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Abstract

Speech is a wideband signal with cues identifying a particular element distributed
across frequency. To capture these cues, most ASR systems analyze the speech signal
into spectral (or spectrally-derived) components prior to recognition. Traditionally,
these components are integrated across frequency to form a vector of “acoustic evi-
dence” on which a decision by the ASR system is based. This thesis develops an alter-
nate approach, post-labeling integration. In this scheme, tentative decisions or labels,
of the identity of a given speech element are assigned in parallel by sub-recognizers,
each operating on a band-limited portion of the speech waveform. Outputs of these
independent channels are subsequently combined (integrated) to render the final de-
cision.

Remarkably good recognition of bandlimited nonsense syllables by humans leads
to the consideration of this method. It also allows potentially more accurate parame-
terization of the speech waveform and simultaneously robust estimation of parameter
probabilities. The algorithm also represents an attempt to make explicit use of re-
dundancies in speech.

Three basic methods of parameterizing the bandlimited input of the sub-recognizers
were considered, focusing respectively on LPC and cepstrum coefficients, and param-
eters based on the autocorrelation function. Four sub-recognizers were implemented
as discrete Hidden Markov Model (HMM) systems. Maximum A Posteriori (MAP)
hypothesis testing approach was applied to the problem of integrating the individual
sub-recognizer decisions on a frame by frame basis. Final segmentation was achieved
by a secondary HMM. Five methods of estimating the probabilities necessary for
MAP integration were tested.

The proposed structure was applied to the task of phonetic, speaker-independent,
continuous speech recognition. Performance for several combinations of parameteri-
zation schemes and integration methods was measured. The best score of 58.5% on a
39 phone alphabet is roughly comparable to the published performance of traditional
HMM systems and warrants further development. Potential sources of weakness of
the approach, as implemented, are identified and improvements are suggested.

Thesis Supervisor: Louis D. Braida
Title: Henry E. Warren Professor of Electrical Engineering
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Chapter 1

Introduction

The cues identifying speech tokens are distributed within the acoustic waveform in
frequency and time. An implicit, intermediate goal of most automatic speech recog-
nition schemes is the extraction or identification of these cues. Once the cues are
obtained, deterministic or probabilistic matching rules are invoked that determine
what utterance most likely gave rise to these particular cucs.

As part of the matching process, one needs to specify the integration process that
describes how the cues are combined in identifying speech elements. Focusing on the
cues distributed in frequency, the traditional approach to cue integration is shown
schematically in Figure 1-1. Individual cues are extracted from different regions of
the spectrum. The cues are then combined in a multidimensional, continuously valued
cue space. Finally, a mapping function matches the “point” in the cue space to a
label that represents the final identification of the speech element.

The process illustrated in Figure 1-1 is quite general. It encompasses any cues
that a system might extract from the acoustic waveform. The key characteristic is
that cues from disparate frequency regions are combined together as continuously
valued acoustic evidence prior to the system rendering an identification, a label, for
the speech element. Consequently, this approach to automatic speech recognition will
be referred to as pre-labeling integration.

Figure 1-2 shows an alternate approach. As before, cues are extracted from the

‘acoustic signal spectrum. However, instead of integrating them in a cue space, the
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Figure 1-1: Pre-labeling Integration approach to ASR.

system immediately invokes labeling rules® for each cue (or possibly, subsets of the
cues). This yields a set of discrete valued labels for the speech element that may
be regarded as best guesses according to each cue. Finally, the labels are combined,
again according to some rule, to produce the ultimate, single label for the utterance.

This approach will be called post-labeling integration.

1.1 Rationale

At first glance, post-labeling integration would appear inferior to pre-labeling inte-
gration. With the former we lose the ability to compare cues across frequency or,
put another way, to exploit across frequency correlation. A simple example might be
the idealized vowel, characterized by the frequencies of the formants. These frequen-
cies could constitute a perfectly reasonable set of cues. However, different vowels
will exhibit very similar values of one or two formants. It is by comparing entire
sets of formants that we can distinguish between different vowels, an approach not

directly available in post-labeling integration. Nonetheless, there are a number of

1By “labeling rules” we mean any procedure that maps the continuously valued cues or parameters
to a discrete label for the speech token. This procedure very well may be stochastic in nature.

11
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Figure 1-2: Post-labeling Integration approach to ASR.

considerations that suggest possible advantages of post-labeling integration.

In order to consider these tradeoffs, we have to be more specific about the manner
in which we’re going to separate the cues assumed to be distributed in frequency. A
natural way to do this is to consider the band-limited speech waveform. Obviously,
the signal so filtered will contain only a fraction of the cues present in the wideband
signal. We may then consider how identification of speech elements based on the
band-limited waveform would proceed. If we pick the bands such that together they

span the entire speech spectrum then we will be satisfying the picture of Figure 1-2.

1.1.1 Human Performance

There have been relatively few studies of human recognition of bandlimited speech.
There are at least two, however, whose results are relevant to the issue at hand. The
first of these is the classic work of Miller and Nicely [53]. The stimuli comprised
C-/a/ syllables where the consonant was one of sixteen most common in English.
Depending on the test condition these stimuli were variously bandlimited. Each of
five listeners was presented with 800 syllables for each condition and asked to identify

the consonant. Table 1.1 lists the percentages of the consonants identified correctly

12



Frequency Band (kHz) | % Consonants Correct
0.2-0.6 49.5
0.2-1.2 57.2
0.2-2.5 72.8
1.0-5.0 73.1
2.5-5.0 38.1

Table 1.1: Average consonant identification by subjects in Miller and Nicely’s study;
16 consonants in C-/a/ context.

Frequency Band | % Consonants Correct
(kHz) JG JT RM
0.7 lowpass 38 38 34
0.7-1.4 55 55 51
1.4-2.8 73 71 68
2.8 highpass 39 40 31

Table 1.2: Average consonant identification by three subjects in Milner’s study; 24
consonants in CV context.
for some of the conditions tested.

The study by Milner et al. [54] also measured, among other conditions, band-
limited consonant reception by normal hearing subjects. The stimuli consisted of 24
consonants paired with the vowels /a/, /i/ and /u/ in a CV context. The original,
wideband stimuli had energy up to 4.5 kHz. They were presented to three subjects
under four different filtering conditions. Table 1.2 summarizes the recognition scores
achieved.

These results point to surprisingly high recognition rates achievable by humans
even for relatively narrowband speech signal. While it is well known that speech
remains perfectly intelligible when either lowpass or highpass filtered? at around 2500
Hz, what makes these data remarkable is the total lack of contextual information
in the stimuli. Since the stimuli are purely nonsense syllables the only information

available to the listeners is acoustic. This, in turn, leads to a conclusion that band-

%Consider, for instance, standard telephone transmission.
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limited speech waveform still contains a large number of cues necessary to identify

the speech elements without the aid of grammar, semantics, or context.

1.1.2 Modeling of Human Cue Integration

We may treat the foregoing as an existence proof of the feasibility of labeling of speech
tokens based on cues from limited frequency regions. The question remains whether
the labels so generated can be effectively combined. In a still larger context, can
post-labeling integration compete with pre-labeling integration?

Braida [14, 15] developed and compared these two models to describe cue inte-
gration by humans. Originally this analysis was applied to integration of cross-modal
cues. Specifically, the models sought to predict human audio-visual speech reception
from performance on audio and visual stimuli separately. However, the methods are
directly applicable to the more general question of how combination of cues from
distinct channels of information may occur.

Aé-\suggested above, under the post-labeling integration model it is assumed that
the listener makes decisions orr the cues from each channel of information separately
and then combines the decisions. Therefore, the multi-channel response should be
predictable from responses in the constituent “uni-channel” modes. Suppose the
stimulus S; elicits the responses R,, and R, when only information in channels A
and B, respectively, is made available to the listener. The response to cues in a given
channel is assumed independent of the other channels (including their presence or
absence). The probability that the response pair produced when both channels are

present is (R, Ry) is:

PTZB(M,Rn I S,) = Pr A(Rm I Sz) x Pr B(R’n. l Sz) (1.1)

This procedure extends in an obvious fashion to more than two possible input chan-

nels.

The decision on the final identification R; that results in highest identification

14



accuracy follows the maximum likelihood rule?: R; should be the identity of the
stimulus for which Pr%z(Rn, R, | S;) is greatest.

In contrast, pre-labeling integration assumes that each stimulus channel evokes a
continuous valued, noisy vector of cues X. When only one channel is presented, the
stimulus is identified as the response center Ry closest to X. When multiple channels
are available, the separate cue vectors are assumed to combine in one vector whose
probability density is the “Cartesian product” of the individual channel cue densities.
This compound vector is then compared to response centers in the multichannel cue
space to determine the response. Cues are further assumed to combine optimally
across channels without masking or interference.

Given listener performance on separate information channels, these two models
can be used to predict response accuracy when the channels are presented simultane-
ously. To the extent that the predictions are close to actual multi-channel performance
it may be said that a model accurately represents the process of cue integration by
the subject. _

Braida applied the models to human consonant reception, with the consonants
in various CV contexts. The performance data are usually available as confusion
matrices. The probabilities of Equation 1.1 can be readily estimated from these,
simply as frequencies of responses given the stimuli. The problem of estimating
the parameters of the pre-labeling modeis from confusion matrices is not completely
solved but a procedure exists [13, 14].

As employed in the models, the concept of a channel is quite general. For example,
they may represent different input modalities which is what was done in [14]. Here
channel A represented the auditory component of the stimulus, while channel B stood
for the visual part. The predictions of the pre-labeling models were found to be in
closer agreement with actual audio-visual human performance than the predictions of
the post-labeling model. Quite consistently, the latter tended to underestimate the
audio-visual recognition.

Of more interest to the current research was the comparison of the two models

3We assume that a priori stimulus presentation probabilities are equal.
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Frequency Bands % Consonants Correct

(kHz) Pre-Label. | Post-Label. | Human Wideband |
0.2-1.2 1.0-5.0 89.3 83.2 83.3
0.2-2.5 2.5-5.0 83.5 77.9 83.3

Table 1.3: Consonant scores from Miller and Nicely, compared to pre- and post-
labeling predictions.

Frequency Bands % Consonants Correct
(kHz) Pre-Label. | Post-Label. | Human Wideband
0.7 lowpass + 0.7-1.4 82.1 69.4 63.0
0.7 lowpass + 0.7-1.4 + 1.4-2.8 95.2 89.6 87.9
0.7-1.4 + 1.4-2.8 + 2.8 highpass -96.4 90.0 90.1
1.4-2.8 + 2.8 highpass 89.7 79.7 76.3
0.7-1.4 + 1.4-2.8 92.6 84.9 82.4

Table 1.4: Consonant scores from Milner (subject JG, 60-70 dB SPL), compared to
pre- and poest-labeling predictions.

when the information channels were chosen as non-overlapping frequen: bands of
the now purely audio stimulus. Tables 1.3 and 1.4 summarize the results of this
comparison [15, 16]. In contrast to the audio-visual simulations the data here are
more equivocal. Neither of the two models is clearly superior. Significantly though,
the post-labeling model’s predictions are in nearly all cases quite close to the actual
multi-band performance. This seems surprising but one has to recognize that in
order to effectively use the pre-labeling integration strategy, a listener has to be able
to make accurate comparisons across frequency. It is not obvious that humans can
perform such comparisons with sufficient accuracy.

Certain limitations of this demonstration have to be kept in mind, however. First,
the stimuli whose recognition was well predicted by post-labeling cue integration were
limited to isolated syllables. It is not immediately obvious how these observations
would generalize to more complex speech input. Second, the success of the integration
models does not gurantee that it is enough to achieve individual channel performance

of the level in, say, Table 1.2 to be assured of the predicted multi-channel accuracy.
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The integration process relies on a complementary distribution of errors among the
individual channels, i.e., on the structure of the confusion matrices. For instance,
if error patterns from two channels were perfectly correlated, the joint performance
could not be better than with either channel alone.

On the other hand, the study does demonstrate that acoustic information alone*
is sufficient for high rate of recognition and that it is feasible to consider combining
the labels assigned to a speech element based on individual frequency bands in order

to produce the final identification. Post-labeling integration is a viable option.

1.1.3 Potential Benefits for Automatic Recognition

The evidence that humans may accomplish speech recognition in the post-labeling
mode does not of itself show whether an automatic recognizer operating in this mode
would be competitive with the usual approach: pre-labeling integration.

Automatic speech recognizers usually derive cues from the acoustic speech wave-
form in the form of parameters such as filterbank energies, spectral or cepstral co-
efficients, etc. [21, 22, 59]. Just as the abstract cues referred to above these are
continuous valued quantities. The task of the recognizers is then to find a partition
of the parameter space that assigns appropriate regions within it to each speech ele-
ment in the vocabulary or alphabet of interest.5 The manner in which the partitioning
occurs is the defining characteristic of different ASR algorithms.

In general, recognition systems attempt to “learn” the decision regions from
known, manually-labeled speech. This is true of all three general ASR classes: Dy-
namic Time Warping (DTW) [68], Hidden Markov Models (HMM) (2, 4, 66, 69] and
connectionist or neural network methods [47, £5]. A common problem is the rela-
tive paucity of realistically available training data in relation to the complexity of
the parameter space that has to be partitioned. As a result the recognition systems

must compromise between accurate representation of the acoustic input (requiring

41t bears stressing again that all the stimuli concerned were nonsense syllables.

5More realistically, one usually maps sequences of parameter sets since a speech element will span
more than one. Insofar as a sequence may be considered as one large parameter set, the general
picture of parameter space partitioning still holds.
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many parameters) and robust estimates of parameter regions corresponding to spe-
cific speech elements (requiring many “samples” of the parameter space).

A good example of this tradeoff is the discrete HMM approach where the param-
eter sets are vector quantized and mapped to one of a finite number of prototype
vectors.® The quantization process involves a loss of information, the so-called VQ-
distortion. The more prototypes available, the smaller this distortion. However, the
HMM formalism requires (roughly) the estimation of the probabilities of the occur-
rence of all available prototypes for all possible speech elements. For a constant
amount of training data the robustness of these estimates decreases as the number of
prototypes is increased.

The situation is quite different if we consider post-integration labeling. Suppose
cues from different frequency regions are represented by parameters derived solely
from the correspondingly band-limited acoustic waveform. Clearly, fewer parameters
will be necessary to characterize a band-limited signal than the original wideband
waveform. On the other hand the available amount of training data remains un-
changed. The result should be a more robust estimate of the partitioning of the now
reduced parameter space. Admittedly, within each band-limited cue group the po-
tential for confusion among certain speech elements would increase. These would be
the elements distinguishable mainly through information in other frequency regions.
These, however, are also the confusions we expect might be reliably recoverable in
the decision integration process.

The expected advantage may be viewed as an attempt to exploit the known redun-
dancy of speech [79]. Pre-labeling integration recognizers are forced to suppress this
redundancy in order to arrive at parameter sets small enough to be reliably classified.
Post-labeling integration allows us potentially to retain more of the cue information
at the cost of foregoing the ability to compare across cues. Instead we must compare
across labels. One of the chief goals of this study was to assess the usefulness of this
option.

One might argue that in order to get the benefit of reduced parameter set di-

6More detailed discussion of this method may be found in Sec. 3.1.
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mensionality, one could simply compute wideband parameters as done in traditional
speech recognizers, then divide the parameters into smaller sets and perform inde-
pendent recognition on each of these subsets. However, there are no guidelines for
how the assignment of vectors into subsets should be performed. On the other hand,
we do have evidence from the human recognition experiments discussed above, of

potentially high recognition rates for the narrowband cue groups.

1.1.4 Other Considerations

The notion of sub-recognizers acting on cues from independent frequency regions
creates a potential for improved noise immunity of the entire system. In particular,
unless the noise spectrum matches the speech spectrum, the noise would tend to
affect separate sub-recognizers differently. If the character of this noise were known,
the decision integration procedure could explicitly discount the output of the most
affected sub-recognizer. Even if no such specific provision were made, one might
still expect that the unaffected channels might compensate for the probably erratic
guesses of the suspect channel. Nonetheless, this aspect of the recognition process
was not investigated in this study.

The structure of the proposed approach might also be attractive for real-time
implementation. The parallel nature of generating labels from independent cues in-

creases the leverage to be gained from faster and/or more advanced hardware.

1.2 Motivation

) This investigation of the feasibility of post-integration labeling approach to ASR was
conducted in a specific context, i.e., a task with defined constraints, vocabulary, and
a performance metric. A communication aid for the hearing impaired being studied
in the Sensory Communications Group at MIT provided such a context. The aid’s
goal is to enhance speechreading by providing the listener with supplemental cues

difficult to obtain from the visual signal.
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1.2.1 Cued Speech

Speachreading is one of the most common methods used by individuals with hearing
impairment for real time communication. Normal hearing individuals likewise use
speechreading fo assist communication in the presence of noise. The term refers
to the observation of the movements of the talker’s mouth (hence trhe sometimes
applied term “lipreading”) in order to discern what is being said. Unfortunately,
speechreading, even under optimal conditions, is generally insufficient for reliable
communication [80]. It results in mental strain for the listener and is also, alone,
inadequate for language acquisition. In order to render speechreading more useful and
informative some method of enhancement is necessary. Such a method, by resolving
the ambiguities inherent in the “signal” available to the speechreader, would provide
a clear and dependable system allowing learning of English as a spoken language.

A number of studies have addressed the issue of how much and what kind of in-
formation can be reliably extracted by a lipreader without any further aid. These
investigations concentrated on establishing the minimal unit for speechreading anal-
ogous to the acoustically oriented phoneme. The visual counterpart has been dubbed
the viseme and is defined as any individual and contrashtive visually perceived unit that
constitutes a minimal unit for visual speech perception [26, 37]. Just as for phonemes
these units encompass allophonic variations although the differences among these are
not so well understood as for acoustic phones. Each viseme tends to include several
phonemes that appear the same to the observer. For example, the lips come together
for each member of the /p, b, m/ viseme and are puckered for /u, U, ow/. This then,
in the simplest terms, is the source of ambiguity for lipreaders.

While no universal system of visemes has been established, general categories,
indicating most confusable visually phonemes, have been found by several investiga-
tors [10, 60, 84, 85]. These results suggest a straightforward approach to improving
communication via speechreading: design a way of conveying which member of a
particular viseme is spoken at a given moment. Cornett [18, 39] developed a method
exactly along these lines. In his system phonemes of spoken English are divided into

visually contrastive sets which are signalled to the speechreader manually. Conso-
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nants are divided into eight groups and vowels into four. Hand shape is used to
define the consonant and hand position relative to the face of the talker signifies the
vowel. In this way a consonant and subsequent vowel are signalled simultaneously,
making the CV syllable the basic unit of Cued Speech. Diphthongs are expressed by
moving the hand between the positions assigned to the initial and final vowels.
Manual Cued Speech has been shown to significantly improve speech reception for
its users [17, 58, 81]. However, the system’s usefulness and applicability are limited
since in order to employ it, the talker must be able to produce the cues while speaking.
To remedy this situation, Cornett and Beadles have been developing (since 1969) a
device to analyze the speech received from the talker automatically and to provide the
speechreader with the appropriate cues [19, 73]. The latest data available indicate
that the speech recognition performance of this system is not yet good enough to

result in a significant benefit to the user [8].

1.2.2 Recognition Task

The application outlined above served to specify the task for which the system would
be designed. In principle one might merely require the recognition of cue groups. How-
ever, the optimal composition of these groups is still the subject of studies. It is likely
that the optimal groupings would constitute a compromise between “disambiguating
potential” and minimizing the adverse effect of recognizer errors. Accordingly it was
decided to construct a phonetic speech recognizer from whose output any number
of cue systems could be derived. In addition, there exist useful benchmarks for the
performance of phonetic recognizers.

Further specifications on the recognizer arise from the consideration of practical
aspects of an automatic cueing system. The recognizer should functipn in speaker-
independent, vocabulary-independent, continuous speech mode. It also must be rea-
sonably “real-time”. While implementation issues were not dealt with directly here,
this last limitation does constrain any potential algorithm from allowing any signif-
icant delays in order to benefit from “future” information. The delays that would

be detrimental to a lipreader are hard to estimate since no appropriate study exists.
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However, studies on audio-visual speech recognition [51, 61] found that delays of as
little as 40 ms cause intelligibility degradation. The algorithm was developed using

the 40 ms mark as maximum allowable “built-in” delay.

1.3 System Overview

Given the general philosophy of the recognition scheme and the context in which
to test it, a more concrete structure may be suggested. Figure 1-3 shows the block

diagram of the recognition system that was investigated in this study.

Filterbank
(kHz)
Parametrization/ HMM
0.1 - 0.7 va 1 Recognizer 1

Parametrization/ HMM
0.7 - 15— va 2 .Recognizer
Decision [recognizer
Speech) Integration| output
in —
Parametrization/, HMM
»11.5 - 3.0 —’( va 3 —®{Recognizer q

Parametrization/| HMM
»3.0 - 45— | va 4 ®|Recognizer

Figure 1-3: Block diagram of the proposed recognizer

In the initial filterbank stage the speech signal is bandpass filtered into four non-
overlapping frequency bands. This represents the splitting of frequency-distributed
cues. The bandwidths of the filters are given in the figure. They essentially match
the bandwidths used in Milner’s study (see Table 1.2). Additionally, the bandwidths
correspond roughly to formant frequency regions. Formant locations being one of
the principal established speech cues, it was deemed appropriate that a post-labeling
system treat them separately.

At this point each “channel” of information is treated independently of the others.
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In each one a data reduction step takes place to represent the acoustic input with a
stream of parameter sets. This operation is common to virtually all speech recogniz-
ers, the difference here being again the parallel and relatively narrow-band nature of
the parameterizations.

The parameter streams serve as input to the sub-recognizers corresponding to
the labeling stage of the overall structure. In Figure 1-3 these are left unspecified.
In principle we are free to use any classification algorithms at this stage as long
as the outputs can be combined to yield the final answer. For instance, it would
be inadvisable to use word recognition algorithms at this stage if the global goal is
phonetic recognition. On the other hand, phonetic output from the sub-recognizers
is perfectly compatible with the word recognition.

In the work presented here, the discrete Hidden Markov Model approach was
used to implement the sub-recognizers.” This technology is currently achieving some
of the best results on tasks similar to the one motivating our recognizer. It also
offers computationally efficient algorithms for the training and especially recognition
phases.

The outputs of the sub-recognizers (i.e. the labels) are then fed to the label in-
tegration stage, the final step in post-labeling integration. Here a combination rule
is invoked to merge the individual channel outputs and produce the final stream of
recognized phones. Note that in our application this process must not only integrate
labels but also make timing and segmentation decisions. This is due to the indepen-
dence of the sub-recognizers and the resulting likelihoed that their decisions will not

be synchronized or even that they will not produce the same number of labels.

"The structure also allows mixing of aigorithms: the sub-recognizer in channel 1 may be of
different type than the one in channel 2. However, there were no compelling or obvious factors that
would suggest why a certain type of recognizer should work better for a certain frequency range. In
the experiments performed here only the HMM-based recognition was used.

23



TIMIT # of Sentences | Sentences Use
Set Speakers per Speaker
TRAIN 462 SX 5 Sub-recognizer and
Decision Integration training
SI 3 Decision Integration
training
TEST 168 SX 5 Testing at all levels

Table 1.5: Breakdown of TIMIT sentences as used in the current study.

1.4 Database

It has been said that when it comes to building statistically-oriented speech recogniz-
ers “there is no data like more data” [52]. This is true for HMM systems employed
here as the sub-recognizers and, as will be seen, holds even more emphatically for
the decision integration problem. The most readily available, large, multi-speaker
database that has been phonetically transcribed is TIMIT [27, 40].

In this investigation the NIST edition of TIMIT [56], available on CD-ROM was
used. The database contains a total of 630 speakers, each saying 10 sentences. The
speakers represent 8 general dialect regions of American English. There are roughly
twice as many males as females. Of the three sentence types the SA sentences (2 per
speaker) could not be used since they are the same for all speakers. This would bias
the materials towards certain specific phones and phone contexts. The remaining data
consist of the SX (5 per speaker) and SI (3 per speaker) sentences. The former were
specifically designed to provide a good coverage of pairs of phones while the latter
were selected from existing written sources to add diversity to the corpus. Each of
the SX sentences is spoken by seven speakers but each SI sentence occurs only once.

The NIST convention of dividing the database into the training and testing parts
was followed here. Table 1.5 outlines the characteristics of the subdivisions of the
corpus and how they were used.

The specifics of the database use will be described further in experimental sections.

It should be noted that the training and testing materials were entirely disjoint: no
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speaker or text was included in both.

1.5 Implementation Note

Most of the computation described in this thesis was performed on DECstation 5000
and 3100 computers. In the development stage, especially parameterization of the
acoustic input, a signal processing software package SPUD [65] was used.® Otherwise,
all C code necessary for the implementation of the various algorithms, including the

HMM procedures, was written and implemented by the author.

8This software, developed at the Sensory Communications Group at MIT, is available commer-
cially as N!Power from Signal Technology Inc. of Goleta CA.
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Chapter 2

The Front End

The components of a recognition system involved in initial processing of the speech
waveform and its parameterization are often referred to as the front end. Its function
is data rate reduction and extraction of the most salient, infbrmation bearing features.

Work done with HMM-based systems over the last decade has resulted in general
acceptance of several signal processing steps that the front end comprises. These
procedures frequently include pre-emphasis, segmentation of the speech waveform into
frames, windowing of the frames, and computation of a set of parameters describing
a particular frame. Some of these steps were directly applicable in the proposed
system. In these cases the most frequently used methods in the field were chosen.
On the other hand, given the new structure of the recognizer, certain aspects of the
procedures had to be changed. A new parameterization scheme was also investigated.

In a sense, the current system used several front ends, one for each of the indepen-
dent channels. Their functions included the initial filtering operation, division of the
signal into frames, and generation of a data/parameter vector for each frame. How-
ever, except for channel-specific parameters like filter bandwidths, the computations
themselves remained largely the same. Unless explicitly stated otherwise, this applies
to all procedures described below.

Prior to processing by the recognizer, the TIMIT sentences were digitally lowpass

filtered at 4.5 kHz and resampled for an effective sampling rate of 10 kHz.
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2.1 Filterbank

HMM recognizers routinely pre-emphasize the input signal in order to flatten the
spectrum and give equal weight to different frequencies in subsequent parameteri-
zation. This is largely superfluous in the present scheme since different frequency
bands are parameterized independently. Thus the first operation performed by the
recognizer is the splitting of the signal into these frequency bands, i.e., the filterbank.

The filterbank consisted of four digital FIR bandpass filters whose bandwidths®
are shown in Figure 1-3. The filters were designed using the method of Schafer and
Rabiner [75]. The prototype filter was a truncated impulse response of fifth order
IIR Butterworth low-pass filter. This prototype was appropriately modulated and
summed to produce the required band-pass filters. The method used allowed for
minimal ripple and linear phase in the filterbank. The delay incurred was equivalent
to 11.3 ms which was judged acceptable in this application.

The bandwidths of the filters were chosen to correspond directly to those used
in the human recognition experiments summarized in Table 1.2. They were further
considered appropriate since each encompasses roughly one formant region.

The cut-off characteristics and transition region of the filters are relatively sharp,
similar to the filters used by Miller and Nicely and by Milner. The former étudy used
filters with slopes of 24 dB per octave, the latter specified the stop-band of -60 dB to
be reached in 200 Hz from the edge of the passband.

2.2 Parameterization

The popular practice of time-synchronous acoustic data processing was used here. In
this method parameter vectors are computed for constant-length, usually overlapping
segments of the acoustic waveform. In the current system the segments, often referred
to as frames, were 20 ms long and overlapped by 10 ms. These durations give enough

resolution to capture most articulatory events. On the other hand they are short

1Given the 10kHz sampling rate of the analog signal being filtered.
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enough so that the speech signal within each frame may still be treated as stationary.

The ultimate goal of the perfect parameterization is to preserve the invariant
features of speech, i.e. the metrics that remain constant for different realizations of a
given utterance but are consistently different for different utterances. Unfortunately
such a parameter set is still unknown. In the current research, generally agreed upcn
guidelines were followed in establishing the parameters.

A variety of parameterization schemes appears in the literature. They include en-
ergies in freqliency bands [2, 21, 82], linear prediction (LPC) coefficients [72], reflection
coefficients, low-time cepstra, and mel-weighted cepstra [43, 63, 76]. In a study by
Davis and Mermelsteir: [22] the mel-weighted cepstrum parameterization yielded the
best results. Other researchers have found it useful to supplement this information
with parameters measuring power in the signal and with so-called delta parameters
[28, 41, 42]. The latter approximate the rate of change of the static parameters in
the vicinity of the frame.

Without exception these parameterizations have been applied to wide-band speech.?
They were, therefore, not directly applicable to the task at hand. For instance, it
makes little sense to mel-weight coefficients within bands as narrow as the ones pro-
posed. On the other hand, the character of the generally used parameters suggests
the type of parameterization needed.

It was concluded that the recognizer ought to be provided with three types of
information about any given frame of speech: energy profile, spectral characteristics,
and dynamic evolution of the first two. These will be referred to as energy, struc-
ture, and delta parameters. A number of arrangements were considered. Below are
described the ones tested in the full system. All the parameters were computed on
frumes that had been scaled by the Hamming window w[n] = 0.54 — 0.46 cos(2%),

where N is the length of the frame in points. Since the data used was sampled at 10

kHz, N = 200.

2Telephone speech recognizers do limit the bandwidth but not to the extent of the channel
bandwidths explored here.
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2.2.1 Energy Parameters

Two parameters tracking the energy in the signal were used. The first, e;: channel
gross power, simply measured the log power in a given frame, normalized by the
average power of the entire utterance. Thus, for an utterance s of length T and frame

segment z[n] of length N, parameter e; was computed as:

N-—-1

er = log(3; 3= #°[n]) — P (21)

n=0

where P, is just:

Poyg = log( Z s%[n])

T.5

Since the training and testing materials consisted of sentences, this definition of
average power was convenient and meaningful. In running speech one would compute
the average power over a reasonable interval immediately preceding the frame under
consideration, a few seconds say.

The second energy parameter, e;: channel energy share, represented the only
information about the wideband speech signal available to a given channei recognizer.
It was computed as the ratio of the energy in the bandlimited frame to the energy of
the wideband signal within the same time segment, the “wideband frame”. Denoting

this wideband frame signal by z,,, es was given by:

En—ﬂ z 2 [TL]
e (22)

€2 =

As might be expected, eo was mostly high, i.e. around 0.9, for the first channel
because of the absence of pre-emphasis. However, since it was not being compared in

any way to eg’s of other channels this was not a concern.

2.2.2 Structure Parameters

The purpose of this set of parameters is to capture the finer details of the waveform

within a frame. If we accept the source-filter model of speech [67], we are lead to
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the conclusion that the signal in each channel is determined primarily by one or at
most two resonances of the vocal tract. Furthermore, twelve to sixteen coefficients
(for instance, LPC or cepstrum) are generally found to describe well the spectral
characteristics of a wideband speech frame. These observations suggest that four is
a sensible number of structure parameters.

As mentioned above, several possibilities were examined. Given the assumption
of a resorant vocal tract filter, all-pole modeling via linear prediction was a natural
method. Another parameterization used in conventional recognizers that could be
adapted to this method were non-weighted (or linear frequency) cepstrum coefficients.

Finally, a somewhat ad-hoc, purely time domain set of parameters was conceived.

LPC Parameters

The computation of the LPC coefficients would be entirely routine except for the
bandpass nature of the signal in a given channel. Direct fourth order LPC modeling
of such a signal would result in coefficients describing primarily the bandpass filter
used to isolate the signal for each band.
~ Prior to LPC analysis the signal has to be modified, preserving the shape of its
spectrum in the passband but removing the influence of the filter. This can be done by
“stretching” the spectrum of the passband to fill the entire —7 to 7 frequency range.
The process involves shifting the signal down to baseband and then downsampling.
The shifting operation can be effected by multiplying the time domain signal by
an appropriate complex exponential, followed by a lowpass filter preserving only the
low frequency “copy” of the spectrum. Alternatively, the DFT coeflicients can be
re-indexed such that the left edge of the passband falls at zero frequency. A potential
problem is posed by the need to fill in the now missing high frequency coefficients.
Setting these coefficients to zero is roughly equivalent to frequency-domain filtering.
In practice there were only minor differences between these two methods of spec-
trum shifting, affecting the LPC coefficients below three significant figures. Since
the direct frequency domain shifting method was more expedient it was used in the

system development.
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The modification of the signal described above could be performed for each indi-
vidual frame and probably would be in a real-time implementation. For development
purposes it was convenient to combine the bandpass filtering and frequency shifting
operations in each channel. Figure 2-1 gives an example of the pre-processing steps
leading to the computation of the LPC parameters for a frame. In successive panels
it shows the spectrum magnitude of an unfiltered frame, bandpass-filtered in channel
2, shifted to baseband, and expanded to fill the entire available frequency range by
downsampling in time domain. The LPC coefficients were calculated from the signal
corresponding to the spectrum shown in the bottom panel of Figure 2-1. The energy
parameters in this scheme were computed prior to the downsarcpling.

The fourth order all-pole approximation to the spectrum of the frame was com-
puted using the autocorrelation method and the Levinson-Durbin algorithm [50, 67].

The four coefficients constituted parameters Ip;_4.

Cepstrum Coefficients

Davis and Mermelstein [22] compared the performance of a continuous speech rec-
ognizer under several parametric representations. Mel-weighted cepstrum coefficients
yielded the highest scores. However, as argued above, mel-weighting does not make
sense for the band-limited input of the sub-recognizers. On the other hand the cited
study found that linear frequency cepstrum coefficients (LFCC) were also measurably
superior to LPC coefficients. Therefore, this parameterization was also evaluated for
the sub-recognizers.

The same caveat applied here as for the LPC computation: the low time cepstrum
of the channel signals would be largely determined by the characteristics of the band-
pass filters. Therefore, the same shifting to baseband and downsampling procedure
as in the foregoing section was applied to the signal prior to the LFCC calculation.

The downsampled frame x[n] was zero-padded to the next power of 2 length and its

DFT, X[k] computed. The cepstrum coefficients lc;_4 were then computed according
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Figure 2-1: Spectra in successive stages of pre-processing of a frame of voiced speech
prior to computation of LPC or cepstrum coefficients. See page 30 for more details.
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to:

le;= Y. log?|X[k]| cos <]1\77%) (2.3)

where N is the length of the padded frame (and the DFT).3

Autocorrelation Parameters

The two parameterization schemes described in the foregoing sections are very similar
to those commonly used in wideband speech recognizers with modifications that adapt
them for band-limited speech. The third proposed parameterizatioﬁ sought to obtain
a novel signal representation, specifically geared towards a band-limited signal.

In general, the speech signal in each of the four bands will be shaped largely by one
resonance. Representing this resonance is a primary goal of the structure parameters.
The two metrics we attempted to characterize are the frequency and the bandwidth
(or damping ratio) of the resonance.

One could derive these parameters from the Fourier transform of the band-limited
frame. However, in this approach resolution is limited, at least for voiced speech.
There the spectrum consists mainly of peaks at integer multiples of the fundamental
frequency. If the frequency of the largest of these peaks is taken as the resonant
frequency one could incur an error as large as 52‘1 where Fj is the fundamental fre-
quency. For the two lower frequency channels and female speech especially, this would
constitute a significant inaccuracy.

To obtain a better estimate more robust spectral estimation could be used. Al-
ternatively the estimation can be performed entirely in the time domain. Aside from
avoiding the harmonic problem, time domain parameterization is interesting for other
reasons. Formant frequencies are coded quite effectively in the time domain on the cat
auditory nerve [77]. Some “auditory based front-ends” for recognition have made use
of time domain analysis [29, 78]. Finally, the LPC parameter set already effectively

performs a spectral fit of the principal resonance.

3The magnitude was left squared since the logarithm operation merely converts the exponent to
a constant scaling factor.
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One way to estimate the principal frequency component directly from the time
waveform in a frame is based on counting zero-crossings [5, 57]. A potentially more
robust approach considered here, however, derives parameters from the autocorrela-
tion function of the bandpass filtered speech signal which lends itself tc analysis more
easily than the raw waveform.

Figure 2-2 shows, as an example, a one frame segment of band-limited speech and
the segment’s autocorrelation. The original waveform resembles the output of a single
resonance driven by a train of impulses. However, the waveform clearly contains other
frequency components that might interfere with a direct time-domain analysis. By
comparison, the autocorrelation function seems much more dominated by a single

frequency component.

400 Channel 2 - single frame
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Figure 2-2: Example of a frame of voiced speech in channel 2 and its autocorrelation.
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The effect is easily explained, considering that autocorrelation in time domain cor-
responds to multiplication by the complex conjugate transform in frequency domain.
Thus the magnitude of the resulting spectrum is the square of the original, increasing

the magnitude difference between large and small frequency components.
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Figure 2-3: Example of a frame of unvoiced speech (/s/) in channel 2 and its auto-
correlation.

Alternatively, the use of the autocorrelation is related to matched filtering (for
example [62]). There, crosscorrelating a noisy signal with a (usually shorter) waveform
of interest helps to detect the latter in the corrupted signal. This view may be
especially appropriate in the case of continuant, unvoiced consonants, an example
of which is shown in Figure 2-3. The input to the vocal tract in this case is not

a train of impulses but rather noise. Consequently the waveform does not exhibit
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periodicity or a readily apparent damped resonant response. On the other hand,
there is a dominant frequency component, determined by the shape of the vocal tract
and it is this component that the autocorrelation function accentuates.

Having decided to focus on the autocorrelation function, a somewhat ad-hoc set
of parameters was developed. In order to be able to compare directly the perfor-
mance with this set to performance with the sets previously described, the number

of parameters was fixed at four. They were computed as follows:

e The first parameter was designed to measure the principal frequency component
in the waveform.* First, local maxima were located. Since the processing is done
digitally it was judged necessary to obtain more accurate position estimates than
by simply picking the largest sample. Specifically, a quadratic was fit to the
locally largest sample and the surrounding two samples. The maximum of this

parabola was then used as the interpolated maximum.

Maxima are computed only up to and including the first peak that is larger
than the preceding one® in order to minimize the interference from peaks due to
voicing and fundamental frequency (FO0). In general, the location of these peaks
will not be related to formant frequencies (see Figure 2-2). This restriction
also confines analysis to the part of the autocorrelation derived from significant
overlap of the frame. We thus obtain a set of K peaks, indexed from 0 to K —1
and K — 1 interpeak distances 7; indexed from 1 to K — 1. Then the first

structure parameter, 7y, is given by:

that is, it is the inverse of the mean of the interpeak distances. In the limiting

case of a pure sinewave the interpeak distances will give us the period and the

4Here “waveform” refers to the autocorrelation function. The raw band-limited signal was not

considered during the computations.
5Since the autocorrelation always has its absolute maximum at lag zero, we are guaranteed at

least two additional “eligible” maxima.
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inverse of their average the frequency. For the more complex signal 7, will be
an estimate of the principal frequency present, roughly analogous to the carrier

in a frequency-modulated (FM) signal.

When resonance is changing rapidly (for instance, during release of stop conso-
nants) 7 is less likely to be a robust value. Specifically, we would expect the
interpeak distances 7 to be more variable under those circumstances. To evalu-
ate the quality of the estimate of the main frequency provided by r; a measure
of 7 variability is used as the second parameter. A convenient metric, and the

one that was actually employed, is the standard deviation:

1 K-1
T = K___]_ 1__.21 (Ti - ?)2

where 7 is the average interpeak distance.

In order to convey information about the bandwidth of the resonance, the third
parameter is calculated from the amplitudes of the K peaks described above.

Specifically, 73 is given by:

I 1 }izvi—l—'vi
3 =
K-1 i=1 Vi—-1

where v; is the amplitude of the ith peak. This parameter then is the average

fractional decrease in successive autocorrelation peak amplitudes.

For voiced speech, highly damped resonances will exhibit peaks whose amplitude
decrease relatively rapidly. The opposite will be true for narrow resonances. 73

will capture this effect. It is perhaps less well suited to unvoiced speech.

Following the example of r; and 7, it might seem reasonable to include the
standard deviation of the peak decreases as the fourth parameter. This was
tried. However, the standard deviation appeared to be highly correlated with

r3 and in preliminary experiments did not improve recognition performance.
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Therefore it was not used.

e The final parameter was designed to address the strength of voicing within the
scope of the current frame. As seen in Figures 2-2 and 2-3, when speech is
voiced there are large peaks in the autocorrelation at multiples of the pitch
period. Detecting these peaks has been long used as a method of estimating

fundamental frequency [67].

It was assumed that the large peak in the autocorrelation function would occur
at a lag larger than about 3 ms, corresponding to a pitch frequency of 333 Hz,
close to the highest normally observed. The magnitude of this peak relative
to the zero-lag autocorrelation may be one measure of the degree to which
glottal pulses are present. Following this reasoning, the last parameter, r4, was

computed as:

T
T—1p

ac[0] — vp
ac[0]

Ty =

where vp and 7p are the “voicing peak” amplitude and location. This peak was
defined as the largest local maximum located at a lag greater than 3 ms.® T is
the length of the frame and ac[0] is the magnitude of the autocorrelation at zero
lag. The scaling of vp was performed to compensate for the declining amplitude
of the autocorrelation due simply to smaller portions of the signal overlapping.
The dashed line in the bottom panel of Figure 2-2 is the autocorrelation of
a rectangular window of 20 ms length, normalized to the peak amplitude of
the speech frame autocorrelation. This window autocorrelation function is the
upper bound on the amplitude of the signal autocorrelation and illustrates the
declining amplitude effect.” Without the amplitude compensation on vp, 74

would be influenced by the frequency of the fundamental: all else being equal,

6Quadratic fitting was used to obtain a better estimate of these quantities, just as described for
Ty.

7Since each frame was Hamming-windowed prior to parameter computation, the “linear” com-
pensation used was admittedly approximate.
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higher Fy (i.e., lower pitch period), would produce a larger r4. This parameter
would then behave differently for male and female voices, an undesirable feature

in a speaker-independent recognizer.

Figure 2-4 shows an example parameterization of a part of a TIMIT sentence using
the autocorrelation approach. Note, for example, the low values of parameters 75_4
during the phones “r” and “ao”, indicating a steady, high-Q, voiced region. Parameter
r1 serves as an indicator that two different phones are present, remaining steady
through the “r” and then increasing into the “ao”. The transition into “ow” is marked
by sudden jumps in parameters ro_4. Similar behavior is seen when transitioning
into the “n” although r4 remains relatively low indicating a continuing presence of
a voicing peak. The picture is less clear perhaps at the beginning of the utterance
where a number of short phones occur. The initial silence is well marked by low
energy (e2) and high r,_4. The phone “d” is also indicated by a spike in e; and 7y

and r3, corresponding to the plosive burst.

2.2.3 Delta Parameters

A major shortcoming of the parameters described above is the limited scope of the
signal that they describe. Specifically, they convey no information about the signal
surrounding the current frame. Given the dynamic nature of speech it is not surprising
that inclusion of parameters that depend on the signal outside of the current frame
improves performance [28, 42, 41]. In general, these so-called delta parameters seek
to describe the time evolution of the static parameters, i.e. the ones dependent solely
on the current frame.

In the present context the potential utility of delta parameters is especially ap-
parent. Each of the channels is dominated roughly by a single resonance of the vocal
tract. It is well known that the temporal evolution of these resonances carries signifi-
cant information about the identity of the underlying phones. For instance, the place
of articulation of stop consonants, weak fricatives, and nasals can often be identified

by the spectral transitions before and after the phone proper [59, 23].
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Figure 2-4: Example of autocorrelation parameterization of the utterance “withdraw

Channel 3. Labels indicate parameter and its units; “ratio” signifies a

unit-less parameter. See text for more details.
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A number of methods of computing the dynamic¢ parameters have been proposed
and still more could be envisioned. However, it does not appear that the more complex
approaches have yielded a consistent and significant improvement [32]. Therefore it
was decided to employ a relatively simple measure. A delta parameter for frame v,

Ap[v] is calculated from the corresponding sequence of static parameters p[n] as:
Aplv] = plv + 6] — plv — 4]

For all experiments in this study 0 = 2.
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Chapter 3

Parameter Grouping and

Quantization

The parameter vectors described in the previous chapter constitute the acoustic ev-
idence available to the HMM-based linguistic decoder during recognition. In each
channel a vector is generated every 10 ms. The recognition process centers on finding
the probability that a spoken sequence of phones gives rise to the observed sequence
of these vectors. To make them more amenable to a probabilistic characterization,
further modeling or processing of the vectors is necessary.

Discrete parameter recognition systems require that the acoustic evidence be pre-
sented as a sequence of symbols drawn from a finite alphabet. Continuously-valued
parameter vectors, therefore, must be converted by being mapped to the closest pro-
totype vector taken from a finite set, according to some quantitative distance metric.
This process, known as vector quantization, converts the sequence of parameter vec-
tors to a sequence of symbols corresponding to the appropriate prototypes.

Training procedures estimate the probability mass function of observing these
discrete symbols on each transition of the Markov model of a speech unit. This al-
lows non-parametric modeling of arbitrary distributions of the speech data vectors.
However, the quantization process entails a possibly severe loss of information since
distinct vectors are represented by the same prototype and are thus indistinguishable

as far as the linguistic decoder is concerned. The distortion may be alleviated simply
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by increasing the number of prototype vectors (i.e., the size of the codebook). Un-
fortunately, this proportionately increases the number of HMM parameters that have
to be estimated. For finite training data, reliable estimation becomes difficult and
performance suffers.

Continuous parameter recognition avoids this problem by assigning the vectors
a multivariate probability distribution [70]. During training the parameters of these
distributions are estimated. Since no quantization takes place this method may bet-
ter preserve the acoustic evidence. The cost paid is two-fold. First, a distribution
has to be forced on the parameter vectors. For reasons of tractability Gaussian dis-
tributions are preferred. These, however, have been found too constraining. For
instance, they can only model unimodal behavior. Mixtures of Gaussians allow more
flexibility but increase both the number of parameters that need to be estimated and
the amount of computation during recognition. Tied mixture modeling (also known
as semi-continuous modeling) compromises by sharing a relatively small number of
distributions among all the models. This last approach appears to have been most
successful [9, 34, 64].

Even tied mixture modeling increases computation substantially. On the other
hand the dimensionality of the parameter vectors in the sub-recognizers of the pro-
posed multiband system can be made small by design. This lessens the expected VQ
distortion while keeping the number of prototypes small enough so that probabilities
can be estimated robustly. The computational savings over continuous methods are
important for the motivating real-time application. Following this reasoning, discrete

parameter recognition was used.

3.1 VQ Codebook Generation

In order to perform vector quantization an appropriate codebook of prototype vectors
must be constructed. The goal of this step is to obtain a set of vectors most repre-
sentative of the expected speech data. In practice this amounts to minimizing the

expected distance of input speech vectors to the closest prototype in the codebook.
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A number of distance measures have been applied in similar contexts in speech
processing. However, no clear winner has emerged for HMM applications. Therefore,
for simplicity of computation, the Euclidian distance was used. The distance of a
vector being quantized I, from a prototype vector 7 was thus given by || — fn”%.

The algorithm of Linde, Buzo and Gray [46] was used to compute the prototype
vectors. Appendix A outlines the full procedure as implemented for this work. The
k-means algorithm [49] was also evaluated but the differences in performance, as
measured by average expected distance of vectors from prototypes, were insignificant.

Both algorithms require training data from which to compute the prototypes.
These data should be representative of the speech that the vector quantizer will
process but do not have to be identified or marked in any way. In this work 390
sentences from the training portion of the TIMIT database (see Sec. 1.4), representing
proportionately the eight dialect regions, were used to generate all codebooks. For
a codebook of depth 128 these data gave on the average 880 training vectors per

prototype.

3.2 Quantization

Once a codebook is available, the process of vector quantization is simple. Each of

the parameter vectors &, is assigned the label u of the closest prototype vector 7,:
. - - i
p=arg 1min [lIfm —Za|?]

where M is the number of prototype vectors in the codebook.

Application of this formula converts the sequence of continuously-valued param-
eter vectors to a sequence of discrete labels. The latter constitut: < the input to the
HMM recognizer.

As mentioned above, the optimal number of prototype vectors results from a com-
promise between accuracy of representation of the acoustic waveform and robustness

of the estimates of HMM parameters. Commonly used codebooks contain several
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hundred prototypes [1, 42, 69]. Rabiner et al. [69] reported that increasing the
number of prototypes beyond 256 gave little improvement. The multiband system
employs comparatively low-dimensional parameter vectors and consequently would
be expected to require smaller codebooks for optimum performance. During the ini-
tial stages of development, codebooks of size 32 to 1024 were compared. In general
it was found that increasing codebook size past 128 yielded very small improvements
in individual channel recognition rate. These improvements were judged insufficient
to justify the longer processing times and increased memory requirements associated
with larger codebooks. Consequently, codebook size of 128 was used for all subsequent
experiments.

The parameters that were included in the same vector were often of very disparate
scales. This was especially true of the autocorrelation parameters; for instance,
(frequency in Hertz), and r, (standard deviation of interpeak distances, in points).
In order to obtain a meaningful quantization, parameters in a given vector had to
be normalized. In this case this was accomplished by scaling each parameter so that
the variance of its distribution was 100,! similar to the approach taken in [41]. The
variances were estimated by collecting histograms of each parameter from the SX

sentences in the TRAIN portion of TIMIT.

3.3 Multiple Codebooks

In the most straightforward application of Vector Quantization in an HMM recog-
nizer, all parameters extracted from a given speech frame are combined in one vector.
Quantization of this vector based on an appropriate codebook yields the label of the
closest prototype. This label is then used as the acoustic evidence by the recognition
algorithm.

Gupta et al. [31] first proposed the use of multiple codebooks as a means of ob-
taining a more faithful representation of the parameter vectors. Instead of combining

all parameters in a single vector, they are divided among two or more vectors. For

IThe value 100 was naturally arbitrary.
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each of these parameter sets a separate codebook is created. When processing a
frame each parameter “subvector” is quantized separately, using the corresponding
codebook. Consequently, two or more labels per frame constitute the input to the
linguistic decoder.

The principal advantage of the multiple codebook scheme comes from the lower
dimensionality of the subvectors. As a result, for the same number of prototype vectors
one incurs a smaller distortion in the quantization process, in turn better preserving
the acoustic evidence for the recognizer. The implications for the HMM processor
are discussed in Section 4.4.1. Using multiple codebooks requires making certain
assumptions about the data being quantized. Performance will not improve if these

assumptions are violated.

3.4 Parameter Grouping

The preceding chapter described the three parameter classes under consideration in
the front end of each channel recognizer: energy, signal structure, and delta. Fur-
thermore, three different structure parameter sets were proposed. It remained to be
decided what combination of these parameters was optimal for narrowband recogni-
tion. In addition, division of the parameters among several codebooks was considered.
Wideband recognition efforts have generally found that larger parameter vectors can
be beneficial as long as there is sufficient training data [42, 72]. With that in mind,
three general, progressively more complex groupings of parameters were considered.

The static parameters describing the energy content and signal structure (Sec. 2.2.1
and 2.2.2) were always included. The first parameterization option then comprised
six parameters. Since three different structure sets were available three different static
sets could be tested; they would share the two energy parameters but differ in the
structure parameters.

The acoustic evidence can then be augmented with the addition of delta parame-
ters described in Section 2.2.3. Potentially there exists one delta parameter for every

static parameter, yielding a total of twelve parameters per frame. This is a fairly
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Structure static only static + delta
Parameters 1 codebook | 2 codebooks | 3 codebooks
LPC €1-2, lp1-4 €1-2, Ip1-4 €12, Aej_o
Ae;_g, Alpy_4 Ip1-4
Alp;_4
Cepstrum €1-2, lc14 e1-2, lc1_4 e1—2, Aej_2
Aey_g, Aley_4 ley—g
Alcl_4
Autocorrelation €1-92, 14 €1-2, T1—4 €1-2, A61_2
Aey g, Ary4 Ti-4
Ary_y4

Table 3.1: Parameter groupings for quantization.

large number to combine and quantize as one vector, comparable to dimensions of
vectors in wideband recognizers. Since static and dynamic parameters are only weakly
correlated (mostly at the extreme values) they were split into separate vectors with
separate codebooks. Preliminary experiments confirmed that performance with two
six-element vectors was superior to that with one twelve-element vector.

The third refinement of the parameter grouping attempts to further take advan-
tage of the multiple codebook approach. The same twelve parameters (static + delta)
are now divided into three vectors. As with any application of the multiple codebook
scheme, care must be taken that separate vectors (in the same frame) be as uncorre-
lated as possible.

Since three different structure parameters are available, each of the above param-
eter groupings translates into three different parameterization schemes. Table 3.1
summarizes the parameter arrangements that were further considered. Section 4.4.1
describes the specific parameter arrangement, i.e. distribution among codebooks,

that was chosen.
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Chapter 4

HMM Sub-Recognizers

The last two chapters described the processing that occurs in each channel to derive
the final acoustic evidence provided to the HMM sub-recognizers. This chapter will
focus on the HMM recognition engine that was applied to this evidence in each channel

to render four intermediate phone estimate streams.

4.1 Alphabet

The first task in specifying a recognition procedure is the establishment of an alpha-
bet: the set of speech elements from which an utterance will be composed. In the
present study the motivating application immediately suggests the use of phones.
The exact set of elements was largely determined by the database on which the
experiments would be conducted, namely TIMIT (Sec. 1.4). The phonetic transcrip-
tion of this database uses 64 symbols. These were collapsed to a set of 48, identical
to the set used by Lee and Hon [43] and very similar to sets popularly used in speech
recognition [48]. This reduction mainly merges groups of closures. For instance, clo-

sures preceding /b/, /d/, and /g/, counted as separate elements in the full alphabet,

1Strictly speaking, the motivating application, i.e. the cueing protocol, calls for identification
in terms of phonemes. However, the same phoneme can have quite distinct acoustic realizations
(allophones). Consider, for instance, the phoneme /t/ in “stop” versus that in “butter”. On the
other hand it is usually straightforward to map phones to phonemes. It was decided, therefore, to
use phones as basic recognition units.
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Phone | Example | Merged || Phone Example Merged

iy beet en button

ih bit ng sing eng
eh bet ch choke

ae bat jh joke

ix debit dh then

ax about dx muddy

ah but b bee
uw boot ux d day

uh book g gay

ao bought p pea

aa cot t tea

ey bait k key

ay bite z zone

oy boy zh usual
aw bout \4 van
ow boat f fin

I lay th thin

el bottle S sea

r ray sh she

y yacht hh hay hv

w way cl unwoiced closure | pcltclkel,gcl
er bird axr vel voiced closure bcl,dcl,gcl
m mom em epi | epinthetic silence

n noon nx sil stlence h+#,#h,pau

Table 4.1: List of phones in the alphabet used throughout this study. The Merged
labels designate elements distinguished by TIMIT that were treated as equivalent to
the given phone.

are collapsed into the voiced closure, /vcl/. Several fine distinctions among the nasals
and a few other phones were also merged. The glottal stop “q” was eliminated from

the transcriptions entirely. Table 4.1 lists the phones used.

4.2 HMM Topology

In their most general form, Hidden Markov Models may represent a sequence of
speech (or other) events with so-called fully connected networks. In such a model,

transitions are allowed between each state and any other state. Timing constraints
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in speech suggest a more structured topology [69]. For instance, since speech events
are not by nature cyclical, feedback connections between states are not required.
Several HMM topologies appropriate for phone models have been proposed [2,
7, 42, 76]. The present system uses the simplest form of a Bakis model shown in
Figure 4-1, based on that suggested in [7]. This model consists of three states meant
to roughly represent, in order, the initial transition into the phone, the steady state
interval, and the transition out of the phone. The arrows indicate possible transitions;
absence of a connection between two states indicates that that particular transition
is not allowed. The dashed arrow represents a null transition, explained below. The
model also includes the “entry” and “exit” dummy states. These do not model the
phone as such but rather are used to provide connections between successive models

as explained below.

& ~-- '

Figure 4-1: Markov model of a single phone.

As with any discrete HMM model two sets of parameters have to be specified?:

e the transition probabilities a;} - the probability of moving to state j given that

the current state is ¢ and we are within the model for phone m.

e the observation probabilities b7} (k) - the probability of observing the symbol k

when making the transition 7 — j within the model m.

ZFor a general HMM one would also need the initial state probabilities, often denoted =;, indi-
cating the likelihood of entering a model at each state. Given the structure of the models, all initial
probabilities are effectively set to zero, except for the leftmost state where it is identically one.
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In the structure chosen here each transition was assigned a different observa-
tion probability distribution. In other words, there was no tying effected among the
transitions.? In our case the training data was sufficient because there were relatively
few phone models and transitions within the models, and a small number of possible
observation symbols (128, c.f.Sec. 3.2), relative to the size of the training database.

The individual phone models can be concatenated to yield a language model that
may be fit to any continuous utterance. This is illustrated in Figure 4-2. The 48
available phone models appear in parallel. Their final transitions all connect to an
“exit” dummy state. A null transition, which does not emit an observation symbol
and takes no time, connects back to the “entry” dummy state. From this state in
turn, null transitions allow transfer to any phone model.* Clearly, this arrangement

can describe utterances consisting of an arbitrary number of phones.

Figure 4-2: Connections of individual phone models to form the language network.
Self-transitions omitted in the figure.

3Tying, where different transitions are constrained to have the same observation distributions, is
used to produce more robust estimates when training data is scarce compared to the number of b

parameters.

4The successive null transitions are, strictly speaking, redundant. The exit state could be con-
nected directly to the first state of each phone model. Computationally this is completely equivalent.
The picture given here was chosen for symmetry and clarity.
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Since phone models are concatenated via null transitions, no observation proba-
bility distributions need to be trained for these transitions. However, one still needs
to specify the transition probabilities (the a;;’s) for the entry state. The structure
of Figure 4-2 admits two general approaches: the zero-gram and the uni-gram lan-
guage models. In the former, the transition probabilities are simply —A-f[—, where M is
the number of phone models, i.e. all phones are assumed to be equally likely. The
uni-gram model, in contrast, weights the probabilities of entering successive phone
models according to an estimate of the frequency with which the phones occur in
speech. As would be expected, the latter approach can result in improved accuracy
[42, 43, 63].

However, the output of a sub-recognizer is not the final result desired. The outputs
from the four channels need to be combined. Including the frequency-weighted tran-
sitions biases the output towards the more often encountered phones. This makes the
recovery of less frequent phones difficult during the decision integration process. The
situation is aggravated by the relatively poor matches between the acoustic evidence
and the phone models in the band-limited sub-recognizers. Under such conditions
the output of a sub-recognizer is unduly dominated by the intra-phone transition
probabilities.

In preliminary experiments it was found that the uni-gram model produced scores
slightly higher than the zero-gram model, but at the cost of a large number of deletions
(see Sec. 6.1 for description of error types). Evidently, in the absence of strong
matches between the models and the data, the sub-recognizers were “reluctant” to
leave the favored phones. The high deletion rate also makes it more difficult to
integrate the individual channel decisions. On the other hand, as will be seen, the
decision integration procedure can readily incorporate the a priori probabilities and
is perhaps the more natural place to do so. Consequently, sub-recognizers used the

zero-gram model exclusively.
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4.2.1 Model Training

Training refers to the process of estimating the model parameters based on labeled
acoustic data. The training method employed here was the well known Baum-
Welch or forward-backward algorithm [6, 38, 42, 69]. This is a two-step, so-called
expectation-maximization procedure. In the first step of each iteration, the current
set of HMM parameters (i.e., the a’s and &’s) D is used to compute the expected
likelihood of each arc in the model being taken and each observation symbol being
emitted at each time tick, given the training data V.Y represents the sequence of (in
our case quantized) speech parameter vectors. In the maximize step these expected
values are used to recompute the HMM parameters, resulting in a new set D. At
the next iteration D is used as the initial parameter set. The procedure, which is
similar to a gradient hill climb, is guaranteed to increase the likelihood of observing

the training data given the model up to a local maximum, i.e.:
Pr(Y | D) > Pr(Y | D)

If the local maximum coincides with the global maximum, D converges to the maxi-
mum likelihood estimate of the HMM parameters.

In the system implemented here, the reestimation procedure was initiated with a
flat start, i.e. by setting all probabilities equal at the start, subject to the constraint
of summing to one. While more sophisticated initialization procedures have been
proposed, the flat start has been found to work well for continuous speech tasks [63].

The Estimate-Maximize steps are repeated until some criterion of convergence is
met, or a fixed number of iterations may be run. The stopping condition used here
considered the average increase in the conditional probability of producing a sentence
(or more accurately, the sequence of quantized vectors )7', representing the sentence)
in the training corpus. The training was Stopped when the log of this improvement

reached 5. In other words the model D was accepted as final when:
1 X #
¥ };‘ [log Pr(Y; | D) — logPr(Y; | D)] < 5
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where the summation index ¢ covers all the N sentences in the training set.

In practice this resulted in roughly six iterations of the forward-backward algo-
rithm. Increasing the number of iterations had a negligible effect on the recognition
rate.

Discrete HMM systems have to contend with the unseen observation problem. A
label that never occurs during training within the scope of a particular phone model
will have its observation probability set to zero. Should it occur during recognition it
will eliminate that phone from contention even if the rest of the label sequence matches
the phone well. This has been found to degrade performance. Since the context-
independent models used here were, in general, well trained, the simple solution of
setting the unseen probabilities to a minimum non-zero value was utilized. This value
was picked as 10~° following the data in [69].

Given a phonetically labelled and manually segmented database such as TIMIT,
one could train the individual phone models on their acoustic realizations excised
from the sentences. An alternate strategy, which was used in the current system,
is to fit the appropriate sequence of phone models to each entire sentence. The
phone model sequence is made to match the known phonetic transcription but the
location of phone boundaries available from the manual segmentation is ignored.
This allows the training procedure to converge to its own phone boundaries. For
continuous speech recognition the latter approach is superior because it allows phone
models, especially their transition states, to capture some coarticulatory influences
by including information in the transition regions. Although not directly relevant
here, this technique also allows the training to proceed on phonetically labelled but

unsegmented databases which alleviates the effort of preparing the training material.

4.2.2 Recognition

During the recognition phase, we want to identify the sequence of speech elements
(phones) most likely to have produced the observation sequence Y derived from the
accustic waveform of the the unknown utterance. For the particular task here Y

corresponds to the parameter vector labels calculated over a sentence. The Viterbi
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algorithm [69, 83] was used to find the corresponding phone sequence, This decoder
finds the path g through the state network of Figure 4-2 that maximizes Pr(Y | ¢, D)
where D is the set of Markov model parameters we have trained. It does so in a
time-synchronous fashion, finding at time tick ¢ for every state in the network the
most likely predecessor, given the predecessor’s score at time £ — 1 and the transition
to the current state. At the end of the utterance the best state sequence is recovered
starting at the state with the final highest score.

The structure of TIMIT made it natural to perform recognition one sentence at a
time. In other words, the Viterbi algorithm would align the most likely path through
the state network to an entire sentence. In recognizing running speech the algorithm
would be applied to the last few seconds of the acoustic input and the identity of the
current phone reported according to the final state of the Viterbi alignment. Some,
probably heuristic, post-processing might be required, for example to deal with an
alignment whose final state is in the middle of a phone model.

A real-time implementation might also make use of a still more efficient variation
of the Viterbi search. In this method, called the bearn search [76], only the states with
sufficiently high current scores are considered as potential predecessors at each time
tick. The minimum eligible score is given as a constant offset below the maximum
probability achieved by any state at the given time. The beam search reportedly can
reduce the number of possible paths to be explored by up to two orders of magnitude
without seriously degrading performance. However, since recognition took place off-

line in this study, full Viterbi search was used.

4.3 Scoring

The output of a phonetic recognizer is generally evaluated by the number of phones
identified correctly. A dynamic programming algorithm is used to match the output
phone sequence to the manually produced one [43]. However, the relatively low
recognition rate at the sub-recognizer level made this alignment problematic. Instead,

since the test database is segmented, and the Viterbi algorithm assigns each data
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frame to a state in a phone model the sub-recognizer performance was scored as the
percentage of frames identified correctly.

In computing the scores the true label of each frame in the test sentence was
compared to the corresponding label in the sub-recognizer output and the two frames
on either side of that frame. The frame was considered to be correctly classified if
any of these output frames were labelled the same. This was done in order not to
penalize slight differences in segmentation and number of frames assigned to each
phone between the manual and sub-recognizer transcriptions. It should be kept in
mind that the frame-oriented method of scoring gives greater weight to the recognition
of longer phones. Therefore, the scores are mostly relevant as a relative rather than

an absolute measure of the sub-recognizers’ performance.

4.4 Experiments

A myriad of variations on the basic sub-recognizer can potentially be tested. These
include the type and number of parameters to be extracted from the acoustic wave-
form, the number of codebooks in the VQ stage, the number of VQ prototypes, the
arrangement of states in the phone HMMs, number of iterations of the training algo-
rithm, etc. It makes little sense to study all the combinations. As has been indicated
in the foregoing sections, at each stage of development many of these alternatives
were eliminated from further consideration by performing experiments with the other
characteristics held fixed.

To recapitulate, the following were the salient characteristics of the recognition

process in each channel:

e All codebooks contained 128 prototypes, providing relatively well trained phone

models. Performance increased only incrementally for larger codebooks.
e The HMM topology was fixed as shown in Figures 4-1 and 4-2.

e The forward-backward algorithm was used for training and the Viterbi algo-

rithm for recognition (c.f. Sec. 4.2.1 and 4.2.2).
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e The SX sentences of the training portion TIMIT database were used as training
data. Including the SI sentences did not improve performance, suggesting that

the complexity of the models was not excessive.

Whereas it was not likely that the narrowband system would require, for instance,
a different training algorithm, it might respond differently to the type of the parameter
set, the number of parameters and the number of codebooks. Experiments at the sub-

recognizer level concentrated on these system characteristics.

4.4.1 Parameter Arrangement

As explained in Section 3.4, once the method of finding the signal structure parame-
ters was chosen, we had twelve potential parameters per frame from which to choose.
The LPC parameters were picked as the structure set to test three alternative ar-
rangements of these parameters in all four channels.

The three arrangements were:

e static only: only the six static parameters: e;_, and Ip;_4 quantized with one

codebook.

e full - 2 codebook: six static: e;_p and Ip;_4, and six delta: Ae;_o and Alp;_4

parameters quantized with separate codebooks.

e full - 3 codebook: all twelve parameters split into three four-element vectors and
quantized from three codebooks as follows:
— energy: static and delta, e;_s and Ae;_o
— structure: static, Ip;_4

— structure: delta, Alp;_4

Table 4.2 summarizes the results obtained. They are consistent with previous
experience with discrete HMM recognizers. For all four channels the augmentation

of the parameter set with dynamic parameters improves recognition, on average, by
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Parameter Channel Score
Arrangement 1 2 3 4
static only 28.8 | 36.7 | 28.6 | 23.9
full - 2 codebook | 35.4|36.1|33.2|27.7
full - 3 codebook | 39.8 | 40.5 | 37.6 | 30.8

full - 3 codebook
random assignment | 35.5 | 36.1 | 32.7 | 27.0

Table 4.2: Percent frames correctly identified for three different parameter arrange-
ments and a random “demonstration” arrangement. LPC Structure parameters. See
text for details.

5.1 percentage points. Furthermore, splitting the full parameter set into three vectors
rather than two, results in still further improvement of almost 4 percent.

While the full set of experiments represented by Table 4.2 was not repeated for
the other two signal structure computations (autocorrelation and cepstrum), selected
channels were tested. The trend shown above was not contradicted in any way.

Division of the twelve parameters among the three codebooks was not accidental.
The key to the effectiveness of the multiple codebook approach is the assumption
that the resulting multiple labels obtained per frame have independent observation
probability distributions. Thus, for three labels k!, k2, k%, their joint observation

probability for a given model transition 7 — j, is:
3
bij(kla k2,k3) = H bflj(kl)
=1

This assumption allows us to train the probabilities of three quantized vectors as
robustly as the probability of one vector. At the same time the VQ distortion of the
three vectors is smaller than when all the elements are combined in one vector.

This technique works only insofar as the independence assumption holds. In
practice one tries to split the parameters among the subvectors so that there is little
correlation among the vectors. The split here was chosen heuristically to minimize
such correlation. To demonstrate that correlation can degrade the performance of

a multiple codebook system, also in a narrowband recognizer, the three-codebook
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Structure  Channel Score Average across

Parameters 1 2 3 4 Channels
LPC 39.8 | 40.5 | 37.6 | 30.8 37.2
cepstrum 39.3 1409 379|314 374
autocorrelation | 39.7 | 38.7 | 35.6 | 31.5 36.3
Average across
Parameters 39.6 | 40.0 | 37.0 | 31.2

Table 4.3: Percent frames correctly identified for three different waveform structure
parameter sets. 3-codebook arrangement as listed on page 57.

system was re-tested, this time assigning parameters to the three codebooks more or
less at random. The results are also given in Table 4.2. As can be seen recognition

rates drop from those attained by the designed split.

4.4.2 Structure Parameters Performance

The experiments above demonstrated that the best performance, given the overall
pattern of the parameterization, was obtained with full (static and delta) parameter
sets split into three codebooks. The three proposed types of structure parameters
could be employed in this context: LPC, cepstrum, and autocorrelation. The results
are given in Table 4.3. Note that the results for LPC are repeated from Table 4.2 to
facilitate a comparison.

The cepstrum parameters tend to result in generally the highest recognition rate,
being best for channels 2 and 3, and second for channel 4, and having the highest av-
erage score. The ad-hoc autocorrelation parameters tend to have lowest performance.

The differences, however, are fairly small.

4.5 Conclusion

Increasing the number of parameters per frame and dividing them into separate
codebooks was found to yield consistently and significantly superior results at the

sub-recognizer level. Subsequent experimentation concentrated, therefore, on the 3-
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codebook parameter grouping, including all three classes of parameters: energy, signal
structure, and delta.

The differences among individual channels resulting from different structure pa-
rameters were more equivocal. In particular, different parameters proved best in
different channels. Also the scores were relatively close. Therefore, the combination
of channels had to take all three signal structure parameterizations into account.

When compared to human performance on analogous narrowband stimuli, the
channel scores appeared high enough to continue with the problem of label integration
without altering other aspects of the sub-recognizers, such as topology or the vector

quantizer algorithm.
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Chapter 5

Decision Integration

Each sub-recognizer’s output is a sequence of phones that best matches the acoustic
input according to the pre-trained model. In addition, the timing of the transitions
between phones is specified to within the spacing between successive frames, in our
case 10 ms. Figure 5-1 shows an example of the output from the four subrecognizers
over a space of several phones.

Not unexpectedly the outputs of the channels are not identical and do not é,lways
agree with the “true” underlying sequence.! On the other hand they tend to agree
with the basic series of vowel, closure, stop consonant, fricative, closure. The chal-
lenge before the integration procedure is to optimally arbitrate among the individual
decisions or possibly to choose a phone not identified by any of the channels.

Several complications are immediately apparent. The channels rarely agree on the
timing of the transitions between successive phones. In some cases, as illustrated in
Figure 5-1, the differences can be on the order of 50 ms or more. Alone this prob-
lem would not be fatal, however it becomes more serious considering that individual
channels may add or delete phones. Examples of insertions occur in channels 2 and
3 in the figure.

Phone level decision integration can be seen as involving two issues. First, the

procedure must decide on the boundaries of the underlying phones and second, on

1Serendipitously the first channel happens to be correct as to the sequence in this case, although
even it does not match the exact phone boundaries.
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Figure 5-1: Sample output of the four sub-recognizers. LPC parameters, 3 codebooks.
Dashed lines indicate frame boundaries. The underlying phone sequence (labelled true
in the figure) is the initial part of the word “excluded”.

their identity. Fundamentally these do not have to be separate processes. However,
separating them makes the problem more tractable.

In particular, the problem of combining four labels is readily amenable to statisti-
cal approaches if the problem of synchronizing these labels is ignored. This is true if
we consider combining the channel decisions at the frame level where channel outputs
are perfectly synchronized. Also, there is no such problem as insertion or deletion of
a frame.

The main shortcoming of the frame-level integration is that the integrated frame
stream is likely to switch frequently among several phones close to the transition
between two “true” phones. This is a direct result of inconsistent segmentation by
individual channels. Therefore a second stage of the integration process is necessary
to provide the final segmentation and to “clean up” the frame stream. The decision

integration set-up is depicted in Figure 5-2.
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Figure 5-2: Block diagram of the label integration process.

5.1 Frame Level Integration

At the frame level the problem may be viewed as one of probabilistic detection [62].
We have to decide which of a finite number of phones gave rise to the fourtuple of best
guesses. The cenditions of the problem immediately suggest employing Maximum A
Posteriori (MAP) probability detection method. Accordingly, we classify each frame

as belonging to phone § given by:

§=arg max Pr(q | crcocscy) (5.1)

where c; is the frame classification according to the ¢’th channel.
Equation 5.1 can be rewritten, using the definition of conditional probability and

the fact that Pr(c;cacscs] does not depend on ¢, as:

j = arg e, Prcieacsey | g] % Priq] (5.2)

Here we show explicitly the dependence of the maximum on the a priori probability
of q.

As Equation 5.2 indicates, to apply the MAP criterion we need two sets of prob-
abilities: the probability of observing a certain four-fold combination of channel out-
puts given an underlying phone, and the probability of the phone occurring without

regard to the current channel output.
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5.2 A priori Probabilities

One way to estimate the a priori probabilities is to assume that all phones are pro-
duced with equal frequency. This would effectively remove Pr[g] from Equation 5.2
and simplify the MAP criterion to the maximum likelihood (ML) criterion.

This assumption is of course unlikely to be correct for any realistic speech corpus
[20]. Therefore, in order to maximize the likelihood that § is correct a better estimate
should be used. The use of statistics reported in [20] was considered. However,
the phonetic alphabet used there is not completely compatible with the 48-element
alphabet derived from the TIMIT label set as used in this study. On the other hand
the training portion of TIMIT provides ample data from which the frequency of phone
occurrence could be estimated by simple counting.

There remains an additional issue, however. That is whether Pr{g] should refer
to the frequency of occurrence of phones or phone frames. This is an important
distinction. Choosing the frequency of phone frames naturally favors longer duration
phones whose frame counts will be higher compared to short phones that may occur
just as often. For instance, under this policy fricatives would be likely assigned
higher a priori probabilities than stop consonants. This type of tradeoff would not be
unreasonable if our goal was to maximize recognition of frames or, equivalently, the
fraction of time that the recognizer is correct.

For most applications, however, the relevant aspect of recognizer performance is
the percentage of phones that are correctly recognized. Consequently, the frequency
of phone occurrence used as the estimate of Pr[g] should yield the highest recognition
rate at the phone level. This hypothesis was empirically confirmed (see Sec. 6.2).
Table 5.1 lists the phone a priori probabilities as estimated from the SX TRAIN
sentences of TIMIT.
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Phone | Probability || Phone | Probability || Phone | Probability
iy 0.0345 1 0.0380 g 0.0104
ih 0.0261 el 0.0069 p 0.0197
eh 0.0223 r 0.0389 t 0.0247
ae 0.0175 y 0.0088 k 0.0253
ix 0.0468 w 0.0179 z 0.0231
ax 0.0267 er 0.0363 zh 0.0019
ah 0.0148 m 0.0280 v 0.0131
uw 0.0113 n 0.0466 f 0.0183
uh 0.0043 en 0.0039 th 0.0053
ao 0.0168 ng 0.0069 S 0.0402
aa 0.0188 ch 0.0062 sh 0.0085
ey 0.0146 jh 0.0071 hh 0.0084
ay 0.0142 dh 0.0182 cl 0.0844
oy 0.0032 dx 0.0112 vel 0.0517
aw 0.0042 b 0.0190 epi 0.0072
ow 0.0118 d 0.0152 sil 0.0608

Table 5.1: Phone a priori probabilities.
5.3 Conditional Probabilities

The second, crucial component of Equation 5.2 is Prc;cacsey | g] - the probability
of observing the given four-way combination of individual sub-recognizer outputs,
given that the frame fell within phone gq. The natural method of estimating these
probabilities is from analysis of sub-recognizers’ outputs on known (i.e. labeled)

training data. Specifically, we could estimate the a posteriori probability as:

4
Prlcicocsey | g] = ﬂﬁ% (5.3)
q

where z? . is the number of frames the sub-recognizer output combination c¢;cac3cy
occurs when phone g is spoken and N, is the total number of frames of phone g
present in the training data.

Unfortunately this direct approach proves impractical for any realistic application.
An excessively large database would be required to estimate the probabilities by

Equation 5.3. For a 48 phone Alphabet there are 48* or well over 5 million possible
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combinations of individual channel outputs. Furthermore, the conditional a posteriori
probability of each combination for each of 48 phones is required (a total of almost
250 million combinations). The training portion of the TIMIT database contains
only about 1 million frames.?2 This is clearly insufficient to estimate 250 million
probabilities.

The probiem is most obvious for a combination that is never seen in the training
data but occurs in speech to be recognized. In that case Equation 5.2 would be
unable to render a decision. The difficulty with the simple method is more general,
however. In addition to the combinations that do not occur in the training data,
many combinations occur only a few times. In practice these turned out to constitute
a large fraction of the combinations seen during recognition. Clearly, in these cases
the estimate provided by Equation 5.3 will not be very reliable.

A robust estimate of the a posteriori probabilities is indispensable for the proposed
frame-by-frame integration scheme; in fact, it is its key element. Consequently, several
methods of estimating these probabilities from the available data were developed and
tested. Their theory is presented below. Some of the practical aspects, arising in

application are addressed with experimental results in Section 6.4.

5.3.1 Two-at-a-time Method

While it is unlikely that sufficient data could be obtained to estimate the probabilities
of the four-fold combinations directly, it is much more realistic to perform such an
estimate for any two-channel combinations. There we have 482 (2304) possible outputs
and a reasonably good coverage with roughly 700,000 frames from the training part
of TIMIT SX set. In particular, the problem of unseen combinations does not occur.
The coverage for some less frequently occurring phones may be insufficient if we
were interested in fine statistical differences. However, the goal is to find the reliable
maximum a posteriori probability and for this purpose the training data are sufficient.

The approach this suggests is to first separately two pairs of channels and then

2Excluding the SA sentences; these two sentences are spoken by all speakers, using them might
skew the statistics. See Sec. 1.4.
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Figure 5-3: Block diagram of the two-at-a-time frame integration method.

to combine the resulting two “compound channels”. This concept is illustrated in
Figure 5-3. In this implementation MAP detection is applied to the channel pairs 1
and 2, and 3 and 4 separately. The results of the combination of each pair form new
streams of frame labels, called channels L and H. It is not a fundamental require-
ment that adjacent channels be combined first. However, the method requires us to
effectively estimate joint probabilities of two channels. These estimates will be better
and more useful for channels that are correlated and these in turn are likely to be the
adjacent ones.

Channels 1 and 2 are thus integrated according to:

Gr =arg max Prlcic, | q] x Prlg] (5.4)

Here the a posteriori probability Pr[c;c;, | g] is computed as given by Equation 5.3,
modified for only two channels. Channels 3 and 4 are combined in an analogous

fashion to produce §g.
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To obtain the final decision channels L and H are combined according to:

A

§ = arg qEE}%bet Prlgrem | q] x Pr[g] (5.5)

In this scheme then, the four-fold probability is approximated as:
Preicecses | gl = Prldrgn | g

5.3.2 Independence Assumption

Another straightforward method of estimating the a posteriori probabilities relies on
the assumption that the individual channel decisions are statistically independent of

each other. Under this assumption we may write:

Prlcicocses | ] = f[ Prle; | g (5.6)

=1
Thus the problem is reduced to estimation of the individual channel decision a
posteriori probabilities. There is certainly enough data in TIMIT to do this by simply

counting the appropriate frames, i.e.:

7
Prfes | 4] =
which is simply Equation 5.3 applied to a single channel.

The independence assumption has several advantages. It is very easy to imple-
ment, involving only simple computations. The individual a posteriori probabilities
are likely to be very robust, with no danger of unseen combinations. And it corre-
sponds directly to the post-labeling integration model of human perception described

in the Introduction.

5.3.3 Log-linear Model Fitting

The previous sections avoid the problem of missing output combinations by assuming

complete independence among sub-recognizers or groups of sub-recognizers. One
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might argue, however, that the training data provides enough information to take
advantage of some, albeit reduced level of interaction among the channel outputs.
One approach is through log-linear modeling of the data.

The data from which we want to estimate the a posteriori probabilities, Pr[c;cocscy |
g], forms a set of 48 (for the chosen alphabet) four-dimensional contingency tables.
Each of these tables is conditioned on a different phone ¢ and contains the counts
of the number of occurrehces of all the possible sub-recognizer output combinations
when the particular phone was spoken z¢ ,...,. The sparseness of these tables is the
problem.

We may consider the entries of the contingency table as being the result of sam-
pling the available N frames of phone g present in the training data. The probability
of a given combination {cjcocses} of outputs is precisely Prejcocscs | g]- Simplifying
the notation for the probability to p;::; and the count in the table cell to z;jk, the

counts have the multinomial probability density function:

N! oo
w1 H Pijki R (5-7)
i e Tisial 5 55,

f (zijlcl) =

The individual combination probability is related to the expected count, m;;x in the

corresponding cell by:
Mkl
DPijkl = N

Finding the expected values of the cell counts is therefore equivalent to finding the
desired probabilities.

We can obtain estimates of these expected cell counts that are more robust than
the raw counts z;;x by fitting log-linear models [12] to the array of counts. The

general, so-called saturated, model for the four-dimensional array is:

logmijne = u+ uie) + ugg) + usr) + Uar) +
Ug(ij) + U13(ik) + Uiait) + U2s(jk) T U24(ji) + Usa(kt) +

U123(ik) + U124(ij1) + U13a(ikl) + Yo3a(ikl) + U1234(ijk0) (5.8)
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'This equation is analogous to analysis of variance (ANOVA) models. For an array
with equal number of categories (L) of each variable, the first term is the “grand

raean”:

Gijkl
u= Z L4
%,5,k,l

where gijx = logmyji. The term u1(;) captures the deviation of cell values from the
mean that are attributable solely to variable 1:

_ Jit++  G++++
Mo ="73 T a2

where the notation g;;++ indicates summation over the variables replaced by pluses,
i.e. Git++ = Xjk19ik- Analogous expressions hold for Us(j)> U3(k), anduyg), with
appropriate marginal sums replacing g;; .. Similarly, higher order terms in Equa-
tion 5.8 express the contributions due to multivariable effects.

The u-terms must sum to zero over all subscripted variables. Given this constraint
the number of u-terms is exactly equal to the number of cells in the array, hence
the term saturated; as it stands, the model does not estimate anything. However,
it provides us with a formalism for eliminating higher-order interaction among the
variables, precisely the quantities that we cannot estimate reliably frora the sparse
raw counts. Setting the high order terms to zero effectively reduces the number of
parameters that describe the structure of the contingency table. The available data
is then used to obtain maximum likelihood estimates of these parameters, rendering
an unsaturated log-linear model of the table.

As shown in [12, Sec. 3.3] the sufficient statistics for the ML estimates are obtained
by relating the log-likelihood of Equation 5.7 to the model for the expected cell
counts, Equation 5.8. In general, these sufficient statistics are the marginal sums of
the table corresponding to the highest order u-terms left in the approximate model.
Furthermore, an iterative procedure exists that allows us to compute the ML estimates
of the expected cell counts, 775, without first finding the parameters of the log-linear
model. It makes use of the constraint [11] that the ML estimates of the sufficient

statistics (marginal sums) must be equal to the observed values. For instance, if
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T;ij++ is a member of the set of sufficient statistics then:
Mij++ = Tij++

This estimation procedure effectively computes cell counts that satisfy the marginal
sums specified by the unsaturated model. These recomputed cell counts are the
estimated expected values from which we can directly obtain the desired probability:

Prlcicocscs | q) = Piju = ]’\;k' (5.9)

The procedure itself is outlined in Appendix B.

There are numerous approximate models we could try as long as they obey the
hierarchy principle: the setting of any u-term to zero implies that all its higher order
relatives are set to zero. However, since there is no compelling reason for treating
one channel differently from others, only two approximations retain the appropriate
symmetry. In the first, the highest order effects uigs4(ijir) are set to zero, in the
second, all third order effects (u123(ijx), etc.) are eliminated.? The hierarchy principle
requires, of course, that in the latter case the fourth order effect be set to zero as well.

A final issue that must be faced when using this method is the possibility that
some elements of the marginal sums that we try to fit will themselves contain zeros.
This is quite likely, especially for the unsaturated model eliminating only the fourth-
order interaction term. Say, a cell z jpp is zero: the requirement that all cells be
non-negative results in:

Vi: Th,-j:k:y =0

A common statistical sleight of hand that avoids this problem is to add 1/2 to all

cells of the marginal counts and that is what was done.

3We could proceed further and eliminate the second order effects, leaving only the grand mean
and the terms u,(;), etc. However, a model so simplified becomes equivalent to the independence
assumption of Sec. 5.3.2.
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5.3.4 DPseudo-Bayesian Analysis

In contrast to the method of Section 5.3.3, the approach described here does not
attempt to model the structure of each output combination array. Instead, it tries to
interpolate between the highly specific but mostly unreliable combination counts and
some more robust but less well resolved estimates. The interpolation takes the form:

N K

Bigit = ¢ @um/N) + e diiw (5.10)

where the notation of the previous section has been retained (see Equation 5.9) and
Aijri is the previous (presumably “over-smoothed”) estimate of p;jr;. K controls the
proportions in which the two factors will be combined and must itself be estimated
in some fashion.

Pseudo-Bayesian analysis [12, Chapter 12] offers one method for calculating a
K dependent on the available data = and the initial estimates A. The optimal K
is calculated to minimize the expected value of the departure of p from the true

probability p over all possible combinations:

k = arngi,nN Z E[ﬁijkl(K) - pijkl]z (5.]_1)

1.3,k

Solving Equation 5.11 leads to:

. 1—-5%.. 2
K= Rkl Pt (5.12)
i ikt (Dijrt — Aijit)
Unfortunately, the result depends on the unknown p;;x. An estimate of the op-
timal value of K can be obtained by replacing p;;x; with the direct frequency of the

cell’s occurrence:

1— % iki(@iu/N)? (5.13)
Y ikt (@ijrt/N — Aijrr)?

The denominator of Equation 5.13 is large when the previous estimate of the

K=

probabilities, A;;x; and the direct cell frequencies are widely divergent, indicating

that new data, x;ju, disagrees with our original picture of the distribution. This
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leads to a small K which in turn places greater weight on the new data term in
Equation 5.10. Conversely, close overall agreement between the cell frequencies and
previous estimates favors Ajjn;, thus discounting the (presumably few) cells of the
matrix whose frequencies differ from their expected values.

The numerator of Equation 5.13 tends to be larger when the counts T;jk are spread
out rather than concentrated in a few cells. For instance, it goes to zero if all counts
occur in only one cell. Thus the estimate from cell counts is favored when the new
data suggests extreme rather than smooth probability values p;;r;. This agrees with
the assessment of the risk of different estimators given in [12, Sec. 12.2.2].

Further analysis of asymptotic behavior of K under different assumptions about
pijrr in Equation 5.12 [12, Sec. 12.7] leads to the estimate that was actually used in

the current investigation®:

2 2
N” — Ykt Tijet

5.14
ikt Thm = 2(N = 1) Ty ikt Tiskdijn + N(N = 1) 550 M — N (5:14)

K=

By using Equation 5.14 in 5.10 we can obtain estimated probabilities for all output
combinations.

The remaining issue is the source of the robust estimates A. In this case a nat-
ural choice is to use the probabilities estimated via the independence assumption,

Equation 5.6 and this was indeed done.

5.3.5 Occurrence-weighted Interpolation

The final method continues the concept of interpolating among estimates of the a

posteriori probability. The interpolation proposed is of the form:

~ Lijkl Tij++T+4kl Tit4+T4j++ Lokt L++
Pijkt = T~z + T2 N? +73 iz (5.15)

Equation 5.15 combines probability estimates at three levels of robustness/specificity:

4This estimate differs only slightly from Equation 5.13 as can be seen by approximating N — 1
by N and dividing through by N? in the latter.
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o direct estimate from the full table of output combination counts

e product of estimates based on combining pairs of channels directly (i.e. the

pairs, 1 and 2, and 3 and 4, are assumed independent)
e product of individual channel estimates: the independence assumption

The requirement that p;;r represent a valid probability measure constrains the
values that the coefficients 7 can take. In fact, this interpolation admits only two

independent coefficients. This leads to the alternative expression:

N _ - Tijk Lij++L++kl Lit++T+j++ T+ +k+T4++1
B = o (1= o) [PGE 4 (- p TR ]
0<a,0<1 (5.16)

This variation underscores the idea: we want to use as much of the direct estimate as
possible, getting the remaining fraction (1—q) of the probability from the combination
of the other two estimates. The parameter 8 determines their relative contributions.

The key problem is determining the magnitudes of o and 8. They should reflect
our relative confidence in the three available estimates. One way to gauge this is
by inspecting the total number of times a particular channel output combination
{i, J,k,1} occurred in all of the training data. Qualitatively, if this combination
occurs frequently, then the direct estimate of the a posteriori probability should be
accorded a high weight even if it is never seen for the particular phons ¢ on which
we’re conditioning the current probability. The resulting low probability will have
meaning when used in Equation 5.2.

The parameters of Equation 5.16 can be expressed as®:

a = fa( Z -’Egjkz)

g€ Alphabet
B = fg|min Z ﬂ’3;'IJ‘++a Z T ki (5.17)
g€ Alphabet q€ Alphabet

5The superscript notation z9 explicitly shows the conditioning of the counts on the underlying
phone gq.
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Strictly speaking we might want to make the functions depend on the total count
relative to the size of the alphabet (and thus the size of the count tables). However,
since the latter was not altered throughout the investigation, these expressions are
general enough.

There are certain obvious constraints on f, and fg, for instance, they should be
monotonically non-decreasing and asymptote to one. However, the exact form can
only be arrived at empirically. In this case the functions were arrived at by trial and

error as described in Sec. 6.4.

5.4 Final Segmentation

Each of the five methods described above integrates individual frame labels. What is
specifically ignored at this level is the question of segmentation as is the relationship
between neighboring frames. As a consequence the frame stream contains, for in-
stance, frequent single frames of different labels following one another or single vowel
frames surrounded by frames assigned to a different vowel. The goal of the final
segmentation is to “clean up” the frame stream and produce a sequence of phones.

Initially one might contemplate a heuristic approach, invoking such rules as min-
imum duration, merge of “mixed” stop consonant frames, etc. However, we have a
ready system that is potentially capable of converging to such rules automatically:
another HMM engine. For its purposes the input sequence of frame labels is indistin-
guishable from the output of a 48-prototype vector quantizer.

Figure 5-4 shows the phone model employed in this final HMM. It is similar to
the model used in the sub-recognizer HMMs (Figure 4-1) but includes an additional
state with no self-transition. This state is used to model the transition to the next
phone as shown in Figure 5-5 which demonstrates the interconnections of individual
phone models that define the effective language model. An additional transition from
the initial state in the phone model to the new state is also added. This is done
to maintain two state transitions as the shortest possible duration of phone; stop

consonants frequently exhibit durations around 20 ms.

75



phone 1

phone 2
®----

phone 48

Figure 5-4: Single phone Markov model in the final HMM.

lphone 48

Figure 5-5: Connections of the phone models effecting the bi-gram language model
of the final HMM. Some of the within-phone transitions have been omitted.
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Unlike the sub-recognizer HMMs, the final HMM utilizes a bigram language model.
The transitions between phones have different probabilities (the a;;’s) depending on
the particular pair of phones involved. Just as the other HMM parameters, these
probabilities are estimated via the forward-backward algorithm from training data.
Once the phone models are trained, the final recognition proceeds via the Viterbi
| algorithm as described in Section 4.2.2. The output of this stage constitutes the final

output of the recognizer.
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Chapter 6

Integration Results

The main focus of the experiments was to evaluate the proposed methods of frame
label integration described in the previous chapter. However, there were other, an-
cillary, variations in the system configuration for which results were obtained. This
included, again, choice of original structure parameters, and the effect of increasing
the training data.

Except where explicitly stated otherwise, all training, parameter and probabilities
estimation, etc. were performed using data of the SX sentences in the TRAIN portion
of TIMIT. Performance reéults were obtained for the SX sentences of the TEST part
of the database (c.f. Table 4.1).

6.1 Scoring

The first score of interest produced by the integration process is the fraction of the
frames in the test data matched correctly by the frame label integration stage. Be-
cause of the relatively frequent “single frame” phones in the output of this stage,
phone scoring is not feasible. The frame scoring rules employed in the sub-recognizer
evaluation, Section 4.3, were also followed here.

On the other hand, the final output must be scored according to the correctness
of the recognized phone sequence. In obtaining this score, published scoring rules for

phonetic recognition were followed [42, 43, 76]. The recognized phone sequence was
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Percent Correct
A Priori Two-at-a-time | Occurrence-weighted
Probabilities 2 codebooks 3 codebooks
Frames | Phones | Frames | Phones
all equal 48.4 43.6 55.4 50.1
frame frequency | 53.3 45.1 59.0 51.8
phone frequency | 52.7 46.1 58.5 53.2

Table 6.1: Results for different choices of a priori probability in the frame combination
rule. LPC structure parameters. See text for details.

aligned to the correct phone sequence by a dynamic programming algorithm described
in Appendix C. The Percent Correct score was calculated as the percentage of the
phones in the TIMIT transcription that were matched with identical labels in the
output of the recognizer. Thus substitutions and deletions are counted as errors but
~ insertions are not. The latter were always between 10 and 11 percent of the input
phones which is slightly lower than the 12% rate reported in [43] and [76].

The scores reported in most of this chapter refer to the 48-phone alphabet used
throughout (Sec. 4.1). Phonetic recognizers using the TIMIT database often reduce
this set further to 39 elements by merging several acoustically similar phones [43] and
report the performance on this set, often referred to as the CMU/MIT reduced set.
Accordingly, the last section lists the performance of the best versions of the current
system using this reduced alphabet. It is formed by merging the following phones:

[ih,ix]; [ah,ax]; [aa,a0]; [L,el]; [n, en]; [sh, zh] and [cl,vel,epi,sil].

6.2 A Priori Probabilities

Equation 5.2 indicates that the frame combination rule depends on the choice of a
priori probabilities. As explained in Section 5.2 three different approaches to obtaining
this probability were considered: all equal, frequency of phone frame occurrence, and
frequency of phone occurrence. Table 6.1 shows a comparison of the performance

under these conditions.
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Two combination methods were tested: the two-at-a-time method of Section 5.3.1
and the occurrence-weighted interpolation of Section 5.3.5. The former was used with
2-codebook input to the sub-recognizers, the latter with 3-codebook input. LPC
structure parameters were used in both cases. Assuming all phones equally likely
leads to the lowest score both for frames and phones. The frame scores are highest
when frame occurrence frequency is used as the a priori probability estimate. This
agrees with the analysis of Section 5.2.

As signaled in that section, however, a priori probabilities that lead to highest
frame scores do not have to correspond to highest phone scores. The data of Ta-
ble 6.1 bear this out. For both conditions, the phone score is highest when the phone
occurrence frequency is used as the a priori probability. Consequently, when testing .

other aspects of the system, this was the estimate used when applying Equation 5.2.

6.3 Parameter Arrangement

As noted in Section 4.4.1, increasing the number of parameters used to describe a
frame of input speech improved the performance of each sub-recognizer. Similarly,
splitting these parameters into three rather than two codebooks resulted in higher
scores. The ultimate measure of performance, however, rests with the output of the
label integration stage. It is to be expected that better channel scores would result
in an improved overall recognition rate. However, given the philosophy of the frame
combination rule (Equation 5.2) the correctness of the sub-recognizers outputs is not
as important as their consistency. In an extreme example, the sub-recognizers could
be always wrong but if each of their combinations occurred uniquely for a given
underlying phone the final decision would be always correct.

Table 6.2 shows the relevant results with the LPC waveform structure parameters.
Compared are: the average frame correct rate for the four individual channels, percent
correct of the frames after combination, and the percent of phones correct in the final
output. The frames were combined using the independence assumption.

As the results indicate, the overall performance does seem to be reasonably cor-
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Parameter
Arrangement

Percent Correct

Average Channels

Combined Frames

Combined Phones

static only
full - 2 codebook
full - 3 codebook

28.0
33.1
37.2

50.6
56.9
58.3

43.3
48.9
52.3

Table 6.2: Average sub-recognizer, and overall performance for LPC structure param-
eters and various parameter arrangements. Independence assumption combination.

related with the performance at the sub-recognizer level. However, the magnitude of
the improvement is not as clear: the increase in combined performance from 2 to 3
codebooks is only about 34% of the average individual channel improvement. The
corresponding number when the change is from static to full parameter set is 124%.
Since the combination was done using the independence assumption, this discrepancy
cannot be blamed on artefactual effects of sparse training data. More likely it reflects
the effect of different interactions of channel errors in the combination process.

The performance of the 3-codebook arrangement was thus seen to be superior both
at the sub-recognizer and the the overall level. Subsequent experiments concentrated,

therefore, on versions of the system using 3-codebook sub-recognizers.

6.4 Label Integration Methods

6.4.1 Frame Level Results

As seen in Section 5.3, the different methods of integrating the label streams produced
by the sub-recognizers center on different approaches to estimating the conditional a
posteriori probabilities of the possible output combinations. Five such methods were
proposed and evaluated using LPC structure parameters.

It should be noted that once the probabilities of Equation 5.2 are fixed, the map-
ping between the four-fold combinations of channel outputs and the integrated label is
completely determined. In practice this means that the frame-by-frame combination

stage involves essentially no computation. Rather, a simple table lookup is required.
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The minimization of computation at recognition time is of course highly desirable for

a real-time application.

Two-at-a-time Method (1)

The collection of appropriate confusion matrices needed to merge the pairs of channels
and then to combine the compound channels L and H was straightforward. One
problem that did surface was the absence of a very small, but non-zero, number
of channel pair combinations in the training data. To deal with such cases, the
integration rule was amended such that a frame whose label pair had not been seen
was mapped to the same phone as the immediately preceding frame. In the event
fewer than 0.01% of the original channel pair combinations were missing, and only
about 0.03% of the HL combinations. The ad-hoc fix thus seemed justified. This

method gave 55.7% correct combined frames.

Independence Assumption (2)

No special provisions had to be made for this method; the individual channel confusion
matrices were well covered. Frames were combined at the rate of 58.2% correct.
Log-linear Models (3)
Two versions of this method were implemented:

I fourth crder effect set to zero

IT all third order effects set to zero (hierarchy principle requires that the

fourth order effect be eliminated also)

As explained in Section 5.3.3, 1/2 was added to all cells of the marginal sums to avoid
the problem of zero counts. In the case of model I, about 99% of the marginal sums’
cells were, in fact, zero. The corresponding figure for model II was around 40%.

Model I gave 53.5% frames correct, model II, 58.4%.
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o B
Count Range | Value || Count Range | Value
<10 0 <20 0
11-20 0.1 21-50 0.2
21-50 0.3 51-200 0.5
51-100 0.7 201-500 0.9
> 100 1 > 500 1

Table 6.3: Ranges and values for the optimal weights for occurrence-weighted inter-
polation. This effectively constitutes the functions f, and fz of Equation 5.17.

Pseudo-Bayesian Analysis (4)

The preliminary, robust estimates of the a posteriori probability, A;;jx were obtained
from the independence assumption analysis, whose result is given above. Averaged
across the 48 phones, the weight in Equation 5.10 assigned to z;jx/N was 0.901. The

percentage of frames identified correctly was 55.7.

Occurrence-weighted Interpolation (5)

This method, as described in Section 5.3.5, requires the specification of the interpo-
lation weights o and § as functions of the total count of a given four-fold output
combination (Equation 5.17). The approach here was to divide the count into several
ranges and experiment with assigning o and 3 values to them. The optimal factors
arrived at, using this approach, are listed in Table 6.3.

This manual optimization procedure used SI sentences to measure the performance
of the alternative weight values. Accordingly, the “official” test data did not influence
the choice of these values. The performance of this method seemed fairly insensitive
to the choice of a and 8, varying by tenths of percent. For the factors of Table 6.3

58.5% of test frames were identified correctly.

Figure 6-1 summarizes the frame recognition scores listed above. It also includes
scores for two of the integration methods when the other two parameter sets were

used in the sub-recognizers. These data indicate that three frame integration methods
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Figure 6-1: Frame integration results for different parameter sets and integration
methods. Section 6.4 lists the integration methods corresponding to the indices indi-
cated in the figure.

appear to achieve roughly comparable scores: independence assumption, log-linear
modeling II, and occurrence-weighted interpolation. The last method achieves the
highest scores by a slight margin.

For the two methods tested, the results for the different parameter sets follow
the trends at the individual channel level (c.f. Table 4.3). Cepstrum parameters

perform best, followed by LPC and autocorrelation. The differences remain quite

small, however.

6.4.2 Phone Level Results

Integrating the frames of the original training data as labelied by the sub-recognizers
produced frame streams appropriate for training the HMMs to be used as the final
“cleanup” and segmentation stage. The system versions showing the most prcmising

frame scores were evaluated for phone scores.
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Frame Integration Percent Correct

Method Frames | Phones
Independence assumption | 58.2 52.3
Log-linear II 58.4 52.5
Occurrence-weighted 58.5 53.2

Table 6.4: Comparison of frame and phone scores for the three best frame-by-frame
label integration methods. LPC structure parameters.

LPC Parameters

Table 6.4 lists the results of the final segmentation results for the three best integration
methods when LPC structure parameters were used. The frame level scores are also
given. Again, no dramatic differences are evident. The best overall frame and phone

scores belong to the occurrence-weighted interpolation method.

Occurrence-Weighted Interpolation

The performance under the occurrence-weighted method of frame integration was
evaluated for the three developed parameter sets. Table 6.5 lists the results. The
scores consistently favor the cepstrum coefficients over LPC and autocorrelation. The
differences, however, remain quite small.

The table lists also a “hybrid” system, resulting from combining the outputs of
sub-recognizers operating on different parameter sets. The individual channel results
in Table 4.3 indicate that while the cepstrum parameters perform best on average,
they are not uniformly superior in every channel. The hybrid system, therefore,
combined the outputs of sub-recognizers displaying the highest frame recognition
rate: channel 1 using LPC parameters, channels 2 and 3 using cepstrum, and channel
4 using autocorrelation. The performance of this system failed, however, to surpass

the strictly cepstrum system.
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Waveform Structure | Percent Correct

Parameters Frames | Phones
LPC 58.5 53.2
Cepstrum 58.9 53.4
Autocorrelation 56.9 52.1
Hybrid 58.9 53.4

Table 6.5: Comparison of frame and phone scores for the three parameter sets.
Occurrence-weighted interpolation method.

Percent Frames Correct
Data Channel
1 2 3 4 || Integrated
Test [39.3 1409 (3791314 58.9
Train | 44.8 | 45.9 | 43.0 | 36.3 69.8

Table 6.6: Comparison of frame scores for test and train data. Cepstrum parameters.
Occurrence-weighted integration.

6.5 Increasing Training Data

In all the evaluations reported up till now the SX TRAIN sentences were “recycled” at
each training stage. There are three such stages: sub-recognizer training, estimation
of the a posteriori channel combination probabilities, and the training of the final
segmentation HMM. Such re-use may result in the system parameters at each stage
being fit too closely to the training data instead of following the distribution of general
speech.

Table 6.6 illustrates this effect. As expected, running the recognition process on
the data used to generate the recognizer parameters results in higher scores than on
test data, unseen during training. At the sub-recognizer level this is not necessarily a
problem as such, as long as the models are not overtrained. With too many iterations
of the training algorithm the model probabilities become tuned to the idiosyncrasies
of the training data and performance on test data actually declines [42]. While no sys-

tematic attempt to optimize the number of iterations was made, initial development
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results did not indicate that overtraining was a concern.

The problem of estimating the conditional a posteriori probabilities is different.
There is often no obvious point in the estimation procedure at which one can check the
intermediate probability estimates and stop iterating if recognition of test material
suffers from further fitting. An exception is the occurrence-weighted interpolation
method where o and § are adjusted for maximum overall recognition. If the SX
TRAIN sentences were used to establish these parameters, we would draw the con-
clusion that « should be 1. In fact, training data integrated this way gives over 90%
frames correct.! It was, therefore, necessary to use the SI sentences, when optimizing
a and (.

Because of the large number of conditional probabilities relative to the available
data, the estimates are likely to be sensitive to any peculiarities of the training data
distribution. The SX TRAIN sentences likely exhibit different statistics when pro-
cessed by the sub-recognizers than do the TEST sentences as suggested by Table 6.6.
It should be beneficial to include additional training data when estimating the con-
ditional a posteriori probabilities.

The only additional corpus of data available for training were the SI sentences of
the TRAIN section of TIMIT.? The effect of including or substituting these data on
overall performance was investigated using cepstrum parameters and the occurrence-
weighted frame label integration method. Table 6.7 compares the results obtained
when the data from which the a posteriori probabilities are derived is varied. The
final “cleanup” HMM was trained in all cases on the SX sentences. Note also that
the sub-recognizer scores on the SI sentences were very similar to those achieved for
the SX TEST material.

Again, the scores do not change dramatically. However, observe that the frame
score with the SI sentences is basically identical to that obtained with just the SX

sentences. This is significant since there are only three-fifths as many of the former

1Note that in this case the problem of a four-fold combination not seen during “training” does

not occur.
2The SI sentences of the TEST section could not be used because of the overlap of speakers with

the designated testing data.

87



Probability Estimation | Percent Correct
Sentences Frames | Phones

SX 58.9 53.4

SI 59.0 53.3

SX+SI 59.4 53.7

Table 6.7: Comparison of performance when different data sets were used to esti-
mate the conditional a posteriori probabilities. Cepstrum parameters. Occurrence-
weighted integration.

Structure Percent Phones Correct
Parameters | 48-phone | 39-phone
SX estimation sentences
LPC 93.2 58.0
Cepstrum 53.4 58.3
Autocorrelation 52.1 56.4

Hybrid 53.4 58.2
SX + SI estimation sentences

LPC 53.4 58.3

Cepstrum 53.7 58.5

Table 6.8: Phone recognition results for the 48 and 39-phone alphabets and two data
sets used to estimate the a posteriori probabilities for occurrence-weighted frame
integration.

as there are of the latter. That the a posteriori prebabilities are estimated just as
well from this scarcer data is most likely due to its unskewed statistics. On the other
hand, using both the SX and SI sentences does slightly improve the performance, the

increased amount of data apparently offsetting some of the “re-cycling” effect.

6.6 Reduced Alphabet

The best versions of the recognizer from those tested were rescored using the 39-phone
alphabet (Sec. 6.1). Table 6.8 compares the results.
The merged phones account for roughly 4.6 to 4.8 percent of the errors counted

in the 48 phone alphabet. Qualitatively, the results remain unchanged: the cepstrum
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parameters have a slight edge over LPC which in turn are better than autocorrelation.

Numerically, the differences remain quite small.
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Chapter 7

Discussion

7.1 Performance

When discussing performance, attention will be focused on the 39-element alphabet
(Sec. 6.1), since scores in the literature are often reported for that set. Also, the finer
distinctions of the 48-element alphabet are largely unnecessary for the autocueing

application which motivated this work.

7.1.1 Error Pattern

Appendix D gives several confusion matrices obtained for different parameteriza-
tion schemes in the sub-recognizers. While individual phone scores vary, the general
recognition pattern is fairly similar across these system versions. Specific rates quoted
below refer to the best performing system: cepstrum coefficients with both SX and
SI sentences used in the probability estimation, Table D.1.

As shown in Table 7.1 the general phone groups of vowels, consonants and silence!
are relatively rarely confused among each other. The deletion rate of 8.96% overall,
is similar to that of Lee and Hon (see below), 9.72%.

There is not much structure evident in the error pattern of vowels. While they

appear to be rarelj} confused with consonants, they are broadly confused among each

1Voiced and unvoiced closures are counted as consonants here.
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Input Output Phone (Percent)

Phone Vowel | Consonant | Silence | Deletion

Vowel 83.2 8.2 0.3 8.3
Consonant | 3.9 85.5 0.8 9.8

Silence 0.2 5.2 91.8 2.8

Table 7.1: Confusion matrix for general phone categories. Cepstrum parameters,
occurrence-weighted interpolation, SX+SI estimation sentences.

other. The diphthongs “ey”, “ay”, and the vowel “iy” display best accuracy. A few
of the more frequent mistakes are not surprising, for instance between “eh” and “ae”.
Diphthongs and longer vowels are generally less likely to be deleted.

The overall recognition rate for the fourteen vowels and diphthongs is 48.0%, for
the 24 consonants? 52.4%. Part of the problem for vowels may be the sub-recognizers’
difficulty in segmenting vowels, especially sequences of vowels. Unlike obstruent
boundaries, vowel boundaries are usually less clearly defined and even more so within
the relatively narrow bandwidths of the sub-recognizers. Inconsistent segmentation
at the channel level likely leads to difficulties when integrating the individual labels.
Furthermore, the human recognition experiments that lead to consideration of the
proposed system tested exclusively consonant reception. As far as we know no stud-
ies have established analogous performance on vowels. It may be that narrowband
recognition of vowels is simply impractical.

More perhaps may be said about the consonant confusions, which tend to cluster
in more obvious ways. The recognition of glides and liquids proves to be quite good.
The main errors here are, in fact, not substitutions but deletions. In addition, “r”
is most often (almost 20%) confused with “er” and vice versa. Inspection of several
test sentences revealed that the error often involved “er” being recognized as “eh”
followed by “r”. Similarly, “eh-r” would be contracted to “er”. For the motivating
application these errors probably would be quite acceptable.

Nasals are confused almost exclusively among themselves. In general, “n” appears

2 After taking into account the merges that produce the 39-phone set.

91



to be the most frequent substitution for the others. The two affricates, “ch” and “jh”,
also form an often confused group, as do the stops. Of the latter unvoiced stops are
recognized better and are also less likely to be identified as voiced whereas the main
error for a voiced plosive is misrecognition as the corresponding unvoiced one. Stops
are recognized correctly 48.1% of the time compared to 58.1% reported by Lee and
Hon [43].

Fricative recognition is quite high for the unvoiced case with “f”, “s”, and “sh”
scoring above 70%.3 The same cannot be said for the voiced fricatives. Of these “z”
was confused almost exclusively with “s”, while the major source of “v” and “dh”
errors was deletion. Overall fricative score was 56.2% compared to Lee and Hon’s
66.0%. The closure/silence elements were identified at a high rate: 90.1% (Lee and
Hon: 92.1%), with most of the errors occurring as deletions.

The observed confusions are consistent for the most part with what is known of
acoustic similarity between different phones. It is unclear whether at the present level
of performance the system could be used effectively for autocueing. A recognition rate
of better than 70% is probably needed for significant benefit to the speechreader [81].
This benefit is dependent, however, on the interaction between the error pattern of
the recognizer and phoneme grouping imposed by the cueing protocol. Judicious
choice of cue groups can alleviate the effect of some recognizer errors.

Voicing identification, important for the autocuer application, remains inadequate.
Overall, 14.7% of voiced consonants are mistaken for unvoiced, and 13.5% of unvoiced
are identified as voiced. Of particular concern are the voiced stops: of those identified
as stops, 29.1% were mislabeled as unvoiced. By contrast, the analogous figure for
unvoiced stops was only 9.4%, a level probably compatible with useful cue production.
The assymetry may be caused by the generally longer duration of unvoiced stops which
increases the number of frames from which to estimate the conditional probabilities
and improves their recognition. The performance on fricatives reflected the same

trend: the voicing feature of 32.9% of voiced and 10.7% of unvoiced fricatives was

reversed.

3In the 39-phone alphabet, where confusions between “zh” and “sh” are not counted as errors.
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7.1.2 Overall Performance

The novel recognition structure proposed in this thesis was investigated in the context
of speaker-independent phonetic recognition. Since it embedded HMM recognition
engines within the overall scheme, its performance is most directly comparable to
systems that also use HMMs. Two relevant studies are those by Schwartz et al. [76]
and Lee and Hon [43]. The former obtained accuracy of 62% for single-speaker recog-
nition on a 550 sentence database, while the latter was 64.1% accurate in speaker-
independent mode on TIMIT. Both systems used vector quantization to represent the
parameter vectors. The cited scores were obtained with contert-independent HMMs,
using the same model for a phone, regardless of the the phones that surround it in
an utterance just as did the sub-recognizers in the current study.

As additional reference, Huang [33] reported 53.2% phoneme accuracy for a single
speaker task where training and testing data comprised the same text (although
recorded separately). The training data was limited to 98 sentences and dynamic
parameters were apparently not used. Zue et al. [86] reported a phonetic recognition
score of 55% (including insertions as errors) on the SUMMIT system and Digalakis et
al. [24] achieved 70% although their scoring rules were somewhat different.* The last
two recognizers are segment-based, stochastic systems and thus cannot be compared
easily to the HMM recognizers.

The best score obtained from the proposed multiband system was 58.5% which
is within the range of performance achieved by established phonetic recognizers.
Nonetheless, it does not constitute an improvement. Since the system of Schwartz et
al. was only tested in speaker-dependent mode, the most useful comparison could be
made with the results of Lee and Hon whose system was similar to that studied here
in some respects (not overall structure). They also split their waveform parameters®
into three codebooks and used a bigram language model during recognition. How-

ever, their HMM phone model topology was somewhat more elaborate, including two

4For instance, substitution of a closure-stop pair by the corresponding single closure or stop was

not counted as an error.
5Mel-weighted cepstra, differenced cepstra, and power.
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additional states. They also used a technique of co-occurrence smoothing to prevent
the observation probabilities (the b;;’s) from vanishing. They found the performance
of models trained with this method to become equivalent to the simpler floor method
used in the current system when the training data contains over 64 speakers. However,

it is not clear whether the same would be true for a narrowband recognizer.

7.2 Improvements

The feasibility of the proposed recognizer structure was evaluated using a relatively
rudimentary implementation of the HMM sub-recognizers. Attention was concen-
trated instead on the system behavior under different parameterizations and on the
question of integrating the sub-recognizer outputs. The approaches to improving the
performance of this recognizer may be roughly divided between those that would in-
crease the sophistication of the sub-recognizer HMMs and alterations of the overall

structure itself.

7.2.1 HMM Sub-recognizers

A number of improvements over the discrete, context-independent HMMs have been
reported. Since the sub-recognizers function independently and are limited only by
the bandwidth of their input data, virtually all these enhancements could be included

in the revised sub-recognizers.

Context-dependent Models

An effective means of attacking the problem of coarticulation has been the introduc-
tion of context-dependent phone models. A phone is represented by a different state-
transition network depending on the immediately neighboring phones. This method
greatly increases the number of model parameters that need to be trained necessitat-
ing the use of various interpolation and smoothing techniques [38, 42]. Nonetheless,
recognition rates are improved. In the study cited above, Schwartz et al. achieved

81% correct with both left and right context modeled, while Lee and Hon reported
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73.8% using only right context. Aside from increased complexity of training, the
main drawback of this approach is a significant increase in computation during the
recognition phase since more possible paths have to be searched. Also, since a phone
model specifies its “future” neighbor, delays are introduced and real-time recognition
becomes problematic.

In general, by allowing a greater delay during recognition, better recognition accu-
racy is obtained. However, at least in the autocueing application, the delay incurred
may interfere with the listener’s reception of the cue. The exact allowable delay is

not yet known. Of course, different delays may be acceptable for other applications.

Parameter Vector Modeling

The recognition of band-limited speech signal was conceived in part to alleviate the
problem of efficient and robust estimation of the observation probabilities of the
parameter vectors (Sec. 1.1.3 and Chap. 3). However, as the results of Table 4.2
indicate, VQ-distortion still has a measurable effect on performance. This is evidenced
by an increase in sub-recognizer performance when the parameter set is split among
three rather than two codebooks.

An improvement might be effected by changing the normalization procedure when
combining parameters in the same vector prior to quantization. Currently, the vari-
ances of all parameters are equalized. However, this may not be desirable for param-
eters such as cepstrum or LPC coefficients. Their relative variances are retained in
[43] where different weights are used only for groups of parameters such as differenced
cepstrum, power, etc. Alternatively, the entire parameter set may be transformed
to a (possibly) lower dimensional, vector by matrix multiplication that normalizes
the covariance statistics of the vector [25] or by analysis into principal components
(Karhunen-Loeve expansion) [62].

Continuous HMMs, where parameters are not quantized but rather assumed to
obey a specified probability density function, often show an improvement over discrete
modeling although some of the results have been equivocal [9, 42]. On the other

hand, semi-continuous models [9, 34, 64] which represent a compromise appear to



consistently improve recognition rates. In particular, Huang found that phonetic
recognition rate increased from 53.2% to 60% when semi-continuous models were
used (c.f. Sec. 7.1.2).

Recognition phase computation load of semi-continuous HMMs is larger than for
discrete models. Nevertheless, narrowband recognizers would likely require fewer dis-
tributions to describe their parameter sets than a wideband system. This lessens
computational requirements and should also result in robust estimation of the distri-

bution parameters.

Other

Numerous additional modifications to the basic HMM have been suggested. (e.g.
[36, 44]). These include variations on the context-dependent phone model and explicit
modeling of phone duration. A relatively recent alternative to the forward-backward
training algorithm is corrective training [3, 45] which has shown promise. It is not
immediately apparent, however, how these modifications would affect a narrow-band

recognizer.

7.2.2 Structure-specific Modifications

Largely independent of the specific algorithms used to implement individual channel
recognition, the overall structure is concerned with two main issues: what information
is supplied to the sub-recognizers, and in what form, and how the outputs of the sub-

recognizers are combined. Both these aspects are open to further exploration.

Approach to Sub-recognizers

Comparing the sub-recognizer results to human recognition rates (Table 7.2) reveals
an interesting discrepancy. The sub-recognizers tend to achieve very similar scores
in all channels, with channel 4 somewhat lower than the others. The experiments
of Milner et al., on the other hand, found human subjects performing significantly

better on speech in channel 3 than any other channel, and better in channel 2 than
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Percent Correct
Channel | Human Average | Sub-recognizer
Consonants Frames
1 37 40
2 54 40
3 71 37
4 37 31

Table 7.2: Comparison of average scores by subjects in Milner’s study [54] and sub-
recognizer scores averaged across the three waveform structure parameters.

1.% This observation suggests that the current approach may not be taking sufficient
advantage of information available in channels 2 and 3.

That ..npression is strengthened by the observation that combining just the lower
two channels” leads to frame scores of roughly 50%. Since the best frame scores,
when all four channels are combined, do not exceed 60%, we again appear not to be
optimally extracting the cues from channel 3.

No obvious explanation is immediately apparent. It is possible that none of the
tested parameterization schemes is appropriate to the narrowband task. This con-
tention might be supported by the fact that the ad-hoc autocorrelation parameters
result in scores only slightly lower than cepstrum or LPC, even though the former were
developed using relatively loose heuristics. The assumptions that lead to these rules,
may not hold sufficiently in all channels. For instance, tracking the third formant is
generally harder than formants one and two, yet the autocorrelation parameteriza-
tion employs the same method in all channels. Interestingly, while performance under
the autocorrelation parameterization is essentially identical to LPC and cepstrum in
channel 1, it drops relative to those methods in channel 3 by about 2 percentage

points. It seems that a reassessment of the nature of cues present in channel 3 is

6Milner’s experiments were only concerned with consonants. Nevertheless, the qualitative picture
of sub-recognizer performance does not change if only consonants are considered. Because of the
different tasks and scoring methods, however, direct comparison of human and sub-recognizer scores
for a given channel does not hold.

7Using LPC parameters and direct counts from confusion matrices to estimate the conditional
probabilities.
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necessary.

Another possible explanation relates to the question of the appropriateness of
vector quantization, as discussed above. Relatively low human performance in channel
1 indicates fewer available cues than in channels 2 or 3. Consequently, the resolution
(VQ distortion) of channel 1 parameters may be less demanding, whereas extracting
the cues from channels 2 and 3 would require more careful modeling. If that were the
case, some of the suggestions of the previous section should prove profitable.

It seems, nonetheless, that the question of optimal narrowband parameterization
remains open. In particular, it might be beneficial to depart from computation of
parameters from single, fixed-width frames.® Tracking of resonances might be better
performed by considering temporally wider waveform regions. On the other hand,
such short events as plosive bursts might be better characterized by splitting a frame
into smaller sections.

The overall structure in no way mandates the use of HMMs as the sub-recognizers.
Some alternative methods appear to show superior results on wideband speech signals,
for instance, the segment based system of Digalakis et al. [24]. Using such systems
should improve performance since most of the results on the multiband system indi-
cate that better performance at the sub-recognizer level translates to better overall
recognition as well. One has to be cautious however; the hybrid system’s performance
(Table 6.8) was lower than all-cepstrum even though it drew from individually highest
scoring sub-recognizers. The computational requirements of such alternative systems
also have to be carefully considered. One of the attractive features of HMMs is the
existence of several efficient algorithms for model alignment at recognition.

A potential advantage of the multiband system is the opportunity to “tune” each
sub-recognizer to perform well on a specific class of speech elements, possibly to the
detriment of others. The goal is to design sub-recognizers that commit complementary
errors that can be eliminated through decision integration process. Such an option is

not available to a wideband recognizer. This work did not attempt such an approach.

8Delta parameters are dependent on data in several frames; however, they are relatively simple
combinations of parameters calculated on purely frame-by-frame basis.
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It would require a deeper understanding of the error pattern in each channel and how

sub-recognizer parameters affect it.

Decision Integration

Within the constraints of the frame-by-frame integration of the labels generated by
sub-recognizers, a fairly broad array of methods was investigated. It seems unlikely
that a dramatically better method of estimating the conditional a posteriori probabil-
ities exists. Of the ones tested, occurrence-weighted interpolation produced the best
results, with log-linear modeling II° and independence assumption as close second
and third best, respectively. The estimation of interpolation weights might be further
improved, perhaps through an algorithm similar to deleted interpolation [38] used
to interpolate between HMM parameters. Experience with hand-tuning suggests,
however, that only small gains are likely.

The results shown in Figure 6-1 also support the hypothesis that little further
improvement in frame integration may be expected within the current system. Three
different parameterization schemes and five different frame label integration methods
were tested, yet the resulting scores show little variation. The best and worst scores
are separated by a mere 5.5 percentage points.

It is hard to approximate what the theoretical limit of frame integration accuracy
should be given the sub-recognizer performance. Only arbitrarily extensive training
data could show the rate at which multiple sub-recognizer output combinations occur
for the same phone. Such confusions, rather than poor estimation of probabilities
of rarely occurring combinations, are the fundamental source of error in the system.
In the absence of “infinite” data, we compared the limits of performance for three
increasingly large sets of data, listed in Table 7.3.

For each set, frame counts vs. underlying phones were gathered from that set.
Subsequently, frames were assigned optimally, based on these counts. Therefore, the
scores shown represent the maximum possible accuracy for each set. Errors here

obviously cannot be attributed to inaccurate probability estimation. The decline of

9Third and fourth order effects ignored.
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Percent Frames Correct
SX TEST (840 sent.) | SX TRAIN (2310 sent.) | SX+SI TRAIN (3696 sent.)
94.7 92.2 90.1

Table 7.3: Maximum possible frame-by-frame integration accuracy for three different
sentence sets.

scores with increasing size of data suggests that the limit of performance lies well
below 90%. Of course this limit applies only to frame integration based éolely on the
four channel outputs for that frame.

An alternative is to abandon the frame-by-frame approach for a more segment-
oriented approach. This would have the benefit of simultaneous integration across
time as well as across channels. In the present system the “across time” integration is
performed by the final HMM which only sees the integrated labels.!® To accomplish
this, the problem of incompatible segmentation in different channels has to be faced.

One approach would attempt a dynamic programming alignment of the four seg-
mentations, followed by a maximum likelihood combination of aligned phones (with
provisions for deletion and insertion) rather than frames.

Alternatively, one could force the sub-recognizers to produce aligned outputs by
providing them with a segmentation or several possible segmentations of the utterance
at the outset. The algorithm producing the segmentation, something like the den-
drogram approach perhaps [30], would operate on the wideband signal. This would
allow it access to acoustic landmarks not available to sub-recognizers. On the other
hand, the segmenter would not have to make a decision on the identity of phones.
This preserves the concept of accurate waveform representation within band-limited
channels.

Multiband recognition on a segmented signal resembles more closely the human

experiments cited in Section 1.1.1. There, only syllables were tested, effectively re-

10Tn an attempt to increase the information available to the final HMM, the second best frame
identification produced by the frame integration procedure was also provided as a symbol from
a second codebook. Performance did not change. However, this method violated at least one
assumption of multi-codebook systems: that the symbols from two codebooks are independent.
Here they were, in fact, mutually exclusive.
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moving the problem of locating the phones prior to identification.

Forced segmentation recognition would also allow use of “second guesses” from
the sub-recognizers when combining labels. Currently only the top choice was used.
Partly this was due to the sparseness of data to estimate the probability of even the
top-guess combination. It is also difficult, however, to meaningfully define the second

best phone on a frame-by-frame basis.!!

7.3 Epilogue

The structure proposed in this thesis is novel and required rethinking of some tenets
of speech recognition. While its performance on the given task was not superior to
more established methods, it seems high enough to warrant further investigation.
It may very well be that the wideband recognition methods that were adapted to
narrowband use are simply inappropriate. Further study of human derivation of cues
from filtered speech should also prove beneficial to the development.

An area where some of this research could be further applied is in audio-visual
speech recognition where signals from two different modalities are present. That sit-
uation naturally lends itself to the multiband approach in which the bands corespond

to the different modalities.

1Gince the Viterbi search aligns frames to data, the second best frame is usually another state
within the same phone.
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Appendix A

Vector Quantizer Codebook

Generation

This is the procedure that was employed thrdughout the investigation whenever a
VQ codebook was called for. It is a very slightly modified version of the algorithm

described in [46] which is commonly used in speech applications.
VQ Algorithm

Assume to have N training vectors i, from which to produce a codebook of M

vectors.

1. Initialization:
Find first centroid: ¢ = & Y0, U,
Set number of centroids: K =1

Assign all vectors to set 1.

2. For k between 1 and 2K generate markers 7

—_

T =

E'%(l +¢€) for k even
Cepa (1 —¢€) for k odd

where € is a constant < 1.

Set K to double its old: value.
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3. Assign vectors to sets.

For all n between 1 and N compute:
Fuin(n) = arg min, (17 — 7]

and assign vector ¥y, to set Amin(n)-

4. Compute average distance of vectors to markers:

1 & L
Dy= NZ > T — 7l
k=1 n s.t.
Un € set k

5. Find centroids of all sets.

For all k between 1 and K:

— 1 -
Cr — - v
# of vec. in set & Z "
n s.t.
Un € set k

6. Compute average distance to centroids:

1 .
Ds=%> X lit=al
k=1

n s.t.
Un € set k

7. Check convergence, where 9§ is a preset convergence constant:

If !—pﬁgﬂl < ¢ then for all £k between 1 and K set 7, = ¢ and go to step 3;

otherwise continue.
8. If K = M stop: codebook consists of the vectors & for 1 < k < M;

otherwise go to step 2.

The modification to the algorithm of [46] occurs in step 2; in the original procedure,
a fixed perturbation vector € was added and subtracted when generating the two

markers from each prototype:vector.
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Appendix B

Fitting of Data to an Unsaturated
Log-linear Model

The following is the iterative procedure used in Section 5.3.3 to compute maximum
likelihood estimates of expected cell count values in a contingency table. It follows
the method given in [12, Chap. 3]. The tables employed in this work refer exclusively
to arrays holding the number of occurrences of all possible sub-recognizer output
combinations for a given spoken phone and training data. The algorithm given below
applies to four-dimensional tables but generalizes in an obvious way to tables with
any number of coordinates.

As before, z;;;; refers the actual count observed and 7k is the ML estimate of
the expected value that we want to calculate. Furthermore, we are assumed to have
picked some unsaturated log-linear model of the table’s structure, i.e. Equation 5.8

with high order terms set to zero.

Algorithm

1. Find the sufficient statistics. These will comprise marginal sums of the full
table. They can be identified by inspection from the unsaturated model. For
each u-term the candidate sufficient statistic is the marginal sum with the same

subscripts as the u-term, for instance: ug3(jr) — Z4ji+. Eliminate all candidate
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marginal sums that can be derived from another candidate sum by adding across
one of the latter’s subscripts. The remaining S sums are the sufficient statistics
we need to fit. A particular sum configuration is designated as C;, thus z;;,+

might be z¢,.

2. Call the value of the estimates after the nth iteration ;i (n). To set all 771,51, (0)
(i.e. to initialize the iteration) any initial values that do not exhibit the effects
that had been set to zero in the model may be used. A convenient initial value

is 1.
3. Set the cycle number 7 to zero and enter the iteration.

4. For all sufficient configurations compute the updated estimate of the expected

cell count value:

Ze

S

e (rS + 5 — 1)

ﬁzijkl(rS + 8) = ﬁlijkl(TS +s— 1)

where s takes values from 1 to S.

5. Find the maximum change in any cell from previous cycle:

AMpax = {?}%} |ﬁ7,,-jkl(('r + 1)5)) - ’fflijkl(’l‘S)l
6. If Amypay is greater than a preset § then increment r and go to step 4; otherwise

the estimates ;1 ((r + 1)) are final.

In this work the initial value of 1 was indeed used. The stopping rule was mod-
ified, however. Having to store the entire array of the estimated values from the
previous cycle required over 21 megabytes of memory beyond that already used for
the calculations. It was found that simply fixing the number of cycles (r) could be

used instead. In general, five such cycles were run.
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Appendix C

Alignment of Original and Qutput

Phone Sequences

The alignment between the TIMIT transcription of a sentence and the sequence of
phones produced by the recognizer was accomplished through a dynamic program-
ming string matching algorithm given in [74]. This algorithm is outlined below.

We assume to have two phone sequences: the “true” or input sequence, §¥ =
[q1...qn) and the recognized or output, ¥~ = [r;...ry]. The lengths M and N in
general will be different. The objective is to produce a pair string (the alignment)
matching each of the phones from the input with one from the output. The inser-
tion/deletion symbol ¢ may be included in either string and matched to a phone
occurring in the other. Thus the pair string will be of the form [a1b;, agb, . . ., apbp]
with a and b comprising the strings g and r, respectively, and the insertion/deletion
symbol.!

The alignment is determined by specifying an array of distances between all in-
put and output symbols d(z,y). The algorithm then computes the alignment that
minimizes the total (additive) distance. It proceeds by aligning substrings and then

extending them. The total distance between any two substrings ¢* and g7 is denoted

1As far as the matching algorithm is concerned, a deletion in one string is equivalent to an
insertion in the other. The algorithm disallows matching an insertion in the input string with a
deletion in the output string.
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D;;.
Initialize: Dy = 0 and D;; = oo if ¢ or j is negative.
Recursion:

Find the optimal partial alignment up to the current position in each string:

D;_;;+d(g;,¢) deletion
D;j =min{ D; ;1 +d(g,r;) substitution/match
D;;-1+d(¢,r;)  insertion

We also record the pointers to the best predecessor cell, i.e. respectively to which

of the terms above was minimum we have:

(t—-1,5) deletion
pointer;; =4 (i—1,5 —1) substitution/match

(1,7 —1) insertion

Solution: The optimal distance after the recursion is Dasy. The pair string is

recovered by backtracking along the pointers saved during the recursion.

Table C.2 is the matrix of distances between individual phones that was used in
the alignment. Distance for a match was zero, for deletions and most substitutions it
was three. Distance between phones that are collapsed when forming the 39-element
alphabet (see Sec. 6.1) was set to one. Because we also wanted to obtain meaningful
confusion matrices from the final output, some of the substitution weights, between
what were considered easily confusable phones, were set to two: for instance, all stop
consonants. This helped the alignment, especially when a deletion occurred from a
vowel-consonant sequence in the input. Insertion penalty was set to one after some
experimentation. This distance, combined with that for a deletion, seemed to produce
most consistently useful alignments.

Table C.1 shows alignment examples for three sentences of varying recognition ac-
curacy. There are essentially no problems aligning the two higher-scoring utterances.

One potential error in the third sentence occurs at input frame 50 where “ah”, in the
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input, is matched with “ow” in the output. It should have probably been aligned with -
the preceding output “aa” and “ow” should have been counted as an insertion. Such
mis-alignments seemed fairly rare. They also had virtually no effect on the resulting

overall score.
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Sentence 1 Sentence 2 Sentence 3
TIMIT | Recognized TIMIT T Recognized TIMIT | Recognized
0 sil sl 0 sil  sil 0 0 sil sl 0
14 b b 12 - s k 13 - ins dh 12
15 aa ao 16 15 ah ah 18 15 iy iy 15
27 r er 30 22 vel vl 22 21 vel ng 18
34 wvel wvel 34 35 b b 25 26 g k 21
42 b b 37 - s 1 36 30 w w 30
43 er er 44 36 ao ao 44 35 aa aa 34
54 n n 54 47 r r 51 47 n m 47
63 wvcl el 62 56 ih iy 59 - ms  aa 50
71 p p 66 66 ng ng 64 50 ah ow 57
7% ey ey 75 73 n n 68 62 z S 63
87 cl cl 86 79 aa aa 78 72 ix ah 72
93 ) k 92 98 v del - - ms  dx 76
95 er er 95 102 el 1 98 78 n er 79
107 en m 107 | 117 ix ih 120 79  ae v 82
117 1 ix 117 130 =z f 128 98 | aw 85
122 iy ey 120 135 ix uw 134 101 ax ao 99
132 v n 133 141 S z 139 107 wvel wvel 106
136 z Z 137 || 154 uh ix 155 111 g p 111
144 ix ix 144 159 ¢l cl 159 116 ey y 116
148 n n 147 170 p p 169 130 dx del -
152 ah ah 152 178 er er 178 132 er er 129
- ms n 156 197 wvel wvel 196 142 =z zZ 140
157 wvel  wvel 159 204 b del - 149 er ax 149
169 b b 162 || 207 s s 205 156  «cl cl 154
170 ih ih 171 - ms 216 163 ¢t k 162
179 wvel wel 177 || 221 1 w 221 172 r r 170
192 b b 180 |1 225 iy iy 225 176 aa ay 173
193 aa ao 194 232 cl 231 184 ¢l del -
210 n n 209 1237 »p b 235 190 p del -
214 f 215 240 1x iy 240 194 cl 183
225 ay aa 223 | 244 ng ng 244 198 k k 198
235 er er 231 250 ¢l cl 252 - s ow 202
243 sil sil 242 || 258 p k 257 || 203 el v 211
262 ih ix 262 || 212 r r 216
270 1 1 267 || 220 eh del -
274 sil sil 275 || 227 cl 225
239 ¢ k 239
244 ay aa 244
- ims «cl 264
259 | k 267
270 s S 272
' 286 sil  sil 286
48-phone Percent Correct
72.7 55.9 I 39.5
39-phone Percent Correct
78.8 It 64.7 ( 39.5

Table C.1: Matching of true (TIMIT) and recognized phone sequences of three
sentences, as performed by the alignment algorithm. Cepstrum coefficients and
occurrence-weighted interpolation used in recognition. Numbers columns show the
frame segmentation of the sequences. The text of the sentences is: Sent. 1 - “Barb
burned paper and leaves in a big bonfire”, Sent. 2 - “A boring novel is a superb
sleeping pill”, Sent. 3 - “Iguanas and alligators are tropical reptiles”.
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Table C.2: Phone distances for the alignment algorithm; “in” means insertion, “del”

deletion. Continued on next page.
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Continued distance table.

Table C.3:
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Appendix D

Confusion Matrices

The following are selected confusion matrices showing detailed performance of var-
ious versions of the recognizer. The confusions are given for the final output on
the full 48-element alphabet defined in Table 4.1. Entries represent ten times the
percentage! of vertically listed phones identined as a given horizontally listed phone.

Since percentages lower than 1 are not listed, row quantities may not add up to 1000.

1This unconventional notation was required to fit the table on one page: it saves the decimal
point while preserving the precision.
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