacement (See Figure 3-5) No physiological basis is given for
the particular prescribed displacement that was used. The isotropic model predicts
positive circumferential stresses at the peripheral edge, which become negative as
the radius decreases. This result casts doubt on the prescribed displacements and
geometry used since it conflicts with all current experimental and modeling results.
Spilker’s anisotropic model predicts positive hoop stresses throughout the meniscus,
but these results remain suspect as well due to the unrealistic displacement conditions
and geometry.

Tissakht et al. {1989]67], 1990[66]) performed a thrue-dimensional finite element
study of the meniscus in order to examine the effect of the transverse and medial col-
lateral ligaments on meniscal response, as well as the effect of axial rotation combined
with compressive load. The meniscus is modeled as a linear transversely isotropic ma-
terial covered by an isotropic membrane (see Figure 3-6). A compressive load was
dist.ributed over the menisci and tibial plateau based on experimental measurements
from Ahmed and Burke (1983[1]). These pressure results were obtained with a .285
mm thick micro-indentation transducer placed within the knee joint space. Given
the invasiveness of the technique used to obtain the pressure results, the loading con-
ditions used for the finite element model are somewhat suspect. In addition to the

compressive Joad, the tibia was subject to 20 degrees of external axial rotation. The
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Figure 3-4: Aspden’s finite element model. (a) The axisymmetric meniscus resting
on a compliant base. (b) Cross-section of the meniscus showing the finite element

mesh [8].
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Figure 3-5: Cross-section of Spilker’s axisymmetric meniscus model showing pre-
scribed parabolic displacement {61].
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Figure 3-6: Three-dimensional knee model developed by Tissakht ¢f al. [67, 66] (a)
Finite element mesh. (b) Cross-section of meniscal mesh showing isotropic membrane. -



model predicts a significant increase in tensile meniscal stresses when axial rotation
is applied with compressive load. The study also predicts that the medial collateral
ligament has a considerable effect on motion of the medial meniscus.

A striking similarity among all of the finite element studies described above is
the lack of any discussion of errol" analysis. 'Most of the meshes seem quite coarse,
and no mention is made of efforts to establish mesh refinement criteria. Errors can
be estimated in several ways, for example using convergence analysis or interelement
stress continuity. It is not clear from the reported results of these studies that either
of these methods would reveal that a sufficiently refined mesh was used. The finite
element method will always yield a solution, given that the model converges numeri-
cally. This solution, however, is only as valid as the assumptions that went into the
mesh development. There is always some amount of error in a finite element solution;
without some estimate of this error, the results are uninterpretable. Confidence in the

mesh characteristics must be established in order to have confidence in the results.

3.6 Anisotropic Axisymmetric Meniscus Model

Brown (1990{12]) has developed a two-dimensional axisymmetric finite element model
of the meniscus which uses anisotropic material properties. The menriscus was mod-
eled as a wedge-shaped toroid, confroming with the femur along the outer circumfer-
ence and tapering to a thin inner edge. The model included articular cartilage on the
femoral and tibial surfaces, which produced an order of magnitude reduction in peak
contact stresses when compared to the model without articular cartilage. The model
also predicted that radial meniscal displacement is an order of magnitude lower when
anisotropic meniscal material properties arec employed. Brown used x-ray stereopho-
togrammetry to measure meniscal circumferential strains and found some correlation
between the experimental results and model predictions. Brown also used analytical
solutions and interelement stress continuity to establish sufficient mesh refinement.
Brown’s model predicted that the intact meniscus transmits from 70% to 100% of the

total joint load. Brown’s axisymmetric mesh is shown in Figure 3-7.
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Figure 3-7: Brown’s axisymmetric finite element model of the meniscus, including
articular cartilage and anisotropic meniscal material properties [12].



The three-dimensional model developed in this project uses the same geometry,
material properties and loading conditions as Brown’s model. This will allow quan-
titative comparison between axisymmetric and non-axisymmetric model predictions.
The numerical results from the three-dimensional model will be compared to Brown’s
resuits to determine if the two-dimensional axisymmetric model is sufficient for de-

scribing meniscal behavior under simple loading conditions.
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Chapter 4

Preliminary Model Development

4.1 Overview of Model Development

Research objectives and constraints surrounding the model have been established,
and a method of verifying finite element results has been identified. The next step in
the process, then, is the actual finite element model development. This development
will occur in step-by-step fashion, beginning with simple meshes and culminating
in a three-dimensional model of knee joint contact with non-axisymmetric meniscal

geometry. The specific steps to be taken are as follows:

1. Develop a simple, two-dimensional model of Hertzian contact which adequately

reproduces the analytical contact pressure distribution with a minimum number

of elements.

2. Use the results of the two-dimensional models to establish criteria for the de-

velopment of a three-dimensional model of Hertzian contact.

3. Use these criteria to develop 2 manageable three-dimensional model of Hertzian
contact which will later be appropriate for modeling the knee joint contact

problem including the meniscus.

4. Perform an in-depth comparison of Hertzian contact analytical expressions to

finite element results of the initial three-dimensional mesh; refine the mesh until

36



satisfactory results are obtained.
5. Add axisymmetric meniscal geometry and articular cartilage to the model.

6. Proceed with the addition of non-axisymmetric meniscal geometry to the model.

4.2 Computational Environment

All analyses in this project were performed using the ADINA (Automatic Dynamic
Incremental Nonlinear Analysis) finite element program, version 6.0, ADINA R &
D, Inc.,, Watertown, MA. ADINA-IN and ADINA-PLOT were used for pre- and
post-processing, respectively. All two-dimensional modeling and preliminary three-
dimensional modeling was performed using a Silicon Graphics Personal Iris 4D20
workstation with 32 Megabytes of RAM and approximately 1 Gigabyte of storage.
The final three-dimensional modeling was performed on a CRAY Y-MP at the MIT

Supercomputing Facility.

4.3 Two-Dimensional Modeling

Several two-dimensional axisymmetric meshes of the Hertzian contact problem were
developed in order to gain quick insight into how much mesh refinement will be
necessary in three dimensions. Once a satisfactory axisymmetric mesh is obtained,
the result can be expanded into three dimensions.

The radius of curvature of the elastic sphere was chosen to be 30 mm, and contact
was considered frictionless. Each body had a medulus of elasticity of 1000 MPa,
and Poisson’s ratio of 0.3. The geometry and material properties were chosen to
be consistent with previous finite element models for comparison purposes [12]. A
concentrated downward load was applied to the top node along the axis of symmetry,
and all nodes along the top surface were constrained to undergo the same vertical
displacement as the Joaded node. This constraint is in keeping with the fact that the

analytical solution for Hertzian contact assumes the bodies are semi-infinite; therefore
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points far from the contact region should have the same vertical displacements. The
models were loaded to levels of 50, 100, 200, and 1000 N, and each load step was
divided by 27 to account for modeling only a one radian wedge of the structure. The
bottom node along the axis of symmetry was fixed in space, and the remainder of
the bottom row of nodes had only the y (horizontal) degree of freedom free to allow
radial expansion. A highly compliant truss connected the sphere to ground in order

to prevent rigid body motion in the unloaded configuration.

4.3.1 Two-Dimensional Meshes

Several two-dimensional meshes were analyzed. The first was a simple, relatively
coarse mesh of 4-node linear elements shown in Figure 4-1. The second mesh contained
the same number of elements as the first, but utilized 9-node parabolic elements; see
Figure 4-2. Model 3 contained the same number of 9-node elements as model two,
but with a finer mesh near the contact area and a coarser mesh in low stress areas.
This mesh is shown in Figure 4.3.

As modeling progressed and meshes became firer, it became more efficient to
model only the region immediately around the contact area. Based on analytical
predictions of contact radius, all subsequent meshes modeled only 4 millimeters out
from the axis of symmetry, as compared to 15 millimeters modeled in the first three
meshes. This scaling down of the modelled region will become particularly important
when the model is expanded into three dimensions. Model 4, shown in Figure 4-4
used a fine mesh of 9-node elements with 8 elements along the 4 millimeter radius.
Since each element face contains three nodes, each element along the line of contact
represents two contact segments (two-dimensional contact segments are defined by
only two nodes). Therefore, model 4 contains four contact segments per millimeter
of contact radius. Model 5 (Figure 4-5) was half as fine as model fouf, employing two

contact segments per millimeter of contact radius.
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Figure 4-1: Original mesh for axisymmetric model 1, using four-node linear elements.
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Figure 4-2: Original mesh for axisymmetric model 2, using nine-node parabolic ele-
ments.
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Figure 4-3: Original mesh for axisymmetric model 3; uses nine-node elements with
more refined mesh near the contact region.
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Figure 4-4: Original mesh for axisymmetric model 4; includes four contact segments
per millimeter measured radially outward from the contact point.
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Figure 4-5: Original mesh for axisymmetric model 5; includes two contact segments
per millimeter measured radially outward from the contact point.
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4.3.2 Discussion of Two-Dimensional Results

Both pressure band plots and contact pressure distributions were used to evaluate

the two-dimensional models. In order to evaluate stress continuity between elements,

the hydrostatic pressure is used:

= 2l 2 0 (1)

This is a scalar quantity and thus does not vary with coordinate transformations
(Sussman & Bathe, 1986[62]).

The pressure band plot for Model 1 in Figure 4-6 shows significant interelement
pressure discontinuities, indicating that the mesh does not contain sufficient degrees
of freedom near the contact area to accurately represent the state of stress. It is
also clear from the graph of contact pressure that the contact surface did not contain
enough result points to reproduce the correct contact pressure distribution.

The pressure band plot for Model 2 shows considerable improvement over Model 1.
The stress bands near the contact region are smooth and distinguishable. The contact
pressure distribution, however, is not reproduced very accurately (see Figure 4-7).

Model 3 shows a very similar pressure band pattern to Model 2; see Figure 4-8.
In addition, Model 3 shows a significant improvement over all previous meshes in
representing the expected contact pressure distribution, particularly at the highest
loading level.

Mesh 4 shows the best interelement pressure continuity of all of the two dimen-
sional models (Figure 4-9). It also can best represent the analytical contact pressure
distribution at all loading levels.

The pressure band plot for Model 5 lacks some of the smoothness of Model 4, but
the bands are nevertheless distinguishable (Figure 4-10). Model 5 does an adequate

job of reproducing the proper contact stress distribution.
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4.3.3 Conclusions of Two-Dimensional Analysis

The purpose of the two-dimensional analysis was to establish roughly the requirements
for a three-dimensional model of Hertzian contact, given the constraints discussed

earlier. The following conclusions were drawn based on the two-dimensional analysis:

1. Elements which employ parabolic displacement interpolation functions are more

effective than linear elements in producing continuous pressure bands.

2. The contact area should contain a minimum of approximately 2 contact seg-
ments per millimeter of contact area radius in order to adequately reproduce

the proper contact stress distribution.

3. The contact pressure distribution is the more stringent of the {wo requirements.

4.3.4 Expansion into Three Dimensions

The most obvious way of expanding the Hertzian contact model into three dimensions
is to simply rotate the planar geometry about the axis of symmetry through 360 de-
grees. This approach, however, was not taken for several reasons. First, this method
would have resulted in degenerate elements at the point of contact, which is undesir-
able since this is the area of highest stress. Also, the element faces which comprise
the contact surfaces must employ linear interpolation functions, since higher order
contact segments are not permitted by the software used. Due to these constraints,
the contact region of the sphere was modelled as a block with a spherical bottom
surface. In order to achieve the refinement necessary for adequate contact pressure
results while retaining a manageable number of nodes, the elements were designed to
be significantly longer than they are wide. This seemingly disproportionate scaling,
however, is mitigated by using midnodes (i.e. parabolic interpolation functions) on

the vertical element faces.
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4.4 3-D Hertzian Contact Model

4.4.1 Mesh Design

The criteria for development of a three-dimensional Hertzian contact model have now
been established based on the aﬁéymmetrié analysis, model size reqairements, the

assumptions of Hertzian contact, and acceptable finite element practices. They are:

1. Near the contact region, use tall, thin elements which are linear along horizontal
faces and parabolic along vertical faces, in order to accurately reproduce the

contact pressure distribution with a minimum number of degrees of freedom.

2. Use a minimum of two contact segments per millimeter of contact radius to

produce an accurate contact pressure distribution.

3. Model 15 millimeters of material vertically from the original contact point so
that edge effects do not interfere with stresses near the contact region (Brown,

1990[12]).

4. Design the portion of the mesh which will eventually come in contact with the

meniscus to minimize overlap of nodes between the bone and meniscal surfaces.

Based on these criteria, several three-dimensional meshes were developed and
analyzed. The meshes were refined and adjusted until the goal of adequate mesh
refinement with minimum computational cost was achieved. Views of the final, un-
deformed mesh are shown in Figures 4-11 and 4-12. The area of the mesh near the
contact region contains tall, thin elements with midnodes on the vertical edges. Just
outside this area is a region of transitional elements. The outer portion of the mesh
was generated in a cylindrical coordinate system, to conform with the meniscal mesh
to be added later. Stabilizing trusses are present to prevent rigid body motions; the

trusses are highly compliant and therefore carry a negligible amount of load.
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Figure 4-11: Undeformed 3D Hertzian contact model, cut view. Note the stablhzmg
trusses used to prevent rigid body motion.
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4.4.2 Results of 3D Hertzian Contact Model

The final 3D Hertzian contact model was verified in depth using the analytical expres-
sions for Hertzian contact discussed in Section 3.4. The quantities used for evaluation
are radial and circumferential compressive stress, maximum shear stress, contact pres-
sure, axial compressive stress, overall stiffness, and vertical displacement of the planar
surface. Results of the finite element and analytical solutions for these quantities are
shown in Figures 4-13-4-15.

All of these quantities show good agreement with analytical results. Small offsets
that occur between the finite element and analytical solutions are due inpart to the
fact that the analytical solution assumes the contacting bodies are semi-infinite. This
is particularly evident near the rigid boundary conditions in the finite element model.
The finite element contact pressure distribution agrees well with analytical solution
except for a pressure spike in the transition region. This is probably due to the fact
that the transition elements are not as uniform as the central contact elements. The
distortion of the elements results in an artifact in the FEM contact solution algorithm.
When the meniscus is added to the mesh, however, the central contact region will
become smaller, and the contact stresses in the transitional zone will become much
less important than the contact stresses in the central and meniscal contact regions.

The use of pressure bands to evaluate the mesh is an intuitive process. The first
step is to define a fraction of the maximum stress which represents the highest toler-
able stress discontinuity. Pressure band plots are then produced using a bandwidth
equal to this fraction. If the pressure bands are distinguishable (i.e. can be fol-
lowed from one element to another), then the mesh is sufficiently refined. It is not
necessary that the pressure bands be totally smooth; in that case the mesh is prob-
ably overrefined (Sussman & Bathe, 1986[62]). This idea is particularly important
in three-dimensional analysis where the number of degrees of freedom is extremely
large. Figures 4-16 and 4-17 are pressure band plots of the contact region, showing
sufficiently distinguishable pressure bands. The bandwidth chosen is approximately
6% of the maximum stress. Given all of the modeling assumptions made regarding

geometry, material properties, and loading conditions, this is clearly a sufficient crite-
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rion for examining interelement stress continuity. In addition, the small improvement
that could be obtained does not justify the large cost that would be involved in further
refining the mesh.

A three-dimensional mesh appropriate for modeling the meniscus has now been
established. The next step is to add the meniscus and articular cartilage to the model,

which is the subject of the next chapter.
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FPESS

Figure 4-17: Pressure band plot of contact region for 3D Hertzian contact model, top
view. Pressure bands are distinguishable.
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Chapter 5

3D Meniscus Model Development

5.1 Overview

The previous chapter described the finite element mesh development for the femoral
and tibial sections of the model. The subject of this chapter is the addition of both
the meniscus and articular cartilage layers to complete the model. It is appropriate
here to include discussions of meniscal anatomy, as well as material properties of
the meniscus and articular cartilage. These discussions are not exhaustive; they

are intended only to provide sufficient information for understanding the modeling

assumptions.

5.2 Meniscal Anatomy

The menisci are essentially two semilunar fibrocartilages which are interposed between
the distal femur and proximal tibia. The thick, convex peripheral edges of the medial
and lateral menisci are attached to the joint capsule. The inside border of each
meniscus tapers out to a thin, free edge. The proximal surfaces of the menisci are
concave, thus improving joint congruence, and the distal surfaces are relatively flat
(Gray, 1973[26]).

The medial meniscus is semicircular in shape, is wide posteriorly and narrower

anteriorly (Gray,1973(26];Johnson, 1978{33]). The posterior horn of the medial menis-
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Figure 5-1: Superior view of the proximal tibia. showing medial and lateral menisci.

cus attaches to the intercondylar eminence of the tihia. hetween the attachment of
the lateral meniscus and the posterior cruciate ligament (Gray, 1973[26]). Anteri-
orlv. the medial meniscus attaches to the front edge of the tibial articular surface
(Johnson.1978!33"). The semimembranosus muscle inserts into the posterior portion.
and the deep medial collateral ligament. or medial capsular ligament. is also attached
to the medial meniscus (Johnson, 197R8{33] (see Figure 5-1).

In general. the lateral meniscus has a more circular shape than the medial. and
has a more constant width when viewed from above. In addition. the lateral menicus
covers a significantly larger portion of the tibial articular surface than does the me-
dial meniscus (Gray, 1973[26]). The anterior horn of the lateral meniscus is attached
anterior to the intercondylar eminence of the tibia and blends with the anterior cru-
ciate ligament (Gray. 1973{26]). The posterior horn inserts into the posterior part
of the intercondylar eminence. anterior to the medial meniscal attachment (Gray.
1973{261; Johnson, 1978[33!). The ligament of Wrisherg, or posterior meniscofemoral
ligament. originates near the posterior attachment and inserts into the medial femoral
condyle (Gray, 1973{26]). In some specimens. the ligament of Humphrey. or anterior
meniscofemoral ligament. arises from the posterior horn and attaches into the me-

dial femoral condyle as well (Gray, 1973{26]; Johnson. 1978[33}). The posterior part
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of the lateral meniscus contains a groove for the popliteus tendon (Gray, 1973(26];

Johnson, 1978[33]), and the popliteus muscle inserts into the posterior horn (Johnson,

1978(33)).

5.3 Material Modéling

5.3.1 Meniscus

The meniscus is basically a composite material, reinforced by collagen fibers. The
orientation of collagen fibers in the core of the meniscus is primarily circumferential,
as shown by Bullough et al (1970{14]). The circumferentially oriented fibers allow
the meniscus to develop significant hoop stresses when the knee is axially loaded. In
addition to the circumferential fibers, there are a small number of radially oriented
collagen fibers which tend to resist splitting of the tissue longitudinally. The central
region of the meniscus is surrounded by a surface layer containing randomly oriented
collagen fibers, which lie parallel to the adjacent articular surfaces. This layer is
approximately 100 um thick (Arnoczky, 1987[5]). The collagen fiber orientations in
different planes of the meniscus are shown in Figure 5-2.

Given the distribution of collagen fibers, the meniscus is clearly an anisotropic
material. There is a wide range of experimentally obtained values for the tensile,
compressive, and shear moduli of the meniscus. This wide range is due to both differ-
ences in specimen orientation and the region from which specimens were obtained. In
addition, meniscal material properties are frequency-dependent due to the poroelastic
nature of the meniscus. For a complete review of the relevant experimental work, the
reader is referred to Brown (1990{12]).

In his axisymmetric finite element model of the meniscus, Brown (1990[12]) mod-
eled the meniscus as a transversely isotropic material, with a higher modulus in the
circumferential direction than in the plane orthogonal to the circumferential direction.
In addition to being anisotropic, the meniscus is a bimodular material, having dif-

ferent elastic moduli in tension and compression. Therefore, the material properties
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Figure 5-2: Cut view of the meniscus showing different collagen fiber orientations.
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chosen for the model must be based on the assumed state of stress in the meniscus.
The assumed stress state under axial loading is compressive in the radial and axial
directions, and tensile in the circumferential direction. All of the assumptions regard-
ing material properties are consistent with Brown’s, to allow for direct comparison

between the axisymmetric and non-axisymmetric meniscus models.

5.3.2 Articular Cartilage

Articular cartilage is a poroelastic material which exhibits complex behavior and is
thus a subject of significant controversy in the literature. At high loading rates, such
as those which occur during walking and running, however, it is reasonable to model
the articular cartilage as an isotropic, elastic solid. The results for biphasic and clastic
models of cartilage differ by negligible amounts at high loading rates, as demonstrated

by Eberhardt et al (1990{20]). For the purposes of this model, articular cartilage is

modeled as a linear elastic solid.

5.4 Summary of Modeling Assumptions

5.4.1 Femoral and Tibial Geometry

The articular surface of the femora! condyle is modeled as a sphere with a radius
of curvature of 30 mm. This is a reasonable radius of curvature given the value
reported by Kurosawa et al. (1985(37]) for the average frontal plane radius of the
medial condyle at full extension (21.4 mm), and the value reported by Mensch et al.
(1975[44]) for the average anterior medial condylar radius in the saggital plane (37.5
mm). The tibial plateau is modeled as a planar surface. Both the femur and tibia
are axisymmetric, with radial widths of 20 mm. The proximal femoral surface and
the distal tibjal surfaces are 15 mm from the point of initial contact. This distance
is sufficient to prevent the surface boundary conditions from affecting the state of
stress near the contact region. Both the femoral and tibial surfaces are covered with

layers of articular cartilage 2 mm thick. This value for articular cartilage thickness is
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consistent with that used by other investigators (Askew, 1978[7]; Galbraith, 1989[25]).

5.4.2 Meniscal Geometry

The first three-dimensional meniscus model to be analyzed employs axisymmetric
meniscal geometry. The results from this model can then be used for direct com-
parison to the non-axisymmetric model, If the two-dimensional mesh results were
used for direct comparison, it would be impossible to isolate differences in results due
to discretization from actual differences in meniscal load bearing. This issue arises
from the fact that the three-dimensional mesh must be somewhat coarser than the
two-dimensional axisymmetric model in order for the solution to be computationally
realizable. The three-dimensional axisymmetric mesh uses the same geometry and
material properties as Brown’s model, and virtually eliminates discretization effects
from the comparison between axisymmetric and non-axisymmetric models.

The axisymmetric meniscus is a wedge-shaped toroid, with inner and outer radii of
6 mm and 18 mm respectively. The width of the meniscus is therefore 12 mm. Noble
(1977[48]) reported the average width of the medial meniscus to be 13 mm. The
outer proximal surface of the meniscus has a radius of curvature of 30 mm, chosen to
provide congruence between the cuter half of the meniscus and the femoral condyle.
The inner proximal surface tapers to a thin edge. The distal surface of the meniscus

is flat and fully conforming with the tibial plateau.

5.4.3 Material Properties

The range of reported values for the subchondral bone of the distal femur and proximal
tibia is extremely broad. Brown [12] modeled the bone of the distal femur as an
isotropic, elastic material with a Young’s modulus of 1000 MPa and a Poisson’s ratio
of 0.3. Ducheyne et al. (1977[19]) reported a range of 60 MPA to 3000 MPa for
the elastic modulus of the femur. The tibial subchondral bone was assumed to be
isotropic as well, with an elastic modulus of 500 MPa and a Poisson’s ratio of 0.3.

These are the values used for the three-dimensional meniscus model.

66



The meniscus is modeled as a transversely isotropic material, and thus requires five
independent parameters to completely define the stiffness tensor. Brown (1990[12])
modeled the meniscus as transversely isotropic in the plane orthogonal to the circum-
ferential direction, with a compressive modulus of 15 MPa, which was measured in
unconfined compression tests. The circumferential elastic modulus is taken to be 120
MPa. This value was obtained by averaging values presented by Fithian ( 1989(23]) for
different regions of the medial meniscus. The shear moduli are all equal to 0.2 MPa;
these values are taken from Anderson (1990(3]). Little experimental data is available
for Poisson’s ratios; Brown [12] defined the values as Ve: = 0.5 and v9 = v = 1
to satisfy the thermodynamic requirements for a transversely isotropic material. The
reader is referred to Brown [12] for a complete discussion of the thermodynamic re-
quirements.

The layers of articular cartilage on the femur and tibia are assumed to be isotropic
and elastic, with Young’s modulus 12 MPa and Poisson’s ratio 0.45. These values are
taken from Askew and Mow (1978[7]) and Galbraith and Bryant (1989[25]). At high

loading rates, articular cartilage is nearly incompressible (Brown, 1990[12]).

5.4.4 Applied Loading

Brown (1990[12]) chose to model the entire knee (femur, tibia, and meniscus) and
apply force loading conditions, in lieu of modeling simply the tibia and meniscus and
using experimentally determined contact pressures to define the meniscal loading.
There are several potential errors present in the experimental determination of femoral
contact pressures; modeling of the femur itself results in a more ‘natural’ distribution
of contact pressures on the meniscus. A resultant load of 700 N (approximately one
times body weight) is placed on the femur. Investigators report values from 3.0 to
4.5 BW for the maximum joint contact force which occurs during walking (Merrison,
1968[45]; Harrington, 1976(27); Fijan, 1990[22]). Since the finite element model is
unicondylar, a load of approximately 1 BW is reasonable with regard to experimental
observations and keeping the number of load steps and therefore the computational

cost to a minimum.
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5.5 3D Axisymmetric Meniscus Model

The finite element mesh for the 3D axisymmetric meniscus model is shown in Figure 5-
3. Figure 5-4 shows a cross-sectional view of the meniscus alone. The elements
which comprise the meniscal mesh employ linear interpolation functions on horizontal
surfacés, and parabolic interpolation functions on vertical surfaces. This type of
element was chosen because the finite element code used requires linear interpolation
functions on all contact surfaces. All nodes on the distal surface of the tibia are
constrained in the vertical direction, but are free to expand radially. The loading is
applied to the center node on the proximal surface of the femur, and all other nodes
on this surface are constrained to have the same vertical displacement as the loaded
node. This effectively distributes the applied load across the top surface. Soft trusses
fix the femur and meniscus to ground in order to prevent the possibility of rigid body
motion. (The finite element solution requires that the model contain no rigid body
modes, and does not include contact conditions as constraints.) The trusses are highly
compliant and thus carry a negligible portion of the load. The axisymmetric meniscus
is not constrained on the tibial plateau in any way. There is a truss placed between
the subchondral bone of the femur and tibia at the point of initial contact; without
this truss, there is a gross amount of overlap in the relatively soft articular cartilage
during the first load step and the solution aborts. The truss provides additional
stiffness until a sufficient number of contact elements are engaged; it is then removed

at an intermediate load step and does not affect the final results.

5.6 Results of the 3D Axisymmetric Model

It is important at this point to address the issue of discretization differences between
9D and 3D axisymmetric models. As stated previously, the 3D model is necessarily
less refined than the 2D model for reasons relating to computational cost. The 2D
and 3D axisymmetric results are compared here in order to show the effect of this

discretization difference. These comparisons will help to establish what differences
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Figure 5-3: 3D axisymmetric meniscus model.
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Figure 5-4: Cross sectional view of axisymmetric meniscal mesh
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are significant when the axisymmetric and non-axisymmetric models are compared.
The parameters used for the comparison are contact pressure, tibial subchondral bone
stresses along radial and axial lines, vertical displacement of the top femoral surface
as a function of applied load, and radial displacement of the meniscus as a function
of applied load. Plots of these parameters are shown in Figures 5-5 through 5-9. In
addition, stress band plots of the meniscus and articular cartilage are presented in
order tc quantify the discretization error present in these areas.

The 2D and 3D axisymmetric modeis demonstrate considerable agreement. The
peak contact pressures predicted by the 2D and 3D models agree to within approxi-
mately 10%, and the distributions are very similar in the tibiofemoral and meniscotib-
ial contact regions (see Figure 5-5). The peak subchondral bone stresses predicted by
the two models agree to within approximately 5% (see Figures 5-6, 5-7). As shown
in Figure 5-8, the total joint stiffnesses also show similar predictions. For a given
displacement, the difference in load is less than 13%. The same is true for the radial
meniscal displacement comparison at loading levels of interest (Figure 5-9.

Figure 5-10 shows an eflective stress plot of a cross-section of the axisymmetric
meniscus. The bandwidth of the plot is approximately 7%. The bands are distin-
guishable throughout most of the elements. Some discontinuities are evident in the
triangular elements near the tapered edge; this is not surprising since these elements
are degenerate. (The use of degenerate triangular elements is necessary in order to
obtain the desired meniscal geometry.) Experience with two-dimensional axisymmet-
ric meniscus models shows that further refinement of the meniscal mesh yields only
small improvements in stress band continuity. The level of refinement shown here
was therefore deemed acceptable based on both desired accuracy and computational
cost considerations.

Figure 5-11 shows an effective stress plot of the tibial articular cartilage in the
peak stress region. The bandwidth of this plot is approximately 5%. The bands are
very distinguishable, giving confidence to the stress results predicted by the model in
this critical region.

Figure 5-12 shows a comparison between contact pressures in the tibial articular
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Figure 5-5: Contact pressure distributions in tibial articular cartilage at 1.5 BW.
Comparison between 2D and 3D axisymmetric models.
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Figure 5-6: Tibial subchondral bone stress along radial line at 1.5 BW. Comparison
of 2D and 3D axisymmetric models
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cartilage along radial lines 45 degrees apart. The results are highly correlated in the
important tibiofemoral and meniscotibial contact regions. This result indicates that

discretization artifacts have little effect on the 3D contact pressure predictions in the

critical regions.

5.7 Non-Axisymmetric Meniscus Model

The mesh design for the femoral and tibial components of the non-axisymmetric
meniscus model is identical to that for the axisymmetric model just described. To
create the non-axisymmetric meniscal geometry, one quarter of the circumference of
the axisymmetric meniscal mesh was removed, and each node in the two exposed cross
sections was attached to the tibial plateau via a truss element. Figure 5-13 shows
a proximal view of the meniscal mesh. The attachment node on the tibial plateau
has all of its translational degrees of freedom deleted. This geometry was chosen to
represent an ‘average’ meniscal shape. The width of the meniscus remains 12 mm
throughout. The thickness is greatest at the point furthest from the attachment.
The outer meniscus conforms with the femur through part of the circumference, and
tapers in thickness near the attachment point. Figure 5-14 contains a side view of
the meniscus, showing the tapered thickness. This tapering represents an appropriate
geometry, since an abrupt cutoff of the meniscus without tapering the thickness would
cause non-physiological stress concentrations in the cutoff region.

The stiffness of the attachment elements was chosen to provide physiological conti-
nuity between the body of the meniscus and the attachments. In a truly physiological
situation, there is no distinct cutoff between ‘meniscus’ and ‘attachments’. Rather,
there is a smooth, gradual transiticn from meniscus into the bone of the tibial plateau.
In order to besi model this smooth transition, the circumferential stiffness of the ax-
isymmetric meniscus model was calculated and used as a guide in determining the
resultant stiffness of the attachments in the non-axisymmetric model.

For an axial load of 1050 N, the average circumference of the axisymmetric menis-

cus increased by approximately 2 mm. This gives a circumferential stiffness of 525
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Figure 5-13: Proximal view of non-axisymmetric meniscal mesh.
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Figure 5-14: Non-axisymmetric meniscal mesh, showing thickness tapering.
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N/mm. The total stiffness of each attachment is approximately

where E is the elastic modulus, A is the total cross-sectional area of the attachment
(sum of the areas of the truss elements), and L is the average truss length. The values

of E and A were chosen so that the stiffness of each attachment was approximately

equal to 525 N/mm.
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Chapter 6

Results of the 3D Meniscus Model

There is a tremendous amount of information which can be extracted from a finite
elexhent model, particularly one with the level of complexity found in the three-
dimensional meniscus model. The results presented here are parameters which are
indicators of the role the meniscus plays in load-bearing in the knee joint. These

parameters are:
1. Contact pressures on the tibial articular cartilage,

2. Vertical displacement of the top femoral surface as a function of the applied

load (total joint stiffness),

w

. Radial displacement of the meniscus as a function of applied load,

4. Stresses in the tibial subchondral bone,

o

. Average circumferential strain in the meniscus, and
6. The percentage of load transmitted by the meniscus.

Results for the axisymmetric and non-axisymmetric meniscus models are presented
simultaneously for comparison purposes. Views of the deformed meshes are presented
as well. Quantitative results are presented here; a more in-depth discussion appears

in the next chapter.
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6.1 Contact Pressures

Figure 6-1 is a plot of contact pressures in the tibial articular cartilage along a radial
lines beginning from the point of original tibiofemoral contact. The non-axisymmetric
results are shown along three radial lines. One line is through the center of the
meniscus, far from the attachment point. The second line passes midway between
the center and the edge of the meniscus, and the third passes through the edge of
the meniscus. The three non-axisymmetric lines show very similar results in the peak
contact pressure region. The meniscotibial contact regions along the three lines from
the non-axisymmetric model also show similar trends in contact pressure distribu-
tion. The non-axisymmetric model shows significantly higher contact pressures in the
tibiofemoral contact region than the axisymmetric model. The peak stress predicted
by the axisymmetric model is 2.7 MPa, and the prediction of the non-axisymmetric
model is 4.7 MPa. The non-axisymmetric model also predicts somewhat lower contact

pressures in the outer meniscotibial contact region.

6.2 Total Joint Stiffness

Plots of vertical displacement of the top femoral surface as a function of applied joint
load are shown in Figure 6-2. These plots provide a measure of the total joint stiffness
in the two models. The axisymmetric model predicts less vertical displacement for
a given loading level (that is, a stiffer joint). This result has direct bearing on the
calculation of the percentage of load transmitted by the meniscus, which will be

discussed in more detail below.

6.3 Radial Meniscal Displacement

The radial displacement of the inner and outer edges of the meniscus as a function of
applied load are shown in Figures 6-3 and 6-4. The displacements are shown for the
nonaxisymmetric model at two points on the meniscus, located at the center of the

meniscus, and between the center of the meniscus and the attachments. The graph
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Figure 6-1: Contact pressure Jdistributions in tibial articular cartilage at 1 BW.
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clearly indicates a substantial difference in the movement of the meniscus on the tibial
plateau in the two cases. The non-axisymmetric meniscus experiences significantly
more radial displacement under axial loading. Figure 6-5 shows a proximal view of

the original and deformed meniscus in the non-axisymmetric medel.

6.4 Subchondral Bone Stresses

Figure 6-6 shows the von Mises eflective stress in the tibial subchondral bone along
a radial line from the point of initial tibiofemoral contact. The non-axisymmetric re-
sults are shown along three radial lines, which run parallel to those used to report the
tibial contact pressures. The three non-axisymmetric radial lines show consistent sub-
chondral bone stresses, particularly in the peak stress region. The non-axisymmetric
model predicts significantly higher subchondral bone stresses than the axisymmetric
model in the tibiofemoral and inner meniscotibial contact regions. Figure 6-7 shows
the subchondral bone stress along a vertical line just below the point of initial contact.
The non-axisymmetric model predicts significantly higher stresses along this line as

well.

8.5 Meniscal Circumferential Strains

The average circumferential strain in the meniscus is an effective indicator of the
load-bearing role of the meniscus. The average circumferential strain on the outer
edge of the meniscus predicted by the axisymmetric model is 2.0% strain. The non-
axisymmetric model predicts a value of 2.6% strain. Figure 6-8 shows the general
trend of circumferential strains through the thickness of the meniscus. The two

models both predict lower strain on the outer edge of the meniscus.
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Figure 6-6: Tibial subchondral bone von Mises stress along radial lines at 1 BW.
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BW.
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8.6 Percentage of Meniscal Load Transmission

Calculation of the percentage of load transmitted by the meniscus was accomplished
using the plot of displacement of the top femoral surface as a function of applied load
(see Figure 6-2). For a given displacement, the difference between the amount of load
carried by the full meniscus model and a model without the meniscus is the amount
of load carried by the meniscus. The values for the case without the meniscus were
obtained from the 2D axisymmetric model of the knee used by Brown (1990[12}).
Each curve was fit to a quadratic equation for purposes of this calculation. The fitted
curves are shown in Figure 6-9, along with the original data points. Figure 6-10
shows the percentage of load transmitted by the meniscus as a function of load for
both axisymmetric and non-axisymmetric models. The percentage of load predicted
by the axisymmetric model is approximately 74%, while the non-axisymmetric model
transmits approximately 40% of the total joint load at loading levels which the knee
experiences during normal activities.

Figures 6-11 and 6-12 show deformed cross-sections of the axisymmetric and non-
axisymmetric models, respectively. In both cases, it is evident that the all contact
surfaces become fully conforming under sufficient loading. Neither the axisymmetric
nor the non-axisymmetric meniscus is extruded from the joint space, and therefore

both carry load.
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Figure 6-11: Cross-sectional view of deformed axisymmetric model.
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Figure 6-12: Cross-sectional view of deformed non-axisymmetric model.

99



Chapter 7

Verification and Conclusions

7.1 Model Verification

The modeling process is not complete without verification of the results obtained. In
the case of the finite element meniscus model, verification occurs in two parts. The
first form of verification involves establishing quantitatively the amount of numerical
error present as a result of the discretization process. The finite element method will
always yield a solution, and that solution always contains some amount of numerical
error. A thorough analysis must include an error estimate for the results to have
meaning. The quantification of discretization error in the meniscus model has been
accomplished through the use of Hertzian contact and stress band analysis already
discussed.

Aside from finite element discretization errors, a more fandamental question arises:
How effective is the model in describing the load bearing role of the meniscus in vivo?
Failure to address this question precludes closure of the modeling process and renders
the model results uninterpretable. Unfortunately, in vivo data relating to the load-
bearing role of the meniscus in humans is not available. However, there is a significant
amount of in vitro experimental data which can be used to validate the finite element
meniscus model. Parameters measured experimentally to determine the role of the
meniscus in load bearing include articular cartilage contact pressures, the percent-

age of load transmitted by the meniscus, meniscal displacements and circumferential
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strains.

7.1.1 Contact Pressures

The range of experimentally determined values for peak contact pressures in tibial
articular cartilage is extremely broad. One reason for the wide range is variation in
experimental technique. The different measurement techniques that have been used
include pressure sensitive film (Fukubayashi & Kurosawa, 1980[24]; Baratz et al.,
1986[9]; Riegger et al., 1987[52]), a micro-indentation transducer (Ahmed & Burke,
1983[1]), and miniaturized pressure transducers (Walker & Erkman, 1975[69]; Brown
& Shaw, 1984[13]). Differences in reported experimental values arise from differences
in the level of loading and loading rate, as well as from variation in measurement
techniques.

Figure 7-1 shows the results of the 2D and 3D meniscus models with the results
from Brown and Shaw’s contact pressure study (1984[13]). The load values for the
finite element models have been doubled to account for the fact that the models
are unicondylar. This assumes that in a bicondylar knee model, the load would be
distributed evenly over both condyles. This is a reasonable extrapolation of the finite
element results. It is clear from Figure 7-1 that the non-axisymmetric meniscus model

predicts peak contact pressures which are more consistent with Brown and Shaw’s

results.

7.1.2 Percentage Meniscal Load Transmission

The range of reported values for the percentage of meniscal load transmission is ex-
tremely broad as well. Seedhom and Hargreaves (1979(58]) reported that the lateral
meniscus transmits approximately 50% of the lateral compartmental load at a level
of roughly one times body weight. The same study showed that the medial meniscus
transmits approximately 80% of the medial compartmental load at the same loading
level. Shrive et al (1974[60]) reported that the menisci carried less than 60% of the
total joint load. In a 1975 study, Seedhom [55] reported that the medial meniscus
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carries 40-50% of the medial compartmental load, while the lateral meniscus trans-
mits 65-70% of its compartmental load. As with peak contact pressures, it is difficult
to draw conclusions concerning model effectiveness given such a wide range of experi-
mental results. The conclusion that can be drawn is that both the axisymmetric and
non-axisymmetric models predict meniscal load transmission percentages within the

range of reported values.

7.1.3 Meniscal Displacements and Strains

Brown (1990[12]) performed measurements of meniscal radial displacements using
stereophotogrammetry for comparison to a two-dimensional finite element model of
the meniscus. Brown also calculated the average circumferential strains in the menis-
cus. For a load of 2 BW, the calculated average circumferential strain of the medial
meniscus was 2.1 £ 0.5% strain. This level of strain is in good agreement with both
the axisymmetric and non-axisymmetric model predictions.

The axisymmetric and non-axisymmetric meniscus models predict similar values
for average circumferential strains, but markedly different values for radial meniscal
displacements. Brown (1990[12]) measured displacements of the meniscus relative to
the tibia up to nearly 1 mm under a load of 2 BW. This is inconsistent with the ax-
isymmetric model, which predicts displacements of order 0.1 mm under similar loading
conditions. The non-axisymmetric model, however, -predicts meniscal displacements

which are consistent with the experimental findings.

7.2 Conclusions

The goal of this project was to develop a three-dimensional finite element model of
the human knee meniscus for the purpose of quantitatively studying the role of the
meniscus in knee joint load transmission. The primary application of the model was
the evaluation of axisymmetric meniscal modeling as a means of quantifying meniscal

mechanics.

As discussed above, the three-dimensional - :niscus model exhibits strong corre-
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lation with experimental data. It is evident from the comparison between axisym-
metric and non-axisymmetric models that the 3D model is more effective than the
axisymmetric model in predicting the meniscal load-bearing parameters. In partic-
ular, the 3D model predicts both meniscal displacements and circumferential strains
which are consistent with experimental data; the axisymmetric model predicts reason-
able strains, but not displacements. This is due to the increased mobility of the the
non-axisymmetric meniscus on the tibial plateau, which more closely resembles the
true physiological situation. The comparisons with experiment give a higher degree
of confidence to the results of the 3D meniscus model.

Even though it is highly mobile, the non-axisymmetric meniscus is nevertheless
capable of transmitting a significant portion of the joint load (40%). This value for
percentage of load transmitted by the meniscus is significantly lower, however, than
that predicted by the axisymmetric model. A large disparity between axisymmet-
ric and non-axisymmetric models also occurs in the prediction of subchondral bone
stresses. The level of subchondral bone stress can be an important factor in the
development of osteoarthritis following meniscectomy, according to Radin (1972{50];
1986[51]). An important factor in Radin’s hypothesis is that meniscectomy increases
subchondral bone stress, leading to microfractures. According to Wolff’s law, the
subchondral bone stiffens as a result of the increased stress. The stiffer subchondral
bone causes a subsequent increase in articular cartilage stresses, which is followed by
degeneration of the cartilage. Brown (1990[12]) predicted a peak subchondral bone
stress following meniscectomy of approximately 7 MPa for a load of 1 BW. The ax-
isymmetric meniscus model predicts a peak subchondral bone stress of approximately
2.1 MPa, while the 3D model predicts approximately 3.7 MPa. Both models predict
an increase in subchondral bone stress following meniscectomy; the predicted amount
of increase, however, is markedly different. This difference would be an extremely im-
portant factor in any attempt to quantify Radin’s hypotliesis with a meniscus model.

Given the higher degree of confidence that can be placed in the 3D meniscus
model based on experimental comparisons, attempts to guantify the mechanical func-

tion of the meniscus should be based on models of the meniscus which include non-
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axisymmetric geometry. Prior to this study, it was not clear how significant removing
the simplifying assumption of axisymmetric geometry would be. The results of the
3D finite element study demonstrate that elimination of the axisymmetric assump-
tion causes an improvement in model predictions. Although effective in providing a
first-order description of meniscal mechanics, axisymmetric modeling of the meniscus
is not sufficient for specific, quantitative description of the role of the meniscus in

knee joini load transmission.

7.3 Future Work

Modeling of the meniscus as an axisymmetric structure has provided significant qual-
itative insight into the mechanisms of meniscal load bearing, and has provided a basis
for more sophisticated models. The step from an axisymmetric to a non-axisymmetric
meniscal geometry has added a level of accuracy as well as complexity to the model.
The modeling process, however, is not nearly complete. Although the 3D menis-
cus model is a significant step toward full understanding of meniscal mechanics, it
is still a rather simplified model. Development of mesh generation techniques from
real anatomic data would significantly increase the accuracy of the model predictions.
Further examination of the material properties of bone, cartilage and meniscus would
improve the model as well.

The expansion of the meniscus model in to three dimensions makes possible the
study of numerous aspects of meniscal mechanics which are not feasible with an ax-
isymmetric model. The development of a bicondylar knee model would allow studies
of the effect of torsional loading and could provide insight into the proposed mecha-
nisms of meniscal tears, as well as the importance of meniscal attachments such as
that of the medial meniscus to the medial collateral ligament. The role of the menis-
cus in joint stability could also be examined. In short, there are numerous aspects of
knee joint mechanics which remain to be examined with a three-dimensional model

of the knee which includes the menisci.
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