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ABSTRACT

The transmissible spongiform encephalopathies (e.g. scrapie,
Creutzfeldt-Jakob disease (CJD), and Gerstmann-Straiissler-Scheinker disease
(GSS)) are neurodegenerative diseases characterized by abnormal brain
pathology and the deposition of extracellular protein aggregate, which can be
in the form of amyloid. These deposits consist predominately of a host-
encoded protein, PrP. Scrapie can be transmitted via an infectious particle
(prion) that seems to consist only of an insoluble, protease resistant form of
PrP (PrPSC). PrPSc appears to be chemically, but not conformationally,
identical to its cellular precursor (PrPC). The prion converts host PrPC into
PrPSC. One possible replication mechanism assumes that PrPSc is an aggregate
in which an alternative conformer of PrP is stabilized by intermolecular
interactions. According to this mechanism, replication and infection involve
the nucleation of polymerization. Peptides corresponding to PrP 118-133, 106-
126, and 101-144 were synthesized along with a permuted sequence of PrP 118-
133 denoted as Scr3. PrP 118-133 and PrP 106-126 formed amyloid fibrils. The
kinetics of amyloid formation were found to follow a nucleation-dependent
mechanism, in which there is a lag phase, where no fibril growth is seen,
followed by a rapid growth phase; this behavior is similar to crystallization
kinetics. The lag phase could be bypassed by the addition of a seed of
preformed fibrils of the same peptide. This seeding was shown to be specific
as unmatched fibrils did not act as seeds . A polymorphism which occurs at
position 129 of PrP (valine or methionine) is non-pathogenic. However, the
homozygous genotype predisposes individuals to sporadic CJD. Mixtures of
peptides were studied corresponding to both variants. Homogeneous fibril
formation was preferred suggesting that homozygous can more readily form
assemblies of PrP. We have also studied the conversion of PrPC to a PrPSc-
like form in a cell-free system. Semipurified [3 5S]PrPC and unlabeled PrPSC
were mixed together and the formation of protease-resistant radiolabeled
material was seen over time.

Thesis Supervisor: Dr. Peter T. Lansbury, Jr.

Title: Associate Professor of Chemistry
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Chapter 1

The Transmissible Spongiform Encephalopathies

The transmissible spongiform encephalopathies (TSE), or prion

diseases are neurodegenerative diseases affecting both animals and humans

and are unique in being transmissible, genetic, and sporadic diseases. Human

TSE's include Creutzfeldt-Jakob disease (CJD), Gerstmann-Straiissler-

Schenker syndrome (GSS), fatal familial insomnia (FFI), and kuru. Animal

forms of TSE's include scrapie in sheep, bovine spongiform encephalopathy

in cattle, transmissible mink encephalopathy, and chronic wasting disease of

captive mule deer.

CJD is characterized by dementia, ataxia, and spongiform degeneration

in the brain. The onset of CJD is usually late in life, or in the case of infection,

months to years after exposure. Infection with CJD is usually caused by

exposure during a medical procedure. Many cases of transmissible CJD have

been caused by infected instruments used in neurological or ocular

procedures, partly because of the extreme resistance of the infectious agent to

the generally employed disinfection procedures that kill most other

microbials. Contaminated human-derived products have also caused

transmissible CJD. A large outbreak has recently occurred that was caused by

contaminated cadaver-derived human growth hormone. Recombinant
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sources of hormone have eliminated further infection. GSS is a familial

variant of CJD, usually characterized by the formation of proteinaceous

deposits known as amyloid plaques along with dementia and spongiform

changes. FFI is a subacute condition with untreatable insomnia,

dysautonomia, and severe selective atrophy of thalamic nuclei. Spongy

degeneration is less prevalent in FFI than CJD. Kuru afflicted a small

population in the highland region of New Guinea, and was the leading cause

of death among women and younger individuals. It has been virtually

eliminated by the cessation of ritualistic cannibalism among these people.1

The most studied animal forms of TSE's are scrapie in sheep and goats,

and bovine spongiform encephalopathy (BSE) or "mad cow disease" in cattle

and dairy cows. Both of these diseases are still significant veternary problems.

Until recently, the policy in the United States in regards to scrapie was to

destroy all animals in a flock with an afflicted individual. This severe action

limited the exposure of healthy sheep to infected animals, pastures, and

housing, and reduced the incidence of scrapie in the United States. BSE has

been a crippling problem in the British cattle industry, with the incidence of

BSE only recently beginning to level off. The outbreak was apparently caused

by feed contaminated with infective material from sheep or other cattle.

Changes in the rendering process appear to have stopped further exposure to

infectious agent. Although no known case of human TSE infection has

resulted from consumption of contaminated meat, many still will not eat

British cattle products.

Early Studies of the Scrapie Agent

TSE's have peculiar traits which set them apart from most other

diseases and were defined as slow infections by Sigurdsson, who put forth the
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concept of slow infections based upon studies of four chronic diseases that

appeared in Icelandic sheep during the 1930's.2 Slow infections have

attributes of both acute and chronic diseases, which define the ends of a

continuum. For the acute case, after infection the disease rapidly approaches

a crisis. At this point a resolution occurs, the host either fighting off the

infection or dying. Chronic diseases, on the other hand, are lingering

illnesses, going into remission, possibly for extended periods, and then

reoccurring. Slow diseases have characteristics of both; they have a long

period after infection with no symptoms, similar to chronic diseases, but are

then followed by a rapid disease course, similar to acute diseases. Scrapie and

several other diseases fit this definition of slow infections.

Later, Hadlow was the first to suggest a connection between TSE's in

different species, pointing out the similarity between scrapie and kuru based

on the pathology they shared.3 Gadjusek, Gibbs, and Alpers completed the

connection by transmitting kuru to chimpanzees in 19654 and later by

transmitting CJD to animals. 5, 6 Scrapie, CJD, and GSS have all been

transmitted to rodents, after long incubation times, by inoculation of brain

extracts from afflicted individuals. Extracts from the brains of these rodents

can subsequently infect, via intercerebral injection, other animals of the same

species with a much shorter incubation time. This species barrier has been

observed for many infections across species, and it may explain the lack of

correlation between the incidence of scrapie and the incidence of CJD.

The transmission to rodents, first accomplished in mice by Chandler, 7

greatly improved the ability to study these diseases and purify the infectious

agent. Nevertheless, the bioassay for the infectious agent still required serial

dilutions of the samples and the housing and monitoring of mice for about

one year. The development of a Syrian golden hamster line 8 , 9 with a much
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shorter incubation period than the mouse lines (60 days vs. approx. 200 days)

greatly improved the assay. Further improvements resulted from the use of

incubation time to the onset of illness rather than death as an endpoint. l °0

Early in the study of scrapie, the unusual properties of the infectious

agent led investigators to speculate on its nature. Because of its resistance to

heat and to treatment with acetylethyleneimine, Stamp et al. suggested that it

appeared "most unlikely that the factor could be nucleo-protein in nature".ll

Based upon studies of the agent's resistance to ionizing radiation at 254 nm,

Alper et al. proposed, "scrapie is most unlikely to depend on nucleic acid

moiety for its replicative ability". 12 They could not determine from those

experiments whether or not a protein was involved in the pathogen. Every

other pathogen known (e.g. bacteria, viruses) required nucleic acid to

replicate. The apparent lack of nucleic acid in the scrapie agent has continued

to be a great source of controversy.

A self-replicating protein was considered by many to be inconsistent

with the basic tenets of molecular biology. In 1967, J.S. Griffith, a

mathematician at Bedford College in London, suggested three ways in which

a protein-only TSE agent might be possible without altering the dominant

paradigm. 13 In one scenario, the protein of interest, although encoded for in

the genome, is not produced normally, has no required function, and is

harmful to the host if produced. If it should also induce its own production,

infection with this protein would upregulate synthesis of itself causing the

production of more harmful protein. This proposal was proven false when

the protein involved was shown to be a host protein, produced in afflicted

and unaffected individuals. 14 , 15, 16 A second mechanism, which Griffith

thought less likely, involved the immune system but is also inconsistent

with later experimental data. The third scenario Griffith proposed still
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deserves attention. In this mechanism, the infectious protein acts as a seed to

convert a normal protein (or normal state of a protein) to an abnormal

protein (or abnormal state of the same protein). The infectious protein only

causes this transformation in a multimeric state, which the normal protein

cannot access without catalysis. The conversion is analogous to the idea that

"a gas can only condense on nuclei already present". This mechanism will be

discussed in detail in the last chapter of this thesis.

Purification of a Protein from the Infectious Agent

An important breakthrough in determining the nature of the

infectious agent in scrapie was the isolation of a protein from semi-purified

preparations of the agent from rodents. Prusiner and coworkers purified the

agent by low-speed centrifugation, precipitation from ethylene glycol and

ammonium sulfate, enzymatic digestion, and sedimentation through a

sucrose gradient l 7 The amount or titer of the infectious agent in various

fractions was assayed for by infectivity in rodents, and a 100- to 1000-fold

enrichment in terms of protein was accomplished. Fractions enriched in

infectious titers contained as the major constituent a 27 to 30 kDa protein,

designated PrP. It was suggested this protein was necessary, and possibly

sufficient, for infectivity; this proposal is still not accepted by all researchers in

this field. The presence of this protein was seen by other workers. Diringer et

al. showed a correlation between infectivity, the presence of fibrils, and a

similar 26 kDa protein. 18 They believed these fibrils were identical to the

scrapie associated filaments (SAF) seen by Merz and coworkers in brain

extracts from scrapie infected animals. 19

An N-terminal sequence of the 27-30 kDa protein was determined after

purification of the agent by denaturing in sodium dodecyl sulfate and size
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exclusion HPLC.20 From this sequence, a hamster cDNA library was prepared

and the sequence determined.14 The protein was found in both normal and

infected brains. Southern blotting revealed a gene with the same restriction

pattern in normal and infected brain. The mRNA level was also similar in

both normal and scrapie-infected hamster brain samples.16 Finally, antisera

against PrP from infected brain reacted with a protein from both scrapie-

infected, and to a lesser extent, normal brain. Subsequently, the mouse15 and

human 21l 22 sequence were determined (see Figure 1.1) and found to be

highly homologous. No significant homology was found to any other

known proteins.

PrP is a normal host-produced protein, designated PrPC (for cellular

form), and appears to be covalently identical to the protein found in the

infectious agent, designated PrPSc (for scrapie form).2 3 The open reading

frame of the PrP gene encodes for 254 amino acids. The protein comprises the

following domains (see Figure 1.2): a 22 amino acid signal peptide cleaved

during biosynthesis,2 4 , 25 a stretch of five octapeptide and two hexapeptide

repeats rich in Gly and Pro, a stretch of hydrophobic amino acids similar to a

transmembrane sequence, a possible amphipathic helix, and a hydrophobic

sequence which is cleaved with the addition of a glycosyl

phosphatidylinositol (GPI) anchor to Ser231.26 Arg25 and Arg37 in PrPSc, and

at least Arg25 in PrPC appear to be modified as judged by difficulties

encountered in sequencing.2 5, 27 Both isoforms contain a disulfide bridge

between Cys179 and Cys21425 and asparagine-linked glycosylation at Asnl81

and Asn197.2 8 PrP is highly cationic with a net positive charge of 18 at pH 7.4

and 9 at pH 5.0. This positive charge resides predominately in the N-

terminus with residues 23-140 having 18 positively charged residues and no

negatively charged ones at neutral conditions. Residues 141-231 contain 13

17



Figure 1.1 The sequence of prion protein (PrP). SHaPrP, syrian hamster PrP;
MoPrP, mouse PrP; Hu PrP, human PrP; Hu Var., variations in the human
sequence. Variations include: (1) disease causing incorporation of extra
octapeptide repeats, (2) Pro to Leu at codon 102 found in GSS, (3) Ala to Val at
codon 117 found in cases of GSS, (4) natural polymorphism at position 129, (5)
Asp to Asn at 178 linked to CJD and FFI, and (6) Glu to Lys at codon 200 linked
to CJD in Libyan Jews. Other modifications are in italics. The Arg at position
25 and 37 are modified. There is a disulfide between Cys 179 and Cys 214.
Glycosylation occurs at Asn 181 and Asn 197. Protease cleavage in PrPSc
occurs at about residue 90.
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Figure 1.2 Schematic of PrP. A) Full-length PrP encompassing entire ORF.
SP, signal peptide; GP repeats, a set of five octapeptide; TM, a transmembrane-
like sequence; AH, possible amphipathis helix; SS hydrophobic C-terminal
sequence cleaved with the attachment of a GPI anchor. B) PrP after
posttranslational processing. X, modified Arg25 & Arg 37 residues; Sug,
glycosylated Asnl81 & Asn197; SS, disulfide between Cys179 & Cys214; GPI,
glycosylphosphotidylinositol anchor attached at Ser 231. C) PrPSc after
proteinase K treatment (cleavege around residue 90).
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positively and 13 negatively charged residues. The localization of the charge

to the N-terminus may partially cause the greater proteinase sensitivity of

this region.

Differences between Host- and Agent-Derived PrP

Although there are no known covalent differences between PrPC and

PrPSC, several other properties distinguish the two isoforms. PrPC is

substantially more soluble than PrPSc, and a corresponding difference in the

centrifugation properties can be seen. The two isoforms differ in their

sensitivity to protease digestion also. PrPC is completely digested by

proteinase K (PK) under conditions where PrPSc is only partially degraded.

Treatment of PrPSC with PK removes approximately 67 amino acids from the

N-terminus, although no change in infectivity titers is observed. PK

treatment seems to be necessary for the formation of amyloid fibrils of PrPSc

as visualized by electron microscopy. 2 9 A similar truncation of PrPSC may

occur in infected animals as the lifetime of PrPSc is quite long, whereas PrPC

is turned over rapidly with a half life of a few hours. 3 0 The glycosylation (at

Asnl81 and Asn 197) causes an apparent heterogeneity in the molecular

weight of PrP (in both isoforms) as measured by sodium dodecyl sulfate (SDS)

polyacrylamide gel electrophoresis (PAGE). In PrPSc, part of this heterogeneity

disappears with PK treatment. Regardless, the glycosylation does not appear

to be required for conversion of PrPC to PrPSC in scrapie infected cells. 31

The two isoforms also differ conformationally, as shown by Fourier

transform infrared (FTIR) spectroscopy. Caughey and coworkers determined

that PrPSC has approximately 50% 5-structure with intense absorbances in the

FTIR spectra at 1627, 1636, and 1657 cm-1.32 Prusiner later was able to purify
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sufficient quantities of prPC for FTIR analysis and found it composed of

predominately helix/turn/random coil structures with a large absorbance

centered at approximately 1660 cm- 1 .33 This data suggests a conformational

change is involved in the conversion of PrPC to PrPSC. The greater -sheet

content of PrPSc is consistent with data on inclusion body formation where

higher -sheet content correlates with the less soluble isoform.3 4

The nature of the infectious agent is still a subject of heated debate.

Although preparations of the scrapie agent are enriched in PrPSc, some

investigators have claimed that PrPSc is not a part of the agent but a

pathogenic product which copurifies with the infectious agent.3 5 There is

substantial evidence that PrPSc is required for infectivity. 36 The agent is also

resistant to many conditions expected to destroy nucleic acids such as

nuclease treatment and irradiation at 254 nm, which would be expected to

destroy conventional viruses. This evidence does not prove absolutely that

nucleic acids or other molecules are not required. Unfortunately, the

conditions found to date to solubilize the agent for high resolution

purification, also destroy the infectivity. Until purified and completely

characterized components can be assembled into the infectious agent, the

nature of the agent will remain controversial.

Biosynthesis of PrPC and PrPSc

PrPSc is derived from a portion of the PrP produced by the cell.

Although the function of PrP is unknown, many details of its biosynthesis of

PrPC and PrPSc have been elucidated. The highest concentration of PrP

mRNA is found in neurons16, 37 and does not increase over the course of

infection. 14 The higher level of expression in the brain may be part of the

reason this organ is affected.
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Mouse neuroblastoma cells are the simplest system to date that can

convert rPC to PrPSc and produce infectious agent. This system has

provided insights to the location of the conversion of PrPC to PrPSc. Studies

of PrPC and PrPSc formation in scrapie-infected (sc+) murine neuroblastoma

cells exhibited differences in the biosynthesis of these two isoforms. 30 Pulse-

chase metabolic labeling with [35S] methionine showed a peak in

concentration of PrPC after 2 hours with a half-life of about 4 hours. PrPSc

labeling, on the other hand, continued to increase up to 45 hours later with

half-maximal labeling after 6 hours and no evidence of turnover. PrPC is

labeled 2 mins. after the addition of [35 S]methionine, while PrPSC is not

labeled until after 60 mins. This lag corresponds approximately to the time

required for translocation of PrPC to the cell surface. Treatment of these cells

with phosphatidylinositol-specific phospholipase C (PIPLC) released PrPC

from the cell and inhibited PrPSc formation. The amount of PrPSc produced

was found to be about 3% of the PrPC. Taken together, this evidence suggests

PrPSc is made from a small percentage of PrPC after PrPC is brought to the cell

surface and anchored by GPI to the membrane. It is not yet clear if the

conversion of PrPC to PrPSc is more prevalent in particular populations of

prPC.

Because the conversion occurs after PrP reaches the surface, it is

believed to occur in the endosomal pathway. 3 0' 38 The conversion however,

appears to occur before PrPC reaches the lysosomes. The study of the effect of

lysosomotropic amines support this proposal. Lysosomotropic amines do not

inhibit the formation of PrPSc, but they do block the digestion of the N-

terminal 90 amino acids of PrPSc. Lysosomotropic amines do not however,

alter the digestion of PrPC, which suggests PrPC is degraded before reaching
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the lysosomes.3 9 In addition, kinetic studies indicate that PrPSc is formed

before exposure to lysosomal proteases. 4 0

Genetic Studies of PrP

Several mutations in the PrP gene (PRNP) have been linked with GSS

and CJD (see Figure 1.1). PRNP is found on the short arm of human

chromosome 20 and the homologous region of mouse chromosome 2.22, 41

The entire open reading frame of the PRNP gene 14 , 42 is found in a single

exon. A cytosine to thymine substitution in the second position of codon 102

causes a proline to leucine change, which segregates with GSS in more than

one family.43 , 44 Another mutation found in patients with dementing GSS

is an alanine to valine substitution at codon 117.45 , 46 A mutation at codon

200 (Glu to Lys) has been linked to CJD in Libyan Jews.47 Also, the insertion

of several addition octapeptide repeats has been found to segregate with GSS.

The change of aspartic acid to asparagine at codon 178 causes a prion

protein disease with the phenotype determined by the amino acid at position

129 (Met or Val).48 This polymorphism at position 129 occurs throughout

the human population and neither Met nor Val at position 129 appears to

segregate with the disease. The amino acid at position 129, however, does

affect the phenotype of the disease when coupled with the mutation at

position 178. The Met 129, Asn 178 allele segregated with FFI, while the Val

129, Asn 178 allele segregated with familial CJD. This polymorphism at 129 is

also of interest because people with sporadic CJD are more likely to be

homozygous, for either Met or Val, than heterozygous at this position

(discussed in Chapter 4).49

The existence of several different strains of scrapie 50' 51 with different

characteristics and clinical signs has been one of the strongest arguments for
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the requirement of an infectious agent of a viral-like nature with its own

genome. When scrapie in sheep was passaged to goats, either a scratching or

a drowsy syndrome was observed, which remained constant in subsequent

passages.5 1 Multiple strains have been studied in mice as well, with

differences seen in incubation time, the severity and distribution of

pathological changes, the heat inactivation properties, and in other

properties. Different strains can be seen and passaged in a single inbred

mouse line. Also, different mouse lines may respond differently ( e.g.

different incubation times) to the same strain because of changes in a gene

closely linked to PRNP, which may be PRNP itself. 52 , 53 Many strains

maintain their characteristics through several passages while others appear to

be less stable.

Transgenic Animals

Transgenic (Tg) studies in rodents have partly elucidated how changes

in PrP influence prion diseases. In one study 54 , the Syrian hamster (SHa)

PRNP gene, which encodes for a protein differing at 16 residues (see Figure

1.1) from mouse PrP (MoPrP), was placed into mice (Tg (SHaPrP) mice).

These mice did not become spontaneously ill. Their response to infection

was determined next. Normally, mice are resistant to infection with SHa

scrapie, but the Tg (SHaPrP) mice were very susceptible with incubation times

comparable to hamsters. When these transgenic mice, which now produced

both MoPrP and SHaPrP, were infected with SHa scrapie, they only produced

SHaPrPSc; no MoPrPSc was found using MoPrP specific antibodies. 55 That is,

the nature of the PrPSC formed in these mice was determined by source of the

inoculuum. The tropism (as judged by which species could be infected) of the

agent produced was also determined. The transgenic mice were infected with
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either SHa or mouse scrapie, and portions of their brains were subsequently

injected into other normal hamsters and mice. In all cases, the species

susceptibility was determined by the original inoculuum. If the transgenic

mice were infected with mouse scrapie, samples from their brains could

infect mice and not hamsters; if they were infected with SHa scrapie, samples

from their brains could infect hamsters and not mice.

Tg mice were also produced that have a proline to leucine mutation at

position 101; the analogous 102 mutation in humans segregates with GSS. 55

These mice developed a neurodegenerative disease without inoculation with

infectious agent. However, the pathology was different from that observed in

humans with the analogous mutation and could not be effectively

transmitted to other mice, which leads one to question the relevance to

scrapie. This difference in pathology may be due to other differences between

the mouse and human sequences that interact with position 101. Transgenic

systems are fraught with possible complications, and one has to be careful in

interpreting the results. For example, recent studies have shown that

overproduction of PrP in transgenic animals can lead to a neurological

disorder that is not scrapie. 56

In perhaps the most dramatic transgenic study, Charles Weissman and

coworkers produced a line of mice having no functional PRNP gene.5 7

These "knockout" mice appeared to suffer no ill effects from the removal of

this gene. Remarkably, a protein so highly conserved across species is not

required for survival. Possibly, redundancy built into the system

compensates for the removal of this protein, or its importance may only

become apparent in a situation to which the laboratory mice are not exposed.

The mice with no PRNP gene were impervious to infection with

scrapie. 58 Could the infectious agent replicate in these mice without causing
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scrapie, and subsequently be passed on to other normal mice? To answer this

question, mice were sacrificed at intervals after exposure to scrapie and

homogenates from their brains were injected into the brains of additional

normal mice. No infectivity was found in these samples with the exception

of a small titer at early time points, probably due to residual inoculuum.

There are a couple of caveats, however. A small number of animals did get

ill after a long interval. Contamination was suspected in these cases, and

infection has not been observed in additional experiments. Also in these

experiments, the handling of the samples was somewhat different than the

generally employed procedures. The brain samples used to test infectivity

were heated to 800 C before injection, presumably to kill other pathogens.

This treatment normally would not disable the scrapie agent but is not

usually done in experiments of this kind. If the absence of PrP reduced the

heat-resistance of the agent but did not eliminate its production, this heat

treatment would be misleading. That is, the agent may still be replicating

without PrP, but not be as stable. Despite these reservations, these

experiments are some of the strongest evidence to date for a protein-only

infectious agent.

Inhibitors of Scrapie Infection

No therapy for the TSE's exists. Certain molecules have been shown to

inhibit the formation of PrPSC in scrapie-infected cell lines and have a

prophylactic effect in animals subsequently exposed to scrapie. Congo Red

and sulfated polyanions greatly inhibit the build-up of PrPSc in scrapie-

infected mouse neuroblastoma cells. 59' 60, 61 Diringer and Ehlers have shown

that mice given three applicaions of polyanion pentosanpolysulphate two
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months before injection were protected from scrapie infection.6 2 To date,

nothing has been shown to reverse the effects of scrapie infection.

Studies of PrPSc Outside the Cell

The next important step in understanding the nature of the TSE's is

the formation of infectious agent outside the machinery of the cell from

purified components. If the conversion of PrPC to PrPSc is sufficient for

infectivity, conditions causing this transformation are necessary to elucidate

the mechanism and to prove it does not require genetic information.

Prusiner and coworkers have addressed this question by attempting to

renature PrPSc.6 3 In these experiments, PrPSc was treated with denaturants,

generally chaotrophic salts such as guanidine thiocyanate or urea. The

denaturant was then diluted or removed by dialysis, and the protein was later

assayed for infectivity. Infectivity did not return under the conditions used.

Can anything be learned by studying shortened forms of PrP? The

brains of certain patients with GSS contain truncated forms of PrP. The

plaques in a family known as the Indiana kindred contain an 1lkD fragment

of PrP stretching from about codon 58 to codon 150.64 An amber mutation

(Tyr145 to stop) was found in a patient who had a dementing illness with PrP

plaques. 6 5 In this patient, the plaques only contain the truncated version of

PrP, although mRNA for both full-length and truncated PrP could be

detected. It has also recently been shown that truncated forms of PrP can

form PrPSC in cell culture.6 6 Mutants were made where amino acids 23-88

were deleted; Other mutants were made where Ser 231, to which the GPI

anchor is attached, was replaced by a stop codon. Both of these shortened

forms could be converted to PrPSc. The ability of these truncated plaques to

cause illness in animals has not yet been reported, however, the formation of

27



PrPSc in shortened sequences has encouraged studies with peptides to try an

elucidate the mechanism of conversion of PrPC to PrPSc. We have studied

the mechanism of polymerization of peptides derived from the PrP sequence.

The formation of ordered assemblies from peptides derived from the PrP

sequence is discussed in Chapters 2-4. This assembly was shown to follow

nucleation-dependent kinetics. We applied this knowledge to the task of

renaturing the entire protein and converting PrPC to PrPSC outside the cell

(see Chapter 5).

28



REFERENCES FOR CHAPTER 1

(1) Gajdusek, D. C.; Science 1977, 197, 943.
(2) Sigurdsson, B.; Br. Vet. J. 1954, 110, 341.
(3) Hadlow, W. J.; Lancet 1959, 1959-II, 289.
(4) Gajdusek, D. C.; Gibbs, C. J.; Alpers, M.; Nature 1966, 209, 794.
(5) Gibbs, C. J.; Science 1968, 161, 388.
(6) Gibbs, C. J.; Gajdusek, D. C.; Science 1973, 182, 67.
(7) Chandler, R. L.; Lancet 1961, 1961-I, 1378.
(8) Kimberlin, R. H.; Walker, C. A.; J. Gen. Virology 1977, 34, 295.
(9) Marsh, R. F.; Kimberlin, R. H.; J. Infect. Disease 1975, 131, 104.
(10) Prusiner, S. B.; Groth, D. F.; Cochran, S. P.; Masiarz, F. R.; McKinley, M.

P.; Martinez, H. M.; Biochem. 1980, 19, 4883.
(11) Stamp, J. T.; Brotherston, J. G.; Zlotnik, I.; Mackay, J. M. K.; Smith, W.;

I. Comp. Path. 1959, 69, 268.
(12) Alper, T.; Haig, D. A.; Clarke, M. C.; Biochem. Biophys. Res. Comm.

1966, 22, 278.
(13) Griffith, J. S.; Nature 1967, 215, 1043.
(14) Oesch, B.; Westaway, D.; Wilchli, M.; McKinley, M. P.; Kent, S. B. H.;

Aebersold, R.; Barry, R. A.; Tempst, P.; Teplow, B. B.; Hood, L. E.;
Prusiner, S. B.; Weissmann, C.; Cell 1985, 40, 735.

(15) Locht, C.; Chesebro, B.; Race, R.; Keith, J. M.; Proc. Natl. Acad. Sci. USA
1986, 83, 6372.

(16) Chesebro, B.; Race, R.; Wehrly, K.; Nishio, J.; Bloom, M.; Lechner, D.;
Bergstrom, S.; Robbins, K.; Mayer, L.; Keith, J. M.; Garon, C.; Haase, A.;
Nature 1985, 315, 331.

(17) Bolton, D. C.; McKinley, M. P.; Prusiner, S. B.; Science 1982, 218, 1309.
(18) Diringer, H.; Gelderblom, H.; Hilmert, H.; Ozel, M.; Edelbluth, C.;

Kimberlin, R. H.; Nature 1983, 306, 476.
(19) Merz, P. A.; Somerville, R. A.; Wisniewski, H. M.; Manuelidis, L.;

Manuelidis, E. E.; Nature 1983, 306, 474.
(20) Prusiner, S. B.; Groth, D. F.; Bolton, D. C.; Kent, S. B.; Hood, L. E.; Cell

1984, 38, 127.
(21) Kretzschmar, H. A.; Stowring, L. E.; Westaway, D.; Stubblebine, W. H.;

Prusiner, S. B.; DeArmond, S. J.; DNA 1986, 5, 315.
(22) Liao, Y.-C. J.; Lebo, R. V.; Clawson, G. A.; Smuckler, E. A.; Science 1986,

233, 364.
(23) Stahl, N.; Baldwin, M. A.; Teplow, D. B.; Hood, L.; Gibson, B. W.;

Burlingame, A. L.; Prusiner, S. B.; Biochem. 1993, 32, 1991.
(24) Hope, J.; Morton, L. J. D.; Farquhar, C. F.; Multhaup, G.; Beyreuther, K.;

Kimberlin, R. H.; The EMBO J. 1986, 5, 2591.
(25) Turk, E.; Teplow, S. B.; Hood, L. E.; Prusiner, S. B.; Eur. J. Biochem.

1988, 176, 21.
(26) Stahl, N.; Borchelt, D. R.; Hsiao, K. K.; Prusiner, S. B.; Cell 1987, 51, 229.
(27) Hope, J.; Multhaup, G.; Reekie, L. J. D.; Kimberlin, R. H.; Beyreuther,

K.; Eur. J. Biochem. 1988, 172, 271.

29



(28) Haraguichi, T.; Fisher, S.; Olofsson, S.; Endo, T.; Groth, D.; Tarentino,
A.; Borchelt, D.; Teplow, D.; Hood, L.; Burlingame, A.; Lycke, E.; Kobata,
A.; Prusiner, S. B.; Arch. Biochem. Biophys. 1989, 274, 1.

(29) McKinley, M. P.; Meyer, R. K.; Kenaga, L.; Rahbar, F.; Cotter, R.; Serban,
A.; Prusiner, S. B.; J. Virology 1991, 65, 1340.

(30) Caughey, B.; Raymond, G. J.; J. Biol. Chem. 1991, 266, 18217.
(31) Taraboulos, A.; Rogers, M.; Borchelt, D. R.; McKinley, M. P.; Scott, M.;

Serban, D.; Prusiner, S. B.; Proc. Natl. Acad. Sci. USA 1990, 87, 8262.
(32) Caughey, B. W.; Dong, A.; Bhat, K. S.; Ernst, D.; Hayes, S. F.; Caughey,

W. S.; Biochemistry 1991, 30, 7672.
(33) Pan, K.-M.; Baldwin, M.; Nguyen, J.; Gasset, M.; Serban, A.; Groth, D.;

Mehlhorn, I.; Huang, Z.; Fletterick, R. J.; Cohen, F. E.; Prusiner, S. B.;
Proc. Natl. Acad. Sci. USA 1993, 90, 10962.

(34) Mitraki, A.; King, J.; Bio/Technology 1989, 7, 690.
(35) Manuelidis, E. E.; Manuelidis, L.; Proc. Natl. Acad. Sci. USA 1993, 90,

7724.
(36) Prusiner, S. B.; Science 1991, 252, 1515.
(37) Kretzschmar, H. A.; Prusiner, S. B.; Stowring, L. E.; DeArmond, S. J.;

Am. J. Pathology 1986, 122, 1.
(38) Borchelt, D. R.; Taraboulos, A.; Prusiner, S. B.; J. Biol. Chem. 1992, 267,

16188.
(39) Caughey, B.; Raymond, G. J.; Ernst, D.; Race, R. E.; J. Virol. 1991, 65,

6597.
(40) Taraboulos, A.; Raeber, A.; Borchelt, D.; McKinley, M. P.; Prusiner, S.

B.; FASEB J. 1991, 5, A1177.
(41) Sparkes, R. S.; Simon, M.; Cohn, V. H.; Fournier, R. E. K.; Lem, J.;

Klisak, I.; Heinzmann, C.; Blatt, C.; Lucero, M.; Mohandas, T.;
DeArmond, S. J.; Westaway, D.; Prusiner, S. B.; Weiner, L. P.; Proc.
Natl. Acad. Sci. USA 1986, 83, 7358.

(42) Basler, K.; Oesch, B.; Scott, M.; Westaway, D.; Wilchli, M.; Groth, D. F.;
McKinley, M. P.; Prusiner, S. B.; Weissmann, C.; Cell 1986, 46, 417.

(43) Hsiao, K.; Baker, H. F.; Crow, T. J.; Poulter, M.; Owen, F.; Terwilliger, J.
D.; Westaway, D.; Ott, J.; Prusiner, S. B.; Nature 1989, 338, 342.

(44) Doh-ura, K.; Tateishi, J.; Sasaki, H.; Kitamoto, T.; Sakaki, Y.; Biochem.
Biophys. Res. Comm. 1989, 163, 974.

(45) Nochlin, D.; Sumi, S. M.; Bird, T. D.; Snow, A. D.; Leventhal, C. M.;
Beyreuther, K.; Masters, C. L.; Neurology 1989, 39, 910.

(46) Hsiao, K. K.; Cass, C.; Schellenberg, G. D.; Bird, T.; Devine-Gage, E.;
Wisniewski, H.; Prusiner, S. B.; Neurol.ogy1991, 41, 681.

(47) Goldfarb, L.; Korczyn, A.; Brown, P.; Chapman, J.; Gajdusek, D. C.;
Lancet 1990, 2, 637.

(48) Goldfarb, L. G.; Peterson, R. B.; Tabaton, M.; Brown, P.; LeBlanc, A. C.;
Montagna, P.; Cortelli, P.; Julien, J.; Vital, C.; Pendelbury, W. W.; Halta,
M.; Willis, P. R.; Hauw, J. J.; McKeever, P. E.; Monari, L.; Schrank, B.;
Swergold, G. D.; Autillo-Gambetti, L.; Gajdusek, D. C.; Lugaresi, E.;
Gambetti, P.; Science 1992, 258, 806.

30



(49) Palmer, M. S.; Dryden, A. J.; Hughes, J. T.; Collinge, J.; Nature 1991, 352,
340.

(50) Carp, R. I.; Kascak, R. J.; Wisniewski, H. M.; Merz, P. A.; Rubenstein, R.;
Bendheim, P.; Bolton, D.; Alzheimer Dise. Assoc. Disorders 1989, 3, 79.

(51) Bruce, M. E.; Fraser, H. in Transmissible Spongiform Encephalopathies:
Scrapie, BSE and Related Disorders; Chesebro, B. W.; Springer-Verlag,
Berlin-Heidelberg, 1991; pp 125.

(52) Carlson, G. A.; Kingsbury, D. T.; Goodman, P. A.; Coleman, S.;
Marshall, S. T.; DeArmond, S.; Westaway, D.; Prusiner, S. B.; Cell
1986, 46, 503.

(53) Westaway, D.; Goodman, P. A.; Mirenda, C. A.; McKinley, M. P.;
Carlson, G. A.; Prusiner, S. B.; Cell 1987, 51, 651.

(54) Prusiner, S. B.; Scott, M.; Foster, D.; Pan, K.-M.; Groth, D.; Mirenda, C.;
Torchia, M.; Yang, S.-L.; Serban, D.; Carlson, G. A.; Hoppe, P. C.;
Westaway, D.; DeArmond, S. J.; Cell 1990, 63, 673.

(55) Scott, M.; Foster, D.; Mirenda, C.; Serban, D.; Coufal, F.; Walchli, M.;
Torchia, M.; Groth, D.; Carlson, G.; DeArmond, S. J.; Westaway, D.;
Prusiner, S. B.; Cell 1989, 59, 847.

(56) Westaway, D.; DeArmond, S. J.; Cayetano-Canlas, J.; Groth, D.; Foster,
D.; Yang, S.-L.; Torchia, M.; Carlson, G. A.; Prusiner, S. B.; Cell 1994, 76,
117.

(57) Biieler, H.; Fischer, M.; Lang, Y.; Bluethmann, H.; Lipp, H.-P.;
DeArmond, S. J.; Prusiner, S. B.; Aguet, M.; Weissmann, C.; Nature
1992, 356, 577.

(58) Bueler, H.; Aguzzi, A.; Sailer, A.; Greiner, R.-A.; Autenried, P.; Aguet,
M.; Weissmann, C.; Cell 1993, 73, 1339.

(59) Caughey, B.; Raymond, G. J.; J. Virol. 1993, 67, 643.
(60) Caughey, B.; Race, R. E.; J. Neurochem. 1992, 59, 768.
(61) Caughey, B.; Ernst, D.; Race, R. E.; J. Virol. 1993, 67, 6270.
(62) Diringer, H.; Ehlers, B.; J. Gen. Virol. 1991, 72, 457.
(63) Prusiner, S. B.; Groth, D.; Serban, A.; Stahl, N.; Gabizon, R.; Proc. Natl.

Acad. Sci. USA 1993, 90, 2793.
(64) Tagliavini, F.; Prelli, F.; Ghiso, J.; Bugiani, O.; Serban, D.; Prusiner, S. B.;

Farlow, M. R.; Ghetti, B.; Frangione, B.; EMBO J 1991, 10, 513.
(65) Kitamoto, T.; Iizuka, R.; Tateishi, J.; Biochem. Biophys. Res. Comm.

1993, 192, 525.
(66) Rogers, M.; Yehiely, F.; Scott, M.; Prusiner, S. B.; Proc. Natl. Acad. Sci.

USA 1993, 90, 3182.

31



Chapter 2

Amyloid Formation by Peptides Derived from the PrP Sequence

We hoped to learn something about how PrP might undergo the

transformation from PrPC to PrPSc by studying a less complex system, namely

peptides derived from the PrP sequence. Several peptides from a highly

conserved region of PrP were synthesized and studied. The solubility of the

peptides, and their ability to form amyloid fibrils was determined. The

structures of these peptides were also studied using Fourier-transform-

infrared spectroscopy (FTIR). These studies will be discussed in this chapter.

We initially became interested in the PrP sequence through studies of

the -amyloid protein of Alzheimer's disease (AD). Kurt Halverson, a

graduate student in the Lansbury lab, noticed the periodic spacing of glycine

every fourth residue in the hydrophobic C-terminus of the -amyloid protein.

A search of the protein data base for sequences of the form (GXXX), where

n>3 and X is a hydrophobic amino acid other than proline, revealed eighty

sequences. Polyglycine and (GXGX)n were eliminated, and the relatively

hydrophobic sequences (hydropathy 1.4) were selected. Twenty-seven

sequences remained including [-amyloid protein (res.29-40), the E. coli OsmB

gene product, and PrP (res. 118-131). PrP caught our attention because, like the
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f3-amyloid protein, it is an amyloid forming protein found in a

neurodegenerative disease.

Table 2.1 Comparison of the sequence of PrP and the 5-protein. Gly every
fourth residue is shown underlined in bold.

P-protein (res. 25-42) GSNKG A I I GLMVGGVVIA

PrP (res. 116-133) AAAGAVVGGLG GYMLGSA

Many diseases are characterized by amyloid depostion

Amyloid plaques are found in many cases of TSE's, in particular GSS,

although their presence does not correlate as well with disease as in

Alzheimer's disease (AD).1 In some cases purification of PrPSc, including

detergent extraction and limited proteolysis, is necessary for amyloid

formation. 2 3 Although staining is not evident in many cases of TSE's, the

presence of protein deposits is suggested by the ability to purify the insoluble

PrPSc from infected brains. Presumably, if PrPSc is present in the brain, it is

not soluble. In cases where deposits are not seen by staining, either the

formation of stainable deposits requires concentration of the protein, or the

deposits which may already be present lack something required for staining.

To date, there are more than twenty diseases characterized by amyloid

deposition, systemically or in specific organs.4 , 5,6, 7 These amyloid plaques,

which are generally surrounded by damaged tissue, can be studied in a post-

mortem examination only, and little is known in detail about their structure

or mechanism of formation. The amyloid-forming proteins are different for

each disease and contain no obvious similarity other than their insolubility.

Rudolph Virchow gave these deposits the name amyloid because their

staining characteristics with sulfuric acid/ iodine indicated they might

contain carbohydrate. 8 Chemical analysis of amyloid by Freidreich and
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Kekule showed it to be proteinaceous 9, but the term amyloid persists to this

day. Amyloid deposits frequently have associated proteoglycans such as

heparin, which may have caused the staining exhibited. Glenner and

coworkers first identified a specific protein involved in an amyloid disease

when they determined the amyloid protein in fatal systemic amyloidosis is a

fragment of the immunoglobulin light chain. l °0, 11 More than 15 other

proteins have since been identified in amyloid-forming diseases (see Table

2.2).

Table 2.2 Some of the proteins forming amyloid in humans and the
difference between the normal and amyloidogenic form. P: shortened by
proteolysis; M: amino acid difference because of mutation; C: conformational
change. Adapted from references 4-7.
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Location Precursor Cause Amyloid Protein

Systemic Immunoglobulin (23kD) P Immunoglobulin(5-23kD)

Systemic Apolipoprotein-SAA(12kD) P Apo-SAA (8kD)

Systemic Apolipoprotein-AI (26kD) M,P Apo-AI (9-11 kD)

Systemic Transthyretin (14kD) M,P,C ATTR (5-14 kD)

Systemic Lysozyme (15kD) M Lysozyme (15 kD)

Pancreas Pro-IAPP (9kD) P IAPP (4kD)

Thyroid Calcitonin (14kD) P Calcitonin (6kD)

Muscular [-2-microglobulin (12kD) C (?) [-2-microglobulin (12kD)

Brain [PAPP (110-135kD) P,M [ protein (4 kD)

Brain Cystatin C (13kD) M Cystatin C (12kD)

Brain PrP cellular (30-35 kD) C PrP-scrapie (27-35 kD)



Generally, the amyloid forming proteins are fragments of precursor

proteins. In some instances, these fragments are abnormally produced

because of a defective proteolysis step, possibly caused by a mutation in the

precursor protein. Other factors may cause normally produced proteins or

protein fragments to form amyloid deposits, as may be the case in AD.

In AD, the amyloid forming protein is a fragment of a protein named

the amyloid precursor protein (APP). This fragment (pl-40) is found in the

cerebrospinal fluid of healthy individuals12 and in the plaques, along with

longer fragments, particularly C-terminally extended peptides. 13 , 14, 15 These

longer fragments can increase the rate of aggregation of 1-40 in vitro.16

Mutations in APP that segregate with AD occur on either side of the f-
Amyloid protein. One pair of mutations near the N-terminus of the 1-
Amyloid protein causes an increased production of 1-40 in cell culture. 17 , 18

Another set of mutations, near the C-terminus, but outside of the -amyloid

protein (corresponding to position 46) have no effect on the amount of 1-40

produced in cell culture, but they may affect the cleavage site and increase the

production of longer fragments. 18 These longer fragments may then cause

the precipitation of normally produced 1-40.

Another mechanism for amyloid formation may involve improperly

folded protein. Conformational changes may play a role in amyloid

formation in -2-microglobulin. Patients with amyloid composed of this

protein may also have a higher in vivo protein concentration which leads to

aggregation. Possibly, the conformational change is an effect of aggregation

and does not cause amyloid formation. Differently folded species are

implicated in inclusion body formation, which may be an analogous process.

As discussed in Chapter 1, the amyloid protein in the prion diseases is known

to be different conformationally than its precursor.
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The following criteria are generally used to define amyloid: 8 insoluble

deposits that (1) are straight unbranched fibrils as visualized by electron

microscopy (EM), (2) stain with the dye congo red showing apple-green

birefringence, and (3) have an x-ray fiber diffraction pattern consistent with a

cross P-fibril. Glenner found bands corresponding to 4.75A and 9.8A using x-

ray diffraction of non-oriented and mechanically oriented samples of systemic

amyloid derived from the immunoglobulin light chain. 19 The 1-strands

were perpendicular to the fibril axis in the oriented samples. Glenner also

studied amyloid deposits using infrared spectroscopy, using both dried

plaques in KBr pellets, and films made from 50% formic acid. 20 The spectra

had significant absorption at -1630 cm-1 indicative of antiparallel -sheets.

Based on this data, he proposed that the structure of this amyloid was similar

to the structure proposed by Linus Pauling for the silk proteins 21 , 22 depicted

in Figure 2.1. Other amyloids studied subsequently fit this low resolution

model.

In this model the protein chains are extended and anti-parallel to the

adjacent chains which forms an anti-parallel -sheet. These sheets stack on

top of each other. The distance between chains in the anti-parallel 1-sheet is

4.7 A., and the distance between two sheets is between 5-10 A. The fibrils

grow in the direction of the hydrogen bonding, perpendicular to the direction

of the sheet stacking. The third dimension is determined by how the chains

overlap or lie adjacent to one another. If there is no overlap, that is if the

chains all line up with each other, this dimension will be the length of the

extended chain. This distance may be longer if the chains overlap like the

bricks in a brick wall. In this model the detailed interactions of the side

chains are not specified, only the hydrogen-bonding is shown in detail.

However the generally hydrophobic side-chain interactions are likely to be a
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Figure 2.1
Pauling's model of a cross fibril
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Figure 2.2
Congo Red, the histochemical dye used to stain amyloid
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large part of the driving force for the formation of these fibrils. Also regions

of the protein may be in other secondary structures, since non-repeating

structures will not be seen in the diffraction pattern.

There is a similarity between the process of protein aggregation or

inclusion body formation in vitro (important to those interested in the

overproduction of protein in recombinant organisms) and the formation of

amyloid within living tissue. 23 In protein refolding experiments in vitro, a

low level of denaturant can cause inclusion body formation, suggesting that

the partial unfolding of these proteins under these conditions facilitates the

aggregation process. For example, tryptophanase, forms highly insoluble

aggregates at 3M urea, but folds properly when a 8M urea solution is rapidly

diluted. 24 Transthyretin is least soluble at intermediate denaturant

concentrations suggesting a partially denatured structure is required for its

abnormal polymerization. 2 5 Similarly, unfolding of proteins in vivo may

facilitate amyloid formation in some cases.

Peptide models of PrP

Simultaneous with this research, other workers have shown that

peptides derived from the PrP sequence can form amyloid fibrils. Tagliavini

et al. made peptides corresponding to PrP residues 57-64, 89-106, 106-126, and

127-147.26 The latter two formed amyloid fibrils as determined by EM, x-ray

diffraction, and congo red staining. They also determined that the peptide

corresponding to PrP 106-126 was neurotoxic and protease-resistant. 27. 28 The

neurotoxicity was tested by exposing primary rat hippocampal neurons to

micromolar amounts of the peptide. At this concentration, the peptide

polymerized into amyloid fibrils. This insolubility likely contributes to the
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protease resistance and may also be responsible for the neurotoxicity. It may

be that the formation of insoluble protein deposits is generally detrimental.

Gasset et. al synthesized peptides from regions they predicted would be

a-helices, corresponding to residues 109-122, 113-127, 178-191, 202-218.29 These

peptides all formed amyloid and exhibited -sheet structure by FTIR.

Undoubtably, conditions exist where these peptides (or almost any 12-16

residue peptide) could exhibit helical structure also. They found

AGAAAAGA (PrP113-120) to be the most amyloidogenic peptide. This

sequence is conserved across all species for which the PrP sequence is known.

Goldfarb et. al synthesized peptides corresponding to PrP mutations

known to cause CJD including PrP195-213 Glu 200 (native) or Lys 200

(mutation), PrP 169-185 Asp 178 (native) or Asn 178 (mutation), and PrP 119-

137 Met or Val 129 (a nonpathogenic polymorphism). 30 They found the

mutant sequences to be more fibrillogenic and morphologically different as

judged by the appearance and number of fibrils seen by electron microscopy.

They also tested the effect of adding PrP 119-137 in with PrP 169-185 because

the amino acid at position 129 affects the phenotype of the disease caused by

the mutation of position 178 in humans (see Chapter 4). In their hands, PrP

119-137 did not form fibrils by itself or affect the fibril formation by the other

peptides.

Solubility of peptides derived from the PrP sequence

The region of PrP from approximately codon 113 to codon 135 is highly

conserved across different species and contains a hydrophobic, glycine-rich

sequence. This region is likely to be protected from solvent in the normally

folded protein, and exposure of this sequence may allow the protein to

polymerize. To study the polymerization process, peptides have been
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synthesized corresponding to PrP 106-126, PrP 118-133, and PrP 101-144 using

standard Fmoc or t-Boc chemistry (see Table 2.3). PrP 118-133 with both

variants at position 129 were made along with peptides substituting Gly and

Pro at position 129. PrP 106-126 Val 117 which corresponds to a disease-

causing PrP mutation in humans was also made.31 , 32 In addition, a peptide

was synthesized where the amino acids in the central region were scrambled

(Scr3) in order to change the spacing of glycine from every fourth to every

third amino acid while maintaining the same amino acid composition.

The first property measured was the solubility of these peptides.

Whether the peptide was in solution was defined operationally as the ability

to pass through a 0.22 pm filter. One potential problem with this

measurement is that small "soluble" oligomers can pass through the filter.

Table 2.3. Synthetic peptides derived from PrP sequences and variants.
Shown in bold are residues which differ from the normal human sequence
except for in PrP 101-144 mouse where the bold residues are the differences
with the Syrian hamster sequence.
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PrP 118-133 Met 129 AcHN-AGAVVGGLGGYMLGSA-CONH 2

PrP 118-133 Val 129 AcHN-AGAVVGGLGGYVLGSA-CONH 2

PrP 118-133 Pro 129 AcHN-AGAVVGGLGGYPLGSA-CONH 2

PrP1 18-133 Gly 129 AcHN-AGAVVGGLGGYGLGSA-CONH 2

Scr3 AcHN-AGAVGVLGGYGMLGSA-CONH 2

PrP 106-126 AcHN-KTN MKHMAGAAAAGAVVGGLG-CONH2

PrP 106-126 Al 17V AcHN-KTNMKHMAGAAVAGAVVGGLG-CONH2

PrP 101-144 (mouse) H2N-KPSKPKTNLKHVAGAAAAGAVVGGLGG

YMLGSAMSRPMIHFND-COOH



Based on studies on the mechanism of fibril formation in these and other

peptides (see Chapter 3), the population of low molecular weight oligomers is

probably small and will not greatly effect the measurement. The solubility

determination was done in two different ways: from soluble peptide to

precipitate and from precipitate back into solution. Both methods should

result in the same number provided there is no kinetic barrier to

precipitation or dissolution.

In the first method, a supersaturated solution of peptide in buffer is

made and then allowed to precipitate from solution over time with stirring.

The suspension was filtered and the amount of soluble peptide determined by

amino acid analysis, standard protein assay, or in the case of radiolabeled

peptide, scintillation counting. The solubility determined in this manner was

15-25 gM for PrP118-133 with Met or Val at position 129, and also 15-25 gM for

the scrambled sequence Scr3. The peptides with proline (3 mM) or glycine

(0.5mM) at position 129 were substantially more soluble in buffer than were

the native sequences. The effect of proline may be because of its known

tendency to break up extended structures. 3 3 The Gly 129 peptide was

approximately 20 fold more soluble than either the Met 129 or Val 129

peptides. The change in hydrophobicity may in part account for this

difference, however, it also suggests this position is important in the

formation of the fibrils. The importance of this position was further

elucidated by studying the interactions of the Met 129 and Val 129 peptides

(see Chapter 4). The solubilities determined in this manner are dependent on

concentration; less concentrated solutions contain less soluble peptide after

precipitation. The results from the solubility determination in the opposite

direction discussed below are consistent with this observation.

41



In order to determine the solubility after dissolution, radiolabeled

fibrils were formed under the same conditions as fibrils formed in the

forward direction. These fibrils were centrifuged and the supernatant

decanted. Fresh buffer was added to these fibrils and aliquots were filtered at

different time points. The solubility determined in this manner was 7.4±0.4

gM for PrP118-133 Met and 4.4±0.3 M for PrP118-133 Val. The final

concentration of peptide in this case, both soluble and precipitate, is

approximately 30 tM or 10% of the concentration of peptide used to measure

solubility in the forward direction. The concentration dependence of the

solubility may account for the difference in the solubility measurement in the

different directions. The solubility of small molecules does not vary with the

concentration of the precipitate. However, the solubility appears to vary with

concentration with the peptides studied here. Possibly the time needed to

reach equilibrium is just much longer. Another explanation is that the

morphology of the fibrils changes with concentration altering the solubility.

Amyloid formation by peptides derived from the PrP sequence

Do these peptides fit the definition of amyloid? Yes (except for PrP 101-

144). The first criteria is the appearance of the peptides when viewed under

an electron microscope. All the peptides studied, except PrP 101-144, appeared

as straight, unbranched fibrils with a diameter ranging from 10-20 nm. Fibrils

from PrP 118-133 Met 129, PrP 118-133 Val 129, and Scr 3 are shown in Figure

2.3. The fibrils composed of PrP 118-133 Met or Val are indistinguishable

from each other. In those samples the fibrils are attached side to side in most

cases. In the sample of Scr 3 the fibrils appear as solitary rods and are on

average longer. Two other preparations of fibrils are shown in Figure 2.4.

These fibrils were prepared from either a 10% DMSO solution in buffer
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(panels A & C) or at pH2 in buffer (panels B & D). The fibrils from the DMSO

solution are shorter than the ones in Figure 2.3. Fibrils were also formed

from PrP 106-126 and PrP 106-126 Val 117 (see Figure 2.5). The fibrils from the

native sequence appear to be more sheet-like than the fibrils from the mutant

sequence, which appear as rods.

Varying lengths of fibrils were seen in different samples along with

varying tendencies towards fibril-fibril or "clumping" interactions. There

were also differences in the shape of the fibrils (rods vs. sheets) in different

samples. These differences did not seem to be sequence dependent. Slight

differences in sample preparation appear to be the cause. All of the peptides

studied (except PrP 101-144) fit the definition of amyloid fibrils and were

similar in morphology to naturally-derived samples. It is unknown whether

any of these differences seen have any in vivo significance.

Table 2.4. Solubility and amyloid formation of PrP peptides.

The second criteria is the ability to stain in a birefringent manner with

Congo Red (see Figure 2.2 for structure). Films of PrP 118-133 Met 129, PrP

118-133 Val 129, and Scr 3 all stained with Congo Red to give pinkish-red
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Peptide Soubility Solubility Amyloid-Forming?

(dissolution) (precipitation)

PrP 118-133 Met 129 7.4 j.M 25-30 lM yes

PrP 118-133 Val 129 4.4 pM 25-30 M yes

PrP 118-133 Pro 129 ND >3mM no

PrP118-133 Gly 129 ND 500 tM no

Scr3 ND 25-30 !jM yes



Figure 2.3 Electron micrographs of fibrils at 60K magnification. A. PrP 118-
133 Met 129. B. PrP 118-133 Val 129. C. Scr3. Fibrils were formed from
supersaturated solutions in PBS pH 7.4. Black bar represents 100 nm in all
panels.

Figure 2.4 Electron micrographs of fibrils. A.PrP 118-133 Met 129 from 10%
DMSO at 60K magnification. B. PrP 118-133 Met 129 from PBS pH 2 at 50K
magnification. C. Scr3 from 10% DMSO at 60K magnification. D. Scr3 from
PBS pH 2 at 50K magnification.

Figure 2.5 Electron micrographs of fibrils at 60K magnification. A. PrP106-
126. B. PrP106-126 Val 117. Fibrils were formed from supersaturated
solutions in PBS pH 7.4. Black bar represents 100 nm in both panels.

Figure 2.6 X-ray diffraction pattern of unoriented PrP118-133 Met 129 fibrils.
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Figure 2.3
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Figure 2.4
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Figure 2.5
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Figure 2.6. Fiber diffraction pattern of fibrils composed of PrP 118-133
Met 129
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films. Staining was more effective if fibrils were formed in the presence of

Congo Red. These films appeared apple-green when viewed under polarized

light. PrP 118-133 Gly 129 and PrP118-133 Pro 129 were soluble at the

concentration tested, and therefore, fibrils did not form to be stained with

Congo Red. The exact nature in which Congo Red binds to amyloid fibrils is

unknown. Cooper has postulated that Congo Red binds by intercalating into

the hydrophobic space between sheets, holding the molecules in an ordered

array.3 4 Binding in this manner would appear to have a large disruptive

effect on the fibrillar structure. It is not clear that the fibril could

accommodate Congo Red in this way. Although Congo Red is a useful

histological tool for staining tissue sections, it may not be a good tool for

classifying protein structures because little is known about the specific

requirements for binding.

The third criteria is an x-ray diffraction pattern consistent with a cross

1-fibril. The x-ray diffraction pattern of oriented fibrils of PrP 118-133 Met 129

was taken by Paul Fraser and is shown in Figure 2.6. The outer ring

corresponds to a spacing of 4.7A, consistent with the chain-chain spacing in

an antiparallel [-sheet. The inner band corresponds to a repetitive spacing of

7.4 A. This distance probably corresponds to the distance between two P-

sheets, similar to the 9.8 A distance Glenner measured for the systemic

amyloid, though slightly shorter. The tighter packing may be because of the

high percentage of glycine residues in this sequence. Glycine allows the side

chains of residues on adjacent strands to occupy the space that the side chain

of non-glycine residues would occupy.

Structural features of peptides derived from the PrP sequence

The structure of PrP 118-133 Met 129 and Scr 3 was in solution was

49



Figure 2.7 CD spectra at 100 mM peptide in o, water, E, 35% HFIP/water, and

*,100% HFIP. Panel A PrP118-133 Met 129. Panel B Scr 3.

studied by circular dichroism. Both peptides had little structure in water. The

helical content of both peptides increase with the addition of organic solvents

such as HFIP or TFE. The CD spectra of PrP 118-133 Met 129 and Scr 3 are

shown in Figure 2.7. The spectra are similar, particularly in mixtures of HFIP

and water. The helical content was at a maximum at approximately 35 %

HFIP and was 20 % for both peptides as calculated by the method of Morrisett

et al.3 5

50

Qann A n4
l, o .Ul

2.2.

- 1.5(

C)

3.0(

2.2!

$- 1.5(

i

ro

a)

-1.5C

wavelength (nm)



The fibrils composed of PrP peptides were also studied by FTIR. The

FTIR of PrPC and PrPSC have been shown to contain substantially different

populations of secondary structures. Fibrils were formed from peptides

corresponding to different regions of PrP to help elucidate which regions of

the protein are important, and what conditions are necessary, for the

conversion of PrPC to PrPSc. Fibrils were formed of each of these peptides

and dried onto CaF 2 plates. Several differences are apparent as shown in

Figure 2.8.

The FTIR spectra of PrP 106-126 contains a strong absorption at 1630

cm-l1 , indicative of the highly coupled structure of an antiparallel 5-sheet.

There is a smaller absorption at ~1660 cm- 1 arising from random coil/ helix/

turn structures which are not as easily differentiated by FTIR.

The spectra of PrP 118-133 Met 129, PrP 118-133 Val 129, and Scr3 were

indistinguishable. The spectra of these peptides also showed a strong

absorption at 1630 cm-1, but a greater intensity of absorptions in other regions,

indicating a variety of conformations in these peptides. Apparently the

scrambling of the residues in the central region did not change the

conformational preferences substantially. However, because the FTIR data

only describes the whole population of secondary structures, differences in

the orientation of specific residues cannot be determined. There are

differences in the surface presented in these fibrils as shown by the nucleation

experiments in Chapter 3. These peptides could have the same populations

of secondary structures, but because of the difference in sequence, the exact

structures are likely to be different.

The FTIR spectra of PrP 101-144, which spans both PrP 118-133 and PrP

106-126 with additional residues on either side, had the strongest absorption
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Figure 2.8 FTIR spectra of fibrils composed of
CaF2 plates. A. PrP 118-133 Met 129. B. PrP
were formed from buffer (100 mM NaCi, 10
spectra are smoothed equivalently.

PrP derived peptides dried onto
106-126. C. PrP101-144. Fibrils
mM phosphate, pH 7.4 and all

Wavenumber (cm -l )
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at approximately 1660 cm-1, with little absorption in the region indicative of

antiparallel -sheets. Apparently the addition of residues flanking 106-133

cause the peptide to adopt other conformations. This peptide was

significantly more soluble in distilled H 20 than buffer and also more soluble

at pH 4.7 than pH 7.4. Fibrils were formed under different conditions to see if

fibrils with more -sheet structure could be produced under certain

conditions and give some insight into the conditions necessary for in vivo

protein assembly. None of the conditions attempted (100 mM NaCl,10 mM

phosphate, pH7.4; 100 mM NaCl, 10 mM glycine, pH 9.7; 1M NaCI, 10 mM

phosphate, pH 7.4, and 100 mM NaC1, 10 mM phosphate, 2 eq. heparin, pH

7.4) altered the FTIR spectra of the resulting fibrils.

From these FTIR studies, it appears that the region from residues 106-

126 has the greatest tendency toward -structures. This region is very

hydrophobic and consists in part of a run of alanine residues (AGAAAAGA).

This alanine-rich portion has been implicated by others as being very

fibrillogenic.2 9 and contains residue 117 which is mutated to valine in some

cases of GSS.

EXPERIMENTAL

Peptide Synthesis

The peptides were made using either t-Boc/benzyl or Fmoc/Boc

chemistry. In the t-Boc protocol, the Boc group was removed by treatment

with 50% trifluoroacetic acid in methylene chloride for 15 min.. The resin

was then washed three times each with CH2C12, DMF, CH2C1 2, and DMF. The

couplings were done for about 1 hr. in DMF with 3 equiv. of incoming t-Boc

protected amino acid, 3 equiv. of BOP, and 5 equiv. of DIEA. The

completeness of the coupling was determined by a Kaiser test and double
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couplings were done as necessary. In the Fmoc protocol, the Fmoc group was

removed by treatment with 50% piperidine in DMF for 15 min.. The resin

was washed 3 times each with DMF, CH 2C12 and DMF. The couplings were

done as in the case of the Boc protocol except that 0.5 equiv. of HOBt was

added. In both cases the resin was acetylated after coupling by treatment with

5 equiv. Ac20, and 5 equiv. of DIEA in CH 2C12 for 15 min.. The N-terminus

was acetylated with 10 equiv. Ac20 and 5 equiv. DIEA in CH2C12 for at least 4

hrs. and monitored by Kaiser test. All peptides were characterized (except

PrP101-144) by isocratic RPHPLC, AAA, and mass spectra.

Reagent K for Fmoc protocol cleavage: 82.5 % trifluoroacetic acid, 5%

phenol, 5 % H20, 2.5% ethanedithiol, and 5 % thioanisole.

Ac-PrP118-133-NH 2-Met 129. AVVGGLGGY(2,6DiClBzl)MLGS(Bzl)A-MBHA

resin. The synthesis was started with 1.92g (0.39 mmol/g) Boc-Ala-MBHA

resin. Couplings were done as described above to give 3.61g of dried resin.

AAA resin S 0.4 (1), G 6.9 (6), A 3.2 (3), Y 0.96 (1), V2* (2), M 0.8 (1), L 2.2 (2).

Cleavage, deprotection, purification. The peptide resin (1.55g) was

treated with 30 mL HF, 1.6 mL thioanisole, and 1.6 mL m-cresol at 0°C for 1

hour. After removal of the HF, the residue was taken up in TFA, filtered, and

washed with more TFA. After evaporation of most of the TFA, the

remainder was precipitated from Et 20, spun down and dried to 540 mg crude

peptide. A portion of this (100 mg) was purified by reverse-phase HPLC, on a

C 4 column using as eluents (CH 3CN + 0.1 % TFA) and (H20 + 0.1 % TFA) on

a gradient (85/15 to 65/35) to give 239 mg, 0.17 mmol, pure peptide. This

extrapolates to a 42% yield based on Boc-Ala-resin.

FABMS (Harvard) MNa+ 1442. AAA Ser 1.1 (1), Gly 6.0 (6), Ala* 3.0 (3), Tyr

0.9 (1), Val 1.5(2), Met 0.8 (1), Leu 1.9 (2).
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Ac-PrP118-133-NH 2-Met 129. 2.0 g (0.4 mmol/g), 0.8 mmol of Rink

amide- methylbenzhydrylamine resin was used in an Fmoc synthesis. The

couplings were done as described above. The resin was dried to 2.89 g and 2.5

g was used in the cleavage reaction. The dried resin was taken up in 50 mL

reagent K. and stirred under nitrogen at room temperature for 2 hrs. The

reaction was filtered through a sintered glass funnel, the filtrate was

concentrated to an oil, and 150 mL of cold Et2O was added. A white

precipitate formed and the suspension was centrifuged, washed with Et2O 2

more times and the solid dried to 0.81 g. This was purified by reverse-phase

HPLC, on a C 4 column using as eluents (CH3CN + 0.1 % TFA) and (H20 + 0.1

% TFA) on a gradient (85/15 to 65/35) to give 239 mg, 0.17 mmol, pure peptide

in 21% yield. PDMS MH+ 1420. AAA Ser 1.0 (1), Gly 5.9 (6), Ala 3* (3), Tyr 1.0

(1), Val 1.5 (2), Met 0.7 (1), Leu 2.0 (2).

Ac-PrP118-133-NH 2 Val 129. Synthesis accomplished as above using 2.0

g of Rink amide-methylbenzhydrylamine resin in an Fmoc synthesis which

was dried to 2.4 g; 2.2 g was cleaved and worked up as above. This gave 1.12 g

of crude peptide. A portion (350 mg) was purified by RPHPLC (same system as

above) to give 94 mg (27 % yield). PDMS MH+ 1388. AAA Ser 1.0 (1), Gly 5.9

(6), Ala 2.8 (3),Tyr 0.8 (1), Val 2.1(3), Leu 2* (2)

Ac-AGAVGVLGGYGMLGSA-NH 2. 2.0 g, 1 mmol of 4-(2'-,4'-

Dimethoxyphenyl-fmoc-aminomethyl)-phenoxy resin (0.5 mmol/g) was used

in an Fmoc synthesis. The couplings were done as above. The resin was

dried to 2.7 g and 1.3 g was cleaved with reagent K as described above to give

0.53g of crude peptide. A portion (100 mg) was purified by RPHPLC (same

gradient as above) to give 37 mg of pure peptide in 14 % yield. PDMS MH+

1420. AAA Ser 1.0 (1), Gly 6.0 (6), Ala 3* (3),Tyr 1.0 (1), Val 1.9 (2), Met 0.8 (1),

Leu 2.0 (2).
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3H 3CC(O)NH-PrP118-133 Met 129. To 6.0 mg, 4.3 gmol H2NPrP118-133

Met 129, 40 p.L (0.4mCi) of a 0.102M solution of 3H 3C(O)ONa (10mCi/mL. 97.7

mCi/mmol) in EtOH was added. The EtOH was removed with a stream of

nitrogen, and 10 equiv. BOP, 2 equiv. DIEA were added in 0.2 mL DMF. This

solution/suspension was stirred for 90 min. at which point 1 mg of cold

sodium acetate was added. After 3 hrs. 0.5 mL H20 was added and the

reaction shaken for 14 hrs. The suspension was centrifuged and the pellet

washed twice with H 20. HFIP was added to bring the total volume to

approximately 0.5 mL. The PDMS gave MH+ 1420, MNa+ 1433. Scintillation

counting of a small aliquot gave a specific activity of 38mCi/ mmol. This

solution was added to cold peptide for experiments requiring radiolabeled

peptide.

3H 3CC(O)NH-PrP118-133 Val 129. Synthesized using the procedure

described above for PrP118-133 Met 129. The specific activity of the final

solution was 46 mCi/mmol.

Mouse PrP101-144. 1.0 g MBHA resin was used in a t-Boc synthesis.

The side-chain protecting groups were as follows: Lys-Cl-Z, Thr benzyl, His-

benzyloxymethyl, Tyr-2,6 dichlorobenzyl, Ser-benzyl, Arg-MTS, Asp-

cyclohexyl. Double couplings were required at positions 138, 136, 121, 104, 101.

A triple coupling was done at Asn 108 with the third coupling using HOBt

and DIC. The resin was dried to 3.7 g and the cleavage was done on 1.2 g

using a low-high HF procedure described below. The resin was first treated at

0°C for 2 hr. with a mixture of 13 mL dimethyl sulfide (DMS), 4 mL p-cresol,

and 5 mL anhydrous HF. The HF and DMS were removed in vacuo, after

which 20 mL additional HF was added. After stirring for 1 hr. the HF was

removed in vacuo at less than 10° C and the residue kept in vacuo overnight.

The residue was then taken up in 25 mL TFA and filtered into 300 mL of cold
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Et 2O. The remaining resin was washed with 2 portions each of 5 mL of TFA

into the Et 2O. The resulting Et2O suspension was centrifuged and the pellet

washed 2 times with Et2O. The pellet was then dried to 860 mg of a beige

solid. Initial attempt at purification by RPHPLC were not fruitful. The

peptide was purified using a Waters ultrastyragel-HT 103 A size exclusion

column run in HFIP.36 100 mg of crude material yielded 15 mg of a white

powder. LDMS MH+ 4359 (calc. 4365). AAA Ala 7.0 (7), Asx 3.1(3), Phe 1.1 (1)

Gly 7.9 (8), His 1.8 (2), Ile 0.7 (1), Lys 3.6 (4), Leu 3.0 (3), Met 2.6 (3),, Pro 3* (3),

Arg 1.1 (1), Ser 2.8 (3), Thr 0.9 (1), Val 2.3 (3), Tyr 0.9 (1).

Ac-PrP106-126. This peptide was synthesized by Carmen Barnes on

Rink amide resin. Couplings were done as described above. The cleavage

was as described above for PrP118-133 Met to give 0.8 g of crude peptide. This

was slightly soluble in DMSO and 200 mg was prepped (C4, eluents as above,

80/20 to 55/45) to yield 39 mg of pure peptide as a white powder. PDMS MH+

1955.

Ac-PrP106-126 Val 117. This peptide was synthesized by Carmen Barnes

on Rink amide resin. Couplings were done as described above. The cleavage

was as described above for PrP118-133 Met to give 1.0 g of crude peptide. This

was slightly soluble in DMSO and 200 mg was prepped (as above) to yield 28

mg of pure peptide as a white powder. PDMS MH+1983.

Electron microscopy

Fibrils for electron microscopy were either taken from kinetic assay

experiments (see chapter 3 and 4) or were prepared as described below for the

FTIR samples. Aliquots of suspended fibrils were placed onto carbon-coated

copper grids and let sit for 1-5 min. These were washed with H20, and then

stained with a 2 % uranyl acetate solution. Electron micrographs (EMs) were
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taken on a JOEL 1200 CX electron microscope operating at 80 kV, at a

magnification of 60,000X.

Congo red staining

Samples were prepared by drying fibrils onto glass microscope plates.

These plates were dipped into a solution of 1 mM Congo Red, 100 mM NaC1,

10 mM phosphate, pH 7.4, and then rinsed in distilled water. Samples were

also prepared by forming fibrils in the presence of the same Congo Red

solution. Samples were viewed with a Wild Leitz M3Z light microscope

equipped with a polarizing stage to determine birefringence.

FTIR of fibrils.

Fibrils for FTIR were prepared by the addition of a concentrated DMSO

solution to buffer. This solution was stirred for several hours to days and

then centrifuged. The pellet was washed twice with H 20 and the wet fibrils

were spread evenly onto a CaF 2 plate with the end of a pipet and dried in

vacuo. The spectra were taken on a Perkin-Elmer series 1600 FTIR

spectrometer at 2.0 cm-1 resolution. The interferograms from 64 scans were

averaged. The spectra were smoothed, as noted, to improve signal to noise.

Peak positions were determined with the aid of second derivative analysis.

Protein Sequence Search

The CAS Online protein sequence database was searched for proteins

containing the (GXXX)n where n>3, and x is any uncharged residue other than

proline (G, A, V, I, L, F, W, T, Y, S, or M). Eighty sequences matched this

criteria. Sequences containing polyglycine or (GX)n repeats (silk proteins)

were eliminated. The remaining sequences were narrowed down to those
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which were hydrophobic (hydropathy 1.4) and which contained residues

often found in 5-sheets over a-helices (P[-Pa20.17). Twenty-seven sequences

remained, including the [ -amyloid protein and PrP.
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Chapter 3

Kinetics of Fibril Formation in PrP-Derived Peptides

Having established that peptides derived from the PrP sequence can

form amyloid fibrils, we studied the kinetics of this process to elucidate its

mechanism. This chapter will discuss experiments on the kinetics of fibril

formation and possible mechanistic consequences. The kinetics were

measured by forming supersaturated solutions of peptide and measuring the

formation of amyloid fibrils over time. Fibril formation followed nucleation-

dependent kinetics, which are characterized by a significant period of no

measurable fibril formation, followed by relatively rapid growth. The

nucleation phase of this polymerization can be bypassed by the addition of

previously formed fibrils. This nucleation, or "seeding", process involves

specific interactions as shown by the inability of related peptides to nucleate

the growth of fibrils in solutions of each other. The in vivo consequences of a

nucleation-dependent mechanism are discussed.

Mechanisms for Protein Polymerization

Three possible mechanisms have been suggested for protein

polymerization: simple growth, exponential, or nucleation-controlled (see

Figure 3.1).1
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In simple or isodesmic growth, the addition of each monomer is

favorable to the same extent. That is, the free energy is negative and of

similar magnitude for each added monomer regardless of the size of the

aggregate. Larger aggregates are favored, but smaller ones are populated

according to a Boltzmann distribution, particularly at early times. An

example is polymerization involving covalent bonds, such as polyethylene.

Exponential growth is an example of positive cooperativity, that is the

addition of each monomer is more favorable than the addition of the

preceding monomer. The free energy change is negative for the addition of

each monomer and larger in magnitude as the aggregate size increases One

explanation for exponential growth is that larger aggregates have more

Figure 3.1 Free energy dependence on aggregate size for three mechanisms
for growth of polymers: simple, exponential, and nucleation-controlled.
Adapted from reference 1.

simple growth

aggregate size

• ~~~~~

exponential growth

aggregate size

nucleation-controlled
growth

aggregate size

surfaces for additional monomers to attach to than smaller ones do. As the

aggregate grows, the rate of growth increases because of the increase in sites

for monomer attachment.

The aggregation of the peptides discussed here is an example, along

with protein and small molecule crystallization, of the third mechanism,

nucleation-controlled polymerization. There are two phases in a nucleation-

dependent polymerization (see Figure 3.2), the nucleation phase (or lag time)
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and the growth phase. The nucleation phase is a result of the unfavorable

initial equilibria. Monomer addition is favorable enthalpically because of the

formation of hydrophobic contacts, electrostatic interactions, and hydrogen

bonds between the monomer and the aggregate.2 However, the formation of

these contacts fixes the monomer in a particular conformation and is

therefore disfavored entropically. In the initial steps of a nucleation-

dependent polymer assembly, the gain in enthalpy upon dimerization or

addition of monomer to the oligomer does not outweigh the loss of entropy

of the monomer. The addition of more monomers continues to be

unfavorable until an oligomer of sufficient size is formed which allows

enough contacts between monomer and aggregate to make monomer

64

Figure 3.2 Theoretical diagram of fibril formation following a nucleation-
dependent mechanism.

Amount of
Aggregate

Time

Nucleation

M '~ ~- M M M n+1 -. M n+2 , Polymer

Growth



addition favorable. This oligomer is the high point in energy and is defined

as the nucleus. After nucleus formation the addition of monomer is

favorable and the growth phase begins. While the monomer suffers similar

entropic losses as in the earlier stages of assembly, additional (negative)

enthalpic terms account for the negative free energy. The growth continues

until thermodynamic equilibrium (the solubility of the peptide or protein) is

reached.

In this mechanism, the free energy for adding monomers is positive,

until the nucleus is reached, which is by definition the high point in free

energy. Oligomers smaller than the nucleus are unstable and no appreciable

population of these intermediates (dimers, trimers etc.) can be detected. The

only detectable states of peptide are monomer and high molecular weight

oligomers.

The nucleation time is dependent on the concentration of monomer as

shown in Equation 3.1 below:

Eq 3.1 Nucleation time = k[monomer] n

where n is the number of monomers in the nucleus and k is a constant which

is different for each protein assembly. Slight differences in monomer

concentration can have a dramatic effect on the nucleation time. For

example, if n=8, a 10% increase in the concentration of the monomer would

have a (1.1)8 or over two fold effect on the nucleation time. If n=20 the same

10% increase would have over a seven fold effect on the nucleation time.

This increase, considered within the context of in vivo mechanisms for

protein degradation, could easily be sufficient to cause protein deposits to

form in certain instances. Other well-studied nucleation-dependent
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polymerization processes, such as sickle-cell hemoglobin fibril formation,

have this concentration dependence.3 ' 4, 5 The measurement of this effect can

be difficult due to the narrow range over which it can be measured

experimentally, a concentration dependence of nucleus size., and the effect of

agitation and surface interactions on the rate of polymerization. 6 Agitation

can also have a significant effect in small molecule crystallizations. 7

The nucleation time may be thermodynamically- or kinetically-

limited.8 In the thermodynamically-limited mechanism, there is a rapid

(before the first measurement) pre-equilibrium of all species smaller than the

nucleus. The production of aggregates is slow due to the low equilibrium

concentration of nuclei as is the case for actin and tubulin polymerization.9 ,

10, , 12 In this mechanism, some growth can be detected immediately.

The other extreme is a kinetically-limited mechanism. In this

mechanism, the formation of small oligomers is still thermodynamically

unfavorable, but the slow formation of aggregate is due to the slow rate of

these initial steps. The nucleation time of hemoglobin S polymerization in

vitro can be modeled using this mechanism.3 13 In this mechanism, the

plots of the aggregation kinetics are flatter in the initial stages than in the

thermodynamically-limited nucleation. Secondary nucleation effects also

play a role in hemoglobin polymerization. 13 Prenuclei are stabilized by

contacts with preexisting fibrils (seeding occurring off the side of the fibril)

resulting in auto catalysis and a faster approach to equilibrium after

nucleation than seen in the tubulin case. The differences between these two

mechanisms has been discussed in detail elsewhere. 8

The nucleation phase can be eliminated by the addition of an ordered

oligomer or seed to which the monomer can add. This seed is sometimes

referred to as a nucleus although the nucleus is the highest energy species and
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is unlikely to be trapped in a test tube. In this way the unfavorable initial

equilibrium are bypassed and growth begins immediately. The rate of growth

will depend on the number of surfaces available in the added seed. In protein

crystallization a similar effect is observed. Formation of crystals is frequently

inconsistent and can be facilitated by the addition of a seed crystal. This

"seeding" effect has also been seen in other protein polymerizations.14

Fibril Formation in Unstirred Solutions

Supersaturated solutions were formed from HFIP films of PrP 118-133

Met 129 and Scr 3. As with many peptides, it is possible to dissolve these

peptides temporarily at a concentration higher than their solubility, forming

metastable or "kinetically" soluble solutions. This effect can have significant

experimental consequences. In many of the studies of the effect of 1-40 on

neurons in cell culture, the peptide was dissolved at concentrations above its

thermodynamic solubility. The period of time between dissolution and use

then becomes critical to the exact nature of the peptide used. "Aged",

aggregate containing preparations of [1-40 are neurotoxic in cell culture

whereas freshly dissolved solutions exhibit neurotrophic effects. 15 This

difference may in part explain the controversial and conflicting results of

earlier studies. These studies also suggest that the formation of aggregates

could have important in vivo consequences. We studied the kinetics of fibril

formation from these metastable solutions.

Supersaturated solutions of PrP 118-133 Met and Scr 3 were prepared at

300 giM peptide in buffer. The fibril formation was measured by the turbidity,

or light scattering, at 400 nm. These solutions were left undisturbed and were

agitated briefly by vortexing before measuring the turbidity. Agitation was

important to disperse aggregate uniformly in the light path, and because
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solutions left completely undisturbed could remain homogeneous for weeks.

Solutions agitated continuously by stirring formed fibrils within a few hours,

whereas the solutions measured here, with occasional agitation, formed

fibrils over several days. These experiments can also be affected by many

factors, such as trace impurities, different agitation, and surface nucleation

effects, which may be difficult to control. Because of the importance of

agitation and other factors, the best comparison is of fibril formation

experiments that were done at the same time.

In addition to the similarity in solubility, morphology by EM, and

secondary structure by FTIR, PrP 118-133 Met 129 and Scr 3 showed no

consistent difference in the kinetics of fibril formation (see Figure 3.3). The

original hypothesis, which led to the synthesis of Scr 3, was that the spacing of

glycine has a significant effect on the ability to form amyloid fibrils. It appears

that this spacing is not a determinant of amyloid forming ability in this case.

Scr 3 however, has been a useful tool to probe the specificity of the amyloid

forming process. As shown by the diversity of proteins which form amyloid

in vivo, many sequences are able to form ordered arrays. Although the

sequence can have a large impact on solubility, the composition of a peptide

or protein (the overall hydrophobicity) is an important determinant and may

have an overriding effect on the solubility.

In the solutions of PrP 118-133 Met 129 and Scr 3, initially very little

turbidity was measured although a small amount of early growth is seen.

After a few days, the turbidity increased relatively rapidly, but still required

several hours before aggregate formation was complete. This lag time where

no apparent growth occurs is consistent with a nucleation-dependent

mechanism for amyloid formation.
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Figure 3.3 3 runs each of unstirred aggregations of PrP 118-133 Met 129 (o) and

Scr 3 () at 300 [LM peptide in buffer as measured by light scattering at 400 nm.
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Seeded Fibril Formation

As discussed above, the nucleation phase of the polymerization can be

bypassed in a nucleation-dependent polymerization if oligomers larger than

the nuclei are added to the supersaturated solution at the beginning. This

was done by the addition of preformed fibrils obtained from a previous run (5

molar %). The addition of these seed fibrils caused a significant increase in

the rate of fibril formation. The seeding experiments were done with

solutions of PrP 118-133 Met 129 and Scr3. Unseeded runs are shown along

with runs where preformed fibrils were added (see Figures 3.4 and 3.5). In

order to test the selectivity of the seeding effect, fibrils composed of the

peptide in solution or fibrils composed of a different peptide were added to
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Figure 3.4 Unstirred aggregation of PrP 118-133 Met 129 as measured by light
scattering at 400 nm. Average of 3 runs are shown with standard deviations.
· , unseeded solution. i, seeded with PrP 118-133 Met 129 (self-seeded). 0,
seeded with Scr3
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the supersaturated solution. That is, PrP 118-133 Met 129 was seeded with

itself and fibrils composed of Scr3. The analogous experiment was done with

supersaturated solutions of Scr3.

The data shown in Figure 3.4 is for the average of three runs each of

PrP 118-133 Met 129 unseeded, self-seeded, and seeded with Scr3. Fibril

formation occurs faster in the homogeneously seeded samples although some

delay is observed. The growth phase in the self-seeded solution is less steep

than the other two samples but begins much sooner. This could be the result

of a small number of competent surfaces in the seed, which in turn could be a

function of the length of the fibrils, or the degree in which they adhere

together. The effectiveness of the seeding can be increased by sonicating the
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fibrils before their addition, presumably by exposing more surfaces.

Analogously, the infectivity of preparations of infectious agent can be

increased by approximately 10-fold by sonication before injection into animals

(B. Caughey, personal communication). The seeding may be less dramatic in

this case because the fibrils settle to the bottom of the test tube in this

unstirred experiment reducing the contact with the monomer.

This same effect was seen with supersaturated solutions of Scr 3 (see

Figure 3.5). Only the matched seed has a significant effect on reducing the

nucleation time. Three separate experiments are shown. In two of the

experiments, fibrils from Met 129 had no effect on the fibril formation in

solutions of Scr 3. In the other experiment (middle panel), seeds from Met

129 caused a decrease in the nucleation time compared to the unseeded

solution. This decrease, however, was less than in the self-seeded case. A

poorly matched but similarly hydrophobic seed may bring monomers into

contact and increase the local concentration. This increase in local

concentration may, in turn, increase the rate of fibril formation without the

unmatched seed actually acting as a template.

The seeding was much more effective (or was only observed) if the

fibrils were composed of the same peptide as the monomer in solution. The

match required for seeding was seen with both PrP 118-133 Met 129 and Scr 3,

eliminating the possibility that fibrils formed from one of these peptides was

generally unsuitable for seeding. The two peptides studied (PrP 118-133 and

Scr3) have the same composition and differ only by the interposition of three

pairs of amino acids in a central region of seven amino acids (see Table 2.3).

Apparently, this difference caused a sufficient change in the surface presented

by the seed to hinder the unmatched monomer from effectively growing off

of it.
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Figure 3.5 Unstirred aggregation of Scr 3 at 0.3 mM. 3 sets of runs are shown.
In each, o, unseeded Scr 3; o, seeded with Scr 3 (self-seeded); 0, seeded with
PrP 118-133 Met 129
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This specificity required for seeding demonstrates that the interactions

are not described well by a model where the peptides aggregate in a

hydrophobic collapse. If this were the case, any hydrophobic peptide could

seed the formation of aggregate in another. Several examples from our lab

argue against a non-specific hydrophobic collapse. 16 , 17 The interactions are

more analogous to what occurs in a crystallization. The specificity required

was suggested by the ordered nature of the final fibril, as seen by fiber

diffraction and implied by Congo red staining. In the seeding experiments

between different peptides, the monomers may attach themselves to the

unmatched seeds, but it appears that attachments made in this manner

ultimately lose out to more favorable ones. With none of the proper

monomer present in solution, presumably the unmatched seeds redissolve.

In an unseeded polymerization, many nuclei are being formed

simultaneously, and as each one is formed, growth rapidly begins on it. This

decreases the concentration of monomer and hinders the formation of

additional nuclei. At some point, the concentration drops to a level where

new nucleus formation does not occur at an appreciable rate. At about this

time, the growth rate on a given nucleus is also dropping because of the

decrease in monomer concentration, however the apparent growth rate is

climbing as more nuclei are presented to grow on.

If the solution is seeded, growth will depend on the number of

appropriate surfaces presented. Although the overall amount of peptide in

the fibrils used as seeds is known, it is difficult to determine accurately the

number of nucleation surfaces presented, on which the growth rate will

depend. This immediate growth will lower the monomer concentration and

further slow the process of nucleus formation. If the number of surfaces
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presented in the seeded experiment is less than the number present after

nucleation in the unseeded case, the growth will be slower but will occur

immediately and may be complete sooner than in the unseeded case.

Another factor which requires consideration is that there appears to be a limit

to the size of a given fibril. Once this is reached more nuclei may be needed

for further growth. These nuclei may form from monomer or be the result of

fragmentation of other fibrils.

Formation of Fibrils from Mixtures of Scr 3 and PrP 118-133 Met 129.

The effect of mixing PrP 118-133 Met 129 with Scr 3 directly after

preparation of the supersaturated solutions was also tested. Two experiments

are shown in Figure 3.6. The homogeneous solutions are the average of two

runs; the mixture is a single experiment in each. In these experiments Scr 3

has a shorter nucleation time than PrP 118-133 Met 129. The nucleation time

of Met 129 is marginally less than the equimolar mixture of the two peptides

at the same total peptide concentration. This is consistent with the inability

of these two peptides to form fibrils with each other as shown in the seeding

experiments.

Implications for In Vivo Infection in the Prion Diseases

The region of PrP modeled with these peptides is highly conserved

across species and is present in all the truncated forms of PrP that have been

shown to be competent for conversion to PrPSc, which is consistent with this

region being important for protein-protein interactions involved in the

polymerization process. This region of PrP, due to its hydrophobic nature is

likely to be kept away from solvent in the properly folded protein, but if

exposed it may likely be prone to fibril formation because of its hydrophobic
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Figure 3.6 Fibril formation from mixtures of PrP 118-133 Met 129 and Scr 3. o,
0.3 mM PrP 118-133
and 0.15 mM Scr3.
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nature. These protein-protein contacts between PrP molecules would have to

be sufficiently specific and enthalpically favorable to be selected over the

interactions which can occur with components in the cell. We have shown

here that the interactions in the fibril formation process in peptides derived
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from PrP are very specific and that fibril assembly follows nucleation-

dependent kinetics. If the kinetics of polymer assembly are similar in the

whole protein, the local concentration of the form competent for

polymerization will be critical because of the extreme dependence of nucleus

formation on concentration. This mechanism could explain the disease

characteristics. A detailed model of this mechanism applied to prion diseases

is discussed in Chapter 5.

A similar effect to the one seen in this seeding experiment could

account for the species barrier observed in the prion diseases. For example

infection of rodents with human prion diseases is frequently unsuccessful,

and there is a much longer incubation period. There is a similar effect

observed between mice and hamsters, which have differences in PrP at 16

residues. If some of the positions are exposed during the polymerization

process, the surface presented would not match exactly. A small change has

been shown to be important in sickle-cell hemoglobin polymerization where

a valine is substituted for a glutamate residue, exposing a hydrophobic patch

to solvent in the deoxygenated form and causing aggregation. As shown with

these models, even a subtle change in amino acid sequence could have a

dramatic effect. The specificity of the hydrophobic interactions may be

sufficient to govern which protein-protein interactions are favorable.

EXPERIMENTAL

Fibril formation experiments

Supersaturated solutions of peptide in H 20 were formed by adding a

small volume (ca. 50 iiL) of an HFIP solution to a test tube and concentrating

to a clear film with a stream of nitrogen. To this film deionized water (Milli-
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Q, Waters) was added and agitated briefly. This solution was filtered and the

concentration was determined by BCA assay. The solution was then diluted

to 333 gM and added to a 10X salt solution (1M NaCl, 100 mM phosphate, pH

7.4, 10% by volume) in a 10 mm x 75 mm test tube to yield the desired 300 pM

solutions of peptides in standard buffer (100 mM NaCl, 10 mM phosphate, pH

7.4). These solutions were monitored for turbidity by placing the test tube in a

disposable polyethylene cuvette, filling the remaining volume of the cuvette

with water, and measuring the absorbance at 400 nm on a Hewlett-Packard

model 8452A diode array spectrophotometer. Measurements were taken 1 or

2 times per day, with a brief (5 sec) agitation by vortexing before each

measurement.

Seeding experiments

Solutions were prepared as above, followed directly by the addition of

5% by volume of fibrils formed from a previous experiment at the same

concentration.
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Chapter 4

Peptide models of the susceptibility for CJD of PrP codon 129

homozygotes

As discussed in Chapter 1, there is a nonpathogenic polymorphism in

humans at codon 129 of PrP with variants having either methionine or valine

found at this position. It appears neither methionine nor valine at this position

segregates with cases of prion disease. However, people with sporadic CJD are

more likely to be homozygous, for either methionine or valine, at codon 129.1

The effect of this polymorphism on the assembly of ordered polymers, and by

analogy PrPSc, was studied using our peptide models, PrP 118-133 Met/Val 129.

The homozygotes were modeled using homogenous solutions of peptides, and

the heterozygotes were modeled using heterogeneous mixtures (1:1) of the two

peptides. The thermodynamic and kinetic aspects of fibril assembly will be

discussed in this chapter.

Epidemiological Data on Homozygote Susceptibility

The allele frequency of the codon 129 polymorphism is 62% methionine

and 38% valine in Caucasians; the frequency of the valine allele is lower in the

Japanese population. 2 Collinge et al. determined that the homozygous valine

genotype is more likely to be found in individuals afflicted with iatrogenic
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(physician induced) CJD. They studied 7 individuals with CJD caused by

administration of contaminated human growth hormone and gonadotropin and

found 4 to be Val 129 homozygotes, 2 to be heterozygotes, and the remaining

individual a Met 129 homozygote. 2 They also screened 106 healthy Caucasians

and found 39 Met 129 homozygotes, 54 heterozygotes, and 13 Val 129

homozygotes. Although a significant excess of Val 129 homozygotes was found,

the number of afflicted individuals studied was quite small (see Table 4.1).

Table 4.1. Distribution of position 129 genotype in Caucasians and CJD patients.
Percentages are shown in parentheses.

In a similar but larger study, the same group looked at the genotype of

sporadic CJD cases.1 In this study, 21 of 22 confirmed cases of sporadic CJD, and

an additional 19 of 23 suspected cases of sporadic CJD were homozygotes. Of

the 22 confirmed CJD cases, 16 were Met 129 homozygotes, 5 were Val 129

homozygotes, and only one was heterozygous. For the 23 suspected cases, it was

reported that 11 were Met 129 homozygotes, 6 were Val 129 homozygotes, and 4

were heterozygotes-leaving one to wonder where the other two people went.

For the confirmed CJD cases, 95% were homozygous (compared with 49% in the

normal population); the one heterozygous individual may have been a familial

case, as it was later determined that the patient's father died with dementia. In

the suspected cases, 82% were homozygotes. The excess for valine homozygotes
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Met/Met Met/Val Val/Val

Population (normal) 39(37) 54(51) 13(12)

Iatrogenic CJD 1(14) 2(29) 4(57)

Confirmed sporadic CJD 16(73) 1(5) 5(22)

Suspected sporadic CJD 11(52) 4(19) 6(29)



seen in the iatrogenic cases was not seen here. The sources of the inoculum may

determine which genotype is more susceptible in the transmitted cases.

We hypothesized that homozygotes were more susceptibile to sporadic

CJD than heterozygotes because PrPSc was more easily formed in the

homozygotes. The experiments with the peptides described in this chapter are

based on the assumption that PrPSc is the infectious agent and that the formation

of aggregates of PrP is central to the pathogenesis of the disease. The difference

between homozygotes and heterozygotes would be in the varying ability of the

two variants to form ordered arrays with themselves versus arrays with the other

variant. It was expected that the homogeneous fibrils would be more stable

thermodynamically and form more rapidly, which would be consistent with

PrPSc forming more readily in the homozygotes. The difference in the formation

of homogeneous versus heterogeneous polymers was measured in 3 related

ways: the thermodynamic preference for fibril formation, the rate of fibril

formation, and the rate of dissolution of fibrils. In each case, fibril formation

from homogeneous solutions of either variant was compared to fibril formation

from mixtures of these two peptides. The region of the protein modeled here

appears to be important since a change in this region alters the phenotype.3 The

peptides discussed herein serve as models for the interactions of this region of

the protein.

Thermodynamic Preferences in Fibril Formation

The stability of fibrils formed from homogeneous solutions and those

from heterogeneous solutions were studied. PrP with methionine at position 129

was modeled by PrP 118-133 Met 129 (abbreviated Met 129), and PrP with valine

at position 129 was modeled by PrP 118-133 Val 129 (abbreviated Val 129).

Initially we hoped to follow the composition of fibrils forming out of a
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supersaturated equimolar mixture of Met 129 and Val 129 over time. We

hypothesized that heterogeneous fibrils could form initially and then be

converted into homogeneous fibrils. This measurement proved to be difficult, as

no ready means of determining the composition of a given fibril is available. A

sampling of the bulk mixture of fibrils at intervals found their composition to be

equimolar in both peptides. This result was probably due to the sampling of

populations of differently composed fibrils which on average contained equal

proportions of both peptides.

In order to determine the stability of heterogeneous compared with

homogeneous fibrils, supersaturated mixtures of the two peptides in unequal

proportions were prepared. These mixtures were stirred and fibrils formed

within hours. These fibrils were stirred for several more days to allow the fibrils

to equilibrate to more stable arrays, after which the suspensions were filtered,

and the ratio of the peptides in the soluble phase was determined. Three

different outcomes were possible (see Figure 4.1):

1) If heterogeneous and homogeneous fibrils are equally stable, that is, if

no selection occurs in fibril formation, no difference will be found in the

composition of the soluble phase before and after fibril formation. Therefore, the

two variants will be randomly distributed in the fibrils. The ratio of the variants

will be the same in the fibril and in solution because no selection process has

occurred.

2) If heterogeneous fibrils are more stable than homogeneous fibrils, the

soluble phase after precipitation will be enhanced in the major component.

Conversely, the fibrils will be enhanced in the minor component because it will

be tied up in the more stable heterogeneous fibrils. If the interaction of the

twovariants leads to a more stable fibril, these heterogeneous fibrils will form

preferentially until the solubilty of the heterogeneous fibril (determined by the
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limiting minor component) is reached. After this point, fibrils composed of the

remaining variant will also form until the solubility of these homogeneous fibrils

(determined by the major component) is reached.

3) If the homogeneous fibrils are more stable than the heterogeneous

fibrils, the soluble phase will be enhanced in the minor component after fibril

formation because the fibrils will be mostly homogeneous. Both peptides will

form separate fibrils until their solubility is reached. The observed ratio of

peptides in the soluble phase will be the addition of the equilibria between the

the two separate fibrils and their associated monomers. Because the minor

component started at a lower concentration, the change in concentration of the

minor component will be less than for the major component.

Fibrils were prepared from mixtures of Met 129 and Val 129.

Supersaturated solutions of peptide in approximately 1:9 and 9:1 ratios were

prepared at 300 pIM total peptide concentration in buffer. These solutions were

stirred for several days and then filtered. Because these two peptides are very

similar and inseparable by RPHPLC, the relative amounts of the two peptides in

solutions was determined by plasma desorption mass spectrometry (PDMS).

The similarity of these two peptides suggests they would have similar ionization

characteristics, which was confirmed by comparing the ratios determined by

standard protein assays and PDMS. Also, uneven ratios were tested in both

directions. Shown in Figure 4.2 are the ratios of soluble peptide before and after

aggregation. The total amount of peptide in solution is approximately 10 fold

higher before aggregation (percentages are plotted) so the bars before and after

aggregation cannot be compared with each other.

The ratios of peptides in solution after fibril formation approached

equimolar ratios starting from either direction. Therefore, to balance the mass

the fibrils must be enriched in the major component (see possibility 3 above).
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The homogeneous fibrils are favored thermodynamically over heterogeneous

fibrils, and heterogeneous fibrils, if formed, are ultimately converted into

homogeneous fibrils. In other words, the two peptides form fibrils as if the other

peptide were not present and continue to precipitate until their solubility is

reached. Similar effects are seen when crystals are formed from mixtures of

components. The crystals are composed of one kind of molecule and other kinds

of molecules are not incorporated into the crystal. After crystallization the

remaining supernatant is enriched in the minor components (usually thought of

as less pure).

In these experiments, the ratios in the soluble phase approach, but do not

reach, unity, suggesting that some heterogeneous fibrils (or fibrils containing

impurities) are formed. The fibrils are in equilibrium with the soluble monomer,
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Figure 4.2 Thermodynamic preference for fibril formation. On the left are initial
solutions predominately Met 129. On the right are initial solutions
predominately Val 129.
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and the amount of mixed fibrils will be determined by ratio of the two equilibria

between homogeneous and heterogeneous interactions. The larger the difference

between these two equilibria, the greater the selection which will occur.

The solubility of heterogeneous mixtures of Met 129 and Val 129 is about

twice that of homogeneous peptide solutions in terms of total peptide. If this is

also true for the whole protein, the heterozygotes can solubilize more protein,

and may therefore prevent polymerization. The total cellular concentration of

PrP is likely to be below its solubility, however PrP may be concentrated in

certain parts of the cell, such as endosomal compartments. The homozygotes

will have twice the concentration of protein which may push it pass the solubility

in some instances and lead to aggregate formation.

Kinetics of Fibril Formation in Homogeneous and Heterogeneous Solutions

The kinetics of fibril formation in Met 129 and Scr 3 were discussed in the

previous chapter. Fibril formation follows nucleation-dependent kinetics. The

studies described in Chapter 3 were done without agitation except directly before

the measurement of turbidity was taken. Unagitated solutions exhibited much

longer nucleation times than stirred or otherwise agitated solutions. No

differences were determined between homogeneous solutions of Met 129 or Val

129 and mixtures using the unstirred assay. A stirred assay allows for more

consistent agitation and a more convenient time period for running the assay.

One complication of a stirred assay is that shorter nucleation times are seen

implying that a different mechanism might be involved. Attempts to couple a

stirred system to turbidity measurements led to difficulties because of

inconsistent distribution of the fibrils in the light path, generally caused by the

aggregate floating to the top of the container. This problem, along with the

difficulty correlating turbidity to the molar amount of fibrils, led us to use an
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assay based on measuring the amount of soluble peptide in a stirred

supersaturated solution over time. This was done by using tritium-labeled

peptide and scintillation counting.

Supersaturated mixtures were made in buffer of 100% Met 129, 100% Val

129, and 50% Met 129: 50% Val 129 (all at 300 ptM total peptide concentration) to

mimic the MM, VV, and MV genotypes respectively. These solutions were

stirred, aliquots were taken at intervals, filtered through 0.22 gm filters, and

scintillation counted to determine the amount of soluble peptide. The specific

activity was calculated from the initial solution, and the counts at later time

points were converted to concentrations. The results are shown in Figure 4.3.

The Met 129 solution had a shorter nucleation time than the Val 129 solution

which had a shorter nucleation time than the Met/Val 129 solution. Met 129 is

significantly different from the Met/Val 129. The data for Val 129 overlaps

slightly with the data on either side of it. The average nucleation times are

shown in Table 4.2.

Table 4.2 Nucleation times for fibril formation from homogeneous and
heterogeneous solutions calculated as 20 % of the maximal turbidity. Errors are
standard deviations.

Solution of peptide Met 129 Val 129 Met/Val 129

Nucleation time (min.) 48±11 76+18 107±14

As shown above, nucleus formation is slower in the heterogeneous

solution, implying that mixed nuclei are formed more slowly than homogeneous

nuclei possibly because they are less stable. Mixed nuclei may form transiently,

but they will be more likely to revert to monomers. The difference in stability

between homogeneous and heterogeneous nuclei is the difference of the sum of
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Figure 4.3. Fibril formation from supersaturated solutions. A. 4 runs of 0.3 mM

PrP 118-133 Met 129. B. 7 runs of 0.3 mM PrP 118-133 Val 129. C 4 runs of 0.3

mM total peptide, 1:1 Met 129:Val 129.
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all the interactions between the monomers. Therefore any suboptimal

interactions between the two different peptides will be magnified because

oligomers are not stable until they reach the nucleus size. A diagram of the

possibilties for a peptide mixture is shown in Figure 4.4. The formation of

homogeneous nuclei in the heterogeneous solution would likely occur instead of

the formation of mixed nuclei because of their greater stability. (The central

pathway of Figure 4.4 is disfavored.) The homogeneous nuclei would form more

slowly out of the heterogeneous solution than out of the homogeneous solution

because the concentration of monomer is halved. The decrease in concentration

decreases the rate of nucleus formation potentially by much more than half.

Therefore even added together the formation of fibrils by the two variants at half

the concentration does not begin as early as in the homogeneous case. The effect

of concentration would be expected to be much less for the growth after

nucleation because it only depends on the concentration of nuclei and the

concentration of monomer to the first power.
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Figure 4.4 Scheme for the formation of amyloid from peptide mixtures.
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The growth rate for Met 129 was faster than for either Val 129 or Met/Val

129. The growth rates in Val 129 and Met/Val 129 solutions were not

significantly different. A difference in the growth rate might have been expected

between the heterogeneous and homogeneous solutions, although the effect on

growth rate would probably not be as dramatic as the effect on nucleation

because the concentration dependence of the growth phase is of a lower

magnitude. However, the molecular level interactions involved in both

nucleation and growth are likely to be similar. As discussed in Chapter 3, the

growth rate will also depend on the number of viable nuclei on which monomer

can grow. Because of the difference in nucleation time, it is conceivable that the

number of nuclei is different in the heterogeneous solution compared with the

homogeneous solution. The following expression describes the growth rate in

the homogeneous solution:

growth rate = k [monomer] [nuclei]

and the rate from a mixture of monomers M and V would be described by the

following:

growth rate = k [monomer M] [nuclei M] + k [monomer V] [nuclei V]

The effect of concentration on the number of nuclei formed is unknown and not

easily determined experimentally. Because of this uncertainty, it is difficult to

draw conclusions regarding inhibition of fibril growth by the unmatched variant.

One aspect of the heterogeneous polymerization that cannot easily be

measured is the formation of mixed fibrils that are ultimately converted to

homogeneous fibrils. As in the case of the thermodynamic measurement, this
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assay only measures the peptide that can pass through the filter; the composition

of individual fibrils is not determined. Therefore it is not known if the aggregate

is a mixture of homogeneous fibrils or fibrils composed of both peptides. Less

stable heterogeneous aggregates are probably formed early in the process and

converted to more stable homogeneous fibrils. Reorganization of fibrils appears

to occur since the fibrils continue to equilibrate and become more stable well

after the maximal turbidity is reached. This effect will be discussed in the next

section.

The fibril formation of the homogeneous solutions was also done at 150

gM for each peptide as shown in Figure 4.5. The lag time was slightly longer

compared with the 300 gM runs. This difference is not as dramatic as might be

expected for a nucleation-dependent process. Stirring greatly enhances the rate

of fibril formation possibly through the formation of secondary nuclei, which

may be formed by breaking up small fibrils as they are formed. Shearing or

breaking up fibrils has a similar effect on the infectious agent. Treating the

infectious agent with sonication or by dispersing it in detergent frequently

increases the titer by up to an order of magnitude (B. Caughey personal

communication). Sonication also seems to increase the effectiveness of seeding in

peptide polymerizations. The nature of the surface presented and the ability to

increase the number of surfaces by shortening the fibril can have a significant

effect on the rate of fibril growth.

The separate 150 M runs are added together and compared to the

solution containing 150 1M of each peptide in Figure 4.6. The averages of 4 runs

are shown. The math addition is about the same or slightly faster than

theheterogeneous mixture. The higher concentration of peptide in the

heterogeneous case does not increase the rate suggesting that the two variants do

not form productive aggregates with each other. One variant may even interfere
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Figure 4.5. Fibril formation from supersaturated solutions. A. 3 runs of 0.15
Figure 4.5. Fibril formation from supersaturated solutions. A. 3 runs of 0.15
mM PrP 118-133 Met 129. B. 3 runs of 0.15 mM PrP 118-133 Val 129.
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with the formation of homogeneous polymers of the other variant (and vice

versa) by forming weaker heterogeneous interactions transiently (see Figure 4.4).

The existence of this effect however, cannot be stated conclusively from the data.

The aggregation of these peptides could be seeded by the addition of

preformed fibrils as discussed in the previous chapter. Somewhat suprisingly,

no difference was seen between homogeneous and heterogeneous seeding.

Preformed fibrils of Met 129 could seed solutions of Met 129 and Val 129 equally
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well. The seeding of Val 129 with fibrils composed of Met 129 is shown in Figure

4.7 and compared to the average unseeded polymerization. Possibly, when one

peptide is seeded with the other, a new surface composed of the peptide in

solution is formed quickly; growth then continues on that surface as in the

matched seeded case. It is also possible that the initial fibrils are less stable,

butjust as filterable, in the heterogeneous case. The effect of seeding would be

expected to be similar to the effect on growth rate. The absense of selectivity in

seeding suggests that the difference between homogeneous and heterogeneous

interactions is small and not detectable unless they are magnified as in the case of

the nucleation time.
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Figure 4.6. Fibril formation from supersaturated solution. o, a mixture of 0.15
mM PrP 118-133 Met 129 and 0.15 mM PrP 118-133 Val 129. o, math addition of
0.15 mM PrP 118-133 Met 129 and 0.15 mM PrP 118-133 Val 129.
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Figure 4.7. Seeding fibril formation in supersaturated solutions. A. 4 runs of PrP
118-133 Val 129 seeded with PrP 118-133 Met 129. B. Averages of unseeded and
seeded runs. n, PrP 118-133 Val 129 unseeded. o, PrP 118-133 Val 129 seeded
with PrP 118-133 Met 129.
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The longer nucleation time for fibril formation in the heterogeneous

mixtures of peptides could have significant consequences for the in vivo case. If

mixed nuclei are sufficiently less stable, they will not be formed; homogeneous

nuclei will be formed instead. The concentration of each variant in the

heterozygotes will be half the concentration in homozygotes. Because the
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concentration dependence of nucleus formation is nth order, where n is the

nucleus size, a decrease of 50% in protein concentration could have a dramatic

effect on the polymerization process. The concentration in heterozygotes may be

insufficient for nucleus formation or may be at a rate slow enough that other

events (such as protease digestion) can occur first. The nucleation-dependent

character of this polymerization can magnify a small difference in association

energy (as is likely with the conservative change of Met to Val) that might not be

significant in other mechanisms.

Dissolution of Fibrils

The dissolution of fibrils formed out of homogeneous or heterogeneous

solutions was also studied. Radiolabeled fibrils were prepared from either

homogeneous solutions of Met 129 or Val 129, or from a 50:50 mixture of Met

129/ Val 129, all at 300 ptM total peptide. These fibrils were collected by

centrifugation and the supernatant was decanted. Fresh buffer was added, and

aliquots were filtered at intervals and counted. Fibrils formed from

heterogeneous solutions gave about twice the amount of soluble peptide

compared with fibrils from either of the homogeneous solutions (see Figure 4.8).

Why did the fibrils from the heterogeneous solution yield more soluble

peptide? If heterogeneous fibrils are less stable than homogeneous fibrils, two

populations of homogeneous fibrils (one for each variant) will form out of the

heterogeneous solution. The greater amount of soluble peptide observed will be

due to the presense of two different types of fibrils in the mixture. Therefore, the

larger amount of soluble peptide measured in the heterogeneous case is the sum

of the two individual equilibria between the homogeneous fibrils and their

associated monomers. The dissolution of homogeneous fibrils is the
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Figure 4.8. Dissolution of previously formed fibrils. , Fibrils formed from 0.3
mM PrP 118-133 Met 129. , fibrils formed from 0.3 mM PrP 118-133 Val 129. 0,
fibrils formed from a mixture of 0.15 mM PrP 118-133 Met 129 and 0.15 mM PrP
118-133 Val 129. Standard deviations are shown with error bars.
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measurement of one of these equilibria. Indeed, using this method, the sum of

the two individual measurements of solubility in the homogeneous cases is equal

or possibly slightly less than the solubility of the fibrils formed from the

heterogeneous solution. Although this difference is within a standard deviation,

once again there is the suggestion that the two variants interfere with the

polymerization of each other.

The amount of peptide that can be solublized from the fibrils decreased

with increasing time for fibril formatiom. The dissolution of fibrils formed for

different lengths of time is shown in Figure 4.9. This "aging" effect continued

well after the concentration of soluble peptide was virtually constant or

decreasing only gradually. This implies that early fibrils, which are not the most

stable, can form and subsequently be converted to more stable arrays. This may

occur by adjustments made while still in the solid state or by dissolution and
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reattachment in the proper orientation. Conceivably, nuclei of different

morphology form and grow in the early stages of fibril assembly, but ultimately

all the peptide becomes incorporated into the more stable arrays.

The dissolution measurement is consistent with the observations made

using the other two methods described in this chapter. The heterogeneous

fibrilis not as stable a structure as the homogeneous fibril. This difference in

stability is reflected in the composition of the fibrils after equilibrium and in the

rate which the fibrils form.

A similar situation has been seen in other proteins as has the converse.

The upregulation of fetal hemoglobin production increases the overall

Figure 4.9. Stability of fibrils over time. Fibrils were formed from
supersaturated solutions of PrP 118-133 Val 129 and spun down after 1, 2, and 7
days. These fibrils were resuspended in fresh buffer and the amount of soluble
peptide was measured at intervals. , 1 day old fibrils. , 2 day old fibrils. 0 , 7
day old fibrils.
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hemoglobin solubility. In the sickle-cell form of hemoglobin, a hydrophobic

residue (valine) is substituted for a polar residue (glutamic acid) resulting in a

less soluble protein.4 5 In mixtures of sickle-cell hemoglobin with other

hemoglobins, only the sickle-cell form polymerizes; mixed polymers are not

seen. 6 In contrast, in tropomyosin assembly the heterodimer is preferred over

the homodimer.7 , 8 Tropomyosin consists of two subunits which differ slightly

in amino acid sequence. Tropomyosin preferentially formed heterogeneous

dimers over homogeneous dimers when refolded under equilibrating conditions.

Fos and Jun heterodimer formation is similarly favored.9

In the case of PrP, heterozygotes at position 129 may be less susceptible to

sporadic or spontaneous prion disease because polymer assembly is not favored

between the two variants. The phenotype observed implies that position 129 of

the PrP is important in the disease process, probably because of monomer-

monomer or monomer-aggregate interactions which occur during the assembly

of PrPSC. The models described herein suggest that the interactions between the

two variants are not as favorable as the homogeneous interactions. This small

difference is magnified if protein assembly occurs by a nucleation-dependent

mechanism. The increased susceptibilty of homozygotes may then be due to

slighty more favorable protein-protein interactions which greatly shortens the

nucleation time. Polymer assembly then becomes more competitve with other

paths the protein may take, such as proteolysis. An effect similar to what is seen

with the peptides discussed in this chapter may play a role in the species barrier

observed. The infecting protein generally differs at several positions with the

host protein. These differences may lead to the loss of several contacts between

the monomer and the aggregate (PrPSc) resulting in a less efficient nucleation of

polymerization.
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As discussed in Chapter 2, this region of the protein is unlikely to be

exposed in the properly folded PrPC form of the protein because of its

hydrophobic nature. Therefore, the assembly of abnormal polymers may require

conditions where the protein is partially unfolded (see Chapter 5). There is

evidence that the conversion of PrPC to PrPSc in infected cell lines occurs in the

endosomal pathway. 10 This site may also be a likely location for the unseeded

formation of PrPSc.

Experimental

Synthesis of 3H Peptides

Tritium-labeled peptides were synthesized as described in Chapter 2.

Thermodynamic Measurement of Fibril Composition

Supersaturated solutions of peptide in H 20 were formed by adding a

small volume (ca. 50 !tL) of an HFIP solution to a test tube and concentrating to a

clear film with a stream of nitrogen. To this film MilliQ water (ca. 1-2 mL) was

added and agitated briefly. This solution was filtered, and the concentration was

determined by BCA assay. The solution was then diluted to 111% of the final

desired concentration (usually 333 or 162 mM) and added to 10% the volume of a

(10X) salt solution to yield the desired ratio of peptides in standard buffer (100

mM NaCl, 10 mM phosphate, pH 7.4). PDMS was taken of these solutions as

described in Chapter 2. These solutions were then capped and stirred at room

temperature for 2-6 days. At this point an aliquot was filtered, and a PDMS was

taken.

Kinetic Assayfor Fibril Formation

Supersaturated solutions of peptide were made as described above. The

concentration of these solutions was determined by absorbance at 276 nm
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(tyrosine). The extinction coefficient (=1700) was calculated from a sample

whose concentration was determined by amino acid analysis and was the same

for both peptides. This supersaturated solution was then added to an HFIP/H 20

derived film of radiolabeled peptide, agitated briefly, and filtered through 0.22

gM filters. The concentration was determined by absorbance at 276 nm. These

solutions were then added to concentrated salt solutions to give the final

solutions, which were either 150 puM or 300 pgM in peptide in standard buffer.

The specific activity of the solution was determined by measuring an aliquot by

scintillation counting. These solutions were stirred continuously on a magnetic

stir plate, and aliquots were taken over a period of about 4 hours. These aliquots

were filtered, and known amounts of these solutions were measured by

scintillation counting. This measurement of counts per minute was then

converted to the concentration of soluble peptide left in solution, and by

subtraction from the starting concentration, the amount of peptide contained in

the fibrils was determined.

Dissolution of Fibrils

Fibrils were formed by the addition of a concentrated DMSO solution of

cold peptide, along with a small amount (10% of the cold peptide solution

volume) of a solution of 3H labeled peptide in HFIP/H20, to standard buffer to

give solutions 300 gM in peptide with 5% DMSO. This was stirred for 1-14 days,

at which time a 0.3 mL aliquot was taken and centrifuged for 15 min in a clinical

centrifuge. The supernatant was decanted, and 3 mL fresh buffer was added

(peptide concentration ca. 30 M). Aliquots were taken at intervals and filtered;

measured amounts of these solutions were measured by scintillation counting.
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Chapter 5

A Cell-Free Conversion of PrPC to a Protease-Resistant Form

Can knowledge of the mechanism of polymerization in peptides be

applied to the study of full-length PrP? The nature of the infectious agent is

still a subject of great debate. The purification of the agent has identified an

abnormal form of a host protein, PrPSc, however to many people, the unique

properties of the agent cannot be described by protein alone. The formation of

PrPSc that is infectious, from purified components, outside the cell, would

greatly help in settling this controversy. Since the formation of PrPSC from

PrPC is key to the protein-only model for scrapie, the obvious experiment is

the direct conversion of PrPC to PrPSc. Unfortunately, PrPC (PrP from

uninfected sources) cannot yet be obtained in large quantities, so it is difficult

to test a large number of conditions with PrP purified directly from cell

culture.

A more feasible system is to use PrPSc (from infected animals) as the

source of PrP since it is easier to obtain than PrPC (from uninfected sources).

PrPSC has to first be rendered uninfectious to use as a source of PrP for the

conversion experiment. This task can be accomplished by treatment with

denaturants such as guanidine or urea. In this preparation of PrP, everything

necessary to compose the infectious agent is present since the material was
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infectious before denaturation, although other substances may facilitate their

assembly. Once conditions for the renaturation of PrPSc are determined, the

conversion with PrPC (from uninfected sources), possibly through the

interaction with PrPSc, can be attempted. In this chapter, experiments to

convert PrPC to a protease-resistant form are described. The implications of

these experiments and possible mechanisms for scrapie infectivity will be

discussed.

Previous Experiments to Form PrPScfrom noninfectious components

Experiments of this kind have been tried before. l1 2 Prusiner and

coworkers treated the scrapie agent (PrP27-30, proteinase K treated form with

MW of 27-30 kDa) with chaotropic salts and measured the resulting titers of

infectivity. Exposure to 6M guanidine thiocyanate (GdnSCN) rapidly

inactivated the agent, whereas inactivation with 3M GdnSCN required a

longer exposure but was complete after 24 hours. Similar results were

obtained with urea, although higher concentrations were required for

inactivation. Prusiner states that guanidine hydrochloride (GdnHCl) had an

effect similar to the other chaotropes, but the data is not given. Attempts

were made to regain infectivity from denatured samples either by diluting the

denaturant or removing it slowly by dialysis This experiment was done at

several denaturant concentrations for urea and for 6M GdnSCN. No return

of infectivity was found in any of these cases. In some cases dilution of the

denaturant also caused PrP to be diluted considerably. If a PrPSc is a

multimeric species, dilution will dramatically slow the rate of assembly.

Dilution of the solution to low protein concentrations may be more

appropriate for a unimolecular reaction like protein refolding.
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The effect of denaturants on PrPSc has been studied by other workers.

Safar et al. treated PrP27-30 with GdnHCl and monitored the CD spectra and

measured its properties by size exclusion (SE) HPLC.3 As determined by SE

HPLC, PrPSc appeared to monomerize at about 1.5 M GdnHC1. The CD spectra

changed significantly at approximately 3.5 M GdnHC1, which suggests partial

unfolding at this concentration of denaturant; higher guanidine

concentrations led to complete unfolding.

Attempts at Seeded Renaturation of PrPSc

Can the reassembly of PrPSc into the protease resistant and infectious

form be initiated by the addition of a small amount of PrPSc to the denatured

material? This kind of seeding effect dramatically increases the rate of fibril

formation in peptides derived from the PrP sequence. Analogously, we

wanted to denature PrPSc, dilute the denaturant, and then seed the

reassembly of unfolded PrP into PrPSc with a small amount of untreated

PrPSc. The formation of PrPSc can be assayed for by protease-resistance; PK

resistance is the simplest way to distinguish PrPSc from PrPC. The plan was to

first produce completely protease-sensitive material, with the minimum

amount of denaturant, in order to keep the protein as concentrated as possible

during the subsequent dilution of the denaturant. A minimum denaturant

concentration also might allow some protein structure to remain intact,

which, although not sufficient for protease resistance, may facilitate its

recovery. Then a small amount (about 1%) of untreated PrPSc would be

added as a seed to nucleate the reformation of PrPSc from the rest of the

unfolded PrP.

The PrPSc was purified from hamster brain homogenates as described

previously. The homogenates are first centrifuged at low speed to remove
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the structural proteins such as myelin. The supernatant is then pelleted at

high speed. This pellet is taken up and repelleted from different buffers (the

third one containing nucleases) three more times. The pellet after nuclease

treatment is denoted as P4 (also PrP33-35) and is substantially purified. This

material can be treated with proteinase K, which removes other proteins and

truncates PrPSc. The preparation after PK treatment is denoted as P5 (also

PrP27-30).

Because we thought the formation of PrPSc involves intermolecular

contacts similar to crystal growth, the highest possible concentrations of PrP

were used to favor the formation of a fibrillar assembly. Higher protein

concentrations favor the formation of multimolecular assemblies. In

contrast, if protein refolding was desired (e.g. after purification of bacterial-

derived protein by inclusion body formation), dilute conditions would be

used to favor the unimolecular refolding reaction over the multimolecular

aggregation process. In order to maintain the concentration of PrP during the

removal of denaturant, the removal was attempted using a filter which

allows all molecules below a certain molecular weight (3 or 10 kDa) to pass

through it (centricon®). In this way the denaturant could be removed and

the protein exposed to various conditions. Unfortunately, attempts to

concentrate PrP with the centricon filters led to a loss of protein, apparently

because of non-specific binding of the small amount of protein used to the

filter. Another important experimental consideration was noted during the

initial attempts at denaturing/renaturing PrPSc. The first preparation of PrPSc

used was P5 (PrP27-30), which had been treated with Proteinase K to remove

other proteins. When P5 was treated with GdnHC1, PrP was degraded,

presumably because of residual proteinase K in the preparation. We initially

chose to use P5 rather than full-length PrP because P5 is more homogeneous
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Figure 5.1 Schematic of the experiments described in this chapter. A) Seeded
renaturation of PrPSc. B) Reversible partial denaturation of PrPSc.
remaining PrPSc is required to act as a seed.
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than full-length PrP since most of the other proteins remaining after the first

four centrifugations are destroyed by PK. However, since P5 did not tolerate

treatment with GdnHCl, further experiments were done using P4, (PrP33-35),

which is the same as P5 except for the elimination of the proteinase K

treatment. This material was not degraded upon denaturation with GdnHCl

and additionally, because it is not truncated, has a greater similarity to the PrP

that is converted in vivo.

The experiments discussed are outlined in Figure 5.1. The original

plan is described in panel A. The PrPSC is denatured to a protease-sensitive

form, the denaturant is diluted, and the sample is split in half and a seed of

PrPSC is added to one portion. The P4 preparation was treated with 3M

GdnHCl for 16 hours at 370C, and the denaturant was then diluted to 0.37-0.75

M GdnHCl. The sample was then divided into two parts. To one part, a

small amount (0.5-1%) of untreated P4 was added as a seed. The formation of

protease-resistant material was assayed for at intervals by treating aliquots

with PK. A return of protease-resistance over time was seen in some

samples, however it was inconsistent and independent of the presence of

seed.

David Kocisko determined that this renaturation effect could be seen

consistently under certain conditions. Renaturation was observed more

consistently at 370C than room temperature. Using a more stable and water

soluble protease inhibitor to inactivate the PK and increasing the minimum

volume of the transfers involved also improved the reproducibility. The

renaturation effect was not dependent on the addition of untreated PrPSc to

act as a seed. It does appear however, that some residual PrPSc in the sample

is required to see renaturation. Conditions which denature all of the PrPSc

(treatment with higher concentrations of GdnHCl (>3.5M) or treatment with
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> 1M GdnSCN) irreversible eliminate protease-resistance. This reversible

renaturation is depicted schematically in panel B of Figure 5.1 and the

experiment is shown in Figure 5.2 (courtesy of D. Kocisko). PrPSC that is not

denatured can seed the reassembly of unfolded PrP. Why does the partial

denaturation show refolding and the seeded experiments do not? The

amount of seed may be greater in the experiments where PrPSc is only

partially denatured. Additionally, exposure to GdnHCl may free up fresh

surfaces and enhance the seeding effect. Under the proper conditions

experiments of the type depicted in panel A may be feasible.

The protease-resistance of the renaturing samples increases over time,

going from about 2-10% protease-resistant material at time 0 to almost 100%

protease-resistant protein after 2 days; Figure 5.2 shows the time course of the

renaturation. In the control lanes, the truncation of PrPSc with PK treatment

is seen. The return of PK-resistance material is shown in the next three lanes.

The PrP in those three lanes shows the characteristic truncation on PK

treatment. A more precise picture of this process comes from probing with

antibodies specific for different epitopes of PrP. Three different antibodies

have been used to examine the denaturation/renaturation process with

epitopes corresponding to regions 89-103, 141-154, and 218-232. The

immunoblots using the antibody to the N-terminus of P5 (89-103) showed the

greatest change over time. The immunoblots using the antibody to the C-

terminal region (218-232) showed the least change with time and detected

smaller molecular weight bands. This result suggests that the N-terminus is

unfolded to a larger extent upon treatment with denaturants. This region is

also more protease-sensitive in the P4 preparation and cleaved by treatment

of P4 with proteinase K.
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Purification of PrPC and PrPSc

Next, the conversion of PrPC to PrPSc was attempted. The first

requirement for this experiment is purified PrPC.

PrPC was derived from cell culture. Two different constructs which

had been prepared previously at Rocky Mountain Labs (RML) were used. One

construct was full-length hamster PrP expressed in mouse neuroblastoma

cells (MNB hamster). The protein from this construct when analyzed by SDS-

PAGE shows a series of bands between 30-40 kDa, corresponding to differently

glycosylated monomeric species (similar to the PrP from hamster brain), and a

band at about 60 kDa, corresponding to a dimeric species (S. Priola, personal

communication). The other construct was a mutated hamster PrP secreted by

mouse fibroblasts. Normally PrP is cleaved between amino acids 231 and 232

and a GPI anchor is attached. The 23 C-terminal amino acids (including Ser

231 to which the GPI anchor is attached) are not encoded on the gene in this

construct, which causes the generation of a truncated form of PrP. The net

difference between the full-length and secreted form after biosynthesis is that

the secreted form lacks Ser 231 and the attached GPI anchor, which is the

reason it is secreted into the medium. The secreted construct of PrP also

appears to be less heavily glycosylated than the MNB hamster PrP.

Two different preparations of P4 were used in these experiments. Both

were purified by the same protocol but one preparation (denoted as P4.5) was

partially degraded during purification. The truncation is similar to what

occurs with treatment with PK but not as extensive (see Figure 5.3 for

comparison of P4 and P5. The cause of the degradation is unknown but may

have been the result of protease contamination in some of the reagents used.
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Conversion of PrPC to a Protease-Resistant Form

Having observed the refolding of partially denatured PrPSc, the next

step was to see if PrPC could be converted to PrPSc, which would be

characterized by protease-resistance. Unlike in the renaturing of PrPSc, PrPC

derived from uninfected cells has never been in a protease-resistant form so

there is no question of residual PrPSc-like structure. We hypothesized the

conversion of PrPC to PrPSc could be caused by a direct interaction of PrPC

with PrPSc outside the machinery of the cell. Conditions had already been

determined for refolding PrPSc that had been partially denatured (as defined

by protease-resistance). We thought the conversion of PrPC to PrPSc might

occur by incorporating PrPC into the renaturing PrPSc. If PrPC were added to

this mixture, in a similarly unfolded state, it might be converted along with

PrPSc that was refolded (see Figure 5.1, Panel C).

The experiment was done by adding [35S]-PrPC to unlabeled PrPSc,

which had been treated under various conditions (suspended in buffer, 3M

GdnHC1, or 6M GdnHCl). The conversion was tested by the development of

protease-resistant material derived from PrPC. The mixture was treated with

Proteinase K directly after mixing and after a 2 day incubation; any labeled

protein observed (as judged by fluorography after SDS-PAGE) must have been

derived from the PrPC.

First, radiolabeled PrPC was needed. PrPC (and all the other proteins in

the cell) were metabolically labeled with [35S] methionine. PrPC was purified

by immunoprecipitation from detergent cell lysates in the case of MNB

hamster PrP, and from detergent cell lysates and the supernatant for the

secreted PrP.4 Ideally for the secreted form, PrP could be purified from the

medium, however it appears that proteases act upon PrP in the medium. The

cell lysate derived material was consistently more homogeneous. The
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immunoprecipitation was done with an antibody (3F4) that binds hamster

PrP but not mouse PrP based on differences between mouse and hamster PrP

at residues 109 and 112 (hamster PrP numbering) 5. The antibody was then

attached to protein A sepharose beads and after washing the beads to remove

unbound material, PrP was eluted from the beads with 3M GdnHCl. These

conditions are likely to denature PrPC, however since there is no assay for the

activity of PrPC, it cannot be determined if it is properly folded. We felt that

unfolding PrPC might facilitate its incorporation into protease-resistant

assemblies.

The conversion of PrPC to a protease-resistant form was tried by adding

[35S]-PrPC (in 3M GdnHCl) to the PrPSC in 3M GdnHC1, and then diluting the

denaturant as in the renaturation experiments, in the hope that PrPC would

be incorporated in the same way denatured PrPSc may be refolding. Also,

[35S]-PrPC was mixed with PrPSc that was suspended in buffer, or PrPSc that

was treated with 6M GdnHCl (conditions known to destroy PrPSc infectivity

and protease-resistance2). As a control, [35S]-PrPC alone was also assayed for

protease-resistance. Aliquots were treated with PK directly after mixing

(time=O) and after 2 days. Three different experiments are shown in Figures

5.3-5.5.

In all three experiments, labeled protease-resistant bands were seen in

the PK treated samples after incubation of PrPC with PrPSc (pretreated with

buffer or 3M GdnHCl) for 2 days. No protease-resistant bands were seen in

the samples of [35S]-PrPC alone or [35S]-PrPC mixed with PrPSc pretreated with

6M GdnHC1. Also no labeled protease-resistant bands were seen in any

samples directly after mixing. Apparently, PrPC was converted to a protease-

resistant form like PrPSc, by incubation with PrPSc. The protease-resistant

material formed had similar elution profiles as PrPSC treated with PK
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(truncated by approximately 8 kDa). That is, it was partially protease-resistant

to the same extent as PrPSc and was cleaved at about the same site. An exact

match in apparent molecular weight was not expected because the PrPC and

PrPSC used in this experiment are derived from different sources (cell culture

vs. hamster brains), and have different elution properties, probably because of

differences in glycosylation which alter the apparent molecular weight.

Similar results were obtained with PrPC derived from two sources. The

details of the three experiments are discussed below.

The conversion experiment with the secreted PrP construct and the P4

preparation is shown in Figure 5.3. The PrPC used in this experiment has

been partly degraded resulting in the ladder of bands observed. As expected,

labeled protein was seen in all the samples without PK treatment, although

some degradation occurs over time, particularly in the sample of PrPC alone

(lane 9 vs. 11). Of the samples treated with 50 tg/mL PK, only the 2 day

incubations of PrPC with P4 (pretreated with 3M GdnHCl) showed any labeled

protein bands. The samples of PrPC alone, and PrPC mixed with P4 that was

treated with 6M GdnHCl, did not contain any protease-resistant labeled

protein. Apparently in those samples the PrPC was completely degraded to

small peptides.

Another experiment is shown in Figure 5.4. In this experiment, the

PrPC was from cells producing full-length hamster PrP and from the cell

lysates of the secreted PrP. These two preparations were mixed with P4.5

instead of P4. In this experiment most of the PrPC is converted to protease-

resistant material (7 times more protein was loaded into the PK-treated lanes)

after 2 days incubation with P4 in buffer (final GdnHCl conc. = 0.37 M) or P4

which had been treated with 3M GdnHCl. The two forms of PrPC show

differences in the protease-resistant product formed. In the case of MNB
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Figure 5.2 Immunoblots of SDS-PAGE analysis using an antibody raised to a
peptide corresponding to residues 90-103 (courtesy of David Kocisko).

Figure 5.3 SDS-PAGE-fluorography analysis of [35S]-PrP (secreted into the
medium) mixed with PrPSC (P4 preparation) that had been treated with
varying conditions. Lanes 1,3,6,7,9,11 sample not treated with PK. Lanes
2,4,5,8,10,12 samples treated with 50 .tg/mL PK final concentration. Lane 1-4
plus P4 in buffer; lanes 1&2, t=0, lanes 3&4, t=2 days. Lanes 5-8 plus P4 treated
with 3M GdnHCl; lanes 5&6 t=0, lanes 7&8 t=2 days. Lanes 9-12 plus P4
treated with 6M GdnHCl; lanes 9&10 t=0, lanes 11&12 t=2 days.

Figure 5.4 SDS-PAGE-fluorography analysis of [35 S]-PrP mixed with PrPSC
(P4.5). A. Hamster PrPC from MNB. B. Hamster PrPC from lysates of
secreting construct. For both A&B: Samples in even number lanes treated
with 10 gg/mL PK. Samples in odd number lanes not PK treated. Lanes 1-4
plus P4.5 in buffer. Lanes 5-8 plus P4.5 treated with 3M GdnHCl. Lanes 9-12
PrPC alone. Lanes 1,2,5,6,9,10 are samples at t=0. Lanes 3,4,7,8,11,12 are
samples at t= 2 days.

Figure 5.5 SDS-PAGE-fluorography analysis of [35 S]-PrP (secreted into the
medium) mixed with PrPSc (P4.5 preparation) that had been treated with
varying conditions. A. Samples not treated with PK. B. Samples treated with
10 tg/mL PK. For both A&B: lanes 1&2 plus P4 in buffer, lanes 3&4 plus P4
treated with 3M GdnHCl, lanes 5&6 plus P4 treated with 6M GdnHCl. Odd
lanes t=0, even lanes t=2 days.
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Figure 5.4

32.5 

27.5 -

18.5 -

Lanes

32.5 

27.5 -

18.5 -

Lanes

116



Figure 5.5

A

B

~9
K _i=

>=* = 

Lanes 1 2 3 4 5 6

117



hamster PrP, the dimeric band is converted to a shorter, apparently

monomeric band at about 24 kDa. Below this prominent band is a smear of

bands which may correspond to the conversion of the monomeric species.

The secreted form is converted to a prominent band at about 16 kDa with a

ladder of smaller bands below it. The lower molecular weight of the bands in

the secreted form may at least partly be due to differences in glycosylation. In

this experiment a lower concentration of PK was used (10 g/mL). In other

experiments using a higher concentration of proteinase K to assay for

protease-resistance, the conversion is approximately 10-20%. These

differences may reflect the fact that although protease-resistant, PrPSc is

eventually degraded by proteases.

A third experiment is shown in Figure 5.5. PrPC is derived from the

detergent cell lysate of the secreting construct and is mixed with P4.5 in this

experiment. The P4.5 was first suspended in buffer, treated with 3M GdnHCl

for 16 hr., or treated with 6M GdnHCl for 16 hr. PK treatment (final PK

concentration 10 gg/mL) was done at 0 and 2 days. As seen in the other

experiments, after 2 days protease-resistant protein was observed in the

samples of PrPC mixed with P4.5 suspended in buffer or treated with 3M

GdnHCl, but not in the sample mixed with P4.5 treated with 6M GdnHC1.

With the P4 preparation, the conversion is enhanced by treatment with 3M

GdnHCl. This enhancement was also seen in one experiment with the P4.5

preparation. Possibly the exposure of "fresh" surfaces enhances the

effectiveness of seeding.

In all three experiments, the formation of protease-resistant material

derived from PrPC was observed. Protease-resistance is one of the properties

that distinguishes PrPC from PrPSc. The formation of this material suggests

that PrPC is converted to PrPSc. Further evidence that the material formed is
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PrPSc is that the protease-resistant protein bands observed correspond to

protein that has been shortened by exposure to PK in the same manner PrPSC

is truncated. Apparently, the protein was accessible to PK, but only specific

regions were sensitive to protease digestion, as is the case for PrPSc purified

from the brains of infected animals. The shortening of PrP to protein seen as

discrete bands by SDS-PAGE is evidence for a specific conversion of PrPC into

a form similar to PrPSC.

Radiolabeled protease resistant bands were not observed in any of the

samples directly after mixing, or in samples of PrPC alone, or in samples

where PrPC was mixed with PrPSc that was first treated with 6M GdnHCl

(conditions known to irreversibly destroy protease-resistance and

infectivity2). This data suggests that some residual structure is required in the

PrPSC to cause the conversion to occur. It does not appear that the protease

resistance arises from non-specific trapping of PrPC in aggregates of PrPSc

because that would be expected to lead to nonspecific proteolysis products.

Also the PrPC mixed with the 6M GdnHCl-treated PrPSc is diluted to the same

conditions as the other samples but does not exhibit any protease-resistance.

Apparently having all the components of PrPSc present is not sufficient to

produce protease-resistance material. The PrPSc has to be in a particular

structure to bring about the conversion. The results are consistent with PrPC

folding into a structure, or being incorporated into an assembly, like PrPSc.

In this system, a large amount of "seed" is present compared to the

added PrPC being converted. The stoichiometry allows the conversion to be

detected even though the seeding may not be very efficient. The amount of

seed required may be substantially less under different conditions; more

experiments are required to determine the necessary stoichiometry.
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In these experiments, the requirements for the conversion of PrPC to a

protease resistant form are mixing it with PrPSc and diluting the denaturant.

The PrPSc can be treated with GdnHC1 (up to 3M) to partially denature it or

just suspended in buffer before mixing. It is not known if the PrPC has to be

unfolded to undergo the conversion. It may be that the exposure of

hydrophobic or other regions of the protein, which are not exposed in folded

forms of the protein, is required for PrPC to become protease-resistant.

Further experiments using PrPC purified under different conditions

(nondenaturing conditions) are needed to elucidate the requirements of the

structure of PrPC.

These experiments are the first example of PrPC being converted to a

protease-resistant form outside the machinery of the cell. No new protein

synthesis or virus replication is needed for this conversion to occur. Because

of the excess of PrPSc used in this experiment, the small amount of additional

infectivity from the converted PrPC cannot be detected in this experiment.

The next step is to cause the conversion without the use of PrPSc.

Improvements in the purification of PrPC will greatly help experiments of

this type. Also, additional structural information about the components will

help elucidate the mechanism of conversion.

Mechanisms for conversion of PrPC to PrPSC

Protected Nucleic Acid

Many proposals have been put forth to explain the unusual properties

of scrapie. Some investigators believe that the agent is viral in nature.6 This

proposal does not seem likely because no virus-like particles have been found

despite extensive searching. Also, the agent is not destroyed by conditions
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which would destroy all other known viruses. However, the putative virus

may have properties different from other viruses that cause it to elude

detection.

Because of the unusual nature of the agent, its important to keep an

open mind to different hypotheses, particularly testable ones. Although the

agent appears not to be a virus like any seen previously, it possibly contains a

well protected agent-specific nucleic acid in small amounts that is responsible

for replication or plays a role in infection. However, there is no evidence to

support this proposal. No agent-specific nucleic acid has been found.

Some investigators still believe other nonprotein components are

required to explain the characteristics of the infectious agent based upon three

lines of evidence: radiation target sizes, the number of molecules in an

infectious unit, and the existence of strains.7, 8

Radiation target sizes have been cited to support the small size (relative

to a virus) of the scrapie agent.9 Deactivation by ionizing radiation is based

on the premise that when struck by high energy radiation, the

macromolecule of interest will be completely destroyed (by some unknown

mechanism).' 0 The likelihood of the macromolecule being hit will be

proportional to its size. This method has been useful for determining

enzyme volume. This method has been used to try to measure the size of the

scrapie agent. However, it is unclear whether this type of determination

would be accurate for an aggregate that seeds the polymerization of more

protein. The "activity" of the aggregate would depend on the number of

surfaces exposed. Destruction of protein inside the aggregate may have no

effect on the aggregate or possibly break it up into smaller oligomers which

have more surfaces for polymer growth to occur. Without knowledge of the

nature of the agent, it is difficult to interpret the data from these experiments.
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Another piece of data cited as evidence for various theories is the

number of molecules of PrP in an infectious unit. This number has been

calculated to be 105 PrP molecules for preparations of PrP as rod-like

particles.ll, 12 That is, dilution of the infectious agent below 105 PrP

molecules will eliminate infectivity. These rods could be dispersed into

liposomes which were calculated to have 2-4 PrP molecules each. 13 These

investigators stated that this data was consistent with an infectious unit

containing 2-4 PrP molecules. That is, they believed a liposome of 2-4 PrP

molecules was infectious. However, the infectivity was only increased by 10-

fold (going from rods to liposomes). This result means that 104 of these

liposomes were required for an infectious unit. The main problem with

using the size of, or number of molecules in, an infectious unit as evidence

for the nature of the agent is that the effectiveness of infection is unknown. If

the majority of the inoculum is disabled by the host, the number of particles,

or size of the particles in the infectious unit will appear much larger, not

because large particles are required, and not because only a small percentage of

the particles have the potential for infectivity, but because only a small

percentage of the potentially infectious particles reach their site of action.

Without knowledge of the mechanism of infection, this data is also difficult

to interpret.

The different strains of scrapie observed are difficult to explain without

invoking the involvement of nucleic acid. 14 Genetic material in the

infectious agent would help explain the different strains seen. Although

there are nucleic acids associated with preparations of the scrapie agent, they

are generally only 50-100 bases in length; this size is insufficient to encode

even a small protein. Conceivably, this nucleic acid interacts with the host in

some way to cause phenotypic differences in the disease. It is already
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established that differences in the PrP sequence cause phenotypic differences

in the disease. 12 , 15 The search for such a nucleic acid is fraught with

problems. Amplification of DNA or RNA by polymerase chain reaction

(PCR) can lead to artifactual amplification of contaminants. Also, without

information on the nucleic acid you are looking for, it is difficult to choose

the appropriate primers. Further purification of the infectious agent will

probably be necessary to determine if such a molecule is involved.

Weissmann's Proposal

Weissmann has proposed what he calls a "unified theory" of prion

propagation.1 6 In his proposal, Weissmann suggests that the infectious agent

consists of two components: PrPSC (the apoprion) and a nucleic acid

component (coprion). He states that PrPSc itself is pathogenic but the

phenotypic properties are caused by a nucleic acid which can be exchanged

with host nucleic acid. He states that a testable hypothesis from this proposal

is that the strain variation should depend on preparations of agent containing

nucleic acid. If nucleic acid can be removed from preparations of agent, strain

variations should be removed.

In the majority of studies of strain variation, crude brain homogenates

are used in the passage experiments. The greater the number of

manipulations the greater the risk of contamination with agent from other

preparations. However, semipurified preparations (nuclease or protease

treated) can be used and maintain the characteristics of the strain (Richard

Bessen, personal communication). However, it is difficult to completely

remove all the nucleic acid because high resolution conditions (e.g. SDS-

PAGE, HPLC) which might be able to purify the protein to homogeneity
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eliminate infectivity. This problem makes it difficult to test Weissmann's

theory.

In addition, it is unclear how this small, interchangeable nucleic acid

could causes the strain differences, and why this nongenomic nucleic acid is

associated with the agent.

Griffith's Proposal

If the infectious agent is devoid of genetic material, how might it

work? As discussed briefly in Chapter 1, Griffith proposed three mechanisms

for how this might be possible, one of which still may be applicable. 17 Given

protein subunits 0U which can undergo the following reactions:

U2 + a > U3

U3 + o > 4

a4 -> 2a2

and if

( + -> (X2

cannot occur directly, then the dimerization of UX can only occur if oC2 is

already present. Griffith postulated that this reaction scheme might be

reasonable if a is generally found in a different conformation, Uo', which does

not undergo the conversion. This conformational change could be facilitated

by higher oligomers of (X. Therefore, the spontaneous conversion would be

very rare but the presence of higher oligomers could catalyze its conversion.

This mechanism is not specific, and of course, it does not account for all the

details elucidated in the intervening years, but in general terms, it
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encompasses many of the protein-only explanations that have appeared in

the literature.

Prusiner's Proposal

Prusiner has put forth a mechanism for this conversion on several

occasions. 12 , 18, 19 In his proposal, the conversion of PrPC to PrPSc is caused

by the formation of a heterodimeric complex between the two forms, which

catalyzes the conversion of PrPC to PrPSC (see Figure 5.6). According

toPrusiner, this conversion is a conformational change where regions of Ct-

helices are converted to -strands or -sheets. 19 The new homodimeric

complex of PrPSC then dissociates, producing two molecules of PrPSc to

continue the process. The spontaneous conversion of PrPC would

presumably be too slow to occur but favorable thermodynamically.

Complexation of PrPSC with PrPC would lower the activation barrier.

One problem with this mechanism is that the "enzyme" (PrPSc) would

be severely inhibited by the product because the dissociation rate is very

unfavorable as determined by the low solubility. Most of the PrPSC would be

in an aggregate rather than monomeric. Also, there are no examples of two

stable, kinetically trapped protein conformers. It is unclear how the

conversion would take place and whether folded PrPC interacting with PrPSc

would be sufficient for the conversion.

Even Prusiner may no longer favor this mechanism, as a recent

publication from his group does not discuss formation of a heterodimer,

although interactions between PrPC and PrPSC are invoked.20 Prusiner also

does not, as he has in the past, specifically rule out the role of

oligomerization. 12, 19, 21 Oligomerzation is crucial in other mechanisms
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Figure 5.6. Prusiner's model for the transmission of the prion diseases.

which have been presented previously (see seeded polymerization below). 22 ,

23, 24 In this recent article Prusiner also discusses for the first time the

possible importance of the unfolding of PrPC in the transformation. The

possible requirement of unfolding PrPC has been proposed previously but was

not referenced. 2 3

The Seeded Polymerization Model

A seeded polymerization mechanism (Figure 5.7), which is consistent

with the peptide studies described herein, may be more likely. In this

mechanism, PrPSc acts as a nucleus for the polymerization of PrPC.22 , 23, 24

The conformation of PrP in PrPSc is stabilized through intermolecular

interactions. Normally, PrP does not form aggregates but is degraded by the

cell, possibly because the formation of polymers follows a nucleation-

dependent mechanism. In this mechanism, small oligomers are unstable and

revert back to monomers until the nucleus is reached; after this point, the
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Figure 5.7. Seeded polymerization model for the prion diseases.
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addition of more PrP becomes energetically favorable. If the polymerization

process is too slow, the protein will be drawn off by other pathways, such as

proteolysis. In this mechanism, PrPC can access the conformation of PrPSc

under certain conditions to which it is exposed, but the conversion of PrPC to

PrPSc does not take place because the concentration of PrP is insufficient for

nucleus formation to occur at a significant rate. The concentration of PrP may

be sufficient to support growth on nuclei already present, however.

Infection could occur by the introduction of oligomers onto which PrP

can grow. The direct contact of PrPSc and folded PrPC may not be sufficient for

this to occur. As in many cases of inclusion body formation, polymerization

may require the partial unfolding of the aggregating protein. Partial

denaturation increased the aggregation tendency of apomyoglobin 2 5 and

transthyretin. 26 Unfolding can expose hydrophobic residues which provide

crucial intermolecular contacts. In this scenario, the unfolded protein (PrPU)

is sampling many different conformations, including conformations similar
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to PrPSc, but none of these are stable without the formation of intermolecular

interactions. The introduction of a nucleus of PrPSc would allow PrPU to

grow on the surface, bypassing nucleation.

Possibly, some combination of Prusiner's mechanism and the seeded

polymerization mechanism is at work. For instance, the PrPU may form a

complex with the nucleus of PrPSc and then undergo a realignment to the

most tightly binding conformation. The formation of less specific

hydrophobic interactions may bring two molecules in contact, increasing the

likelihood of the proper interactions forming. In a sense then, PrPSc is

catalyzing the conformational change by stabilizing the aggregating

conformer.

Additional molecules may also be required for the conversion of PrPC

to PrPSc. Proteoglycans, such as heparin, are found bound to PrP in

preparations of the infectious agent and also bind to PrPC in vitro.4 This

interaction may be largely electrostatic between the negatively charged

proteoglycan and the positively charged PrP. The proteoglycan may serve to

bind PrP molecules together. Other molecules could also act as cofactors in

the assembly of PrPSc.

How can the existence of strains be explained? Strains are difficult to

explain in a protein-only model. Strains may be caused by PrPSc being

targeted to different regions of the brain. If accumulation was more likely in

one part of the brain or another, differences in symptoms might be expected.

But how could PrP be targeted to specific regions of the brain? There might be

information in the tertiary structure that makes certain cell types more

susceptible. The differently glycosylated forms of PrP may also play a role in

targeting PrP to certain cell types. Possibly, different cell types have

differences in glycosylation which make the fit between PrPSc and PrPC better

128



in certain regions of the brain. This selectivity may then be passed on because

the PrPSC would develop in the region of the brain with the best match.

Rectifying the characteristics of the scrapie agent (particularly the existence of

strains) with the data on the physical nature of the scrapie agent remains one

of the great puzzles in biology.

EXPERIMENTAL

General Procedures

PrPSc was purified from scrapie infected hamster as described previously. 27

PrP was analyzed by SDS-PAGE using a NOVEX gel apparatus and prepoured

14%, 1 or 1.5 mm denaturing polyacrylamide gels (NOVEX) or on a PhastGel

system (Pharmacia) using 20 % denaturing polyacrylamide gels. Proteins

were visualized by immunoblotting, or in the case of radiolabeled protein, by

fluorographic detection.4 Protein concentrations were determined by BCA

assay using BSA as standard. Cells were metabolically labeled with [35S]

methionine and PrP immunoprecipitated from detergent lysates as described

previously.4 The PrPC was eluted with 3M GdnHC1. The P4 preparation was

approximately 7 ig/iL in protein. The P4.5 preparation was approximately 4

tg/CL in protein. Tris buffer refers to 10 mM Tris, 100 mM NaC1, at pH 7.4.

SDS-PAGE sample buffer: was mmol EDTA, 5% SDS (w/v), 6% urea (w/v),

4% -mercaptoethanol (v/v), .05 % bromophenol blue (w/v) in 10 mmol Tris,

pH 8.3. Pefabloc® was used at 0.1 mmol (5X = 0.5 mmol).

Experiment shown in Figure 5.1.

PrP purified from the medium containing the cells with the secreted

construct was mixed with P4 treated in 2 ways: A) To P4 (3 ~tL) was added 6 RL
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of 9M GdnHCl and B) to P4 (3 L) was added 3 gL H 2 0 followed by 3 ~LL 9M

GdnHCl. After 16 hrs to A was added 9 ptL Tris bufffer, to B was added 9 gtL

3M GdnHCl. Both samples are now X gg/tL in protein in 3M GdnHCl. Three

samples of PrPC were made (final volme 32 pL).

Sample 1: 4 gL A plus 4 .tL [35S] PrPC

Sample 2: 4 pL B plus 4 pL [35S] PrPC

Sample 3: 4 iL 3M Gdn HC1 plus 4 iL [35S] PrPC

To all samples 24 tL Tris buffer was added. After about 5 min and after 2 days

the samples were treated as follows: 15 L (1/2) was diluted with 65 iiL Tris

buffer, 70 pL of this sample was added to 3.5 L of a 1 mg/mL solution of PK

and incubated at 370C for 1 hr. Then 15 L of a 5X (0.5 mmol) of Pefabloc®

was added and incubated for 10 min. The remaining 10 L was diluted with

40 gL Tris buffer and treated as the PK-treated samples. To all samples, 20 Ctg

of thyroglobulin (in 4 L) was added as a carrier followed by 350 L of cold

MeOH. The samples were kept at -20 0C for 2 h. and then spun down at

14,000g for 10 min. The MeOH was removed and the pellet taken up in 24 tL

of SDS-PAGE sample buffer, boiled, and loaded onto Novex 1.5 mm 14%

denauring polyacrylamide gels.

Experiment shown in Figure 5.2

PrP purified from detergent cell lysates from both cells with the

secreted construct and from the MNB cells and mixed with P4 treated in 2

ways: A) To P4 (4 L) was added 24 L of Tris buffer, and B) to P4 (3 IL) was

added 3 tL H 20 followed by 3 L 9M GdnHCl. After 6 hrs., three sample of

PrPC for each construct were made (final volume 16 L).

Sample 1: 14 pL A plus 2 pL [35S] PrPC
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Sample 2: 2 L B plus 2 RtL [35S] PrPC

Sample 3: 2 L 3M Gdn HC1 plus 2 gL [35S] PrPC

To samples 2&3, 12itL of Tris buffer was added. After about 5 min and after 2

days the samples were treated as follows: To 7 4L (-1/2) 33 pL Tris buffer was

added. 35 gL of this sample was added to 3.5 4L of a 0.1 mg/mL solution of PK

and incubated at 370C for 1 h. Then 7 gL of a 5X (0.5 mmol) of Pefabloc® was

added and incubated for 10 min. The remaining 5 RL was diluted with 20 L

Tris buffer and treated as the PK-treated samples. To all samples, 20 g of

thyroglobulin (in 4 L) was added as a carrier followed by 200 L of cold

MeOH. The samples were kept at -20 0C for 2 h. and then spun down at

14,000g for 10 min. The MeOH was removed and the pellet taken up in 20 L

of SDS-PAGE sample buffer, boiled, and loaded onto Novex 1.5 mm 14%

denaturing polyacrylamide gels.

Experiment shown in Figure 5.3

PrP purified from the detergent cell lysates derived from the cells with the

secreting construct was mixed with P4.5 treated in 3 ways: A) To P4.5 (3 pL)

was added 6 tL of Tris buffer, and B) to P4.5 (3 ptL) was added 3 giL H 20

followed by 3 L 9M GdnHCl, and C) to P4.5 (3 jL) was added 6 iL of 9M

GdnHCl. After 16 hrs, three samples of PrPC were made (final volume 16, 24,

and 24 pL).

Sample 1: 2 pL A plus 12 pL Tris buffer plus 2 pL [35S] PrPC

Sample 2: 2 gL B plus 2 tL 3M GdnHCl plus 2 L [35S] PrPC plus 18 pL Tris

buffer

Sample 3: 2 L C plus 2 pL [35S] PrPC plus 20 pL Tris buffer
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After about 5 min and after 2 days the samples were treated as follows: For

sample 1: 8 p.L (-1/2) was diluted with 60 gL Tris buffer plus 4 gL 3M GdnHC1.

For samples 2&3, 12 pL was diluted with 64 L Tris. Then for all samples, 63

pL of this sample was added to 6.5 L of a 0.1 mg/ml solution of PK and

incubated at 370C for 1 h. Then 13 pL of a 5X (0.5 mmol) of Pefabloc® was

added and incubated for 10 min. The remaining 7 gL was diluted with 20 tL

Tris buffer and treated as the PK-treated samples. To all samples, 20 pIg of

thyroglobulin (in 4 L) was added as a carrier followed by 330 pL of cold

MeOH. The samples were kept at -200C for 2 h. and then spun down at

14,000g for 10 min. The MeOH was removed and the pellet taken up in 24 pL

of SDS-PAGE sample buffer, boiled, and loaded onto Novex 1.5 mm 14%

denauring polyacrylamide gels.
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Appendix A

Methods to improve the synthesis of hydrophobic peptides

Hydrophobic peptides can be difficult to synthesize and purify in

substantial quantities. Aggregation can occur during both synthesis on a solid

support and in the subsequent purification. Peptides of more than about 15-

20 residues with a large percentage of hydrophobic, and in particular, P-

branched residues, are usually only slightly soluble in aqueous or organic

solvents. When peptides of this type are synthesized in a stepwise manner,

small quantities of a large number of different deletion impurities will likely

form. These impurities will be difficult to separate from the desired product

at the end of the synthesis. One way to circumvent this problem is to produce

smaller fragments, which are more easily purified to homogeneity, and then

couple these fragment together to produce the final product. In this manner,

the final purification involves only the separation of peptides which differ

significantly in molecular weight.

In addition to fragment coupling, other methodology is needed to

improve the synthesis of difficult sequences. Temporary modifications of the

peptide chain to increase its solubility may help in both synthesis and

purification. Also a method to purify peptides without HPLC would may

increase the yields of hydrophobic peptides. These two methods will be

discussed in the appendix.

Amide Protection by Alkylation

Alkylation of the amide nitrogen in hydrophobic peptides greatly

increases their solubility in organic solvents. Optimally this alkylation
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should be compatible with the other protecting groups used in solid-phase

peptide synthesis. We set out to place substituted benzyl groups on selected

amide nitrogens to improve the solubility of these peptides. The 4-

methoxybenzyl group is easily placed onto an amino acid according to a

literature procedure.1 The amino group can then be protected at a t-

butylcarbamate (t-boc). Attempts to use such an amino acid in a stepwise

synthesis led to a low level of incorporation. In order to avoid the problems

associated with placing such a low yielding step in the middle of a multi-step

solid-phase synthesis, the coupling at the benzyl amine was done in solution,

and the resulting dipeptide purified by silica gel chromatography and used to

synthesize larger peptides. The synthesis of these peptides was done

according to the scheme shown below.
x x

Boc-AA Base 
x Ups BocA (N,,,kCO2R No",2H

N -- COR Coupling
2R ing tBocHN -- O tBocHN oReagentR2 R2

This protecting group (4-methoxybenzyl) was incorporated into 34-42

at two positions, Gly 37 and Val 39. This modification greatly increased the

solubility in organic solvents. For instance, this protected peptide was freely

soluble in MeOH. It was uncertain, before the synthesis, whether this

protecting group could be removed by HF. Attempts to deprotect this peptide

by treatment with anhydrous HF were unsuccessful. The placement of an

additional methoxy group on the benzene ring would make this moiety labile

in acid. Since this work was started a similar protecting group 2-hydroxy-4-

methoxybenzyl has been shown to be an effective protecting group in the

synthesis of 1-432.
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Affinity Purification

A method for extracting the peptide of interest directly out of the

cleavage mixture would be of great help in the production of peptides,

particularly longer hydrophobic peptides which are not as easily purified by

methods employing aqueous solvents systems, such as HPLC. A method has

been developed by Irving Sucholeiki in the Lansbury lab where the last

amino acid contains a protected thiol group. This thiol can be deprotected

and attached to a solid support to separate all the components with this group

(ideally only the full length peptide) from other impurities (particularly

truncated, acetylated peptides). The protecting group is shown below.

QtN102 ' amino acid
2

This group (nitro-Irvoc) can be removed by 100% TFA. In order to make it

more acid stable, a nitro version was synthesized by the same basic procedure.

This protecting group was incorporated into a 10 amino acid peptide (PrPl10-

119). The thiol moiety can be freed by treatment with dithiothreitol and DIEA

in DMF. The thiol containing peptide can then be attached to an

iodoacetamide resin, nonbinding material washed away, and the peptide

cleaved from the resin with 10% TFMSA in TFA to give pure peptide in

moderate yield. The synthesis was done following the scheme outlined

below.
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EXPERIMENTAL

Preparation of N-(4-methoxybenzyl) valine methyl ester (JHC2-123)
Valine methyl ester HCl (5.0g, 30 mmol) and p-anisaldehyde (4.0mL, 33

mmol) were dissolved in 70 mL methanol and 5 mL acetic acid. To this
solution sodium cyanoborohydride (1.5g, 25 mmol) was added as a solid.
After 16 hours the solvent was removed and the residue taken up in CH2C12
(100mL) and 1N HC1 (100mL). The organic layer was concentrated to a white
solid which was triturated with 1:1 diethyl ether/hexane, filtered, and dried to
6.2g (21.6 mmol, 72%) of a white solid. Rf 0.29 (1:1 EA/Hex) as the free amine.
NMR(HC1 salt) (300MHz, CDC13) 6 7.51 (d, 2H, J= 7.1Hz) 6.80 (d, 2H, J=7.1 Hz)
4.21 (d, 1H, J=13.3 Hz) 4.13 (d, 1H, 13.3 Hz) 3.75 (s, 3H) 3.40 (d, 1H, J=4.5 Hz) 2.61
(m, 1H)

Preparation of t-Boc-Gly-Val(N-4-methoxybenzyl)-OMe (JHC2-139)
N-(4-Methoxybenzyl) valine methyl ester HC1 (2.43g, 8.5 mmol and t-

Boc-Gly-OH (2.2g, 12.8 mmol) were dissolved in 25 mL DMF. To this solution
6.0g (12.8 mmol) PyBrop was added along with 4.5 mL (26.4 mmol) DIEA.
After 18 hours an additional 2.0g (4.3 mmol) PyBrop and 1.5 mL (8.8 mmol)
DIEA were added and the reaction stirred at room temperature. After 48
hours the solvent was removed under reduced pressure, and 0.5N NaOH(aq)
and CH 2C1 2 were added. The layers were separated and the organic layer was
washed with 1N HC1, dried over MgSO 4, and concentrated to a brown oil.
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This was purified by flash silica chromatography (1:3 EA/Hex) to give 1.85g,
4.5mmol (53%) of a yelllow oil. Rf 0.27 (1:1 EA/Hex).

Preparation of t-Boc-Gly-Val(N-4-methoxybenzyl)-OH (JHC2-147)
Boc-Gly-Val(N-4-methoxybenzyl)-OH (1.7g,4.16 mmol) was

dissolved/suspended in 50 mL methanol and 30 mL 1N NaOH(aq) at room
temperature. After 18 hours, the methanol was removed. The solution was
acidified to pH4 with 80 mL 10% citric acid and extracted with CH2C12. The
organic layer was dried over MgSO4, filtered, and concentrated to 1.4g, 3.55
mmol (85%) a white foam. Rf 0.18 (1:1 EA/Hex)

Preparation of N-(4-methoxybenzyl)-glycine methyl ester (JHC2-149)
Glycine methyl ester (12.5g, 0.1 mol) and p-anisaldehyde were dissolved

in 150 mL methanol and 12 mL acetic acid. To this solution 5.2g (83 mmol)
sodium cyanoborohydride was added as a solid. After 48 hours, the solvent
was removed and H 20 and CH 2C12 were added. The solution was then taken
to pH8 with NaOH. The layers were separated, and the organic layer was
dried over MgSO4, concentrated to an oil, and purified by flash silica
chromatography (25%EA/Hex,50%EA/Hex, 50%EA/Hex with 1%NEt 3) to
give 8.0g, 0.038 mol (38%) of a brown oil. Rf 0.2 (60%EA/Hex). NMR (300
MHz, CDC13) 67.5 (d, 2H, J=9Hz) 6.9 (d, 2H, J=9Hz) 3.85 (s, 3H) 3.78 (s, 3H) 3.42
(s, 3H)

Preparation of t-Boc- Val-Gly(N-4-methoxybenzyl)- OMe (JHC2-155)
N-(4-Methoxybenzyl)glycine methyl ester (2.08g 10 mmol) and Boc-Val-

OH (2.6g, 12 mmol) were dissolved in 30 mL DMF. To this solution PyBrop
(7.0g, 15 mmol) and 5.1 mL (30 mmol) DIEA were added. After 24 hours 3.0g
(6.4 mmol) more PyBrop was added. After 6 hours more, the solvent was
removed; CH 2C1 2 and 0.5 N NaOH(aq) were added. The layers separated, and.
the organic phase was washed with 10% citric acid, dried over MgSO4,
concentrated to a brown oil, and purified by flash silica chromatography (10-
20-25%EA/Hex) to give 1.72g ,4.2 mmol (42%) of a colorless oil. Rf 0.51 (60%
EA/Hex).

Preparation of t-Boc-Val-Gly(N-4-methoxybenzyl)-OH (JHC2-157)
Boc-Val-Gly(N-4-methoxybenzyl)-OH 1.7g (4.2 mmol) was

dissolved/suspended in 100 mL 2:1 methanol/ 0.8 N NaOH. After 4 hours
the methanol was removed and 10 mL 6N HC1 was added to bring the pH to
0. The suspension was extracted with CH 2Cl2, dried over MgSO4, and
concentrated to 1.44g (3.6 mmol, 87%) of a white foam. Rf 0.26 (1:1 EA/Hex)

Synthesis of Boc-LMVG(N-Mbz)GV(N-Mbz)VIA-oxime resin
The synthesis was started with 2.0g (0.6 mmol/g) of Boc-Ala-oxime

(JHC2-161). The resin was acetylated with Ac 2O and DIEA for 4 hours. The
deprotections were 30 min. long with 25% TFA/CH 2Cl 2,and the couplings
were in DMF with 3 eq amino acid, 3 eq BOP, and 5.3 eq DIEA for the single
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amino acids. The alkyl dipeptides were coupled 3.5 eq BOP, 5.3 eq DIEA, and
1.5 eq of the dipeptide. The dipeptide coupling reactions gave faint blue
Kaiser tests and were followed by exhaustive acetylation. The only
problematic single amino acid coupling was the final one which was double
coupled. This problem exhibited itself in the crude cleaved material. The
resin was taken directly on to be cleaved with 120 mg HOPip in CH 2C12 for 16
hours. This was filtered, the solvent was removed, and the residue dissolved
in acetic acid to which Zn was added. After 4 1/2 hours, the reaction was
filtered, washed with acetic acid, concentrated to about 5 mL, and precipitated
with H 20, to give 0.46g of a white powder. Two major products were purified
by HPLC. 169-1 FABMS 1086, 980 169-2 FABMS 1199 MH+ 1221 MNa+ , 1151,
1099, 898, 756 Purification of 200 mg crude material gave 50 mg 169-2 (85-90%
pure)

Treatment of 9*mer (JHC2-169-2) with HF
The protected peptide (10 mg) was treated with 0.2 mL thioanisole, 0.2

mL m-cresol, 4.5 mL HF at 0°C for 1 hour. The HF was removed under vacuo
and the residue dissolve in DMSO. HPLC analysis revealed no products
which coelutes with H 2N-34-42-OH.

Preparation of Nitro-Irvoc-K(Boc)H(Bom)MAGAAAG-OH

Preparation of 4'-Nitro-2-(t-butylsulfhdryl)acetophenone
To a suspension of sodium hydride (0.84g, 20.5 mmol) in dry THF, t-

butyl mercaptan (2.3 mL, 20.5 mmol) was added in THF. To this suspension,
4'-Nitro-2-bromoacetophenone (5.0g, 20.5 mmol) was added at 0°C in THF
over 5 minutes. After 1 hour the solvent was removed, and the residue was
dissolved in chloroform and washed with water. The organic was dried and
concentrated to 5.0g, 19.7 mmol (96%) of an orange oil. Rf 0.41 (CHC13).
NMR(300MHz, CDC13) d8.3 (d, 2H, J=9Hz) 8.1 (d, 2H, J=9Hz) 3.9 (s, 2H) 1.3 (s,
9H)

Preparation of 2-(4'-Nitrophenyl)-2-hydroxyethyl t-butylthioether (JHC2-137)
4'-Nitro-2-(t-butylsulfhdryl)acetophenone (5.0g, 19.7 mmol) was

dissolved in 100 mL methanol, and to this solution 0.38g (10mmol) sodium
borohydride was added at 0°C as a solid. The reaction went from red to deep
purple. After 30 minutes the solvent was removed. Water and CH 2C12 were
added, and the organic layer was dried, concentrated to an orange oil, and
purified by flash silica chromatography (Hex, 1:1 Hex/CHC13, CHC13, 1%
MeOH/CHC1 3) to give 3.36g,13.2 mmol (67%) of an orange oil. Rf 0.16 (CHC13)
0.57 (1%MeOH/CHC1 3). NMR(300MHz, CDC1 3) d8.20 (d, 2H, J=9Hz) 7.55 (d,
2H, J=9Hz) 4.8 (m, 1H) 3.12 (d, 1H, J=3Hz) 2.95 (dd, 1H, J=13Hz, 4.5Hz) 2.72 (dd,
1H, J=13Hz, 9Hz) 1.3 (s, 9H)

Preparation of 2-(4'-Nitrophenyl)-2-hydroxyethyl t-butylthioether phenyl
carbamate(JHC2-141)
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2-(4'-Nitrophenyl)-2-hydroxyethyl t-butylthioether (3.35g, 13.1 mmol)
was dissolved in dry CH 2C12 with 1.34 mL pyridine. To this solution 1.6 mL,
13.1 mmol phenyl chloroformate was added as a neat liquid. After 2 hours
the reaction was poured into H 20, and the layers separated. The organic was
dried, concentrated, and purified by flash silica chromatography (25-50-100%
CH2Cl2/Hex) to give 4.37g, 11.6 mmol (89%) of a yellow oil. Rf .71 (0.5%
MeOH/CH2C12) NMR (300MHz, CDC13) d8.2 (d, 2H, J=9Hz) 7.6 (d, 2H, J=9HZ)
7.3 (d, 2H, J=9Hz) 7.21 (m,lH) 7.12 (d, 2H, J=9Hz) 5.80 (t, 1H, J=7Hz) 3.15 (dd,
1H, J=13.2 Hz, 7.0Hz) 2.95 (dd, 1H, J=13Hz, 7Hz) 1.31 (s, 9H).

Preparation of N02-Speoc-Lys (JHC2-145)
Triton B (2.0 mL, 40% in MeOH, 3.6 mmol) was added to 1.1g, 4.5 mmol

of t-Boc-Lys-OH. This was heated to 60°C until homogeneous and the solvent
was then removed under vacuum. Twice DMF was added and the solvent
removed and then the phenyl carbamate was added inlO mL DMF. The
solution was heated to 65°C for 4 hours, then let stand at RT overnight. The
DMF was removed, H 20 and CH 2C12 were added, and the aqueous layer was
acidified to pH2 with 6N HCL. The aqueous was extracted with CH2Cl2, and
the organic layer was dried and concentrated to an orange oil. This was
purified by flash silica chromatograpy (10, 50%EA/Hex then 1/1 EA/Hex w/
1% HOAc) to give 0.5g of a brown oil (0.95 mmol, 26%) Rf 0.5 (3/1 EA/Hex
w/2% HOAc).

Preparation of N02-Irvoc-Lys (JHC2-153)
N02-Speoc-Lys(e-Boc) (0.48g, 0.91 mmol) was dissolved in 7 mL HOAc,

3 mL DMF, 0.7 mL H20. To this 1.1 eq of 2-Nitrophenylsulfenyl chloride was
added in 1 mL DMF. After 4 hours the solvent was removed, H 20 and
CH 2Cl 2 were added and the layers separated. The organic was dried,
concentrated to an oil and purified by flash silica chromatography (Hex, 1/1
EA/Hex, 3/1 EA/Hex) to give 0.301g, 0.48 mmol (53%) of a yellow foam.

Synthesis of Nitro-Irvoc-K(Boc)H(Bom)MAGAAAG-Rink acid resin
Fmoc-Gly-OH was attached to the Rink acid resin to a substitution level

of 0.18 mmol/g as determined by quantitative ninhydrin. The deprotection
were 10-15 min. with 1/1 DMF/piperidine. The reagents were added in the
following order: 3 eq DIEA, 0.5 eq HOBt, 3 eq Fmoc-aa, 1.5 eq BOP and coupled
for 30-40 minutes followed by acetylation. The first coupling (Ala) was double
coupled. The final coupling used 2.5 eq of N02-Irvoc-Lys(Boc)-OH and gave a
positive (though qualitatively less blue) Kaiser test.

Cleavage and purification of Nitro-Irvoc-K(Boc)H(Bom)MAGAAAG-OH
The resin (1.lg) was shaken with 10 mL 1%TFA/CH2Cl2 and filtered

into 2 mL MeOH/0.2 mL pyridine. This was repeated a total of 4 times, and
the solvent was removed to give 0.94g of a yellow solid (contains salt). The
amount of Nitro Irvoc containing protecting was assayed for by treatment of
portions of the crude mixture with DIEA and -mercaptoethanol (BME) in
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DMF to release the 2-nitrothiophenol. (Extinction coefficient 1680cm -1 M-1).3
3.41 mg crude was dissolved in 1 mL DMF. To 0.7 mL of this solution .04 mL
DIEA and .04 mL BME was added; the absorbance at 490 nm was 0.71. This
assay was repeated with 2.62 mg of crude material dissolved in 2 mL DMF, 0.4
mL DIEA, and 0.4 mL BME to give a solution with an absorbance at 490 nm of
0.37. The peptide was calculated to be approximately 25 % of the crude
product from this assay. This percentage was used to calibrate the amount of
resin used in the affinity purification.

Affinity Purification
Crude reaction mixture (50 mg) from the cleavage of Nitro-Irvoc-

K(Boc)H(Bom)MAGAAAG-OH was diisolved in 4 mL DMF. To this solution
1.6 mg dithiothreitol (DTT) in 0.1 mL DMF and 0.05 mL DIEA was added. The
solution turned red. After 15 min. 100 mg iodoacetamide resin (provide by I.
Sucholeiki as described in ref X) was added with stirring. Within 1 min. the
solution became colorless. After 3 hrs. the resin was filtered, washed with
DMF, MeOH, and CH2C12, and dried to 102 mg. A portion (82 mg) was treated
with 5% TFMSA/TFA at 0°C for 30 min and then warmed to room
temperature and stirred for an additional 80 min. The reaction was then
filtered and the filtrate concentrated by passing a stream of nitrogen over it.
The residue was treated with Et2O, centrifuged, and dried to 3.4 mg, 2.8 gtmol,
43% yield.
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