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Abstract

Changes in glomerular permselectivity are the physiological basis for proteinuria, which typically
accompanies chronic kidney disease. Traditionally, changes in the size-restrictive properties of the
glomerular barrier have been quantified by measuring the fractional clearance () of exogenous
infused dextrans and interpreting the results using the hindered transport theory for uncharged,
solid spheres in cylindrical pores. The observed values of O for dextran in normal rats and healthy
humans are unexpectedly large, however, given the normal absence of proteinuria. Recent in vitro
diffusion studies show that dextran's hindered transport behavior is better represented by a random
coil with attractive pore/solute interactions, while Ficoll follows the predictions for a neutral solid
sphere. Thus, Ficoll sieving data should provide a better indication of the size-selective properties
of the glomerular capillary wall. In one of the studies for this thesis, healthy Munich-Wistar rats
were infused with either 3 H-dextran or 3 H-Ficoll. Plasma and urine samples were fractionated
on gel chromatography columns which had been calibrated with narrowly-sized dextran and Ficoll
standards. While values of O for Ficoll were similar to those measured for nearly-neutral proteins,
dextran values were significantly higher at all molecular sizes. On this basis, the glomerular capillary
wall is shown to be considerably more size-restrictive than had been previously determined. The
random coil model was applied to the dextran data, and the attractive energy required to explain the
dextran/Ficoll discrepancies in vivo was nearly the same as that required in vitro. Thus it appears
that dextran's enhanced transport is nearly independent of the medium through which it travels.

The implications of the more size-restrictive barrier were examined in a second experimental
protocol, in which 3 H-Ficoll was infused into four groups of fawn-hooded (FH) rats: a two-kidney
(2K) control group, a uninephrectomized (UNX) group, a UNX group treated with the angiotensin
converting enzyme inhibitor enalapril (ENA), and a UNX group treated with the nitrous oxide in-
hibitor NAME. The UNX and NAME groups had significantly higher glomerular filtration pressures
(aP) and more proteinuria than the 2K and ENA groups, but the membrane pore size parameters
of the four groups were essentially the same. The extent of albuminuria correlated strongly with
AP, while the total rate of excretion of non-albumin proteins did not. Because albumin is negatively
charged, these findings imply that albuminuria in FH rats results from a specific defect in glomer-
ular charge-, rather than size-, selectivity, induced by chronic glomerular hypertension. Finally, to
examine the potential for using fractional clearances to estimate filtration pressures in the clinical
setting, the mathematical model was modified to make AP an adjustable parameter, and fitted
values were compared with those actually measured in the FH rats. The fitted and measured AP
did not show significant correlation, suggesting that 0 may not be sufficiently sensitive to AP to
allow such estimations.

Thesis Supervisor: William M. Deen
Title: Professor of Chemical Engineering
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Chapter 1

Introduction

1.1 Clinical Relevance of Glomerular Function

The spectrum of glomerular diseases includes both primary entities such as the glomerulonephrites,

whose principal involvement is with the kidney, and systemic diseases such as diabetes and essential

hypertension, where the renal involvement is a secondary outgrowth. Leaf and Cotran1 63 classify

the mechanisms for the pathogenesis of glomerular injury into three types: those that are immune-

mediated, those that result from altered glomerular hemodynamics, and those that are related to

loss of glomerular charge-selectivity (which can more generally be extended to a loss of overall

permselectivity). This classification scheme is not mutually exclusive, as changes in hemodynamic

patterns and permselectivity have been observed in both immune- and non-immune mediated disease.

Perhaps a better method of categorization is to divide into those disorders in which there is a primary

chemically- or immune-mediated derangement in the glomerular wall and those in which the injury

is secondary to hemodynamic changes. Again, however, the distinction is not clear-cut since, as

described in the following section, primary disease affecting some glomeruli can lead to altered

hemodynamics and secondary disease in other healthy glomeruli.

The two most important clinical manifestations of glomerular disease are a decreased urinary

output, a consequence of a reduction in the glomerular filtration rate (GFR), and proteinuria, the

loss of serum proteins-predominantly albumin-in the urine, which results from a loss of the ability

of the glomerulus to retain large and anionic molecules in the intracapillary space.

Several models of glomerular disease in the rat and other animals have been used to explore

the etiologies and pathophysiologies of renal disorders. These models have the advantage over

clinical studies in that hemodynamic parameters such as the transmural hydraulic pressure and the

ultrafiltration coefficient can be directly measured. In addition, such experiments pioneered the use

of exogenous polymers to study the permeability properties of the glomerular capillary wall. An

important result of these studies is the hypothesis for the hemodynamically-mediated progression of

glomerular disease.

1.2 Hemodynamically-Mediated Damage of the Glomerulus

The role of altered glomerular hemodynamics in the pathogenesis of renal injury is of interest because

of the adaptive response of the kidney to reductions in renal mass: an increase in glomerular pressure

results in a higher filtration rate plus structural and functional hypertrophy. 12 8 Surgical ablation of

15



renal tissue is a common animal model for this process. Total glomerular filtration rate is maintained

through hyperfiltration, but at a cost of a progressive sclerotic process which eventually reduces

function in the surviving nephrons. Data also suggests losses in the ability of the glomerular capillary

wall to discriminate on the basis of both size and charge. 19 8

An example of a disease in which this mechanism appears to play an important role is diabetes

mellitus.4 9 ,10 1,180,1 87 , 226, 242, 255 A hallmark of the renal involvement in clinical diabetes is sustained

hyperfiltration in the early years followed by a reduction in GFR and increased proteinuria. Histo-

logically, characteristic nodular sclerotic lesions develop in the glomerulus. The filtration barrier to

large molecules is reduced, and evidence suggests that the charge selectivity is also impaired. 4 9 ,10 1, 2 42

Animal models of streptozotocin- and alloxan-induced diabetes show similar pathological changes

and alterations in hemodynamics and size-permselective properties. 2 9 ,1 77,178 ,205 ,26 6 The charge-

selectivity of diabetic glomeruli has not been studied extensively, but one study of alloxan-induced

diabetes indicates a unique and unexplained enhancement of this property.' 7 8

A different example of the connection between renal performance and hemodynamics is in patients

who are postoperative from cardiac surgery, where impaired cardiac output is sometimes associated

with azotemia or renal failure. One report indicates that glomerular hypofiltration is associated

with a decrease in the intrinsic ultrafiltration ability of the membrane.l8 6 There was no apparent

change in the permselective properties in this study nor in a study in the rat of decreased perfusion

pressure,25 3 but the data is too limited to be conclusive.

It is therefore of considerable interest to find a means to ameliorate the damage caused by

hyperfiltration. Dietary protein restriction has been shown as one way by which glomerular pressure

and filtration rate can be reduced, accompanied by diminished glomerulosclerosis.3 8 L28, 175 The

therapeutic use of angiotensin I converting enzyme (ACE) inhibitors in arresting the progression

of renal damage has been investigated in models of renal ablation 6,7 ,175 and diabetes. 2 66 Three

generalizations emerge as a result of this work:

1. Anatomical damage to the glomerular capillary wall and progressive proteinuria can be arrested

by normalization of the transmural hydraulic pressure difference, even if the filtration rate per

se remains high.6' l 2 8

2. Renal damage is prevented by purely hemodynamic interventions even if an underlying systemic

abnormality, such as diabetes, persists.l 75 '2 66

3. Specific normalization of glomerular pressure by angiotensin I converting enzyme inhibitors

has a therapeutic advantage over treatment for systemic hypertension. 7

Thus there is a growing body of evidence which suggests that primary alterations in renal hemo-

dynamics affect the permselective properties of the glomerular capillary wall. Furthermore, the
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development of a method for estimating glomerular filtration pressures in humans is strongly moti-

vated for monitoring the efficacy of therapeutic interventions.

1.3 Thesis Summary

The goals of this thesis were to extend the applications of sieving curve analysis, in particular to

the study of the interactions between renal hemodynamics, proteinuria, and the progression of renal

disease. Chapter 2 summarizes glomerular anatomy and physiology and the relevant mathematical

models. The remaining chapters address specific issues related to the thesis goals:

1. Methodological issues of gel chromatography calibration and dispersion and their effects on

the accuracy of sieving data were examined (Chapter 3).

2. Dextran and Ficoll tracer studies were performed in Munich-Wistar rats to determine the

effect of molecular configuration on glomerular sieving (Chapter 4). The dextran data was

then analyzed using recent theoretical developments in the transport of linear chains through

pores (Chapter 5).

3. To examine more systematically the interaction between hemodynamics and size-selectivity,

Ficoll tracer studies were performed in groups of fawn-hooded rats in varying states of chronic

renal disease (Chapter 6).

4. Finally, a computational approach for estimating glomerular transmural hydraulic pressure

from sieving data was developed and applied to the data from the fawn-hooded rats (Chap-

ter 7).
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Chapter 2

Background

2.1 Overview of Kidney Anatomy and Function

The kidneys are paired retroperitoneal organs lying on opposite sides of the vertebral column, be-

tween the twelfth thoracic and third lumbar vertebrae. The primary function of the kidney is to

maintain the so-called internal milieu of the body by regulating the volume and composition of the

extracellular fluid. The initial mechanism is the filtration of blood through a specialized capillary

wall into the renal tubules. Blood constituents that are too large (such as cells) or too highly an-

ionic (such as proteins) to pass through the capillary wall are retained in the blood stream. The

rest of the kidney serves to reabsorb the vast majority of the water and important solutes from the

tubules, to secrete other solutes at various stages, and ultimately to form a urine concentrated in

waste materials.

Each kidney obtains its blood supply from a renal artery which branches into smaller segmental,

interlobar, and interlobular arteries, until the level of the afferent arterioles is reached. The afferent

arteriole feeds into the functional unit of the kidney, the nephron. A nephron is responsible for

the filtration and downstream processing of the ultrafiltrate from a single afferent arteriole. Each

nephron consists of a glomerulus, a tubule, and a collecting duct. Broadly speaking, the glomerulus

is the site of filtration, the tubule is the location of water and solute reabsorption and secretion,

and the duct is the site of urine concentration. The high level of activity required at each of these

three stages is indicated by the volume flow rates: renal blood flow (RBF) in a 70-kg human being

is about 1.2 /min, one-fifth of the resting cardiac output,3 6 which translates to a renal plasma flow

(RPF) of about 0.54 /min. The total glomerular filtration rate (GFR) is about 0.13 l/min.3 7 Since

normal urine output over a 24-hour period is approximately one liter, 163 only 0.5% of the filtered

volume is actually excreted.

The animals most commonly studied as models for human kidney function are rats and dogs. A

human kidney has around 1.2 x 106 nephrons, while a dog's has approximately 4.3 x 105 and a rat's,

about 3.2 x 104.240 On the basis of total renal blood flow rate per mass of kidney tissue, all three

species have comparable values ranging from 3 to 5 ml/min/g. 4 1

2.2 The Glomerular Capillary Wall

The glomerulus is the site of the first step in urine formation-the creation of a cell- and protein-

free filtrate of the blood. A glomerulus is a tuft of interweaving and interconnecting capillaries
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about 200 Am in diameter enclosed by Bowman's capsule, a bi-layer of squamous epithelium over

basement membrane (Figure 2-1a). Ultrafiltrate flows from the capillary into the cavity-known as

Bowman's space-between the vessel tuft and Bowman's capsule. A glomerulus has four histological

components: the mesangial cells, which provide the architectural support, and the three layers of the

glomerular capillary wall-the vascular endothelium, glomerular basement membrane, and visceral

epithelium. Under normal circumstances, the bulk of filtration occurs through the capillary wall,

with a small but undetermined percentage filtering through the mesangium. 17 In some pathological

conditions, the amount of mesangial filtration may be increased. 22 2

There have been several attempts to pinpoint anatomical sites which demonstrate size or charge

selectivity. Permeability studies with electron-dense tracers indicated that the glomerular basement

membrane was a primary source of restriction,9 7 but as emphasized by Skorecki et al.,23 l the numer-

ous interactions between the cellular and acellular components of the capillary wall make it difficult

to attribute selective properties to any one particular component. Rather, it appears that the charge

and structure of the combined endothelium, basement membrane, and epithelium all contribute to

the filtration properties of the glomerulus.

2.2.1 Endothelium

The vascular endothelial cells of the glomerulus, which line the inner lumen of the capillaries, are

perforated by small openings, or fenestrae, 500 to 1000 A wide. These fenestrae are unique in

that they allow for direct exposure of the basement membrane to the plasma, in contrast to fenes-

trated capillaries of endocrine glands and intestine which have diaphragms. Thus it appears that

the endothelium provides almost no resistance to the passage of macromolecules. 9 7 Endothelial cell

membranes have sialic acid-containing glycoproteins which are postulated to be important for main-

taining the structure of the capillary wall and for some charge-selectivity.

2.2.2 Glomerular Basement Membrane

Histologically, the glomerular basement membrane (GBM) is seen to have three distinct layers. Two

lucent layers, the lamina rarae interna and externa, are adjacent to the endothelium and epithelium,

respectively. The more opaque lamina densa lies between the two (Figure 2-lb).

The GBM, with a thickness of 3500 A in humans and 1500 A in rats,2 40 is a sheet of extracellular

matrix composed of type IV collagen, proteoglycans (heparan sulfate and chondroitin sulfate), and

the glycoproteins laminin and fibronectin. 9 7 The absolute relative amounts and distribution of the

components is a subject of active research, but it appears that collagen makes up the bulk of the

lamina densa, while the proteoglycans and glycoproteins are localized to the lamina rarae. Laminin

and fibronectin are postulated to be important in the attachment of epithelial and endothelial cells

to the extracellular matrix.

20



(a) Anatomy of the glomerular capillary network. Arrows indicate direction of blood flow. From
Elias et al. '9s

(b) Cross-sectional schematic of the glomerular capillary wall. end-endothelial cell, ep-
epithelial cell. 1-epithelium, 2-lamina rara externa, 3-lamina densa, 4-lamina rara interna,
5-endothelium. From Peace.20 3

Figure 2-1: Glomerular capillary structure.
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Anionic glycosaminoglycans in the lamina rara interna and externa have been proposed as

the principal determinants of charge selectivity, i.e., the hindered transport of negatively-charged

molecules such as proteins and the facilitated transport of cationic molecules.l4' Cationic staining

studies of the basement membrane by Kanwar and Farquhar 4 0 resulted in staining of clumps of

anionic sites within both lamina rarae, spaced about 600 A apart, indicating that charge distribution

may not be homogeneous in the GBM.

2.2.3 Epithelium

The visceral epithelial cells, or podocytes, are distinguished by their arrangement of interdigitating

"foot processes" which rest on the lamina rara externa (Figure 2-lb). The spaces between the

foot processes, which are 250-600 A wide, are known as filtration slits and are covered by a thin

diaphragm. Like the endothelial cells, the epithelial membranes are coated with anionic glycoprotein.

In several nephrotic pathological conditions, the foot processes of the epithelial cells are replaced

by a continuous rim of cytoplasm with variable degrees of vacuolization, a phenomenon often referred

to as "fusion" of the foot process, although there is no true fusion of the cells. 8 This histological

pattern can be mimicked in rat kidneys by the infusion of polycations such as protamine sulfate,2 2 3

and thus has been suggested to result from a loss of the endothelial fixed charges.44 ,50 256

2.3 Control and Chemical Mediation of Glomerular Ultrafiltration

The details of glomerular filtration have been extensively reviewed by Maddox et al..169 Conceptually,

glomerular ultrafiltration is controlled by the adjustment of three parameters: the afferent and

efferent arteriolar resistances RA and RE and the ultrafiltration coefficient Kf, where

RA PA - PGC (2.1a)
AABF

PGC - PERE -E, (2.1b)EABF
SNGFR

Kf SpUF. (2.1c)
P UF

The afferent and efferent arteriolar pressures in the above equations are designated by PA and

PE, respectively, and the afferent and efferent arteriolar blood flow rates are AABFand EABF.

PGC is the length-averaged pressure in the glomerular capillary, while PUF is the length-averaged

ultrafiltration driving pressure, a function of both hydrostatic and osmotic pressure as described in

Section 2.5.1. SNGFR is the single nephron glomerular filtration rate. Alterations in vascular tone

result in corresponding changes in RA and RE, while changes in intrinsic capillary permeability and

filtration surface area are manifested in Kf.32 Afferent renal plasma flow (QA) is modulated by

the total renal vascular resistance RT = RA + RE; AP is a function of RAIRT; and SNGFR is
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Compund RA RE RT K QA AP SNGFR
Angiotensin II
Norepinephrine
ADH
Leukotriene LTC 4
Leukotriene LTD 4
High-dos PAF
Endothelin
Histamine
Prostaglandin E*
Prostaglandin E2
Prostaglandin I2
Bradykinin
Acetylcholine
Glucocorticoids
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EDRF
ANP
Parathyroid hormone
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Table 2.1: Chemical modulators of glomerular hemodynamics. Abbreviations: ADH-anti-diuretic
hormone, PAF-platelet activating factor, EDRF-endothelium-derived relaxing factor, ANP-atrial
natriuretic peptide. *Caused by reduction in PT. #Excluding effect on renin synthesis. Information
summarized from Maddox et al..l69

a function of QA, Kf, and the transmural hydraulic pressure lAP (= PGC - PT, where PT is the

pressure in the tubule).3 6

Physiologic control of glomerular function involves many complex interactions, the relative impor-

tance of which are not yet fully determined. The major chemical mediators of glomerular filtration

are summarized in Table 2.1. Two mechanisms have been relatively well-defined: autoregulation and

tubuloglomerular feedback.

2.3.1 Autoregulation

In the absence of any neural or hormonal control, the kidney can respond to variatons in systemic

arterial perfusion pressure in such a way as to keep renal plasma flow and AP, and consequently

GFR, relatively constant. This autoregulation of RBF is seen for mean arterial pressures above

80 mm Hg in rats218 and is an intrinsic response to changes in the tangential wall tension of the

arterioles; it is seen in de-ennervated and isolated kidney preparations.9 3 ,10 0 Physiologically, au-

toregulation is demonstrated as the kidney's ability, in the face of decreasing arterial pressure, to

maintain RE constant while lowering RA 218
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2.3.2 Tubuloglomerular Feedback and the Renin-Angiotensin-Aldosterone System

The macula densa cells of the early proximal tubule and the afferent and efferent arterioles of the

glomerulus are located close together. It has been observed that high flow rates past the macula

densa cells lead to a reduction in SNGFR, apparently signaled by increased chloride uptake.2 5 8 This

reduction in SNGFR is a result of reduced QA and Kf with constant AP, suggesting an increase in

RA and RE brought about by a contraction of mesangial cells. 83 2

The renin-angiotensin-aldosterone system has been proposed as the effector mechanism of tubu-

loglomerular feedback, but this has as yet not been proven conclusively. Renin is a proteolytic

enzyme stored in the granules of afferent arterioles in the juxtaglomerular appartus. It is secreted in

response to increased intracellular levels of cyclic AMP or decreased intracellecular levels of calcium.

The factors that regulate renin secretion include (1) sympathetic control (3-adrenergic,stimulation,

f3-antagonistic or a-adrenergic inhibition), (2) baroreceptor control (stimulation by reduced arterial

wall tension, inhibited by increased tension), (3) hormonal regulation (histamine, glucagon, and

parathyroid hormone stimulation or angiotensin II and vasopressin inhibition), (4) prostaglandin

stimulation, and (5) an as-yet-undetermined signal from macula densa cells when the concentra-

tion of chloride ion in the proximal tubule fluid increases. Renin cleaves a circulating ca2-globulin,

angiotensinogen, into the inactive peptide angiotensin I (A-I). Angiotensin I is transformed in pul-

monary microvessels into angiotensin II (A-II) by angiotensin I converting enzyme (ACE).

Angiotensin II is a powerful vasoconstrictor which also serves to release the hormone aldosterone

from the adrenal cortex. Aldosterone stimulates sodium reabsorption in the tubules, leading to

an increased intravascular volume. These two substances counteract hypotension and/or decreased

perfusion of the kidney.

Studies by Myers et al.l8 5 and Ichikawa et al.136 indicate that the principal glomerular effect of

angiotensin II is to specifically increase RE, leading to an increase in AP. A secondary rise in RA

is seen in response to the systemic pressor actions of A-II. Angiotensin II has also been shown to

lower K ,24 apparently through a loss of parenchymal volume in the glomerular tuft which results

from contraction of the mesangial cells. 1' 2 1 2'

Chemical inhibition of A-II effects may be accomplished by two classes of compounds-the an-

giotensin receptor antagonists and the ACE blockers-both of which are important in experimental

studies of glomerular ultrafiltration. Saralasin is a receptor antagonist frequently used clinically as

a tool for establishing a diagnosis of renovascular hypertension. Captopril and enalapril are ACE

inhibitors used clinically for systemic hypertension and experimentally for lowering aP.
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2.4 Theoretical Models of Glomerular Function

Theoretical models of glomerular function address the question of to what extent ultrafiltration and

permselectivity are modulated by variations in the system hemodynamics-renal plasma flow and

glomerular pressure-versus the extent to which they are affected by changes in properties of the

glomerular capillary wall-permeability and available surface area for filtration. For example, a

reduction in GFR may result from a lowered perfusion, a reduction in the driving force, a decrease

in the intrinsic membrane permeability, or a loss of filtration surface area. Similarly, proteinuria

could be postulated as a manifestation of an increased bulk filtration or as a loss of the capillary's

power to restrict transport. The success of these models has been their ability to explain specific

renal pathophysiological processes in terms of such changes.

2.5 Glomerular Ultrafiltration

2.5.1 Determinants of Glomerular Ultrafiltration

The progress in the understanding of the process of glomerular ultrafiltration has come about over

the last twenty years primarily from two advances: the development of servo-nulling techniques for

pressure measurement and the discovery of a strain of Munich-Wistar rats which have glomeruli

located at the surface of the renal cortex, allowing for direct access to the glomerular capillary and

Bowman's space. The theoretical approach to ultrafiltration in the glomerulus was developed by

Deen et al.81 If each glomerular capillary is idealized as a tube of length L (Figure 2-2), the local

transmural flux J, at a point y along the capillary can be expressed as the product of a permeability

and a driving force:

J (y) = k [P(Y) - Ar(Y)] (2.2a)

k [P - GC(Y)] (2.2b)

where k is the (empirical) effective hydraulic permeability of the wall, AP(y) = PGC(Y)- PT

is the radially-averaged transmural hydraulic pressure difference (often simply referred to as the

filtration pressure), and A7r(y) = rGc(Y) - rT is the radially-averaged transmural oncotic pressure

difference. (The subscripts GC and T represent glomerular capillary and tubule [Bowman's space]

values, respectively). The approximation in Eq. 2.2b results from observations that the axial drop

in hydraulic pressure over the capillary length is small, on the order of 2 to 3 mm Hg, and the

hydraulic pressure in Bowman's space is assumed to be independent of position. Thus the local

pressure difference can be replaced by the length-averaged value, Ap.37,127 Inclusion of the axial

pressure drop makes for a more physically realistic model but requires exceptional accuracy in

the experimental measurement of the afferent and efferent protein concentrations.8s The osmotic
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Figure 2-2: Model of glomerular ultrafiltration. Top: Afferent (QA) and efferent (QE) plasma flow

is axial in a tube of length L, while solvent flux (J,) is radial. Hydraulic and osmotic pressures in

the capillary (PGC, rGC) vary with position, while those in Bowman's space (PT, rT) are constant.

Filtration is governed by opposing hydraulic and osmotic pressure differences, resulting in the net
flux of solvent (J,) into Bowman's space. Bottom: Hydraulic and osmotic pressure profiles along

the length of the glomerular capillary. Hdraulic pressure is nearly constant, while osmotic pressure
increases significantly. Shaded area represents the net ultrafiltration driving pressure (PUF).
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pressure difference is assumed to result entirely from the difference in protein concentration, since

even in states of heavy proteinuria Bowman's space normally contains a negligible amount of protein

compared to plasma'9 3 (i.e., rT 0 and A7r(y) 7lrGc(y)). The oncotic pressure is calculated from

plasma protein concentration by the relation s l

r = 1.629c, + 0.2935ci, (2.3)

where cp is in units of g/dl (valid over the range 4 to 10 g/dl) and r is in mm Hg.

Near the inlet, the loss of fluid from ultrafiltration with concomitant retention of protein causes

the oncotic pressure within the capillary to rise, resulting in a diminishing of the driving force and

less filtration toward the outlet. Physiologically, the opposing hydraulic and oncotic pressure come

close to balancing at the efferent end (Figure 2-2).

The effective membrane hydraulic permeability k differs from the true hydraulic permeability

of the glomerular capillary wall ko because the effects of radial protein concentration gradients are

not included. Concentration polarization within the capillary lumen results in a higher protein

concentration at the wall surface than at the midline axis. The actual Air, and therefore k0o, is

underestimated by approximately 10% when using bulk protein concentrations. 8 2

If the total volumetric flow rate of plasma is Q(y) and the total surface area of the capillary

is S, then assuming no protein transport across the membrane (a valid approximation for the os-

motic pressure difference even with massive proteinurial9 3 ) we have the following expressions for

conservation of mass:

dQ
dQ ^ = -SAT (A)'(2.4a)

d(Qcp)
d(Q ) = 0. (2.4b)

where Cp(y) is the plasma protein concentration and = y/L is a normalized length scale.

Eqs. 2.2b, 2.3, and 2.4, plus the afferent plasma flow rate QA = Q(O) and afferent protein

concentration Cp,A = Cp(O) are needed to solve for the complete flux, and osmotic pressure profiles.

Of particular interest are the flux and permeability integrated over the capillary length, which can

be obtained by substituting Eq. 2.2b in Eq. 2.4:

SNGFR = K PUF (2.5)

where

SNGFR - SJ ()dy (2.6a)

27



PUF [P- rGc(y)] d (2.6b)

Kf - S.k (2.6c)

Eq. 2.5 is the whole-glomerular analog to Eq. 2.2b. Here it can be seen that Kf is the product

of the capillary hydraulic permeability and the surface area, while PUF is the difference of the

mean hydraulic and mean osmotic pressures, given by the shaded graphical area of Figure 2-2. A

closed-form expression for Kf as a function of QA, SNGFR, AP, and cp,A is given by Deen et al.8 '

Implicit in the derivation of Eq. 2.5 is the assumption that the glomerular capillary network

can be represented as a number of identical capillaries in parallel. Anatomical studies of the rat

glomerulus in fact suggest that there is significant heterogeneity in both capillary length and radius

within a single glomerulus. 15 72 2 5 Remuzzi and Deen2 1 ' investigated the theoretical implications of

independent distributions in capillary length and radius and found that for a fixed K!, increasing

heterogeneity in either dimension reduced SNGFR, but a distribution in length had a more noticeable

effect. Based on literature data estimating the length distribution for rat glomeruli, Remuzzi and

Deen established that a K1 calculated using identical capillaries underestimates the actual K by

about 30%.211

The situation pictured in Figure 2-2 represents one of filtration pressure disequilibrium; that

is, the efferent osmotic pressure 7rE is smaller than AP. This is a condition found experimentally

in euvolemic animals, where surgical fluid losses are replaced by continuous infusion. Filtration

pressure equilibrium (rE = AP) is the physiologic condition commonly found in hydropenic rats,

where fluid volume replacement is not performed. 13 5 It is not possible to calculate a unique value

for K! in this instance, since the exact point along the capillary where equilibrium is reached, and

therefore PUF is not known. The best that can be done is to establish a minimum value for K by

assuming that the osmotic and hydraulic pressure balance just at - = 1 .

2.5.2 Theoretical Dependence of Ultrafiltration Coefficient on Parameters

As previously stated, QA, AP, and SNGFR are controlled by the interaction of RA, RE, and Kf.

According to the model, at filtration pressure equilibrium SNGFR increases directly with QA; the

single nephron filtration fraction (SNFF), defined as

SNGFR
SNFF SNGFR (2.7)

QA

is a constant. For conditions of filtration pressure disequilibrium, SNGFR increases proportionally

less than the increase in QA, and SNFF decreases. These theoretical predictions have been verified

experimentally in rats. 40' 80 84' 1 35 218 From the basic tenet of filtration pressure equilibrium versus

disequilibrium, the effect of specific changes in the other hemodynamic parameters on glomerular
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ultrafiltration can be summarized:

* As K! increases, SNGFR and SNFF increase until filtration pressure equilibrium is reached,

and then they hold constant with further increases. Variations in the ultrafiltration coefficient

are not independent of the other hemodynamic parameters, as discussed next. Changes in K!

are important in several pathophysiological states (see Section 2.5.3).

* As afferent osmotic pressure 7rA increases, SNGFR and SNFF decrease until they become zero

at rA = AP. Experimental studies on rats have shown, however, that decreasing rA leads

to a fall in K, and thus a smaller increase in SNGFR than would be predicted. 1 7 '23s 2s ,24 4

Multivariate statistical analysis of this association shows a direct dependence which is not a

result of an intermediate relationship with QA or Ap.244 The mechanism of this interaction

has not been elucidated, but Brenner et al.3 7 suggest that protein concentration may be a

factor in the regulation of K! by vasoactive hormones.

* As AP increases above rA, SNGFR and SNFF also rise. This increase is not a linear relation-

ship, because the larger local fluxes (J,(y)) along the capillary lead to higher values for cp(y)

and local osmotic pressures, partially offsetting the hydraulic pressure increase. Experimen-

tally, as for osmotic pressure changes, there is a significant relationship with the ultrafiltration

coefficient, but here an inverse correlation. 2 4 4 Thus increasing pressure is associated with an

offsetting decrease in Kf.

2.5.3 Pathophysiological Behavior of Ultrafiltration Parameters

A reduction in Kf is believed to be an important clinical mechanism in the pathogenesis of acute

renal failure4 3 and several forms of glomerulonephritis, 2 3 1 although it can only be documented in

animal models. Animal models of nephrotoxic serum nephritis (NSN, an analogue to human anti-

GBM disease) show a change in SNGFR that is proportional to the severity of the injury. In response

to mild treatment with anti-GBM antibody, the glomeruli maintained a relatively normal SNGFR

despite a lower K! by increasing p.168 For major injuries of the same type, SNGFR dropped by

50%, principally caused by a reduction in Kf (offset by a larger AP), although a contributing factor

was a rise in RA and RE leading to a reduced QA 26

Studies of Heymann's nephritis, a model resembling human membranous glomerulopathy, have

shown an intrarenal heterogeneity in SNGFR determined by variances in K! and QA. 1 34 Values for

AP and r were found to be constant for all glomeruli regardless of the particular SNGFR . Other

studies have confirmed that AP is not significantly elevated in Heymann's nephritis. 2 62

Puromycin aminonucleoside (PAN) nephrosis is a non-immunological model for human minimal

change disease. Rats infused with PAN demonstrate a decrease in SNGFR which is related to a

lowered Kf.137 As with Heymann's nephritis, AP remains normal. 2 9
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Hemodynamic alterations in adriamycin nephrosis are similar to those observed in severe NSN

injury. QA decreases as a result of an elevated RA and RE, and a AP increase is accompanied by a

reduced Kf. The net effect is a smaller SNGFR while SNFF is relatively constant. 192 , 25 2

Studies of renal ablation (surgical infarction of functional renal tissue) in rats indicate that Kf is

not altered in response to a purely hemodynamic increase in QA and p.80, 128 When filtration pres-

sure is normalized, however, either by ACE inhibitors or dietary protein reduction, the ultrafiltration

coefficient increases to maintain SNGFR relatively constant. 6 7 , 175

Hyperfiltration in streptozotocin (STZ)-treated diabetic rats appears to be a function of increased

perfusion and filtration pressure resulting from a specific decrease in RA, as Kf does not differ

significantly from normal controls.L2 9 ,2 66 In more severe STZ-induced diabetic conditions, RA and

RE are high, QA and SNGFR are markedly reduced, but AP is normal. Conversely, the situation

in alloxan-induced diabetes seems to be one of hypofiltration or increased RA, where SNGFR and

AP are slightly reduced from controls, while Kf is unchanged.l 77 Insulin therapy of alloxan-infused

rats reduces RA while having no effect on Kf.

2.6 Glomerular Permselectivity

2.6.1 General Aspects

Normally, the glomerular capillary wall serves as a very effective discriminator on the basis of both

molecular size and charge. Small uncharged molecules are filtered without measurable restriction,

but the resistance to transport increases with larger or more anionic molecules. The concentration

of inulin in the glomerular ultrafiltrate equals that in the afferent arteriole, as opposed to albumin,

where the ultrafiltrate concentration is less than 0.1% of the afferent arteriole.1 95

Many disease states are characterized by a deficit of these permselective abilities, most seriously

manifested as protein loss in the urine. Development of theoretical models of glomerular permselec-

tivity has led to greater understanding of the importance of molecular size, charge, and configuration

to the normal ultrafiltration process, and to an understanding of the pathophysiological changes in

system hemodynamics and membrane properties in the disease state.

2.6.2 Clearance

The concept of clearance allows the relation of measurable solute concentrations in arterial blood and

excreted urine to concentrations in Bowman's space, which is not, in general, available for sampling.

The clearance of solute i is symbolized by Ci and defined as

_ Uci,UC- _ -i-, (2.8)
Ci,A
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here Ci has units of volume/time, U is the urinary flow rate in volume/time, ci,u is the concentration

of solute in urine, and Ci,A is the concentration of solute in the afferent arteriole. The clearance is

the hypothetical rate at which blood is completely "cleared" of solute i by the kidney. If the solute

is one such as the fructose polymer inulin-which is uncharged, freely filtered through the glomerular

capillary wall, and does not undergo reabsorption or any further secretion downstream-then its

clearance is equal to GFR. The fractional clearance FRC is a dimensionless quantity

FRC GFR' (2.9)

A fractional clearance less than unity indicates that the solute undergoes some combination of

restricted filtration or tubular reabsorption. A fractional clearance greater than one indicates that

the solute is secreted in the tubules.

The sieving coefficient of a solute Oi is defined with respect to its concentration in the afferent

arteriole Ci,A and its average concentration in Bowman's space (Ci,B):

ejOi- (Ci,B) (2.10)
Ci,A

For a solute which is neither secreted nor reabsorbed in the tubules, it can be shown that

FRCi = ei, (2.11)

and thus this parameter of theoretical interest can be obtained directly from blood and urine concen-

trations. If a polydisperse polymeric substance such as dextran (a polymer of D-glucopyranose) is

infused as a marker, then the plasma and urine samples can be fractionated by size, and subsequent

determination of the sieving coefficients as a function of molecular size leads to the construction of

sieving curves. As discussed below, these sieving curves are affected by both hemodynamic changes

and alterations in the membrane properties and potentially can be used as tools for the clinical

estimation of parameters not directly measurable.

2.6.3 Early Models

In the 1950s, Pappenheimer, Renkin, and Borrero 20 0 ,20 1 ,21 4 performed the pioneering theoretical

and experimental work which lay the foundation for much of the progress in modeling restricted

transport in pores. The results from these early studies are somewhat limited in their application

to glomerular filtration in that the blood vessel and extravascular space were each taken to be well-

mixed reservoirs. The dependence of transport on afferent plasma flow rate and on the gradients

of concentration, flux, and osmotic pressure in the capillary were not considered until the cross-

flow filtration models of the 1970's.6s 2
,8 This more complete modeling was coupled with increased
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sophistication in the theoretical analysis of the restricted transport of solid spheres in cylindrical

pores. 5,4 2
,
4 7

The pore model originally derived by Chang et al.62 is summarized below. Additional models

based on alternative membrane geometries or without the assumption of any particular membrane

structure (nonequilibrium thermodynamics) have been proposed,6 2 ,20 0 but none have had extensive

application.

2.6.4 Isoporous Solid-Sphere Model of Permselectivity

In the simplest model, the capillary walls are assumed to be perforated by right cylindrical pores

with pore radius rp = r0 (Figure 2-3). Capillary flow occurs along direction y while filtration

is conducted in direction z. The porosity of the membrane (equal to the fractional pore area of

the membrane surface) is given by f and the total membrane surface area is S. The plasma and

glomerular filtrate are modeled as aqueous continua into which salts, proteins, and various tracer

molecules are dissolved. The tracer molecule concentration CT is small so that it does not contribute

to osmotic pressure or to electrostatic interactions within the membrane. Traditionally, all solute

molecules are assumed to behave as spheres with a radius equivalent to that of the Stokes-Einstein

radius

r, 6Dk'T (2.12)
6rp'D

where kB is Boltzmann's constant and T is the absolute temperature at which the solvent viscosity

p and diffusion coefficient Di are measured.

The solute flux Ji (y) of a neutral macromolecule through the pores is governed by both diffusional

and convective forces and is given by62

Ji(y) = (Y)C(1 -(Y)W (2.13)

Pey Wi(SJ,) (2.14)
Pe(y)- fHiTi - (f$/t)H, )' (2.14)

where ci(y) is the solute concentration in the capillary, t is the thickness of the membrane (the

length of the pore), Di is the diffusion coefficient of the solute in bulk solution, f is the fractional

porosity of the wall, and Hi and Wi are solute pore hindrance factors for diffusion and convection,

respectively.

The Peclet number Pe(y) is a dimensionless quantity indicating the relative magnitude of the

convective to diffusive forces driving the solute through the pore. The second equality in Eq. 2.14

is written to emphasize that parameters related to the physical dimensions and porosity of the

membrane-f, S, and e-are not explicitly known. Only fS/I must be calculated, and for an array

32



C
a)
E
I=

0
L_CU

E

lo

OD

O

Co
E

c

)

...... ,,l

I-.,...........N"OF

J S - Js

w

C)
-('n

C)
CD

Figure 2-3: Pore model of glomerular permselectivity. Renal plasma flow (Q) is parallel to the inner
surface of the glomerular capillary wall. Cross-flow filtration from the capillary is assumed to be
conducted through pores of radius rp and length in the wall. Filtration is governed by opposing
hydraulic (P) and osmotic (Air) pressure differences, resulting in the net flux of both solvent (J,)
and solute (J,) into Bowman's space. Possible solute configurations include those of a solid sphere
(bottom pore, left) or a flexible coil (bottom pore, right).
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of uniform cylindrical pores it can be shown from the Poiseuille equation62 that

= 8Kf /ro (2.15)

where i is the viscosity of the solvent passing through the pores.

Methods for calculation of the hindrance factors Hi and Wi are reviewed in depth by Deen. 76 They

will be summarized here and will be discussed in greater detail in Chapter 5. Briefly, Hi and Wi are

functions of the relative molecule-to-pore size dimensions. In the absence of energetic interactions,

they equal one for small, freely filtered molecules and equal zero for molecules completely excluded

from the pores. Hindrance factors can be approximated as the product of a steric term (the partition

coefficient or its convective equivalent 0), which accounts for the difference between the solute

concentration in the capillary lumen and that in the pore, and a hydrodynamic term (the inverse

enhanced drag coefficient K -1 or the lag coefficient G), a measure of the increased frictional force

the molecule experiences in moving through the pore:

Hi - *K - 1, (2.16)

Wi x G. (2.17)

For a solid-sphere in a cylindrical pore, expressions of Bungay and Brenner 4 7 are most commonly

used:

H = E',' (2.18)

-W =K',(2-Kt) (2.19)2K'q

9Kt = r2(1 A, )-5/ 2 1 - 3(1 - ) + 50, 400 (1 - A,)2]
4 60 50,400

-22.5083 - 5.6117A, - 0.3363A,2 - 1.216A3 + 1.647A4, (2.20)
9 7 2227

K's = -r2v/2(1 - A,)- 5 /2 1- -(1-A, ) + 50400(1- s )2]

+4.0180 - 3.9788A, - 1.9215A,2 - 4.392A3 + 5.006A4, (2.21)

where the partition coefficient = (1- A,)2 .

The sieving coefficient of the solute is calculated by performing mass balances on the total volume

flux and protein flux as described in Section 2.5.1, plus an additional balance on solute flux:

d(Qci) - -SJ.(). (2.22)
dEq. 2.22 is numerically integrated along the length of the capillary using E. 2.13. The average solute

Eq. 2.22 is numerically integrated along the length of the capillary using Eq. 2.13. The average solute
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concentration in Bowman's space, (ci,B), and the sieving coefficient, Oi, may then be calculated from

QACi,A -- QCi,
(Ci,B) - SNGFR (2.23)

(Ci,B)
el-- (C,,) (2.24)

Ci,A

where ci,A and ci,E are the solute concentrations in the afferent and efferent arterioles.

The nature of the boundary condition in Bowman's capsule is worth some discussion. If Bow-

man's space is considered well-mixed, then the appropriate boundary condition would be

Ci(, Y) = (Ci,B) = i Ci,A (2.25)

This was the original assumption employed by Chang et al..62 Deen et al.,83 using an analysis of

characteristic times based on the dimensions of Bowman's space, concluded that the well-mixed

assumption was probably not valid and that a preferable condition was spatially-dependent:

c (,y) J,(y) (2.26)

Du Bois et al.,8 9 showed that the theoretical sieving coefficients for these two cases are not substan-

tially different when the model assumes no axial pressure drop in the capillary. If, however, such a

pressure drop is included, relatively significant differences in predicted sieving coefficients occur for

small solutes (r, < 30 A): Oi using Eq. 2.26 was 5-10% lower than for the well-mixed case.

2.6.5 Heteroporous Models

The principal failing of the simple isoporous model is that it predicts a sharp cutoff of O at r, = ro.

Typical values for ro are 45-50 A in the rat, yet small but significant filtration of macromolecules

with r, = 60 A or greater occurs. Deen et al.79 addressed this discrepancy by comparing various

heteroporous models. Recent work has centered around two approaches: a continuous lognormal

distribution of pore sizes and the so-called isoporous + shunt distribution, which postulates a small

number of infinitely-sized pores in parallel with the isoporous membrane. Both of these models

require two parameters to describe membrane size-selectivity, as opposed to the one-parameter

isoporous membrane. They are discussed in more detail in Section 4.2.5 and Appendix B.

Additional models based on principles of distribution moments 14 5 ,1 4 6 or on non-equilibrium

thermodynamics 62 '2 0 0 have been proposed, but none have received extensive application in anal-

ysis of glomerular sieving.
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2.6.6 Pathophysiological Behavior of Permselectivity Parameters

Permselectivity changes in clinical disease states are usually characterized by a loss of both size-

and charge-selective properties. The size changes are manifested in the theoretical model as larger

values of the pore radius parameters. For neutral dextrans, a characteristic pattern in deviations

from normal sieving behavior is seen in almost all cases, both animal and clinical: sieving coeffi-

cients of small-to-medium sized molecules are normal or slightly lowered, while e for large (, > 50

A) molecules are elevated. This pattern is generally consistent with an increased filtration pres-

sure and/or decreased K! and an increased number of large pores compared to controls. These

changes have been observed in NSN,6 0 PAN nephrosis,3l"9 9 adriamycin nephrosis, 2 5 2 Heymann's

nephritis,2 62 renal ablation,l 98 clinical diabetes,4 9 ,1 0 1, 8 7,24 2 ,2 55 and minimal change disease.79 One

model where it has not yet been documented is for experimental diabetes, where studies of STZ-

and alloxan-induced diabetes showed no change in sieving from controls.l 77 ,2 05 It must be noted,

however, that in these two studies the maximum dextran size measured extended only up to around

48 A, and so it is quite probable that larger sizes must be examined to demonstrate the larger shunt.

· 2.6.7 Charge Selectivity

To date only limited modeling of the charge-selective properties of the glomerular capillary wall has

been performed. Deen et al.8 3 superimposed a homogeneous charge distribution on the isoporous

model and, based on studies of anionic dextran sulfate and cationic DEAE-dextran, calculated a

charge density of around -165 mEq/l for the normal capillary wall. Studies of charge permselectivity

have also been relatively limited in number. A significant increase in the fractional clearance of

dextran sulfate has been shown in both NSN and PAN nephrosis,2029 as well as a inhibition of

cationic DEAE dextran transport in NSN.28 These alterations have been correlated to reductions

in the fixed membrane charge from -165 mEq/l to -25 and -100 mEq/l for NSN and PAN,

respectively. 8 3 Interpretation of this data is made difficult by recent findings that dextran sulfate

binds to albumin in vivo.' 7 4 Hence, while the qualitative conclusions of lost charge selectivity are still

valid, quantitation based on dextran sulfate data probably is not. A suitable charged test molecule

for evaluation of capillary charge selectvity remains to be developed.
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Chapter 3

Calibration of Gel Permeation Chromatography Columns
with Narrowly-Sized Polymer Standards

3.1 Introduction

If sieving curve analysis is to be used to estimate filtration pressures, great care must be taken to

minimize methodological errors in the determination of tracer size and concentration. Two possible

sources of error in gel chromatography which have not been previously considered in great detail are

the calibration of the chromatography columns and the effect of column dispersion on the elution

profiles.

3.2 Theory of Gel Chromatography and Column Calibration

Separation of infused polymers into narrow fractions is performed by gel permeation chromatography

(GPC). The sample is eluted through a column packed with a porous material which will allow small

molecules access to the interstitial volume while excluding large molecules. Smaller molecules will

thus be retained longer in the column. Solute molecules are sized according to Kt, the fraction of

the column volume to which they have access, or by K,,, a commonly-used approximation for Kt:

Kt = V-- V' (3.1a)

Ve - Vo
K V ' (3.lb)

where V is the elution volume of the solute, Vo is the void volume (the solvent volume external

to the gel beads), Vt is the total column volume, and V, is the volume of the gel stationary phase.

K., is more frequently used because values for V, are generally not available. A solute completely

excluded from the packing interstitium (such as Blue Dextran 200, m.w.= 2 x 106 daltons) will have

a K., of 0, while solvent or molecules with unrestricted passage into the stationary phase will have

a K,, near 1, with the difference from unity due to V,.

Determination of the Stokes-Einstein radius (r,) of polysaccharide fractions is traditionally done

with calibration curves derived from globular protein standards. The assumption is that for polysac-

charides r, = ,, where , is the Stokes-Einstein radius of a globular protein with the same Kv,.

Chang et al.63 found that r, for commercial dextrans T10 and T20 preparations correlated well with

a linear calibration plot of Kv vs. In r, on Sephadex G-100 columns.

More recently, however, work by Jrgensen and M0ller 139 on Sephadex G-200 columns and by
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Squire23 2 and Frigon et al.'0 2 on silica gel (TSK-SQ) columns indicates that protein calibration is

not a suitable method of determining dextran size. In both of these studies, dextran samples were

seen to have smaller values for r, than proteins at equivalent K.,. In other words, dextrans on these

columns were more excluded from the gel interstitium than proteins and r, < ,. The magnitude

of this difference in silica gels is on the order of 10-20% for mid-sized dextrans (15-40 A).10 2 In

contrast, another study by Deen et al.77 employing Sephadex G-100 columns showed discrepancies

in the opposite direction (r, > ,).

Frigon et al.102 corrected for configurational effects using a model of Benoit et al.21 in which an

effective hydrodynamic volume vh is employed as the metric of molecular size. This volume is given

by
M[77]

vh ' (3.2)

where M is the molecular weight of the polymer, [7] is the intrinsic viscosity, v is a shape factor

equal to 2.5 for spherical particles, and NA is Avogadro's number. Values for [] for protein were

taken from the literature, while those for dextrans were calculated from an empirical relationship to

molecular weight. Thus vh for spherical particles scales as [77]M. When []M was substituted for r,

in the calibration, differences between proteins and dextrans were diminished.

In the study by Frigon et al.,'0 2 the values for dextran r, were based on measurements by

Granath l l9 in a diffusion cell. The Frigon study neglected to account for the fact that the dextran

fractions used by Granath were not monodisperse, with polydispersity indices (defined as the weight-

averaged molecular weight divided by the number-averaged molecular weight) ranging from 1.09 to

1.8, with most around 1.3-1.4. Thus their correlation of molecular weight to r, may not have been

particularly accurate.

More importantly, there is evidence that the Benoit hydrodynamic volume model does not com-

pletely explain gel permeation phenomena. Data by Belenkii et al.'9 on Sephadex columns indi-

cates that dextran and polyvinylpyrrolidone are less excluded (have higher retention volumes) than

polyethylene oxide at equivalent hydrodynamic volumes. Since all three molecules have random-

coil configurations, the lack of agreement suggests that additional mechanisms such as solute-gel

interactions may be important.

It would seem logical to expect that the behavior of macromolecules in gel exclusion would

follow the observed sieving trends in the glomerulus; that is, that dextrans, which experience a more

facilitated transport through the glomerulus than neutral globular proteins of equivalent Stokes-

Einstein radius,21 6 would also be retained to a greater extent in the stationary phase of the gel

beads. While this appears to be true for the data of Deen et al.7 7 and Belenkii et al.,1 9 the reverse

holds for the data of Frigon et al.'0 2 and J0rgensen and M0ller.'3 9 It therefore appears that the

degree and manner to which molecular configuration influences retention volume is dependent upon

the type of gel matrix in the column. Of particular note, the Belenkii et al. results, where dextran and
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PVP show similar degrees of transport into the gel and are less restricted than PEO, are consistent

with findings in glomerular filtration. 13 9 '2 4 6

The consequences of calibration errors on the analysis of sieving curves are shown in Figure 3-1.

The shifting of a sieving curve along the r, axis by calibration errors will lead to errors in fitted pore

parameters and, when performed, to fitted filtration pressures (P). The baseline curve, shown by

the solid line, was calculated directly from the isoporous solid-sphere model with ro = 50 A, AP =

35 mm Hg, and the other hemodynamic inputs as described in Figure 3-1. The dotted lines are the

same data as the solid line, but shifted 2 and 4 A to the left, equivalent to a calibration error where

r, > ,. Values of To and AP were then fit to the shifted curves using the methods of Section 7.3.1.

The error in ro is seen to be approximately equal to and in the same direction as the calibration

error, while the the fit overestimates AP by 8 mm Hg or more. The dashed lines show analogous

results for r, < ,. Again, the ro error scales with the calibration error, but the AP error is an

underestimation on the order of 5 mm Hg.

A possible discrepancy of 5 to 10 A in r, is thus seen to be of enough significance to warrant a

more accurate way of sizing the polymers. Since it will not be feasible to routinely calibrate with

narrowly sized fractions, it is proposed instead to develop simple correction functions from protein

calibration curves.

The most direct way to determine correct molecular sizes is to calibrate the GPC columns using

narrow molecular weight-range fractions of the polymers of interest. We report in Section 3.6.1

a comparison of calibration results obtained with proteins or with nearly monodisperse dextran

or Ficoll standards using Sephadex G-100 and Sephacryl S-300 HR columns. The r, values of the

various dextran and Ficoll samples were measured using quasielastic light scattering, and correlations

of r, versus molecular weight are given for both polymers. We also derive correction factors that

may be used in conjunction with protein calibrations of this type of column.

3.3 Effect of Column Dispersion on Sieving Curves

Dispersion causes backmixing as the sample elutes through the column and decreases the resolution

of the fractionation. For a monodisperse sample, dispersion leads to broadening of the elution peak;

for a polydisperse sample, it causes a "smearing" of the elution profile. The phenomenon is described

by a modified diffusion equation:

we X it 82 c(3.3)

where is the concentration averaged over the column cross-section, t is time, Ki is the Taylor

dispersion coefficient, and z is axial position in the frame of reference of the moving solute, with

z = 0 corresponding to the solute peak concentration. The solution for a pulse input at the top of
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Figure 3-1: Theoretical effect of a shift in sieving curve due to r, calibration error. The other
hemodynamic inputs are QA =172 nl/min, SNGFR =49.8 nl/min, Cp,A = 5.2 g/dl. The baseline
case is shown by the solid line. Dotted lines demonstrate shifts to the left of 2 and 4 A, dashed lines
indicated analogous shifts to the right. New values for ro and AP were fitted for the shifted curves
using the isoporous, solid-sphere model.
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the column is 9'23 8

A/ rR4 exp - Z (3.4)

where A is the amount of solute in the pulse and Rc is the column radius. For fully developed

laminar flow in an open tube, the dispersion coefficient can be shown analytically to be equal to

D + (UR,) 2 /48D, where U is the average fluid velocity in the column. 6 9 Several theories exist for

describing the functional dependence of K for gel columns, 12 2 ,2 60 but all rely on some degree of

empiricism.

The theoretical effect of dispersion on column elution is shown in Figure 3-2. As a first ap-

proximation, data from typical plasma and urine elution curves in Sephacryl 300-HR columns were

used as the inputs into a theoretical column. (Rigorous analysis would require use of the data as

output and calculation of the input by deconvolution.) The quantity of labeled tracer was measured

in counts per minute per microliter of sample. Input samples were modeled as a combination of

discrete pulses with sizes corresponding to elution volumes 3 ml apart (equal to the volume collected

in each tube of the fractionator). With no spreading in the column (K = 0, solid lines) there is

perfect separation and the elution curves are exactly the same as the size distribution of the sam-

ples. For a dispersion coefficient of 10 - 4 cm 2/s, there is minimal deviation of the elution curves

from perfect separation. In the plasma sample, the deviation is -0.6% at 20 A, -4.8% at 40 A, and

2.3% at 60 A. In urine, the respective deviations are 1.6%, 4.2%, and 8.3%. For K = 10 - 3 cm 2/s,

dispersive effects become more noticeable, especially for the urine sample, leading to a "flattening"

of the profiles. The deviations in the plasma samples are -0.6%, -18.3%, and 17.8% at 20, 40, and

60 A, respectively, and for urine the deviations are -10.5%, 47.3%, and 144%, respectively. Because

the plasma profile is more nearly constant than the urine profile, it is less affected by dispersion.

(Values for O were calculated from Eq. 4.1 with the inulin ratio and protein correction factor given

in Figure 3-3.) The effect of dispersion on the resultant sieving curve is shown in Figure 3-3. The

sieving curve is altered in a manner similar to that of the urine profile, with values lowered at small

r, and raised at large r,. Again, dispersion coefficients of 10 - 4 are not significant, changing by

2%, 9.4%, and 6% at 20, 40, and 60 A, respectively, while those of 10- 3 noticeably affect the sieving

curve, changing O by -10.1%, 80.5%, and 107%.

3.4 Effect of Elution Volume Errors on Sieving Curves

A final possible source of error is in the measurement of elution volume. If the error is the same

for both plasma and urine samples (i.e., Ve is incorrectly measured by the same amount), then the

effect is equivalent to that of an r, calibration error. Alternatively, there may be a relative "tube

shift" error (so called because the elution volumes are collected into numbered tubes), where V, for

one sample does not correspond to V, for the other. This situation is examined in Figure 3-4. The
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Figure 3-2: Theoretical effects of column dispersion on plasma and urine elution curves. Curves
calculated using column height = 56 cm, R, = 1.3 cm, and solvent velocity = 0.0126 cm/s. The
fluctuations in the solid lines represent normal scatter in the data
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Figure 3-3: Theoretical effects of column dispersion on sieving curves. Sieving coefficients calculated
from Eq. 4.1 using plasma and urine elution curves of Figure 3-2 and (U/P)inulin = 119.03, f' = 0.95.
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Figure 3-4: Theoretical effects of "tube shift" on sieving curves. O calculated as in Figure 3-3. Shift
is denoted by a change in urine V from the zero shift case. Curve for zero shift is the same as the
KC = 0 curve of Figure 3-3.
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Dextran FDR 7314+403 Fr 4 87,500 76,700 1.14 72
70 Fr I-1 72,100 62,600 1.15 64
FDR 7314+403 Fr 8 53,300 48,100 1.11 58
FDR 7314 Fr 22 41,200 38,000 1.08 52
RMI T8630 Fr 3 40,400 38,900 1.04 47
FDR 7314 Fr 32-36 25,600 24,200 1.06 42
FDR 7314 Fr 32 25,600 24,200 1.06 41
T5558+7650 Fr 2 10,000 9,200 1.09 26
PD T5558 Fr 10 9,860 9,430 1.05 26
T5558+7650 Fr 5 4,300 3,880 1.11 20

Ficoll T1800 Fr 20 132,000 - - 69
T2580-IVB Fr 2 71,800 64,600 1.11 49
T2580-IVB Fr 4 58,700 53,000 1.11 44
T2580-IVB Fr 8 37,500 34,500 1.09 35
T2580-IVB Fr 11 21,800 20,300 1.07 29
T2580-IVB Fr 12 17,500 16,200 1.08 30

Table 3.1: Polymer standards used for GPC calibration. Abbreviations: Mw-weight-averaged
molecular weight, Mn-number-averaged molecular weight. Sample ID, M,, and Mn are those
provided by manufacturer. Values of r, were determined by quasi-elastic light scattering.

KX = 0 case of Figure 3-3 is used as the baseline case. Shifting the urine elution curves by 3 ml

(equivalent to one tube volume for the experiments of this work) in either direction is seen to have a

small effect on e9. The deviation from baseline is around 5% at 20 A and 30% at 40 and 60 A. This

will be true as long as the tracer distribution in the plasma is relatively uniform, as in Figure 3-2.

If the plasma profile has significant gradients, then tube shift effects will be large in the region of

the gradients.

3.5 Materials and Methods

3.5.1 Polymer Standards

Ten relatively monodisperse samples of dextran and six of Ficoll were obtained courtesy of Dr.

Kirsti Granath of Pharmacia, Uppsala, Sweden. The weight-averaged molecular weights (M, ) and

number-averaged molecular weights (M,), as supplied by Dr. Granath, are given in Table 3.1. The

polydispersity index (M,I/M,) for all samples was < 1.15.

3.5.2 Quasi-elastic Light Scattering

The diffusion coefficients (D) for the dextran and Ficoll standards were measured by quasielastic

light scattering. Polymer samples (2 or 5 mg/ml) were prepared by dissolving dextran or Ficoll

in high-purity water (MilliQ, Millipore Corporation, Bedford, MA) and filtering the solution five
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times through 0.22 ptm pore diameter films. (Millex-GV, Millipore). The light scattering apparatus

consisted of a 2 W argon-ion laser (Model-95-2 Ion Laser, Lexel, Fremont, CA), goniometer (Model

BI-2000 SM, Brookhaven Instruments Corp., Holtsville, NY,), and 136-channel digital correlator

(Model BI-2030 AT, Brookhaven Instruments). The sample temperature was maintained at 25 °C

by a circulating water bath (System II Liquid/Liquid Recirculator, Neslab, Newington, NH). The

wavelength of the measured light was 488 nm, the aperture was 200 nm, and the scattering angle

was 1350. Sampling time varied from 01. to 0.5 s, depending on molecular weight, with a total

counting time of one minute. Diffusion coefficients were fitted to the autocorrelation function by a

second-order cumulant method.14 7

The Stokes-Einstein radius r, is related to D by

kBT
67r-6' (3.5)

where kB is Boltzmann's constant, T is absolute temperature, and M is the viscosity of water.

3.5.3 Gel Permeation Chromatography

A set of GPC columns of 2.6 cm diameter (Model C 26/100, Pharmacia Fine Chemicals, Piscataway,

NJ) was packed with Sephacryl S-200 HR (Pharmacia). The packed column height was 56 cm and a

buffer flow rate of 3.8-4.0 ml/min was maintained by a peristaltic pump (2232 Microperpex S, LKB,

Bromma, Sweden). The eluent buffer was 0.05 M ammonium acetate at pH 7. The void volume

(Vo) of the columns was determined by the elution of blue dextran (Sigma Chemical Co., St. Louis,

MO). Continuous dextran and Ficoll elution curves were determined by differential refractometry

(Series R-400 Differential Refractometer, Waters Associates, Milford, MA). The elution volumes

of colored proteins were measured by collection of 3 ml aliquots in an automatic fraction collector

(2070 Ultrorac II, LKB) and reading of light absorbance at 415 nm (DU-50 Spectrophotometer,

Beckman Instruments, Fullerton, CA). The proteins used were ferritin (horse spleen), horseradish

peroxidase, myoglobin (horse heart), and cytochrome c (horse heart) (Sigma Chemical). Based on

published diffusivities, 5 4' 1 71,21 9' 23 9 their molecular radii were taken to be 59.4, 30.4, 19.0, and 16.5

A, respectively.

A second set of columns of 2.5 cm diameter were packed with Sephadex G-100 (Pharmacia) to a

column height of 46.5 cm. As a pump could not be used with this packing, elution was performed by

a constant pressure head of 90 cm of water. Four ml aliquots of dextran, Ficoll, and protein elutions

were collected in the fraction collector. Dextran and Ficoll elution peaks were determined by batch

refractometry and protein peaks were determined by absorption.
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Figure 3-5: Graphical method of calculating peak variance.

3.5.4 Calculation of Dispersion Coefficients

Dispersion coefficients were calculated graphically from the elution peaks. Each peak was assumed

to approximate a Gaussian curve, and the variance oap for each peak was calculated by measurement

of either Wb or W1/2 as shown in Figure 35.280 The dispersion coefficient is then given by l °

KC = .
2t,

(3.6)

This method is strictly true only for a monodisperse pulse. Any polydispersity in the sample will

also contribute to widening of the peak, so the values reported are in fact upper limits for KC.

3.6 Results and Discussion

3.6.1 Quasi-elastic Light Scattering

The values of r, obtained by quasielastic light scattering are shown in Table 3.1, and are plotted

as a function of Mo, in Figure 3-6. The dependence of r, on M, is described to within 9% by the

correlations

r, = 0.488M° 437for dextran

r, = 0.421M 427for Ficoll

(3.7a)

(3.7b)
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Figure 3-6: Stokes-Einstein radius (r,) of dextran and Ficoll as a function of weight-average
molecular weight (M, ). The present results for dextran are compared with those from the
literature.4 8 ,119 la3 9 The curves are correlations given by Eqs. 3.7.
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Gel Polymer a b
Sephacryl S-300 HR Dextran 0.3150 1.522

Ficoll 0.2924 1.438
Proteins 0.3048 1.458

Sephadex S-100 Dextran 0.5798 2.277
Ficoll 0.6330 2.407
Proteins 0.5543 2.135

Table 3.2: Constants in correlations of Kay versus r, (Eq. 3.8).

where r, is given in A.

Also shown in Figure 3-6 are r, values reported previously for dextran using three different

methods. The data of Granath" 9 were obtained by measurements in a diffusion cell, Callaghan

and Pinder4 8 used pulsed field gradient NMR, and Jrgensen and M0ller s39 used analytical cen-

trifugation. The first two of these studies used commercial dextran fractions having significant

polydispersity (M-/M, > 1.3), while Jrgensen and Moller used narrow fractions comparable to

those employed here. Our results for dextran coincide fairly closely with those of Callaghan and

Pinder4 8 and Jrgensen and M0ller, 1 39 while the r, values of Granath l9 are larger at any given

value of Mw. For the same M, the Stokes-Einstein radius of Ficoll tends to be somewhat lower than

that for dextran. There appear to be no previously published data for r, versus M, for Ficoll.

3.6.2 Gel Permeation Chromatography

The calibration results for the Sephacryl and Sephadex columns are shown in Figure 3-7 as semilog

plots of Kay versus r,. Unlike the columns used by Jrgensen and M0ller139 and Frigon et al.,'0 2

the differences between protein and polysaccharide elution volumes on Sephacryl S-300 HR columns

are fairly small. The differences are also small for Sephadex G-100 columns, in agreement with the

previous measurements by Chang et al.63

The best-fit lines for the data in Figure 3-7 are of the form

Kav = -aln , + b, (3.8)

with r, expressed in A. The values of the constants a and b for the various polymers and gel materials

are given in Table 3.2 These results may be used to derive correction factors for r, of dextran or

Ficoll which compensate for the use of proteins as the calibration standard. These correction factors,

defined as A = r, - ,, are shown in Figure 3-8 for dextran and Ficoll. As shown, Sephacryl S-300

HR columns calibrated with proteins would yield slight underestimates of r, for both dextran and

Ficoll (A > 0), while such calibrations on Sephadex G-100 would also underestimate r, for dextran
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Figure 3-7: Fractional retention volume (Ka,) as a function of Stokes-Einstein radius (r,) for dextran,

Ficoll, and various globular proteins on Sephacryl S-300 HR columns. The lines represent the

correlations given by Eq. 3.8 and Table 3.2.
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Figure 3-8: Molecular radius correction factors for dextran and Ficoll on Sephacryl S-300 HR and

Sephadex S-100 columns.

51

I I' I I I

____ Dextran on Sephacryl S-300 HR

....... Ficoll on Sephacryl S-300 HR

--- vfrnn nn S(nhndoY r-1Inn

--- Ficoll on Sephadex G-100

.~ ...........

.-- r_- . .. .

I I

_ · 1 1 1 1 1I

.1-1
.___I -

.__I

I I I



but overestimate r, for Ficoll for , > 30 A.

3.6.3 Dispersion Coefficients

Figure 3-9 shows the estimated dispersion coefficients for eight dextran and four Ficoll samples

for which calculations could be performed. There is no discernible difference between dextran and

Ficoll results. A linear dependence of K on r, is indicated, supported by theoretical formulations

which indicate that ap oc 1/VD. 2 6 The dispersion coefficients are on the order of 10-8 -10- 4 cm 2 /s,

placing them at the border of significantly affecting the elution curves. The actual values of K are

somewhat lower than those shown in Figure 3-9 because of sample polydispersity. Thus sieving

coefficients below 40 A should be only minimally affected by dispersion. For e at r, > 60 A, c

may be more on the order of 10- 3 cm 2 /s, and Figure 3-3 suggests that the error due to dispersion

may be as high as a factor of two. However, standard errors for e at large r, are on the order of O,

and so correcting for dispersion would probably not contribute significantly to the normal analysis

of sieving data.

3.7 Summary and Conclusions

In this chapter, we have used monodisperse dextran and Ficoll standards to demonstrate the dif-

ferences between calibration curves derived from globular proteins and those derived from linear

(dextran) and cross-linked (Ficoll) polysaccharides. On the Sephacryl 300-HR columns empolyed by

this study, the differences were found to be small, on the order of 5 A or less. The effect of column

dispersion on a polydisperse elution profile was determined by estimation of Taylor dispersion coef-

ficients from the monodisperse elution peaks. For typical plasma and urine samples obtained from

sieving analysis, column dispersion was shown to be negligible for small (r, < 40 A) tracers. While

dispersion effects may be theoretically important for larger (r, > 60 A) molecules, it probably has

no practical significance due to the high degree of experimental scatter in measured values of 9 at

these sizes.
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Chapter 4

Comparison of Ficoll and Dextran Sieving in the Normal
Munich-Wistar Rat

4.1 Introduction

Ideally, the fractional clearance of a neutral tracer at a given molecular size would be independent of

the polymer used and identical to that of a neutral endogenous protein of the same size. In practice,

using the Stokes-Einstein radius r, as the metric of molecular size, considerable variation exists in

the values of O from different macromolecules. In animal studies comparing dextran sieving to that

of Ficoll,31 polyethylene oxide (PEO),' 3 9 polyvinylpyrrolidone (PVP),2 4 6 and horseradish peroxidase

(HRP),l9 s,8 99, 216 , 252 dextran O exceeds those of the other tracers, although only slightly in the case

of PVP. In terms of the traditional pore model of glomerular permselectivity-which assumes that

all tracers behave as solid spheres of radius r,-the dextran values correspond to a membrane of

comparatively larger pore radius.

Consequently, although the pore-size parameters derived from dextran sieving data for nephrotic

humans often account quantitatively for the observed levels of proteinuria, the pore-size parameters

in healthy controls fail to explain the absence of appreciable protein excretion. 79 120 Because albumin

has a net negative charge under physiological conditions, the presence of at most trace levels of

albumin excretion in healthy individuals might be explained largely by the charge-selectivity of

the normal glomerular capillary wall.3 0 ' 1 ' 21 5 The charge-selectivity of the filtration barrier does

not, however, explain the virtual absence in normal urine of IgG, which is nearly neutral. Protein

reabsorption by the tubules certainly contributes to the discrepancy between the urinary clearances of

dextran and protein in normal individuals, but the reported values of fractional protein reabsorption

of _ 90%1041196 would account for only a ten-fold difference between dextran and proteins such as

IgG. Therefore, some factor in addition to charge-selectivity and protein reabsorption is needed to

explain the differing urinary excretion rates of dextrans and proteins of similar r,.

The sieving coefficient in normal rats has been measured in the range of 1.9 x 10 - 4 to 1.1 x 10 - 3

for albumin'14 2 29 4 '98 "104 ' 10 5 61 ' 164 ' 166 ,193 - 19 5 235 249' 26 4 (r, = 35.5 A), at approximately 0.07 for

neutral HRPl9 8s' 99 '216 ' 2 52 (r, = 30.4 A), and at 5.2 x 10- 3 for IgGl0 5 (r, = 55 A). In comparison,

reported ranges for dextran values at 30, 40, and 50 A are 0.20-0.86, 0.01-0.49, and 0.002-0.13,

respectively.' 6 9 Again, while the difference between dextran and albumin may be explained in part

by charge-selectivity, this rationale does not hold for neutral HRP or IgG.

The applicability of theoretical modeling is thus limited in that membrane pore parameters are
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specific for a particular tracer and do not provide an absolute measure of the ability of the glomerulus

to retain proteins. There is considerable evidence that, in addition to the effects of molecular size

and charge, differences in molecular configuration may have an important influence on the relative

filtration rates of proteins and various exogenous macromolecules. Dextran, PEO, and PVP are

linear, flexible chains of varying degrees of solvation, while Ficoll and proteins are cross-linked and

comparatively rigid. Of particular interest is the fact that the relative ranking of filtration rates in

vivo is mimicked by the diffusion rates of these polymers through synthetic porous membranes; that

is, edextran - OPVP > OFicoll > ePEG. Thus, the transport rates of various neutral macromolecules

differ appreciably and the relative rates seem more dependent on the type of permeating molecule

than on the chemical composition of the barrier.

Especially noteworthy is the fact that in track-etched polycarbonate membranes of known pore

size, the measured diffusivity for Ficoll has been found to closely match the theoretical predictions

for a neutral, solid sphere, whereas that for dextran is much larger.32 ,71 These findings and the

aforementioned similarities among transport rates in vivo and in vitro suggest that Ficoll should

provide accurate absolute values of effective glomerular pore size, values which might be extrapolated

reliably to proteins. These results also imply that using dextran together with the customary solid

sphere theory will lead to systematic overestimates of glomerular pore size. In other words, Ficoll is

probably a more accurate marker for filtration of neutral, globular proteins than is dextran. As with

dextran, Ficoll is not secreted or reabsorbed by the tubules,3s and it can be prepared in a broad

range of sizes.

There has been only one previous physiological investigation using Ficoll, where Bohrer et al.3

performed sieving measurements in Munich-Wistar rats and found that Ficoll sieving coefficients

were considerably lower than those for dextran at r,= 24 to 44 A. While the results are significant,

the data are inadequate for in-depth analysis for three reasons:

1. It was a two-period study: in a given animal, a 3 H-dextran sieving measurement was followed

by a 3 H-Ficoll sieving measurement, or vice versa. The time between polymer infusions was

approximately three hours, which may not have been sufficient for complete removal of the

first tracer, especially at larger sizes, and so residual activity may have influenced the second

set of values.

2. Micropuncture measurements of flow rate and pressures were not performed, so direct calcu-

lation of pore parameters cannot be made.

3. The largest size examined was only 44 A. Advances in separation technology now make it

possible to examine O at r, up to 65-70 A-where the effects of glomerular permselectiv-

ity are more important. Additionally, gel chromatographic calibration in the Bohrer study

was performed with globular proteins, which as seen in Chapter 3 may lead to errors in the
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determination of molecular size.

In the following study, we compared dextran and Ficoll sieving in a manner which addresses

the deficiencies above. Separate animals were used for each tracer, micropuncture and whole kidney

hemodynamic measurements were performed, and permselectivity data was taken over a wider range

of r,. Several heteroporous membrane models were used to analyze the data. In the following chapter

a theoretical model for random coil permselectivity is used to quantitate the effects of molecular

configuration and to suggest a possible explanation for dextran/Ficoll sieving differences.

4.2 Materials and Methods

4.2.1 Preparation of Radiolabeled Polymers

Tritiated dextran (#TRA 382, M, 70,000) was obtained from Amersham Corp. (Arlington

Heights, IL). Ficoll was tritiated using the following modified version of the protocol of Bohrer et

al.:31 One gram of Ficoll 70 (Pharmacia Fine Chemicals, Piscataway, NJ) was dissolved in 5 ml of

water and oxidized by adding 0.525 g of NaIO4 and reacting in the dark for 18 h. The solution

was desalted by elution through disposable PD-10 gel chromatography columns (Pharmacia LKB

Biotechnology AB, Uppsala, Sweden). The pH was adjusted to 8.0 by addition of NH 4OH. One

hundred mCi of tritiated sodium borohydride (New England Nuclear, Boston, MA) was added to the

oxidized Ficoll in a fume hood. After 4 h, excess (0.2 g) unlabeled NaBH 4 was added and the reaction

was allowed to proceed for an additional hour. A few drops of acetic acid were added to remove

residual borohydride, and then the unreacted label was removed by elution with phosphate-buffered

saline (pH 7.0) through disposable PD-10 columns.

The resulting stock 3 H-Ficoll solution was approximately 10 ml in volume with a total activity

of 11 mCi. Dilutions of this stock were used for infusion in the rats as described in the next section.

4.2.2 Animal Studies

All animal care and preparation, whole kidney measurements, and micropuncture studies were per-

formed by Dr. Sharon Anderson and Julia L. Troy at the Laboratory of Kidney and Electrolyte

Physiology at Brigham and Women's Hospital.

4.2.2.1 Animals

Sixteen healthy male Munich-Wistar rats with weights ranging from 240-306 g were used in these

studies. All were fed ad libitum standard rat chow (Wayne Rodent Blox, Allied Mills, Chicago, IL)

containing 24% protein by weight and allowed free access to water. Sieving measurements were

performed in each animal using either radiolabeled dextran (7 animals) or Ficoll (9 animals) as the
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infused tracer. Micropuncture measurements of single nephron pressures and flows were performed

immediately before the sieving studies in eight of the animals (2 with dextran, 6 with Ficoll).

4.2.2.2 Surgical Preparation

The rats were anesthetized with Inactin (100 mg/kg i.p.) and placed on a temperature-regulated

table. The left femoral artery (FA) was catheterized with a polyethylene tube (PE-50 Clay Adams,

Parsippany, NJ), and a baseline collection of blood was obtained for hematocrit and inulin "blank"

measurements. The FA catheter was used for subsequent periodic blood sampling, for the continuous

arterial collection of dextran or Ficoll tracer, and for estimation of mean arterial pressure (AP) via

an electronic transducer connected to a recorder. A tracheostomy (PE-240) was performed, and

PE-50 catheters were inserted into the left and right jugular veins for infusions of inulin, para-amino

hippurate (PAH), plasma, and radiolabeled tracer. The left kidney was exposed and suspended on

a lucite holder, and its surface was illuminated and bathed with isotonic saline. The left ureter was

catheterized (PE-10 Clay Adams) for urine collections.

Since the rats lose approximately 20% of their plasma volume in surgical preparation, 135 euv-

olemia was maintained using the following protocol: isoncotic rat plasma was infused at 0.1 ml/min

to a volume equal to 1% of the body weight, followed by a sustained infusion rate of 1.6 ml/kg/h

for the duration of the experiment. Intravenous infusions of 10% inulin + 0.8% PAH in 0.9% NaCl

at 1.2 ml/h were started one hour before measurements and continued through the experiment.

4.2.2.3 Whole Kidney Hemodynamic Measurements

FA blood samples were obtained for determination of hematocrit and plasma concentrations of

protein (Cp,A), inulin, and PAH. Timed urine collections were obtained for determination of flow

rate and inulin and PAH concentration. These measurements permitted calculation of GFR (from

inulin clearance), RPF (from PAH clearance), and FF (= GFR/RPF).

4.2.2.4 Micropuncture Measurements

In the animals subjected to micropuncture, timed samples of tubule fluid were collected from su-

perficial proximal tubules for determination of flow rate and inulin concentration and calculation of

SNGFR. Blood samples from efferent arterioles were obtained for determination of the efferent pro-

tein concentration (Cp,E). The FA measurements described above were used for glomerular afferent

arteriole values. From these, single nephron filtration fraction (SNFF) and glomerular plasma flow

rate (QA) could be calculated.

Time-averaged hydraulic pressures were measured in surface glomerular capillaries (PGc), prox-

imal tubules (PT), and efferent arterioles (PE) with a servo-null micropipette transducer system
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(Instrumentation for Physiology & Medicine, San Deigo, CA). The glomerular transcapillary hy-

draulic pressure difference was calculated as AP = PGC - PT.

4.2.2.5 Tracer Infusion and Collection

Immediately after the micropuncture measurements had been completed, a 0.4 ml bolus of isotonic

saline solution containing either tritiated dextran or Ficoll of broad molecular size distribution

(dextran concentration < 100 mg/dl, specific activity & 50 tCi/ml; Ficoll concentration < 700

mg/dl (estimated assuming 70% of the original Ficoll was recovered in the labeled stock solution),

specific activity m 110 gtCi/ml) was infused intravenously over 1.5 min, followed immediately by a

constant infusion of the same solution at the rate of 1.2 ml/h.

The oncotic pressure due to the tracer can be approximately calculated using the estimated Ficoll

concentration of 700 mg/dl (which is a conservative upper bound). Using an average time of an

hour for an experiment, the total amount of tracer infused is (700 mg/dl x 0.4 ml) + (700 mg/dl

x 1.2 ml/h x 1 h) = 11.2 mg. Assuming the total plasma volume of a 0.265 kg rat is proportional

to that of a 70 kg man with a hematocrit of 45 and circulating volume of 6 1, plasma volume = 6 1

x(1-0.45) x 0.265/70 = 0.125 dl. The maximum possible tracer concentration is then 11.2 mg/0.125

dl ~ 0.1 g/dl, which is just low enough to have a negligible effect on total oncotic pressure.

Ten to fifteen minutes after the the priming bolus, a continuous FA blood collection was begun at

a rate of 24 til/min for 15 minutes. These samples were drawn into capillaries containing heparinzed

saline. Urine collection were initiated and terminated 1.5 minutes after the arterial blood collections,

to allow for transit time from Bowman's space to the tip of the ureteral catheter.

The FA sample was spun at 3000 rpm in a refrigerated centrifuge (Sorvall Model RT6000B,

DuPont, Wilmington, DE) to remove cells, yielding a supernatant plasma volume of approximately

150 /l. Duplicate aliquots of 25-75 utl of FA plasma or 50-100 p1 of urine were added to 1 ml of 2

mg% blue dextran (Sigma Chemical Co., St. Louis, MO). These samples were then fractionated and

counted as described in Section 4.2.3.

4.2.2.6 Analytical Methods

The volume of fluid collected from individual proximal tubules was estimated from the length of the

fluid column in a constant bore capillary of known internal diameter. Tubule inulin concentration was

measured by the micro-fluorescence method of Vurek and Pegram.25 0 Inulin concentrations in plasma

and urine were measured using the macro-anthrone method of Fiihr et al.10 3 Protein concentrations

were determined using the fluorometric method of Viets et al.2 4 8 PAH concentrations were measured

by the method of Chasis et al.65 Colloid osmotic pressure of plasma entering and leaving glomerular

capillaries was estimated from Cp,A and C,E using the equation of Deen et al.8 4
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4.2.3 Fractionation of Radiolabeled Plasma and Urine Samples

Labeled plasma or urine samples was drawn into a syringe, and the empty vial was rinsed twice with

a volume of 0.5 ml distilled water. The rinsings were added to the sample. The total 2-ml volume

was fractionated on a Sephacryl S-300 HR column (Pharmacia) which had been calibrated with

polymer standards as described in Chapter 3. The eluent buffer was 0.05 M ammonium acetate at

pH 7, and the method of operation was as described in Section 3.5.3. The samples were fractionated

into 3 ml aliquots, and 2 ml from each aliquot was mixed with 4 ml of scintillation fluid (Ultima

Gold, Packard Instrument Co., Inc., Downers Grove, IL). Activity was measured in a scintillation

counter (Tri-Carb Model 4530, Packard Instrument Co.). Based on an analysis of the minimum

significant activity above background, cpm rates below 120 were rejected (see Appendix C).

4.2.4 Calculation of Sieving Coefficients

It has been shown previously using relatively monodisperse dextran62 or Ficoll s1 samples that there

is close agreement between values of E9 obtained from Bowman's space collections and from urinary

fractional clearances in the same animal. Sieving coefficients from plasma and urine activity were

calculated from

3 - (U/P)iul x f', (4.1)

f' = -0.007895Cp,A + 0.9916, (4.2)

where (U/P)pm is the urine-to-plasma ratio of scintillation counts per unit volume of sample,

(U/P)inuin is the urine-to-plasma ratio of inulin concentration, and f' is a plasma volume correction

factor which accounts for the fact that the inulin plasma concentrations were measured in protein-free

plasma water, while the labeled plasma samples contained protein. A typical value for f' was 0.95.

Finally, O was calculated at integer values of r, from the raw sieving curve using the interpolation

scheme of Akima.3 4

4.2.5 Data Analysis

The approximate method of Deen et al.7 9 was used to fit membrane pore parameters to heteroporous

models. Modifications to the numerical method which reduced computation time are discussed in

Appendix B.

Several hypothetical pore-size distributions were considered. The isoporous + shunt and lognor-

mal models79 are the most frequently employed in the literature. Briefly, the isoporous + shunt

model is described by the parameters ro and wo, where ro is the radius of the overwhelming ma-

jority of the pores, while w describes the fraction of the volume flux transported through a tiny

number of pore of effectively infinite size ("shunt" pores). The lognormal distribution is described
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by parameters u and s, where the pore-size probability distribution g(r) is given by

1 (ip [1ln(r/) 2\
g(r) =exp - n (4.3)

rlns (2 L Ins 

Here we introduced two new models, logical extensions of the previous two. The lognormal

+ shunt model assumes a small number of infinitely large pores in conjunction with a lognormal

distribution, using parameters u, s, and wo0 .

The double lognormal model assumes two populations of pores each distributed lognormally, with

a parameter q2 indicating the fractional number of pores from the second distribution. Then

() = 2 ex 2 nr/u) 2 -exp in(r/u 2)]) (44)
r In sv L ex lnsj + r ns 2 v/ exp lns2

and g(r) is the pore probability distribution function discussed in Chapter 2. Issues pertaining to the

use of the approximate model for the lognormal + shunt and double lognormal models are discussed

in Appendix B.

(A third new model, an intermediate of the lognormal and double lognormal models, was briefly

examined. This model had parameters u, sl, 2, and q2 where

1 - q2 ( ln(r/U) + q2 1 [ln(r/u)J2

r In slV 2 In sl , +r 2 -2 exp 2 In S2 ' (4.5)

It was discarded because fitting results were indistinguishable from the lognormal distribution.)

Powell's method2 0 6 was used to fit the pore parameters for a given model by minimizing X2 ,

defined as
m 1- - -- 2

x2 =i (i,exp i,calc (4.6)

where m is the number of data points, ei,exp and ei,ci,, are the experimental and calculated sieving

coefficients, respectively, for molecular size i, and ai,,xp is the standard error of Oi,exp.

Standard errors orj for each fitted parameter aj were estimated by20 6

j = lCj, (4.7)

where Cjj are the diagonal elements of the covariance matrix C of the fit with respect to the

parameter vector a:

C = a-l (4.8)

i=kl [ aa aa (4
i=1 ' Ok 9a
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The partial derivatives were calculated numerically using a finite-difference scheme. This method

assumes that the model can be approximated linearly near the optimization point, and tends to

underestimate the true value of the standard error.

Statistical comparisons between two groups were made using the unpaired two-sample Student's

t-test. Comparisons between more than two groups were made by analysis of variance, with Scheffe's

test used to determine conservatively if values were significantly different and Tukey's test used to

determine conservatively if values were not significantly different. [220, pp. 941-948]

4.3 Results

4.3.1 Hemodynamic Data

The mean values of various systemic and whole kidney quantities are shown in Table 4.1 for the

rats given dextran, those given Ficoll, and the two groups combined. There were no statistically

significant differences in body weight, hematocrit, GFR, FF, or Cp,A between the dextran and Ficoll

groups. There were modest differences in RPF (20%) and AP (10%) between the two groups which

did achieve statistical significance. As will be discussed, a difference in RPF of this magnitude is

expected to have little effect on the measured dextran or Ficoll sieving curves.

The single nephron quantities obtained in the 8 rats which underwent micropuncture are sum-

marized in Table 4.2. The value of the single nephron glomerular ultrafiltration coefficient (Kf)

computed from the data in the "total" column of Table 4.2 was 4.25 nl/min/mm Hg. All of these

values are within typical ranges for normal euvolemic Munich-Wistar rats in this laboratory. Because

of this, and the aforementioned similarities in whole kidney hemodynamics quantities, the data in

the "total" column of Table 4.2 were taken as representative of the entire group of rats studied

(including those which did not undergo micropuncture).

4.3.2 Sieving Data

The sieving coefficients (fractional clearances) measured for dextran and Ficoll are shown in Table 4.3

and Figure 4-1. As the Stokes-Einstein radius (r,) increased from 19 to 65 A e for dextran decreased

from 7.1 x 10-1 to 7.7 x 10-3; the corresponding range of e for Ficoll was 3.3 x 10- 1 to 7.1 x 10 - 4 .

At any given value of r,, e for dextran greatly exceeded that for Ficoll, with a nearly constant

dextran-to-Ficoll ratio of 10 for r, > 30 A. The differences between dextran and Ficoll were

highly significant (p < 0.01) for all molecular radii examined. The differences in log(e) between the

groups, which is a more valid comparison as - 0, are even more significant (p < 0.0001).

4.3.3 Pore Size Parameters

The membrane pore parameters derived from the dextran and Ficoll data are shown in Table 4.4.
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SNGFR (nl/min)
QA (nl/min)
SNFF
AP (mm Hg)
Cp,A (g/dl)

Dextran
(n = 2)

58.0±4.0
191+20

0.30±0.01
37.0±2.9
5.2±0.2

Ficoll
(n=7)

47.0±3.4
166±14

0.29±0.01
32.7±1.6
5.2±0.1

Total
(n = 9)

49.8+3.2
172±12

0.29±0.01
33.8±1.5
5.2±0.1

Table 4.2: Single nephron pressures and flows for dextran- and Ficoll-infused normal Munich-Wistar
rats rats. All values shown are mean ± one standard error.

r () Dextran (n=7)
19 7.06 x 10-1±8.72 x 10-2
21 5.74x 10-1i7.65x 10 - 2

23 4.81 x 10-1±8.02 x 10- 2

25 3.72 x 10-1±6.94 x 10-2
27 2.84x 10-1±5.57 x 10- 2

29 2.16 x 10- 14.26 x 10- 2
31 1.64 x 10-1±3.36 x 10-2
33 1.35 x 10-1±3.34 x 10-2
35 8.94 x 10- 21.89 x 10 - 2

37 6.99 x 10-2±1.45 x10-2
39 5.26 x 10- 2±1.05 x 10-2
41 4.18 x 10-2I8.11 x 10- 3

43 3.03 x 10- 2±6.12 x 10-3
45 2.34 x 10- 2± 4.03 x 10- 3

47 2.14 x 10- 2 /3.56 x 10- 3

49 1.80 x 10-2±2.95 x 10-3
51 1.55 x 10- 2±2.43 x 10- 3

53 1.36 x 10-2±2.06 x 10-3
55 1.18 x 10-2±1.78 x 10- 3

57 1.05 x 10- 2±1.61 x 10-3
59 9.46 x 10-3±1.54x 10-3
61 9.00 x 10-3-1.48 x 10- 3

63 8.34x 10-3±1.41 x 10- 3

65 7.71 x 10-3±1.33 x 10-3

Ficoll (n=9)
3.28 x 10-1±3.68 x 10-2
2.01 x 10-1'2.66 x 10-2
1.20x 10-1±1.80 x 10-2
7.39 x 10-2±1.25 x 10-1
4.09 x 10-2±8.09 x 10- 3
2.65 x 10- 24.61 x 10- 3

1.65 x10-2±3.05x 10- 3
1.13 x10-2±2.19 x10 - 3

8.15 x 10-3±1.71 x 10- 3

6.04x 10-3±1.35 x 10- 3

4.79 x 10- 3±1.10 x 10- 3

3.76 x 10-3±9.06 x 10-4

3.32 x 10-3±8.50x 10- 4

2.57 x 10-36.79 x 10 - 4

2.23 x 10-3±5.96x 10- 4

1.94 x 10-3±5.27 x 10- 4

1.66 x 10-34.53 x10 - 4

1.41 x 10-3±3.74 x 10- 4

1.23 x 10-33.30x 10- 4

1.10x 10-323.11 10- 4

9.75 x 10-4±2.62 x 10- 4

8.68x 10-4±2.27 x 10- 4

7.83x 10-4±2.01 x 10- 4

7.10 x 10-41.72 x 10- 4

Table 4.3: Sieving coefficients for dextran- and Ficoll-infused normal Munich-Wistar rats. All values
are given as mean ± standard error.
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Figure 4-1: Sieving coefficients (0) for dextran- and Ficoll-infused normal Munich-Wistar rats as
a function of molecular radius (r,). Error bars denote ± one standard error of the mean. Curves
plotted are fits of various heteroporous distribution models to the data as described in the text.
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Isoporous ro (A) 44.341.1 29.1±0.8
+shunt wo x10- 3 5.02±0.55 5.26±0.12

Xz 103 208

Lognormal u (A) 15.4±1.7 6.19+1.53
s 1.52±0.03 1.64±0.06
r* (5%) (A) 61.7 37.2
r'(1%) (A) 82.1 52.1
Xz 35.4 64.6

Lognormal u (A) 20.8±0.4 11.4±0.1
+shunt s 1.40±0.01 1.46±0.01

wo x 10 - 3 3.04±0.10 0.382±0.035
r' (5%) (A) 58.0 37.6
r*(1%) (A) 78.8 49.0
X~ 1.05 12.5

Double ul (A) 20.8±0.4 0.46±0.06
Lognormal s, 1.40±0.01 2.31±0.03

u2 (A) 104±72 24.1±1.2
82 1.90±0.79 1.20±0.02
q2 x 10- 6 1.01±1.04 22.2±9.9
r (5%) (A) 56.9 30.4
r* (1%) () 71.5 53.8
Xz 1.05 0.37

Table 4.4: Membrane pore parameter fits of dextran vs. Ficoll sieving coefficients to single nephron
hemodynamic values. Fitted values are shown ± one standard error.
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The calculations used the single nephron quantities given in Table 4.2, as well as the sieving data

of Table 4.3. The fits for each model are graphically compared to the data in Figure 4-1. Based

on the visual appearance of the curve fits and on the values of x2 , the isoporous + shunt model

provided the poorest fit to either set of data, although it was much better for dextran than for

Ficoll. The values of ro and wo for Ficoll were much smaller than those for dextran, reflecting

the smaller sieving coefficients for Ficoll. The lognormal pore-size distribution, which also contains

two parameters, performed better than the isoporous + shunt model in either case. However, the

lognormal distribution become noticeably less accurate at large or small r, than at intermediate r,

(Figure 4-1).

Additional improvements in goodness of fit were obtained with the lognormal +shunt model.

Although any lognormal distribution theoretically includes some shunt-like pore of infinite size, for

the parameter values in Table 4.4 (u = 20.8 A and s = 1.40 for dextran, u = 11.4 A and = 1.46 for

Ficoll), the contributions to 9 of pores over 100 A were calculated to be negligible. Thus, adding

a shunt to the lognormal distribution did not lead to any appreciable double counting of very large

pores. The values of w0o obtained from the lognormal + shunt model were fairly similar to those

from the isoporous + shunt case. With either type of shunt model, the value of w0 calculated for

Ficoll was . 1/10 that for dextran.

The double lognormal model showed still more improvement in X2 over the lognormal + shunt

model. For dextran, ul and sl for the double lognormal model were exactly equal to u and s for the

lognormal distribution, indicating that the second lognormal distribution was the functional equiva-

lent of a shunt. X2 did not improve for dextran, indicating that the double lognormal model afforded

no advantage over the lognormal + shunt model. For Ficoll, the improvement was substantial. The

Ficoll double lognormal parameters also indicated a predominate number of pores of one distribution

(q2 < 1) but there was little resemblance to the lognormal or lognormal + shunt results. A double

lognormal fit of the Ficoll data fixing ul and sl at the lognormal fit values (11.4 and 1.46) gave

u2 = 102, s2 = 1.64, q2 = 2.52 x 10- 7, and x2 = 9.3.

Because of the difficulty in relating u and s in terms of the net number of large pores, Remuzzi et

al.210 developed the concept of an r*(V) value, where V is defined as the fraction of volume filtrate

passing through pores of r > r*:

V = g(r)d (4.10)

For the lognormal + shunt model, V is defined as

V = r4 g(r)d (1 - (w)) + (w), (4.11)
fo r 4 g(r)dr

where (w) is the fraction of the filtrate that passes through the shunt. Typically, r*(5%) and r*(1%)

values are reported. As expected, r' values were considerably smaller for Ficoll than for dextran
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Dextran Ficoll
Enhanced model:Simpler model pvalue pvalue
Lognormal+shunt:L;ognormal 3 x 10 - 7

X ' x 10-

Double lognormal:Lognormal+shunt N.S. 6 x 10-15

Table 4.5: F-test comparisons of heteroporous model fits to dextran vs. Ficoll data. p values are
those for the significance of the x2 reduction by the "enhanced" model over the "simple" one. N.S.=
not significant.

(Table 4.4).

The performance of the various heteroporous models was compared objectively by an F-test,

which weighs the trade-off between lowering X2 and increasing the number of parameters.' 8 4 The

F-test results, given in Table 4.5, indicate that the improvement of the lognormal + shunt model

over the lognormal distribution is significant in both cases, but that the improvement provided by

the double lognormal model is significant only for Ficoll.

Pore-number probability densities for g(r) and the integral volume flux 1 - V are plotted for

the different distributions in Figures 4-2 and 4-3. In all cases, the number of pores of the shunt or

second distribution are so small that they contribute little to g(r) or to volume flux.

4.3.4 Sensitivity of Calculations to Hemodynamic Inputs

To determine the sensitivity of the pore-size parameters to the hemodynamic inputs used in the

calculations, we employed four different sets of inputs. The single nephron values shown in Table 4.2,

which were used to obtained the parameter values in Table 4.4 and the theoretical curves in Figure 4-

1, are denoted as Case 1. Cases 2-4 were based on various choices for the pertinent whole kidney

quantities (GFR, RPF, and Cp,A). Case 2 used the whole kidney data averaged for all animals

studies (right-hand column of Table 4.1). Cases 3 and 4 differed from Case 2 only in the assumed

value value of RPF. The average RPF for the dextran group (4.8 ml/min) was used in Case 3, while

the average RPF for the Ficoll group (4.0 ml/min) was used in Case 4. In each case the value of

AP employed was that obtained from micropuncture.

The range of each membrane-pore parameter obtained from the four cases is shown in Table 4.6.

In general, changing the hemodynamic inputs results in only minor variations in the computed pore-

size parameters. The similarity of the results for Case 1 to those for Cases 2-4 indicates that the

choice of single nephron vs. whole kidney hemodynamic inputs does not affect the trends observed

in the pore-size parameters. Likewise, the similarity between Cases 3 and 4 demonstrates that the

measured difference in RPF between the dextran and Ficoll groups also has a negligible effect on

the computed pore sizes.

The possible significance of the measured difference in RPF between the dextran and Ficoll
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Figure 4-2: Pore number density distributions g(r) for dextran and Ficoll heteroporous fits to data.
Plots are based on the values of Table 4.4. Curves for dextran lognormal + shunt and double
lognormal models are indistinguishable. Ficoll double lognormal curves appears to merge with the
dextran lognormal + shunt and double lognormal curves around r, = 6 . The curves are actually
separate with one going to zero and the other two rising from zero.

69

0 60



1.0

0.5

n nu.u

0 20 40 60 80

r (A)

Figure 4-3: Integral volume flux (1- V) for dextran and Ficoll heteroporous fits to data. Plots based
on the values of Table 4.4. Curves for dextran lognormal + shunt and double lognormal models are
indistinguishable.
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1 2 3 4 1 2 3 4
Isoporous TO (A) 44.3 45.1 45.5 44.8 29.1 29.7 30.0 29.5
+shunt wo x103 5.02 5.86 6.22 5.52 0.526 0.617 0.657 0.579

Lognormal u (A) 15.4 12.6 12.7 12.7 6.19 5.03 6.18 6.19
8 1.52 1.58 1.58 1.58 1.64 1.70 1.64 1.64

Lognormal u (A) 20.8 20.8 20.8 20.8 11.4 11.4 11.4 11.4
+shunt s 1.40 1.40 1.40 1.40 1.40 1.46 1.46 1.46 1.46

w0 x103 3.04 3.54 3.75 3.34 0.382 0.452 0.479 0.424

Double ul (A) 20.8 21.6 21.7 21.4 0.46 0.46 0.46 0.46
Lognormal sl 1.40 1.39 1.38 1.39 2.31 2.31 2.31 2.31

U2 (A) 104 103 102 103 24.1 24.3 24.4 24.3
s2 1.90 1.89 1.88 1.89 1.20 1.20 1.20 1.20
q2 x106 1.01 1.22 1.29 1.18 22.2 22.2 21.4 22.2

Table 4.6: Sensitivity of parameter fits to hemodynamic inputs. Case numbers correspond to values
reported in the text.

groups was also considered in terms of its expected effect on the sieving curves. To do this, we chose

as a reference condition the theoretical sieving curves obtained by fitting the dextran or Ficoll data

(with single nephron hemodynamic inputs) with the isoporous + shunt, lognormal, and lognormal +

shunt models. We then varied QA by ±: 10% from the reference value of 172 nl/min, for both dextran

and Ficoll. The resulting set of sieving curves encompasses a variety of situations, including up to a

20% difference in plasma flow rates between the dextran and Ficoll groups. As shown in Figures 4-4

and 4-5, altering QA had relatively minor effects on the computed sieving curves, and the range of

sieving coefficients for dextran remained very distinct from that for Ficoll. This demonstrates that

variations in plasma flow rate of this magnitude are incapable of explaining the large differences in

the observed sieving behavior of the two polymers.

4.4 Discussion

The present study confirms the finding of Bohrer et al.31 that, for a given value of r,, dextran passes

across the glomerular capillary wall more readily than does Ficoll. While qualitatively similar to the

earlier results, the present data show a significantly greater separation between the sieving curves

for dextran and Ficoll. One factor which may have contributed to these quantitative differences is a

difference in experimental design. The study by Bohrer et al.3 ' involved two experimental periods in

each animal, one with dextran and one with Ficoll. The order of the dextran and Ficoll infusions was

varied and an effort was made to wait long enough between the experimental periods to allow the

first polymer to be cleared completely. Nonetheless, a small amount of the tritiated polymer from

the first period may have been present during the second. This would tend of minimize the observed
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Figure 4-4: Sensitivity of theoretical sieving curves to changes in QA for isoporous + shunt and
lognormal models.
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double lognormal models.
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differences between dextran and Ficoll, especially for the largest molecules, which are cleared more

slowly. To avoid this potential problem in the present study, we deliberately chose to study dextran

and Ficoll in separate groups of animals. This was especially important because the present study

included molecular radii up to 65 A, whereas that of Bohrer et al.s l did not go beyond 44 A.

A second possible explanation is suggested by the observation that, while dextran values for this

study are comparable to that of Bohrer et al.,3' the Ficoll values of the present work are consid-

erably lower. This would be consistent with a hypothesis of some sort of reversible or irreversible

adsorption to the Sephacryl columns of this study relative to the Sephadex columns of Bohrer et

al.3 l This possibility motivated the work described in Chapter 3, in which it was shown that Ficoll

chromatography in both Sephadex and Sephacryl columns was not concentration dependent, and

thus polymer absorption plays no discernible role in Ficoll elution.

For dextran radii up to approximately 40-50 A the values of O obtained by us are comparable to

those reported previously for normal rats. 30 ,31 ,63,1 9 8,210,2 52,2 61-26 3 For larger dextran sizes, however,

the present values of O begin to exceed those in other studies,l 98 ,210, 252, 26 1-26 3 reaching more than

a ten-fold difference at r, = 60 A. The reasons for this discrepancy are not clear, but a contributing

factor may have been differences in gel column calibration. As discussed in Chapter 3, the customary

use of protein standards for column calibration may lead to errors in the molecular radius of dextran

(or other non-protein polymers such as Ficoll), the magnitude of the error being dependent on the

column packing material. To avoid this source of error, we employed nearly monodisperse samples

of dextran or Ficoll for column calibration, with r, determined for each standard by quasielastic

light scattering. Because different column packings were employed in the various studies cited

above, the correction factors of Chapter 3 are not applicable, and we are unable to estimate the

extent to which this factor may have contributed to the discrepancies in O for dextran. Of course,

physiological differences among the groups of animals studies, or other technical differences, may

also have contributed.

The diffusion rates of Ficoll through synthetic membranes of known pore radius suggests that

Ficoll molecules behave as ideal, neutral, rigid spheres.3 2 ,71 Given that Ficoll is uncharged, that its

crosslinked structure should confer rigidity, and that sedimentation and viscosity data suggest that

it is approximately spherical,3 l this behavior is not unexpected. In contrast, the diffusion rates of

dextran through the same synthetic membranes have been found to greatly exceed theoretical pre-

dictions for neutral spheres. There appears to be no simple explanation for the behavior of dextran.

The most obvious difference between dextran and Ficoll is that whereas Ficoll is crosslinked and ap-

proximately spherical, dextran is flexible and roughly linear, existing in solution as an approximately

random coil. The available theory for neutral random coils, 7 2 however, suggests that the observable

rate of transmembrane diffusion should be less rapid, not more rapid, than that of a neutral solid

sphere of equivalent r,. Consistent with this prediction is the finding that the effective diffusivity

74



of PEG in track-etch polycarbonate membranes is lower than that of Ficoll. 7' The anomalous en-

hancement of dextran diffusion rates might be explained by weak attractive interactions between

dextran and the membrane material, which would tend to elevate dextran concentrations in mem-

brane pores. 71 ' 74 Whatever the explanation, the relative rates of dextran and Ficoll diffusion through

synthetic membranes mimic the behavior of these polymers in the glomerulus.

The structure of Ficoll, and its diffusion behavior in vitro, suggest that it may be a much better

marker than dextran for the glomerular filtration of neutral, globular proteins. Supporting this is

our finding that the ratio of O for Ficoll to O for dextran at r, = 30 A is x 0.11. This value is

very similar to the analogous sieving coefficient ratio for a neutral globular protein of ~ 30 A radius

(horseradish peroxidase) and dextran.2 1 6 With regard to IgG, a group of molecules with r, : 55 A

and little net charge on average, less precise comparisons are possible because O for IgG has not been

determined simultaneously with that for Ficoll or dextran. Our value for O for Ficoll at r, = 55 A

(1.23 x 10- 3) is roughly comparable to that reported for IgG in rats (5 x 10-3), the latter value based

on tubule fluid samples.' 0 4 Thus, the available evidence in vivo supports the view that Ficoll is a

good marker for filtration of neutral proteins. The aforementioned value of O for Ficoll at r, = 55 A

provides a much more satisfactory explanation for the normal absence of immunoglobulinuria than

does the ten-fold higher values of O for dextran.

Analyses of tubule fluid samples obtained by micropuncture in rats suggests than 0 a 3 x 10- 4

for serum albumin.14, 22 , 94 ,9 8 , 104,10 5 ,16 1,164 ,16 6 ,193-1 9 5,2 35,24 9,2 64 This is about 30 times lower than

the present value of O for Ficoll at this molecular size (r, = 35 A) and about 300 times lower than

the value of e for dextran. The fact that this negatively charged protein is filtered much less readily

than Ficoll is consistent with the concept that the normal absence of albuminuria is dependent in

part on the charge-selectivity of the glomerular barrier. The present results, however, imply that the

concentration of fixed negative charges in the glomerular capillary wall does not need to be as large

as previously reported.78 That is, attempting to explain the 300-fold difference between albumin

and dextran on the basis of charge alone requires that one postulate many more fixed charges than

are needed to account for the 30-fold difference between albumin and Ficoll. While it remains likely

that a loss of charge-selectivity would contribute significantly to albuminuria, the results for Ficoll

set a new and lower bound on the potential contribution of charge defects to proteinuria.

Previously, a variety of theoretical pore-size distributions were compared using fractional clear-

ance data for dextran in normal and nephrotic humans.7 9 In those comparisons the isoporous +

shunt model was somewhat superior to the lognormal distribution. For that reason, and because

the values of T0 and w0 have a simpler interpretation than those of u and , the isoporous + shunt

model has been preferred in subsequent clinical studies with dextran. The curve-fitting results in

Table 4.4 and Figure 4-1 indicate that for the present data the double lognormal and lognormal

distributions are superior to the isoporous+shunt model. Remuzzi et al.2 10 had previously reached
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the conclusion that the lognormal model was superior to the isoporous +shunt model based on fits

to dextran data in rats. It is less easy to judge whether the double lognormal and lognormal + shunt

models, introduced here, offer a significant improvement over the lognormal distribution. The newer

models have more degrees of freedom (5 and 3 parameters vs. 2 for the other models) and should

yield smaller values of the error measure, x2, on that basis alone. The F-test results of Table 4.5

indicate that this improvement is statistically significant for the lognormal + shunt model with both

sets of data, and for the double lognormal model with Ficoll, but not for the double lognormal model

and dextran.

Another way to judge the performance of the models is to consider the values of X2 in relation

to the number of data points per sieving curve, m. Based on the definition of x2 (Eq. 4.6), if

the computed sieving coefficients differed from the measured values by exactly one standard error

at all molecular sizes, then X2 = m. If one accepts that fitting the experimental sieving curves

more accurately than this is probably not meaningful, then one should discount the importance of

achieving values of X2 < m. In the present study m = 24, and the lognormal + shunt model reduced

X2 from 35.4 to 1.05 for dextran, and from 64.6 to 12.5 for Ficoll, relative to the lognormal model

(Table 4.4). Thus, by this measure, the improvement obtained with the lognormal + shunt model for

dextran is probably unimportant. However, the improvement seen for Ficoll is more significant. We

therefore conclude that the lognormal + shunt model merits further examination in future studies,

at least with Ficoll. By the same token, the improvement provided by double lognormal model is

probably not important. Combined with the fact that it was more difficult to achieve convergence

with the double lognormal model, it appears that there is not enough justification to further pursue

this distribution in any detail.

The alternative theoretical models for the glomerular barrier considered here are highly idealized,

in that they are all based on the concept of hindered transport of neutral spheres through cylindrical

membrane pores. We have discussed above the evidence from studies in vitro that Ficoll does in

fact closely resemble an ideal, neutral sphere. It seems likely then that the opportunities for future

advances in the description of Ficoll movement through the glomerular capillary wall lies much more

in a closer representation of the actual ultrastructure of the barrier than in some improvement in

the representation of the permeating molecule. Because Ficoll behaves much like an ideal sphere,

and because it possesses the other desirable characteristics for an in vivo tracer which have led to

the widespread use of dextran, we recommend that Ficoll be preferred over dextran in future studies

of glomerular size-selectivity.

The situation with dextran is much more complicated, in that currently available models are

unable to predict its transport rates even in synthetic membranes with well-defined pores of known

size. In Chapter 5, we examine one proposed mechanism for dextran transport and apply it to the

data of this section.
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Chapter 5

Application of the Random Coil Model of Hindered
Transport to Dextran Sieving Data

5.1 Chemical Structure of Dextran

The representation of dextran molecules as solid spheres in the model of glomerular permselectivity

is a simplification born of the previous lack of suitable hydrodynamic theories for any other type

of configuration. Since a dextran is a chain of a-1,6-D-glucopyranose monomers, it would be more

properly modeled as a flexible linear coil. The consequences of this difference can be expected to

be significant since a sphere cannot penetrate a pore with a smaller radius, while a flexible chain

will have some finite probability of access even if the pore radius r0o is much smaller than the chain

radius of gyration rg. Additionally, a coiled polymer would be permeable to solvent flow, which

would lower the frictional drag on the molecule. Such configurational effects are proposed to be the

principal reason why sieving data of different probe molecules vary substantially.31 , 139 ,216,246

As discussed in Section F.2.6, chemical analysis of dextran's structure indicates that it is a linear

molecular with only a small number of branches. Measurements of its physical properties, however,

suggest that dextran in aqueous solution behaves as a molecule with a significant degree of branch-

ing. From thermodynamic excess properties and intrinsic viscosity, dextran exhibits properties of a

random coil at molecular weights of around 2000.14 It appears that whatever effective contraction of

the molecular dimensions exists due to branching is counterbalanced by the excluded volume effects

resulting from expansion of dextran in water. Thus, though it is not strictly a theta system, dextran

in water at 20-25 C exhibits the behavior of a linear molecule with no excluded volume.

5.2 Review of Previous Theoretical Work

5.2.1 General Approach

Departures from the hydrodynamic theory for solid spheres will be manifested in the model as

alternate forms of expression for the diffusive hindrance factor H and the convective hindrance

factor W in Eq. 2.14. In their most general form, the hindrance factors for very dilute polymer

solutions in a long cylindrical pore are defined by

H 2 K-1(A )p( ) d, (5.1)

V = 41 G(A,)p(A,i )(1 - 2)rdf, (5.2)
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where A is the molecule-to-pore size ratio (usually either A, = r,/r or Ag = rg/ro, where rg is the

root-mean-square radius of gyration), is the dimensionless radial position of the molecule's center

of mass (or some other locator point), and p is the probability that the molecule will fit completely

within the pore at . K is the enhanced drag, defined as the ratio of the frictional drag on the

molecule in the pore to that in bulk solution. G is the lag coefficient, the ratio of particle-to-fluid

velocity at an equivalent radial position. Each of these quantities is an average over all possible

chain conformations.

In practice, "centerline" approximations are used, where the radial dependence of the hydrody-

namic coefficients is ignored and replaced by the value at = 0:

H K-'(A,0) 2j p(A, fidr = K-(A,0)t, (5.3)

G G(A, 0).4 A p(A, )(1 - 2)f di = G(A, O)f2, (5.4)

where

) = 2 Aj p(A, )(1- 2
) d d. (5.5)

-- _-- 4 p(A, f)(1 _ i2)f d.. (5.6)

4 is the partition coefficient, which equals the ratio of the average solute concentration in the pore

to that in bulk solution at equilibrium. (Q is an analogous coefficient for the flow-weighted average

radial distribution. Each hindrance factor is then seen to be the product of a hydrodynamic term

(K - l or G) and a steric term (I or Q). For non-interacting solutes, /I, Q, K-l, and G all equal 1

in the limit A - 0. In the limit of large A, c4, Q, and K - 1 approach 0 and G approaches 0.5. The

next sections review methods for calculating steric and hydrodynamic factors for random coils.

5.2.2 Calculation of Steric Parameters

5.2.2.1 Monte Carlo Method

Davidson et al.74 developed a method for calculating and O for random-flight chains based on

Monte Carlo-generated ensembles of chain configurations. A chain is characterized by 1, the length of

a chain segment, and n, the number of chain segments. (Davidson et al.70 ' 74 defined n as the number

of mass points in the chain, thus their n is equal to n+ 1 of this work.) For large n, rg n2/6. 2s59

The advantage of this method is that, in theory, it can be applied to any combination of chain and

pore parameters. Practically, computational limits preclude its use for very large chains: Davidson

et al.74 obtained results for Ag < 1.2 and n + 1 < 400. Results are available only in tabular form, as

there is no satisfactory means of expressing the data analytically.
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5.2.2.2 Diffusion Equation Model

Casassa5 ' devised a method for calculating a' in the limit n - oo (= OO) based on the analogy

between a random walk of infinitesimal step size and molecular diffusion. This "diffusion equation"

approach has the principal advantage of providing a closed-form expression for '. Casassa's result

is

4ZE e (5.7a)

Jo(/3 ) = 0, (5.7b)

where /3, are the roots of the characteristic equation given by Eq. 5.7b and Jo is the Bessel function

of zeroth order. An asymptotic approach to LO is seen as n increases in the results from Monte

Carlo simulations. 70 , 74

A major disadvantage of the diffusion equation model is that ~ is very sensitive to n, especially

at large Ag. Thus, Eq. 5.7a does not provide an acceptable estimate for chains of finite n at large Ag.

Additionally, there is no analogous direct method of calculating i, although it could be estimated

from a f2/$ ratio dependence (see Section 5.5.3).

5.2.3 Hydrodynamic Parameters

Davidson and Deen 72 developed a method for calculating K and G by representing the coil as a

porous body with a radially- and axially-dependent solvent permeability. The pertinent molecular

parameters in addition to Ag are the resistance to solvent flow through the porous body (a function

of r, /rg) and the Mark-Houwink exponent. The Brinkman equation4 6 for flow through porous media

was then solved to calculate the drag on the body. Values were tabulated for Ag < 1.6.

5.2.4 Model Results

The model predicts that, for a noninteracting molecule of A, < 1, transport of a linear chain is

actually more restricted than that of a solid sphere of equivalent size (i.e., Hcoil < Hsphere, Wcoil <

Wsphere).72 This is because while the chain experiences less frictional drag (K - ' and G are larger),

it is excluded from the pore ( and Q are smaller) to a much greater degree. The model is in

good agreement with hindered diffusion studies of polystyrene in organic solvents through synthetic

porous membranes. 72

Davidson and Deen71 measured the diffusion of four polymers (dextran, Ficoll, polyethylene oxide

(PEO), and polyvinylpyrrolidone (PVP)) in water through synthetic membranes. Dextran and PVP

were found to behave similarly in vitro, with measured H values exceeding those predicted by the

theory for solid spheres and, hence, exceeding to an even greater degree those predicted by the

random coil theory. Ficoll data correlated well with the solid sphere theory, while the PEO values
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were smaller than predicted for solid spheres, though still exceeding the random coil predictions. The

data for dextran and Ficoll confirmed that reported in an earlier study by Bohrer et al.3 2 This relative

order parallels measurements of glomerular permselectivity using the same molecules.3 '1 39 21246

The in vitro data indicate that, for dextran (and PVP and, to a lesser degree, PEO), either the

hydrodynamic coefficient K - ' or the steric coefficient I is underestimated. It will be seen later, in

Section 5.9, that underestimation of K-l is not sufficient to explain the discrepancy. One possible

mechanism for an increased (I that has been examined in some depth is the existence of attractive

chain/pore interactions. Davidson et al.74 demonstrated that this effect could be achieved by a

square-well potential which affects chain segments in a region close to the pore wall. Equivalent

analyses for solute/pore interactions using the diffusion equation model also have been presented by

Davidson and Deen 73 and Lin and Deen.' 6 7

There exist unexplained discrepancies between hindered diffusion and hindered convection stud-

ies. Specifically, Mitchell and Deen' 79 report that the convective hindrance for dextran-in-water

systems is greater (W is smaller) than that predicted by the solid sphere theory. Similar results of

increased hindrance have been reported for Ficoll, 179 PEO,26 8 and bovine serum albumin.'7 9

5.3 Goals

The remainder of this chapter details work performed to incorporate the Davidson et al. random

coil method into the model of glomerular permselectivity. Because of the difficulty in representing

the steric and hydrodynamic parameters analytically, we focused our efforts on generating tables of

values covering a wide range of conditions which could be used for lookup and interpolation.

Since the steric parameters from Davidson et al.7 4 were available only for Ag < 1.2 and n+1 < 400,

we performed additional calculations to extend the range of utility. Additional work was necessary

to extrapolate values for very large Ag, where Monte Carlo computation was impractical, and these

estimated values were also added to the interpolation tables. Estimation of the hydrodynamic

parameters at large Ag was made by a straightforward analytical extrapolation. Finally, we applied

the random coil model of glomerular permselectivity to the dextran sieving data of Chapter 4, as

discussed in Section 5.9.

5.4 Calculation of Steric Parameters at Small A9

5.4.1 Methods

The method of Davidson et al.,74 described subsequently, was used to generate tables of c4 and 2

values for Ag = 0.2 to 1.8. All Monte Carlo simulations were performed at the MIT Supercomputing

Facility on a Cray X-MP EA/464. The FORTRAN code was written to maximize vectorization.

The two rate-limiting steps in the code were chain generation and testing of the configuration at

80



each radial position within the pore, neither of which could be vectorized.

The model geometry (Figure 5-1) was a cross-sectional circular pore with m radial mesh positions

from the centerline to the pore wall. A square-well potential was assumed to exist: an interaction

distance d was chosen with attractive pore/solute interactions in the region m - d < r < m. For

given values of Ag and n, the segment length I is then calculated asli s

6(n + 1)
I = Agm (5.8)

n(n + 2)'

The following algorithm was used for determining the weighted probability distribution p(A., i)

at the discrete mesh positions in the pore:

1. A (2m+ 1) x n array S was initialized to zero. This array was used to keep track of the number

of successful configurations.

2. A single chain was ' constructed: Beginning at the origin (0,0) with respect to the chain, a

three-dimensional random walk step of length I was taken using the method of Marsaglia. 172

The (, y) coordinate of each step was taken as the location of a mass point and the starting

point for the next step. Generation of n such steps constituted a chain.

3. The center of mass of the chain was placed at pore radial position (-m, 0).

4. Each mass point in the chain was tested to see if it fit within the pore.

(a) If every mass point fit, then the number of mass points md that fit within the square-

well was counted. The success was recorded by incrementing the ij-th element in S:

itjl = sj + 1, where i corresponded to the diameter position and j = md.

(b) If any mass point fell outside of the pore lumen, no success was recorded.

5. The chain was moved one position to the right. Step 4 was repeated over the diameter of the

pore.

6. Steps 2 to 5 were repeated for Mc chains, where Me was large enough to insure a representative

ensemble of chains.

Each mass point that lay within the interaction region was taken to have an energy ekBT,

where kB is Boltzmann's constant and T is absolute temperature. Negative values of E correspond

to attractive interactions, while positive values indicate repulsive forces. For a given ensemble of

chains and values of d and , the weighted probability of success p(Ag, #i) with center of mass at

position i in the pore was then calculated from the Boltzmann-weighted sum of success divided by
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Figure 5-1: Model geometry for Monte Carlo simulations. The pore radius is divided into m positions
with an interaction region a distance d from the wall. The chain is modeled as a three-dimensional
random walk of step size 1. The left configuration is not recorded as a success. The middle configu-
ration is recorded as a success with zero pore wall interactions. The right configuration is recorded
as a success with five mass points (labeled) experiencing pore wall interactions.
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the total number of chains generated:

p(Ag,,) = E=o Bij exp(-eij)
Ml

Once S was calculated, p(Ag, ii) could be rapidly determined for any . The steric parameters was

then calculated by Simpson's rule:

m

¢ = 2 cip(A,,, i)i(dA), (5.10a)
i=O
m

= 4 Eaip(Ag,, i)(1 - )i(Af), (5.10b)
i=O

where ai are the Simpson's rule coefficients and Af are the fixed radial step sizes. Propagation of

errors in these calculations is discussed in Appendix E.

Molecule-to-pore size ratios were varied from Ag = 0.2 to 1.8 in increments of 0.2. The number

of chain segments n ranged from 20 to 800. The energy parameter e was varied from -0.4 to 0 in

increments of 0.01. The interaction region d was set equal to I for all calculations (d = I case), as

this seemed a reasonable assumption for short-range interactions. Additionally, the limiting case

of a potential extending across the entire pore (d = r0 case), affecting all n + 1 mass points, was

calculated directly from the = 0 results as

ld=ro = exp[-e(n + 1)] ,=0 , (5.11a)

Qld=r, = exp[-(n + 1)] Q,=o. (5.11b)

5.4.2 Results

5.4.2.1 Computation Time

The amount of CPU time required to generate S for different cases is shown in Table 5.1. Compu-

tation time scaled roughly with Me, the number of chains generated, and n. For Ag = 1.8, the time

requirements had become prohibitive, as even the simplest chains required an hour.

5.4.2.2 Steric Parameters

Calculated results for and Q are tabulated in Appendix D. Values were in excellent agreement

with the results of Davidson et al.74 for Ag < 1.2, and for their small n results for Ag > 1.2.

Values for 4 and Q for the d = I case are shown in Figures 5-2 and 5-3 for varying e and constant

n = 200. As will be discussed in Section 5.4.2.3, values for Ag = 1.8 are deemed unreliable, and they

are not shown in Figures 5-2 to 5-5.

Solute/pore interactions are seen to have a large effect on the steric parameters, more so with

83



4 3
IU

10 °

10-3

10 - 6

0.0 0.5 1.0 1.5

Xg

Figure 5-2: Partition coefficient () as a function of energy parameter (E) for n = 200, d = I case.
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Figure 5-3: Flow-weighted average steric parameter () as a function of energy parameter () for
n = 200, d = I case.
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Ag 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
M, (in 103) 80 80 120 600 800 3000 6000 8000 20,000

n = 20 0.8 0.7 0.8 2.8 2.8 9.3 17.6 23.1 57.0
n = 50 1.3 1.1 1.4 5.3 6.0 20.6 - 41.3 54.7 134.4

n = 100 2.3 2.0 2.4 9.6 11.3 39.8 79.4 107.4 252.8
n = 200 4.2 3.7 4.5 18.1 21.8 78.0 157.3 210.7 510.7
n = 400 7.9 6.9 8.5 35.3 42.2 153.4 314.0 410.0 997.0
n = 800 15.4 13.4 16.6 69.2 84.0 304.2 623.0 828.1 1977.7

Total 31.9 27.8 34.2 140.2 J 168.1 605.3 1232.6 1633.9 l 3929.6

Table 5.1: CPU minutes required for Monte Carlo simulations on a Cray X-MP EA/464.

increasing Ag. A Boltzmann energy of -0.2kBT per mass point, less than the energy of hydrogen

bonding (which is roughly -3kBT to -16keT),16 5 is enough to increase I and by three orders of

magnitude. At -0.3, the steric parameters begin to exceed unity. This is an indication that e is

near the critical energy for absorption onto the pore wall.1 1 7' 2 69 Considerable fluctuations are seen

in the curves for < -0.3, demonstrating large statistical uncertainly in these values.

Results for the full-pore potential (d = ro) are shown in Figures 5-4 and 5-5. In this case, the

energy parameter also has a significant effect on partitioning, with two differences from the d = I

model: comparable increases are shown at energies ten times smaller, and the increase is relatively

uniform (on a log scale) at all Ag, even in the limit as Ag -* 0. It has been noted previously that t

and Q are more sensitive to changes in d than to e. 74

The effect of n on the partition coefficient (I is demonstrated in Figure 5-6 for the neutral case.

Also shown is the Casassa equation, Eq. 5.7a, for the n --- oo limit. Again the effect is most

noticeable at large Ag, with nearly two orders of magnitude separating n = 20 and n = 800 at

Ag = 1.6. Also noteworthy is that at Ag = 1.6, a significant difference still exists between n = 800

and the Casassa limit.

The analogous plot for the e = -0.2, d = I case is shown in Figure 5-7. The effect of n on in

the presence of attractive interaction is more complicated. For small Ag, exclusion effects dominate

and the curves have the same trend as the neutral case, 'I decreasing with increasing n. At Ag = 1.6,

however, crossing of the curves is observed. This happens because the interaction length d is fixed

to the segment length 1. For a given n, there is a value

n(n + 2)
AB 1I=ro = 2 (5.12)- 6(n + 1)

where d = = ro and the d = I case collapses to the full-pore (d = rTo) potential. Thus, as Ag

increases, d/ro becomes equal to or greater than one, and md, the number of mass points in the

square well, approaches n + 1. The exponential weighting then begins to scale as n + 1, and so
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Figure 5-4: Partition coefficient () as a function of energy parameter (E) for n = 200, d = ro case.
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Figure 5-5: Flow-weighted average steric parameter () as a function of energy parameter () for
n = 200, d = ro case.
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Figure 5-6: Partition coefficient (I) as a function of number of chain segments (n) for neutral (e = 0)
case. Dashed line shows the n -, oo limit of the Casassa equation, Eq. 5.7a.
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Figure 5-7: Partition coefficient () as a function of number of chain segments (n) for E = -0.2,
d = 1. For clarity, only the interpolating lines and not the discrete calculated points are shown.
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chains with more mass points receive greater enhancement, and a reverse trend with n is obtained.

Eventually, as A becomes large enough, the exclusion effects will dominate again and the curves

will re-cross. This second reversal is shown in Figure 5-8 for the full-pore potential with = -0.02.

In this figure, for small Ag, attractive forces dominate and 4' varies inversely with n, but starting

around Ag = 1, exclusion effects dominate and the curves begin to cross.

5.4.2.3 Error Estimations

As discussed in Appendix E, any calculation of statistical variance for the derived quantities 4 and

f1 presupposes that the calculated probabilities are good estimators of the true probabilities. Thus

it is theoretically possible to calculate low variances even when the estimators are poor. Since we

have no a priori means of knowing what the probabilities should be, several different methods were

used to gauge the reliability of the results. Only 4' will be discussed here, as the results for f are

nearly the same.

In general, for a given number of chain configurations Me, errors will increase as n increases

(because more chain configurations are possible, and fewer of them are successful), as e becomes more

negative (because small fluctuations are magnified), and as Ag increases (because fewer configurations

are successful). Once convergence on the probabilities is reached, errors will scale exactly as 1/VMs

(see Appendix E).

The "gold standard" for determining convergence would be to increase M, until Var(S) and

Var(fQ) vary linearly with 1/VMs. For large chains, where M, 10 7, this is not practical. Instead,

approximate variances and confidence limits on the parameters were calculated assuming that the

Monte Carlo-derived probabilities had converged. In addition, we assessed accuracy by considering

two other parameters, the 95% confidence limits on and the asymmetry factor.

The 95% confidence limits on , defined as 2/Var(<,) and expressed as a percentage of 4', are

shown in Figure 5-9 for the limiting cases of n = 20 and 800. For n = 20, the interval is less than

6% at all . For n = 800, it is less than 10% for the neutral case when Ag < 1.4 and less than 40%

for all Ag. At Ag = 1.8, the values are unreliable for even modest negative values of e. For all Ag at

n = 800 and = -0.4, the uncertainty is near 100%. For Ag < 1.8 with n = 800 and E = -0.2, the

uncertainties are on the range of 10-60%.

The asymmetry factor is defined as Ileft- <'right I/'avg where (4 left and right are values obtained

from integration on the "left" side (mesh points -m to 0) and on the "right" side (mesh points 0 to

m) of the pore, respectively, and avg is the value obtained from integration across the entire pore

(mesh points -m to m). It is a measure of the effects of skew in chain generation, with a minimum

value of 0 and a maximum value of 2 (or 200%). Figure 5-10 shows values for the asymmetry factor

for the limiting cases of n = 20 and 800, and = 0, -0.2, and -0.4. For n = 20, the factor is less

than 5% at all values of e. For n = 800, the factor is less than 10% for all Ag when = 0, but reaches
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Figure 5-8: Partition coefficient () as a function of number of chain segments (n) for e = -0.02,
d = ro0. For clarity, only the interpolating lines and not the discrete calculated points are shown.
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Figure 5-9: 95% confidence limits on for n = 20 and n = 800.
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the upper limit of 200% for even modest values when A, = 1.8. There is great uncertainty in the

results for all A, at n = 800 when the magnitude of e exceeds 0.3. In summary, the asymmetry

factor qualitatively reinforces the conclusions reached from assessing the 95% confidence limits.

The ratio of [1/t, discussed further in Section 5.5.3, was used as a third means of assessing quality

of the results. Values of this ratio for Ag = 1.8, e < 0 were not consistent with the asymptotic limit

demonstrated by values at other A,, again indicating uncertainty. Based on the asymmetry factor,

confidence limits, and ~4/[ ratio, only results for A, < 1.6 and e > -0.30 were used for further

calculations.

5.5 Estimation of Steric Parameters at Large A

5.5.1 General Approach

As mentioned previously, Davidson et al.74 were unable to find an adequate means of expressing

the Monte Carlo results in analytical form. Of particular concern for application to dextran sieving

is a means of extrapolating results to large A,. From the Ficoll results of Chapter 4, heteroporous

distributions had a mode on the order of 10 i or less. It is apparent then that a significant portion

of the large dextran (> 60 A) will be transported through pores where A > 2.0, especially when

pore attractions exist. An empirical method of extrapolating qi for large values of Ag is developed

below. was then calculated from 4 by a semi-empirical relationship.

For the purposes of modeling glomerular filtration, it is not necessary to have highly accurate

estimations at large A9. For one thing, measured sieving coefficients have a high degree of uncertainty

at large rg, as reflected in experimental standard errors. For another, it is expected that most of

the transport of large molecules will be through very large pores, even in the presence of attractive

interactions. Finally, at large Ag, 4) decreases several orders of magnitude with even small increases

in Ag. Estimation of steric parameters to within one or two order of magnitude should be suitable

for our purposes at the larger values of Ag.

5.5.2 Partition Coefficient (4)

One obvious means of performing an extrapolation would be to use limiting expressions for both

low n and n -- oo, at a constant value of the energy parameter, and then to develop expressions for

4(n)l,. For the neutral coil (e = 0), this is easily done because, as seen in Figure 5-6, iso-n lines do

not cross and are proportionally spaced as A, increases. For the attractive (e < 0) coil, however, the

iso-n lines cross as Ag increases (Figures 5-7 and 5-8).

An alternative method is suggested by comparing isoenthalpic curves in planes of constant n, as

in Figures 5-2 and 5-4. Such curves will never cross, and the relative distance of the lines from each

other remains roughly proportional. On this basis, the following empirical procedure was devised to
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calculate (A9 > 1.6, E < 0). First, the neutral value In I(A 9 , 0) was determined. We then calculated

In t at arbitrary ,, by increments from the neutral value:

n-i

ln 4(A,, e,) = In t(A., 0) + E 6Eei at (A Ei)n (5.13)
i=0

Thus the problem is reduced to finding separate expressions for the neutral partition coefficient and

the gradient at Ag > 1.6.

Values of (Ag, 0) for A > 1.6 were calculated by a polynomial extrapolation from I(1.2, 0),

*(1.4, 0), and 4(1.6, 0). Such an extrapolation will be defined as one from an endpoint of A9 = 1.6.

Similarly, an endpoint of Ag = 1.0 would imply that I(0.6, 0), I(0.8, 0), and (1.0, O0) were fit. As

a test of the extrapolation accuracy, polynomial extrapolations to Q(1.6, 0) from endpoints of 1.0,

1.2, and 1.4 were calculated. Extrapolations were found to be within 20% of the true value at all

values of n, as shown in Figure 5-11. Extrapolation to Ag > 1.6 from A. endpoints smaller than 1.6

were still within two orders of magnitude of the 1.6 endpoint results, as shown in Figure 5-12. Thus,

though extrapolation from endpoints larger than 1.6 would provide better estimates than the ones

we have obtained, Figure 5-12 indicates that the results would not be significantly different for our

purposes.

To develop a means of calculating the gradient tetm of Eq. 5.13 for Ag > 1.6 , we first examined

the behavior of the gradient for Ag < 1.6. The gradient was numerically approximately as

In(4Q) (A, Ei) ln 4(ei + 6Ei) - In ((ci) (5.14)

and calculated directly from the tabulated values, with 5 e = -0.01. The values were roughly

linear in Ag (see symbols on Figures 5-13 and 5-14). An additional consideration is that for Ag >

n(n + 2)/6(n + 1), 1 > ro and the behavior must be that of the full-pore potential (d = To). In

this case, , - exp[-E(n + 1)], and therefore

l n() =n +1. (5.15)

Calculated values of the gradient from the Monte Carlo simulations for small n, where Ag1=,ro was

not much greater than 1.6, were consistent with this asymptote (Figure 5-13). A linear extrapolation

was then used to calculate the gradient in the region between Ag = 1.6 and Ag l=,o, shown by dashed

lines in Figures 5-13 and 5-14.

Extrapolated values for 4 are compared to the Monte Carlo results in Figure 5-15. The behavior

of the extrapolations is qualitatively reasonable, with a monotonic rise in m as the magnitude of e

increases. The relative distances of the extrapolated isoenthalpic lines from each other is consistent

with those in the Monte Carlo regime.
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5.5.3 Radial Flow-Averaged Steric Parameter ()

One approach to calculating Q at large Ag would be to use a similar procedure to that just described

for . As an alternative to explicit calculation, we can devise a semi-empirical means of relating Q

to 4. To begin, we note that, from Eqs. 5.3 and 5.4,

= 2 - 4 p(A, f)3 d. (5.16)

Then, theoretically, limp-o DO = 2/. We then ask whether the limit as A - oo is equivalent:

lim 0 lim = 2. (5.17)
A,-oo p-O

For a solid sphere, this is true because p = 0 for A. > 3/5 (e.g., A, > 1). For a random coil, Eq. 517

appears to be valid from the Monte Carlo results (see Figure 5-16). In fact, 0/4 is rather insensitive

to both n and e and can be approximated by a simple exponential dependence on Ag. It should be

noted that in the limit of large Ag, the full pore potential is reached and Q/4f will be the same for

all values of e. At Ag > 1.6,

// -1 2 (5.18)

provides a reasonable approximation, and this was the relation used to calculate Q. Values of f for

n = 200 are plotted in Figure 5-17.

As mentioned in Section 5.4.2.3, the ratio was also used a means of assessing the quality of the

Monte Carlo results. Anomalous behavior such as that shown by the data for A = 1.8, e = -0.2

(Figure 5-16) was one of the reasons the results at Ag = 1.8 were not used for further calculations.

The physical significance of this ratio and its asymptotic limit is not clear. The ratio can be

written as

= 2 ' ) 2- 2, (5.19)
/folp(Ag, ) df

where is the ratio of the third moment of p to its first moment. From moment theory254 we can

construct bounds on :

~~( ) P~) < ~ < ( '(5.20a)

(P) j p(A9 , i) di: = Oth moment. (5.20b)

(5.20c)

And so it seems a more detailed examination of 4/(p) would give some insight into the physical

significance. Unfortunately, since information on (p) is not normally available, this is not generally

useful.
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Figure 516: for n = 20 and n = 800. Solid sphere theory is shown by solid curve.

Figure 5-16: Q/¢ for n = 20 and n = 800. Solid sphere theory is shown by solid curve.
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5.6 Estimation of Hydrodynamic Parameters at Large Ag

Extrapolation of the hydrodynamic parameters K-1 and G to large A. is less problematic because

they vary roughly as exp(-A 9 ), as opposed to · and SI which vary almost as exp(-A'). Thus, the

order of magnitude of H and W are insensitive to K - ' and G at large A9, and any simple function

which satisfies the asymptote should be acceptable. We fit the data of Davidson and Deen 72 to the

following exponentials:

K - 1 = exp(-1.798A9 ), (5.21a)

G = 0.5 exp(-0.6146Ag) + 0.5. (5.21b)

These equations were fitted using their data for all three values of acH, a parameter which is a

measure of the flow resistance through the interior of the coil and which is a function of r,/g:7r2

5.77 x (2.5981(r,/r,))
2.22 - (2.5981(r/r,))' (5.22)

The values of aH used (10, 34, and 60) correspond to r,/r. = 0.54, 0.73 and 0.78. The hydrodynamic

coefficients are actually relatively insensitive to caH, and in fact use of any one the three values would

give nearly the same result for the sieving coefficient,

5.7 Interpolation Procedure for Sieving Calculations

Tables of In ' and In Q as functions of number of chain segments (n = 20, 50, 100, 200, 400, 800),

Ag (= 0.0 to 7.0 by 0.2) and (= -0.30 to 0.0 by 0.01) were created, with values for 0 < A < 1.6

calculated by Monte Carlo simulation and values for 1.6 < A < 7.0 calculated by the extrapolation

procedure of Section 5.5. For the full-pore potential, and Q were calculated for the neutral case,

and energetic attractions were added by applying Eqs. 5.11.

Similar tables for K - 1 and G as functions of Ag (= 0.0 to 1.6 by 0.2) and aH (= 10, 34, and 60)

were constructed from the data of Davidson and Deen. 72 Values for A > 1.6 were calculated from

Eqs. 5.21.

A multidimensional interpolation scheme20 6 was used to perform the calculations, with the al-

gorithm of Akima 3 ' 4 as the method of interpolation in each dimension.

In order to maintain consistency for comparison with the in vitro measurements of Davidson and

Deen, 71 the following correlations for dextran molecular radii were used, fitted to data of Callaghan

and Pinder4 8 for r, and that of Garg and Stivalal0 9 for r, with the radii in A:

r, = 0.245M °5 , (5.23a)

rg = 0.323M °, 5. (5.23b)
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Eqs. 5.23 were fit assuming ideal coil behavior (i.e., the exponent fixed at 0.5). For determination

of n, a monomer was taken to be an equivalent Kuhn segment, and so n = M,, /162.

5.8 Theoretical Effect of e on Glomerular Sieving

Theoretical sieving curves for dextran random coils which follow Eqs. 5.23 are compared to that of

a neutral solid sphere in Figure 5-18. An isoporous membrane radius of 50 A was assumed, using as

hemodynamic inputs the single nephron values of Table 4.2 for combined dextran and Ficoll rats.

As expected from the results for H and W of Davidson and Deen, 72 for a neutral random coil

of intermediate r, is lower than that of a neutral solid sphere. An energetic attraction of between

-0.1 and -0.2 kBT per mass point is required for ecoil Osphere. Because Osphere = 0 for rT > 50

A, 9
coil > esphere for sufficiently large r,, at any value of the energy parameter. Figure 5-19 shows

the equivalent plot for the full-pore potential. There is little qualitative difference between the two

figures, although the energy value at which Ocoil Oesphere is now approximately -0.O1ksT.

The presence of even very small attractive energies is seen to have significant effects on the

sieving coefficients, especially for large molecules. The e of a 50 A dextran is raised three orders of

magnitude when e changes from 0 to -0.25 in the d = I model, or from 0 to -0.03 in the d = ro

model.

5.9 Fit of Energy Parameter to Dextran Sieving Data

5.9.1 Methods

Values of were fit to the dextran data of Chapter 4 using Powell's method,2 0 6 as described in

Section 4.2.5. The isoporous + shunt, lognormal, lognormal + shunt, and double lognormal pore

distributions were examined, with pore size parameters fixed at those obtained from Ficoll sieving

curves (Table 4.4). The single nephron hemodynamic parameters for the combined dextran and

Ficoll rats (Table 4.2) were used as model inputs. Pore/solute attractions were assumed to have no

effect on coils traveling through the shunt.

5.9.2 Results

The best-fit values for E are reported in Table 5.2 for each pore size distribution and are plotted

in Figure 5-20 for the d = I case and Figure 5-21 for the d = r0o case. The values for the d = I

case are nearly identical for all distributions, with -0.25. In turn, this is very similar to the

value of -0.26 reported by Davidson and Deen71 using the same model for the transport of dextran

through polycarbonate membranes. Thus it seems that the nature of dextran's enhanced transport

is quantitatively independent of the medium through which it travels. The isoporous + shunt model

does not provide a good description of the data because the energy term has no effect on sieving
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Figure 5-18: Effect of energy parameter on for isoporous membrane with r = 50 A, d = I
case. Dashed lines represents results for neutral solid sphere. Hydrodynamic inputs are total single
nephron values in Table 4.2.
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Figure 5-21: Fit of energy parameter to dextran data for various heteroporous models, d = ro case.
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Model X2

Table 5.2: Fit of energy parameter e to dextran data using Ficoll pore parameters of Table 4.4.

through the shunt and hence the transport of large molecules is not enhanced (Figure 5-20). The fits

provided by the other three distributions are similar, with the lognormal model having the best-fit

as measured by X2 values.

There is more variability in the values of e for the d = To cases, with the isoporous + shunt

value being six to seven times that of the three continuous distributions. For the d, = To case,

the isoporous + shunt model is similar to its d = I counterpart (Figure 5-21). The plots for the

other three distributions are in very poor agreement with the data. The curves anomalously reach

a minimum around 40-50 A and then begin to increase with r,.

The explanation for this is seen when one examines the degree of sieving through large versus

small pores. We define the value eextrap as the amount of the sieving coefficient that is due to

transport through pores smaller than rg/1.6 (i.e., A > 1.6):

~'g/1 6

ei,extrap = ei(r)w(r) dr, (5.24)

where Oi(r) is the isoporous sieving coefficient defined by Eq. B.la and w(r) is the fractional filtrate

volume defined by Eq. B.lb. Oi,extrap corresponds to the part of the sieving coefficient calculated

from the extrapolated approximations to large Ag. These values are shown as a fraction of the total

Oi in Table 5.3 for each distribution. For the d = I cases, the extrapolated fractions are on the

order of 5-30%, with higher percentages seen at the largest r, for the lognormal and lognormal +

shunt models, and in the middle values of r, for the double lognormal model. For the d = r cases,

the trends are similar, but the amount of extrapolation is much smaller, less than 1% in all cases

and predominantly less than 0.1%. This implies that, for the d = To cases, even though there are

very few large pores, they conduct the preponderance of the transport of large molecules due to the

energetic attractions. For example, at r, = 65 A, rg/1.6 = 53.4 A. From the pore size distributions

for the Ficoll data (Figure 4-3), 1% or less of the total volume flux is going through pores larger

than 53.4 A, yet these pores account for over 99% of the transport of the largest dextrans. This is
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Isoporous 1 -0.225±0.012 444
+shunt ro -0.0705±0.0023 386
Lognormal 1 -0.250±0.017 60.6

ro -0.0145±t0.0063 362
Lognormal 1 -0.248±0.003 112
+shunt rO -0.0192±0.0007 349
Double 1 -0.250±0.003 129
lognormal ro -0.0100±0.0007 409



Lognormal Double Lognormal Double
r, Lognormal + Shunt Lognormal Lognormal + Shunt Lognormal

19 4.2 2.8 0.9 0.027 0.021 0.004
21 4.9 3.5 0.9 0.021 0.021 0.008
23 5.3 4.5 1.1 0.019 0.023 0.005
25 6.3 5.3 1.6 0.018 0.025 0.007
27 6.9 6.5 2.6 0.017 0.027 0.013
29 7.2 7.8 4.9 0.016 0.030 0.021
31 7.7 8.9 6.8 0.016 0.034 0.030
33 7.9 9.6 9.4 0.016 0.038 0.034
35 8.6 10.7 12.8 0.017 0.046 0.043
37 9.2 13.4 17.7 0.018 0.052 0.040
39 10.1 14.7 21.6 0.018 0.059 0.035
41 11.1 15.8 25.4 0.019 0.066 0.029
43 11.9 16.9 27.8 0.019 0.074 0.024
45 12.4 18.2 28.6 0.021 0.084 0.019
47 12.9 19.3 29.1 0.022 0.094 0.015
49 13.2 20.1 27.0 0.023 0.104 0.011
51 13.6 21.0 24.6 0.024 0.115 0.008
53 14.2 22.1 21.9 0.025 0.126 0.006
55 14.9 23.0 17.8 0.026 0.138 0.005
57 14.7 23;1 18.2 0.027 0.150 0.004
59 15.7 22.9 15.0 0.028 0.163 0.003
61 17.0 23.1 12.6 0.029 0.177 0.003
63 18.6 23.4 11.1 0.031 0.193 0.002
65 20.3 23.5 10.1 0.033 0.209 0.002

Table 5.3: Oi,extrap/Ei (in %) for random coil fits.
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explained by noting that in the full-pore potential, enhancements from attractive energies are seen

at all sizes, with significant adsorption at small Ag (Figures 5-4 and 5-5). In contrast, in the d = I

case, only transport of molecules at large A. is enhanced (Figures 5-2 and 5-3). Thus, the presence

of attractive energies makes transport through all pores more favorable in the d = ro case, whereas

in the d = I case it preferentially makes transport through small pores more favorable. The plots of

Figure 5-21 represent the physically unrealistic situation of molecules highly adsorbed to a few large

pores with steric parameters > 1. Since adsorption is predicted to increase with n, e is predicted

to increase with A.

The d = I results are probably more physically realistic, but Oextrap is still relatively small, on

the order of 10-20%. This suggest that greater accuracy in the extrapolation method would not

make significant differences in the modeling results.

5.10 Discussion

Alternate possibilities exist for the mechanism behind the enhanced transport of dextran. One

possibility is that the hydrodynamic coefficients K - l and G are underestimated by the theory. This

issue is easily addressed by modeling dextran as a free-draining coil, for which K-l and G equal

unity at all sizes. This case is shown in Figure 5-22 for the lognormal + shunt model in comparison

with the results for a neutral coil and a coil with = -0.248. The hydrodynamic effects are seen to

account for at most 50% of the difference for small molecules, and less than 1% of the difference for

large molecules.

A more important consideration is the determination of the values of I and n which truly char-

acterize the physical properties of a given dextran molecule. All of the above calculations were

performed assuming I corresponded to the length of one glucose monomer. This was consistent with

the analysis of the in vitro data by Davidson and Deen 71 and would allow for direct comparison with

their results. Although there is data to indicate that I may actually correspond to more monomers

(see Appendix F), the range of alternative values is rather wide (between four and ten monomers),

and this data is not consistent with other measurements that show that dextran exhibits the prop-

erties of a polymer at relative low molecular weight.ll4 If one wanted to model behavior at different

effective Kuhn lengths, a new set of Monte Carlo calculations would have to be performed since it

would probably be desirable to still scale d with the size of a monomer, and not the effective Kuhn

length.

Another possible explanation is that that chain branching reduces steric effects in a way that

cannot be simply explained. The importance of branching for dextran unperturbed dimensions has

not been resolved, but assuming that branching was significant, one would expect that a branched

chain and a linear chain with equivalent r would have quite different distributions of intramolecular

distance, with the branched chain being more compact. If each chain branch were only one or two
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Figure 5-22: Comparison of free draining (K- 1 = 1, G = 1) to neutral and attractive coil models.
Pore parameters are for the lognormal + shunt model.
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glucose residues, then a linear molecule might be justified as a suitable approximation. If, however,

there are very large branches, this could have significant consequences. Casassa and Tagami53

demonstrated that for a "star" configuration, consisting of identical random chains joined at a single

branch point, 4I increased as the number of branches increased for a fixed total number of chain

segments. Analytical expressions exist for volume correction factors for branched molecules with

long side chains of identical length, or for molecules with a random distribution of branches, 15 4 and

these could be applied as a first-order correction, but one must then determine the dependence of

effective n and I on molecular weight. Most importantly, the effect on the partition coefficients

would be much more significant than a simple adjustment for rg.

In summary, we have used recent theoretical developments in the study of hindered transport

to describe dextran sieving as the filtration of random coils through cylindrical pores. Dextran's

transport both in vivo and in vitro is enhanced over that of a neutral coil, and it can be accounted

for by the assumption of attractive solute/pore interactions. The magnitude of these interactions

is nearly identical for the glomerulus and synthetic membranes, and indicates that the nature of

the enhancement is independent of the medium through which dextran travels. This model is

strictly descriptive, as there is no physical evidence to support the idea of solute/pore attractions.

Nevertheless, such a model is the first step in attempting to understand the mechanism by which

molecules of different configuration are filtered through the glomerular capillary.
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Chapter 6

Ficoll Sieving in Fawn-Hooded Rats

6.1 Introduction

6.1.1 The Fawn-Hooded Rat

The fawn-hooded (FH) rat is a strain with a genetic predisposition to developing hypertension, hy-

perfiltration, proteinuria, and glomerulosclerosis at a young age. 15 16 S5 3 As such, the FH rat model

may serve as a closer approximation of essential renal disease in human beings than previous models.

FH rats have increased AP and SNGFR compared to normotensive Munich-Wistar rats.2 3 0 A par-

ticular inbred substrain, denoted "FHH", has the highest susceptibility to hypertension, proteinuria,

and sclerosis among the FH rats.

6.1.2 The Model of Renal Ablation

Surgical infarction of renal tissue ("renal ablation") is a well-studied model for chronic hypertension

in the rat. , 7,55,56,64,80,123,128,142,175,188,189,191,197,108, 208,227 Common protocols are for the abla-

tion of from 1/2 (uninephrectomy) to 15/16 of the renal mass. The animal responds by shifting renal

blood flow to the remaining functional nephrons, resulting in larger values of QA and SNGFR. Kf

is relatively unchanged, and thus SNFF falls. Transmural hydraulic pressure (AP) increases sub-

stantially, on the order of 5-15 mm Hg. Proteinuria ensues, and the remaining functional glomeruli

eventually become sclerotic, establishing a cycle which ultimately leads to kidney failure. If a renal-

ablated rat is treated with angiotensin I converting enzyme (ACE) inhibitor 6' 7,1 7 5 or a low-protein

diet,' 75 AP is normalized and Kf increases, with SNGFR maintained relatively constant. Depend-

ing on how early therapy commences, renal damage is either prevented or arrested. Conversely, a

traditional "triple-drug" regimen for hypertension, which lowers systemic blood pressures but not

AP, fails to stop progression of proteinuria and glomerulosclerosis. 7 Glomerular hypertension has

thus been implicated as an important mediator in the progressive impairment of renal function.3 5 ,3 8

6.1.3 Enalapril and NAME

Two pharmacological agents are of particular importance to the work described in this chapter.

Enalapril is an ACE inhibitor which has seen extensive use both clinically and in animal studies

of glomerular hypertension and hyperfiltration.7, 124,125,131,173,175,183, 202,204,212,213,221,26 Physio-

logically, it lowers efferent arteriolar resistance and increases Kf, resulting in the maintenance of

SNGFR at lowered AP. In addition to pressure normalization, ACE inhibitors are believed to have
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additional independent protective renal effects, including the raising of kinin activity. 99' 130, 131 183

NAME (Nw-nitro L-arginine methyl ester) is a substituted L-arginine compound which blocks

nitric oxide (NO) synthesis. Nitric oxide (also known as endothelial-derived relaxing factor) is

made by the vascular endothelium and relaxes adjacent smooth muscle cells.l8 ' Other data suggest

that NO and angiotensin II have directly antagonistic effects in glomerular filtration and tubular

reabsorption. 75 229,24 1 Additionally, NO has been proposed as a mediator in the hyperfiltrative

response of the glomerulus to amino acids.75 143 2 4

Blockage of NO synthesis (with NAME or other substituted L-arginine compounds) leads to

acute increases in both systemic and glomerular blood pressure. lL 1685,s08,209,265 Chronic adminis-

tration of NAME to rats has been shown to increase AP, proteinuria, and glomerulosclerosis.8, 58 217

Physiologically, NAME increases both afferent and efferent arteriolar resistances and decreases Kf.

The result is decreased capillary blood flow and increased AP, with SNGFR maintained relatively

constant.

6.1.4 Objectives

Ficoll sieving studies were performed on groups of FHH rats to study the effect of hyperfiltration

and hypertension and subsequent pharmacological interventions on glomerular size-permselectivity.

Uninephrectomy was performed on the FHH rats to accelerate the progression of the renal disease.

Untreated and treated uninephrectomized rats were compared with two-kidney controls. These

experiments also provided a database for the further study of pressure estimation from sieving

curves (Chapter 7).

6.2 Materials and Methods

6.2.1 Preparation of Radiolabeled Polymers

Tritiated Ficoll was prepared as described in Section 4.2.1.

6.2.2 Animal Studies

Animal care and preparation, whole kidney measurements, and micropuncture studies were per-

formed by Dr. Jacob L. Simons and Julia L. Troy of the Laboratory of Kidney and Electrolyte

Physiology at Brigham and Women's Hospital.

6.2.2.1 Animals

A total of 43 male FHH rats were studied. All were fed ad libitum standard rat chow (Wayne

Rodent Blox, Allied Mills, Chicago, IL) containing 24% protein by weight and allowed free access

to water for the first eight weeks of life. At eight weeks, all rats were anesthetized with ethyl ether
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and underwent either uninephrectomy or sham operation. For uninephrectomy, the right kidney

was removed after exposure by a midline incision of the body wall and careful separation from the

adrenal gland and associated connective tissue. For the sham operation, the right kidney was gently

manipulated but otherwise left intact. All micropuncture and sieving studies were performed at

twelve weeks of age.

The first group (2K, n = 17) consisted of normal two-kidney control animals which underwent the

sham operation. After the operation, they resumed the normal diet. Micropuncture without Ficoll

sieving analysis was performed on eight of the 2K animals, sieving analysis without micropuncture

was performed on five, and four animals received both.

A second group of animals (UNX, n = 9) were uninephrectomized. After surgery, the rats

resumed the standard diet and water. Both micropuncture and sieving studies were performed on

all rats in this group.

A third group of rats (ENA, n = 8) also received uninephrectomy but after surgery were given

a water supply containing 250 mg/l enalapril (Merck, Sharp & Dohme, West Point, PA). Both

micropuncture and sieving studies were performed on all rats in this group.

The fourth group of rats (NAME, n = 9) were uninephrectomized and after surgery were given a

water supply containing 50 mg/l NAME. The NAME was freshly made every other day and protected

from exposure to light. Micropuncture plus sieving analysis was performed on four of these animals,

while five received micropuncture only.

6.2.2.2 Surgical Preparation

Animals were prepared for micropuncture and tracer infusion as described in Section 4.2.2.2. Urine

was collected from rats during two successive 24-hour periods for determination of urinary protein

and albumin excretion.

6.2.2.3 Whole Kidney Hemodynamic Measurements

Whole kidney measurements were performed as described in Section 4.2.2.3.

6.2.2.4 Micropuncture Measurements

Micropuncture measurements were performed as described in Section 4.2.2.4 with the following

differences. Since FH rats do not have surface glomeruli, glomerular pressures were measured by

the stop-flow technique: time-averaged hydraulic pressures were measured directly in superficial

proximal tubules under free-flow (PT) and stop-flow (PSF) conditions using a servo-null micropipette

transducer system (Model 5A, Instrumentation for Physiology & Medicine, San Deigo, CA). Stop-

flow conditions were obtained by injecting bone wax (Ethicon W-31G) blocks into proximal tubules

using a wax blocking device (Research Instruments & Mfg., Corvallis, OR). At least 3 to 4 PSF
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recordings in different nephrons, with a minimum duration of 2 to 4 min each, were obtained during

each experiment. Glomerular capillary hydraulic pressure was then calculated as AP = PSF + rSF -

PT .115

6.2.2.5 Tracer Infusion and Collection

Tracer infusion and collection was performed as described in Section 4.2.2.5.

6.2.2.6 Analytical Methods

Inulin, serum protein, PAH, and oncotic pressures were measured as described in Section 4.2.2.6.

Urinary total protein excretion (UplV) was measured by turbidimetric assay.34 Urinary albu-

min excretion (UaV) was measured by immunodiffusion.l 70 The urinary "non-albumin" excretion

(U(p,_)V = UpV - UaV) was calculated as the difference of the two. The non-albumin proteins

are predominantly a-, -, and 7-globulins, all with isoelectric points higher than albumin's. The

fractional clearance of protein i is defined as

viv
FRCi = GF'i (6.1)

GFR CiA

Since afferent albumin concentrations were not measured, they were estimated to be one-half the total

serum protein concentration. It has been shown that the fraction of plasma albumin concentration

to total plasma protein concentration does not change with uninephrectomy [Dr. A. P. Provoost,

private communication]. Thus, although the absolute values of FRCi may not be accurate, the

relative values are valid for comparison. Unlike for Ficoll, for proteins FRC $ 0 because they are

actively reabsorbed in the tubules.

6.2.3 Fractionation of Radiolabeled Plasma and Urine Samples

Fractionation of the plasma and urine samples was performed as described in Section 4.2.3.

6.2.4 Calculation of Sieving Coefficients

Sieving coefficients were calculated as described in Section 4.2.4.

6.2.5 Data Analysis

Pore size parameters and their standard errors were calculated using the models and methods de-

scribed in Section 4.2.5. Statistical comparisons were made using one-way analysis of variance, with

Scheffe's test used to determine significant differences. The Pearson correlation coefficient was used

to determine correlation between parameters.
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BW(g)
AP (mm Hg)
Hematocrit
GFR (ml/min)
RPF (ml/min)
FF
SNGFR (n/min)

QA (nl/min)
SNFF

fy,A (g/dl)
AP (mm Hg)
Kf (nl/min/mm Hg)
UpV (mg/24 h)
UaV (mg/24 h)
U(p_)V (mg/24 h)
Ua /UpV
FRC x 10- 4

FRC, x 10 - 4

FRC(,_a) x 10 - 4

OF36 GFR (ml/min)

2K
(n = 9)

2874-5

1 2 4-1(2N)
43.2-0.9(N)

1. 2 3±0.04 (UB)

4 .9 0 +0.16(U)
0.2 5 ±0.01( N)
49.34.3( UB4 )

17 7± 20 (U4)
0.2 8 ±0.01(N)
5.4±0.1

4 8 .6±1.2 (UN4)
1.91O0. 1 9(B4)

0.0 8 63 ±0.0101(U)

UNX
(n = 9)

265±7
12 9 ±2(BN)

45.3±0.5
1.9 8±0.1 2 (T)
6. 8 9 ±0.3 1 (TN)

0.29±0.04
85.65.5(T)

2 9 6 ±17(T)

0.3 0+0.01(N)
5.2d.1(B)

55. 9 ±1.2 (TBN)
2.6640.13(B)
40.7±6.9(B)
27.3±6.2(B)
14.5±2.5(8)
0. 6 3 ±0.05(B8)

2.76±0.44(B)
3.74±0.86(B8)

1.9040.23(")

ENA
(n = 8)

260±8

9 6 +3 (TUN)
44.540.6
1.8 6o0.18 (T)
6.42±0.51
0.29±0.01
87.3+5(T)

3 0 4±2 2 (T)
0. 2 9 ±o0.0(N)
5.6+0.1( U)

43.61.2(UN)

4 .5 7±0.2 0 (TUN)
12.0±1. 8 (U)
1.8 7±1.04 (U)
10.2±1.3
0.1 3 ±0.05(UN)
0. 8 2 ±0.1 2 (UN)
0.2 8 ±0.15(UN)
1.37±0.14

NAME
(n = 4)

263±12

1 60± 4 (TUE)

4 7 .01.1(T)
1.47±0.09
4.541.09(U)

0. 3 5o0.04 (T)
76.5±6.1
208±40

0.3 8 ±0.01(TUB)
5.4±0.1

64.6-3.3(TUE)
1.94±0.07(B)
30.3±5.2
20.9±6.6(3)
6.5±2.2(3)

0.72-13(B
3
)

2.67±0.49()
3.581.11(B3)
1.190.45( 3)

0.159±0.033

Table 6.1: Hemodynamic values for fawn-hooded rats which underwent Ficoll sieving studies. OF86 =
Ficoll for r, = 36 A. Superscripted letters indicate p < 0.05: T-vs. 2K, U-vs. UNX, E-vs.
ENA, N-vs. NAME. Superscripted numbers indicate n is different from column heading; 3: n = 3,
4: n=4, 8: n=8.

6.3 Results

6.3.1 Hemodynamic Data

The mean values ± one standard error of various systemic, single nephron, and whole kidney quan-

tities are shown in Table 6.1 for rats on which Ficoll sieving was performed, and in Table 6.2 for all

rats. (The differences between rats which did and did not undergo sieving studies will be discussed

subsequently.) Considering the data for all rats (Table 6.2), untreated uninephrectomy significantly

increased plasma flow rate (RPF or QA), filtration rates (GFR or SNGFR), filtration pressures

(AP), albumin excretion (UaV), and fractional albumin excretion (UaV/UpV) compared to two-

kidney controls. Total protein excretion (UpV) also increased by a wide margin (40.7 vs. 13.3 mg/24

h), but the difference did not achieve significance because of the low number of 2K rats in which

protein excretions were measured. The difference in non-albumin excretion was not substantial.

These changes are in general agreement with those previously reported for renal ablation.8 2 1128

Relative to untreated uninephrectomized rats, enalapril treatment of uninephrectomized rats low-

ered the mean arterial and glomerular filtration pressures, increased the ultrafiltration coefficient,

and lowered total protein, albumin, and fractional albumin excretion. The changes in AP, K, and

UpV, along with the lack of significant change in QA, SNGFR, and SNFF are consistent with pre-

viously reported effect of enalapril on renal ablation. 6 71 7 Non-albumin excretion was unchanged.
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BW(g)
AP (mm Hg)
Hematocrit
GFR (ml/min)
RPF (ml/min)
FF
SNGFR (nl/min)

QA (nl/min)
SNFF

fA (/dl)
AP (mm Hg)

Kf (nl/min/mm Hg)
UpV (mg/24 h)
UaV' (mg/24 h)
U(,p_a)V (mg/24 h)

UaV/UpV

FRCP x 10- 4

FRCa x 10 - 4

FRC(p_) x 10 - 4

pF36-' GFR (ml/min)

2K
(n = 17)

283±8
12 3 42 ( RN)

43.740.6
(N )

1. 3 4+0.06(UE)
5.05s0.14(UN)
0. 2 7 +0.0(N)
58.2:2.9(

U N 12
)

180O9(UE12)
0. 3 2 +0.01(N12)
5.3-0.1

4 8 .8 0. 8 (UN12)

2 .2 8 -0.1 3 (EN12)
13.3+0.6( 4)
4.2-0.8(U4)

9.0+0.7(4)
0. 3 2+0.06(UN4)
1.45+0.20(4)
0.990.32(4)
1.92+0.11

0.08 6 3 +0.0101(UB9)

UNX
(n = 9)

265+6
12 9+2(E N)

4 5 .3+0.(N)
1.9 8 +0.12 (TN)

6 .8 9 40.3 1(TN)
0.2 8 +0.01(N)
85.6 t5.(T)

2 9 6 +17(TN)
0.3 00.01(N)
5.2:0.1

55.9-1.2 (TBN)

2 .6 6 +0.13 (N)
40.7+6.9(E)
27.3-6.2(T3M)

14.5-2.5(8)
0. 6 3 0.05(TB8)
2.76+0.44
3.74-0.86(E8)
1.90+0.23

0.174-0.0 2 4 (T)

ENA
(n = 8)

260+8

9 6+ 3 (TUN)
44.50.6(N)

1.860.18 (TN)

6 .4 2 +0.51(N)
0. 2 9 +0.01(N)

8 7 .3 +5(T)

304+2 (TN)
0.2 9 0.01(N)

5.6+0.1

4 3 .6+1. 2 (UN)

4 .5 7+-0.2 0(TUN)
12.04-1. 8(U)
1.8+1.0(u)

10.2+1.3
0.13+0.05(UN)
0. 8 2 o0.1 2(N)
0. 2 8 0.15(U)
1.37+0.14

0.17 6 4-0.02 4 (T)

NAME
(n = 9)

258+6
16 8- 6 (TUE )

4 9 .6-1.5(TUB)
1.05+0.14 (UE)

3 .05i:0.6 6 (TUB)
0.3 8+0. 0 2 (TUS)
66.7+5.9
169 2 (UB)

0.3 9 +0.0 2 (TUE)
5.3-0.1

67.6-2.8( TUE )
1.5 4-0.1 6 (TUB)
39.4+10(")
20.96.6 (s)
6.5-2.2(3)

0.7 2 0.1 3 (TB3)
5.07+2.42(E S)

3.58+1.11( 3)

1.19+0.45
0.159+0.033(4)

Table 6.2: Hemodynamic values for all fawn-hooded rats. F36 = Ficoll e for r, = 36 A. Super-
scripted letters indicate p < 0.05: T-vs. 2K, U-vs. UNX, E-vs. ENA, N-vs. NAME. Super-
scripted numbers indicate n is different from column heading; 3: n = 3, 4: n = 4, 5: n = 5, 9: n = 9,
12: n = 12.

Pressures and protein excretions for ENA rats were lower even than those for 2K rats.

NAME-treated uninephrectomized rats, when compared to the untreated UNX group, had in-

creased mean arterial and glomerular filtration pressures and lowered Kf, capillary plasma flow rate,

and filtration rates. These effects are the same as those reported for Munich-Wistar rats.1 8 Filtration

fractions increased significantly from ~ 0.3 for the other three groups to almost 0.4. Total protein

and albumin excretion, and fractional albumin excretion were higher than in the 2K and ENA groups

and comparable to those of the UNX group, while non-albumin excretion was unchanged. There

was also an increase in hematocrit which might have resulted from a shift of the extracellular fluid

volume from the vascular to the extravascular space, secondary to increased vascular pressures and

resistance.

Figure 6-1 compares the 24-hour urinary protein excretions from the four experimental groups.

The predominant source of the variation in UpV between groups is U~V, U(p_4 )V being relatively

constant. Stated another way, the fractional albumin excretion (UaV/UplV) increased with total

protein excretion. The ratio UaV/UpV= 0.32 in 2K rats is similar to reported normal clinical

values.33 In UNX and NAME rats, the ratio is approximately double the 2K value, while in ENA

rats, its is roughly a third of it. The sieving data will be discussed in the next section, but it is worth

noting here that while the urinary excretion of albumin was increased in the UNX and NAME groups
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Figure 6-1: Comparison of average albumin and non-albumin protein excretions for experimental
groups. Values shown are only for those rats in which both Up Vand UaVwere measured.
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BW (g)
AP (mm Hg)
Hematocrit
GFR (ml/min)
RPF (ml/min)
FF
SNGFR (nl/min)
QA (nl/min)
SNFF
Cp,A (g/dl)
ap (mm Hg)
K! (nl/min/mm Hg)
UpV (mg/24 h)
UaV (mg/24 h)
U(p.-)V (mg/24 h)
U v/v
FRCp x 10-4
FRC, x 10-4
FRC(p_a) x 10 - 4

Sieving Micropuncture Sieving
only only +Micropuncture

(n = 5) (n = 8) (n = 4)
2.± 7± 9±

Table 6.3: Hemodynamic values for two-kidney rats. *p < 0.05 vs. sieving + micropuncture group.

only, the filtered load of a 36 A Ficoll molecule, shown as eF36 · GFR in Table 6.2, was elevated in

all three 1K groups. Thus, albumin excretion is normal in the ENA group even though excretion of

36 A Ficoll is elevated.

Table 6.2 includes micropuncture data from eight 2K and five NAME rats which did not undergo

Ficoll sieving studies. In Table 6.3 the data for the 2K rats is split into those which underwent

sieving measurements only, those which underwent micropuncture only, and those which had both.

For unknown reasons SNGFR, SNFF, and Kf were higher in micropuncture-only rats compared to

rats with both. These could reflect effects of the various experimental procedures, methodological

differences, or true differences in the population of the rats. Since Ficoll infusion occurred after

micropuncture, it is doubtful that the sieving measurements themselves had anything to do with the

difference between the micropuncture-only and sieving + micropuncture groups. For the analysis

of the sieving data, only the average whole kidney and single nephron quantities for the rats which

had sieving studies were used.

In Table 6.4, the data for the NAME rats which did and did not have sieving studies are presented.

The rats which had sieving had larger Kf and GFR than those which did not, which was the opposite

trend of the results from the 2K rats, indicating that such differences may have simply been due to

chance.
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278+2
122±4

44.34-0.7
1.46±0.09
5.21±0.25
0.28±0.02
62.7+2.8*
182±9

0.34±0.01'
5.2±0.1

48.9±1.2
2.47±0.13*
13.3±0.6
4.2±0.8
9.0±0.7

0.32±0.06
1.45±0.20
0.99±0.32
1.92±0.11

279±7
124±2

43.41.7
1.250.04
4.940.26
0.250.02

5.40.1

298±5
125±2

43.00.4
1.21±0.08
4.85±f0.17
0.2530.013
49.34.3
177±320

0-280.01
5.3±0.1

48.61.2
1.910.19
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B W (g)
AP (mm Hg)
Hematocrit
GFR (ml/min)
RPF (ml/min)
FF
SNGFR (nl/min)
QA (nl/min)
SNFF
Cp,A (g/dl)
AP (mm Hg)
K (nl/min/mm Hg)
UpV (mg/24 h)

U.V (mg/24 h)
U(pa)V (mg/24 h)
Ua V/UpV

FRCp x 10-4

FRCa x 10- 4

FRC(p_a) x 10-4

sieving no sieving
(n = 4) (n = 5)

Table 6.4: Hemodynamic values for NAME rats. *p < 0.05 vs. no sieving group. Superscripted
numbers indicate 7i is different from column heading; 1: n = 1, 3: n = 3.

Thus, though there were some significant unexplained variations in the subgroups of 2K and

NAME rats which did and did not undergo sieving, such differences were in opposing directions and

may have been random. In any case, the analysis of any data presented here is not affected, as

averaged values were used only for those to which they were applicable.

6.3.2 Sieving Data

Ficoll sieving coefficients for each of the four groups are shown in Tables 6.5 and 6.6, and plotted in

Figure 6-2 for the range r, = 20 to 70 A. The sieving curves in Figure 6-2 are more sigmoidal than

the Ficoll curves for Munich-Wistar rats (Figure 4-1), the values for at r, = 20 A being closer

to one. At r, < 50 A, for 2K fawn-hooded rats are somewhat greater than those for the normal

Munich-Wistar rats reported in Chapter 4, while for r, = 60 to 65 A, values are lower ( 3 x 10 - 4

for FH rats vs. t 7.5 x 10 - 4 for Munich-Wistar rats). Because different investigators performed the

micropuncture, however, it is difficult to draw absolute conclusions from the comparison.

The variances in 0 for each group were shown to be unequal by statistical analysis, violating the

requirement of homoscedasticity necessary for ANOVA. A logarithmic transformation of the data

satisfied this criterion, and so one-way ANOVA was performed on the values of log(G) to determine

significance.' 4 4 No significant difference is seen between groups for r, < 45 A. For r, > 45 A only
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263±12
160±4

47.0±1.1
1.47±0.09*
4.54±1.09 
0.35±0.04
76.5±6.1
208±40

0.38±0.01
5.4±0.1

64.6±3.3
1.94±0.07*
30.3±5.2*
20.9±6.6( 3)

6.5±2.2( 3 )

0.72±0.13
2.67±0.49*
3.58±1.11
1.19±0.45

254±7
175±10

51.62.1
0.730.05
1.860.18 
0.40±0.02
58.9±8..3 
139±17

0.390.02
5.2±0.1

70.14.3

1 1.220.18
76(l) '

14.0)'



r, (A) 2K (n=9)

20 8.51x 10-1±9.04x 10 - 2

22 7.74 x 10-1±8.09 x 10 - 2

24 6.51x 10-1'7.02 x 10 - 2

26 5.03 x 10-'±5.28 x 10 - 2

28 3.60 x 10-1I3.32 x 10- 2

30 2.71 x 10-1±3.75 x 10-2

32 1.70x10-1±1.76x10 - 2

34 1.07x 10-1±1.25x10-2
36 7.02 x 10-2±8.15 x 10-3
38 4.24 x 10- 2±4.95 x 10-3
40 2.59 x 10-2±3.61 x 10-3
42 1.57x 10-22.44 x 10 - 3

44 9.51 x 10-3±1.60 x 10- 3

46 5.64 x 10-3±1.04 x 10-3
48 3.49 x10-3±6.85 x 10- 4

50 2.29 x 10-3±4.73 x 10- 4

52 1.51 x 10-3±3.37 x 10 - 4

54 1.03 x 10-3±2.46 x 10 - 4

56 7.46 x 10-44±1.93 x 10- 4

58 5.46 x 10-4±1.44 x 10 -4

60 4.01 x 10-4+9.84 x 10- 5
62 3.09 x 10-4±7.28 x 10- 5
64 2.48 x 10-4±5.67 x 10 - 5

66 2.04 x 10-444.19 x 10 - 5

68 1.72x 10-4±3.11 x 10- 5

70 1.50 x 10-4±2.59 x 10 - 5

7.36 x 10-147.04x 10-2
6.73 x 10-1±5.97 x 10-2
5.61 x 10-1±4.89 x 10- 2
4.47 x 10-'3.48 x 10-2
3.37x 10-l±2.32x 10-2
2.47 x 10- ±1.76 x 10- 2
1.76 x 10-11.23 x 10 - 2

1.23x 10-1'1.18x 10-2
8.78x 10-2±1.01 x 10-2
6.10 x 10-2±8.45 x 10 -3

4.19 x 10-247.36 x 10- 3
3.06 x 10-2±6.12 x 10-3

2.22 x 10-2±5.12 x 10- 3
1.64x 10-2±4.34 x 10- 3*
1.24x 10-2± 3.69 x 10 - 3*
9.79 x 10-3±3.23 x 10-3*
7.97 x 10-34±2.96 x 10- 3*
6.59 x 10-3±2.71 x 10- 3*

5.52 x 10-3±2.47 x 10- a*

4.67 x 10-3±2.23 x 10-3 *
4.00 x 10-34±2.03 x 10 - 3*
3.43 x 10-3+1.86 x 10-3*
3.00 x 10-3±1.70 x 10- 3 '

2.65 x 10-3± 1.54x 10 - S
2.32 x 10-3± 1.39 x 10-3*
2.03 x 10-3±1.25 x 10- 3*

Table 6.5: Ficoll sieving coefficients for two-kidney and UNX fawn-hooded rats. All values are given
as mean 4 standard error. p < 0.05 vs. 2K. p was not significant for all comparisons to ENA and
NAME groups.
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r, (A) ENA (n=8)
20 9.34x10- .9.00x10 -2

22 8.59x10-1'8.37x10- 2

24 7.40 x 10- ±7.13 x 10- 2

26 5.91 x 10-1±5.60 x 10-2
28 4.39 x 10-14.34x 10-2
30 3.08 x 10-3.25x 10-2
32 2.16 x 10-'1±2.25 x 10-2
34 1.44x 10-11.53 x 10-2
36 9.55 x 10-2±1.13x 10-2
38 6.36 x 10-2±8.16 x 10-3
40 4.20x 10-2±6.09 x10-3
42 2.78 x 10- 2±4.55 x 10-3
44 1.87 x 10-2±3.25 x10- 3

46 1.31 x 10- 22.53 x 10-3
48 9.49 x 10- 3±2.08 x 10-3
50 7.15 x 10-3±1.75 x 10-3
52 5.48 x10- 3 ±1.46 x 10-3
54 4.28 x 10-3±i1.22 x 10- 3
56 3.31x 10-3±9.88 x10- 4

58 2.68 x 10-3±8.67 x 10- 4

60 2.19 x 10-3± 7.60 x10 - 4

62 1.80 x 10-3±6.46x 10- 4

64 1.49 x 10-3±5.45 x 10- 4

66 1.24 x 10-3±4.74 x 10- 4

68 1.05 x 10-3±4.23 x10- 4

70 8.92 x10-4 ±3.71 x 10- 4

NAME (n=4)
8.43x 10-15.83 x 10-2
7.93 x 10-1-6.72 x 10-2
6.77x 10-1 4.57x 10-2
5.55x10-±4.05x10-2
4.30x 10-'3.75x 10- 2

3.18 x 10-2.65 x 10-2
2.19x10-l±2.72x10 - 2

1.56x 10-±2.37x 10-2
1.08 x 10-12.08x 10-2
7.32 x 10-2±1.83 x 10 - 2

4.95 x 10-2±1.48 x 10-2
3.39x 10-2f±1.22x 10-2
2.34x 10-2±9.29 x 10 - 3

1.72 x 10-2.±7.47x 10- 3

1.25 x 10- 2±5.93 x 10 - 3
8.94x 10-3±4.62 x 10- 3

6.76 x 10-3±3.72 x 10 - 3

5.12 x10-3±2.96 x 10-3
4.15 x 10-3±2.48 x 10 - 3
3.48 x 10-3.±2.18 x 10-3
2.82 x 10-3±1.85x 10- 3

2.22 x 10-31.50 x 10- 3

1.83 x 10-3±1.26 x 10- 3

1.59x 10-31 .12 x 10- 3

1.38 x 10-3±9.95 x 10- 4

1.19 x 10-38.72x 10- 4

Table 6.6: Ficoll sieving coefficients for UNX+enalapril and UNX+NAME fawn-hooded rats. All
values are given as mean standard error. p was not significant for all comparisons to each other
and to 2K and UNX groups.
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Figure 6-2: Sieving coefficients () for Ficoll-infused fawn-hooded rats as a function of molecular
radius (r,). Error bars denote 4 one standard error of the mean.
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Model 2K
(n = 9)

UNX
(n = 9)

ENA
(n = 8)

NAME
(n = 4)

Isoporous r0o (A) 47.1±0.5 48.0±0.3 49.1±0.4 50.6±0.6
+shunt wO x10-3 0.148±0.030 3.184±0.58 0.-97±0.19 1.48±0.48

Xz 153 37.6 79.4 54.9

Lognormalu (A) 30.7±1.7 28.5±1.1 36.0±2.1 36.4±1.3
s 1.23±0.02 1.27±0.02 1.20±0.01 1.17±0.02
r*(5%) (A) 51.2 53.0 55.5 52.0
r*(1%) (A) 59.0 62.4 62.8 57.9
X2 157 36.1 100 44.7

Lognormal u (A) 34.2±0.9 30.6±0.6 38.6±1.2 37.4±0.3
+shunt s 1.19±0.01 1.24±0.09 1.16±0.02 1.15±0.01

wo x10-3 0.134±0.016 2.54±0.31 0.854±0.163 1.49±0.34
r' (5%) (A) 50.8 51.9 53.9 50.9
r*(1%) (A) 57.0 61.0 60.0 56.3
X2 44.6 9.86 47.8 24.8

Table 6.7: Membrane pore parameter fits of fawn-hooded rat sieving coefficients
hemodynamic values of Table 6.1. Fitted values are shown ± one standard error.

to single nephron

Enhanced model:Simpler model 2K 
p-value

UNX
Lognormal+shunt:Isoporous+shunt 2.7 x 10- 7 7.8 x 10- 1.4 x 10 - 3 4.6 x 10 - 5
Lognormal+shunt:Lognormal 2.0 x 10-7 1.3 x 10- 7 9.1 x 10- b 5.4 x 10- 4

Table 6.8: F-test comparisons of heteroporous model fits to fawn-hooded rat data. p values are
those for the significance of the 2 reduction by the "enhanced" model over the "simple" one.

the 2K and UNX groups differed significantly, with the UNX values approximately an order of

magnitude larger.

6.3.3 Pore Size Parameters

Membrane pore size parameters were fitted to the sieving data of Tables 6.5 and 6.6 using the single

nephron hemodynamic data of Table 6.1. The results are shown in Table 6.7 for the isoporous +

shunt, lognormal, and lognormal + shunt models previously discussed (Sections 2.6.5 and 4.2.5).

For each group, the lognormal + shunt model gave the best fit of the three, with the isoporous +

shunt and lognormal models giving approximately equivalent values of X2. This is in contrast to the

Ficoll data from Munich-Wistar (Chapter 4), where the lognormal model was clearly superior to the

isoporous + shunt model. F-test comparisons of the lognormal + shunt model to the other models

are shown in Table 6.8 In all groups, the decrease in X2 provided by the lognormal + shunt model

was highly significant, even though addition of the shunt to the lognormal model made only small
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GFR

SNGFR

RPF

QA

FF

SNFF

AP

GFR SNGFR RPF QA FF SNFF AP

Table 6.9: Correlation coefficients of whole kidney and single nephron hemodynamic quantities in
fawn-hooded rats. Top number is correlation using rats from all four groups, bottom number is
correlation using just 1K rats. *p < 0.05.

changes in the values of u and s.

The models are plotted against the data for each of the groups in Figures 6-3, 6-4, 6-5, and 6-6.

All three models tend to underpredict /E at small r,, a characteristic of the glomerular pore model

as EO - 1.7983 The models are roughly equivalent in the range 20 A r, < 40 A. Above 50 A, the

lognormal model severely underpredicts the data.

The pore-size distributions for the lognormal and lognormal + shunt models are shown in Fig-

ure 6-7. Because of comparatively higher values of O at small r,, the pores for the fawn-hooded rats

are calculated to be considerably larger than those reported for Munich-Wistar rats in Chapter 4.

For any group of rats, the differences between the two models is not large, nor is there much dif-

ference between the four groups for any one model. The UNX distributions in Figure 6-7 actually

have the highest number of large pores, although this is not demonstrable on the scale of the figure.

6.3.4 Data Correlations

6.3.4.1 Correlation of Hemodynamic Parameters

Pearson correlation coefficients for whole kidney and single nephron parameters are shown in Ta-

ble 6.9. A coefficient of ±1 implies that the two parameters are perfectly correlated, while a value of

zero means there is no correlation between the parameters. Separate coefficients were calculated for

rats from all four groups (top number) and for rats from just the three 1K groups (bottom number),

but little difference was observed. Body weight (not shown in the table) did not correlate with any

of the hemodynamic quantities. As expected, AP and AP correlated with each other and were

similar in how they correlated with other parameters. Analogous statements could be made about
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Figure 6-3: Fits of various heteroporous distribution models to two-kidney fawn-hooded rat data.
Parameters are given in Table 6.7.
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Figure 6-4: Fits of various heteroporous distribution models to uninephrectomized fawn-hooded rat
data. Parameters are given in Table 6.7.
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Figure 6-5: Fits of various heteroporous distribution models to uninephrectomized + enalapril-
treated fawn-hooded rat data. Parameters are given in Table 6.7.
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Figure 6-6: Fits of various heteroporous distribution models to uninephrectomized + NAME-treated
fawn-hooded rat data. Parameters are given in Table 6.7.
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Figure 6-7: Pore number density distributions g(r) for fits to fawn-hooded rat data. Plots are based
on the values of Table 6.7.
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the couplets of RPF and QA, SNGFR and GFR, and FF and SNFF. In general, pressure increases

correlated with decreases in capillary flow rate, indicating an increase in total arteriolar resistance.

Glomerular filtration rates decreased due to both the drop in capillary flow rate and to an additional

decrease in Kf. Filtration fraction, however, increased. The inverse correlation between AP and

Kf has been previously noted by Tucker and Blantz.44

Hemodynamic parameters are correlated to sieving and protein excretion data in Table 6.10.

None of the sieving coefficients at any r, displayed significant correlation with the hemodynamic

parameters (shown are values for r, = 36 and 60 A). The filtered load of Ficoll (. GFR) at all sizes

correlated with GFR(as expected) and RPF, and not with AP.

Urinary excretion of total protein, Up V, showed a highly significant correlation with AP (and thus

an inverse correlation with Kf), as did the urinary albumin excretion (UaV) (Figure 6-8). Neither

correlated with GFR. In contrast, excretion of non-albumin protein correlated with GFR but was un-

correlated with AP (Figure 6-9). The fraction of albumin in the excreted urine, UaVl/Up'Vcorrelates

solely with AP (Figure 6-10). These data suggest that albumin excretion is governed by perms-

electivity alterations secondary to AP changes, while non-albumin excretion is a function of the

filtered load through the capillary, scaling with filtration rate. As albumin is the most anionic of

the major proteins, the implication is that a decrease in the charge barrier to filtration is associated

with increases in AP.

In support of this, the fractional clearance of total protein, FRCp, showed a highly significant

correlation with AP. (There were also significant correlations with GFR and RPF, though not with

the corresponding single nephron quantities.) The fractional clearance of albumin, FRCa, also was

very significantly correlated to AP, but the fractional clearance of non-albumin proteins, FRC(p_),

was not. In contrast, none of the values of 0 for Ficoll at any size demonstrated correlation with

any hemodynamic quantity.

6.4 Discussion

These studies suggest that there is a size defect introduced by uninephrectomy which persists through

pharmacological interventions which both decrease (enalapril) and increase (NAME) AP. This

defect is evidenced by the "tail" of the sieving curve at large r,. This size defect, however, does not

appear to be an important determinant of proteinuria, since e for Ficoll at r, = 36 A (corresponding

to albumin size) is not affected. Rather, it is an apparent change in charge-selectivity which increases

proteinuria, as suggested by a specific increase in albumin excretion.

A simple physical explanation for any possible charge/pressure interaction is unlikely. Compres-

sion of a membrane with a homogeneously distributed charge would increase the charge density and

the resistance to transport of anions, and therefore reduce albumin excretion.

The interaction of renal hemodynamics with size- and charge-selectivity has been examined in a
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Figure 6-8: Correlation of filtration pressure (AP) to urinary albumin excretion (UaV). Solid lines
are fit to all data, dashed lines are fit to the three 1K groups.
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Figure 6-9: Correlation of filtration pressure (P) to urinary non-albumin protein excretion
(U(pa)V). Solid lines are fit to all data, dashed lines are fit to the three 1K groups.
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Figure 6-10: Correlation of filtration pressure (AP) to fractional albumin excretion (UaV/UpV).
Solid lines are fit to all data, dashed lines are fit to the three 1K groups.
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few studies, but a comprehensive picture of the mechanism has yet to emerge. Olson et al.'9 8 mea-

sured the sieving of neutral dextran, anionic dextran sulfate, and neutral, anionic, and cationic forms

of horseradish peroxidase (HRP) in Munich-Wistar rats which had undergone 15/16 nephrectomy.

Neutral HRP sieving coefficients and dextran sieving coefficients for r, = 16 to 60 A were not signif-

icantly different from controls. Micropuncture was not performed in this study. If their sieving data

are interpreted using hemodynamic parameters from a similar study by the same investigators,l 28

then the Olson et al. results are seen to be in agreement with those of the present work: renal

ablation decreased the selectivity to large (> 50 A) neutral molecules, but that to smaller molecules

was relatively unaffected. In addition, values of e for anionic HRP and dextran sulfate were sig-

nificantly increased, while those for cationic HRP were significantly decreased. This diminished

charge-selectivity is also in concurrence with the results reported here.

Weening and van der Wal2 s s studied the effects in rats of lowered perfusion pressure on charge-

selectivity using charged horseradish peroxidases. Aortic ligation was used to lower AP from 105 to

56 mm Hg, though AP was not measured. Fractional clearances of anionic, neutral, and cationic

HRP were all unchanged. Thus, lowering of AP to levels below physiologic may have no effect on

permselectivity.

Mayer et al.174 measured dextran sieving curves in rats along with the fractional clearance of

18 A dextran sulfate. Renal ablation increased O fr both dextran sulfate and large (r, > 5 5i)

dextrans. Treatment of the ablated rats with MK954, an angiotensin II receptor blocker, did not

change O for dextran sulfate though both AP and UpV decreased and the size-selectivity to neutral

dextran was restored to normal. Unlike the ACE inhibitor used in this study, pressure ameliorization

by angiotensin II blockage demonstrated no effect on charge selectivity.

Treatment of uninephrectomized rats with ACE inhibitor did not substantially change size-

selectivity to Ficoll in this study, although it did reduce proteinuria. In contrast, ACE inhibitors have

been shown to improve size-selectivity in aging rats 213 and in patients with diabetic nephropathy1 83

and IgA nephropathy.2 12 These studies used dextran instead of Ficoll to assess size-selectivity, but

this would not be expected to change the qualitative nature of the results. The reason for the

different responses to ACE inhibition in the present study versus the others is not clear, but it may

be related to different mechanisms of action. It has been suggested that in some disease models ACE

inhibitors reduce proteinuria by increasing kinin activity rather than by decreasing angiotensin II

activity. 13 0 131

Thus, although both enalapril and angiotensin II antagonists reduce proteinuria in rats with

reduced renal mass, enalapril appears to restore charge-selectivity without changing size-selectivity

while A-II blockers restore size-selectivity without changing charge-selectivity. The possibility of

different pharmacological mechanisms influencing the selectivity underscore the need for further

research in this area.
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This study is the first to report the effect of NO inhibition on glomerular size-selectivity. Despite

changes in hemodynamics and the ultrafiltration coefficient, sieving coefficients from NAME rats

were not different than those from UNX rats. It may be that any effects of NAME on size-selectivity

are not detectable in the uninephrectomized state. Further studies of NO inhibition on two-kidney

rats should be performed.

We used the ratio of urinary albumin excretion to total urinary protein excretion as a measure

of effective membrane charge. In doing so, however, we did not distinguish the effect of changes in

glomerular charge-selectivity from any potential changes in tubular reabsorption of protein. Since it

is generally postulated that the reabsorption capacity of the tubules is overwhelmed in proteinuria,

this is not believed to be a cause for concern. It should be recognized, however, that in the normal

state cationic proteins are absorbed more rapidly along the length of the tubule, although the

net absorption of both cationic and anionic proteins are the same." 6 There is no information on

how pathological conditions such as renal ablation affect protein reabsorption, although it seems

reasonable to continue to assume that it will have no effect on urinary protein excretion because of

the high filtered load of protein. Nevertheless, to rigorously correlate charge-selectivity to proteinuria

requires measurements of both protein excretion and the sieving coefficient of a suitable charged

tracer (i.e., one that is freely filtered and neither secreted nor reabsorbed in the tubules). Given the

preference for Ficoll over dextran in sieving studies (Chapter 4) and the difficulties in interpreting

dextran sulfate clearances because it binds to plasma proteins,l 74 there is now strong motivation for

developing a charged analog to Ficoll for use in studies of charge-selectivity. Ficoll sulfate is a likely

candidate for this purpose. Ghitescu et al.l l 6 have developed anionic neutral, and cationic versions

of DNP-bovine serum albumin which might also be used for such purposes. Alternatively, Di Mario

and co-workers8s6 ' 7 have proposed using the ratio of anionic immunoglobulin (IgG4) excretion to

total IgG excretion as a clinical parameter of charge selectivity. Sensitive immunoassays have been

developed for measuring IgG4 and total IgG in urine.8 8 'l8 2 This method has the advantage of not

requiring exogenous infusions.

The results presented here are indicative of the chronic effects of altered pressure on glomerular

permselectivity. Effects of short-term pressure changes by the acute administration of enalapril and

NAME, in both 1K and 2K rats, should be examined.
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Chapter 7

Estimation of Glomerular Transcapillary Hydraulic
Pressure in the Rat from Sieving Curves

7.1 Introduction

7.1.1 Previous Work

The clinical motivation to monitor filtration pressure is strong in light of evidence that hyperfiltra-

tion, and in particular an elevated AP, is associated with a progression of glomerular damage and

renal disease regardless of the etiology of the hemodynamic changes. Rat models in which AP has

been shown to play a significant role include surgical infarction of renal tissue, 6 ' 7 10 6 '107 ' 128, 175,198

desoxycorticosterone-salt hypertension, 92 and streptozotocin-induced diabetes mellitus.2 66 ,2 6 7 In all

of these cases AP is elevated along with the glomerular plasma flow rate QA and the single nephron

glomerular filtration rate SNGFR. Therapy in these animals which selectively reduces AP (while

leaving QA and SNGFR elevated), such as treatment with angiotensin I converting enzyme (ACE)

inhibitors, slQws the progression of glomerular sclerosis even in the persistence of systemic hyperten-

sion or underlying metabolic disease.6 , 7 10 7 ,175, 266 Additionally, treatment of systemic hypertension

in a manner which does not lower AP is not as effective at preventing further renal damage.7 ',

Acute or chronic elevations in AP are also associated with proteinuria. 2 9 ,261 ,2 62 A method for ob-

taining clinical values of AP, or at least determining changes in AP, is required to fully evaluate

the results of human trials.

The estimation of filtration pressures from sieving curve data has been of interest for some time.

Early attempts1 1'1 10 °111' 15 9'160,247 were based on the Pappenheimer-Renkin mathematical model

(Section 2.6.3) and therefore suffer from its limitations. Least-squares fit values for an effective

glomerular ultrafiltration pressure, equivalent to AP - fo1 rGC(y) dy, range from 9 to 30 mm Hg in

these early studies. The differences in the fits principally reflect variations in the method used to

calculate the hindrance factors, with the lower values obtained with the most recent methods. These

estimates are all based on data from dogs and human beings, so there are no direct measurements

of AP with which to compare. Du Bois and Stoupel90 tested the Pappenheimer-Renkin model in

vitro by measuring PVP transport through artificial membranes. Reported results showed good

agreement with the theory; the ratio of actual AP to fitted values based on sieving curves was

1.036.

Lambert and Gassee and co-workers"l2' l58 fit pressures in the dog glomerulus using a pore

model, but also included a term for the hydraulic pressure drop along the length of the capillary.
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In order to get realistic results, they found it necessary to modify the boundary condition for solute

concentration at the membrane/Bowman's space interface as a hybrid of two possibilities previously

discussed (Section 2.6.4): the first and last quarter of capillary length used the local concentration

condition while the middle two quarters used the well-mixed condition. Using this model afferent

and efferent AP values of 50 and 42 mm Hg were obtained. Again, no confirming measurements

were obtainable.

Chang,5 9 in a retrospective study, used the pore model to fit filtration pressures to dextran sieving

literature data for Munich-Wistar rats.6 0 ' 63 His fit values for AP were consistently lower than the

experimental values by 2-9 mm Hg, with corresponding higher Kf values and lower ro values than

reported originally. The range of AP measured in the studies was not wide, ranging only from 34

to 40 mm Hg.

Most recently, Chan et al. have used dextran sieving data to estimate AP in a clinical study of

dietary protein effects.5 7 Employing the isoporous model, they obtained values for control subjects

of AP = 34 mm Hg and 38 mm Hg in the preprandial and postprandial periods, respectively. Fits to

results from patients with chronic glomerular disease (preprandial AP = 34 mm Hg) were insensitive

to changes in AP up to 38 mm Hg.

This chapter begins with a discussion of the theoretical basis for estimating AP from sieving

data, followed by a comprehensive review of fitting isoporous-model pressures to available dextran

experimental data. We then examined pressure fitting using recent data with more optimal con-

ditions of exogenous tracer, greater range in measured pressures, and more recent heteroporous

models.

The fawn-hooded rat study of Chapter 6 is one of the few experiments to date in which both

micropuncture and sieving measurements were performed and in which large alterations in AP were

achieved. As such, it provides an important new source of data with several advantages pertaining

to pressure estimation. Ficoll sieving data was used, which is better suited to the theoretical model

than that for dextran. Through GPC calibration with Ficoll standards, the molecular sizes were

more accurately determined than had been previously, and a larger range of r, was used. The animal

protocols resulted in a wider range of AP than usually reported. Finally, newer and more realistic

heteroporous models were employed.

7.1.2 Theoretical Considerations

Any method which attempts to determine changes in AP from sieving curves must distinguish be-

tween those effects due to alterations in permselectivity and those from alterations in hemodynamics.

The situation of most interest for deriving pressures is that of AP changes at constant SNGFR, since

this corresponds to the clinical case where the information on flow rates (RPF, GFR) is at hand

while AP and Kf are unknown.
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Figure 7-1 compares the effects of changes in o to those of changes in AP at constant SNGFR

using the isoporous model. As would be expected, a o increase is accompanied by a rise in at

all values of r,. The effect is more noticeable at larger sizes. A rise in AP increases the net solute

clearance but increases GFR to an even greater degree, and so the fractional clearance decreases.

Decreasing plasma osmotic pressure has essentially the same effect. In contrast to a change in

ro, the sieving coefficients for large molecules are less sensitive to pressure then those for small

molecules. Good agreement with this prediction is shown by the findings of Gassee et al.,l1l where,

at comparable renal flow rates, sieving curves were generally lower in dogs with higher mean arterial

blood pressures, but the curves merged at large solute radius.

As pointed out by Du Bois and Stoupel,90 the sieving curves are steeper-the membrane show-

ing greater permselectivity-at lower pressures, where the diffusive forces play a more important

role. For large solutes, the sieving curves are relatively independent of pressure, a consequence

of convection-domination. Qualitatively, then, it can be seen that permselectivity changes have

different effects than hemodynamic changes. The question remains whether the sensitivity of the

measurements or of the models is sufficient to allow AP to be inferred.

7.2 Preliminary Calculations

As an initial assessment, we retrospectively applied the isoporous, solid-sphere model of Section

2.6.4 to all experimental studies in the rat where both fractional clearances of neutral dextrans were

obtained and AP was measured by micropuncture. These results are summarized in Table 7.1. Each

of the cases shown involves paired groups of animals; one group serves as a baseline or control group

and the other is a group in which some sort of intervention was made. Using the mathematical model,

best-fit values of AP (along with ro) were calculated from the data as described in Section 7.3.1 and

compared to those actually measured. Similarly to Chang,5 9 fitted values generally underpredict the

actual ones. The more central clinical issue of measuring changes in AP is shown in Figure 7-2 for

the paired groups. The correct direction is calculated in six of the nine cases, but the magnitude of

the change is generally lower than measured. The mathematical analysis failed to correspond to the

actual results in three cases, for no apparent reason. In summary, while the theory gives reasonable

agreement with the data, it is questionable whether the conventional model is a clinically reliable

means of estimating AP, or directional changes in AP.

7.3 Fitting of AP to Fawn-Hooded Rat Data

7.3.1 Methods

Pore size parameters plus AP were fitted simultaneously to sieving data using the X2 criterion of

Section 4.2.5. Both data from the individual rats and averaged data for the experimental groups were
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Table 7.1: Comparison of measured and fitted AP from published fractional clearance data for
dextran in rats using the isoporous, solid-sphere model. Abbreviations: AII-angiotensin II, NSN-
nephrotoxic serum nephritis, PVE-plasma volume expansion, PHN-Passive Heymann's nephritis,
ACh-acetylcholine, Ver-verapamil.
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AP, mm Hg Measured/
Conditions Reference Measured Calculated Calculated

1. Normal hydropenia 30 34.0 33.8 1.01
Hydropenia + AII 43.0 45.6 0.94

2. NSN hydropenia 60 39.0 29.0 1.34
NSN + PVE 40.0 30.3 1.32

3. Normal hydropenia 63 34.0 32.0 1.06
Normal + PVE 38.0 27.0 1.41

4. Normal euvolemia 133 33.9 21.9 1.55
Normal+Histamine 39.5 23.5 1.68

5. Normal control 178 39.9 30.7 1.30
Diabetes 34.5 30.8 1.12

6. Normal euvolemia 261 33.0 36.8 0.90
Normal + RVC 42.0 39.5 1.06

7. PHN baseline 262 40.0 42.5 0.94
PHN + AII 52.0 45.6 1.14

8. PHN baseline 262 42.0 49.4 0.85
PHN + ACh 35.0 50.2 0.70

9. Renal ablation 263 51.9 41.5 1.25
Ablation + Ver 34.0 35.5 0.96
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the isoporous, solid-sphere model. Case number correspond to those in Table 7.1.
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used. The group-mean sieving coefficients of Tables 6.5 and 6.6 were fitted using the appropriate

hemodynamic parameters from Table 6.1. For fits to individual rat sieving curves, data was used

only from the 25 animals (2K=4, UNX=9, END=8, NAME=4) on which both micropuncture and

sieving studies were performed. When data from a single rat was fitted, the standard error o'i,exp

was set equal to ei,exp in Eq. 4.6.

Either Powell's method 206 or the donwhill simplex method206 was used to determine the best-fit

set of parameters. Pearson's correlation coefficient was used to determine significance of correlation

between parameters.

7.3.2 Results and Discussion

In order to first determine whether specific ranges of the sieving curves showed greater sensitivity

to AP changes, we examined the individual sieving and micropuncture data from the 25 rats which

underwent both studies. Correlation coefficients between AP and O were calculated for each value

of r. The results are shown in Figure 7-3. The correlation was not significant at any value of r.,

but the trend itself is of some interest. The correlation coefficient was negative for 20 A < r, <

38 A. This implies that O varied inversely with AP at small rand varied with AP at large r,, in

agreement with the predicted effect from Figure 7-1. For 50 A< r, < 70 A, the correlation was a

constant positive value, with a lower magnitude than that for small r,. While it seems that at

small r, may be more sensitive to AP changes, the correlation is not significant enough to justify

using specific size ranges of sieving data to fit AP.

To demonstrate the equivalence of using single nephron versus whole kidney parameters in pres-

sure fits, the four sets of experimental group data were fitted using both single nephron and whole

kidney hemodynamic data of Table 6.1. The results are shown in Table 7.2. Little difference is seen

between the results from single nephron versus whole kidney parameters. Fitted AP uniformly un-

derpredicted measured values by a considerable amount. None of the models predicted that AP for

the NAME was was substantially higher than the other groups. The isoporous + shunt model gave

results closer to those measured, and it correctly demonstrated that the UNX and NAME pressures

were higher than the 2K and ENA pressure. Even though they provided better overall fits to the

sieving coefficients, the lognormal and lognormal + shunt fits indicated that the ENA and NAME

pressure were either higher than or similar to those for 2K and UNX.

Finally, pressures were fitted to the sieving data of each of the 25 double-study rats and compared

to the micropuncture value. Whole kidney hemodynamic parameters were used for the inputs. The

results are shown in Figures 7-4, 7-5, and 7-6.

Again, fitted AP tended to underestimate measured AP. For the isoporous + shunt model,
6 Pfltted - 6Pmeasured averaged -13.6 mm Hg, with a range of from +6.7 to -61.4 mm Hg. For the

lognormal model, the average was -21.2 mm Hg with a range of from -8.3 to 36.7 mm Hg, and for
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fit to the data. Dashed line is APfIt = APmeasured.
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Figure 7-5: Correlation of measured to fitted AP for lognormal model. Solid line is a linear fit to
the data. Dashed line is APft = APmeasured.
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Group 2K UNX ENA NAME
APmeasured (mm Hg) 48.6 + 1.2 55.9 ± 1.2 43.6 ± 1.2 64.6 ± 3.3
parameters WK SN WK SN WK SN WK SN
Isoporous ro (A) 46.9 46.8 47.7 47.8 48.6 48.7 49.0 48.7
+shunt wo (10 - 4) 1.07 1.05 27.4 27.3 7.18 7.23 9.43 8.69

APfit (mm Hg) 35.8 37.0 44.8 45.2 37.0 36.9 38.5 40.8

Lognormal u (A) 29.7 29.8 26.6 26.0 32.5 32.5 33.4 33.9
s 1.26 1.26 1.33 1.34 1.26 1.26 1.25 1.24
APt (mm Hg) 27.2 28.7 29.1 28.8 31.4 31.2 32.1 35.6

Lognormal u (A) 34.1 35.4 31.9 27.6 35.8 34.5 34.2 35.6
+shunt s 1.21 1.19 1.25 1.31 1.20 1.22 1.23 1.22

WO (10-4 ) 0.314 0.415 13.8 4.48 0.905 0.891 1.13 1.31
APfit (mm Hg) 27.6 29.7 35.2 28.4 31.1 30.9 31.7 35.6

Table 7.2: Fits of pore parameters plus AP to group-averaged sieving coefficients. WK: whole
kidney hemodynamic parameters; SN: single nephron hemodynamic parameters.

the lognormal + shunt model the average was -16.0 mm Hg with a range of from +52.4 to -38.1

mm Hg. For the isoporous + shunt and lognormal models, there were a few cases in which the values

were overestimated. There was no apparent pattern to the overestimation, however. None of the

correlations between fitted and measured AP were significant (p = 0.733 for the isoporous + shunt

model, p = 0.103 for the lognormal, p = 0.312 for the lognormal + shunt). For the lognormal +

shunt model, the pressures were inversely correlated.

In summary, neither the use of newer heteroporous models nor fitting of individual sieving data

instead of group means improves the ability of the present models of glomerular permselectivity to

infer glomerular hydraulic pressures. It is not clear whether this failure is intrinsic to the model or

to the experimental accuracy of the'sieving coefficients and hemodynamic data. Further evaluation

of the model and the sensitivity of pressure fitting to experimental variance in (E is necessary to

determine whether estimation of AP from sieving coefficients is viable.

154



Chapter 8

Conclusions and Recommendations

In this thesis we examined several technical and theoretical aspects in the use of sieving curves to

analyze the effects of hemodynamic changes on glomerular permselectivity. In Chapter 3, errors in

dextran and Ficoll molecular radius resulting from the use of protein calibration curves were shown

to be small, on the order of 5 A, for Sephacryl 300-HR columns. Correction factors could be easily

obtained from calibrations using monodisperse polysaccharide standards. Dispersive effects were

seen to be noncontributory to the calculation of sieving curves.

The importance of molecular configuration in glomerular filtration was demonstrated in Chap-

ter 4. Ficoll and dextran were shown to behave in vivo in a fashion qualitatively similarly to their

diffusion through synthetic membranes; that is, dextran transport at all sizes was greatly enhanced

over that of Ficoll. The data from Ficoll indicates that the capillary wall is more size-restrictive

than had previously been suggested by dextran sieving curves. Since Ficoll has been shown to follow

the predicted behavior of a solid neutral sphere, pore size parameters from Ficoll studies will be

more directly interpretable in terms of the pathophysiology of proteinuria. It is recommended that

Ficoll be used for all future analysis of glomerular permselectivity. There is a vast body of dextran

sieving data in various experimental protocols, both clinically and in animals. While Ficoll would

be expected to show roughly parallel behavior, it will nevertheless be important to perform Ficoll

sieving studies in at least some of the more important protocols (e.g., renal ablation, diabetes, and

glomerulonephritis) versus control animals.

Dextran filtration in vivo was described using a recently-developed model for the transport of

random coils through cylindrical pores (Chapter 5). While the precise nature of dextran's enhanced

transport remains unknown, it was shown to be quantitatively equivalent to a solute/pore attraction

energy of about -0.25kBT, nearly the same as that demonstrated in vitro. It thus appears that

the phenomenon is independent of the system and may be intrinsic to the dextran/water system.

Along these lines, dextran's physical dimensions have been measured by several methods and seen

to be consistent with a more compact molecule than would be expected from its chemical structure

(Appendix F). It may prove interesting to model dextran's transport behavior in other ways, such as

by a factor which reduces the equivalent radius of gyration of the dextran molecule or by calculating

steric parameters for a branched molecule.

We have introduced a new means of describing the heteroporous nature of the glomerular cap-

illary wall, the lognormal + shunt model (Chapter 4 and 6). In order to reduce computation time,

the approximate methods developed by Deen et al.79 have been used in the calculation of hetero-
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porous membrane parameters. While these methods have been shown to be accurate in previous

applications, future experiments may involve other types of pore size distributions and the sieving

data will be for tracers at higher r (and hence lower O) than previously measured. With the advent

of high-speed workstations and wider access to supercomputers, the time required to implement the

full mathematical model will not be prohibitive, and it is recommended that in the future it be

employed in sieving analysis.

It should be emphasized that all such models represent only functional equivalents of the cap-

illary wall. As such, changes in pore size parameters cannot be correlated to true changes in the

wall ultrastructure. As newer ultrastructurally-based theories become available, they should be

incorporated into the model.

The fawn-hooded rat experiments of Chapter 6 represent the first use of Ficoll to evaluate changes

in glomerular disease and were performed in a species of rat for which no previous sieving data

exists. In addition to continued evaluation of the fawn-hooded rat model, further work using Ficoll

in Munich-Wistar models and in clinical studies is recommended, where results can be compared to

previous studies using dextran.

The fawn-hooded rat experiments suggest that loss of charge permselectivity is more significant

than loss of size-permselectivity in the pathophysiology of proteinuria secondary to renal ablation.

In the absence of a suitable charged tracer for evaluation of charge-permselectivity, these conclusions

were based on measurements of urinary fractional albumin excretion. Development and character-

ization of a charged analog of Ficoll such as Ficoll sulfate should be made a high priority, as it is

necessary for more direct assessments of charge-permselectivity.

Assuming the eventual development of a charged tracer, several interesting studies suggest them-

selves. A comparison of the effects of ACE inhibitors versus angiotensin II antagonists on charge-

and size-selectivity and proteinuria are recommended, as the data of Chapter 6 and the results of

Mayer et al.'74 suggest different mechanisms are at work. Such a study would ideally involve both

control and uninephrectomized animals with measurement of neutral and charged Ficoll sieving,

total urinary protein excretion, and fractional excretion of albumin, IgG, and IgG4.

A study comparing the acute effects of ACE inhibitors, angiotensin II antagonists, and NAME in

normal and uninephrectomized rats would also be of great interest. A two-period sieving study-one

before the administration of the drug and one after-would be required for these experiments.

The results from attempts to fit filtration pressures to sieving data were not encouraging (Chap-

ter 7). The worst-case scenario is that (E is not sufficiently sensitive to changes in AP to allow for

fitting. A more optimistic possibility is that the present mathematical model is simply not advanced

enough to enable accurate estimation of AP. A more sophisticated examination of the sensitivity

of the model to experimental errors may suggest an alternate approach, such as a definition of X2

modified for optimization of AP fitting.
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Appendix A

List of Principal Symbols

The dimensions are given in terms of mass (M), length (L), time (t), temperature (T), and charge

(Q). When no dimensions are listed, the units are dimensionless or variable.

AP mean systemic arterial pressure,
ML-lt-2

Ci,A afferent concentration of solute i,
ML-3

(ci,B) average concentration of solute i

in Bowman's space, ML-s

Cp,A afferent protein concentration, ML-3

cp,E efferent protein concentration, ML- 3

Ci renal clearance of solute i, L 3 t-1'

V translational diffusion coefficient,
L2t-1

d interaction distance for Monte Carlo
square-well potential, L

f capillary wall porosity

f' protein volume correction factor

FF filtration fraction = GFR/RBF

FRCi fractional clearance of solute i, =

C,/ GFR

g(r) pore radius size distribution func-
tion

G solute lag coefficient

GFR glomerular filtration rate, L3 t -1

H diffusion hindrance factor

Ji solute flux, ML- 2t - 1

J, solvent flux, Lt - '

kB Boltzmann's constant, ML 2 _-2 T - 1

K solute enhanced drag coefficient

K,, approximate fractional elution vol-
ume of solute

Kf ultrafiltration coefficient, M-1L4 t

K Taylor dispersion coefficient, L 2t - 1

I length of chain segment in random
coil, L

f capillary membrane thickness, L

L capillary length, L

m 1) number of data points to fit
2) number of radial mesh points
for Monte Carlo simulation

md number of mass points fitting within
the square-well interaction region

M molecular weight, M/g-mole

Me number of chains generated in a
Monte Carlo simulation

M, number-averaged molecular weight,
M/g-mole

M, weight-averaged molecular weight,
M/g-mole

n number of chain segments in ran-
dom coil

NA Avogardo's number, (g-mole)-l

p probability that a molecule will fit
in pore at position 

PA afferent arteriole hydraulic pres-
sure, ML-lt - 2

PE efferent arteriole hydraulic pres-
sure, ML-lt- 2

PGC glomerular capillary hydraulic pres-
sure, ML-'t - 2

PT tubular hydraulic pressure, ML-lt-2

PUF net ultrafiltration pressure, ML-lt- 2

AP average capillary transmural hy-
draulic pressure difference, ML- t-2

Pe Peclet number, = WJE/fH

q2 lognormal + shunt pore distribu-
tion parameter

QA single nephron afferent capillary
plasma flow rate, L 3t - 1

QE single nephron efferent capillary
plasma flow rate, L 3t-1

r pore radial coordinate, L

173



r* characteristic pore radius for het-
eroporous distributions, L

f dimensionless pore radial coordi-
nate, = r/rp

r, root mean-square radius of gyra-
tion, L

rp pore radius, L

r, Stokes-Einstein radius, L

f, Stokes-Einstein radius as deter-
mined by protein calibrated GPC,
L

Tro isoporous pore radius, L

R chain end-to-end distance, L

RA afferent arteriole resistance, ML-4t -

RE efferent arteriole resistance, ML-4t-1

RT total arteriole resistance = RA +
RE, ML- 4 t- 1

RBF renal blood flow, L 3 t-

RPF renal plasma flow, L3t -1

s lognormal distribution parameter

S capillary wall surface area, L2

SNFF single nephron filtration fraction,
= SNGFR/QA

SNGFR single nephron glomerular filtra-
tion rate, L 3 t- '

T absolute temperature, T

u lognormal distribution parameter,
L

(U/P) urinary-to-plasma concentration
ratio

U urinary flow rate, L 3 t-1

V, elution volume of solute i, L3

Vt total column volume, L3

VO void volume of column, L3

W convective hindrance factor

z pore axial coordinate, L

y capillary axial coordinate, L

y dimensionless capillary axial coor-
dinate, = y/L

Greek symbols

ai coefficients for Simpson's rule

e dimensionless Boltzmann attrac-
tive energy term

[] intrinsic viscosity

Oi sieving coefficient of solute i, =

(Ci,B)lci,a

Ag solute gryration-to-pore radius ra-
tio, = rg/rO

A, solute Stokes-Einstein-to-pore ra-
dius ratio, = Tr/TO

p solvent viscosity, ML-t - '

ir 3.14159...

rA afferent arteriole oncotic pressure,
ML-lt-2

irE efferent arteriole oncotic pressure,
ML-lt-2

Air capillary transmural oncotic pres-
sure difference, ML-lt - 2

or standard error of the mean

/ steric partition coefficient

X2 sum of squared residuals

w0 shunt parameter for heteroporous
models

/ radial flow-weight averaged con-
centration parameter
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Appendix B

Modifications to Numerical Integrations for
Models

Heteroporous

B.1 Scheme for Faster Calculation of Approximation Integrals

For heteroporous models, the sieving coefficient is a weighted average of

the volume flux distribution:7 9

ei = w(r)O (r) dr,

W(r) t 1 r 4g(r)
o r4g(r) dr'

the isoporous values over

(B.la)

(B.lb)

where w(r) is the fractional filtrate volume through pores with radii between r and r + dr, g(r) is

the fractional number of pores with radii between r and r + dr, and

Ei(r) = 1 - C Ji(, r)d

ci,A o' J:,(~, r)d9
(B.2)

is the isoporous sieving coefficient of solute i through those corresponding pores. Ji(Y, r) is the solute

flux at dimensionless position along the capillary through pores with radii betwen r and r + dr,

while J, (, r) is the corresponding volume flux.

In the approximate method devised by Deen et al.,7 9 Eq. B.2 is calculated as

bW | [1 + ai(1 - e)] eb9
i(Q)j 1-e- J 1-e-Pe ()(1 -W~) d ,

Wi(AP - A)eb 7 br2\

Pe(P) = --- ()Hi~)i 8t '

(B.3)

(B.4)

where ai and b are constants. This approximation is necessary to reduce computation time to

reasonable lengths, and was shown to result in not more than 5% error in cases of marked filtration

pressure disequilibrium (with a maximum error of 10%), while requiring 1% of the computation

time.79

Here we show that computation time can be further reduced by making the following substitu-

tions,

bw;A = bW,
1 - e- b'

B = Pe(.)le-/-
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Wi(AP - A) rv2\
Him~i ( 81l ) (B.6)

C = 1-Wi, (B.7)

q(9) = e- ", (B.8)

where A, B, and C are constants and q(y) is the spatially-varying parameter. Eq. B.3 is then

rewritten as
A / - 1 - ai - aiq dq.

Oi(T) = 1 - ce- dq. (B.9)

The first two terms in the quotient of Eq. B.9 can be integrated directly, leaving only integration of

the third term to be carried out by numerical means:

- - B n Ce - B

e-b

Aai q1 C -Bn dq. (B.10)

Implementation of Eq. B.10 in place of Eq. B.3 decreased the CPU time required for parameter

fitting by approximately a factor of 2.

B.2 Endpoint Calculation for Lognormal Distribution Integrations

Calculation of Eq. B.la requires integration over the range r = 0 to oo. In the actual numerical

procedure, a value r,tp is chosen as the upper limit such that

fOC (?it...s f~-( · i~a
t

opr r4 g (r)Oi(r) dr
i (r)(Di(r)dr w(r)Oi(r)dr = fJo 4 (B.11)

and such that the fractional error ~ is small, where

= frop w(r)9i(r)dr' (B.12)
f"tP w(T)E (r) dr'

,Tx. T49()oi(r)dr/ Tr 49(r)dr
fO°P r4g(r)i(r)dr/ o" r4g(r) dr' (B.13)

fZ0" r4g(T)ei(r)dr fsOr"P r 4g(r)dr
ftop (B.14)

fort p r4g(r)Oi(r)d fr 7r.d r4g(r) dr,

For the lognormal distribution f.o r 4 g(r) dr can be evaluated exactly as2

n(stopU)r 4 g(r)dr = exp(4lnu+ 8n 2 s) 2 [1-erf (tstop, - n)] (B.15)

ln(rt~p/-)

stop = lns
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and therefore,

j r 4 g(r) dr = exp(4 In u + 8 In2 a). (B.16)

The approximate sieving coefficient and error bound are then given by

t P w(r)e() dr = fSo' °p 4g(r)ei(r) d f t op T4g(r)i(r) dr (

.,i o 'IO~r~l~i~d fJo r 4g(r) dr exp(4l nu+8 ln2 ) .

ff2" r4g % (o(r) dr
fI,,op 4( ()d (B.18)
Jo r4g(r)Ei (r) dr

° r 4g(r) dr exp(4ln u + 8 n2 ) 1-erf ( in)]

t< fl.,o 4 4g()()d (B.19)
S repo r4 g(r)() dr 

where the inequality in Eq. B.19 holds since Oi(r) < 1 for all r. Similarly, the bound for the double

lognormal distribution is given by

T.o r4
[(1 - q2)91g() + q2g2(r)] dr

< 4 r " °p r4 [(1 - q2)gl(r) + q2g2(r)] (r) dr' (B.20)

where gl and g92 are the two distributions. Values of = 10 - 4 were used to insure accuracy to three

significant figures.

Bridges 4 5 established a single bound on the integrals f 7T r 4g(r) dr and f, r4g(r)Oi(r) dr to

estimate 4. His expression for the lognormal distribution contains an algebraic error; the corrected

result is

stop

[ r4(r) dr < u4 exp - , (B.21)8 2q

ln(rtop/U)

2t t sop t

tstop - 8 In s

Bridges4 5 used Eq. B.21 to bound both the numerator and denominator of Eq. B.11. For smaller

molecules (r, < 45 A), bounding the individual integrals also provides convergence on the quotient.

For larger molecules (r, > 60 A), however, bounding the numerator and denominator separately

does not guarantee convergence on the quotient, because the numerator is many orders of magnitude

smaller than the denominator.
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Appendix C

Statistics of Scintillation Counting and Determination of
Minimum Acceptable Levels of Detection

This Appendix summarizes the relevant statistical analysis for the counting of radioisotopes and

determination of minimal acceptable counting levels. The development is that of Tsoulfanidis [243,

Chapter 2].

C.1 Standard Error of Total Counts

The radioactive decay of nuclei is described by Poisson statistics. Thus, if m is the mean number

of decays over time t and n is the number of decays measured over one particular interval of time,

then the variance and standard deviation of n are given by

V(n) = m, (C.1)

an = Av (C.2)

Note that this is true only for the total number of counts and not the counting rate. As m -* oo,

the Poisson distribution approaches the normal distribution. For m > 20, the Poisson distribution

is for all practical purposes equivalent to the normal distribution.

Since the true mean m is not known, n (for one measurement) or W (for multiple measurements)

is taken as the best estimator of m. Though the value of a single measurement follows Poisson

statistics, the distribution of the average of N measurements is Gaussian. The standard deviation

of i is given by

n= \-N N (C.3)

C.2 Standard Error of Counting Rate

The net counting rate r is given by

G B
r = g - b = t t B (C.4)

tG tB 
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where g and b are the gross and background counting rates, equal to the total counts (G and B)

divided by the counting time (tG and tB). Assuming G, B, tG, and tB are all independent, then

(C.5)

where the zi are independent variables. Assuming that time is measured accurately, then ato<, at. <

rG, ag and

2r 2
a, = 2fi

G B

V o
2

+ t2 =
A

Or) 2

+ I 

tG tB I

(C.6)

where the last equality comes from the fact that ag = aG/iG = /'GtG and similarly for ab.

C.3 Minimum Acceptable Activity

One way to define a criterion for the minimum detectable activity is to set a bound f on the relative

error:

U,
f > -,

1 g b
-r tG tB

Substituting g = r + b and solving the resulting quadratic for positive r gives,

1 + V1 + 4f 2btG + 4f 2t2 2
2f 2 tG (C.8)

Thus given a known background rate b and associated error os, either the error for a given counting

rate or the counting rate required to achieve a predefined accuracy can be determined.

C.4 Calculations

The Tric-Carb Model 4530 scintillation counter (Packard Instrument Co., Downers Grove, IL) uses

a single detector and can be set to count until either a preset error (i.e., total counts) or a maximum

time is reached. The values were set for o = 2.5% (i.e., 1600 counts since a = v1600/1600 = 2.5%)
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or a maximum time of 5 minutes. Thus for g > (1600/5 =) 320 cpm, the counting time is given by

1600tG = 160-, (C.9)
g

while for g < 320 cpm, the counting time is 5 minutes.

The minimum acceptable levels for r can then be calculated directly from Eq. C.7. For g > 320,

1 g br > .t

1 g2 b
f- 1600 tB

1 (rb) 2 b
> 1 / ' b + - (C.10)

f 1600 tB'

while for g < 320,

1 (r + b) b
r r~~~~> ~~+ (C.11)

f 5 tB

The average of 36 background counts (tb = 5 min) on the scintillation counter gave b = 19.55

cpm. When these values for b and t B are substituted in the right-hand side of Eqs. C.10 and C.11,

it can be shown that when f = 0.05 Eq. C.10 is satisfied for all r > 54.0, while Eq. C.11 is satisfied

for all r > 108.8. Thus it appears using a net counting rate of 120 cpm as a cutoff conservatively

insures no more than a 5% counting error.
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Appendix D

Tabulated Parameters from Monte Carlo Simulations

The following tables summarize the calculated values of I and 0f from the Monte Carlo simulations.

Values are shown for the d = case with A. = 0.2 to 1.6 , n = 20 to 800, and e = 0 to -0.30.

n
A, 20
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

6.452x10-'
3.539x 10-1
1.502x10- 1

4.898x10- 2

1.251x10- 2

2.560 x10- 3

4.415 x 10- 4

6.464x 10- 5

50
6.248x10l-
3.237 x10-1
1.245x10-l
3.451 x10-2

7.098 x 10 - 3

1.105 x 10-3

1.359 x 10- 4

1.312 x10-

100
6.147x10l-
3.091x10- 1

1.122x10l-
2.849x 10-2
5.173x10 - 3
6.834 x10- 4

6.755 x10- 5

5.024 x10-6

200
6.069x10l-
2.982 x10-1
1.039 x10- '
2.467x10-2
4.073 x 10 - 3

4.767 x10 - 4

3.933 x10- 5

2.407x 10-6

400
6.020x10l-
2.913x 10-1
9.860 x 10-2
2.212 x 10-2
3.374 x10- 3

3.551 x10- 4

2.583 x10-5
1.320 x 10-

800
5.983x10l-
2.863x10-1

9.476 x10- 2

2.053 x10-2
2.948x10-3
2.860x10- 4

1.884x10-5
8.038x10- 7

Table D.1: Monte Carlo calculations for ][, = 0, d = 1.

n

A9 20
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

8.613 x 10-1
5.568 x 10-1
2.582 x 10-1
8.833x10- 2

2.319x10- 2

4.828x 10 - 3

8.418 x 10- 4

1.242x10 - 4

50
8.462x10- 1

5.181 x10-'
2.173x10-l
6.306x10- 2

1.331 x 10-2

2.105x 10- 3

2.615 x 10- 4

2.545x10-5

100
8.385x10- 1

4.989 x10-

1.973 x10-

5.240x10 - 2

9.755 x 10-3
1.309 x10-3
1.306 x10- 4

9.779x10 - 6

200
8.324x10-1
4.844x10- 1

1.837x10- 1

4.559 x10-2
7.710 x10 - 3

9.155 x 10- 4

7.627x 10 - 5

4.701 x 10-6

400
8.286 x 10-1
4.750 x 10-1
1.750x 10-'
4.099 x10- 2

6.405 x 10- 3
6.835 x10- 4

5.015 x 10-5

2.580 x 10-6

800
8.256 x 10-
4.682 x10-1
1.686x 10-1

3.815 x 10-2
5.607x 10- 3
5.516 x 10 - 4

3.665 x 10- 5

1.572x 10-6

Table D.2: Monte Carlo calculations for Q, = 0, d = 1.
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n
Ag 20

6.767x10-
3.999 x 10- 1

1.916x 10- 1

7.359 x 10-2

2.254x 10-2
5.491 x 10-3
1.092 x10-3
1.757x10- 4

50

6.481 x 10- 
3.574 x 10-

1.539x10- '
5.068x10- 2

1.307x10- 2

2.656 x 10- 3

4.366 x10- 4

5.687x10-5

100

6.325 x 10-
3.348x10-'
1.339x10- i

3.968 x10-2

8.961 x10-3
1.561 x10- 3

2.146x10- 4

2.345x10l-

200
6.201 x10-1
3.171x 10-1
1.193x10-'
3.225 x10- 2

6.433 x 10- 3

9.690x10- 4

1.096 x 10- 4

9.880 x10-6

400
6.117x 10- 1

3.050x 10-1
1.095 x 10-1
2.722 x10-2
4.845 x10-3
6.283x10- 4

6.033x 10- 5

4.309 x 10- 6

Table D.3: Monte Carlo calculations for /I, e = -0.05, d = I.

n

8.841x10'-

6.149x10-

3.241 x 10-
1.314x 10-'
4.158x 10-2
1.034x10-2
2.081 x10- 3
3.375 x10- 4

50
8.632 x 10-1
5.610 x 10-1
2.642 x10-1
9.147 x 10-2
2.431 x 10-2
5.035 x 10 - 3

8.375 x 10- 4

1.101 x10- 4

100
8.516 x 10-
5.318x10-'
2.321 x10-1
7.215x10-2
1.675 x 10-2
2.971 x10 -3

4.130x10- 4

4.551 x10- 5

200
8.423 x10-

5.089x 10-'
2.087 x 10-1
5.906 x 10-2
1.209x10 - 2

1.850x 10- 3
2.117x10 - 4

1.922x10- 5

400
8.360x 10'-

4.930x10-'
1.929x10-'
5.011x10- 2

9.144 x 10-3
1.204 x10- 3
1.167x10-4
8.397 x10- 6

Table D.4: Monte Carlo calculations for n, = -0.05, d = 1.

n
A0 20

7.191x10- '
4.632 x 10-1
2.521 x10-

1.137x10-

4.142x10 - 2

1.190x10-2
2.718 x 10 - 3

4.784x10-4

50
6.818 x 10-1
4.075 x 10-1
2.005 x10- 1

7.969 x 10 - 2

2.594x 10-2
6.855 x10- 3

1.489 x 10- 3

2.575 x 10 - 4

100
6.595x10-'
3.744x10l-
1.696x10- 1

6.051 x10-2

1.748x10 - 2

4.089x10- 3

7.902 x10- 4

1.269x10-4

200
6.408 x10-
3.470 x 10-1
1.452 x 10- '
4.650 x 10- 2

1.173x10 -2

2.385 x10- 3

3.832x10- 4

5.304x 10-5

400
6.272x10-'
3.270 x 10-1
1.281 x10-1
3.676 x 10- 2

8.061 x 10- 3

1.368x10-3
1.855x 10 - 4

1.910 X 10 - 5

Table D.5: Monte Carlo calculations for 4i, = -0.10, d = .

184

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

800
6.053 x 10-1
2.961 x 10-1
1.025 x10-'
2.401 x 10-2
3.879 x 10-3
4.460x10-4

3.676x10-5

2.091 x10 -

A0 20
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

800
8.310x 10-
4.812 x 10-1
1.814x 10-1
4.439x 10-2
7.348 x10-3
8.572 x10 - 4

7.125x 10-5
4.075 x 10-6

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

800
6.165x10-1
3.121x10-1
1.157x 10-1
3.040x10- 2

5.817 x 10 -3

8.467x 10 - 4

9.515 x 10- s

7.868 x 10- 6
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n

9.136 x 10-1
6.923 x 10-1

4.181x10- 1

2.009x10-1

7.603 x 10-2
2.235x10- 2

5.175x 10-3
9.191 x 10- 4

50
8.867x10l-
6.223 x 10-1
3.365x10- 1

1.416x 10- 1

4.777x10- 2

1.292x10- 2

2.845x10-3
4.974x10- 4

100
8.707x10-'
5.810x10- 1

2.880x10-'
1.083 x10- 1

3.232x10-2
7.725 x10-3
1.512 x10-

2.455 x 10-4

200
8.573 x 10-
5.468 x10- 1

2.498x10 - 1

8.398x10-2
2.181 x 10-2
4.516 x 10- 3

7.354x 10- 4

1.027x10 - 4

400
8.474x10-
5.213 x 10-
2.227x 10 -1

6.693x10- 2

1.507x10- 2

2.603 x 10- 3

3.568 x 10 - 4

3.713x10-5

Table D.6: Monte Carlo calculations for Q, e = -0.10, d = 1.

n

7.778x10-

5.530x10-'
3.430x10-

1.807x10- 1

7.759 x10-2
2.606 x 10-2
6.799x10-3
1.306x 10- 3

50
7.339 x10-1
4.868x10-

2.797x 10-1
1.360x10-1

5.598 x 10-2
1.906x10- 2

5.387 x 10- 3

1.218 x 10- 3

100
7.045x10- 1

4.424x10-

2.353x10- '
1.046x10l-
3.958 x 10- 2

1.258x10- 2

3.424x10-3
7.994 x10- 4

200
6.776x10-

4.009 x 10-1
1.947x10-1
7.821 x 10-2
2.632x10-2
7.608x10-3
1.773x10-3
3.828x10- 4

400
6.561 x 10-1
3.684x10-

1.663 x 10-
5.847x10- 2

1.721 x10-2

4.132x10- 3

8.338 x10- 4

1.241 x10- 4

Table D.7: Monte Carlo calculations for 4, e = -0.15, d = .

n

9.527x10-
7.981x10- 1

5.563 x 10-1
3.157x 10-1
1.417x 10- 1

4.885 x 10-2
1.294x10- 2

2.508 x 10 - 3

50
9.211 x10- '
7.150x10 - 1

4.556 x 10-1
2.369 x 10- 1

1.019x 10- 1

3.566 x 10-2
1.026x10- 2

2.348 x10-3

100
9.007x10- '
6.612 x 10-'
3.874x10 -1

1.831 x10- 1

7.214 x10 - 2

2.355 x10-2

6.512x10- 3
1.541 x10-3

200
8.825x 10-

6.121 x 10- 1

3.260x 10- 1

1.382x 10- 1

4.817x10- 2

1.423x10-2
3.377x 10 - 3
7.386 x 10- 4

400
8.679x10-1
5.724x 10- 1

2.818 x 10- 1

1.044 x 10- 1
3.164x10- 2

7.776 x 10- 3

1.593 x 10-

2.411 x 10- 4

Table D.8: Monte Carlo calculations for fQ, e = -0.15, d = I.

185

Ag 20
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

800
8.395x10- I
5.022x10-'
2.027xl0 -1

5.575 x 10- 2

1.094x 10- 2
1.618x10- 3

1.834x10- 4

1.523 x 10-

As 20
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

800
6.373x10-1

3.430x10-
1.424 x 1O-
4.513 x 10-2
1.104x10- 2

2.264x10-3
3.866 x 10- 4

4.907x10 -5

A,, 20
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

800
8.547x10 - 1

5.412x10 - 1

2.452 x10- 1

8.146x10-2
2.054x10-2
4.296 x 10-3
7.398 x 10- 4

9.415x10- 5
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n

As 20
8.621 x10-

6.850x10-
4.841x10-'
2.959x10-
1.482 x10- '
5.762x10- 2

1.710x10- 2

3.571 x 10- 3

50
8.210x10- '
6.241 x10-'
4.272 x10-

2.558 x 10-1
1.325x 10- 1

5.721 x 10- 2

2.070x 10- 2

6.016 x10-

100
7.909 x10- '
5.771 x10-

3.760 x 10-

2.147x10-

1.077x10-'
4.646 x10-2
1.769x10- 2

5.856 x10-3

200
7.578x10 - '
5.168 x10-

3.094x10-
1.682 x 10- 1

7.914 x 10- 2

3.427 x 10- 2
1.137x 10- 2

3.660x10-3

400
7.247x10-'
4.686 x10-'
2.798x10-'
1.248 x10-'
5.584x10- 2

2.069x10-2
5.933 x 10-

1.231 x 10 - 3

Table D.9: Monte Carlo calculations for , e = -0.20, d = I.

n

Ag 20
1.006 x 10
9.476x 10-

7.657 x 10-1
5.105x 10-1

2.691 x10- 1

1.078x10 -

3.252 x 10-2
6.860x10- 3

50
9.747x10 - l
8.664x10-'
6.683 x10-'
4.346 x10-'
2.378x10-'
1.063x10-'
3.925x 10-2
1.157x10-2

100
9.534x10-1
8.091 x10- 1

5.900x10 -1

3.640x10- 1

1.928 x10-'
8.605 x 10 - 2

3.340x10-2
1.125x10-2

200
9.326 x10-1
7.441 x10 - 1

4.953 x 10- 1

2.870x10 -1

1.417x10- '
6.279 x 10-2
2.147x10 - 2

7.050x10 - 3

400
9.133x10 - 1

6.887x 10- 1

4.456x10-'
2.156x10- 1

9.963x10- 2

3.847 x 10- 2

1.127x 10- 2

2.398 x 10-3

Table D.10: Monte Carlo calculations for fl, e = -0.20, d = 1.

n

A, 20
9.876 x 10-1
8.862 x 10 -

7.109 x 10 -

4.989 x 10- 1

2.882x10- 1

1.287 x 10 - 1

4.322x 10 - 2

9.787x 10 - 3

50
9.822 x 10-

8.879 x 10- 1

7.320 x 10-

5.392x 10 -

3.464 x10- 1

1.859x10-
8.437 x 10-2
3.102 x10-2

100
9.956 x10-

9.053 x 10-

7.449x10- 1
5.513 x 10-1
3.636 x10-1
2.095 x 10-

1.100x10 - 1
4.955 x 10 - 2

200
9.955 x 10-1
8.376x10 -

6.486x10 - 1

5.237x10- 1

3.469 x10-

2.351 x 10- 1

1.011 xlO- 1

4.418 x 10-2

400
9.572x10 - 1

8.297 x 10-1
9.147x10-'
4.219x 10 -1

3.162x10 - 1

1.947 x 10-1

6.491 x10- 2

1.773 x10-2

Table D.11: onte Carlo calculations for 4I, e = -0.25, d = 1.

186

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

800
6.845x10-'
4.216 x 10-1
2.153 x 10 - 1

9.804 x10-2
3.184x10-2
1.072 x10-2
2.823 x 10-

4.974 x 10- 4

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

800
8.878x10-
6.355 x10-'
3.579x10 - 1

1.697x10 - 1

5.835 x 10-2
2.025x10- 2

5.379 x 10-3
9.491 x 10-4

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

800
8.272x10-'
7.227 x 10- 1

5.251 x 10-1

4.941 x10-'
1.646 x10-

1.004xlO-

3.394x10 - 2

6.919 x 10-3
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n

1.081 x100
1.166x100
1.094x10
8.495 x 10-
5.207 x 10- 1

2.402x10-'
8.215 x 10- 2

1.880x10 - 2

50
1.066 x 10
1.137x 10
1.087x 10
8.879 x10 -

6.119 x 10-

3.425xlO-

1.593x 10-
5.953 x10- 2

100
1.064 x 10
1.136 x10
1.089x100
8.953x10-1

6.371 x10-

3.841 x10-

2.064x10l-
9.484x10- 2

200
1.064x 10
1.080x 100
9.707 x 10
8.474x 10-

6.058 x10-
4.167x10- '
1.894x10-1
8.517x10-2

400
1.056x 10 °

1.075 x 100
1.270 x 10
6.958 x 10 -

5.428 x10-1
3.597x 10-1

1.229x10-'
3.471x 10 -2

Table D.12: Monte Carlo calculations for fl, e = -0.25, d = I.

n

1.182x 10
1.205 x 100
1.088x100

8.663 x 10 - 1

5.711 x 10-

2.901 x10-

1.098x10- 1

2.687x 10 - 2

50
1.317x 10
1.461 x 100
1.441 x100

1.293x 10
1.008x100
6.549 x 10-1
3.646x10- 1

1.670x10-'

100
1.627x10l
1.952 x 10
1.992 x 100

1.838x100
1.550x 10
1.162x100
8.291 x10-'
4.784x10 -1

200
2.004 x 10
2.039 x100
1.957 x 10
2.591 x 10°

2.274x100
2.484 x 100
1.172 x 10
6.387x 10-

400
2.083 x 10u

2.852 x 100
7.272 x 100
2.355 x 10
2.876 x 100
3.078 x 10°

9.664 x 10- 1

3.296 x 10-1

Table D.13: Monte Carlo calculations for , = -0.30, d = I.

n

1.191x 10"
1.498 x 100
1.624x 100
1.455x 100
1.026 x 100
5.405x10 -1

2.086 x 10-1
5.161 x10- 2

50
1.237x 10
1.682 x 100
2.009 x 100
2.051 x 100
1.748x100
1.195 x 100
6.852 x 10-'
3.196 x 10-1

100
1.357x10l
2.056 x 100
2.650 x 100
2.838x 10
2.655x 10
2.111 x10 0

1.548 x 100
9.123x10- 1

200
1.557x 10
2.218x100
2.714x 100
3.920 x 100
3.882 x 100
4.215 x 100
2.180x 100
1.235x 100

400
1.704 x 10
3.104x100
8.890 x100
3.722x10°

4.795x 100
5.685x100
1.831x 10
6.480 x 10-

Table D.14: Monte Carlo calculations for Q, e = -0.30, d = I.

187

7A 20
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

800
9.840x10-'
9.753 x10-'
8.259x10-

7.804x10-'
2.979xl0-'
1.908x10- 1

6.472 x10-2
1.319x 10-2

A, 20
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

800
1.417x 10
2.479 x 10
2.602x 10
6.035 x 100
1.432 x 100
1.534x 100
5.429x 10- 1

1.143x10- 1

A, 20
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

800
1.372x10°

2.865 x 100
3.947 x 100
8.787 x 10
2.579x100
2.940 x 100
1.039x 100
2.184 x 10-1
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Appendix E

Error Analysis for Monte Carlo Simulations

E.1 Probability Estimate Error

Sources of errors in the Monte Carlo calculation of the steric factors can be divided into primary

errors in the determination of the radial probability profile p(i) and propagated errors in the in-

tegration of that profile. In general, rigorous determination of convergence on p(f) would be by

repeating simulations until no change is observed. Unfortunately, time and cost constraints make

this prohibitive except in the case of small chains. As described in Section 5.4.2.3, the following

methods were used as indirect means of determining convergence:

1. symmetry

2. /fl profiles

3. visual assessment of constant n, epsilon plots

E.2 Profile Integration Error

This section presents an analysis of the errors resulting from numerical integration of the proba-

bility profile p(r). These errors are determined primarily by the value of the mesh size across the

pore diameter and are in general much smaller than those resulting from inadequate convergence

on p(f). The following assumes that the estimated probabilities are an accurate measure of the

true probabilities. Poor p(f) estimates will result in fluctuations which are magnified by the Boltz-

mann weighting term, especially for large attractive energies, providing an indirect relative means

of evaluating convergence on p(f).

E.2.1 Definitions

We make the following definitions:

np = number of mass points per chain

m = number of mesh points across pore radius

fj = dimensionless radial mesh point across pore, where m,, = 1

pi = "true" probability that a polymer chain is in state i, where Ei pi = 1

M, = number of chains generated

Si = expected number of chains generated in state i based on pi
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Si = actual number of chains generated in state i

pi = estimated probability from Si

For Me trials, Si and Si are the expected and actual number of observations in category i, so

Me = Si = E S.i (E.1)
i i

The exact value of each pi is unknown but. is estimated from Pi, where

Pi t Pi = M(E.2)

From multinomial statistics, the expected value (E) and variance (Var -= 
2 ) of Si are given by6 7

E(Si) = Si, (E.3)

Var(Si) = M¢pi3(1 -Pi). (E.4)

E.2.2 Calculation of Steric Factor Variances

The steric factors and Q are calculated by Simpson integration of the Monte Carlo results, and

thus they can be thought of as functions of two random variables: {Si}, the vector of number of

observations in each category, and {ij}, the vector of radial positions in the pore. Integration is

done by evaluation at fixed points across the diameter, which is equivalent to assuming that each

radial position occurs with uniform probability. A success is defined when every mass point of a

chain fits within the pore.

E.2.2.1 Neutral Pore

The neutral case (E = O) simplifies to a binomial probability distribution:

P fo if success (i = 0)

pP = P =-po if failure (i = 1)

Then,

= E aj ( ) (E.5)

j=-m Me
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E E aaM2 Cov [S(fj), S(rj)], (E.6)
j=-m jj=-m 

where the aj are coefficients from Simpson's rule:

For : aj = 2aj(A)rj, (E.7a)

For : aj = 4ctj(A j(1- ilJ), (E.7b)

and Af are the fixed radial step sizes.

The covariance term in Eq. E.6 is more precisely a binomial multivariate cross-covariance. Ap-

plying the general formulation of Wishart, 25 7

COv [O(fj), §O(jj)] = Mc {h~j n fjj)-PO(fj)PO(ijj)}, (E.8)

where Pio(j n ijj) is the probability of a single chain fitting at both j and jj.

Substituting Eq. E.8 into Eq. E.6 and rearranging to maximize computation speed yields

aM2
Var(E) = E M P°()(1-POA)

j=-m

+2 E M {PO(?j n )-pO(fj)pO(Tjj)}. (E.9)

j=-m jj=j+1

For the Monte Carlo simulation, rigorous calculation of p(j n jj) requires additional bookkeep-

ing in an (2m+ 1) x (2m+ 1) array. As a faster alternative, the cross-covariance can be conservatively

estimated by using the fact that its absolute value is bound by the square root of the product of the

individual variances:6 7

po(~j n jj)-pO(fj)po(~jj) < /Po(j)(-pO(ij)) 'pO(rjj)(1-Po(Ojj)), (E.10)

so that a bound for 4' is given by

m 2

Var(4) S o()(-o())
j=-m

j--m j jj+1 MI

The equation for Var(Q) is exactly the same with different values of aj. Eq. E.11 was used by

Davidson 70 for estimation of variances in the neutral pore case.
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E.2.2.2 Pore with Square-well Potential

For a square-well potential acting on the mass points, we have an (np + 1)-nomial probability

distribution:

Pi =

P0 if success with zero mass-point interactions (i = 0)

P1 if success with one mass-point interaction (i = 1)

Pn, if success with np mass-point interactions (i = np)

P = Pnp,+ if failure (i = np + 1)

where the partition coefficient is now given by

m np

= - E aj )exp(-ei), (E.12)

Var(4) = Var E Eaj M exp(-ei) (E.
j=-m i=0

Davidson originally provided a conservative estimate for Eq. E.13 using a graphical technique.

Here we demonstrate an analytical solution by expanding Eq. E.13:

m me np np
Var() = Z E ajajj exp(-[i + ii]) Cov [i;), S .i(i.)] (E.14)

j=-m jj=-m i=O ii=O 

The covariance term is a generalized multinomial multivariate cross-covariance, given by Wishart2 5 7

as

Cov [Si(fj), Sii(fjj)] = M {finii(fj n fj;)- P (j)Pjj ijj)} (E.15)

Here, inii (i n jj) is defined as the probability of a chain existing in both states i and ii at both j

and jj. The cross-covariance reduces to the following forms depending on the values of the indices:

For i # ii: =-MC(Aj)Pii(jj) (E.16a)

For i = ii: = M {pi(fj n ijj)- p,(j)f(jj)), (E.16b)

For i = ii, j = jj: = Mc {p(f)(1 - (j))}, (E.16c)

where Eq. E.16a results from the fact that states i and ii are mutually exclusive at a give rj.

Substituting Eqs. E.15 and E.16 into Eq. E.14 gives

-p a exp(-2ei) )
Var() =i(ij)(1 - j))

i=0 j=-m
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np m-1 mn+2E E E ajajj exp(-2) n j )pi 

i=O j=-mjj=j+l

n,-I np a exp(-e[i + ii])

i=O ii=i+l j=-m

n,-1 np m,-I m

-4 Z Z E E ajajj ep(-e[ + i)i(j)ii(jj). (E.17)
i=0 ii=i+i j=-mjj j;j+1 Ml

And finally, rearranging for computational use:

m n-1 m

Var() Q() + 2 E E ajajjV(j, jj) , (E.18a)
=-m j=-mjj=j+i

n,

Q(j) = Eexp(-2ei)Pi(ij)(1-Pi(j))
i=o0

np-1 np

-2 5 E exp(-e[i + ii])Pi()PiiQ(j) (E.18b)
i=O ii=i+l

np

V(j,jj) = Eexp(-2i){pi(*j n jj)-pi(j)p(jj)}
i=0

n,p-1 np

-2 5 : exp(-[i+ ii])i()ii(jj). (E.18c)
i=O ii=i+l

Once again, rigorous calculation of the joint probability requires additional bookkeeping, this time

in an (2m + 1) x (2m + 1) x (np + 1) array. Again, as a practial solution, Eq. E.10 was used as an

upper bound. Finally, to avoid negative values for Var(I) which result from lack of convergence on

p(i), only the additive terms of Eqs. E.18 and E.18 were used; since all terms in the summations

are positive, this also insures an overestimation of the error.

Note that because of a mathematical artifact, the variance calculation for the multinomial case

with = 0 is not equivalent to the binomial neutral pore variance of Section E.2.2.1, i.e., Eq. E.18a

with = 0 does not reduce to Eq. E.9. This is because the multinomial case still considers chains

with different numbers of points in the square well to be in different states, even though in the

neutral case they contribute equally to the calculation of and f.
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Appendix F

Estimation of Molecular Dimensions of Dextran in Water

F.1 Overview and Summary

In this Appendix, we review methods for determining the characteristic dimensions of polymer

molecules in solution from intrinsic viscosity data and radius-of-gyration correlations. In Section F.2,

the pertinent theory and equations are summarized. Section F.3 presents a compilation of data

available in the literature for dextran/water systems. Section F.4 gives the results for the perturbed

dimensions obtained by these methods and the implications for restricted transport.

F.2 Summary of Theory and Equations

F.2.1 Relationship of Ideal and Real Chain Dimensions

The following development is a combination of methods found in Kurata and Stockmayer,l55

Yamakawa 25 9 and Gowariker et al."8 A random-flight chain is defined as one with neither short-

range interactions (i. e., bond angle restriction) nor long-range interactions (i. e., intramolecular

van der Waals forces). All random-flight dimensions will be indicated by a "00" subscript, e. g.,

rgoo. An unperturbed chain is one which does not experience long-range interactions (denoted by

the subscript "0"), and a real chain is one which has both short- and long-range interactions (no

subscript). The unperturbed number of chain segments n and chain length I are related to their real

counterparts N and L by

N = n/(a2 ), (F.la)
go

L = os 9 . (F.lb)
go

Short-range interactions are accounted for by the skeletal factor s > 1, where for both the mean-

square radius of gyration r2 and the mean-square end-to-end distance (R2 ),

rgO = sTgO (F.2a)

(R2 )o = s(R2)oo. (F.2b)
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The expansion factors as and aR relate the unperturbed radius of gyration and unperturbed end-

to-end distance to the real radius of gyration and real end-to-end distance:

r = a2 r2, (F.3a)

(R2 ) = a2(R 2 ). (F.3b)

In general, the solvent expansion has a greater effect on end-to-end distance than radius of gyration

and aR > as. The factor g/go is a correction term to account for chain branching. Relating

unperturbed to real dimensions is thus a matter of determining a, as, and g/go, as discussed in the

following sections. As will be seen, the present state of theoretical and experimental work in the

field does not yet allow for a single rigorous means of making these calculations, and so we have

chosen to examine a variety of methods and compare the results.

F.2.2 Determination of Unperturbed Molecular Dimensions from Intrinsic Viscosity
Data

In a similar fashion to the radius of gyration, the unperturbed intrinsic viscosity is related to that

at other conditions by an expansion factor a < as:

[7] = a[r]0o. (F.4)

The difference between the expansion factors results from the fact that as excluded volume increases,

the hydrodynamic radius increases less than the statistical physical radius. At theta conditions for

a nondraining coil the unperturbed intrinsic viscosity [77]o is proportional to the square root of the

molecular weight M and to the 3/2th-power of (R2)o.

[7]o coM / 2 , (F.5a)

K0 = <0 A3o, (F.5b)

Ao = ((R 2 )o/M)' /2 , (F.5c)

00 x 2.5 x 1023, (F.5d)

thus

[.7] = a0oM1/2. (F.6)

In the above equations, KO has units of cm3-g-3/2-moll/ 2 , Ao has units of cm-g-1/2-moll/ 2 , and

0o is a viscosity constant for linear chains which has units of mol- '. The value for 00 shown is

experimentally derived from viscosity and light-scattering data and differs slightly from reported

theoretical values. 25 9 Determination of the unperturbed dimensions from intrinsic viscosity data is
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thus equivalent to calculation of Ao.

There is a body of methods based on the argument that as the chain size decreases, the expansion

factors must approach unity, and [7] - [7]o. Therefore an extrapolation of [7] to M = 0 provides a

value of [7]o from which KO, and hence A0 , can be calculated. The particulars of each method differ

in the functional representation used for as and a,. The Stockmayer-Fixman method2 3 4 results in

O + 0.510oBM /2, (F.7a)M1/2

B = l3/Mseg = (1 - 2X)( NA), (F.7b)

Mseg = M/n, (F.7c)

where B has units of cm 3 -g-2-mol 2, Mseg is the segment molecular weight in g/mol, Pp is the

partial specific volume of the polymer in cm3 /g, V, is the molar volume of solvent in cm3 /mol, and

NA is Avogardo's number. The parameter B can be equivalently expressed as either a function of

the segment excluded volume 3 or of the Flory-Huggins thermodynamics parameter X. A plot of

[I]/M1/ 2 versus M 1/2 will have y-intercept KE0 . In practice, the Stockmayer-Fixman method has

been shown to yield accurate results for good-solvent systems as long as the data is for relatively

low molecular weights. 25 9 When data from higher molecular weights are used, the analysis tends

to overestimate KO. This approach has been seen to be sensitive to different ranges of ac, with

modifications'needed if a3 is greater than 1.6 for any range of the data.27

Inagaki et al.13 8 have proposed an alternative method which complements the Stockmayer-

Fixman approach in that it works best with extrapolations from high molecular weight data. This

expression, obtained from the use of an equation by Ptitsyn,2 0 7 is

[ 4/ 6 = 0.786K;4/5 + 0.4542o/15 2/ 3 B2/3M1/3 (F.8)
M2/5 -

where a plot of [rv]4 5 /M2 5 versus M1/3 has a y-intercept of 0.786 4/ 5. When extrapolation is done

from low molecular weights, the equation is modified so that the y-intercept is K04/5

Finally, an expression of Berry's is suggested as showing linear behavior over a broader range of

molecular weights:9 6

[ti]_ 1/2 M,
= + D [7] ,

where M, is the weight-averaged molecular weight and D is an adjustable parameter. A plot of

[1]/M/2 versus Ml,/[7] will have a y-intercept of 0./2

F.2.3 Effect of Sample Polydispersity on Viscosity Measurements

Newman et al.'90 demonstrated that for polydisperse samples, number-averaged molecular weights

and number-averaged radii of gyration should be used in calculations of molecular dimensions from
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[I]. Shultz2 28 has derived an expression for correcting viscosity data when either Mn or the number-

averaged r are not available, and Mo or z-averaged r must be used. The correction is significant

when M, is used but the form of the radius of gyration has very minor effects. For our purposes,

where M. is available for almost all of the data, no such adjustments are necessary. In related

work, Bohdanecky and Kovar2 7 show that a correlation of M. to [] from a polydisperse sample

overestimates the true value of M.. The inverse is true for correlations of M,, but the magnitude

of the effect is much smaller.

If an analytical form is assumed for the distribution of molecular weights, then it is possible to

derive corrections for polydispersity. Probably the best such function is the Schulz-Zimm distribution

for the mass fraction f(M):

rt+1
f(M) = r( t + 1)' Mt exp(-rM), (F.10)

where t = (M, /M, - 1)-1, r = tM, and r is the gamma function. The Schulz-Zimm distribution

has been found superior to the lognormal distribution in describing fractionated samples, although

the differences are small for M, /M. < 2.148,149 A correction factor for the Stockmayer-Fixman

equation (Eq. F.7a) using the Schulz-Zimm distribution and M, is defined as23 6

[1] = QKO + 0.51qoBM /2 (F.lla)

Q (M'/ 2 ) _ r(t + 1.5) (F.llb)

1/2 (t + 1)/2 r(t + 1)

For branched polymers, the effects of branching and polydispersity are difficult to separate as

branching, when not uniform throughout the molecule, in effect introduces a second probability

distribution into the description of the polymer.2 3 3

F.2.4 Determination of the Linear Expansion Coefficient as

Since there is not presently a unifying theoretical formulation for excluded volume effects, it is

common for results from one type of empirical formulation to be incompatible with supposedly

equivalent results from another formulation. The graphical extrapolation procedures give accurate

values for the unperturbed dimensions, but are generally not useful for directly determining excluded

volumes. In light of this, three alternate methods of calculating as will be considered. Two methods

(using the intrinsic viscosity and the radius of gyration) require calculation of ,o or Ao from one

of the graphical methods previously discussed, and the other (using the second virial coefficient)

requires measurement of the second virial coefficient and radius of gyration.
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F.2.4.1 as from Intrinsic Viscosity Data

Calculation of as from viscosity data requires the assumption of a direct functional relationship to

a,. Such functions are usually of the form

a, = as (F.12)

where 6 is an adjustable parameter so that

as= ( KO/[ 1] (F.13)

According to Kurata and Yamakawa,l56 6 = 2.43 is a suitable general solution.

F.2.4.2 as from Radius of Gyration Data

Having obtained Ao from a graphical method, we can now solve directly for the unperturbed radius

of gyration:

rgo = ( ) = Ao(M/6) 1/2. (F.14)

Given an independent correlation for the real radius of gyration as a function of molecular weight,

Tg = A'Ma, (F.15)

a value for as can be obtained by combining Eqs. F.14 and F.15:

as = rg/rgO - A 6M(a-0.5) (F.16)
Ao

F.2.4.3 as from Second Virial Coefficient Data

Yamakawa 25 9 gives a method for determining the expansion coefficient when data for both the second

virial coefficient A2 and the radius of gyration are available for individual fractions. His method

first involves calculation of the variables and T, where

A2M 2

3A2 aM2 (F.17a)

(1 0.547 k -1/0.4683
(1- ) 1 (F.17b)

3.903

An iterative solution is then made for as:

as = 0.541 + 0.459(1 + 6.04ca3) °0 46. (F.18)
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F.2.5 Determination of Skeletal Factor and Bond Dimensions n and I

The skeletal factor 8 can be decomposed into two parts: one factor due to bond angle restriction

and the other to the impedance to internal rotations:

(R2 )o (R 2)0,fr
(R2 )ofr (R2 )oo (F.19a)
(R2),& (R2)00'
2 (R2 )O,fr (F.19b)

n12

where (R2 )o,fr is the mean-square end-to-end dimension of a molecule with fixed valence angles but

free internal rotations and (R2)oo = n12 . The conformation (or flexibility) factor ur2 is defined as

(R 2 )o/(R2 )o,fr. The dimensions n and I are determined by the assumption of some sort of model

used to derive the free-rotation dimensions. Cleland6s calculated the theoretical free-rotation value

of ((R 2)Ofr/n) / 2 for mono- and disaccharide polymers based on an idealized pyranose monomer in

the C1 chair conformation. For a a-1,6 glucose linkage, he reported values of ((R 2 )o,fr/n) / 2 = 5.02

or 5.40 A, depending on the assumed bond angle. Both values are close to the end-to-end glucose

monomer length of 5.15 A, and so the approximations of ((R2)o,fr/n)1/2 ; ((R 2)oo/n)L/ 2 = I and

8 = 0r
2 are justified. Since Cleland used the length of a pyranose unit for 1, n is the number of

glucose monomers in a polymer = M/Mmo,, where Mmon = 162 daltons. Then by substitution,

Aoo = ((R2)o,fr/M) 1/ 2 = 0.394 or 0.424 i-(mol/g)1/2 . The skeletal factor is thus given by

Aoo (F.20)

An alternative method of deriving L is from persistence length measurements. The persistence

length a* is related to the radius of gyration for large chains by 10 9

at = 3r2/NL, (F.21)

leading to

L = 2a*. (F.22)

F.2.6 Determination of Branching Factor g/go

The development so far strictly pertains to straight-chain molecules. Dextran is reported to be pre-

dominantly linear, but with a small amount (5-6%) of chain branching through a-1,3 linkages.' 62 245

The length of these branches is the source of some controversy, with results from chemical analysis

at odds with observed physical behavior. Recent studies on large (106-107 dalton) dextrans indicate

a majority of the branches are short chains (~ 1 to 2 glucose residues) with a small number of long

branches (50-100 residues). l5 2 ' 162 Branch length increases with molecular weight, but at dextran
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sizes of concern to us (less than 106 daltons), there is no evidence of long branches. ls 2 ' 22 4

The principal effect of branching is to reduce the effective volume of the molecule compared to a

linear molecule of equivalent weight. This in turn lowers the intrinsic viscosity and radius of gyration

relative to the linear molecule. The effect of chain branching is described by a factor g,7 < 1 which

relates the intrinsic viscosity of a branched chain to that of a linear molecule of equal molecular

weight:

9g = [77]br/[]lin, . (F.23a)

TrgO,li ,n aiO, l,fin - 2 , fOln

3/2 (Obrb . (li,br (F.23c)

The branching effect is factored into three terms representing, respectively, the effect on unper-

turbed dimensions, the effect on the intramolecular hydrodynamics, and the effect on the excluded

volume. Both g, and go decrease with increasing molecular weight at a constant degree of branching

or increasing number of branches at constant molecular weight.

Analytical formulations for go have been derived as a function of the branching geometry and the

degree of branching. 54" The simplest physical model of dextran is a comb-like chain with uniform,

regularly spaced short branches. The regular comb-like chain model is seen to uniformly under-

estimate experimental values of go for several types of branched chains by up to 30-50%.27 For a

comb-like molecule with a total of m identical side chains dispersed at random points across the

backbone, with each side chain containing nside segments and the backbone having nback segments,

go is given by5 2

go = (1 + mq)-3 [1 + 2mq + (2m + m2 )q2 + (3m2 - 2m)q3 ] , (F.24)

where q = nside/lnback. Eq. F.24 applies in a strict sense only to chains with large side branches

(nside > 1) which can be assumed to obey random flight statistics. Applying it to low molecular

weight dextran, which has mostly short branches, can only yield a rough estimate for go. Using the

results implied from chemical analysis, 5% of the molecular weight of dextran is in branch chains and

nside = 1, 2, or 3 segments. For molecular weights between 40,000 and 10,000, go is then calculated to

be around 0.95. This value does not change appreciably if the the effective segment size is adjusted

to account for short-range interactions.

Experimental calculations of go, on the other hand, indicate a much greater effect of branching

on unperturbed dimensions. Based on persistence length measurements, Garg and Stivalal0 9 deter-

mined values ranging from 0.95 at M, = 5700 to 0.82 at M, = 27, 800 to 0.72 at M. = 48, 500.109
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Senti et al. 2 24 1955 14,500 to 99,600 1.06 to .1.48 0.118 - 0.491
Granath"19 1958 17,000 to 263,000 1.09 to 2.75 0.1'97 0.453

Gekko" 3 1971 32,100 to 410 unknown 0.0986 0.515

Basedow et al.L5 1976 990 to 286,000 1.003 to 1.19 0.130 0.492
Garg and Stivala ° 9 1978 5700 to 112,500 1.39 to 2.25 0.147 0.485
Kuge et al.l 5 2 1987 24,000 to 2,860,000 1.19 to 2.35 0.785 0.320

Table F.1: Summary of literature data available for the intrinsic viscosity of dextran in water
solutions. rK and a are Mark-Houwink constants determined by fitting [] = M to the reported
data.

Their values are consistent with data of Granath"l l and Wales et al.2 5i and suggest a considerably

higher degree of branching than indicated by chemical analysis. Dextran with M, = 1200 is es-

timated to have 7% of the total molecular weight in side chains; for M, = 42, 000 it is 17%; for

M, = 74, 500 it is 28%; and for M., = 246, 000 it is 46%. The basis for the discrepancy with the

results from chemical analysis is not addressed by any of these workers.

Experimental studies with dextran have usually focused on calculating the equivalent of go for

perturbed conditions,
2

rg,br S,br
-9 =9 2 ' (F.25)

Tg,lin S,lin

where as is calculated assuming a linear polymer and then adjusted by a factor g/go. Values for this

ratio based on the data of Garg and Stivala109 range from 1.02 at M, = 5700 to 1.28 at M, = 48, 500.

The hydrodynamic term, the second quotient in Eq. F.23c, has been studied by Stockmayer and

Fixman,2 3 3 who arrived at

70,bri 1/2 r/ (F.26)

where r, is the Stokes-Einstein radius. There is to date no theoretical treatment of the excluded

volume effect of branching, represented by the third quotient in Eq. F.23c. The available data

indicate that the ratio is less than one for comb-like chains with regularly-spaced branching. 27 For

dextran, values of the product of the hydrodynamic and excluded volume terms have been calculated

by Senti et al. to be in the range of 0.9 to 0.7.224

F.3 Summary of Available Dextran/Water Solution Data

Table F.1 summarizes reported measurements of intrinsic viscosity for dextran-in-water systems at

25 °C. For each of these studies, M,, values were determined from light-scattering measurements

and M, was determined from end-group analysis. The Gekkoll3 measurements did not include a

determination of M,. The data of Basedow et al.'5 covers the largest range of molecular weights
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and is in general the most monodisperse, however, the agreement between the different sets was

deemed good enough to justify use of all the data (see Figure F-1). At extremely high molecular

weights (> 106), significant departure from ideality (i.e., the square-root dependence on M,) is seen,

believed to be due to increased chain branching.

For use with the graphical calculations, correlations of r, to M, are needed. Results from light-

scattering measurements for dextran from various sources109' 52 22 4 '23 7 are shown in Figure F-2.

There is some scatter in the data, but only that of Garg and Stivala l0 9 are in the molecular weight

range of interest. Their data was correlated to

r = 0.812Mn0 438 (F.27)

where r, is in i.

Only two sources of values for second virial coefficients were found, from Senti et al.2 24 and Kuge

et al..152 These results are shown in Figure F-3. The agreement between the two sets is poor,. but

there is reason to believe that the data of Kuge et al. is more accurate. For one thing, it is the more

recent and there have been significant improvements in the analysis of light-scattering data since

the 1950s.259 Also, use of the Senti et al. values led to unrealistically large values of It in Eq. F.17a,

precluding calculation of T. Hence, though the Senti et al. data is more suitable for the molecular

weight range of interest only calculations from the Kuge et al. data were used.

F.4 Results

F.4.1 Unperturbed Dimensions from Graphical Analyses

Since it is not clearly established what constitutes a "high" versus a "low" molecular weight range

for dextran-water systems in the context of the graphical methods, all three (Stockmayer-Fixman,

Inagaki-Ptitsyn, and Berry) were employed. The results of the plots for the data of Table F.1 are

shown in Figures F-4, F-5, and F-6. For the Berry plot (Figure F-6), only the data for which M,,

was available was used.

The data on each plot correlate reasonably well, with no observed trend for more recent or more

monodisperse data. The solid lines indicate the best-fit for each group. In all cases, the data is

nearly fiat as M -- 0, indicative of near-theta conditions (B = 0 in Eqs. F.7a and F.8). The data

at large M, from Kuge et al.152 show negative slope that is not consistent with the other data and

may be the effects of significant chain branching. The intercepts of the lines are Ko = 0.122 cm3 -

g-3 /2-moll/2 for the Stockmayer-Fixman plot, 0.786c 4o/5 = 0.196 -- K = 0.176 cm3 -g- 3/ 2-mol1 / 2

for the Inagaki-Ptitsyn plot, and Ko/2 = 0.323 -- Ko = 0.104 cm 3-g-3 / 2-mo11/ 2 for the Berry plot.

If the Inagaki-Ptitsyn intercept for low-molecular weight data is used, Ko4/5 = 0.176 and Ko = 0.113

cm 3 -g-3/ 2-moll/ 2 , which is more consistent with the Stockmayer-Fixman and Berry results. These

203



I I I 111111 I I II IJ I I i I I I I i/ ll

O Senti et al. (1955) +

o Granath (1958) ++
O Gekko (1971) +

V Basedow et al. (1976)
- A Garg and Stivala (1978)

+ Kuge et al. (1987)

//1X0

//~~~~~~

102
I I I I l I I I I II I I

10 4

__ ______ _ __ ______ _ _______· ___ ______ ~~~~~~~~~~__ I I 1111

I, I ,,,,

I I I I lll I I I 111 I I I I I 1

105 106 107

Figure F-1: Intrinsic viscosity versus molecular weight for data of Table F.1. Line represents best
fit of [7] = 0.118M0 498 to data.
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Figure F-2: Summary of reported values of r. from light-scattering measurements for dextran/water
systems. Line is corelation given by Eq. F.27.
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values are somewhat higher than those calculated from the Stockmayer-Fixman equation (Eq. F.7a)

by Wales et al.2 5' (0.092 cm3 -g-3 /2-mol'/ 2), Gekko"l (0.091 cmS3g-S/ 2-mol1/2), and Garg and

Stivala' 0 9 (0.087 cm 3-g-3/ 2-moll/ 2 ).

If the Stockmayer-Fixman plot (except for the data of Gekko, where M,/M, is not known) is

replotted according to Eq. F.lla, the correction for polydispersity, then the intercept q2cO = 0.110.

If an averaged M,I/M, value of 1.38 is assumed, then from Eq. F.llb, q2 = 0.966. The corrected

value for Ko is then 0.114.

Thus, IcO = 0.113 cm3-g-3/2-mol1/ 2 is a justified estimate based on the average of these methods,

and from this Ao = 0.769 A-g-1/2-mol1 / 2, which compares well to values of 0.717 obtained from the

Wales et al.25' result, 0.714 obtained from Gekko,ll s and 0.703 obtained from Garg and Stivala. ° 9

F.4.2 Expansion Factor from Intrinsic Viscosity

Figure F-7 shows the intrinsic viscosity data plotted as ac, = []/KoMll2 versus molecular weight,

with n = 0.113cm3-g-3/ 2 -mol1/ 2 . If only the data for M, < 106 are considered, then a nearly

constant value of a3 = 0.983 is indicated, consistent with theta conditions. This implies that as 1.

Also, since the maximum value of a3 is less than 1.2, the use of Eq. F.7a for the Stockmayer-Fixman

plot is justified.27

Yamakawa 2 5 9 notes that graphical extrapolation methods provide consistent values of unper-

turbed dimensions, but excluded volume parameters derived from them are often not accurate.

Therefore, the alternative methods described previously will be employed in the next two sections.

F.4.3 Expansion Factor from Radius of Gyration

A value for the expansion factor can be calculated by combining Eqs. F.16 and F.27:

as = 2.59M - °0.0 2 (F.28)

which over the range M = 1000 to 100,000 gives as = 1.69 to 1.27. These values are a slight

departure from the theta-condition behavior (as ~ 1) indicated by the flatness of the Stockmayer-

Fixman, Inagaki-Ptitsyn, and Berry plots, which imply that . This method is obviously dependent

on the quality of the radius of gyration correlation used.

F.4.4 Expansion Factor from Second Virial Coefficient

Calculation of a 2 from Eq. F.18 and the data of Kuge et al.'52 is shown in Figure F-8. These results

indicate that the excluded volume effects are negligible (as x 1) at least for M, up to 100,000, in

agreement with the intrinsic viscosity results.
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Figure F-7: Values of the cubed hydrodynamic radius expansion coefficient (a') from data of Ta-
ble F.1. Line is a constant value of a3 = 0.983.
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F.4.5 Skeletal Factor

Having calculated the unperturbed value Ao = 0.769 as described in Section F.4.1, the skeletal factor

is then given by

( A 0 \
2

( A= ) 2 (F.29a)

(F.29b)

Values for Aoo are available from the calculations of Cleland s (Section F.2.5). Using Aoo = 0.394,

a = 3.81, and using Aoo0 = 0.424, s = 3.29. This compares favorably with estimates of as 2.89 to

3.24 by Gekko.113

F.4.6 Equivalent Bond Dimensions N and L

Intrinsic viscosity and second-virial coefficient data indicate that as 1, while the radius of gy-

ration data indicated that as - 4. The value of as from the radius of gyration correlation seems

unrealistically high. Using a value for s = 3.6, an estimate of g/go = 1.2, and as x 1,

L = a2 9 I 4.321 = 4.32 5.2A = 22.5A (F.30a)
go

N = n/(sa -29 ) = n/4.32 (F.30b)
go

Mseg = 4.32Mmon , 700 daltons (F.30c)

Thus an effective segment length is calculated to be equal to 4-5 monomer lengths. Alternatively,

Garg and Stivala 10 9 report values for a* ranging from 20 to 28 A over Mn = 5700 to 112,500. L

is thus estimated to be around 45-50 A (8.71 to 9.61) by this method.10 9 These results are about a

factor of two larger than those from intrinsic viscosity plots.

F.4.7 Discussion

All previously published calculations using the random coil model with dextran have assumed a

segment size corresponding to a glucose monomer. The rationale for doing so is based on ex-

cess thermodynamic measurements that indicate that dextran begins to exhibit the properties of a

random-flight coil in solution at molecular weights of around 2000.114 The results presented here

indicate that N = 2.86 segments at 2000 daltons, which seems an unrealistically small number of

effective segments for random coil behavior. N is even smaller if the persistence length result is used.

Davidson 70 justified using N = n in order to maintain compatibility with the idea of a random coil

at low molecular weights.

Both short-range steric interaction represented by s and branching effects denoted by g/go appear
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to have an effect on the molecular dimensions of dextran. Dextran/water at 20-25 °C is not strictly

a theta system because the second virial coefficient is nonzero, but it appears that there is an effect

of chain branching which leads to a reduction of the molecular dimensions compared to an equivalent

linear molecule. The result is a branched molecule with the solution properties of a lighter linear

molecule in a theta solvent.

The effective contraction of the molecular dimensions resulting from chain branching, which is

more significant than would be predicted by theory, is fortuitously counterbalanced by excluded

volume effects resulting from the expansion of dextran in water. Thus, though it is not strictly a

theta system, dextran/water at 20-25 °C exhibits the behavior of a linear molecule with no excluded

volume. The effective segment size of dextran is estimated to be about 4.3 glucose monomers,

28% of that factor resulting from excluded volume, 72% from impedance to internal rotations, and

essentially negligible bond angle restriction.

The theta-state radius of gyration is seen to be considerably smaller than would have been

predicted based on what is surmised about its chemical structure. Specifically, it would be expected

that dextran's short branches would result in minimal deviation from straight chain behavior, but

instead its radius of gyration is about 70% of an equivalently-sized linear molecule at molecular

weights around 50,000. Whatever physical characteristic of dextran is responsible for this behavior

will probably also influence its hindered transport in pores. It is not clear to what extent this is of

a concern for sieving calculations, but it could be potentially significant for application of results

from the Monte Carlo simulations.
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