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ABSTRACT

The scattering of teleseismic body waves in a laterally heterogeneous
crust or upper mantle gives rise to wavelength-dependent, spatial variations
in amplitude and time delay along the Earth's surfaes. Seismologists using
body wave spectral amplitudes and dT/dA to study the structure of the
Earth's interior find increasing need to understand the extent to which
their data is contaminated by such scatterinc, This thesis deseribes a
practical method for interpreting seismic observations on the surface of
a layered medium having irregular-shape interfaces, The method may be used
for studying the shape of the Moho discontimuity, for example, using the
observed spectral amplitude and phase delay anomalies caused by the
scattering of teleseismic body waves. The method is also useful for the
engineering-seismological study of earthquake motions of soft superficial
layers of laterally varying thickness, A further application can be made
to the interpretation of amplitude and time delay anomalies in seismie
refraction studies,

In the most general problem trzated, the medium is multi-lavered,
having both plane interfaces and irregular interfaces (including possibly
the free surface) that have arbitrary, deterministic shapes varying in one
direction., That is, the shapes are characterized by a common strike
direction., The incident plane body waves may arrive from depth at any
azimuth relative to the strike direction. In the method, the scattered
field is described as a superposition of plane waves, and application of
the contimuity equations at the irregular interfaces yields coupled integral
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equations in the wave number spectral coefficients., The Haskell matrix
method is used for treatment of continuity conditions at the plane
interfaces., The equations are replaced by algebraic-sum equations over
discrete wave numbers by making the interface shape periodic., They are
then satisfied in the wave number domain by fast-Fourier transforming and
truncating. Analytic continuation of the solutions to complex frequencies
causes smoothing that reduces lateral interferences associated with the
periodic interface shape and permits comparison of computed results with
finite bandwidth observations. Increasing the imaginary part of frequency
also inhibits layer reverberation effects while emphasizing early arrivals,

Analyses of the residuals in the interface stresses and displacements,
performed for each computed solution, provides estimates of the errors
attributable to approximations in the method. The relative root-mean-
square residual errors are generally less than 5% and often less than 1%,
Another error measure, based upon conservation of energy, is used in problems
involving real frequency. The method requires no a priori assumption of
small interface irregularities as in perturbation techniques, and we find
that rather severe irregularities may be treated, The method is appropriate
for wavelengths comparable to the dimensions of the irregularity. The
accuracy is confirmed in comparisons with time domain solutions obtained
using a finite difference technique and a laboratory refraction model study.

The method is applied to a variety of problems involving SH, SV, and
P waves incident in models of 'soft basins', 'dented Moho', 'stepped Moho',
variable surface topography, and localized intrusions, The results are
compared with those derived from flat-layer theory and ray theory and
suggest the limits to the ranges of applicability of those theories, 1In
addition to vertical interference effects familiar in the flat-layer, we
observe the effects of lateral interference as well as those of ray-
geometry. Conversion, at the irregular interfaces, of teleseismic P-wave
motion into SV and SH motion is observed as well as rotations in the
apparent arrival azimuths,

The method is applied to a study of the depth and shape of the Moho
under the Montana LASA, We find conclusive evidence that the Moho has an
jrregular shape with a linear trend N64°E+6°. The computed depth to the
center of the irregularity, 48+5 km, is likely an upper estimate., The
implied shape is step~like, with depth increasing toward the NW by 11 km
over a horizontal distance of only 20 km. Our method should be useful for
future investigation of such severe deep-seated variations.

Thesis Supervisor: Keiiti Aki

Title: Professor of Geophysics
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CHAPTER I
INTRODUCTION

1.1, Purpose and Scope

This thesis is an exposition, with numerous applications to problems
in seismology, of a practical method for obtaining solutions to problems
involving the scattering of plane elastic waves in a class of laterally
heterogeneous, layered media. The existence of significant lateral
variations in the seismic properties of the Earth's crust is a well
established fact, and increasing evidence makes it likely that small-scale
variations (say, less than 50 km in width) exist as deep as the Moho and
deeper into the upper mantle, Incident teleseismic body waves with
essentially plane wavefronts over some small area will be scattered in the
inhomogeneous crust, resulting in variations in the observed displacement
amplitudes and time delays over the Earth's surface. These variations
will be dependent upon the wavelength of the incident wave relative to the

dimensions of the inhomogeneities,

The observed spectral variations are of interest for two general
reasons, One is the possibility that they may be diagnostic of the
scattering region,and thus be useful for studying subsurface structufe.
For example, in section 5.5 we use both spectral amplitude and phase delay
observations at the Montana LASA to infer the depth and shape of the Moho.
The second reason is the following., Many recent studies of the elastic
and Q structure of the interior of the Earth employ observed spectral

displacement émplitudes and dT/d A 4in theories that assume flat-layering



near the receivers. . Anomalous amplitudes and time delays caused by
scattering (inecluding wave focusing and diffraction) can often contaminate
the results of such studies, Therefore, it would be valuable to have
theoretical solutions whieh could be used to estimate the effects of

scattering from anticipated inhomogeneities,

The method described here provides such solutions for scattering in
layered media having irregular-shaped interfaces, The techmique, though
its formulation is based upon an old idea describéd by Rayleigh (1907,
1945), is made feasible by the speed and convenience of the digital
computer as well as by the availability of the fast-Fourier transform
algorithm, The method is practical, thus far, only for interface shapes
that vary in only one-dimension; that is, we allow crustal variations in
only one lateral direction, normal to the strike, There is convineing
evidence for such one-dimensional irregularities on various scales
(Mikume, 1965; Greenfield and Sheppard, 1969; our own investigation .of the
Montana LASA), Even were this not so, new aspects in our solutions over
those found in the flat-layer theory or ray theory solutions provide advances
towafd our understanding of wave scattering in the more general case, The
same is true of the relationship between irregular interface problems and

lateral velocity-transition problems.

Our method is applicable to the so-called "ground motion” protlem.
The spectrum of seismic motion at the Earth's surface shows peaks and
troughs due to constructive and destructive interferences within the
surface layers. Earthquake seismologists are interested in this protlem
because they can utilize the shape of spectrum for studying the crustal

layering. The engineering seismologists are concerned about this problem



because the ground motion can be amplified signifiecantly at the resonance
frequencies., The case of SH waves in horizontally uniform layers has been
extensively studied by Kanai and his colleagues (Kanai, 1952; Kanai et al.,
1959), Cases involving P and SV waves have been studied by Haskell (1960,
1962), Phinney (1964), and others, using the Thomson-Haskell method
(Haskell, 1953). It is important to know how the resonance conditions are
affected by the lateral variation of layer thickness, We shall show some

results of the successful application of our method to the above problems.

The method also provides valid solutions even for grazing incidence
(horizontal propagation) to the interfaces, and may provide a new tool for

the interpretation of amplitudes and arrival times in refraction seismology.

In our method, we compute spectral (single frequeney) amplitude and
phase delay distributions in deterministic, forward-solution problems with
the source wave and layered system given, Although it was not done here,
the single frequency solutions could, of course, be used to Fourier
synthesize transient time solutions. To aid in practically accomplishing
such a Fourier synthesis and fér other reasons to be described later, we
allow the frequency w to be complex, This use of complex frequency is
equivalent to smoothing the solutions over a real frequency band and yields
spectral amplitudes and phase delays that can be directly compared with

spectral analyzed seismograms premultiplied by prescribed time windows.

Although the models are laterally heterogeneous in only one direction,
we allow the source wave to be incident from any azimuthal direction
relative to the strike of the trending structure, In such problems, P-,

SV-, and SH-wave motions are coupled so that a transverse component of



motion can arise from the scattering of incident P or SV waves.

éur solutions may be considered as 'middle frequency' solutions in the
sense that the wavelengths invblvéd are comparable to the sizes of the
interface anomalies, Although the accuracy declines as the wavelengths
become small, the solutions are generally valid aown to wavelengths that
are sufficiently short to obtain adequate comparisons with geometrical ray
theory. This middle frequency range extends in the other direction to wave-
lengths that are so long that the waves essentialiy no longer 'see' the
interface roughness. Also, our solutions are near~-field in thai the
observation points (receiver stations) generally are located within 10 to

20 wavelengths distance from the interface anomalies,

This thesis has four goals. The first is a detailed exposition of the
theoretical formulation of the wave scattering problems and of their
practical solution., The method is approximate both in the formulation of
the problems and in their numerical solution; hence, the second zoal is to
indicate the range of validity of our method by presenting an estimate of
the accuracy of the computed‘solution in each praétical problem. The
third goal is to present solutions to a varisty of wave-scattering problems
that are directly applicable to problems of current interest in seismology.
Finally, we demonstrate an application of the method with the determination

of Moho depth and shape at Montana LASA,

Following. Rayleigh, we represent the scattered wave field as a
linear superposition of plane waves where the coefficients are determined
in such a way that the boundary conditions are approximately satisfied,

There are several approximate ways to satisfy the boundary conditions.
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Rayleigh used an iterative approximation, expanding the boundary condition

in a2 power series in the amplitude of the corrugation. The same approxima-
tion has been applied to seismic problems by Abubakar (1962 a,b,c), Dunkin
and Eringen (1962), Asano (1960, 1961, 1966), and Levy and Deresiewicz
(+967). Meecham (1956) used a variational method in which the boundary
condition is satisfied in a least-squares sense. The method presented here
is closer to Meecham's, but takes advantage of the fast Fourier transfomm
‘algorithm (Cooley and Tukey, 1965) and satisfies the boundary condition in

the wave mumber domain,

The emphasis in our method is on its practical value for obtaining
theoretical solutions in 2 form immediately useful for the study of
problems in seismology. In the abovementioned investigations of seismic
wave scattering, the interface shapes are taken to be sinusoidal (corrugated)
and of small amplitude relative to the wavelengths of the corrugations and
of the waves., Their solutions are presented as curves of the ampliﬁudes
of the primary, first scattered order, and possibly second scatiered order
plane reflected and transmitled waves As functions of the ratio of a wave
wavelength to corrugation wavelength., Solutions in this form are not
immediately useful for application to seismic wave scattering in layered
media with irregular interfaces of arbitrary shape, Moreover, the requisite
assumption that such solutions to sinusoidal boundary problems can be
superposed to yield the solution to arbitrary-shaped boundary problems is

valid only to the first order in the amplitudes of the irregularities,

Our method makes no a priori assumption concerning the sizes and shapes
of the interface irregularities or the wavelengths involved. Of course,

the accuracy of our solutions is stringently dependent upon the sizes of



such parameters; however, we can check the accuracy of the computed
solutions using error measures based upon the residual discontinuities in
stresses and displacements at the interfaces, We find that we can obtain
useful solutions to problems involving rougher interface shapes than are

allowed in the various perturbation techniques.

There are various other approaches to this type of wave-scattering
problem, None are exact, as befitting wave diffraction problems in which
the boundaries do not coincide with the constant éoordinates of a coordinate
system in which the wave equation is separable, Banaugh (1962) uses a
representation theorem to formulate his solution. The integral equations
formilated are exact; however, approximations used in their actual solution
subject the solutions to truncation errors that are comparable to those
that we encounter, This is particularly true for the spplication of
Banaugh's method to scattering at ir:egular interfaces rather than at
isolated obstacles (aisc. see Sharma, 1967). Other theoretical investigations
of scattering of plane waves generally involve perturbation metheds in which
the interface shape has a very small amplitude anomaly relative to the

wavelength (Gilbert and Knopoff, 1960; Herrera, 196l4; and McIvor, 1969).

Two analog methods are the finite-difference method (Boore, 1969) and
laboratory model studies (for example; Laster, et. al., 1967). These have
the advantage that solutions are computed directly in the time domain, In
both methods, the time duration is limited by the boundaries of the model
(or grid network). Probably the most critical factor in the finite-
difference method is the accuracy of the approximations for the interface
conditions; in the laboratory model it is the nature of the interface

bonding and the coupling of the transducers to the medium. In this thesis,



we present comparisons with solutions obtained by these methods.

Finally we mention the ray theoretical methods. The ray theory is a
high frequency approximation which often yields useful solutions, particu-
larly for time delay, to wave scattering at irregular interfaces, Mereu
(1969) and Mechler and Rocard (1967) have applied the ray theory to seismic
wave scattering at irregular interfaces, In our examples we demonstrate

limitations in the use of simple ray theory.

The essential form of the method presented here was derived by Aki
and Larner,(1970) in a study of SH wave scattering in a layer of nonuniform
thickness over a half-space. The new contributions in this thesis include
the extension to the general problem of scattering of any type of elastic
wave (P, SV, or SH) incident at arbitrary azimuth relative to the strike
of the irregular structure, the inclusion of an arbitrary number of additional
plane layers, and the extension to cases involving irregular free surface
topography. These extensions enlarge the variety of seismic problems to
which the method can be applied, The techniques used to determine the

trend of the Moho irregularity at Montana LASA are also néw.

1.2, Outline of Method and Chapter Contents.

Our method for solving the elastic wave scatiering problems is
presented in Chapters II and III, Several problems are formulated in
Chapter II in the following manner., The wave field in each layer is
represented as a superposition of plane waves whose complex amplitudes
are to be determined by satisfying boundary conditions at the interfaces

and at infinity., The continuity requirements at plane interfaces are
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used to reduce the number of unknown wave amplitudes to just the rumber of
boundary conditions required at each irregular interface., By writing these
boundary conditions explicitly, we obtain a set of coupled integral
equations (one equation for each boundary condition) whose approximate

solution yields the complex wave amplitudes,

The most general problem that we consider is the scattering of plane
elastic waves (longitudinal or transverse) incident from depth at an
arbitrary azimuth relative to the strike of the interface irregularities,
However, ag an aid to the reader, we introduce the technique by first
considering three short scalar problems involving incident SH waves
propagating in the plane normal to the strike of the interface irregularity.
Fach problem treated in Chapter II is taken to the point of writing the

integral equations. Appendixes A, B, and C lend supporting discussions.

The method of approximating the solutions of the integral equations is
presented in Ch;pter III. By assuming the interface shape to be periodic
(with large period relative to the width of the isolated irregularities),
we can replace the integral equations by infinite-sum equations over
discrete wave numbers. These equations are Fourier transformed and
truncatsd to a finmite number of wave number terms, That same mumber of
equations is retained., The resulting large system of simultaneous linear
equations is then solved numerically. The method is applicable to the
solutions of all the problems considered in Chapter II. Some implications
inherent in our use of complex frequency smoothing are also diséuSSed in

Chapter III,.

The error analysis in Chapter IV is crucial to the evaluation of the



effectiveness of the technique, Two measures of accuracy are defined
(derivations are given in Appendixes D and E), Eoth are related to the
residual displacements and stresses at the irregular interfaces, The
mumerical values of the error measures in every example presented in this
thesis are listed in Table F1 of Appendix F. Several examples are
presented in Chapter IV to demonstrate the dependence of interface
residuals upon the truncation of the equations and upon the shape of the
irregular interface., The trade-off between stability and resolution
achieved through varying the imaginary part of frequency is also displayed
in examples, Chapter IV concludes with a comparison of solutions obtained
by our method and the method of finite differences., The excellent agreement
provides a check on both methods and also confirms our understanding of the
relationship between the complex frequency solutions and smoothed time-

domain solutions.,

Chapter V is the culmination of the thesis. 1In it, solutions to a
mumber of problems of interest in seismology are presented. A summary of
the examples discussed is given in section 5.1, Section 5.5 is an
application to the study of the deep subsurface structure at Montana LASA,
We find that the observed spectral displacement amplitudes,as well as time
delays, are diagnostic of the trend direction of the Moho irregularity. The
amplitudes éi@ld estimates of depth; the time delays give the amplitude of
the Moho irregularity; and a combination of the two data suggests the

slope and location of the irregularity.

Chapter VI concludes the thesis with a short discussion of the

computational time requirements and recommendations for future work.
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CHAPTER II
FORMULATIONS OF PROELEMS

2.1, Introduction.

In this chapter, we formulate the solutions to several related
problems involving the scattering of plane elastic waves in layered media
in which some interfaces have one-dimensionally irregular shapes, In each
problem, the wave fields are represented as linear superpositions of plane
waves, By imposing continuity conditions at the interfaces, we reduce the
problems to the solutions of coupled integral equations in which the
unknown functions are the complex amplitudes of waves leaving the inter-
faces. The approximate method for solving these equations is described in

Chapter III,

In Section 2.2, three simple two-dimensional problems involving the
scattering of SH waves are discussed., There, the wave fields are scalar,
and all wave propagation is parallel to a given plane, These SH wave
problems are special cases of the larger problems developed in the sections
that follow and are designed to briefly introduce the essential features in
the formulation of the integral egquations, The first problem involves
scattering at the irregular interface separafing two half-spaces, Our
formulation is that applied by Rayleigh (1907, 1945), Meecham (1956), and
Heaps (1957) to the scattering of acoustic waves and by Abubakar (1962a, b, c¢)

and Asano (1960,1961,1966) to the scattering of seismic waves. In the
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second problem, one of the half-spaces is replaced by a layer bounded by a

plane free surface, Here, the vanishing stress condition at the plane
free surface is employed to reduce the mumber of unknown functions down
to the nmumber of boundary conditions at the irregular interfaces, The
final SH wave scattering problem discussed also involves a layer over a
half-space, but in this case both the interface and the free surface are

irregular,

In Section 2,3, we consider the larger , moré general problem of the
scattering of plane P or S waves incident from an arbitrary azimuthal
directioﬁ. The medlum consists of a& sequence of layers between two half-
spaces where all, but one, of the interfaces are plane and parallel, That
interface is roughly parallel to the others but has a one-dimensionally
irregular shape, Because the incident waves may arrive from any direction,
the P, SV, and SH wave motions are generzlly coupled, and the scattered
waves do not propagate in directions parallel to the same plane, We use
the flat-layer wave theory of Haskell (1953) to iteratively satisfy the
contimuity conditions at the plane boundaries and thereby reduce the number

of unknown wave amplitudes in the problem.

In Section 2.4, a similar problem is treated, differdng in that one
of the half-spaces is removed; that is, the upper-most interface is free,
This problem serves as a mocdel for the scattering of teleseismic body
waves incident from the mantle at arbitrary azimuths relative to the strike
of, say, an irregular Moho discontimuity. This model is used, in Chapter V,
for the computation of three-component displacement amplitude and phase

delay anomalies along the free surface,
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In the final section (2.5), we obtain the integral equations for

problems where more than one of thé interfaces are irregular. The
extension to these cases is straightforward, However, the number of
unknown complex wave amplitudes required to describe the wave fields
increases with the number of irregular interfaces, Thus, significantly
more computational effort is required to obtain comparable accuracy in the

mamerical solution of the integral equations.

2.2, SH Wave Scattering Problems,

2,2,1, Two half-spaces separated by an irregular interface, In all

our problems, we shall use rectangular Cartesian coordinates (x,y,z) with
the positive z-coordinate (depth) directed vertically downward and the

X- and y- axes horizontal, Consider the medium, shown in Figure 2.1,
consisting of two homogeneous, isotropic solid half-spaces joined by the
irregular interface at depth 2z= E(x). The medium is uniform in the
y-direction; that is, the y-direction coincides with the strike or trend
direciion of the interface shape. The medium above the interface (z< r )
has shear velocity @, and density @, and that below the interface, f3,
and . We wish to determine the motion anywhere in the medium in
response to plane harmonic SH waves, polarized in the y-direction, that
are incident from depth in the lower medium parallel to the x~z plane at
the angle ©, from the z-axis., The problem is two-dimensional, and the

solution is independent of y,.

Let the displacements in the upper and lower media be Gl(x,z) and

Gz(x,z), respectively, We represent the harmonic time dependence by the
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Figure 2,1. Problem configuration for plane SH wave scattering at
the irregular interface separating two half-spaces,

13
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-fewt
complex exponential € where the radial frequency W satisfies
0< arg(w) <T/2 (2.1)
~lwl
We suppress the common factor ¢ in all that follows., The

displacements satisfy the scalar Helmholtz equations
LY A .
(V*+a/8 )V, =0 5 jei2

so that they can be expressed as the following superpositions of plane

waves

. 7/
~ *® u (kx-tV 2
v, (x,2) = f v, (k) e ok (2.2)
-9

oy L
ikx-ir2 thx +(¥2

® o
?,(x,2)= e + L V, (k) e ok (2.3)

Here, k, and V; are the x- and z-components of the wave mumber of the

incident waves, respectively, and

, Y
v = (@R -kE) T = (YR, cos B, (2.4)
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The coefficients v% and vg are the complex amplitudes of the plane waves
that describe the scattered field and are to be determined by satisfying
the boundary conditions at the interface, The superscripts "d" and "u"
demﬁte downgoing and upgoing waves, respectively, once the signs of the
radicals ¥, , ¥ , and 7§f are fixed by appropriate definitions of

the branch lines and the top sheet of complex k-plane. (see section 3.4.4)

In this thesis, the term upgoing waves denotes waves that not only
propagate upward in a real sense, but also those inhomogeneous or
evanescent waves (Brekhovskikh, 1960) that attenuate in the upward
(decreasing z) direction., Likewise, downgoing waves are waves that either
propagate downward or attemuate with increasing z, For example, for the
case of real W in this first problem, inhomogenous scattered waves in
the upper medium are associated with wave numbers such fhat kI >w /8 .
These waves carry no energy away from the interface, and hence are some-

times called interface waves,

The description of the wave field given by (2.2) and (2.3) is the
same as that used by Rayleigh in his study of the scattering of acoustic
waves by a grating, ILippmann (1954) and Uretegky (1965) have questioned
the validity of such a description of the wave field, In fact, (2.2) and
(2,3) cannot completely represent the wave field for the following reason.
The interface is the locus of secondary point sources of scattered waves,

as shown in Figure .2.2. For r(x) <z< rmax’ where \fmax is the
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Figure 2.2, Schematic diagram illustrating scattered upgoing and
downgoing waves throughout the interval §.;. <2< ¥ from secondary

sources at the irregular interface, max
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maximum of r(x), the scattered field in the lower medium includes waves

that are locally npgoing. However, the source wave is the only upgoing

wave allowed in our expression (2,3) for the field in the lower medium.

A similar difficulty arises with expression (2,2) for the field in the upper
medium. The discrepancy is greatest in problems involving large interface
slopes, particularly when the source wave length is smaller than the

amplitude ( tmax_ ¢ min) of the interface irregularity,

Expressions (2,2) and (2.3) are therefore only approximate represent=
ations of the wave field and, consequently, the boundary conditions at the
interface cannot be satisfied rigorously (otherwise the uniqueness theorem
would be violated), However, in many problems these scattered upgoing
waves near the interface in the lower medium and downgoing waves in the
upper medium are negligibly small, and (2.2) and (2.3) are satisfactory
for practical purposes. If so, small residuals or discontinuities left
at the interfaces would generate even smaller errors in the motion computed
for positions removed from the interface, Therefore, we assume that (2,2)
and (2.3) are good approximations to the wave fields near the interface,
and test the adequacy of this assumption by evaluating the residuals in

the boundary conditions in each practieal problem.

The formulation of every problem studied in this thesis is patterned on
expressions (2.2) and (2,3); thus, in all cases, our solutions are
‘approximate. Further implications associated with the inherent error in

this Rayleigh formulation are considered in Chapter III,

For this first SH wave problem, the boundary conditions are the

continuity of stress and displacement at the interface; these are
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A
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where M, is the rigidity of upper medium, M, is that of the lower
medium, and g—h represents the space derivative in the direction normal

to the interface,

&= pgrad = nd + 0% (2.7)

2y /2
nx)==5 (1+S)

-‘/
(0= (148*) (2.8)
(x)
S(X)=T— jf ® interface slope

Using (2.2), (2.3), (2.7), and (2.8) in equations (2.6), we get

{KoX

“r o« ik
[LD000 £ + 00 f k] € dk = h (k) e

(2.9)
R ok ik,
[ D0, k0 + 00 £ ] € ke = hylkgyye ™



_ 19
where the known coefficients are

. ~("l>,l?()()
qu (k)X) = e

_ iy
f.(kx) =-e (2.10)

TS {
£, 0 = p [ksm+9' e Fo

vq K TOD
fo k) ==pm Lkson -1 1 e .

and the source terms are

<%, B0
e

1]

hv (k(’)x’
L (2.11)
-(3, ()

ha(ke) = sy Lkoson +% ] e

By solving the integral equations (2.9) for ﬁ?(k) and vg(k), we can
determine the wave field in any part of the medium, That is the task in
Chapter III, Equations (2.9) are prototypes of the integral equations that
will be obtained in subsequent problems in this thesis, The essential
features are

1) there is one integral equation for each boundary condition,

2) there is one unknown function for each boundary condition, and

3) the coefficients fij(k’x) and hj(ko,x) are functions of x only

through the x-dependence of the irregular boundary shape,

If the interface were plane, the integrals would reduce to Fourier integrals
and the equations could be solved trivially. In that case, no wave number
coupling would arise; that is, the scattered field would consist simply of
plane waves characterized by the incident wave number ko. We note that,
for this problem as well as for the next two SH wave motion problems, the

coefficients fij(k,x) are well behaved functions of k.
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2,2,2, Layer of non-uniform thickness over a half-space: layer

bounded by a plane free surface., Consider, now, SH wave scattering in a
medium consisting of a layer over a half-space, As illustrated in Figure

2.3, the layer (medium 1) is bounded below by the irregular interface at

z= t(x) and above by the plane free surface at 2=0, We are interested in
the motion along the free surface when an SH wave is incident from depth

in medium 2 as in the previous problem, Bquation (2.3) again approximately
represents the solution in the half-space, but now upgoing and downgoing
waves are required to approximately describe the wave field Gi(x,z) in the
layer, We write

ikx + (.v:z

ikx-iv2 d

v = [ [ioe

The vertical component of wave number 1%1 is defined as before by (2.5),
and the downgoing wave amplitude v?(k) is a new unknown in the problem,
In addition to the interface conditions (2.6), we must satisfy the vanishing

stress requirement at the free surface

IV, (x,0) _
J2 =0 (2.13)

Requirement (2,13) is satisfied when

W

VAR (2.14)
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Figure 2,3. Problem configuration for plane SH wave scattering in
a layer of nomurdiform thickness over a half-space., The frees surface is
plane.
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That is, no wavenumber coupling occurs at the plane free surface, Using

(2.14), we eliminate the function vi(k) in (2,12), and write

(-] " , k
v (x,z) =2 L V (k) cosVz e xdk (2.15)

As in the previous case, the wave fields are expressed in terms of
the amplitudes v?(k) and vg(k) of waves leaving the irregular interface,
Use of (2.3), (2.15), (2.7), and (2.8) in the interface continuity
conditions (2.6) again yields the coupled integral equations (2.9) for the
determination of vg(k) and vg(k). The only change from the previous case
is that fil(k’x> and fzi(k,x) in (2,10) are replaced by

](“(k,x\ =2 cos? T

(2.16)
£, (kx) = R p, [ksm cos v ¥ = (»'sinP 0]
The motion at the free surface is, by (2.15),
A o “ ikx
V,(%,0) = L RV (k) e dk (2.17)

vwhich is just a Fourier synthesis over wave number,

2.2.3. Layer of non-uniform thickness over a half-space: both the

free surface and interface are irregular. As shown in Figure 2.4, the

configuration for this problem differs from that for the last one in that
the free surface no longer is plane, but rather has the irregular shape
given by 2= fs(x).- We wish to determine the response of the medium to an

incoming SH wave as in the previous problems,
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Figure 2,4, Problem configuration for plane SH wave scattering in
a layer of noruniform thickness over a half-space, Both the free surface
and interface are irregular,
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The approximate displacement fields in the layer and half-space are

given by (2,12) and (2.3), respectively, The three wave amplitudes

d

vi(k), f?(k), and vg(k) will be determined by solving three coupled
integral equations., Two of the equations are provided by the interface
continuity conditions (2.6) and the third arises from the vanishing stress

condition at the free surface

g%'f 0 at 2280
where

h, = ns,-g)—x + nsz-g-a-

Ny = ~ S, (|+SS)-‘/1

-‘/’.
Ng= (1+5)

d%,x

and ss(x)= Ix is the slope of the free surface, Using (2.12) and

(2.3) in the boundary conditions ylelds

® . ikx ik,
f_ DR g 0 £ k) *+ ViR fa (k] e dk = b (kx)e :

f_ IV b0 + 0 L 0k0 + 0 f (] € dk = hy (ko) €

"
X (2.18)

f [w‘(k\u‘,, (k) + v (k) fo (k)1 e{k'dk =0

-0
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The functions fij(k,x) and hj(ko,x), i, j=1,2 are those given in (2.10) and
(2.11) for the half-spaces problem, The new coefficients are
(¥ €
fis (ky) = €

3613 (k.x) 7 M [ksoo -] ei”' 3t

LR A

(2.19)
folkx) = [ks, 0 -2"1e

) _._‘)‘l ()
£, (kx) = Lks,0+9'] e WS

Summarizing the results for these three SH wafe problems, we found that
the wave fields are expressible in terms of the complex amplitudes of waves
that leave irregular interfaces and that these wave amplitudes are solutions
to an equal number of coupled integral equations -- one for each boundary

condition at each irregular boundary,

2.3, Elastic-Wave Motion in a layered Medium Having One Irregular

Interface,

2.3.1, Introduction., We now consider a larger, more general problem
in elastic-wave scattering., As shown in Figure 2.5, the medium consists
of hHl homogeneous, isotropic solid layers. Layers f and 0 are half-spaces;
the other layers either have uniform thicknesses and are joined at plane
interfaces at constant depths 7=z  Or have thicknesses that vary in the
x-direction only and are joined at the irregular interface z=zs(x). Each
layer m is characterized by density Pm » longitudinal wave velocity o, ,
and shear wave velocity ﬁ", . The irregular interface s separates layers

s above and s+l below,

We wish to determine the displacement field response of the medium to

plane P or S waves incident from depth (z= oo ) in the half-space 7 at the
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Figure 2,5, Problem configuration for plane elastic wave scattering
in an n+l layer medium having the single irregular interface s. ©, is
the angle between vertical and the projection of the source wave propagation
vector onto the x-z plane,
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angle 69 from vertical. In contrast to the SH-wave problems, now the
source wave need not be propagating parallel to the x-z plane, That is,
the source wave is incident at an arbitrary azimuthal angle relative to the

strike of the interface shape,

This problem is more complicated than the previous problems for
several reasons., The scattered field is now vector, consisting of coupled
P, SV, and SH waves, Furthermore, the scattered waves are no longer
confined to propagate parallel to the vertical pl#ne containing the source
wave propagation vector. The problem, therefore, is no longer strictly
two-dimensional, However, the simplification that the irregular interface
have the one=dimensional (washboard) shape allows us to develop the
solution as though the problem were two-dimensional. That is, as before,
the solution wave fields will be expressed as integrals over the x-component
of wave number rather than as double integrals over both the x- and y-components

of wavermmber,

The formulation of this problem proceeds analogously to the treatment of
the SH wave problems, However, because of the greatly increased algebra
accompanying the vector fields and increased mumber of interface continuity
conditions, many details are relegated to the appendixes, We shall follow the
Thomson«—Haskell flat layer wave theory (Thomsom , 1950; Haskell, 1953) to
iteratively satisfy the continuity conditions at the plane boundaries, The
solution for motion anywhere in the medium is thereby reduced to the
determination of the complex amplitudes of the six waves leaving the
irregular interface (P,SV, and SH waves upgoing in layer s and downgoing in
layer s#l), This number equals the number of continuity requirements at the
irregular interfacé, each of which provides an integral equation involving

the six wave amplitudes,
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After k-spectrum decomposing the wave fields (i.e., expressing the
fields as superpositions of plane waves), we introduce what we call
propagation coordinates, With these new coordinates as bases for expressing
the spectrally decomposed motion, the solutions are in a form particularly

amenable to reduction using the Thompson-Haskell technique.

The existence of plane boundaries in this problem makes the integral
equations singular when the temporal frequency w is real, The singularities
are associated with trapped modes (such as Rayleigh waves, generalized
Rayleigh waves, Love waves) in the plane layers, This singular behavior is

considered in the approximate method of solution discussed in Chapter III,

2.3.2, Representation of the displacement and stress fields, As

-twt
before,. let the source wave have the simple harmonic time dependence €

where the frequency W may be complex as deseribed in section 3.4, The

Fourier transformed vector equation of motion for an isotropic elastic

#53id m is

"(mez ,(._l,,, (r’ w\ = (l...+2,u,..) V(V' Qn‘) ‘/‘4'» VX(VX Qm] (2.20)

where §ﬁ=(ﬁm'§h’ﬁh) is the vector displacement with (x,y,z) components, A,
and /“m are the Lame constants, and r is the space position vector

(single underbars denote vector quantities and column matrices, double
underbars denote second order tensors and square matrices), Using dydadic
notation (Nadeau,l964) to economize en the use of subsecripts, we write the
stress tensor field §m in the isotropic elastic solid m in terms of the

displacement field.
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§m( ) = A, 1, (V- Un) +/«,..(V\:},..+ U,.V) (2.21)

where 13 is the idemfactor or unity dyadiec.
=

We shall represent the total displacement and stress fields, in each

layer m, as superpositions of the respective fields arising from elementary

plane waves, That is,

(r,w) = [” U, (r w k) ok (2.22)

l;C>

[co _.__m(f;“’;k) 0”( (2.23)

where the wave number k is the x-component of the propagation vectors
associated with upgoing and downgoing P and S waves, The k-spectrum

decomposed fields gm are derived from displacement potentials by means of

the Helmholtz theorem

gh\(r)w)k) = V&m(r:w)k) - Vx ( §m+vxgm) (2.24)

where

il
-~
(]

o
~
3
—~
-5
€
-~
~r’
L —

B, (r, co,k)
(2.25)

QM(.': w;"» (O) o, g’v’/m(r,w)k))
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)

' ~ ]
The scalar displacement potentials ¢m R , and K satisfy the

;El?

scalar wave equaticns

(v*+ ki ) 9,0
(7% + ks ) ¢, =0 (2.26)
(v*+ Ky ) X.. = 0

where the following notation is used

k«h = w/ “m 3 longitudinal wave number

k,gm *w/Bm ; shear wave rumber
~ ~ ~
The potentials d’m . Y » and Xm are k-spectrum decomposed quantities;

that is, they are potentials for plane wave motion which may be written as

' tkx L,
(t, wik) = ¢m(‘<,%) €( ™

S

m

ikXi'(-?o\J (2.27)

s

(r wk) = ¥, (ka) e

~ .kxi‘io
TP ATE AR I

where 7, 1is the y-component of wave mumber associated with the source wave,
Before proceeding, we must justify the spectral decomposition of the fields
into waves having different x-components of wave number k but having just

the single y-component of wave rmmber 7), .

The usual procedure in the solution of problems involving plane parallel
boundaries (Harkrider, 1964) or vertically inhomogeneous media (Saito, 1968)

is to first Fourier transform the problem on not only the time wvariable but
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also the x and y coordinates, In those cases, for plane wave source {
problems, the boundary conditions at the interfaces could be satisfied*fbé
all values of x and y only if the x and y dependences of the fields in all
layers were the same as that of the source wave., That is, the fields would
consist of upgoing and downgoing waves having the same x and y components of
wave number as those of the source wave, Moreover, the P-SV and the SH wave

motions would be uncoupled,

In general, when one or more of the interfacés has an irregular shape,
all types of wave motion (P, SV, and SH) are coupled., When the depth of the
interface is an arbitrary funetion of both x and y, wermust expect the
scattered field to consist of waves that propagate in all directions, In
that case, we would represent the fields as superpositions of waves having
all x-components of wavemumber k and all y-components of wavenumber 7 ,
However, because the interface shapes that we consider are one-dimensional
(independent of y), the boundary conditions can be satisfied for all y only
if the scattered waves all have the same y component of wave mumber %, as
that of the source wave, Essentially, we have Fourier transformed on the y

dependence of the problems,

Because of the inherent error associated with the Rayleigh type
formulation (section 2,2,1), the representations (2,22) and (2,23) as
superpositions of plane waves cannot be complete near the irregular inter-
face, For depths between the minimum and maximum depth of the irregular
interface, (2,22) and (2.23) could be complete descriptions of the fields

only if in (2.27) Q(k,2), W(k,2), and  X(k,z) had the form

Ve
a) e
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where Q. 1is a non-constant function of z and % is a vertical component of

wave number, However, our plane wave representation imposes the restriction

that @ be constant, independent of z.

Consider, now, a source wave incoming from depth in the half-space n
{(RX 7,y = Vo)
and having the form € where ko, M., and %, are the x, ¥,
and z components of wave number, respectively, Thafb is, the source

propagation vector XK. has (x,y,z) components given by
k, = X, sin8, cosn, = XK, Cos e
%, = e sin@, sinn, =K, sina, (2.28)

vhe k- x}

o <

where

/<°‘:; for P wave
k gy Tor S wave
(4]
eo is the angle of ineidence; the acute angle

between vertical and the direction of propagation,

N is the azimuth angle, measured from the positive
x-direction to the positive y-direction

K, = K. sin6, is the horizontal component of wave number,

These quantities are shown in Figure 2.6.

Sinee all the scattered waves propagate with the same y-component of
phase velocity, then associated with each value k in (2.22) or (2.23) is a

horizontal component of wavenumber XK and an azimuth angle AL given by

Zo= (R
k

(2,29)

XK cos .



<V

Figure 2,6, Schematic representation of the terms assoclated with
the source wave propagation veelor.
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The angle .. is the angle by which we must rotate the x-z plane about the

z-axis to bring it into coincidence with the vertical plane that contains
the propagation vectors associated with k., Let us call this plane the
propagation plane, and define a new réctangular Cartesian coordinate system

(x,y,2) with{un§§}basis vectors g;, g;, and g;; where g;=gz. g; is parallel

4
L]

X

to the horizontal component of the propagation wector, and g;=§; X e The
propagation plane, the propagation coordinates (x,y,z), and the defining

azimath angle . are all functions of k.

let primed vectors and tensors denote vectors and tensors whose
elements are expressed in terms of propagation coordinate bases., For

example, the space position vector is
4
r'= Re' ¥ (2.30)

where

{
1"
<
1=
(1)
W X

d .
an cosn sinn. 0O

@k “\-sihn cosn O

0 o | (2.31)

is the rotation tensor (dyedie) for rotating the (x,y,z) standard

coordinate system into a given propagation coordinate system,

In using the Thomson-—Haskell technique to exactly satisfy the
boundary conditions at the plane boundaries, it is advantageous to express
the elements of the spectrally decomposed displacements gﬁ and stresses

§m in terms of the propagation coordinate bases (in the flat layer theory,
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the P-SV and SH wave motions are uncoupled in the appropriate propagation

plane), The new bases provide frameworks for convenient definitions of the

wave amplitudes (equations (2,37)) used in our solutions.

Equations (2.22) and (2.23) become

R, - U dk (2.32)

§,,,(r,w\ = { @: §:..0___§_K olk (2.33)

T
Here we have used the unitary property for the rotation dyadie, m < @K

W

. 3
where @K is the transpose of @__\c .

The six contimuity conditions at the interface are

ot 2:2,00
2 ~ S Y et
Tolr,w) = -_'_'m (5, w) S
~ N~
where '_f_s(;_-s,w) and '_I_‘aﬂ(_z:s, @) are the stress vectors acting on the
interface, They are given by
A A *x T {
:’_-S {rs> DO) : ‘25 (rsa‘*’)'.@s = [m @K.:‘Ss .QK. QS dk
(2.35)

A N
Towr (£, @) = Sy, (X, @Yo g



where

- sinY ,
o} (2.36)
cosY

ES
n

is the unit normal to the interface at r‘s?ﬁ,y,zs(x)), and Y is the dip
d &
o x

angle at the irregular interface, i.,e., tan Y = . The configuration

is shown in Figure 2,7.

2.3.3. Reduction to integral equations, We now develop the boundary

A

condition integral equations by obtaining explicit expressions for ﬁs, U s+
A A
’_I_‘s, and T s+1 at interface s, First note that the exponents in equations

(2.27) may be written as
kX t,y = R’(Xcos.n, "'ysin.n.) = %y

r I~ ~ .
Thus, the wave potentials d),“ . \'Vm , and Xm are independent of the y!
coordinate and, by (2.24) and (2.25), the components of displacement in the

propagation coordinates are

39. _%’(a@m)_ 3¢, oW

M'M(E,W,k) =T¢' X’ = oYX - az'
, Yom
Vi (£, 0, k) = ?W’ (2.37)
n ~ ~
, _a$.,+a(_c)_\&..)=é¢h+c)%
Wi ([, w, l() RFTY 'é"x—: ax, 62' a xr
where . _a‘i.
q’m - ox

By using the propagation coordinate system together with the particular

form (2,24) of the Helmholtz theorem, we see that the 'un'1 and Wl;l motions in

~

: r~
the propagation plane are derivable from only two potentials, CD,“ and \P,,, .
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(Zs(x)=25_,+ Ce(x)

layer i//l D

layer s+i

(interfoce S

Figure 2.7. The dip angle Y (x) and the unit normal vector ng at the
irregular interface s.
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the P and SV wave potentials respectively, The horizontal motion Vr:! normal

to the propagation plane (SH motion) is itself a solution of the scalar

wave equationi that is,

L (PR W o 2.5

We now introduce explicit forms for the plane wave expressions that

we have assumed for the potentials, In each layer m, we let

~ Vm(E-2,0) -1, (22,0 t(kx+n,Y)
L wk) = [fdme FOL () e le
~ J P (E2a0) “ EPLE G T DI .y)
Yol wh) = [¥ 0 e ) e 1 e

(2.39)
l'vw:“z"}h-l) " ...1’\":(1"?'\-1‘ Uk « )
Vilrwk) = [Valx) e AR T ™™

where %, and P,,: are the vertical components of wave number, defined as

Yy
Vo= (kg - %)
2 2 Yo M"—'O,l,...,n (Z.LK))
VM': (kﬂm - K )

The ambiguity in the definitions of the signs of the radicals is removed
by choosing the top sheet of the complex k-plane appropriate to our choice

of complex frequency
Osarg(w) <T/2

as discussed in section 3.4.4. By so defining ¥, and ¥, , the
coefficients ¢: (%), W: (K), and V: (K) are the complex amplitudes
of downgoing P, SV, and SH waves respectively; likewise, d’: (%), \V: (X
and V: ( 7<)‘ are the complex amplitudes of upgoing waves, For the problems

posed here,
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¢; (%) = 0% = €, 8 (k-k,)

Y (%) = ¥Y* = €, §k-ko)

(2,41)
v (%) = v* =€k(3(k-k°)
are given amplitudes of the plane source waves in the half-space A.
(Stars denote source terms here). eg(x) is the Dirac delta function.
Its use is justified here because the quantities (2.41) always appear
within integrands in integrals such as (2.32) and (2.33). In (2.41).
for-a P wave source: : €P=1, €v= €h=0
for an SV wave source: €,=1, Ep= Ehrﬂ (2.42)
for an SH wave source: €, =1, €p= €v=0
Also, as no waves are incoming from 2z=- o in the upper half-space, we
require
d _ . e -
¢, = V¥, =V, =0 (2.43)

In (2.39), the 2,1 May be any constants, but we choose them such
that each z, 4 is the depth to the upper boundary of layer m for all layers
with the exception of layer s=1 and half-space 0 (see Figure 2.5), For
m=0, we set Zna1 251 These choices are for convenience in the use of

the flat-layer theory in Appendix A,

Using the potentials defined by (2.39) in (2.37), we can write the
k-spectrum decomposed components of displacement and stress in the
propagation coordinate bases, Henceforth, we suppress the common factor

L (kx+7m,y)
e by supposing that all quantities are evaluated at x=0,

y=0. The displacements are
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3 d ., Qo d
xe ™ ¢ 'Lv,,.e‘q ¥ *L'Re (b + {7, euz...%

. . P gd . ‘ d . ~{Pm LW . -iq, W
wozine ~ 0. "‘(.‘Ke%"q’... ~iwe 9 +ixe by

(2.44)
wee il e ety
where pmélg(z-zm_l) and quV;(z-zm_i).
The components of stress acting on a plane z=constant are
{m - CPM '., -CP + “{Qm w
z'z'//“"' - )‘,,,e ¢ “2KVa € ‘s *f e m(p... +2%7, € ‘4 V.
{m) - Pm o % d “iPm g u -ig,
x'z'//“m ==2%7,0 ¢... ”f.“e% ‘1[’,, t2%K7, e m(b,,, ‘fme L Y (2.45)
{m) - . / ('... d . s 'i%n. "
\Sy'z’//am - LV.,, e % Vm - CV,,. € V,,,
where £ % 2K-k; .
The three other independent components of stress are
(m _ 2 3 2y tPm g d L T
Sx.x.//u,., = (Zk“'_-kﬂm“lk )e ¢,,. T 2%, e ¥,
: 2 2 2\ ~(Pm LY P m W
+(2ky ~ke =2%*) 0 - 20 e TV,
- G d T T (2.46)

(m) . . -
Sey/pm = iK€ Vo +iKE T,

Z

KK e+ k- k) e e

(m)

5/

H

We may write (2.44) and (2.45) as the two uncoupled matrix equations

Mn (%,8) = E, (%2 o, (%) (2.47)

and M (%,2) = En (%, d,, (¥



L

where M., 1is the motion-stress vector for P-SV motion and M, is the

motion-stress vector for SH motion., That is,

U
W Vi
M”‘ (x,2) = () ) M, (7<,Z) m) (2.48)
Sav yY
S(m\
Xy
o_gm and _Q’m are wave amplitude vectors,
.
¢, d
e A
Jm (%) = q,"‘ ’ dm(.’d = v (2.49)
m m
n
A
The 4xb matrix £, and the 2x2 matrix §m are counterparts of the
= iwt
E,,‘ matrices of Haskell(1953), differing in that he uses © time

dependence and defines his motion-stress and wave amplitude vectors
differently. The elements of £, and Em may be written directly from

(2.,44) and (2.45) and are given, for reference, in Appendix A,

In Appendix A, we use the Thomson-=Haskell theory to express the

*

incoming waves at the irregular interface ( ¢:, \]/:, Vi, ¢:+1, ::\l/:ﬂ
and V:+1) in terms of the outgoing wave amplitudes plus source terms,
The procedure is analogous to our use of the vanishing stress condition at
the plane free surface to eliminate the wave amplitude Vcli in the SH wave

problem discussed in section 2.,2,2., The pertinent results from Appendix A

(equations (A17) and (A26)) are repeated here
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w ' d o
¢Sﬂ = Acé(k"<°) * Bn d)w t Ca %ﬂ

q/S:I = Az(g (k' ko) + C| (b.:ﬂ t B; WS:!

. (2.50)
Vip = Ay S (k-ko) + B, Vi
and - 4 - u
¢: N Bl (bsu + Cl WS
d '} - “w
=C. o, t B, ¥
qIS s 2 'S (2.51)
J _ -
Vi © BJ Vs

where all quantities in these equations are functions of XK (or k). The
terms involving Ai' Az, and A3 are source terms effectively carried up from
half-space 71 through layer s+1, The coefficients Ai’ Az, sessenes .-(31, 62
are given explicitly in Appendix A in terms of the elements of matrices
that are products of layer matrices, For the multi-layered medium with one

irregular interface, the appropriate expressions are (A18) and (A27) with
* * X
d) , V7, and V' given by (2.41).

Now consider the displacement and stress fields in layers s and s+l at
the irregular interface. Details of what follows are given in Appendix C,
Inserting (2.50) and (2.52) into (2.44), (2.45), and (2.46) enables us to
write the components of Q;(gs, w,k) and §;(gs,w,k) as linear combinations

of ¢,u’ \Pu, and vu, and to write the components of 9é+1(fs"‘°*k) and

4
..s+ s+’

the three source terms Aj 6(k -k o)’ j=1,2,3. Applying the tensor

1(1‘ ,w,k) as linear combinations of ¢s+1’ \Piﬂ’ and V plus

transformations indicated in (2.32) and (2.33), we express the components

(r w k) and S (.x:s,w,k) (elements

v
of —S(rs’w’k)’ gs(rs’w’k)’ ._ s+l
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given in the standard coordinate system basis) also as linear combinations
of the waves leaving the interface plus the source terms., Finally, we
postmultiply the stress tensors S (r_,w,k) and S_ ,(r ,w,k) by N _ as

=g '~g =s+1 “s S
indicated in (2.35).

Putting these expressions into integrals (2,32) and (2.35) and, in
turn, using the integrals in boundary conditions (2.34), we obtain the

following matrix integral equation

X

o L kx LK,
L@ g(k,x)' Qs (X) €‘ dk = 71‘(?,,)0 e( (2.52)

where Z’ is a 6x6 matrix whose elements fij( X ,x) are written in
equation (C18) of appendix C, C_(X ) is a 6x1 matrix of the unknown wave

amplitudes

Yo (2.53)

and :}f is a éx1 matrix of source terms whose elements hi' i=1,,..6 are
given (C17). The six equations implied by (2.52) express, respectively,
continuity of the
x-component of the displacement vector,
z-component of the displacement vector,
z-component of the stress vector acting on interface s,
x-component of the stress vector acting on interface s,
y-component of the displacement vector, and

y-component of the stress vector acting on interface s,



In deriving (2.52), the source terms were brought to the right side after

using the sifting property of the Dirac delta function.

Integral equation (2.52) is a generalized form of the integral
equations (2.9) and (2.18) obtained in the SH wave motion examples. By
solving (2.52) for gs(‘7<), we can determine the wave field in any part of
the medium as follows., Having determined the amplitudes of the waves
leaving interface s, we first compute the amplitudes of the waves
approaching interface s using (A17) and A26). We cén then use the wave
amplitude vectors g?;, és’9§§+1’ and d 4 in the flat-layer theory
(equations (A3) through (A8)) to determine the wave amplitudes and motion-
stress vectors in any other layer p, Finally, the total displacement and

stress fields are determined by the integrals (2.22) and (2,23).

2.3.4, Properties of the integral equations. The coefficient matrix

3’(7{ x) and source vector H(K ,X) depend on x only through § (x) and

33} , 1.e., through the irregularity of the interface shape, If the

interface were plane with §;=constant, then (2.52) could be solved

trivially by first writing it as
© | ckx
J [3(70-@5(70-)11(7()5&-1(,”e ok =0
- 00 =

Since this equation must hold for any x, the quantity in brackets must

vanish identically., The wave amplitude vector QS(7() would thus satisfy

F(x.) C (%) = H(x) S (k-k,)

—
—

C,(x) =0 ., X %K,
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Y2
and all waves would have the source horizontal wave number % o=(k§+ 7}(2))

In that case, for convenience, we might align the standard coordinate

(x,y,2) axes with the propagation coordinate axes. Then .{l.°=0; also
< (d
Y =tan ("a}") =0, According to (C18) the 3_’ matrix would have the form

JCu fu )(13 fl'l
5’1. fu fn fzq
F=| 6 futs
ful f‘n fvl f'm
o 0 0 Y 'ggs' fss
0O 60 © ﬂ; "

(2,54)

S oo o
O oo

Also, by (C17) and (A18), 2-;! would be such that h (X ), i=1,2,3,4

+*
depend only on the P and SV source potentials ¢ and \V*, and h 5( 7<0)
and h6(7< o) depend only on the SH source displacement V*. Thus, the
solution would reduce to the familiar result that, for a flat-layered

medium, the P-SV wave motion and the SH wave motion are uncoupled, Of

course, the solution would be exact in that case.

As a second special case, consider an irregular interface problem
involving an incident plane wave propagating parallel to the x-z plane.
The azimuth angle associated with the propagation vector of the incident
wave is —{1°=0. In this case, the y-component of wave number is 7?0=0
for all scattered waves; thus all waves propagate parallel to the x-z
plane, Them K=k and in (€17) and (C18), we set .0.=.n.o=0. The

resulting 2 matrix again has the form (2.54). The source vector is

(see equation (C17))



) x . *
M(x, x) = | “Sxw SinY * Sy cosY
x *
~Sxy' SinY t Sp0 cosY
%
v

* . *
\ —SX'y' sim¥Y T Sy'z' cosY

By (C7) and (A18), we see that again hi('k%,x), i=1,2,3,4 depend only on
the P and SV source potentials, and hg(ko,x) and hé(ko,x) depend only
on the SH source displacement, Thus, for problems involving plane source
waves propagating normal to the strike of the irregular interface, the
P-SV and SH wave problems can be considered separately., Many of the
examples presented in Chapter V involve these more simple problems of wave

propagation parallel to the x-z plane,

Finally, as discussed in Appendix B, if the medium contains plane
boundaries, some elements fij(ﬂ,x) of matrix 2(7(,:::) in (2.52) can be
singular for certain values of k on the top sheet of the k-plane, If the
integrétion path in (2.52) intérsects any of these special values, the
integral equations become singular, For example, if the frequency w were
taken real, the integral equation would be singular because singularities
(associated with trapped wave modes) of some fij(k,x) occur for real
values of k, This situation did not arise in the SH wave examples of
section 2.2 because no trapped SH modes exist in media having one or no
plane boundaries. As discussed in Chapter III, the singularities that

may arise are avoided by making the frequency complex,
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2.4, Flastic-Wave Motion in a Multi-Layered Half-Space Having One

Irregular Interface.

The medium differs from that considered in section 2.3 in that the
half-space O is replaced by free space, i.e,, the interface at 2=2, is
free, Also, for now, let the free surface be plane., This problem is a
special case of the one considered in section 2.3, Once again, the problem
will reduce to integral equation (2.52) in the unknown wave amplitudes,

The difference is that the cosfficients B, B, 53,‘ &, and T, used in
equations (2.51), relating the complex wave amplitudes above the interface,
take new forms appropriate to this new problem., These coefficients are

given by equation (A37) of Appendix A rather than by (A27) as before,

We devote some attention to this problem now beeause it serves as a
mathematical model for the scattering of teleseismic body waves in the
nonhomogeneous crust near a receiver station on the Earth's surface, Of
interest are the amplitude and phase delay anomalies in the radial,
transverse, and vertical displacements (ﬁe, ¥,» W,) along the Earth's
| surface., We assume that the station spread involved is sufficiently small
so that the teleseismic wave is approximately plane and incoming at a

single angle of ineidence, The displacements are
~ A A
U, (h,w) = U, cosa, + V, Sina,

~ . A
U, (o, w) == U, sindlo + Vo cosng
(2.55)

A
\I/T/o (f,,,w) = W (L’o)W)
where (ﬁo. %b, ab) are the (x,y,z) components of displacement at the free
surface (the y-direction is parallel to the strike of the irregular
interface) and N is the azimuth angle given in (2.28)., The (x,y,z)

displacements are, by (2.32),
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L

A ’ -

U (Yo, w) =L°[Uo cosa -V, sm.n.] dk
<0

(o) = ) [ sina + Vo cosa ] dk (2.56)

o9

GQ (h, w) = W, {E})(“)I<)‘Jk

V —_—

o0

where JL is the azimuth angle associated with waves having the x-component

of wave number k.

Equations (A34) and (A36) of Appendix A give the spectral displacements
(ué,vé,wé) in terms of the wave amplitudes d>§, \IJIS", and V:, which are

determined by solution of integral equation (2.52), That is (restoring the

kx+7,y)
exponential factor € )s
uo') ) 7’-. (q,:) ez(kumy)
wo | =¥ Y (A34)
, w s~ L(kx“’")ay)
Vo = (VS /(‘62,) e (A36)

o~

”~
Here N o1 and % 21 are matrix elements arising in equations (A30)

e

through (A33).

Combining (A34), (A36), and (2.56) with (2.55) yields expressions for
the radial, transverse, and vertical displacements at the free surface
which are just Fourier syntheses over the wave number k, Thus, we can use
the fast-Fourier transformation aigerithm (Cooley and Tukey,1965) to

synthesize the motion at the plane free surface,

When the free surface is the irregular interface, the synthesized

displacements are no longer expressible simply as Fourier transforms;
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however, the boundary value problem to be solved is smaller than the

previous ones, Now only three conditions - the vanishing of the three
components of stress at the free surface - must be fulfilled at the
irregular boundary. Correspondingly, there are three fewer unknown wave
amplitudes in this problem, Application of the stress-free requirements
i,(ro, w )=0 yields three coupled integral equations for the wave amplitudes
QDd, Q/d, and V?. These equations can be written as the single matrix
integral equation (2.52) where mow  J( X ,x) is a 3x3 matrix, C (X ) is

the 3x1 matrix

C, | 4

and A ( 7?o,x) is a 3x1 matrix,

2.5, Elastic-dave Motion in a Multi-Layered Medium Having Two or

More Irregular Interfaces.

Now consider elastic wave scattering in layered media in which more
than one interface is irregular (the strike directions are all parallel to
the y-direction), These are the most general of the class of problems that
we treat, The procedure is a straightforward extension of the one presented
in section 2.3. At each intermal irregular interface s, we obtain six
integral equations from the requirements of continuity of stress and
displacement set forth in (2.3%4), If the free surface is also irregular,

we obtain three additional integral equations from the stress-free requirement,
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Using (2.44), (2.45), and (2.46), the k-spectrum decomposed displace-
ments and stresses in each layer are first written as linear combinations
of the complex amplitudes of the three upgoing and three downgoing waves,
The continuity conditions at plane boundaries are implemented in Appendix A
to reduce the number of unknown wave amplitudes to the rumber of waves
leaving all the irregular interfaces (no wave amplitudes are eliminated
between irregular interfaces with no intervening plane boundaries). The
pertinent relations are given in (A38) through (A%42), Each displacement
and stress in a layer at an irregular interface s is thus written as a
linear combination of the amplitudes of the three outgoing waves and the
amplitudes of the three waves outgoing from the next irregular interface

toward interface s,

The boundary condition intégral equations can be written as the matrix
integral equation (2.52). Now the matrices 2, Cy» and H have the sizes
KxK, Kx1, and Kxl respectively, If the free surface is plane, then K=06M
where M is the number of internal irregular interfaces. If the free surface

is also irregular, then K=606M+3,

The scattering problems involving multiple irregular interfaces differ
from those involving one irregular interface only in that‘the number of
coupled integral equations requiring solution is increased with each
additional irrégular interface., This inecrease is significant when we
consider the practical solution of these equations in the next chapter,

Many of the elements fij('k,x) in the g'matrix are zeros because not all
the unknown wave amplitudes in the problem enter into each boundary condition,
Also, the source vector Zf has only six non-zero elements - one for each

condition at the déepest irregular interface.
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The class of wave scatiering problems could be considerably enlarged by
lifting the restriction that the irregular interface shapes be one-dimensional.
Application of our technique would lead‘to multiple integral equations over
both the x- and y-components of wave mumber, Their practical solution would
be prohibitively expensive with present computer speeds and storage capacities,
In prineipal, the integral representation method of Banaugh(1962) can be

used for this more general problem but it also would be too costly to

implement,



CHAPTER IIT

APPROXTMATE SOLUTION OF THE INTEGRAL EQUATIONS

3.1, Introduction

The integral equations (2.52) cannot be solved analytically because,
owing to the inherent error in the Rayleigh-type formulation, the integral
equations are not exact, This suggests that we attempt an approximate
method of solution, In so doing, we must ask 'to what solution is ours
an approximation?' It is readily conceivable that this 'approximate
solution' is nothing like the true solution to the scattering problem.
Mikhlin (1957) points out that one should know that an integral equation
possesses an exact solution before approximate methods can be applied

with confidence.

Nevertheless, an approximate method may be appropriate for two
reasohs. First, since the plane wave description of the fields is
exact when the interfaces are plane, we intuitively expect that small
irregularities in interface shape will yield small departures from the
true solutiqn. Second, after obtaining approximate solutions, in each
practical case, we compute the displacements and stresses at either side
of the irregular interfaces, Therefore we can directly measure the
residuals or discontinuities left at the interfaces. If these residuals
are small (according to some measure as described in the next chapter),
we can use the uniquehess theorem to help judge the quality of our
solution. Since ours are valid solutions to the equations of motion and

satisfy the boundary conditions exactly at the plane interfaces and at

52
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z=00, they depart from the true solutions only to the extent that the
residuals at the irregular interfaces behave as small additional sources

in the problems,

In his treatment of elastic wave scattering at an irregular interface,
Abubakar (1962 a,b,c) used a perturbation method to solve integral equations
like (2.52). By restricting the roughness tm ax" :min (where Cmax is

the maximum of :;(x) and t}ﬁn’ the minimum) to be small relative to

d&
dx

interface to be small, he expanded the unknown wave amplitudes as power

of the

the wavelengths involved and by limiting the maximum slope nax

series in € =k m( Cmax- C’min) << 1, where the wave number k, is the
maximum of |kl in (2.52). Inserting the zero order terms into the integral
equations reduced them to sets of Fourier transform pairs which could be
solved by inversion. The solution for the next order terms (terms in El)
proceeded by iteration using the zero order solution., The second and
higher order solutions are extremely cumbersome for even the simple

problem involving a wave incident normal to a sinusoidal interface.

Levy and Deresiewicz (1967) extended Abubakar's method to problems
involving systems of (small roughness) corrugated layers by employing a
modification of Thomson's (1950) flat-layer technique., When an interface
has periodic shape, the scattered field consists of plane waves propagating
in discrete directions (section 3.3) either side of the primary direction
(the propagation direction if the interfaces were planes). Each scattered
wave is labeled with a scatter ‘order number' n=0,+1,+2,.... The perturbation
method solutions of Abubakar and of Levy and Deresiewicz have the properly
that, for sinusoidal interfaces, the maximum scatter order N equals the

order of the solution in the power series expansion in € . lLevy and
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Deresiewicz applied their method to problems involving P-SV waves normally

incident to systems of sinusoidal corrugated layers. They presented

curves of the first scattered order amplitudes of reflected and transmitted
" waves as functions of the ratio of the corrugation wavelength to the
wavelength of one of the elastic waves, The utility of such curves is
predicated on the assumption that scattering from an arbitrary shaped
interface can be represented-as the linear superposition of solutions for
sinusoidal interfaces, This assumption is valid just to the first order,

appropriate for interfaces having small roughness.

Asano (1960,1962,1966) also used a perturbation method, expanding the
solutions in power series in the slope of the interface shape, and presented
similar wave amplitude curves for normal incidence problems involving half-
spaces separated by a sinusoidal interface. Asano could compute second

order amplitudes before his solutions became too cumbersome.

Asano essentially followed the method of Rayleigh (1907, 1945) by
assuming the interface shape to be periodie., Thus, at the outset, his
solution was represented as a discrete sum of plane waves. Meecham (1956)
and Heaps (1957), in studies of scattering of acoustic waves at fixed and
free surfaces, also followed the discrete wave Rayleigh formulation but
neither one used a perturbation method in whieh the interface roughness
was a_priori assumed to be small, Heaps obtained scattered wave amplitudes
for a problem involving a sinusoidal interface by solving a system of
linear algebraic equations derived from satisfying the boundary condition
in nearly a least-squares sense, Meecham did not require sinusoidal inter-
faces to obtain numerical solutions, Using a variational method in which the

boundary condition was satisfied in a least-squares sense, he also obtained
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wave amplitudes by solving a system of linear algebraic equations,

Computational limitations fixed the maximum number of scatter orders in

the solution to 10,

The method presented in section 3.2 is closest to that of Meecham.
We make the boundary periodic so as to replace the integral equations by
infinite-sum equations, After truncating the equations, we take advantage
of the fast Fourier transform algorithm (Cooley and Tukey, 1965) and
satisfy the boundary conditions in the wave number domain. Final
determination of the wave amplitudes reduces to the solution of a large
system of linear equations. Some features of these solutions are discussed

in section 3.3,

Our use of complex frequency influences some important details in
the method. In section 3.4 we discuss the ways in which the use of
complex frequency not only enhances the numerical computability and
stability of the solutions but also inereases their flexibility and
practical value, When frequency is complex, the source wave rmumber must
also be defined complex. Implications associated with such a definition

of source wave number are considered in section 3.4,

The method for normalizing the solutions and the general format used
in the presentation of the examples in later chapters are discussed in
section 3.5. There, we also indicate how our complex frequency solutions

are to be compared with actual seismograms,

3.2. Method of Solution.

In order to solve the matrix integral equation (2.52), we convert it
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into an infinite-sum equation by assuming a periodicity in the interface

depth zs(x)=zS-1+ Cs(x}; that is

t:(x+mL) = i(X\ m:i,,tZ,'”" (3.1)

In the examples that we consider in this thesis, each interface is plane
except possibly over a localized interval in the x-coordinate. If L is
taken to be large as compared with the length of this interval, the
effect of repeated irregularities at distances mL can be diminished by
making the frequency complex, This is similar to the introduction of a
small amount of attenuation in the medium. To the extent that we compute
amplitude and phase delay anomalies at distances from the interface

irregularity that are no larger than L, our solutions are near-field.

When c’s(x) is periodiec, 2( X,x) and H( 7(0,:() in equation (2.52)
are also periodic because they depend on x only through t s and O:‘S‘
-ikox
Let us multiply (2.52) by € . Then we have

00 "i(’
L’ J (%,x) C (%) e dk = N (K, X) (3.2)

where 'fé=k-ko. Since the right hand side of (3.2) is periodic in x, the
left hand side likewise must be. Since Q (X,x) is also periodic, p
can only take such real values that satisfy.

~

(kx ik (x+L)
e

1]

e (3.3)

or knL =271h n=0,%1,%2,., .
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Thus the integral equation (3.2) must be replaced by the infinite-

sum matrix equation

°0 /L
; gn ) Cs.n e = M (%, x) (3.4)
where ,(_:s,n = Qs (%,) Ak,
J.o0= Jx,, x)

k.= ko +2mn/L

Ak, z2w/L

(Note: Any statement concerning matrix quantities above and in what follows

applies directly to each element of the matrix., For example, the elements
) )

of bgn(x) are f‘n (x)= J(ij(7{n,x) where fij(Kn,x) is the row i-column

j element of g(kn,x))-

We now truncate the infinite-sum equation to obtain its finite-sum

approximation

N, .
2nny/L
2 G e = Himx (3.5)

ns-N,

The truncation nmumbers N1 and N_ are positive integers which, in general,

2
are unequal, For convenience, let N1+N2 be an even number., Instead of
solving the above equation directly in x, we first take the Fourier

| =AWimx/L
transform of both sides by multiplying by T € and integrating
over 0 x4L, Letting m=-N,...,0,...,N, where 2N=N1+N21 gives us 2N+1

simultaneous linear matrix equations
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N o -
ZN Jon Con = Mo (%) (3.6)
Ead\ N m:-N’ '.',o,' . ,+N
where & f awi(n-m)x /L
QM" "L A =,,(X) e clx
L .

~ ~2mimx/L (3.7)
}}m = 'Ef E(Ro, Y) e dx
d [+

Recall that the sizes of the matrices in (3,6) depend upon the specific

scattering problem under consideration, Say that the sizes are

: KxK

TR
g

Kx1

e,

s,n
N

}+m : Kxi

where valﬁes of K for the different problems are given in Table 3.1,

TABLE 3,1
Table of Values of the Matrix Size Number X
for Different Scattering Problems.

Number of Internal Shape of K
Irregular Interfaces | Free Surface SH P-SV General
‘ Problems | Problems Problems
H plane 2M UM 6M
M irregular 2M+1 LM+2 EM+3

Equations (3,6)imply a system of (2N+1)K simultaneous linear scalar
equations. Solution of this large system determines the wave amplitudes

QS n which can be used to synthesize the motion anywhere in the medium,
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For example, in the SH problem of a layer over a half-space discussed in
173

section 2.2.2, K=2 and gs,n= Vi The synthesized displacements are
d
Vaun
A Na d Lk X
¢ "
Ve 9 2230 Vi cos 2 @ (os25¥m)
nz-N,
. . ! (308)
A ikox=i%et Z ikt 2
Vin(x,2) = + Z’; Von € (225 (0))
ns-N,
where , ) A
7?}:!! - (kﬁj~k'\) 3ogsha
kh: l‘°+ ZTrh/L (309)
N
The subscripts N in the displacements VSN exhibit the fact that these
solutions were obtained by truncating equations (3.4) to order 2N+1,
At the free surface, (3.8) becomes
Me (K X
A u tKn
V., (0222 Vi, e (3.10)

nz-M,

"This is the discrete wave version of equation (2.17).

3.3 Some Features of the Solution.

The integers n in these expressions are the scatter order numbers
referred to in section 3.1, Recall that the horizontal component of
source wave number defines an angle of incidence €30 in the lower half.

~
space n, i,e,,

sin6, = %, /k__
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where k = w/ ofg 1s the source wave number (for concreteness, we have

e
n
~
let the source wave be a P wave)., Similarly, let 90 be the angle between
vertical and the projection of the source propagation vector onto the x-z

plane, Then

sin é, = k,,/?uﬁ (3.11)

wh o (K -7")™ 15 the projects k

ere ’Eu“- ’ R is the projection of wavenumber o onto the
" ~ p

x-7 plane, We may also define acute angles 85- ny Which we associate with

the nth seattered order P waves in the half-space 1,as

L oNe
sin B = k, /Eo(ﬁ N=-Ny, O v N, (3.12)
Putting (3.11) and (3.12) into (3.9) gives
. NMp - o e
sinB = sinB* nA /L (3.13)

where Ao«; =2w / E’ug is the apparent wavelength,in the x-z plane, of

the P waves in the half-space, Thus, the directions of the scattered waves
, ~p
differ from the incident wave direction such that sin eﬁm differs from

~

sin 60 by integer multiples of Adﬁ / L, When n becomes sufficiently
.oAp =P
large, ‘Sln eﬁm‘ > y 1.e., eﬁ,n becomes complex. These scattered

orders are the inhomogeneous or evanescent waves,

Heaps (1957) believed that the inhomogeneous orders need not be
retained in solving the scattering problems., In some examples that we
discuss in Chapter V, (particularly those involving non-normal incidence),
these larger scatter orders are required in order to adequately fulfill

the boundary conditions,
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~S
The angles e‘ﬁ n assoclated with the nth scattered order S waves in
2

the lower half-space satisfy
. NS
sin©, = (Ag, //\u,. sin ©

where lﬁg is the apparent S wavelength in the x-z plane in half-space .

ﬂ'p

Similar expressions could be written for the angles associated with scattered
waves in other layers, These interpretations of the scattered wave
directions are altered when the frequency W is complex (section 3.4.4),

When o is complex, the planes of constant phase may be oblique to those

of constant amplitude for some scattered waves,

Truncating the equations to 2N+1 terms can introduce additional errors
into the approximate solutions, The examples presented in the error
analysis chapter indicate that the accuracy of the solutions is mors often
limited by truncation error than by the inherent error in the Rayleigh-type
formulation. The Gaussian elimination method {Isaacson and Keller, 1966)
is used to solve system (3.6). Because of computer time and storage
limitations, the largest system of equations that we solve involves
(2N+1)K=165% equations, According to Table 3.1, the maximum number of
scattered orders included in a given solution is governed by the nature of
the problem, For example, for the SH problem with a single internal
irregular interface, Nmaxzho. For the general arbitrary azimuth problems

with a single internal irregular interface, Nmax=13.

Note that, by (3.13) N2 is the number of waves scattered forward of
the primary wave direction and Ni is the mumber scattered backward relative
to the primary direction. We have not investigated the relative sizes of
Ny and Nz that minimize errors at the interfaces with N1+N2=2N given, Our

experience suggesté that the number of scattered waves propagating in directions.
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elther side of vertical should be comparable., The judgement criterion is
that the amplitudes of waves scattered in the most forward and rearward

directions (waves whose x~-components of wavenumber are k

Nz and k_

N
respectively) be small relative to those near the primary direction, For

~
large incidence angles 690, we generally have N1>'N2.
We find that the large number of equations generally inverts with
good mumerical accuracy. Exceptions occur in some real frequency cases
when trapped modes cause the system matrix to be singular., Also, in

exceptional cases, the inherent error can make the system of equations

divergent,

The system coefficient matrix is basically independent of the source
wave (as defined by wave type - P, SV, SH ~ and by the x-component of wave
numbef'ko) excépt for the restriction that the scattered field wave numbers
k, differ from ko by maltiples of 2W/L., Therefore, we economize on
computation time by treating several source wave problems during a single
Gaussian elimination solution of system (3.6). A limitation on the
simuitaneous solution of several source vector problems is discussed in

section 3.4.3,

3.4. BSmoothinz by the Use of Complex Frequency.

3.4.1, Comparison with finite bandwidih signals. The solutions

obtained above are responses to incident waves having the time function
~fwt

. When w is real, the solution corresponds to the steady-state

case; that is, the response to sinusoidal oscillations lasting from the

infinite past. In this case, the frequency spectrum is a discrete line.

In practical problems, we are always dealing with a signal of finite duration
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which has a continuous spectrum over a certain frequency band. We would
need an infinite rnumber of line spectra solutions if we were to synthesize
such a transient signal. A simple and effective way of avoiding this
problem is to make the frequency complex. The usefulness of such a

procedure in seismogram synthesis was pointed out by Phinney (1965).

With the frequency complex, the incident waves have the non-stationary
shape of an exponentially increasing oscillation in which amplitude
increases by a factor e at every time interval T;=1/COI. Here, OOI is
the imaginary part of w and must be taken positive for the reasons explained
later. The frequency spectrum for the complex W case is no longer discrete
tut is continuous with a bandwidth proportional to coI. Therefore the
solution corresponds to a smoothed one over that frequency band. By this
procedure, we lose in frequency resolution but gain in stability and

economize on computation time for application to transient waves.

3.4.2. Reducing the effect of the periodic interface shape. Consider

the contributions of disturbances at various parts of the medium to the
motién at an observation point at t=0. The contribution from a travel
distanee d must have originated at that source point at t€-d/e¢, where X
is the propagation velocity of the fastest waves. Because of the exponen<
tially increasing oscillation in the complex frequency cases, if d/ot >>T
the amplitudes at the source which caused the disturbance were negligibly
small, and therefore the contritutions from the disturbance may be neglected.
For example, if we take T smaller than L/, the undesirable effect of the

repeated interface shape can be diminished.

3.4,3. Interpreting the complex frequency solutions. In later

chapters, our solutions are presented as amplitude and phase delay anomalies
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usually along a free surface, Here, we discuss how these complex W solutions

are to be compared with seismological observations.

The Fourier transform of a transient time signal £(t) is

] = {wt
Flw) =mn [ $0) " ot (3.18)
Let W be complex with
W= Wet+lwy = we(irie) | (3.15)

where COR and Wy {and hence G.(DUEQ) are real and positive, Putting

(3.15) into (3.14) gives

:t Lth

Flw)= F(w) = oo ).,zf [fi)e ~ Je "R dt (3.16)
If £(t) is identically zero before t=0, then F is analytic in the upper
half-plane ( CU& was chosen positive for this reason). By (3.16), the
complex W transform F of the signal f(t) is functionally the same as the

real frequency COR transform F, of the exponentially time windowed signal

ft) is

Consider now a linear time system; i.,e., 2 conventional black box
problem, If H(w) is the system response of the realizable linear system
(the Fourier transform of the unit impulse response), then according to the

convolution theorem
Flw) = H(w) X(w) (3.17)

where F and X are the Fourier transforms of the output and input functions

f(t) and x(t) respectively (x(t) and £f(t) are zero for +<0). Equation (3.17)
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is valid for complex Ww by continuation from the real axis into the upper
half of the complex W-plane, Therefore, for the black box problem in
which complex W= WR+ { Wy is used in the arguments of the input
spectrum X(w) and of the system response function H(w ), by (3.16) and
(3.17) the output spectrumfFe (COR) is the real frequency Fourier
transform of the black box output f(t) premultiplied by the exponential
tine function € %

Our space-~time wave scattering problems can Ee cast in the form (3.17).
Suppose that transient solutions to the plane wave scattering problems were
available, Let one such solution at space position r (say, the transverse
component of displacement at the free surface) be f(t;g;cx,gy). where ¢
and ?y are the x- and y-components of phase velocity defining the propagation
direction of the incident waves, This transient response is the time
convolution of a source time funection s(t;gl;cx,cy) at an arbitrary reference
position 21 in the lower half-space R, with the unit impulse response function
v(t;;i,g;cx,cy), i.e., the response at position r to a unit impulse plane

source wave'(direction characterized by cx,cy) at position gi.

Let S(w;_z_"1

s¢ ,¢ ) be the Fourier transform of s(t;rl;c ,¢ ) and
Xy Xy .
V(co;gi,g;cx,cy) be the Fourier transform of v(t;gl,g;cx,cy). As in (3.17),

the Fourier transforms satisfy

FlwsrsCx €)= Slwsrie,,¢) Viwsn, r; ¢y, cy)

which holds for real w and, by continuation, for complex W , Note that
V  is the equivalent of the crustal transfer function in flat-layer
theory (Haskell, 1962; Phinney, 1964)., The difference is that our transfer

function is dependent upon the locations ry and r relative to the locations



66

of all interface irregularities. let us remove the source spectrum by
normalizing F by the solution Ff to a similar layered-medium problem in
which irregularities in the interface shapes are removed, The normalized

response is

Flw;r;cx,C) _ V(Wi L3¢, Cy)

Fo (w;rscy,Cy) =
- Y . 'V
) Fs‘(w;'_';cX,Cy) §(w;!",r; C":Cy)

(3.18)

where Vf is the crustal transfer function of the'flat-layered medium, But
this ratic is just what we would compute by applying our complex frequency
method (with fixed, real c, and cy) and normalizing by the Haskell solution

in which the frequency is also complex.

We thus interpret our complex frequency solutions as follows, Suppose
that theoretical solutions to the scattering problems involving transient
source waves were available in the form of theoretical seismogrems at
stations aleng the free surface, For a problem involving CU‘=LURj+iLOI
our computed normalized amplitudes and phases at each station are equal to
thevspectral amplitudes and phases at QJR obtained by multiplying each
seismogram by €T“)t , Fourier transforming, and normalizing by the Fourier
transform of a similarly windowed flat-layer solution, The corresponding
method for comparing our normalized‘solutions with actual seismograms is
discussed in section 3.5. In section 4.6, we present a comparison of our

solution with a synthetic seismogram solution obtained by using a finite

difference technique,

3.4,4, Implications in the use of complex source wave numbers kc and

N .- When W is real, the incident wave direction is unambiguously
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determined by choosing real values of the x- and y-components of wave number

k and 7] such that
[+) o
- 2 < R
R, =koty, $ X (3.19)

where kc is k

- for P-type source waves and k(i" for S-type source waves,
n
For concreteness, consider P-type sources, Then the source wave direction

makes the angle 90 with vertical, where

sin€ = K /Ky, = Rooty S0 (3.20)

Similarly, the projection of the source wave vector onto the x-z plane msakes
~
the angle eo with vertical, where
- = ~ ( -21)
Slheo'/(‘,()(g/w 3
- 1,2
and Oy = o(.h,[f"(’io/k g)] is the apparent velocity in the x-z plane.

The continuation of solution such as (2.22) into the complex W -plane

requires that the source direction wave numbers be

(1]

k.

w/c, = (wa/cx) (1+i€)
(3.22)

"
n

w/Cy = (wa /¢)) (1+0€)

vo

and hence

"

%, = w/c = (wg/c)(1+i€)

where ¢ is the horizontal component of phase velocity of the source wave. So
long as Cys Co» and ¢ are real, the source direction given by (3.20) remains

J
unambiguously determined as required in (3.18). Suppose, on the contrary,
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that k o @nd 7, had been chosen real with w complex, Then sin 90 and
sin éo would be complex, i.e., eo and éo would be complex, Just as
we interpret complex frequency to mean smoothing over a frequency band-
width proportional to UJI, so do we interpret complex 60 as implying
smoothing over direction of ineidence proportional to the imaginary part
of 690. Such a smoothing over direction is unacceptable since we wish
to compare our solutions with actual’seismograms which are responses to
waves having reasonably well defined source directions (we rule out
multiple sources here, and note that the ambiguity in Gao caused by
complex W can be as large as the source angle itself when Re 90>55)

or 60°).

According to (3.22), when c¢ is real the source wave number vector is

Ko = Keg (1+16€)
That is, the propagation direction remains the same as that for real
frequency and is normal to both planes of constant amplitude and of

constant phase,

The periodicity argument surrounding equation (3.2) leads to the
restriction that 'f:':k-ko take only discrete real values given by (3.3).
Thus the wave rumbers k  in the infinite-sum equation (3.4) must all have
imaginary parts equal to the imaginary part of k. In the complex k-plane,
this means that, when a plane source wave is given in terms of complex w ,
ko,and 'VO, periodicity imposes the requirement that the summation in (3.4)
be over discrete complex values of kn that are equi-spaced along a line

through k, parallel to the real k-axis.

Let us consider the complex k-plane in more detail, first discussing
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the branch point locations and remarking on the choice of signs of the
vertical components of wave number (equation (2.40))., At first look
there appears to be pairs of branch points at k=+ Eq =+ [( w/o(m)z_ 7]:]'/1
and at k=+ § Bon associated with each layer in the m:dimn. However, the
effects of the plane layers enter into our solutions only through the layer

matrices ém and 2 defined by (A6) and (A7) in Appendix A. Since the

elements of gm and a are all even functions of Vm and ', we need not
= Zp m

worry about the signs of ‘Vm and 7);1 for the plane layers. Examination
of the coefficients f ij(k,x) used in integral equation (2,52) (see
equations (C18), (C3.1), (C3.2), (C5.1), (C5.2)) reveals that they are

neither even nor odd functions of VS, 12;, 7) , 7)' where the

s+1 s+1

subscript s refers to any irregular interface, Neither are they even or

odd functions of V;} , 7),.',, y 1)(_; for the half-spaces 7 and 0. Thus,
n G

branch points are located only at the P and S wave numbers in layers

bounded by irregular interfaces and in the half-space,

Figure 3.la shows the first quadrant of the top sheet of the complex
k-plane for real positive W for some layered half-space problem involving
a single irregular interface, The branch points lie on the real k-axis
and the region of poles (the singularities discussed in Appendix B)
extepds along the real axis from k=% Eug to just beyond k=-_*_~[(w/ﬂm')z- 7: ]V;

where , 1S the slowest S wave speed (Jardetsky, 1953). The top

(smi
sheet (Lapwood, 1949) is determined by extending the branch lines

Im (.Vm):o and Im( vnfl>=o along the real axis from the branch points to
the origin and thence along the imaginary axis to k=100, and by
choosing Im( 'Vm) and Im( anx) positive where m=%,s,s+l. Re( Vm) and

Re ‘Vn'l) are positive on the top sheet along the real axis (the integration
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Im(k)

0

€p,, = [(w/Bm)Z _ %2] 172

branch points at§, = [(“’/am 2 - 7

§

€ay {87 lfas $Bsut £8 Re (k)
He———y— —————

CsH

Figure 3.la, DBranch points and pole reglon on the top sheet of the
complex k-plane for the real @ case, Crosses are branch polnts and heavy

bar denotes the pole reglon,

Im(k)
1

3
‘E gas €Bs+l Bs
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sheet of the complex k-plane for the case W=Wp(l+i€), Crosses are branch
points and ths heavy bar denotes the pole region,
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path) just below the branch lines when w is given a small positive

imaginary part,

Figure 3.1b shows the top sheet of the complex k-plane for the case
w = wR(1+ t € ), The branch points and poles are displaced into the
first quadrant along the straight line having the slope € (denoted here
as the € line), The branch lines become hyperbolas (Erekhovskikh, 1960)
and Im( ‘Vm)> 0, Im("t)n’i) 70 still define the top sheet, It is easy to
show that, when W_ and € are positive, Re( Vm) and Re(vn'l) are positive

R
below the respective hyperbolas and are negative above.

Figure 3.2 is an enlargement of the region of the complex k-plane
between the origin and the branch point at k= E 5 By (3.32), the
incident wave angle éo is unambiguously determined when ko lies along
the € line, The ratio Ikl/1¥s,l of distances from the origin is
sin éo' The summation wave numbers kn are constrained to be equi-spaced
along the horizontal line through ko‘ In the limit that the periodicity
distance L in interface shape becomes infinite, the wave number spacing

2T /L = 0 and the summation reduces to an integration along the line

Im(k)=Im(ko).

We can use the vertical distance of a given wave number from the €
line as a me‘asure of the ambiguity in propagation direction., Thus,
whenever W is complex, the:computed wave amplitudes Qs,n are assoclated
with waves whose propagation directions are uncertain to varyving extents,
For these waves, planes of constant phase are oblique to the wave fronts,

In fact, for kn to the right of the dashed hyperbola in Figure 3.2,

Re(Vr;l ) <0, so that those waves in half-space N attenuate downward toward
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z= o but seem to propagate upward. Thus, it is difficult to attach

simple physical meaning to the waves:-that contribute to our frequency

smoothed solutions, When frequency is complex, our term downgoing waves

actually refers to waves that attenuate in the direction of increasing
z regardless of whether they are propagating upward or downward. Similarly,

upgoing waves are waves that attenuate with decreasing z.

In the actual solution of the system of equations (3.6), we use
several sources during a single Gaussian elimination (section 3.3)., The
circles in Figure 3,2 represent five such source wave numbers. The
principal source (open circle) lies on the € line, The additional
sources (solid circles) must coincide with some kn associated with ko and
thus cannot lie on the € line, Thus, in order to simultaneously solve
several complex w source problems, we must tolerate uncertainty in some
of the source wave directions. So long as the source wave numbers do

not depart much from ko' the problem is not a serious concern for us.

3.4.5. Reducing the effects of singularities. When w is real, the

integration (or summation) path is along the real k-axis on which lie the
singularities associated with the trapped modes (Figure 3.1a)., The linear
system (3.6) cannot be inverted accurately unless special techniques are
employed. We avoid these singularities by making w complex, The poles

are displaced into the first quadrant along the € line (Figures 3.1b and
3;2) above the summation path, This shift results in a gain in the stability
of our solutions (there are no other roots on the top sheet). We have
mentioned only the singularities on the top sheet. Some poles on the lower

sheet may lie near the branch lines and thus also limit the accuracy in
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the case of real w , These poles give rise to the leaking modes
investigated by Gilbert (1964). When o’ is complex, these poles are also

displaced away from the integration path,

3.4.,6, Practical use for complex frequency solutions. The use of
complex frequency has practical value as well as computational value for
our solutions, Premultiplying the seismograms by the exponential time
window €f‘»It suppresses the later time motion, With W, sufficiently
large, our solutions essentially represent first arrival motion and might
then be compared with peak-to-treugh-amplitudes (after windowing) of the
first motion on seismograms. Therefore, by varying OUI in our technique,
we can isolate the effects of wave focusing by the irregular interfaces
from interference effects associated with multiple arrivals (ineluding
both vertical and lateral reverberations), Thus, in Chapter V, some of

the solutions are compared with Haskell flat-layer theoretical solutions

and others with single path ray theoretical solutioms.

3.5 Normalization of the Solutions.

Here, we describe the basic format used in the presentation of the
computed amplitudes and phase delays in later chapters. In the problems.
considered, the interface is irregular over some finite x-interval within
the principal interval 0§ x<€L. In each case, the complex displacements
at the fres surface are normalized by dividing by the flat layer solution
that would be obtained for a problem in which the interface irregularities
were removed, For example, in the SH case of a layer over a half-space,

we divide the solution (3.10) by the flat layer solution
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A 9, +ikoX
Vi (x,0) =1V] e ’

The normalized solution’ is then

L4 .
. (B 0,) + k)X

Vie/ Vs =25 (IVal/1v1) e (3.23)

h=-N,
w bl w

where l\/‘,h and 4?.,,. are the amplitude and phase of Vx,,, . Away from
the anomalies, the normalized amplitude approaches unity and the phase
delay approaches zero, For the general, arbitrary azimuth problems, the
solutions are likewise normalized by the corresponding Haskell solution

Moy +koX)
(in which complex ko"no’ and W are used), In so doing, the €

factor is removed,

To compare these normalized solutions with actual seismograms along,
say, & plane free surface, we first apply station time delays, i.e., we

time shift the seismograms such that

=4/ X-Xe _ Y~Yo
t=t Cy Cy

where t' is the real timej; t is the new time variable at the station

located at (x,y,0): (xo,y ,0) are Cartesian coordinates of some reference
)

station; and ¢, and ¢, are the x- and y-components of phase velocity of

the source wave, In practice, ¢, and ey would be estimated from mean

travel-time delays across the seismometer array. Our solutions should
then be compared with the Fourier transforms of the seismograms

cw. t
premultiplied by the time window € t

The stresses and displacements at irregular interfaces are also

normalized to the Haskell solution displacements at the free surface. The
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stresses are first converted to equivalent units of displacement for
comparison of the relative effects of the interface residuals in displace-
ment and those in stress on the errors in motion at the free surface

(section 4,2 and Appendix D).

The general format for the presentation of results is to display the
medium configuration, layer parameters, and source directions at the
bottoms of the figures, and to show the normalized amplitudes and phase
delays directly above., The same horizontal scale for x-coordinate position
is used in both portions of the figures. In all the examples, distances
and velocities are given explicitly in units of km and km/sec respectively,
and the problem scales are appropriate for simplified crust-mantle problems,
The use of explicit dimensional units is simply for convenience; of course,
the solutions are unchanged when all lengths are scaled equally. The

interface periodicity distance in most cases shown is 1=256 ku.
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CHAPTER IV

ANATYSTS OF ERRORS AND RESOLUTION

4,1, Introduction.

Several factors render our method approximate, The principal ones are
the inherent error in the plane wave description of the wave fields and
the truncation error in approximating the infinite-sum equations (3.4) by
the finite-sum equations (3.5). The periodicity in interface shape can
cause unwanted effects, Also, the sqlutions are squect to inaccuracy
introduced during the numeriecal computatioms, It is‘imperativé, therefore,

that we devise some means for checking the accuracy of our method,

No exaet solutions are available for compafiSon with the solutions
computed using onr’technique. We must be content with estimating the
accuracy by using internal measures of error based upon the computed
solutions or by comparing our solutions with those obtained by using other
approkimate methods. In section H.6, such a comparison is made with a
solution obfained by the finite difference technique of Poore (1969)., At
present, there appears to be no sufficiently accurate two-dimensional
laboratory model studies as standards for comparison (although in Chapter

V we present a comparison with results of a model study by Laster, st.al,

(1967)).

In section 4.2, we discuss two measures of the errors in our solutions.

The first is a relative root-mean-square error (RMSE) based upon the
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weighted residuals in computed stress and displacement at the irregular

| interfaces, In Appendix D, the Kirchhoff integral solution to the Helmholtz
equation is used as a guide in estimating the errors, at positions removed
from the irregular interfaces, that are attributable to the residuals at

the interfaces, The argument is inhibited by the fact that the computed
residuals are not the same as the actual errors at the interfaces and thus
cannot be used in a representation theorem to actually compute the errors
elsewhere, What we do get from the argument, at least in SH wave problems,
is a conversion factor that enables us to write thé interface stresses in
units of 'equivalent displacement' so that errors attributable to the stress

and displacement residuals can be compared,

It is more difficult to devise a single measure of the srrors for the
general elastic wave problems involving arbitrary incident azimuths, Now
there are six~comp§nant residuals at each irregular interface, and these
residuals have different relative effeéts upon the errors in each of the
three components of displacement, say, at the free surface, The representa-
tion ‘theorem has a quite complicated vector form in this case. We choose a
single 'reasonable' conversion factor for again writing the interface
stresses in units of equivalent displacement in order to obtain a single

RMSE based upon the six weighted residuals,

The second measure of accuracy follows from the law of conservation of
energy. This check, available to us only in cases involving real frequency
W, is derived in Appendix E, It has the advantages that it is easy to
compute and that it provides a single measure of error even for the most
general arbitrary azimuth problems., In Appendix E, we find that this

measure is equivalent to a particular weighting of all the residuals at the
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irregular interfaces, Although it is a comparatively insensitive measure of
accuracy, the conservation of energy criterion provides the valuable service
of confirming that the equations of motion are written correctly in programming

for the computer,

In section 4.3, we examine representative examples of the residuals and
errors encountered in our solutions. Figures displaying the displacements
and stresses along the irregular interfaces providg the most meaningful
displays of the errors in the method, However, they are too cumbersome to
use for each example presented in this thesis. Instead, we note the RMSE
corresponding to the examples shown in section 4,3, and' thenceforth use only
the errors listed in Table Fl of Appendix F as measures of the accuracy for

the examples treated in Chapter V.,

The influence of complex frequency on the character of the solutions is
discussed in section 4.4, With increasing imaginary part of w, the loss in
resolution for the study of layering effects is compensated by a gain in
stability associated with reducing periodicity effects and with reducing

the oscillations caused by truncating the wave mumber spectrum,

The RMSE and conservation of energy error are listed in Table F1 of
Appendix F for each example presented in this paper. Also listed in the
table are the dimensionless parameters that we judge to be important factors
in determining the sizes of the errors. The configurations, types, and
sizes of the problems that we have investigated are so diverse that no
systematic study was made to predict the size of error expected in a given
problem, Rather, in section 4.5, we indicate which problem-parameters
seem eritical and how the errors generally behave with changes in these

parameters, Based upon evaluation of errors in our solutions, we conclude
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that for most of our examples the accuracy is limited primarily by the
truncation error, and the RMSE is often a conservative measure of the errors

for the displacement at the free surface,

The problem solved in section 4.6 by our method and by the finite
difference method is that of the response of a low rigidity two-dimensional
basin to wvertically incident SH waves, The excellent agreement in both the
amplitude and phase delay anomalies not only provides a comparative chéck
on the accuracies of the two techniques but also displays the relationship

between our complex freguency solutions and transient seismogram solutions.

4,2, Error Measures,

4,2,1, BRelative root-mean square error (RMSE). As part of the computer

output in each practical case, we plot the stresses and displacements along
the irregular interfaces, Visual study of the residual discontinuities
provides our best means for qualitatively judging the accuracy, To conserve
spacé, we present only a few representative examples in section 4.3, TFor
the remainder of the problems discussed (those in Chapter V), we use error
measures that are conveniently expressed as single numbers which summarize

the effects of the residuals in each case,

We define a relative root-mean-square error (RMSE) as a mean value of
all the residuals along irregular interfaces divided by a mean value for ihe
fields along the interfaces. In even the simplest problem of SH wave
scattering in a layer over a half-space, we must contend with two kinds of
residuals - those in stress and those in displacement - at the irregular

interface, For the arbitrary azimuth problems there are six kinds of
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residuals at each internal irregular interface. Ve must therefore seclect
some rational scheme for weighting the RMSE associated with each type of
residual and thence weighting the effects of residuals at each irregular
iﬁterface. The most conservative approach would be to compute the RMSE
for each component of stress and displacement at sach interface and choose

the largest as the overall measure.

Our experience indicates that such a measure is too pessimistic and
cf little practical value, Rather we compute, for-a RM3E error at each
irregular interface, an average of the six RMSE weighted according to the
mean value of the corresponding fields at the interface, The final measure
of error is then, for convenience, the largest of the interface RS errors,
That is, at interface m the interface error (RMSE) is

m

)
<U,.> (RMSE) .
(RMSE), =% (4.1)
<umi.>

.

[

In (4.1), the subscripts i=1,2,3 refer to the (x,y,z) comgonents of
displacement and i=4,5,6 refer to the (x,y,z) components of stress along
the interface; (umi> is the root-mean-square value of 'equivalent
displacement' i at the interface m (the term 'equivalent displacement’

implies actual displacement for i=1,2,3, and stress measured in equivalent

units of displacement for i=4,5,6 as described below);

T
<b(.,.‘.>a :‘Z luﬁij!lui;jl (4.2)
Jat

where umij is the equivalent displacement i at position j along interface

m and superscripts A and B denote values just above and below the interface,

respectively. The positions j along the interface are equi-spaced in the
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x-coordinate., We take J=128 in most cases, Also in (4.1),
I

e & Dl - fungyl1°
(RMSE)M;. = < Uil )Z

(5.3)

is the RMSE in equivalent displacement i at interface m. Combining (4.2)
and (4.3) in (4.1) gi#es

6 J
% { Dbyl - tug 17}
(RMSE),, = —

»/2'

6 (4.4)
Z <Upmi?

(&1
Finally, our practical measure of error for problems involving M irregular

interfaces is

Me
RMSE :m:l,:ﬂ g(RMSE)m} (4.5)

The conversion factor by which stresses are multiplied to obtain their
equivalent values in uniis of displaecement is 1/€,p‘u: for SH wave
problems and 1/@,(u.@{fhba for the general wave scattering problems (the
subscripts 1 denote parameters for the uppermost layer)., These choices are
expediént, but reasonable according to the representation theorem arguments

in Appendix D,

We do not compute a relative error measure based upon phase residuals,
Those residuals are relatively smaller than the amplitude residuals so we

let the RMSE based upon amplitudes suffice as the single measure of accuracy.

Of course, no single number can adequately summarize the extent to
which interface conditions are not fulfilled. In particular, the RMSE tell
nothing of the distribution of residuals along the interfaces and the

resulting distribution of errors in displacements along the free surface.
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However, comparison of the errors listed in Table F1 of Appendix F with

the residuals and errors shown in the figures in section 4.3 provides a
representative basis for interpreting the RMSE in problems discussed in the

next chapter,

L.,2,2, Conservation of energy. For any of the scattering problems

considered, the exact solution anywhere in the lower half-space % below

the deepest point of interface f-1 can be written as a superposition of the
upgoing source wave and downgoing scattered Waves.just as in our approximate
solutions. The difference is that the computed wave'amplitudes only
approximate those of the true solution. Similarly, above the uppermost
point of interface O in the upper half-space 0, the exact solution is a

superposition of upgoing scattered waves.

The true solutions satisfy the following conservatlon of energy
requirement, For problems involving real w the time averaged net flux of
scaitered wave energy across a plane at large (constant) depth in half-
space 9% equals that across a plane at large height (constant negative z)
in haif-space 0. For cases in which interface 0 is a free surface, all
the energy must be reflected back toward z=+o0, We shall consider only
these latter eases here, In Appendix E, we find that the complex wave

amplitudes determined in our solutions must satisfy

L Ko [0t 02, 155 25, 195,101 + Pha 1ViW L
ke, LR I* 1 2 IWHET + 2 v

= [+§ (&.6)

where

Pn

?

Y
[(W/dg)z' 7{:] :

L4

Vo * Ll0/a) - 21"
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are vertical components of wave number for the nth scattered order down-

d q

fi,n* T8,n
. ‘ * * *
amplitudes of the P, SV, and SH waves; and <|> , YT, and V are the

d
going waves in half-space 73 47 , and V';; o 2T the complex
source wave amplitudes (equation (2.42)), only one of which is nonzero in
a given problem, The summation is over the regular plane wave orders only
(w is real here), as explained in Appendix E. In (4.6), ¢ is a small
error term which measures the departure of our solutions from satisfying

the conservation of energy flux requirement.

This error is attributable to corresponding departures of the
d

d d
amplitudes ¢~ , \PN , and Vw~ from the values appropriate to the exact
n,n n,n n,n
solutions, In Appendix E we demonstrate that 8 can be interpreted as a
weighted integral of the residuals at the irregular interfaces., A simple
interpretation of our computed solutions is that they are the exact
solutions to problems involving artificial sources associated with the
residuals at the irregular interfaces, These act as sourcesand sinks of

energy resulting in a non-zero time averaged net flux of energy across

the planes deep in half-space 7.

The error (S is more easily and accurately evaluated, by means of the
summation over scattered wave orders on the left side of (4.6), than is
the RMSE, However, this error is not a sénsitive one for several reasons.
First, the phases of the residuals generally oscillate along the interfaces,
tending to cancel upon integration and thereby produce small values of 8 .
Second, this error measure does not have preferential weighting of the
larger residuals (localized errors) as does the BMSE criterion. Last, the
conservation of energy criterion provides a measure of the error in the

solution for half-space f only and states nothing about the solution in the
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layers,

The O errors are listed in Table F1 for all problems involving real
frequency. We cannot use this conservation of energy criterion in problems
involving complex w because time averaged energy flux is not conserved
when the source time function is non-stationary. Note the wvery small values
of § in Table F1 for the problems studied. These are much smaller than
Meecham (1956) and Heaps (1957) found in scalar problems involving acoustic
wave scattering at rigid and free grating boundafies. OCur solutions are
comparatively more accurate because they were represented in terms of

larger numbers of scattered wave orders.

4,3, Examples of Errors.

4,3.1. Truncation error. In Figure 4.1, are compared two solutions

to a single scattering problem obtained using different truncation numbers
N, where 2N+l is the number of scattered wave orders. The problem
configuration is shown at the bottom of the figure, An SH wave (particle
motion normal to the plane of the figure) of wavelength 50 km is incident
vertically upon a two-dimensional basin 5 km deep by 50 km wide. The
interface between the low-rigidity basin and the half-space has the shape of

a single cycle cosine for ‘x-—xol S W/2 and is flat outside this interval.

That is
C Xp -
D+ 3z Li-cos 2m (X :’, w/z)q s 1X-x,1 € W/2
Cou = (4.7
D s XXl > W/2

where D is the thickness of the layer in the flat portion away from the

interface shape irregularity, c¢ is the amplitude of the irregularity, W is
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Figure 4,1, Spatial distributions of the normelized amplitude of free
surface displacement, interface displacement, and interface stress displaying
truncation errors for a soft basin problem. N is the truncation index, The
Haskell solution is for motion at the surface of a flat layer having the local
thickness beneath the cbservaticn position,
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the width of the-irregularity, and X, is the x-coordinate of the center of
the anomaly (this shape repeats with periodicity I=256 km in the x-direction).
In this probvlem D=0,01 km, c=5.0 km, W=50 km, and xO=O. The simple analytic
expression (4,7) for interface shape is used in many of the examples
discussed later. It was chosen for convenience, and lends meaning to the
width W and amplitﬁde ¢ for problems involving varying sizes of interface

anomaly. In our method, the interface shapes can te quite arbitrary and

could just as well be described numerically.

The solutions shown in Figure 4,1 were obtained using 2N+1=U45 and 79
scattered wave orders respectively, Spatial distributions of the amplitudes
of displacement and stress at the interface are plotted in the middle of the
figure. The displacement amplitudes were normalized by dividing by the
amplitude of the free surface displacement obtained for the companion
problem of a 0.01 km thick flat layer (with the irregularity removed) over
2 half-space, The stress amplitudes were normalized likewlse after first
multiplying by 1/@,@.09 to obtain squivalent displacement amplitudes,
When U5 coefficients are used to describe the scattered wave Tield, the
interface displacements in the layer (dotted curve) oscillate about those
in the half-space (solid line). When 79 coefficients are used, the inter~
face displacements in both media are given by the same solid line. Thus,
when an insufficient mumber (45) of scattered wave orders are used to
represent the solution, the displacements in the half-space are well

approximated whereas those in the layer are not. The reverse is true for

the stresses at the interface.

This behavior is peculiar to the particular medium configuration and

wavelengths in this problem. ' Since the stress-free requirement is
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satisfied identically at the free surface, and the irregular interface is
close to the free surface (particularly in the flat portion), the stresses
must nearly vanish throughout the layer over the flat portion., Thus, when
we approximately match boundary conditions, the stresses in the layer are
somewhat predetermined. Since no similar requirement was imposed on
displacements in the layer, the layer displacements are less well determined

than are the layer stresses.

The RMSE in displacement residuals are 12% aﬁd 0.2%, and the RMSE in
stress residuals are 42% and 1.9% for the 45 and 79 coefficient solutions
respectively, Most of the contribution to the stress RMSE is from the flat
portion of the interface where the mean stress nearly vanishes. Obviously,
since the RMSE are small when 79 coefficients are used, the inherent error
is insignificant in this problem and the free surface displacements are

accurately computed,

The curves at the top of Figure 4.1 are the two solutions for amplitude
of free surface displacement (normalized in the manner already described).
The sfatial distribution obtained using only 45 coefficients has the large-
scale characteristics of the more accurate solution but oscillates about it,
As we shall see later, these osecillations are caused by the abrupt truncation
of the wave number spectrum., These errors are comparable in size to the
displacement residuals at the interface, but are relatively insensitive to
the large stress residuals over the flat portion of the interface., As is
suggested in the discussion of equation (D6) in Appendix D, errors in the
free surface displacement are more strongly governed by displacement residuals
than by stress residuals when the layer thickness is small, In another

example (Figure 4,3) where the layer thickness is greater, the errors are
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dependent upon both residuals but decay with increasing distance from the

irregular interface,

The dots at the top of Figure 4,1 are normalized amplitudes of
displacement at the free surface computed using the local Thompson-Haskell
approximation assuming that the layer has uniform thickness equal to the
local thickness, Further comparisons with the flat-laver theory are

described in Chapter V.

Tt is instructive to study the (x-component) wave number spectrum for
this example, Figure 4.2 is such a plot of the scattered wave amplitudes
|€§ ‘ versus the scatter order n (see equation (3,10)). The amplitude

’
scale is in decibels below the amplitude of the primary (n=0) wave. For
this case of vertical incidence, the wave amplitudes are even functions of
n and we show only those for positive n, The wave amplitudes in the 45 and
79 coefficient solutions have similar dependence upon n., This suggests that
the wave amplitudes are computed with some degree of finality and that the
residuals and errors in Figure 4,1 are caused primarily by the abrupt
truncétion of the wave number spectrum., Indeed, the oscillation wavelength
of approximately 113 km in the free surface displacement distribution can
be ascribed to the interference of waves having the cutoff wave number
N=22 with the primary wave, Such truncation errors are easily deteclted in

our solutions.

The wave number spectrum displays other interesting features., Although
the primary wave dominates the spectrum (because the layer is flat over much
of the interval 0§ x¢L), the amplitudes decay slowly with increasing inl
until Inl® 25 and even increase between lul=11 and |nl=18, This wave

number coupling is not insignificant. Such wave number coupling is partly
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é manisfestation of wave diffraction, but in this problem is predominantly
caused by multiple reflections within the layer, The amplitudes decay
rapidly beyond In|® 25 because this value corresponds approximately to the
wave number w/B, of S waves in the layer (we say 'approximately' because
frequency is complex in this example), In fact, we find that the truncation
errors in this problem are measurably reduced when we use ZN+1=53 scatiered
wave orders to describe the solution, The jump in the wave number spectrum
at n=5 occurs for scattered waves that are nearly grazing (propagating nearly

horizontally) in the half-spasce. Purther examples of wave number coupling

are discussed in Chapter V,

The observations made for this SH wave problem apply to comparable
problems involving P-SV motion and problems involving arbitrary azimuth
incidence. Let us now consider another example of a single layer over s
half-space, but now the layer thickness is larger relative to the wave-
lengths in the problem, Figure 4.3 shows two solutions to the scattering
of vertically incident P waves in a layer over a half-space, The medium
parameters are apropos of a simple model of the crust and upper mantle,
The layer thickness is given by (4.7) with D=30 km, c=5 km, W=40 km, and
X,=0. The P-wave wavelength in the half-space is 20 km (15 ¥m in the
layer) corresponding to a frequency f=0.4 eps. The decay time associated
with this complex frequency solution is 9,95 sec, Since the one-way travsl

time for P waves propagating vertically through the layer is 5 sec, the

-

solutions at the free surface have only small contrilutions from multiple

reverbations within the layer,

Solutions were computed using 2N+1=17 and 41 scatter orders. Continuity

of the normal component of stress at the interface is well satisfizd for the
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Figure 4,3, OSpatial distributions of normslized amplitude of the Lwo
components of surface displacement and the normal component of stress st the
interface, displaying truncation errors for a problem involving P-wave
scatlering at 2 dented Moho. Normalization is with respect to the vertical
com?$nent of displacement at the free surface for the 30-km thick flat layer
problem,
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L1 coefficient solution, whereas the interface residuals are large and
oscillatory for the 17 coefficient solution. The residuals are largest
near the interface anomaly but are well distributed along the interface,.
Comparable size residuals are observed for the normal component of displace-
ment and the tangential components of stress and displacement (not shown
here), We have shown only amplitude residuals in Figures 4.1 and 4.3. The

phase residuals have similar behavior but are relatively smaller,

The normalized amplitudes of the horizontal and vertical displacements
at the free surface are shown at the top of the figure. {The normalization
of all the distributions shown is with respect to the amplitude of the
vertical component of displacement in the corresponding flat-layer problem),
The displacement at the free surface computed using only 17 coefficients is
better than would be inferred from the sizes of the interface residuals,
Note that the errors are larger for the horizontal component of motion,
This is because 3V waves dominate the horizontal motion while the longer P
waves dominate the vertical motion, Truncation of ithe wave number spectrunm
is genérally more deleterious to the shorter wave contributions to the
solutions because those scattered waves span a narrower range aboul the

primary wave direction than do the longer wavelength scattered waves.

The errors in the layer decay with increasing distance from the inter-
face because the residuals are attributable primarily to the higher order
wave number terms which attenuate away from the interface due to our
smoothing with complex frequency., Thus, the RMSE can be a conservative
estimate of the accuracy of the motion at the free surface, In cases that
involve real w , however, the errors at the free surface need not be

smaller than those at the irregular interface,
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It is of great practical importance to know that we can often obtain
good solutions at the free surface while tolerating sizeable residuals at
the interface, because of the significant savinges in computation time for

problems involving fewer scatter orders,

L,3,2, Inherent error. In some problems, we encounter relatively

large interface residuals that cannot be reduced by increasing the number

of scattered wave orders., In fact these residual errors may increass as
more scatier orders are included. This type of efro? may be the intrinsic
error in our Rayleigh-type formulation of the solutions as superpositions

of plane waves. Urstzky (1965) suggests that the intrinsic error is
manifested by asymptotic or semi-convergent behavior of the series represen-
tation in equations like (3.8). That is, as N increases from small values,
the series approximation first approaches toward then diverges from the

true solution. This is the behavior exhibited in the example shown in

Figure 4.4,

In this problem, a 10 km wavelength SH wave (particle motion in the
y-difection) is incident at 90=&O° from vertical upon a layer 25 km thick
with & severe irregularity (step) at which the thickness varies 5 km. The
shape of the step is a cosine for a half-cycle cosine (with wavelength
8 kmn) comnected to half-wavelength cosines on both sides., The frequency is
again 0.4 cps, and T =3.98 sec as compared with tu=8'33 sec, the one-way
travel time vertically through the layer. Therefore, the observed motion
at the free surface is essentially devoid of contributions from multiple

reflections,

The stresses at the interface (solid curves for the layer and dashed

curves for the half-space) are displayed in the middle of the figure for
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three solutions obtained using 2N+1=25, 41, and 79 coefficients, These
normalized cuantities are larger than the displacements at the free surface
because they are viewed at the present time t=0 whereas the motion at the
free surface is the response to interface motion in the past when the
exponentially increasing source time function was smaller., The RMSE in‘
stress residuals for these solutions are 0,0607, 0,0600, and 0,0640 as

2N+1 inereaseé through the three values. Another solution (not shown)
obtained with 2N+1=61 gave an RMSE in stress residuals of 0.0612, The sizes
of these RMSE do not reflect the large residuals localized at the step
although they are determined predominantly by them., In the 25 coefficient
case, the truncation error is manifested as an oscillation of stresses in
both media., As N inereases, the oscillations in the layer diminish as does
the stress RMSE slightly. However, as N increases further, the stress RMSE
increases while the spatial oscillations in the half-space become more
rapid and the oscillation amplitudes become larger and more concentrated

near the step,

The number of coefficients beyond which the displacement residuals
become divergent is generally different from that beyond which the stress
residuals diverge. In the 253 U1, 61y and 79-coefficient solutions, the
RMSE displacement residuals are 0,0816, 0,0480, 0.0196, and 0,0145
respectively, We have observed other solulions where the RMSE diverges
more dramatically with increasing N, Those cases involve comparably steep
interface slopes with larger interface shape amplitudes ¢ relative to
wavelength and invariably the RMSE are much larger than those shown here,
 The same ascillatory behavior of the interface stresses in the source wave
medium is observed in those cases. Interestingly, however, the solutions

in the layer remain stable as N increases, The free surface displacements
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in Figure 4.4 typify this behavior. Although the localized stress residuals
cha‘ﬂgs significantly between the 41~ and 79- coefficient solutions, the free
surface displacement distributions are indistinguishébla. Even the 25-
coefficient solution for free surface moticn is better than the interface
stresses imply. Cne possible explanation is that the surface motion is
controlled predominantly by interface displacements (rather than by stresses)
whose residuals are well distributed along the interface, ther is thatl
the stresses at the interface exhibit the behavior of the Gibb's phenomenon
in which case, as N increases, the errors tend toward an irremovable limit
but are so localized as Lo be ineffective sources for displacements removed

from the interface, In any case, these solutions do not diverge radically

as N increases to the maximum value allowed.

The guestion of the validity of the solutions for free surface motion
in these cases is important because the stepped interface problems might be
useful models for crustal layers offset by steeply dipping faults, An
adequate check of the validity of the solutions must await independent

solutions ottained by other techniques,

The examples considered in Figures 4,1, 4.3, and 4.4 are representative
of the types of errors encountered in the problems to be discussed below,
By far, most of the solutions that we obtain are limited by truncation
errors; that is, errors that decrease with increasing values of N, The
fact that our solutions suffer from an error inherent in the formulation is
not of serious concern in most of the layer configurations that intere
Most surprisingly, we even find that the existence of shadow zones in our
problems does not imply large inherent errors., The residual errors are

found not to depend systematically upon the angle of incidence. The
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solutions appear to be valid even to grazing incidence ( E%:'W/Z).

L,4, Smoothing Effects of Complex Freguency.

The use of complex frequency erhances the accuracy of the solutions in
several ways. The most obvious example is when its use displaces the poles
associated with trapped modes in plane layered media away from the
summation path in the k-plane, No examples are given here sinee the errors
resulting from the Gaussian elimination solution of equations having a
nearly singular coefficient matrix are large and quite evident. For
problems that are nonsingular for real w, the RMSE are reduced somewhat
by making w complex while the errors away from the interface can be reduced
significantly. The residuals at the irregular interface may be considered
as sources of error fields. We have seen that the largest contributions
to truncation errors are from the higher order scattered waves, With w
complex, the amplitudes of the scatiered waves decrease with distance from
ths irregular interface, with the rate of decrease being greatest for the
highér order (larger x-component of wavenumber) waves. Thus, introduction

of complex w results in smaller errors at the free surface.

Figure 4,5 demonstrates the stabilizing and smoothing of the computed
free surface displacements effected by the use of complex frequency. This
is an SH wave motion problem involving a half-space overlain by a layer
6%+ wavslengths thick with a 5 km by 50 km depression in the interface
(equation (4.7) with x =125 lm). A 10 km wavelength (in the half-space)
wave is incident vertically. Normalized displacement amplitudes are shown
for the three cases £=CUI/CUR=O, 0.01, and 0.1 (corresponding to

T’=1/00I=°°, 39.8, and 3,98 sec respectively). The amplitude scale applies
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to the §£=0.1 curves; the other curves are displaced upward. The use of
complex frequency damps the oscillations along the limbs of the €=0
distribution. Those oscillations have 8-km wavelength, characteristic of
the cutoff wavenumber (N=32 in these examples), and are thus caused by the
sharp cutoff of the wave number spectrum, The larger inher two or three
side lobes in the top curve are actual lateral wave interferesnce effects,

Increasing Cdi smooths out these side lobes.

In the case of real frequency, according to flatnlayer wave theory,
the layer vibrates in a resonance condition where the thickness is 6%
wavelengths (see the discussioﬁ of the soft basin cases in Chapter V),
The dips in the £=0 distribution sither side of thn ~lat portion over the
center are explained in terms of anti-resonance in the flat-layer theory
rather than by ray theory defocusing with focusing over the center, When
the frequency becomes complex, these vertical interference effects deter-
jorate with the results that the main side lobes are less deep and the
amplitude at the center of the anomaly is increased, The introduction of
complex frequency alters the surface displacement distribution from oune
that is dominated by single frequency interference effects to one dominated

by wave focusing effects,

The wave number spectra for the £=0 and £=0.1 cases, shown at the
bottom of Figure k.5, support some of the comments above, 'Vﬂ:;l is the
amplitude of waves upgoing in the layer with horizontal wave number
kn=21TV\/L. For normal incidence the spectra are symmetric about n=0; thus
the §£=0 amplitudes are plotted only to the right, and the &=0.1
amplitudes only to the left of the n=0 line. For $ =0, the amplitudes do

not decay sufficiéntly rapidly out to the cutoff waverumber, thus causing
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the 8-km oscillations already mentioned, This significant wave number

coupling is caused by multiple reverbations within the layer rather than by
diffraction, as we shall see below. Waves scatlered by the other interface
depressions spaced 1=256 km apart are propagating in both dirsctions across
the basic interval 0 £x <L thus causing the large amplitudes in the high
scatter order terms, When W is complex, the waves propagating in the higher
wave number directions are so attenuated that the scattered waves from
repeated depressions are insensible within the interval 08 x<L. 1In that
case, the amplitude anomaly, albeit a smoothed one, is localized., The fact
that in the §£=0.1 case the wave amplitudes are very small for Inl >13 does
not imply that those waves are not required to adequately match conditions
at the interface. The values ,V,:‘n, are the actual amplitudes at the free

surface, At the interface, the actual amplitudes are

’Vl::'t, [coschWa,'n)': cos‘salm(vuln)t + sin’ RQ(V},’n)t sinh’ Im M,’n)t]vl

and it is readily demonstrated that the imaginary part of the vertical
component of wave number IM(’V,:,,) increases with |n|. Thus the actual
amplitudes of the higher order waves are nol necessarily small at the

interface.

The effectiveness of using complex W to inhibit the influence of
layering in our solutions is demonstrated in Figure 4.6. The interface
shape, medium parameters, and wavelength are unchanged from those in the
previous example, Here, we compare the displacement and time delay
distributions along the 2z=0 plane for three cases. In each case, 10-km
wavelength SH waves are incident at 60=5 5° from vertical in the lower

half-space (medium 2). In two of the cases, the upper medium is a half-
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space so that no layers are available in which multiple reflections can
arise, These cases involve, respectively, real frequency (7T =00) and
complex frequency (T7=3.98 sec). The amplitudes and times are normalized
to the solutions obtained for the corresponding problems involving half-
spaces separated by a plane interface., In the third case, medium 1 is a
layer and the plane z=0 is a free surface. In all cases, the depth to the
flat portion of the interface is 25 km. Not showﬁ in the figure are the
amplitude and time delay distributions for a fourth case - that of real
frequency waves where medium 1 is a surface layer, Those distributions
display large oscillations (normalized amplitude varies from O to more than
L), for all values of x, that are caused by the interference between
primary waves and the waves having the cutoff wave nuﬁber. Although the
RMSE (Table F1) are larger than those in the three more stable solutions
shown in the figure, they are still small. In other words, to the accuracy
indicated by the RMSE, those oscillatory amplitudes and phases time delays
are the correct solutions to the problems involving periodic interface shape.
When the layer is replaced by a half-space (also with W real), the
amplitude and time delay distributions become stable; that is, these
distributions become flat and normalize to unity and zero, respectively,
away from the anomalies, We conclude that the anomalies pictured are
truly localized phenomena attributable to scatlering from the single inter-
face depression shown. Thus in the absence of layering, the periodic
nature of the interface introduces no artificialities relative to the
desired solution for scattering from an isolated anomaly. If the observation
plane were removed further from the interface such that D >L, then the
displacement anomalies from nearby irregularities would overlap. When D %> 1,

the interface appears to an observer at z=0 to be a grating. Therefore,
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only the near-fisld portions (D&L) of our solutions are meaningful as

-

solutions to scattering from isolated interface irregularitles. In practice,

=

this means that the interface irregularities are generally less than i0 or
20 wavelengths distant from the receiver stations. We might remark that

the study of scattering from isolated irpregularitiss is bub one use for

our method. The interference between waves scatiered from nearby irregular-
ities is not without interest, By varying the imaglnary part of frequency
we can, in effect, control the mumber of repeated 1ﬂtfrfa e irregularitiss

involved in a given problem,

Consider now the complex W solutions shown in Figure 4,56, Uhen
T =3.98 sec, the difference between the solutions at z=0 to the layer
problem and to the half-space problem are too small to indicate in the
figure, Evidently, the effects of all multiples within the layer are
removed from the solution when U&==’/1‘ is this large. Thus the amplitude
and time delay anomalics are appropriate to the first arrivals and might
be compared with seismogram peak-to-trough amplitudes and first motion
arrival times. In fact, the time delay distributions for the complex
cases are indistinguishable from that for the real w case showm. Lven
the reduction in peak amplitude at x=23 lm is explained simply in terms of
the diminution of a peak-to-trough amplitude caused by multiplying a

-t/3.48

transient solution by the exponential window € . The arrival at
x=23 km is delayed by 0.493 sec so that the window should reduce the
amplitude by the factor e~-0.493/3.96-0,838, The reduction observed in

Figure 4,5 is 0,86,

The final example of the influence of complex frequency i1s shown in

Figure £,7, A 20-kn wavelength P wave is vertically incident in a layer
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over half-space problem. The interface shape is the cosine depression
(equation (4.7)) with D=30 km, c=5 km, W=L0 km, and xb=0. The vertical
component of displacement is shown for cases involving £=0 and £=0,04
(corresponding to T= 00 and 9.95 sec). As in the SH wave example,
introduction of COI reduces the oscillations away from the anomalies and
reduces the variation in the amplitude anomaly. The dots are amplitudes
predicted using the local Thompson-Haskell flat-layer approximation (with
real W ) that the layer is flat, having the local thickness directly
beneath the observation point, Our real w solution is surprisingly like
that of the flat-layer approximation considering the ample opportunity for
multiples to be deflected from the vertical propagation directions rsquired
in the flat-layer theory. Our solution does not follow the flat-layer
solution directly over the irregularity because of the extreme sensitivity
of the narrow dip in the flat-layer solution to strictly vertically
propagating wave interference., The X'in the phase delay plot is the phase
delay predicted by considering the one way travel time delay for a ray
passing through the center of the depression (this phase delay is nearly
the same as that determined using the local Thompson-Haskell approximation).
Neither of the two phase delays computed by our method is as large as ithat
predicted by the ray theory., This discrepancy is found to be wavelength
dependent;.i,e., the solutions exhibit phase dispersion. The flat, platecau-
like anomaly in the complex W case is characteristic of the phase delay
anomalies that we observe when wavelength is comparable to the width of the
irregularity., The oscillation in the real w phase delay anomaly is
expla{ned as a result of interference of scattered waves propogating in

oblique directions,
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L.,5, Critical Parameters,

The sizes of the truncation errors and inherent errors encountered
depend upon several critical dimensionless quantities. Because such a
large mumbsr of protlem paramelers are involved and computational costs
inhibited systematic evaluation of their effecls, a discussion of the
influence of the parameters must be gualitative., Suppose that a general
problem configuration (i.e., number of layers, medium parameters, layer
thicknesses) and the number of scattered wave orders (2N+1) are fixed.
Also suppose that the shape, but nol maximum amplitude or width, 0? the

irregular interface is fixed,.

The most critical parameters are ¢/A and S, , where C= -C.

max min
is the amplitude of the interface irreﬂularit*, A is the shortest wave
length is the problem, and Sm = I X l 15 the maximum gradient of an
irregular intsrface. The accuracy generally declines as either ©/2 or Spm
increases, doing so quite rapidly when the two parametsrs increase simul-
taneously. At interfaces having large slopes Sm, waves are scattered
over a %ide fan of directions and thus a large number of coefficients N
would seem to be required to describe the scattered field. At the same

1

time, however, the inherent error associated with the incomplete description

egult is that the

ot

L

of the wave field increases as N increases, The
minimm atteinable error in our asymptotic solutions increzses with Sa .

A

The behavior of the errors with C/& is complicated by another
dimensionless parameter L/A , where L is the interface periodicity length.
Suppose, for example, we wished to study the dependence of our solutions
upon the ratio /) while keeping N and L fired. The ratic could be

increased either by decreasing A or by increasing all the scaled dimensions
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in the problem. By decreasing A , the truncation error will increase
because the fan of scattered wave directions is narrowed (equation (3.13)).
On the other hand, by increasing all the scaled dimenslons of the problem
(keeping L fixed), the periodic interfaces irregularities are made
relatively closer to one another, thus changing some detail in the problem,
We find that, when the residual errors are small (say less then 3%) and
appear to ve limited by truncation, the accuracy can be improved by increas-
ing C and other problsm dimensions while keeping A and L fixed. However,
when the errors are larger (as in the 'stepped' Moho problems considered
later) and limited by the inherent error, we find that the accuracy declines
as € increases, These observations are similar to those by Rayleigh (1945).
In his solution for the scattering of acoustic waves from a corrugated
interface, he found that when the maximum slope is very small, the solutions
convergs for any ratio C/CR although the rate of convergence is slower for

shorter A relative to the corrugation wavelength.

We use 250 values to describe the interface stress and displacement
functions during the fast Fourier transformation of equations (3.5).
" Aliasing in the wave number domain can arise if the interface shape is so
rough or the anomalous zone so narrow reiative to L that these continuous
functions at the interface are not adequately sampled, Such aliasing
errors are not considered severe in our problems because the rapld variations
in interface depth are not 'seen' well by the longer wavelength problems

generally treated in our method.

The fact that the accuracy of the method deciines when §y, dincreases
beyond unity doss not impose a severe limitation on the practical value of

the method for treating a wide variety of interface shapesof geophysical
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interest. The method is best for middle frequenciss; that is, for problems
involving wavelengths comparable to the sizes of the interface irregularitiss,
We will show that solutions are valid for wavelengths sufficiently short for
useful comparison with the high frequency geometric ray theory approximations
and sufficiently long so that the interfaces anomalies are practically

unnoticed by the incident waves,

Most surprisingly, the accuracy is nearly independent of the sourcc
direction angle 60, from normal incidence ( © Q“SG) through grazing
incidence ( ‘30=1T/2). Thus, we find no evidence that the presence of a
shadow zone inhibits the accuracy of the solutions. Meecham (1956) found
that the accuracy in his solutions actually increased with increasing 6,}.
We see no such systematic tendency in our solutions, An exception srises
when an insufficient number N of coefficients is use2d in our solutions and
£)

he accuracy

o

the resulting truncation errors are¢ large, In those cascs,
declines as El’increases. It is generally desirable that ths summation
wave numbers k, (equation (3.4)) at least span the range (’ZTFA, 2w /A )
where A is the shortest wavelength (wavelength associated with the slowest
;aves) in the problem., Thus, when waves are incoming at near grazing from
the left (negative x direction) a large number of coefficients may be
required to deseribe waves scattered backward toward the negative x direcition.
Heaps (1957) suggested that scattered inhomogencous waves nsed not be
included to obtain accurate solutions, We find that in many problems,
particularly those involving large angles of incidence, accuracy requires

the use of inhomogencous scattersed wave orders, notably those of the faster

traveling P waves,

We did not investigate systematically the extent to which the sizes ol

o
o
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velocity and density contrasts at interfaces affect the accuracy. The
influence of the density contrast is probably small, The example in Figure
5.6 indicates that RMSE increases with velocity contrast. We have seen in
Figure 4,1 that the layer thickness can influence the nature of the stress

and interface residuals, but in most cases we judge this affect also to

small,

In Table F1 listing the errors for all the examples discussed, we also
list the parameters C/A , Sum, and L /W judeed to be eritical factors
incluencing accuracy. W is the width of a single cosine when the interface

o

shape is given by (4.7). In other problems such as the stepped Moho

problems, W is the width of the cosine that descriles just the steepest
portion of the interface.
4,6, Comparison with a Solution Cltained i+ = Tnite Difference Techniqus.

Recently, D. Boore has applied an independent zpproximats method - that
ﬁof findte differences - to a variely of elastic wave scattering problems
involving curved interfaces {Boore, 196%9). In his method, the differential
equations of motion and boundary conditions are replaced by finite difference
analogs with motion defined only at disecrete positions in & basically regular
grid network in space and time, The resulting set of recursive equations is
solved for the displacement at each grid point as a function of time onece
the motion is specified everywhere at two consecutive time steps, The
Pinite difference method has the distinct advantage that it can treat
transient motion problems, However, computer time and storage limitations
impose practical restrictions upon the maxdimum size of the grid network

R

and duration of time over which the transient solution can be cbserved.
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To provide a comparative check of the accuraciss in our technigues,
Boore and this author applied our respective methods to the solution of a
given wave scattering problem. The problem configuration is illustrated at
the bottom of Figure 4.8, A plans SH wave is vertically incident upon low-
rigidity basin, The medium paramsters ars the same as those in the example
in Figure 4,1 and the interface depth is given by (L.7) with D=1 Xm, <=5 km,
W =50 km and xO:O. Since the solution is symmetric about the line =0
(vertical line through the center of the depression), only the right half
of the Basin is shown in the figure, The source plane wave ussd in Boors's

solution is a transient Ricker wavelet (Ricker, 1945) having a dominant

wavelength of 64 km in the lower medium (the dominant period is 18.3 sec).

Figure 4,9 shows the computed seismograms at various positions x along
the free surface, The reference trace is the response of a flat layer 1

thick (corresponding to positions at large distances from the basin),

N

Likewlise, the dashed curve is the solution to 2 problem involving & & ka

W

thick flat layer, We shall return to a discussion of thess selsmogram

3
2

shortly. According to the prescription given in section 3.4.3, to compare

the ssismozram solutions with our complex frequency solutions, the seismo-

-, t
. N . z .
grams are first multiplied by the exponential window e watre w. is the
N
imaginary part of frequency. The windowed signals are then Fourder trans-

formed and the spectrel solutions normalized by a similarly determined

spectral solution for the i-km Flat layer protlem. In the solution obtained

using our method, the period is 17.1 sec and window decay time 'Tzi{tQI:

13.32 sec. Figure 4,10 shows the sulte of seismograms in Figure 4.9 after
~t/13.32

maltiplying by € (note that the amplitude scale is increascd in

Figure 4,10),
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The normalized amplitude and time delay distrilutions obtained by the
two methods are compared in Figure 4.8, In the figure, FD denotes the
finite difference solution obtained in the above manner, and AL (for Akl
Larner) denotes our solution. The agreement for both amplitude and time
delay is excellent, testifying to the accuracies of the independent methods.
The two sclutions also agree when a different value of COI is used thus
confirming the interpretation of frequency smoothing as being equivalent to
exponential time windowing the transient solution prior to Fourier anelyzing.
The solution labeled 'Haskell! is the local Thompson-Haskell approximation
(with complex W) for a flat layer having the local thickness beneath the
observation point, The peak at x=15 km and trough at x=0 km correspond to
conditions of resonance (thickness equal a quarter wavelength) and anti-
resonance (thickness equal to a half wavelength) respectively Tor the 17.1
sec period. The departure of our solution from the Haskell solution is
attributable to the interference of laterally propagating waves, This is
sesn best in Figure 4,10, The finite difference and flat layer solutions
at x=0 compare well for the initial large peak and trou

gh but disagree at

<

3

later time, The excellent agreement for early time rules oul ordinary wave

focusing as a significant factor in this problem,

The comparison of the time domain and frequency domain solutions points

out a pitfall in interpreting small spectral amplitude 28 imolyineg small
P P g P P £

motion in time, At x=0, our computed spectral amplitude at 17.1 sec i

n

jde
0

smaller than the Haskell prediction while the peak seismogram motion

nterferznce of

!D
‘,J'

ennanced over that in the flat layer solution by th

laterally propagating waves., In general, we can use frequency domain

o
&

solutions to make simple deductions about the time domain only for protlenms

that do not involve later arriving reverberations., The time domain solutions
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(x's) shown in Figure 4,8 are normalized amplitudes and time delays of

the first large trough in the exponentially windowed seismograms in Figure
4,10, relative to those quantities in the reference irace, The agreement
with the solutions obtained by the other methods is good only for x> 20 ku.
But, as seen in Figure 4,10, only in the seismograms at positions x 220 km
is motion dominated by the single Ricker wavelet arrival, For x<20 kn the

seismograms are complicated by later arrivals,

Further discussion of this example is given in the paper by EBoore,

Larner, and Aki,
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CHAPTER V

APPLICATIONS TO SEISMIC WAVE SCATTERING PROBLEMS

5.1, Introduction and Summary.

In this chapter, the method will be applied to a variety of wave scatter-
ing problems and the solutions discussed in terms of problems of interest in
seismology. The primary intents are to demonstrate the variocus wavs
phenomena and to suggest the range of practical applications to seismology.
Also, eﬁamples are selected to provide comparisons with solutlions obtained
by the computationally more rapid ray theoretical and flat-layer wave
theoreticai methods. Such comparisons can help to delimit the ranges of

problem configurations to which those methods can be applisd with confidence.

For convenience, the examples are divided into threse groups - SH, P-3V,
and arbitrary azimuth incidence problems - in order of increasing complexdtiy
in the presentation of results, Because we can obtain accurats solutions at
smaller cost in the SH wave motion problems, most of the examples of wave
focusing and interference sffects involve SH motion, The first examples
demonstrate effects of source wavelength relative to the dimensions of the
interface anomaly, interface shape, incidence angle, and velocity contrast,
Using a single layer over a half-space as a model for the crust and upper
mantle, we compute displacement amplitude and phase delay anomalies along
the free surface caused by scattering from varlous shapes of lMoho irregularity
such as depressions, rises, and step-like variations. Several examples of
the seismoclogical engineering problem of resonance in a sedimentary basin

are discussed next. The problem, critical to questions of earthquake risk,
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has generally been treated using flat-layer theory. Our results indicate

that interference beiween laterally scattered woves in two-dimensional basins

an further enhance the

(el

(and, by inference, in three-dimensional basing)

resonant motion by a factor of Z or more,.

In this study, ths only examples in which the free surface is irregular
involve 3H weve motion. We find that, in the crust-mantls ﬁaualﬁ, L motion
at the free surface is not significantly difA»T”nb from that when the surface
is plane, This result suggests that the large motions often cbserved on
mountains (D. James, personal communication) is attributable mors %o

inhomogeneities beneath the mountains, such as mountain roots, than to the

variable topography. Ths scattering of teleseismic SH waves into Love wave

fode

modes by surface topographic features is observed in solutions involving

cient sources of

imu

real frequency. We find that a) valleys are mors eff
scattered love waves than are hills, b) surface fratures are more efficient
sources than are irregularities in internal interfaces, znd ¢) the higher

order modes are more strongly excited than the lower,

The first example involving incident P waves is 2 comparison of veritical
displacement amplitude and time delay anomalies for grazing incidence
(Sozﬂ'/ 2) with the results from a laboratory model study of refrasction in a
layer over a half-space by Laster, Backus, and Schell (1967). The good
comparison indieates that our method may be a useful interpretive tool in
refraction seismology. The next examples demonstrate ~ffects of wavelsngth,
interface shape, and layer thickness in the scattering of P waves., In a
problem involving vertically incident 8 waves (particle motion in the x-z

plane), we find that a significant vertical component of motion can result

sbove the interface anomaly. Phinney (196L) has shown that the spectral
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Arati£>V7?)/1Kf)of vertical to horizontal displacement amplitude can be diag-

nostic of ecrustal structure on the assumption of uniform, flat layering.
The technique has had only modest success most likely because of departures
from flat layering in the crust (Ellis and Basham, 1968). By means of
examples, we demonstrate how the successful implementation of the Phinney

technique can be impaired by departures from flat layering,

The examples in the following section demonstrate the three components
of motion resulting from interacting P, SV, and SH waves in the arbitrary
azimath incidence problems, Such interactions cause deviations of the
apparent azimuth from the true arrival azimuth. Also, we find that the
apparent azimuth as inferred by wavefront direction can be different from
that inferred by resolving the horizontal components of motion, A further
observation is that the amplitude variation for the vertiecal component of
motion when projected onto the x-z plane {normal to the strike) is dependent
primarily on the x-component of apparent velocity and is relatively
insensitive to the azimuthal direction of the soures wave, Cases involving
waves incident at an azimuth parallel to the strike (110z960) are sxceptions,
There, the spatial variations in amplitude can be guite sensitive ito the
incidence angle 60. 'I’he section concludes with a comparison of three cases
involving multi-layered crust, We find, somewhat surprisingly, that details
of layering can influence both the amplitude and phase delay anomalies

caused by an irregular Moho even when the crustal layering is flat,

The final section in this chapter is an application to the study of
erustal structure under the Montana Large Aperture Seismic Array (LASA).
There, we first investigate the two-dimensional spatial distribution of

spectral amplitudes and phases across the array to determine whether the
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assumption of one~dimensional (trending) layering irregularities is valid.
The evidence gupports the assumption, and the estimated strike direction is

°o_ 0

N6k E+é . The spectral amplitude and phase delays for teleseismic arrivals
from earthquakes at the various azimuths'are plotted as a function of the
x-coordinate positions (the x-direction is normal to the strike)., Comparisons

T these observations with solutions obltained by our method snables us to
check the Greenfield and Sheppard (1969) model for crustal structure. Using
their values for P-wave velocities and testing only a singles layer model, we
find that the crustal thickness is 4845 km as compared with &% kwm in their

1

model., The strike direction and amplitude of the Moho depth wvariation is

2

comparable to that found by Greenfield and Sheppard,

5.2, SH Wave Scattering Problems,

5,2.1. Two half-spaces separated by an irresulay interface, It is

@

desirable to isolate the effscts of wave foeusing and interfersnce caused by
ucattwmlng at a single irregular interface from the interizrence effecls
attributable to multiple reflections in a layered system., Layering =
are absent in the example shown in Flgure 5.1, The provlem involves the
scattering of steady-state SH waves at the irregular interface separaiing

a

two-half-spaces., The waves are incident from depth in the lower half-space
o - I - : 2 3

at 60=§5 from vertical, and the interface shape is plane with a single

cycle cosine dent as given by (4.7) with D=25 lm, o=5 km, W=50 ln, and xgﬂﬁ.

e M . L - P £
The configuration is the same as that shown in Figure h.6,

Here, we are interested in the effects of wavelength relative to the
size of the interface anomaly. In the figure are plotted the computed

displacement and phass time delay anomelles along the plane z=0 in the uppsr
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Figure 5,1, Effect of wavelength on SH wave scattering at 2 dented
interface Jjoining two half-spaces. Spatial distributions of displacement
amplitude and time delay along a plane in the upper half-spacs. The ray
theory solution was computed using the method described Appendiz G. The
arrows at x=23 km indicate the intersection of the geometric ray path
_through the trough of the dent with the observation plane.
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half-space for incident waves having wavelengths 5, 10, and 20 km, The
ray theoretical solution involves a Snell's law ray tracing procedure,
and displacement amplitudes are computed using transmission coefficients
for plane waves at plane interfaces with the assumption that energy flow
is constant along tubes bounded by given rays. The ray theoretical
solution displays artificial features that will not be observed in the case
of real wave scattering. The vertical discontinuities in amplitude at
x=-5 km and x=45 km arise frém the sensitivity of the ray theoretical
solution to the second derivative of interface shape which jumps from zero
to its maximum absolute value at x=+25 km, The large amplitude near x=23 km
is caused by the proximity of the focal region., The ray theory predicts
infinities in amplitude at a focal point and along caustics, Therefore it
predicts infinities whenever the focal point or region lies between the

irregular interface and the observation plane,

The ray theory predicts time delays well in the 5-km wavelength case,
As wavelength inereases, the peak time delay diminishes, When the wave-
length is comparable to the width of the interface anomaly, ray theoretical
interpretations of the phase delays yield underestimates of the amplitude
of the irregularity. As we shall see, this phase dispersion is encountered
in P-wave scattering solutions whenever the wavelength and the dimensions
of the irregularity are comparable, One might question whether the negative
time delays in the longer wavelength solutions in Figure 5.1 are in violation
of causality. However, these are phase time delays and on close examination
we find that for most values of x; the group time delays are positive. An
exception mayvarise in the vicinity of x=45-50 km. But even there, a
negative group time delay may not violate causality; Causality requires

only that the real and imaginary parts of the crustal transfer funetion be
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Hilbert transform pairs (Papoulis, 1962), hence the minimum phase delay

is determined by the amplitude at all frequencies, As seen in Figure 5.1,
the amplitudes vary with frequency and could thus be causally related to

phase,

The ray-theoretical amplitudes are more sensitive than phases to the
interface shape and its derivatives, and to the incidence angle. Hence,
the ray-theoretical amplitudes do not fit our 5-km wavelength solution as
well as do the phases, The peak amplitudes for 511 wavelengths occur at
the position predicted for peak amplitude in the ray theory and, coineci-
dentally, at the projection onto the surface, of the trough of the inter-
face depression, along the geometrie ray path. As wavelength inereases, the
anomalies broaden and have smaller variation, In the long wavelength limit,
the anomaly disappears, i.e. the long waves no longer see the interface
depression, Whereas the migration of position of the main peak with G%
can indicate the depth of the irregular interface (if the medium veloecities
are known), the migrations of the side lobes would lead to errors in depth

computed according to the ray-theoretical interpretation.

The wave diffraction that produces these wavelength-dependent effects
is observed in the wave number spectra shown in Figure 5.2. These are the
absolute values of the complex amplitudes of scattered waves in the upper
half-space plotted against the ratio of x-component wave number k, to sz .
The amplitudes are plotted in decibels below the primary wave amplitude at
ko/ke,1=sin S o° As wavelength increases, the amplitudes of the lower
scatter order waves diminish, but coupling with the higher scatter orders
increases., In the figure, the region denoted by 'R' is the wave number

interval over which we expect scattered waves according to the ray theory.
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Figure 5.1 demonstrating the dependencs of wave number coupling upon
wavelength,
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Coupling with wave numbers outside this interval is interpreted as wave

diffraction., Values of kn such that Iknl [k @2> 1 correspond to inhomo-
geneous waves in the lower half-space; The large amplitudes of these waves
indicate - that they are required to match the interface conditions. The
wave nmumbers such that Iknl/k @1_>1,pertain to inhomogeneous waves whose
amplitudes decay with increasing distance from the interface in the upper
half-space; That the amplitudes of these inhomogeneous waves are very
small implies that these waves are insensible at the observation plane

2=0, However, they still may be required to match conditions at the

interface,

5.2;2. Irregular Moho groblems; In this section we consider examples
of the spatial variations in amplitude and phase del#y observed at the
plane free surféce of a layer over a half-space, The medium parameters
are sultable for a simplified erust-mantle model, In the next few examples,
the nominal thickness of the layer (the thickness where it is uniform) is
25 km, and the imaginary part of frequency O{I is suffieciently large so
that the exponential window is down to e'l in 3,98 sec, This decay time
is short compared with the travel time through the layer (10 sec for one
way vertical path); therefore, the effects of multiples are nearly absent
in these examples, and the anomalies might be compared with peak-to-trough
amplitude and time delay anomalies in first arrivals. These SH wave
examples~exhibit features similar to the more interesting P-SV wave examples

presented later.

In the examples shown in Figure 5.3, the interface has the same one
cycle of a cosine shape as that in Figure 5.1 (W=50 km, c=5 km, xb=125 km).

Normalized displacements at the free surface caused by 10-km wavélength SH
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dashed curves are ray theoretical selutions, the arrows indieate the
locations of peak amplitude and phase delay according to the ray theory,
and the dots are projected positions of the Moho irough along the

geometric ray paths.

The scales are shown for the
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plane waves, incident at six different angles @0 from ver‘bical, are
plotted; The double arrows for the Gg=6h? curves denote the intersection
of caustics with the free surface, No ray theory arrows are shown for the

90=78° and 89.9° cases because the ray theory solutions have shadow
zone gaps; The RMS errors (Table F1) are small even for the 60=89;9°
case; therefore, the presence of shadow zones seems to introduce no special
difficulty in our problems. Note that the amplitude variations and the
breadths of the phase delay anomalies increase with increasing incidence
angle and that the shapes of the anomalies are consistent with one another

while 90 changes,

.‘I‘he dashed curves for the © O=55° case are the same ray theoretical
amplitudes and phase delay anomalies shown in Figure 5.1: Cur soiutions
are reasonable, smoothed versions of the ray theoretical solutions. The
x-coordinate locations of the dots coincide with those of the peak
amplitudes in our solutions even for the cass of grazing incidence. These
consistent suites of curves and the small BMSE suggest that the solutions

are valid even to grazing incidence.

The amplitude curve for the 89.9o case does not normalize to unity away
from the anomaly as do those in the other cases because the grazing waves
have seen repeated depressions rather than the uniform 25-km thick layer,
Nevertheless, the anomalies for the case of grazing incidence should be of
value in interpreting amplitudes and time delays in seismlc refraction
profiles; This will become apparent in the comparison with the laboratory
model study discussed in section 5.3.1, However, we can point out here one
difference between our horizontally propagating (in the half-space) source

wave problems and those involving actual head waves. The head waves are
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diffraction phenomenon arising from the interaction of curved wavefront

waves with an interface. They seem to propagate along the interface and
would be delayed upon encountering the interface depression. Therefore

thé phase delay curves would not return to zero delay to the right of the
anomalies as in our cases, Ours return to zero because the waves at the

interface are continually fed from below by our imposed plane source waves.

The next example is the case of scattering at a local rise in the
Moho as shown in Figure 5.4, The residual errors (Table F1) are again
small even for grazing incidence., Although the 90=55° curve compares
well with the ray-theoretical solution except at the artificial discontimi-
ities, the amplitude variations are more broad and less simple than in the
previous cases, Moreover, they have no prominent features coineciding with
either the dots or arrows (see figure caption for their meanings). Thus
it would be more difficult to determine layer thickness from the migration
with ©  of festures in the amplitude anomaly than in the case of a
depression in the Moho., The phase delays compare well with the ray-
theoretical prediction. However, they also exhibit dispersion with increas-

ing wavelength.

The amplitude and phase delay anomalies shown in Figure 5.5 pertain to
scattering for the same interface shape configuration as that in Figure 5.3,
the difference being that the source wavelength is now 20 km. The solid
curves for the four angles EBO were obtained during a single Gaussian
elimination solution as deseribed in Chapter III. As was mentioned there,
only one source direction could be defined unambiguously (source wave
number on the € line in Figure 3.2 when w is complex). Thus, with 6303580

. Q
unambiguously, the source wave mumbers for the Gg=43° and 32 cases lie
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TABLE 5.1

Layer and Interface Parameters for the Examples in Figure 5.6

Case (31 e W D
(km/sec) (k) (km (1am)
a | 3.0 5 50 25
@2=4.O ¥/ sec
b 3,0 10 100 25
(’1=2.8 gm/ emd
c 3.0 10 100 50 3
(o=3.3 gm/cm
d 3.5 10 50 25
e 3.0 10 50 25
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above the € line and that for 90289.‘7o lies below, The ambiguity

influences the shapes of the amplitude anomalies but not the peak positions.
The dashed curves were computed for © °z89;7° unambi guously given.' This
example suggestis practical limitations on attémpts to obtain solutions to

several source problems simultaneously when W_ is large.

I

foe five examples shown in Figure 5.6 display the effects of varying
the interface shape parameters and medium parameters. In all cases, a
10-km wave is incident - at © =55 and the decay time is T=3.98 sec. The
interface depth is given by (4.7) with x,=0 and W, ¢, and D given in Table
51 The term 'restored amplitudes' means normalized amplitudes, deter-
mined in the usual marmer', multiplied by e_At/T where At is the observed
time delay, We have seen (Figure 4,6) that with the small value 7T =3.98
sec, the solutions should be compared with early arrival émplitudes in the
time domain, By restoring the factor P.At/? in our complex-frequency solu-
tions, we may then make direct comparisons with early motion in unwindowed
time domain solutions. We do this in the comparison with the laboratory
refraction model study in section 5.3.1. The comparison between cases d
"and e demonstrates the influence of velocity contrast. The RMSE (Table F1)
are largest for case e; however, study of the interface residuals (mot

shewn here) reveals that the errors are larger in the half-space and are

probably quite small (less than 3%) in the layer.

The next examples involve 'stepped' Moho shapes; i.e, interfaces with
gentle gradients except over a small interval where the gradient is st.eep’.”
In Fig\ire 5;7; the step height is § km, and the shape is a cosine for a
half cycle (with ﬁé.velength 8 lm) connected to hm-wavelength cosines

(wavelength 120 km) on both sides. The configuration may model the inter-
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the wavelength in the layer, The decay time 7T =3.98 sec,
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section of a dip slip normal fault with the Moho. The medium parameters and

nominal layer thickness are unchanged from those in the previdus éxamples;
The incident waves have 10-km wavelength and 1/coI=3;98 sec. When waves

are incident from the side of thimmer crust to that of thicker crust, there
is general agreement between the ray geometricaliy projected points of the
center of the step and the maximum amplitudes calculated by our method,

The RMS errors are not strongly dependent upon the incidence angle; however,
the stress residuals for all values of €9° are relstively 1§rge just at

the step as shown previously in Figure 4.4, The validity of these amplitude
anomalies must be evaluated in this light; The examples in the ngxt two

figures may provide further insight into the meaning of these solutions;

In Figure 5.8 we consider SH wave scattering in two stepped-Moho
ﬁroblems. In each case, the crust thickness varies as half cycles of a
cosine from 25 km to 30 km over short intervals in x, In one case the x
interv;l is 2 km (steep gradient) and in the other, the x interval is 8 km,
The large-scale features in both the amplitude and time delay anomalies are
comparable in the two cases despite the relatively large interface residuals
localized at the steps. Of particular interest is the 33-km distance (from
- x=-35 km to x=-2 km) required for the time delays to attain their maximum
values, independent of the gradients of the steps. The most evident
differences between the two cases are the larger oscillations between
x=30 km and 60 km in the steep-gradient solutions. These oscillations are
caused by the interference of the primary scatteredeaves and somewhat
circular waves emanating from the step at x=50 km, as depicted in Figure
5.9a. Figure 5.9b shows the theorstical amplitude and phase delays for

two interfering plane waves having the amplitude ratio 0;25; The wave-
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Figure 5,%a, OSchematic diagram showing interference between primary
scattered waves and waves diffracted from a step-shaped interface irregularity.
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Figure 5.9b, Spatial distributions of amplitude and phase delay
arising from two interfering plane waves, The wavelength Ag=4TW /(kA"kB)
where k, and kp are the x-components of wave rumber for the plane waves.

The ratio of plane wave amplitudes is 0.25,
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length of the oscillations ( A,/2) is inversely proportional to the diff-

erence in the x-components of wave number for the two plane waves, This
explains the decreasing pesk-to-peak distance in the amplitude oscillations
as x decreases from 60 km to 30 km in Figure 5;8.

Note; in Figure 5.9b, that the oscillations in phase delay cover oniy
a small part of a circle; Similarly, the time Aelay curves in Figuré 5.8
display only small oscillations, Such wave interference effects offer a
partial explanation of the larger scatter in observed amplitudes than in
arrival times (see the discussion of the Montana LASA data in section 5.5),.
Unfortunately, the interpretation of the curves in Figure 5.8 as wave
interference does not determine whether the circular waves from the step
represent actual diffraction effects or artificial effeects caused by

localized errors in our solutions}

5.2.3. Soft basin problems, It is well recogmized in earthquake

engineering that the ground surface motion of low-rigidity strata can be
considerably enhanced at selected frequencies over the motion if the bed-
rock were exposed, The problem is usually discussed.in terms of flat layer
theory (Kanai, 1952; Kanai.vgz, al.,, 1959) assuming horizontally uniform
flat sedimentary layers. For the case of SH waves vertically incident to
a single layer over a half-space, the theory predicts enhancement by a

factor (, P,/ Py By at frequencies such that D/ A= ("), where D is

the layer thickness, )1 is the S wavelength in the layer, and n is a
positive integer, In the next five figures we usé our method to test the
validity of the flét-layer théory when the soft basin is confined two-

dimenSidnﬁlly;
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In Figure 5.10, the basin shape is the single cycle cosine, equation
(4.7), with c=1 km, W=50 km, D=0.01 km, and x =125 km. The SH-wave motion
is polarized normal to the plane of the figure, and frequency is complex
with decay time ‘T=9.39 sec, The flat-layer approximation compares
excellently with our solution (the solid line). The problem shown in
Figure 5,11 differs in that the basin dimensians are doubled and frequency
is such that the maximum depth is (1/2) Ai (anti-resonance) with decay time
equal to 9.09 sec. Again the flat-layer approximation is very good., The
oscillations in our solution are laterally propagating, wave interference
effects. The waves that contribute primarily to this interference have
wave numbers in the Love wave region of the wave number spectrum, This
region is defined by wave numbers Iknl 7 lw/ ﬁzl. Pure Love waves do not
exist here both because the basin depth is variable and because frequency
is complex. Of course, the basin dimensions in this problem can be scaled
'to those in Figure 5.10 with frequency and decay time scaled accordingly.
The flat-layer solution does not attain the peak PZ @2/ Pi @1':7.0

because complex frequency is used there also,

The basin shape in Figures 5.12 and 5.13 is flat, bounded by cosine
shaped sides having a half-wavelength of 10 km. The solutions differ in
that ’T=9.09 sec in Figure 5,12 and 90.9 sec in Figure 5.13, The large
peaks in the wave number spectrum in Figure 5.13 account for the large
~oscillations in the surface displacement., These represent the interference
between the vertically incident wave and pseudo-love waves that are
generated at the sides and trapped within the basin, The small, nearly
constant displacements away from the basin indicate that the anomaly over

the basin is not influenced by repeated basins every 25 km,
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Recognizing that wave attenuation can be large in the soft layers,

seismologists often introduce damping into their flat-layer solutions.

The result is a diminished resonant motion. It is readily shown
(Brekhovskikh, 1960; Ewing, Jardetsky, and Press, 1957) that our complex
frequency solutions are juét special cases of solutlions involving real
frequency but with attenuation in the medium., Thus, Figures 5,12 and 5.13
demonstrate ihat attenuation in the sedimentary layers reduces not only the
1érge flat-layer theory resonant motion but also the large oscillations

that might result from laterally propagating waves trapped in basins.

In the comparison with the fimite-difference solution (section 4.6),
we found that the spectral amplitudes resulting from wave interference
were not good indicators of peak motion in the time-domain solutions,
However, large spatial oscillations in the spectral amplitudes are
indicative that peak time domain solutions can be considerably enhanced.
We thus expect to find large peak motions in the vicinity of rapid changes
in thickness of the sedimentary layer, There was striking evidence for
this effect based upon earthquake damage in Skopje, Yugoslavia (Pogeski,

1969).

The final soft-basin example involves the response to waves whose
length is comparable to the width of the basin, Many cases are shown in
Figure 5.14, First note that the response to SH, motion is not sensitive
to the incident wave direction. For these long waves (100 km in the half-
space) the motion of the basin apparently is determined by the vibration
of the basement independent of eo' The large departure from the flat-
layer solution when 60-—'51o implies that relatively more energy is trapped

in the basin as E%)increases. The response to waves with particle motion
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in the plane of the figure is much reduced from the Haskell solution for

both directions of inecidence.

5.2k, Mountains with roots. We have investigated problems involving

SH-wave scattering in layer-over-half-space models for mountains with roots.
The configurations were like those for the irregular Moho problems dis-
cussed in section 5.2, with the addition of variable surface topography.

No results are presented here because we find that the surface displacements
aré unchanged (with the exception of added time delays over the mountains)
from those in the problems involving plane free surfaces, We used
»exaggerated mountain sizes (as much as 5 km high by 50 km wide) and time
decays sufficiently long to admit laterally propagating multiples within
the mountain. Our conclusion for these SH wave examples, and for P wave
cases as well, is that anomalous amplitudes observed on mountains must be
the result of inhomogeneities beneath the mountains rather than the. -

mountain relief.

. 5.2.5., love waves scattered from surface topography. Wwhen the

frequéncy is real, our solutions to the crust-mantle problem involving
variable surface topography display oscillatory character such as in the
example in Figure 5,15, There, the surface feature is a cosine-shaped
valley 1-km deep by 50-km wide., The amplitude oscillations are caused by
interference of the vertically incident waves with waves propagating to the
leftAand right just as was observed in real w problems involving an
irregular Moho. Bat now, these interfering waves are lLove wave modes. To
see this, first note thét the distanee between peéks is equal to the apparent
wavelength (18,2 km) of the interfering waves. The theoretical dispersien

curves for the fnndamentélyand next two higher order love wave modes are
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shown in Figure 5.16, The seven cases indicated are results from applica-
tions of our method to the variable tcpography problems with problem
parameters given in Table 5;2 (W, ¢, and D are defined by (b;7),and W, and
cg are similar parameters for the free surface shape); The problem in
Figure 5.15 48 case 5, In each case; the distance between amplitude
oscillation peaks AL yields a phase velocity f)m that implies that one

of the Love wave modes is dominant;

We note several interesting features, Valleys‘(cases 5, 6, 7)
generate the highest mode allowed (M=2 in these cases). The fundamental
mode predominates only when no other modes are allowed (ease 3); The hills
whose amplitude ¢, is not small compared with D (cases 1 and 2) generate
the first Love mode whereas the low profile hill (case 4) generates the
M=2 mode, The wave number spectra for the seven cases are shown in Figure
5.17. 1In all cases, the amplitude of the dominant mode is larger than the
neighboring amplitudes., Comparing the spectra, we note that amplitudes
generally decrease at first with increasing n (the initial rate of decrease
for case 6 is small because diffraction, i.e. wave number coupling, is
relatively most important for the smallest surface feature). The amplitudes
vary smoothly until n=13 where amplitude drops abruptly in each case, n=13
denotes the first inhomogeneous scatter order in the half-space. Beyond
n=13, amplitudes decrease rapidly except for those of the trapped Love
wave modes., Note that the dominant mode amplitudes are larger for problems
involving valleys than for those involving hills, This is reflected by
larger amplitude oscillations such as those in Fignre 5;15 for the scatter-

ing from valleys:

Based upon the wave mumber spectra, we interpret the tendency to



TAELE 5.2

Free Surface and Interface Shape Parameters for the Cases in
Figures 5.16 and 5.17

Case Feature D Wy e, W c
(k) (k) (k) (k) (Yan)
1 mMi1l 30 50 -2.5 50 2.5
2 " 17 K =25 "
3 B 10 " -5.0 — 0
L " 30 -1.0 — "
5 Valley " " 1.0 R o
6 " " 25 0.5 — B
7 50 5.0 —

149
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generate the higher modes rather than the fundamental as caused by larger

source excitation functions for waves having the larger phase velocities.
This is clearly true for scattering from valleys but the seattering from

hills is probably less straightforward,

Of course these Love wave manifestations were artifieially enhanced
in our solutions by the periodic surface shape every L=256 km, Therefore
we do not interpret the displacement amplitudes as having reality. Rather
we suggest that the results m#y be useful from a ielative viewpoint, i.e.
valleys are relatively more efficient generators of scattered Love wave

modes and the higher modes are preferred over the fundamental.

We made no comparable study of Rayleigh wave.generation by the
scattering of teleseismic P waves. We note that in his theoretical study,
MeIvor (1969) found that vertically incident plane P waves generated
‘larger amplitude Rayleigh waves from a sinusoidal surface irregularity

having valleys than from a parabolic-shaped hill,

5.3. P-SV Wave Scattering Problems.

5.3.1. Comparison with a laboratory refraction model study. Here,

we shall compare our solutions for grazing incidence P waves with results
from a refraction medel study by Laster, Backus, and Schell (1967). Their
model consisted of a strip of brass plate (Layer) over a stainless steel
plate representing a half-space. The interface had a localized circular
domé-shaped irregularity as in Figure 5.18. A barium, titanate crystal,

| placed on top af‘the brass layer, provided a transient elastic wave signal

having a peak frequency of 180 cps. The vertical component of motion was
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detected along a profile on the top edge of the model.

In our method, we cannot isolate the various arriving phases, Indeed,
since our solutions are source free, most later phases do not enter our
solutions. Through the use of complex frequency we can, in effect, isolate
the P-wave arrivals from the trailing S waves, Since our solutions for the
two values of decay time are similar; we conclude that T is sufficiently
short so that the éontribution from S waves is small. Thergfore our
solntions can be compared with the LBS measuremenis for the first refraction
arrival, The LBS amplitudes are departures from x'3/2 dependence where x
is the distance from the source. Our amplitudes have the factor QAI/T
restored as in the discussion of Figurg 5.6, The amplitudes compare well
considering that ours is a single frequency solution and the LBS solution
is for a 60 to 300 kc pass-band signal. The travel time residuals also
agree well., Laster, et. al. pointed out that the departures from the Snell's
law curve would result in erroneous estimates of the shape of the irregular-

ity. We also recognize these departures as being related to the phase

dispersion noted in the SH wave examples,

This example demonstrates the applicability of our technigue as an

interpretive tool in refraction seilsmolozy.

5.3.2, Irregular Moho problems. The seven cases presented in Figures

5.19 and 5,20 are selected to demonstrate effects of wavelength, decay
time, interface shape, and layer thickness upon the spatial distributions
of amplitude and phase delay for the vertical component of displacement.
The width W of the Moho depression is 40 km in each case. As in the SH-

wave cases, the widths of the amplitude anomalies increase with wavelength
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Figure 5,15, Verticel component of free surface motion for teleselsmic
P waves scatlerad at a depression in the Moho, displaying wavelength and complex
frequency effects, The depth to the center of the depression should read 40 km
for case 1, The dots denote the ray theoretical time delays at O km., The
common scales are shown Tor the lowsr curves only.
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and with layer thickness. The peak-to-trough variations in the amplitude

anomalies for cases 2 and 3 in Figure 5;20 are in the approximate ratio
1.5 whereas the amplitudes of the Moho depression ¢ differ by the factor
2, Considering the further effect of layer thickness on the amplituds
variations, we judge that the quality of observed data must be very good
in order to use the actual amplitudes in the determination of subsurface
structure. The locations of the peak amplitudes or the ratios of various
components of motion may be more useful as interpretive tools. The actual
amplitudes may also be of use in making amplitude corrections in areas

where the subsurface structure is known.

Phase dispersion - the departures from the dots and x's - is evident
in each case, The flat,phase-deléy anomalies and the dips over the center

of the Moho depression are typical of long wavelength solutions.

Figure 5,21 demonstrateé the generation of a vertical component of
motion by the seattering of a vertically incident teleseismic S wave. The
slopes of the spatial distribution of phase delay for the vertical component
impl& that the apparent velocity of the scattered wave approaches the P-wave
velocity in the half-space, The dot is the ray theoretical phase delay for

the horizontal component,

Scattering of obliéuely incident, teleseismic P waves is shown in
Figure 5.22, The vertical component amplitude peaks between the ray
theoretical caustics for the P-wave arrival and displays an indication of
sensitivity to the converted S-wave arrival as well, The horizontal
component appears to be more sensitive to the flat layer wave interference
effects. The ratio of vertical to horizonﬁal amplitude (V/H) is compared

with the usual Haskell flat-~layer theory solution. A question arises as to
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what layer thickness to use in the Haskell solution at a particular observa-

tion position x. We used a mixture with ray theory by assigming the depth
of the interface at the projection of the observation position backward
along the geometric ray path. The comparison with the Haskell solutionms
is‘not bad for this rather severe irregularity; However the comparison
most likely is fortultous as discussed in the next section. Our solutions

indicate that wave focusing tends to predominate as E’O increases;

5.3.3. Spectral smplitude ratios. In the Phirmey method for the
estimation of erustal structure; observed values of the rétio of the verti-
cal to horizontal component of spectral émplitnde V(£)/H(f) are plotted as
a function of frequency and compared by trialeand-error matching with
theoretical V/H curves for assumed flat layer models. The V/H curve in
Figure 5.23 is a typical exzm@le. It was computed for waves having an
apparent velocity of 17.8 km/sec incident upon a singlé layer over a half-
space with medium parameters given in Figure 5.22. The locations and
amplitudes of the peaks in the curves are diagnestic of layer thicknesses
and velocity contrasts, We show the horizontél and vertical components
separately in Figure 5.23 to demonstrate that the V/H curve is most sensi-
tive to variations in the horizontal component amplitude. For reasons
described by Phinney (1964), the observed data is truncated and windowed
prior to spectral analysis. For appropriaﬁe comparison, the theoretical
V/H curve should be similarly smoothed. Various authors have different
choiées for smoothing windows (Phinney; 1964; Fernandez and Careaga; 1968;
Utsu, 1966). Consistent with the philosophy of our method, we would use
the expomential time window. Thus, the V/H curve in Figure 5.23 was

computed directly by the Haskell method using complex frequency.
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of motion. In this Haskell solution, frequency «® is complex such that
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The question that we investigate in the next three figures is that of

validity of the Phinney technique when the layers are not uniformly thick.,

In each figure the Haskell solutions use the layer thicknesses directly
_beneath the observation positions., This choice is arbitrary and was made

for simplicity; yet it appears surprisingly appropriate in Figures 5,24

and 5.25, The two frequencles selected for study in these figures #re such
.ihat the large V/H peak occurs at D=35‘km and 45 km, the shallowest and
deepest Moho depths in the problem; The departures from the Haskell solutions
are caused both by wave focusing and by smearing of the apparent velocity and
constant depth requirements for the flat-layer solutions. Nevertheless;
these results suggest that at most positions x the large peak in the V/H vs,
frequeney curve will still be observed., The height of the peak will be
reduced much the same as a) when more severe frequency smoothing is used,

b) when the solutions for several incident wave directions are averéged, or
¢) when the single crustal layer is replaced by several layers and velocity
contrasts are reduced, In Phinney's actual use of the method, the observa-
tional data is so smoothed that the}sméaring introduced by these mild.

undulations in the Moho should not be deleterious.

In the two examples shown in Figure 5.26, the Moho un&ulations are
more severe, The Phinney method appears to break down over the irregularity
and, surprisingly, may even be vitiated as far away as at positions x=-90 km
and +100 km. The oscillations in our computed V/H distributions are caused

primarily by foeusing effects in the vertical component.

By scaling the dimensions and times in these examples, the results are
apropos of the use of the Phinney technique by Ellis and Basham (1968) for

study of shallow crustal structure using short-period waves.
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Figure 5.26, Spatial distributions of the spectral amplitude
ratio V/H for seattering of teleseismic P waves at a severely undulating
Moho. The Haskell solutions use the layer thickness directly beneath
the observation point.
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5.4, Arbitragz-Azimuth‘Incidence Problenms,

In the examples considered in this section, the incident wave need not
propagate parallel to the plane of the figure. The interaction of P, SV,
and SH waves at the irregular Moho gives rise to three components of motion
at the surface. Since the amplitude and phase delay anomalies are still
independent of the strike direction we continue to plot the spatial distrib-
utions along the x-direction. In other words, the horizontal direction
normal to the strike is the only appropriate direction for plotting spatial
distributions of displacement caused by scattering at one-dimensionally

irregular interfaces,

The transverse component of motion arising from the seattering of
teleseismic P waves is domonstrated in Figure 5.27, Ellis and Basham (1968)
and Basham and Ellis (1968) present observations of significant transverse-
component motion that usually builds up a short time after the P-wave
arrival, They use this data as evidence for lateral inhomogeneities in the
crust, and find an interpretation in terms for umiformly dipping layers. In
our example, we observe the sigeable transverse components (T motion), at
x=+30 km, which is beyond the x interval over which single travel path ray
theory would predict such motion. We find that the generation of T motion
for teleseismic P waves is more significant a) as the arrival azimuth flo
relative to the x-direction increases to 900, b) as the slope of the inter-
face irregularity increases, c) as wavelength decreases, and d) as the
incidence angle 90 increases. For an example of the 1atter effect,

compare Figures 5.2? and 5,31,

Note, in Figure 5.27, that incident 3V waves generate insignificant T
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motion and similarly the SH-wave source generates little radial component
(R) motion. Such coupling is small for all azimuths Ilo but seems largest
for 510=H5°. Finally, we note that the vertical-component (V) motion
arising from SH source waves and the T motion due to P waves bear a some-~

%hat reciprocal relationship.

In their arguments for lateral heterogeneity in the crust, Ellis and
Basham presented horizontal particle motion orbits which often had ellip-
tical shapes or were linear, but askew to the saurée-anB azimuth direction,
Our solutions yield the countsrpart representations shown in Figure 5.28.
Solutions for teleseismic P waves arriving from three azimuths are compared.
In all cases, the appareni velocity is 12.6 km/see. To the right of the
dashed line are plan views of horizontal motion ellipses at various positions

x. The elliptical orbits are computed from the parametric equations

R =Rl cosw (t-¢€R)

T 21Tl cos o (t-e,)

where |R| is the amplitude of radial component at position x and ER is the
time delay,and |T| and €; are similar quantities for the transverse motion.
The case j10=ﬁ?is a P~SV problem, Motion is linear and parallel to x.

For other source azimuths the eccentricities of the ellipses vary with x

as does the apparent arrival azimuth,

Such theoretical solutions might make it possible to use three-
component motion at a single station to study local crustal structure. The
observational data would consist of horizontal components of motion for P

waves from earthquakes at all azimuths and teleseismic distances A
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Often the horizontal-component data is absent as is the case for the
short-period (SP) seismic stations in Montana ILASA. In a detailed analysis
of early motion at IASA, Mack (1969) computed apparent azimuths across
subarrays consisting of 25 vertical-component seismometers, He found that
the apparent azimuths varied by as much as 50° across portions of LASA,
He concluded from the curved wavefronts that the motion was dominated by
scattering from small-scale, two-dimensionally irregular features. However,
the presence of curved wave fronts does not preclude an interpretation of
the structure as having a dominant strike direction. Figure 5.29 is
anbther presentation of spparent azimuth directiens as functions of x for
the three cases treated in Figure 5;28. These azimuth directions were
computed using the observed phase delays for the vertieal component of

displacement, That is
o AP
fann, = 70/[ko+ 2"7{"]

where 41h,is the apparent azimuth, k, and 70 are the x- and y-components
of source wave number, aﬁd 15¢’ is the computed phase delay, in cirecles,
The #pparent azimuths behave much as those in Figure 5.28, The largest
difference in this example is 3?° between the values at +25 km for the

]
case 11°=90 .

It is of interest to know whether the solutions for V motion obtained
in P-SV problems ( Jlo=0°) can suffice for interpietations of observed
data from earthquakes at arbitrary azimuths relative to the striké. In
Figure 5,30 solutions to P-SV and arbitrary azimuth problems are compared
for source‘P waves having the same x-components of apparent veloecity Cy -
The solutions are comparable when c,=17.8 km/sec, whereas the amplitude

anomalies differ when qf=°Q{ waevef, we observe that the x-coordinate of
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Figure 5,30, Vertical displacement amplitudes for four cases
involving the scattering of teleseismic P waves at a depression in the
Moho, In the top pair, the x-campanent of apparem. velocity is infinite,
and the incidence angles are © -0 and © -3?5 In the second pa:.r, v
the x-component of apparent velccity is 17.8 km/sec and @ ~26 and 39°,
The caustics and peak positions are ray theoretical.
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the amplitude peak is the same for a given Cyr independent of .ILb.

The next example, shown in Figure 5.31, involves a P wave propagating
at grazing incidence along the strike of a depressién in the Moho. The
amplitude anomalies are large just as were the anomalies for grazing
incidence in the SH-wave examples., The T motion actually exceeds the R
motion at X=;35 km, DNote the flat phase delay anomaly for the vertical

component and the departure from the ray theoretical value (the X').

All the problems considered thus far, ihvolved a single-<layer crust.
If the crust were multi-layered and had several irregular interfaces (with
a common strike) we would anticipate more complex spatial variations of
surface displacement. And, of course, we recognize that any proposed
irregular interface model in an inverse problem must be nonunique; The
last example in this section demonstrates dependence of the solutions on
variations in crustal 1ayering even when only one interface (the Moho) is
irregular., The three models are shown in Figure 5.32a. In case 1, layer
c might represent a simple model of a localized velocity transition zone;
or iﬁ‘could be a laccolith or other isolated lens, Layer a is a thin
sedimentary layer, In case 2 the transition zone is removed and in case 3

the surface layer is removed. The solutions are shown in Figure 5.32b,

The apparent affect of the transition zone is to diminish the amplitude
anomalies, Extrapolating this result, it appears that wherever the Moho is
a velocity transition zone several km thick, we expect the displacement
anomalies to have smaller variations than do those in most of the examples
considergd in this thesis; Comparison of cases 2 #nd 3 reveals the profound
influence that the sedimentary layer has upon the horizontal components of

motion. The decay time in this example 1s long enough to allow many
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P waves in the multi~-layered models shown in Figure 5.32a, The waves are
incident with apparent velocity 12.6 km/sec at an azimuth parallel to the
strike of the depression. The mumbers at the right are Haskell theoretical
values where the Moho is flat,
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reverberations within the layer. Such a surface layer effect might vitiate

attempts to use horizontal motion at a single station to infer subsurface
structure. The surface layer has a strong effect on the time delays as
well., At x=0, the computed time delays for the three cases are 0.16 sec,
0;29 sec, and 0,20 sec. All are considerably less than the ray theoretieal
time delays 0.22 seec, 0.37 sec, and 0,37 sec because of the usual phase
dispersion. The discrepancy in the computed time delays fér cases 2 and 3

cannot be explained in simple ray theoretical terms.

We mention one last exaﬁple not 11lustrated in a figure. The problenm
involved the scattering of teleseismic P waves at an irregulariiy in the
upper boundary of the low-veloeity layer in the upper mantle, The frequency
was 0.5 cps, n.°=45°, eo=39°,’ and the boundary depth varied 10 km as a
Esingle cycle cosine rise over a distance of 100 km., We used Gutenberg's
velocities and found no significant anomalies in surface motion. The
primary reason is the small velocity contrast and a secondary reason may
be the large depth. The conclusion is that such a feature does not

substantially distort arriving plane waves.

5.5. Appliecation to Montana IASA Crustal Structure,

5,5.1, Determination of strike direction. Greenfield and Sheppard

(1969) propesed a single-lsyer model for the LASA crustal structure. The
Moho depth varied in the direction NBOQH only. A cross-section of their
model in th#t direction is shown in Figure 5.41 (A0 is the central station
at IASA) and the indicated parameters are listed in Table 5.6. Questions

have been raised concerning the large depth of Mohe (Boore and Toksoz,
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1969), the one-dimensionality of the irregularity (Mack, 1969), and the
direction of the strike (Glover and Alexander, 1969). We shall use
| observed spectral amplitude and phase data tegether with our wave

scattering solutions to check their model.

In order to apply our method, we must first determine whether the
structure at ILASA is indeed one-dimensionally irregular, The basic data
used in the study are short-period, vertical-component records of the 17
earthquake events listed in Table 5;3. Records (on LASA tapes) at the 84
stations shéun in plan view in Figure 5.33 wers Fourier spectrum analyzed
in the following manner. First, thé arrival times at the centers of 21
LASA subarrays were used in a least-squares procedure to determine the
- mean appafent velocity ¢, and aspparent back azimuth le. Next, a signal
| length t (usually about 4 sec) starting at time t  was determined for the
central station A0. A cosine shaped data window starting at to-c.ht and
ending t +1.35t was applied to the data after digitised at 20 samples/
sec, The windowed signal was then Fourier analyzed. A similar procedure
was applied at the remaining 83 stations, where the starting time was
taken as t -s-r. Here, r is the station location vector relative to AO
and s is the mean apparent wave-slowness vector, The cosine data window
was an expedient choice over the exponential window appropriate to our
theoretical solutions because of the large mumber of records Fourier
analyzed., The difference in smoothing effects should be small for so short

a window length.

Rather than constrmcting contour maps of spectral amplitudes and

phases for each event over the LASA array, we use the following more
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quantitative approach to determine the trend direction and, indeed,
whether one exists. Trial trend directions (indexed n) are taken at

equal azimuth increments from 00 to 180e clockwise from nmorth. For each
direction, the 84 stations are projected along that trend to a common line.
The station coordinates aleng that line are labeled Xj, i=1,84% where
‘indexing is such that 5':1 is a monotonic function of i. Let the spectral

data be d‘i’ according to the same indexing. We define a 'trend measure'

My(0)
84

. 84
aa? _ 2
M) = L wildi-d) /S wi (5.1)
; (=2 (=2
where .. is the trial azimuth direction and
(1 GERI  fe (RoRe) <
“ilo s for (X=%:,) %) (5.2)

1 is some specified length

The meaning of Mn is simply this, It is like a standard deviation of
the projected data, and should attain its minimum when .!).nz .ﬂ.c,the
correct strike azimuth, Along that direction the station positions are
projected along the strike and the data is plotted just as in one of our
theoretical scattering problems. Any scatter is caused by 'inherent noise!,
i.e, instrument noise, seismiec background noise, depar;hure from plane
incident wave fronts, and the effecis of crustal structure departures from
the ideal one-dimensional irregularities, When the data is projected
along some dirsction other than the strike, M, receives added contributions
from 'jumbling noise', the miximg of preoper relative station positions.

The welighting function Wy weights the most closely spaced data the mest,
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The results of six trend measure analyses are shown in Figure 5,34,
All cases are for £=0,9 eps. The merit of this approach is that all
trend measure analyses should indicate the_same strike direction, independent
of the earthquake 1océtions. The redundancy is necessary since Mn is,
itself, a statistical quantity. In Figure 5,34, we see a tendency toward
small values of M for trial trend directions in the range 450° to 80°.
Also note that the phase measures have ﬁore pronounced minima and that the

quality of the measure Mﬁ varies with different events.

To estimate the minimum, a least-squares cosine fit is made to each
curve,

M =B8+8, cos g5 (£-€) (5.3)

" Here N is a trial trend azimuth, and Ei' B., and € are deterwmined

o
constants, Finally, we take as the determined trend, the simple average of
the azimuths at the minimnm'of ML and at the minmimum of the Mh' Such
trial trend analyses were made individually for amplitude and phase data
at the frequencies f=0.5 and 0.9 cps for the 9 events listed in Table 5.4,
The columns labeled 'strike! are the results of such analyses, The
gquantity Bl~82, in units of normalized amplitude and fractions of a circle,
'is a measure of the jumbling noise.

To determine our best estimates of the strike direction for various
combinations of data we computed weighted averages of the strikes in
Table 5.4, The weights were based on the quality of trend measure curves
such as those in Figure 5,3%. These weights are the ratios Bi/,S2 listed
in Table 5.4, S is the computed variance for the departures of the Mh values
from the ML curves, .The following equations were used in the final analysis

of mean trend directions,
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Figure 5.3, Representative plots of the tremnd measure versus
the trial trend direction (degrees clockwise from north). The trend
measures were computed using the Fourier spectral data at 0.9 ops in

each cass,
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K
& W'S; /(Z‘ Wi = mean trend,

Y
i
M =

2
@, = B:,i / Ji = weight for data type i v:l.n Table 5.4,
S, = strike determined from data type i,
K = mmber of data types used in the averaging,
NS ~ \*
s2 = NoT Z‘ Wy (S, ".n.) /fw; = estimate of variance of
L= (=
population from which Si are samples,
K LS K 2
N = (S-' Wi) /Zl wc‘ ’
(= t=s .
N-1 = number of degrees of freedom, and
K
w = Z w; / K = average weight.
izl ;

The results for the estimated mean trend directions are listed in
Table 5.5 for 10 combinations of data,and histograms are plotted in Figure
5.35 for 5 of the combinations, The + values in Table 5.5 indicate 95%
confidence intervals based upon Student t tests of the data. The mean
trend determination based upon all the data is NéﬂfiéoE. The mean trends
computed for every subgroup, except for the 0.5 cps, amplitude group are
within these confidence limits., The data for the exceptional case is

1eas£ significant (smallest average weight). Based upon this table we

conclude

a) time delay data is more reliable, but amplitude data
is sufficiently good to support the conclusions,

b) teleseismic waves from different agimuths 'see' the
same trend,

c) the data from the SW group of events is excellent;
that from the NW group shows the largest scatter,

d) different frequencies 'see' the same trend.



TAELE 5.5

Results of Trend Determination

Data Frequency Type * | Mean Trend Degrees of Average
(eps) Freedom Weight
9 Events 0.5%0.9 | A&P| Nk +°E 14,5 2.58
" A 63413 7.5 1,62
" & P Eh+7 8.6 3,28
" 0.5 A 75452 2.1 1,04
" 0.9 ”\ 60+14 L2 1.99
" 0.5 P 65+173 1 3.50
" 0.9 " £3+12 3.5 2.95
SE Events 0.5 & 0,9 " g242k 1.9 4,58
3W Events i " 67+3 k.5 3.53
NW Events " 50+21 2.5 1.76
*A=Amplitude

P=Phase
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Figure 5,35. Histograms for estimating the Msho strike st Montana
LASA., The rumber of estimates (in 5° blocks) is weighted as deseribed
in the text., The labels 'amplitude' and 'phase' indicate that the
histograms are based upon amplitude and phase determinations of trend
respectively., In each case, both 0.5 ¢ps and 0,9 cps spectral data
were used. The events are listed in Table 5.4,
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e) there is a signmificant underlying one-dimensionally

irregular structure at LASA,

The larger scatter. from directions other than to the SW may be caused by
non-planar source wavefronts or by relatively larger departures of the

interfaces from one-dimensionality.

5.5.2, Depth and shape of Moho. Our determination of the trend

direction supports the trend estimate in the Greenfield and Sheppard (GS)
model. We shall now consider other parameters in their model. We have
said that there is only one appropriate line of projection of the data

for all source-wave-azimuth évents. That is along the line normal to the
strike, In Figure 5.36 we present observed amplitude and phase delay
spatial distributions along the x-direction 530°E-N30 W (this is close
enough to the optimum direction) for events from each of the three groups.
SAMOA, one of the excellent SW group, displays the least scatter with time
delays showing less scatter than do the amplitudes, These data are for

0.9 cps. Typical amplitude behavior with frequency is shown in the hand-
smoothed curves in Figure 5.37. The anomalies become more narrow and
increase in peak~to-trough ratio as frequency increases, just as we
observed in the theoretical solutions, No new features develop as frequency
increases, Apparently, all frequencies considered in this study are
sensitive to the same subsurface features, The shift in peak position
toward the SE as frequency increases may indicate some exceptional behavior,

We leave it for future study.

Let us return to a discussion of Figure 5.36. The peaks in time delay

tend to lie to the NW of the amplitude peaks, independent of azimuth of
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Figure 5,37, Hand smoothed spatial distributions of vertical
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- frequency.
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wave approach. The time delay distributions are unsymmetric with the
more rapid changes toward the SE, SAMOA is the most unbiased example
since the incident direction is nearly along the strike (.()..o=-88.5v in
Table 5.3). Finally, analysis of similar curves at different frequencies
reveals no evident phase dispersion as in our solutions for a depression
in the Moho. This evidence supports the GS model of an asymmetric step-

like feature.

Figure 5.38 displays a theoretical solution for scattering of P waves
at a step change in the Moho. The frequency is 0.5 cps and the decay
time is comparable with the length of cosine window used for the LASA
data, We are assuming the behavior observed in Figure 5.30, i.e. that
the P-SV wﬁve problem solution is adequate for study of the migration of
the x-coordinates of features in the displacement anomalies for the
general azimuth problem so long as the x-components of apparent velocity
¢, are the same, Note, in Figure 5.38, that the time delays decrease

x
toward the thin crust direection.

In Figure 5.39 we plot the x-coordinates of the peaks and troughs in
amplitude against tan ei,where 91 is the incident angle of the primary

P waves at the surface
. _(0(, R -_u .
sin@, = /axt) sin®, =% /¢, (5.4)

The positions labeled as time delay peaks are the locations where the
time delay curves flatten. All the curves are concave toward the thicker
crust side, Also, the time delay peaks are displaced, relative to the
amplitude peaks, towﬁrd the thicker crust independent of the azimuth of

wave approach, This is readily understood with reference to Figure 5.38,
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According to a simplified ray theory, the projections of the points P and

Q along geometrie ray paths onto the free surface should yield the positions
of peak amplitude and time delay respectively. At longer wavelengths the
time delay peak will shift somewhat further toward the right. Also in a
simplified ray theory, the slope of the amplitude peak curve in Figure
5.39 would be equal to the depth to the Moho, This behavior is confirmed
in this theoretical solution, i.e, the mean slope of the curve in Figure
5.39 between tan ©,=40.5 is 65 lm.

In Figure 5.40, the LASA-observed peak positions along the 530 E-
N30°W line (x-coordinate) are plotted against tan 61. é1 is the angle
from vertical of the projection onto the x-z plane of the incident primary

P-wave vector at the surface,
R n dl 1 Y "'/1
sin©, =7 L% /ke, ] (5.5)
where '70 is the y-component of wave rmumber, X 1 is the P wave velocity
in the layer (6.0 km/sec in this model), and kq'i: “’/0(1. The data consists
of average positions over the frequency range 0.5 to 1.1 cps, measured on

curves like those in Figure 5.36, for all events listed in Table 5.3. The

apparent velocities in the x-direction are also listed in Table 5,3,

The slope of the least-square fit to the amplitude peak curve is
48+5km, The time-delay ’paak curve is displaced toward the NW, mot so much
as in the theoretical solution, yet the shift is apparent for all wvalues

éi' If the interface irregularity were a symmetrical depression we
should expect the amplitude peak and time-delay peak curves to cross at
~

91=0 and we should have observed phase dispersion, We interpret the

shift of the time-delay curve in Figure 5.40 to be significant so that the
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Moho varies as a step. This point is erucial to the following estimation
of the size of the irregularity. Using the observed typical time-delay
anomalies (0.40 to 0.45 sec) and the theoretical picture in Figure 5.38,

we estimate a step amplitude of 1143 km with the step centered 2 km SE

of AO. Again, using the argument of the ray-geometric j:rojection of
points P and Q in Figure 5,38, the close spacing of the amplitude and
time-delay curves implies a large step gradient. The estimated width is
2045 km; thus, the feature 1s quite localized., We made no estimates :of
the angles Y1 and YZ in Figure 5.%1 but the time delay anemalies indicate
that the Moho thins on either side away from the feature., These resulis

are summarized in Table 5.6'.

Although our model has only a single crustal layer,ywe can draw
several sigmificant conclusions, Our estimate of Moho depth is significantly
less than that in the GS model., However, it is comparable with the Eoore
and Toksoz (1969) depth of 52 km based upon surface wave data and with the
U.S.G.S. refraction-profile-determined depth of 47 to 52 lm (Borcherdt and
Roller, 1967). The crustal models used in both those studies are multi-
iayered and the mean crustal P-wave weloclities (ﬁsed on total travel time
through the layers) are larger than our 6.0 km/sec. Our computed Moho
depth is determined by the value that we assume for the mean P-wave
velocity above the irregular interface. The solutions are such that an

jncrease in P wave velocity would yield more shallow estimates of depth

and a decrease would yield the opposite. Therefore, if we used the
Boore and Toksoz velocities our estimated Moho depth would be reduced,
Of course we may not alter °<1 to get the GS depth of 64 km because we

already are using their value of 0(1.
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Parameters for

TABLE 5.6

Single Layer Models of Montana LASA Structure

Parameter Model
Greenfield & Sheppard Ours
H(xm) 6l L&+s
c(km) 12 1143
W(lan) 35 2045
Alkn) 12 213
¥, (deg) 3 —
Yo (deg) 5 —=
¥(deg) 19 2948
trike N6O B NEL +6 E
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Based 99 this same reasoning,we conclude that the irregular interface
that is the scattering source of both the amplitude and time delay
anomalies near the center of LASA must be deep-seated. Glover and
Alexander (1969) have suggested that the anomalies are attritutable to
variations in basement topography that has a NW-SE trend. The observed
large migrations of amplitude and time delay peaks with ineidence
direction cannot support such an interpretation either for so shallow a
depth to irregular interface or for the trend direction. Using the low
mean velocity of the sediments in our method would yield estimates of
depth that are much larger than 48 km, Also, the large amplitude
anomalies observed cannot be the result of focusing of waves scattered
from the basement irregularity, as suggested by Glover and Alexander,.
According to our theoretical solutions, their basement depths and relief
would result in only small focusing effeets. Undoubtedly, however, the
more complicated two-dimensionally irregular interfaces shapes likely

at the shallower depths do contritute to the observed scatter in the data,.
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VI CONCLUSION

A

6.1. General Comments.

Our method provides a practical means for the study of ﬁspects of the
wave fields peculiar to the two-dimensional models discussed, The
amplitudes and slopes of the interface irregularities that we study are
larger than those allowed in the iterative fpproximatien method of Rayleigh
or in the various approiimation methods (Giibert and Knepeff, 1960;
Berrera, 1964; and MeIvor, 1969). With good aecuraéy. our method affords
study of scattering for a range of reasonable, laterally heterogeneous
crustal structures., The method adds to the stock of theoretical tools
available to the seismologist. Besides having value for the inverse
problem of interpretation of subsurface strnctnre; the method should be
of as much use to seismologists desiring quantitative estimates of the
amplitude and time-delay anomalies expected in typlcal scattering problems,
For example, in an attemuation (Q) study based upon speetral amplitudes,
one could determine the extent to which the Q estimates may be biased by
anomalous amplitudes associated with the scattering from antiecipated |

interface irregularities,

The stuﬁy of the Moho structure beneath Montana LASA demonstrates
the potentiality of using speetral amplitudes as well as time delays to
formulate a more umique picture of deep-seated structure, Our method is
particularly well suited for investigating Moho or basement shape
irregularities of the size found at LASA., The technique may bridge a gap

that has existed previously because of the difficulties in obtaining
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seismic reflections from the Moho and in interpreting the effeets of rapid
lateral changes in structure in the conventional seismie refraction method.
Until recently the existence of deep-seated irregularities of the sige
suggested for LASA was not given much consideration., However, interpre-
tations of the PROJECT EARLY RISE refraction experiment (Mereu and Hunter,
1969) indicate such irregularities in Moho depth in the Lake Superior
region. Moreover, the large regional anomalies in spatially smoothed data
from aeromagnetie surveys across wide belts of the United States also
suggest deep-seated lateral variations in structure hawingvlinear trends
that extend over large distances (Zietz, 1969). The steep dip in the Moho
at LASA may be interpreted as evidence of a dip slip fault or localized

intrusions,

6.2, Computational Time,

The method was programmed for the IBM 360-65 at the M,I,T. computation
center., The computation time is contrelled by the total mumber of complex
wave amplitudes representing our solution (the matrix size mmber K in
Table 3.1). For a given problem configuration and frequency, we economize
by solving problems involving various source wave directions and source
wave types concurrently. For the SH wave problems, typical computer time
for problems involving the maximum number of scattering orders is 4 minutes
for the first incident wave direction and 20 sec for each additional
direction, Of that time approximately a minute is required to synthesige
the interface displacements and stresses, The computation times are
considerably shorter when fewer scattered waves are used. For the multi-

layered general-azimuth problems, the computation times for the largest
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number of scattered wave orders are 5 minutes for the first wave type and
30 sec for each additional type with 90 sec required for the synthesis of
all interface quantities., We could handle larger problems with the present

computer storage capacity; however, at considerably increased cost in time,

6.3. Recommendations for Future Work,

The use of SP spectral amplitudes and time delays in a systematic
study of the depth and shape of irregularities in the Moho as described
hére, may provide a new interpretive tdol in seismology. Because the
method uses observational data from earthquakes at all azimuths and
teleseismic distances, we'might consider the deployment of mobile arrays
of seismometer stations for use in such passive experiments, Two to four
months occupation of a given site might be sufficient to gather the
required data. Three-component stations within such an array could
provide further diagnostic information as indicated in our theoretical
solutions. It would be of value, for example, to learn whether the steeply
dippiﬁg anomaly in the Moho persists for some distance along the indicated
strike, Furthered knowledge of the existence of such features and inter-
pretation of their meaning may yield new understanding of the regional

characteristics of the upper mantle,

The theoretical solutions to grazing incidence problems may be used
to aid in the interpretation of the amplitudes and time delays observed in
theklarge seismic refraction experiments such as PROJECT EARLY RISE,

Mereu (1969) has attempted analysis of amplitude variations in that

experiment using ray theory.
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Regarding application of our approximate method in its present form,

the work performed for this thesis is preliminary, The problems investi-
gated in Chapter V were intended to be representative of the range of
applications in which the method may be of value, and further systematic
investigation of some of the applications is warranted. One example is a
closer study of the dependences of solutions to problems in multi-layered
crust models on changes in relative layer thicknesses and on wavelength,
The variety of interface shapes investigated can be enlarged so as to -
determine the sensitivity of the computed spatial distributions of
amplitude and phase delay to the detalls in shape. One interesting
experiment, for example, might be to let the interface take the shape of
a sample from an ensemble of smoothed, random shapes, We may use the
éolutions to plane wave source problems to estimate the variances in the
spatial distributions of free surface displacement amplitude and phase
delay as functions of the statistical properties of the interface shape.

The shapes must, of course, repeat every distance L in the x-direction,

Improved understanding of the relationship between our grazing
incidence problems and the scattering of head waves may prove useful in
refraction seismology, We particularly desire further comparisons with
results for laboratory models having interface depressions and step
changes, Alse, by comparing solutions with those of the finite difference
technique we may extend our confidence in using both techniques for

treatment of the stepped interface problems.

The computer programs have not yet been written to include the case

of variable surface tdpography in P-wave scattering problems. Possibly

further study of details in the surface wave generation by scattering
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from surface features might yield estimates of the actual amplitudes of

the scattered waves, Preliminary results, not shown in this thesis,
suggest that the techrmique may work for the problem of the scattering of
incident surface waves at changes in layer thickness. The case of two or
more internal irregular interfaces, also has not been programmed, Because
the coefficient matrix for the simultaneous system of equations has many
zero elements, special techniques may enable practical soclution of these
problems, With no new conceptual difficulties, the class of propagat;on

mediums can also be expanded to include fluid layers,

In considering the future usage of the method, probably no aspect
deserves more attention than that of increasing the computational speed.
Many efficiencies are incofporated into the present programs, yet the
author would be surprised if significant further increases in speed cannot

be attained,
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APPENDIX A

RELATIONSHIPS BETWEEN UPGOING AND DOWNGOING WAVES

Al, Review of Flat-Layer Theory.

Consider the sequence of layers bounded by planes at constant z' as
shown in Figure Al, The layers are specified in terms of the parameters
P% » density: X0 P wave velocity; @m, S wave velocity; and Zyo
z! coordinate of the interface at the bottom of the layer. Layers n and
p need not be half-spaces; that is, there may be layers above and below

those shown in the figure.

Consider source waves (waves incoming from above in layer p or from
below in 1ayer 7) that are propagating parallel to the x'-z' plane with
the x'-component of wavenumber given by X ., To satisfy stress and
displacement contimmity conditions at all the interfaces for all x' and
y', all waves must propagate parallel to the x'-z' plane (called the
propagation plane in sections 2.3 through 2.5) and have the same wavenumber

A . Moreover, as we found in (2.37), the P-SV wave motion is uncoupled

from the SH wave motion. In section 2.3, we derived relationships (2.44)
and (2.45) for the displacements and stresses, acting on planes of
constant z, in terms of upgoing and downgoing P, SV, and ?H wave amplitudes,
In all that follows, we suppress the factor 6‘(7(x "t that is

common to all the wave amplitude vectors by supposing that all quantities

are evaluated at x'=0 and t=0, Repeating (2.47), we have, for layer m

M, (2) = E,. (3 L.,
. (2.47)

M (D) = Ep (D) Oy
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Figure Al, Sequence of flat, homogeneous, isotropic layers,
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~where the motion-stress vectors, ym and nos and the wave amplitude vectors,

of , and 4, are defined by (2.48) and (2.49). By (2.44) and (2.45), the

and & matrices are

=m
i . ‘Pl'n . 2 “gm - 'ipm ’ ’ *"-Zm
ixe -i¥ e (xe (% e
(Prm .o §m A ~LPm . -(
E (&= izr‘,,,e‘f, (X e s -y, e o (X e Bm (A1)
- . o . .
- iA , & ~Lom ; =48
S S “Rlim KV, € e Jnto € 2 pn X7, € "
‘ '™ -¢ » -{
|2 %™ pmfeV 2prn b e
and
e"%m e-i%,,\
£ =
=" , =% (A2)

\ rl .
i € -ip e
where Vm and an are the vertical components of wave-number defined by

(2.40) and

P & Vo (22 )

14

%m - V": (Zl— zm-l)

= a_ *
)(m = RK kfjm
We now follow the layer matrix method of Thomson(1950) and Haskell

(1953). Consider the P-SV problem first, The motion-stress vector at the

bottom and top of layer m are

Mn (2= E L,
(43)

En (2. o,

and

n

M. (24

Assuming, for the present, that gm(zm_i) is nonsingular, we can eliminate

the vector egm from this pair of equations to arrive at
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Mo (22) = Ep (22) En (2n) M (20 (A4)

According to the contimuity requirements, each element of }__im is continuous

across an interface at constant z so that
/__\/_‘m (zhul} = Mh-l (zm")

Thus (A4) becomes

M (2) = A Mo, (2) (a5)

—

where

- -

Am = En(2,) Em () (46)
Using (A5), we can express the motion and stress at the bottom of layer m
in terms of the motion and stress at the bottom of layer m-l, Matrix ém

-]1?
B+ Similarly, provided that Em(zm-l)

is called the layer matrix; 1its elements are functions of w, %, z'--zm
and the layer parameters Pur X

is nonsingular, we can relate SH motion and stress in adjacent layers by

'Z'm (zm\ = gm mm-u (Z'n-.)
- (47)
gm-'- gm (’;.L‘J 6-—::" (Z'mq)
By simple iteration, we can express the motion-stress vector at the
bottom of a layer m in terms of the motion-stress vector at the corresponding

position of a layer p above, We have
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Mm (?m) [l_i‘_\ ém., """ épn' épu ] ) M' (2‘,,)
and (a8)
W (2 * [ B G Qpra” Q] prap (2)
Comparable expressions could be written, say, between gm andegp or between
¥ (%) and &,

The matrix E given by (A1) is singular when 1),=0 or when V=0, and
the matrix § egiven by (A2) is singular when 'Pn‘1=0. In those special cases

Em and € n 18Y be redefined so as to be nomsingular,

-
-

We will now use (A3) through (A8) in problems involving irregular

interfaces,

A2, Sequence of Flat lLayers With One Irregular Interface.

As shown in Figure 2,5, we consider n-1 layers, between two half-spaces,
with one irregular interface bounding layer s from below. A plane source
wave is incident from below in the half-space n, and no waves are incident

from above in the half-space O,

We consider three distinect cases,
Case (A2,1): 1€ s€ h-2 ; the general case.
Case (A2,2): s=n-1 ; bottom interface is irregular.

Case (A2.3): s=0 ; top interface is irregular.

Case (A2,1), First, consider the layers below the interface, By (A3)

and (A8), we have

Ty = Ex (2x.) My (22) = Lo

s (49)
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and
di = Prds., (A10)
where
°=f - é;(zﬁ--)' An. Bs " Asn Een (2) (A11)
P= Ex(2.) Qi Qi Barn’ Eowi (o) (a12)

;_Q is a 4xb matrix whose elements are Xi ] and Q is a 2x2 matrix
whose elements are P 13 (1 is the row index; j, the column index)., We

can also write cZ in block form as

Lo 1 L

—

— —
—
—

— a—

s

where the "Ii j are 2x2 matrices, Equations (A9) are 4 linear equations
u d

‘from which we can solve for boqr Ve g+ and \P% in terms of

I

* u %
gﬂ’ 4’2_‘_1. and the known source terms ¢;= (I) and \{/?f Vv (see

equation 2.41), We find

¢S‘:t -! q)*
IQ’L

—

Yo! = 1¥*

q>d

- £37]

- gﬁ. l"zl \‘/d (A]-B)
S+

n

(A14)
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provided that the sulmatrix °§22 is nonsingular., Actually, this matrix

can be singular for certain values of X (for given frequency W), We

discuss such singular cases in Appendix B.

Similarly, for the SH motion, we can solve (A10) for V"S1 1 and V.ﬁ

*
in terms of Vd and the source amplitude V .

s+l

w o * d
Ve = (/P2 V7 = (P /P2a) Vsu (A15)
V; = (Pn. /f’zz) V* * (Pn‘P:z P /Pu) Vsi (a16)

The singular case, P22=0, is discussed in Appendix B, For use elsewhere,

we write the three solutions as

o = Ak + B0 + C, ¥
Yo = A8 (kek)+ Co bl + B WY,
Ve = A (k) t B, Vi

S+

(a17)

"

where the various coefficients are

8 =L (1) /LI33)
o= L(1D/2(3)

B, (A18)

1

“Pai /P
.= L(3:)/L(33)
c,=L(31)/L(i3)

"
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u) _
We have used the sumbol - Oka (km - /!ij jkm ‘jim jkj . For example,
33 .
x(‘ﬂl) is the determinant of EZOZZ'

Now consider the layers above the irregular interface., We relate the

wave amplitudes in layer s and in the half-space 0 by again using (A3) and
(A8)

L, * N, (A19)
2’5 = Q 'Slo | (A20)
where
Z) = ES" (ZS-:\ ' és-' ---- ' él. .éo (o) (A21)
Q = __E:_;‘ (zs-:\ ‘ 2;-1‘ e %. ’ ,€_=o (2,) (A22)

Let ny 3 and q:,’_j be the elements of the 4xl matrix W and the 2x2
matrix 2. respectively, Sinece we postulate no downgoing waves in the upper
half-space, we have (b:= \|1c01= Vg=0. Using the 2x2 block matrix

notation, (A2.13) can be written as

d
d, | 0

o 9
\P:u Z,u l 2221. \{/“

=) (423)

and

(A2k4)
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provided that N__ is nonsingular, Similarly, for the SH motion, we have

=22 . g
o =3.Y
(A25)
VTV Qu
when qzz#o. See Appendix B for the cases q,,=0 and det( 7__;]22)=0.
For reference elsewhere, we write these equations as
d T~ w -—
¢s - B.vd)s + C, Ws"L
vi=C o ¢ Ez ¥, (A26)
v = és Ve
whers .
- !
B, = N/ NEi)
B, = niiN/ niii
By= ¢,/
3 % k3 %ll (AZ?)
C.= N/ ned)
C.z niH/ i)

and 7)(!:;-’-) - hij Nicm = Nim Ny s

d d d u u u
The wave amplitudes ¢s+1’ \ys+1’ Vg and (bs, \Ps' \/S are
determined by matching boundary conditions at the irregular interface as
described in Chapter II. Then we can use (Alk4), (A16), (A23), and (425)

d d u u u .
to determine T \llﬁ, Vg and (I)ﬁ, \yo, vo' With these quantities,
we can determine, say, the motion-stress vector at any height z in the

upper half-space by using (A3). That is,

M. () = E, (&) £
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Also, in Appendix E, we shall use these quantities to evaluate a conservation

of energy flux check on the accuracy of our solutions.

The method used here is analogous to the method used by Harkrider(1964)
to express the field of elastic wave sources in a layered half-space, The
waves d)‘;_i, (P:, ete, that leave the irregular interface are considered
¢*, W*, and V*.

as source waves just as are the true sources That is,

since the primary field waves with wavenumber 7<° are scattered at the
irregular interface into waves having all values of K » We consider the
regilon near the irregular interface to be a source region for the scattered

field.

Note that, if s=1, we delete the layer matrices ém and a in defining
the Y] and Q matrices by (A21) and (A22), Similarly, when s=n-2, we delete

the layer matrices in defiming & and € by (A11) amd (a12),

Case (A2,2)., When s=h-1, the bottom interface is irregular, and we
have, simply =114 and Q =§._:2 the Uxlt and 2x2 identity matrices,

respectively, Obviously, the coefficients in (A17) are 81=BZ=B3=-C1=CZ=0’

= V* so that

* *
A1= ¢ y A2=\V ’ A3

“ #* d _ &d
¢S‘H ¢ ¢:" - ¢S+l

w . ¥ d . d (A28)
w’ﬂ - \y ‘{lﬁ - ‘{’54.‘
Ve ol Vg © Vsi-

Case (A2,3). When s=0, the top interface is irregular, and §=;h and

@=1,. That is, trivially,
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and

(429)

A3, Layered Half-Space Having One Irregular Interface,

The medium is changed in that the upper half-space 0 is replaced by
free space. Equations (A9) through (A18), relating the wave amplitudes
below the irregular interface s, are unchanged, Above interface s, we
shall express the three components of motion at the free surface and the

‘amplitudes of waves that approach the interface in terms of the amplitudes
of the waves that leave, We consider two cases,

Case (A3.1): s#0 , the general case involving a plane
free surface,

Case (A3.,2): s=0 , variable topography.
Case (A3.1)., Making use of (A3) and (A8), we have

i = N M, (2) (A30)

——
— wasan

ds = AQ' ) "_‘."_o (20’
- (431)
where
Z:é = é; (2;.) és-: é' ‘ (A32)

HEJR

= é;' (25-1] ' gs-p' e gt (ABB)
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Let 7, be the elements of the lx matrix f§ and G be those of the
~

2x2 matrix Q . Since stress must vanish at the free surface, (A30) may be
writien, using 2x2 block matrix notation, as

d ’
) & | Uq
gyi‘ 2.?" | Z)n W,
5] - |- _1. —_— =2
¢s‘; Qz: | EZZ 0
4 | 0

where uc', and wé are the radial and vertical components of displacement at

the free surface, Solving, we obtain

Ue LA

. (A3)
Y.

1
I

and

1\3‘2

. (A35)
d
Y; Y
provided that ’521 is nonsingular, Similarly, for the SH motion,
A R W
o = Vs / P
(A36)

= (50 /G) U

~
so long as q21=#0.

d d d
(Ps’ 12 g and v still satisfy (A26), tut now

/%(3,) : (437)
/h
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Case_(A3.2). When s=0, the free surface is irregular, and since no
waves exist above this surface, ¢):, q7:. etc, no longer enter the
problem, There are but three boundary conditions at the free surface, the
vanishing of the three components of stress; and, correspondingly, there
are ut three wave amplitudes d)s 17 \(/d and V§+1 to determine by

s+’
the method discussed in Chapter II.

A4, More Than One Irregular Interface in the Layer Sequence.

The layers below the lowest irregular interface and those above the
uppermost irregular interface are treated as in the cases already discussed,
The final cases to consider involve the region between irregular interfaces
r and s where, say, s > r. In the general case, s > r+2, Using (A3) and

(A8), we have

uc4

L., (438)

l“.Q~

]
NS
z

o (A39)

where
j = é; (Z;-.)' /jg., trere érﬂ _E_:I-*H (ZD--H) (AL"O)
Z__? § (ZS-'I\ as' ottt g_{rn gb'ﬂ (ZP’") ; (Al"’i)

We can express (A38) in block matrix notation as follows,
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d 4
o) [ %,
Ws _ =H l = \{/p-i)
oy e e e A b
¢3u J l J‘ ¢r+|
Y; =00 oER e

from which we write

(Al42)

d “ d
¢s -J ¢)S <t ¢l— +

= d

s

provided that the 2x2 submatrix \1 op is nonsingular. Similarly, if ki .
- J

d
are the elements of the 2x2 matrix E , W& can express vs and Vl_ 1 in
a
t B and ]
ems'of \/S an \/]H_1
w oo a d
Voo = (W/ k) Ve = (ka / ki) Wi
(A43)

V;, = (kn /ku) Vsu + (kn - ku I(u /ku) Vr':‘rl

so long as k +0.
€ 22

When s=r+2, simply delete the A and a matrices from (A%0) and (A41),

When s=r+1, the irregular interfaces are adjacent, and

J=1, XK=&k

so that we have, immediately, q;:: q)ii-i’ §+1= q)'g', ete,



220
Using the relations derived in this appendix, we can express the

boundary conditions at any irrggular interface in termms of the amplitudes of
the three outgoing waves in each adjoining solid plus three more amplitudes
for each of the nearest additional irregular interfaces, The integral
equations for the general case involving more than one irregular interface

are formilated in section 2.5.
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APPENDIX B

SINGULARITIES OF THE INTEGRAL EQUATIONS

In Appendix A, we found that the complex amplitudes of waves leaving
an irregular interface could be expressed in terms of the amplitudes of
incoming waves and source terms except when certain 2x2 matrices were
singular or when certain scalars vanished, For example, in equations (A34)
and (A35), we expressed the free surface displacements v!( X Y, wg( X))
and amplitudes of downgoing waves toward the uppermost irregular interface

¢g(7<). \Pz(k) in terms of the upgoing wave amplitudes ¢2(7<), \P:(‘K)

~N
provided that the submatrix 7_’_’21 was nonsingular; that is provided that

the determinant det 1], #0. Similarly, for SH motion V}(X) and vax)

were expressed in terms of Vg('K) so long as %21#0.

Quantities such as det 7;521 and %21 enter into the denominators of
the integrands of our basic integral equations (2.52), hence their vanishing
aloﬁg- an integration path renders the integral equations singular. For
example, if w is real, the integrals are performed over real values of the
x~-component of wave rumber k . We are then concerned with the real
roots of equations like

et Tlu (%, =0

~ (B1)
%z,(7{c»)=10

)‘/'I.

( &=L+

is the horizontal component of wave number).

According to (A34), (A35), and (A36), at these roots, we would observe

free surface motion and downward attenuating waves in layer:s in the absence
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of any upgoing driving waves in the layer, Evidently, (Bl) are the period
equations (dispersion relations) for locked or normal modes of P-SV and SH
wave motion in the upper plane layers. The waves ¢g, \l/(si, and V: are
attermating rather than propagating, in these cases, because otherwise
energy would be propagating downward away from the surface layers in the

absence of sources in the layers.

The medium for which either of equations (Bl) applies consists of the
plane layers above the irregular interface s overlying a half-space whose
parameters are those of layer s, l.e., °(s’ [58, ()s' (The layers below
interface s are replaced by a half-space.) For example, consider the
problem involving a single layer s=1 over a half-space where the free
surface is pléne and the interface is irregular. By (A32) and (433),

Z]= é;(zo) and §= é;'(zo)‘ Using (A1) and (A2), we find

-2i% ~i (2K kg ) /%

r~ I
7_77..1 = 2
= 2, (2% k)% -2i%

(B2)

i
o /2

oQ?
1]

~
Thus the zeros of det ?___721 are given by the roots of
2 / T, %
Fluwx)z=drvy + (2%-k,)
the familiar Rayleigh function (Ewing, Jardetsky, and Press, 1957),
~N
corresponding to Rayleigh waves in medium 1. Also, we note that %21

does not vanish; that is, for the single layer over a half-space, no
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d
singularities arise from expressing V in temms of vu. There are no
s s

trapped SH modes (surface waves) at a single interface.

We interpret, similarly, the singular cases (equations (A18))

det égll (%, w) =0

(B3)
le(R,W)':O

which arise in relating incoming and outgoing waves below the lowest
irregular interface., Equations (B3) are period equations for trapped modes
in an infinite medium consisting of the plane layers m=s+2,.....,Hh-1
bounded by the half-space ﬁ‘below and a half-space with the paramsters of

layer s+l above, The singular cases (equations (A27))

det 2-.722 (%, c0) =0

(B4)
222 (K, ) =0

are the period equations for trapped modes in the infinite medium consisting
of half-spaces, 0 and s, above and below the system of plane layers 1 through
s-1, Finally, consider the singular cases (equations (A42) and (A%43))

dAet gzz (%) =0

(B5)
k.. (X, w) = O

that arise in relating up and downgoing waves between irregular interfaces
r and s, These are period equations for trapped modes in an infinite medium
consisting of plane layers r+s, r+3,...., S-1 bounded by a half-space r+l

above and a half-space s below,
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We note that, in all of the above cases, at least two adjacent plane
interfaces are required for there to arise singularities in SH wave motion
problems. There are no normal modes associated with adjacent irregular
interfaces and, in fact, the integral equations would have no singularities
if all interfaces were irregular. Physically, this is because normal modes

are constructive interference phenomena that require plane boundaries.
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APPENDIX C

DETAILS IN THE DERIVATION OF INTEGRAL EQUATION (2.52)

Equations (2.44), (2,45), and (2.46) are expressions for the
components (in the propagation coordinates basis) of the k-spectrum
decomposed displacement and stress in medium m, in terms of the amplitudes
of upgoing and downgoing P, SV, and SH waves, We first substitute (2,50)
and (2,51) into the eqﬁations for layer s and layer s+l to express the
field at the irregular interface s in terms of outgoing wave amplitudes and

source terms, For the equations that follow we define

P =% (2,0 -2,) =9 &, ()

G0 = 1§00

Pos (X) = Yoy §, () (c1)
Gsu (¥ = Viw S0

)(M=Z7( -kﬁh m= S, S+l

The coefficients Ay, Ayseevsons, C1, C, are given in Appendix A. At the

upper side of the interface (layer s), we have the displacements

Us = 3, ¢, + a,
Vs' = as Vs“ (c2.1)

MS\
1

o
&

= o

3

+
o
wy
=<

3
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and the stresses

Sy'zi = b5 Vs (02.2)

S T ° T ©w
where v by ¢’s + b ¥
x (B, ef + ') ~inC et
6,=ixC, e - iy (Bel -e¥)
G,= B,e't + &' (c3.1)

and

b= [f (B e®+e™) = 2z Ce'¥]
Lls/us[{s Ez e‘Ps - 22’7);(52 ei%:_. e—‘%S)]
b=m [2xn (B ef-¢™) + £ C e™]
T = (P KL PR
E;,; g [2 %% G, e ‘ :‘ £ (B, &% + %)l ©3.2)
bs':/‘SiVs‘ (Bs e‘%s - e %S)

. = iP -ifs -
b,,‘/AsE(Zk:s-k:‘-?.?(*)(B.e' re )+27<1; Ce”
T - P - 1 -t
b,= psL (2K~ ka -2 &%) e+ 2%y (B, e - ™)]

i%s]

By= i (Bye™ + %)
by= ps (2K - Kg ) (B e+ ™)
m.-: Ms (2 k:r,— k;‘) az Q‘P‘



At the lower side of the interface, in layer s+l, we have

and

where

and

X d
U, U dfk‘ko) + @ cbsﬂ tQ, \P;n
ngu = VI*(S(k'ko) t Q3 Vsi\
= ’*a(k k ) + aq éSﬂ + as \"sd+|

-S'H

(s+v)

S. ¥ : S:'%, d(k‘ ko) + b, ¢:~H t bz %31

( s+l)

= S (S(k ko) + b3 (bs«ﬂ t bq\ysn

(i)

S ‘S CS(k ko) + b vSﬂ

(31)

Sex

{s+0)
S,

Xy'

Sy Stk-ky) + by o + b, ¥
= Spy S (keks) + by Vi

(s+\)

= S Q) (k-ko) + bq (bs‘ii + blo%:l

a,* ix(ePs B, gPn) 4 + v, C e “Gee
a,: ik C, 6P - i, (¥ -B ¢ )
a,= % + g gt

Ay - Ry (e Ps+t - B, e Ps-u) + X C, e (G5

P . -{
BBy Coe T +ix(e¥+pe W)

b= pig [ fon (€7 +8,6™) 4237 €, ]

b /“S-H [ )c;ﬂ

&P - 2un, (€¥ -, €M)

b “HMshi [ 2K Vsp ( e v - B, e Fs-a) t fs-ﬂ i -L(‘.w]
be= poo (27 G &P = £ (¥ 48,51
o 1 (<10, €
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(c4.1)

(C5.1)

(C5.2)



2 _Z'Xz)( (Psn ~{Ps

¢ "'{*
e ™+ B ") -2)7 C e b ]

bsz/uSﬁ [(Z.k: -

St @S L4

b= pe L(2KE = koo - 2K G € + 2%, (7~ B, e V)]
by 1 (€5 + 8, €1")

T ip, ' - iPse
qu/“m {dew' kl Y(e ™" +B,e | )

Bsas

- 2 ~Psar
blo-/“m (2 k:s_ﬂ- 1C, e

pS'H

The source terms in (C4,1) and C4,2) are

ok - ’iPS . 14 -t
W™ =(xA e tip,A,e Vou

-85

v¥=Ae

ke _ . - Pew ,
W =-i%, A€ t(KA,e

—f%s-u

and

*

S -1Ps41
Sz'z' T Mst [)(S-H A e

' -i1Qc4
¥ 2x i Age ]

x(n
[ 4
11

Y -l
/um [2-?7%-“ A e - 'fg., Az e B J

-‘.151»1

Syr ~ Ms (Ven Az €

~(fs+)

~B5a ]

* -— Vz 4
See”™ Msn [(z k:,m" k;w' 2%') A e = 2KV, A8

-5+

* _ .
Sx'y' T Msp LK A; €

‘ifx‘ﬂ

S;*:Y‘ - /u”' (2' k:SAH‘ k;s-u) A' €
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(C5.2)

(Cé)

(€7)

Next, we make the transformation from the propagation coordinates

(x',y',2') basis to the standard coordinates (x,y,z) basis. Using (2.31),

(2.32), and (2.33), we have
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Uu=w cosn - v sinn

V=W sina V' cosn

(c8)
wz= w’
and
52z = Sz’é’
e = Sy cosn - Sy Sinn

' .2
Syy= Syyr COSOL - Sey’ SIn2a. ¥ Sy Sin

» { .
SxfiL Sey SiN2.0 + Spyr €COS20 ~ 7 Syyr SIn2 N

¢ 2 . i
Syy= SX’X‘ Sin o RN Sx’y’ S'h 2-{1- + Sy'y' Cos L

The layer index has been suppressed in these equations, These expressions

apply separately to the components of stress and displacement in each medium

and to the source terms, Also, we note that

cosa =k /%
th_n_z’)]o /7( (CiO)
)'/z

x=(K+y)

Now, we postmultiply the stress tensors Sy (rg,w,k) and S_.4 (_z;s,w,k)
by n_ to obtain the stress vectors ‘;S(gs,w,k) and Is+1(3s’w'k) acting on

the interface s (equation (2.35))., The three components of stress on the
interface are
ta *~ S, sinY + S,, Cos¥
Tx = = Sxx SINY + 5,; cos¥Y

ty

(c11)

—Sxy SEHY + Sy3 cosY
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where (C11) holds separately for stresses in either layer and for the
source term stresses, In (C11), ¥ is the local interface dip angle;

that is d ?s o

tanyY =53 = %0

so that

. 4 ’ /2
siny =S a1+ 0)*]
‘ 2 -Y2 (012)
cosY = [1+ (%) ]
Equations (C2) through (C11) provide the details required for writing
the integral equation boundary conditions implied in (2.34). For example,

consider the requirement of continuity of the x-component of displacement
A A
(:_}s (rs,w) - [-'—-}S-l-l (Is,"’) =0

By (2.32), (C2), and (Ch), this is

o0 oo
I3 ’ ’ ’ . - - 9 -~
[T i) cosn = (- Vi) simaddi = (G, cosn 6 ¢ By conn )

d d -~ . u . o

, ikx+iy
- (uW¥cosa-v *s:'n.n.) S(k-k,)] e

('kX'fL.Voy
In (C13), we have restored the factor & . Using the

°ydk =0

sifting property of the Dirac delta function, we can integrate the source
contribution integral. Finally, we write the equation with source terms on

the right

[m [fu (%, %) ¢: t )C,,_ (%,x) §b:i, t T (%, %) \Psu + ﬁq (%,%) ‘Vs:u

" k ‘Ko X (C14)
+f'5 (R,X\ Vs t -fu (R,X) Vg-:] e‘ XU{!( = hl {ko,X\ el
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The ’(1 j(7<,x) and hy (%_,x) are given later in (C17) and (C18). We
- see that one boundary condition requirement (Ci3) at the irregular
interface yields a single integral equation for the six wave amplitudes
dJ:, d)gﬂ, ‘s", ‘4’:4_1' v‘;, and v§+1. Imposing the five other interface

conditions yields five more coupled integral equations of this form, We

write these equations as the single matrix integral equation

¥ ckx _ )
j ____}_(7“;X) Cxye dk = H (x,, x) eak,x (C15)

- oQ

where g is a 6x6 matrix whose elements are )(ij(k,x). QS(R) is 6x1

matrix of the amplitudes of the waves leaving the interface

C=1|% (c16)

and M (X,»x) is the 6x1 matrix of source terms “l;('?(o,x) given by

% * .
h=u cosa,~V *s:nn.,
"
h, W
R 3 * . . W
hs - -"(Sx"%" COS.(L, - Sy'l' Sln-ﬂ..) Sin Y Tt Si’z,’ COSY
(c17)
- % * L S ! ) * *
l'\q =~ (lex‘ COS?:n.o' Sx'y’ Sin2d, *Sy'y’ s:n.{l.)smy + (Sx'y COS.Q,‘SVF Smﬂ,) cosY

Lk o
he = U “sinq, + V' cosa,

R x * : * »
“\(, "('i" Sx’' Sin2.q, + Sx'y: coszn,-% S,',r stﬂ,) sinY t (Sx'z’ Singl, "Sy'z’ cos.ﬂ,) cosY
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The six equations in (C15) correspond, in order, to continuity of the
Xx- and z-components of disPlacement, the z- and x-components of stress
across the interface, and the y-components of displacement and stress.
The 36 elements of the 3 matrix are expressed here in terms of the

coefficients ay, &j, bj , and Bj given in equations (C3.1), (C3.2), (Cs5.1),

and (C5.2),
f" < Q, cosn fz, = aq
fa=- @ cosa fnt -y
§,3 * @, (osa -fn = Qg
fu=-0Q, cosa f.4= Qs
fc= -0y sinq fs= 0
)c,,, = Oy Sinn fu =0

_ - (c18)
ﬁ.,’ ==h, cosasinY t b, cosY

537.‘.‘ b; cosQ sinY ~ A, cosY
fn = ’ln, cosn sinY t B,_ cosY

i

§3s' = b_,- SinLL sinY

11

b., Cos. sinY = by cosY

fn == bs- SinaL sinY
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- I 2 T .2 . L
y = (b, cosa + by Sin“a) sin¥Y + by casa cosY

£ b
~
t '

(b cosin + bq sin:n) sinY = by cosa cosY
fes = (/;, cos + Z,, sin-) sinY t Eq cosn cos¥Y
fuy = (b7 cos:n + b,, Sin-(1) sinY - Aq cosqLcosY
f‘l(" 2 Ze Sinn cosn sinY ~ gg' sinL cosY

)cqe ==2 65« SIhLL cosa sinY + b; Sinn. cosY

- a| Sin-ﬂ

M
) i

=-Q, Sinn
3‘5’3 = -C—l,_ Sin (c18)
fou = -y sina
{'s: = a-3 cos.

foo =- QA; cosn

—

(69‘64) SinL cosqa sinY + b3 SinsL cosY

i

S
fr=- (ba=by) sin cosa sinY - 53 SInpcosyY
fa= - (1-97-5,,) SinqL cosn sinY + Eq Sinn cosY
foa™ (by-b,)) SInAL cossinY = by SiheL cosY
)cbs = "/33« cos2q sinY t Zs‘ cosa cos ¥

5’5(, = /38 cosS2Nn sinY ~ 65- cosqn cosYy
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APPENDIX D

REPRESENTATION THEOREMS FOR USE IN ERROR ESTIMATES

The residual discontinuities in stress and displacement at the irregular
interfaces provide one measure of the accuracy of our technique; however,
the errors of most interest are those in the displacements at the observa-
tion positions (usually along the free surface), Using an appropriate
representation theorem, we should be able to compute the errors exactly in
terms of the residuals at the interfaces and thereby correct the approximate
solutions to obtain exaet solutions. Indeed, in the method of Banaugh (1962)
an exact solution is formulated initially in terms of such a representation
theorem. However, just as the Banaugh method can be complicated for the
type of scattering problems that we consider, the exact use of the represen-
tation theorem approach to correct our solutions can be exceedingly more
involved than is our approximate method, This will become evident below,
In this appendix, we lock at the form that the representation theorem takes
in the most simple problems in order to understand qualitatively how errors
in displacement at the free surface are related to errors in displacement

and stress at interfaces,

Firstﬁéonsider the two-dimensional scattering problem of harmonie SH
wave motion in a layer over a half-space (see Figure 2,3), The exact
solution displacement field 'Ui(x,z) in the layer satisfies the scalar
Helmholtz equation, and can be written in terms of the Kirchhoff integral

solution
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. ‘v:{ ': ,) L ( ] ; 'n '
M(x,z)=£/t.[6-(x,e;x',2) é’;‘,,}'j- - Vxz) aG;: 02) 1dS (o)

The variables x' and 2z' are coordinates on the line boundary S
consisting of the free surface z=0, the interface z= CKX),.and verticals
at x=+0o0 connecting the free surface and interface; /Hi is rigidity; and
'SFT is the spatial derivative in the outward normal direction to S. The

function G satisfies the inhomogeneous wave equation
2 2 . ; s
MV G tpw G = -G x-x) §(22) (D2)

throughout the region 6{ bounded by S, Here, fﬁ(x) is the mass density

and CS(X) is the Dirac delta function.

Our approximate solution Vjy also satisfies the scalar Helmholtz
equation within the layer. Therefore the difference or error, AV, =V V,
must satisfy (D1). By assuming that a small amount of attenuation exists
within the layer, we can neglect the contributions to motion from sources
along the vertical lines at infinity., We now define the Green's function
G to be that solution to (D2) whose normal derivative vanishes along the
plane free surface, The stress~-free requirement at the free surface was
imposed upon both the exact and approximate solutions to our problem and,

hence, upon the difference AV,y. With our choice for the Green's

[¢]

function, the free surface contribution to the Kirchhoff integral is zero;
therefore, the error in surface motion is expressed in terms of the errors

in displacement and stress along the interface as
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AV, (x,0) = J[G(X,osx; E0)) AT (68) = AV (G8) T (x,00x, §)1dS (03)
2:% )

, IVin(X,8) Qv (x;
where AT, (X, %) -‘-/M,[ aln — - an =) ] is the error in the y

component of stress along the interface and

90G (x,0;%, ¥)
Te (x,0;%,8) = s, n

The Green's function that satisfies (D2), the free surface condition,

)
and the radiation condition consistent with € time dependence is given by
0] ” wR’
G(XEXZ)" [H (% ) ('7;7)] (D4)

'/2
where Rz [(xx)"+ (z-2')° ]

R * [(x~x')7' + (zﬁ')z]‘h

)
H; is the zero order Hankel function of the first kind. Along the free

surface, z=0, this becomes
{r) wP)

G-(xoxf)- H(

wherse r = [fx_x')l+ tz ] ‘z

By using (D3), we could compute the exact free surface motion provided
that we knew the errors in stress and displacement at the free surface.
However, we do not know these errors;. instead, we know only the differences
(residuals) between the approximate solutions in the layer and in the half-
space. We could use these residuals to obtain the exact solution if, in

the representation theorem, we let the enclosed region consist of both the
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layer and half«spéce and treated the correction field as the solution to a
saltus problem (Burridge and Knopoff, 1964), However, the Green's function
in the saltus problem would be the displacement, in a layer of nonuniform
thickness over a half-space, caused by point source along the irregular
boundary. The determination of the Green's function (which varies with
source position in a complicated way), would be an exceedingly more

difficult task than that in our approximate method of solution.

Our goal here is the more modest one of estimating the effects of
residuals upon computed motion at the free surface, The residuals are just
the differences between the real errors (at the interface) in the layer and

in the half-space, That is, at the interface

~~ -
VEVu-Viy TAV,~ AV,

o (D5)
T=Tw-Tan =0T -ATu

~n

where {} and T are the displacement and stress residuals, respectively;
and AVYyw and ATin  are the real errors in the half-space at the inter-
face., In order to make a low order estimate of the error in free surface
motion, we shall assume that the residuals are comparable to the actual

errors at the interface., That is, at the interface,

VX AV,

oY

AT

lacd

~
Using V and T as sources in (D3) yields the estimated error in

displacement at the free surface
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V, (x,0) = -é-f[ (%) H?(l%,t) + ('%,_ ) cos($-Y) H‘,‘)(%)]ds (D6)
2: L) :

where Y= dip angle at the interface
tan” ()

H(; is the first order Hankel function of the first kind. Without
actually evaluating (D6), we can now discuss the relative influence of the
dimensionless residuals $//“. and COG'/ B, upon motion at the free surface,
The Hankel functions are decreasing oscillatory functions of their
arguments. The rates of decrease are largest for small arguments;
moreover, Iég (x) dominates Hg (x) for small values of x., Hence, for
example, in the case of a shallow depth of interface (wt/ B, 1 ), the
surface motion is determined primarily by displacements at positions on
the interface nearest to the observation point. The rates of decrease of
the Hankel functions with inereasing absolute values of their arguments
are greater when frequency is complex., Thus, when W is complex, we expect

localized residuals to yield errors that decrease rapidly with distance

from the interface.

The quantities m, and w/g, by which the stress and dispiacement
residuals are normalized in (D6) provide a means for comparing the root-
mean-square errors (RMSE-see equations (4.1) through (4.5)) in stress with
those in displacement. We multiply the interface stresses by B»//u,w= ‘/{’,ﬁ,w
to obtain their values in terms of 'equivalent displacements'. Although
the conversion factor is a crude one with no meaning beyond that implied

in (D6), it enables us to obtain, in each practical problem, a single RMSE
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by weighting the stress RMSE and displacement RMSE according to the mean

amplitudes of stress and displacement at the irregular interface.

For convenience, we use the same conversion factor in more complicated
problems., If the medium were multi-layered, the representation theorem
integral (D3) would be replaced by integrals along each irregular interface,
and the Green's functions would be much more complicated than Hankel
functions. An alternative conversion factor might be 9?§ﬁsco » where
f; and (3; are the density and S wave speed in thé layer just above irregular
interface s, The choice z/f.ﬁ,u> is generally a more conservative one
because density and wave speeds are usually lowest in the uppermost layer
so that the stress RMSE is wéighted more heavily than the (usually smaller)

displacement RMSE in computing the single measure of error.

For the single layer over half-space problems involving arbitrary
azimuth incidence direction relative to the strike of the irregular interface,
the representation theorem analog of the Kirchhoff integral is the Somigliana

formula (Ben-Menahem and Singh, 1968)

U (r) =f{__@fr;:')- [Sr)el =[S () -e T U bdr o)
; g

where S&(I) is the vector displacement field at space position r within a
volume of medium 1(the layer) bounded by the surface L, ; €n is the unit
vector outward normal to L : g(g;zn) is the Somigliani tenser, which

satisfies

M THVE) + M) V(T-6) + p0’6 =77 L,8(r-n)  (8)
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where A1 is the Lame constant and 1. is the idemfactor; (S (z')-e ) is

3
"1

the stress acting on PN s and gG(gg is a triad or tensor of the third

rank, Iet x, y, z be interchangeable with x4, Xos Xy respectively., Using
indicial notation, the elements of G are gﬁ(;;r ), representing the displace-
ment component in the Cartesian direction x_ at position r due to a local-

)

ized displacement in the direction X at position Iy The triad 23(3330

has components

) g dar . 995
Sy Adk axn T M (‘JYJ *—ax_k)

where the summation convention for the repeated index n is used and Skj

is the Kronecker delta function,

Proceeding as in the SH wave motion example, we define the Somigliani
tensor (or Green's funection) G to be that solution to (D8) which satisfies
the stress-free condition gG(x,y,O;go)'§h=0 at the plane free surface,

Then, since the stress must vanish at the free surface in the exact solution,
the displacement field at the free surface can be written in terms of dis-

placements and stresses at the interface z= c;(x)

U(XY,O\ f O‘Y_[{G[Se] [Sc,e]ul}d (DQ)

E )

where we neglect the surface integral contritumtions along vertical planes

at y=+e0 and x=+ed, The displacement field Qi(g) and stress field gl(g)
(MY :

both depend on y through the common factor € where Mo is the y-

component of sourece wave number (see section 2.3,2). We can perform the

integration over y' to arrive at the line integral
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'(X,O) = { I' [él’.g'\] - [2;'@\]' g" }do— (DiO)
. (x =

where

U (xy,2) = Y xz)e”

S (x,y,2)= §.' (x,2) e”"y

) o0 . ’
' NN IS 2 WY,
__G;(x,a;x,z)e L‘Q(g;g)e dy
[\
§ (x32 xz)e”oy J:”éa(r, ')e”’yol'

Our approximate solution satisfies the Somigliana formula and an
equation similar to (D10). Hence, the difference between our solution and
the exact solution is found to satisfy

AU o) = Un-U = [ §6'x,0;%, 8- [ASw (X8 €0]
2 r(ﬂ

' ’ D11
“[§G(x,o;x,§',)-§.‘]-ﬂt_},~(xj’;’,)}do- (o11)

where

NOﬂ

S,,, (Un) - (U)

The line integral (Di1) is the extension of result (D3) to the problem
of arbitrary azimuth incidence, The error in each component of displacement
at the free surface is a line integral of the errors in the three components
of stress and of displacement at the irregular interface weighted by the
appropriate component of the Green's function % and of its related function
ng €, The difficulty in using (D11) to estimate errors is compounded over
that in the comparable SH wave motion case not so much by the vector nature

of (D11) as by the form of each component of G. For even the two-dimensional
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case of P-35V wave motionv(ycfﬂ) the four pertinent components of G are the
complicated integrals over the x-component of wave number given by

Fredericks (1959).

Because the Green's functions are so complicated, any single RMSE
measure of error based on interface residuals is necessarily crude, and its
use is justified on the basis of expedience. Taking a clue from the SH
wave case and the form of the Green's functions given by Fredericks, we
chose the conversion factor ;15,kx,ﬁ)v2u for convérting stresses to
equivalent displacements. With all interface values in units of displace-
ment, we then weight the six different EMSE at an irregular interface by
the mean value of each 'displacement' to obtain the single RMSE measure of

accuracy.,
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APPENDIX E

CONSERVATION OF ENERGY

In this appendix, we derive a relationship among the computed complex
wave amplitudes in the lower half-space that can be interpreted in terms of
a conservation of energy flux requirement for the exaclt solution plus a
small error term, The error term is shown to be a weighted integral of

the residuals at interfaces,

~twt
For problems having € time dependence, the particle displacements

in each isotropic layer m satisfy the Navier homogeneous equation
2
(o\f-i-pw ) Ulr,w) =0 (E1)

where I = mdiv grad + ().+/u) grad div, the Navier operator; (J is
density; w is real frequency; Y is the particle displacement vector with
components ( Uqgs Uss uB); and r is the space position vector with components
(x,¥,2). Equation (E1) is the same as (2.20) except that we have deleted
the symbol A over the displacement vector and temporarily deleted the
layer index m ., Iet Y and L_V be two vector fields which satisfy (E1)
throughout the volume T bounded by the surface 2. . These solutions

satisfy the Betti identitv (Ben-Menahem and Singh, 1968)

N

(V)W -

nwn

#1 o)

(W)V]edl = {LVW-LW)V}Iidrt ()
T

where

SM=AL(VV) + u (V\_l_’f‘_{V)
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is the stress dyad field associated with the displacement field Y (see
equation (2.21)), dots denote single dot products, and Qn is the unit
outward normal vector to 2 . The right side of (E2) vanishes by virtue

of (E1) so that

S(VY)-w - . : =
FLsw-swr vl g dz=o -
Our solution field Y is a complex quantity. When frequency wis real,
the real and imaginary parts of Y satisfy (El) individually. By letting
V= U'+ iU" where U' and U" are real, and choosing V= U' and

W= Y"in (E3) we get

(me féC!)'!*zéndZ =0 (24)

where .Qm denotes 'imaginary part of' and the asterisk denotes complex
conjugate, Using indicial notation with the summation conventior for

repeated subseripts J , we rewrite (E4) as
%
me S-yj'uj dT =0 3:1,2,3 (E5)

where S‘VJ is the J component of the stress vector acting on the outside

of &, .

Equation (E5) is the analytic statement of the fact that the time
averaged net flux across a surface enclosing a2 volume containing no sources

is zero in this steady-state problem.

Now apply (E5) to each isotropic layer m in the layered half-space

problem, We have
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m)  (m) ¥ _
Qh\ ? S-yj' Mj 0‘2_ =0 M:l,z’u., n=~1

@)
oqmg S.pJ (n').‘ :0

where the surface Zm bounds the volume Tw along the interface m-l above,
interface m below, and vertical planes at x=0, x= L, y=0, y=1; the surface
Zﬁ consists of the interface et above, x=0, x= L, y=0, y=1 on the sides,

: (m)
and a plane at large depth z=H below. Because the WUj all have the

{
common y-dependence @ %Y

, the integrands in (E6) are independent of y.
Hence the integrations over the vertical planes y=0 and y=1 cancel and we
may replace the surface integrals in (ES) by line integrals in the x-z

planes.

For convenience, let the plane source wave direction be such that L
is an integral number of wavelengths in the x-direction. This choice
simplifies the integrations while not affecting the results. With this
choice, the integrations over the lines x=0 and x= L cancel, leaving only
liné integrals along the interfaces and along the plane at 2 =H, Now

tm

redefine S.pJ be the stress acting on the bottom of each bounding

interface, Summing the line integral equivalents of (E6) yields

(R4 m* At rm) cf»)* tm«) cn.m*
E7
f () ¥ (E7)
= 9~/m -pJ u ol j:

(n)
where O’M denotes interface m , J, is the free surface, and S3 j are the

components of stress acting on a plane 2 =constant,
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()
In problems invelving plane free surfaces we require S'Pj =0

identically, and therefore the right side of (E7) vanishes. When the free
D
surface is irregular, S‘yj are residual errors arising from inexact

matching of the stress-free condition along the free surface, Similarly,
)] (p-m () (p¥)

at a2ll plane interfaces 0';, we require Sv; < and Ulj = Uj so that

the integrals over plane interfaces vanish in (E7), Thus we may write (E7)

as
fL (%) (M ¥ _
Qm [ 33, " dy =7 | (E8)
2:H
where
;+\) {gﬂ)* () @*
e Z(ﬂm[[ =Sy i lde (59)
¢ a;
(o

In (E9), the summation is over the irregular interfaces only, and § i =0,
(

M,,}- =0 for the half-space problems.

Equation (BE8) is an analytic statement of the conservation of energy
requirement in our solutions. The left side integration can be readily
evaluated, as we show below, It is the time averaged net flow of energy

across the plane at large depth 2=H, Now let

(i) ()
MJ = u. -

J J
3'“’ _ diw Sm (£10)
?j vj N i ‘

be the displacement and stress residuals at interface i, Then (E9) becomes
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pe T 0n ] {5 0T G 8 6 e (s11)
9 j=12,3

Thus, ") is a sum of integrals of interface stress and displacement residuals
weighted by the computed solutions at the irregular interfaces, If our
computed solutions were exact the residuals, and hence 7 , would vanish.
Then, by (E8), the conservation of energy requirement for the exact solution
is that the time averaged net energy flow across a plane z=H in the lower
half-space is zero. Interpreting the residuals as sources and sinks of
energy, we conelude that %) is the net time averaged energy flow into the

medium from artificial sources along the interfaces.

If the interface O were not free but rather bounded an upper half-
space O , we would simply include an additional surface integral in that
medium. Equation (E8) would be replaced by

A INE. ‘@ X
meo 535 U; o x =Qmi% S;;j U; dx t7 (E12)

2:1,' j:',2,3

where z=h is some large constant height in half-space O.

Let us now evaluate the integral on the left side oi‘p (E8)., Recall
that in our solutions the components of displacement u;'n), J‘=1,2,3 are
expressed as superpositions of plane wave displacements each characterized
by an x-component of wavenumber k. (The notation in Chapter II was
(&ﬁ, Qﬁ, fvﬁ ) for the displacement components.) Those plane wave
contributions are written in terms of P, 8V, and SH wave functions
(see equation (2.39}); Likewise, the stresses Sfl:j] can be written as

superpositions of stresses in plane P, SV, and SH waves. Inserting these
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plane wave representations into the integrand of (E8) yields a large
complicated quadratic form that includes double summations over the wave
nmumber indices m and n. The terms involving regular waves only, have the

form
( :‘ )* (WNO' ) Q?.Tl'i (m-mx/L + L(Vﬁ”h- ‘l);;,")z
h)’\ '\,m
d ol
where (Pﬁ n and \Pﬁ o 2Te the complex wave amplitudes of the nth scatter
2 9
order P waves and mth scatter order 3V waves, respectively, downgoing in
[
half-space B ‘}%‘m is the vertical component of wavernumber of the mth
b
scatter order 3V wave; and.’V%’n is that of the nth scatter order P wave.
o

Other like terms in the quadratic expression involve the SH wave amplitudes

\/% n and source wave amplitudes., Terms involving inhomogeneous waves
’ -Am(#,)
m z
have factors like € me By taking the depth H to be very large, the

inhomogeneous waves are insensible, so that we need sum over regular wave
contributions only. The integrand in (E8) is greatly simplified by the

orthogonality condition

Loami(m-m)x/L
£ e o X ={L m=n

)

O, m#n

Therefore, of the terms like (E13), the only ones remaining after

integration look like

02 Y () e

i(VRa-Vin) 2

But we next find that such cross-product terms appear in complex conjugate
pairs. The sums of the conjugate pairs are real quantities which make no

contribution to equation (E8), The terms that remain after integrating and
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taking the imaginary part involve no cross-products of wave amplitudes.
After these reductions we find that

1 d 2 ; :
7 :/u;\l L ? { kﬁ# (.Pg:‘\ } ¢gm’ + 7)'{" / [‘l/x‘f"lz) t -P'A\'M ‘ V::n ,1}
(E14)

- RS *r kS ’ * k8 [ 2
psLf kg (v 1Y+ 2 TWT1T) £ 2 [V
K x
where fb » WV, V" are the source wave amplitudes (equation (2.41)), only
one of which is nonzero in a given problem; 1;, ¢g are the vertical
components of the source wavenumber; and kbg= 00/73:. The first term on
the right is a summation of the contributions to downward energy flow in

each regular plane wave, and the second term is the upward energy flow in

the sourece wave,

Eﬁuation (E14) can be rewritten as

% {kag (Vin | O5n 1"+ Phn [ W00t D50 ] VAl
K (Vo 19X 9 W + 7 TVHT

= [t+g (£15)

with |
5 - ] :
ws LT ky (vl 9+ 2 [9*1) ¢ 2 v (516)

In problems involving a solid upper half-space 0, we add to the numerator

of (E15) the summation over regular waves in the upper half-space
ks w ;1 f “ 1 [} u ;%
Z { k(_). (VOJI\ ’ ¢o‘,£ t 1)0,'\ [Wa,;., ) t Vﬂ,h I Vﬂln\,

The small quantity 8' is the conservation of energy error measure that we
list in Table F1 for the problems involving real W , Whereas small RMS

errors in the residuals infer that the integral equations were solved
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reasonably accurately, it does not follow that the equations of motion

were correctly programmed for computation. Small values of the 6 error

indicate both that the boundary conditions were well approximated and that

the equations of motion were probably written correctly. The e; errors

listed in Table Fl are small and, in most instances, sizeable contributions

to the energy flux were made by the higher order scattered waves., Thus the
6 error measure is not dominated by the energy flux in.the primary

scattered waves,

We cammot use this error measure when w is complex. In that case, the
real and imaginary parts of Y do not individually satisfy (E1). Because
the source wave is nonstationary, the upward energy flux through the plane

z=H is greater than the energy flux returned,
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APPENDIX F

TABLE OF ERRORS AND CRITICAL PARAMETERS

The errors for every example presented in Chapters IV and V are

listed in Table F1, Each example is tabulated according to the number

of the figure (column 1) in which it appeared in the text., Where more

than one case is presented in a single figure, the values in the other

columns distinguish the cases, The symbol ¥ appearing in column 2

indicates that the errors are presented for a case that was investigated

but not plotted in the figure, The symbols in the table have the

neanings

2N+1
e

o

RN

]

Wpe W

RMSE

#

i

munber of scattered wave orders,

incidence angle from vertical (positive from lower left),

frequency = WRIZTT .

decay time = 1/ Wy,

real and imaginary par:ts of radial frequency,

amplitude of irregularity = C . - T, .

shortest wavelength in a medium bounded by an irregular
interface,

-‘%— nax = maximum g?adient along the interfacse,

basic periedicity length (usually 256 km),

typical width of anomaly (see equation 4.7); in the c@se
of a step, W is twice the width of the step,

relative root-mean-square error ‘(squations (4.4) and

(#.5)); a weighted average of the errors in each type
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i

of interface residual,

conservation-of -energy-flux errer measure (equation (&.6)).

252
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APPENDIX G

RAY THEORETICAL METHOD

The ray theoretical solutions with which our solutions are compared in
Chapter V are obtained by the simple ray tracing method described here, We
shall consider only casss involving a singlc layer over a half-space as
shown in Figure G1., Both media are homogensous and isotroplc, hence ray
paths are straight line segments joined at the irregular interface z= c(x).
The medium is uniform in the y-direction and, for convenience, we consider
only plane source waves that propagate parallel to the x-z plane, TFor now,
we restrict the source wave type to be SE (particle motion confined to the
v-direction). The case of coupled P and SV wave motion will follow directly.
We further 1limit the complexity of the method by ignoring multiple reflections
within the layer, The determination of ray paths for multiple reflected waves
in problems involving irregular interfaces can be exceedingly tedious. Thus
these solutions differ from those involving scatitering at the interface
connectihg two half-spaces only by the effect of th~ fres surface, TFor SH
wave cases, the free surface introduces a factor of 2 in amplitude at all

values of x along 2=0,

We wish to determine the amplitude ratioc VS(KS)=VS(XS}/VD and time delay
At (x )= t (x )- t.(x ) at positions x=x_ along the plane free surface,
s 8 5 s D' s 5
Here vy and tD(xS) are the amplitude and arrival time that would be obtained
if the layer were uniform with thickness D; VS(XS) and ts(xs) are the
amplitude and arrival time in the case of the nonuniform layer. Obviously

5;(XS)=1 and z&ts(xs)zO at positions x far removed from the isolated

irregularity,
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Consider the time delay first, Our approach is to compute the time
delay A'ts(xs) and position C(x,,0) along the surface parametrically in
terms of the x-coordinate of the position P, (x, 8(x)), alons the interface,
through which the ray passes. let the incident ray direction make the
angle 60 with vertical., The ray is refracted at the interface z= E(x)

according to Snell's lay
sin(8,-¥) = (F/8.) sin (8,-Y)

where 91 is the angle from vertical of the refracted ray in the layer,
(3 n and (32 are the transverse wave velocities in the layer and half-space

respectively, and Y(X) is the loecal interface dip angle given by

< d 800 |
Y(X) = Ten —J5 (62)

—

Where the interface is flat, we have 91 (x)= © with

6 = Sl’h—’ [ {p‘/ﬁz, $in 90] (63)

The coordinate X is then given by

X (X) = x + §x) Tan 8 (%) (Gk)

Referring to Figure Gl, let L denote the distance from P to the surface

position (Xs,O), If the layer were uniform, the ray arriving at Z would

have been refracted at position R and L1 would be the distance traveled
through the layer. The position Q is the point of intersection of the
source ray through-R and the source wave front through P. If L, denotes

the distance from @ to R, the time delay is
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L L
- ) (G5)

AUl =g g T

After some trigonometry, we get

b
i

g(x) sec 91
1 D sec [ (Gé) .
(€-D) sec 90—}- [g’(TM Gi_TuBO)-D(faué _me,)] sin 90

b
il

b
il

To compute the amplitude anomalies, we start with Rayleigh's result

for plane harmonic waves that the mean energy density is

E=3 (’“’1'41 (67)
where (’is density, @ is frequency, and A is wave amplitude, The energy
density in the incident plane waves in medium 2 is independent of position.
For waves in the layer, E is variable owing to reflection losses at the

irregular interface and geometric spreading (and converging) of the waves,

Llet v*denote' the displacement amplitude associated with source waves
in the half-space; vi(x), the amplitude for waves transmitted across the
interface at P; and vs (x s)’ that for waves at the free surface position

(XS,Q). Using (G7), we have

Velx) V06 VD s
T N =25 T (&)

where | is the amplitude transmission coeffici=nt at interface position P,
Ey is the energy density of waves upgoing from position P, and 3/ is the
energy density of waves afriving at (XS,O). The factor 2 accounts for the
reflaction of the SH waves at the free surface, For the transmission

coefficient, we use the value appropriate for plane waves incident at a
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plane interface, i,e, we neglect interface curvature, The familiar

expression for T is
T=29,/(3,+3,) (69)

Where 3’,}:("] ﬂj cossj is the characteristic impedance for waves in medium J ’
d = eo" ¥ is the incidence angle at P, 61= 91-Y is the angle of

refraction of waves leaving P.

To obtain the ratio ES/E1 in (G8) we require conservation of energy
flow along tubes bounded by rays in the layer, With no enerzy sources or

sinks in the layer, we require
E,p (da) = £, (day) (G10)

where dai and das are cross-sectional areas of a single elemental tube
at P(x, t’ (x)) and at C(xs.O). For our two-dimensional problems, (G10)

reduces to

E/E, = dd/d) | | (611)

where oui= dai Ay and aus= das Ay with Ay some fixed length in
the y-direction. Figure G2 illustrates the geometry for the computation
of Es/ E{. Absolute values are used in (G11) to cover the situation in
which C lies beyond a focus (point of zero cross-sectional area of the
elemental tube of rays), In this approximation, amplitudes artificially
become infinite at such focal points or caustics. Let s be a line
element along z= t’ (x), We have

_ . ldsl cos(6.-Y)
Es /B = Tyl cos B, (612)
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and

ols = sec¥olx (G13)

Differentiating (G4) yields

0‘1'&9
[If-STan@f? -

{dx (G14)
&

where we have let s= AL o the local slope at the interface. Now,

dTa;:Su =sec‘9‘%% and 0:“9(‘ can be obtained from (Gl). Putting

(G13) and (G14) 4into (G12), we find

) 5, cosY B,cos [ 0s-Y)
Es /€ = } c:;s(efy\ g | + sTane,'!- Esec” 9, tosYd {‘ [‘ cM'B:’-)’) ]}I
(G15)

L is readily seen that & /’" =1 at large distances from the interface

anomaly, Therefore, by (G8), the normalized amplitude VS(XS) is

- _ V;(XS\/V* _ £
Vs (Xs\ = Vp /V* - TD s/E| (G16)
Pb(ao COSB

where T :Z[ It "'"—(;,l fpcosB, ] is the transmission eoefficient at the flat

portions of the interface,

It is the amplitude anomaly Fs(xs) with which our solutions are
compared, We have mentioned the artificially large amplitudes that would
be computed at ea%stics. Also note in (G15) that the amplitudes are
dependent uypon *;I;{; and, consequently, are sensitive to small-scale
details in interface shape. This accounts for the discontimuities in the
ray theoretical solution, for example, in Figure 5,1, The ray theoretical
time delays (equation (G5)) are less sensitive to small details in inter-
face shape. Our wave theoretical solutions are also not sensitive to small

features, and therefore the time delays compare more favorably than do the

amplitudes.



264

The extension of this ray theoretical approach to the case of incident
plane P or SV waves is straightforward, P or SV waves incident upon the
interface give rise to transmitted P and SV waves in the layer, The arrival
of either of these wave types results in two components of displacement at
the free surface, Let us consider the example of P-type source waves

directed at the angle O from vertical, According to Snell's law, the

o,p
transmitted P and SV waves depart from interface position P(x, |« (x)) at

the angles el,Pp and 6, from vertical, given by

' DS

sin (6, ,,-Y) = (%./,) sin(8,,-Y)

hPP
sin (8, p5=¥) = (B./at,) sin (86,5-Y)

These refracted waves propagate independently, arriving at surface

positions x and x_ __ with delay times (A% and

s,pp S,p
Ot

refracted P wave if the layer thickness were uniform.) These quantities

=t -
S,pp S,pp tQ»PP

s,ps‘_'ts,ps'tD,pp respectively, (tD,pp is the arrival time of the

are computed using equations analogous to (G4) and (G5).

'In the computation of the amplitude anomalies for the vertical and
horizontal components of displacement at the free surface, we again consider
reflection losses at the interface (neglecting curvature) and follow tubes
bounded by rays in the layer. The vertical component pr(xs’pp) of
displacement amplitude associated with the refracted P wave (P wave source)

is computed from

Wop (¥s.00)  _ ¢
PP¢; pp! . F'Pw-(f' Tep (G17)
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In (G17), CP* ¢s’ and d) are P-wave amplitudes analogous to the displace-
ment amplitudes v? Vi and v, in (c8); 'T'Pp is the transmission coefficient
for P waves incident to and transmitted across the irregular interface;
and K pw = Wop (Xs)pp)/ ¢,( X;,Pp) is the coeffielent expressing the vertical
displacement at the free surface in terms of the amplitude of the arriving

P waves., The ratio d’s/ ¢1 is again determined by conservation of energy

flow in a tube of rays, that is

/& =V Eep /E0p

The energy ratlo Eg' P /E.) p is given by an expression like (G15) where the
quantities 91, 90, (3'1, and (32 are replaced by those appropriate to the

P-type source and transmitted waves.

When the souree wave is SV-type (amplitude \P*) or the refracted wave
is SV-type (amplitudes ‘{’1 and *{’2), the transmission coefficient 7;,. is
replaced by Tp; , ;p s OF Tss (the first subseript refers to source wave
type and the second to the transmitted wave type). Thess transmission
coefficients are analogous to those in Knott's equations (Knott, 1899; Muskatb
and Meres, 1940). They were rederived for this study using the Haskell
matrix technique; that is, by equating the motion-stress wvectors in each

medium at the interface, Using matrix notation, we have
cT| - Tee Tps - _L_ [/Yu "’?"’
= Tsp Tss A -X‘“ /(" (G18)

A:j" /fu ‘/f.z j-u
[Zk (I + ’“’ ) -

where

v )
7 2—/‘&‘1%1



266

Ly W
ju zk‘- [Zk (,1'/(1,,‘!) ) -y 2 /ul{]
, 20w (1-4) - & (2
jza'z% [ 2[('7)(" ‘i"'"(/.‘_'ﬁ {
In these expressions,
/uJ' is the rigidity in medium j; (j=1,2)
kpj ""/ﬂj
A%g =°’/Og
V,‘ ﬂéwj casd‘qj
7/}1 = k/}.;. Cosd\ﬁj
(G20)

J“, is the angle of reflection (or refraction) for P waves
/

' é‘ g, 1s the angle of reflection (or refraction) for S waves

/

e kﬂ; Sin Jp,

’6’} ik ﬁ:

The frequency w is a dummy quantity here, i.e. the elements of 'T' are
independent of W so long as no critical angle is exceeded (all waves are

regular).
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The ratio pr is one of four similar quantities - Fpy ; Fpu, st’ Fso -
where the first subscript refers to the arriving wave type and the second
refers to the component of motion ( W for vertical and VU for horizontal).
These are derived by writing the motion-stress vector al the free surfacs
in terms of the arriving and reflected wave amplitude vecltor and requiring

the vanishing of stress, We find

(G21)

oy
[ =
]
'
W
P'»»
x\
N
~N
T

o
L 3
s

2ika v 4, /F

where F ° »{/L'i' t[/g‘v[ V;, is the Rayleigh wave denominator and the aﬁglz&s
Stxt and (Yﬁ, in (G20) are angles of reflection at the free surface,
Finally, the displacement amplitudes compulted by equations like (G17) are
normalized to similarly computed amplitudes obltained for the uniform layer
problem normalization is to the vertical component for incident P waves

and to the horizontal component for incident SV waves,

According to this ray theoritical description, motion at a surface
position Xy has contritutions from both P and SV wave arrivals. If xg lies
between caustics, there will also be multiple arrivals., When comparing
with the wave theoretical solutions, we may include the effects of all
arrivals by convolving this spike time series with a harmonic wave, When
a large imaginary part of w is used in the wave theoretical solution, so as
to simulate the effects of early arrivals, it is appropriate to consider

only the P wave arrivals in the ray theoretical solutions.

We remark, finally, on the extension to the case of an incident wave at
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arbitrary azimuth angle relative to the strike (y-direction). An incident
wave of any type gives rise to transmitted P and linearly polarized S waves
at the interface, The two-dimensionality of the problem is maintained in
that the y-component of wave slowness of all scatiered waves is unchanged
from that of the source wave, Thus, again the cross-sectional area of 2
tube of rays varies only with the change in width parallel to the x-z plane.
The transmission coefficients are again given by (G9) and (G18) once the
S-wave particle motion is resolved into components in the plane of incidence
and normal to it. The same is true of the free surface factors F}w, ete,
The ray theory was not used for the arbitrary azimuth incidence problems in

this thesis,
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