
Planet Photo-Topography Using Shading and

Stereo

by

Charles XiaoJian Yan

B.S., California Institute of Technology, 1990

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

December 1993

(1993 Charles XiaoJian Yan. All rights reserved.

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author ...
Department of Physics

December 15, 1993

Certified by..
Prof. Berthold K. P. Horn

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Certified by..
Prof. Robert P. Redwine

Professor of Physics
Thesis Supervisor

Accepted by
Prof. G. F. Koster

Chairman, Departmental Committee on Graduate Students

__�___1_1_1_��·_�

2

This page is left blank intently.

X11·-�l*l I- _ _ � .1-

3

Planet Photo-Topography Using Shading and Stereo

by

Charles XiaoJian Yan

Submitted to the Department of Physics
on December 15, 1993, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Two of the most successful methods in Computer Vision developed over the years
are Shading and Stereo. Newly proposed DFSS(Depth From Shading and Stereo)
method for fusing the two is examined. The most robust z-only method is utilized
and explored in analyzing planetary data images, namely the Mars image data from
Viking Space Project. Two major extensions to DFSS are to integrate all the image
cells, instead of single test cell to increase robustness, and to use realistic Mars images,
instead of synthetic test images. Another unique feature presented in this thesis is in
dealing with real world images, containing noise, geometry error, calibration errors,
and reflectance errors.

Thesis Supervisor: Prof. Berthold K. P. Horn
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Prof. Robert P. Redwine
Title: Professor of Physics

4

This page is left blank intently.

5

Acknowledgments

First and foremost, I would like to thank my thesis advisor, Professor Berthold K. P.

Horn, for his invaluable guidance, support, understanding and inspiration. Aside from

academic and research help, Professor Horn is a very kind and gentle person. I am

also thankful to Professor Robert Redwine, who is not only research supervisor but

also academic advisor. Professor Redwine has listen to the problems I encountered

during the years, helped to solve them, steered me towards a mature professional.

Also, I am grateful to Dr. Mike Caplinger. Dr. Caplinger has put in much time

to select and process the images pair for this research. He has given many helpful

suggestions during this research. Without Dr. Caplinger's help, the project will never

succeed.

Also thanks go to fellow students at the AI lab for the discussions and suggestions,

especially Dr. Clay Thompson.

Last, certainly not the least, I feel deeply in debt to the support, understanding,

and help from my wife, Ellen Hui Ding, my parents, Professor WuGuang Yan and

Professor WenXiu Gao. Without their continuous caring and encouragement, I can

never be wherever I am today.

This research was supported in part by NASA contract NAS5-31352. Additional

support came from DARPA contract N00014-91-J-4038 which helps support general

activities at the M.I.T. Artificial Intelligence Laboratory.

6

This page is left blank intently.

������� _1 � _I��rl

Contents

1 Introduction

1.1 Background.

1.2 Planet Photo-Topography

1.3 Viking Project, Planet Image Data

1.3.1 Viking Mission.

1.3.2 Viking Orbiter Visual Subsystem

1.4 Related Research

1.5 About This Thesis

2 Overview

2.1 Coordinate System

2.1.1 Perspective Projection.

2.1.2 Othographic Projection.

2.2 Shape From Shading.

2.2.1 Image Formation Process

2.2.2 Object radiance stage

2.2.3 Image Generation Stage

2.3 Stereo.

2.4 Photo-Topography

2.5 Simplification

2.5.1 Special Global Coordinate System

7

19

20

23

25

25

25

26

26

28

28

29

31

32

32

33

36

36

39

41

41

CONTENTS

2.5.2 Removing the View Direction Dependence

2.5.3 Constant Albedo

2.5.4 Aligned Cameras

2.5.5 Summary of Simplified equations

2.6 Camera Calibration

3 Fusion of Shape from Shading and Stereo

3.1 Fusion Strategy.

3.2 z-only DFSS Algorithm

3.2.1 Variables .

3.2.2 Cost Function

3.2.3 Optimization

3.2.4 Solution Techniques

3.2.5 Speedup Techniques

3.2.6 Discussion

4 Synthetic Image Test Results

4.1 Synthetic Images.

4.2 Algorithm Performance .

4.2.1 Easy Crater Images .

4.2.2 Hard Crater Images.

4.2.3 Hill Images.

4.2.4 Mountain Images . .

4.3 Summary of the Results . .

4.4 Performance

5 Viking Image Results

5.1 Viking Space Project.

5.1.1 Viking Mission.

5.1.2 Viking Orbiter Visual Subsystem

42

43

44

45

47

48

50

51

52

53

54

54

56

59

60

60

61

62

70

78

86

94

94

96

96

97

98

8

...........

...........

...........

...........

...........

.......................

.......................

.......................

.......................

.......................

.......................

.......................

.......................

CONTENTS 9

5.2 Data selection 98

5.3 Data Processing 99

5.4 Data Analysis 100

5.4.1 Example 1 100

5.4.2 Example 2 109

5.5 Summary of the Results 117

6 Error Analysis 120

6.1 Theoretical Error 120

6.2 Image Errors 124

6.3 Lighting Condition, Camera Position and the effects on DFSS results 124

6.4 Comparison between DFSS results and that of Shape from Shading . 133

7 Discussion 135

7.1 Merits 135

7.2 limitations 136

A DFSS Functions 137

B DFSS I/O Functions 139

C The Matrix Library 152

C.1 Vectors and Matrices 152

C.2 Creating and Freeing Matrices 153

C.3 Accessing Elements within an Matrix 153

C.4 Common Operations on Matrices 154

_1__ 1_1

CONTENTS 10

This page is left blank intently.

��I� _��aP1�9L�

List of Figures

1-1 Example sketch of cameras and light source in a pair of Viking images 21

1-2 Example image pair from Viking Space Project. The difference in

shading is clearly shown, due to the different shading conditions . . . 22

2-1 Domain System Choices 29

2-2 Perspective Projection 30

2-3 Orthographic Projection 31

2-4 Image Formation Process. 33

2-5 Image Irradiance Process 34

2-6 Stereo Geometry. 37

2-7 Global Coordinate System 42

2-8 Aligned Coordinate System 44

3-1 Module Based Fusion 49

3-2 Variational methods Based Fusion 50

3-3 Centralize Algorithm Tree Based on Disparity 52

3-4 Hierarchical Basis Functions 57

4-1 Easy Crater Synthetic Images Camera Geometry. Graph shows the

camera position and direction(dotted lines) and light source direc-

tion(solid lines) 63

4-2 Easy Crater Synthetic Images Camera Geometry projected in xz and

yz plane 64

11

I --

LIST OF FIGURES 12

4-3 Easy Crater Synthetic Images 65

4-4 z-only DFSS iteration history on Easy Crater Images. Graph shows the

z-only DFSS algorithm performance on the easy crater image pair. The

upper graph shows the cost function(solid line) and RMS error(dashed

line) of the estimated surface. The lower graph shows history of the

smoothness weighting term A 66

4-5 z-only DFSS Estimated Surface and Error on Easy Crater Images at

the end of iterations 67

4-6 z-only DFSS estimation at various iteration steps on Easy Crater Images 68

4-7 z-only DFSS estimation at various iteration steps on Easy Crater Images 69

4-8 Hard Crater Synthetic Images Camera Geometry. Graph shows the

camera position and direction(dotted lines) and light source direc-

tion(solid lines). 71

4-9 Hard Crater Synthetic Images Camera Geometry projected in xz and

yz plane 72

4-10 Hard Crater Synthetic Images 73

4-11 z-only DFSS iteration history on Hard Crater Images. Graph shows the

z-only DFSS algorithm performance on the hard crater image pair. The

upper graph shows the cost function(solid line) and RMS error(dashed

line) of the estimated surface. The lower graph shows history of the

smoothness weighting term A 74

4-12 z-only DFSS Estimated Surface and Error on Hard Crater Images at

the end of iterations 75

4-13 z-only DFSS estimation at various iteration steps on Hard Crater Images 76

4-14 z-only DFSS estimation at various iteration steps on Hard Crater Images 77

4-15 Hill Synthetic Images Camera Geometry. Graph shows the camera

position, direction(dotted lines and light source direction(solid lines). 79

4-16 Hill Synthetic Images Camera Geometry projected in xz and yz plane 80

LIST OF FIGURES

4-17 Hill Synthetic Images. 81

4-18 z-only DFSS iteration history on Hill Images. Graph shows the z-only

DFSS algorithm performance on the hill image pair. The upper graph

shows the cost function(solid line) and RMS error(dashed line) of the

estimated surface. The lower graph shows history of the smoothness

weighting term A. 82

4-19 z-only DFSS Estimated Surface and Error on Hill Images at the end of

iterations 83

4-20 z-only DFSS estimation at various iteration steps on Hill Images . . . 84

4-21 z-only DFSS estimation at various iteration steps on Hill Images . . . 85

4-22 Mountain Synthetic Images Camera Geometry. Graph shows the cam-

era position and direction(dotted lines) and light source direction(solid

lines) 87

4-23 Mountain Synthetic Images Camera Geometry projected in xz and yz

plane 88

4-24 Mountain Synthetic Images. 89

4-25 z-only DFSS iteration history on Mountain Images. Graph shows the

z-only DFSS algorithm performance on the mountain image pair. The

upper graph shows the cost function(solid line) and RMS error(dashed

line) of the estimated surface. The lower graph shows history of the

constraint A 90

4-26 DFSS Estimated Surface and Error on Mountain Images at the end of

iterations 91

4-27 DFSS estimation at various iteration steps on Mountain Images . . . 92

4-28 DFSS estimation at various iteration steps on Mountain Images . . . 93

5-1 Mars Viking Images pair Camera Geometry. Graph shows the camera

position and direction(dotted lines), as well as the light source direc-

tion(solid lines) 102

13

I

LIST OF FIGURES 14

5-2 Mars Viking Images pair Camera Geometry projected in xz and yz planel03

5-3 Mars Viking images pair and gradient contour 104

5-4 DFSS iteration history on Mars Viking Image pair. Top graph shows

the history of cost function. Bottom graph shows the history of the

smoothness weighting term A 105

5-5 DFSS Estimated images and Surface on Mars Viking Image pair at the

end of iterations 106

5-6 DFSS estimation at various iteration steps on Mars Viking Image pair 107

5-7 DFSS estimation at various iteration steps on Mars Viking Image pair 108

5-8 Mars Viking Images pair Camera Geometry. Graph shows the cam-

era positions and directions(dotted lines), also the light source direc-

tion(solid lines) 110

5-9 Mars Viking Images pair Camera Geometry projected in xz and yz plane 11l

5-10 Mars Viking Images pair and gradient contour 112

5-11 DFSS iteration history on Mars Viking Image pair. Top graph shows

the history of cost function. Bottom graph shows the history of smooth-

ness weighting term A 113

5-12 DFSS Estimated Surface on Mars Viking Image pair at the end of

iterations 114

5-13 DFSS estimation at various iteration steps on Mars Viking Image pair 115

5-14 DFSS estimation at various iteration steps on Mars Viking Image pair 116

5-15 Detailed look of the crater like feature in example two, real images and

zoomed in images around the crater. 118

5-16 Detailed look of the crater like feature in example two, estimated im-

ages and surface around the crater. 119

6-1 Test Crater Synthetic Images Camera Geometry. Graph shows the

camera position and direction(dotted lines) and light source direc-

tion(solid lines) 126

-I __ I _

LIST OF FIGURES

6-2 Test Crater Synthetic Images Camera Geometry projected in xz and

yz plane 127

6-3 Test Crater Synthetic Images 128

6-4 z-only DFSS iteration history on Test Crater Images. Graph shows the

z-only DFSS algorithm performance on the test crater image pair. The

upper graph shows the cost function(solid line) and RMS error(dashed

line) of the estimated surface. The lower graph shows history of the

smoothness weighting term A 129

6-5 z-only DFSS Estimated Surface and Error on Test Crater Images at

the end of iterations 130

6-6 z-only DFSS estimation at various iteration steps on Test Crater Imagesl31

6-7 z-only DFSS estimation at various iteration steps on Test Crater Imagesl32

6-8 Test Crater Synthetic Image (left camera) and the estimated surface

at the end of iteration 134

15

I - - -

LIST OF FIGURES

This page is left blank intently.

16

List of Tables

3.1 Photo-Topography problem source and constraint matrix 51

4.1 Camera Geometry 61

4.2 Performance Comparison 94

5.1 Geometric Information about the first pair of Viking Images 101

5.2 Geometric Information about the first pair of Viking Images 109

A.1 DFSS function list 138

17

_1____11_________ _1 _ 1_1___11______

LIST OF TABLES 18

This page is left blank intently.

-- --· ·YI-·-·sers�---rr�--r�---* -1 ----------

Chapter 1

Introduction

Machine vision is the study of algorithms and techniques for analyzing and processing

visual inputs so as to determine one or more properties of the external world. Fol-

lowing Marr's [15] Classification, vision algorithms can be grouped into one of three

levels by the processing and analyzing stage: Early vision, Intermediate vision, and

High level vision. I will concentrate on Early Vision which seeks to work with raw

image data and to produce an estimate of some property or properties of the 3-D

world. An example in this field is Shape from Shading algorithm which estimates the

shape or relative depth of an object from a gray-level image, as discussed in "Robot

Vision" [8].

Machine vision is closely allied with three fields, image processing, pattern classi-

fication and scene analysis. Machine vision differs from image processing in that the

result is not a better or enhanced image, not a new image, but an estimate of some

external properties of the 3-D world. Pattern classification and scene analysis are

associated with intermediate vision and high level vision. Unlike computer graphics

which tries to produce a realistic image from a stored model of the world, machine

vision tries to produce a realistic model of the world from an image. In this way, a

vision system (camera+algorithm) can be described as a sensor that converts a large

number (N 2 on an N-by-N grid) of measurements into a representation of the exter-

19

CHAPTER 1. INTRODUCTION 20

nal world, for example, height information of a N by N pixel image. Vision system is

complex because it process information in 2-D in contrast to most system processing

1-D or 0-D information. Its complexity also stems from input in 2-D and the result

in even higher 3-D. In another word, it is a synthesis process rather than a deduction

process. We can not at this stage to build a "universal" or " general purpose" vision

system. Instead, we address ourselves either to system that perform a particular task

in a controlled environment or to a model that could eventually become part of a

general purpose system.

In this thesis, I will describe a machine vision algorithm that combines the methods

of three successful early vision algorithms, its implementation and the performance

on real images, namely Viking Mars Survey images. The algorithm seeks to determine

the topology of a planet from two images, which are taken at different time by two

cameras at different location with different lighting conditions.

1.1 Background

Over the past two decades many early vision algorithms have been developed. Most

notably, Algorithms have been developed for edge finding [16], Binocular Stereo [17,

3], Photometric Stereo [28, 20], Shape from Shading [8, 11], Shape from texture

[13], Structure from Motion [25] and Optical Flow [10]. These algorithms, for the

most part, are very sensitive to noise in the image(s). They seem to perform well on

synthetic images, but perform poorly on real images. In order to make the algorithms

more robust, some researchers are moving toward integration or fusion of two or more

of these methods. The typical fusion paradigm is to explore physical constraints that

are present between the solutions of the candidate methods. These constraints are

then used to combine the outputs of each method to produce a fused solution to

the vision problem. The hope is that by combining the information available from

disparate methods, a more robust vision system can be formed.

-- - .-J,- - -- - - -- ---- - -- - -- ---

CHAPTER 1. INTRODUCTION

Figure 1-1: Example sketch of cameras and light source in a pair of Viking images

The vision algorithms mentioned above fall into one of two camps: those algo-

rithms that are based on variational formulations, such as Horn's Shape from Shading

algorithm, and those algorithms that are feature based, such as the Marr and Poggio's

Binocular Stereo algorithm. Variational methods usually result in an optimization

problem while feature based methods usually employ direct search methods. Both

approaches have been successful for certain problems.

The type of algorithm affects how easy it is to integrate or fuse more than one

algorithm. In general, the feature based methods are hard to fuse since the algorithms

are highly specialized and tuned to each task. On the other hand, the variational

methods perhaps can be easily fused by simply combining the cost functions from

disparate methods intelligently and forming a combined optimization problem. In

the discussion below, I will present a method based on variational approach.

The problem on hand is to fuse the Shape from Shading, Binocular Stereo, and

Photometric Stereo algorithms so as to obtain more accurate and robust estimates of

the surface topography. Following its originally proposed name 1, I call the resulting

algorithm Depth from Shading and Stereo (DFSS). The research here mainly is con-

cerned with the robustness, efficiency, and performance of the z-only DFSS algorithm

in dealing with real images.

This research is motivated by a problem proposed by NASA. NASA is interested in

determining the surface structure (or topography) of the planets in our solar system.

1Depth from Shading and Stereo was proposed and developed by Clay Thompson in his 1992
Ph.D. thesis [24]

21

I - -

CHAPTER 1. INTRODUCTION 22

Figure 1-2: Example image pair from Viking Space Project. The difference in shading
is clearly shown, due to the different shading conditions

Toward this end, NASA has used its explorer probes (e.g. Viking and Voyager) to

obtain images of the same patch of surface on a planet from two different, but known,

locations (see Figure 1-1). Since the images are taken at different time, the sun is not

in the same position relative to the planet or the camera. This results in the images

often being radically different from each other. (see Figure 1-2) This means none of

the existing algorithm can handle the problem.

The importance of this property becomes clear when you compare this situation

with the assumptions of several Early Vision algorithms. Binocular stereo algorithms

usually assume that the two images only differ by an offset (called disparity) that

is caused by the projection of a 3-D object. This implies that the images should

look very similar. As mentioned above, the NASA Viking images do not meet this

_1- --- _ _ _ 1 _1 _1~ _ ~ ~ 1~__ __~

CHAPTER 1. INTRODUCTION

assumption, hence the normal Binocular stereo algorithms will fail on these images.

Photometric stereo algorithms, on the other hand, assume that the images were

taken from the same camera position but with different light positions. This implies

that the corresponding points in each image are the projection of the same point in

the scene. Again, the NASA Viking images do not meet this assumption, and the

Photometric stereo algorithms will not work.

Only the Shape from Shading algorithms can be used with NASA Viking images,

except that the images must be processed one at a time. This results in two different

interpretations of the planet's surface topography.

The NASA Viking images are thus a natural choice for the investigation of fusion

techniques. The Depth from Shading and Stereo algorithm I have implemented will

incorporate the three modules mentioned above into one.

1.2 Planet Photo-Topography

The planet photo-topography problem in this thesis seeks to determine the topology of

a planet's surface based on two images of the planet, taken from two different vantage

points at two different time, as shown in Figure 1-1 and Figure 1-2. As discussed in

previous section, no ready algorithm can be applied to this problem. However, it bears

great resemblance with some well understood and developed algorithms, specifically,

Binocular Stereo, Photometric Stereo, and Shape from Shading.

Planet photo-topography has certain similarity to Binocular Stereo. Unfortu-

nately, it is more complicated than stereo vision in two major ways. First, The

images are typically taken at two different time and position; Second, the distance

between the two camera position are usually large and the camera directions are dif-

ferent. This means two different light source and camera positions and directions. As

the result, The two images might look quite different from each other, even though

they are images of the same surface patch, see Figure 1-2.

23

CHAPTER 1. INTRODUCTION

Contrast to this, Binocular image pairs are usually taken simultaneously, from

positions that are near to each other, and with the same lighting. The images look

very similar except for a relative shift (i.e. disparity) of objects due to their distance

from cameras. If the disparity for all points in the image and the relative distance

from the cameras is known, then the depth of the objects can be computed directly.

The images are similar, so most stereo algorithm determine the disparity by trying to

match features in one image with features in the other. Unfortunately, this approach

won't work for planet photo-topography images.

Planet photo-topography also shares some aspects with Shape from Shading prob-

lem. Shape from Shading takes a gray-scale image of a surface and determines the

surface topology by exploiting the Shading information in the image. Shape from

Shading requires that the surface reflectance properties to be know. Assuming the

reflectance properties are known, we could use a Shape from Shading algorithm to

estimate the surface topology from each of the planet images. Unfortunately, the

surface estimates based on each image will be different. They may not even be sim-

ilar. Worst of all, the surface estimates from each image may not have the same

orientation; one could be concave while the other is convex.

Planet photo-topography also has aspects in common with Photometric Stereo

problem. A Photometric Stereo takes two images of the same scene with two different

lighting conditions. The cameras is not moved between images. The result is two

images that look different but where the correspondence is known explicitly. If the

light positions are far apart enough, it is possible to determine the surface orientation

directly. For Lambertian reflectance, two images can constraint the surface orientation

to two possible values at each point.

The NASA Viking images are based on two different light source positions and

directions. Like Photometric Stereo, the two light sources can constrain the surface

orientation, if the correspondence is known. But the correspondence is based on

Binocular Stereo. Thus planet photo-topography, Photometric Stereo and Binocular

24

CHAPTER 1. INTRODUCTION

Stereo are closely linked.

1.3 Viking Project, Planet Image Data

Digital image data from the Viking Mission to Mars, NASA's Planetary Data Sys-

tem(PDS), have been available. Through the Geosciences Discipline Node at Wash-

ington University, the Image Node at the U. S. Geological Survey, Flagstaff, Ari-

zona and the Jet Propulsion Laboratory, the digital archive of images acquired by

the Viking orbital Visual Imaging Subsystem (VIS), including the Experiment Data

Record (EDR), are placed on compact read only optical disk media (CD-ROM).

1.3.1 Viking Mission

The Viking Mission consisted of four spacecraft: two identical orbiters and two identi-

cal landers. One of the orbiter experiment was the Visual Imaging Subsystem (VIS),

which acquired the images that are used in this thesis.

The Viking orbiter spacecraft operated in orbit around Mars from 1976 to 1980.

The orbiter imaging systems imaged all of the terrains on Mars, collected some color

and stereo images, and made observations of Phobos and Deimos. Some image se-

quences acquired by the VIS experiment include systematic medium and high resolu-

tion coverage of large portions of the surface, stereo images, observations of Phobos

and Demios, color images of the equatorial regions, observations of the polar regions,

and monitoring dust storm activity.

1.3.2 Viking Orbiter Visual Subsystem

Each Viking Orbiter was equipped with two identical vidicon cameras, called the

Visual Imaging Subsystem (VIS) [26], [14], [1]. Each VIS camera consisted of a tele-

scope, a slow scan vidicon, a filter wheel, and associated electronics. A digital image

was generated by scanning the vidicon face plate. A full resolution, uncompressed

_ _�_

25

CHAPTER 1. INTRODUCTION

Viking orbiter image consists of an array of 1056 lines with 1204 samples per line.

The images then transmitted back to earth station. The images were radiometrically

and geometrically calibrated and stored on tape. Subset of the images are distributed

on CD-ROM.

1.4 Related Research

The algorithm discussed here is mostly related to the works of Horn [12], [9], [8],

[11], Gennert [5], and Szeliski [21], [22]. Variational (least squares) approach is based

significantly on the work of Horn [11], [10], [19]. The Shape from Shading part is

build upon the work of Horn [11], Szeliski [22]. The stereo part is based on the gray-

scale stereo algorithm of Gennert [5]. Hierarchical basis functions of Szeliski and use

conjugate gradient optimization as do Leclerc and Bobick. This work also has close

relation to the work of Hartt and Carlotto [6], [7], [27], and McEwen [18].

The Depth from Shading and Stereo was proposed and developed by Clay Thomp-

son in his PH.D. thesis, [24]. In his thesis, Thompson proposed a fusion method with

variational technique based on Shape from Shading and Stereo. A cost function

combined Shape from Shading and stereo with smoothness regulated term is used.

Conjugate gradient optimization is performed to estimate depth information. Test

on synthetic images show z-only algorithm is the best performed and the most robust

method. I will discuss the details of z-only algorithm in chapter 2 and chapter 3. Test

on synthetic images are presented in chapter 4.

1.5 About This Thesis

In the following Chapters, I will lay the ground for Depth from Shading and Stereo by

discussing each underlying fused algorithms, Shape from Shading, Binocular Stereo

and Photometric Stereo, and presents z-only Depth from Shading and Stereo algo-

rithm's performance on synthetic test image pairs and real Mars Viking Space Project

____ �___�____� ��_·1 ��_11�1)----11111·� -1-----·--------����- 111·--�-11-

26

CHAPTER 1. INTRODUCTION

image pairs. In Chapter 2, I will discuss each components of DFSS algorithm, Shape

from Shading, Binocular and Photometric Stereo in detail. In Chapter 3, I will show

the formulation of DFSS algorithm in a variational approach. In Chapter 4, I will

present the result of running DFSS algorithm on synthetic images, to understand

its strength and weakness. Chapter 5 shows the performance of DFSS algorithm on

Mars image pairs from Viking Space Project. Chapter 6 is devoted to analysis of

various error and its effects on the algorithm's performance on real images. Chap-

ter 7 summaries and discuss issues in DFSS' merits, limitation, implementation and

its extension.

This thesis is organized for people with various backgrounds in vision field. For

people who are familiar with machine vision, they can skip to chapter 3. For those

who are familiar with DFSS algorithm, they can skip to chapter 5, and compare the

result on Viking images with that on synthetic images.

27

._____ �II�___ �__�_

A - - --

Chapter 2

Overview

In this chapter we discuss how images are formed and how they are represented by a

computer. Understanding image formation is a prerequisite for full understanding of

the methods for recovering information from images. The focus will be on coordinate

system, image generation process and photo-topography properties. In particular, we

will discuss Binocular Stereo, photometric stereo, and shape from shading. Finally, a

set of simplified equations aiming at photo-topography problem are summarized.

2.1 Coordinate System

An image is a two dimensional pattern of brightness. In analyzing the process by

which a three-dimensional world is projected onto a two-dimensional image plane,

we have to first set up the proper coordinate system. The most straight forward

description is that the surface represents a height function over some selected 2-D

domain., such as:

z = z(x, y) (2.1)

Image domain can be defined in two ways, the image-centered domain and the

object-centered domain. The image-centered domain uses the image coordinates as

28

j~~~~~~~~~~~s~~~ ~ -I

CHAPTER 2. OVERVIEW

Obj ect
nst^"f 1,,,

* -1.J - -
JUDJ C;L.

Image-Centered System Object-Centered System

Figure 2-1: Domain System Choices

the fundamental domain and assigns the depth(or height) value to each surface point

that projects to each image position. The object-centered domain uses the object

coordinate system as the fundamental domain and assigns a surface depth(or height)

information to each point in the domain. (See Figure 2-1)

Once the domain is selected, we still have the freedom to choose between perspec-

tive and othographic projection.

2.1.1 Perspective Projection

Consider an ideal pinhole sits in between an object and an image plane (See Figure 2-

2). Since the light travels in straight lines, each point in the image corresponds to

a particular direction defined by a ray from the point through that pinhole. This is

perspective projection.

The optical Axis thus defined to be perpendicular from the pinhole to the image

plane. A Cartesian coordinate system is setup with the origin at the pinhole and

z-axzis along optical axis pointing to the image. The z component of the coordinates

of the image will therefore be negative.

For each point P on some object in front of the camera will appear P' on the

__I___ C---·---_sl(-��lll�--i 1__�--�_1· _1�1�____^11_--��

29

JJ.L=LL-

, < - I
.v_I J

CHAPTER 2.

V

-i-u -0 . -. '

obj ect

lens
image plane

Figure 2-2:- Perspective Projection

image. (See Figure 2-2). Let r = (x, y, z)T denotes P, and r' = (x', y, f)T 1 denotes

P'. From geometry optics, we know:

r = -z sec a = -(r.) sec a (2.2)

where is the unit vector along the optical axis. The length of r' is

r' = f sec c

-r
f

(2.3)

1
-= ^r

r z

or

1z' = f, f is the focal length.

(2.4)

x

OVERVIEW 30

I

CHAPTER 2. OVERVIEW

image plane

31

v

object

lens

Figure 2-3: Orthographic Projection

(2.5)
x' x y' y
-- =- and -=
f z f z

2.1.2 Othographic Projection

Consider that if we put the image plane at z = z0o, and define lateral magnification m

as the ratio of the distance between two points measured in the image to the distance

between the corresponding points on the plane.

fm -Z
-Zoo

(2.6)

where -zo is the distance of the plane from the pinhole.

A small object at an average distance -zo will give rise to an image which is

magnified by m. Let the depth be the distance from the object to the camera. The

magnification is approximately constant when the depth range of the scene is relative

CHAPTER 2. OVERVIEW

small to the average distance. Then

x' =-mx and y' =-my (2.7)

For convenience, we can set m = -1, and

x'= x and y'= y (2.8)

This is the othographic projection. It can be depictured as the ray runs parallel

to the optical axis (See Figure 2-3).

If we choose image-centered domain, and orthographic projection is--used, the

projection map is straightforward. However, if perspective projection is used, then

this mapping can become quite complex, for example, surface normal calculation. If

we choose object-centered domain, both perspective and orthographic projection are

straightforward. However, the projected points in general won't map to the center of

each pixel. Thus interpolation is needed to obtain values at each pixel.

2.2 Shape From Shading

2.2.1 Image Formation Process

Shape from Shading problem is to generate three dimensional topography information

from two dimensional image. It is crucial to understand how images are formed. This

process can be viewed as two stages, object radiance and image formation. This

process also depends on four factors:

1. object irradiance.

2. reflectance map.

_ I �_

32

CHAPTER 2. OVERVIEW

Obj ect

Sol
Ra(

Image Projection
and Transduction -

Light Source Observer

Figure 2-4: Image Formation Process

3. image projection.

4. image transduction.

2.2.2 Object radiance stage

The amount of light falling on a surface is called the irradiance. At each point ~ on

the surface, and for each direction S, the irradiance distribution function is E(, s).

The amount of light radiated from a surface is called radiance. Obviously, the object

radiance depends on the object irradiance and the surface reflectance properties. The

surface reflectance properties is the physical character of the surface, independent of

the irradiance, and can be described by Bidirectional Reflectance Distribution Func-

tion (BRDF).2 At the point , the BRDF f(fi,,v) relates the brightness of the

surface patch with normal ii illuminated from the direction s and as seen from the

direction v%. Using these two distribution functions, the radiance function can be

written as:

2 For more information on BRDF, see[8, p. 209]

__ �Y� 1_1___1�1_�__� 11_1111 �_-_____11·----·(··--�·II�

33

CHAPTER 2. OVERVIEW

/

I

x

image plane

Y

object

lens

Figure 2-5: Image Irradiance Process

L(, fi,) = J f(e, i, ,)E (,)(f)d() (2.9)

where H is the hemisphere of possible light sources directions for the patch at

surface point , and dw(g) is the solid angle subtended in the direction g. Representing

s in spherical coordinates, above equation becomes

L(, 1,)lz = 1 1 /2
-rO

f(, i, ,)E(,) sin 0 cos Oddq

Two common reflectance models are the Lambertian model and the specular

model. The Lambertian model deals matter surface. An ideal Lambertian surface

is one that appears equally bright from all viewing direction and reflects all incident

light, which means the BRDF is independent of source direction s, surface normal

direction fi and viewing direction i. Follow this definition, we get

fLambertian(fi, ,) = -p(i) (2.11)
7r

(2.10)

34

i i

n

0

F

CHAPTER 2. OVERVIEW 35

where p(~) is the surface albedo, or the fraction of light re-emitted by the surface.

Evaluate 2.10 for a Lambertian surface illuminated by a point source at infinity, the

surface radiance is

LLambertian(~, , -)-= -() (' iI) (2.12)

Specular model deals with metallic surfaces. All light from the direction o is

reflected into the direction 2(fi- so)fi - o, so that the BRDF is

fspecular(, i , ,) = p(~)6(v, 2(fi so)fi - o) (2.13)

For a point source at infinity, the surface radiance for a specular surface is found

to be

Lspecular(R, fi,) = Ap(-)(v, 2(fi. So)fi - g) (2.14)

A radiance function representing most surface is a linear combination of these two

plus a constant ambient term, which models haze and atmospheric reflection, as well

as the effects of a uniformly distributed light source.

L = aLLambertian + Lspecular + Y (2.15)

where a, #/ and -y are scalars so that a + / + 7y = 1.

Many vision researchers prefer to use a representation of the surface radiance based

on a global coordinate system. This is called the Reflectance function. Given Known

surface properties and a known light source, the reflectance function, R(, i, ir) is

defined using the corresponding surface radiance via a change in coordinates,

R(GG, fiG,.(G) = L(, fi, i) (2.16)

where (G, iG, and VG are the surface position, normal direction vector, and view-

I·^1_�_________�__�

-- _ _ _ J _ _ -__ _ _ -_ - - - - _

CHAPTER 2. OVERVIEW

ing direction vector.

2.2.3 Image Generation Stage

In earlier section, we introduced the perspective and orthographic projection. We also

need to know how the brightness of the image is affected by the projection. Assuming

perfect lens, the irradiance from a patch on object is

r d 2

E(r) = L((r),fi, r(r)) () cos 4 (2.17)

where L((r), fi, v(r)) is the radiance of the corresponding object patch, d is the

diameter of the lens, and a is the off-axis angle of the projecting ray. Here, i and ~ are

functions of r via the projection from image points r to object points. Equivalently,

this equation can be restated using reflectance function instead,

d 2

E(r) = R(¢(r),fi, r(r)) () cos 4 (2.18)

There is one more factor in image generation stage. Light will be converted into

digital signal, during the conversion, there is distortion of the image. The effect

can be removed by calibration so that the measured image irradiance can be related

to object radiance in a straightforward way. With a perfect calibration, the image

irradiance equation can be put into a very simple form,

E(r) = R(¢(r),fi, v(r)) (2.19)

where the constant term and cos a 4 can be set to 1 during calibration.

2.3 Stereo

For normal stereo situations, the camera are close together and both pictures are

taken simultaneously or nearly so. The stereo images that result look very similar,

36

CHAPTER 2. OVERVIEW

Object

Image Plane 1

Plane 2

X2

P1

P2

1'G

Figure 2-6: Stereo Geometry

mostly differing in a shift of objects in each image caused by perspective projection.

the difference in the shift of an object point in the left image and the right image is

called the disparity. If the relative position of the cameras is known, and it is known

the correspondence relation of each pixel in the right and left image, it is possible to

determine the depth directly for the surface points that projects to those pixels.[8]

To determine the depth directly from the disparity, See Figure 2-6. If the corre-

sponding points in each image map to rays intersect, we can use geometry to determine

the depth of the point that is halfway between the rays at their closest approach.

First find the relationship between the two camera coordinate system, Suppose,

we know the position of the principal point of each camera in some global coordinate

system, P 1 and P 2, and we also know the rotational transformation matrices from

each local camera coordinate system to the global coordinate system, T1 and T 2, the

coordinates of the point in the two camera coordinate system is

37

2

CHAPTER 2. OVERVIEW

R = T-'(- P 1)

R2 = T-1(- P 2) (2.20)

By moving C from the above equations and defining b = P 2 - P1, the relationship

between a point in Camera Coordinate System 1 and a point in Camera Coordinate

System 2 is

R1 = T-lb + T- 1T 2R 2 (2.21)

Now, determine the relationship between disparity and depth. Suppose we are

given image points, r = (xl,yl,f)T and r 2 = (2, Y 2 , f)T (one in each image), that

correspond to the same surface point, then the best estimate for the surface position

can be found by finding the point on each ray (along r and r 2) where the distance

between the ray is minimized. That is the problem

min llb + tr 2 - sr 12 (2.22)
s,t

must be solved where s and t are scalar parameters. For now assume all the

vectors are given on the same basis.

By differentiating the above equation with respect to s and t, setting the resulting

equation to zero, and solving, it is found that the minimum occurs when

(r1 r 2)(b r)- (r. r 2)(b r 2) _ (r 2 x b) (r 2 x r)
(rl r1)(r 2 r 2) - (ri r 2)2 Ir 2 x rill

t = (r r2)(b ri) - (r1 r2)(b r 2) _ (r1 x b) (r 2 x r) (2.23)
(rl rl)(r2 r 2) - (rl r2)2 Ilr 2 x rI

if rl, r 2 and b are coplanar then the above set of equations is just a fancy repre-

38

CHAPTER 2. OVERVIEW

sentation of the sines.

The global position of the point halfway between the two rays at thee closest

approach is

P 1 + sr + (b + tr 2 - srl),

P + b + I(T2r2 Tirl) [(T2r2 x b)Tlrl + (T 1rl x b)T 2r 2] (2.24)
2 2 IITr 2 x T2rl12

where P 1, P 2 and b are given in global coordinates and r, r 2 are given in the

appropriate local camera coordinate system.

The equations simplify greatly if rl, r 2 and b are coplanar, the cameras are aligned

so that the optical axes are in the direction -i and x is along b. The stereo geometry

is commonly assumed to exist for most binocular stereo algorithms. With these

restrictions, the above equation becomes

5 = P1 + rl (2.25)
(X2 - X1)

where r and r 2 are defined as earlier, and b = (b, 0, 0)T . the quantity (x 2 - x1)

in the above equation is the disparity mentioned earlier. Note that the disparity can

be mapped directly into depth only in the special case. For more general case, 2.24

must be used.

2.4 Photo-Topography

Now we have described image formation process and stereo system, we can formulate

the photo-topography problem.

What we know from the introduction of Viking Project in previous chapter, there

are two images of an area on the planet surface, taken at two different times from

two different positions and angles. The objective is to determine the topography of

_______� II_·

39

CHAPTER 2. OVERVIEW

the planet surface.

The images in a photo-topography problem are taken from two different vantage

points (See Figure 1-1). The cameras are often far apart and has pictures that are

taken at different time. In this case, it is very likely for the two images to look very

different. this makes the correspondence problem very hard. As opposing the small

baseline disparity and the same position and time of two images.

The solution is constrained by geometry and the image generation process. Specif-

ically each image is constrained by the perspective projection equation, 2.4 and the

image irradiance equation, 2.19 and the stereo constrained equations 2.20.

Combining these equations we find that the photo-topography problem is con-

strained such that

E(1)(r) = R()(i, -T rl)

E(2)(r2) = R(2)(,fi,-T 2 r2) (2.26)

where

= fT1(- P)
Tl'(S - P1) Tli

fT2-(~ - P 2)
r2 = Tl (2 - P2) T 2 2 (2.27)

E(1) and E(2) are the image brightness measured in the first and the second cam-

eras respectively, and R(1) and R (2) are the reflectance maps based on the first and

second light source positions. As before, ~ is the surface position in global coordinates.

It is important to review the assumptions behind these equations. The perspec-

tive projection equations assume perfect lenses and perfect knowledge of the camera

principal points and optical axes. the surface radiance equation assumes we have

I __ II_ � �

40

CHAPTER 2. OVERVIEW

perfect knowledge of the surface reflectance properties, light source directions, and

all surface points as visible from both cameras(i.e., there is no self occlusions). The

simplified form of the image irradiance equation assumes we either have a perfect

sensor or we can perfectly calibrate the sensor to remove any abnormalities from the

sensor & lens combination. The stereo equations assume we know the relative posi-

tion and orientation of the two camera perfectly. the only assumption that are truly

artificial are the assumptions of perfect knowledge of the reflectance maps and the

the assumption of no self-illumination. With more careful measurements and more

expensive equipment, it is possible to approach perfect knowledge of other assump-

tions. The assumption that all surface points be visible merely restricts the roughness

of the surface that this research is applicable to.

2.5 Simplification

There are several simplifications that can be made to the equation in the previous

section to make them easier to solve.

2.5.1 Special Global Coordinate System

So far all the equations have been written for any global coordinate system. I would

like to restrict the equations to a particular global coordinate system, as shown in

Figure 2-7. This coordinate system is defined as below:

1. Place the origin of the global coordinate system half way between the principal

points of the two cameras.

2. Choose the :XG direction along the line connecting the two cameras. XG =

b/llbll.

3. Choose the ZG in the direction of the average of the optical axis directions of

the two cameras projected into the plane perpendicular to XG, then

_1_______1________��____1_11_____

41

CHAPTER 2. OVERVIEW

Object

Figure 2-7: Global Coordinate System

(il - l -
= (

II(1 Z- -

) + (2 -Z2 - G)

XG) + (2 -Z 2 -'G)II'

4. Choose YG in the direction of ZG X ZG in order to create a right handed coordinate

system.

5. Also set up a virtual image plane with f = 1.

Then P 1 = -b/2, P 2 = b/2, and b = (b, 0 , 0)T .

2.5.2 Removing the View Direction Dependence

A common simplification for computer vision is the assumption of a Lambertian re-

flectance map. Since a Lambertian surface reflects light equally in all directions, we see

from Equation 2.12 that the radiance function does not depend on viewing direction.

Thus the dependence on -r can be removed from all equations.3

3 This is true for any reflectance function which is viewing independent, not just Lambertian
reflectance.

(2.28)

42

CHAPTER 2. OVERVIEW

Note that the viewing direction could also have been removed from the equa-

tions by using orthographic projection for the reflectance function while retaining

perspective projection for everything else. In this case the viewing direction would

be constant for each camera and its effect could be subsumed into the reflectance

map. Doing this would, of course, introduce an error into the calculations since or-

thographic and perspective projection do not produce the same viewing direction in

general. This error would be small for planet photo-topography since the cameras are

so far away from the surface. The large viewing distance results a very small relative

depth change AZ/Zo. This is especially true when the field of view is small.

2.5.3 Constant Albedo

So far the equations have terms that denote position on the surface . The main

reason for this dependence is to take into account varying albedo, varying reflectance

properties or both. To simplify, we can assume that the reflectance properties, albedo,

or both are constant across the surface. Assuming the reflectance but not albedo, are

constant across the surface results in a reflectance function that is separated,

(i, n v) = p(()R(fi(v)(2.29)

where R(fi, 'r) is the reflectance function for a surface with uniform albedo, no

interflection, and no mutual occlusion. As for R, any light source effects are included

in R. When both the reflectance and albedo are constant, the dependence of the

reflectance map on surface position can be removed,

R((, ni, v~) = R(fi,) (2.30)

Combined with either Lambertian reflectance 4 or orthographic projection, the

dependence on can be removed,

4 0r any viewing independent reflectance function

43

CHAPTER 2. OVERVIEW

Object

im
pIl

nage
lane 2

:2

z2

Figure 2-8: Aligned Coordinate System

R(~, fi) = R(fi) (2.31)

The simplification restricts the applicability of the algorithm presented in next

chapter so that only uniformly colored surface patches have the possibility of being

estimated correctly. When algorithms based on this simplification are applied to

images that violate these simplifications, we would expect errors at the transition

between different colored parts of the surface, within differently colored areas or

both.

2.5.4 Aligned Cameras

The Final simplification that can be made is to align the cameras so that their optical

axes are parallel, which will also be parallel to the global coordinate system, As shown

in Figure 2-8. When the cameras are aligned, the rotational transformations T 1 and

T2 are identity transformations, which simplifies the stereo equations to

·ntP� -

44

CHAPTER 2. OVERVIEW 45

R1 = -P1,

R2 = (- Pa· (2.32)

While this situation is very unrealistic for the photo-topography problem, any set

of images can be re-projected into this coordinate system.

2.5.5 Summary of Simplified equations

The rest of the thesis is based on equations that take into account all the above

simplifications. in summary, they are:

1. A special global coordinate system that is halfway between the two camera

position.

2. All surface points are assumed to be visible from the two cameras.

3. The reflectance properties of the surface are assumed to be constant and Lam-

bertian allowing the viewing direction dependence to be dropped from the re-

flectance equations. In addition, it is assumed that there is no interflection

between different parts of the surface.

4. The surface is assumed to have constant albedo allowing the position dependent

term to be dropped.

5. The cameras optical axis are assumed to be aligned with each other allowing

the rotational transformation to be set to identity.

Apply all the above, the set of equations are:

E(l)(r) = R(l)(i)

_��II _� .- 1___1_11��1 -�-_11 ---- 11119�X-·�-

l

CHAPTER 2.

(2.33)

where

f(~ + b/2)
(+ b/2) . l'

f(r - b/2)

(= - b/2) 2'

If we define z = a · ZG and r = f /z, then the constraint function can be written

as

E()(r + fb) = R)(i)

E(2(- fb) R(2)(ii)
2z

(2.35)

It is found more convenient in subsequent chapters to use a slightly different

notation. Use explicitly r = (x, y, f) and the normal vector ni is parameterized using

gradient component p and q,

fi= (-p, -q, 1)
v p2 + q2 + I

(2.36)

where

fzx

xzz + z

f
yzy + Z

(2.37)

The photo-topography equations then become

OVERVIEW 46

E (2) (r2 = R (2) (fl

(2.34)

CHAPTER 2. OVERVIEW 47

E(1)(x + fb y) - R(1)(p q)

E(2)(X_ fby) = R(2)(p q) (2.38)
- 2z' y P

2.6 Camera Calibration

In order to relate positions in the image direction vectors in 3-D space, the origin of the

camera coordinate system must be known. Finding this origin is the classical interior

orientation problem. As assumed in section 2.2.3, this origin is the projection of the

principal point in the image plane. In the special coordinate system, see Figure 2-8,

the position of each camera coordinate system origin can be specified by a vector

v = (vs, v, fT). these vector specify the offset of the camera coordinate origin for

each image. Suppose vo is the offset to an object point in the global coordinate

system, then the offset to this same point in the camera images are

V1 = V + 2 (2.39)
2zo'
fb

V2 = Vo- 2 (2.40)

the values of vl and v 2 can be quite large in the aligned coordinate system indi-

cating that the images must be shifted far away from the camera coordinate system

origin. While this is not possible physically, it is a consequence of re-projecting real

images into the aligned coordinate system.

I 1 -, . _ - - - - - - _

Chapter 3

Fusion of Shape from Shading and

Stereo

In this chapter, I will discuss the Fusion strategy proposed by Clay Thompson, in his

Ph.D. Thesis(See [24]). I will focus on the most efficient and robust z-only algorithm

in solving photo-topography problem. The basic idea is to closely couple the solution

of Shape-from-Shading and stereo in a variational approach. The important point is

to use each algorithms strength to compensate each one's weakness. (see table 3.1)

Naturally, one way of fusing two or more algorithms is to run each fused algorithms

separately on the image, and then combine the output to generate a single solution.

(See Figure 3-1) This approach is easy to understand and implement, since existing

algorithm can be put together in a ad-hoc manner, but it ignores the interconnection

embedded in the algorithms and the information coupling each algorithm.

The variational approach, on the other hand, closely couples the algorithms to-

gether. (See Figure 3-2) This can be achieved by formulating a combined cost function

based on the cost function of each fused algorithms. The result is a combined opti-

mization problem which takes into account both the explicit and implicit constraints

between the methods. Variational methods, by their nature, can exploit any orthog-

onalities in the methods. It then has the potential to create robust, well performing

48

_1__1 _I _ _ __

CHAPTER 3. FUSION OF SHAPE FROM SHADING AND STEREO

Figure 3-1: Module Based Fusion

-II
_ I���� _��_ �__�_

49

FUSION OF SHAPE FROM SHADING AND STEREO

Algorithm 1

Inputs Iptimized Output
mlmmmmmmmm

Other Algorithms

Figure 3-2: Variational methods Based Fusion

combinations of algorithms which can be applied to a wide range of input images.

3.1 Fusion Strategy

The planetary images, particularly Viking images provide us two sources of informa-

tion.

1. Shading Information: the gray levels in each image are an indication of the

surface orientation with respect to the light source.

2. Stereo Information: assuming corresponding pixel in each image can be matched

up, the stereo information can be used to recover the shape.

CHAPTER 3. 50

C

Optinn z

CHAPTER 3. FUSION OF SHAPE FROM SHADING AND STEREO

Table 3.1: Photo-Topography problem source and constraint matrix

3. Photometric Information: the gray levels of corresponding pixel constrain the

set of possible surface orientation, since the images are taken at with two dif-

ferent light source position.

Another important point is that the shading and stereo information are indepen-

dent and mutual compensating. independent means we can differentiate the contri-

bution from each source of information. For example, The shading information is

the strongest when shading is smooth, while stereo information is the strongest near

surface discontinuities, where feature dominates, and when cameras are widely apart.

The photometric information is strongest when the light source positions are widely

separated.

3.2 z-only DFSS Algorithm

z-only algorithm estimates everything in a single global coordinate system which is

defined to be half way between the two camera positions. Figure 3-3 shows the tree

diagram of the flow of this algorithm. The current estimate of the surface height z is

used to project points in the global coordinate system to points in each image using

perspective projection. These points won't in general land on a pixel center so some

type of interpolation is used to determined the value of the image at the projected

points. This interpolated image F is then compared to a computed image based on

Shading Stereo Lighting
Shape From Shading Shape Surface Surface Orientation

From Shading Constraint Constraint
Binocular Stereo Correspondence Binocular Correspondence

Constraint Stereo Constraint
Photometric Stereo Correspondence Correspondence Photometric

Constraint Constraint Stereo

51

CHAPTER 3. FUSION OF SHAPE FROM SHADING AND STEREO

left

E

I

right

E

I

p,q

7
L

Figure 3-3: Centralize Algorithm Tree Based on Disparity

the current estimate of the surface. The error is used to update p, q, and ultimately

z.

z-only algorithm uses hard integrability constraints. With hard integrablity we are

guaranteed that any solution obtained will be feasible. The trade-off is that z-only

algorithm will have less degree of freedom and more susceptible to local minima.

3.2.1 Variables

In z-only algorithm, the depth map z is the only optimization variable, thus its name

z-only algorithm. The surface gradient components p and q are computed directly

from the depth map. The photo-topography images, camera geometry and surface

reflectance function are inputs to the cost function.

---_____···-·C----*-·1�·---i--

52

CHAPTER 3. FUSION OF SHAPE FROM SHADING AND STEREO

3.2.2 Cost Function

The cost function is formed by integrating the squared photo-topography error intro-

duced by the current estimate for z, together with a penalty function for departure

from smoothness.

The penalty function is mainly used to guide the solution towards the minimum.

In practice, the smoothness weighting parameter A is slowly reduced towards zero as

the algorithm converges.

minJ = I f [(E()(x + f, y) - R(l)(p, q))2 + (E(2)(x _ fb y) - R(2)(p, q))2
min2J = f 2z, 2

+A(zZ2 + 2z2y + z2y)]dxdy. (3.1)

The smoothness term is based on the second variation. It is equivalent to pX +

p2 + q2 + q when z ~ fp/zo and zy ~ fp/zo where z0o is the nominal depth.

The cost function above is continuous and must be discretized before it can be

optimized. The process is an approximation one. using finite difference methods,

since the images are in digital form, each pixel represents the average of the brightness

falling within the sensitive area of the corresponding photosensor. It then makes sense

to approximate the values for p, q and z as arrays of gradient components or surface

depth.

Using an array of z, the cost function can be written as:

minzJ = 12 sx,yeD [(F(')(x, y) - R(')(p, q)) 2 + (F(2)(x y) - R(2)(p, q)) 2

+A(z~x + 2Z2 + z)]dxdy. (3.2)

1The approximations are valid when the field of view is small, the image is centered around the
camera's principal point, and the depth of field relative to the nominal depth is small.

�_�__�_I___�_

53

CHAPTER 3. FUSION OF SHAPE FROM SHADING AND STEREO

where D is the discrete image domain of the underlying variables in the global

coordinate system, N and M are the row and column dimensions of the discrete

domain, and e is the grid spacing(assume equal spacing in both x and y directions).

F(i)(x, y) are interpolated from the input image E(i)(x, y)

F(t)(x, y) = E(i)(, y) + (x ± fb -)[E()(+ 1,y)-E()(, y) (3.3)

where

= floor(x fb). (34)

The floor(x) function returns the greatest integer towards minus infinity.

Matched grid is used to implement the cost function. In this implementation, p, q

and z are chosen all to be the same size as the image arrays. In such a representation,

all the functions are sampled on the same grid, thus the name matched-grid represen-

tation. This approach uses vertex-centered surface derivatives that are valid at each

vertex of the z grid. Since p and q are the same size as z, some type of approximation

must be made at the array edges. Bicubic interpolation is used to extrapolate the

estimates.

3.2.3 Optimization

This algorithms uses direct optimization via the conjugate gradient method. This

methods has two advantages, the first is the guarantee reduction of the cost function

at each step; the second is that no Hessian needs to be computed or stored.

3.2.4 Solution Techniques

The cost function is of the form

minJ = / L(u, u', u", ...)dxdy (3.5)

;IP·I�PL� ---- · 1�-·-·- -- .

54

CHAPTER 3. FUSION OF SHAPE FROM SHADING AND STEREO

where u are the optimization variable, and L is a possible non-linear function of

the optimization variables and its derivatives. The integral is taken over the domain

of the variables. The solution to this problem can be found by solving the associated

Euler-Lagrange equations(See a variational calculus book, such as [8]).

The Euler-Lagrange equations for a problem such as the one above are typically

coupled non-linear equations. Such equations are usually very difficult to solve ana-

lytically but can sometimes be solved numerically by converting them into discrete

equations. The conversion process involves substituting discrete approximations for

any derivatives of the optimization variables. The optimization variables may have

approximated by a discrete vector as well. The equations are then re-arranged to

create iterative update of the form

u(k + 1) = f(u(k), u(k- 1),...) (3.6)

where u(k) is the value of the optimization variables for the k-th iteration.

When u has many components and when the components are updated in sequence

based on the best current estimate u, the resulting update scheme is called a Gauss-

Seidel optimization. When all of the components of u are update simultaneously

based on a previous estimate for u, the resulting scheme is called a Gauss-Jordan

optimization. Gauss-Seidel optimization schemes have higher convergence rates and

are more robust, and are best implemented on a serial computer. Gauss-Jordan

schemes, while they have lower convergence rates and are not as robust, can be

implemented on parallel computers.

Another way of solving the optimization problem posed is by using direct optimiza-

tion techniques. In this case the cost function, instead of Euler-Lagrange equations

are discretized. Any integrations are approximated by sums and any derivatives are

approximated by differences. The resulting cost function is of the form

� _· 1___ _11__1__1_1_____11_1_I_·

55

CHAPTER 3. FUSION OF SHAPE FROM SHADING AND STEREO

minuJ = E E f(u) (3.7)
y

where f(u) is a discrete approximation of L(u, u', u",...). We chose conjugate

gradient optimization. The conjugate gradient scheme doesn't require the formation

of of the problem Hessian2 , which for an optimization problem with N variable is a

N-by-N matrix. The conjugate gradient scheme is important for vision problem since

for a typical 256-by-256 image, the Shape-from-Shading problem would have 2562 or

65536 optimization variables. The hessian for this problem would have 2564 or over

4 billion elements.

3.2.5 Speedup Techniques

For vision problems there are two promising speed up techniques: the use of hierar-

chical basis functions, and multi-grid methods. Both try to speed up the optimization

problems by increasing the information transfer spatially. The methods are based

on the properties of many vision algorithms where an optimization variables within

a grid of optimization variables may only be affected by its nearest neighbors. Due

to the local connectness, many vision algorithms have diffusion like properties, the

solution must diffuse throughout the grid. Schemes that transfer information over

longer distances thus may speed up an algorithm.

Using hierarchical basis functions transform the optimization space as seen by

the optimization algorithm but not as seen by the vision algorithm. Basically it

is like change of basis. Figure 3-4 shows the presentation of of a 9-by-9 domain

in hierarchical basis. In particular, note that the nodes of the hierarchical basis

propagate information over a much larger range than the nodes in nodal basis. It

shows linear interpolation between nodes, but any interpolation scheme can be used to

build a hierarchical basis. The variables can be transformed to the nodal basis when

2A linear approximation to the second order properties of the solution space at a given point

-�--·- -��I-

56

FUSION OF SHAPE FROM SHADING AND STEREO

/ 1 S-bY-1 \

/

//
/

/

/

9"A I"

t7-bl7 ail

Figure 3-4: Hierarchical Basis Functions

I_�___� -�-II_�-�-__··-··-·---__ _ � _ �_ 7-�-'�-`�---------- -------------------------- ���.-

CHAPTER 3.

SR4

CHAPTER 3. FUSION OF SHAPE FROM SHADING AND STEREO

computing the cost function or gradient. Unfortunately, all these transformation can

introduce round-off errors may adversely affect sensitive algorithms.

The hierarchical basis functions have the most effect on the convergence and are

the easiest to implement when the grid size is 2 + 1, where n is any positive integer.

for such a grid it is possible to use n + 1 hierarchical basis levels. Using hierarchical

basis functions increases the communication between nodes in the image array. so to

speed up the diffusion process considerably.

The multigrid methods seek to propagate information over a large range by solving

a series of problems of different size. Usually the original problem is formulated on

grids that decrease in size by a factor of two when going from one layer to the next.

The solutions on one layer are related to solutions on the layers above and below via

interpolation or prolongation. The solution are kept consistent with each other via

both intra-layer and inter-layer process. (See [23] and [2]).

Multigrid methods have the potential to be much faster than the hierarchical

basis functions since most of the computation is done on the smaller layers. Multigrid

methods are well suited to linear problems but may not work for non-linear problems.

Since

f(u) # f(Z) (3.8)

for non-linear function f, and the multigrid methods rely on equality of the pre-

vious equation to constrain the solutions on the smaller grids so that they don't bias

the solution on the larger grid.

One type of multi-grid method that can be used for non-linear problems is the

coarse-to-fine method. In this method, the problem is solved on coarse layers first

and the solution to each layer provides the initial condition to the next finer layer

below. This method is significantly faster that just optimizing on the finest grid but

does not produce as much convergence speed up as the full multigrid method.

Like the hierarchical methods, the multigrid methods work best when the grid size

58

CHAPTER 3. FUSION OF SHAPE FROM SHADING AND STEREO

is 2" + 1. However, since the multigrid methods define a series of problems rather than

just choosing a new set of basis functions, the multigrid methods can be implemented

easily for all grid size. There is some evidence, that the grid size reduction should be

near 2 for best convergence rate (See [23]).

3.2.6 Discussion

The question of existence and uniqueness come up when working with optimization

algorithms. For the cost function presented earlier, it is clear that a solution exist.

The solution are bounded from below by zero. That is, the best possible value for

the cost function is zero and can be achieved only when the estimated surface images

and the actual images match exactly and when the regularization term is set to zero.

The uniqueness of a solution depends a great deal on the surface to be estimated.

In general, both global and local minima will exist. The optimization techniques

discussed above only guarantee convergence to a local minima. The global minimum

may only be achieved if the initial conditions for the optimization algorithm are close

to the true solution.

59

Chapter 4

Synthetic Image Test Results

It is crucial to test an new algorithm's performance, to understand its strength and

weakness before applying it to the real images. To test, it must be possible to compare

the estimated surface with the actual surface. The way to do it is to create synthetic

images from a known surface topology, estimate the surface with z-only Depth from

Shading and Stereo algorithm, compare the estimated surface with actual surface.

Only after that, we can be confident in the correctness of the new algorithm.

4.1 Synthetic Images

Four synthetic images are used with various difficulties to the Depth from Shading

and Stereo, from three typical topology.

* Easy Crater Images: The first pair of images is based on a crater on a flat

plane. The light sources are oblique, this makes it relative easy for DFSS to

estimate.

* Hard Crater Images: The second pair of images is based on a crater on a flat

plane. The light sources are almost behind the camera, this makes it difficult

for DFSS to estimate.

60

��I� II

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

b f lz Z z/zo () q) p(2) q (2)

Easy Crater 500 -2750 -997 0.0038 0.2 -0.5 -0.3 0.1
Hard Crater 500 -2750 -997 0.0038 0.1 0.1 -0.1 0.1

Hills 500 -12222 1000 0.0011 1.0 1.0 0.3 0.1
Mountain 100 -2292 -996 0.0153 0.5 0.5 -0.5 0.0

Table 4.1: Camera Geometry

* Hill Images: The third is based on a fractally-generated set of rolling hills.

The light sources are oblique.

* Mountain Images: The third is based on a fractally-generated set of mountain

terrain. The light sources are oblique and the baseline is smaller. This set of

images poses a challenge and it most related to planet images.

The calibration parameters for the test images are summarized in Table 4.1. The

table lists value for the baseline distance b, camera focal length f, nominal depth

zo and light source vector p(l) q), p q2). Notice the focal length and nominal

depth are negative so that it is consistent with a right hand system in perspective

projection. Baseline b, depth z and light source components are in units of miles.

The camera focal length and pixel spacing are based on camera units, millimeters.

All the test images are generate noise-free to test the best performance of the

z-only DFSS algorithm. All the results are presented with history of smoothness

weighting term A, history of cost function, history of estimated error, and the mesh

plot of depth z.

4.2 Algorithm Performance

In this section, I will show the performance of z-only of the above four set of images.

All images are 65-by-65 pixel and using 6 levels of hierarchical basis, which is the

largest number of levels that can be used.

i�

61

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

4.2.1 Easy Crater Images

This set are based on a crater on a plat surface. It is very simple, and thus serves a

good test bed. The very different light source positions give very different shadings

to each image. As shown in Figure 4-1 The very strong shading information makes

it easy for DFSS to estimate. Contour plots of the reflectance map clearly shows the

effect of lighting. The larger separation of reflectance contours gradient space makes

it easy to constrain the possible set of feasible gradient directions from brightness.

Apparent z-only DFSS algorithm correctly estimated the easy crater surface. It is

interesting to notice the small anomaly in the lower left corner of the surface. With

the lighting condition, this anomaly has little effect on the estimated surface and

the programs' convergence. z-only DFSS algorithm has very good performance, the

correct surface topology is obtained in less than 150 iterations. The DFSS results is

shown in Figure 4-4.

_ 1 _ 1 _ _~~~~~I~~L ~ ~ _ _ _-

62

SYNTHETIC IMAGE TEST RESULTS

Camera Geometry

-o

0

-zUU500 x
y -500

Figure 4-1: Easy Crater Synthetic Images Camera Geometry. Graph shows the cam-
era position and direction(dotted lines) and light source direction(solid lines)

10

0

--__----_14^-11^�·(1I�---·--

CHAPTER 4. 63

t~

5a15:a
M_---

SYNTHETIC IMAGE TEST RESULTS

xz-plane Camera Geometry

Ads

t js2
, .

, g

sl : :
,

,

,

,

,

. .

. .

. .

. .

. .

. .

. .

*

*

*

*

*

.

.

.

.

.

.

0
x

500

yz-plane Camera Geometry

-500 0
Y

500

Figure 4-2: Easy Crater Synthetic Images Camera Geometry projected in xz and yz
plane

1000

800

600

400

200

A
-voo-500

sls2 :

.

1000

800

600

400

200

n

---�

CHAPTER 4. 64

_

_

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

Reflectance Function Contours
True Surface

-5 0 5
p

True images

Figure 4-3: Easy Crater Synthetic Images

65

I

SYNTHETIC IMAGE TEST RESULTS

400

Convergence History

, , ,,N., , , , , , , , , , , , , , ,

m- - - - - - -i

600 800 1000 1200 1400
Iteration

Lambda Parameter History

200 400 600 800 1000 1200
Iteration

1400

Figure 4-4: z-only DFSS iteration history on Easy Crater Images. Graph shows
the z-only DFSS algorithm performance on the easy crater image pair. The upper
graph shows the cost function(solid line) and RMS error(dashed line) of the estimated
surface. The lower graph shows history of the smoothness weighting term A

101

100

0

C.;

U

0
Q

10-1

10-2

10-3

0 200

10-1

10-2

cZ

104

10' s

0

CHAPTER 4. 66

10-4

10-3

SYNTHETIC IMAGE TEST RESULTS

Estimated surface Error surface

Figure 4-5: z-only DFSS Estimated Surface and Error on Easy Crater Images at the
end of iterations

CHAPTER 4. 67

SYNTHETIC IMAGE TEST RESULTS

Estimated surface, iter. = 25 Estimated surface, iter. = 125

Estimated surface, iter. = 250 Estimated surface, iter. = 375

Figure 4-6: z-only DFSS estimation at various iteration steps on Easy Crater Images

~C~I _ I ~ ~

CHAPTER 4. 68

SYNTHETIC IMAGE TEST RESULTS

Estimated surface, iter. = 600

Estimated surface, iter. = 1100

Estimated surface, iter. = 940

Estimated surface, iter. = 1200

Figure 4-7: z-only DFSS estimation at various iteration steps on Easy Crater Images

_ __ ilr__iil__�_____·__1_·I_�

CHAPTER 4. 69

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

4.2.2 Hard Crater Images

In this set of images, the baseline distance between the cameras is about half the

distance to the surface and the light source positions for the two images are nearly

the same and almost directly behind the cameras. As shown in Figure 4-8, from the

light contour plot and the true images, the two images are very bright and look very

much the same except for slight difference in the shading.

This images represent the worst case for DFSS algorithm since the shading infor-

mation is weak and the range of brightness is small. However, they do have strong

stereo correspondence information which is unfortunately not heavily utilized by z-

only DFSS algorithm.

Figure 4-11 to Figure 4-14, shows the results of applying the z-only DFSS algo-

rithm to this test case. It shows the estimated surface resembles the true image in

figure 4-8, even though they don't match. Clearly the z-only DFSS algorithm gets

stuck in a local minimum. The problem stems from that the algorithms incorrectly

interpreted the surface to be concave when it is actually convex. Even though stereo

information is presented and can be used to correctly determine the orientation of

the surface, the z-only DFSS algorithm is biased towards shading information. The

surface orientation ambiguity is also a result of having both light sources directly

behind the cameras.

__�I I_ � sl I _ _ _ _ s� _��

70

SYNTHETIC IMAGE TEST RESULTS

Camera Geometry

/I ~500

0

-2 00 o x

Figure 4-8: Hard Crater Synthetic Images Camera Geometry. Graph shows the
camera position and direction(dotted lines) and light source direction(solid lines).

A'
U

-200

-400

-600

-800

-1000

-1200
200

J

_� _1 11.-.·i�il� I__���__ .II�__-_

CHAPTER 4. 71

I

·fS
1:1

--- I

I

C"lC:I-Ca

SYNTHETIC IMAGE TEST RESULTS

xz-plane Camera Geometry

. .

-500 0
x

500

yz-plane Camera Geometry

U_
-500 0

Y
500

Figure 4-9: Hard Crater Synthetic Images Camera Geometry projected in xz and yz
plane

I Afi

I VVV

800

600

::. s -
,I '

Ia :s

I

-s

-0 400

200

1000

800

600

sl:
s2

a0
lr

400

200

n

CHAPTER 4. 72

I II I

n1_I I

_

SYNTHETIC IMAGE TEST RESULTS

Reflectance Function Contours

True Surface 3

-5 0 5
p

True images

Figure 4-10: Hard Crater Synthetic Images

CHAPTER 4. 73

I

cs

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

Convergence History

200 400 600
Iteration

800 1000 1200

Lambda Parameter History

200 400 600
Iteration

800 1000 1200

Figure 4-11: z-only DFSS iteration history on Hard Crater Images. Graph shows
the z-only DFSS algorithm performance on the hard crater image pair. The upper
graph shows the cost function(solid line) and RMS error(dashed line) of the estimated
surface. The lower graph shows history of the smoothness weighting term A

10'

100

10-1

10-2

10-3

0

C.)

o
U0Q

0

I

10-4

10- 1

10-2

10-3

104

10-5

0

r

�c - ---- `�-e ��-

74

A

SYNTHETIC IMAGE TEST RESULTS

Estimated surface Error surface

Figure 4-12: z-only DFSS Estimated Surface and Error on Hard Crater Images at the
end of iterations

__1^1_·_(�_________11__11 _� r__���_� 1_ _�1_11___�_ _�_��11_1_

CHAPTER 4. 75

SYNTHETIC IMAGE TEST RESULTS

Estimated surface, iter. = 25

Estimated surface, iter. = 250

Estimated surface, iter. = 125

Estimated surface, iter. = 375

Figure 4-13: z-only DFSS estimation at various iteration steps on Hard Crater Images

7·-·rr�--·---·-·---·---^ ·-·I -- �

CHAPTER 4. 76

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

Estimated surface, iter. = 600

Estimated surface, iter. = 1100

Estimated surface, iter. = 940

Estimated surface, iter. = 1200

Figure 4-14: z-only DFSS estimation at various iteration steps on Hard Crater Images

_ m�j_�_rr�

77

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

4.2.3 Hill Images

The third set of images is of an undulating surface similar to erode hills and was

generated using a fractal technique. Figure 4-15 shows the camera geometry, true

surface, reflectance contours. This set of images is more representative of the type of

terrain the DFSS algorithm are likely to encounter. As shown in Figure 4-15, the left

cameras is directly over the surface and the light camera views the surface obliquely.

The light sources are separated, as in the ease crater case. This results in the images

with strong shading information. The DFSS algorithm performed rather well in this

case, correctly interpreted the surface.

The Figure 4-18 shows the results of applying the DFSS algorithm to the hill

images. z-only DFSS algorithm performs well, correctly estimated the complicated

topology. Due to the complexity, the images requires more iterations to obtain a

satisfactory estimate of the surface than the easy crater case.

__C__I__·_l____lle___ � I _ I_ I___ _I _��_

78

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

Camera Geometry

<Ei Dr1

-200.

-400,

-]
I

0

-ZUU x
y -500

Figure 4-15: Hill Synthetic Images Camera Geometry. Graph shows the camera
position, direction(dotted lines and light source direction(solid lines).

0

I-----P�-·sr� � .� `� ----- `�----------�·1----·-----�--�

79

-]

)0

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

xz-plane Camera Geometry

-00
-500

0
x

500

yz-plane Camera Geometry

-
-500 0

y
500

Figure 4-16: Hill Synthetic Images Camera Geometry projected in xz and yz plane

1000

800

600

,': .

s2 . . v
I,

I
I

I

4)-oCI
400

200

fN

1000

800

600

s2

Si

24)-"a
400

200

n

P

80

_I

.

_

SYNTHETIC IMAGE TEST RESULTS

True Surface
5

Reflectance Function Contours

-J
-5 0 5

p

True images

Figure 4-17: Hill Synthetic Images

CHAPTER 4. 81

IC

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

Convergence History

200 400 600 800 1000 1200
Iteration

1400

Lambda Parameter History

200 400 600 800 1000 1200
Iteration

1400

Figure 4-18: z-only DFSS iteration history on Hill Images. Graph shows the z-only
DFSS algorithm performance on the hill image pair. The upper graph shows the cost
function(solid line) and RMS error(dashed line) of the estimated surface. The lower
graph shows history of the smoothness weighting term A

10°

10-1

102
ro0

U:

Q

10
-3

-4
10

0
10' 5

10-1

102

10 3

10 4

10 -5

0

- - -- -- --- ---

82

SYNTHETIC IMAGE TEST RESULTS

Estimated surface
Error surface

Figure 4-19: z-only DFSS Estimated Surface and Error on Hill Images at the end of
iterations

-_I___PI-�ll\ll-----

CHAPTER 4. 83

SYNTHETIC IMAGE TEST RESULTS

Estimated surface, iter. = 25

Estimated surface, iter. = 250

I I

Estimated surface, iter. = 125

Estimated surface, iter. = 375

Figure 4-20: z-only DFSS estimation at various iteration steps on Hill Images

5nm 999fth
I9

i

CHAPTER 4. 84

g I

SYNTHETIC IMAGE TEST RESULTS

Estimated surface, iter. = 600

Estimated surface, iter. = 1 1 00

Estimated surface, iter. = 940

Estimated surface, iter. = 1200

Figure 4-21: z-only DFSS estimation at various iteration steps on Hill Images

__���

CHAPTER 4. 85

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

4.2.4 Mountain Images

The fourth set of images is of a highly mountainous surface and was created to

show the performance on steep terrain. The steep terrain requires that the baseline

distance from the cameras to be small so that all the surface points are visible from

both cameras. Thus it is a good example to show the merit of the algorithm when

the stereo baseline is small. As shown in Figure 4-22, The light source position are

widely separated and generate deep shadows on this steep terrain. The reflectance

maps are flat within a shadow so no helpful gradient is available to the algorithm.

In addition, knowledge that a particular pixel is in shadow only constrains the set of

possible gradient directions to a sub-pane of gradient space. Thus, within a shadow

region, much more influence is given to the brightness values from the other image.

This results in a slower convergence.

The Figure 4-25 shows the results of applying DFSS algorithm. The z-only DFSS

algorithm performed reasonably well, correctly interpreted the surface. Due to the

complexity of the surface. the algorithm requires many more iterations to achieve a

satisfactory solution. Never the less, the algorithm correctly estimates the surface. It

proves the algorithm is robust and can handle small base line difference.

I� � __

86

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

Camera Geometry

t) -600.

-800.

10

200

0
0

-UU x
Y -500

Figure 4-22: Mountain Synthetic Images Camera Geometry. Graph shows the camera
position and direction(dotted lines) and light source direction(solid lines).

__1��1�1 __�_ _______^_�_1��11�

87

rn

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

xz-plane Camera Geometry

-500 0
x

500

yz-plane Camera Geometry

0
y

500

Figure 4-23: Mountain Synthetic Images Camera Geometry projected in xz and yz
plane

sl'::

:: s2

..

...

1000

800

600

400

200

A

1000

800
A

s2

sl"
600

400

200

n
!

__�I�

88

..I

u -500

SYNTHETIC IMAGE TEST RESULTS

True Surface Reflectance Function Contours

-5 0 5
p

True images

Figure 4-24: Mountain Synthetic Images

CHAPTER 4. 89

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

Convergence History

I'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\…-_ _ i

200 400 600
Iteration

800 1000 1200

Lambda Parameter History

200 400 600
Iteration

800 1000 1200

Figure 4-25: z-only DFSS iteration history on Mountain Images. Graph shows the
z-only DFSS algorithm performance on the mountain image pair. The upper graph
shows the cost function(solid line) and RMS error(dashed line) of the estimated sur-
face. The lower graph shows history of the constraint A

101

100
0

0

U
o
O4,.

0
U

10 -1

10-2

10-3
0

10'1

10-2

c-
.l

10-4

10' 5

0

- --~- -----

90

10-3

SYNTHETIC IMAGE TEST RESULTS

Estimated surface

Error surface

Figure 4-26: DFSS Estimated Surface and Error on Mountain Images at the end of
iterations

CHAPTER 4. 91

SYNTHETIC IMAGE TEST RESULTS

Estimated surface, iter. = 25 Estimated surface, iter. = 125

Estimated surface, iter. = 250 Estimated surface, iter. = 375

Figure 4-27: DFSS estimation at various iteration steps on Mountain Images

P�s C � _ I

CHAPTER 4. 92

SYNTHETIC IMAGE TEST RESULTS

Estimated surface, iter. = 600

Estimated surface, iter. = 1100

Estimated surface, iter. = 940

Estimated surface, iter. = 1200

Figure 4-28: DFSS estimation at various iteration steps on Mountain Images

_ __ �_ _ �II__�__ � __ �_��_ -�-��1_1_-- I�-·-^lr_---

CHAPTER 4. 93

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS 94

Rel. Error Abs. Error Iterations
Easy Crater 0.172 0.173 1200
Hard Crater 1.072 1.073 1200

Hills 0.018 0.025 1200
Mountain 0.718 0.780 1200

Table 4.2: Performance Comparison

4.3 Summary of the Results

A summary of the results of DFSS algorithms running on easy crater, hard crater,

hill and mountain images are presented in Table 4.2. The relative and absolute error

between the true and estimated surface at the last iteration are calculated as

Jabs = NM (z - Ztrue) 2, (4.1)

and

Jrel = NM E ((Z -) -(Ztrue - tre)). (4.2)
X,y

where z and true are the average of z and Ztr, respectively.

4.4 Performance

From the test results on the synthetic easy crater, hard crater, hill and mountain

images, clearly z-only DFSS can achieve very good estimation on surface topology in

a reasonable number of iterations, in the easy crater, hill and mountain image cases.

z-only algorithms also proves to be robust, especially in small baseline situation. The

only difficulty is dealing with images which has very weak shading information, as

represented by the hard crater case.

It was shown that the z-only DFSS algorithm has much better performance using

Y"csS"-- -- I�-�-

CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS

the two images that a simple shape from shading algorithm which uses only one

image. (see [24]) This performance increase validates the fusion approach to obtaining

better vision algorithm.

The z-only algorithm was also shown to be robust, able to accurately estimate the

synthetic surface in the presence of several types of errors. The performance of the

algorithm based on images that contains noise, geometry error, or reflectance errors

was shown in [24] chapter 7. In Most case, The algorithm was able to form a close

estimate.

It is clear the algorithm has considerable difficulties with the hard crater images.

The optimization got caught in the local minimum. The reason is clearly shown in

the Figure 4-8 for a given brightness level(i.e., along one of the contours), there are

two viable solutions with different surface orientations. The local minimum has a

orientation in the "dipped" region that is viable but incorrect orientation, and the

stereo information is not strong enough to pull it out of the local minimum.

The C version of z-only DFSS algorithm runs 2-3 times faster that its counterpart

in Matlab, memory requirement is 30 percent less. It is also made more portable.

The C functions has been tested on Sun, and IBM compatible PCs.

95

Chapter 5

Viking Image Results

In the previous chapter, the z-only Depth from Shading and Stereo algorithm has

been shown to be efficient and robust. In this chapter, the algorithm will be applied

to real images, namely areal photos taken during Viking Space Project.

5.1 Viking Space Project

Viking Space Project was started by the National Aeronautics and Space Adminis-

tration on November 15, 1968. The main objectives of the project was to achieve a

soft landing on the surface of the Mars and to relay scientific data back to the Earth.

The main function of the orbital cameras, whose pictures are displayed in this thesis

were to aid in the selection of safe landing sites to establish the geologic and dynamic

environments in which the lander experiments were performed.

Two previous missions, using Mariner 4, mariner 6 and 7 obtained a blend of

low-resolution, wide area pictures. Mariner 9, the final predecessor to Viking was the

first spacecraft to go into orbit about another planet. It took more than 7300 images

of Mars, covered the entire surface at a resolution of 1-3 km, and selected area down

to 100 meters.

96

_I� I _

CHAPTER 5. VIKING IMAGE RESULTS

5.1.1 Viking Mission

The Viking Mission consisted of four spacecrafts: two identical orbiters and two

identical landers. One of the orbiter experiment was the Visual Imaging Subsystem

(VIS), which acquired the images that are used in this thesis. The major objective

of the VIS experiment was to characterize potential landing site.

Viking Orbiter I was launched from Kennedy space center at Cape Canaveral on

August 20, 1975, and arrived at Mars on June 19, 1976. Initially, the spacecraft

was put into a Mars-synchronous elliptical orbit with a period of 24.66 hours, an

apsapsis of 33,000 km and a periapsis of 1513 km. During the first month, Viking

I began systematically imaging Mars on July 20, 1976. Its highly elliptical orbit

was particularly suited for studying the surface because it allowed a mix of close-up,

detailed views at periapsis and long range synoptic view near or at apoapsis. More

that 30,000 pictures were taken.

Viking Orbiter II was launched September 9, 1975, and arrived at Mars on au-

gust 7, 1976. A major difference in the orbit of this spacecraft compared to that of

Viking Orbiter I is its high inclination, which allowed Viking Orbiter II to observe the

complex, enigmatic polar regions at relative close range. Viking Orbiter II returned

nearly 16,000 pictures of Mars and its satellites.

The Viking orbiter spacecrafts operated in orbit around Mars from 1976 to 1980.

The orbiter imaging systems imaged all of the terrains on Mars, collected some color

and stereo images, and made observations of phobos and deimos. Some image se-

quences acquired by the VIS experiment include systematic medium and high resolu-

tion coverage of large portions of the surface, stereo images, observations of Phobos

and Demios, color images of the equatorial regions, observations of the polar regions,

and monitoring dust storm activity.

_____1_1_ I_____I___IIII_^·_I_. --���·-----C�-·

97

CHAPTER 5. VIKING IMAGE RESULTS

5.1.2 Viking Orbiter Visual Subsystem

Each Viking Orbiter, Viking Orbiter I and II, was equipped with two identical vidicon

cameras, called the Visual Imaging Subsystem (VIS) [26], [14], [1]. Each VIS camera

consisted of a telescope, a slow scan vidicon, a filter wheel, and associated electronics.

The angular field of view of the camera as defined by the reseau pattern was 1.51 by

1.69 degrees. The ground area covered by an image varies as the function of spacecraft

altitude and emission angle. A digital image was generated by scanning the vidicon

face plate. A full resolution, uncompressed Viking orbiter image consists of an array

of 1056 lines with 1204 samples per line. There are only 1182 samples in each line are

valid. The extra 22 are consist of dark bands on the left and right edge of each image,

produced by an opaque mark in front of the camera. The images then transmitted

back to earth station.

Many Viking orbiter images have missing data and contain some amount of noise

[14]. The missing data are mainly due to sample intervals, resulted from the raw data

being stored on the spacecraft and transmitted to earth in packets that contain every

seventh pixel. The noise found in these images include single-pixel random noise and

several source of coherent noise. The random noise is usually due to telemetry errors.

Techniques exist to remove the random noise and missing data [4]. The coherent

noise arises from shuttering of the adjacent camera, filter wheel stepping, and scan

platform movements [14]

5.2 Data selection

Mars provides many features are suitable to use DFSS algorithms to analysis the

photo images. Great canyons are incised into the surface, huge dry river beds show

the changes in topology features, large volcano tower distinct itself on a flat surface.

However, huge volume of Mars images also pose difficulties for image selection

along with some natural obstacles, such as seasonal dust storm, caps od carbon dioide

_ h l _I _

98

CHAPTER 5. VIKING IMAGE RESULTS

at the poles.

Image pair selection are done by Mike Caplinger. Using their local facilities, Mike

Caplinger is able to browse through a large amount of Mars images and pick out the

images of the same longitude and latitude. The associated Sun position and space

craft position and angles are obtained. These geometry information and the image

data are then sent to us to use with DFSS algorithm.

5.3 Data Processing

Two preliminary processing steps are always done to radiometrically and geometri-

cally calibrate the images:

* Viking Orbiter images are radiometrically calibrated by converting the digitized

signal from the camera into a quantity that is proportional to the radiance reach-

ing the sensor. Each Viking camera was calibrated before flight. In addition,

changes in the calibration over time has been estimated from analyses of images

of deep space and dust storms. The radiometric calibration procedure applies

additive and multiplicative corrections that account for the varying sensitivity

of the vidicon across the field of view and over time. The calibrated values are

proportional to radiance factor, which is defined as the ratio of the observed

radiance to the radiance of a normally illuminated Lambertian reflector of unit

reflectance at the same heliocentric distance.

* Geometric calibration of Viking Orbiter images removes electronic distortions

and transforms the point perspective geometry of the original image into a

map projection. The electronic distortions are barrel-shaped distortions from

the electron beam readout and complex distortions from interactions between

the charge on the vidicon face plate and the electron beam. The electronic

distortions are modeled be comparing the predicted locations of undistorted

reseau marks with the actual locations in an image.

99

CHAPTER 5. VIKING IMAGE RESULTS

During the processing, reseau marks are removed, bit errors and/or tape errors are

corrected. The raw Mars images are projected using the nominal imaging geometry

to a projection such as sinusoidal or Mercator, relative to a reference spheroid. This

has the effect of removing any gross effects caused by the curvature of the planet, but

since the small scale topography is not modeled, the disparities it induces remain.

The images are also rotated so that epipolar lines are parallel to the scanlines. These

selected and processed data are then subsampled to 256 by 256 pixel for DFSS anal-

ysis. The geometry information are transformed into the aligned global coordinate

system, as described in section 2.5. The down-sizing is done only because limited

time and CPU power to process full resolution images. 1

5.4 Data Analysis

In this section, I present two typical examples of Viking image pairs. The DFSS

result are shown to demonstrate the effectiveness and robustness of z-only Depth

from Shading and Stereo algorithm.

5.4.1 Example 1

The first pair of images is of an terrain surface similar to eroded hills and river bed.

Figure 5-1 and Figure 5-2 shows shows the camera geometry and its projection in xz

and yz plane. The light sources come from almost the same direction. Fortunately, the

light source direction is very oblique and different from the camera direction results

in much stronger shading information comparing with hard crater case. Table 5.1

lists the geometric information about this pair of images.

The Camera Angles are listed in the right ascension, declination, and twist of the

camera. The Spacecraft Vector is the position of the spacecraft/camera in the refer-

ence frame of the planet. The Planet Angles are the orientation of the planet in the

1 At 256 by 256 pixel, it takes about 20 hours to finish 1200 iterations

100

CHAPTER 5. VIKING IMAGE RESULTS

Camera Angle Spacecraft Vector Planet Angle Sun Vector
Left -68.449593 -1324.127686 52.694637 154312733.273824

313.565796 1092.557129 317.313019 159262758.890330
274.407928 5395.773438 225.757187 68965427.707157

Right -63.648964 -1796.010010 52.694637 152618273.748284
339.906433 853.954346 317.313019 160370845.199162
297.853882 5504.281250 225.624329 69519512.685777

Table 5.1: Geometric Information about the first pair of Viking Images

same reference frame as the Camera Angles, also in right ascension, declination and

twist. The Sun Vector is the position of the Sun in the planet reference frame. These

information of orientation and position are converted to the geometric information in

the global reference frame and shown in Figure 5-1 and Figure 5-2. Figure 5-3 shows

the reflectance map contour and the image pair.

Figure 5-4 to Figure 5-7 shows the results of applying the DFSS algorithm to

this pair of images. z-only DFSS algorithm performs well, correctly estimated the

complicated topology. Obviously, considerable more iterations are required to obtain

a satisfactory estimate of the surface than the synthetic case. Even so, the algorithm

formed a stable estimation after about 500 iterations. Also, the cost function remains

higher than that in synthetic image case.

101

CHAPTER 5. VIKING IMAGE RESULTS 102

Camera Geometry

0.

-500.

-1000.

a-1 500.
c)

-2000.

-2500.

-3000,
1000

500 1000

-50 0I 0

y -1000 -1000 x

Figure 5-1: Mars Viking Images pair Camera Geometry. Graph shows the camera
position and direction(dotted lines), as well as the light source direction(solid lines)

�TPLPqC--·IC-L�I�

Ov
-AW .'.

I

CHAPTER 5. VIKING IMAGE RESULTS

xz-plane Camera Geometry
;UUU

-2 o00

yz-plane
e^f% ^,
OVuV

2000
r.-

a)

1000

-2 600

0
x

Camera

0
y

2000

Geometry

2000

Figure 5-2: Mars Viking Images pair Camera Geometry projected in xz and yz plane

103

2000
-:

a)
5c

1000

/. I

s1:::.
I .

.,.. .
'.

°
.

, °. .
.'' ,

sl
s2

4-- - - ·--- · r-rr- 1

I

.

.

r\ iI

A......

I
h

CHAPTER 5. VIKING IMAGE RESULTS

Reflectance Function Contours
I-
0

104

0 5
P

True images

Figure 5-3: Mars Viking images pair and gradient contour

_1:11
-v--5

VIKING IMAGE RESULTS

400 600
Iteration

800 1000 1200

Lambda Parameter History
..... ~~

400 600
Iteration

800 1000 1200

Figure 5-4: DFSS iteration history on Mars Viking Image pair. Top graph shows the
history of cost function. Bottom graph shows the history of the smoothness weighting
term A

10-1

C

U-- 10 2LL
C,)
0

n-3

Convergence History
- I I I I

I I I I I

200
Iu

C

10-1

-210

E(10

10

-3

-4

I

0 200
. ..

. _ . .

CHAPTER 5. 105

)o

I I - I I In - 5 _

CHAPTER 5. VIKING IMAGE RESULTS

Estimated surface

Estimated images

Figure 5-5: DFSS Estimated images and Surface on Mars Viking Image pair at the
end of iterations

C~~~~~~ _ _~~~~~~~ _ ~

106

VIKING IMAGE RESULTS

Estimated surface, iter. = 25

Estimated surface, iter. = 250

Estimated surface, iter. = 125

Estimated surface, iter. = 375

Figure 5-6: DFSS estimation at various iteration steps on Mars Viking Image pair

--- --l -I__ _ _ _ _1__1 1 __1__ _

CHAPTER 5. 107

CHAPTER 5. VIKING IMAGE RESULTS

Estimated surface, iter. = 600

Estimated surface, iter. = 1100

108

Estimated surface, iter. = 940

Estimated surface, iter. = 1200

Figure 5-7: DFSS estimation at various iteration steps on Mars Viking Image pair

CHAPTER 5. VIKING IMAGE RESULTS

Camera Angle Spacecraft Vector Planet Angle Sun Vector
Left -38.500999 3031.000000 52.694817 247003002.182980

-114.101997 3252.000000 317.313354 -6496592.410365
-153.830994 2154.000000 60.560833 -9607699.669818

Right -16.581617 3431.279785 52.694775 241693638.758362
221.748749 3228.368896 317.313263 37984763.457939

._____ 250.999435 1721.439697 66.486511 10952544.914326

Table 5.2: Geometric Information about the first pair of Viking Images

5.4.2 Example 2

The second pair of images is also of an terrain surface similar to eroded hills and

river bed. Figure 5-8 and Figure 5-9 shows the camera geometry and its projection

in xz and yz plane. The light sources come from almost the same direction. Similar

to example 1, there is little separation in the direction of the light sources. This

also presents a challenge to the DFSS algorithm. The table below Table 5.2 lists the

geometric information about this pair of images. In Figure 5-10, the reflectance map

contour and the image pair are shown.

The Camera Angles are listed in the right ascension, declination, and twist of

the camera. The Spacecraft Vector is the position of the spacecraft/camera in the

reference frame of the planet. The Planet angles are the orientation of the planet in the

same reference frame as the Camera Angles, also in right ascension, declination and

twist. The Sun Vector is the position of the Sun in the planet reference frame. These

information of orientation and position are converted to the geometric information in

the global reference frame and shown below.

Figure 5-11 to Figure 5-14 shows the results of applying the DFSS algorithm to this

pair of images. z-only DFSS algorithm performs reasonably well, closely estimated

the complicated topology. Obviously, considerable more iterations are required to

obtain a satisfactory estimate. Similarly to example 1, after 500 iterations, DFSS

algorithm formed a stable estimation.

109

CHAPTER 5. VIKING IMAGE RESULTS

Camera Geometry

*I

0

-500

y -1000 -1000

Figure 5-8: Mars Viking Images pair Camera Geometry.
positions and directions(dotted lines), also the light source

Graph shows the camera
direction(solid lines).

-500

-

a)
-o

-1000

-1500

-2000
1000

500 1000

0

x

110

n

CHAPTER 5. VIKING IMAGE RESULTS

xz-plane Camera
-' ff fI

1000

500

n
-2'o00

yz-plane
1%r_

Zuuu

1500

000

500

n
-2oo00

0
x

Camera

0
y

Geometry

2000

Geometry

2000

Figure 5-9: Mars Viking Images pair Camera Geometry projected in.xz and yz plane

4UUU

1500
s ,. ,sl '

, I;

a-

V0

s1 /
:s2s

Q1a,

- -

.~, . -.. -

111

.

.

CHAPTER 5. VIKING IMAGE RESULTS

Reflectance Function Contours

-5 0 5
P

True images

Figure 5-10: Mars Viking Images pair and gradient contour

112

� �I� � _ _

VIKING IMAGE RESULTS

Convergence History
I I I I I

200 400 600
Iteration

800 1000 1200

Lambda Parameter History

200 400 600
Iteration

800 1000 1200

Figure 5-11: DFSS iteration history on Mars Viking Image pair. Top graph shows the
history of cost function. Bottom graph shows the history of smoothness weighting
term A

10' 1

C-

-2

[1 0

C-

1 -3 I I I I I

0

10-1

102

10 -3

10-4

CZ
.0
E
-j

4 n-5
IU

I I I I

_-.--�11_11� ------- - -----�--I

CHAPTER 5. 113

I

)

CHAPTER 5. VIKING IMAGE RESULTS

Estimated surface

Estimated images

Figure 5-12: DFSS Estimated Surface on Mars Viking Image pair at the end of
iterations

·---

114

VIKING IMAGE RESULTS

Estimated surface, iter. = 25

Estimated surface, iter. = 250

Estimated surface, iter. = 125

Estimated surface, iter. = 375

Figure 5-13: DFSS estimation at various iteration steps on Mars Viking Image pair

CHAPTER 5. 115

CHAPTER 5. VIKING IMAGE RESULTS

Estimated surface, iter. = 600

Estimated surface, iter. = 1100

Estimated surface, iter. = 940

Estimated surface, iter. = 1200

Figure 5-14: DFSS estimation at various iteration steps on Mars Viking Image pair

I�-·i�--�a(�·c-----�---- -----·-- ----------

116

CHAPTER 5. VIKING IMAGE RESULTS

5.5 Summary of the Results

The results of z-only DFSS algorithms running on two example Mars Viking im-

age pairs are presented in the previous sections. They've both demonstrated the

adequate performance and robustness of this algorithm. Especially, the algorithm's

performance under which the two light sources come in from the same or almost the

same direction.

From the test results on the real Viking image pairs, clearly z-only DFSS can form

close estimation on surface topology in a reasonable number of iterations. There is a

general increase of the iterations needed comparing with synthetic image case. But

after 500 iterations, the estimate is already quite stable and quite close to the true

surface.

The result also shows that z-only algorithm is robust, able to estimate the topo-

logical surface in the presence of several types of errors.

One thing is not addressed clearly by the earlier two examples, that is one of

the advantages of Shape from Shading is to be able to detect details of the shape.

Comparing the estimated images and the real images, one can see most of the features

are represented. In the mesh plot, however, it is not obvious. This is largely due to

the coarseness of the mesh plot. To demonstrate that the detailes are there, we can

zoom in on one particular feature. In this case, I chose the crater like feature in the

second example.

Clearly the crater feature is vivid in the enlarged portion of the real image. Both

the estimated image and surface present such a feature, however, a cluster of much

smaller craters which are visible in real image is smeared and hardly recognizable in

the estimated image and surface.

117

CHAPTER 5. VIKING IMAGE RESULTS

Full images

Zoomed in images around crater feature

Figure 5-15: Detailed look of the crater like feature in example two, real images and
zoomed in images around the crater.

1� �-Zlll�·--·-*---··-·1C---- -·-� -------

118

VIKING IMAGE RESULTS

Estimated images around crater feature

Estimated surface around crater feature

Figure 5-16: Detailed look of the crater like feature in example two, estimated images
and surface around the crater.

CHAPTER 5. 119

Chapter 6

Error Analysis

It is of crucial importance to understand the various errors and assumptions associated

with the images and the methods used to analysis them in earlier chapter.

6.1 Theoretical Error

It is important to review the assumptions behind those simplified equations. The

perspective projection equations assume perfect lenses and perfect knowledge of the

camera principal points and optical axes. The surface radiance equation assumes we

have perfect knowledge of the surface reflectance properties, light source directions,

and all surface points as visible from both cameras. The simplified form of the im-

age irradiance equation assumes we either have a perfect sensor or we can perfectly

calibrate the sensor to remove any abnormalities from the sensor & lens combina-

tion. The stereo equations assume we know the relative position and orientation of

the two camera perfectly. the only assumption that are truly artificial are the as-

sumptions of perfect knowledge of the reflectance maps and the the assumption of no

self-illumination. With more careful measurements and more expensive equipment,

it is possible to approach perfect knowledge of other assumptions. The assumption

that all surface points be visible merely restricts the roughness of the surface that

120

�_� I

CHAPTER 6. ERROR ANALYSIS

this research is applicable to.

It is as well as important to go over the simplified equations and point out the

their effects. There are several simplifications that have been made to the equation.

1. A special global coordinate system that is halfway between the two camera

position.

2. All surface points are assumed to be visible from the two cameras.

3. The reflectance properties of the surface are assumed to be constant and Lam-

bertian allowing the viewing direction dependence to be dropped from the re-

flectance equations. In addition, it is assumed that there is no interfiection

between different parts of the surface.

4. The surface is assumed to have constant albedo allowing the position dependent

term to be dropped.

5. The cameras optical axis are assumed to be aligned with each other allowing

the rotational transformation to be set to identity.

With all the above simplifications, the set of equations are:

E(l)(rl)= R(1)(f)

E(2)(r2)= R(2)(fi) (6.1)

where

f(+ b/2)
(= + b/2) l'

r2 (_-b/2) (6.2)
(- b/2) - ,'

�__��_�_�___1_1�1 �1����

121

CHAPTER 6. ERROR ANALYSIS 122

If we define z = ZG and r = f/z, then the constraint function can be written

as

E(1)(r + -b) = R(')(ii)

fb2z ()
E(2)(r_ fb) = R(2)() (6.3)

Use explicitly r = (x, y, f) and the normal vector fi is parameterized using gradient

component p and q,

i = (-p,-q, 1) (6.4)
Vp2 q2 + 1

where

fZz
xzx + z

fzy
q= fZ (6.5)

yzy + z

The photo-topography equations then become

E()(x + f, y) = R(')(p, q)

E(2)(x- ,y) = R(2)(p,q) (6.6)

In order to relate positions in the image direction vectors in 3-D space, the origin

of the camera coordinate system must be known. Finding this origin is the classical

interior orientation problem. In the special coordinate system we use here, see Fig-

ure 2-8, the position of each camera coordinate system origin can be specified by a

vector v = (vs, vy, fT). these vector specify the offset of the camera coordinate origin

--

CHAPTER 6. ERROR ANALYSIS

for each image. Suppose v is the offset to an object point in the global coordinate

system, then the offset to this same point in the camera images are

= + 2zo (6.7)2zo

V2 =V 2z0 (6.8)

the values of vl and v 2 can be quite large in the aligned coordinate system indi-

cating that the images must be shifted far away from the camera coordinate system

origin. While this is not possible physically, it is a consequence of re-projecting real

images into the aligned coordinate system.

In removing viewing direction dependency, we use orthographic projection for the

reflectance function while retaining perspective projection for everything else. This

introduced an error into the calculations since orthographic and perspective projection

do not produce the same viewing direction in general. This error is so small for planet

photo-topography, since the cameras are so far away from the surface. The large

viewing distance results a very small relative change in depth. This is especially true

here due to the small viewing angle.

Also, this algorithm only deals with uniformly colored surface, in another word,

no varying albedo. This assumption is quite valid in the case we are discussing.

The above simplified equations helped formulate the algorithm and produce rea-

sonable result, it's also hidden some important information, such as the normal vector

is parameterized using gradient components p and q, instead of vector. Also it im-

posed restrictions such as all the surface point are visible from two cameras.

123

CHAPTER 6. ERROR ANALYSIS

6.2 Image Errors

As discussed in earlier chapter, the images taken during Viking Project consisted of

many error, noise and needs calibration and corrections.

Many Viking Orbiter images are missing data and contain some amount of noise.

a common pattern of missing data is a series of vertical bars with zero value pixel

spaced at an interval of 7 samples. In addition, data for a few horizontal image lines

may be missing and such lines are filled with zero values.

The noise found in these images include single-pixel random noise and several

source of coherent noise. The random noise is usually due to telemetry errors. The

coherent noise arises from shuttering of the adjacent camera, filter wheel stepping, and

scan platform movements. The coherent noise typically exists in the top or bottom 100

lines of an image and appearing as a "herring bone" pattern. Box filtering techniques

that fill in zero values or average the bright and dark spikes of random noise are often

successful and used.

As described in chapter 5, the Viking images are radiometrically calibrated by con-

verting the digital signal received from the camera to a quantity that is proportional

to the radiance reaching the sensor.

6.3 Lighting Condition, Camera Position and the

effects on DFSS results

More important here is the effects of the geometry information under which the images

are taken. To illustrate the effects, we regenerate the synthetic easy crater case, under

similar lighting, camera geometry and baseline condition of to that of the real images,

in particular example 1 in Chapter 5.

Similar to the set used in chapter 4, these images are based on a crater on a flat

surface. It is very simple, and thus serves a good test bed. As shown in Figure 6-1,

~~~~ I ~ ~ ~ ~ ~

124



CHAPTER 6. ERROR ANALYSIS 125

comparing this pair with the pair in chapter 4, contour plots of the reflectance map

as well as true images clearly show the effect of the change of lighting. Examing the

estimated images and surface, apparently z-only DFSS algorithm estimated this test

crater surface. But notice the flat background is distorted, which means under this

kind of lighting condition, a small anomaly can affect the estimated surface and the

programs' convergence. The DFSS results is shown in Figure 6-4.



ERROR ANALYSIS

Camera Geometry

500

0

\ /~~~~~~

-500 -500 x

Figure 6-1: Test Crater Synthetic Images Camera Geometry. Graph shows the camera
position and direction(dotted lines) and light source direction(solid lines)

0%

-200.

-400%

-600%

Qa

V

-800

-1000.
500

y

i�l� �I�II� _ ·_ __�

126CHAPTER 6.



ERROR ANALYSIS

xz-plane Camera Geometry

0
x

500

yz-plane Camera Geometry

- 00 0
Y

500

Figure 6-2: Test Crater Synthetic Images Camera Geometry projected in xz and yz
plane

1000

800
.: ° S
··

. . s2

o

.

.
.

4-

,.0)CD

600

400

200

1000

800
sl ~i
s2

"0c-

600

400

200

I( ' 
w * Ps

·i 

� �

CHAPTER 6. 127

f% _E 



CHAPTER 6. ERROR ANALYSIS

Reflectance Function Contours
/,-

0 5
p

True images

Figure 6-3: Test Crater Synthetic Images

128

FI_ I:

Cr



CHAPTER 6. ERROR ANALYSIS

Convergence History
~ . ...

200 400 600 800
Iteration

Lambda Parameter History

1000 1200 1400

Iteration

Figure 6-4: z-only DFSS iteration history on Test Crater Images. Graph shows
the z-only DFSS algorithm performance on the test crater image pair. The upper
graph shows the cost function(solid line) and RMS error(dashed line) of the estimated
surface. The lower graph shows history of the smoothness weighting term A

30

101

100

10.5 10-I

U -2
(" 10
0
0,-)

10

n- 4

fl C)

lU

10-2

0

-10

10

-3

-4

10-5

129

I

- - - - - - - -

I

- - - - - - - - - - - - - - - - - - - - -
I

I

., -- 1



CHAPTER 6. ERROR ANALYSIS

Estimated surface

Estimated images

Figure 6-5: z-only DFSS Estimated Surface and Error on Test Crater Images at the
end of iterations

_ ��CI_� __

130



ERROR ANALYSIS

Estimated surface, iter. = 25

Estimated surface, iter. = 250

Estimated surface, iter. = 125

Estimated surface, iter. = 375

Figure 6-6: z-only DFSS estimation at various iteration steps on Test Crater Images

CHAPTER 6. 131



ERROR ANALYSIS

Estimated surface, iter. = 600

Estimated surface, iter. = 1100

Estimated surface, iter. = 940

Estimated surface, iter. = 1200

Figure 6-7: z-only DFSS estimation at various iteration steps on Test Crater Images

=CaZ~~ ~zccc;Iu~- 

-----------� -

CHAP~ER 6. 132

'aid
�Qs�Ti�Ba,

�"$3�� �j"8�i�s��
NYujp.,-



CHAPTER 6. ERROR ANALYSIS

6.4 Comparison between DFSS results and that

of Shape from Shading

The earlier two examples presented in chapter 5 prompt us two questions. The first

one is that the two images are taken under similar lighting and camera position, the

two images look alike except slight change in shading, therefore what kind result the

Shape from Shading algorithm will provide? The second is that from photometric

stereo, we know that the more different the lighting condition is, the better the

result is. In this way, we can regard Shape from Shading as photometric stereo under

exactly the same lighting condition. DFSS algorithm on the other hand has integrated

photometric stereo into itself. So can DFSS algorithm produce better result?

These two questions are actually the same, they can be rephrased as "is DFSS

algorithm working better than Shape from Shading in dealing the real images we

used here, and why?". The answer is yes. The reason is that DFSS fused photo-

metric stereo, binocular stereo and shape from shading. It can take advantage of the

difference in shading and gradient in the image pairs. This lends another handle to

constrain the estimated surface, particularly at the estimated of overall trend of the

surface, where Shape from Shading is weak. Even though the differences are small in

the two examples in this thesis. The benefit is obvious.

To show and prove the advantage of DFSS, we can go back to previous section,

and run one image through Shape from Shading. The reason to do so is that those

images pairs are synthetically generated according to the same lighting and geometry

information of that of example 1 in chapter 5. This is better and easier than the real

images because they are simple structure and we know the ground truth.

Clearly, Shape from shading closely estimated the surface. Comparing the esti-

mated surface with that from DFSS, DFSS predicted a much flat background surface

and the crater feature is better shown.

133



ERROR ANALYSIS

Real Image Estimated Image

Estimated Surface

Figure 6-8: Test Crater Synthetic Image (left camera) and the estimated surface at
the end of iteration.

41*···slslLClllll�llIl�·ll·lll(·L---·lll ---- I ·-· -

CHAPTER 6. 134



�-�-----ra�-·r^-·lll--� ---̂-�__r�-i�·l---·--�--�-----II-- _�·��_� _ ���I�1X



Chapter 7

Discussion

7.1 Merits

z - only algorithms demonstrate a much better performance using the two photo-

clinometry images that a simple shape from shading algorithm which uses only one

image. This Performance increase validates the fusion approach to obtaining better

performance vision algorithms.

The z-only algorithm was also shown to be robust, it is able to accurately estimate

the synthetic surface in the presence of several types of errors. The performance of

the algorithm based on images that contains noise, geometry error, or reflectance

errors was demonstrated in real Mars images. In which case, the algorithm is able to

form a close estimate.

The z - only DFSS algorithm shows very good performance on real Mars Viking

image pairs. Especially it shows its performance under real measurement errors,

calibrations error, distortion, and noise. It also shows its robustness under relatively

weak shading information.

The C implementation of z - only DFSS algorithm makes it more portable and

efficient. Better Than three times the performance is obtained than its version in

matlab. Large image(256x256) can now be processed on a SPARCstation.

135

__I�



CHAPTER 7. DISCUSSION

7.2 limitations

There are many limitations in the Depth from Shape from Shading and Stereo algo-

rithm.

Though z -only algorithm is the most robust one among the proposed zpq, Dual-z

and Disparity map. It does not handle varying albedo, nor does it handle very weak

shading situation very well. Along these, there are some technical deficiencies, such

as reflectance map depends on scalar p and q, rather than vector P and Q.

DFSS has strong bias towards Shape-from-Shading algorithm. Since it is vari-

ational method based, easy to integrate when shading information is weak, DFSS

algorithm can get stuck in a local minimum, as seen in hard crater case. The stereo

information presented in both the synthetic and real images are strong and can be

used to pull the algorithm out of the local minimum. However since binocular stereo

is feature based, makes it difficult to incorporate into the cost function.

In dealing with real images, it is found that DFSS algorithm performs not very

satisfactory when lighting are coming from similar direction. Though this is not DFSS

was developed for, it must also be able to cope with real situations.

The DFSS algorithm is based on simplified geometry, It works the best when the

distance from the object to the two cameras are roughly equal. This is not always

true or easily obtainable in the real world. This also contributes to the difference of

the performance between the real and the synthetic images.

There is also an implementation issue. For 256 by 256 pixel image, the program

runs roughly 20 hours to finish 1200 iteration with maximum number of hierarchical

functions. To process full resolution images, 1204 by 1056 pixel, is not practical.

Since the thesis' main goal is to test z - only DFSS algorithm on real Viking

Images images. I am not going to discuss about many extensions possible to this

algorithm. But any extension which may result significant memory and CPU time

requirement increase, such as the write reflectance maps as a function of vector P

and Q. Instead focus should be on improving optimization process.

136



Appendix A

DFSS Functions

In this Appendix, I will briefly explain all the DFSS core processing functions and

their relationship. From these functions, one can build a program to process and

analysis any images fit DFSS feature, as disscused in earlier chapters, by providing

proper I/O functions.

The source code of the following functions and a makefile are made available on

ftp.ai.mit.edu(128.52.32.11), in /pub/yan, along with a copy of this thesis.

The program loops over the conjugate gradient optimization function. In the

conjugate gradient optimization calculation. It first calculates the cost based on

current estimates of the surface. The gradient function returns the gradient associated

with it. Base on these, a linear search is performed to find a new minimum, and the

cost and gradient are then recalculated to use this new value. This continues until the

predetermined number of iteration run out. During this process the hierarchical basis

conversion functions are used to speed up calculation. Interpolation, filtering and

convolution functions are used to assist the cost and gradient calculation. Reflection

map based on current estimates are generated and compared with the actual reflection

map to guide the convergence.

137



DFSS FUNCTIONS

dfss.h header file of DFSS functions
dfss.c main DFSS analysis function
conjgrad.c conjugate gradient calculation
cost.c cost calculation
grad.c gradient calculation
hbasis.c hierarchical basis conversion
lsearch.c linear search for conjugate gradient optimization
conv2.c 2-D convolution calculation
cfilter2d.c 2-D computational molecule filtering with bicubic interpolation
domain2d.c 2-D plaid domain generation
interpx.c linear interpolation in one direction.
rmap.c reflection map calculation based on current estimates.

Table A.1: DFSS function list

, ... ..

APPENDIX A. 138



Appendix B

DFSS I/O Functions

In this Appendix, I present several example I/O and driver functions needed to build

a DFSS program to analyze and process Viking Space project images. Since I used

Matlab to display and plot the images and the estimated surface, loadmat.c and

savemat.c are used to read and write Matlab files.

The source code and a makefile are made available on ftp.ai.mit.edu(128.52.32.11),

in /pub/yan, along with a copy of this thesis.

* FILE dfss pds.c *

* Depth From Shape from Shading and Stereo Image Analysis Program *

*for PC, Vax, Unix and Macintosh systems. $

* it reads synthetic images in matlab file format and output

* estimated topography in matlab file format. *

************************************ * ***** ************** *****

10

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#include <strings.h>

139

_ - Ia a 



APPENDIX B. DFSS I/O FUNCTIONS

#include <matrix.h>

#include "df ss. h"

void main(int argc, char **argv)

char name[20];

int mz, nz, type, mrows, ncols, imagf;

real *xi, *xr, *x;

matrix ztemp;

/ * set up global variables /

levels = 7;

cntll = 1.0e-8;

cntl2 = 1.0e-16;

cntl3 = 1.Oe-6;

cntl4 = 0;

cntl5 = 0;

cntl6 = 0;

cntl7 = 0;

cntl8 = 0;

cntl9 = 0;

cntll0 = 0;

cntlll = 1.0e-8;

cntll2 = 0.1;

cntll3 = 0.0;

cntll4 = 0.0;

/ * level of hbasis */

/ * Termination tolerance for X. */

/* Termination tolerance on F. */

/* Termination criterion on constraint violation. */

/* Algorithm: Line Search Algorithm. */

/* Function value. (Lambda in goal attainment) */

/ * Number of Function and Constraint Evaluations. */

/ * Number of Function Gradient Evaluations. */

/ * Number of Constraint Evaluations */

/ * Number of equality constraints. /

/ * Maximum number of iterations. default, 100 * no of var. */

/ * Min. change in variables for finite diff. grad. */

/* Max. change in variables for finite diff. grad. */

/ * Step length. (Default 1 or less) /

/* get host information and input and output files */

strcpy(innamel, ");

strcpy(outname, " ");

140

20

30

40

�_1___�1�_�1� 1_1__·__1_ -11111---��



APPENDIX B. DFSS I/O FUNCTIONS 141

if (argc == 1)

usage(); 50

else if (argc == 2 && (strncmp(argv[1],"-help",5) == O j

strncmp(argv[1],"-h",2) == 0 II

strncmp(argv[1],"?",1) == 0))

usage();

else {

strcpy(innamel, argv[1]);

if (argc == 3) strcpy(outname, argv[2]);

if(argc > 3) usage();

60

host = check_host();

getfiles(host);

/* readin the image file */

printf("\nReading in the reflection maps ...... \n");

while (loadmat(infpl, &type, name, &mrows, &ncols, &imagf, &xr, &xi) == 0) {

if (strncmp(name, "El", 2) == 0) {

el = newmatrix(mrows, ncols); 70

array to matrix(el, mrows, ncols, xr);

if (strncmp(name, "E2", 2) == 0) {

e2 = new matrix(mrows, ncols);

array_to matrix(e2, mrows, ncols, xr);

if (strncmp(name, "z", 1) == 0) {

mz = mrows; nz = ncols;

ztemp = new_matrix(mrows, ncols);

array_to matrix(ztemp, mrows, ncols, xr); 80

if (strncmp(name, "params", 6) == 0) {

I



APPENDIX B. DFSS I/O FUNCTIONS 142

f = *xr; b = *(xr + 1); zO = *(xr + 2);

psl = *(xr + 3); qsl *(xr + 4); ps2 = *(xr + 5); qs2 = *(xr + 6);

vxl = *(xr + 7); vyl = *(xr + 8); vx2 = *(xr + 9); vy2 = *(xr + 10);

delta = *(xr + 11);

ztrue = new matrix(mz - 2, nz - 2); / * strip off the boarder "/ 90

matrix _copy_submatrix(ztemp, ztrue, 1, mz - 1, 1, nz - 1);

free matrix(ztemp);

x = calloc((mz - 2) *(nz - 2), sizeof(double));

matrix_to_array(ztrue, mz - 2, nz - 2, x);

savemat(outfp, host, "ztrue", mz - 2, nz - 2, 0, x, xi);

free(x);

free matrix(ztrue);

100

z = new matrix(mz - 2, nz - 2); /* allocate memory for z /

matrixset(z, z0);

/ start DFSS analysis */

dfss();

/* output the final depth matrix */

x = calloc(NOROWS(el) * NOCOLS(el), sizeof(double)); 110

matrix_to_array(el, NOROWS(el) , NOCOLS(el), x);

savemat(outfp, host, "el", NOROWS(el) , NOCOLS(el), 0, x, xi);

free(x);

x = calloc(NOROWS(e2) * NOCOLS(e2), sizeof(double));

matrix to array(e2, NOROWS(e2) , NOCOLS(e2), x);



APPENDIX B. DFSS I/O FUNCTIONS 143

savemat(outfp, host, "e2", NOROWS(e2) , NOCOLS(e2), 0, x, xi);

free(x);

x = calloc((mz - 2)* (nz - 2), sizeof(double)); 120

matrix_to_array(z, mz - 2 , nz - 2, x);

savemat(outfp, host, "z", mz - 2 , nz - 2, 0, x, xi);

free(x);

/* clear up and close $/

free matrix(z);

free matrix(ztrue);

free_matrix(el); 130

free_matrix(e2);

close(infpl);

fclose(outfp);

}

/* subroutine getfiles - get input, output filenames and open them $/

void getfiles(int host)

140

if (innamel[0] == ' ') {

printf("\nEnter name of the file to be DFSS analyzed: ");

gets (innamel);

}
if (host == 0 host == 3000) {

if ((infpl = fopen(innamel, "rb")) == NULL) {

printf("\ncan't open input file: %s\n", innamel);

exit(l);

}
} 150

_ w- he1 ~



APPENDIX B. DFSS I/O FUNCTIONS 144

else if (host == 2000 host == 1000) 

if ((infpl = fopen(innamel, "r")) == NULL) {

printf("\ncan't open input file: %s\n",innamel);

exit(l);

}

/ * get output file */

if (outname[0] == ' ') { 160

printf("\nEnter name of output file: ");

gets (outname);

}
if (host == 0 host == 2000) {

if ((outfp = fopen(outname,"wb")) == NULL) {

printf("\ncan't open output file: %s\n",outname);

exit(l);

}
}
else if (host == 1000) { 170

if ((outfp = fopen(outname,"w")) == NULL) {

printf("\ncan't open output file: %s\n",outname);

exit(l);

}

void usage(void)

printf("z-only Depth From Shading and Stereo Program\n\n"); 180

printf("INPUT:\tsynthetic image in matlab file format.\n");

printf("OUTPUT:\tresults in matlab file format\n");

printf("\nCommand line format:\n\n");

printf("dfssmat [infile] outfile] \n");

_11� _1_1_1�



APPENDIX B. DFSS I/O FUNCTIONS

printf("\tinfile\t - name of synthetic image file.\n");

printf(\toutfile\t - name of DFSS output file.\n");

}

* FILE gen_opt.c *

* make lambda and step table, used in optimization function *

*********************************************** *********$*********

#include <stdio.h>

#include <math.h>

#include <matrix.h>

#include "dfss .h"

matrix gen opt(real *lambda, int *step, int *nsteps, int tot)

int i,j;

int ropt = 0;

matrix opt;

matrix steps, a, b, c;

opt = newmatrix(tot, 2);

for (i = O; i < 5; i++) {

steps = new_matrix(1, nsteps[i]);

for (j = O; j < nsteps[i]; j++) {

elem_set(steps, 0, j, (real) j+1);

}
a = new_matrix(nsteps[i], 1);

matrix set(a, log(lambda[i]));

matrix_scalar_sub(steps, 1.0, steps);

b = new_matrix(nsteps[i], 1);

matrix_transpose(steps, b);

145

10

/* temp. counter */

/* count number of elements in opts */

/* lambda and step matrix */

/* temp matrixs */

/* allocate memory for opt matrix */

20

11_ I_···P···ll�·-�···IIi�----·�-·�---·-� I - -



APPENDIX B. DFSS I/O FUNCTIONS

matrix_scalardiv(b, (real) nsteps[i], b);

c = newmatrix(nsteps[i], 1);

matrix_set(c, log(lambda[i+ 1])-log(lambda[i]));

matrix_mul(b, c, c);

matrix_add(a, c, c);

/ * generate opt matrix */

for (j = O; j < nsteps[i];

elem_set(opt, ropt

elemset(opt, ropt

r_opt += nsteps[i];

Ji++) 
+ j, 0, exp(elemref(c, j, 0)));

+ j, 1, (real) step[i]);

}

/ * clean up the temp matrix, release memory */

free_matrix(steps);

free matrix(a);

free matrix(b);

freematrix(c);

return(opt);

I

* FILE gethost.c c

* *

* Check host computer type,

*for PC, Vax, Unix and Macintosh systems.

*

*

*J

* it finds out the machine type and byte swap

***** * * * * ** * * * ** * * ** * * * * * * **** * ** *** **

146

30

40

50

_____I� _1�1_



APPENDIX B. DFSS I/O FUNCTIONS

#include <stdio.h>

#include <strings.h>

#include <matrix.h>

#include "dfss. h"

int check host(

{
char h

int s

union {

char ichar[2];

short ilen;

} onion;

lostname[80];

wap, host, bits, var;

20

if (sizeof(var) == 4) bits = 32;

else bits = 16;

onion.ichar[O] = 1;

onion.ichar[1] = 0;

if (onion.ilen == 1) swap = TRUE;

else swap = FALSE;

if (bits == 16 && swap == TRUE) 

host = 0; /* IBM PC host */

strcpy(hostname,

"Host 1 - 16 bit integers

}
with swapping, no var len support.");

if (bits == 16 && swap == FALSE) {

host = 0; /* Non byte swapped 16 bit host */

strcpy(hostname,

"Host 2 - 16 bit integers without swapping, no var len support.");

}

147

10

30

40

1~~~~~~~~~ 1~~~~~~~~ _ _ _ I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



APPENDIX B. DFSS I/O FUNCTIONS 148

if (bits == 32 && swap == TRUE) {

host = 2000; /* VAX host with var length support */

strcpy(hostname,

"Host 3 - 32 bit integers with swapping.");

50

if (bits == 32 && swap == FALSE) {

host = 1000; / * OTHER 32-bit host, such as Sun "/

strcpy(hostname,

"Host 5 - 32 bit integers without swapping, no var len support.");

return(host);

* FILE loadmat. +

* C language routine to load a matrix from a MAT-file. *

#include <stdio.h>

typedef struct {

long type; /* type */ to

long mrows; / * row dimension */

long ncols; / * column dimension */

long imagf; / * flag indicating imag part */

long namlen; /* name length (including NULL) */

) Fmatrix;

int loadmat(FILE *fp, int *type, char *pname, int *mrows, int *ncols,

_�__1__1__� _� ____1_________11____1___1_1_____· �__ __�_____ 1111--�1_��----�i1



APPENDIX B. DFSS I/O FUNCTIONS 149

int *imagf, double **preal, double **pimag)

char *malloc(); 20

Fmatrix x;

int mn, namlen;

/ * Get Fmatrix structure from file */

if (fread((char *)&x, sizeof(Fmatrix), 1, fp) != 1) {

return(1);

*type = x.type;

*mrows = x.mrows; 30

*ncols = x.ncols;

*imagf = x.imagf;

namlen = x.namlen;

mn = x.mrows * x.ncols;

/ * Get matrix name from file */

if (fread(pname, sizeof(char), namlen, fp) != namlen) {

return(1);

} 40

/ * Get Real part of matrix from file */

if (!(*preal = (double *)malloc(mn*sizeof(double)))) {

printf("\nError: Variable too big to load\n");

return(1);

if (fread(*preal, sizeof(double), mn, fp) != mn) {

free(*preal);

return(1); 50

}

--�1 e41



APPENDIX B. DFSS I/O FUNCTIONS 150

/ * Get Imag part of matrix from file, if it exists */

if (x.imagf) {

if (!(*pimag = (double *)malloc(mn*sizeof(double)))) {

printf("\nError: Variable too big to load\n");

free(*preal);

return(1);

} 60

if (fread(*pimag, sizeof(double), mn, fp) != mn) {

free(*pimag);

free(*preal);

return(1);

}

return(O);

/ **********************************************************************

* FILE savemat.c *

* C language routine to save a matrix in a MAT-file. *

#include <stdio.h>

typedef struct {

long type; /* type */

long mrows; /* row dimension */ o

long ncols; /* column dimension */

long imagf; / * flag indicating imag part */

long namlen; /* name length (including NULL) */

) Fmatrix;

r�



APPENDIX B. DFSS I/O FUNCTIONS 151

void savemat(FILE *fp, int type, char *pname, int mrows, int ncols,

int imagf, double *preal, double *pimag)

Fmatrix x;

int mn; 20

x.type = type;

x.mrows = mrows;

x.ncols = ncols;

x.imagf = imagf;

x.namlen = strlen(pname) + 1;

mn = x.mrows * x.ncols;

fwrite(&x, sizeof(Fmatrix), 1, fp);

fwrite(pname, sizeof(char), (int)x.namlen, fp); 30

fwrite(preal, sizeof(double), mn, fp);

if (imagf) {

fwrite(pimag, sizeof(double), mn, fp);

}

II��_I I�C�I� �



___�__��______1__11_1�___1_____1__1_____ -·



Appendix C

The Matrix Library

C.1 Vectors and Matrices

In the following section, I provide some documentation on the functions available in

the matrix library for doing vector and matrix manipulation. The documentation

covers only the basic functions.

The entire library is written in the C programming language and has been running

on Sparc workstations in the AI LAB at MIT, and PCs outside.

In what follows, the library functions deal exclusively with 2-dimensional matrices

and 1-dimensional vectors and do NOT deal with multi-dimensional matrices.

Internally, matrices are represented as two dimensional matrices. A vector of

dimension n is represented as a column vector or an matrix whose shape is n x 1.

The entire library has been written using a typedef which defines the real data

type to be the C double datatype. By redefining this datatype in matrix.h and

recompiling it should be relatively easy to convert the library to single precision if

needed. To use the library the file matrix .h must be included in your C source files.

The library defines (typedefs) many data types the most used of which is the matrix

data type.

The source code and a makefile are made available on ftp.ai.mit.edu(128.52.32.11),

152

�I� � 7_ _ �



APPENDIX C. THE MATRIX LIBRARY

in /pub/yan, along with a copy of this thesis.

C.2 Creating and Freeing Matrices

The following function creates and returns an matrix all of whose elements are ini-

tialized to zero.

new_matrix rows, cols

int rows, cols;

This is the routine used internally by all the others.

matrix with the specified number of rows and columns.

Function

This creates and returns an

free-matrix a Function

matrix a;

This routine performs the cleaning up, once you no longer need an matrix. It basically

frees up the storage associated with the specified matrix a. Future references to a

freed matrix will result in erroneous behaviour.

C.3 Accessing Elements within an Matrix

There are many functions to access elements within an matrix, the following two of

which are very useful.

elemset

matrix a;

a, i, j, val Function

int , ;

real val;

It sets element referred to by a[i, j] to the real val.

153



APPENDIX C. THE MATRIX LIBRARY

elem-ref a, i, j Function

matrix a;

int i, j;

This returns the element referred to by a[i,j].

These two functions are implemented as C functions and hence may be slow

for some applications. If speed is essential, users can use macros felem_set and

felemref with identical arguments as those of elem_set and elemref.

C.4 Common Operations on Matrices

matrix-add a, b, c Function

matrix a, b, c;

This adds two matrices together, if they are of the same shape. If specified result

matrix c is NULL then the results are stored in matrix b.

matrix-sub a, b, c Function

matrix a, b, c;

Subtracts matrix b from a, if they are of the same shape. If specified result matrix c

is NULL then the results are stored in matrix b.

matrixmul a, b, c Function

matrix a, b, c;

Multiples matrix b from a, if they are of the same shape. If specified result matrix c is

NULL then the results are stored in matrix b. This does NOT do a matrix multiply.

It does something like c[i] = a[i] * b[i].

matrix-scalar_add a, scalarvalue, b Function

matrix a, b;

real scalarvalue;

~- --- ·-13 _1 

154



APPENDIX C. THE MATRIX LIBRARY

This adds a scalar value to every element of the specified matrix a. If specified result

matrix b is NULL, then the result is stored in matrix a;

matrix-scalar_sub a, scalarvalue, b Function

matrix a, b;

real scalarvalue;

This subtracts a scalar value from every element of the specified matrix a. If specified

result matrix b is NULL, then the result is stored in matrix a;

matrix-scalar_mul a, scalarvalue, b Function

matrix a, b;

real scalarvalue;

This multiplies every element of the specified matrix a by the specified scalar value.

If specified result matrix b is NULL, then the result is stored in matrix a;

matrix-scalardiv a, scalarvalue, b Function

matrix a, b;

real scalarvalue;

This divides every element of the specified matrix a by the specified scalar value. If

specified result matrix b is NULL, then the result is stored in matrix a;

matrixscalar_shift_add a, scalar, b Function

matrix a, b;

real scalarvalue;

This routine is like matrix-scalaradd only it shifts the matrix b by the specified

amount instead of clobbering it with the result. In short doing a

��_�1_ �1_111_11______·�___i

155



APPENDIX C. THE MATRIX LIBRARY

matrix_scalar_shift_add(a, 3.0, b);

is equivalent to writing (in pseudo-code)

for allelementsof b

b[i] = b[i] + ai] + 3.0;

Both matrices should be of the same shape.

matrix-scalar_shift_sub a, scalar, b Function

matrix a, b;

real scalarvalue;

This shifts the elements of matrix a, down instead of up as the add routine does.

matrix-scalar_shiftmul a, scalar, b

matrix a, b;

real scalarvalue;

This is equivalent to the following:

Function

for allelementsof b

b[i] = b[i] + ai] * scalar;

matrixscalar_shift_div a, scalar, b

matrix a, b;

real scalarvalue;

This is equivalent to the following:

for allelementsof b

b[i] = b[i] + ai / scalar;

matrix_eqinternal x, y, tol

matrix x, y;

Function

Function

__ ·�L_ _�

156



APPENDIX C. THE MATRIX LIBRARY

real tol;

This function checks if two matrices are equal on an element by element basis. The

third argument specifies a tolerance value that is to be used in the comparison. It

returns 1 if the two matrices are equal within the specified tolerance and 0 if not.

matrixeq x, y Function

matrix x, y;

This is really equal to a function call to the previous function with a tolerance value

of 0.00001.

matrixnorm_one a Function

matrix a;

Computes the maximum column sum of the specified matrix (also known as the 1-

norm.

matrixnorm-infinity a Function

matrix a;

Computes the maximum row sum of the specified matrix. (also known as the inf-

norm.

matrixnormfrobenius a Function

matrix a;

Computes and returns the frobenius norm of the given matrix.

matrixminmax a, minval, maxval Function

matrix a;

real *minval;

real *maxval;

This function computes and returns the maximum value and minimum value stored

in the matrix in the result pointers passed in as the second and third arguments.

� 1___�1�1��

157



APPENDIX C. THE MATRIX LIBRARY

matrixmax a, row, col Function

register matrix a;

int *row, *col;

This function returns the maximum value in the matrix and sets the passed in row

and col arguments to be the row and column index of the element that corresponds

to this maximum value.

matrix_average a Function

register matrix a;

This function returns the average value of all the elements in an matrix.

matrix-multiply a, b, c Function

matrix a, b, c;

This is the normal matrix multiply routine. The result matrix c must be specified,

and must be of the right dimensions.

matrix_multiplynew a, b Function

matrix a, b;

Returns a new matrix which is the result of matrix a post multiplied by b. It is upto

the programmer to free the storage allocated to this matrix.

matrix_multiplydestructive a, b Function

matrix a, b;

This routine destructively modifies the matrix b to contain a post-multiplied by b.

matrixinvert a, b Function

matrix a, b; This is the familiar matrix inversion routine. Handles only square ma-

trices now. The inverse of a is stored in b.

matrixmultiple-solve a, b, c

"~- I B~l·1·---L

158

Function



APPENDIX C. THE MATRIX LIBRARY

matrix a, b, c;

This routine uses gaussian elimination with partial pivoting to solve the system of

equations represented by Ax = B. The matrix A is the first argument a. The matrix

B is passed in as the second argument. It can have many columns. The solution

matrix is returned in c or b destructively if c is null.

matrixidentify a Function

matrix a;

Turns the specified matrix a into the identity matrix.

matrix-set a, value Function

matrix a;

real value;

Sets all elements of the matrix to be the specified value value. This function is useful

with row or column vectors more than it is with matrices.

matrix-setsubmatrix a, value, startrow, endrow, startcol, endcol Function

matrix a;

real value;

int startrow, endrow, starcol, endcol;

This routine allows the user to selective set a specified submatrix of an matrix to a

value specified by value. The submatrix must be entirely contained in the matrix and

will extend from row startrow to row endrow and starting from column startcol upto

column endcol.

matrixzero a Function

matrix a;

Zeros the elements of the specified matrix a.

matrixzero_submatrix a, startrow, endrow, startcol, endcol

_1____1____1____�1_1_---ll·��

159

Function



APPENDIX C. THE MATRIX LIBRARY

matrix a;

int startrow, endrow, starcol, endcol;

This routine can be used to set a submatrix of the specified matrix to zero.

matrix_trace a Function

matrix a;

Computes and returns the trace of the matrix a.

matrixcopy a, b Function

matrix a, b;

This copies the specified matrix a into the matrix b. The matrices must be of the

same shape.

matrix_copy_new a Function

matrix a;

Copies the matrix into a newly create matrix which has the appropriate shape and

returns it.

matrix copy_submatrixnew a,startrow, endrow, startcol, endcol Function

matrix a;

int startrow, endrow,startcol, endcol;

This function creates and returns a new matrix whose elements are an identical copy

of the specified submatrix from the passed in matrix a.

matrix_copy_submatrix a, b, startrow, endrow, startcol, endcol Function

matrix a, b;

int startrow, endrow,startcol, endcol;

This is identical to the previous function only it destructively modifies the submatrix

b as specified by the last four arguments to contain the elements of matrix a found

in the specified submatrix.

_�ls� ___ I �

160



APPENDIX C. THE MATRIX LIBRARY

matrix_transpose a, b Function

matrix a, b;

This transposes the matrix a into the matrix b. b must be of the appropriate shape.

matrix_transposenew a Function

matrix a;

This creates and returns a new matrix which is the transpose of the argument matrix

a. It is upto the programmer to free the allocated storage.

matrix.solvelinear a, b, solution Function

matrix a, b, solution;

This routine takes as input the matrix a, and the right hand side column vector in the

specified matrix b. It solves the linear equation Ax = b, and returns the solution in

the column vector solution. Uses the fast gaussian elimination with partial pivoting

to find the solution if one exists.

matrix-row_interchange a, row, rowl, from, to Function

matrix a;

int row, row, from, to;

This interchanges the elements of the row row with the elements of the row rowi

starting from the column from upto the column specified by to. If to is specified to

be less than 0, then the change will proceed upto the last column.

matrix_columninterchange a, col, coil, from, to Function

matrix a;

int col, coll, from, to;

This interchanges the elements of the column col with the elements of the column

col1 starting from the row from upto the row specified by to. If to is specified to be

less than 0, then the change will proceed upto the last row.

__I �1�1�_ ��______��^_______I__l_____________l 1_�___�1�

161



APPENDIX C. THE MATRIX LIBRARY

matrixgem a, b Function

matrix a,b;

This routine performs gaussian elimination on the input matrix a. RHS is passed in

as the second argument matrix b. This routine is destructive and modifies the input

matrix a for speed.

matrixprint a Function

matrix a;

This prints the matrix on the terminal. Doesn't do a very good job with formatting

but serves its purpose.

matrixpretty_print header, a, fmt Function

register char *header;

register matrix a;

char *fmt;

This function prints an matrix to stdout. If header is a non-NULL string, it will be

printed first. If fmt is specified it will be used as the format specifier to be used while

printing out each element in the matrix. Each row of the matrix will be printed out

in one line.

matrixinput a Function

matrix a; Prompts the user for inputting an matrix whose shape is known.

matrix_get str, a Function

char *str;

matrix a;

This again prompts the user to input the elements of the matrix. If specified the str

argument will be used as the prefix to be typed out as a prompt to the user while

requesting him for each element of the matrix.

There are a number of functions that have been written to implement column

-------- *-·1*lC11(1*D�

162



APPENDIX C. THE MATRIX LIBRARY

vectors. These functions rely on the above mentioned matrix functions but are some-

times written to take advantage of the column vector structure of the vectors. The

data type used in the functions below is still the same matrix data type as above, but

to distinguish the vector functions that have been written to expect column vectors

as input these functions have the string vector as part of their name instead of the

string matrix.

newcolumn_vector rows

int rows;

Creates and returns a new col

Function

umn vector with the specified number of rows.

newrow_vector

int columns;

Creates and returns

columns

a new row vector with the specified number of columns.

newvector n

int n;

Creates and returns a new column vector with the specified number of rows.

new_3_vector

Creates and returns a new column vector with 3 rows.

new_4_vector

Creates and returns a new column vector with 4 rows.

make_3_vectorfrom

real x, y, z;

This creates and returns

make4_vectorfrom

real x, y, z;

x, y, z

a 3 vector from the specified x, y and z values.

x, y, z

Function

Function

Function

Function

Function

Function

__ I �__��II� I� II·

163



APPENDIX C. THE MATRIX LIBRARY

This creates and returns a 3 vector from the specified x, y and z values. The fourth

element is set to 1.0.

vector_dot a, b Function

matrix a, b;

Takes two column vectors a and b and returns the dot product of the two vectors.

(This is equivalent to taking the transpose of a and then calling matrixmultiply

with the transposed vector and b, but is much faster).

matrix_dot a, b Function

matrix a, b;

This function is provided only so that you dont have to create a new matrix that

is the transpose of a row or column vector and then call matrix-multiply with it -

purely for speed and convenience reasons.

vector_magnitude a Function

matrix a;

This computes and returns the magnitude of a given vector a. (i.e. the value returned

is the square root of the dot product of the vector with itself).

matrix_magnitude a Function

matrix a;

Same as the above function that works for both row and column vectors.

vector_angle_between a, b Function

matrix a,b;

This computes the angle between the two column vectors passed in a and b. (This

uses the acos() function).

vector-normalize new

_-�--------

164

Functiona



APPENDIX C. THE MATRIX LIBRARY

matrix a;

This routine creates and returns a new matrix that is a column vector whose elements

are the elements of the input vector a normalized by its magnitude.

vectornormalize a Function

matrix a;

This routine destructively normalizes the input column vector a.

vector_cross_3 a, b, c Function

matrix a, b,c;

This routine computes the cross product of the column vectors a and b which are

assumed to be 3-vectors and stores the results in the column vector c.

vectorcross_3_new a, b Function

matrix a,b;

This routine creates and returns a new 3-vector that is the cross product of the two

specified column vectors a and b.

There are a few functions provided to save and restore matrices from files.

readmatrixfromfile a, fp Function

matrix a;

FILE *fp;

This function assumes that the file has already been opened for reading, and we are

at the right point to begin reading in the matrix It expects the matrix to be stored

in ascii as one would expect rows by colums like the 2 by 4 example shown below.

0.8 0.8 0.8 0.2

0.2 0.1 0.0 0.3

makematrixfrom stream fp Function

FILE *fp;

165



APPENDIX C. THE MATRIX LIBRARY

This function reads, creates and returns an matrix that was read from the file spec-

ified by the file pointer fp. Comment characters like :, # or appearing at the

beginning of a line cause the entire line to be omitted.

savematrix fp, str, a Function

FILE *fp;

char *str;

matrix a;

This function takes a file pointer and writes out the given matrix to the file in the

format so that it can be read in by the previous function. If the second argument is

non-null, it will be a string that is written in a line above the matrix.

��----------LIII*·ZC-

166


