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by

Gene Simon Huh

Submitted to the Department of Biology
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Degree of Doctor of Philosophy in Biology

ABSTRACT

The pre-mRNA of the rat fibronectin gene is alternatively spliced in a cell-type-
specific fashion. The EIIB exon in this gene is spliced into fibronectin mRNAs
expressed in early embryos but is excluded from those expressed in adult liver.
In these studies, the regulated inclusion of this exon was examined in detail.
Using minigenes derived from the EHIB region of the fibronectin gene, a
number of sequence elements were found to alter the alternative splicing of
EIIIB. Initial results indicated that EIIIB is an inefficiently recognized exon and
that regulated inclusion requires a balance in 5' splice site strength between
EIIIB and the exon upstream. In addition, intron sequences downstream of
EIB were required for cell-type-specific EIIB inclusion. Repeated copies of a
hexanucleotide sequence (TGCATG) were present in this EIIIB-activating
element. Further experiments established that repeated hexamers alone could
account for most if not all intron element activity; furthermore, these hexamers
exerted cell-type-dependent effects when placed in heterologous alternatively
spliced genes. Therefore this hexamer sequence represents a major
determinant of cell-type-specificity in the regulation of EIIIB alternative
splicing. Repeated copies of this hexamer sequence were capable of activating
usage of an upstream 5' splice site and could also suppress downstream 3'
splice site usage. This hexamer was also found within elements implicated in
the regulated splicing of the c-src and calcitonin/CGRP genes. In fact, repeated
hexamers were found to influence calcitonin/CGRP alternative RNA
processing in a manner consistent with a normal role of these repeats in the
regulation of that gene. Using a UV-crosslinking assay, a number of factors in
mammalian nuclear extracts were found to interact specifically with RNAs
containing repeated hexamers. Taken together, these findings may provide
insights regarding the regulation of mammalian alternative splicing in general.

Thesis Supervisor: Dr. Richard 0. Hynes

Title: Professor of Biology
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GENERAL INTRODUCTION

A metazoan organism generates an amazing diversity of cell types

during its development and lifetime. Generation and maintenance of these

distinct cell types requires the selective expression of a common genetic

repertoire. Cell-type-specific gene expression is controlled at several levels; of

these, regulation at the post-transcriptional level via alternative mRNA splicing

is particularly potent. Differential splicing represents a powerful means of

augmenting a single gene's coding capacity, since it permits the manufacture of

several related yet distinct proteins from a single pre-mRNA transcript via

excision of different intervening sequence combinations. In higher eukaryotes,

the catalogue of known alternatively spliced genes approaches encyclopedic

proportions; splicing in many of these genes is regulated in a cell-type-specific

or developmentally-dependent manner. The regulation of alternative splicing

is therefore a fundamental process in the biology of the eukaryotic nucleus.

This phenomenon suggests that under appropriate circumstances the

splicing mechanism exhibits a pliancy that can be manipulated in order to vary

a gene's output. The ways in which this is accomplished are varied, plentiful

and relatively unclear despite recent advances in the understanding of nuclear

pre-mRNA splicing. The first section of this introduction briefly outlines

current knowledge regarding the general mechanism of nuclear pre-mRNA

splicing. The second part addresses the nature of alternative splicing

mechanisms with a consideration of how cis- and trans-acting parameters can

influence splice site selection. These two sections will by nature overlap, since

studies of splicing mechanisms can provide insights into alternative splicing

and vice versa. The third section focuses upon the fibronectin gene, which is

18



alternatively spliced in a cell-type-specific fashion and is the primary gene of

focus in this thesis.

The mechanism of nuclear pre-mRNA splicing

An understanding of the basic splicing reaction has been achieved

through a combination of biochemical and genetic analyses. These topics have

been extensively reviewed (Moore et al., 1993; Green, 1991; Guthrie, 1991).

Nuclear pre-mRNA splicing occurs in two chemical transesterification steps.

In the first step, the 2' hydroxyl of a nucleotide some tens of bases upstream

from the 3' splice site (the "branch" nucleotide, often an adenosine) attacks the

phosphate group at the 5' splice site, generating a free 5' exon and a "lariat"

intermediate. This lariat, in which the 5' end of the intron is covalently linked

to the branch residue via a 2'-5' bond, contains the intron and 3' exon. The 3'

hydroxyl of the 5' exon intermediate then attacks the phosphate group at the 3'

splice site in the second step, generating the ligated exons and a lariat intron as

products.

The importance of sequences at the intron boundaries for splicing has

been demonstrated both by surveys of intron sequences and by analyses of

directed and natural mutations. The metazoan consensus at the 5' end of the

intron (the 5' splice site or 5'SS) is MAG/GURAGU (slash denotes the exon-

intron junction); the GU at the intron junction is conserved in nearly all introns.

The 3' end of the intron (the 3' splice site or 3'SS) contains at least three ordered

elements: a very highly conserved 3' terminal dinucleotide (AG), the branch

site (loose consensus YNYUJRAY; the underlined A is the branch) and a

pyrimidine-rich sequence between the branchpoint and 3' AG. In yeast (and to

some extent in Drosophila), a pyrimidine tract is dispensable; in addition the

5'SS and branchpoint sequences in yeast are more stringently conserved than in

19



vertebrates (G/GUAUGU and UACUAAC respectively). It is clear that these

sequences are important determinants for splicing; however, they are not

sufficient to ensure accurate splice site identification in metazoans.

The development of cell extracts that accurately splice exogenous pre-

mRNA substrates have permitted a detailed scrutiny of splicing biochemistry.

Such studies have revealed that splicing takes place in a large, multicomponent

complex termed the "spliceosome", which is formed by the ordered association

of the pre-mRNA with small nuclear ribonucleoprotein particles (snRNPs) U1,

U2, U4, U5 and U6, as well as with many non-snRNP proteins. Spliceosome

assembly in vitro (and probably in vivo) occurs on an RNA coated by RNA-

binding proteins, many of which normally comprise heterogeneous nuclear

ribonucleoprotein particles (hnRNPs; for review see Dreyfuss et al., 1993).

Prior to the first step in splicing, U1 associates with both the 5'SS and

branchpoint sequences in an ATP-independent fashion. An ATP-dependent

U2-branchpoint interaction then occurs, followed by ATP-dependent

association of U4/U6 and U5. Spliceosome assembly involves a complex

network of pre-mRNA-snRNP and snRNP-snRNP interactions; many of these

have been established via genetic suppression studies in yeast coupled with

chemical crosslinking experiments carried out in vitro. These interactions

probably reflect dynamic RNA structural rearrangements that are crucial for

catalysis, an event which may in fact be RNA-mediated (for reviews, see Moore

et al., 1993; Guthrie, 1991; Steitz, 1992; Wise, 1993).

In addition to the snRNPs, numerous non-snRNP proteins participate at

various stages in spliceosome assembly. A number of splicing factors have

been identified based on their ability to activate splicing in an extract rendered

incompetent via immunodepletion or biochemical fractionation. These include

U2 auxiliary factor (U2AF; Ruskin et al., 1988; Zamore and Green, 1991), SC35
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(Fu and Maniatis, 1992a), SF2/ASF (Krainer et al., 1990) and a number of other

factors that remain to be characterized (Krainer and Maniatis, 1985; Kramer

and Utans, 1991). U2AF is required for the U2-branchpoint interaction and

binds to the pyrimidine tract at the 3'SS (Ruskin et al., 1988); it exists as a 65

kDa/35 kDa heterodimer, the 65kDa subunit being sufficient for splicing in

vitro (Zamore et al., 1991). The U2AF65 protein contains three copies of an

RNA-recognition motif (RRM), a domain common to a large number of RNA-

binding proteins (Kenan et al., 1991), as well as an N-terminal domain that is

rich in arginine and serine residues. The RRMs were found to be required for

RNA-binding; the RS domain was found to be dispensable for binding RNA

but required for splicing in vitro (Zamore et al., 1992).

SC35 and SF2/ASF belong to a larger class of splicing factors termed SR

proteins. These proteins contain one RRM (and sometimes a second RRM-like

domain) and a C-terminal region rich in arginine-serine dipeptides (Fu and

Maniatis, 1992a; Zahler et al., 1992, 1993b). SR proteins are highly

phosphorylated as isolated from several sources; any of the SR proteins can

complement a splicing-defective S100 extract for splicing (Zahler et al., 1992,

1993b; Mayeda et al., 1992); several can promote proximal 5'SS selection in vitro

(Mayeda et al., 1992; Zahler et al., 1993a); in fact SF2/ASF was independently

identified based on this latter activity (Ge et al., 1990). SR proteins can play a

role very early in splice site selection and commitment (Fu, 1993). SF2/ASF

can cooperate with U1 snRNP in binding to a 5'SS in vitro (Kohtz et al., 1994),

possibly via SR domain-dependent interactions with the Ul-specific 70K

protein (Wu and Maniatis, 1993). SC35 has also been shown to interact with

both the 5'SS and 3'SS (Fu and Maniatis, 1992b), probably by interacting with

both U1-70K and the 35 kDa subunit of U2AF (Wu and Maniatis, 1993),
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suggesting that SC35 (and perhaps SR proteins in general) may participate in

early splice site pairing.

Other proteins have been identified as candidate splicing factors by

virtue of their affinity for splice site-like sequences. Notably, a number of

hnRNP proteins (Al, C, I and D) can bind to pyrimidine-rich or other 3'SS-

associated sequences (Swanson and Dreyfuss, 1988b; Garcia-Blanco et al., 1989;

Patton et al., 1991). Antibodies to hnRNPs can inhibit splicing in vitro (Choi et

al., 1986; Sierakowska et al., 1986); however, reconstitution of splicing by

readdition of pure hnRNP to depleted extracts has not been possible to date,

possibly because removal of these abundant proteins may co-deplete other

essential factors. In any event, the role of hnRNPs in splicing remain unclear.

Many hnRNPs can be stripped off preformed spliceosomes by high salt

(Bennett et al., 1992a); however, this does not preclude an early role for

hnRNPs in splicing. Two-dimensional electrophoretic analyses of purified

spliceosomes have identified an assortment of spliceosome-associated proteins

(SAPs; Bennett et al., 1992a). A number of these have been found to

correspond to PRP genes in yeast (Brosi et al., 1993; Bennett and Reed, 1993),

thus validating this type of biochemical approach in the identification of

splicing components.

Factors important for splicing have also been identified by genetic

approaches: a number of pre-RNA processing genes in S. cerevisiae (PRP genes;

reviewed by Ruby and Abelson, 1991) have been characterized in detail. A

number of these genes, interestingly, encode proteins with motifs characteristic

of ATP-dependent RNA helicases (reviewed by Guthrie, 1991).

A number of splicing components have been localized to discrete

regions in the mammalian nucleus. Staining using snRNP or SC35 antisera

results in punctate nuclear staining, within a set of 30-50 "speckles" (by
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immunofluorescence) or to regions containing interchromatin granules (by

electron microscopy; Spector, 1990; Spector et al., 1991). U2AF and snRNPs

have also been detected within "foci" or coiled bodies, of which only a few exist

per nucleus (Zamore and Green, 1991; Carmo-Fonseca et al., 1991a, 1991b).

These structures may represent sites in which splicing, splicing factor storage

or snRNP assembly occurs; this is not yet clear, although in certain cases

transcription and splicing have been observed to occur near speckled

structures (reviewed by Xing and Lawrence, 1993). Mammalian subnuclear

organization could play a role in events such as alternative splicing, since

splicing rates could potentially be a function of pre-mRNA nuclear location.

Given the multicomponent nature of the splicing process, it would not

be surprising if regulation in any given situation were to occur at any of a

number of steps in splicing. In principle, alterations in relative splicing factor

levels could provide the basis for cell-type-specific alternative splicing

(discussed later). Alterations in cis (e.g., mutations of pre-mRNA splice site

sequences) or in trans (e.g., differing levels of RNA-binding proteinsin vitro)

have been found to affect differential splice site usage. The following section

details some of the parameters affecting splice site choice.

Patterns of alternative splicing

Patterns of differential splice site selection are varied (reviewed by

Smith et al., 1989a; McKeown, 1992). Studies of alternative splicing in

numerous systems have provided diverse (and occasionally overlapping)

contributions to an understanding of how sequences within the pre-mRNA can

influence splice site selection.

To splice or not to splice an intron: perhaps this represents the simplest

form of alternative splicing (Figure 1-1A). Examples that have been studied in
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detail include the third intron in the Drosophila melanogaster P element

transposase gene; this intron is spliced in germline but not somatic cells (Laski

et al., 1986). The 3' terminal intron in the bovine growth hormone gene is

retained at a low level (Sun et al, 1993a, 1993b). In budding yeast, splicing in

the MER2 gene is dependent upon MER1 expression during meiosis

(Engebrecht et al., 1991). Splicing in the yeast rpL32 ribosomal protein genes is

autoregulated in an apparent feedback loop (Eng and Warner, 1991).

In certain situations, a single splice site may have a number of potential

pairing partners. These are also relatively simple situations, since the identity

of one splice site is fixed (Figure 1-lB, C). One extensively studied system is

that of the SV40 early transcript, in which two donors compete for a shared

acceptor; splicing to the upstream 5'SS generates the large T antigen mRNA

whereas splicing to the downstream 5'SS generates an mRNA encoding the

small t antigen.

Certain "cassette" exons are either included into or excluded (skipped)

from the mature mRNA (Figure 1-1D); 5'SS and 3' SS selection thus occur

simultaneously. Cassette exons that have been studied include the exon 4 in

the rat preprotachykinin gene, the N1 exon in the murine c-src gene, exon 18 in

the murine N-CAM gene, exon 5 in the chicken cardiac troponin gene and the

male-specific exon in the Drosophila Sex-lethal gene. In more complex scenarios,

multiple exons in a row can exhibit cassette-type behavior (Figure 1-1E); this is

the case for the human leukocyte common antigen/murine Ly-5 (CD45) genes,

in which exons 4 through 6 can be coordinately included or skipped in B or T

lymphocytes respectively (Streuli and Saito, 1989; Saga et al., 1990).

Sometimes only one of a pair of adjacent exons are included into mRNA,

a situation termed mutually exclusive splicing (Figure 11F). This type of

splicing has been studied primarily in the tropomyosin genes: examples

24

_ ________�_�___ ___�_ �___I� ·

I



include exon pairs 2/3 in the rat a-tropomyosin gene, 5NM/5SK in the human

a-tropomyosin gene and also in the -tropomyosin gene (pairs 6/7 and 6A/6B

in rat and chicken genes respectively). For mutually exclusive exons,

coincident exon skipping or inclusion is apparently forbidden; patterns of

splice site selection are evidently restricted, since the inclusion of one exon

must preclude inclusion of the other. Since translational frameshifts resulting

from incorrect splicing may generate aberrant products that interfere with

normal cell function, mechanisms must operate in order to allow the

cytoplasmic appearance of only correctly spliced mRNAs. Several

observations have suggested that upstream nonsense codons result in reduced

steady state mRNA levels (Urlaub et al., 1989; Barker and Beemon, 1991; Cheng

and Maquat, 1993; Pulak and Anderson, 1993); this phenomenon may in some

cases explain why only correctly spliced mutually exclusive mRNAs are

detected. For exons 2/3 in the c-tropomyosin gene, dual exon inclusion is

prevented by the prohibitively close juxtaposition of the 5'SS and branchpoint

between these two exons (Smith and Nadal-Ginard, 1989).

In cases where alternative splicing occurs at a gene's 5' terminus,

differential splicing can often occur in combination with differential promoter

usage. The basis for regulation in these situations is more complex, since

splicing may not necessarily represent the determining event. Alternative

splicing in the rat myosin alkali light chain gene (MLC1/3) results in inclusion

of either exon 4 (making MLC1) or 3 (making MLC3), depending upon

whether transcription begins in exons 1 or 2 respectively (Figure 1-1G). In this

instance, differential promoter usage (resulting in different pre-mRNA

sequences in cis) appears to be sufficient for determining exon choice (Gallego

and Nadal-Ginard, 1990).
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Figure 1-1.

Patterns of alternative splicing

Numbered horizontal rectangles and lines represent exon and intron

sequences, respectively. Dashed diagonal lines above and below each

exon/intron diagram show possible splicing combinations.

A. Intron retention. (5'ss, 5' splice site; 3'ss, 3' splice site)

B. 3' splice site selection.

C. 5' splice site selection.

D. Optional "cassette" exons (exon skipping).

E. Multiple exon skipping.

F. Mutually exclusive exon pairs.

G. Alternative exon selection coupled with differential promoter selection

(arrows represent transcription start sites).

H. Differential 3' terminal exon usage coupled with 3' end formation and

polyadenylation (pA, polyadenylation site).
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Alternative splicing also occurs in association with alternative 3' end

formation in a number of genes (Figure 1-1H): systems that have been studied

in detail include the immunoglobulin IgM gene, the rat and human

calcitonin/CGRP genes and the Drosophila sex-determination gene doublesex.

To study RNA processing in these systems, it is often necessary to clarify

whether 3' end formation or splicing is the determining event. For example, in

the immunoglobulin g heavy chain (IgM) transcription unit, usage of a

polyadenylation site competes with usage of an upstream 5'SS. Whether

regulation occurs at the level of splicing or transcriptional termination/3' end

formation has been a matter of debate, since evidence has been presented for

both modes of regulation (Galli et al., 1987; Peterson and Perry, 1986;

Tsurushita and Korn, 1988). Similar questions have been considered regarding

the regulation of the calcitonin/CGRP transcription unit; these will be

discussed in more detail later (Chapter Four).

Sequences that affect splice site selection

Many questions remain regarding the fidelity of the splicing process.

Since 5' and 3'-splice site consenses are relatively degenerate in higher

eukaryotes, a long primary RNA transcript can contain many splice site-like

sequences, only a small fraction of which are actually used for splicing.

Therefore the cell must identify correct splice sites among the many potential

candidates; mechanisms for such discrimination remain unclear. This question

becomes particularly relevant when considering alternative splicing, since the

rules that govern splice site discrimination apparently can vary between cell

types or developmental stages.

Splice site proximity has been proposed as a simple way to avoid exon

skipping. Given two competing splice sites with sufficient exonic context, the
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more proximal of the two is often selected (Reed and Maniatis, 1986).

However, some unexplained exceptions to this proximity rule occur, where

distal selection is preferred regardless of 5'SS order (Kedes and Steitz, 1988). In

addition, proximity alone cannot account for accurate splicing in vivo, since

usage of cryptic sites within long introns must also be avoided.

The 5'SS is recognized primarily via base pairing with the 5' end of U1

snRNA; this has been established by a number of elegant genetic suppression

studies in mammalian cells and yeast, where the effects of mutations at a 5'SS

could be reversed by the introduction of U1 snRNA genes containing

compensatory mutations (Zhuang and Weiner, 1986; Siliciano et al., 1988).

However, the 5'SS sequence alone is not sufficient to dictate its selection, since

even a site that binds U1 efficiently in vitro may not be used if present in an

inappropriate context (Eperon et al., 1986; Lear et al., 1990; Nelson and Green,

1988). In certain circumstances, the mutual inhibition of closely juxtaposed

donors has been observed in vitro, even though both sites appeared to bind U1

snRNP (Nelson and Green, 1988); therefore additional steric requirements may

exist for efficient 5'SS usage. Mutual inhibition may in fact underlie the soma-

specific repression of the third intron (IVS3) in the Drosophila P element

transposase pre-mRNA. A number of 5'SS-like sequences occur closely

upstream of the authentic 5'SS of this intron; mutation of one of these "pseudo"

sites was found to activate IVS3 splicing, suggesting that this "pseudo" site

participated in the somatic repression of the authentic IVS3 5'SS (Siebel and

Rio, 1990; Siebel et al., 1992).

A number of additional snRNP-pre-mRNA interactions may also

influence 5'SS recognition. Genetic suppression studies in yeast and

crosslinking studies in mammalian extracts have suggested that U5 snRNA

participates in splice donor recognition by base pairing with exon sequences
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immediately upstream of the 5'SS (Newman and Norman, 1991; Wyatt et al.,

1992). Similar experiments have suggested an interaction between U6 snRNA

and sequences downstream of the 5'SS, an interaction which may deterimne

the 5'SS cleavage point (Sawa and Shimura, 1992; Lesser and Guthrie, 1993;

Sontheimer and Steitz, 1993; Kandels-Lewis and Seraphin, 1993). However,

since the yeast studies assayed the use of "aberrant" 5' cleavage events located

at a single region of U1 complementarity, it remains to be seen whether U5 and

U6 can contribute to selection between separate donors. In any event, the

precise nature of sequence context effects on 5'SS selection remains relatively

ill-defined.

The importance of a suboptimal 5' splice site has been shown for a

number of natural systems; mutation of an alternative donor site toward the

consensus often elevates its usage, often to the complete exclusion of its

competitor (Nasim et al., 1991; Tacke and Goridis, 1991; Black, 1991; Dominski

and Kole, 1992). The 5'SS sequence of exon 18 in the murine N-CAM gene

exhibits some interesting properties. Its efficiency in a heterologous gene

appears to correlate with regulated exon 18 inclusion, indicating that the exon

18 5'SS sequence may coincide with cell-specific elements (Tacke and Goridis,

1991). The meiosis-specific intron in the S. cerevisiae gene MER2 has a 5'SS

sequence that deviates from consensus; the variant nature of this splice site is

important for meiosis-specific regulation, since mutations that improved this

site (or U1 mutations that improved base-pairing with the MER2 donor) caused

MER-independent splicing (Nandebalan et al., 1993). 5'SS quality is not rate

limiting in every situation, since 5'SS up-mutations in other alternative exons

have little effect (Mullen et al., 1991; Graham et al., 1992). Therefore the

presence of suboptimal 5'SS sequences appears to be important for some but

not all cases of differential splicing.
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The relative arrangement and quality of the 3' splice site components

(the branchpoint, pyrimidine-rich tract and 3' AG) can affect 3' splice site

selection. The length of the pyrimidine tract, along with its proximity to the

branchpoint, can play an important role in 3'SS usage in vitro, particularly if the

branchpoint is distant from the 3'AG (Reed, 1989; Smith et al., 1989b). The

quality of the branchpoint sequence can also affect splicing if no nearby

"cryptic" branches are available, as this region interacts with U2 snRNP via

base pairing (Zhuang and Weiner, 1989; Wu and Manley, 1989). The

importance of these elements in 3'SS selection has been supported by studies of

the mutually exclusive rat -tropomyosin exons 2 and 3. Exon 2 is selected in

smooth muscle whereas exon 3 is selected in other cell types. If both exons

were made to compete for splicing to exon 1, exon 3 was preferred. The 3'SS of

exon 3 contains a very long pyrimidine tract immediately preceded by a

consensus branchpoint. The intron upstream of exon 2 contains a poor

pyrimidine tract and branch sequence. 3'SS preference was found to correlate

with the pyrimidine tracts preceding exons 2 and 3 and, to a lesser extent, with

branch site sequences (Mullen et al, 1991). Therefore the quality of the

pyrimidine tract/branchpoint region can play an important role in 3' SS

selection. The distance between the branch site and the 3' splice junction of

exon 3 is unusually long (176 bases), a feature shared by other alternative

exons in the -tropomyosin and fibronectin genes (Helfman and Ricci, 1989;

Norton and Hynes, 1990). The significance of this unusual organization is

unclear at present.

Another feature unique to some alternatively spliced exons is the usage

of multiple branch sites. This is seen in SV40 early pre-mRNA alternative

splicing, where selection among a set of branchpoint residues can determine

alternative 5'SS usage, partly because the proximal small t 5'SS is only 66 bases

32



from the common 3'SS (Fu and Manley, 1987). The selection of upstream or

downstream branch sites prohibits or permits small t 5'SS usage respectively

(Noble and Manley, 1988). Multiple branchpoint usage in vitro is also exhibited

by exons in the rat fibronectin (Norton and Hynes, 1990) and 3-tropomyosin

genes (Helfman and Ricci, 1989). This in vitro phenomenon may reflect the lack

of any suitable branchpoint sequences at these accceptors. The kinetics of

recognition and usage of these acceptors (and possibly of acceptors with

lengthy pyrimidine tracts) may therefore differ significantly from those of

constitutive 3' splice sites.

Coordinate recognition of splicing signals: exon definition

From the above, it is clear that that splice site usage can be influenced in

a multiple ways. However, the actual mechanisms that discriminate authentic

splice sites from "fake" ones still remain somewhat mysterious. A number of

systems have supported a model which may supply some of these

mechanisms. This model, termed "exon definition", posits a functional

interaction between the RNA processing signals that border an exon. Selection

of an internal exon would then proceed as a result of coordinate recognition of

a 3'SS plus a 5'SS located closely downstream.

Support for this model comes from in vitro studies using substrates

containing an intron plus a downstream 5'SS. Many of these studies suggested

that the splicing of an intron was facilitated if a nearby downstream 5'SS was

present (Robberson et al., 1990). In three-exon substrates, mutation of the

central exon 5'SS resulted in exon skipping rather than downstream intron

retention in vitro (Talerico and Berget, 1990). Naturally occurring 5'SS

mutations also result in exon skipping rather than the generation of partially or

cryptically spliced mRNA (Talerico and Berget, 1990, and references therein).
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Taken together, these results suggested that the 3'SS and 5'SS of an exon are

functionally coupled. These findings were supported further by studies of

exon E4 in the rat preprotachykinin gene. Improvement of the E4 splice donor

was found to enhance splicing of the upstream (E3-E4) intron in vitro (Nasim et

al., 1990). Additional mutations suggested a correlation between upstream

intron stimulation and the affinity of this donor for U1 snRNP (Kuo et al., 1991;

Grabowski et al., 1991). Moreover, improved U1 binding to the E4 donor was

found to enhance U2AF65 binding at the E4 3'SS (Hoffman and Grabowski,

1992). These biochemical studies suggested that U1 and U2AF participate in a

mechanism that recognizes exons as functional units in pre-mRNAs. Some in

vivo evidence has provided findings consistent with this model, in that the

presence of one intron in a transcript may facilitate the splicing of introns

adjacent (Neel et al., 1993).

Vertebrate internal exons average only 137 nt in length and are

infrequently longer than 300 nt (Hawkins, 1988), a finding which may reflect

exon definition requirements. However, recognition of an exon may also be

hampered if the exon is too short (Dominski and Kole, 1991), possibly due to

steric considerations; this has been proposed as the basis for the inefficient

recognition of the 18 nucleotide c-src N1 exon in non-neural cells, since this

exon can be activated for splicing simply by increasing the length of the N1

exon (Black, 1991). Recognition of short exons can be facilitated if relative

splice site strengths are altered or if another exon is placed nearby, suggesting

that additional mechanisms associated with exon definition may aid the

recognition of very short exons (Dominski and Kole, 1992; Black, 1991; Sterner

and Berget, 1993). It is therefore apparent that the recognition of an exon may

involve multiple interactions between splice site sequences.
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The effect of exon sequences

Many studies of alternatively spliced systems have described the

contribution of exon sequences to splice site selection in ways that are

somewhat unpredictable. In many cases, mutations or deletions of alternative

exon sequences can result in a dramatic shift in splice site usage patterns. In

some cases these exon sequences appear to have a positive effect upon exon

selection in vivo whereas sequences in other alternative exons have negative

effects (for examples of the former, see Mardon et al., 1986; Cooper and Ordahl,

1989; Cote et al., 1992; van Oers et al., 1994; for examples of the latter, see

Streuli and Saito, 1989; Tsai et al., 1989; Graham et al., 1992). Such effects have

also been observed in vitro (Reed and Maniatis, 1986).

A number of alternative and constitutive exons have been shown to

contain elements that assist exon selection. A particularly well characterized

example of these is a purine-rich sequence originally defined in vitro in the

murine IgM M2 exon (Watakabe et al., 1993). This exon recognition sequence

(ERS) was found to stimulate splicing of the upstream intron and could also

activate splicing when placed in a heterologous context. Similar elements have

been identified in a number of other exons including those in genes encoding

troponin T (Xu et al., 1993), bovine growth hormone (Sun et al., 1993a, 1993b),

fibronectin (Lavigueur et al., 1993) and the calcitonin/CGRP gene (Yeakley et

al., 1993; van Oers et al., 1994). Many of these are likely to represent

degenerate forms of the same element, since even synthetic purine-rich inserts

can also confer ERS-like activity (Xu et al., 1993; Tanaka et al., 1994). The ERS

in the M2 exon can be specifically UV-crosslinked to U1 snRNA in vitro,

suggesting that ERS function involves U1 snRNP (Watakabe et al., 1993). In

addition, studies using the bovine growth hormone terminal exon have

suggested that this element can specifically bind the splicing factor SF2/ASF
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(Sun et al., 1993b). Likewise, an ERS-like element in the fibronectin ED1 (EIIIA)

exon has been shown to interact with purified SR proteins (Lavigueur et al.,

1993). These findings are consistent with a model in which SR proteins and/or

U1 bind downstream of a 3'SS and activate its usage, possibly via exon

definition-related mechanisms.

The ERS, although found in many exons, is not sufficient to account for

all examples of exon sequence effects. Some exon sequences appear to inhibit

splicing (for examples, see Streuli and Saito, 1989; Tsai et al., 1989; Graham et

al., 1992), whereas other elements have a positive effect on splicing yet lack any

discernible purine-rich sequences (for examples, see van Oers et al., 1994; Cote

et al., 1992). Furthermore, exon sequences that affect 5'SS selection are known

(Reed and Maniatis, 1986) but have not been extensively characterized. ERS

function is apparently specific for upstream 3' splice sites, since it has little

effect when placed upstream of a 5'SS in vivo (Xu et al, 1993) or upstream of a

3'SS in vitro (Lavigueur et al., 1993). Therefore the effects of exon sequences are

probably due to a number of factors that include ERS elements and also RNA

secondary structure (see below). The role of ERS-like elements in cell-type-

specific regulation is not currently clear, since this element can also be found in

at least one constitutively spliced exon (Yeakley et al., 1993) and is dispensable

for regulation of cardiac troponin T exon 5 (Xu et al., 1993). It is possible that

ERS-like elements occur in either constitutive or cell-type-specific forms,

although this has not been demonstrated.

The role of RNA secondary structure

Splice site selection in yeast can be affected by relatively short hairpins

in vivo, indicating that basepairing interactions may play a role in splicing

regulation in yeast (Deshler and Rossi, 1991; Goguel et al., 1993).
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Autoregulation of RPL32 splicing may involve a hairpin that sequesters the

RPL32 5'SS (Eng and Warner, 1991). A long-range base pairing interaction may

aid the pairing of the 5'SS and branch region of the unusully long yeast RP51B

intron (Goguel and Rosbash, 1993). Such findings suggest potential

mechanisms for preferential splice site pairing in metazoans; however,

although splice site selection can indeed be modulated by altering the source of

flanking sites in the rat MLC1/3 gene (Gallego and Nadal-Ginard, 1990) and in

adenovirus (Ulfendahl et al., 1989), the role of secondary structure in these

systems has not been addressed. Whether secondary structure plays an

extensive role in vertebrate splicing is still a matter of question. Although

hairpins that sequester splice sites can cause exon-skipping in vitro, these

effects were much reduced when tested in vivo (Solnick, 1985; Eperon et al.,

1988), therefore the formation of RNA secondary structure may often be at a

disadvantage relative to other processes such as hnRNP association.

One notable exception is represented by the chicken [-tropomyosin

gene. Mutally exclusive selection of exons 6A and 6B occurs in nonmuscle cells

and skeletal muscle respectively. Mutational analyses and structural

determination in vitro were consistent with the presence of a secondary

structure that sequestered the exon 6B 3'SS (Goux-Pelletan et al., 1990).

Mutations disrupting this potential RNA secondary structure were found to

activate splicing of the exon 6B 3'SS, whereas additional mutations predicted to

restore basepairing were found to reestablish exon 6B repression (D'Orval et

al., 1991). The influence of part of this structure was confirmed in vivo by

transfection (Libri et al., 1991). It was proposed that this RNA structure was

stabilized in non-muscle cells and/or was disrupted in muscle cells by cell-

type-specific factors (D'Orval et al., 1991; Libri et al., 1991; Guo et al., 1991).
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However, direct evidence for the cell-type-specificity of this structure is lacking

at present.

Other sequences that affect splicing

Deletion analyses of a number of alternatively spliced genes has

uncovered numerous cis-sequences that are capable of affecting exon or splice

site selection in either a positive or negative fashion. For example, positively-

acting sequences can be defined downstream of the neural-specific c-src N1

exon that activate neural-specific splicing in vivo and in vitro (Black, 1991,

1992). In addition to the secondary structure that surrounds the exon 6B 3'SS,

there also appear to be sequences upstream of this exon that function to inhibit

usage of this exon; these sequences have been identified in vitro in the chicken

gene (Gallego et al, 1992) and also in the rat gene by transfection analysis (Guo

et al., 1991). In the rat calcitonin/CGRP gene, intron sequences in the vicinity

of the calcitonin-specific exon 4 acceptor are thought to mediate repression of

this exon in cells that produce CGRP (Emeson et al., 1989). An element that

represses Rous sarcoma virus splicing has been shown to be functional in the

context of a heterologous intron (the nrs or negative regulator of splicing;

Arrigo and Beemon, 1988; McNally et al., 1991) and may specifically interact

with U11 snRNP via base pairing (Gontarek et al., 1993), raising the possibility

that nrs function may involve a snRNP whose function had not been

previously established.

Many of the sequences described in previous sections have been

proposed to participate in the cell-type-specific regulation of alternative

splicing. However, it is important to note that cell-type-specificity has not yet

been established for these elements. It is equally plausible that these elements

simply maintain a regulatable status and that specific regulation is mediated
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via other elements. In order to establish that a given element is cell-type-

specific, it may be necessary to demonstrate that an element displays greater

activity in one cell type than in another.

Regulated splicing in Drosophila melanogaster and other genetic systems

Detailed insights regarding the nature of trans-acting splicing regulators

have been gained from studies in Drosophila melanogaster. An understanding of

regulated splicing has been achieved due to the genetic identification of cis and

trans lesions that specifically affect a particular splicing phenotype. The

discovery that the regulation of a number of fly sex determination genes occurs

via differential splicing has resulted in the identification of sex-specific splicing

regulators and have provided information about the structure of a bona fide

splicing regulator and the nature of the cis-elements through which these

regulators function (for reviews, see Baker, 1989; Mattox et al., 1992; McKeown,

1992).

The first known alternatively spliced gene in the sex determination

cascade is Sex-lethal (Sxl). This gene expresses distinct male- and female-

specific mRNAs. Male-specific mRNAs contain an exon (exon 3) carrying a

premature stop codon; female-specific exon 3 skipping results in full-length

functional Sxl protein (Figure 1-2). The Sxl protein promotes female-specific

splicing of the transformer (tra) gene as well as of its own pre-mRNA. The tra

gene exhibits 3' splice site competition, a type of alternative splicing different

from that found in Sxl. Usage of the proximal non-sex-specific 3' splice site

results in premature frameshift termination; functional Tra protein is produced

from female-specific distal 3' splice site usage (Figure 1-2). Tra acts together

with the product of the tra-2 gene to regulate splicing of doublesex (dsx) pre-

mRNA. In the absence of Tra (males), dsx splicing produces an mRNA
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Figure 1-2.

Examples of alternative splicing in Drosophila melanogaster

Partial exon/intron structures of genes involved in sex determination.

Conventions are as in Figure 1-1; in addition, positions of initiator and

termination codons are also indicated. The pattern above and below the

exon-intron diagrams correspond to male- and female-specific splice

patterns respectively. Female-specific patterns are observed in the presence

of functional gene products indicated in parentheses.
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containing exons 5 and 6 but not 4. In females, Tra and Tra-2 promote the

splicing (and polyadenylation) of exon 4 (Figure 1-2). The male and female-

specific forms of dsx perform distinct functions in sexual differentiation

(reviewed by Baker, 1989; Mattox et al., 1992).

The regulation of tra splicing by the female-specific Sxl gene product

appears to involve sequence-specific repression of the non-sex-specific

(proximal) tra 3' splice site, as this site was used poorly in females even in the

absence of the competing female-specific 3'SS. The site of Sxl action appears to

be a sequence (U 8C) within the polypyrimidine tract of the non-sex-specific 3'

splice site, since mutations at this sequence constitutively activated this site

(Sosnowski et al., 1989; Inoue et al., 1990). Therefore female-specific Sxl-

mediated blockage of the proximal tra acceptor results in distal acceptor usage.

The U 8C sequence at the tra non-sex-specific 3' splice site is shared by the

acceptor of the male-specific exon in Sxl , further suggesting that this sequence

is the target of Sxl. The U 8C sequence can be specifically bound by

recombinant female Sxl protein in vitro (Inoue et al., 1990; Valcdrcel et al., 1993).

In vitro splicing experiments have suggested that the affinity of Sxl for the

pyrimidine tract of the non-sex-specific 3'SS is considerably higher than that of

the general splicing factor U2AF, supporting a model wherein Sxl antagonizes

U2AF action via occlusion at this site (Valcarcel et al., 1993).

Although Sex-lethal autoregulation appears in some respects to be

similar to that of Sxl-mediated control of tra, regulation of the former is more

complex, possibly because the pattern of Sxl differential splicing differs from

that of tra. Sex-specific regulation was still observed if the 3' splice site of the

Sxl male-specific exon was deleted (thereby creating a 5'SS competition

situation; Horabin and Schedl, 1993). Additionally, a number of polyuridine

sequences both upstream and downstream of this exon were found to
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contribute to sex-specific regulation (Sakamoto et al., 1992; Horabin and

Schedl, 1992, 1993). Therefore, in contrast to the single U 8C element that

regulates tra splicing, Sex-lethal autoregulation may involve a number of

functionally redundant cis-sequences and possibly additional regulatory

mechanisms.

In contrast to negative regulation by Sxl, the products of the transformer

(tra) and transformer-2 (tra-2) genes act positively on female-specific splicing of

the doublesex (dsx) gene. In males, usage of the female-specific dsx exon (exon

4) is prevented in part by the presence of a suboptimal polypyrimidine tract at

its 3'SS; mutations increasing the pyrimidine content of this tract were found to

activate exon 4 usage even in the absence of the Tra and Tra-2 gene products

(Hoshijima et al., 1991). Conversely, expression of Tra and Tra-2 was found to

activate exon 4 acceptor usage (Ryner and Baker, 1991) and may also stimulate

polyadenylation (Hedley and Maniatis, 1991). A number of triskadecameric

repeats within the female specific were required for female-specific exon 4

usage (Nagoshi and Baker, 1990; Hoshijima et al., 1991; Ryner and Baker, 1991;

Inoue et al., 1992; Hedley and Maniatis, 1991). These 13-mer repeats have been

found to specifically bind Tra-2 and possibly also Tra protein (Hedley and

Maniatis, 1991; Inoue et al., 1992; Tian and Maniatis, 1992). Therefore the

repeated 13-mer element represents a sex-specific regulatory element and the

products of the tra and tra-2 genes represent sex-specific regulators that act via

these 13-mer repeats.

In vitro, the activation of exon 4 splicing in HeLa nuclear extracts was

dependent upon the presence of 13-mer repeats in cis and also required the

addition of either recombinant Tra or Tra2 protein. Tra and Tra-2 were also

capable of activating splicing of a mutant globin 3'SS in a repeat-depndent

fashion, illustrating autonomous function of the 13-mer element (Tian and
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Manatis, 1992). Tra and Tra-2 were found to form a stable complex on the

repeat sequences in nuclear extract; this complex was found to contain SR

proteins (Tian and Maniatis, 1993). Using a yeast two-hybrid interaction assay,

Tra and Tra-2 proteins were also found to interact specifically with the 35 kDa

subunit of U2AF as well as with SC35 and SF2/ASF (Wu and Maniatis, 1993).

Taken together, these data indicated that the Tra and Tra-2 gene products act

by recruiting general splicing factors (such as U2AF and SR proteins) to a

suboptimal splice acceptor.

The third intron in the Drosophila P element transposase pre-mRNA

(IVS3) is removed only in the cells of the germline (Laski et al., 1986). An in

vivo analysis of germline-specific IVS3 splicing has suggested that 5' exon

sequences contained a soma-specific negatively regulating element (Laski and

Rubin, 1989; Chain et al., 1991). Splicing of IVS3 in Drosophila Kc cell nuclear

extracts was activated by addition of competitor RNAs containing 5' exon

sequences, suggesting that 5' exon-specific factors in Kc extract repressed IVS3

removal (Siebel and Rio, 1990). Binding of U1 snRNP to a "pseudo" 5'SS near

the authentic site appears to be involved in the mechanism of somatic

repression, since the removal of this "pseudo"-site activated IVS3 splicing in

vitro (Siebel et al., 1992). UV-crosslinking and gel retardation assays have

characterized a complex that assembles on this 5' exon sequence that contains

several proteins (Mr 97K, 65K and 40K; Siebel and Rio, 1990; Siebel et al., 1992).

The identification of these may provide further insights into the mechanism of

this regulated splicing event. Yet another example of regulated splicing in

Drosophila involves the regulation by the product of the suppressor of white

apricot gene of its own pre-mRNA, apparently at the level of splicing (Zachar et

al., 1987). This regulated event remains to be characterized in more detail.
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Many of the genes that regulate the above splicing events have been

doned and characterized. The structures of these genes contain features

shared by a number of RNA-binding proteins and known splicing factors. The

products of the tra, tra-2, and su(wa) genes contain domains that are arginine-

and serine-rich, a feature shared with members of the SR protein family and

U2AF. Tra-2 and Sxl also contain RRMs. Therefore these structural motifs are

common among alternative splicing factors in Drosophila and constitutive

splicing factors in mammalian systems.

The study of other genetic organisms have also identified regulators of

splicing. In S. cerevisiae, splicing of the RPL32 pre-mRNA intron is negatively

autoregulated by RPL32 ribosomal protein, presumably as part of a mechanism

to prevent RPL32 overproduction. The RPL32 gene product represses the

splicing of its own pre-mRNA via binding to a evolutionarily conserved base-

paired structure in the 5' exon of the pre-mRNA (Eng and Warner, 1991).

Rp132 was found to inhibit splicing of this pre-mRNA by blocking splicing

complex assembly at a step after U1 binding but before U2 association

(Vilardell and Warner, 1994). Inhibition of splicing thus occurs at an

intermediate step in splicing after the recognition of the 5'SS.

Only one case of developmentally regulated splicing in yeast has been

discovered to date. The MERI and MER2 genes are important for the meiotic

process in yeast. Expression of the MER1 gene product is meiosis-specific; this

gene product appears to positively act upon the splicing of the MER2 pre-

mRNA (Engebrecht et al., 1991). The exact mechansm of MER1 function is

unknown at present; it may act to facilitate recognition of the MER2 5'SS, the

sequence of which differs from the yeast consensus (G/GUUCGU versus the

consensus G/GUAUGU; Nandabalan et al., 1993).
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Regulators of alternative RNA processing in mammalian genes

In contrast to systems in Drosophila , few if any authentic splicing

regulators have been definitively identified as such in mammals. One potential

regulator is the human immunodeficiency virus Rev gene product, which

binds to a target (called the RRE) in its own pre-mRNA and thus promotes the

cytoplasmic appearance of unspliced RNA. The mechanism of Rev action has

been a matter of debate, since two different models have been proposed: (i) the

active promotion of nucleocytoplasmic transport of unspliced RNA (Malim et

al., 1989), and (ii) a Rev-mediated inhibition of splicing, thus allowing

unspliced RNA to escape the nucleus by default (Chang and Sharp, 1989).

Since genetic tools that can identify upstream splicing regulators are not

readily available for the analysis of mammalian splicing, biochemical

complementation approaches have most often been adopted to identify

potential regulators of splicing. Such an approach is relatively difficult, given

that alternative splice site selection is sensitive to parameters such as extract

dilution (Reed and Maniatis, 1986) and also variations in monovalent or

divalent cation concentrations (Schmitt et al., 1987; Mayeda and Ohshima,

1988; Helfman et al., 1988). Therefore it is difficult to assess whether in vitro

conditions could represent physiologically realistic situations. Nevertheless,

such approaches have been attempted, yielding results which have differed in

some respects from those obtained by studies in genetic systems.

The c-src gene contains a number of neural-specific exons, one of which

has been studied as a model system for regulated alternative splicing. A

number of sequence elements lie in the intron downstream of this exon that are

required for neuron-specific N1 inclusion. At least two elements can be

distinguished on the basis of these studies; these elements appear to exhibit

some functional redundancy, since the deletion of either element alone reduced
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N1 inclusion partially whereas deletion of both sequences abolished inclusion

(Black, 1992). Neurally-derived splicing extracts were able to display N1

inclusion splicing in an element-dependent fashion, whereas HeLa extracts did

not (Black, 1992). These experiments suggested that sequence-specific neural

factors promoted the Ni inclusion splice in vitro. These experiments lay a

promising foundation for biochemical complementation experiments that may

identify neural-specific splicing regulators.

As mentioned previously, the splicing factor SF2/ASF was isolated from

human 293 cell nuclear extracts by its ability to promote SV40 small t splicing

(proximal 5'SS usage) over large T splicing in nuclear extracts (Ge et al., 1990).

SF2/ASF also promoted proximal selection on a number of globin-derived pre-

mRNA substrates containing duplicated splice sites (Krainer et al., 1990). In

addition, it was found that hnRNP Al could antagonize the effect of SF2

(Mayeda and Krainer, 1992; Fu et al., 1992). These findings suggested that

differential ratios of ubiquitous RNA-binding proteins could modulate splice

site preference in vitro (Maniatis, 1991).

As discussed previously, SF2/ASF is an SR protein (Zahler et al., 1992,

1993a, 1993b). Several of the SR proteins can promote proximal donor selection

(Mayeda et al., 1992); in addition, SF2/ASF and SC35 can also promote

proximal 3'SS selection (Fu et al., 1992). SF2/ASF and hnRNP Al have also

been shown to have effects in vitro upon alternative splicing of substrates

derived from natural alternatively spliced pre-mRNAs (Mayeda et al., 1993).

Taken together, these data suggest that SR proteins possess overlapping

functions in splicing and may operate on selection of 5' splice sites via similar

mechanisms.

To date, none of the mammalian SR proteins have been shown to

directly regulate alternative splicing in vivo; such proof may have to await the
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overexpression or knockout of these genes. It is interesting to note, however,

that SR family members do exhibit some differential substrate preference, both

with respect to committing different pre-mRNA substrates to splicing in vitro

(Fu, 1993) and with respect to promoting proximal donor selection (Zahler et

al., 1993a). Therefore each of the SR proteins may regulate distinct sets of

alternatively spliced genes. In this respect, the SF2/ASF pre-mRNA is

alternatively spliced to yield forms lacking the SR domain, which can promote

proximal donor selection but do not complement an S100 extract for splicing

(Caceres and Krainer, 1993; Zuo and Manley, 1993); therefore differential

ASF/SF2 splicing could concievably have functional consequences in vivo.

The fact that specific splicing regulators have been identified in

Drosophila and yeast makes it unlikely that all alternatively spliced genes are

regulated by ratios of common splicing factors. However, these genetic screens

are inherently biased in favor of specific regulator genes over essential factors.

Since SR protein functions are apparently redundant, it is possible that a subset

of these are actually true regulators for some genes. In this light, it will be

interesting to learn the basis underlying the distinct substrate specificities that

certain SR proteins exhibit. The recent description of SR homologues in

Drosophila may shed some light on these questions (Kim et al., 1992; Mayeda et

al, 1992), since it is possible to ask whether the mutation of SR protein-like

genes in Drosophila will produce phenotypes related to differential splicing.

The rat fibronectin gene as a model for splicing regulation

It is therefore clearly evident that numerous questions must be

examined when considering the regulation of an alternatively spliced gene in

vivo or in vitro. It also seems likely that the study of new systems will reveal

novel insights into the nature of regulation at the level of RNA splicing. In an
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effort to gain further insights regarding how differential splicing is regulated in

a cell-type-specific manner, experiments were carried out that characterized in

detail the alternative splicing of one regulated exon in the rat fibronectin gene.

Fibronectin (FN) is a large multifunctional extracellular glycoprotein

that is found in many basement membranes and is an important extracellular

matrix component in vertebrates. This protein is a major substrate for the

adhesion and migration of cells during development and also plays a role in

maintaining cellular morphology, interacting also with other extracellular

matrix molecules such as collagen and heparin. In addition to playing essential

roles in development, FN appears also to participate in processes in the adult

that involve cell migration and adhesion, such as the healing of wounds and

blood clotting (for review, see Hynes, 1990).

The FN protein exhibits a repeated modular structure and contains a

considerable degree of internal homology (Figure 1-3A). Three types of

homology were detected based upon partial protein sequencing of bovine FN

(Petersen et al., 1983) and also by sequencing of rat and human FN cDNA

clones (Schwarzbauer, et al., 1983; Kornblihtt et al., 1984). Twelve type I

repeats, two type II repeats and at least fifteen type III repeats are present in

the protein. Various portions of FN function in cell adhesion and binding

other extracellular matrix components (Figure 1-3A). In particular, the tenth

type III repeat in FN (repeat III-10) contains a site particularly important for

cell adhesion, the essential core being a tripeptide segment (RGD) within this

repeat. This segment comprises the binding site for the as51 integrin, a

member of a family of cell surface receptors important for cell-matrix and cell-

cell interactions (reviewed by Hynes, 1990, 1992).

The rat gene that encodes FN is approximately 70 kilobases in length

and consists of at least 48 exons. The FN genomic structure was found to
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consist of exons that corresponded to each of the three repeat types. Type I

and II repeats are each encoded by single exons; for the most part, type III

repeats are each encoded by a pair of exons. Expression of this pre-mRNA

features a single transcriptional start and a single polyadenylation site (Patel et

al., 1987). In addition, the rat FN pre-mRNA is alternatively spliced in at least

three regions (Figure 1-3B). Two "cassette" exons (EIIIA and EHIB) are

optionally spliced into the mRNA; each of these exons encodes a single type III

repeat. The third region, termed the V region, exhibits differential selection

among three 3' splice sites: differential splicing here produces segments of 120,

95 or 0 amino acids in this region of the FN molecule.

Alternative splicing of the fibronectin gene was first documented in the

V region based upon sequences of FN cDNAs isolated from rat liver and S1

analyses of liver mRNA; the existence of at least three fibronectin mRNAs was

inferred from these data. Isolation of rat genomic clones confirmed that these

mRNAs were generated from a single gene (Schwarzbauer et al., 1983; Tamkun

et al., 1984). This region has been termed the mCS region in the human gene;

interestingly, the splicing of the human IIICS region generates forms of FN

distinct from those known to exist in rat; these novel forms arise from usage of

an extra 5' splice site within the IIICS segment (Kornblihtt et al., 1985). The

chicken and Xenopus FN genes also exhibit patterns of differential V splicing

that vary slightly from those exhibited by the rat and human genes. Splicing of

this region in the chicken gene results in partial or complete V segment

inclusion; however, complete omission of V has not been observed (Norton

and Hynes, 1987). Splicing in the Xenopus gene results in complete inclusion or

omission of V, but not partial inclusion (DeSimone et al., 1992). Therefore,

although the presence of V region differential splicing is conserved among
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Figure 1-3.

Alternative splicing in the rat fibronectin gene

A. Schematic of the domain structure of full length rat fibronectin, showing the

three types of homology and alternatively spliced segments. Regions of the

protein that interact with components of the extracellular matrix or plasma

are shown above the diagram; segments below the main diagram indicate

the heterogeneity within that segment generated via alternative splicing

(carats between domains indicate omitted segments; adapted from Hynes,

1990).

B. Alternative splicing patterns in the fibronectin gene. Exon-intron structure

of the three alternatively spliced regions are schematically illustrated;

drawings are not to scale. Upstream and downstream exons are labeled;

other conventions are as in Figure 1-1. For EIIB and EIA, possible patterns

are shown both above and below each diagram. For the V region, possible

patterns generated in the rat gene are indicated above the exon/intron

structure, while an extra splice that occurs in the human gene is shown

beneath.
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species, the precise patterns exhibit a degree of variability among the

organisms studied.

The V segment contains a segment that is important for adhesion to

some cell types. Addition of peptides containing parts of the V segment have

been shown to inhibit the adhesion of certain cells, presumably by competing

for cell surface receptors that bind these segments. One such peptide occurs

within the N-terminal portion of the V segment (Humphries et al., 1987). This

segment (also called CS-i) has been shown to be the binding site for the ca4p1

integrin, which is found on cells of lymphoid origin (Guan and Hynes, 1990;

Wayner et al., 1990). Another cell binding site, CS-5, appears to be present in

the C-terminal portion of the V segment (Humphries et al., 1986, 1987).

Therefore differential V splicing has a functional consequence with respect to

FN-mediated cell adhesion. In rat liver, the FN mRNAs encoding the V95 and

V120 forms comprise about 50% of the FN mRNA; the remainder encodes the

VO form (Schwarzbauer et al., 1983, 1985). In other tissues, V120 and V95

forms predominate (Tamkun and Hynes, 1983; Paul et al., 1986; Pagani et al.,

1991). Thus V region alternative splicing is cell-type-specific. These findings

suggest that the optional inclusion of the CS-1 and CS- 5 segments via cell-

type-specific alternative splicing is important for the proper physiological

function of FN.

The EIIIA and EIIIB segments each encode a single structural type III

structural repeat unit that is either included into or excluded from FN mRNAs.

With the exception of the III-9 repeat, all the other type III homologies in the rat

FN gene are encoded by two exons each. The differential inclusion of these

exons was inferred from the sequence comparison of different cDNA isolates

(Kornblihtt et al., 1984; Schwarzbauer et al., 1987; Zardi et al., 1987).
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Alternative splicing of EIIIA and EIIIB is also cell-type-specific. Neither

of these exons are present in liver FN mRNAs from rat, chicken or Xenopus,

whereas these segments are found in a high percentage of FN mRNAs from

early embryos (Schwarzbauer et al., 1987; Norton and Hynes, 1987; DeSimone

et al., 1992). In fact, differences in biochemical behaviour between soluble

plasma fibronectin (which is synthesized by hepatocytes) and cellular

fibronectin (an insoluble fibrillar form found in the extracellular matrix and on

cells in tissue culture) can in part be accounted for by the differential inclusion

of these exons as well as of the V segment (Paul et al., 1986). In many

instances, inclusion of EIIIA and EIIIB have been found to correlate, with EIIIA

often being present at higher levels than EHIB (ffrench-Constant et al., 1989;

Magnuson et al., 1991; Pagani et al., 1991), suggesting that these exons are co-

regulated. However, certain exceptions suggest that EIIIA and EIIB regulation

can occur independently, as cartilage contains EIIIA-/EIIB+ FN whereas some

blood vessel walls contain FN that is EIIIA +/ElIB - (Bennett et al., 1991;

ffrench-Constant et al., 1989).

In contrast to the V segment, potential functions for the EIIIA and EIIIB

exons have not yet been clearly identified. The EIIIB segment has been

thought to be associated with cellular transformation (Carnemolla et al., 1989)

but other studies have failed to corroborate this finding (Schwarzbauer et al.,

1987; Norton et al., 1987; Magnuson et al., 1991). As mentioned above, EIIIA

and EIB are abundant in early embryos; in addition, in situ hybridization

studies using segment-specific probes have indicated that EIIIB expression is

elevated at locations of active cell migration and proliferation in the chicken

embryo (ffrench-Constant and Hynes, 1989) and that both EIIIA and EIIIB

levels rise at sites of wound-healing in rats (ffrench-Constant et al., 1989). In

addition, EIIIA and EIIIB are responsive to growth factors applied to cells in
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tissue culture (Magnuson et al., 1991; Borsi et al., 1990). Therefore EIIA and

EIJB may play a role in modulating FN-mediated cell migration and/or

proliferation.

However, it is apparent from studies of recombinantly expressed FN

isoforms that all forms of FN are capable of promoting cell adhesion, spreading

and migration (Guan et al., 1990). EIIA and EIB have been thought to play a

role in fibrillogenesis; however, only minor differences have been detected

among fibronectin isoforms in their ability to be retained by cells via

incorporation into matrix (Guan et al., 1990; Mardon et al., 1992). It should be

noted that differences among FN isoforms may have been masked by (i) the

presence of the cell-binding site in the III-10 segment, which is a major

determinant for adhesion for many tissue culture cell lines and (ii) the other

domains in FN that interact with extracellular matrix components such as

collagen or heparin. In addition, differences among recombinant FN isoforms

might have gone unnoticed if EIIIA- or EIIIB- specific posttranslational

modifications were not present in the recombinant FNs. The amino acid

sequence of the EIIIB exon is very highly conserved among the warmblooded

animals (96% versus 81% overall between rat and chicken; Norton and Hynes,

1987), suggesting some importance of the EIIIB sequence in function and/or

regulation. To date, however, EIIIA and EIIIB functions remain unknown.

The control of alternative splicing in the fibronectin pre-mRNA

The regulation of fibronectin alternative splicing has been investigated

to some extent by a number of groups. A minigene system has been

established for studying the splicing of the human IIICS region; in this systems,

a minigene containing the IIICS region and flanking regions was found to

exhibit all the expected spliced patterns when transfected into HeLa cells
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(Mardon and Sebastio, 1992). Th cis-acting sequences that determine splice site

selection have not yet been determined in this system.

Regulation of the EIIIA exon (also known as ED-A, ED1 and EDIA) has

proceeded via in vivo and in vitro studies. A minigene containing the human

EIlA region was found exhibit both splice choices (inclusion and skipping)

when transfected into HeLa cells (Vibe-Pederson et al., 1984). One particular

requirement for the recognition of the ElA exon in this system appears to

reside within the exon itself, as the removal or inversion of a sequence within

EILA resulted in the failure to splice this exon into mRNA (exon-skipping).

Therefore exon sequences contributed in a positive manner for EIIIA inclusion

splicing (Mardon et al., 1987). In vitro splicing studies that used EIIIA-

containing substrates have identified a purine-rich sequence within this exon

that was important for utilization of the human EIIIA 3'SS in HeLa cell nuclear

extracts (Lavigueur et al., 1993). The elements that regulate the cell-specific

expression of EIIIA have not yet been characterized; although it is possible that

the purine-rich element within EIIIA acts in a cell-specific manner, it is not

known whether this element possesses differential activity amongcell types.

Studies have also been carried out using minigenes carrying the human

EIIIB exon (also known as ED-B, ED2 and EDIIIB). These studies have

indicated that a genomic segment carrying only EIIB and its immediately

flanking exons was capable of being alternatively spliced when transfected into

HeLa cells (Paolella et al., 1988). The regulated inclusion of EIIIB in this

genomic segment appeared to correlate with that of endogenously expressed

FN in various human cell strains and lines. These studies also suggested that

low EIIIB levels was not determined by preferential cytoplasmic degradation of

EIIIB-containing mRNAs, as the relative proportions of EIIIB + and EIIIB-
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mRNAs did not change following actinomycin D treatment (Barone et al.,

1989).

The EIIIB exon 3'SS exhibits a number of interesting features. Using rat

derived substrates, the splicing of the intron upstream of EIIB in HeLa nuclear

extracts was found to be inefficient under standard (<3 mM MgCl 2) conditions

but was detectable at high divalent cation concentrations (>5 mM MgCl 2).

Splicing was found to utilize three branchpoint residues located 62, 70 and 76

bases upstream of the 3'AG. In addition, the pyrimidine tract separating the

3'AG and these branchpoints is also unusually long (55-60 bases). Therefore

this 3'SS shares a number of features with a number of other alternatively

spliced exons (Norton and Hynes, 1990). UV-crosslinking assays (using a

shortened III-7b-EIIIB intron as a substrate) revealed that different nuclear

extract proteins bound to EIIIB 3'SS RNA in a Mg2+-dependent fashion. At low

MgC12 concentrations (conditions restrictive for splicing), a 56/58K doublet

appeared to bind this intron, whereas a 62K protein bound at higher

(permissive) MgC12 concentrations. Biochemical fractionation and

immunoprecipitation analyses suggested that the 56/58K doublet

corresponded to hnRNP I (PTB) and that the 62K protein was the splicing

factor U2AF. Therefore the splicing of the intron preceding EIIIB may depend

upon a competition between U2AF and PTB for sites in the extended

pyrimidine tract of the EIB 3'SS, a model analogous to that proposed for the

regulation of tra pre-mRNA splicing by Sex-lethal (Norton and Hynes, 1993;

Valcarcel et al., 1993). This model remains to be supported in vivo.

It would appear that a large number of parameters may govern

alternative splicing in a particular gene. It is also apparent that some of the

current issues regarding the nature of vertebrate alternative splicing regulation

may require extensive in vivo studies, since it is not clear whether any in vitro
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effects can be extended to in vivo situations. The EHIB exon provides a number

of attractive features for study as a model system for the study of regulated

splicing. The ETIB exon is tightly regulated in vivo; therefore an analysis of

EHIB splicing may reveal helpful clues regarding the exact nature of cell-type-

specific regulation in vertebrates. In addition, given that this exon has some

features similar to those exhibited by other alternative exons, an examination

of these features and how they participate in the regulation of EIIIB splicing

may prove informative. Furthermore, this exon is very highly conserved

among homeotherms, suggesting an important function for this segment.

Given that EIIIB may participate in cell migration or proliferation, the

characterization of EIIIB regulation may contribute some valuable insights

regarding how cell migration and proliferation might be controlled at the

posttranscriptional level.

This thesis describes an extensive analysis of the alternative splicing of

the EIIIB exon in the rat fibronectin gene. It is evident from many studies that

a number of sequence parameters must collaborate to create a situation in

which differential splicing is possible. The experiments in Chapter Two

address this issue with regard to EIIIB specifically. Another question concerns

how the cell-type-specific regulation of EIIIB splicing is mediated. The

regulation of EIIIB presumably occurs through the action of trans-acting factors

that act in a cell-type-specific fashion, probably by interacting with specific cis-

elements that are present in the EIIIB region. The experiments described in

Chapter Three identify a repeated hexanucleotide element that exhibits cell-

type-specific characteristics. This element has features that distinguish it from

other vertebrate elements identified to date and furthermore may regulate

splicing in genes other than that encoding FN, an issue that is addressed in part

in Chapter Four. This element may therefore be of significance with respect to
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the regulation of alternative splicing in general. Finally, experiments described

in Chapter Five comprise a biochemical analysis that identifies factors that may

be involved in the regulation of alternative splicing. These factors are

sequence-specific RNA-binding proteins that will hopefully provide

mechanistic insights into the regulation of alternative splicing in the FN gene

and possibly in other mammalian genes.
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Chapter Two:

Elements Regulating An Alternatively Spliced Exon

In The Rat Fibronectin Gene
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ABSTRACT

We have investigated the regulation of splicing of one of the

alternatively spliced exons in the rat fibronectin gene, the EHIB exon. This 273

nucleotide exon is excluded by some cells and included to varying degrees by

others. We find that EIIB is intrinsically poorly spliced and that both its exon

sequences and splice sites contribute to its poor recognition. Therefore, cells

which recognize the EImB exon must have mechanisms for improving its

splicing. Furthermore, in order for EIIIB to be regulated, a balance must exist

between the EIIIB 5' splice site and that of the exon upstream. Although the

intron upstream of EIIIB does not appear to play an essential role in the

recognition of EIIIB for splicing, the intron downstream contains sequence

elements which can promote EIIIB recognition in a cell-type-specific fashion.

These elements are located an unusually long distance from the exon they

regulate, more than 518 nucleotides downstream from EIIIB, and may

represent a novel mode of exon regulation.
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INTRODUCTION

It is evident, from many studies of alternative splice site selection, that a

wide variety of potential mechanisms must be considered in analyzing

alternative splicing (for reviews, see Smith et al., 1989a; McKeown, 1992, and

references therein). In addition to the intrinsic quality of the splice sites

themselves (for reviews, see Moore et al., 1993; Green, 1991), splice site

selection may also depend upon factors such as exon sequences, pre-mRNA

secondary structure, relative proximity of alternative splice sites and possibly

also exon size. Therefore a multiplicity of determinants can influence splice

site selection in profound and often unpredictable ways.

Considerable insight into the regulation of splicing has been gained

from studies of genes identified in Drosophila melanogaster, where examples of

both positive and negative regulation can be found (for reviews, see Mattox et

al., 1992; Maniatis, 1992; McKeown, 1992). In contrast, the characterization of

mammalian regulated alternative splicing has been more elusive. A directed

mutational analysis of regulation can be a complex task, particularly since

splice site choice can be affected by numerous contextual parameters;

mutations which affect any of these can abolish regulated splicing without

necessarily affecting specific regulatory elements. Nevertheless, candidate cell-

type-specific elements have been identified in genes such as those encoding

calcitonin/CGRP (Emeson et al., 1989), c-src (Black, 1992) and N-CAM (Tacke

and Goridis, 1991). The trans-acting factors regulating these alternative splice

choices have not yet been identified. Interestingly, recent biochemical studies

have implicated general splicing factors in the regulation of alternative splicing

(Ge and Manley, 1990; Mayeda and Krainer, 1992; Zahler et al., 1992); however,
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it is not known yet whether these in vitro effects can be extended to in vivo

situations.

In the FN gene, the two alternatively spliced exons EIIIA and EIIIB each

encode a type III structural repeat in FN and exhibit exon-skipping; a third

region in this gene displays species-specific patterns of differential splice site

selection. EIIIA and EIIIB are regulated in a cell type-specific and

developmental fashion; for example, adult liver FN mRNAs lack both EIIIA

and EIIIB, whereas all early embryonic FN mRNAs contain both exons. The

appearance of EIIIB often correlates with that of EIIIA, with some exceptions

(for review, See Hynes, 1990). Of the FN type III repeats, EIiB (also called

EDB) is one of the most highly conserved among species and appears in fewer

tissues than EIIIA, suggesting that it is more strictly regulated. Previous

studies (Norton and Hynes, 1990) have shown that: (i) E1IB is mostly skipped

in vitro, (ii) in vitro splicing of the intron preceding EIB requires unusually

high Mg2+ concentrations, (iii) this intron utilizes three lariat branchpoints 62,

70 and 76 nucleotides (nt) upstream from the 3' splice site, and (iv) the

pyrimidine-rich stretch preceding this 3' splice site is relatively long (55-60 nt).

Either of these latter two features are shared by other alternative 3' splice sites

(Helfman and Ricci, 1989; Gattoni et al., 1988; Smith and Nadal-Ginard, 1989;

Goux-Pelletan et al., 1990). A human minigene containing EIIIB and its

flanking exons is alternatively spliced in a cell-type-specific fashion (Barone et

al., 1989), indicating that regulatory elements lie in this three-exon region.

In order to study EIIIB regulation, we have transfected rat EIIIB-

containing minigenes into cell lines which recognize EIIIB to varying extents.

Our results indicate that EIIIB is a poor exon as a consequence of suboptimal

splice sites and exon sequences. Proper regulation requires a balance in 5'

splice site strength between EIIIB and the upstream exon. The unusual EIIIB 3'
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splice site was important for exon repression but was not essential for cell-

type-specific EIIIB regulation. In contrast, a region in the intron downstream

of EIIIB is required for EIIIB recognition; a subsection of this region is

particularly important for cell-type-specific activation of EHIB. This latter

element, which we term the ICR (intronic control region), lies at least 519 nt

from EIIIB. The distant location of the ICR relative to EIIIB raises interesting

questions regarding the possible function of this novel cis-element.

67



RESULTS

A minigene containing EIIIB exhibits regulated alternative splicing

We used three-exon minigenes to study regulated EIIIB alternative

splicing. The primary fibronectin minigene in this study is called 7iBi89

(Figure 2-1A). This 3.1 kb minigene is derived from genomic and cDNA clones

of the rat FN gene. The first and second exons of 7iBi89 correspond to exons

III-7b and EHIB, respectively; the third exon is a cDNA composite of exons III-

8a, III-8b and part of III-9. The introns upstream (IVS1) and downstream

(IVS2) of EIIIB are 1296 and 1071 nucleotides (nt) long respectively.

Transcription was driven by a modified human P-actin promoter and was

terminated by the human growth hormone polyA signal. Two vectors with

these expression signals were used (Figure 2-1B). The vector for transient

transfections (pBAGH.Sv) contains an SV40 origin of replication which

facilitated expression in COS cells. The vector for generating stably expressing

cell populations (pBAGH) did not contain an origin, since the SV40

origin/enhancer downregulated expression in F9 teratocarcinoma cells

(Gorman et al., 1985).

We carried out RNase protection analyses to demonstrate correct

splicing of the transfected 7iBi89 minigene. A uniformly labeled antisense

RNA probe was transcribed from a form of 7iBi89 with intronic deletions

(Figure 2-1A). Protection of this probe by correctly spliced RNA results in

bands corresponding to spliced exons. Constitutive exons are represented at

stoichiometric intensities (after normalizing for radiolabel content); in contrast,

alternative exons are represented in substoichiometric proportions. Since this

probe also detects endogenous FN mRNA, this RNase assay was used only on

RNA from transfections of COS and 293 cells, which did not express significant
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amounts of endogenous FN message. As Figure 2-2 illustrates, spliced EILmB-

and EIIIB+ minigene RNAs represent the major bands in the RNase protection

analysis. 293 cells exhibit a low but significant amount of EIIIB inclusion; COS

cells skip EIIIB completely. Therefore the 7iBi89 transcript is spliced correctly

and efficiently in cell types which exhibit one or both EIB splice choices.

In order to establish that 7iBi89 exhibited regulated alternative splicing,

transfections of a variety of mammalian cell lines were analyzed by S1 analysis,

using 5'-end-labelled cDNA probes which overlapped EHIB. In order to

compare endogenous and minigene EIB splicing, we used two probes: (i) E,

for analysis of endogenous rat (or mouse) FN mRNA from untransfected

rodent cell lines, and (ii) B-89, an S1 probe which specifically detects minigene

RNA. Analyses of total RNA from untransfected, transiently- or stably-

transfected cells are compared in Figures 2-3 and 2-4 and summarized in Table

2-1.

Using probe E (Figure 2-3), rodent lines were found to exhibit varying

degrees of endogenous EJEB inclusion; of these, Rat-I cells exhibited very little

inclusion (lane 1, EIIIB+/EIIIB- ratio of ca. 0.1), whereas undifferentiated F9

teratocarcinoma cells exhibited the most (lane 3, ratio of ca. 8). NIH3T3 and

differentiated F9 cells (lanes 2 and 4) showed intermediate EIIIB inclusion.

Analyses of 7iBi89 expression (using probe B-89; Figure 2-4) showed that

minigene EIIIB alternative splicing paralleled endogenous FN splicing.

Overall, minigene EIIIB inclusion was less compared to endogenous FN,

particularly when transient transfections were carried out; however, the overall

correlation with endogenous EIIIB splicing was still evident (Table 2-1).

Of the non-rodent lines, COS cells expressed the lowest proportion of

minigene EIIIB inclusion (Figure 2-4; lane 8), whereas 293 cells spliced EIIIB

into mRNA at the highest relative level (lanes 11 and 12; Table 2-1). Other
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Figure 2-1.

Construction of a three-exon rat fibronectin EIIIB minigene.

A. The EHIB region of the rat FN gene and 7iBi89, the 3.1 kb minigene derived

from this region. Exons and introns are denoted by labelled rectangles and

lines respectively. Alternative splice patterns are denoted by dashed lines.

Promoter and 3' polyA signals of 7iBi89 are shown. Also shown is the

RNase protection probe used in Figure 2-2, as well as the sizes of anticipated

products arising from protection by spliced exons.

B. Expression vectors pBAGH and pBAGH.Sv used in this study. Minigene

inserts were placed at the BamHI cloning site in these plasmids (Arrow, start

of transcription; "pA", poly(A) site).
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Figure 2-2.

A minigene containing EIIIB exhibits alternative splicing.

RNase protection analysis of total RNA from COS and 293 cells transiently

transfected with 7iBi89 in the expression vector pBAGH.Sv. RNAs from

untransfected (-) or transfected (+) cells were analyzed using a uniformly

labeled, antisense RNase protection probe (shown in Figure 2-1). An aliquot

of probe was run alongside this analysis (lane "Probe"); the probe band is

only faintly visible at this exposure. Molecular weight markers (lane M)

were end-labeled pBR322/MspI. Labeled arrowheads show positions of

undigested probe ("probe") and products from protection by correctly

spliced 7iBi89 exons. Asterisks show products protected by unspliced

RNAs. One of these latter products (triangle) is overrepresented; this

probably reflects the infrequent use (<3%) of a cryptic 5' splice site within

IVS1.
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Figure 2-3.

Endogenous alternative splicing is cell-type-specific.

S1 analysis of EIIIB alternative splicing of endogenous FN mRNA in rodent cell

lines. The structure and size of 5' end-labeled probe E (which detects

endogenous rodent FN mRNA) is shown below the gel (wavy line, vector

sequence; black and stippled rectangles, exons EIIIB and III-8a/8b/9

respectively). S1 products are labeled by arrowheads alongside the gel

(undigested probe, EIIIB+, EIIIB-). Up to 35 micrograms of total RNA (from

cell lines indicated above each lane) were analyzed. yRNA, control yeast

RNA; Rat-1 a rat fibroblast line; 3T3, murine NIH3T3 cells; F9

undifferentiated murine F9 cells; F9diff, F9 cells treated with retinoic acid

and dibutyryl cyclic AMP for 96 hr; M, pBR322/MspI markers).
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Figure 2-4.

Minigene alternative splicing is cell-type-specific.

S1 nuclease protection analyses of EIIIB splicing of the 7iBi89 minigene. Probe

B89 contains the same cDNA sequences as does probe E (see Figure 2-3); its

labeled 5' end lies in expression vector sequences and therefore does not

detect endogenous FN mRNA. Results from transfections of rodent and

non-rodent cell lines are shown. Cell lines and transfection methods are

indicated above each lane (Ctrl control untransfected cells; Trans,

transiently transfected cells using expression vector pBAGH.Sv; Stab, stably

transfected cell populations using vector pBAGH; other conventions are as

in Figure 2-3).
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Table 2-1.
Endogenous and minigene alternative splicing of EIIIB: a comparison

Values represent EIIIB + /E HI B - ratios and varied by 10% between experiments.

(n.t. = not tested)
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Cell line Endogenous 7iBi89 7iBi89
FN mRNA (Transient) (Stable)

Rat-1 0.1 0.03 0.03

NIH3T3 1 0.05 0.2

F9 (diff) 0.9 0.1-0.2 0.1

F9 8 0.4 0.4

COS n.t. 0.008 n.t.

HeLa n.t. 0.03 0.03

293 n.t. 0.08 0.2
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studies have shown that human EIIIB (EDB) is found in 6-10% of total FN

message in HeLa cells (Barone et al., 1989); this value compares well with

7iBi89 EIIIB inclusion in HeLa cells (about 3%), given that minigene values

were lower than endogenous. We conclude that the 2.8 kb which surrounds

EIIIB in 7iBi89 is sufficient to direct cell-type-specific EHIB inclusion in a

relatively faithful manner.

EIIIB is skipped in a heterologous context

We initially looked for elements which prevented constitutive EIIIB

inclusion. Segments of 7iBi89 were replaced with analogous regions from a

separate FN minigene with a constitutive internal exon, 8i9i10 (Figure 2-5),

derived from a region of the rat FN gene containing the exon III-9. As the only

constitutive FN type III repeat encoded by a single 270 nt exon (Schwarzbauer

et al., 1987), III-9 seemed an appropriate non-alternatively spliced counterpart

to EIIIB. When 8i9i10 was expressed in these cell lines, III-9 was spliced into

more than 98% of the mRNA (Figure 2-7, lanes 19-21).

Three-exon chimeric minigenes were constructed as shown in Figure 2-

5. With the exceptions of SW1 and SW2, these were named by chimera

junction position (L, M,or R for left, middle or right of the central exon as

pictured) and were numbered 1 or 2 depending upon whether the 5' segment

of the chimera was derived from 7iBi89 (e.g., L1) or 8i9i10 (e.g., L2). Chimeras

were made as perfect reciprocal pairs except for L and L2: a 123 bp BstEII-

BstEII segment of IVS1 in 7iBi89 (between the two BstEII sites in Figure 3A)

was not present in either L or L2; however, deletion of this fragment

(minigene LC1) had no effect on EIIIB splicing (see below). Chimeras were

transiently transfected into COS, 293 and F9 cells; these lines exhibited zero,

moderate and high EIIIB inclusion respectively. To analyze transfectant RNAs,
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cDNAs containing the second and third exons of each chimera were used as 5'

end-labelled Si probes similar to those shown in Figure 2-4. Figures 2-6 and 2-

7 shows the SI results; Figure 2-5 provides a summary.

Since 7iBi89 exhibited complete EIEB-skipping in COS cells, we used

data from these cells to identify regions of 7iBi89 sufficient to direct exon-

skipping. All minigenes which exhibited complete exon-skipping contained a

segment of 7iBi89 encompassing the EIIIB exon; in contrast, minigenes

containing exon Im-9 exhibited essentially complete exon inclusion. Chimera

M2 (where the 5' half of 7iBi89 was replaced by 8i9i10 sequences) exhibited

intermediate inclusion of its 259 nt hybrid exon. The reciprocal chimera (M1)

exhibited complete inclusion of its composite 285 nt exon. Therefore, the

sequences which are responsible for making EIIB a non-constitutive exon are

within and/or immediately local to EHIB in a 590 nt segment; the 3' half of this

segment contributes more than the 5' half in this regard.

EIIIB has suboptimal splice sites and exon sequences

Based on the above results, we hypothesized that poor splice sites

and/or exon sequences incompatible with splicing contributed to EIIIB

insufficiency. This was tested by mutation of the EIB splice sites or EHIB

exon sequences (Figure 2-8A). The mutation Ad3 replaced the last 78 nt of

IVS1 with the last 39 nt of the adenovirus L1-L2 intron. The 5AG mutation

changed the fifth base of IVS2 from A to G (CGG/GTGAAT to

CGG/GTGAGT), improving the fit of the EIIIB 5' splice site to the consensus.

The B:9 mutation precisely replaced EIIIB (273 nt) exon with III-9 (270 nt),

leaving intron and splice site sequences unchanged. Mutations were made in

7iBi89dBs a version of 7iBi89 modified to simplify mutagenesis. 7iBi89dBs

behaved exactly like 7iBi89 in all the cell lines that were tested.
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Figure 2-5.

Chimera analysis of EIIIB splicing: contructs, probes and summary.

Schematic representation of minigene chimeras containing parts from 7iBi89

(black rectangles) and a minigene containing the constitutive III-9 exon,

8i9i10 (white rectangles). Exons and introns are denoted respectively by

wide and narrow rectangles. Restriction sites used for making chimera

junctions are indicated (Bst BstEII; Barn, BamHI; Bgl BglI; Hind, HindIII;

Bsm, BsmI; Pst, PstI). Also shown is a variant of 7iBi89, LC1, which is

deleted for a 123 nucleotide BstEII-BstEII segment missing from chimeras L1

and L2. Each minigene is shown along with its S1 probe (probes consisted of

the second and third exons of the minigene being analyzed, analogous to

those used in Figure 2-4). A summary of the results from Figures 2-6 and 2-7

is shown; numerical values represent exon+/exon- ratios (N, ratio>50; OUT,

ratio<0.02).
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Figure 2-6.

Chimera analysis of EIIIB splicing, Part A:

Analysis of minigenes containing the 3' exon of 7iBi89.

S1 analyses of total RNA from untransfected cells (Ctrl) or from cells

expressing each of the indicated constructs. Arrows indicate bands

corresponding to undigested probe (probe) and to protection by spliced

RNAs either containing (Exon+) or missing (Exon-) the middle exon. Data

from transiently-expressing COS, 293 and F9 cells are shown (indicated

above each lane) for minigenes 7iBi89, LC1, L2, M2, R2 and SW2. When

normalized to co-transfected pSV2neo plasmid, minigenes containing exon

lII-7b expressed about five-fold lower steady-state levels of spliced RNA

than those which did not; however, transfection of the highly-expressing

minigenes under conditions where expression was ten-fold lower yielded

identical results (see Experimental Procedures; data not shown). Exposures

for minigenes 7iBi89, LC1 and SW2 were approximately five times longer

than those for minigenes L2, M2 and R2 (except for F9 exposures for 7iBi89,

LC1, L2, M2 and R2, which were for similar durations).
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Figure 2-7.

Chimera analysis of EIIIB splicing, Part B:

S1 analysis of minigenes containing the 3' exon of 8i9i10.

S1 analyses of total RNA from untransfected cells (Ctrl) or from cells

expressing each of the indicated constructs. Conventions are as in Figure 2-

6. Data from transiently-expressing COS, 293 and F9 cells are shown

(indicated above each lane) for minigenes 8i9i10, L1, M1, R1 and SW1.

Exposures for minigenes L1, Mi and R1 were approximately five times

longer than those for 8i9i10 and SW1. Numbering of these lanes continues

from Figure 2-6.
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Figure 2-8.

Mutations made at the EIIIB splice sites and within exon sequences.

A. The 7iBi89dBs minigene is shown (conventions as in Figure 2-5) along with

the splice site and exon changes made. 7iBi89dBs is a version of 7iBi89 in

which one BstEII site was destroyed; this change did not affect regulated

EIIIB splicing but facilitated mutant construction. In Ad3, the 78 nucleotides

(nt) immediately upstream of EHIB were deleted and replaced by 39 nt from

the 3' splice site of the first intron from the adenovirus late leader transcript.

In 5AG, the EIIIB 5' splice site was mutated from CGG/GTGAAT to

CGG/GTGAGT (slash indicates exon-intron boundary), improving this site's

fit to consensus. The B:9 mutation precisely replaces the entire 273 nt EIIB

exon with the 270 nt III-9 exon; B:9 does not alter intron, 3' or 5' splice site

sequences. The analyses of these minigenes are shown in Figure 2-9.

B. S1 analysis of minigenes in which EIIIB splice site mutations or exon

alterations were made (diagrammed in Figure 2-8). 7iBi89dBs and derived

mutant minigenes (in pBAGH.Sv) were transfected transiently into COS

cells; total RNA was analyzed using probes B-89 (for 7iBi89dBs, Ad3' and

5AG) and 9-89 (for B:9). Labeling conventions are as in Figure 2-6. The faint

bands marked by an asterisk in the [5AG] and [Ad3, 5AG] lanes most

probably represent cryptic 3' splice sites within EIIIB; these sites are used at

a very low level in the unmutated 7iBi89 minigene but are more visible in

constructs containing 5AG.
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As shown by S1 analyses of COS transient transfections (Figure 2-8B),

each of the test mutations was found to increase EIIIB inclusion (normally less

than 1%) to near maximal levels (Ad3, 85%; 5AG, 90%; Ad3,5AG double

mutant, ca. 95%; B:9 substitution, >98%). The 5AG and B:9 mutations had

similar effects in other cell lines (not shown). We conclude that the inefficiency

of EIIIB usage in COS cells is due to a combination of poor splice sites and

exonic sequences which either repress, or are insufficient for, EIIIB recognition.

The EIIIB exon is not regulated in a heterologous context

If the sequences sufficient for EIIB inclusion were local to EIIIB, then

one would expect that chimeras L2, R1 and SW1 (which skipped EIIIB in COS

cells) would exhibit some EHIB inclusion in 293 and F9 cells. Surprisingly, this

was not the case, as L2, R1 and SW1 expressed predominantly EIIB-skipping

patterns in all three cell types (Figure 2-5). Versions of chimeras L2 and R1

which contained more 7iBi89 intron sequences also skipped EIIIB in all cell

types (data not shown); therefore additional intron sequences alone were

insufficient for EIIIB recognition in EIIIB-positive cells. We wished to address

more specifically the requirements for appropriate EIIIB regulation.

A balance between flanking and internal 5' splice sites is necessary for

regulated EIIIB inclusion

We focused upon the region surrounding the exon upstream of EIIIB

(exon III-7b; region A in Figure 2-9). Substitution of region A with analogous

sequences from 8i9i10 (chimera L2) essentially abolished EIIIB inclusion in all

cell types (Figure 2-10, lanes 1-3 and 7-10). In contrast, cell-type-specific EIIIB

inclusion was not abolished when region A was replaced by the 5' splice site

region from the human immunodeficiency virus tat intron (TatB; Figure 2-10,
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lanes 4-6). EIIIB+ /E IIIB- ratios for TatB correlated well with those for 7iBi89,

with EMIIB usage being even higher than in 7iBi89 in EIIIB-positive cells.

It was surprising that sequences from HIV allowed regulated EIIIB

splicing whereas those from 8i9i10 did not. It was possible that the lI-8b 5'

splice site was more efficiently used than those of either mI-7b or tat. If this

were the case, then in chimera L2 the 5' splice site of EIIIB could have been

outcompeted by a stronger one from III-8b, resulting in EHIB-skipping in all

cells even if regulatory elements were left intact. Consistent with this

hypothesis, the III-8b site matches the consensus better than does III-7b (III-8b,

CAG/GUGAGC; Im-7b, CAG/GUAAUA; consensus, MAG/GURAGU).

If this hypothesis were true, then improving EIIIB recognition should

restore regulated EIIIB inclusion in L2. To test this, we put the mutation 5AG

into the L2 chimera (L2[5AG , illustrated in Figure 2-9). Transiently expressed

L2[5AG] was found to display enhanced EIIIB inclusion which correlated with

that of 7iBi89. Like 7iBi89, EIIIB inclusion in L2[5AG] was lowest in COS cells

and highest in F9 cells, although the correlation between L2[5AG] and 7iBi89

was not complete (e.g., 7iBi89 EIIIB inclusion was higher in 293 than in HeLa

cells, whereas L2[5AG] did not reflect this difference). This correlation was

evident within as well as between species (e.g., murine NIH3T3 and F9 cells).

These data suggest that a regulated state of EIIIB splicing is maintained in part

by a balanced competition between the exon III-7b and EIIIB 5' splice sites for

splicing to the exon III-8a 3' splice site.

Alteration of downstream sequences disrupts regulated EIIIB splicing

Chimera M2 appeared to exhibit exon inclusion patterns which also

correlated appropriately with those of 7iBi89 (Figures 2-5 and 2-9). In M2, only

the 3' 145 nucleotide portion of EIIIB and sequences downstream of EIIIB are
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derived from 7iBi89. The central exon of M2 is a 259 nucleotide hybrid exon

with a 3' splice site from the constitutive 1I-9 exon. The M2 exon, like the

improved EIIB exon in L2[5AG], competed effectively for inclusion at least

part of the time. Analyses of M2 transient expression is shown in Figure 2-10

and are compared with 7iBi89 and L2[5AG] in Figure 2-9. If the fold difference

between the F9 and COS exon+/exon - ratios is an index of the range of

differences among cell-types (i.e., the cell type-differential), then the F9/COS

cell-type-differentials for M2 and L2[5AG] are similar (11-fold each). Therefore

the upstream half of 7iBi89 is largely dispensable for cell-type-specific exon

regulation; this half includes the EIB 3' splice site and the 5' portion of the

EIIIB exon. Therefore regulatory elements are likely to reside in the 3' half of

7iBi89.

To test the contribution of sequences downstream of EIIIB, we made

chimera SW1[5AG], a derivative of SW1 that contains the 5AG mutation.

SW1 [5AG] resembles L2[5AG] but diverges at a point 234 nucleotides 3' of

EEIIB (Figure 2-9). Like L2[5AG] or M2, SW1[5AG] exhibited detectable levels

of EIIB inclusion in all cell types (Figure 2-11, lanes 23-26). However, unlike

L2[5AG] and M2, a clear trend in EIIIB inclusion among cell lines was not

apparent for SW1[5AG]. Although EHIB inclusion was still lowest in COS

cells, the F9/COS cell-type differential was significantly lower than those for

L2[5AG] or M2; moreover, EIIIB inclusion in F9 cells did not differ from the

other cell lines in a way which indicated properly regulated EIIIB splicing

(Figure 2-9). The contrast between L2[5AG] and SW1[5AG] patterns suggested

that the disruption of sequences downstream of EHIB curtails the cell-type-

specificity of EIIIB splicing even if EIIIB is competent for inclusion.
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Figure 2-9.

Cell-specific EIIIB inclusion requires balanced splice site competition

Part A: Minigene diagrams and summary.

Diagrams and transfection summary of minigenes which exhibited different

degrees of cell-specific central exon splicing. Conventions and chimeras L2,

M2 and SW1 are described in Figure 2-5. Region A of 7iBi89 was replaced

by the 5' splice site region from a construct containing the HIV-1 tat intron

(shaded), producing TatB. L2[5AG] and SW1[5AG] are versions of L2 and

SW1 that contain the 5AG mutation (described in Figure 2-8). All values

(except those denoted by asterisks) are derived from transient transfection

experiments (n.t., not tested). Asterisked values represent data from stable

transfections (for minigenes L2 and SW1, all values were less than 0.02

regardless of transfection protocol). Transient transfections were performed

at least in duplicate; standard deviations are shown in parentheses. Also

shown are fold differences in exon+/exon- ratios between F9 and COS cells;

the large deviation in the 7iBi89 F9/COS differential is due to the high

relative error of the extremely low COS value.
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Figure 2-10.

Cell-specific EIIIB inclusion requires balanced splice site competition

Part B: S1 analysis of minigenes TatB, L2, L2[5AG] and M2.

S1 analyses, using probe B-89. Figure conventions are as in Figure 2-6.

Indicated above each panel is the chimera being tested and the S1 probe for

that chimera. Cell lines are indicated above each lane; exposures were

adjusted to facilitate comparison between cell lines. For technical reasons,

transient expression of TatB was not feasible; therefore both stable and

transient transfections of L2 are shown in order to allow comparison

between L2 and TatB (stable) and between L2 and L2[5AG] (transient).

Asterisks mark bands representing cryptic 3' splice sites within EIIIB (seen

also in Figure 2-8); intensities of these bands tended to parallel the amount of

EIHB+ RNA present.
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Figure 2-11.

Cell-specific EIIIB inclusion requires balanced splice site competition

Part C: S1 analysis of minigenes SW1 and SW1[5AG].

S1 nuclease analyses, using probe B-10. Figure conventions are as in Figures 2-

7 and 2-10; lane numbering continues from Figure 2-10.
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Downstream intron sequences are required for EIIIB inclusion

To examine further the participation of downstream sequences in

differential cell type-specific exon regulation, various deletions in 7iBi89 were

examined for their effects upon cell-type-specific EHIB splicing. Figure 2-12

illustrates the 7iBi89 deletions and a summary; Figure 2-13 and 2-14 show S1

analyses of stable transfections of these variant minigenes in HeLa, 293 and F9

cells.

An extensive deletion in IVS1 (XE; Figure 2-12) did not alter EHIB

regulation significantly. Although EHIB inclusion is slightly reduced in 293

cells, inclusion in F9 cells is as high as for unaltered 7iBi89. A 100 nt deletion

within EIIIB (HB) activated EIIIB inclusion somewhat in all cell types; however,

differences among cell lines were unaffected. Therefore these sequences in

IVS1 and EIIIB have little influence upon EIIIB regulation. Similarly, deletions

within the 5' half of IVS2 (GL1, GR1, GR2) did not significantly affect ETIB

splicing, although they did slightly elevate EIIIB usage in 293 and F9 cells.

In contrast, deletions within or extending into the 3' portion of IVS2

(GR3, AL1, AL2, AL3, AR1, AR2a) displayed a markedly negative effect upon

EIIIB usage (Figure 2-12). This effect was observed only in cell types that

normally exhibited EMIB inclusion (293 and F9 cells); the EIB-skipping pattern

expressed by HeLa cells was unaltered. Therefore these deletions disrupted a

region required for EIIIB inclusion but not for EIB skipping. More extensive

deletions in this region appeared to have greater effects than smaller ones.

Deletion AL1 exhibits a moderate reduction in relative EIIB + levels in 293 and

F9 cells; longer deletions in this region (GA, GR3, AL2, AL3) almost completely

abolished EIIIB inclusion, as did deletions extending toward the 3' splice site of

exon EII-8a (AR1, AR2a). A point insertion of four nucleotides at an AflII site in

this region (dAfl) did not affect EIIIB inclusion, suggesting that the region
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required for EIIIB+ splicing is not continuous. Therefore EIIIB recognition

appears to be sensitive to gross deletions of certain sequences in IVS2. The

effects upon EHIB inclusion are not due simply to shortening of IVS2, since (i)

IVS2 deletions of similar size have different effects (compare GR2 versus ALl

and AR1) and (ii) restoration or extension of IVS2 length with heterologous

intron sequences did not restore EIIIB inclusion (compare GA, GA+SmAc and

GA+EH). These deletions are intronic; therefore it is unlikely that this effect on

EIIB inclusion is at the level of cytoplasmic RNA stability or transport. These

deletions define a region of IVS2 required for EIIIB recognition in EITIB-

positive cells (Figure 2-12). The 5' endpoint of the region containing these

elements lies between 445 and 689 nucleotides downstream of EIIIB; the 3'

endpoint of this region is undefined.

Disruption of IVS2 sequences attenuates cell-type-specific differences in

exon recognition

We focused attention upon this region in IVS2, as it represented

potential cis-sequences which promote EIIIB usage. If this region acts

nonspecifically, then its disruption should reduce EIIIB inclusion uniformly in

all cell types. Alternatively, if this region activates EIIIB usage in a cell-type-

specific fashion (e.g., if it contains targets for cellular factors that activate EIIIB)

then removal of this region should reduce EIiB recognition specifically in

EIRB-positive cells. It was impossible to distinguish between these two

possibilities by using the 7iBi89 minigene. Since this minigene already

exhibited undetectable levels of EIIIB inclusion in HeLa cells, any nonspecific

effects of IVS2 deletions would go unnoticed.

To distinguish between nonspecific and cell-type-specific EIIIB

activation, some of the IVS2 deletions shown in Figure 2-12 were transferred
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into the regulated chimeric minigene M2. Since M2 exhibits detectable exon

inclusion even in COS cells, any effect of IVS2 deletions upon differential

inclusion among cell types could be quantitated. We also tested additional

deletions in M2, designed to localize putative cis-elements further. Figure 2-15

shows the deletions made in M2 and histograms of the results; Figure 2-16

shows S1 analyses of some of these M2 variants after transient transfection into

COS, HeLa and F9 cells.

As mentioned previously, the IVS2 deletion GR2 slightly activated EHIB

inclusion in the minigene 7iBi89 (Figure 2-12); this deletion in M2 (M2GR2)

increased M2 exon recognition in all three cell lines (Figure 2-15). Relative to

M2, M2GR2 exhibits uniformly raised exon+ /exon- ratios; however, cell-type-

differentials for M2 and M2GR2 (as assessed by the fold difference between the

F9 and COS exon+ /exon- ratios) were similar, with M2GR2 exhibiting only a

modest increase in cell type-differential compared with M2. In contrast, other

IVS2 deletions reduced the F9/COS differential significantly. Deletions GR2a,

GR3b, GR3a, GR3, GA, GA+SmAc and AL2 reduced the F9/COS differential

by at least two-fold and, in one case, by as much as four-fold (M2AL2). The

reduction in cell type-differential was primarily due to a reduction of M2 exon

inclusion in F9 cells; inclusion in COS cells was relatively unaffected. Deletions

that reduced the F9/COS differential also attenuated the HeLa/COS

differential. In contrast, deletions ALl, AR1 and AR2a had little effect upon

M2 exon recognition, despite their marked effect in 7iBi89. None of these

deletions completely eliminated the F9/COS differential.

The deletions that reduced the F9/COS differential defined a 122 nt

region in IVS2, between 519 and 640 nt downstream of EIIIB (the 3' endpoint of

deletion GR2b and 5' endpoint of deletion ALl; Figure 2-15) which was

important for F9-specific (and, to a lesser extent, HeLa-specific) stimulation of
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M2 exon usage. We have designated this element the ICR (intronic control

region).
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Figure 2-12.

Diagrams of 7iBi89 minigene deletions and summary

The 7iBi89 minigene and its deletion variants are shown (conventions as in

Figure 2-5). Deleted areas are indicated by blank regions within each

minigene. Vertical dotted lines indicate sites used for generating IVS2

deletions: BglII (labeled G: GL, GR1, GR2, GR3) and AflII (labeled A: ALl,

AL2, AL3, AR1 and AR2a). Deletion GA deletes the 495 bp DNA segment

between the BglII and AflII sites; GA+SmAc and GA+EH are variants of GA

into which intronic fragments from other regions of the rat FN gene were

inserted (shown as stippled bars numbered as to their length); GA+SmAc

restores IVS2 to 1096 nucleotides; GA+EH expands IVS2 to 1704 nucleotides.

Deletions were made in 7iBi89/pBAGH and are drawn to scale; the 3'

endpoint of deletion AR2a lies 32 nt upstream of exon III-8a. Beside each

deletion is a semiquantitative indication of the EIIIB + /E II IB - ratio: -,

ratio<0.05; +, 0.05<ratio<0.15; ++, 0.15<ratio<0.3; +++, 0.3<ratio<0.5; ++++,

0.5 <ratio<0.8; +++++, ratio >0.8. The region of IVS2 required for EIIIB+

splicing is indicated below this diagram (black rectangle with undefined 3'

endpoint).
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Figure 2-13.

Deletion analysis of 7iBi89: HeLa and 293 cells.

S1 nuclease analyses of stably-transfected 7iBi89 deletion mutants. 35 gg

cytoplasmic RNA (HeLa) or 5 Ctg total RNA (293 cells) were analyzed with

the S1 probe B-89. Constructs (described in Figure 2-13) are indicated above

each lane; other figure conventions are as in Figure 2-4. Each cell line is

represented by a separate panel. Transient and stable transfections of 293

cells yielded similar results; in addition, normalization to cotransfected

pSV2neo showed no gross changes in steady state RNA levels between

constructs (data not shown but see Chapter Three, Figure 3-5).
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Figure 2-14.

Deletion analysis of 7iBi89: F9 cells.

S1 nuclease analyses of stably-transfected 7iBi89 deletion mutants. 35 ,gg of F9

cytoplasmic RNA from each stable transfectant was analyzed with the S1

probe B-89. Constructs (Figure 2-12) are indicated above each lane; other

figure conventions are as in Figure 2-4.
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Figure 2-15.

Deletion analysis of the M2 minigene: constructs and summary

Diagram of the M2 minigene and its deletion variants; diagram conventions

are as in Figure 2-12. Also shown are histogram representations of M2 exon

splicing (as exon+ /exon- ratios) in COS (white bars), HeLa (shaded bars) and

F9 cells (black bars). Values shown represent at least two independent

transient transfections; error bars indicate standard deviations. F9/COS

differentials for each M2 variant are also shown. The segment of IVS2 most

important for the F9/COS differential (the intronic control region or ICR), is

indicated below the minigene diagrams (shaded rectangle).
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Figure 2-16.

Deletion analysis of the M2 minigene: S1 analysis

S1 analyses of M2 deletion mutants. Probe B-89 was used for this assay. M2

variants were made in the vector pBAGH.Sv. Total RNA from transiently

transfected COS (5 gtg), HeLa (35 ,gg) and F9 cells (35 gg) were analyzed as

indicated. Other labeling conventions are as in Figures 2-13 and 2-14.
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DISCUSSION

Transfection of minigenes into different cell lines has enabled the

identification of certain cis-acting influences upon cell-type-specific alternative

splicing of the EHIB exon in the rat FN gene. A rat FN-derived EHIB minigene

expressed spliced EIB + and EIIIB- transcripts in proportions which correlated

with endogenous FN EHIB splicing. We asked a number of questions

regarding the requirements for EIIIB regulation in different cell types.

EIIIB is a poorly recognized exon

By replacing regions of the EIIIB minigene with analogous regions from

a constitutive exon-containing minigene, we were able to localize sequences

around EIIIB that are important in the exon-skipping event. Our results

suggest that EmIB is an intrinsically poor splicing substrate. The EIUB exon is

skipped even when placed between two heterologous exons; therefore EIB,

within a 590-nucleotide segment, is not recognized in a heterologous context.

Inefficient EIB recognition is due to exonic sequences and suboptimal splice

sites, since improvement or alteration of any of these elements switched EIIIB

splicing patterns from exclusively EIIIB- to almost completely EIIIB+ in COS

cells. The EIIIB exon sequences may harbor information in cis that represses

use of nearby splice sites; alternatively, EIIIB may simply lack RNA sequences

or higher order structures that normally permit efficient splice site usage. The

influence of sequence context upon alternative splice site usage has been

documented by many studies (for examples, see Mardon et al., 1987; Eperon et

al., 1986; Cooper and Ordahl, 1989; Somasekhar and Mertz, 1985; Streuli and

Saito, 1989). Therefore these findings were not overly surprising. The nature

of these effects upon splice site selection is at present relatively ill-defined.

141

-- -



Extended pyrimidine-rich tracts, like that of the EIIIB 3' splice site, occur

in a number of alternative 3' splice sites in genes such as rat -tropomyosin

(Smith and Nadal-Ginard, 1989) and rat/chicken -tropomyosin (Helfman and

Ricci, 1989; Goux-Pelletan et al., 1990). Despite its longer pyrimidine tract, the

EIIB 3' splice site is weaker than those of either adeno L2 or the III-9 exon

(Figure 2-8 and compare chimeras L2 and M2 in Figure 2-5). The EIIIB 3' splice

site is therefore suboptimal; however, it is not solely responsible for repression

of EIIIB, since other mutations in EIIIB can independently promote EIIIB

inclusion. These findings agree with studies of exons 7/6B in the rat/chicken

P-tropomyosin genes. In these studies, a negative effect on 3' splice site

efficiency was attributed to sequences in and around the extended pyrimidine

tract, since deletions or mutations in these regions activated use of exon 7 or 6B

(Goux-Pelletan et al., 1990; Libri et al., 1990; Helfman et al., 1990). In contrast,

the long pyrimidine tract preceding exon 3 in the -tropomyosin gene had a

positive effect in determining default selection of exon 3 over exon 2 in vitro

(Mullen et al., 1991). It is unclear why long pyrimidine tracts have different

effects in different contexts, although the repression of EIIIB or of P-

tropomyosin exons 6B/7 probably involves additional sequences not found in

a-tropomyosin exon 3.

The downstream half of 7iBi89 is sufficient for regulation of splicing

An EHIB-containing 590-base segment was sufficient for EIIIB-skipping

in COS cells. However, EIIIB was not recognized when this segment was

placed between two heterologous exons, even in EIIIB-positive cells. Therefore

information beyond this segment was required for EIIIB inclusion. One

chimera, M2, exhibited regulated inclusion of its hybrid exon which correlated

with that of 7iBi89. Therefore the downstream half of 7iBi89 is sufficient to
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direct regulation of exon inclusion, although we cannot rule out the presence of

other nonessential regulatory elements upstream of EIIIB.

Cell-type-specific EIIIB regulation does not absolutely require the EmIIB

3' splice site with its associated extended pyrimidine tract. This contrasts

sharply with work done with the rat and chicken ktropomyosin genes, in

which extended pyrimidine tracts precede exon 7 in rat (Helfman et al., 1990)

or its chicken homologue 6B (Goux-Pelletan et al., 1990). Since mutations in

these tracts derepressed exon 6B/7 usage, sequences in these tracts were

proposed to inhibit in a cell-type-specific manner, either by recruiting repressor

factors (Guo et al., 1991; Helfman et al., 1990) and/or by forming RNA

secondary structures which block exon usage in nonmuscle cells (Libri et al.,

1991; D'Orval et al., 1991). Our results suggest that the EIIIB 3' splice site is

dispensable for exon regulation, although it is possible that this splice site

sequence supplies an auxiliary regulatory component.

Regulated EIIIB inclusion requires 5' splice site balance

We have concluded that EIB regulation is dependent upon a balance

between internal and flanking exon donor strengths. The suboptimal nature of

the exons flanking EIB in the FN gene plays an important role in establishing

a state where competing splice sites are balanced with respect to the weak EIB

exon; without this balance, regulation is lost even if EfIB-promoting cellular

regulatory factors are present, as discussed below.

The replacement of the 5' exon region in 7iBi89 with two other 5' exon

regions gave strikingly contrasting results. A 5' exon from HIV-1 tat preserved

cell line-specific EIIIB regulation (TatB), whereas that from 8i9i10 abolished

EIIIB inclusion in all cell types (L2). In the latter case, improvement of EIIIB

recognition (L2[5AG]) had a compensatory effect, restoring EIIIB inclusion and
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regulation (Figures 2-9, 2-10). We already knew that the entire 5' half of 7iBi89

was not essential for cell-type-specific regulation (from minigene M2).

However, in order for regulated EIIIB inclusion to be seen, the exon upstream

of EIiB must have a suboptimal 5' splice site comparable in strength to that of

EIHB. The 5' splice site derived from the tat intron probably met this

requirement, since it is intrinsically inefficient (Chang and Sharp, 1989).

The fact that the hybrid M2 central exon is regulated suggests that the

M2 minigene also maintains a balance between internal and terminal exon

strengths. The M2 exon is always detectably included, even though its

flanking exons are identical to those of L2; this is probably because the M2

central exon's 3' splice site is normally constitutive. The cell type differentials

for M2 and L2[5AG] are similar, suggesting again that the EIIIB 3' splice site

(which is not present in M2) does not participate directly as a cell-type-specific

regulatory component.

Suboptimal splice sites are commonplace in alternative splicing. Proper

retroviral replication requires inefficient splicing, since both spliced and

unspliced retroviral RNAs encode essential gene products (Katz and Skalka,

1990). The suboptimal polypyrimidine tract of the Drosophila doublesex female-

specific 3' splice site is required for sex-specific regulation (Hoshijima et al.,

1991). The neural-specific c-src N1 exon still exhibits neural specificity when

placed between two adenovirus exons; however, inclusion of N1 is

considerably lower than that of N1 in its normal c-src context, indicating that

flanking exons in the c-src gene contribute to normal N1 exon regulation

(Black,1991). Similar findings have been obtained in studies of the Drosophila

Sex-lethal male-specific exon (Horabin and Schedl, 1992). Although other

studies have altered the sequences flanking a regulated exon without effect

(Streuli and Saito, 1989; Tacke and Goridis, 1991), the effect of context may not
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be as critical in these systems as it is for EHB. These results imply that even a

slight alteration in splice site strength might have sizeable effects on EHIB

splicing; in addition, our findings suggest that the regulation of an alternative

exon can potentially be regulated by elements influencing the splice sites of

flanking exons, a mechanism which has not been seriously considered by many

to date.

IVS2 sequences are essential for regulated EIIIB recognition

Since replacement of splice site sequences could potentially interfere

with any interpretation that we could easily make, we adopted a different

approach by carrying out a deletion analysis that removed regions other than

the splice sites themselves. Surprisingly, deletions within or extending into the

3' half of IVS2 were found to dramatically reduce EIUB inclusion (Figures 2-12

through 2-14). Therefore the integrity of IVS2 was essential for EIIB

recognition. The critical region extends over a large portion of IVS2; many of

the deletions which abolished EIIIB inclusion were located more than 200

nucleotides from either IVS2 splice site. This region is distinct from EIIIB and

begins at least 445 nucleotides into IVS2; it is not continuous, since a small 4

nucleotide insertion within this region does not alter EIIIB regulation.

To investigate the role of this region of IVS2 in cell-type-specific EIIB

regulation, we monitored the effect of IVS2 deletions in the context of the

regulated M2 minigene. The results (Figure 2-15, 2-16) confirmed that certain

IVS2 deletions reduced exon recognition in all the cell-types we tested.

Moreover, the effect of these deletions was greater in F9 cells than in COS cells;

as a consequence, the cell-type differential between F9 and COS cells (our

index of cell-type-specificity) was decreased. The region most critical for cell-

type-specific M2 exon regulation is at most 122 nucleotides long (the intronic
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control region or ICR; Figure 2-15). Interestingly, the ICR is much smaller than

the region required for EIIIB inclusion in the 7iBi89 minigene. These results are

consistent with the presence of cellular factors in F9 cells that promote EIIB

inclusion in a manner contingent upon the ICR. ICR deletions also reduced the

HeLa/COS differential, suggesting that EIIIB-promoting factors may also be

present at some low level in HeLa cells and probably at very low or zero levels

in COS cells.

The ICR is at least 519 nucleotides downstream from EIIIB; it is

unusually distant from the exon it regulates. In fact, the region required for

7iBi89 EIIIB inclusion is considerably closer to exon III-8a than to EIIB. As

such, our results contrast with studies of exons 4 and 6 in the leukocyte

common antigen gene (Streuli and Saito, 1989; Saga et al., 1990), exon E18 in

the murine N-CAM gene (Tacke and Goridis, 1991) and exon N1 in the murine

c-src gene (Black, 1991, 1992). In these systems the elements that are sufficient

for cell-type-specific exon regulation lie closely proximal to the regulated exon;

in the case of EIIIB, it is apparent that a cis-element can act on an alternative

exon from a relatively long distance either directly or indirectly, possibly via

some novel regulatory mechanism.

Do redundant elements regulate EIIIB?

None of the ICR deletions completely abolishes the M2 exon cell-type-

differential, indicating that the ICR is not the sole determinant of cell-type-

specific exon regulation. In addition, not all of the deletions that abolish EIIIB

inclusion (in 7iBi89) affect M2 exon regulation. It is possible that the deletions

that abolish exon inclusion in 7iBi89 but not in M2 (AR1, AL1, AR2a) confer

nonspecific effects on splice site selection. Alternatively, multiple EIIIB-

activating elements may exist in IVS2, only a subset of which affect the M2
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minigene. The ICR may simply represent the most potent (and hence most

easily detected) of these EHIB-activating sequences. Redundancy would

explain why the M2 cell-type differential was not completely abolished by ICR

deletions, since ICR removal may unmask minor elements located elsewhere.

The regulation of Drosophila dsx alternative splicing involves six 13-nucleotide

repeats located downstream of the female-specific 3' splice site; the Tra and

Tra-2 proteins activate this splice site in a repeat-dependent fashion in vivo and

in vitro (Ryner and Baker, 1991; Hedley and Maniatis, 1991; Hoshijima et al.,

1991; Tian and Maniatis, 1992). Neuron-specific N1 splicing in c-src involves at

least two sequence elements, either of which was sufficient for N1 exon

inclusion in vivo and in vitro; like EIIIB, these lie in the intron downstream of

the regulated exon (Black, 1992). Therefore the cell-type-specific control of

EIIIB splicing by several sequence signals within IVS2 would not be without

precedent.

Models for EIIIB regulation

These tissue culture studies have given us a better understanding of

how cis-acting components in the alternatively spliced EIIIB region play a role

in splice site selection. The components we have identified fall into two

classes: those in the first class are important for maintaining a state of splice

site competition upon which cell-type-specific regulatory influences can be

exerted. The second, more interesting class consists of sequences which

influence splice site selection in a cell-type-specific fashion; these may

represent targets for interaction with trans-acting factors specific to EIIIB+ cells.

Possible models for regulation of EIIIB splicing are outlined in Figure 2-

17. In the default state (e.g., COS or adult hepatocytes), the EIIIB exon is a poor

splicing substrate. This exon has suboptimal splice sites; in particular, its
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Figure 2-17.

EIIIB regulation: splicing models

Shown is the EIlB minigene 7iBi89 and potential mechanisms of EIIIB-

skipping (in COS, HeLa or liver cells) and EIIIB inclusion (in early embryos

or F9 cells). Bars below the 7iBi89 map indicate the positions of (i) the IVS2

region required for EIIB inclusion (mapped in 7iBi89) and (ii) the putative

intronic control region or ICR (mapped in M2). Curved arrows indicate

mechanisms by which the ICR (or ICR-bound cellular factors) might affect

splice site selection in order to enhance EHIB inclusion ([+] or [-] indicate

stimulatory or inhibitory effects, respectively).
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3' splice site has an unusual structure which may curtail its efficiency. These

properties, in conjunction with unfavorable exonic context, create a poorly

recognized exon that is skipped. In an EI3B-positive cell (e.g., F9 or early

embryo), EIIIB is somehow relieved from its repressed state and can compete

more effectively with its flanking exons, resulting in inclusion. Cell-type-

specific derepression depends upon sequences in the ICR. The splice sites of

flanking exons mI-7b and m-8a appear to be of adequate strength to prevent

their own inappropriate skipping, but are not so strong as to overwhelm an

enhanced (but still weak) EmIB exon. Cell-type-specific factors may enhance

EIIIB inclusion via binding to the ICR. Alternatively, the ICR may render the

FN pre-mRNA transcript more sensitive to differential concentrations of

general splicing factors such as ASF/SF2 (Ge and Manley, 1990; Krainer et al.,

1990). Possible splicing models for EIIIB recognition include, but are not

limited to: (i) EIIIB 5' splice site activation, possibly by facilitating binding of

U1 (Kuo et al., 1991) or other accessory splicing components; (ii) EHIB 3' splice

site activation (although a heterologous 3' splice site must be accomodated) or

(iii) negative effects leading to a delay in exon IH-8a 3' splice site usage,

creating a kinetic window that permits EMIB recognition before a commitment

to EImB-skipping can occur. The third of these mechanisms is intriguing,

particularly since the region of IVS2 required for EEIB inclusion is closer to Im-

8a than to EIIIB. In some systems the alteration of a common 3' splice site is

capable of changing 5' splice site preference; these phenomena could arguably

be explained by alterations in the order or kinetics of splice site recognition

(Ulfendahl et al., 1989; Fu et al., 1988). The above models are not mutually

exclusive; in fact, multiple mechanisms may collaborate to regulate EIIIB more

tightly in different cell types.
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MATERIALS AND METHODS

Expression Vectors

Enzymes for DNA work were obtained from New England Biolabs and

Boehringer Mannheim. Molecular biological manipulations were carried out

as described by Ausubel et al (1987) and Sambrook et al (1989). Two

expression vectors were used in this study: pBAGH and pBAGH.Sv for stable

and transient transient expression respectively (Figure 2-1B). Both contained a

modified human -actin promoter and a short 3' untranslated region from the

human growth hormone gene. pBAGH.Sv contained in addition the SV40

origin of replication for amplification in COS cells. The vector backbone and

human -actin promoter of pBAGH were from BAPGAL, a plasmid containing

the human [-actin promoter (Leavitt et al., 1984), the lacZ gene and SV40 late 3'

polyA signal (a gift from Urban Lendahl, Karolinska Institute). The human

growth hormone 3' untranslated region came from pLENX, a variant of pLEN

with a XhoI linker inserted at the BamHI cloning site (a gift from Ty White,

Calbiotech; J.-L. Guan, pers. comm.); pLENX contains the SV40 enhancer and

origin of replication, human metallothionein-II promoter and human growth

hormone 3' untranslated region. A 6.2 kb SalI-EcoRI fragment containing the

BAPGAL backbone and actin promoter was ligated to the 635 bp XhoI-EcoRI

3' polyA-containing segment from pLENX (destroying the SalI and XhoI sites),

generating BH, an expression vector with a BamHI cloning site. The promoter

fragment in BH contains the first exon and intron from the human factin

gene. This intron and four nucleotides of the first exon were deleted via exoIII

digestion, generating pBAGH. To make pBAGH.Sv, the 835 bp HindIII-XhoI

promoter fragment in pLENX was replaced by a 4 kb EcoRI-SalI fragment with

the -actin promoter from BAPGAL, making LB (destroying all sites involved).
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A XhoI-BamHI fragment of LB was then replaced with the XhoI-BamHI

fragment from vector pBAGH, in effect deleting the -actin intron and

generating pBAGH.Sv.

Minigenes and Probes for Analysis

The primary 3.1 kb minigene of this study, 7iBi89, was derived from

genomic clone XrFN3 and cDNA clones BXB32.5 and BdP (Schwarzbauer et al,

1987). A 2.8 kb XmnI-ApaI XrFN3 fragment (with 125 nucleotides [nt] of exon

mI-7b, the 1296 nt intron following IH-7b [IVS1], EHIB, the 1071 nt intron

following EIIIB [IVS2] and 68 nt of exon III-8a) was ligated to an ApaI-AvaI

cDNA fragment containing the remaining 115 nt of III-8a, the 90 nt exon mI-8b

and 73 nt of exon -9. The presence of additional cDNA sequences in the

third exon of 7iBi89 was necessary for efficient splicing. 7iBi89 was constructed

between the XbaI and SmaI sites of pGEM3 (Promega). The minigene 8i9i10

contains a 2.9 kb BglII-BglII fragment from XrFN3 (with 91 nt of exon 1I-8b, the

1140 nt intron following III-8b, the 270 nt exon I-9, the 1332 nt intron

following HI-9 and 17 nt of exon 1I-10a) ligated to an BglII-EcoRI fragment

containing the remaining 100 nt of II-lOa and 21 nt of exon III-lOb. 8i9i10O was

made between the BamHI and SmaI sites of pGEM3. Minigene inserts (SalI-

SacI fragments) were subcloned into the BamHI cloning sites of pBAGH and

pBAGH.Sv via blunt-end ligation; orientations were checked by restriction

digests.

Chimeric minigenes were made in pGEM3 and subsequently transferred

into the appropriate expression vectors as above. With respect to 7iBi89,

chimera junctions were: (i) 207 or 84 nucleotides 5' of EIIIB for chimeras L or

L2 respectively (upstream of the pyrimidine tract and three mapped branch

points of the EIIIB 3' splice site; Norton and Hynes, 1990), (ii) 234 nucleotides 3'
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of EIB (chimeras R1 /R2), as well as (iii) within EIIIB (127 nucleotides from the

5' end of EIIIB; chimeras Ml /M2). With respect to 8i9i10, junctions were: 286

nt upstream of 111-9 (L1/L2), 114 nt downstream from the 5' end of mII-9

(M1/M2) and 161 nt downstream of 111-9 (R1/R2). Chimeras SW1 and SW2

share junctions with pairs L1 /R2 and L2/R1 respectively. L1 and L2 were

made by swapping the BstEII-Sad fragment of 7iBi89 with the HindI-SacI

fragment of 8i9i10 (in Figure 2-5, the SacI site is at the 3' terminus of both 7iBi89

and 8i9i10 inserts). LC1 was made by cutting 7iBi89 with BstEII and religating,

deleting 123 bp. M1 and M2 were made by exchanging the BamHI-SacI

fragment of 7iBi89 with the BsmI-SacI fragment of 8i9i10. R1 and R2 were

made by exchanging the BglII-SacI fragment of 7iBi89 with the PstI-SacI

fragment of 8i910. SWI was made by cloning the EIIIB-containing 590 bp

BstEII-BglII fragment of 7iBi89 into a HindIII/PstI-cut 8i9i10O in a version of

pGEM3 without polylinker HindIII and PstI sites; SW2 was made by cloning

the III-9-containing 720 bp HindIII-PstI fragment of 8i9i10O into BstEII/BglII-cut

7iBi89. Incompatible restriction enzyme ends were blunted with Klenow

fragment before ligation; orientations were checked by restriction digests.

TatB (Figure 2-9) was made by blunt-end cloning the BstEII-EcoRI

fragment from 7iBi89/pBAGH (84 nt of IVS1, EIIIB, IVS2, exon 8a/8b/9 and

the 3' region from human growth hormone) into the BamHI and PstI sites of

pSPL1, a vector with the SV40 early promoter and an intron-containing

fragment of the HIV-1 tat gene (Buckler et al, 1991). This created a SV40

promoter-driven minigene in which the first exon of pSPL1 (rabbit ,-globin

exons I and 2 fused to 240 nucleotides of the tat 5' exon) and first 305

nucleotides of the tat intron were ligated to the last 84 nt of IVS1 in 7iBi89.

In general, S1 probes (containing the third exon and part of the central

exon from each minigene as cDNA; Figure 2-5) were subcloned from rat FN
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cDNA clones into pGEM3; S1 probes were made minigene-specific by kinasing

at a BamHI site within vector sequences. S1 probes 9-89 and B-10 (for which

natural cDNA clones were not available) were made by inverse PCR using

primers complementary to exon termini; primers for the I-9/II-8a junction

(for probe 9-89) were 5'-CCGTGGAITGCTGGCCAATC-3' and 5'-

CCGTCCCTCCTCCCACGGAT-3'. The inverse PCR product of minigene R2

was blunt-ended, religated and transformed; the appropriate segment was

subcloned to make 9-89. B-10 was made similarly to 9-89, except that the

primers for the EIIB/Im-lOa junction were 5'-CCGTTGCTGTGTCAGTGTA-3'

and 5'-TTTCCGATGTCCCGAGAGAT-3'; minigene R1 was the PCR substrate.

The above probes were kinased at a BamHI site (Sambrook et al., 1989) and

then recleaved with PvuII. Probe E was kinased at an AvaI site and then recut

with NheI. S1 probes were purified via preparative 5% nondenaturing

polyacrylamide gel electrophoresis.

RNase protection probes were transcribed (with [32p]-UTP [NEN] and

T7 RNA polymerase [Stratagene]) from a SalI-linearized, shortened version of

7iBi89 in pGEM3. For probing 7iBi89 (Figures 2-1A, 2-2), the XE deletion in

IVS1 (Figure 2-12) was combined with a BglII-DraI deletion in IVS2. These

riboprobes were purified via preparative electrophoresis on a 4% or 5%

denaturing polyacrylamide gel.

Mutagenesis and Deletions

Oligonucleotide-directed mutagenesis was carried out using uracil-

containing ssDNA templates generated by E. coli strain CJ236 (Kunkel et al,

1987; Ausubel et al, 1987). The 590 bp EIIIB-containing BstEII-BglII segment of

7iBi89 was subcloned into Bluescript SK- (Stratagene) to make BsG. Single-

stranded, uracil-containing template contained the strand antisense to EHIB.
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The mutagenesis primer used for making the 5AG mutation had the sense

sequence 5'-AAACGGGTGAGTCTTGAAGTC-3' (the underlined G is the

mutated base). The B:9 mutation was made using the "sticky-feet"-directed

mutagenesis procedure described by Clackson and Winter (1989); the

"forward" and "reverse" primers used were

5' TTGCCTCCCCT=TGCTTCATAACTCAATAGGTCTGGACTCCCCAACTG

GT 3' and

5' GTCTCAAACACAGAAGACTTCAAGATTCACCCGTGGATTGCTGGCCA

ATC 3'. The Ad3 mutation was made by PCR of BsG using a primer containing

39 nucleotides of the adenovirus L2 3' splice site followed by 18 nucleotides at

the start of EHIB (primer sequence

5' CGATGATGTCATACTTATCCTGTCCCT -ITI- IT CCACAGAGGTGCCCC

AGCTCACTG 3') and a reverse primer within EIIIB

(5' GTGATGCGGTACCCAATAATG 3'); the 145 bp PCR fragment was blunted

with Klenow, cut with HindIII and ligated to 7iBi89dBs (see below) which had

been BstEII-cut, blunted and then recut with Hindm; this procedure

regenerated the BstEII site. All mutants were sequenced in pBluescript SK-

before insertion into a modified 7iBi89 minigene (7iBi89dBs, in which the 5'

BstEII site was destroyed to facilitate reinsertion of BsG into 7iBi89 with inimal

sequence alteration). Mutant minigenes were then cloned into pBAGH.Sv as

described above.

Deletion XE removed a 1116 bp BstXI-BstEII fragment from IVS1.

Deletion HB removed nucleotides 28 to 127 of EIIIB (a 100 bp HindIII-BamHI

segment). Deletions within IVS2 were made by exoIII deletion of the 7iBi89

insert in pBAGH. BglII- or AflII-cleaved plasmid was treated at 300C with

exonuclease III according to Ausubel et al (1987). Aliquots of the exo III digest

(at 15-second intervals) were purified and cleaved with XhoI; appropriate
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fragments were gel-purified and ligated with 7iBi89/pBAGH (cut with AflII or

BglII, blunted and cut with XhoI). The resulting libraries contained

unidirectional deletions extending in either direction from the AflII or BglII

sites. Clones were characterized by sequencing and restriction mapping. IVS2

deletions in this study (in 7iBi89 or in M2) removed the following nucleotides

from the 1071 base IVS2 (numbering from the first nucleotide in IVS2): GR2,

235-445; GR2b, 235-518; GR2a, 235-573; GR3b, 235-642; GR3a, 235-669; GA,

bases 235-729; AL1, 641-729; AL2, 417-729; AR1 734-969; AR2a, 734-1039.

Deletions within IVS2 of the M2 minigene were made by subcloning the BglII-

EcoRI fragment of 7iBi89 IVS2 deletions into BglII/EcoRI-cut M2/pBAGH.Sv.

Cell Culture and Transfections

COS cells (from Benjamin Geiger, Weizmann Institute) and Rat-1 cells

(done F2408) were cultured in DMEM (Gibco) with 5% fetal bovine serum

(FBS; Hazleton). HeLa cells (from Phillip Sharp, MIT) were cultured in DMEM

with 10% FBS. 293 cells (from Earl Ruley, MIT) and NIH3T3 cells (ATCC) were

cultured in DME with 10% calf serum (CS; Sigma, Hazleton). F9

teratocarcinoma cells (from Lorraine Gudas, Harvard Medical School) were

cultured in MEMa with 7.5% CS and 2.5% FBS (Robertson, 1987);

differentiation of F9 cells into parietal endoderm was carried out with 0.1 gM

retinoic acid and 1 mM dibutyryl cyclic AMP for 72-96 hours (Strickland et al,

1980)

COS cells were transfected using DEAE-dextran. Half-confluent COS

cells in 10 cm dishes were transfected in 2 ml Tris-saline (25 mM Tris-HCl pH

7.4, 0.14 M NaC1, 3 mM KC1, 1 mM CaC12, 0.9 mM Na2HPO 4) for 40 minutes at

370C, followed by a 3.5 to 4 hour treatment with 100 ,g/ml chloroquine (in

DMEM+5% FBS); the cells were then washed and refed. Calcium phosphate
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transfections of HeLa and 293 cells were coupled with a one minute glycerol

shock (Ausubel et al, 1987). F9 transfections were performed as described by

Gorman et al (1985). Transient transfections used 18 jig expression plasmid

DNA per 10 cm dish (23 jig for F9 cells) plus 2 g pSV2-neo (Southern and

Berg, 1982) included as an internal control. RNAs were isolated 48-52 hr post-

transfection. Transfections for generating G418-resistant cell populations were

done in 6 cm dishes using 9 g of minigene plasmid plus 1 gg pSV2-neo.

Selection in G418 (Gibco) was carried out for 10-16 days; colonies (100-1000)

were pooled and RNA isolated after 1-2 additional days. G418 concentrations

used were: for HeLa, 293, NIH3T3 and Rat-i, 400 gg/ml; for F9, 300 g/ml.

Cytoplasmic RNA was isolated as described (Ausubel et al 1987); total RNA

was isolated either by centrifuging through a 5.7 M CsC1 cushion (Chirgwin et

al, 1979) or acid phenol/guanidinium (Chomczynski and Sacchi, 1987); RNAs

from transient transfections were DNased before analysis (Ausubel et al, 1987).

In some experiments, transfections were carried out in which RNA

expression levels were ten-fold below optimal. For COS, RNA was harvested

12 hr (rather than 48 hr) post-transfection; for 293 and F9, only 2 gg of

expression plasmid was used (adding carrier pGEM3 to keep total DNA at 20-

25 jig).

Nuclease protection analyses

S1 analysis was carried out as described by Sambrook et al (1989) with

the following modifications. RNA samples (5-35 gg) were made up to 35 ig

with yeast RNA; samples and probe (5'-end-labelled; 2-5x105 cpm per sample)

were dried down, dissolved in S1 hybridization buffer, heated to 800C for 10

minutes, placed in a 650C water bath and cooled to 43-48oC overnight. S1

digestion was in 275 l using 400-800 units S1 nuclease (Boehringer-
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Mannheim) at 370C for 30 minutes; products were ethanol-precipitated and

analyzed on 4-5% acrylamide gels containing 8M urea and were visualized

using autoradiography. Appropriate bands were quantitated using a

Molecular Dynamics Phosphorimager. RNase protection analyses were carried

out as described by Ausubel et al (1987), except for the RNase digestion buffer

composition (50 mM Tris-HCl, pH 7.5; 500 mM NaCl); RNase-resistant

fragments were analyzed on 5% denaturing gels and quantitated as above.
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Chapter Three

Cell-Type-Specific Regulation Of Alternative Splicing

By A Novel Repeated Hexanucleotide Element

161



ABSTRACT

The alternatively spliced exon EIB is regulated in a cell-type-specific

manner in the rat fibronectin gene. Splicing of EIB into fibronectin mRNA is

dependent upon sequences in the intron immediately downstream of EIIIB.

We show that a short, highly repeated TGCATG motif in this intron is

important for cell-type-specific recognition of EIIIB as an exon. This motif

enhances usage of the EIIB 5' splice site; furthermore, this repeated TGCATG

sequence can activate an alternatively spliced exon in the unrelated rat

preprotachykinin pre-mRNA. Interestingly, this sequence can also be found

within cis-acting elements previously identified in other alternatively spliced

genes. This short repeated TGCATG motif is therefore a cell-type-specific

regulatory cis-element that, in addition to controlling fibronectin alternative

splicing, may participate in the regulation of other alternative RNA processing

events.
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INTRODUCTION

Alternative pre-mRNA splicing represents a fundamental mode of post-

transcriptional metazoan gene regulation. This phenomenon generates distinct

mRNAs from a single RNA transcript, often generating multiple proteins from

a single gene in the process, and can be regulated in a developmental or cell-

type-specific fashion (for reviews see Smith et al., 1989a; McKeown, 1992).

Splicing is a multistep process involving numerous proteins and the

small nuclear ribonucleoprotein particles (snRNPs) U1, U2, U4, U5 and U6;

much has been learned about this reaction from biochemical studies utilizing

simple model pre-mRNAs. However, considerably less is known about the

faithful recognition or regulation of splice sites in vivo. Naturally occurring

splice sites often vary from known consensus sequences; in addition, long pre-

mRNA transcripts can harbor numerous splice-site-like sequences, only a

fraction of which are authentic signals. Therefore additional mechanisms must

exist that specify introns and exons; these mechanisms must also exhibit

flexibility in order for regulated splicing to occur (for reviews see Green, 1991;

Moore et al., 1993).

In addition to resemblance to a consensus, splice site usage can be

affected by many diverse parameters. For example, internal exon identification

in vertebrates may be aided by coordinate recognition of the exon's splice sites,

a process termed exon definition (Robberson et al., 1990; Talerico and Berget,

1990; Hoffman and Grabowski, 1992). This process may be compromised if the

exon is of an inappropriate length (Robberson et al., 1990; Black, 1991;

Dominski and Kole, 1991). Splice site usage can also be affected by adjacent

intron sequences (Black, 1991; Gallego et al., 1992; Helfman et al, 1990), exon

sequences (Somasekhar and Mertz, 1985; Reed and Maniatis, 1986; Mardon et
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al., 1987; Cooper and Ordahl, 1989; Streuli and Saito, 1989) or RNA secondary

structure (Solnick, 1985; Eperon et al., 1988; Libri et al., 1991; D'Orval et al.,

1991). Many parameters can therefore affect splicing in ways that are complex

and not readily predictable.

In Drosophila melanogaster, sophisticated genetic analyses have identified

genes that can encode negative or positive splicing regulators (for reviews see

Baker, 1989; McKeown, 1992). However, the identification of vertebrate

splicing regulators has been more difficult. Since multiple pre-mRNA

sequences affect splicing, it can often be difficult to distinguish between

constitutive and regulatory elements by mutational analysis. Furthermore, the

genetic methods that have identified Drosophila regulators cannot yet be easily

applied to the identification of regulatory splicing factors in vertebrates.

Among the proteins implicated in the biochemistry of splicing, a number can

affect splice site selection in vitro (Ge and Manley, 1990; Krainer et al., 1990;

Mayeda et al., 1993; Fu et al., 1992; Zahler et al., 1993), suggesting that

differential concentrations of general splicing factors might regulate some

alternative splicing events in vivo (Maniatis, 1991).

In order to address some of these questions, we have been studying the

regulation of alternative splicing in the rat fibronectin (FN) gene. The EIIIB

exon in this gene (also called ED2, EDB, or EDIIIB) is differentially spliced into

FN mRNA to varying degrees in different cell types and developmental stages;

for example, EIIIB is absent from adult liver FN mRNA but is present in nearly

all early embryonic FN messages (for review see Hynes, 1990). Previous

transfection studies have established that EIIIB is an inefficiently recognized

exon and that its cell-type-dependent inclusion into mRNA requires (i) a

balance between competing splice sites in the EIIIB region and (ii) sequences

located in the intron downstream of EIIIB (Huh and Hynes, 1993).
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The present study extends our previous work on EIIIB-activating intron

elements. Surprisingly, we have found that EIIIB inclusion can be activated by

repeated copies of a hexanucleotide sequence (TGCATG) that normally occurs

several times in the EmB-activating intron element. These TGCATG repeats,

which are capable of activating EIIIB 5' splice site usage, constitute a major

requirement for cell-type-specific EIIIB recognition and represent a novel

example of mammalian splicing regulation. TGCATG sequences can also

direct regulated splicing in the rat preprotachykinin gene transcript and

furthermore can be found within elements identified in other alternatively

spliced genes. Since the regulatory element we have identified is a simple

hexanudeotide sequence, these findings may have implications that bear on

the regulation of alternative splicing in general.
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RESULTS

A repeated sequence coincides with elements required for EIIIB usage

To study the regulation of EIIIB splicing, we used a three-exon minigene

that contained the EIIIB region of the rat fibronectin (FN) gene. Previous

studies showed that this minigene, called 7iBi89, reproduced cell-type-specific

EIIB regulation when expressed by a number of cell lines. In addition, these

studies established that EIIIB inclusion requires cis-acting sequences that lie at

least 445 bases away from EHIB, spanning more than 500 bases in the 3' region

of the intron immediately downstream of EIIIB (called IVS2 in 7iBi89; Figure 3-

1). Deletions in this region caused near-complete EIIIB skipping in cell lines

that normally splice EIIIB into mRNA; deletion of a particular section of this

region (termed the intronic control region or ICR) attenuated the cell-type-

dependency of exon inclusion, indicating that cell-type-specific elements

existed within IVS2 (Chapter Two).

Inspection of the 7iBi89 sequence revealed nine GCATG repeats within

the 1071-base IVS2 (Figure 3-1). Eight of these have the sequence TGCATG;

five have the sequence TGCATGA. This clustering of short sequences was

striking, since one would expect to find a given pentanucleotide only once

every 1024 nucleotides by random chance. In addition, the distribution of

these repeats correlates well with the EIIIB-activating region and the ICR. A

comparison between rat and human FN genes revealed significant homology

in the EIIIB-activating region of IVS2 relative to other regions in this intron

(Figure 3-1, lower). In particular, seven of nine GCATG repeats are conserved.

In previous studies, IVS2 deletions that reduced EIIIB inclusion removed at

least one GCATG repeat; removal of more repeats had greater effects. Given (i)

the remarkably high incidence of this short repeat in IVS2 and (ii) the striking
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correlation between these repeats and conserved EHIB-activating cis-sequences,

we hypothesized that GCATG or TGCATG repeats promote EHIB inclusion.

TGCATG repeats activate EIIIB exon recognition

To test whether TGCATG sequences could activate EMIB inclusion, we

synthesized a DNA oligonucleotide that contained two TGCATG hexamers

(oligonudeotide T in Figure 3-2A). Because the repeats in IVS2 were often

followed by adenosine or cytidine nucleotides, oligonucleotide T contained one

each of the sequences TGCATGA and TGCATGC separated by pyrimidine-rich

spacers. Up to three copies of oligonucleotide T were inserted in tandem into

7iBi89AGA, a version of 7iBi89 from which 495 bases of IVS2 were removed;

deletion AGA, which abolishes EIIIB inclusion (Chapter Two; Figure 3-2B),

removed four endogenous GCATG repeats. As controls, we tested

oligonucleotides that contained either mutant hexamers (TGACTG;

oligonucleotide M) or scrambled hexamers (AGTCGT; oligonucleotide S).

Inserts were designated by name and copy number (e.g., insert T3 has three

copies of oligonucleotide T).

Minigenes were transfected stably into F9 teratocarcinoma cells, which

normally exhibit high levels of EIIIB inclusion. S1 nuclease analysis of

transfectant RNA was carried out using a minigene-specific cDNA probe that

contains the third 7iBi89 exon and overlaps EHIB. The 7iBi89 minigene

exhibited significant EIIIB inclusion, as assessed by the ratio of EIIIB+ to EIIIB-

mRNA (Figure 3-3, lane 1). EIIIB inclusion was reduced dramatically by the

AGA deletion (lane 2). However, the insertion of one to three copies of

oligonucleotide T into 7iBi89AGA (two to six TGCATG repeats) restored

inclusion in an additive manner (lanes 3 to 5). With six TGCATG repeats, EIIIB

inclusion was indistinguishable from that exhibited by the undeleted minigene
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(compare lanes 5 and 1). In contrast, insertion of repeated mutant or scrambled

hexamers (lanes 6 through 11) did not restore EIIB inclusion. Therefore, in F9

cells, repeated TGCATG sequences can substitute for certain EIB-activating

sequences in IVS2.

We then tested whether TGCATG repeats could also substitute for other

repeat-containing sequences in IVS2. The IVS2 deletion AAR2a removes

sequences not deleted by AGA (Figure 3-2B). AAR2a removes three TGCATG

repeats and also reduced EIIIB inclusion (Figure 3-3, lane 12). Insertion of four

TGCATG repeats in AAR2a (insert T2; lane 13) enhanced EIIIB inclusion to

levels slightly higher than those of 7iBi89, an effect not observed with mutant

hexamers (insert M2; lane 14). We conclude that repeated TGCATG sequences

can substitute for either of two distinct EIIIB-activating, GCATG-containing

regions in IVS2.

We next examined whether TGCATG repeats also had effects in EIIIB-

skipping cell lines by transfecting these constructs into HeLa cells (which

normally include EIIIB at low levels) and into COS cells (which completely

skip EIIIB in 7iBi89). In HeLa cells, TGCATG repeats in 7iBi89AGA detectably

stimulated EIIIB inclusion (Figure 3-3, lanes 15-28). Six synthetic TGCATG

repeats (T3) had weaker effects in HeLa than in F9 cells, although HeLa EIIIB

inclusion was greater in 7iBi89AGA+T3 than in 7iBi89 (compare lanes 15 and

19). Otherwise, the effects of test and control repeats in HeLa cells paralleled

those in F9 cells. In contrast, complete EIIIB-skipping in COS was unaffected

by deletions or repeat insertions in IVS2 (Figure 3-3, lanes 29-36). Thus,

TGCATG repeats activated the splicing of EIIIB only in cell types that normally

exhibited EIIIB inclusion.
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Activity of TGCATG repeats is affected by flanking bases

We next tested whether TGCATG activity was affected by bases

immediately flanking the repeat. The original test oligonucleotide (T)

contained one each of the sequences TGCATGA and TGCATGC; since five

repeats in the EUIB-IH-8a intron were TGCATGA sequences, we tested an

oligonucleotide that contained two TGCATGA heptamers (TA; Figure 3-2A).

Another oligonucleotide was tested that contained two TGCATGC repeats

(TC). We also tested flanking sequence effects by substituting the relatively

pyrimidine-rich spacers of oligonucleotides T and M with purine-rich

sequences (oligonucleotides TP and MP). Each oligonucleotide was inserted in

three copies into 7iBi89AGA (inserts TA3, TC3, TP3, and MP3) and tested by

stable transfection in F9 and HeLa cells and by transient transfection in COS

cells.

Each of the inserts TA3, TC3 and TP3 significantly enhanced EIIIB

inclusion in F9 cells (Figure 3-4). Surprisingly, neither TA3 nor TC3 worked as

well as T3 in this respect (Figure 3-4, lanes 3, 6, 7). Therefore six alternating

TGCATGA and TGCATGC repeats stimulated EIB inclusion to a greater

extent than did six repeats of either sequence alone. Interestingly, insert TP3

(with purine spacers) enhanced EIIIB inclusion much more effectively than did

T3 (compare lanes 3 and 8). Mutant repeats with purine spacers (MP3) had no

such effect (lane 9).

In HeLa cells, inserts TA3 and TC3 had little effect on EIB splicing

(Figure 3-4, lanes 15, 16). As in F9 cells, insert TP3 stimulated HeLa EIIIB

inclusion more effectively than did insert T3 (lane 17). For any given minigene,

HeLa inclusion was always lower than F9 inclusion. None of these inserts

affected the complete EIIIB-skipping pattern exhibited by transiently

transfected COS cells (lanes 21-24).
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Figure 3-1.

The EIIIB region in the rat fibronectin gene

Organization of the EIIIB region, the 7iBi89 minigene and cis-elements required

for EIIB inclusion (labelled wide rectangles, exons; lines and narrow bars,

introns). Part of the rat fibronectin (IN) gene is shown at top; dashed lines

above and beneath outline the EIIIB alternative splice patterns, along with

the cell types in which each of these patterns predominate. Scale bar, 200

nucleotides (nt). Beneath this is the minigene 7iBi89; the introns preceding

and following EIIIB are called IVS1 and IVS2 respectively. Minigene

expression is directed by a modified human P-actin promoter and human

growth hormone poly(A) signal. The narrow shaded bar within IVS2 shows

the location of sequences required for EIIIB inclusion; the 3' endpoint of this

region is undefined (Huh and Hynes, 1993). The black bar within this

shaded bar represents a segment (the ICR) that is particularly important for

EIIIB inclusion (see text). GCATG repeats are shown as vertical lines

beneath 7iBi89. The nucleotide sequence below 7iBi89 is of IVS2 (1071 nt),

flanked by ten bases each of exons EIIIB and III-8a. The rat sequence is

shown (uppercase letters, bases conserved between rat and human FN

genes; lowercase letters, bases absent or not conserved in human; dashes,

gaps generated in comparing the two sequences). Nucleotide +1 is the first

base in IVS2. Sequences important for EIIIB inclusion are enclosed within

dashed lines; the ICR is shaded. Heptamers that contain GCATG repeats are

enclosed in boxes. Letters in bold type indicate stretches of rat-human

homology (13 or more identical bases out of 15). Certain regions (bases +1 to

+50 and +500 to +1071) contain several relatively uninterrupted stretches of

rat-human sequence identity.
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adult liver, COS cells

rat FN -a.. --- EIIIB .-. 111-8ar,!l-8b,> 111-9

gene "ET.m--.;
early embryo, F9 cells 200 nt

7ii89 :,7b IVS1 EIIIB IVS2 8a/8b/9 pA
minigene

repeats

IVS I....IV- --- IVS2 -m
EIIIB I IVS2

-10 CAgCAAACGIcGTAATcTTGAgtCTTCTGGTTTGAGACATgGATGTGT G GTG

+51 C--cCAaccgCTgtGGTTAAATtTGGATGTTgCcaaGGaGAAGCA GC CAtGG

+109 gGATggAGAcAGG-GcAcaTtcaaaGATAAGG-----gATaCATtaGCctAA TGcaTGa

+163 ------ AgACATtatAaATagTCTcGTgCACTtTCATTcAAAgtACAAacAGATgTgAAG

+217 atgAagGgAcTctAGATcTtTGagCTGTTctgTtctAAA----gtATGgctATggAAccg

+273 aAtGACgaAaAgcTgTTC--------------------ATACCAA-

+298 ---------gAcAcAcCtCCAAAATGcACCgctgTGtcgTTCCTctTACCtTTTGATAAg

+349 tTC--CCAcGaTC---CTTTGTAGCTa ata AAAcA ATAAAAaTTAGGTgGAGcaG

+404 AcGGGaAaTtcTcAGA-GTArrAaAe T~AeAr r [r', mmrm Mmr,v m-

+461 GTgCAggAtaaAcnaA

+521 LAAAGGTTCTCTGCc

+579 q -c;cT.CACTTGTgAt8

+639 A '-- cTctGGGGA

+6921 TTcG-aAAGTACcGCTcTG--TgTCTTTGCTGTGTGGCAACTTA CTCTTCaGCCTGG 

+749 GATAAA--AATCTtCcGTGGTATcAATgtacTaaaacaataacggccacgAtAcAAAGcC

+807 AACcTATTTGAAAGTAGATTAcAATtcTTTaaAAAa tgcatgA TcATGGCAgAAAGGTTA

+867 AAGGG-GCCTAACAGT-gTcTcTaTAGTGTTTTgttc attattttgtTTTTTAAAGTAG

+925 TgtAtcATgAtcTAgA ------TTAGATTAGACTGTT TGCATGAcTgTaA--CTGTTTCt

+977 TTTc TGCATGA gATAcTgGtTTTTACCTTTtCAGCTACTgTttTTAGCTTTgAcTTTAAA

+1037 AtT rgCATTAATcAaTtTTC---CTTaTTtGAAAtCAGICcGTcCCTCC
IVS2 I III-8a
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Figure 3-2.

TGCATG repeats can substitute for the EIIIB-activating region

A. At left are the names of repeat-containing oligonucleotides used in this

study. Monomeric forms of the inserts are shown at right; differences

between each sequence and that of oligonucleotide T (top line) are shaded.

B. The 7iBi89 minigene and its deletion derivatives with single or multiple

oligonucleotide inserts. Inserts were placed at the AGA or AAR2a deletion

junctions. GCATG repeats are shown as vertical lines in the 7iBi89, AGA and

AAR2a minigene diagrams. A summary of EIiB inclusion in each

transfected cell line (from Figures 3-3 and 3-4; cell line indicated at top) is at

the right (-, EIIIB+/EIIIB- ratio < 0.10; +, 0.10 < ratio < 0.25; ++, 0.25 < ratio

< 0.40; +++, 0.40 < ratio < 0.65; ++++, 0.65 < ratio < 0.80; +++++, ratio > 0.80;

n.t., not tested).
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Sequence
GATCC TGCATGA CTACTGCT TGCATGC TCGTCATA

GATCC TGA:TGA CTACTGCT TGC'TGC TCGTCATA

GATCC .A "G:A..G.:T.'...A CTA CTGCT AGC C TCGTCATA
..... ..... .......... ............... ........ :::

GATCC TGCATGA CTACTGCT TGCATGA TCGTCATA

GATCC TGCATGC CTACTGCT TGCATGC TCGTCATA

GATCAi TGCATGAI A":M: : TGCATGC "-. AA
GATCA' TG:-C"TGAG.G.. "G :TG-CTGC A...............GT..... AA
GATCA T TGA',' TGC' %TGC G'G~... .. .. .. ... .. .I .. .. .I .. .. .. .. .. .

Minigene
GCATG repeats

7iBi89 i 
IVS1 EIIIB IVS2

AGA ' -_ -4

AGA+T1 * _ T -

AGA+T2 I I TT 

AGA+T3 U -TTT -

AGA+M1 MM -

AGA+M2 I - MM -

AGA+M3 MMM-

AGA+S1 * - s ----

AGA+S2 - ss 

AGA+S3 * - SSS 

AGA+TA3 T TAA -

AGA+TC3 -- TTC 

AGA+TP3 TP TP

AGA+MP3 * _ MMP M _

AAR2a i 

AAR2a+T2 i TTi

AAR2a+M2 * M-N

EIIIB
F9

++

inclusion
HeLa COS

- n.t.

- n.t.

+++ +

n.t.

n.t.

n.t.

n.t.

+

+

+++++ ++

+++ +

+
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Figure 3-3.

S1 analyses of transfected 7iBi89 minigenes

The EIIIB+ 7iBi89 mRNA is shown at top left (conventions as in Figure 3-1),

along with the cDNA-derived 5'-end-labelled S1 probe (called B-89); the

electrophoretic positions of undigested probe ("S1 probe") and of fragments

generated from protection by EIIIB+ or EmB- mRNAs are indicated at the

left of each panel. The ratio of these fragments (EHIB+ /EII IB- ) indicates the

level of EIIIB inclusion. Cell lines are indicated at the top of each panel.

Cells were transfected with each of the indicated constructs (7iBi89AGA and

7iBi89AAR2a were abbreviated to AGA and hAR2a, respectively; Ctrl;

untransfected cells). These panels show the effects of inserts derived from

oligonucleotides T, M and S (see Figure 3-2A for sequences). For analysis,

cytoplasmic RNA (from stably transfected F9 and HeLa cells) or total RNA

(from transiently transfected COS cells) was used. Lane M, end-labeled

molecular weight markers (pBR322/MspI fragments).
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Figure 3-4.

S1 analyses of 7iBi89 minigenes containing variant TGCATG inserts

S1 analyses of transfections using minigenes containing inserts TA3, TC3, TP3

and MP3 (see Figure 3-2A for sequences). Procedures and figure

conventions were as in Figure 3-3.

182



edI+E)v

Co/ VDV68!9!L

o 68!!L
SOo IPO

SdV4+VDV
ECd +VDv

O) cS+VDVca
C~l) A+vDv
Q) E+V'FV
I V!v68!G!z

68!8!L
eleH 1IJ1

CdV4+VDv
Cdl+VDV
60L+VDV

C_ eV.L+V9V

0)
LL .1+VDV

VEv68!!Z
6!9!3V

I I

S.

t
I

t
UtI

I
..

Tr

c'mCONCJ

0NC0)

rD

L")

(N
1q

I

I

la .f' ." -- - ,

F'
It

I
IL:

00

I,)

CV)

J

+
m

LL

a0
-0
0
L-

183

�,� .... �..��.�.��.,,..
'' "';,�.. ..,.

-·*.-· 17 -i··(( ·i. �-i� -( ·.1?�r-...T..Ti ;.i: -i'·.. : .. .I;.riiYr

-CLIC-- I_

c�r, �:.�··- ·- .;, �jjn;t-
:�;1;- -'�"�""I"Yi-··I-·'- �.-XI?.:'

rirml; ?·- ·ct s�l..·.r�+pyji;

r-·· ····: -14 *K� .*II-��:�:1.:I �.l�:-r. ;II�C!;N�.I .,..; ,.,�. ..�..

I

I I



184

___ ___I_� _I____���__ ____��__�I �I �·



185



Figure 3-5.

Transient expression of TGCATG-containing 7iBi89 minigenes in 293 cells:

comparison of expression levels

The indicated constructs (Figure 3-2B) were transiently transfected into 293

cells; transfections were carried out using 18 gg 7iBi89/pBAGH derivatives

plus 2 gtg pSV2neo (Chapter One). S1 probes were B-89 (Figure 3-3) and/or

a segment of pSV2neo sequence (See Materials and Methods).
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It was possible that the differences in inclusion that we observed were

due to changes in the level of expression associated with these inserts. To

address this, we analyzed expression in transiently transfected 293 cells (which

also normally include EHIB), using a cotransfected pSV2neo plasmid as an

internal control. We observed no gross differences in overall expression

among a representative set of 7iBi89 minigenes (Figure 3-5). Thus it is unlikely

that these effects on EIIIB are a consequence of differential expression levels.

We conclude that, although sequence context is not absolutely critical

for hexamer function, repeat-dependent EIB inclusion is influenced to some

extent by sequences flanking the TGCATG motif.

TGCATG repeats can activate cell-type-specific exon usage

The above results suggested that the TGCATG sequence represents a

cell-type-specific element. However, it was possible that these repeats

enhanced EIIIB inclusion nonspecifically, while other elements provided cell-

type-specificity. In past studies, the role of IVS2 sequences in cell-type-specific

EIIB regulation was explored by using a chimeric FN-related minigene called

M2. The M2 construct contains 7iBi89 sequences that spanned IVS2 (black

rectangles in Figure 3-6). The upstream portion of M2 (white and striped

rectangles) is derived from a constitutively spliced region of the rat FN gene

(see Figure 3-6 legend). Regulated inclusion of the hybrid II-9/EIIIB central

exon of M2 was detectable in all cell lines and also correlated with EIIIB

regulation; exon inclusion was low in COS cells, intermediate in HeLa cells and

high in F9 cells. Certain IVS2 deletions in M2 had previously been found to

attentuate cell-type-specific regulation by differentially reducing inclusion in

HeLa and F9 relative to COS cells. This effect was only observed when at least

three GCATG repeats were removed, particularly those within the empirically
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determined ICR (intronic control region; Figure 3-1). These data established

that cell-type-specific elements within IVS2 contained GCATG sequences

(Chapter Two). In order to address directly whether TGCATG repeats acted in

a cell-type-specific fashion, synthetic TGCATG-containing oligonucleotides

were tested for their ability to substitute for ICR function in the M2 minigene.

The deletion of four GCATG repeats from M2 (using the IVS2 deletion

AGA, which also removes the ICR; minigene M2AGA in Figure 3-6)

significantly reduced inclusion in F9 and HeLa cells while leaving COS

inclusion relatively unaffected, reducing the differential between F9 and COS

inclusion from 11-fold to 3-fold (Figure 3-6). The insertion of two synthetic

TGCATG hexamers (M2AGA+T1) modestly increased the F9/COS differential

(from 3-fold to 5-fold). Six repeats in the form of insert T3 (M2AGA+T3)

significantly enhanced M2 exon inclusion in all three cell lines, even in COS

cells. Because COS inclusion was also enhanced, insert T3 (in contrast to T1)

did not significantly increase the F9/COS differential. Insert T3 also enhanced

EIIIB inclusion HeLa to levels similar to F9. Therefore a moderate number of

TGCATG repeats can partially substitute for ICR sequences. Neither mutant

nor scrambled repeats enhanced M2 exon usage (M2AGA+M1, +M3, +S1, and

+S3); in fact, inclusion was nonspecifically reduced by these control inserts.

The effects of variant inserts upon M2AGA splicing were found to differ

from each other, both quantitatively and qualitatively. Insert TC3 (with six

TGCATGC repeats) had effects similar to those of insert T3. In contrast, insert

TA3 (with six TGCATGA repeats), in addition to enhancing the F9/COS

differential (from 3- to 5-fold), exhibited a pattern of cell-type-specificity most

closely resembling that of intact M2, with inclusion levels in HeLa being

intermediate between those in F9 and COS. Insert TP3 (with purine spacers)

enhanced the F9/COS differential to the greatest extent (from 3-fold to 10-fold).
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Insert MP3 did not exhibit this effect. We conclude that TGCATG repeats are

indeed capable of cell-type-specific action and that cell-type-specificity is

influenced by hexamer context.

TGCATG repeats promote EIIIB 5' splice site usage

In general, IVS2 deletions previously shown to reduce exon inclusion

removed, at most, four GCATG repeats (Chapter Two). When we deleted

seven IVS2 repeats from the M2 minigene, an unusual splicing phenotype

resulted. This phenotype was detected by using an RNase protection probe

that spanned the central exon of M2 (Figure 3-7). Differently sized probe

products were obtained depending upon which central exon splice sites (3' or

5') were used. Analysis of M2 expression in COS or HeLa cells yielded

primarily a product corresponding to usage of both splice sites of the M2

central exon (Figure 3-8, lanes 1 and 10). In contrast, when a large deletion

removing seven repeats was tested (M2AL2R2a; Figure 3-7), this fragment was

not detected; instead, an IVS2-containing RNA accumulated (Figure 3-8, lanes

5 and 14). This RNA, which lacks IVS1, did not accumulate if three- or four-

repeat sections of the AL2R2a region were deleted (M2AR2a, lanes 4 and 13;

M2AL2, lanes 3 and 12), nor did it accumulate if a large deletion that only

removed four repeats was tested (M2GA, lanes 2 and 11). A series of control

RNase protection assays using probes that spanned the other splice junctions in

the M2 minigene confirmed that the splice sites of both upstream and

downstream flanking exons were utilized in all of these constructs in COS cells,

although usage of the downstream exon 3' splice site was only partial for

M2AL2R2a (Figure 3-9). Taken together, these results suggested that when

seven repeats were deleted, IVS1 splicing and exon-skipping still occurred, but
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Figure 3-6.

TGCATG repeats regulate cell-type-specific exon recognition

A. The M2 and M2AGA minigenes. The portion of M2 derived from 7iBi89 is

indicated by black rectangles (exons) and black bars (introns). The upstream

portion of M2 (striped and unshaded rectangles and bars, exons and introns

respectively) is derived from a constitutively spliced region of the rat FN

gene and contains exon III-8b, the III-8b/Ii-9 intron and part of exon III-9.

GCATG repeats are indicated as vertical lines within IVS2. Oligonucleotides

were inserted at the AGA deletion junction.

B. Histograms indicating the amount of central exon inclusion exhibited by

each minigene (exon+ /exon - ratios); error bars represent standard deviations

from transient transfections that were carried out at least twice for COS and

HeLa cells and at least three times for F9 cells. Unshaded bars, COS cells;

shaded bars, HeLa cells; black bars, F9 cells. The F9/COS differential for

each construct (calculated as a ratio between F9 and COS values) is shown

below each triplet histogram set.
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Figure 3-7.

Splicing patterns in M2 minigenes with IVS2 deletions

Summary of splice site usage in the M2 minigene and its deletion derivatives.

Conventions are as in Figure 3-6; dashed lines above and below each

construct represent the splicing that occurs in that minigene (construct

M2GA is the same as M2AGA in Figure 3-6A). The number of GCATG

repeats that were removed from each construct is indicated beside each

minigene. At right is indicated, for each minigene, whether usage of the 5'

splice site of the M2 central exon (the EIIIB 5' splice site) can be detected.

The RNase protection probe that spans the M2 central exon is shown below

M2AL2R2a. Transfection of the M2AL2R2a construct results in the

accumulation of a partially spliced IVS2-containing RNA, which is

diagrammed at bottom. Synthetic inserts were inserted at a BglII site in

M2AL2R2a (indicated by an asterisk).
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Figure 3-8.

TGCATG repeats promote EIIIB 5' splice site usage

RNase protection assays of M2 exon usage. Total RNAs from transiently

transfected COS or HeLa cells were analysed; the constructs transfected are

indicated above each lane. Expected RNase protection products are shown

at left; bands corresponding to partially spliced (IVS2-containing RNA; small

arrowhead) and completely spliced central exon (large arrowhead) are also

indicated at right. A similar assessment of M2 splicing could not be carried

out in F9 cells, since endogenous FN interfered with this analysis.
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Figure 3-9.

Splicing of M2 minigene derivatives in COS cells

The M2 minigene is shown at top (shading of the exons is different from that

shown in Figures 3-6 and 3-7). Two RNase protection analyses are also

shown. The probes used in the analysis at left were either neo-specific (as an

internal control for expression levels; see Materials and Methods) or a

riboprobe corresponding to a version of 7iBi89 containing internally deleted

introns. This probe was used to assess splicing of the downstream portion of

the M2 minigenes. Protection by cotransfected pSV2neo yielded the bands

near the top of the gel; protection by properly spliced M2 RNA yields bands

corresponding to individual exons or exon fragments (bands marked by an

"S"). Protection by unspliced M2 RNA yields the bands marked by asterisks.

Due to the internally repeated nature of the M2 minigene, a number of other

bands appear in the analysis; these correspond to protection by upstream

portions of the spliced M2 RNA. Except where noted, a mixture of neo and

7iBi89 probes were used. Lane M, pBR322/MspI markers. At right is an

analysis using a probe corresponding to an internally deleted 8i9i10

minigene template, which was used in order to assess splicing of the

upstream portion of the M2 minigene; similar labeling conventions apply.

Total RNA was analyzed from COS cells transiently transfected with each of

the M2 constructs listed in Figure 3-7 plus M2AL2R2a constructs containing

T3, M3, TP3 or MP3 inserts. Expression of all constructs yielded profiles that

correspond to the splicing patterns diagrammed in Figure 3-7. The

TGCATG-dependent EIIIB 5' splice site activation is not clearly visible here

but is more clearly documented in Figure 3-8.
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that the EIEIB-derived 5' splice site of the M2 central exon was not used,

resulting in production of a partially spliced RNA (summarized in Figure 3-7).

As these results suggested that GCATG repeats were required for EHIB

5' splice site usage, we analyzed the expression of M2AL2R2a derivatives that

contained synthetic repeat inserts T3, M3, TP3 or MP3. Both minigenes

M2AL2R2a+T3 and M2AL2R2a+TP3 expressed detectable amounts of

completely spliced M2 exon, although partially spliced RNA was still present

(Figure 3-8, lanes 6, 8, 15, and 17). Mutant repeats did not exhibit this effect

(M2AL2R2a+M3 or M2AL2R2a+MP3; lanes 7,9, 16, and 18). Splice site usage

of the flanking exons in M2AL2R2a remained relatively constant regardless of

insert identity (Figure 3-9). Therefore TGCATG repeats can partially rescue

EIIIB 5' splice site usage. Rescue by insert TP3 (as assessed by ratios of

partially to completely spliced RNA) was slightly greater than that by insert

T3, particularly in HeLa cells, thus correlating with the effects of these inserts

in 7iBi89AGA (Figure 3-2). Since only partial rescue was effected by six

TGCATG repeats, it is possible that additional sequences in IVS2 are required

for proper 5' splice site usage; alternatively, partial effects may have been a

consequence of inappropriate synthetic repeat positioning within this intron.

Nonetheless, these results suggest that one function of TGCATG sequences is

to promote more efficient usage of the EHIB 5' splice site.

TGCATG repeats can activate an unrelated alternative exon

We next tested whether these repeats could activate exons unrelated to

EmIB by testing TGCATG inserts in the rat preprotachykinin (PPTK) gene

transcript. The PPTK gene contains two alternative cassette-type exons, E4 and

E6. We focused on exon E4, since E4 is only spliced into PPTK mRNA about

25% of the time in a wide range of cell types (Krause et al., 1987; Nasim et al.,
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1990). Therefore, any positive effects of TGCATG repeats on E4 selection

should be detectable. If so, it should also be possible to assess whether

TGCATG-dependent exon activation is cell-type-dependent. We transferred a

number of oligonucleotide inserts into a minigene expressing exons E2 through

E7 of the rat PPTK gene transcription unit; inserts were positioned in the intron

between E4 and E5 (Figure 3-10A). RNA from transiently transfected COS,

HeLa, NIH3T3 and F9 cells was analyzed for E4 splicing by RNase protection,

using a probe derived from a PPTK cDNA containing exons El through E5.

As expected, E4 inclusion in the unmodified PPTK minigene was

relatively low in these four cell types (Figure 3-1OB, lanes 1, 7, 13, and 19).

Although some quantitative differences were apparent, E4 inclusion did not

differ drastically between cell lines. Insert T3 was found to have a significant

positive effect upon E4 inclusion (PPTK+T3; lanes 3, 9, 15, and 21) relative to

the control inserts M3 (lanes 5, 11, 17, and 23) or S3 (lanes 6, 12, 18, and 24).

The effects of two-repeat inserts were also tested (Ti versus M1). Enhancement

of E4 usage by insert T1 was slight but significant compared with insert M1.

The degree of exon activation ranged from low (COS) to very high (HeLa, F9).

The degree of TGCATG-dependent E4 activation among COS, NIH3T3 and F9

cells (COS < 3T3 < F9; Figure 3-10B) correlated with EIIIB regulation in 7iBi89

(Chapter Two). We note that, although EIIIB inclusion is normally low in

HeLa cells, TGCATG-dependent E4 activation in HeLa cells was unexpectedly

high. We conclude that TGCATG repeats are capable of activating

alternatively spliced exons unrelated to EIIIB. Additionally, these results

establish that TGCATG repeats provide at least part of the cell-type-specificity

of EIIIB regulation in the FN gene.
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Figure 3-10.

TGCATG repeats function in a heterologous gene

A. Diagram of the rat preprotachykinin (PPTK) minigene, along with the

locations of alternatively spliced exons E4 (shaded) and E6. This minigene

contains the SV40 early promoter and 3' poly(A) signals (Nasim et al, 1990).

Other labelling conventions are as in Figure 3-1. Synthetic inserts were

placed at a BglII site (asterisk) within the E4-E5 intron, located 136 nt

downstream of E4 and 328 nt upstream of E5.

B. RNase protection analysis of the transfected PPTK minigene and its

derivatives. A cDNA containing PPTK exons El through E5 was used as a

probe. Analyses were carried out on total RNA from untransfected cells

(Ctrl) or from transiently transfected COS, HeLa, 3T3 or F9 cells (cell lines

are indicated above each panel; transfected minigenes are indicated above

each lane). The protected fragments corresponding to E4+ and E4- mRNAs

are indicated at left. The full-length riboprobe ("Probe") is large and

migrates much more slowly than the E4+/E4- fragments and is not shown

here.
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DISCUSSION

We have identified a short hexanucleotide element (TGCATG) that

activates the splicing of the EHIB exon in the rat fibronectin gene. This

element, as a repeated array, can also promote the regulated inclusion of a

heterologous alternatively spliced exon. This novel short motif therefore

regulates splice site selection when present in alternatively spliced pre-

mRNAs.

TGCATG sequences in IVS2 activate splicing of EIIIB

The EHIB minigene 7iBi89 exhibited high levels of EIIIB inclusion in F9

cells, low inclusion in HeLa cells and complete EIB-skipping in COS cells.

Previous studies identified a region in the intron downstream of EIIIB (IVS2)

that was important for the recognition of EIiB for splicing (Huh and Hynes,

1993). Several TGCATG repeats are present in this relatively large (>500 nt)

region (Figure 3-1). Deletions of separate repeat-containing regions in IVS2

abolished EIIIB inclusion in F9 cells. Synthetic TGCATG repeats that replaced

these deletions restored F9 inclusion (Figures 3-2, 3-3). These repeats had

reduced effects in HeLa cells (which normally express low EIIIB inclusion) and

had no effect in COS cells (which skip EHIB completely); repeat activity

therefore appeared to vary according to cell type. In a related FN minigene,

M2 (Figure 3-6), deletion of certain TGCATG-containing IVS2 sequences

significantly reduced F9 and HeLa exon inclusion while having little effect on

the low level of inclusion in COS cells. The effects of this deletion could be

reversed by reinsertion of an appropriate number of synthetic TGCATG

repeats, confirming that these repeated sequences are indeed capable of cell-

type-dependent action.
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TGCATG sequences also activated preprotachykinin (PPTK) exon E4

inclusion when placed downstream of E4 (Figure 3-10). Therefore exons EIIB

and E4 may both be intrinsically poorly recognized for similar reasons. In vitro

studies of PPTK alternative splicing have indicated that the 5' splice site of E4

binds U1 snRNP poorly; as a consequence, recruitment of the splicing factor

U2AF to the E4 3' splice site is also compromised (Kuo et al., 1991; Hoffman et

al., 1992). In addition, mutations in the E4 or EIIIB 5' splice sites that improve

donor complementarity to U1 snRNA can also significantly increase inclusion

(Nasim et al., 1990; see also Chapter Two). Since TGCATG repeats can activate

the EIIB 5' splice site (Figures 3-7, 3-8), TGCATG sequences may act by

facilitating U1-5' splice site interactions and the exon selection events that

follow.

Sequence specificity of the element

Besides the TGCATGA consensus, no other obvious inter-repeat

homologies are apparent in IVS2 (Figure 3-1). Since hexamer elements can act

from within different sequence contexts (Figures 3-2 and 3-10), specific RNA

secondary structures appear not to be critical for hexamer function. Therefore

it is likely that the TGCATG motif comprises (or contains) the essential cis-

active element.

Both the degree and cell-type-specificity of repeat-dependent exon

inclusion can be affected by sequences flanking the synthetic hexamers. For

example, TGCATG sequences were most active in a purine-rich context.

Interestingly, three TGCATGA/TGCATGC repeat pairs stimulated EIIIB

inclusion more than either six TGCATGA's or six TGCATGC's (Figures 3-2, 3-

4). This finding could reflect either subtle context effects or a synergistic

interaction between distinct repeat-binding factors with overlapping sequence
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specificities. Context-dependent differences could also reflect differential

hexamer accessibility or factor affinity. Cell-type-specificity was most closely

mimicked by TGCATGA repeats (Figure 3-6), which could explain why five of

nine IVS2 repeats have this sequence. Many of the naturally-occurring GCATG

repeats in IVS2 are adjacent to evolutionarily conserved sequences (Figure 3-1),

possibly reflecting a requirement for appropriate context.

Taken together, these data indicate that repeated TGCATG hexamers

can account for the activity of most if not all of the cis-elements previously

identified within IVS2. Although the presence of other EHIB-regulating

elements cannot be ruled out, we have shown that TGCATG sequences can

regulate EIIIB if present in enough copies and in the proper sequence context.

Therefore TGCATG repeats probably play a major essential role in the splicing

of EIIIB into FN mRNA.

Is the TGCATG element a regulatory splicing signal?

Whereas a constitutive signal might be expected to exert equal effects in

all cell types, a regulatory element should exert cell-type-dependent effects.

The repeated TGCATG element meets this latter criterion in three separate

minigenes. First, TGCATG repeats activated EHIB usage in a minigene in

which inclusion was compromised by an IVS2 deletion (7iBi89AGA).

TGCATG-dependent EIIIB inclusion was highest in F9, lower in HeLa and

undetectable in COS cells, correlating with the ability of each cell line to utilize

EIIB. Furthermore, in two other minigenes that exhibited detectable inclusion

in all cell lines (M2 and PPTK), TGCATG repeats again had cell-type-

dependent effects (Figures 3-6 and 3-10). Therefore these repeats appear to

comprise regulatory rather than constitutive signals.
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We note that, although HeLa cells normally exhibit low EHIB inclusion,

the response of HeLa cells to TGCATG repeats in many cases was

disproportionately high. For example, PPTK E4 activation was unexpectedly

high in HeLa cells, despite apparently EIIB-like regulation of E4 in the other

cell lines tested (Figure 3-10). Hence it is possible that other FN gene sequences

contribute to EIIIB regulation, perhaps by affecting hexamer context or by

acting independently.

A number of studies in other vertebrate genes have identified sequences

that control splicing. Secondary structure and intron sequences near exon 7 in

the rat [-tropomyosin gene (exon 6B in chicken) can repress usage of this exon

(Helfman et al., 1990; Libri et al., 1991; D'Orval et al., 1991; Guo et al., 1991;

Gallego et al., 1992). An element that inhibits splicing in Rous sarcoma virus

can also function in a heterologous intron (Arrigo and Beemon, 1988; McNally

et al., 1991). Elements that activate splicing in the c-src gene and others that

inhibit splicing in the calcitonin/CGRP gene have also been described (Black,

1992; Emeson et al., 1989). For many of these cases, minimal essential elements

that affect splicing have not yet been defined; however, parallels may exist

between regulation of the c-src and calcitonin/CGRP systems and the

regulation of EIIB, as will be commented on below.

In comparison, the regulatory element we have identified is novel in a

number of respects. Repeated TGCATG sequences are capable of functioning

in a cell-type-dependent fashion in a heterologous context, a finding that has

not been conclusively established for many of the other potential vertebrate

elements reported to date. In addition, the remarkably diminutive character of

this repeat may have widespread implications for regulated alternative

splicing.
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How might TGCATG elements work?

The removal of seven GCATG repeats from IVS2 resulted in inactivation

of the EIIIB splice donor, a phenotype that was partially rescued by synthetic

TGCATG repeats (Figure 3-7, 3-8). Therefore these elements may recruit

factors that directly activate nearby 5' splice sites (Figure 3-11A). As discussed

previously, activation of EIIIB (or PPTK exon E4) could occur by repeat-

facilitated U1 snRNP binding. Alternatively, these repeats may render IVS2

more accessible for splicing, perhaps by recruiting factors that configure this

intron appropriately. A number of hnRNP proteins exhibit sequence- or

transcript-specificity (Swanson and Dreyfuss, 1988a, 1988b; Bennett et al.,

1992b; Matunis et al., 1993); some of these may prefer to bind UGCAUG. Other

possible UGCAUG-binding candidates include members of the SR protein

family, which are splicing factors that can promote proximal 5' splice site

selection in cell-free extracts (Fu et al., 1992; Zahler et al., 1992). Indeed, SR

proteins have been implicated in Drosophila dsx regulation in vitro (Tian and

Maniatis, 1993) and may also interact with the purine-rich exon element that

has been found in some exons (Lavigueur et al., 1993; Sun et al., 1993b).

Different SR proteins have also been shown to exhibit substrate-specificity in

vitro, either for commitment to splicing (Fu, 1993) or for proximal 5' splice site

selection (Zahler et al., 1993); these observations may reflect distinct sequence

specificities among individual SR family members.

Additionally, these repeats may inhibit or delay the usage of the IVS2

splice acceptor (which is used regardless of splice choice), allowing more

opportunity for EIIIB recognition (Figure 3-11A); this might explain why

several repeats are located in the 3' portion of IVS2. Regulation of this type is

not without precedent, since studies of SV40 and adenovirus alternative

splicing have uncovered instances where 5' splice site selection can be
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i.

governed by alterations at a common 3' splice site (Fu and Manley, 1988;

Ulfendahl et al., 1989).

In principle, it is also possible that these repeats represent

transcriptional pause sites, in which case a delay in exon I-8a acceptor

commitment might result from pausing of RNA polymerase II during

transcription of the repeat-rich region within IVS2. Evidence for

cotranscriptional splicing has been documented in insect systems (Beyer and

Osheim, 1988; Lemaire and Thummel, 1990; Bauren and Wieslander, 1994);

therefore such a mechanism could effectively result in delayed exon III-8a

commitment. If commitment delay were the mechanism by which these

repeats functioned, then it should be possible to assay these repeats upstream

of an alternative 3' splice site and thereby discriminate between models

invoking splice site attenuation or delayed transcription (see Chapter Four).

In any event, it is likely that differentially expressed cellular factors

mediate these repeat-dependent effects, either by interacting with hexamer

targets directly or by interacting with ubiquitous hexamer-binding proteins.

The detailed characterization of such cellular factors should offer further

insights regarding mechanisms of alternative splicing.

Do TGCATG sequences regulate other alternatively spliced genes?

Given our observations, short sequences could in principle govern

regulation in other alternatively spliced genes. In fact, the TGCATG element

occurs in at least two other instances of RNA regulation. Studies of the c-src

gene have identified at least two intron elements, located downstream of the

alternatively spliced N1 exon, that are important for neural-specific N1 exon

inclusion (Black, 1992). It is interesting to note that a TGCATG sequence

occurs in one of these elements and that a mutation that reduced N1 inclusion
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also disrupted this hexamer (Figure 3-1iB). Moreover, extensive deletions that

removed both intron elements resulted in production of unspliced or partially

spliced RNA, a result similar to that obtained upon removal of seven repeats

from FN minigenes. These parallels with our data suggest that TGCATG-

related sequences may participate in c-src splicing regulation, probably in

conjunction with additional neural-specific elements.

In the calcitonin/CGRP gene, HeLa and thyroid C cells produce

calcitonin by using exon 4 whereas neurons and F9 cells produce calcitonin

gene-related peptide (CGRP) by using exons 5 and 6 instead (Leff et al., 1987;

Emeson et al., 1989; Figure 3-11C). Regulation is evident at the calcitonin-

specific exon 4 splice acceptor, which is used in HeLa cells but repressed in F9

cells (Emeson et al., 1989). We note that eight GCATG repeats are clustered

within 700 bases surrounding this splice acceptor in the human gene (Figure 3-

11C). Five of these are TGCATG. In studies using the rat gene, derepression of

the exon 4 acceptor in F9 cells could be induced by nearby upstream mutations,

a number of which removed one or more GCATG repeats (Emeson et al, 1989).

Although a more recent and comprehensive analysis of the rat gene failed to

identify any single element that was consistently critical for regulation

(Yeakley et al., 1993), the influence of multiple dispersed elements could

explain these recent findings, particularly if such elements were functionally

redundant. CGRP-specific splicing in F9 cells might then occur by repeat-

dependent downregulation of the exon 4 splice acceptor, similar to the way in

which these repeats may attenuate the 3' splice site downstream of EIIIB in the

same cells (Figure 3-11A). Although there is no conclusive evidence that these

repeats regulate calcitonin/CGRP, it is nevertheless intriguing that multiple

copies of a splicing signal for EIiB should occur (at a much higher density than

predicted by chance) in a gene characterized by a different mode of regulated
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alternative splicing. It seems unlikely that TGCATG-dependent splicing

regulation is unique to EHIB; in fact, given these correlations among FN, c-src

and calcitonin/CGRP, it is tempting to speculate that TGCATG-related motifs

may participate in a range of embryo- or neural-specific RNA processing

events.
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Figure 3-11.

Repeats in other alternatively processed genes?

A. Repeat-dependent activation of EIIIB inclusion. The 7iBi89 minigene is

shown (vertical lines, GCATG repeats). Arrows labeled with plus or minus

signs denote either positive or negative effects on splice site usage that may

be mediated by TGCATG repeats. These and other possible models are

discussed in the text. In the absence of these repeats (or of repeat-dependent

factors that activate EmIB recognition), EIUB-skipping is the predominant

splicing event.

B. Organization of the murine c-src gene in the region of the alternatively

spliced N1 exon (derived from Black, 1992). Conventions are as in Figure 3-

1. Exon N1 is shaded. The black bar indicates the location of neural-specific

N1-activating elements characterized in a study by Black (1992); the

sequence of one of these elements is also shown (the TGCATG sequence is

underlined), along with a mutation made in this element that reduced N1

inclusion splicing both in vivo and in vitro.

C. Organization of the calcitonin/a-CGRP gene; conventions are as in Figure

3-1. The locations of GCATG repeats (derived from the human sequence)

are shown below this diagram. Note that the random expectation is one

such repeat per 1024 nucleotides, yet several are clustered in the vicinity of

exon 4.
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MATERIALS AND METHODS

Oligonucleotides and Computer Analysis

Each double-stranded DNA oligonucleotide consisted of annealed sense

and antisense oligonucleotides. Sense strand sequences are shown in Figure 3-

2A; antisense oligonucleotides consisted of the sequence 5'-GATC-3' followed

by the reverse complement to nucleotides 5-35 of each sense sequence.

Comparisons of rat FN (Schwarzbauer et al., 1987; R. Patel-King, J. E.

Schwarzbauer, P. A. Norton, and R. O. Hynes, unpublished data; GenBank

accession number L20801) and human FN genomic sequences (Paolella et al.,

1988; GenBank accession number X07717) were carried out using version 7.0 of

the UWGCG software package (Devereux et al., 1984); the comparison shown

in Figure 3-1 was adapted from the output from a BESTFIT comparison (using

default parameters). Analysis of repeats in the rat EN gene and in the human

calcitonin/c-CGRP gene (Broad et al., 1989; GenBank accession number

X15943) was carried out using the nucleotide interpretation program of the

STADEN software package (Staden, 1990).

DNA Constructs and Probes

DNA manipulation procedures were as described previously (Ausubel

et al., 1987; Sambrook et al., 1989). Restriction enzymes were obtained from

New England Biolabs. Minigenes 7iBi89 and M2 in expression vectors pBAGH

or pBAGH.Sv, along with their deletion derivatives and the S1 analysis probe,

have been described previously (Huh and Hynes, 1993). The IVS2 deletions in

this study (in 7iBi89 or in M2) removed the following nucleotides from the 1071

base IVS2 (numbering as in Figure 3-1): AGA, bases 235-729; AAR2a, bases 734-

1039; AAL2, bases 417-729; AAL2R2a, bases 417-1039.
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The following procedure was carried out with each of the DNA

oligonucleotide pairs in order to create single or multiple inserts in 7iBi89AGA.

After gel purification, 800 pmol of each of the sense and antisense

oligonucleotides were annealed (in a total volume of 40 lp TE [10 mM Tris-HCl,

1 mM EDTA pH 8.0]) by cooling slowly from 900C to 300C. 20 l1 aliquots of

the annealed mixture were then phosphorylated in a total volume of 40 p1

using 40 U 3'-phosphatase-free polynucleotide kinase (Boehringer-Mannheim).

After phenol-chloroform (PC) extraction and ethanol precipitation, the mixture

was ligated (in 20 W1 overnight at 150C) using 200U T4 DNA ligase. The

ligated oligonucleotides were then PC-extracted, precipitated and digested

with BamHI and BglII to eliminate all but head-to-tail ligation joins (for inserts

TP and MP, BclI was used instead of BamHI). This ligation-digestion cycle was

repeated two more times to ensure an adequate production of appropriately

ligated multimers. The final digest was then blunt-ended with Klenow

fragment and dNTPs; this mix was then ligated to AflII-cut, blunt-ended

7iBi89AGA/pBAGH. DNAs from transformed colonies were sequenced to

ensure appropriate insert size, identity and orientation.

7iBi89AGA/pBAGH.Sv derivatives were made by transferring a XhoI-EcoRI

fragment (containing the entire transcription unit) from 7iBi89AGA/pBAGH

into pBAGH.Sv.

Inserts were excised from 7iBi89AGA/pBAGH via BglII excision; these

were ligated to BglII-cut M2 GA/pBAGH.Sv or M2 AL2R2a/pBAGH.Sv to

make the insert-containing M2AGA and M2 AL2R2a derivatives. The RNase

protection probe used for assessing M2 central exon splice site usage (Figure 3-

8) was derived from a HindIII-PstI fragment of the M2 minigene that contains

the central exon (in pBluescript SK-; Stratagene); KpnI-linearized plasmid was

the template for T3 RNA polymerase (Stratagene). The probes used in Figure
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3-9 (left) were T7 antisense transcripts of a 7iBi89 template (in pGEM3) that

carried the deletion XE (Chapter Two) plus a BglII-DraI deletion in IVS2. The

probe used for the right of this figure was transcribed (by T7) from an 8i9i1O-

derived pGEM3 template containing a 734 bp AflII-KpnI deletion in IVS1 and a

1054 bp AccI-EcoRI deletion in IVS2. All riboprobes were purified via

preparative electrophoresis on a 4% or 5% denaturing polyacrylamide gel.

Preprotachykinin (PPTK) minigene constructs and probes were derived

from pBPSVpA+2-7 (a plasmid containing exons E2 through E7 of the rat PPTK

gene inserted between SV40 promoter and poly(A) signals) and pRPCl, a P-

PPTK cDNA clone in pBS (Stratagene) containing PPTK exons El through E7

(both kind gifts from P. J. Grabowski; Nasim et al., 1990). Oligo inserts were

inserted into a BglII site in pBPSVpA+2-7, in the intron between E4 and E5

(Figure 3-10A). The RNase probe used for assessing E4 inclusion was made by

cutting pRPCl with BglII and BamHI and religating the vector, generating a

subclone containing exons El through E4 and part of E5. This was linearized

with EcoRI and transcribed with T3 RNA polymerase.

In some experiments, levels of expression were were compared, using

cotransfected pSV2neo as an internal control. An EcoRI-HindIl fragment of

the plasmid pLJ (containing part of the neomycin resistance gene; Guan et al.,

1990) was cloned into pGEM2 and was used for both S1 and RNase protection

assays. For S1 analyses, this plasmid was cut with BglII, kinased and then

recut with EcoRI. For RNase protection analyses, this plasmid was linearized

with HindIII and transcribed in vitro using SP6 RNA polymerase (Promega).

All probes were gel purified before use.
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Cell culture and RNA analysis

Cell culture methods, transfection protocols and RNA analysis by S1

nuclease or RNase protection assays were as described previously (Chapter

One). S1 analysis was carried out using 5' end-labelled probes, whereas RNase

protection analyses were carried out with uniformly labelled riboprobes.

Quantitation of bands was carried out using a Molecular Dynamics

PhosphorImager.
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Chapter Four

Regulation of Alternative Calcitonin/CGRP pre-mRNA Processing

By Repeated TGCATG Elements
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ABSTRACT

The EIIIB exon in the rat fibronectin gene is regulated in a cell-type-

specific fashion. Cell-type-specific EIIIB inclusion is dependent upon a

hexanucleotide sequence that occurs several times in the intron downstream of

EIIB. An inspection of other alternatively spliced genes revealed that these

hexamer elements may participate in other cell-type-specific splicing events, in

particular those of c-src and of the calcitonin/CGRP gene. The presence of

several GCATG repeats near the regulated splice acceptor of the calcitonin-

specific exon in this gene suggested that TGCATG repeats could specifically

attenuate an adjacent splice acceptor as part of their function. To test this

hypothesis, TGCATG repeats were placed upstream of the calcitonin-specific

exon splice acceptor in mutant calcitonin/CGRP constructs that exhibited

elevated usage of this exon in CGRP-producing cell types. Inserted TGCATG

hexamers (but not control hexamers) were found to decrease calcitonin splicing

and promote CGRP splicing; furthermore, this effect was somewhat cell-type-

dependent. These results indicate that TGCATG elements can attenuate 3'

splice site recognition. These findings are consistent with the hypothesis that

TGCATG-related sequences normally participate in the regulation of

calcitonin/CGRP alternative RNA processing. Moreover, these experiments

provide further support for the role of these hexamer elements as cell-type-

specific determinants of alternative splicing.

230

---- --- I - -- -_ · _~ 1~_ __

- -- - - -



INTRODUCTION

From an examination of regulated alternative splicing in Drosophila, it is

clear that both positive and negative modes of splicing regulation are possible

(For reviews, see Baker, 1989; McKeown, 1992; Mattox et al., 1992). It is also

apparent that one splicing regulator is capable of affecting splice site choice in

more than one gene. For example, the Sex-lethal gene product regulates the

splicing of its own pre-mRNA as well as of that of tra. The suppressor of white

apricot gene, in addition to affecting expression of the white apricot allele,

appears to exhibit negative autoregulation (for review, see Mattox et al., 1992).

The MER1 gene in yeast has been genetically inferred to have an additional

function distinct from the activation of splicing of the MER2 intron (Engebrecht

et al., 1991). Furthermore, a given regulator of splicing may exert either

positive or negative effects upon splicing, depending on the situation and the

target pre-mRNA. The product of the tra-2 gene, in conjunction with that of

the tra gene, acts to stimulate 3' splice site usage (and possibly also

polyadenylation) of the doublesex gene (Ryner and Baker, 1991; Hedley and

Maniatis, 1991); in addition, the tra-2 gene product appears to repress the

splicing of an intron in its own pre-mRNA in the male germ line (Mattox and

Baker, 1991). Therefore it is not unreasonable to imagine that a regulator of

splicing in vertebrates could control the processing of several genes

simultaneously.

The previous chapter examined the role of a hexamer sequence

(TGCATG) that cell-type-specifically regulates EIB inclusion in the

fibronectin gene. This cis-element occurs eight times in the intron downstream

of EIIIB. Deletions that removed sequences containing several of these repeats

were found to reduce EIIIB inclusion. The replacement of these deleted
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sequences with synthetic TGCATG-containing oligonucleotide inserts was

sufficient to restore EIIIB inclusion. This repeated hexamer was capable of

acting in a cell-type-dependent manner and in addition could function when

placed in a heterologous context. Therefore this repeated TGCATG sequence

represents a major control element of EIIIB alternative splicing that contributes

to the cell-type-specificity of this exon's regulation. In addition, sequences that

are important in neural-specific c-src and calcitonin/CGRP alternative splicing

also contain TGCATG sequences. These observations raise the intriguing

possibility that TGCATG elements participate in determining the cell-type-

specificity of alternative splicing in these and possibly additional genes.

In particular, the calcitonin/CGRP gene exhibits a pattern of alternative

splicing distinct from that exhibited by the fibronectin EIIIB exon. The pre-

mRNA transcript that encodes either calcitonin or calcitonin gene-related

peptide (CGRP) contains six exons. Production of calcitonin mRNA results

from splicing of exons 1 through 4; polyadenylation occurs at the 3' terminus of

exon 4. CGRP mRNA is produced when exon 3 is spliced to exons 5 and 6

instead, with 3' end formation at exon 6 (Figure 4-1). The choice between

calcitonin and CGRP processing is cell-type-specific; in vivo, calcitonin is

produced by thyroid C cells, whereas CGRP is produced by certain neurons

(Amara et al., 1982). The splice acceptors of exons 4 and 5 thus appear to

compete with each other for splicing to the common exon 3 donor. In

principle, calcitonin/CGRP processing choice could also involve differential

usage of polyadenylation sites.

How is the calcitonin/CGRP processing choice made?

Calcitonin/CGRP processing represents a complex system wherein both

differential 3' splice site selection and polyadenylation occurs. Studies of such
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systems have posed difficulties beyond those posed by systems involving

differential splicing alone. A key determining event must dedicate the

calcitonin/CGRP pre-mRNA to a particular processing pathway. Varying

degrees of experimental support have been provided for either splicing or

polyadenylation as this commiting event. For example, a calcitonin-specific

splice in a human gene-derived substrate was detected in vitro only if

sequences downstream of exon 4 were not present (Bovenberg et al., 1988),

suggesting that polyadenylation at exon 4 induces calcitonin-specific splicing.

However, since a substrate containing exons 3 through 5 exhibited

predominantly CGRP-specific processing regardless of splicing extract source,

it could not be assumed that key processing events were rate-limiting in vitro.

On the other hand, transfection studies have supported splice site

commitment as the key event. If both calcitonin and CGRP polyadenylation

sites were placed in a construct without splice sites, both sites were used

efficiently in both calcitonin- and CGRP-preferring cell lines (Leff et al., 1987);

in addition, replacement of the exon 4 poly(A) site with that of exon 6 did not

affect cell-type-specificity (Emeson et al., 1989). Thus specific polyadenylation

sequences were neither sufficient nor critical determinants of processing

choice. In addition, nuclear runon experiments have determined that

transcriptional termination in the rat gene occurs 3' of exon 6, even in cells that

predominantly produced calcitonin, arguing that differential transcriptional

termination is not a determining event (Amara et al., 1984).

In contrast, mutations removing the exon 5 splice acceptor fail to

promote exon 4 usage in CGRP-preferring cells, whereas mutations ablating

the exon 4 splice acceptor allowed CGRP-specific processing even in calcitonin-

preferring cell types (Leff et al., 1987; Emeson et al., 1989). These experiments

indicate that the exon 4 splice acceptor is the site that is regulated. The
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Figure 4-1.

GCATG repeats in the human and rat calcitonin/CGRP genes

The structure of the alternatively spliced rat and human calcitonin/CGRP

genes. Exons are represented by rectangles; dashed lines above and

below indicate possible splicing/polyadenylation patterns and the

mRNAs produced, along with the cell lines or cell types in which these

patterns predominate (pA, polyadenylation site; scale bar, 500

nucleotides). The incidence of GCATG pentanucleotides is indicated on

the horizontal linear coordinate below this diagram. Vertical lines

extending above and below this coordinate indicate occurrences of

GCATG in the human and rat genes, respectively (derived from the

known sequences of the human and rat genes; Broad et al., 1989; J.

Yeakley and M. G. Rosenfeld, personal communication). The GCATG

incidence between exons 1 and 3 in the rat gene are not known due to

lack of sequence information in this area.
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existence of cis-active inhibitory sequences upstream of the exon 4 acceptor

was demonstrated by small nested deletions in this region (Emeson et al.,

1989), supporting the role of upstream sequences in CGRP-producing cells (like

F9 cells). On the other hand, exon 4 sequences have also been identified that

are required for calcitonin processing (Cote et al., 1992; van Oers et al., 1994).

Splicing of the calcitonin-specific acceptor in vitro has been shown to involve

usage of an unconventional uridine acceptor branch, suggesting that calcitonin

exon usage is intrinsically poor and that additional factors are required for its

efficient recognition in calcitonin-producing cells (Adema et al., 1990).

However, mutation of this site to an adenosine in the rat gene has been shown

not to affect cell type-specific regulation if assayed in the presence of

appropriate nonspecific mutations (Yeakley et al., 1993).

Thus two possible models for calcitonin/CGRP regulation are possible:

one model posits negatively acting factors that inhibit the exon 4 splice

acceptor in CGRP-producing cells, whereas the other model proposes the cell-

type-specific activation of exon 4 in calcitonin-producing cells. A

constitutively-expressed calcitonin/CGRP transgene has been shown to exhibit

calcitonin-specific processing in most tissues with the exception of neurons

(Crenshaw et al., 1987). If one accepts an unproven assumption made in this

study (i. e., that only regulated cell types should contain cell-type-specific

factors), this finding would appear to support a model involving exon 4

repression specificaaly in neurons.

Some other puzzling observations remain unexplained. For instance,

mutations or deletions that eliminate the calcitonin exon 4 polyadenylation

signal do not always result in CGRP-processing by default but can cause the

accumulation of partially spliced RNA, even in cells that normally produce
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CGRP (Leff et al., 1989); therefore cell-type-specific mechanisms may also exist

to promote CGRP processing, although this is far from clear.

Do GCATG repeats regulate calcitonin/CGRP processing?

From the available evidence, it still remains a matter of debate whether

calcitonin acceptor usage is negatively regulated in neurons or positively

regulated elsewhere. Inspection of the human calcitonin gene sequence has

revealed the presence of several TGCATG and GCATG repeats near the

calcitonin-specific splice acceptor. Several GCATG repeats also occur in this

region in the rat gene. In comparing the effects of nested deletions carried out

by Emeson et al. (1989), we observed that deletions that activated exon 4

splicing had removed one or more GCATG repeats. Since TGCATG repeats

have been demonstrated to function in a heterologous context and also occur in

elements that affect c-src alternative splicing, it seemed possible that TGCATG-

related sequences could control the calcitonin/CGRP processing decision. This

chapter describes a direct test of this hypothesis in the rat calcitonin/CGRP

gene. Synthetic hexamer-containing oligonucleotide inserts were tested for

their effect on splicing in rat calcitonin/CGRP constructs that contained exon 4-

activating mutations. From this test it was concluded that TGCATG repeats

were indeed capable of reversing the effects of these mutations, most likely by

negatively affecting the calcitonin-specific 3' splice site in a cell-type-dependent

manner. These findings have additional implications for the mechanistic

action of hexamer repeats in general.
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RESULTS

A test of TGCATG function in the rat calcitonin/CGRP gene

Inspection of the human gene revealed eight GCATG repeats within a

stretch of 700 nucleotides (nt) in the vicinity of the calcitonin-specific exon 4

splice acceptor (Figure 4-1). This represents an anomalously high occurrence

of this sequence, since any given pentanucleotide would be expected to occur

only once per 1024 nucleotides by random chance. Of these eight, five have the

sequence TGCATG. In the rat gene, five GCATG repeats are present in the

general vicinity of exon 4. Therefore several GCATG repeats were found in

genes from both species; curiously, only four of these repeats are conserved

between the human and rat genes: two conserved GCATG pentamers occur 32

and 252 nt upstream of the rat exon 4 splice acceptor and two occur 47 and 236

nt downstream. Although fewer repeats occur in the rat gene, one in partcular

(CGCATG) is located only 17 nt upstream of exon 4, between the 3' splice

junction and the branchpoint that has been mapped from in vitro studies of the

human gene (Adema et al., 1988).

Studies using the rat gene have identified mutations and deletions that

activate the use of exon 4 in F9 teratocarcinoma cells, a cell line that normally

prefers CGRP- over calcitonin-processing (Leff et al., 1987; Emeson et al., 1989).

The sequences of two of these mutations, -58/-17 and -58/+11(Ex3), are shown

in Figure 4-2, along with the wildtype F4neo sequence. Mutation -58/-17

deletes or alters sequences between 17 and 58 nucleotides upstream of exon 4.

In mutation -58/+1 (Ex3), a 65 nt sequence spanning this 3' splice site was

replaced by sequences normally spanning the splice acceptor from exon 3 in

this gene. Both mutant constructs contained additional substitutions both

upstream and downstream of the altered area; these base alterations, which
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Figure 4-2.

Experimental test of hexamer repeats in mutant rat calcitonin/CGRP

genes

The exon/intron structure of the rat calcitonin/CGRP line is indicated at

top; the sequence of the calcitonin-specific acceptor region (exon 4) is

shown below this diagram. The top sequence is that of the wildtype

gene (F4neo). The next two lines are correspond to the same regions

from the -58/-17 and -58/+11(Ex3) mutant forms of the F4neo construct

(adapted from Emeson et al., 1989). Blank regions indicate deleted bases

relative to the F4neo sequence; underlined residues indicate nucleotide

changes relative to F4neo. GCATG repeats in this region are boxed. The

general sequence of the inserts used in this study is shown in larger type

below these exon 4 acceptor region sequences (derived from pBluescript

polylinker); the arrow indicates the point in the calcitonin/CGRP gene

at which these sequences were placed. Sequences of the monomeric

forms of each insert are shown in the box at bottom. Shaded bases are

differences from the top line (insert T). Trimerized versions of these

inserts were inserted in tandem at the location indicated by "[TRIMER

INSERT]".
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facilitated mutant construction (by creating KpnI and ClaI sites), had no effect

upon calcitonin/CGRP splicing if introduced in the absence of other mutations

(Emeson et al., 1989). Of the nested mutations and substitutions reported by

Emeson et al. (1989), mutants -58/-17 and -58/+11(Ex3) significantly increased

the percentage of calcitonin-specific processing in F9 cells (from 6% to 28% and

82% respectively).

To test whether TGCATG sequences could repress exon 4 usage,

synthetic oligonucleotide inserts (Figure 4-2) were introduced into rat

calcitonin/CGRP constructs containing the -58/-17 or -58/+11(Ex3) mutations.

Each synthetic insert contained six hexamer repeats, separated by spacer

sequences of varying composition; total insert length was 167 nt. Inserts T3,

M3 and S3 contained TGCATG (est), TGACTG (mutant) and AGTCGT

(scrambled) hexamers respectively; in this insert series, spacer sequences with

a relatively high pyrimidine content were used to separate the hexamer units.

Inserts TP3 and MP3 contained TGCATG and TGACTG hexamers respectively

and in addition contained purine-rich spacers. Each insert contained three

tandem repeats of a two-hexamer-containing oligonucleotide. In Chapter

Three, it was found that TGCATG-containing inserts specifically enhanced

EHIB inclusion in a cell-type-dependent fashion when placed downstream of

EEIB, whereas none of the control inserts had this effect.

These insert-containing plasmids, along with their parental mutant

constructs and the original F4neo plasmid, were transfected into a variety of

cell lines that exhibited varying degrees of calcitonin/CGRP preference. Total

RNA isolated from transfected cell lines was subjected to RNase protection

analyses, using a probe that contained sequences spanning the splice acceptors

of both exon 4 and exon 5. Protection by calcitonin/CGRP transcripts were

predicted to yield RNase-resistant fragments of 588-793 nt (unspliced exon 4),
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472 nt (spliced exon 4, specific for calcitonin), 300 nt (unspliced exon 5) and 183

nt (spliced exon 5, specific for CGRP). The 472 and 183 nt fragments therefore

represented protection by calcitonin and CGRP mRNAs respectively whereas

the other fragments were indicative of unspliced or partially spliced pre-

mRNA. The relative intensities of the 472 and 183 nt bands (after normalizing

for labeled uridine content) thus reflected calcitonin/CGRP splicing

preference. Since oligonucleotide inserts were placed just upstream of the exon

4 acceptor, it was necessary to make probes specific for each F4neo construct in

order to effectively distinguish between unspliced RNA and spliced calcitonin

mRNA. Results for each cell line are described individually below and are

quantitated in Figure 4-7.

TGCATG repeats restored calcitonin-specific processing in F9 cells

In stably transfected F9 teratocarcinoma cells (Figures 4-3, 4-7), the

wildtype F4neo plasmid exhibited substantial amounts of CGRP expression

but very little calcitonin splicing. Transfection of the -58/-17 and -58/+11(Ex3)

mutant F4neo derivatives resulted in significantly elevated levels of calcitonin

mRNA production. For all the -58/-17 derivatives, the band representing

unspliced exon 5 migrated somewhat faster than expected; this was due to the

occurrence of a spontaneous rearrangement in the intron separating exons 4

and 5 that was present in the parental -58/-17 construct. This rearrangement is

not known to affect calcitonin/CGRP splice preference, either alone or in the

context of other F4neo mutations (J. Yeakley, personal communication). The

relative amount of calcitonin mRNA produced by the mutants -58/-17 and

-58/+11(Ex3) compared well with the published values (26% and 86%

respectively versus 28% and 82% as published; Emeson et al., 1989).

244

_�



Insert T3 was found to reverse completely the effect of the -58/-17

mutation when placed upstream of the exon 4 acceptor. Expression of the

construct -58/-17+T3 yielded a pattern matching that yielded by wildtype

F4neo. The mutant and scrambled control inserts M3 and S3 did not exhibit

this effect; therefore the observed repression of calcitonin exon 4 usage was

mediated specifically by TGCATG sequences. Insert TP3 (which contains

TGCATGs separated by purine-rich spacers) also affected the calcitonin/CGRP

ratio, although not to the same extent as did insert T3; this effect was not

observed using insert MP3. The finding that insert TP3 functioned less well

than T3 was unexpected, since the reverse was found to be true in fibronectin-

related minigenes (Chapter Three). Therefore the bases flanking the TGCATG

sequence, although not critical, appeared to affect this element's action.

In the context of the -58/+11(Ex3) mutation, these inserts T3 and TP3

were found to exert effects that qualitatively paralleled those exerted in

mutation -58/-17; although overall effects in the former construct were lower

than in the latter construct. Therefore TGCATG elements repressed usage of a

nearby downstream 3' splice site even if that 3' splice site sequence was derived

from a constitutive exon. Together with the finding that TGCATG sequences

are normally found near exon 4 in both the rat and human genes, these data

provide evidence that TGCATG repeats can negatively regulate 3' splice site

usage and furthermore may normally participate in repression of the

calcitonin-specific splice acceptor in F9 cells.

In calcitonin-preferring Hela cells, TGCATG repeats have less activity

HeLa cells normally exhibit a preference for calcitonin processing

(Emeson et al., 1989). The expression of these constructs in stably transfected

HeLa cells (Figures 4-4, 4-7) differed from that exhibited by F9 cells in a
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Figure 4-3.

The effects of hexamer elements on calcitonin/CGRP processing:

F9 teratocarcinoma cells

RNase protection analyses of total RNA (10 jgg) isolated from populations

of F9 cells stably transfected with F4neo, its mutant derivatives -58/-17

and -58/+11(Ex3) or with mutants containing synthetic hexamer-

containing inserts. Riboprobes used for this analysis contained intron

sequences upstream of exon 4, exon 4, intron sequences upstream of

exon 5 and exon 5 (probe structure shown at top right). RNase

protection products were analyzed in a denaturing 4% polyacrylamide

gel. Aliquots of representative probes were run at left. The remainder

of the gel shows analyses of RNA from nontransfected F9 cells using the

F4neo-derived probe (Ctrl) or RNA from F9 cells transfected with

wildtype or mutant constructs containing the indicated synthetic inserts.

Different probes were used for weach construct; none of the probes

yield any significant signal when used to analyze RNA from

nontransfected F9 cells. Positions of protected species are indicated at

right. The proportions of spliced exon 4 and spliced exon 5 were taken

to represent processing events specific for calcitonin and CGRP,

respectively.
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Figure 4-4.

The effects of hexamer elements on calcitonin/CGRP processing:

HeLa cells

RNase protection analyses of total RNA (10 gg) isolated from populations

of HeLa cells stably transfected with each of the indicated constructs.

Conventions are as in Figure 4-3.
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Figure 4-5.

The effects of hexamer elements on calcitonin/CGRP processing:

NIH3T3 cells

RNase protection analyses of total RNA (15 g) isolated from populations

of NIH3T3 cells stably transfected with each of the indicated constructs.

Conventions are as in Figure 4-3.
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Figure 4-6.

The effects of hexamer elements on calcitonin/CGRP processing:

COS cells

RNase protection analyses of total RNA (5 gg) isolated from populations of

COS cells transiently transfected with each of the indicated constructs.

Conventions are as in Figure 4-3.
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Figure 4-7.

Effects of synthetic inserts on calcitonin/CGRP processing

The percentage of calcitonin production was plotted as a function of each

construct for each of the four cell lines used in this study. For F9, HeLa

and NIH3T3 cells, measurements were obtained from two

independently transfected polyclonal G418-resistant populations (>500

colonies each). For COS cells, measurements were obtained from two

independent transient transfections. Error bars indicate standard

deviations.
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number of respects. Expression of the -58/-17 and -58/+11(Ex3) constructs

differed little from that of F4neo. In the context of the -58/-17 mutation, insert

T3 enhanced CGRP processing significantly, relative to inserts M3 and S3 and

the wildtype F4neo construct. The TP3 insert, in contrast, appeared not to have

any significant effect relative to controls. In the context of the -58/+11(Ex3)

mutation, neither T3 nor TP3 had significant effects relative to controls.

Therefore TGCATG inserts appeared to function less well in HeLa cells than in

F9 cells. However, since calcitonin processing was always highly preferred in

HeLa cells, it was possible that TGCATG elements functioned to similar extents

in F9 and HeLa cells but that such effects went undetected in HeLa cells.

TGCATG repeats have intermediate effects in NIH3T3 cells

Expression of F4neo in murine NIH3T3 cells resulted in calcitonin

processing at low but detectable levels (Figures 4-5, 4-7). Mutations -58/-17

and -58/+11 (Ex3), as expected, significantly shifted splice preference in favor

of calcitonin processing. Qualitatively, the effects of synthetic inserts in

NIH3T3 cells paralleled those observed in F9 cells, but the magnitude of these

effects appeared to be less. TGCATG inserts specifically reduced calcitonin

processing in the context of -58/-17, with insert T3 having noticeably greater

effects than TP3. In contrast to F9 or HeLa cells (where T3 completely reversed

or even overcompensated the effect of the -58/-17 mutation) insert T3 did not

reduce calcitonin processing to wildtype levels in NIH3T3 cells. Furthermore,

inserts T3 and TP3 appeared to have little if any effect in the 58/+11(Ex3)

construct when compared to controls. These results suggested that TGCATG

repeats functioned to different extents in different cell lines.

Curiously, the expression in NIH3T3 cells of spliced calcitonin mRNA

by either the F4neo or the -58/-17+T3 construct was quite low; in contrast, the
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bands representing unspliced RNA were comparable in intensity to those seen

in other lanes. For these constructs, a high ratio of unspliced to spliced RNA

was reproducibly obtained in analyses of two independently derived, stably

transfected cell populations, each of which represented pools of several

hundred G418-resistant colonies. This effect of the T3 insert upon -58/-17

expression could be explained by a reduction in splicing efficiency of splicing

of this region of the pre-mRNA, thus resulting in an accumulation of unspliced

RNA. Such an effect was also apparent to some extent in the wildtype F4neo

construct but was not observed with -58/-17 constructs that contained control

inserts. These results are consistent with a TGCATG-dependent repression in

calcitonin acceptor usage.

TGCATG sequences have little or no effect in COS cells

The transient expression of F4neo in COS cells yielded about 36%

calcitonin splicing, a value that was higher than that obtained by others (11%;

Delsert and Rosenfeld, 1992). The -58/-17 mutation modestly increased this

value (Figures 4-9, 4-10). Whereas -58/-17 increased calcitonin usage from 27%

to 85% in NIH3T3 cells, the shift in COS cells was noticeably lower (from 36%

to 57%). Therefore, although the levels of calcitonin splicing were comparable

between these cell lines, the -58/-17 mutation appeared to have lower effects in

COS cells than in NIH3T3 cells. In addition, none of the inserts had any

significant negative effect upon calcitonin splicing. In fact, insert TP3

significantly stimulated calcitonin splicing, a surprising finding which we

cannot readily explain. In addition, none of these inserts appeared to have any

significant effects on the A-58/+11(Ex3) mutation. These results suggested that

TGCATG elements acted in a cell-type-dependent fashion and have no activity
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in COS cells. This was be consistent with the effects of these TGCATG

elements in other minigene contexts (Chapter Three).

For technical reasons, COS cell expression could only be carried out

transiently; this posed a caveat regarding these interpretations, as

measurements in the other cell lines were carried out on stably expressing cell

populations. However, since the -58/-17 and -58/+11(Ex3) mutations were

observed to have significant positive effects upon calcitonin processing in COS

cells, the differential recognition of the exon 4 splice acceptor (versus that of

exon 5) still appeared to be rate-limiting even when transient transfection

conditions were employed. Therefore it seems unlikely that the TGCATG-

independence of calcitonin/CGRP processing in COS cells is simply due to the

transfection protocol. We therefore conclude, from the transfection of four cell

lines, that TGCATG elements have a negative effect upon the selection of an

exon closely downstream, probably by downregulating 3' splice site usage, and

that the extent of TGCATG function depends to some degree upon cell type.
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DISCUSSION

These experiments have examined the effect of the repeated TGCATG

sequence element in the context of an alternative pre-mRNA processing

pattern that is quite different from those that exist in fibronectin. The results

obtained in these studies suggest that hexamer elements can negatively affect 3'

splice site recognition. These results therefore provide insights regarding how

TGCATG repeats may control EIIIB splicing. In addition, these findings have

implications regarding the nature of the cell-type-specific determinants that

normally regulate alternative processing in the calcitonin/CGRP gene.

TGCATG repeats exert negative effects on 3' splice site utilization

In the EIIB region of the fibronectin gene, TGCATG repeats were found

to occur mostly in the 3' portion of the intron downstream of the EIIIB exon

(Chapter 3). In fact, several are closer to the 3' splice site of the exon

downstream than to EIIIB. One possible model for repeat action posited a

TGCATG-mediated delay in the the commitment of the exon EI-8a 3' splice

site, which might allow EIIIB to compete more efficiently for recognition. If so,

then one would predict that these elements should inhibit a heterologous

alternative 3' splice site if placed upstream. The results presented here fulfill

this prediction and thus may explain the relative positioning of hexamer

repeats in the fibronectin gene. TGCATG-containing sequences were found to

affect a 3' splice site sequence derived from a constitutive exon (-58/+11[Ex3])

as well as the 3' splice site of exon 4 (-58/-17); therefore the effects of these

elements are not limited strictly to alternative 3' splice sites. Although these

experiments do not directly prove that TGCATG elements function in EIIIB
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splicing via 3' splice site attenuation, they nevertheless strengthen the validity

of such a model.

We had previously established that TGCATG repeats were capable of

promoting the recognition of an upstream 5' splice site (Chapter Three). It

seems unlikely that TGCATG elements perform a similar function in the

calcitonin/CGRP gene, since the 5' splice site of exon 3 is utilized regardless of

processing choice. It is formally possible that these elements are performing a

distinct function from that performed in EHIB splicing and that they mediate

their effects by directly repressing polyadenylation; such a possibility seems

relatively remote. Therefore the effects of hexamer elements in the

calcitonin/CGRP gene most likely occur via 3' splice site attenuation.

Previous studies of hexamer function in EIIIB splicing could not rule out

a role for these elements as transcriptional pause sites. However, the

TGCATG-dependent calcitonin exon repression that we observe cannot be

easily be explained on the basis of a mechanism involving transcriptional

pausing. It is therefore likely that these hexamer elements function at the level

of RNA.

Implications for regulation of calcitonin/CGRP RNA processing

As commented on above, the calcitonin/CGRP gene exhibits a mode of

differential RNA processing that at first glance is quite distinct from that of

EIB. Nevertheless, this chapter provides evidence that a short repeated

sequence that regulates EIIIB can also control calcitonin/CGRP splicing.

Therefore, in analogy to systems in Drosophila, a single cis-element can regulate

multiple genes in vertebrates. There is some evidence for the involvement of at

least one TGCATG-containing element in the splicing of the neural-specific N1

exon in c-src (see Chapter Three and Black, 1992). However, the case for
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TGCATG involvement in calcitonin/CGRP alternative splicing is not as clear-

cut.

Unlike the fibronectin gene, the GCATG repeats in the human and rat

calcitonin/CGRP genes are not conserved in number or position. In addition,

although certain deletions upstream of exon 4 that removed GCATG repeats

had a positive effect upon calcitonin-specific processing (Emeson et al., 1989), a

number of other mutations made in this area that removed GCATG repeats

failed to consistently affect exon 4 usage (Yeakley et al., 1993). In addition,

human calcitonin/CGRP minigenes in which a number of these GCATG

repeats were removed appeared to exhibit proper regulated processing in

HeLa and F9 cells (Cote et al., 1991). Therefore it is unclear whether repeated

GCATG sequences contribute to calcitonin exon repression, despite their

anomalously high occurrence. Although fewer repeats are present in the rat

gene, it is interesting to note that one nonconserved rat repeat occurs between

the putative branchpoint and 3' AG of exon 4, an occurrence that may

compensate for the lack of repeats elsewhere.

Our findings suggest a potential role of TGCATG-related sequences in

the regulation of calcitonin/CGRP alternative processing. An inverse

correlation appears to exist between usage of exon 4 in F9 cells and the number

of natural/artificial GCATG repeats upstream. However, experiments of the

type shown here do not rigorously prove GCATG participation, nor do they

formally rule out non-GCATG sequences in the regulation of exon 4. A

mutagenesis study across the entire exon 4 splice acceptor region failed to find

any single cis-active sequence critical for exon 4 repression or activation

(Yeakley et al, 1993). While this information may apparently contradict the

results obtained by Emeson et al. (1989), the more recent studies did not

address whether functional redundancy was involved. Therefore multiple
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distinct elements may regulate exon 4. Of the mutations that were tested in

these studies, those that activated exon 4 usage had removed or altered

sequences between 35 and 52 nt upstream of exon 4, plus at least one GCATG

sequence (Yeakley et al., 1993; Emeson et al., 1989). Other short sequences in

this region may therfore act in concert with GCATG elements. Regulation by

multiple elements have been implicated in the regulation of alternatively

spliced exons such as EMIB (Chapter Three), the N1 exon in c-src (Black, 1992)

and the female-specific exon in the dsx gene (Burtis and Baker, 1989; Hoshijima

et al., 1991; Hedley and Maniatis, 1991; Ryner and Baker, 1991). The purine-

rich exon recognition sequence, which has been identified in a number of

constitutive and alternative exons, also appears to have greater activity if

present in multiple copies (Watakabe, et al., 1993; Xu et al., 1993).

TGCATG repeats exhibit context-dependent cell-type-specific effects

In Chapter Three, the activity of the synthetic TGCATG insert was

found to be greatest in F9 and HeLa cells, low or nonexistent in COS cells and

intermediate in NIH3T3 cells in the rat proprotachykinin gene. With respect to

exon 4 repression in the context of the A-58/-17 mutation a similar correlation

among cell types was observed, although interpretation was limited by the

different calcitonin preferences normally exhibited by each cell type. The

results presented here are nevertheless consistent with cell-type-specific

hexamer element action and therefore corroborate conclusions made in

previous chapters.

Parenthetically, if TGCATG sequences were the only cell-type-specific

determinant in calcitonin/CGRP processing then one would predict that COS

cells should only produce calcitonin, based upon our previous studies. We

note that the levels of calcitonin production in COS cells are quite detectable;
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therefore it is probable that elements other than TGCATG contribute to

calcitonin/CGRP cell-type-specificity.

It was surprising to note that TGCATG sequences worked less well in

the context of purine-rich spacers than in the context of pyrimidine-rich

spacers. Given that the opposite correlation was observed in the EIB system,

this was surprising. It is possible that sequences in the vicinity of the insert site

interact with the spacer sequences to antagonize or promote hexamer activity.

In any event, the basis for this context effect, whether direct or indirect,

remains a mystery.

TGCATG is a multifunctional element

It has already been pointed out that the TGCATG sequence occurs

within elements that control RNA splicing in the murine c-src gene; in fact,

experiments that mutated these c-src elements strongly implicate the

importance of this sequence in the positive regulation of the Ni exon (Black,

1992). We have already established the importance of TGCATG sequences in

EIIB regulation in the rat fibronectin gene and have provided evidence that

TGCATG repeats can promote the usage of an alternative 5' splice site (Chapter

Three). The results presented in this chapter extend these previous findings by

demonstrating an influence upon alternative 3' exon selection. These data also

raise the possibiity that calcitonin/CGRP processing is normally regulated by

TGCATG-related elements, although this remains to be conslusively

established. Therefore TGCATG-related elements may function in three

different alternatively spliced genes. This situation is not unlike regulated

splicing systems in Drosophila, where a single regulator may control multiple

genes. For example, the Sex-lethal protein controls both tra and Sxl splicing,

whereas the Tra-2 protein controls both the splicing of dsx and its own tra-2
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pre-mRNA (Sosnowski et al., 1989; Horabin and Schedl, 1993; Sakamoto et al.,

1992; Tian and Maniatis, 1992; Mattox and Baker, 1992). It will therefore be

interesting to characterize and identify the factors which interact with this

hexamer sequence, since such factors may be involved in the control of

multiple alternative splicing events.
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MATERIALS AND METHODS

Computer and calcitonin/CGRP sequence analysis

The human calcitonin/a-CGRP sequence was obtained from GenBank

(accession number X15943; Broad et al., 1989). Information regarding the

locations of GCATG repeats in the corresponding gene in rat was kindly

provided by J. Yeakley and M. G. Rosenfeld (UCSD, La Jolla; unpublished

data). Analysis.of repeats was carried out as described previously (Chapter

Three).

DNA Constructs and Probes

Standard DNA manipulation techniques were as described in Chapters

Two and Three. The plasmid F4neo contains the complete calcitonin/CGRP

transcription unit (under the control of its own promoter) cloned into pSV2neo

(Emeson et al., 1989). The deletion and substitution mutations -58/-17 and

-58/+11(Ex3), also described by Emeson et al. (1989), were derived from a

variant of F4neo, called Kpn/Cla; this derivative of F4neo contains KpnI and

ClaI sites at the exon 4 splice acceptor. The sequences of the exon 4 splice

acceptor region for each of these constructs is shown in Figure 4-2. F4neo,

-58/-17, -58/+11(Ex3) and the F4neo RNase probe plasmids were kindly

provided by R. Emeson (Vanderbilt, Nashville), J. Yeakley and M. G. Rosenfeld

(UCSD, La Jolla).

7iBi89AGA/pBAGH construct derivatives that contained each of the

inserts T3, M3, S3, TP3, and MP3 (Figure 4-2) were cleaved with AflII, blunted

with Klenow fragment and cloned into BamHI-cut/blunted pBluescript SK- in

the T7 orientation. Each subclone was cut with SmaI and HincII, recircularized

with T4 DNA ligase (thus deleting EcoRI and HindIII sites from the

275



polylinker), recut with NotI, blunted and then recut with KpnI; insert

fragments were gel-purified and ligated with two vector fragments derived

either from -58/-17 or -58/+11(Ex3) mutant constructs. One vector fragment

was made by cutting the relevant F4neo mutant construct with KpnI, blunting,

recutting with XbaI and isolating the smaller of the two bands generated; the

second vector fragment was obtained by cutting with KpnI and XbaI and

isolating the larger fragment. Insert orientation and junctions were verified by

DNA sequencing of transformant minipreps.

The RNase protection probe used for analyzing expression of these

minigenes contains two fragments from the calcitonin/CGRP gene cloned into

pBluescript II (Stratagene). The first fragment contains the 626 nucleotides

surrounding the exon 4 splice acceptor (154 bases upstream, 472 bases

downstream); the second fragment contains the 300 nucleotides surrounding

the exon 5 splice acceptor (117 bases upstream, 183 bases downstream). Since

each of the above F4neo-derived constructs contained alterations immediately

upstream of exon 4, analysis of each construct required the synthesis of RNase

probes containing the appropriate sequence changes. To make each RNase

probe, the polymerase chain reaction (PCR) was employed to generate the

appropriate exon 4 region, using each of the expression plasmids as templates.

The primers for PCR corresponded to the termini of the exon 4 splice acceptor

probe fragment (upstream primer,

5' GCCGAAGCT'TCCCTTCCCCCACACTTTTCTGG 3'; downstream primer,

5' GCCGGAATTCGTCGTCCTITTAGAAAAATAGTTT 3'; kindly provided by J.

Yeakley). The upstream and downstream primers contained HindIII and

EcoRI sites (underlined) respectively; PCR products were cleaved with HindIII

and EcoRI and inserted into the RNase probe plasmid via these sites.
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Transfections and RNA analysis

Stable transfections of F9, 3T3 andHeLa cells, transient transfections of

COS cells and RNA isolation procedures were carried out as described in

Chapter 2, except that co-transfection with pSV2neo was omitted and all RNAs

(regardless of transfection protocol) were treated with DNase prior to analysis.

RNase protection probe templates were linearized with HindIII and

transcribed with T7 RNA polymerase; radiolabeled riboprobes were purified

via preparative 4% denaturing gel electrophoresis before use. RNase

protection assays were carried out exactly as described by Emeson et al. (1989);

RNase-resistant fragments were separated on a 4% denaturing polyacrylamide

gel. Samples in 90% formamide loading buffer were heated to 850C for at least

10 minutes prior to loading the gel. Bands were quantitated using a Molecular

Dynamics Phosphorimager. Proportions of calcitonin/CGRP processing were

normalized for labeled uridine content (CGRP/calcitonin uridine ratio of

0.347).
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Chapter Five

Biochemical Detection of

UGCAUG-specific RNA-Binding Factors
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ABSTRACT

Previous transfection studies have shown that a repeated hexamer

sequence acts in a cell-type-specific manner to regulate alternative splicing of

the EHIB exon in the rat fibronectin gene. This repeated sequence is also

capable of regulating alternative splicing when placed in the rat

preprotachykinin and calcitonin/CGRP genes. Using a UV-crosslinking assay

in F9-derived nuclear extracts, at least two factors (ca. 63 kDa and 52 kDa) can

be shown to interact with UGCAUG-containing RNAs. Binding of these

factors is specific and saturable. The binding of the 63 and 52K components is

relatively slow and temperature-dependent. Dissociation is also relatively

slow. These binding studies have also detected a factor (55 kDa) that

specifically binds to the related sequence UGACUG. The sequence specificity

of the 63K and 52K RNA-binding components suggests that they may be

involved in the hexamer-dependent regulation of alternative splicing in the

fibronectin gene.
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INTRODUCTION

It is clear that in many cases of cell-type-specific alternative splicing, the

primary RNA transcript is essentially identical in structure between cell types.

Only a few cases exist where the processing decision is based strictly on cis-

information alone (for example, see Gallego and Nadal-Ginard, 1990).

Therefore cell-type-specific or developmentally regulated patterns of

alternative splicing must be governed primarily by trans-acting influences

unique for each cell type or developmental stage.

A detailed analysis of trans-acting influences upon alternative splicing

has been most effectively carried out in Drosophila melanogaster, owing in part

to the genetic identification of splicing regulators that determine sex (reviewed

by Baker, 1989; Maniatis, 1991; Mattox et al., 1992; McKeown, 1992). These

regulators act via specific interactions with sequences present on their target

pre-mRNAs. The Sex-lethal gene product (Sxl) interacts with a uridine-rich

stretch present both at the 3'-splice site of a male-specific exon in its own pre-

mRNA and at the male-specific 3'-splice site of the transformer (tra) pre-mRNA,

thus acting to prevent male-specific splice site usage in females (Sosnowski et

al., 1989; Inoue et al., 1990; Valcarcel et al., 1993). The tra and tra-2

(transformer-2) gene products interact with several 13-mer repeats in the

female-specific exon of the doublesex (dsx) pre-mRNA and in doing so activate

the usage of an upstream 3'-splice site in female flies (Hedley and Maniatis,

1991; Inoue et al., 1992; Ryner and Baker, 1991; Hoshijima et al., 1991; Tian and

Maniatis, 1992). These regulators of splicing are therefore RNA-binding

proteins that exhibit specificity for cis-elements present within their targets.

In contrast, the study of alternatively spliced vertebrate genes has

proceeded primarily via mutational identification of cis-elements that affect
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splice site selection. These elements have then been used as biochemical

probes in an effort to identify sequence-specific RNA-binding factors in nuclear

extracts. For example, an element that negatively affects exon 7 usage in the rat

[-tropomyosin gene (Helfman et al., 1990; Guo et al., 1991; Guo and Helfman,

1993) appears to specifically interact with PTB (Garcia-Blanco et al., 1989;

Patton et al., 1991; Mulligan et al., 1992). Intron sequences that negatively

affect exon 4 usage in the calcitonin/CGRP gene (Emeson et al., 1989) have

been shown to interact with two proteins in rat brain (41 kDa and 43 kDa;

Roesser et al, 1993). Exon sequences that are required for efficient 3'-splice site

usage in vitro in the human fibronectin ED1 exon and the bovine growth

hormone terminal exon have been shown to interact with members of the SR

protein family (Lavigueur et al., 1993; Sun et al., 1993b; Zahler et al., 1992). An

exon sequence near the 5' splice site of the Drosophila P element third intron has

also been identified as binding a multiprotein complex (Siebel et al., 1992).

These approaches have permitted the identification of specific RNA-binding

proteins that may regulate splicing.

A different approach to addressing regulation in mammals can be

exemplified by studies of SV40 early pre-mRNA alternative splicing in vitro.

An alternative splicing factor (ASF), isolated by its ability to promote proximal

donor selection, was found to be identical to the splicing factor SF2, a member

of the SR protein family (Ge and Manley, 1990, 1991; Krainer et al, 1991). SR

family members are all capable of complementing a cytoplasmic S100 extract

for splicing, suggesting that they share a role as general splicing factors (Zahler

et al., 1992, 1993b). These findings suggest that splicing factors with

overlapping functions may regulate some alternative splicing events. The

action of ASF/SF2 on splice site selection can be antagonized in vitro by hnRNP

Al (Mayeda and Krainer, 1992), an RNA-binding protein that exhibits high
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affinity for certain RNA sequences (Burd and Dreyfuss, 1994); in addition,

different SR proteins have been shown to promote 5'-splice site selection in a

substrate-dependent manner in vitro (Zahler et al., 1993a).

These and other studies have suggested that, given a sequence known to

be involved in alternative splicing control, it may be possible to identify trans-

acting factors that regulate alternative splicing in a cell-type-specific manner.

Previous chapters have characterized the action of a repeated hexanucleotide

sequence element that promotes the alternative inclusion of the EIHB exon in

the rat fibronectin gene. Repeated copies of this element are capable of

promoting 5' splice site usage and in addition can function in a heterologous

context in a cell-type-specific manner (Chapter Three). Furthermore, repeated

hexamers are capable of negatively regulating alternative 3' splice site selection

when placed in the rat calcitonin/CGRP gene and may in fact normally

regulate the processing of this pre-mRNA. This chapter describes the

identification of at least two RNA-binding factors in F9 teratocarcinoma cell

nuclear extracts that exhibit specificity for the RNA sequence UGCAUG. These

factors exhibit approximate molecular weights of 63 and 52 kilodaltons on an

SDS-polyacrylamide gel. The identification of these factors may contribute to

an understanding of the mechanism by which the UGCAUG hexanucleotide

element controls alternative splicing.
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RESULTS

In order to identify RNA-binding factors specific for UGCAUG

sequences, nuclear extracts were prepared from a line of F9 cells capable of

growing in suspension. F9att5.51 is a variant which is adhesion-defective and

as a result grows in loose aggregates in suspension (Grover et al., 1987). Levels

of fibronectin expression by F9att5.51 are somewhat higher than those

expressed by normal F9 teratocarcinoma cells; however, EIIIB inclusion is

identical to those expressed by normal F9 cells (Grover et al., 1987, and data

not shown).

In previous studies (Chapters Two and Three), a number of

oligonucleotide inserts were established to have a cell-type-specific effect upon

alternative splicing. These DNA inserts, called T3 and TP3 (Figure 5-1),

contained six repeats of the sequence TGCATG. Inserts T3 and TP3 differed in

the content of the sequences separating each of the TGCATG repeats. Whereas

T3 contained spacers that were slightly pyrimidine-rich, TP3 contained spacer

sequences that consisted almost entirely of purines. Transcripts generated

from the T3 and TP3 templates shared the repeated hexamer sequences

(actually an alternating array of UGCAUGA and UGCAUGC heptamers), a

GAUC at the 3' terminus of each 35-mer oligo unit and upstream polylinker

sequences transcribed by T3 RNA polymerase.

As controls, a number of inserts that contained small changes relative to

T3 or TP3 were used as control templates. M3 and S3 were identical to T3

except for the repeated hexamer sequences (Figure 5-1): whereas T3 (est)

transcripts contained UGCAUG hexamers, transcripts M3 (mutant) and S3

(scrambled) contained UGACUG and AGTCGT hexamers respectively

(underlined nucleotides indicate changes from the test hexamer). As a control
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for TP3, template MP3 was used; MP3, like M3, contains UGACUG sequences

but contains purine-rich spacers identical to those of TP3.

A UV-crosslinking assay was employed in order to detect factors that

interacted specifically with the RNA sequence UGCAUG. In a typical assay,

radiolabeled probes were incubated with nuclear extract at 300C for 20 minutes

and then irradiated with UV light for 15 minutes on ice. Samples were then

digested with RNase T1 and subsequently analyzed by SDS polyacrylamide gel

electrophoresis. Proteins or other components that were crosslinked to the

RNA probe would carry label released by the RNase treatment. RNase T1

(rather than RNase A) was used for a number of reasons. Probes containing

purine-rich spacers (like TP3 and MP3) might not be digested as efficiently by

RNase A, which normally cleaves 3' of pyrimidines; RNase T1 cuts 3' of

guanosines and therefore should cleave all spacer sequences at least once. In

addition, the use of RNase A failed to yield any detectable signals specific for

UGCAUG sequences, possibly because RNase A may have digested labelled

nucleotides away from crosslinked protein (not shown). RNase T1 treatment

of these RNA probes, on the other hand, would generate fewer

oligonucleotides, most of which would contain at least one labeled nucleotide;

thus T1 digestion would be less likely to release labelled nucleotides from

crosslinked material.

UV-crosslinking assays were carried out using transcripts T3, M3, S3,

TP3 and MP3 as probes. Figure 5-2 shows a typical crosslinking profile on a

9% SDS-polyacrylamide gel. A number of bands appeared to be specific for

subsets of these probes. In particular, one band appeared in reactions

containing probes T3 and TP3 that was absent from reactions that contained

M3, MP3 or S3 probes. This band migrated with a molecular weight of

approximately 63 kDa (marked as 63K[TP] in Figure 5-2) and was not
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Figure 5-1.

UV-crosslinking RNA probes and competitors

Only the monomeric unit of each probe is shown; templates actually

consisted of three copies of each unit (indicated here by "x 3" at right).

Note that each monomeric unit contains two each of the heptamers

UGCAUGA and UGCAUGC; thus each RNA transcript contained a

total of six hexamer elements. Shaded bases indicate differences from

the T3 RNA (top line).
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Figure 5-2.

UV crosslinking assays of RNA probes in F9att5.51 nuclear extracts

The indicated probes ("probe"; T, M, S, TP and MP represent probes T3,

M3, S3, TP3, and MP3 respectively) were incubated with either of two

nuclear extract preparations (F9-1, F9-2) for 20 minutes at 300C and

either left on ice (-UV) or irradiated with UV light on ice for 15 minutes

(+UV). RNase T1 was then added for the indicated times at 300C

("RNase T1 time"). The samples were analyzed on a 9% SDS-

polyacrylamide gel along with prestained moecular weight markers

(indicated by small type at right). The positions of the bands

representing the T3- and TP3-specific 63 and 52 kDa adducts are

indicated at right ("63[TP]" and "52[TP]" in large type). A band that

migrates at 52 kDa is also present in the S3 lanes. The 55 kDa adduct

specific for the M3 and MP3 probes is also indicated ("55[MP]").
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Figure 5-3.

63 kDa, 52 kDa and 55kDa factors are sequence-specific

Either of probes TP3 ("TP") or MP3 ("MP") were incubated in F9 extract for

20 minutes at 300C, irradiated for 15 minutes on ice, digested with

RNase T1 for 10 minutes at 300C and processed as in Figure 5-2. Probes

were coincubated 0, 10 or 100 ng (0, 40 and 400-fold molar excess) of the

indicated unlabeled RNAs ("cptr"). Figure conventions are as in Figure

5-2.
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Figure 5-4.

63 kDa and 52 kDa factors are specific for UGCAUG-containing RNAs

The indicated probes (line "probe") were assayed as in Figure 5-3, either

alone or with 100 ng (400-fold molar excess) of the indicated competitors

(line "cptr"). A 12% gel is shown. Other figure conventions are as in

Figure 5-3.
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significantly affected by the presence of purine-rich or pyrimidine-rich spacer

sequences. In addition, a band migrating at the 52 kDa position (marked as

52K[TP] in Figure 5-2) appeared in the T3, TP3 and S3 lanes but not in reactions

containing M3 or MP3. These bands migrated relatively heterogeneously and

will be referred to collectively as the 63kDa and 52kDa factors, even though

they may represent separate species. All bands were UV-dependent and did

not reflect partially digested probe RNA, since omission of the UV irradiation

step resulted in no signals anywhere on the gel. Therefore a 63 kDa component

in F9 nuclear extracts appears to interact specifically with RNAs that contain

the UGCAUG hexanucleotide sequence. This binding was ATP- and Mg2+-

independent; in addition, binding was reproducible between extract

preparations (compare F9-1 and F9-2 lane sets, Figure 5-2).

In addition, the M3 and MP3 probes were found to react specifically

with a 55 kDa factor (marked as 55K[MP] in Figure 5-2) that apparently did not

interact with probes T3, S3 or TP3. Since M3 and MP3 probes contained the

control sequence UGACUG, it was somewhat surprising to discover

components that bound this sequence with specificity. In any event, we

conclude that a number of RNA-binding factors in nuclear extracts possessed

affinities for UGCAUG- and UGACUG-containing RNAs.

The 63 and 52 kDa RNA-binding factors are sequence-specific

It was possible that UGCAUG-specific (63 kDa) and UGACUG-specific

(55 kDa) bands reflected binding of the same factor but that differential RNase

T1 digestion caused these bands to migrate differently. in addition, the T3- and

TP3-specific 63 kDa bands may represent distinct factors that comigrated; this

was also possible for the T3/TP3/S3-specific 52 kDa band. To address these

possibilities, competition experiments were carried out using unlabeled
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competitor RNAs. Unlabeled competitors were coincubated with labeled TP3

and MP3 probe RNAs and nuclear extract. Either 10 or 100 ng of competitor

RNA (approximately 40- and 400-fold molar excess respectively) was

coincubated with the probes as indicated in Figure 5-3. Because the structures

of probes TP3 and MP3 allowed preferential incorporation of radiolabeled

uridine at the hexamer repeats, these probes were used for several of the

subsequent assays shown here.

As shown in Figure 5-3, the 63 kDa band specific for TP3 was modestly

reduced when incubated with 10 ng of TP3 competitor and was abolished

when 100 ng of TP3 competitor was used. The same was true when T3 was

used as competitor. In contrast, the 63 kDa band was not affected by 10 ng of

any of the control competitors MP3, M3 or S3. This band was only slightly

reduced by 100 ng of these control competitor RNAs. As judged from several

competition experiments, the 63 kDa component exhibited at least a ten-fold

preference for UGCAUG sequences over control hexamer sequences. This

number may in fact represent an underestimate of binding specificity, as the

addition of competitors in amounts greater than 100 ng often resulted in an

overall reduction in the crosslinking profile. Therefore the 63 kDa nuclear

extract component specifically interacted with RNAs that contain the sequence

UGCAUG and in addition is distinct from the M3/MP3-specific 55 kDa factor.

The 52 kDa band specific for TP3 was also reduced by coincubation with

cold T3 and TP3 transcripts but not by any other competitor. This was slightly

harder to visualize, as the background in the region of the gel is slightly higher

than in the 60-70 kDa region. Importantly, the TP3-specific 52 kDa component

is not significantly competed by the cold S3 competitor. Therefore the TP3-

specific and S3-specific 52 kDa bands may represent distinct components that

happened to comigrate by chance.
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These data left open a formal possibility that the T3- and/or TP3-specific

63/52 kDa factors were relatively nonspecific RNA-binding proteins that were

present in limiting amounts in the extract and were not seen in the M3 and

MP3 reactions due to their displacement from the hexamer sites by the M3-

and MP3-specific 55 kDa factor. The fact that S3 did not sequester these factors

rendered this possibility unlikely. Nevertheless, this was tested by competition

of the MP3-specific 55 kDa band. If the above were true, then the addition of

100 ng of MP3 or M3 competitor to a reaction containing the MP3 probe should

result in a reduction of the 55 kDa band plus a concomitant increase in 63 or 52

kDa intensity. As shown in Figure 5-3, the MP3-specific 55 kDa was

specifically competed by coincubation with 100 ng of cold MP3 or M3 RNA but

not by 100 ng of the other transcripts. More importantly, a 63 or 52 kDa band

did not appear upon addition of 100 ng of either M3 or MP3 competitor (Figure

5-3). These data confirmed that the 63 kDa and 52 kDa factors bind UGCAUG

sequences specifically.

Further support for the binding specificity of the 63 and 52 kDa factors

is provided in Figure 5-4, which shows a 12% gel showing the binding profiles

of all five probes. Competition profiles are shown using either T3 or TP3 as

labeled probes. Competition of T3-specific bands by 100 ng of each cold

competitor RNA yielded results that were essentially identical to those

obtained using the TP3 probes, reinforcing further the specificity of the 63 and

52 kDa factors.

Parenthetically, the results presented in Figures 5-2 through 5-4

suggested that a single 55 kDa factor binds both the MP3 and M3 transcripts

and is specific for the control sequence UGACUG. Although this factor was

not of any immediate interest, it was useful to compare the data involving the
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55 kDa factor with that obtained for the 63/52 kDa factors in subsequent

experiments.

Factor dissociation is slow

Since other splicing regulators are capable of assembling into a stable

complex (e.g., Tian and Maniatis, 1993), it was of interest to ask whether

UGCAUG binding was a stable interaction. To address this possibility, TP3

probe was incubated with extract for various times; 100 ng of unlabeled TP3 or

MP3 competitor was added after these times, followed by continued

incubation for 10 minutes. The TP3-specific 63/52 kDa signals were compared

with those obtained by an uninterrupted incubation (Figure 5-5, left half of

gel). Binding was maximal after 15 minutes. The addition of TP3 competitor

after 20 minutes, followed by a subsequent 10 minute incubation, resulted in a

signal that was reduced but still significant if compared to control lanes in

which no competitor (or MP3 competitor) was added. Therefore the TP3-factor

interaction, once formed, was only partially resistant to addition of specific

competitor, suggesting either that overall rates of dissociation were slow or

that a fraction of the complexes formed were stable. Interestingly, the

experiments utilizing MP3 as a probe yielded similar results (Figure 5-5, right

half of gel).

Binding is slow and temperature-dependent

In order to examine the kinetics of factor association more closely, a time

course was carried out. Binding was carried out using TP3 or MP3 as a probe.

After incubation at 300C for 0, 5, 10, 15 and 20 minutes, samples were put on

ice and irradiated for 15 minutes and subsequently processed identically. As

shown in Figure 5-6, the 63 and 52 kDa bands gradually appeared over the
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course of several minutes, nearing completion after 10 minutes. The

appearance of these bands was also dependent upon incubation at 300C, since

these signals did not appear if upon incubation at 0oC. 55kDa binding to MP3

probe was more rapid but still temperature-dependent (Figure 5-8). Therefore

the interaction of these factors with probe RNAs takes place over a period of

minutes. One possible reason for this is that binding of these factors is

intrinsically slow; alternatively, association may normally be rapid but is

inhibited by other extract components.

UGCAUG-specific binding is relatively stable

To explore the kinetics of binding and dissociation more closely,

incubation of extract with the TP3 or MP3 probes was carried out for various

times; 100 ng of unlabeled TP3 or MP3 competitor RNA was then added and

the incubation continued until a total incubation time of 20 minutes was

reached. These binding profiles were then compared with an uninterrupted

time course.

Addition of TP3 competitor at time 0, as expected, yielded no significant

signal (Figure 5-6). Conversely, TP3-specific signals were not reduced if TP3

competitor was added at the end of the incubation time. Addition of TP3

competitor after 5, 10 or 15 minutes resulted in signals that significantly

weaker than those obtained by a straightforward incubation for these time

points. Addition of the control competitor MP3 had little if any effect

regardless of time of addition. Therefore the the association of these factors

with the TP3 substrate is only partially stable. The 55 kDa factor that associates

with the control MP3 substrate was found to behave in a similar fashion

(Figure 5-7).
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Figure 5-5.

Kinetics of factor binding: stable interactions

Either probes TP3 or MP3 ("TP", "MP") were incubated in extract for the

indicated times ("preinc"), 100 ng of the indicated competitor RNA was

then added if applicable ("cptr") and the reaction continued for the

indicated times ("chase"). Sample processing and other figure

conventions were as in Figure 5-3.
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Figure 5-6.

Kinetics of 63 kDa and 52 kDa (UGCAUG-specific) binding

Probe TP3 ("TP") was incubated in extract for the indicated times

("preinc"), 100 ng of the indicated competitor RNA was then added if

applicable ("cptr") and the reaction continued for the indicated times

("chase"). Reactions were carried out at 30C except where indicated

("temp (C)"). Sample processing and other figure conventions were as

in Figure 5-3.
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Figure 5-7.

Kinetics of 55 kDa (UGACUG-specific) binding

Probe MP3 ("MP") was incubated in extract for the indicated times

("preinc"), 100 ng of the indicated competitor RNA was then added if

applicable ("cptr") and the reaction continued for the indicated times

("chase"). Reactions were carried out at 300C except where indicated

("temp (C)"). Sample processing and other figure conventions were as

in Figure 5-3.
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Figure 5-8.

UGCAUG- and UGACUG-binding factors in HeLa and F9 extracts

The TP3 or MP3 probes ("probe") were assayed in extracts from either

F9att5.51 cells ("F9") or HeLa cells ("HeLa"), either alone or in the

presence of 100 ng TP3 or MP3 competitor ("cptr"). Samples were then

processed as in Figure 5-3. In the last four lanes, samples were heated to

700C for 15 minutes before the addition of RNase T1. Other figure

conventions were as in Figure 5-3.
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The 63 kDa factor is present in HeLa cells

It was of interest to determine whether the UGCAUG-specific factors

detected in F9 cells were also present in HeLa cell nuclear extracts. Therefore

HeLa extracts were compared in parallel with F9 extracts. Both TP3 and MP3

probes were tested; in addition, TP3 probes were tested in the presence of 100

ng of unlabeled TP3 or MP3 competitor. It was clear that HeLa cell nuclear

extracts contained factors that exhibited migration and competition

characteristics similar similar to those exhibited by the TP3-specific 63 kDa and

the MP3-specific 55 kDa factor (Figure 5-8). It was more difficult to assess

whether the TP3-specific 52 kDa factor was present in HeLa extracts, due to the

presence of background in this area of the gel. Other bands that were possibly

more intense in HeLa reactions were visible, but it was not clear whether these

were specific, as they comigrated with factors that appeared to bind both

probes. Denaturing the extract after crosslinking (via heating at 700C for 15

minutes) did not alter the binding profile upon RNase T1 digestion in either

HeLa or F9 extracts, suggesting that the 63/55/52 kDa factors were probably

protein and not RNA (Figure 5-8). In any event, HeLa cells appear to harbor at

least some of the factors originally identified in F9att5.51 cells.
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DISCUSSION

Previous chapters have analyzed and discussed the function and

implications of hexamer element-dependent regulation of splicing; the data

presented in this chapter extend these analyses by providing evidence for the

presence of cellular hexamer-specific trans-acting factors that may govern how

a given alternatively spliced pre-mRNA is treated in a mammalian cell.

RNA-binding factors specific for simple sequences

By virtue of previous studies, a number of convenient reagents were

generated that permitted the biochemical identification of sequence-specific

RNA-binding factors in a fairly rigorous fashion. These reagents are

represented by the RNA probes used in this study. The use of these has

demonstrated the presence of factors that exhibit specific and relatively stable

interactions with RNA sequences that contain either UGCAUG (hexamer) or

UGACUG (mutant) sequence motifs. This study was initiated with an eye

toward the identification of UGCAUG-specific proteins that might be involved

in the cell-type-specific alternative splicing of the rat fibronectin gene. In this

respect, at least two candidate factors (63 and 52 kDa) were found to satisfy

certain of the criteria imposed by experiments carried out in vivo in previous

chapters.

However, these studies have also identified a factor that clearly exhibits

specificity for a sequence not previously thought to have a biological function

(i.e., the mutant hexamer-specific 55 kDa). This is a matter of concern, since it

brings up questions regarding the relevance of biochemically identified factors

that exhibit binding specificity for sequences of known biological interest. This

unexpected result may imply that a range of discrete sets of binding
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specificities exist in the cell, as has been proposed for some hnRNPs (Burd and

Dreyfuss, 1994). In any event, both UGCAUG- and UGACUG-specific

activities will be discussed, as both exhibit similar biochemical characteristics

in vitro. However, for obvious reasons, more emphasis will be placed upon the

possible identity of the UGCAUG-specific 63/52 kDa factors. The data

presented in this study suggest but do not prove that these factors are proteins;

a sequence-specific interaction by an RNA protected by tightly bound, heat-

resistant protein could not be ruled out.

Possible known protein candidates

Numerous known splicing factors and RNA-binding proteins lie in the

50 to 70 kDa range; therefore the molecular weights of the UV-adducts

identified here (63/52 kDa) provides little discriminating information

regarding whether they correspond to any known proteins. The discussion of

these will be restricted to proteins implicated in splicing in vitro and in vivo,

although unfortunately the data presented here does not exclude proteins

irrelevant to splicing or its regulation. Although sequence specificities have

already been ascribed to a number of known proteins, it remains possible that

additional specificities for these have not been discovered to date. Many of the

proteins described below are constitutive splicing machinery components.

Although the action of UGCAUG repeats appears to be cell-type-dependent, it

is possible that constitutive splicing proteins adopt conformations or

modifications that allow the effects of UGCAUG repeats to be observed only in

certain cell types.
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SnRNP proteins

Given that one function of the UGCAUG repeat in vivo may involve the

recruitment of U1 snRNP for the activation of an upstream 5' splice site

(Chapter 3), one particularly intriguing candidate for the 63 kDa factor is the

Ul-specific 70K protein (Query et al., 1989). In addition, a 70 kDa U5-

associated intron-binding protein has been identified that binds to 3' splice

sites (Gerke and Steitz, 1986; Tazi et al., 1986); given the negative effect of this

cis-element on 3' splice site selection (Chapter 4), it is conceivable that

UGCAUG repeats operate by sequestering U5-containing complexes in a

nonproductive conformation. Another U5 protein (52 kDa) also falls within

this range; in addition, the [U4/U6.U5] tri-snRNP complex contains a 60 kDa

protein (Behrens and Liihrmann, 1991). Other possible candidates include 60

and 66 kDa proteins specific for the 17S form of U2 snRNP also identified as

splicing factor SF3a (Brosi et al., 1993) and as SAP60/SAP62 (Bennett and Reed,

1993).

The proteins associated with U2 snRNP, as well as U2 snRNA itself, are

interesting with regard to the 55 kDa UGACUG-specific factor identified in this

study. The M3 and MP3 probes used in this study contain a number of exact or

close matches to the branchpoint consensus (YNYURAY). For example, M3

contains nine close matches (three each of the sequences TCCTGAC,

GACTGAC and GCTTGAC), all of which are altered in the T3 transcript. MP3

contains three reasonable matches to the consensus (three TCATGAC

sequences) that are altered in TP3. Since U2 snRNP is capable of binding the

branch site in the absence of an adjacent pyrimidine tract (Nelson and Green,

1989), it is conceivable that U2 snRNP may bind these sequences in M3 or MP3

and thus bring U2-associated proteins in close proximity to the probe;

however, this process would have to be ATP-independent. If any of these
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proteins represent the activities described in this chapter, then it should be

possible to demonstrate immunoprecipitation of these crosslinks using the

appropriate antisera.

Non-snRNP proteins and splicing factors

A number of non-snRNP proteins have been implicated in splicing that

fall within this molecular weight range, including SRp55 (Zahler et al., 1993), a

proteolytic fragment of PSF (68 kDa; Patton et al., 1993), and U2AF (65 kDa;

Zamore et al., 1992). Sequence preferences have been described for U2AF and

PSF; however, the existence of alternative specificities cannot be ruled out,

given the existence of multiple RRMs and other motifs in these proteins. In

fact, alternative sequence affinities might actually be difficult to detect a priori

unless addressed specifically, given the pyrimidine-rich preferences normally

exhibited by these proteins.

hnRNP proteins

Numerous hnRNP proteins lie in this range, including PTB or hnRNP I

(57-62 kDa; Pifiol-Roma et al., 1988; Garcia-Blanco et al., 1989; Patton et al.,

1991) as well as hnRNPs H (56 kDa), J (62 kDa), K, L, M (68 kDa), N (70 kDa),

and P (72 kDa; Pifiol-Roma et al., 1988). In particular, PTB (hnRNP I) has been

implicated in the repression of [3-tropomyosin exon 7 usage by binding to

specific sequences upstream of this exon (Mulligan et al, 1992). However, it

would again be necessary to invoke an additional sequence specificity in order

to accomodate such a model for UGCAUG repeat action, since PTB is known to

prefer only pyrimidine-rich tracts to date.

It is also possible that some of the other hnRNPs exhibit UGCAUG or

UGACUG RNA-binding specificity. The binding of hnRNP proteins has been
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shown to be somewhat substrate-dependent (Swanson and Dreyfuss, 1988a,

1988b; Bennett et al., 1992b; Matunis et al., 1993); in fact, a high-affinity binding

site for hnRNP Al has recently been identified by SELEX that has a

hexanucleotide consensus (UAGGG[A/U]; Burd and Dreyfuss, 1994). It is

likely that other hnRNP proteins have short, high affinity recognition

sequences (reviewed by Dreyfuss, et al., 1993). This possibility could readily be

tested by incubating the T3/M3/TP3/MP3 probes with immunopurified

hnRNP complexes, which contain a collection of the known hnRNPs in the

appropriate size range (Pifiol-Roma et al., 1988).

RNA-binding kinetics

The UV-crosslinking of the UGCAUG-specific and UGACUG-specific

factors reported here takes place over an unusually long time, and contrasts

with what is known about many other RNA-binding proteins. In addition,

binding is negligible at OOC. A number of reasons may explain these findings.

These RNA-factor interactions could be energy-dependent; however, since

binding was carried out in the absence of ATP or magnesium, this seems

unlikely. Alternatively, the stable detection of these factors may require the

assembly of multiple components on a single site, only a few of which are

detected by UV-crosslinking; this might also explain why dissociation rates

were also slow. Additionally, it is possible that the binding of these factors is

normally rapid but is rate limited in nuclear extract due to slow dissociation of

these factors from endogenous nucleic acids in the extract; binding assays

carried out in preincubated or micrococcal nuclease-treated extracts may help

address these possibilities.

The fact that the UGCAUG-specific crosslinks observed were relatively

resistant to subsequent challenge with competitors is encouraging with respect
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to the potential purification of the 63 and 52 kDa factors. These results suggest

that other assays such as gel mobility shift analyses could be used to further

characterize these factors. It was not possible to obtain clear gel shift in nuclear

extract using these probes, primarily because control substrates (such as M3

and MP3) also interacted with specific factors. Nevertheless, it may be possible

to obtain gelshifts in partially purified fractions, as has been documented for

the elements that repress exon 7 usage in f5-tropomyosin (Guo et al., 1991;

Mulligan et al., 1992) and for elements upstream of exon 4 in the

calcitonin/CGRP gene (Roesser et al., 1993).

UGCAUG-binding factors in other cells

UGCAUG-binding factors were found to be present in HeLa nuclear

extracts as well as in F9-derived extracts. This might be expected, since the

UGCAUG element appears to function in the preprotachykinin (Chapter

Three) and calcitonin/CGRP (Chapter Four) genes. The 63 kDa factor is

present at levels comparable to that found in F9 extracts, which might suggest

that this factor is present constitutively. This remains to be seen;

characterization of these UGCAUG-binding factors in extracts from other

sources (such as COS or liver) may help to clarify this issue. It is possible that

cell-type-specificity is conferred by factors that do not recognize the element

directly but interact via constitutive "adaptors" (e.g., tra; cf. Tian and Maniatis,

1992). It is also possible that binding does not correlate with function; for

example, an alternatively spliced SF2/ASF form without an RS domain binds

RNA but is nonfunctional for splicing (Zuo and Manley, 1993; Cacares and

Krainer, 1993). Post-translational modifications may also affect regulatory

function of this factor. Neural-specific c-src splicing has been observed to

occur upon neural induction or phorbol ester treatment ofXenopus
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neurectoderm by TPA or mesoderm independently of protein synthesis

(Collett and Steele, 1993), suggesting that post-translational modifications

and/or signal transduction pathways may be involved in the function of

factors that regulate RNA splicing. Phosphorylation has been found to alter

the biochemical properties of hnRNP Al and C (Cobianchi et al., 1993;

Mayrand et al., 1993), supporting the idea that phosphorylation could

modulate the extent of factor activity. The 52 and 63 kDa bands were found to

migrate somewhat heterogeneously, which could reflect either heterogeneous

RNase T1 cutting or post-translational modifications to differing extents.

Alternatively, the ratios of distinct UGCAUG-binding factors may

dictate cell-type-specific alternative splicing function; this might explain why

levels of a factor may apparently remain relatively unchanged among cell

types. Although the level of 52 kDa present in HeLa extracts appeared to be

lower relative to 63 kDa, this was difficult to establish conclusively. For that

matter, the UGCAUG-specific 52 kDa factor may represent a 63 kDa

degradation product. In any event, the further characterization of the factors

that bind this UGCAUG element should resolve their relevance and potential

function.
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MATERIALS AND METHODS

Transcription vectors and RNA synthesis

Cloning methods were as described (Ausubel et al., 1987). Transcription

templates (for in vitro synthesis of hexamer-containing RNAs) were derived as

described in Chapter Four. Briefly, inserts from the 7iBi89AGA/pBAGH

expression vector derivatives that carried inserts T3, M3, S3, TP3 and MP3

(Chapter Three) were excised via AflII digestion and cloned into the BamHI

site of pBluescript SK- (Stratagene) via blunt-end ligation. Inserts were cloned

in both orientations; thus transcription could be carried out using either T3 or

T7 RNA polymerase (Promega, Stratagene). Transcriptions in vitro were

carried out using BglII-linearized templates using conditions described by the

manufacturers; T3 transcription reactions for probes contained 0.1 mCi a-

[32p]-UTP per 25 gl reaction (800 Ci/mmol; final specific activity approx.

1.3x10 9 dpm/pLg). T7 transcription was employed for synthesis of unlabelled

competitor RNAs; these reactions contained 0.5 mM unlabeled UTP. Both

labelled and unlabelled transcripts were purified via 5% denaturing

polyacrylamide gel electrophoresis; full-length labeled and unlabeled

transcripts were identified and isolated by autoradiography and UV-

shadowing respectively and were eluted in 0.4 ml 300 mM sodium acetate, 1

mM EDTA pH 8.0, 0.5% SDS (for labelled transcripts, 10 gg E. coli tRNA was

included in the elution buffer as carrier). RNAs were precipitated twice from

ethanol before use. Unlabelled RNAs were quantitated via ethidium bromide

fluorescence, using total yeast RNA as standards.
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Nuclear extract preparation and UV-crosslinking assays

HeLa cells (a kind gift from Phillip Sharp's laboratory, MIT) were grown

in suspension in Joklik's MEM (BRL/Gibco) containing 5% horse serum

(Sigma). An adhesion-defective variant of F9 cells capable of growing in

suspension (F9att5.51; a kind gift of Eileen Adamson, La Jolla Cancer Research

Foundation; Grover et al., 1987) were cultured in Joklik's MEM containing 9%

bovine calf serum (Sigma) and 1% fetal bovine serum (Hazelton). Nuclear

extracts were prepared essentially as described by Dignam et al. (1983), with

the following modifications. After washing with PBS and buffer A, cell pellets

were resuspended in Buffer A to a total cell volume that was 2.5 times the

packed cell volume prior to homogenization. In addition, the final extract

dialysis buffer contained 42 mM ammonium sulfate instead of 100 mM KC1.

Protein concentrations were determined using a commercial kit (Pierce).

UV-crosslinking assays were carried out in a reaction volume of 25 l

and contained 20 mM HEPES-NaOH pH 7.6, 50 mM KC1, 1 mM DTT, 15-20

units RNasin, 3x105 cpm labeled RNA (230 pg; 4 fmol), 50-100 ng E.coli tRNA

and 40% (v/v) nuclear extract (45-55 gg total protein). The final concentrations

of known components, including those in the dialysis buffer, were as follows:

28 mM HEPES-NaOH pH 7.6, 50 mM KC1, 16.8 mM (NH4)2S0 4 , 0.04 mM

EDTA, 9% glycerol, 1.2 mM DTT, 0.6-0.8 units/kl RNasin, 2-4 ng/gl E. coli

tRNA, 9 pg/ld radiolabeled probe and about 2 mg/ml protein. Incubations (in

1.6 ml Eppendorf tubes) were for the times and temperatures indicated; tubes

were then transferred to ice, the tube caps cut off, and the samples exposed for

15 minutes to shortwave (254 nm) UV radiation using a lamp (10.0-10.5

mW/cm 2 at the lamp surface) at a distance of 5 cm. Reactions were then

moved to new tubes each containing 2.5 il of 2 mg/ml RNase T1 (Boehringer-

Mannheim) and incubated at 300C, usually for 10 minutes. Samples were then
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boiled for 5 minutes in SDS sample buffer containing 100 mM DTT (Ausubel et

al., 1987) prior to analysis on a 9% or 12% discontinuous SDS polyacrylamide

gel (3% stacking gel; total gel length 20 cm) along with prestained molecular

weight markers (BRL/Gibco). Gels were run at 15-20 W until the bromophenol

blue had entered the separating gel; gels were run at 35 W thereafter. After the

bromophenol blue had run off the bottom, gels were fixed in 10% methanol,

dried, and exposed to X-ray film or were analyzed using a Molecular

Dynamics Phosphorimager.
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Chapter Six

General DiScussion
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GENERAL DISCUSSION

The nuclear pre-mRNA splicing machinery can excise numerous

intervening sequences from primary RNA transcripts that can be upwards of

hundreds of kilobases in length. The RNA processing machinery of the cell

must therefore be profoundly accurate, lest inappropriate mRNAs be

generated at intolerably wasteful levels. Authentic splice sites must contain

sufficient information in cis to allow their faithful identification, even in the

context of cryptic splice site sequences that frequently occur in an RNA

precursor. The information afforded by the splice site junctions alone is

insufficient for this task. However, the identification of sequences that aid in

the specification of splice sites has not been straightforward. It is possible that

the difficulty in clarifying the mechanism of splice site recognition may lie in

an inherent redundancy, coupled with structural and positional degeneracy of

the information that is involved.

The pre-mRNA splicing machinery, in turn, must recognize this cis-

information efficiently. The splicing mechanism is configured to recognize a

correct splice site not only on the basis of its sequence but also by its

relationship to its immediate milieu, i.e., to nearby sequences and their

associated structures. This recognition mechanism is still largely unknown,

perhaps because an understanding of the evolution of these processes has not

yet been achieved. It is possible that alternative spliced systems may reflect

some of the intermediate stages in the evolution of this mechanism. In this

respect, many examples of alternative splicing could be viewed as paradigms

that may lead to a better understanding of how splicing evolved in general.

Given the propensity of evolution to provide several solutions to biological

conundra such as this, it seems likely that each case of alternative splicing will
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represent a collection of mechanisms that control splice site specification.

Some of these may be common to many systems; others may be unique. The

alternative splicing of the EuB exon in the fibronectin gene appears to

represent such a collection. Some aspects of the EIB region appear to serve

merely to establish a balanced regulatable state; other aspects serve to shift this

balance in a cell-type-dependent manner. The studies described here, in

contrast to those described by others, have permitted a formal discrimination

between these two aspects of EIIIB regulation.

The role of the splice site sequences

The study of alternatively spliced genes has led to the identification of

numerous sequences that govern splice site selection. Many of these findings

have illustrated the importance of the splice sites themselves in the

maintenance of alternative splicing. The findings obtained in initial

experiments (Chapter Two) suggested a requirement for suboptimal 5' splice

sites, not only of the regulated exon but also of that with which that exon

competes. In the case of E1IB splicing, the strengths of most if not all the

participating splice sites are balanced relative to one other. In retrospect, this is

not surprising, since cell-type-specific regulators could act by shifting a

preexisting balance.

A priori, splice site balance does not necessarily require that the

competing splice sites be suboptimal, although this is the case for EIIIB. Since

EIIB appears to be intrinsically poorly recognized, splice site balance via

suboptimal sites may have been easier to achieve from an evolutionary

perspective. This may be true of a number of alternatively spliced situations;

suboptimal flanking splice sites may play a role in maintaining normal spliced

product ratios in the murine c-src gene as well as in the Drosophila Sex-lethal
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gene (Black, 1991; Horabin and Schedl, 1992; Chapter Two) and are of

importance in allowing a balanced splicing of certain retroviral RNAs (Katz

and Skalka, 1990; Fu et al., 1991). Other regulated exons appear not to be

sensitive to splice site balance (Streuli and Saito, 1989; Tacke and Goridis,

1991); these exons may not be as sensitive to this parameter, which might be

the case if flanking exon splice site recognition were not rate-limiting for either

inclusion or skipping.

EIIIB is a poorly recognized exon partly as a consequence of suboptimal

splice sites, since mutational improvement of either EIIIB splice site

dramatically increased EIIIB inclusion. The EIIIB 3' splice site was of particular

interest since its unusual structure and multiple branch usage in vitro is

reminiscent of that exhibited by -tropomyosin (Norton and Hynes, 1990;

Helfman and Ricci, 1989; Goux-Pelletan et al., 1990). This unusual EIIIB 3'SS

structure was not required for cell-type-specific regulation; on the other hand,

this 3'SS is likely to contribute to general EHIB inefficiency, since its

replacement resulted in near-constitutive EIIIB inclusion. If these findings can

be extrapolated to other systems, then the 3'SS elements found to repress P-

tropomyosin exon 7 ( Guo et al., 1991; Libri et al., 1991) may reflect a general

requirement for poor exon 7 recognition rather than cell-type-specificity; the

former is supported by the finding that exon 7 elements specifically interact

with PTB, a protein that is ubiquitously expressed (Mulligan et al., 1992; Patton

et al., 1991). This remains to be seen.

Maintenance vs. regulatory elements

A common approach to regulated vertebrate alternative splicing has

consisted of analyzing the effects of mutations in regions suspected of

harboring splicing elements. This has resulted in the identification of many
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sequences that are clearly capable of influencing splicing in cis. The results

obtained with EIIB suggest that multiple elements govern the correct patterns

of cell-type-specific EIB splicing. However, not all of these participate in cell-

type-specific control. Therefore it may be premature to conclude that a given

cis-affective element is cell-type-specific per se unless that element were also

shown to possess differential activity among regulated cell types.

In studies characterizing elements in the rat calcitonin/CGRP and c-src

genes, the effects of mutations were analyzed in cell lines that exhibited

different splicing patterns. Mutations disrupting certain elements were found

to cause splicing in one cell type to resemble that of the other, suggesting their

importance as cell-type-specific control sequences. In studies of the

calcitonin/CGRP gene, mutations were found that activated calcitonin-specific

processing in F9 cells (which normally prefer CGRP; Emeson et al., 1989).

Studies of the c-src gene have identified intron mutations that abolished N1

exon inclusion in the neuroblastoma LA-N-5 (Black, 1991, 1992). In neither

case did these mutations affect HeLa cell patterns. However, since HeLa cells

normally prefer calcitonin-processing and Nl-skipping to begin with, these

results could have been due to the disruption of nonspecific elements. This is a

common caveat to mutational analyses and was specifically addressed in the

analysis of EiB (Chapters Two and Three).

Initial deletion analyses suggested the presence of elements downstream

of EIIIB that activated inclusion. For the purposes of identifying genuine

regulatory elements, it was of paramount importance to ascertain that these

elements acted cell-type-specifically. Consistent with this hypothesis, when

tested in a background that allowed detection of inclusion in all cell lines

(minigene M2), IVS2 deletions had effects that correlated with the ability of

each cell line to include EIIIB. This type of study exemplifies an approach
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whereby the cell-type-specific activity of cis-sequences can be rigorously

assessed; this type of approach has not yet been fully adopted for the

characterization of other vertebrate splicing elements to date. Potential

similarities exist between regulation of EHIB and that of calcitonin/CGRP and

c-src; the analysis of EIB, in contrast to many other studies, goes a step further

by illustrating cell-type-dependent cis-sequence action. These studies therefore

extend the analysis of vertebrate splicing elements in vivo to a degree not

attained previously and also represent a more sophisticated approach vis a vis

the identification of regulatory control sequences in general.

Repeated hexamer elements positively control EIIIB splicing

The downstream intron element that was important for EIIIB inclusion

was relatively large. It also appeared to be multipartite and partially

redundant, since none of the deletions in this region completely abolished cell-

type-specific exon inclusion (Chapter Two). Even so, it was astonishing to

discover that a short repeated hexamer sequence was capable of accounting for

most if not all of the activity exhibited by this element (Chapter Three). This

finding has implications for the regulation of vertebrate alternative splicing in

general.

Using assays previously used to characterize the IVS2 region required

for EIIIB splicing, it was found that this hexamer element, like the larger IVS2

element, acted in a cell-type-dependent manner. In addition, a heterologous

alternatively spliced gene (preprotachykinin) was also employed to assess

functional autonomy. These results indicated that the hexamer element was

capable of exerting its function in the context of other optional exons.

Furthermore, these experiments establish the validity of the PPTK construct as
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a potentially useful "reporter" gene that may in future facilitate the evaluation

of cis-elements described in other alternatively spliced genes.

Previously characterized systems in Drosophila have found that the cis-

targets for the regulation of dsx and Sxl alternative splicing are repeated

sequence elements distributed in the vicinity of the site of regulation (Ryner

and Baker, 1991; Hedley and Maniatis, 1991; Inoue et al., 1992; Sakamoto et al.,

1992; Horabin and Schedl, 1993). The hexamer motif we describe is similar in

that it normally functions as a highly repeated sequence array. The fact that

doublesex regulation can be recapitulated in vitro in HeLa cell nuclear extracts

(Tian and Maniatis, 1992) suggests that mechanisms for repeat-mediated

regulation exist in mammals; however, it remained to be seen whether repeats

were a common mode of mammalian splicing regulation. Our findings

confirm that certain Drosophila-based paradigms of regulated alternative

splicing can indeed be extrapolated to mammalian systems. The hexamer

element is somewhat shorter than those that regulate Drosophila splicing. This

may explain why regulatory elements have been harder to identify in

mammals (if the TGCATG hexamer can be taken as representative of

mammalian elements), since a standard internal homology search or a simple

scanning mutational analysis is unlikely to identify 5- or 6-tuple redundancy in

a long sequence.

The hexamer element can regulate calcitonin/CGRP alternative processing

The observation of several GCATG repeats in the region of the

calcitonin-specific exon 4 in the human calcitonin/CGRP gene prompted a test

to see whether synthetic hexamer repeats affected calcitonin exon 4 selection

(Chapter Four). As predicted, hexamer repeats were found to downregulate

exon 4 splice acceptor usage in a cell-line-dependent manner. These results
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suggested but did not prove the natural role of hexamer-related repeats in

calcitonin/CGRP regulation. In fact, as discussed in Chapter Four, the

regulation of calcitonin/CGRP remains unresolved, primarily because small

replacement mutations appeared to have no consistent effect upon alternative

processing (Yeakley et al., 1993). An appropriate experiment that might

address the role of GCATG repeats would involve mutation of all GCATGs in

the vicinity of exon 4, followed by reintroduction of these repeats as a synthetic

oligonucleotide. This remains to be carried out.

If calcitonin/CGRP regulation were indeed mediated by hexamer

elements, then one might expect in vitro studies to detect hexamer-specific

factors (Chapter Five). A system has been developed to assess the repression

of calcitonin splicing: fractions from a rat brain extract have been shown to

specifically repress exon 4 acceptor usage in a globin/calcitonin hybrid intron.

This repression could be relieved by the specific addition of exon 4-containing

competitors (Roesser et al., 1993). Curiously, a 41/43 kDa doublet was found

to crosslink to the calcitonin acceptor region, a finding that contrasts with the

hexamer-specific 63/52 kDa factors documented in our study (Chapter Five);

however, since tissues and assays differed, these results may not be

comparable. Therefore it remains to be seen whether calcitonin/CGRP and FN

are regulated via similar cis-elements. Even if the regulation of

calcitonin/CGRP processing proceeds in part via hexamer regulation, it seems

likely that additional cis-acting elements exist that will be unique to each of

these two genes.

The hexamer element may be multifunctional

Another novel feature of EIIIB regulation concerns the positioning of the

hexamer repeats relative to the EIIIB exon. Many of these elements are closer
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to the IVS2 splice acceptor than to the EIIIB donor. As a consequence, these

findings may challenge a current belief regarding the regulation of alternative

cassette exons. Cis-acting regulatory elements, as a general rule, have been

thought to be local to the regulated exon (for examples, see Black, 1991; Tacke

and Goridis, 1991; Cooper et al., 1988; Streuli and Saito, 1989). In contrast, the

hexamer repeats in the EIIIB region are located at a considerable distance

downstream from the exon they regulate and are located more closely to a

constitutively used 3' splice site. Regulation at a common downstream splice

site, at a distance from an alternative exon, has not been seriously considered

as a possible regulatory mechanism for alternatively spliced exons and

therefore represents a novel mode of regulation.

Hexamer function was evident even when repeats were placed well into

a heterologous intron; hence hexamer function is somewhat position-

independent. Nevertheless, it was possible that hexamer repeats exerted

distinct effects upon 5' and 3' splice sites. The deletion of most of the IVS2

repeats resulted in an aberrant splicing phenotype characterized by an inability

to use the EIIIB 5' splice site. This phenotype could be partially reversed by the

reinsertion of synthetic hexamers, suggesting a positive effect of hexamer

repeats upon 5' splice site usage (Chapter Three). In contrast, hexamer repeats

negatively affected 3' splice site selection when placed in the rat

calcitonin/CGRP gene. Taken together, these experiments suggest that

hexamer elements mediate both positive and negative effects upon splice site

selection, depending upon the situation. Alternatively, a given repeat may

perform only one of these functions, depending on its relative position within

the intron. We have not tested this specifically; however, it is interesting to

note that one of the IVS2 repeats close to EIB lies within a very highly

conserved stretch of sequence (Figure 3-1).
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It is possible that hexamer elements mediate both 5' splice site activation

and 3' splice site repression via a common mechanism. Although it is difficult

to explain how 5' splice site activation could mediate a switch in 3' splice site

usage in the calcitonin/CGRP system, a hexamer-mediated delay in 3' splice

site commitment may be sufficient to explain both phenomena. In the case of

the calcitonin/CGRP gene, this would lead to usage of CGRP-specific exons; in

the FN gene, this might allow more time for EIIIB recognition before splice site

pairing and catalysis.

Such mechanisms could be tested in vitro, pending the development of

nuclear extracts that recapitulate in vivo regulation. This has already been done

for c-src regulation, which may also involve the participation of this hexamer

element (Black, 1992; Chapter Three). The addition of hexamer-containing

competitor RNA might be predicted to specifically activate the 3' splice site of

either calcitonin exon 4 or of FN exon III-8a. This type of effect has in fact been

documented for usage of the calcitonin-specific acceptor in HeLa extracts: the

inhibition of splicing of a globin/calcitonin hybrid intron (in the presence of rat

brain fractions) could be relieved by the specific addition of RNA that contains

calcitonin acceptor sequences (Roesser et al., 1993). However, this type of

effect has not been seen in the case of c-src N1 splicing in vitro; instead, a

reduction in Nl-specific or overall splicing was observed (Black, 1992). It is

possible that hexamer-dependent negative effects on 3' splice site usage are not

rate-limiting in nuclear extracts under the conditions employed for c-src

splicing. In any event, the exact mechanism(s) of hexamer element action

remain to be identified.
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Identification of hexamer-specific factors

Given the precedents established in the regulation of doublesex

alternative splicing, one might predict that the hexamer elements might exert

their action via the binding and subsequent action of sequence-specific factors.

This prediction was tested by using hexamer-containing RNA probes in a UV-

crosslinking assay in nuclear extracts derived from F9 cells (Chapter Five).

Multiple factors could interact with a UGCAUG hexamer element in a

sequence-specific manner. Assuming that these are proteins, the molecular

weights of these factors (63 and 52 kDa) could correspond to a large number of

previously identified RNA-binding proteins (discussed in Chapter Five).

Many of these have already been shown to exhibit specificity for other

sequences; however, this does not rule out additional specificities for these

proteins, particularly since many of these contain multiple RRMs that may

individually possess distinct sequence preferences (Kenan et al., 1991; Dreyfuss

et al., 1993; Burd and Dreyfuss, 1994). A number of reagents for known

proteins may therefore help identify the 52/63 kDa factors. In addition, initial

estimates of nuclear extract abundance (approx. 0.01%-0.06% of total nuclear

extract protein) suggests that purification of these factors is feasible. The

purification of these factors may therefore facilitate the development of an in

vitro system that recapitulates hexamer-dependent regulation.

In addition to the striking sequence specificity of these 52/63 kDa

factors, the chance discovery of an unanticipated mutant hexamer-binding 55

kDa factor suggests that many cellular RNA-binding specificities may

normally exist. A number of hnRNP proteins (notably hnRNPs Al and C)

have been shown to exhibit sequence- or substrate-specific binding to RNA

(Swanson and Dreyfuss, 1988a, 1988b; Bennett et al., 1992b; Burd and Dreyfuss,

1994); therefore it is possible that the test (UGCAUG) and mutant (UGACUG)
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specificities documented here represent the binding of hnRNP proteins. The

role of hnRNPs in alternative splicing is not yet clear; their relative abundance

and apparent ubiquity would seem to exclude a role in cell-type-specific

regulation. However, posttranslational modification can affect hnRNP

activities (Cobianchi et al., 1993; Mayrand et al., 1993); in addition, hnRNP I has

been shown to be developmentally regulated (Patton et al., 1991). Therefore

hexamer recognition by hnRNPs cannot be ruled out and may in fact

supported by the relative abundance of these factors (0.01-0.06% of total

nuclear extract protein, compared with 0.01-0.05% for hnRNP I/PTB; Garcia-

Blanco et al., 1989) and the existence of hexamer-binding activities in HeLa as

well as F9 extracts (Chapter Five).

Since hexamer-factor complexes appear to be relatively stable, it is

possible that several proteins assemble on the RNA; techniques similar to those

employed by Tian and Maniatis (1993) could be employed to identify and

purify complex components. Alternatively, COS cell expression libraries could

be employed to identify factors that activate EIIIB. Since COS cells normally

skip EHIB completely, such an approach would be ideal for the genetic

identification of hexamer-dependent EIIIB-activating factors. Such an

approach might not work if the basis for regulation required the expression of

multiple components simulataneously or if posttranslational modification were

critical; nevertheless, this type of assay might provide strong candidates for

direct regulators of EIIIB.

Alternative splicing regulation by repeated short sequences: A model

Models for hexamer action were outlined in Chapters Two and Three

and have here been supplemented to include information presented in

subsequent chapters (Figure 6-1). In the absence of EIIIB-activating factors,
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EIIB is intrinsically poorly recognized and is therefore skipped by default in

tissues such as liver and in COS cells. EHIB activation models already

discussed include: (i) direct recruitment by hexamer repeats of U1 snRNP to

the EIUB exon, (ii) the binding of substrate-specific splicing factors such as SR

proteins and (iii) the binding of hnRNPs to the intron following EUIB in order

to facilitate the accessibility of EIIIB to the splicing machinery. Similar

mechanisms may be at work in the neuron-specific recognition of the N1 exon

in c-src, although such mechanisms must also account for the presence of only

one hexamer in the intron following N1. Regulation of N1 involves multiple

downstream elements (Black, 1992); therefore other sequence motifs may

collaborate with the single hexamer in order to activate N1 for splicing.

In addition, we provide evidence that suggests a hexamer-mediated

delay in 3' splice site commitment in the rat calcitonin/CGRP gene. These

findings can easily be extended to consider EIIB regulation, considering the

distal position of the hexamer repeats. Activation of the EIIIB exon may then

occur by delayed usage of the exon II-8a 3' splice site. A model invoking

negative effects on splice site selection need not necessarily result in a

reduction in mRNA levels, since splicing may not necessarily be rate-limiting

in vivo for mRNA production (Pikielny and Rosbash, 1985). The normal

regulation of the calcitonin/CGRP gene probably involves additional elements

unrelated to those found in the EITIB region, since EIIIB splicing and CGRP

production do not always correlate. A model invoking 3' splice site

attenuation is strikingly reminiscent of the models proposed for regulation of

mutually exclusive splicing in the -tropomyosin genes; in these, it has been

proposed that the second exon of a mutually exclusive pair is repressed in a

cell-type-specific manner, thus allowing the first exon to be recognized by

default (Guo et al., 1991; D'Orval et al., 1991; Libri et al., 1991; Guo and
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Figure 6-1.

Potential biochemical models for repeat-mediated EIIIB recognition

Diagram of the EIB region of the rat fibronectin gene, showing

mechanisms by which hexameric elements may mediate their action.

Exons and introns are represented by rectangles and horizontal lines

respectively. GCATG and TGCATG repeats are indicated by vertical

lines. The unusual EIIIB 3' splice site (with three adenosine

branchpoints and extended pyrimidine tract [AAA(Y) 55-60]) is also

shown. Curved arrows indicate positive (+) or negative (-) influences

upon splice site recognition or commitment. Potential UGCAUG-

binding factors are indicated as labelled ovals (63K, 52K). In addition,

potential factors that may be recruited by these repeated elements (U1,

SR proteins and hnRNP proteins as "U1", "SR" and "H" respectively) are

indicated near sites with which they may interact. The locations of 63K

and 52K binding are arbitrarily shown. Question marks and dashed

lines indicate influences which have not explicitly been demonstrated.
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Helfman, 1993). In this light, it is conceivable that splicing in the EIIB region

might have been mutually exclusive at one time, with exons EIIIB and I-8a

acting as partners.

While N1 inclusion and CGRP splicing are primarily neuronal, EIIIB

inclusion occurs in early embryos. CGRP production and EIIIB inclusion are

preferred events in F9 cells. Therefore correlations do exist in the regulation of

these genes among various cell types. Based on these models, one might

predict that EIIIB inclusion should be high in neurons. However, FN is not

known to be synthesized by neurons in vivo; hence little information exists that

would address this prediction. However, it is interesting to note that in one

study of EIIIB splicing (Magnuson et al., 1991), a human neuroblastoma cell

line (IMR-32) exhibited the highest EHIB inclusion levels of all the cell lines

tested (85-90%). These correlations suggest that the hexamer repeats

documented here may participate not only in embryo-specific RNA processing

events but also in neural-specific RNA regulation.

Short repeats and the evolution of RNA recognition

Given the complexity of hnRNA, a single TGCATG sequence would

have little informational capacity to recruit trans-acting factors unless

additional signals were present. Therefore it is not surprising that this motif is

extensively repeated in IVS2. The role of repeated sequences in RNA splicing

has been clearly documented in one other system, the regulation of Drosophila

doublesex (dsx) pre-mRNA splicing by the transformer (tra) and transformer-2

(tra-2) genes. In contrast, the repeats we document are shorter and can

promote 5' splice site usage. Interestingly, each dsx 13-mer repeat can be

depicted as two hexamers separated by an adenosine residue, the first hexamer
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being a variable copy of the second (TCaaCA A TCAACA; Burtis and Baker,

1989; Inoue et al., 1992).

Other examples of reiterated RNA elements include the AUUUA

destabilizing sequence found in the 3' untranslated regions of GM-CSF and

other short-lived mRNAs (Shaw and Kamen, 1986). The human

immunodeficiency virus Rev protein may also interact with multiple sites

within its RNA target element (Kjems et al., 1991). The regulation of lin-14

translation in C. elegans appears to be mediated by small RNAs encoded by the

lin-4 gene, which exhibit complementarity to seven short repeated elements in

the 3' UTR of the lin-14 mRNA (Lee et al., 1993; Wightman et al., 1993). In

Drosophila, the Sex-lethal (Sxl) gene product blocks male-specific splicing of the

tra gene by binding to a single critical U-rich element located at the tra male-

specific 3' splice site (Sosnowski et al., 1989; Inoue et al., 1990; Valcarcel et al.,

1993); autoregulation by the Sxl protein of its own pre-mRNA, on the other

hand, may involve interactions with multiple poly-U intron elements in the Sxl

transcript (Sakamoto et al., 1992; Horabin and Schedl, 1993). The ERS-like

purine rich exon element is somewhat degenerate and variable in length;

however, it too appears to be repeated in some exons (Watakabe et al., 1993; Xu

et al., 1993; Yeakley et al., 1993; Lavigueur et al., 1993).

With regard to the evolution of the splicing mechanism, the prevalence

of repeated RNA motifs in various aspects of RNA metabolism suggests that

the RNA sequence signals that aid splice site accuracy may often be short and

redundant in function if not in sequence. The sequences at the 5' and 3' splice

junctions and at the branch site, in addition to the purine-rich element

mentioned above and the hexamer element described in this thesis, represent

examples in splicing of short RNA sequence recognition; this recognition
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clearly must occur in a collaborative fashion in order to specify accurate correct

splicing in the appropriate cell type.

Taken together, these findings may address in part how constitutively

spliced pre-mRNAs are correctly spliced. The recognition of primary RNA

sequences may not occur as a linear contiguous sequence; instead, information

may be distributed throughout a longer stretch of RNA as a collection of

redundant, dispersed and/or degenerate short motifs. Only certain mosaics of

motif combinations (and their associated factors) might permit splice site

identification within a particular sequence region. Together with "exon

definition", this method of discrimination could account for the accuracy of the

splicing mechanism. Such a mechanism would not require functional sequence

conservation, which may explain why the context-dependence of splice sites is

still ill-defined at present. Nor would this mode of recognition require

extensive sequence reiteration, as distinct sequences may possess overlapping

functions with respect to the factors they bind. Although this seems like an

inefficient way of specifying a splice site, such a combinatorial mode of

position-independent recognition may have been the only way available to

specify splice signals in the course of evolution. In this light, the regulation of

EIIB alternative splicing by highly repeated hexamer motifs represents an

extreme case of distributed sequence recognition. Further work on the

mechanisms of splice site selection will address whether this is an appropriate

way of thinking about RNA.

In summary, our findings regarding EIIIB have allowed us to achieve a

more refined understanding of splicing regulation for one vertebrate

alternative exon. Perhaps more important, however, are the novel insights that

these findings also offer with regard to splice site selection mechanisms in

general. Extensive research has revealed a plethora of alternatively spliced
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genes that are regulated in many different ways. The regulation of many of

these could conceivably be a functional consequence of the collective action of

multiple short sequences that are combinatorially unique to each system. Such

a fascinating possibility would pose many interesting questions for future

consideration.
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