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Abstract

The thesis consists of two inc.ependent parts. In the first part, we use
the presentation functor to construct a stratification for the compacti-
fied Picard scheme of a family of geometrically integral varieties, given a
partial normalization of the family. For a family of curves we show in a
special case that each stratum is an open subscheme of a certain Grass-
manian over the compactified Jacobian of the partial normalization. We
also use a variant of the presentation functor to find a natural projective
compactification for the Picard scheme of a smooth in codimension 1
variety, partially answering a question raised by Altman and Kleiman.
Finally, we extend the notion of the Theta divisor to the compactified
Jacobian of any family of curves, and show that the Theta divisor is
ample. In the second part, we repizce the sheaves of principal parts on
a flat family of reduced, local complete intersection curves by sheaves
of algebras that behave like the sheaves of principal parts on a smooth
family. Then we associate to each linear system on the family a Wronski
system, as defined by Laksov and Thorup. By applying their general
theory of Wronski systems we obtain in particular a Weierstrass divisor
on the family if there are no degenerate components on a general fibre.

Thesis supervisor: Steven L. Kleiman, Professor of Mathematics
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PART I

The Presentation Functor

1. Introduction.

This part of the thesis partially generalizes the theory of the presen-
tation functor, as developed by Altman and Kleiman [6], to the case of
families of geometrically integral varieties. In addition, and most impor-
tantly, we apply the theory to obtain new results about the compactified
Picard scheme.

The presentation functor allows us to understand the compactified
Picard scheme of a singular variety in terms of the Picard scheme of
its normalization. In other words, it allows us to understand torsion-
free, rank 1 sheaves on a singular variety in terms of line bundles on a
substantially less singular variety (even smooth, in case of curves.)

The presentation functor was introduced by Oda and Seshadri [30] in
the context of nodal, possibly reducible curves, even though the local
picture was already considered by Rego [31], whose article was never-
theless published after [30]. The results about the presentation functor
obtained by Oda and Seshadri were later generalized by Kleppe [17],
who worked with nodal, integral curves.

Altman and Kleiman [6] treated the more general case of families of
nodal and cuspidal integral curves. In fact, they did considerably more.
They started with a relatively birational morphism 7: X’ — X between
families X/S and X'/S of geometrically integral curves. They defined
the presentation functor associated to m (see (2.3)) and proved that iis
étale associated sheaf is represented by a scheme P. Assuming that
on every fibre X(s) at most a node or a cusp Q(s) is blown up under
7(s), they showed that P is a P!-bundle over the compactified Jacobian
J' of X'/S. On the other hand, they considered the canonical map
x: P — J onto the compactified Jacobian J of X/S, and proved that x
is an isomorphism over the open subset of J parametrizing torsion-free,
rank 1 sheaves invertible at @, and that « is a 2-to-1 contraction over
the complement (which is isomorphic to J'.)

(1.1) Assume that S is the spectrum of an algebraically closed field for
the following description. Let @ be the conductor of 7, namely,

Q@ := Supp (mbOx/

)7
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where “Supp” denotes the scheme-theoretic support.

Our point of view is to think of Altman’s and Kleiman’s results as giv-
ing primarily a stratification of J in two subschemes: an open subscheme
that is also an open subscheme of a P!-bundle over J', and a closed sub-
scheme that is isomorphic to J'. In general, the key idea to obtain a
stratification is to notice that any presentation h: I — =,I' (see (2.3)
for the definition of a presentation) can be realized as a composition of
two “smaller” presentations. First, one considers the torsion-free, rank
1 sheaf I™ generated by I on X' and the canonical associated homo-
morphism h;: I — 7, I™. Then h = hs o hy, where hy: I™ — I' is the
induced embedding on X'. Since h; is given by the sheaf I already, then
the additional information given by a presentation h is only he. Since
the cokernel of A is supported on the conductor subscheme Q of 7, then
the cokernel of hs is supported on Q' := f~}(Q). If Q' is contained
in the smooth locus of X', then h; is obtained simply by picking an
appropriate number of points inside @', with possible multiplicities. In
the case  is a node or a cusp, and the cokernel of - has length 1, then
either I™ is equal to I' if I is invertible at (), and hence the fibre of
over the point [I] in J corresponding to I consists of just one point, or
I = 7,.I™, in which case the fibre of x over [I] consists of two points (one
point counted with multiplicity 2, if Q) is a cusp), corresponding to the
two points of Q'.

In general, let § be the genus change of 7. Then one obtains a strat-
ification (Theorem 4.3) of J in 6 + 1 subschemes A* for : = 0,1,...,§,
where A' parametrizes torsion-free, rank 1 sheaves I such that

m I

I

Furthermore, each A' is an open subscheme of the Grassmannian of
rank 7 quotient bundles of a certain rank ¢ + 1 vector bundle on J' if
the conductor Q is a reduced point of X (Proposition 4.5 and Corollary
4.6.)

(1.2) We also consider the case of higher dimensional varieties. Let
X be an integral variety defined over an algebraically closed field k. In
[5] Altman and Kleiman proved the representability of the étale sheaf
associated to the compactified Picard functor Pic}®, as defined in (2.3).
They also showed that the subset C$ of points of Picx® parametrizing
the torsion-free rank 1 sheaves which are invertible on the smooth locus
of X is closed [5, (3.2,ii), p. 28]. But the important question of whether
there is a natural subscheme structure for C$ still remains. Altman and
Kleiman also asked for a good intrinsic description of the points in the
closure of the Picard scheme Pic% in C$.

length ( ) =1.

10



By means of a variant of the presentation functor (see (5.1)) we throw
some light into the latter question. More specifically we show that the
boundary points represent torsion-free, rank 1 sheaves invertible on the
normal locus of X (Proposition 5.4.) As for the former question, in case
X is smooth in codimension 1 we show that there is actually a closed
subset of C'§¢ containing the Picard scheme Pic% and with a natural
subscheme structure. In fact, the above closed subscheme represents the
variant of the presentation functor mentioned above (Theorem 5.5.)

(1.3) If X is a smooth, complete, connected curve over an algebraically
closed field, then its Jacobian J is projective and admits a canonical,
rigidified along the identity, ample invertible sheaf. This sheaf is the
symmetrization of a Theta divisor. For each p € X, the Theta divisor
is the scheme-theoretic image of the morphism X9~! — J, given by

(P1s---:Pg—1)—= Ox(pr+ -+ pg—1 — (g — 1)p).

The Theta divisor is itself ample, a consequence of the autoduality of
the Jacobian [35, no. 62, Cor. 2| by applying [29, Application 1, p. 60].
These classical notions and results can be easily extended to families of
smooth, complete, connected curves, as shown in [8, Prop. 4, p. 260]
for instance.

In a more general situation, Deligne has shown that if f: X — Sisa
proper, flat family of Deligne-Mumford stable curves, then the functor
parametrizing invertible sheaves of degree 0 on each irreducible compo-
nent of each fibre of f is represented by a smooth, separated S-scheme
Pic% /5> and there is a canonical, rigidified along the structure sheaf,

S-ample invertible sheaf on Picg\,/s (10, Prop’s. 4.2, 4.3]. A power of
this S-ample sheaf gives rise to a quasi-projective embedding of Pic% /s

over S, and consequently a natural compactification for Pic% /s

On the other hand, Altman and Kleiman have already constructed
a natural ~ompactification J for th~ relative Jacobian J of a family of
projective, geometrically integral curves [4], [5]. A natural question in
this context is whether there is a canonical S-ample invertible sheaf on
J whose restriction to J is the canonical S-ample sheaf whose existence
was proved by Deligne, if the fibres of X/S are integral, stable curves.
Our purpose is to give an affirmative answer to the above question.

As a matter of fact, we do considerably more than answering to the
above question. For any projective family X/S of geometrically integral
curves and any section of X/S we construct the Theta line bundle © on
J/S, a natural generalization of the Theta line bundle associated to the
Theta divisor on the Jacobian of a smooth curve. By using the theory
of the presentation functor, we are able to show that @ is S-ample from

11



the ampleness of the Theta line bundle on the Jacobian of a smooth
curve (Theorem 6.20.) In the case the fibres of X/S are Gorenstein,
then the inverse map on J/S extends to J/S. Hence, one can consider
the symmetrization of ©, which gives a canonical, rigidified along the
structure sheaf of X/S, relatively ample line bundle (Theorem 6.32.) In
addition, the latter sheaf extends Deligne’s canonical ample sheaf to the
compactified Jacobian if the fibres of X /S are integral, stable curves (see
(6.34).)

Associated to O there is a canonical global section, the Theta function
6. By using a result of Altman’s, Iarrobino’s and Kleiman’s [1], we
remark that the zero scheme of 6 is a relative Cartier divisor on J/S
whose geometric fibres are integral if the fibres of X/S can be embedded
into a smooth surface (Proposition 6.8.) In this case, one can also prove
easily Poincaré’s formula, which says that the self-intersection of © with
itself g times is ¢!, where g is the arithmetic genus of the fibres of X/5
(Proposition 6.9.)

(1.4) We give now a summary of the contents of this part of the thesis.

In Section 2 we introduce the presentation functor and review related
concepts. Since the extra effort is small, we consider the general case
of projective families of geometrically integral varieties. Most of this
section is a straightforward generalization of [6].

In Section 3 we construct the stratification induced by an S-birational
map f: X' — X on the compactified Picard scheme of a projective
family X/S of geometrically integral varieties.

In Section 4 we restrict ourselves to families of curves and prove the
results mentioned in (1.1).

In Section 5 we show that it can pay off to introduce the presentation
functor for higher dimensional varieties. We prove the results mentioned
in (1.2).

In section 6 we show how to construct the Theta line bundle on the
compactified Jacobian of a family of pointed curves, and prove its am-
pleness.

All schemes involved are assumed noetherian. All families are assumed
flat.



2. The presentation functor.

(2.1) Fix a connected base scheme S. By an S-variety it will be meant a
flat, projective morphism f: X — S, whose geometric fibres are integral.
An S-curve is an S-variety whose fibres have dimension 1. If T is any
S-scheme we will denote by fr: X7 — T the base extension of f to T'.

Let f: X — S, and f': X' —» S be S-varieties. An S-morphism
m: X' — X is called S-birational if the induced morphisms on the fibers
over S are birational. Obviously, if T is any S-scheme, then 77 is also
T-birational.

Fix now a finite S-birational morphism 7: X' — X of S-varieties.
By [EGA IV-3, 8.11.1, p. 41}, if X and X' were S-curves, then the
finiteness would follow from the S-birationality. Since Ox: is S-flat
and 7 is S-birational, the comorphism 7°: Ox — 7.Ox- 1s an injective
homomorphism of S-flat sheaves with S-flat cokernel, whose formation
commutes with base change [EGA IV-3, 11.3.7, p. 135]. Fix an S-
ample line bundle Ox(1) on X. Then Ox/(1) := 7*Ox(1) is also S-
ample, since 7 is finite. We compute Hilbert polynomials on X and X'
with respect to these ample sheaves. If F is a sheaf on X (or on X'),
then we denote by x:(F(s)) the Hilbert polynomial of the restriction
F(s) of F to X(s) (or to X'(s)) for each point s € S. Let

Q= Supp(”}gf') and Q' :=7"1(Q),

where by “Supp” it is meant the scheme-theoretic support.

PROPOSITION 2.2. If Q is S-flat, then so is Q'. In addition,

T Ox1

x(Q'(s)) = x(Q(8)) + xa Ox (s))

for every s € S.
PROOF: Let Mg (resp. Mg ) be the ideal sheaf of @ C X (resp.
Q' C X'). Of course Mg = MqgOx:. Since

. Oxr
Ox

Mg = annx( ),

then
Mg = Mgmn,Ox: = To(M@gOx).
From the exact sequence

OX TK'*OX/ 71'*0;(1
— — —
Maq Mqg Ox

— 0

0
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and the S-flatness of @, the above middle sheaf is S-flat. But

W*Oxi _ ‘R'*OXI
Mg 7 (MgOx)

Since 7 is finite, then @' is S-flat. The equation in the statement is
obvious from the above exact sequence and the above equality. §

(2.3) If S is the spectrum of a field, then a coherent Ox-module I is
called torsion-free, rank 1 if I satisfies S; and is generically isomorphic
to Ox. In the more general setting, a coherent O x-module Z is called
torsion-free, rank 1 if it is S-flat, and for each s in S the fibre Z(s) is a
torsion-free, rank 1 sheaf on X(s).

Let T be an S-scheme. Let Z be a torsion-free, rank 1 sheaf on Xr.
A presentation of T is an injective Ox,-homomorphism h: Z — 71.Z’,
where ' is a torsion-free, rank 1 sheaf on X7, and the cokernel of h is
T-flat with scheme-theoretic support on Q7. Two presentations

Ox:
Mg

= 7. (

h]i I] — ﬂ'T*I{ and h22 Iz — WT*Ié

are equivalent if there exists an invertible sheaf /' on T and a commu-
tative diagram,

I —— g

! !

ho®id
LON —2 2r TN,

in which the vertical maps are isomorphisms.
Let a(t) and B(t) be numerical polynomials on ¢t. The compactified
Picard functor Pick{s of X /S is defined on S-schemes T by:

Pic=o(T) = { isomorphism classes of torsion-free, rank 1 sheaves}
X/S\7) "= 1 T on Xr such that x«(Z(s)) = a(t) for alls€ T

modulo the equivalence relation given by tensoring Z with an invertible
sheaf A on T. Denote by Pic;[,i /s the compactified Picard functor of

X'/S. Denote by Pic%, (resp. Pic%, ) the open subfunctor of PicT9
X/S X'/S X/S

(resp. Pz'c;? / g) parametrizing invertible sheaves.
Define the presentation functor Presq g on the category of S-schemes
by

14



h:Z — n1.I'; T represents an element

Presq g(T) := { of Picx7s(T), T’ represents an element

of Pic?? /s(T), and h is a presentation

modulo the equivalence relation between presentations defined above.
There are natural maps of functors

k: Presq,g — Pickjs and «': Presqg — Pz'c??/s

defined by mapping a presentation to its source and target, respectively.
Note that ' is defined because of the following lemma.

LEMMA 2.4. IfI] and Z; are torsion-free, rank 1 sheaves on X', then for
any homomorphism h: n.Z] — m.Z} there is a unique homomorphism
h': I} — I, such that h = 7,.h'.

PRrROOF: Consider the following diagram,

-

a"h
T L] —— m*mIh

l l (2.5)
A I,
where the vertical maps are canonical. Since 7 is finite, the vertical
maps are surjective. Since 7 is S-birational, the support of the kernel
of #*m.Z]; — I; does not include the generic point of any fibre of X'/S.
Hence, since I} is torsion-free, there is a homomorphism h': Z; — I,

completing (2.5) to a commutative diagram. It is clear by adjunction
that A = n,%’. The uniqueness follows from the S-birationality of 7. B

(2.6) If F is any functor on the catégory of S-schemes, we let F,
denote the associated sheaf in the étale topology.

Altman and Kleiman proved that the sheaves Pic?{(/]s,et and Pic?{?/ Siet
are represented by proper S-schemes [5, (3.2,1), p.28]. Denote by Picj‘(‘/’s
and Pic?? /5" respectively, the representing schemes. The proof that
Presa,p.et is represented by a finite Pick7g xs Picif,’/s-scheme can be
easily adapted from the proof carried out in [6, (8), (9), (12)] for the case
where X/S is a family of curves. Nevertheless, we present a somewhat

different approach here to replace [6, (8), (9)]. To this purpose, we
introduce the Os-module H(F,G) below.

15



(2.7) Let g: Y — S be a proper morphism of schemes. Let F,G be two
coherent Oy -modules, with G flat over S. Then there are a coherent Og-
module H(F,G) and a universal element h € Homy(F,G ®s H(F,G))

represencing the functor

M — Homy(F,G ®s M)

on the category of quasi-coherent Og-modules M [EGA III-2, 7.7.8,9].
In other words, the map defined by h,

HomT(H(f, Q)T, M) — HomyT (f'T, gr ®r M),

is an isomorphism for any S-scheme T and any quasi-coherent Or-
module M.

(2.8) Assume that X/S admits a section s: S — X through its smooth
locus. Consequently, there is clearly a unique section s': § — X' of
X'/S through its smooth locus such that mos' = s. In this case, Altman
and Kleiman have proved that X (resp. X') admits a universal sheaf I
(resp. I') on X x5 Pickys (resp. X' xs Pic;‘,g /s) rigidified along spicza,

!
(resp. SPic;‘,’/s ).

PROPOSITION 2.9. Assuming the set-up of (2.8), the functor Presq g et
is represented by a closed subscheme, denoted by Pres, g, of

P :=Py(H(Iy,my.ly)), where Y :=PickJs xs Pick)/s,

and the universal presentation is the restriction to Presq g of the com-
position of the universal quotient

H(Iy, fr«Iy)p — Op(1)
on P with the pull-back to P of the universal element

hi Ty — my. Iy @ H(Iy, 7y.Iy)
on Y. Moreover, Presq g is finite over Y.

PRrROOF: We first claim that P represents the functor P that associates to
an S-scheme T the set of equivalence classes of injective homomorphisms
h: T — n7.T' on X7 satisfying the following properties:
(1) T (resp. I') is a torsion-free, rank 1 sheaf on X7 (resp. X7 ) such
that x:(Z(s)) = a(t) and x+(Z'(s)) = B(t) for all s € T}
(2) the cokernel of h is T-flat;
(3) h(s) is non-zero for every s € S.

16



The equivalence relation between such homomorphisms is the same as
the one for presentations, defined in (2.3). To prove the above claim, let
T be any S-scheme. Let h: T — 77,.Z' be an injective homomorphism
on X satisfying (1), (2) and (3) above. Then h gives rise to a map
T — Y such that 7T = It @ N; and I’ = I', @ N;, where N; and N, are
invertible Or-modules. By (2.7), the homomorphism h gives rise to a
map

gr: HIy,ny Iy )7 — N2 @1 N7

The homomorphism ¢, is non-zero at every s € T, since h is fibrewise
non-zero. Since N, ® Ni! is invertible, then g is surjective. Therefore,
gr corresponds to a T-point of P over Y. Conversely, one can follow the
above steps backwards to show that a T-point of P corresponds to an
equivalence class of homomorphisms h: 7T — 77’ satisfying (1), (2)
and (3) above.

Since Pres, 3 is the subfunctor of P parametrizing injective homo-
morphisms whose cokernels have support on a fixed closed subscheme of
X, then Pres, gt is represented as a closed subscheme, Presq g, of P.

To prove that Pres, 3 is finite over Y, consider the universal presen-
tation

. 1
h: IPresa_,g ™ TPres,,p*LPres, 5 @A

on X xg Pres,, g, where

A= OP(I)lpreSQ'g .

Since the cokernel of h is supported on Q x5 Presq g, then sp . his
an isomorphism. Since the sheaf I (resp. I') is rigidified at s (resp. s'),
then A = Opres, ,. Since A is Y-ample, and Presq g is proper over Y,
then Pres, g must be finite over Y. The proof is complete. §
THEOREM 2.10. The etale sheaf Presq gt is represented by a finite
scheme Presq g over Pickjs Xs Pic?,g/s.

PROOF: The same preof given in [6, (12)] applies here, since that proof
uses only that Presq, g ¢ is represented by a finite schemc over the prod-
uct Pick7s % sPicf(?/s when there is a section of X/S through its smooth
locus, which 1s our Proposition 2.9.

17



3. The stratification.

(3.1) An open subset U of X is called S-dense if U{s) is dense in X (s)
for every s € S. An S-dense open subset U of X is obviously dense in
X. If T is a torsion-free, rank 1 sheaf on X, and U C X is S-dense, with
inclusion map denoted by i: U — X, then the natural homomorphism
I — 1,2*7 is injective, as it follows easily from [EGA IV-2, 6.3.1, p.
138].

Let U be an S-dense open subset of X over which 7 is an isomorphism,
and let :: U — X be the inclusion map. Put U' := n~}(U), and let
t': U' — X' denote the inclusion map. Of course U' C X' is S-dense.
Let 7 be a torsion-free, rank 1 sheafon X. Denote by Z™ the image of the
canonical homomorphism 7*Z — ¢,7"*7*Z. Since 7*T is not necessarily
even S-flat, the canonical homomorphism is not necessarily injective. Let
h%: T — 7,.I™ be the canonical homomorphism adjoint to the surjection
n*Z — I™. Note that, since m,i,:"7* = 7.:*, the homomorphism A7 is
injective.

PROPOSITION 3.2. I™ and hJ do not depend on the choice of the S-
dense open subset U of X.

Proor: Let V C X be another S-dense open subset over which 7 is
an isomorphism. Since the intersection of two S-dense open subsets of
X is S-dense, we are reduced to consider the case where V C U. Let
j: V — U be the inclusion map. Let V' := n71(V), and j': V' = U’ be
the inclusion map. The canonical homomorphism

AL S E 4 1! NN AY N

Ju3 T = (4") () T

is injective, since ¢"*7*Z is torsion-free, rank 1 over S. From the sequence
of canonical homomorphisms

o k% -1
0L —e,

™I — 3T — (i'5") 35" ) 7" T,
and the injectivity of the second map, the proposition follows. B

Let I’ be a torsion-free, rank 1 sheaf on X'. Let h: T — 7, I’ be an
injective homomorphism.

LEMMA 3.3. There is an inclusion I™ — I' making the diagram

hz
I —— I

| l

7 — w1

18



commutative.

PROOF: Let U C X be an S-dense open subset over which = is an
isomorphism. Let U' := #~}(U) C X', and denote by ¢ (resp. ') the
inclusion map of U into X (resp. U’ into X'.) Since h: 7 — #,I' is
injective. then

i3 (Re): i T — i T

is also injective, where h? is the adjoint map to k. From the commutative
diagram

I ——— T

hal l

T — i;i"I’,
and the injectivity of the bottom and right hand maps, the lemma fol-

lows. §
The following lemma is an easy generalization of [4, (3.3), p. 74].

LEMMA 3.4. Let I be a torsion-free, rank 1 sheaf on X. Then, locally on
S, there is an embedding T — Ox(m) with flat cokernel for m sufficiently

large.

PRrROOF: Put G, := Homy(Z,0Ox(m)). Pick m large enough that the
map f*f.Gm — Gm is surjective. Let s € S, and £ € X be the generic
point of X (). Since Z(s) is free at £ of rank 1 and 7 is S-flat, then 7 is
free at £ of rank 1. Since

(ftgm)s ®05', OX,f - gm,E = OX,& (35)

is surjective, there is an element of (f.Gm)s mapping to a generator of
Gm.¢ via (3.7). By shrinking S around s, one may lift the former element
to a global section of G, that is, to a map h: T — Ox(m), which is
necessarily an isomorphism at §. Since h(s); is an isomorphism and
I(s) is torsion-free, then h(s}) is injective. Hence, h is injective with
S-flat cokernel in a neighbourhood of X(s) in X [EGA IV-3, 11.1.2,
p. 118]. Since f is proper, then h is injective with S-flat cokernel on a
neighbourhood of s in S. §

(3.6) Define the subfunctor 43 of Presq,s by

AZ(T) := {h € Presa,a+3(T); h" is surjective}

for every S-scheme T', where h® is the adjoint map to h.
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It is clear that AF,, is represented by an open subscheme Aj of
Presq o+3. Denote the restriction of & to Ag by Ag.

THEOREM 3.7. The morphisms Ag: Ag — Pic§75 are embeddings. In
addition, the subschemes Ag(A3) ofPic}‘/’S are disjoint, and only a finite
number of them are non-empty.

PROOF: Let R — S be an etale covering such that Xr admits a uni-
versal sheaf I on Xg xp Picf(i /R By Lemma 3.4, one can also assume
that there is an embedding I — Ox,(m) with flat cokernel. By com-
posing with the canonical presentation Ox,(m) — TR Oxx(m) one
obtains an embedding h: I — mr.Ox;(m) with flat cokernel. Let N
be the cokernel of the adjoint homomorphism h®: 731 — Ox; (m). Let
{Ys} be the flattening stratification of N in Pick% /> Where 6 denotes

the Hilbert polynomial of the kernel of the quotient map Oxy (m) — N

over Yjy relative to Ox/(1).
We claim that Ag g is an isomorphism onto Y,4 4. In fact, let T be a
Yo+ g-scheme. Since

a

w3y — Ox, (m) = Nr — 0

is exact and M is T-flat, then the image I7" of the adjoint map A% is
T-flat of Hilbert polynomial a + 8. Hence, by definition, T must factor
through Ag Xs R. On the other hand, let T be an A xs R-scheme.
By Lemma 3.3, the image of the adjoint map h%: n7Ir — OX}(m) is
the sheaf I7", which is torsion-free, rank 1 by hypothesis. Moreover, the
embedding I77 — Ox; (m) is injective on the fibres of X7/T, since the
sheaves involved are torsion-free, rank 1 and At is injective on the fibres
over X7./T. Hence, the cokernel N7 must be T-flat, implying that T
factors through Y, 4 4. '

Since Ag g is an embedding, then so is Ag by [EGA IV-2, 2.7.1xi].

It is obvious from Lemma 3.3 that the Ag(A§) are disjoint. Since
S was assumed noetherian, then so is Pick% /R Hence, the flattening
stratification of A is finite, which implies that only finitely many A3 are
non-empty. The proof is complete. §

Because of the embedding A, we will often say that AJ is a subscheme
of PickJs-
(3.8) Define the map of functors (see [6, (5)])

€: Pz'c;‘,’/s — Pic}?’s
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by €(Z") := 7.’ for any S-scheme T and any torsion-free, rank 1 sheaf
T’ on X7.
PROPOSITION 3.9. ¢ is an isomorphism onto A§.

PROOF: Let 7’ represent an element of Pick? o(T) for an S-scheme T
The identity id: 77.7' — 71.Z' represents an element of A§(T'). Since
I' = (71.Z2")™T, then € is a monomorphism and maps into 4§. On the
other hand, if 7 represents an element of AJ(T), then

hIT: T — 7 I°T

is an isomorphism. Hence, € is an epimorphism. The proof is complete. §



4. Curves.

(4.1) Assume now that X is an S-curve. If 7 is a torsion-free rank 1
sheaf on X, then x,(Z(s)) = dn+ x(Z(s)), where d is the degree of X (s)
with respect to Ox(4)(1), for all d € S [4, 3.4, p. 74]. Hence, we can
and we will simplify our notation. We make the following substitutions:

Picfat" = J;;
Pic?{',i;’;r = J!;
Presgntrdnt+s = Pr;
Adnts — a2
(4.2) Let

= X ).

for any s € S. Note that § does not depend on s € S, because S is
connected and the cokernel of the comorphism 7¢: Ox — 7.Ox: is
S-flat.

Assume until the end of this section that @' is contained in the smooth
locus of X'/S.

The following proof was inspired by [6, (16,iii)].

THEOREM 4.3.
b

To={J 4%
=0

In addition, A% is equal to the open subscheme of J, parametrizing
torsion-free, rank 1 sheaves invertible along Q.

PROOF: Because of the set-theoretical nature of the statements, we may
assume S is the spectrum of an algebraically closed field. Let I be a
torsion-free, rank 1 sheaf on X. Then I can be embedded in an invertible
sheaf on X by Lemma 3.6 or [4, (3.3), p. 74]. We may even assume that
I is an ideal sheaf of X. Then I™ = IOx..

Let q be a point in Q. Since Q' is contained in the regular locus of X',
then

(med™)g = Ig(7eOx1)q = ag(mOx+)q

for some a4 € I;,. As a consequence, we have the following exact se-
quence:
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I, _,aq(”*OX')q - (med™)q N
aqO0x g aqO0x ¢ I,

0—

Since aq4 is a non-zero divisor of Ox 4, then

(T(,. Oxl)q
Ox.q

aq(m.Oxr)q
aq0x 4

64 :=lengtho ( ) = lengtho, ,( )-

Therefore, from the above exact sequence,

X(W*II")=ZIengthou .17 )") <S8 =6 (49

q€Q q€Q

So A%, = 0 for i > 6. Moreover, I € A% if and only if equality holds in
(4.4), that is, if and only if Iy = ¢,O0x, for every ¢ in Q. Hence, I € A?
if and only if I is invertible along Q. The proof is complete. [

PROPOSITION 4.5. Assume X' admits a universal sheaf I' on X' xg J!.
If f|Q : Q — S is an isomorphism, then

P, = Grass (&),
where £ := (n5,I') _ is a vector bundle of rank § + 1 on J!.

QxsJ]

PROOF: Since Q' is contained in the S-smooth locus of X', then the
restriction I'|q,, j; is invertible. Since Q' is flat and finite over S of

degree 6 + 1 by Proposmon 2.2, and

&= Wj;*(IIIQ’xsf;)a

then & is locally free of rank 6 + 1 on Q xs J!. Now, by [6, (9)] we have
that

— s—r
Pr,s - QuOtS/Qx JI/JI .

Since Q = S, then the above Quot-scheme is in fact the Grassmannian
of rank s — r quotient bundles of £. The preof is complete. §

COROLLARY 4.6. If f|, : Q — S is an isomorphism, then A is smooth
over J}; under «'.

PROOF: Obviqus from Proposition 4.5 and descent [EGA IV-4, 17.7.4,
p. 72], since A}, is an open subscheme of Py, n+i. i
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(4.7) We now proceed to present and generalize Theorem 16 of [6],
which analyzes the map «: P, ,+s — J, in terms of the stratification of
Jr when 6§ = 1. In our more general setting, to obtain similar results
one must replace the presentation scheme by a larger scheme, which is
described below.

Let T be an S-scheme. Let 7 be a torsion-free, rank 1 sheaf on X7.
A set-theoretic presentation of T is an injective Ox,-module homomor-
phism h: T — n7,I', where I’ is a torsion-free, rank 1 sheaf on X7,
and the cokernel of h is T-flat with set-theoretic support on Q1. Define
the set-theoretic presentation functor P, 4 on the category of S-schemes
by

h:ZI — w71.I'; T represents a class in
P.o(T):={ J(T), T represents a class in J'(T),

and h is a set-theoretic presentation

modulo the equivalence relation between presentations defined in (2.3).
It is clear that if s —r = 1, then P,, = P,,. In general, it is easy to
see that Pr,s,et is represented by a projective J .-scheme, also denoted
by 13,, s- Since every presentation is a set-theoretic presentation, P; , is
a closed S-subscheme of P,,. Let & denote the obvious extension of &
to 13,,3.

(4.8) Define the functor Z* on the category of S-schemes by

Z(T) := {Y € Hilby, ,5(T); supp(Y) C Q7},

where by “supp” it is meant the set-theoretic support. It is easy to see
that the functor Z* is represented by the S-projective scheme
Z' := Quot's

X' /xr/s’
X

(4.9) Define a map of functors

7' Al x5 2% 5 Prnys

as follows. Let T be an S-scheme. Let h:Z — wp,Z' represent an
element of A}(T), and the subscheme ¥ C X/ represent an element
of Z%~*(T). If £ denotes the ideal sheaf of Y in X, then, since Q'
is contained in the S-smooth locus of X', the sheaf £ is invertible. Let
Ox: — L7! be the global section of L~ corresponding to Y. Tensoring
by I’ gives an embedding k': Z' — £~ !Z’ with flat cokernel of length
§ — 1 over S, since I' is invertible along Q%. Finally, v*(T)(k,Y) is
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defined as the equivalence class represented by the following set-theoretic
presentation:

h Tre b’
T — I —— 7w (LT, (4.10)

LEMMA 4.11. 4! is a monomorphism.

PRrOOF: From (4.10) we obtain the adjoint homomorphism:

3l - I' — LT, (4.12)

A priori, one would obtain only the composition, but since Z’ is the image
of (4.12), one actually obtains the above factorization. One recovers h
by considering the adjoint to 777 — Z’. One also obtains the embedding
Rh'. Since L7’ is torsion-free, rank 1, it is invertible on X2™, where
X'*™ denotes the smooth locus of X’/S. By tensoring (4.12) with the
inverse of £L71Z’ along X/2™, one recovers the embedding

L:lxafm - OXCIZ‘“"’

whose corresponding subscheme of X7#™ is ¥ N X7™. Since Y is sup-
ported on Q% and Qp C X7™, then ¥ = Y N X72™. The proof is
complete. B

(4.13) Define the morphism
R AL xs 787 o AY
as the projection onto the first factor. Let A* denote the embedding of
A} in J,. Then the following diagram is clearly commutative.

— R —
Pn,n+6 —_ Jn

+| [ C(414)

A:z Xs Z6—i —_——* A:z
Kl

THEOREM 4.15. Diagram (4.14) is Cartesian.

PROOF: Since (4.14) is commutative, we obtain a map of functors,
A:: x5 27— A:z X Tn Pn,n-f&a

that is a monomorphism by Lemma 4.11. Let T be an S-scheme. Let 7
represent an element of A7(T), and h: T — 7.7’ represent an element
of P, nts(T). Let Z] be the image of the adjoint map h%: 737 — I'.
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By lemma 3.3, since 7 € A (T), then Z! is torsion-free, rank 1 and the
induced homomorphism, A': Z — 77,7}, is injective with flat cokernel.
Since 7' is invertible on X ™, by tensoring the embedding 7, — I with
the inverse of Z' along X7™ one gets an embedding,

IHX'T"" ® (I'I_Y'T-m)_l — Oxypem, (4.16)

which is an isomorphism outside Q7, since the cokernel of £ is supported
on Q7F. So one can extend (4.16) tc X7.. Let ¥ C X7 be the subscheme
corresponding to the extension of (4.16) to X1 . Since Z| — Z has flat
cokernel of length § —¢ supported on Q7., then Y represents an element of
Z%=(T). 1t is then clear from the definiticn of 4* that v*(T)(h',Y) = h.
The proof is complete. §

COROLLARY 4.17. The morphism

K: Pn,n+6 — Jn

is finite, surjective, and an isomorphism over the open subscheme of J,
parametrizing torsion-free, rank 1 sheaves invertible along Q.

PROOF: The surjectivity comes from Theorem 4.15 and the fact that &*
is trivially surjective. The finiteness follows from [EGA IV-3,8.11.1, p.
41), since & is proper and Z* is finite over S for every i. Since Z° = S,
it follows from Theorem 4.15 that & is an isomorphism over 4%, which
is the open subscheme of J, parametrizing torsion-free, rank 1 sheaves
invertible along @ by Theorem 4.3. The proof is complete. §

We remark that Theorem 4.15 and Corollary 4.17 generalize [6, (16),
p. 25].

(4.18) Assume that S is the spectrum of an algebraically closed field for
the following remark. In view of Corollary 4.17, it is important to remark
that x is not necessarily surjective, in contrast to the surjectivity of .
In fact, if () is a reduced point of X, then, by Proposition 4.5, Py n+5 is
irreducible if J—:l 4+ 1s. However, if § > 1, then X is not Gorenstein, hence
Jn is reducible [16, (1), p. 277]. So, if J., 4 is irreducible and § > 1,
then & is not surjective. More precisely, since A% is an open subscheme
of Py nt5, and A8 contains the Jacobian J, of X as an open subscheme,
then the image of  is the closure of J,, in J, if P, n+s is irreducible.



5. Higher dimensional varieties.

(5.1) Let X be an integral variety defined over an algebraically closed
field k. The presentation functor allows us to bridge the gap between the
compactified Picard scheme of X and the compactified Picard scheme
of its normalization X, paraphrasing [6, p. 15]. However, the Picard
scheme Pic§ of a normal variety Y defined over an algebraically closed
field is already complete [2, 19, p. 138]. Hence, one can restrict ourselves
to the following variant of the presentation functor defined in (2.3). Let
7: X — X be the normalization map. Fix an ample line bundle Ox(1)
on X, and let O¢(1) := m*Ox(1). Let a(t) and S(t) be numerical
polynomials on t. Define the restricted presentation functor Presgyﬂ on
the category of S-schemes by

h:T — mp,I'; T represents an element
Presd 5(T) :={ of Picx*(T'), I’ represents an element

of Piclf-\,(T), and h is a presentation

modulo the equivalence relation between presentations defined in (2.3).
It is clear that Pres) ; is represented by a closed subscheme, denoted

by Pres), 4, of Pres,, . Since Pres, g is projective over Pic;ﬂ by [6, (9)],
then Presg’ s 1s projective. As before, there are natural maps of functors,

Ko: Pres® , — Pics* and kh: Pres® , — Picﬁ-,
a,B X 0 o,fB X

defined by mapping a presentation to its source and target, respectively.
(5.2) One clearly has a decomposition,

Pick = | JPic%’, (5.3)
B

of the Picard scheme Pic$ of X as the disjoint union of open and closed

subschemes Picf,'(’ﬂ , where Pic‘;{’ﬂ parametrizes the invertible sheaves L
on X with Hilbert polynomial «(¢) such that n*L has Hilbert poly-
nomial B(¢) on X. It is clear that x( is an isomorphism over Pic}’ﬂ ,

because if h: T — 7r.I' represents an element of Pres® .(T) for some
P a,B

k-scheme T, and 7 represents an element of Picf{r’ﬂ (T), then the adjoint
map h®: n37 — I' must be an isomorphism by [4, (3.4,ii), p. 74].
Since Presg, g is projective, then the scheme-theoretic image of ¢ is a

closed subscheme D}’B of Pick® containing Pic%”. Note that if I is a
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torsion-free, rank 1 sheaf on X representing a point in Df{—'ﬂ , then [ is in-
vertible on the normal locus of X. Hence, Df{iﬁ C C% set-theoretically,
where C$ is the closed subset of Pic\* parametrizing torsion-free, rank
1 sheaves which are invertible on the smooth locus of X. Since C§ is
contained in a quasi-projective open subscheme of Pic%* by [5, (3.2,ii)],
then Df{,”e is projective for every numerical polynomials a(t) and 3(%).
By applying the above reasoning to all the numerical polynomials ()
involved in the union (5.3), one obtains the following result.

PROPOSITION 5.4. The closure of Pic% in Pick* is contained in the
subset D% of Picx® parametrizing torsion-free, rank 1 sheaves that are
mvertible on the normal locus of X.

We do not know whether Dg’(’ﬂ represents a naturally defined subfunc-
tor of Pick® in general. Nevertheless, one has the following result.

THEOREM 5.5. If X is smooth in codimension 1, then ko is a closed
embedding. In particular, fo("i is a projective scheme, with scheme
structure given by Presg, g- Moreover, the subschemes D_C{Jﬂ are disjoint.

PROOF: Since Ky is proper, it is enough by [EGA IV-3, 8.11.5, p. 42]
to show that kg is a monomorphism of functors. Let T be any k-scheme,
and let

h] : I] — ‘/TT,.E] and hg! Iz - 7TT,.£2

be restricted presentations such that 7,7, € Picx*(T). Assume their
images under ko are equivalent, that is, assume there is an invertible

Or-module NV such that Z; = I,  r N. We will show that h; and hs

are equivalent. To this purpose, one can actually assume that there is
an isomorphism

é: T — T

Denote by X™ the normal locus of X. Let j: X" — X be the in-
clusion of X™ in X. By definition, the restrictions of h; and ks to X7
are isomorphisms. Therefore, one obtains the following commutative
diagram:

ky ..
Iy —— 7Ly —— T Tl

¢‘[ nr.wl

k2 .
12 —_— 7th£2 _— WT*]T*];"£27
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where
Y = jT«(hQ‘X{r‘ © ¢|X; o (hllx;)_l)-

To prove that h; and h, are equivalent one needs only verify that if £
is an invertible sheaf on X, then £ = jr, JTL. Since L is invertible, we
are reduced by [EGA IV-2, 5.10.5, p. 115] to showing that the depth
of any point of X1 outside X2 is at least 2. But this follows from [EGA
1V-2, 6.3.5, p. 140}, since A is normal and X™ contains all points of
codimension at most 1 of X by hypothesis.

The last statement of the theorem follows from the above argument,
since nowhere did we specify the Hilbert polynomial of £, or £,. B
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6. The Theta divisor.

Let f: X — S be an S-curve. Assume S is connected. Denote by
g the arithmetic genus of the fibres of X/S. Denote by w the relative
dualizing sheaf of X/S. By [AK2, p. 96|, the sheaf w is torsion-free,

rank 1.

DEFINITION 6.1. If M is a coherent sheaf on X which is flat over S, let
Dy(M) denote the determinant of cohomology of M.

The sheaf Dyg(M) is constructed as follows. Locally on S, there is a
complex

E° - E!

of free, coherent sheaves such that for every coherent sheaf F on S the
cohomology groups of E* @ F are equal to the higher direct images of
M @ F. The complex E' is unique up to unique quasi-isomorphism.
Hence, its determinant,

rankE° rank E!
( A E9eC A EYT,

is unique. The uniqueness allows us to glue together the local determi-
nants to get an invertible sheaf, denoted by Dy(M), on S.
The main properties of the determinant of cohomology functor are the
following three:
(1) If
0O—- M —-M-M'—>0

is a short exact sequence of sheaves on X which are flat over S,
then

Dy(M) = Ds(M') @ Dy(M");
(2) If E is a locally free sheaf on S of constant rank r and M is a sheaf
on X which is flat over S, then
Dj(M @ E) = Dy(M) @ (\ )X,

where x(M) denotes the relative Euler characteristic of M, that
is, the Euler characteristic x(M(s)) of the restriction M(s) of M
to the fibre X(s) for any s € S;
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(3) If
vy " . x

el
T,

is a Cartesian diagram, then
h*Dg(M) = Ds (A" (M)).

For a more systematic development of the theory of determinants, see
[18]. It is also possible to avoid mentioning determinants in what follows
by adopting the approach used in [7, Chapter IV, §3].

(6.2) Let s: S — X be a section of f factoring through the smooth
locus of X/S. Let D denote the effective relative Cartier divisor on X/S
given by s. Let J; denote the compactified Jacobian of degree d on X/S;
it parametrizes relative torsion-free, rank 1 sheaves of degree d on X/S
(note the numerical difference to the definition in (4.1).) Let J4 denote
the open subscheme of J; parametrizing invertible sheaves. Let I be
the universal torsion-free, rank 1 sheaf on X xs Jy which is rigidified
along the section s. For simplicity, we will denote by Dy the determinant
of cohomology functor associated with the projection X xs Jg — Ja.

DEFINITION 6.3. The_invertib]e sheaf @4 := D4(I4)~ ! is called the
Theta line bundle on Jq/S for every d € Z.

(6.4) Since x(I;—1(s)) = 0 for every s € Jy—1, the line bundle O,
does not depend on the section s of X/S chosen because of property
(2) of the determinant of cohomology functor. In additicn, there is a
canonical global section 6y_; of ©,_;, which is constructed as follows.
Since x(I4—1(s)) = 0 for every s € Jy—1, then, locally on S, the complex

EO i) El,

whose cohomology groups are universally equal to the higher direct im-
ages of I,_;, is such that the ranks of E® and E! are equal. By taking
the determinant of A one obtains a local section of ©4_;. The local sec-
tions can be glued together to yield a global section 8,_; of ©4_,. By
the above local description, it is clear that the zero-scheme Z of 6,_;
consists of the torsion-free, rank 1 sheaves possessing a non-trivial global
section. Equivalently, by Serre’s duality, Z consists of the torsion-free,
rank 1 sheaves that can be embedded into the dualizing sheaf w of X/S.
In other words, Z is the image of the Abel-Jacobi map of degree g — 1:
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A: Q‘mti;;(/s — Jy_1.
If X/S is smooth, then
Quot? 3 ¢ = Hilb% & = Symm§™ (X),

where Symm‘g_l(X) denotes the symmetric product of g — 1 copiec nf
X over S. Hence, the geometric fibres of Quotf;/')l( /s are integral, and
so are the geometric fibres of Z/S.

(6.5) More generally, if the embedding dimension of each point of each
geometric fibre of XS is at most 2, then Quotz;;;( /s and Jg—1 are S-flat,
and their geometric fibres are integral, local complete intersections of
dimensions g —1 and g, respectively (1, (7), (9), pp. 7, 8]. In this case, Z
is clearly an effective relative Cartier divisor on J,—;/S whose geometric
fibres over S are irreducible, local complete intersections. Moreover, it
is easy to see that A is an isomorphism over the open subscheme of Z
parametrizing torsion-free, rank 1 sheaves I with dim Hom(/,w) = 1.
This open subscheme is S-dense by [4, (3.5,d)]. Since the geometric
fibres of Z/S are Cohen-Macaulay and irreducible, and the geometric
fibres of Quotiﬂ( /s are integral, then the geometric fibres of Z/S are
also integral. We summarize these results in the following definitions
and proposition.

DEFINITION 6.6. X/S is a locally planar S-curve if the embedding di-
mension of each point of each geometric fibre of X/S is at most 2.

Equivalently, the family X/S is locally planar if, locally on S, it can
be embedded into a quasi-projective, smooth family ¥/S whose fibres
are surfaces [3].

DEFINITION 6.7. If X/S is a locally planar curve S-curve, then Z is
called the Theta divisor of Jy_1/S.

PROPOSITION 6.8. If X/S is a locally planar S-curve, then the geomet-
ric fibres of the Theta divisor are integral and local complete intersec-
tions.

PROPOSITION 6.9. If S is the spectrum of an algebraically closed field
and X is a locally planar curve, then the self-intersection @g_l is equal
to g!.

PROOF: If X is a smooth curve, then Poincaré’s formula [27, §2] says
that the self-intersection ©)_; is equal to g!. On the other hand, the
principle of conservation of number tells us that if X/S is a locally planar
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curve and D;,..., D, are relative effective Cartier divisors on fg..]/S,
then the intersection number

Diy(s)- ...  Dy(s)

is independent of the choice of s € S. Since every locally planar curve is
part of a family whose general fibre is a smooth curve, then the propo-
sition follows from the above two observations. B

(6.10) If X/S is smooth, then it is a classical result that O,_; is S-
ample on J,_;, as we already remarked in the introduction. It is then
natural to ask whether ©,_, is S-ample on J,_; in general. This section
of the thesis is focused on answering affirmatively this question.

LEMMA 6.11. If O, is S-ample for some integer e, then so are ©4 for
all integers d.

PROOF: Let i: J4 — J. be the isomorphism given by tensoring a family
of torsion-free, rank 1 sheaves on X/S with Ox((e — d)D), where D is
the Cartier divisor defined in (6.2). Then

"0, = Da(La((e — d)D))™!

by property (3) of the determinant of cohomolcgy functor. By tensoring
the canonical exact sequence

0—-0Ox(-D)—>0x - 0p—0
with I4(nD) for n € Z, and by applying the determinant of cohomology
functor Dy(-), we get
Da(Ia((n +1)D)) = Da(Ia(nD)) @ Lu|py 5, @ Ox(nD)lp
by property (1) of Dy(-). But Is|p, 5, = Oj,, since Iy is rigidified along
s. Then
Da(La((n + 1)D)) = Du(Ia(nD)) @ Ox(nD)|p

for every n € Z. It is obvious then that ¥*0Q, = 04 ® N for a certain
invertible sheaf N on S. Hence, if O, is S-ample, then so is ©4. The
proof is complete. il

COROLLARY 6.12. If X/S is smooth, then O4 is S-ample for every d.
PROOF: Immediate from Lemma 6.11 and the fact that Q,-; is S-
ample. §
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(6.13) We will first restrict ourselves to the case where S is the spec-
trum of an algebraically closed field. In other words, assume that X
is an integral curve defined over an algebraically closed field k. Let
7: X' — X be a partial normalization of X. Let @ C X be the conduc-
tor subscheme of 7, and let Q' := 77 1(Q). Let f' := fcm. Let w' be
the dualizing sheaf of X'. Let

= x(0x) — x(Ox).

The section s: S — X lifts uniquely to a section s': S — X' such
that mo s’ = s. Let J. denote the compactified Jacobian of degree e
on X' for every integer e. Let I, be the universal torsion-free, rank 1
sheaf on X' x J! which is rigidified along s', for every integer e. Let
©! := D.L(I.)"!, where D,(-) denotes the determinant of cohomology
functor associated with the projection X' x J! — J!.

Let PJ denote the presentation scheme, representing the functor that
associates to an S-scheme T the set of equivalence classes of homomor-
phisms h: T — 71.Z' on XT such that:

(1) T € Ju(T);

(2) I' € J).(T), where d' :=d + p — §;

(3) h is injective with flat cokernel of length p over T, supported on

QxT.

We recall that the obvious morphisms,
k: P{ — Jg and &'t P} — Jy,
are finite and projective, respectively. Let

h: k*Ig — wp:,rc"' :1,

be the universal presentation on X x P{. Let N§ denote the universal
cokernel, and let
* h 1yt p
0— £™1lg — mpe, s Iy — Ng — 0 (6.14)

be the associated short exact sequence. The presentation scheme allows
us to compare Aq with A!,. This is the content of the following lemma.

LEMMA 6.15. ,
K*0q = "0 ® /\ fpr. NS

PROOF: From (6.14) and property (1) of the determinant of cohomology
functor,
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Dy, (k"1a) = Dy, (mpr o T) @ Dy,, (N2)~1.

Since 7 is finite, it is clear that DfP:(TTP:*K,,*I’;) = Df;:(r:’*lg,). In
addition, Dy, (N7) = A? fpe.N{, since the higher direct images of Nj
d

under f Ps vanish. By property (3) of the determinant of cohomology
functor, the proof is complete. §

(6.16) By [6, (9)],

P _ [ pp— < !
P} = Quot}_/QxJ-;,/j‘,‘,, where F := (nJ;I, 2) oxr,”

Since @ is a finite scheme, it is clear that
p p = f!
P; C Grassj;,(f), where & := fj;"( &'lQ’xJ;,)’

and the pullback to P§ of the universal rank p quotient on the above
Grassmannian is fp:,Nf.
The following result is needed in the proof that @4 is ample.

PROPOSITION 6.17. Let Y be a k-scheme. Let L,,...,L, be ample
sheaves on Y and F be a coherent sheaf on Y. Then
L;‘l @...@L;‘t QF

is generated by its global sections and

HY,[}'@---@LM*@F)=0 for i>0
if the n; are non-negative integers and Zf=] n; is sufficiently large.

PROOF: First, by replacing each L; by a high enough power, one can as-
sume that L,,..., L, are very ample. In particular, each L; is generated
by global sections.

Let M € Z be such that for m > M the sheaf LT* @ F' is generated by
global sections for every ¢ = 1,...,t. Since each L; is already generated
by global sections, then

@@L QF

is generated by global sections for every t-uple of non-negative integers
(ny,...,n¢)such that Y n; > Mt. The first statement of the proposition

is thereby proved.
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The proof of the second statement is by double induction; first, on the
dimension of Y; second, on the number ¢ of ample sheaves. It is clear
that if the dimension of Y is zero, then there is nothing to prove. In
addition, if ¢t = 1 then the statement is already well-known [14, Thm.
II1-5.2, p. 228].

Foreach: =1,...,t, since L; is very ample, there is a section of L; on
Y such that its zero-scheme, Z;, has lower dimension than Y, and the
induced sequence,

0—-F—>L;i@F— Li®@F|; —0, (6.18)
is exact.

By induction hypothesis, there is an integer M such that for every
t=1,...,tand k > O:

(1) H*(Y, ®j¢iL;-li @F) = 0 for all (t—1)-uples of non-negative integers

(nl,.. . ,ni_%,ni+1,.. . ,ng) with Z:j¢i n; > M;
(2) H*(Z;, ®L;’ ® F) for all t-uples (n;,...,n,) of non-negative inte-
gers with Y "nj; > M.

Let N := M(t/(t — 1)). Let (n;,...,ny) be a t-uple of non-negative
integers such that >_ n; > N. If n; is the smallest integer in the t-uple,
then 3_..;n; > M. By tensoring (6.18) with

L' LY '@LioLi' @ oLy
for each ! > 0, and considering the associated long exact sequence in
cohomology, one obtains exact sequences

HYY,LP'®...L! L} QF) — HYY, L' ... Lt .. .QL}*®F) —
— HYZ, 7' ®... L' ... L QF) (6.19)
for each I > 0 and k£ > 0. Since Z#i nj > M, then
HYZ,L}'®--- 9L @---@ L ®F)=0
for each | > 0 and k > 0. By the same token,

HYY,LP' @ QLY ' ®LLV @ 9L ®F)=0

i
for each ¥ > 0. From these vanishings and induction on the exact
sequences (6.19), one concludes that

HYY,IT'® - ®LM*Q@F)=0
for all £ > 0. The proof is complete. §
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THEOREM 6.20. Oy is ample on Jj.

PROOF: Assume that 7: X’ — X is the normalization map of X. Since
I/, is invertible, then £ is locally free of constant rank equal to the length

of Q'. In fact, if
t
Q=) nag
1=1
as a divisor on X’, where ¢; € X' and n; > 0, then

t
— , ’ -
g - @f};,x Id’ln;qu.];, .
=1

For convenience, let g := f% . From the above equality, one obtains
dl
that
P
NE= @D Es
[Al=p
where

and
Ay At
E5:= \g. Ll qyx, ® @ Ng- Lalnggonr, - (6.21)
Hence, for all positive integers n and | with n > [,

(Aer @ =(D (;) @ Bt e @ =

|hl=n IAl=p
g4 (g) Q) (Ex ® 0)") @ (0y), (6.22)
|h|=n IM=p

where




We claim that (6.22) is generated by its global sections if { is fixed and
n is sufficiently large. In fact, let ¢5: J} — J)_; be the isomorphism
defined by tensoring an invertible sheafon X' by Ox/(—A1q1 —- - - — A¢qe)-
It is then easy to prove, by the same argument used in the proof of
Proposition 6.11, that

V3(05) = Ol © (Talyy ey, ™ © @ (Tuly oz )™ (6:23)

On the other hand, for each i = 1,...,t and each positive integer m one
has the following canonical exact sequence on J},:

/ ' /
0— Id'(—in)lqixj;, — Gx Id'l(m+l)q,'xj;, — G Id’lmq,-x];, — 0.

For every positive integer £k < m + 1, the above exact sequence induces
the following canonical short exact sequence:

k-1 k
0— /\ g I:p|mq..szl @ I&'(—mqi)lq,.u;, - /\g. :i’l(m+1)q.'xj;, -

k
= N9 Talmgix s, — 0. (6.24)

From (6.21), (6.23) and (6.24), it is not difficult to see by induction that
if
() ¢i(04-5)") ®(04) " (6.25)
IAl=p
is generated by global sections and its first cohomology vanishes, then
(X (Ex®04)") e (0y)™
[Al=p

is also generated by global sections and its first cohomology vanishes.
But, since ©),_, is ample by Corollary 6.12, then Proposition 6.17 shows
that, for fixed [ and sufficiently large n, the sheaf (6.25) is generated by
global sections and its first cohomology vanishes. By (6.22),

(/\ g)n ® (@I,)n_l
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is thus generated by global sections for fixed ! and sufficiently large n,
as claimed.
Therefore, for fixed ! and sufficiently large n,

P
£ (04)" ' @ (N fre NO®

is very ample on P/ relative to J},, as defined in [14, p. 120]. Fix [ such
that (©,)! is very ample on J},. By means of the Segre embedding and
Lemma 6.15, one gets that (x*©4)" is very ample on P} for n sufficiently
large. Hence, k*@y is after all ample. Since & is finite, by [EGA III-1,
2.6.2] the restriction of @4 to the image of « is ample. The image of
k certainly contains the closure 44 of 44 in J4. By Theorem 4.3, the
compactified Jacobian Jy of X is the union of the A4 for p = 0,...,86.
Since the restriction of ©4 to each component of the closed covering

]
o=\ 4

p=0

of Jq is ample, then Oy is itself ample on J4. The proof is complete. §

(6.26) Assume now that f: X — S is an S-curve
COROLLARY 6.27. The sheaf @4 is S-ample on Jj,.

PROOF: Showing that the invertible sheaf @4 is S-ample is equivalent
to showing that the restriction of @4 to each geometric fibre of J4/S is
ample [EGA III-1, 4.7.1]. Since the formation of ©4 commutes with
base change by property (3) of the determinant of cohomology functor,
then we may restrict ourselves to the case where S is the spectrum of
an algebraically closed field. But this case has already been adressed by
Theorem 6.20. The proof is complete. §

(6.28) We remark that the construction of @4 depends on having a
section of X/S, so that there is a universal, torsion-free, rank 1 sheaf
on X x J4. Nevertheless, one can prove using descent theory that ©,_,
can be defined without assuming the existence of a section.

In fact, by [EGA IV-4, 17.16.3, p. 106], there exists an étale covering
S' — S such that X xg S'/S' admits a section through its smooth
locus. As a consequence, there is a universal torsion-free, rank 1 sheaf
Ion X x5 J;—1 xgS'. Let © := D(I)~!, where D(-) denotes the

determinant of cohomology functor associated to the projection
X xgdy-1 x5 S8 — Jg—1 x5 §'.
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By Corollary 6.27, the sheaf @' is S’-ample. We will show that ©
descends to a sheafon J,—;. Let §” := S'xsS' and §" := §'xs8' xsS".
Leat

q1,q2: S" — S';
P1,P2,D3: Sl" —* S’;

ry,T2,r3: S”I — S"
denote the projection maps satisfying

P1=q10T2 =4q 0T3;
P2=q10r) =@q20T3;

P3 =q20T] =q20T2.

Since I is universal, there are an invertible sheaf L on jg_l xs S" and
an isomorphism

¢: 1L - IQL
on X xsJy—1 x5 S". Since
D(g;1® L) = ¢;D(I) (6.29)
by properties (2) and (3) of D(-), then we obtain an isomorphism,

Y :=D(4): ¢;O" — ¢30'.

Let
Li:=r]L,
¢i = T:Qﬁ,
Yi =i

for ¢ = 1,2,3. By [13, Exp. VIII, Cor. 1.3], in order to prove that ©'
descends to a sheaf on Jy_;, one must show that

Py 013 = 1.

However, 1, and 1, o 33 are obtained by applying D(-) to the isomor-
phisms

$2: P11 = p3I® Ly, and (¢1 ®idr,)oés: piI — p3I® Ly ® Ls,
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respectively. Hence, to prove that 1; 03 = 12 we need only check that
the isomorphism

($28id;, g1-11,) " 0($18idL,)ogs: pil — piI®L1BL; ' ®Ls (6.30)

gives the identity map on p}©' via D(-). But since pjI is simple [4, (5.4),
p. 83], then (6.30) is given by an isomorphism between the structure
sheaf on Jy_; x5 S" and L; ® L;' ® Ly [2, (5), p-119]. Because of
(6.29), the map (6.30) induces the identity on p;©’. Hence, ©' descends
to a unique sheaf © on J,—;. The sheaf © is ample since ©' is ample
and S’ — S is an étale covering.

(6.31) As already hinted in (6.4), the sheaf ©4 depends on the choice of
a section s of X/S if d # g — 1. Nevertheless, it is a classical result that,
if X/S is smooth, then the symmetrization of ©¢ does not depend on
s. Assume that X/S is a family of Gorenstein curves. Then the inverse
map (—1) on Jp extends naturally to an involution of Jo. In fact, if T is
a family of torsion-free, rank 1 sheaves on X/S, then so is Hom(Z,Ox)
by local base change theory [4, (1.9), p. 59], since Ezt'(Z,0x) = 0 by
(4, (6.5.3), p. 96]. Hence, it is natural to call an invertible sheaf L on
Jo/S symmetric if (—1)*L = L. The symmetrization

O ® (—1)‘@0

of ©p does not depend on the choice of a section s of X/S as it can be
easily seen from property (2) of the determinant of cohomology functor.

THEOREM 6.32. If X/S is a family of Gorenstein curves, then

Do(Io) ™! @ Do(Hom(Iy, Ox))™! @ Do(Ox)* (6.33)

is S-ample, symmetric and rigidified along the section of Jo/S given by
the structure sheaf of X/S.

PROOF: Because of Corollary 6.27, we just need remark that by tensor-
ing with Do(Ox)? the sheaf O¢ ® (—1)*©¢ becomes rigidified. §

(6.34) If X/S is a family of integral, stable curves, then (6.33) extends
Deligne’s canonical ample sheaf on Jj to Jo. In fact, the restriction Lg of
(6.33) to Jp is certainly S-ample and rigidified along the section of Jo/S
given by the structure sheaf of X/ S for every family X/S of Gorenstein,
integral curves. Moreover, the formation of Ly commutes with base
change by property (3) of the determinant of cohomology functor. So
the sheaves L satisfy the same defining properties as Deligne’s canonical
ample sheaves. By [10, 4.2, p. 142], for every family X/S there would
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be a sheaf with the above properties, and such sheaf would be unique if
we considered all families X /S of stable curves, including the reducible
ones. But the integral, stable curves form an open subscheme of the
moduli of stable curves, and such subscheme contains the moduli of
smooth curves. Hence, it is easy to see that Deligne’s proof in [10, 4.2,
p. 142], which makes use of the moduli space of stable curves, works as
well if we carry it out for the open subscheme of integral, stable curves

instead.
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PART 11

Weierstrass Theory for Families of
Local Complete Intersection Curves

1. Introduction.

Linear systems on smooth curves in characteristic 0 have been exten-
sively studied classically, with strong results on the projective geometry
of smooth curves being discovered by the Italian school of Castelnuovo
and others. A good part of their results involved the analysis of the ram-
ification points of a linear system, sometimes called Weierstrass points,
especially if the linear system is the canonical system.

In positive characteristic, the study of Weierstrass points began with
F. K. Schmidt ([32] and [33]), who nevertheless considered only the
canonical system. The study of Weierstiass points of a general linear
system began only relatively recently, basicai'y initiated by Matzat [28]
and Laksov ([19] and [20]). Much work has been done since in trying
tc understand the peculiarities of the positive characteristic case.

Generalizing the theory in another direction, in 1984 Widland defined
Weierstrass points for the canonical system on any Gorenstein, irre-
ducible curve [36]. His definition was later extended to any linear system
by Lax [24]. Around 1986 Eisenbud and Harris considered the question
of Weierstrass points on a curve of compact type [11]. Very recently
Garcia and Lax [12] and Laksov and Thorup [22] extended Widland’s
and Lax’s definition to the positive characteristic case.

One of the main goals in extending the notion of Weierstrass points
to the singular case is to improve the understanding of smooth curves.
Analysing smooth curves by analysing their degenerations to singular
curves has always been a very fruitful idea, as shown for instance by
the recent work of Eisenbud and Harris (see a summary and references
in [11].) Hence the need of not only a theory of Weierstrass points on
a singular curve, but more generally a theory of Weierstrass points on
families of curves.

(1.1) The theory of Weierstrass points on families of smooth curves
in characteristic 0 has been developed classically. Recently, Laksov and
Thorup developed a framework for understanding Weierstrass points
on families of smooth curves in arbitrary characteristic ([21] and [22]).
They begin by defining the notion of a Wronski system of modules on

43



a scheme Y. A Wronsk: system of modules is the data consisting of a
locally free sheaf W, a sequence of locally free sheaves £* of rank 7 + 1

for i = 0,1,..., a sequence of surjective Oy-linear maps ¢*: £ — £}
for z = 1,2,..., and a sequence of Oy-linear 1naps v': W — &* for
¢t =0,1,... such that v*"! = g'ov* forz = 1,2,.... From a Wronski

system of modules it is possible to define orders at points and hence the
concept of & Weilerstrass point. Moreover, Laksov and Thorup show how
to associate to a Wronski system a Wronskian determinant, whose zero
locus provides a subscheme structure for the set of Weierstrass points.
After developing a general theory of Wronski systems, they show how
to use the sheaves of principal parts P* for i = 0,1,... on a smooth
family f: X — S of curves to obtain a Wronski system of modules on
X for any linear system on X/S. More precisely, if L is an invertible
sheaf on X, and v: W — f.L is an Og-linear map whose source W is
a locally free sheaf, then one obtains surjections ¢*: P*(L) — P*~1(L)
for i = 1,2,... and homomorphisms v*: f*W — P*(L) for i = 0,1,...
such that the data

(f*W,P*(L),¢',v*,i > 0) (1.2)
is a Wronski system of modules [21, 2.1, 2.2, p. 137, 138]. By definition,

Oxxsx

i._ Oxxsx i —
P':= ——= and P'(L):= p.( TiFT

Ti+1 ®¢"L),
where p and ¢ are the projections of X xg X on its factors, and [ is
the ideal sheaf of the diagonal in Oxx.x. The data (1.2) is a Wronski
system of modules because the sheaves of principal parts on a smooth
family of curves are locally free, which is not true in the singular case.

(1.3) The purpose of this part of the thesis is to overcome the “def-
ficiency” of the sheaves of principal parts in being locally free. On a
singular, Gorenstein curve the invertible sheaf replacing the sheaf of
Kahler differentials ! is the dualizing sheaf w. Therefore, a natural
idea is to use the canonical map n': Q! — w on a family X/S to replace
the sheaves of principal parts P* by sheaves of P*-algebras Q' that are
locally free. More precisely, one wishes to obtain sheaves of algebras Q"
for : = 0,1,... fitting into commutative diagrams

0 —— Q — v P —  , pi-1 L0

17'1 | w‘l w“‘l (1.4)

0 —» w® 2 g 1 gt
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for : = 1,2,..., where the first row is canonical, both rows are exact,
the right hand side square is a diagram of algebra homomorphisms, and
n' is induced from 75! in a canonical way (see Section 2). The data given
by the sequence of sheaves Q* for ¢ = 0,1,... and the maps in diagram
(1.4) is called a Wronsk: algebra system on X/S. In a sense, the goal of
constructing a Wronski algebra system on X/S forces us to be a little
more ambitious. There are several Wronski algebra system on a single
curve (see (4.11)), but if one requires the formation of the sheaves Q*
to be natural, that is, to commute under base change in a fairly large
class of families X/S, then there is only one Wronski algebra system.
The method developed in the present article produces a canonical and
natural Wronski algebra system for a general family of reduced, local
complete intersection curves, not necessarily irreducible or complete, in
arbitrary characteristic. By replacing the sheaves of principal parts P*
by the sheaves Q' one can readily apply the method described in (1.1)
to associate to each linear system on X/S a canonical Wronski system
of modules on X.

(1.5) There are a few novelties introduced in this part of the thesis.
First, we are able to consider reducible curves in any characteristic, as
long as they are local complete intersections. In particular, we are able
to consider families of Deligne-Mumfiord stable curves. However, we are
faced with the same problem Eisenbud and Harris pointed out in [11, p.
339], namely, some components of the curve might be degenerate with
respect to the linear system in consideration without the whole curve
being degenerate. In our set-up, every point in a degenerate component
is a Welerstrass point. By contrast, there are at most a finite number
of Weierstrass points on an irreducible curve. Excluding the case of
degenerate components, the theory developed here adequately defines
Weierstrass points and weights on a family of reducible curves, as shown
in Section 7.

Second, we are able to consider families of singular curves in any char-
acteristic, instead of a single curve as in the previous literature (see
however [25] in characteristic 0). In [22] Laksov and Thorup indepen-
dently introduce a replacement of the sheaves of principal parts on an
integral curve defined over a perfect field. Nevertheless, it is not clear at
all whether their method would extend to families, since they made use
of the normalization map of the curve and of Rosenlicht’s local charac-
terization of the dualizing sheaf on the curve [34]. It is not clear either
(even though it is plausible) that their replacement coincides with ours
in the case of an integral, local complete intersection curve defined over
a perfect field.

Third, a Wronski system of modules gives a priori more information
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than the Wronskian determinant obtained from it. For instance, one is
able to give a structure of determinantal subscheme to a subset of the
family defined by a condition of Weierstrass type. More precisely, given
a Wronski system of modules (W, Q*, ¢*,v*,7 > 0) on a scheme Y, the
k-th degeneracy locus of the map of vector bundles v* gives a subscheme
structure for the locus of points y € Y whose k-th order is greater than
. Hence it is desirable to obtain a Wronski system of modules for each
linear system, as done in the present article, instead of just a Weierstrass
divisor.

(1.6) There are important questions still open. First, is it possible
to construct a Wronski algebra system on a general family of reduced,
Gorenstein curves? If so, is it possible to construct it in a natura! way?
Is the Wronski algebra system unique in some sense?

Secondly, how can one explain limits of Welerstrass points when an
irreducible curve approaches a reducible curve with degenerate compo-
nents? Eisenbud and Harris have developed the technique of limit linear
series when the reducible curve is of compact type [11]. Is there a way
te handle the problem at least for stable curves? If so, valuable infor-
mation could be obtained about the moduli of smooth curves, since it
has a compactification by stable curves.

(1.7) We now give a brief summary of the contents of this part of the
thesis.

In Section 2 we define the notion of a Wronski algebra system, and
state the main (and only) theorem of the article, Theorem 2.16. We also
start an induction argument for the proof of the theorem, which will be
completed in the next four sections.

In Section 3 we provide a local description of a Wronski algebra system,
and a local criterion for its existence (Criterion 3.13.) The criterion
applies to any family of reduced, Gorenstein curves.

In Section 4 we restrict our attention to families of reduced, local
complete intersection curves. We prove the existence and uniqueness of
a Wronski algebra system on a “general” family, as defined in (4.9).

In Section 5 we introduce the necessary tools to induce locally on any
family a Wronski algebra system from a larger “general” family, and
then to patch the induced local systems together.

In Section 6 we use the existence and uniqueness of a Wronski alge-
bra system on a “general” family, proved in Section 4, and the tools
developed in Section 5 to wrap up the proof of Theorem 2.16.

In Section 7 we show how the theory developed by Laksov and Thorup
in [21] and [22] can be readily applied, once one has good substitutes for
the sheaves of principal parts. Since we also allow for reducible curves,
we make the necessary modifications to their set-up.
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All schemes considered will be assumed locally noetherian, and all
morphisms locally of finite type.
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2. The Wronski algebra system.

Let f: X — S be a flat morphism whose geometric fibres are reduced,
Gorenstein curves. We will often refer to f as the family X/S. Let Q% /s
denote the sheaf of relative Kahler differentials of f, and P} /s the sheaf
of relative n-th order principal parts for each n > 0. If Ix;s denotes the
ideal sheaf of the diagonal X — X xg X, then

Ix;s Oxxsx
QlX/S:E;_S. and P}é/s:T}’ng—

Denote by Q}/S the Ox-module ;—S{& for every n > 0. There is a

X/s
canonical exact sequence

n
for every n > 0. In addition, the formation of P} /s and p% /s commute
with base change and open embeddings. Note that Py s is a sheaf of
O x-algebras in two ways, induced by the two O x-algebra structures of
Oxxsx- We will distinguish between the two by calling one the left
structure and the other the right structure. For general information on
the sheaves of principal parts we refer the reader to [EGA IV-4, 16.7,
p. 36].

(2.2) Assume that the fibres of f are local complete intersections. In
addition, assume for the moment that f is quasi-projective. Denote by
t: X =Y an S-embedding of X into an S-smooth scheme Y with pure
relative dimension m over S (for instance, one could take Y to be a
projective space over S). Since the geometric fibres of X/S are local
complete intersections and Y is S-smooth, the embedding ¢ is transver-
sally regular relative to $ [EGA IV-4, 19.3.7, p. 196]. Let Jy be the
ideal sheaf of X in a neighbourhood of X in Y. Then one has a canonical
exact sequence of sheaves:

Jy d T
7}2‘% L0} s00x — Q%5 — 0.

From the above exact sequence, one constructs the map
1 e Jy A 1
py: s @ N 7z A\ Qs ® Ox
locally defined on an affine open subset U of X by
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where A is a section of Q%//s ® Ox on U and ¢3,...,9m—1 are sections
of —{— on U. The map py is well-defined since 13’— is a locally free Ox-
Y

module of rank m — 1. Let

oxis = AYs@(N ] 7 (2.3)

m-—1

By tensoring py with (A )_1 we obtain a map
Y

n}(/Y/S: Qﬁqs —wWx/s-

It is clear from (2.3) that the formation of wx/s commutes with base
change and open embeddings. Moreover, the abceve description shows
that n} 1Y/S is also natural, that is, for any S-scheme S; and any open
subscheme X; of X x5 S;, the diagram

1%/ v/ s®0x,
Qx/s ® Ox, —————— wx;s @ Ox,

1
=| El
1
Mx,/v1/51

1
—_—
Qxl/s1 wX,/5

commutes, where Y7 is an open neighbourhood of X; in ¥ x5 5;.
(2.4) The homomorphism n}(/Y/s does not depend on a particular

embedding of X into an S-smooth scheme Y. In fact, let v: X «— Z be
an S-embedding into an S-smooth scheme Z of pure relative dimension

over S. Note that

p:=0v) X -YxsZ
is also an S-embedding into an S-smooth scheme of pure dimension over
S. We need only prove that
1 — 1 d ol — 1
Mx/vxsz/s = x/y/s aNd Nx;yxsz/s = NXx/z/s"

Hence one can assume that there is a smooth morphism p: ¥ — Z of
pure relative dimension ! such that v = po:. Let Jz be the ideal sheaf of
X in a neighbourhood of X in Z. Then one has the following canonical
diagram of homomorphisms on X:
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0 0
! !
% 0L @0x —s QY —— 0
| l |
0 00k T Qs —— 0
| !

Q%,/Z®(9x e— Q%,/Z®(')x
| |
0 0,

where the rows and columns are exact. The above diagram shows that

{
HY =#Z®/\Q‘§//Z®OX'

Since
m— I
nx/z/s =z ® ( /\ 7z Z),
T%/v/s =By ® (/\ 72 )71,
and
/\ /\ 7 ® /\ 2z ® Ox,
then

U}(/Y/s = 77§</z/s-

Hence 1} /s = n% /y/s is uniquely defined. We remark that the above
argument is certainly not new. It was used in [23], for instance, to show
that wy/s, as defined in (2.3), is independent of the embedding «.

If f: X — S is a general flal morphism whose geometric fibres are
reduced, local complete intersection curves, then one can cover X with
open subschemes X in such a way that X is quasi-projective over S.
Because 77}“ /s does not depend on a particular S-embedding of X into

an S-smooth scheme of pure relative dimension over S, then one can glue

50



the homomorphisms 71_1‘(A /s together to obtain a global homomorphism
77}</s~

We remark that by [15, Corollary 23, p. 56] the sheaf wy,s is a
dualizing sheaf for the family X/S. However, no dualizing property of
wx/s will be used in the remaining of the article. For our purposes all
we need is that wx,s is defined by (2.3).

It is worth mentioning that it would actually be possible to obtain a
comparison homomorphism between the sheaf of Kahler differentials of
f and a certain dualizing sheaf of f without the assumption that the
geometric fibres be local complete intersections. As a matter of fact, we
will only need the latter assumption in Section 4.

— @
Let “’?{/s = wx75.

PROPOSITION 2.5. 7} /s induces canonical and natural homomorphisms

773(/5? Qfx/s - wf*(/s
for every 1 > 1, which are isomorphisms on the smooth locus of X/S.

PROOF: 77,1*{/5 induces

Ix;s Ixys
(Tl}(/s)2 : —I"’/ __Iz/ - w,z*(/s-
X/s X/s

We will show that (n} /s )? factors through the multiplication homomor-
phism

Ixi;s _ Ixss . I%s

m: .
ys ~ Txis  Txs

For this we just need to show that the support of the kernel of m does
not include any associated points of X, since wy/s is invertible. But an
associated point of X is an associated point of the fibre over S where
it lies [EGA IV-2, 6.3.1, p. 138]. Since the geometric fibres of f are
reduced, then any associated point of X lies on the smooth locus of
X/S, where m is an isomorphism. The construction of 7% /s is thereby
completed. The construction of the remaining homomorphisms is analo-
gous. The naturality is obvious from the construction and the naturality

of n}(/s. ]

DEFINITION 2.6. A Wronski algebra system on X/S is a collection
{Q}/s; n > 0} of sheaves of algebras on X together with algebra homo-

morphisms
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¢_n\’/s¢ Pf’/s - Q}/s,
0%/s: Qxss — %/

end an Ox-module homomorphism

af"{/si w?r/s - Q}/s
for every n > 0 satisfying the following properties:

(1) Qg{/s = Pg{/s;
(2) the diagram of maps

P&/s
n n n-—-1
0 — QX/S - PX/S — Ix;s — 0
’7}/3‘[ ’J’?{/sl '1’3'(7;1 (2.7)
0‘;/5 ‘1;/5 ne1

0 —— “’?(/s - Q?{/s - QX/S — 0

is commutative with ezact rows for every n > 0.

(2.8) The homomorphism %% ¢ induces left and right Ox-algebra
structures on Q% /s for every n > 0. By definition, the homomorphism
a%/s is Ox-linear with respect to both O x-algebra structures on Q% /s
Because of the invertibility of wx/s, the sheaf Q% /s is locally free of
rank n + 1 for each of its O x-algebra structures. Note also that Propo-
sition 2.5 implies that %% /s is an isomorphism on the smooth locus of

X/ S for each n > 0.
We will denote by
(@%/s:¥x/5:9%50 %%/5:m 2 0)

a Wronski algebra system on X/S. For simplicity we’ll sometimes de-
note a Wronski algebra system on X/S by (Q%/s,n 2 0), leaving the

homomorphisms implicit.

DEFINITION 2.9. Two Wronski algebra systems,
(Q%/s:¥%/s5:9%/52%5:n 2 0),
(Q%/s1 /50 Gx/50@%5om 2 0)

on X/S are equivalent if there are isomorphisms
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V?{/s‘ Q?\'/s - Q&/s

for all n > 0 such that ’Z’?{/s = u;‘(/s o z,b}/s for n > 0 and the diagram
of maps

n o’:\‘r/s n q;/s -1
Wxys — QX/S - QX/s

I

n ®x/s ~n ‘7}/5 ~n—1
Wxys — Qx,'s - QX/S

commutes for n > 0. The systems will be called uniquely equivalent if
the v% /g are unique.

(2.10) Let hy: S; — S be any morphism of schemes, and let X; denote
an open subscheme of X xg S;. Let h: X; — X denote the induced
morphism. If

(Q?{/sy 1/)?(/5, Q?(/sa 0131(/5’ n 2> 0)

is a Wronski algebra system on X/S, then

(h*Q%/s, Y% s h7 a5, h % s,m 2 0)

is a Wronski algebra system on X;/S; by the naturality of p% /s and
% /s forn > 1.

DEFINITION 2.11. The Wronski algebra system (h*Q% s,n 2 0) on
X1/S1 will be called the restriction of (Q%,s,n 2 0) to X1/5:.

Let (Q}1 /s 2 0) be a Wronski algebra system on X;/S;.

DEFINITION 2.12. (Q%, /5T 2 0) is said to be induced from the
Wronsk: algebra system (Q}/S,n >0) if (Q}l/sl,n > 0) is equivalent
to the restriction of (Q”X/s,n >0) to X;/S;.

(2.13) Let C be any class consisting of families X/S, whose geometric
fibres are reduced, Gorenstein curves, and such that C is closed under
base change and open embeddings. In particular, we can consider the
class Cj..;. consisting of families whose geometric fibres are reduced, local
complete intersection curves.

53



DEFINITION 2.14. A Wronski algebra system on C consists of a
Wronsk: algebra system

(Q%/S’ 1/)?(/5, qg{/Sa ag{/san 2 O)

for every family X/S in C such that if h: S} — S i3 any morphism and
X1 13 an open subscheme of X xg Sy, then (Q}l/sl,n > 0) i3 induced

from (Q}/s,n > 0).

Denote by (Q",%™,¢",a",n > 0), or simply by (Q",n > 0) leaving
the homomorphisms implicit, a Wronski algebra system on C.
DEFINITION 2.15. Two Wronski algebra systems, say (Q™,n > 0) and
(Q™,n > 0) on C are (uniquely) equivalent if for every family X/S in
C the Wronski algebra systems (Q%,s,n 2 0) and (Q}/S,n > 0) are
(uniquely) equivalent.

The goal of the present article is to show the following theorem.

THEOREM 2.16. There is a Wronski algebra system on Cy..;.. Moreover,
any two Wronski algebra systems are uniquely equivalent.

(2.17) Note that it makes perfect sense to talk about a truncated in
order N Wronski algebra system on a family X/S as being the data

(@%/s:¥X/s19%/519x/5,0 < < N)

satisfying the conditions in Definition 2.6 up to order N. Likewise, all
the concepts introduced so far make perfect sense for truncated Wronski

algebra systems.
(2.18) As the first step in proving Theorem 2.16, we define the trun-

cated in order 0 Wronski algebra system as

(Q°,¢°) := (P°,idpo).

We can also easily define the truncated in order 1 Wronski algebra system
as the pushout of the infinitesimal O x-algebra extension (2.1) under

n% /s+ Damely,



for any family X/S. Because of the categorical nature of the pushout
construction, one can easily check that the above data satisfies the con-
ditions in Definition 2.14 and Definition 2.15.

However, the pushout construction will not produce a truncated in
higher order Wronski algebra system. The actual proof of Theorem 2.16
will be completed in the next four sections. We will often use in the
proof the following trivial lemma and its corollary.

LEMMA 2.19. If two Ox-linear maps 3, 8:: E — F, where F is locally
free, are equal on the smooth locus of X over S, then they are equal.

PROOF: The lemma is a trivial consequence of the fact that the associ-
ated points of X lie on the smooth locus of X/S, as pointed out in the
proof of Proposition 2.5. §

COROLLARY 2.20. If two Wronski algebra systems are equivalent, then
they are uniquely equivalent.
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3. A local criterion.

We first describe the local structure of a Wronski algebra system. Let
(Q%/s>0 < n < N) be a truncated in order (N — 1) Wronski algebra

system on a family X/S.
(3.1) Assume that X is an affine scheme and wy/s is free, generated

by 7. Of course w¥% /s is free, generated by 7" for every n > 0. Pick a

global section {n_; of Q’,\('/'S1 mapping to a’ /S(T) in Q% /s under

q_%{/so...oq‘];g/_sl'
Let ¢, be the 'image of (N—1 in Q}/S under

+1 N-1
9?(/5 - 0%4xys

for each positive n < N.

PROPOSITION 3.2. The homomorphisms of left O x-algebras

n. Ox([T n
e 05

sending T to (, are isomorphisms, making

Ny il rn
, OxIT] , 9x[T]
Ox T * T

Al el el

n a:{'/s n 9}/5 n—1
Wxis — QX/S - QX/S’

where ™ is the canonical quotient, into a commutative diagram of maps

for alln < N.

PRrROOF: We first observe that the above local description is known for
the sheaves of principal parts P}, ¢ in the case the family X/S is smooth
[21, 2.4, p. 139]. So it is natural to expect the same description to hold
for a good replacement of the sheaves of principal parts.

Let Al be the kernel of the composition

QSf/s -0 ‘1?{/3’ Q?{/s - t1?/15

if i < n and A}, = 0 otherwise. The sheaves A}, provide a filtration by
invertible quotients for Q% /S
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O=---=Ap*' CALC---C AL CALCQ%s
In fact, the invertible quotients are powers of wx/s, the induced map

A;l H ]
AR Wxys C Qs (3.3)

being an isomorphism for every ¢ < n.

We claim that AL AZ = A*J. To prove the inclusion “C” it is enough
to show that if i + 7 > n + 1, then ALAJ = 0. But the latter equality
is true on the smooth locus of X/S, because there the sheaves Q% /s
are isomorphic to Pg /59 and the proposition holds for the sheaves of
principal parts on a smooth family of curves, as observed in the start of
the proof. Since the sheaves Q% /s are locally free and the smooth locus
of X/S contains all the associated points of X, then the equality must
be true everywhere. From the inclusion “C” we obtain a well-defined
map, induced by multiplication,

AL

AL A
m: Ai+1
n

o~ S (3.4)

®

By combining (3.3) and (3.4) we obtain the following diagram of maps

AL A m A
A;1+l ® AJn+1 ’ A;.+J+1
l 1 (3.5)
i J RS
wy/s ®wWx,gs Wx/s

which is commutative, since (3.5) is commutative on the smooth locus
of X/S and wx/s is invertible. In particular, m is an isomorphism,
implying that AL AZ = A7 as we wished to prove.

From the claim we obtain that A} = (Al)’ for every ¢ > 0, which
shows that (! generates the free rank 1 module

AL(X)
Ai;+l ( X) :
Consequently we obtain an isomorphism

n, Ox(T n
[ (T)’{“[H]) - QX/S
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for every n by sending T to (,. The compatibility in the choice of the
Cn assures us that ¢% /s is thereby identified with the canonical quotient
map
. Ox[T] | Ox[T]
@) T

for every n < N. Moreover, from (3.5) the diagram of isomorphisms

Alvpg ™ n
(22)" —— Aj

n

I e

n
“x/s

n
wx/s

commutes. Hence

o s(t") = (g = u™(T")
for every n < N. The proof of the proposition is complete. B

(3.6) We are going to give a criterion for the local existence of a trun-
cated in order N Wronski algebra system extending (Q% /50<n <N )-
To this purpose we can assume that S and X are affine, and X is a
closed subscheme of an S-smooth affine scheme Y of pure relative di-
mension m over S. Let J be the ideal sheaf of X in Y. Let fi,...,f:
be regular functions on Y generating J globally. As a convention, we
will denote by b the restriction to X of a regular function b on Y. We
will also assume that there are regular functions uj,...,u, on Y such
that duy,...,dus, form a basis for Q}, /5" In particular, their respective
restrictions #%;,...,4%n, to X are such that du,,...,dd, generate Q},(/S.
For convenience, we let v; := #; for each ¢« = 1,...,m. In addition,
assume that wx/s is free, generated by r, and pick a global section { of
Q%}'Sl mapping to a’ /S(T) in Q% /5" For convenience, we will use the
same notation ( for its images in Q% /s for0<n < N.

If ¢ is a section of Oy (resp. of Ox), then we will denote again by ¢
its image in Py, o (resp. P% /S) under the left Oy-algebra (resp. Ox-
algebra) structure of Py s (resp. Py, s), and by ¢ its image in Py /s (resp.
P%/s) under the right algebra structure. Note the abuse of notation we
commit in not distinguishing between the several sheaves of principal

parts.
Let a; ; be regular functions on X defined by

Px/s(0i) =vj+a1;C+ - +an;¢"
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for every n < N and each j = 1,...,m. Note that

U%{/s(dvj) = a1,;T

for every j =1,...,m.
Inspired by Proposition 3.2, we want a criterion for the existence of a
left Ox-algebra homomorphism

Ox|[T)
N . pN
¥x/st Pxis — (TN+1)

making the diagram

N
p;
0 — QFs —— PYs - P,Q’/E1 — 0
R o
Xx/s Ix/s _
0‘_—’“’%/5—_’(%\3@5——’9%3——“’0
commutative, where QQ/S(T) = ( and a%/S(TN) =TN.
For each [ > 0, let
Lii={y:=(,--ytm)i7i €Zyoand M +---+vm =1}.
Let
Oy(Z1,...,2Zm] = Pys (3.8)

be the left Oy-algebra homomorphism sending the variable Z; to u; for
every ¢t = 1,...,m. The map (3.8) is surjective with kernel generated by

(Z1 —u)" .. (2 — Uum)™

for all ¥ € 'n+1. On the other hand, the kernel of the surjective map
P{,‘; s — P)j{V /s (induced by the quotient map Oy — Ox) is generated

by fr and fi for all k = 1,...,t. The element fi can be expressed as
fk = fk +2Difk(ﬁ,' —ui)+--+
=1
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+ Y DY DI felar —w)™ (i — )™
v€lN
in P{,\; g for every k =1,...,t, where D! is the Hasse derivation on Y/S

of order [ associated to u;.
To construct a left O x-algebra homomorphism

Ox[T]
N . pN
¥x;s: Pxs — (TN+1)’

we need only construct a left Oy-algebra homomorphism

Ox|T
¢N: Oy[Z1,..., Zm] *(_7:"%1])

factoring through P¥ /s Since

N PX/s N-1
Py — X/S
N N-1
V’X/Sl w.\'/sl

qi\g/s
Oxlg ] ) N-1
(TR +1) ? QX/S
must be commutative, one must have

dN(Z)=vi+ai T+ +an_1; TV — ;TN (3.9)

for some regular function ¢; on X for every z = 1,...,m. As a conse-
quence of (3.9), the commutativity of

N N
Qx;s — Pxs
'lﬁ/sl ’f’fz/sl

C!N
N XS 0x[T]
wx/s ¥ (TN

is guaranteed for any choice of ¢;, because Q% /s 18 generated as a sub-

module of P}}’ /s by

(T —v)" .. (D — o)™

for all y € T'n, and

aXss onks(B1 = o)™ . (B — vm)™) = o s([ ] mi/s(dvs)¥) =
J=1
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m

= H a;’ijN =oN(Z1 —u)" .. (2 — um)™),

1=1

as it can easily be seen from (3.9) and the construction of 779(' /s via the
multiplication map m: (Q% / s)®N — Q% /s carried out in the proof of

Proposition 2.5.
In order that ¢%, as defined by (3.9), factor through PY /s 1t is neces-

sary and sufficient that

o +a T+ - —aTV,.. . om+amT+--—cTV)  (3.10)

be divisible by TV*! for all k = 1,...,¢t, where

m

flﬁv(Zla cee Zm) = Z(Difk)-(zi - Ui) +4 -4
=1
+ 2 OF D) (G =) (=)™ (31D)
v€lN

for each k = 1,...,t. Note that (3.10) is already divisible by TV since

zl)g/'; is defined. Hence, one may define the following regular function

on X:

N(. .. i+ - ilﬂv—l,.“
gy fe vt ;213” L ) (3.12)
T=0

for every k =1,...,t. Let also

Difi Difi ... Dmfr
_ | Dif2 Dafe ... Dmfo
ljlf} 1)2f} s ljnnﬂ

Then we have the following criterion.

CRITERION 3.13. There exists a homomorphism 1/)% /s making diagram
(3.7) commutative if and only if the linear system

C1 div
Cm ay
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is solvable by regular functions ¢;,...,cm on X.

PROOF: By combining (3.11) and (3.12) we obtain that

G vitai T+ +av_1 TV 1 =TV, )=
= (df = > (Difi)"e)TN + ...
i=1

for every k = 1,...,t. The criterion follows immediately. B



4. The Wronski algebra systemn
for “general” families.

Continuing the set-up of last section, S is an affine scheme, Y is an
affine S-smooth scheme whose sheaf of differentials Qi, /s is free of rank
m with basis du;,...,du,, where u;,...,u, are regular functions on
Y, and X C Y is the closed subscheme defined by regular functions
fi,-.., fton Y. Assume now that t = m — 1, and fi,..., f;m— form a
regular sequence on Y relative to S. In other words, we assume that
for every fibre of Y/ S the restrictions of f1,..., fm-1 to the fibre form a
regular sequence. As a consequence of the above assumptions, the sheaf
wx/s is free, generated by du; A --- A dupm, ® o, where ¢ is the dual to
fiA---A fm-1, as it can be immediately seen from (2.3). Hence, we can
assume that Tt = du; A --- Adu,, @ 0.

DEFINITION 4.1. The data

(S,y',4¥,?,lq, ‘e aumafl9' s afm—l)
is called a local data.
(4.2) Let M; denote the maximal minor of M obtained by deleting the
j-th column of M. Let
6 := (=1)7*! det M; for j=1,...,m.

From the construction of n} /s shown in (2.2) and the above choice of 7
it is easy to see that &; = ay,jforj=1,...,m. Let

A= (51,. .o ,gm)OX.

As already remarked, At is the image of n} /s in wx,s; hence At is an
intrinsic object.

LEMMA 4.3. If depth (A(X),Ox(X)) = 2, then there is a homomor-
phism z,bf\Y /s making diagram (3.7) commutative. Moreover, dzf}’/s is
unique in the following sense: if

Ox[T)

N. pN

is another homomorphism making diagram (3.7) commutative, then
there is a unique isomorphism
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\v, Ox[Tl _ Ox[T]
: (TN+1) (TN+1)’

with AN(TN) = TV and ‘1,1:(]/5 o AN = qg/s, such that AN oz,b%,s = 4N,

PROOF: We first claim that a; ; € A(X) for all ¢,5. The proof will be
by induction. We have already remarked that a;; € A(X). Assume
that a; ; € A(X) fori < s, where2 < s< N. Foreachk=1,...,m—1,

one has

f,iv( coyvjtay ;T +-- -+aN_1,jTN_l,. )= (Z(Djfk)_al,j)T'*" 4
=1

r m N\ N-1
+OQ- > oo Y1 (ZJ]) Il e +..., (49)

=1 vel'; laj|=; j=1 =1
s(a)=r

where

a :=(a; j)1<i<N; ai,j € Lo,
15j<m

a] :=(a11.]7 D ’aN_lvj)7
laj| i==ay,; + - + an-1,j,

s(a) = Z 1 j,

iJ

(’Yj) __
@) iy ai!

Since TV divides (4.4), the coefficient of T in the expression (4.4}
must be 0. But this coefficient may be expressed as

Z(Djfk)_as,j + Ek,s,

i=1

where Ej , does not involve any a; ; with : > s. Hence, from the induc-
tion hypothesis we obtain that Ex , € A%(X), and therefore

Y (D;fr)"as,; € AYX)

=1
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forevery k=1,...,m — 1.
Since depth (A(X),Ox(X)) = 2, by the Buchsbaum-Eisenbud crite-
rion [8, Theorem, p. 260] the complex

Ox - ———0 (4.5)

Grrbm) o M , Ox

0 — Ox O% -—-*03.2"'_1 -—’E}_tox(—A-,ox)"’Oa (4.6)
which is exact since
Ox Ox
Homo,((—a—,(?x) = M}px(—zﬂox) =

by the condition on the depth [26, 16.7, p. 130]. Since the O x-module
Eit%,x(%&,o x) is annihilated by A, then the image of M contains
A®™=1_ Since the kernel of M lies inside A®™ then any section of
O%™ mapping into (A?)®™~! under M must be in A®™, Hence

a8,17 M as,m e A(.X),

finishing the proof of the claim.

It is easy to see from (4.4) and the claim just proved that dfy € A%(X)
for every k = 1,...,m — 1. Since the image of M contains A®™~! one
can find ¢1,...,em € A(X) such that

m
Z(Djfk)—cj =dY for k=1,...,m—1.
i=1
By Criterion 3.13, the existence of gbfé /s follows.

As for uniqueness, from sequence (4.6) any two solutions (¢;,...,¢m)
and (cj,...,c,) to the linear system of Criterion 3.13, corresponding
to homomorphisms z/)§ /s and 6V, respectively, differ by a multiple of

(615-..,6m), say

(chyevesch) =(C1yeevrem) +e(b1,y...,6m),
where e is a regular function on X. If we let

v, Ox[Tl | Ox[T]
: (TN+1) (TN+1)
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be the Ox-algebra homomorphism defined by AM(T) := T — eT", then
ANy =1V,
a%/s 0 AN (T) = ¢§/s(T — eTV) = ¢ = ¢§5(D),

and

AN o} is(#) = AN (vi + a1, T+ + an—1,; TV ! — ;TV)
= v+ a1, T+ +an-1, TV — (ci + ear i)TV
=vi+a; T+ +an_1, TV - TV

= 6" ()
for: = 1,...,m. In addition, /\9(’ /s is unique by Lemma 2.19 (alterna-
tively, because the homomorphism (81, ...,6mx) is injective). The proof

of the lemma is complete. @

COROLLARY 4.7. If depth (A(X),Ox(X)) =2, then there is a Wronski
algebra system on X/S. Moreover, any two Wronski algebra systems are
uniquely equivalent.

PROOF: Assume by induction that there is a unique truncated in order
N —1 Wronski algebra system (@%/5,0 <n < N) on X/S. By Lemma
4.3 there is a truncated in order N Wronski algebra system extending
(Q}/S,O < n < N). The first statement of the corollary follows by

induction. As for the second statement, we can assume by induction
hypothesis that any two Wronski algebra systems on X/S agree up to
order N—1, say with (Q}‘(/S, 0 < n < N). Moreover, since X is affine and
wx/s is free, by Proposition 3.2 any extension (Q%/S, z/zg/s, Q,I’\(//s’ a%/s)
of (Q% /50Sn< N ) is equivalent to an extension of the form

Ox[T
((_:ZTE-I]—)’ ¢)1¥/S,Q,I‘\(r/s’a§/s)s
where qg/s(T) = ¢ and af‘}’/S(TN) =TV, with r:=duy A+ Adup, ® o,

and ( a choscn global section of Q%/’; mapping to ak /s(7) in Q% /s
Therefore, by Lemma 4.3 any two extensions are equivalent. The unique-
ness of the equivalence follows from Corollary 2.20. 8

(4.8) Let f: X — S denote a flat morphism whose fibres are reduced,
local complete intersection curves.
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DEFINITION 4.9. X/S is said to satisfy the depth condition if

@:DX(Coker n}\,/s,ox) =0
for:=0,1.

PropPoSITION 4.10. If X/S satisfies the depth condition, then there is
a Wronski algebra system on X/S. Moreover, any two Wronski algebra
systems on X/S are uniquely equivalent.

PROOF: One can cover S with affine open subschemes S and X xg Sx
with affine open subschemes X, in such a way that there is a closed
Sx-embedding ¢, : X, — Y, into an affine Sx-smooth scheme Y, of pure
relative dimension m, over S, satisfying the following properties:

(1) Q%’,,/S,\ is free of rank m,;
(2) The sheaf of ideals of X, in Y, is generated by a regular sequence
of length m, — 1 on Y, relative to S.

Since X/S satisfies the depth condition, so does X,/Sx. By Corollary
4.7, there is a Wronski algebra system (Q}” /s 2 0)on X, /Sx for
every A and u. Moreover, by the second statement of Corollary 4.7 one
can patch the local Wronski algebra systems (an“ /sy»™ 2 0) to obtain
a global Wronski algebra system on X/S. The first statement of the
proposition has been proved. To prove the second statement, one needs
only notice that the second statement of Corollary 4.7 shows that any
two Wronski algebra systems on X/S are uniquely equivalent locally.
The uniqueness allows us to patch the local equivalences together to
obtain a global one. The proof is complete. B

(4.11) By proving Theorem 2.16 we will show that the depth condition
is not necessary for the existence of a Wronski algebra system. Hence the
depth condition is not necessary for the existence statement in Lemma
4.3. But the condition is necessary for uniqueness. In fact, consider
the affine planar curve X C A2 defined by f := y® — z*, where k is an
algebraically closed field of characteristic different from 2. The idea for
this example comes from [12, 2.1, p. 6], but the next development is
independent. We have

ain = (Dyf)” = 3y® and a2 =—-(D:f)" = 4z3

on X. Hence

_ (y+42°T) — (= + 3y°T)*
B T? ) T=0

d? = —6z%y* = —62%y

on X. Since
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0
(4% 3y?] [_2x2y2] = —6a%y,

then by Criterion 3.13 there is a homomorphism %? making diagram
(3.7) commute, namely,

$*(2) =2 +8y’T and ¥2(§) ==y + 42T + 227y T2
However, the homomorphism

Ox|[T]
(T3)

6%: P% —

given by
6%(%) := z + 3y*T — g:c?’yT2 and 6%(§) :=y+42°T
is well-defined and also makes diagram (3.7) commute, since
3.3
[—423 3y?] [2% y] = —62%y
on X. If A? is an automorphism of %&-751 such that A\2(T2) = T2, then
AX(T) = T + €T? for a regular function e on X. If A% 0 3)? = 62, then
x4+ 3y°T + 3y%eT? = A2 0 9%(2) = 6%(3) = = + 3¢°T — g:::3yT2.

But there is no polynomial p(z, y) such that 3y?p(z,y)+ %xay is divisible
by y3 — z*. Fcnce, the truncated in order 2 Wronski algebra systems
defined by %2 and #? are not equivalent.
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5. Some lemmas.

Cf course the hypothesis on the depth cannot be satisfied if the family
X /S consists simply of a curve over a field. The idea to overcome this
problem is to “enlarge” locally the family X/S in such a way that the
larger family satisfies the depth condition, apply Proposition 4.10, and
then restrict the Wronski algebra system in the larger family to the
family X//S. One must also take care that two different “enlargements”
do not yield two different Wronski algebra systems, if we are to glue the
local systems together. The purpose of this section is to build enough
tools to handle the above process.

(5.1) Assume there is a commutative diagram of morphisms of schemes,

ha
S —— 55

hOT hsT (5.2)

hy
So —— Ss,.

Let X3 be a flat scheme over S3 whose geometric fibres are reduced, local
complete intersection curves. Let X; C X x g, S;: be any open subscheme
for : = 1,2. Let X, be an open subscheme of

X1 XS, 50 ﬂ}(g X s, So.

LEMMA 5.3. Let (an.-/s.- ,n > 0) be a Wronski algebra system on X;/S;
for:i =2,3. Let (Q};/S;’” > 0) be a Wronski algebra system on X;/S;
induced from (Q};H/S;“’n > 0) for : = 0,1. If X3/S, satisfies the
depth condition, then (Q%, s, = 0) is induced from (Q% /5,7 = 0).

PROOF: Since X, /S, satisfies the depth condition, then by Proposition
4.10 the system (Q}z/sz, n > 0) is induced from (Q_’,‘(a/sa, n > 0). Hence
(@%,/s,»™ 2 0) is induced from (Q%, /s ,,n 2 0) via h3 o h;. Since
ha o hg = hz o h; and (Q}’{I/Sl,n > 0) is induced from (Q}a/sa,n > 0),
then (Q}olso,n > 0) is induced from (Q%,/s,»n 2 0). The proof is
complete.

(5.4) We now return to the local case, that is, assume that

(S,Y,X,ul,...,um,fl,...,fm_l)

is a local data. We will provide an explicit “enlargement” for X/S
satisfying the depth condition. Let S' := S x Spec Z[T; ;], where Z[T; ;]
is the polynomial ring over Z in the variables T; j, with 1 <¢: < m —1
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and1 <j<m+1 LetY =Y xs55'. We will commit an abuse of
notation in not distinguishing between a regular function on Y and its
pull-back to Y. Then Y’ is smooth over S’, and Q3,, /s s free of rank
m, with basis duy,...,dun,. Let Z' C Y’ be the closed subscheme whose
sheaf of ideals J' is generated by the regular functions

fo=fe+> uiTej+Temer for k=1,...,m—1

i=1

on Y'. If welet hg: S — S’ be the closed embedding obtained by
making T; ; = 0 for all ¢, j, then it is clear that

Y=Y'xsS and X=2"xs8S.

Let U’ C Y’ be the open subscheme of Y’ where f{,..., fl,_; is aregular
sequence relative to S’ [EGA IV-3,11.1.4, p. 118]. Since fi,....fm-1
is a regular sequence on Y relative to S, then ¥ = U’ xg S. Let
X' € Z' N U’ be the open subscheme of points which are reduced in
their geometric fibres [EGA IV-3, 12.1.1, p. 174]. Since the geometric
fibres of X/S are reduced, then X = X' xg S. It is clear that the
embedding X' C U’ is transversally regular relative to S’. Since U’ is
smooth over S’, then X'/S' is a flat family whose geometric fibres are
reduced, local complete intersection curves.

Note that
Z2' =Y x Spec Z[T; jlici<m-1 (5.5)
1<i<m
and
Djfy = Djfk + Tk,; (5.6)
forevery k=1,...,m—1land 3 =1,...,m. Let
M' = leé DZfé Dmle?
Difmey Dafcy -+ Dmfnoy

and & := det M}, where M; is the maximal minor of M ' obtained by
deleting the j-th column for every 7 = 1,...,m. Let

A= (81,...,60,)0z.

Because of (5.5) and (5.6), the matrix M' is “generic.” As a consequence,
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depth (A"(Z2"),02:(2")) =2,

or equivalently

for : = 0,1. Hence, X'/S’ satisfies the depth condition. By Proposition
4.10, there is a Wronski algebra system (Q%, /5,n 2 0) on X'/S". If we
consider its restriction to X/S, then we have the following proposition.

PROPOSITION 5.7. There is a Wronski algebra system (Q% /5 2 0) on
X/S.

Since we will often refer to the above construction we make the fol-
lowing definition.

DEFINITION 5.8. The data

(S,7Y,QZ"XI1f{’°"7f1,n—1)

will be called the enlargement of the local data

(Svy’Xvulv---aum’fls"’vfm—l)'

(5.9) The above construction is functorial in the following sense. Let

(Sl’-YleIaul)"°’um,fl,"'a m—-l)

be a local data. Let h: S; — S; be any morphism of affine schemes, and
let Y2 C Y] x5, 5> be an affine open subscheme. Let X; := Y2NX; x5, Sa.
We will commit an abuse of notation in not distinguishing between a
regular function on Yj and its pull-back to Y5. The sheaf Q{,z /2 is free,
with basis du;,...,dun, and the ideal sheaf of X in Y; is generated by

fisoooy fm—1. Let
(S;’y'i,vZLXz{vf{""af;n—l)
be the enlargement of the local data

(Si7y}a-¥i)u17"'9um7fla-~'afm—1)

forz=1,2.
It is easy to see from construction (5.4) that h lifts to a morphism A'
making the diagram
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Sy —— S}

Cartesian, Y; is an affine open subscheme of Y| x s S3, and

Zé = Yzani X5 Sé
In addition, we have

X, =Y;NX] xs1 S5
Let (Q% 1s1a T > 0) be a Wronski algebra system on X[/S] for: = 1,2.
Let (Q%, /s;»7 2 0) be a Wronski algebra system on X:/Si induced from
(Q},/S,,n > 0) for : = 1,2. Since X,/S) satisfies the depth condition,
by Lemma 5.3 one has the following lemma.
LEMMA 5.10. The Wronski algebra system (Q%, /s, ,n 2 0) is induced
from (Q%, /s,»n 2 0).

(5.11) We now remark that two “enlargements” of X/S can be ob-
tained by restricting from a bigger “enlargement.” Let Yy — Sp be any
morphism of finite type of affine schemes. Let S; and S; be affine spaces
over Sp together with sections

SO — 51 and 50 — Sg.

Let Y; := Yy xg, S; for e = 1,2. Let ff, e ,ff be a sequence of regular
functions on Y; for 7 = 1, 2, such that the sequences restrict to the same
sequence f7,..., f2 on Y.

LEMMA 5.12. There are an affine space S3 over Sy X s, Sz together with
sections

S1—S3 and S, — 53
making the diagram of maps

S — 53

T T (5.13)

So — 52
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commutative, and regular functions f3,...,f3 on Y3 := Yy x5, S3 re-
stricting to f{,..., ff onY; fori =1,2.

PROOF: Since Y} is of finite type over Sy, then Y, can be viewed as
a closed subscheme of A% for some k, where A% denotes the affine
space of dimension k over So. Hence f?,..., f? are restrictions to Y;
of polynomials p;,...,p: in k variables with regular functions on Sy as
coefficients. One can obtain “general extensions” of the polynomials
P1,---,p: by adding an independent variable T to each coefficient of
each polynomial p;. Let ff, ..., f? be the restrictions to Y3 := Y x 5, 53,

where S3 := S; x5, S2 x Spec Z[T)], of the “general extensions” of
P1,...,p:. By specializing appropriately the variables T for : = 1,2,
the sequence f3,..., f2 specializes to the sequence f},..., fi. The proof

is complete. §
(5.14) Let Z; be the closed subscheme of Y; defined by fi,..., f} for

1 =0,1,2,3. Of course,
Zl Rm— Z3

[

Zy —— 2,

is a commutative diagram which is Cartesian over (5.13), that is,

Zi —— Z;

Lo

Si — 5;

is Cartesian whenever defined. Let U; denote the open subscheme of
Y; where fi,..., f} is a regular sequence relative to S; for i = 0,1,2,3.
Let X; C Z;NU; be the open subscheme of points which are reduced in
their geometric fibres for : = 0,1,2,3. Then one obtains a commutative
diagram, Cartesian over (5.13),

Xl-—————*Xs

I I

Xo — Xo.
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6. Existence and uniqueness of
the Wronski algebra system.

Let f: X — S be a flat, quasi-projective morphism, whose geomet-
ric fibres are reduced, local complete intersection curves. Fix an S-
embedding ¢: X — Y into an S-smooth scheme Y of pure relative di-
mension m over S.

PROPOSITION 6.1. There is a Wronski algebra system on X/S.

PROOF: Since ¢ is transversally regular over S [EGA IV-4, 19.3.7], one
can cover S with affine open subscheme Sy, and then X xs Sy with
affine open subschemes Y, C Y x5 Sy in such a way that for every A, u:

(1) there are regular functions uy1,...,%u,m on Y, such that their
differentials du, 1,...,du,, - form a basis for Q%,p /Sy

(2) if one lets X, := X NY),, then X, is the closed subscheme of Y,
given by a regular sequence f,1,..., fu,m-1 on Y, relative to S.

Let

(S'A’Y,:,az;lux;,nf;,l?' ct L,m-l)

be the enlargement of the local data

(S, Y, Xpsupaye ooy Upmy fu1s-oos fuym=1) (6.2)
for every A,pu. Let (Q}‘,‘ /s m > 0) be a Wronski algebra system on
X, /S, and let (Q@%,/s\'n 2 0) be a Wronski algebra system on X, /Sx
induced from (Q}L jsi o™ 2 0) for every A, p.

Let
(8:,Yi, Xisuinty -y Uim, fis1s -5 fim—1)

be one of the local data (6.2) for ¢ = 1,2. One can cover S; N S with
affine open subschemes Sy and

XNt xs, SoNYz xs, So
with affine open subschemes

Yo C Vi xs, SoN Yz xs, So

such that there is an (m — 1) X (m — 1) invertible matrix Cy with regular
functions on Y, as entries and
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fl,l f2,1

f1,m—1 fa,m—1
Let Xy := X NY,. We will commit an abuse of notation in not distin-
guishing between the regular functions
ui,la e 1ui,m’fi,17 L ’fi,m—l

on Y; and their restrictions to Yy for : = 1,2. Let

(SO’YE)’ZO’XO’ 3,17 7fz!.m—l)

be the enlargement of the local data

(SO')Y'O’X()aui,lv"’ui,m’fi,lv"°7fi,m—l)

fori =1,2. Let (Q" /i 2 > 0) be a Wronski algebra system on X3 /S3,

and let (Q Xo/So? ™ > 0) be a Wronski algebra system on X/So induced
from (Q%: i/50" n > 0) for ¢ = 1,2. By Lemma 5.10, the Wronski algebra

system (QX /Sgr T 2 0) is induced from (Q}i/si,n >0) for:=1,2.
Since Cp is invertible, Z2 is defined in Y? by the components of

faa
Co
fé,m—l

By (6.3), the restriction of the above vector to Y is

fl,l

fl,m—l

Therefore, we may apply Lemma 5.12, (5.14) and construction (5.4) to
find a family X3/S53 satisfying the depth condition and morphisms

Sé i 53 and Sg — 53
making
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[

So————l'sg

commutative, and such that

X3 = X3 x5, S3 and X? = Xi xs, So.
Let (Q%,/s,»n = 0) be a Wronski algebra system on X; /Ss. Since
X} /5§ satisfies the depth condition, then (Q}6 /i > 0) is induced
from (Q%,/s,»n 2 0) for ¢ = 1,2. By Lemma 5.3, the Wronski alge-
bra system (Qig:/so,n > 0) is induced from (Q?{g/sg’n > 0). Since
E}?;:/So,n > 0) is also induced from (Q%; /sy > 0) by construction,
en

1, 2,
(Q%)/5,>n 20) and (Q%}/s,m 2 0)

are faquivalent. Since (Q’,{: /5gr T 2 0) is induced from (Q%, /s 2 0)
for 7 = 1,2, then the restrictions of

(Q%,/s,,n 20) and (Q%,/s,,n 2 0)

to Xo/So are (uniquely) equivalent. The uniqueness of the equiva-
lence allows one to patch together the local Wronski algebra systems
(Q}“ e 0) to obtain a global Wronski algebra system on X/S.
The proof is complete. §

(6.4) It is worth remarking that the above construction does not de-
pend on the covering of S, X,Y by local data. In fact, one could have
taken a covering consisting of all possible local data in the above proof.
However, we still need to check that the Wronski algebra system con-
structed in Proposition 6.1 does not depend on the choice of Y and the
embedding ¢: X — Y. For the moment, denote by (Q% /s 2 0) the
Wronski algebra system constructed in Proposition 6.1.

(6.5) Let X1/S: be any flat, quasi-projective family whose geometric
fibres are reduced, local complete intersection curves. Pick any mor-
phism of scheres h : S, — S;, and let X, be an open subscheme of
X; x5, S2. Let ¢: X; — Y; be an S;-embedding into an S;-smooth
scheme Y of pure relative dimension over Sj. Let Y; be any neighbour-
hood of X3 in ¥ x5, S2. Let (QE{;/K/S;’” > 0) be the Wronski algebra
system on X;/S; constructed in Proposition 6.1 for z = 1, 2.
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PROPOSITION 6.G. The Wronski algebra system (Q}'(2 /Yy /ST 2 0) is
induced from (Q},‘Q/YI/Sl ,n>0).
PRroOF: By Corollary 2.20, to prove the equivalence between the system

(Q%,/v,/8,™ 2 0) and the restriction of (Q}‘{I/YI/S1 ,n _>_ 0) to X2/52
one needs only work locally. Hence we can assume there is a local data

(Sl,XlaY’laulv--aumafla"'val)a

that S, is affine and Y5 is an affine open subscheme of Y} x 5, S; such that
X2 =Y2N X; x5, S2. We have now the same setup of (5.9). Note that
by the construction in the proof of Proposition 6.1 and remark (6.4), the
Wronski algebra system (Q%, /y, /5,7 2 0) is induced from a Wronski
algebra system on the enlargement of the local data

(Si’Xiv}/ivulv"sum-.fl""7fm)
for : = 1,2. By applying Lemma 5.10 the proof becomes complete. §

(6.7) We now go back to the set-up of Proposition 6.1 and prove that
(QQ/Y/S, n > 0) does not depend on Y. To this purpose, let

v:iX —Z2
be another S-embedding into an S-smooth scheme Z of pure relative di-
mension over S. Let (Q% 12750 > 0) be the associated Wronski algebra
system.

LEMMA 6.8. Assume there is an S-embedding e€: Y — Z such that
v=e€ou Then (Q%,y g,n 2 0) is equivalent to (Q% ;7,517 2 0).

PROOF: Let S’ be any S-scheme with a section S — S'. Let

Y=Y x5S and Z':=27 xs5',

and let ¢': Y/ — Z’' be the extension of € by S’. Assume there is an
S'-subscheme X' of Y’ such that X := X' x5 S. Then X' is also an
S’-subscheme of Z' via €’. Assume that X'/S’ satisfies the depth con-
dition. Then (Q%.,y: /5,7 2 0) and (Q%/ 7 5,7 2 0) are equivalent.
On the other hand, by Proposition 6.6 the system (Q';(/Y/S,n > 0)
(resp. (Q}/Z/S,n > 0)) is induced from (Q},/Y,/S,,n > 0) (resp.
(Q@%1 /2175 2 0)). Hence, (Q%,/y/5,n 2 0) and (Q%/z/5:7 2 0)
are equivalent.

By Corollary 2.20, to prove Lemma 6.8 we need only work locally.

But locally one can make the above assumptions, as shown in (5.4).
The proof is complete. §
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LEMMA 6.9. Assume that Y = A%, where A% is the affine space over
Z of dimension k. Let p: Y — Z be the structure map of Y over
Z. Assume that v = pot. Then (Q}/Y/S,n > 0) is equivalent to
(Q}/Z/s,n 2 0)-

PROOF: One can assume that ¢ and v are closed embeddings. One can
also assume that Y is affine by Corollary 2.20. Then it is easy to see
that there is a section s: Z — Y of p such that s o« = v. By applying
Lemma 6.8 the proof becomes complete. §

PROPOSITION 6.10. The systems (Q’;{/Y/S,n > 0) and (Q}/Z/S,n > 0)
are equivalent.

PRrOOF: By Corollary 2.20, one can assume there are S-embeddings of
Y and Z into affine spaces A% and AL, respectively. By Lemma 6.8,
one can assume that ¥ = A% and Z = Afs. Let

p=(,v): X -Y xgZ.
By Lemma 6.9 applied twice, one has that

(@%/yxsz/5:m 2 0)
is equivalent to both (Q}/Y/S,n 2 0) and (Q%/z/s,m = 0). The proof
is complete. §

COROLLARY 6.11. There is a Wronski algebra system on Cj ¢ ;..

PROOF: Let X/S be a family in Cj.;.. One can cover X with open
subschemes X in such a way that for every A there is an S-embedding
X — Y, into an S-smooth scheme Y, of pure relative dimension over

S. Let

(Q}A/svn 20):= (Qj‘lﬁ/YA/S’n >0)
be the Wronski algebra system constructed in Proposition 6.1. By
Proposition 6.10, one can glue the above local systems together to ob-
tain a Wronski algebra system (Q% /5 2 0) on X/S. By Proposition
6.6 and Proposition 6.10, there are equivalences relating Wronski algebra
systems under base change and open embeddings. Hence, the conditions
in Definition 2.14 are met. §

PROPOSITION 6.12. Two Wronski algebra systems on Cy ;. are uniquely
equivalent.

PROOF: Let (Q*",n > 0) be a Wronski algebra system on Cj..;. for
t = 1,2. Let X/S be any family in C; .. By Corollary 2.20, one can
assume there is a local data
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(Ssanaulyn-7umsf1"--9fm—l)-
Let
(8,2, X', fi,. oy fra1)

be the enlargement of the above local data. By Proposition 4.10, the
Wronski algebra systems

(Q‘lx,zllgnn >0) and (Qi&ylgnn >0)

are equivalent. Since by Definition 2.14 the system (Qi’(';s,n > 0) is
induced from (Qf.,’(',l ssn 2 0) for ¢ = 1,2, then the Wronski algebra
systems

(Qk?San 2 0) and (Q%&;‘Ssn > 0)

are (uniquely) equivalent. The proof is complete. §

PROOF OF THEOREM 2.16: By combining Corollary 6.11 with Propo-
sition 6.12, the proof of Theorem 2.16 is complete. §
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7. Wronski systems and Wronskians

Assume f: X — S is a flat morphism whose geometric fibres are
reduced, Gorenstein curves. Assume there is a Wronski algebra system

(Q}/Sa d’?{/s’ q},s, 01?(/57 n > 0)

on X/S. If no confusion is likely, then we will ommit the subscript X/S.
It is important to emphasize though that the existence of a Wronski
algebra system has been proved only in the case the fibres of X/S are
local complete intersections.

(7.1) Let L be any sheaf of Ox-modules. Denote by P™(L) (resp.
Qm™(L)) the tensor product of L by P™ (resp. Q") with respect to the
right Ox-algebra structure of P™ (resp. Q"). The sheaf P*(L) (resp.
Q™ (L)) will be regarded as an O x-module via the left O x-algebra struc-
ture of P™ (resp. Q).

Tensoring diagram (2.7) on the right by L one obtains a commutative
diagram of left Ox-modules, namely

p"(L)
P*(L) —— P™ (L)
zp"(L)l w""(L)l (7.2)
g"(L)

Q™(L) —— Q" (L)
for each n > 0. On the other hand, there are canonical homomorphisms
v™: f*foL — P"(L)
for each n > 0 such that
p*(Lyov™ = v™! (7.3)

for every n > 0.
Assume from now on that L is invertible. Then Q™(L) is locally free
of rank n + 1 for every n > 0. Let W be a locally free Os-module of

constant rank r» + 1. Let

v: W — f.L

be an Og-linear map. By composing f*+ with v™ and ¥"(L) one obtains
a map

o™ f*W — Q™(L)
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for each n > 0 such that

q"(L)ov™ = "1 (7.4)

for every n > 0, because of (7.3) and the commutativity of (7.2). Ex-
pression (7.4) shows that (f*W,Q™(L),¢"(L),v™,n > 0) is a Wronski
system, as defined in [21] and [22]. For convenience, we will use the
following shorter notation,

WX/S(La 7) = (f*Wv Qn(L)a qn(L)vvnan 2 O)s

or simply W(L, v), when no confusion is likely.

Associated to a Wronski system one has the concepts of sequence of
gaps at a point and of a Weierstrass point, for which we refer the reader
to [22, Section 2]. The sequence of orders at a point is the sequence of
gaps shifted by —1.

(7.5) Laksov and Thorup have also shown how to associate to a Wron-
ski system certain maps, called Wronskians, whose zero schemes consist
of Weierstrass points of the Wronski system. Let ng,n;,... be the se-
quence of integers defined inductively by

tk v':=ng+---+n;

for : = 0,1,..., where rk v* denotes the rank of the map of vector
bundles v*. Note that either n; is 0 or 1 for all ¢ > 0 [21, 1.4, p. 134].
Denote by €, €1, . .. the increasing sequence of indices € for whichn, =1,

in other words, the generic order sequence of W(L,v). Then, for every
non-negative integer  there is a canonical homomorphism

rh+l

wh f: /\ W — Lrh+1 ®w50+-.-+€rh’ (76)

where ¢, ..., €, is the increasing sequence of orders ¢ less than or equal
to h [21, 1.5.2, p. 135].

DEFINITION 7.7. wy is called the Wronskian of rank r, + 1 of the
Wronski system W(L,~). '

The homomorphism wy, is in fact defined by 7 rather than by k. The
importance of wy lies on the fact that its zero scheme Z, parametrizes
Weierstrass points of rank at most r, of W(L,v) {21, 1.7, p. 136].

(7.8) If U C X is an open subscheme, then the restriction of the system
Wx/s(L,v) to U is a Wronski system; more precisely the restriction is
equal to Wy,s(Lu,vv), where Ly is the restriction of L to U and v is
the composition of 4 with the push-forward by f of the canonical map
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L — Ly on X. If U contains all the associated points of X, then the
rank of the restriction v{; of v™ to U is equal to the rank of v™ for each
n > 0. Therefore, the Wronskians of Wy, s(Lu,yu) are the restrictions
to U of the Wronskians of Wx,s(L,v) [21, 1.5, p. 135]. In particular,
if we let U := X*™, where X°™ is the S-smooth locus of X, then the
restrictions of the Wronskians of Wx,s(L,v) to X*™ are equal to the
Wronskians of Wxsm s(Lxem,vxsm). The latter can be constructed
within the set-up of [21]. In addition, by Lemma 2.19 the maps wy
are determined by their restrictions to the smooth locus of X/S, what
permits us to compare the maps wj and the Wronskians obtained in the
previous literature.

(7.9) Assume that « is injective. If X/S is smooth, then Laksov and
Thorup have shown that the map v* is injective for sufficiently large i
[21, 4.6, p. 146]. Their result carries over immediately to the case where
the fibres of X/S are geometrically integral. Moreover, since in any case
v! is injective if and only if v*(£) is injective for every associated point £
of X [21,4.2, p. 144], then one can even claim the following proposition.

PROPOSITION 7.10. If the fibres of X /S over associated points of S are
geometrically integral, then v* is injective for sufficiently large i.

(7.11) It is not true in general that v* is injective for : sufficiently
large. The reason is that although v may be injective for a reducible
curve X over a field, there might be linear dependence relations among
the sections of W when restricted to an irreducible component of X. In
more geometrical terms, the rational map X — P(W) defined by (L, ~)
will map X to.a non-degenerate curve in P(W) if v is injective, but
may map some of the components of X into proper subspaces of P(W).
Easy examples of the non-injectivity of v* for all ¢ can thus be found
by considering non-degenerate reducible curves in projective space with
some degenerate components, together with the linear system given by
the hyperplane sections. We will see later on that this is in fact the only
way that v* may not be injective for sufficiently large .

(7.12) If v* is injective for sufficiently large ¢, then there must be r +1
generic gaps, €, ...,¢,. In this case one can consider the Wronskian of

rank r + 1,

r+1 .
wi=wp: f* /\ W — LT @ weot e

for h sufficiently large. The map w will be called simply the Wronskian
of (L,v). As remarked in (7.8), the Wronskian is in fact determined by
its restriction to the smooth locus of X/S. Hence we obtain the following
result.
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PROPOSITION 7.13. If S = Spec k, where k is an algebraically closed
field, and X is an irreducible curve, then the Wronskian obtained above
coincides with the one defined by Lax and Widland in characteristic 0
[24] or by Garcia and Lax in arbitrary characteristic [12].

DEFINITION 7.14. The zero scheme Z of the Wronskian w is called the
Weierstrass subscheme of X associated to (L,7).

(7.15) The most natural question, given the subscheme Z of X, is
whether Z is a Cartier divisor on X. Since Z is the zero scheme of w,
then Z is a Cartier divisor if and only if w is not zero at the associated
points of X. Equivalently, Z is a Cartier divisor if and only if Z does not
- contain any irreducible component of any fibre of X//S over an associated
point of S. In order for Z to be a relative Cartier divisor over S, then one
needs to impose the above condition on every geometric fibre of X/S.
More precisely, Z is a relative Cartier divisor if and only if Z does not
contain any irreducible component of any fibre of X/S.

(7.16) For each s € S, let ¥'(s) be the composition

Y (s): W(s) 22 (£.L)(s) — HO(X(s), L(s)),

where the second homomorphism is given by base change. Laksov and

Thorup [21, 4.7, p. 147] called (L, ) a linear system on X/S if v'(s) is

injective for each s € S. In our more general situation we have to modify

the definition to take into account all the irreducible components of the

fibres, in order to prevent a situation like the one described in (7.11).
Let s € S, and let Y C X(s) be an irreducible component. Let

'(s)
V(s)y s W(s) — H(X(s), L(s)) — H'(Y, L(s)y),
where the second homomorphism is given by restriction to Y.

PROPOSITION 7.17. If 4'(s)y is injective at a point s € S, for each
irreducible component Y C X(s), then v*(s) is injective for sufficiently
large 1.

PROOF: The map v'(s) is injective if v*(£) is injective for all generic
points £ € X(s). Therefore, the proof of [21, 4.5, p. 145] may be
easily adapted to yield the proof of the proposition, since the stronger
hypothesis that 4'(s)y be injective for every irreducible component Y of
X (s) takes care of all generic points of X(s). The proof is complete. &

COROLLARY 7.18. If 4'(s)y is injective at every associated point s of
S, for each irreducible component Y C X(s), then v* is injective for
sufficiently large ¢. In particular, the Weierstrass subscheme Z of X
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associated to (L,~) is defined. If in addition tke characteristic of the
residue field k(s) is O for all associated points s € S, then Z is a Cartier
divisor.

PROOF: The injectivity of v* may be checked at the associated points
€ of X, which are the generic points of the fibres X (s) over associated
points s € S. By Proposition 7.17, the proof of the first statement is
finished. As for the last statement, since v* is injective for ¢ sufficiently
large, then the number of gaps at every associated point £ of X isi + 1.
Since the characteristic of the residue field k(s) of the point s € S lying
under ¢ is 0, then the sequence of orders at £ is classical, that is, the
sequence is 0,1,...,r. Hence £ is not contained in Z. By (7.15), the
subscheme Z is a Cartier divisor. J§

If one wants Z to be a relative Cartier divisor over S, then one must
take into account all fibres, as remarked in (7.15).

DEFINITION 7.19. (L,~) is called a linear system on X/S if y'(s)y 1s
injective at each point s € S, for each irreductble component Y of X(s).

PROPOSITION 7.20. If (L,v) is a linear system on X/S and the char-
acteristic of k(s) is 0 for all s € S, then the Weierstrass divisor Z is a
relative Cartier divisor.

PROOF: Since (L,7) is a linear system on X/S, then one can apply
Proposition 7.17 to all fibres of X/S. The proof is then analogous to the
one given for Corollary 7.18. §

(7.21) The hypothesis on the characteristics of the residue fields of
points in S is necessary, even when X/S is a smooth family. The reason
is that the sequence of generic orders of a non-singular curve in positive
characteristic need not be classical, as several examples show. Hence, it
might be the case that the general fibre of a smooth family is classical but
a special fibre is not. In this case the whole special fibre is contained in
Z. In order to obtain a Cartier divisor (resp. a relative Cartier divisor),
one must thus impose conditions on the sequence of orders at every
generic point of every fibre of X/S over an associated point of S (resp.
of every fibre of X/S).

PROPOSITION 7.22. If the sequence of orders of (L,~v) at all generic
points of all fibres of X/S (resp. of all the fibres over the associated
points of S) are equal, then the associated Welerstrass subscheme of X
is a relative Cartier divisor (resp. a Cartier divisor.)

PROOF: As in Corollary 7.18. B
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