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ABSTRACT

It 18 shown that the concept of size of a nucleus can be
eliminated in nucleation theories treating transformations
whereln the atoms only change places with each other, and where
sharp dlsecontinuous boundaries between the phases are not formed.
A new nucleation theory is developed which treats compositional
changes in one erystalline direction only. Spontaneous nuclea-
tion inside the spinodal and a periodic variation of the compo-
sition are predicted. The wave length of this periodicity can
be measured by X-ray diffraction methods and the phenomenon
appears in the form of diffuse side bands to the main reflec-
tlons in a powder pattern.

Experimental measurements of this wave length as a function
of composition, annealing time and annealing temperature were
made on Cu-Ni-Fe alloys. A fair agreement with the predictions
was found. However, 1t was not possible to prove experimentally
the significance of the spinodal on the nucleation process and
several explanations are glven.

Different X-ray treatments of periodic structures are
brought together in a more general treatment.

A new diffusion equation is derived for cases where the
third derivative of the concentration is considerable. It can
account for the fact that a concentration gradient does not
always cause downhill diffusion outside the spinodal or uphill
diffusion inside the spinodal.

The nearest-neighbor interaction model for solutions is dis-
cussed and the quasi-chemical equation 1s derived without the
agsumption that the interaction energy i1s independent of tempera-
ture and composition. It is shown that the interaction energy
should be calculated from the free energy of mixing, not from
the heat of mixing.

Thesis Supervisors: Morris Cohen
Professor of Physical Metallurgy

B. L. Averbach
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I. INTRODUCTION

The theories for homogeneous nucleation in solid, metal-
lic solutions whilch transform by a redistribution of the atoms
on the old lattice sites, is discussed, and a new theory ls
developed which eliminates some of the short-comings of the
older theories. In agreement with Borelius'! and Hobstetter's
theories, it is found that the free energy of activation for
nucleatlion vanlshes inside the spinodal. Moreover, the new
theory predicts the nature of the first trangformation struec-
ture, and can therefore be sublected to a much more thorough
test than previous theories. The predicted structures exhibit
a periodiec variation of the composition, and the wave length
of this perliodicity is suseceptible to experimental verifica-
tion.

Many investigations have been undertaken in order to
test the signifieance of the spinodal predicted by the above
theories. However, most of the work has been concerned with
systems which do not transform by a simple redistribution of
the atoms on the old lattice slites, and the results are often
incompatible with the theories. X-ray data indicate that the
Cu-Ni-Fe system might be better suilted for a test than most
other systems studles previously. A series of alloys cover-
ing a whole pseudo-binary section of this ternéry system was
therefore made in order to test the significance of the splnodal
and the predictions concerning the variation with temperature

and composition of the wave length of the periodie structures.
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The a#erage wave length of the periodicity is measured
from X-ray diffraction patterns. The X-ray theory for peri-
odic structures is discussed, and several old treatments have
been brought together to form a more general approach. A
simple and exact X-ray theory for a specific model of periodie
structures 1s also developed and applied.

The new nucleation theory uses the so-called zeroth ap-
proximation of the nearest neighbor interaction model for
solutions. This model has recently been tested for solld
metallic solutions and considerable deviations have been found.
The fundamentals of the model are therefore studied and it is
shown that the so-called first approximation can be derived
on a purely thermodynamic basis. The result indicates that
the recent tests are not qulte signifieant.

A new equation for diffuslion 1s derived 1n order to ex-
plain the stability of struetures with a periodiec variation .
in eomposition. This equation shows that a concentration
gradient does not always cause downhlll diffusion outside the
spinodal or uphill diffusion inside the spinodal.

The nature of coherent grain boundaries in aystems with
misclbility gaps and of anti-phase domain boundaries in order-
ing systems is studied and the results indicate that such
boundaries do not show any discontinuous change in composi-
tlon or phase.

The concept of Gibbs free energy will be used frequently
in the followling treatment. It will be referred to simply as
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tfree energy,"® however, since the difference between the Gibbs
and Helmholtz free energies usually is insignificant for con-
denced systems. It 1s also unnecessary to distinguish between
the concepté of energy and enthalpy. Both these concepts will
be used, the choice in each case being determined by common
practice. The notation for the different thermodynamle quan-

titles adopted by Wagner(l) will be used.



II. THEORY OF NUCLEATION

1. The Concept of the "Critical Nucleus"

There are always local fluctuations within a physical
system even if it is in a state of equilibrium. The proba-
Pllity of a certain fluctuation is given by statistical

thermodynamics as

w = G.exp(ngg) (1)

C i3 a normallization constant and AF 1s the increase of the
free energy of the whole system if such constraints are im-
posed on the system that the fluctuation becomes momentarily
fixed. For stable systems AF usually inereases with the size
of the fluctuation and the probablility of a large fluetuation
is thus , according to Eq. (1), less than the probability of
a smeller fluctuation.

In a metastable system there will be some kind of rluctﬁa~
tions for which AF reaches a maximum at a certain size and then
decreases with further increase in size until finally a new
equilibrium state is reached. Eq. (1) is strictly valid only
for stable systems but it can be used as a very good approxi-
mation for small fluctuations even in a metastable system.
However, it fails for large fluctuations which can grow with
& decrease in free energy. Nucleation usually‘refers to the
formation of such large fluctuations, and it is assumed (e.g.
by Volmer and Weber(Z)) that the rate of nucleation is propor-

tional to the probability of formation, according to Eq. (1),
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of the least probable state that a fluctuation has to pass
through during its growth from a small suberitical size. It
is of considerable interest to determine the critical fluctua-
tion, usually called the critieal nucleus, and to calculate
the corresgponding value of AF, usually denoted aAF*. The
smaller this value, the easier 1t is for nucleation to take
place.

When treating nucleation of liquid droplets from vapors,
Becker and Dgring(B) later took into account also the prob-
ability of the reverse reaction, namely the redissolution of
large fluctuations. The original approach of Volmer and Weber
has been wldely used, however, due to its simpliclity and it
will be adopted here. |

2. Review of Nucleation Theories

It is usual to distingulsh between two kinds of nucleation.
Wucleation that occurs at random in a homogeneous phase 1g

called homogeneous nucleation and many theorles have been

developed for this kind of nucleation. Experience shows, how-
ever, that nuclel usually form on preferred sites, for instance
on surfaces, grain boundaries and impurities. Such nucleation

is referred to as heterogeneous, and one can not expect the

theories for homogeneous nucleation to hold in such cases.
It must therefore be realized that the usefulness of these
theories 1a quite restricted. |

Transformation in alloys usually involves changes in compo-
sition and structure. In systems with miselibility gaps, how-

ever, there is only a change in composition. The structures
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of the two final phases and of the initial phase are identical.
It is then possible for the whole transformation to take place
simply by an exchange of atoms on the old lattice gites. This
is not a common case, but the formation of Guinier-Preston Zones
in agehardening alloys seems to be an example of this, There
is no accepted name for this kind of transformation. In this
work it will be referred to as an exchange transformatlon.
Usually nuclel of a new orientation are formed and grow into
the old metrix. This happena in Au-Ni alloys, for instance,
and is not significantly different from a transformation which
results in new erystal structures.

The present treatment will be limited to homogeneous nuclea-

tion of exchange transformations., Several theories have been
developed for this speclial case and they will first be reviewed
and examined critically.

The upper part of Fig. 1 shows the equilibrium diagram for
a system with a misclibility gap and the lower part demonstrates
the variation of the free energy with composition at a tempera-
ture of limited solubility. The so-called spinodal is a line
along which the second derivative of the free energy with re-
gpect to composition, sz/dxz, is zero. Homogeneous alloys,
which are represented by points outside the misecibility gap
in the equilibrium dlagram, are stable and AF for all kinds
of composition fluctﬁations increase with the slze of the
fluctuations in these allejs.

Konobelewskl: For homogeneous alloyé between the miscibility

gap and the spinodal AF of small composition fluctuations in-
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crease with the amplitude of the fluetuation since sz/dx2 is
positive., Consequently such alloys have some stabllity but,

(4) in 1934,

as was pointed out for instance by KonobeJewskil
AF goes ghrough a maximum at some composlition of the fluctua-
tion and decreases with further increase in compositlion. These
homogeneous alloys are thus only metastable, and the stable
gtate consists of two phases of different composition, one on

each side of the miscibllity gap.

Borelius: Berelius(5’6) considered the nucleatlion process in

more detalil and calculated AF for a fluetuation of composition x
and containing n atoms. Negleecting the influence of the dis-
continuity at the interface between the fluctuation and the

rest of the system he found

AF(x%,x n) 2% [F(x) - F(x%) - (x - x0) —F—'Q-—)-]
° (2)
No 18 Avogadro's number and x® 13 the composition of the alloy.
This function goes through a maximum ét a certain value of x
for each x° in agreement with Konobejewski's statement. The
maximum value which 1s the free energy value for the least

probable fluctuation or the critical nmucleus, is usually de-

noted AF*,

The maximum, AF*, is lower the higher the supersaturation
of the alloy l.e. the further inaside the misclbility gap the
composition of the alloy x° is situated. AF* decreases to zero
at the splnodal, and inside the spinodal AF decreases with in-
creasing X without first geoling through a maximum. The rate of

nucleation is thus increased as the supersaturation 1s increased
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until, after crossing the spinodal, there 1s no resistance
against nucleation. These conecluslons are in agreement with
the‘fact that ﬂzF/é.x2 has negative values inside the spinodal,
this being the thermodynamiec criterion of instability. The
significance of the spinodal has also been realized by many

(?7) and Dehlinger(s).

other authors e.g. by Becker
Borelius' treatment does not yield any information on the
geometric size, n*, of the critical nucleus apparently because
the influence of the interface is neglected. The value of AF®
thus contains n* as an unknown quantity. Borelius seema to feel
that the treatment 1s quite good in spite of this and attempts
have been made to determine n* by experimental determinations
of AF*(g’le).

Hollomon and Turnbull(ll’lz)

point out that Borelius! theo-
retical treatment indicates that the fastest nucleation process
shounld occur via critical nuclel of smallest possible size,
namely n = 1, because this valuwe gives the lowest AF* and thus
the highest nucleation rate according to Eq. (1). The nuclea-
tion rates obtained this way are very high and Hollomon and
Turnbullvconsequently doubt the validity of Borelius' analysis.
Becker: Becker(13) has treated the same case of nucleation as
Borellus Eut made other assumptions. He took into account the
effect of the interface between the fluctuation and the rest

of the system by adding another term to Eq. (2)
~ o
aF(x%,x,n) = } [F(x) - F(x0) - (x - x9) irl’g.).]+a-rs (3)
0 dx

A 1s a measure of the area of the interface and Fs is the inter-

facial free energy. Using the so-—called zeroth approximation
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of the nearesgt neighbor interaction model for solutions and
assuming that the interface has no influence on the distribu-

tion of the atoms inside the fluctuation, he found

AP(x% x,n) =n [-— ZY(x~ x0)2(1 - ;-E)+ kT(xln i.e. +(1-x)1n %—-:‘.-3-5-)] (&)
ny, is the number of bonds crossing the interface and can be re-
lated to n by assuming a certain geometric shape of the fluctua-
tions. Z is the number of nearest neighbors to each atom and ¥

is the so-called interaction energy, which will be further dis-
cussed in Chapter IV.

In Becker's original treatment 1t was assumed that the
composition of the fluctuations, x, was equal to that of the
final stable precipitate. It was then found that AF had a
maximam value at a certain eritical value of n and this fluctua-
_tioﬁ was identified as the critical nucleus.

Hobstetter: Hobstetter(lu) later cembihed Borelius' and Becker'!s

theories by allewlng x to vary. For each value of x, AF has
a maximam at some value of n and Hobstetter suggested that the
nucleatlon process passes over the ridge formed by these maxima
at the lowest possible point. Such a point must be a saddle
point and is found by éettihg the two derivativea of AF with
respect to x and n equal to zero. These two egquations allow
the determination of both x* and n* for the eritical nucleus.
Sehe11<l5) hes in a later paper used the same approach as
Hobstetter. |
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3. GComparison of Boreliug!, Becker'!'s and Hobstetter's Treatments

Fig. 2, where the stars represent the critical nuclel, dem-
onstrates schematically the difference between the three nuclea-
tion theories. It is obvious that Hobstetter'!s treatment gives
the lowest AF* value and thus the highest nucleation rate.

The advantage of Becker's and Hobstetter's treatment over
Borelius' is that they give not only the compesition but also
the size of the critical nucleus. However, there is a serlous
objection to Becker's treatment which becomes evident by con-
sidering one of the two equations used to find the erltical

nucleus in Hobstetter's treatment.

daF - °H =
S =n [-zzv(x - x%)(1 - ;!;1) + k2( 1n1-§-i 1%0)] =0 (5)

which ean be written f(x) = f(xo)

1 kT

where £(x) = x + cinlii and C = —"“'ﬁ;"§§§
-7

At a sufficiently low temperature the function f(x) has

the appearance shown in Fig. 3 and the construction shows heow

o

x* can be found for each x° in order to satisfy Ea. (5). The

solution x* = x0 ig found at the minimum point, i.e. when

0= a1 8 or ZL = 4x(1-x)(1 - 4B) (6)

It 1s at once seen from Eq. (4) that this solution (x* = x°)
gives AF* = 0 and thus corresponds to the case of unlimited
nucleation because there is no free energy barrier.

Ir nb is set equal to zero in accordance with Borelius!

treatment, Eq. (6) glves

ZL = ux(1-x) (7)
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This 1s recognized as the equation of the spinodal and 1s thus
a mathematical proof of the conclusion from Borelius! treat-
ment that the free energy barrier for the nucleation vanlshes
at the spinodal. According to Hobstetter's treatment, mb>’0,
1l - ;§<:1, and the free energy barrier 1s thus predleted not
to vanlish until considerably inside the spinodal, unless the
size of the eritical nucleus, n*, is very large. Only then
is 1 - ;% 21 and Eq. (6) is transformed inte (7), ylelding
the same result as Borelius'! theory. This faet has not been
noticed by Hobstetter, however, who due to some error of cal-
culation gives a finite value of a* even at the splnodal,
Both Borelius! and Hobstetter's theories are thus, if
adequately treated, in agreement with the thermodynamiec cri-
terion of instability sz/clxzé 0 whieh holds at and inside
the spinodal. Becker's theory, which does not consider x¥*
ag a variable, can never give the result x* = x°, and af%*
obtained from Eq. (4), does not vanish until far inside the
spinodal. This is in direct opposition to thé criterion of
instability.

4, Objections to Becker's and Hobstetter's Treatments

(i) Becker's Eq. (4) does not hold for fluctuations with
a limited number of atoms because Stirling's approximation is
used in deriving the positional entropy. A correetion term \
can be addgd to Eq. (4), however, to make it hold for small n

ag well and this is found to be

!
-kT 1n (nx)!“(n(l_x))! - nkT( xlnx + (1-x)1n(l-x) )  (8)
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Accbrdingly, Eq. (4) is changed into
AF(xo,x,n) =n [-Zv(x - x°)2(1 - %) - kT( x1nx°® + (1—-x)ln(1-x°)):\-

- kT 1n

n!
(nx)?! (n(1-x))! (9)
Unfortunately this equation is difficult to handle.

It is worth noting that Poison's equation

o,RX o
w = (nx )(M?:!cp = (10)

(16)

has erroneously been used by Fink and Smith for the prob-
ability of finding a certain fluetuation nx in a group of n
atoms in a random system. The correct probability is obtained
by inserting AF from Eq. (9) in Eq. (1) and setting V= 0,

from which

¥ = O Ty T (a (T (%)% (1-x%)2(37%)

(11)

(2) Beecker and Hobstetter identify the fluctuation with
the maximum value of AF as the critical nucleus, because Eq.
(1) seems to tell that this 18 the least probable fluctuation.
However, Eq. (1) contains a normalizaetion constant C whose
value depends upon the constraints that are necessary to make
a fluctuation momentarily fixed. These constraints are dif-
ferent for dilfferent geometriec size and shape of the fluetua-
tion, and C is therefore dependent on n. A detalled examination
shows that the least probable flﬁctuation, i.e. the critical
nucleus, occurs at a somewhat smaller value of n than the

maximum value of AF.
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(3) All the nucleatlion theories use the concept Vsize®
of the nuclei. However, in exchange transformations (as de-
fined in Section 2) there is no way of telling whether a
certain lattice site belongs to a nueleus or not. Becker and
Hobstetter assume that the nuclel must have a certain geo~
metrical shape and thereby avoid this problem. Whether a
shell of lattlece sites around a nucleus belong to the nucleus
or not 13 deftermined in thelr theories by the composition of
this shell., It belongs to the nucleus if i1t has the pre-
seribed nucleus composition and 1t belongs to the matrix if
it has the original composition. These theories, however,
do not teke into aeccount the fact that the composition of
the shell could be different from these two values, and in-
deed has to change gradually from one of these values to the
other in order for the nuecleus to grow. Moreover, if one
conslders a finite nucleus, its composition and also the com-
position of the shell can only vary in steps because they
contaln a whole number of each kind of atom. The two compo-
sltions can thus be equal only in very speclal cases.

5, A New Approach to Nueleation

It is evident that not even the assumption of a certain
geometrical shepe removes the difficulties. It seems to the
present author that the concept of size should be completely
abandoned in the case of exchange transformations. This would
also remove the difficulty mentioned under point (2) in the
preceeding section. In the followlng sections it will be

shown how & nueleation theory can be developed without making
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use of this concept. In order to simplify the calculations
only changes in one crystalline direction will be considered.
The composition of each atomlc plane perpendicular to this
direction can then be described with a single x-value.

We shall use the zeroth approximation of the nearest-
neighbor interaction model for solutions, as did Becker and
Hobstetter. Denote the composition of succeeding planes xp,

xp+l

, xp+2, ete. Assuming that the atoms are randomly dlstrib-
uted within each plane one can calculate the differencé'in free
energy between a state specifled by a certain set of x and the

homogeneous state in which the composition ot all the planes 1s

the same, x° (see Appendix I).
e o] o - 7 308 - 2 ) [ B
x
p P

+ (1-2)1n 1:52 (12)
l-x

3 is the number of nearest neilghbors, for a given atom, which
- are situated in a nelghboring plane.

In aceordance with Hobstetter's treatment we shall attempt
to determine the lowest point, 1.e. the saddle point, on the
free energy ridge, which the nucleation process has to pass
over. However, it shoﬁld be remembered that the total rate
of nucleation is equal to the sum of the rate of nucleatlon
for all the possible ways the nucleation process can take. A

summetion should thus be performed over the whole ridge and the
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term "critical nucleus" is not quite an adequate name for the
saddle point. It will nevertheless be used in the following
approach. |

The saddle points in the many-dimensional xp-space are

found for instance by solving the system of equations

(BAF

axp

+
except xp and xp l. However, 1t must be remembered that the

!
p! = 0, where xP’ indicates that all x are kept constant

same system of equations also gives the minimum poinﬁe and
this treatment will thus yileld equilibrium states (metastable
and stable) as well as critical nuclei. The equations obtained

look the same for all values of p:

+1 <
P+2 - P v (& 3)(sP xp+1 jL xp (1-x)
J 3 TM xp (1-x P 1)

TH 1s the peak temperature of the miseibility gap.

The set of difference equations (13) can be solved expli-
citly only in the case of small variations in compositien from
the mean value x°. The logarithmic term can then be expanded

and the equaticn becomes

222 D (P - P

here ,ZT 1 _ 2
AETS 2L = BTy x0(1-x%) I3

(13)

(14)

One solution is immediately found, namely all xp = xo. This

1s the case of a homogeneous alloy. Other solutions are de-

scribed by

P _ P -P
x -—Cl +Gz-}9 +03-)3

(15)
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where Cl, 02 and C are constants. The value of }3 is found

by inserting this expression of = in Eq. (14), which gives

pru-4 +\@w-n2-1 (16)
For ‘L - %I >1, }a>1, and consequently the lmpossible result
xP-= oo 15 obtained when p+> oo and also when p+» -9, unless C

and ¢_ are zero. The only possible solution in the case of

IL - %‘ >1 is thus x* = ¢, = x%. It is interesting to note

- T -
that L - = 1 ocecurs when . = 1, which is the equa-
% CoUTS WheR T (1-x") d

tion of the spinodal. The only solution within small composi-

tion varliations is thus the homogeneous case when the composi-
tion of an alloy is outside the spinodal.
Ingide the spinodal IL - %'< 1l and /3 is a complex number.

The solution can then be written

2
< = x° + S, sin(pP) where P = tan"lvl -T.-(E; )" (17)

This solution 1s & sinusoldal variation and the wave length

expressed in number of atomic planes is

q = 2n S——
erit el m (18)
an L - %

The reason to denocte this value qer will be explained in

it
Chapter III. The amplitude, 20“, is indeterminate but is very
small according to the assumptions.

Solutions with large compositional variations can not be
obtained explicitly but can be calculated stepwlise by choosing

the compositions of three succeeding planes and computing the
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following ones one by one with Eq. (13). This process is ex-
ceedingly tedlious, especially because the mean composition for
a solution can not be determined in advance by choosing the
three first compositions, but has to be evaluated whern the
solution is finally found. It therefore takes considerable
time to collect data for a certain composition. Moreover, a
very high degree of accuracy must be used in the calculations
because a small error in the beginning of a calculatioen may
grow as the calculation proceeds and completely distort the
final solutlion. Up to eight decimal flgures were employed for
the compositions and logarithms.

All the solutions can be deseribed as perliodie variations
in composition, oseillating around the mean composition. The
larger the amplitude, the more the shape will deviate from
the ideal sinusoidal shape. Each solution can be gpecified
by its wave length and amplitude and this faet allows us to
plot all the solutions for a certain alloy at a certain tempera-
ture in a coordinate system of these two parameters, whereas
a plot in the many-dimenslional xP- space would be 1ﬁpossible.
Furthermore, the free energy of the solutions ean be plotted
aleng a third coordinate as shown in the upper parts of Figs.
h 5 and 6.

Solutions of different compositions wlll now be discussed.
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ITI. RESULTS OF CALCULATIONS

1. Compositions Inside the Migcability Gap but Outside

the Spinodsl

Fig. 4 demonstrates the solutions for this case, There is
a whole gerles of critical nuclel and of metastable states.
The critical nuclel form a ridge in this kind of plot extend-
ing to infinite wave length*. This ridge separates two series
of metastable states. One of these series is simply repre-
sented by the wéve_length axis, All the states belonging to
this series are thus identidal to the initial, homogeneous
staté, because the amplitude of the compositional variation
is zero. The other series of metastable states form the bot-
tom of a valley which becomes deeper the longer the wave length.
The deepest point must represent the final equilibrium state
and 1s.found at infinite wave length. This simply means that
the erystal then contains only one region rich in one of the
components and thls region is surrounded by matrix poor in the
gsame component.

In order to transform into one of the metastable states
in the valley, the system must pass from the wave length axis
over the ridge of criticai naelei. The most probable way for
the transformation is #1& the lowest point on the ridge and
this point ;s also found at infinite wave 1eﬁgth. The character-

istics of this most probable critical nucleus can be calculated

*It must be remembered, however, that each point on this ridge

represents a saddle point in the many-dimensional xp—plot.
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by means of our basic Eq. (13) and Fig. 7 shows the result of
such a calculation for two diffefent alloy compositions. I%
is apparent that there is no distinet boundary between the
eritical nucleus and the matrix. It is also shown that the
amplitude of the eritical nuecleus 1is decreaéed when the alloy
composition is moved closer to the spinodal. In fact, the
amplitude is zeroc on the spinodal, which means that the ridge
in Fig. 4 in this case approaches the wave length axis at in-
finite wave length. |

The activation free energy for nucleation can be computed
by means of Eq. (12) after the composition of the atomlec layers
have been determined. Fig. 8 shows the result of suchla com-
putation. It should again be emphasized that this treatment
considers varlations 1n composition in one direotion only.
The activation energy AF* is therefore proportional to the
number of atoms in each plane. This number has been denoted m
and the quantity AF*/mkT has been plotted in Fig. 8. Calcula-
tions have also been made from Becker's and Hobstetter's
theories, applied to the same case, i.e., with variations in
only one direetion being considered. A comparison confirms
the previous conclusion that Becker's theory does not give
vanishing aF* values inside the spinodal, as it should; whereas
the new approach is in agreement with Hobstetter's and also
with Borelius' theory on this essential point. The new ap-
proach, however, gives much lower activation free energy values

than Hobstetter!s theory, apparently because Hobstetter only
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congsidered fluctuations of a very special kind. It seems Jjusti-
fied therefore, to conclude that Hobstetter's theory, also gives
much too high aectivation energy values when applied to varia-
tions in three dimensions.

A comparison with Borelius! theory is impossible because
this theory does not give any value of n*.

2. Compositions Inside the Spinodal

It has already been mentioned that the ridge of critiecal
nuclei in Fig. 4 approaches the wave length axis at infinite
wave length when the composition is on the spinodal, If the
composition 18 inside the spinodal, the ridge Joins the wave
length axis at a finite value of the wave length as Fig. 5
demonstrates., This ecritical wave length value, Qopy g2 is the
one given by Eq. (18). Fig. 5 shows that all metastable states
with longer wave lengths than q@rit can be reached from the
homogeneous state without passing over any ridge of eritical
nuelel. There is consequently no activation free energy for
the nucleation of these states. However, there are also meta-

stable states, with shorter wave lengths, which are hidden
behind a ridge of critical nuclei. A homogeneous alloy inside

‘the spinodal 1s thus unstable only against fluctuations with

wave length longer than a certain critical value, q It

erit’
is metastable against fluetuations of shorter wave length down
to a certaln value énd it is stable agalnst fluctuations of

even shorter wave lengths.-
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3. Symmetric Composition (x° = 0.5)

The solutions for this case are shown schematically in

Fig. 6. All the metastable states can now be reached from the
homogeneous state without passing over any ridge. Three of the
solutions have been computed for a specific case and are pre-
sented in Fig. 9. The value Zé? = 2 which has been chosen here
holds for the [100] direection in BCC structures along which the
ordering 1n¢5-brass takes place., All other calculations in
this work have been made with Z/3 = 3 which holds for the [109
direetlon in FCC structures along which the preecipitation in
Cu-~Ni-Fe alloys takes place.

k. Grain Boundary Energy

It was mentloned earlier that the state with infinite
wave length represents the final, stable state. The lower
part of Fig. 9 therefore shows how the composltlion varies at
a coherent grain boundary*, It i1s usually assumed that there
1s an abrupt change in composlition but this is apparently not

true, Beeker(lj)

calculated the grain boundary energy assuming
an abrupt change. A calculation for the case T/Ty = 0.9 and

249 = 3 gives the grain boundary energy value 0.205mkT for
Becker'!as model and the grain boundary free energy value 0.055mkT
for the new model. Net only 1s the new value much lower, 1t

also exhibits an appreciable entropy, whereas Becker's model

*It is a common experience that the fimal state in alloys con-
talns ineoherent grain boundaries. However, the zeroth ap-
proximation which has been used in the present treatment,

assumes that the atoms are all of the same size, and a coherent

boundary might then have lower energy than an incoherent.
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exhibits only an enthalpy.

5. Ordering Systems

This work is concerned with alloy systems with misclbllity
Agaps. However, the mathematlical treatment applies equally well
to ordering systems. The ordering reactidn 1s also an ex-
change transformation. The only difference in tThe mathematics
is that the interaction energy v , which entered into Eq. (5),
is negative for ordering systems. Three of the metastable
states have been computed for an ordering system with sym-
metrie composltion and are presented in Fig. 10. These states
can also be described as periodic variations of the composi-
tion and can be characterized by a wave length and an ampli-
tude. A comparison with Fig. 9 shows a striking similarity
which can be expressed mathematically as Xgosa7-% = (-1)P.
%xﬁegv~%)~ This relation holds only for the symmetric compo-
sitlon, however.

The state with infinife wave length 1s shown at the bottom
of Fig. 10 and is identical to the case of two ordered domalns
Joined by an anti-phase domain boundary. It is evident that
there is not a sharp phase change at such a boundary but a
gradual change, qulte equivalent to the gradual change in

composition found for graln boundaries.

6. Revision of the Diffusion Equation

It has long been reallzed that a concentration gradlient
causes diffusion in the direction against the gradient (up-
hill diffusion) if the composition is inside the spinodal,
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whereas 1t otherwise causes diffusion down the gradient (down-
hill diffusion). This is a consequence of the fact that the
change in free energy can be considered as the driving force
for diffusion, and was pointed out by Becker(7) in the case

of equal mobility of the two components in a binary metallic
system and by Darken(17) in the case of different mobilities.
However, from the previous sections it is cleér that concen-
tration gradlents can exist without giving rise to any dif-
fusion, sinece the periodlc structures are metastable states.
In order %o account for this phenomenon one must consider the
diffusion process on a microscoplc scale. We shall here de-
rive the diffusion equation for the case of a reasonably small
concentration gradient, i.e. x® £ xP*1. only the case of
equal mobillity will be treated and the zeroth approximation
will again be used. The change in free energy when A and B
atoms are exchanged between two neilghboring atomic planes was
derived in Section II.5. The flow of atoms 1s now obtained

using Eqs. (12) to (14).

J = Bx(1 - x) (éﬂz = mBx(1 - x) [(ET%;iT - ZZV)(xp-xp+1)+

'
3P P
LI G
+24%9( -3 +3x -x 7) (19)
where m is the number of atoms per plane and B 1s the mobility.
(7) (17) |

If Becker's and Darken's equétions are applied to

the same case, one finds

JEamx (1-3 (-2 (- (20
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The two equations differ only in the last term in the brack-
et. This term is zero if the concentration gradient is con-
gtant. In fact, it corresponds to the third derivative of the
concentration and is therefore negligibly small in most oéses.
However, it i1s of great importance for processes which take
place on a very small scale, such as those treated here.

- 7. PFirgt Stage of Tranaformation in Symmetric Alloy

The questibn which wave length will first be formed in a
specimen, when it is quenched from above the misclbility gap
and annealed at a temperature inside the spinodal, is diffi-
cult to answer. All wave lengths longer than the critieal

value, qcr . can be formed without any nucleation difficulties

1
and the formation of them can thus start without any incuba-
tion time. The decisive faector might then be the rate of
development of the metastable states with different wave
lengths. Thls rate should be higher, the larger the decrease
in free energy, - AF, and it should be lower the longer dis-
tance the atoms must be transported. This distance 1s propor-
tional to the wave length, q, and it can therefore be expected
that the rate is highest in the viecinity of the maximum of

(- AF)/q. This quantity was calculated for a case with sym-
metric cémposition and is plotted in Fig. 11. It could thus
be expected that the initial transformation in this case leads
to a wave length a few times longer than the critical value

q We shall in the following refer to this as the optimum

erit’

wave length, q@pt.
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The atoms need to move only from one plane to the neighbor-
ing one in the case of ordering. The optimum wave length is
thus very high in this case.

8. PFirst Stage of Transformation in Agsymmetric Alloys

No calculation of (- AF)/q has been made for asymmetric

compositions because it would be much more tedlous than in

the symmetric case. It is, however, evident that the optimum

wave length, qO will be longer as the composition i1s made

£’
more asymmetric? and it approaches infinity as the composition
approaches the solubility limit.

It is doubtful that this method gives a good estimate of
the first wave length when the composition is very asymmetriec.
The optimum wave length is then shorter than the critlecal wave
length which approaches ;nfinity already on the spinodal.

(See FPig. 28.) The metastable state with the optimum wave
length is then hidden behind the ridge of eritical nuclel and
can not be formed without nucleation. It is still possible
that the time of formation, including the incubation time for
nucleation, eould be shorter for some wave length behind the
ridge than for the wave lengths longer than qcrit'
9. Limitations of Present Treatment

The'present treatment compares the homogeneous state
with states where the composition varies in one direction only.
It 1abprobab1e that 1n a speelfic case some state with varia-
tions in two or three directions is even more favorable than

the structures found here. 1In particular, the activation free
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energy for nucleation of metastable states behind the ridge
of eritical nuclel is proportional to the number of atoms in
each plane, m. The nuclel should thus have a limited exten-
sion in the two directions of the planes. It 1is impossible

at the present to tell how such a limited extension will

modify the predictions made here for the compositional varlia-

tions in the considered direetion.

It was mentloned in Section II.5 that the name "critical
nucleus' is not quite adegquate because the transformation can
pass over the ridge in the many-dimensional ip-spaee at any
point and we consider only the saddle peints. Polnts close
to the saddle points have almost as low activation free energy
as the saddle points themselves. The chance that the trans-
formation goes exactly over a saddle point 1s thus negligible,
and one should never expect to obtain a structure with an
ideal periodicity but rather a spectrum ér wave lengths,

10. Second Stage of Transformation

Suppose a system has been completely transformed into a
metastable state in the valley of Fig. 6. It can npt be trans-
formed into another state of still lower free energy without
a difficult nucleation process. In essence, i1t has to climb
back uphill to the wave length axis and can then choose & new
longer wave length and fall downhill into the valley deeper
than before. This 18 the reason why the wave length axils

was marked as a ridge of critical nuclel outslde qcrit'
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The increase of the wave length from 1ts first value could
thus be expected to be an exceedingly slow process. However,
it was mentioned in the last section that an ideal periodie
structure is very improbable. As soon as there is a spectrum
of wave lengths it 1s easy to imagine that the mean wave
length lincreases continuously simply by a disappearance of the
shorter wave lengths and creation of longer wave lengths by
interference between the remaining wave lengths.

11. Purpose of Experimental Work

It 18 a common feature of the present treatment and Borelius'
and Hobstetter's theories that the activation energy for nuclea-
tlon 1s zero on and inside the spinodal. Many investigations
have been undertaken in order to test this significance of the
spino&al(lz’ 18 - 25). However, most of the examined trans-
formations have not been exchange transformations and the
results should therefore not be used to test the above theories.
The on;y case of exchange transformation that has been‘ex—
amined previously 1s the formation of Guinier-Preston zones
in age-hardening systems. ©Such systems might contain meta-
stable miscibility gaps, the positions of which can be calcu-
lated from thermodynamic data of the solid solutions. They
are not‘possible to determine experimentally because of the

formation of more stable phases. Such thermodynamie data are

not known with any accuracy and our knowledge of the meta-

- stable migeibllity gaps is therefore limited and the position

of the spinodals can not be calculated with any accuracy.
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Moreover, only one side of the metastable miscibility gap can
be examined experimentally, due to the presence of other
phases.

It would be highly deslrable to investigate an exchange
transformation in a system with complete miscibility at high
temperatures and a stable miscibility gap at lower tempera-
ture. This seems to be possible in the ternary system Cu-Ni-Fe.
This system 1s known to have a miscibllity gap and it has been
found that alloys in a certain composition range show exchange
transformation when quenched into the misclbility gap. More-
over, the transformation produet has been examined by means
of X-ray diffraction, and the diffraction patterns have been
interpreted as caused by a structure with a perlodic varia-
tion of the composition. The wave length can easlly be eval-
uated and it would be very interesting to test how well our
theoretical treatment can account for the variatlion with
temperature and composition of the wave length of the first
formed strueture. Previous measurements are not sufficiently
accurate for such a test. They have malnly been made with a
single composition, only a few temperatures have been used,
and the interest has not been focussed on the first trans-
formation produet.

It is apparent that the advantage of the present treatment
over Borelius' and Hobstetter's theories is that it not only
predicts spontaneous transformation inside the spinedal but
also the dharaoteristics of the structure. Such predictions

might be easier to test experlmentally.
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It should be remembered that all the nucleation theories
considered here treat homogeneous nucleation only, and it is
in fact very difficult to prove directly by experiments if a
certaln nueleation process 1s homogeneous or heterogeneous.

It is eonsequently difficult to disprove a nucleation theory.
Lack of agreement with experiments may very well be due to
the fact that the theory treats one kind of nucleation and
the examined process is of the other kind.

The Cu-Ni-Fe syatem is not an ideal system for a test of
the nucleation theories because it is a ternary system and the
theories treat binary systems. However, the alloys in the
interesting composition range behave almost pseudo-blinarily,
one of the two components being copper.

The experiments undertaken will be deseribed in Chapter VI
after a discussion of the interactlion energy conecept in Chap-
ter IV and of the X-ray theory for periodic structures in
Chapter V.
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IV. DEFINITION AND CALCULATION OF THE INTERACTIION ENERGY

1. Classlical Definition

There is a certaln class of solid-solufion theories which
assume that an energy can be ascribed to the bond between
every two atoms in a erystal. The heat of mixing can then be
caleulated by considering the change in the number of the dif-
ferent kinds of bonds on mixing the pure components. A basie
assumption 1s that the heat of mixing is unaffected by a change
in temperature, 1f the configuration of the atoms in the crystal
can be retained during the temperature change. This is almost

equivalent to the Kopp-Neumann rule, which, however, is con-

" cerned with the equlilibrium state at every temperature. The

usefulness of these theorles depends on the assumption that
the bond energles are independent of temperature, composition
and configuration. For the sake of simplicity it is usually
consldered that all bonds except those between the nearest
neighbors can be neglected, and the pertinent quantity is the
so-called interaetion energy ¥ , which is defined as
Y= Egp-¥ (B, +Eg) (21)

Cowley(26), however, has also taken into account the next near-
est nelghbeor bonds.

Using the above assumptions, it 18 possible in principle
to calculate the edquilibrium configuration at every temperature

in terms of the bond energies, which in turn allows a calcula-

tion of the entropy, enthalpy and free energy of mixing. These

"calculations are very difficult and certaln simplifications are
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used. Guggenheim(z7)

has reviewed these theories recently.

In the so~called zeroth approximation, 1t 1s assumed that
the atoms are randomly distributed in the erystal. However,
if the interaction energy » is positive, there should be fewer
AB bonds than in the random case because the enthalpy is there-
by decreased; if V is negative, there should be more AB bonds.
This is taken into account in an approximate way by the so-
called flrst approximation, which is also called the quasi-
chemical theory. This leads to an expression for the different
kinds of bonds of the following form which resembles the chem-

ical law of mass action.

2 .
P 2
?‘“‘%ﬁ" = bexp(-i¥) (22)
AA " BB
where P,, is the number of AA bonds, etec.

AA
It is possible to calculate the thermodynamic gquantities

accurately in terms of power series in (g%). Unfortunately
these series cénverge rather slowly and the use of the simpler
quasi-chemical theory, which gives a correct result up to the
third term, 1s thus justified.

The long-range program, of which this investigation is a
part, was originally designed to test the gquasi-chemlical theory
for metéllic 80lid solutions. The experimental results have
demonstrated that high excess entropy is normai if there is
a considerable difference in atomic size or valency between
the components. The quantity,)» , is then dependent on tempera-

ture. It was also found that Y may vary considerably with
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composition when there 1s a difference in valency. These re-
sults are in confliet with the assumptions leading to the
quasi-chemical theory. Moreover, a comparison of the values
of ﬁ% calculated from X-ray data and from experimental values
of the thermodynamic quantity Hg does not show good agreement,
as 1s seen from Table I. Consequently, the validity of the
quasi-chemical theory and the concept of an interaction energy,
VY, appear doubtful.

TABLE 1

Galculéted Values of %%

Calculation Calculation Calculation

Tgmp. Based_ on Based on Based on
Alloy K M FH X-ray Data
(30) -
An0.5N10.5 1173 +0.55 +0.15 0.06
(33)
Ale.gAgo.l 820 +0.1 0 +0.6
- - -0 L
Alo.185Ag0.815 820 0.1 0.4 0.4

*Thig value is for 733°K
2. Guggenheim's Definition of the Interaction Energy

The difficulty of the temperature dependency of ¥ can be

(28), who suggested that

removed, as was shown by Guggenhelim
the interaction energy can he defined on a purely isothermal
basis bj using the gquasi-chemical equation as a definltion of
Y. The only assumption Guggenheim makes 1sa that this quan-~
tity Vv is independent of configuration and composition. We
shall go a step further and derive the gquasi-chemical theory

without any assumption concerning V.
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3. New Definition of the Interactlion Energy

A binary alloy is usually considered as consisting of the
two kinds of atoms and 1ts molar free energy is therefore
described by the partial molar free energies and mole frac-
tions of the components

Fp = %, F, + xgFp (23)
where X, + xp = 1.

Reallzing that the alloy could as well be deseribed by
means of the nearest-neighbor bonds, one could describe the
free energy per mole of atoms in terms of partial molar free

energles and mole fractions of the bonds.

7 -
Fm‘Z{AAFAA %545 *+ %554 * ZppF BB] (24)
where xAA AB + xBA + xBB = 1l. Z is the number of nearest

neighbors to each atom and g is thus the number of moles of
bonds per mole of atoms. One has to distingulsh between AB
and BA because an AB-bond can be placed in two different ways
between two atom sites, which is not the case for AA- or BB-
bonds. As an average X

AB
FAB and FﬁA' The previously used symbol P, referred to the

and Xpa willl be equsl, and so will

number of AB bonds regardless of their direction. One there-

fore obtains per mole of atoms P,

A = AZN (xAB + xéA) = INx

AB.
It is easy to show that
X, Ty tiEy i,

(25)

= + +
Ty = Xpp A, Y ix,
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The relative molar free energy (free energy of mixing) of

an alloy 1is defined by

2 _ _ ) 0
F“_Fm x,FQ - x P2 (26)

where Fz and Fg are the free energies per mole of pure A and

B, respectively. In pure A there are only AA-bonds. There-
Z 0
2

Z
Fo and al F° =5 P
80 3 T2 "BB. Eqs. (24)

. 12 % =
fore Eq. (24) gives P A

A
and (26) now yield

M Z = ¥ 0 ) .
F =3 [XAAFAA + X,pFan + paTEa * EB¥EB ~ *afad " ‘B’FBB] (27)
¥hen the equilibrium is attalned in a (xA,xB) alloy, the
free energy change for the reaction
AA + BB —» AB + BA
has to be zero. Thus

e F T T . |
FAB FBA FAA FBB 0 (28)

One can therefore form the expression,
X X

_@._E_. = ©Xp <1n —-———A exp == -1 (F "M'lnxm) ( BA RTlnx‘BA)
AA BB AA BB

_(‘f-' ~ RTlnx ) - (fi - RTlnx ) (29)
AA AA BB BB

- -R1 , -Rlnx_  and -Rlnx are recog-
The quantities RlnxAA, nxAB BA BB

nized as the partial, positional entropy for four components
in random mixing. The integral positional entropy is then,

per mole of atoms

P yA
S = - 3 R[ AAlnxAA + xABlnXAB + XBAlanA + xBBlnx34 (30)
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In the case of bonds, however, there is a restriction on the
distribution, since at each atom site all bonds must be either
AA and AB (in the case of an A atom) or BB and BA (in the case
of 2 B atom). A correction term must therefore be added to
the expresgsion for SP in Eq. (30). The correctiion can be cal-
culated for the case of random distribution of the atoms, i.e.,
when Xy, = xﬁ, Xpp = XpXpr Xgp T Xa¥p and Xpp xg, because

sP

then has to be equal to -R [xAlnan-xBlnxé] . The correc-
tion term is thus found to be (Z-1)'Re [ x,lnx, +xglnx].
Assuming the correction term to be independent of the degree
of randomness, one can get sF at any value of XAA’ XAB’ xBA
and ZXZBB

P _ Z - —

+ (Z-1)R [-::AlmcA - xBlan] | | (31)

This is exactly the expression for the entropy of mlixing accord-
ing to the gquasi-chemical theory. It has also been derived by
Takagi(29). The foregoing assumptlon 1s obviously very poor
when the degree of randomness is low. For instance, Eq. (31)

gives the quite impossible negative entropy value (% - 1)R-

.[xAlnxA-c- xBlan] when Xpg = X~ 0. However, at small
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deviations from ldeal randomness 1t 1s a good approximation
which 1s shown by a comparison with the more accurate power-
serles expansion.(27)

The paftial positional entropies are now obtained from
Eq. (31)

- 2
SAA RlnxAA + (Z-Z)RlnxA

S,p = -Rlnx,; + (2-%)R(klnx, + #lnx;) -

Sp, T -Rlnxy, + (2-2)R(¥lnx, + ¥lnxp)

8gp = -Rlaxgy + (2-7)Rlmxg

Partial excess free energy for a component A 1is defineﬁ(l) asg

Fﬁ = ¥, - Fj - RTlnx, (33)
where -BlnxA is the ideal value of the partial entropy of mix-
ing for the component. The corresponding values for the bonds
are those given by Ea. (32), however, and the partial excess

free energy of the bonds should thus be deflned as

FfA =Fp, - FgA - BTlnx,, + (2—%)RTlnxA (34a)
R =T, - - BTlnx, + (17)RT(Inx, +1lnxy)  (34b)
FE, = Ty, - Fo, - Bfloxy, +(1-J)RT(Inx, +1nxg)  (34)
FE = Fpg - Fgp - BTlnxyy + (2-F)RTlnxy ~ (34a)

It may be convenient to define FzB and FgA as FXB and'?BA

in a completely ordered alloy of composition xA = xB = %,
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In any event, adding (b) and (c), and subtracting () and (d)

gives
(i" ~-RT1nx )+(1s'1;m-a'r1nxm (F' -RT1nx, ('F-'BB-RTlanB)z
o+ F° S e e FE
AB " “BA T "AA T~ BB AB  'BA AA _ BB (35)

‘The left-hand side is recognized as the bracket in Eq. (29),

which can now be replaced by the right-hand side of Eq. (35).

Using the relations x, = x, and FAB . fﬁA together with the
definitions
Nov° = - 'k(F BB)
Ko"E - FﬁB -1 (7, ) (36)
v = v E

where N, is Avogadro's number, one may write Eq. (27)

Z E E |
FH 3 [ZxAB N v + xAﬂEAA 4-2xABF§B +'xBBFBB] - TSP (37)
- & P
or FH = E'[zxABN Y + xAE + xBF ] - T8 (38)
where SF is given by Eq. (31) and xAB by (29), which by means
of (35) can be transforﬁed into
2
x
AB = _2Y
2B = exp (p) (39)
AA BB

or

AB z (40)
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This is identical to the quasi-chemical equation, Egq. (22).
It 1s interesting to note, however, that the quantity ¥ is a
free energy aeccording to this derivation.

Y has been defined here for a constant temperature and
composition, and 1t is in principle unnecessary to make any
assumptions concerning the independence of ¥ relative to these
two variables. The experimental results for the Al-Ag system
indieating v to vary with both temperature and composition are
thus not in opposition to the theory. However, the usefulness
of this theory 1s quite‘limited, because of the ﬁwo unknown
guantities FfA and F%B in Eq. (38). In view of Eq. (36) it
is to be expected that these quantities vary with ecomposition
if v does, and it 1s then impossible to determine v accurately
from thermodynamic data.

Eas. (36) to (38) show clearly that the interaction energy
Y 1is actually a free energy and its magnitude should not be
calculated from experimental enthalpy values but from free
energy values. This has not been done in the past, and the
systems Au-Ni and Al-Ag should, therefore, be reconsidered.
Agsuming that FﬁA and FgB are negligible, ﬁ% was calcnlated
from P! for these two systems and the results are compared in
Table 1 with values calculated from X-ray measurements. Values
based on the erroneous use of HM are also given.

Au and N1 have considerably different atomic sizes and it
has therefore been suggested that strains play an important
role in solid Au-Ni solutions(Bo’Bl’Bz). Attempts‘have even
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been made to account for the discrepancy between the values of

ﬁ% calculated from Hg and X-ray data by a separate calculatlon

of the effect of the strains. However, Table 1 shows that the
agreement is improved considerably through the use of FH in-

gtead of HM for the alley Aue’5N10‘5.
ference in sign which cannot be removed without the assumption

fhere is s8till & dif-

that the excess quantities, FE and FE have nen-#anishing

AA BB’
values. It seems quite reasonable that this should be the
cage when the strains play an important role.

For the alloy Al the agreement 1s improved by

0.185°%0.815
the use of FH, for the alloy A10.9Ag0‘1 the agreement is
slightly worse. No definite improvement is thus obtained for
the Al-Ag system, probably because there is no appreciable
difference in the atomie sizes. It is obvious that FfA and
FgB cannot be neglected in this system, which indeed should

be expected in view of Eq. (36) because Y shows a substantial
variation with eompositlon.(BB) This variation is probably

caused by the difference in valence between Al and Ag.

., Estimation of the Interaetion Energy

The preceding aenalysls indicates that there is not neces-
sarily anything fundamentally wrong with the interaction-
energy concept despite the apparent disagreement found in the
earlier investigations. The use of this concept in Chapter II
therefore gseems Justified, especially for systems without ap-

preciable differences in atomic size (as was the case for Au-Ni)
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or valency (as was the case for Al-Ag). In alloys between
transition elements in the same series one could consedquently
expect that ¥V is fairly constant with both temperature and
composition,'and it should be posslible to make a good estima-
tion of Vv from thermodynamic data.

If no thermodynamic data are available for a system, it
is possible to estimate the thermodynamic properties from
the phase dlagram. Some assumptions must then be made con-
cerning the shape of the enthalpy and entropy funetions, but
these assumptions can not generally bé tested. Hardy(Bh) has

suggested a certain shape for these funetions, which can be

FE = x‘xB[ A0 + i] (41)

where Ao and Al may be temperature dependent. Hardy also

presented a test for this "subregular solution model® for

wrltten

systems with a misclibility gap. However, if more terms are

used in the expression for FE,
FEoxx [A +4 -(x -x) +4:x, - % )2 + A(x, - x )3 veodf (42)
X T AT T B e - 5(x4 = =p

one can derive the followlng two equations.

e £ x} xﬁ]
2 "'")‘ xixit ! 11 A ' 11 = |
x,, <TyLn (xr..xi) [(XA+ x;')1ln X_r'+(xB+xB )1n Ty |

B B

A

- _ b (ts2 _ ‘_
= Ao +A2(-§£2+bf£ 8xLxA'+1)+A Le(-bgc +2& lbexA'+1) .. (43)

3
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and
t xt
RT XA B
x} +x!)In = +(x! +xIV)in = | =
(x‘;l-x‘;ﬁ (xf +=4") xI (xg +x3')in xé']

= Ay FAMNE + A3(12£,2 *BE-8xix te1) L. (BH)

where xL end xi' are the compositions of the two coexisting

phases at a temperature T, and £ is defined as ;A - xé'.

Eq. (44) bvecomes identical to that used in Hardy's test
1f one sets A, = A3 = .,.... = 0. He plotted
RT [(xeri')lnx‘vxi' + (x.é-o-xé')lnxé/xé'] versus (xA'-—xA)3,'
and suggested that a straight-line relationship indicates all
coefficients higher than Al to be negligibly small. However,
we see from Eq. (44) that e straight line simply indicates
the whole right-hand side to be constant over the temperature
range under consideration. For the systems Ag-Cu, Ag-Pt, Al-Zn
and Au-Pt, the quantities 4& and (12e2+4€ - 8xA§A' + 1) have
rather low values and vary little with temperature within the
temperature region where aolublillty data are avallable. More-
over, the possibility that Al itself varies with temperature
must also be considered. Without very accurate solubllity
measurements over a wide temperature range, it therefore seems
unwarranted to use Hardy's plot as a test that Az = AB = ... 0.
Unfortunately, such data are usually not available.

The chances of validating an assumed shape for the enthalpy

and entropy functions are thus remote, and consequently it seems

Just as proper to use the simplest possible shape as more
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complicated ones. Hence, the zeroth approximation, which was
employed in the theory derived in Chapter II can be used for

evaluation of ¥ . The free energy of mixing is then

M

F" = x;xNZv + RT(x,lnx, + Xplnxp) (45)

and from the second derivative one finds the relation

RT

M
—es : (46)
ZKZ;AxB

v =

where TM is the maximum temperature of the misecibility gap.
Only this information 1s needed from the phase diagram.

5. Digcussion of Other Qussi-Chemical Treatments

Schell and Wegener: Schell and Wegener(35) have developed

a theory for the short-range configuration of atoms in solid
solutions. They do not refer to the quasi-chemicel theory but
their treatment turns out to be in principle ldentical to the
quasi-chemlcal theory with the Z value 1. This value holds

‘only for two-atomic gas molecules, and the Schell-Wegener

treatment is thus unnecessarily restrictive, especially since
the quasi-chemical theory can handle systems with any Z value.
However, their analysis is interesting in connection with the
preceding sectlon, where it was shown that the expression for
the free energy of mixing, FH, should contain the terms

E
%(XAAEAA +'2xABFEB + xBBFgB)' (See Eq. (37)) Scheil and

Wegener give an equatlon (their number 9), which in the present

notation is equivalent to
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P
FM = ZxABNovo + alxM(l-xAA) + aszB(l—xBB) + alzxAAxBB - TS (47)

where a4, 8, and a,, are constants. This equation should bg
compared with Eq. (37). It is worth noting that their expres-
sion for S° 1s identical to the one given here with Z = 1,
whereas a faetor of %, coming from %, is missing in the first

term of Eq. (47).

The use of the three constants a,, &, and alz apparently
implies the assumption of a very speclal éoneentration depend-
ency of the three quantities pE , FfB and FgB in Eq. (37).
Schell and Wegener make calculations using certain values for
the three constants, and thelr results are quite contrary to
the results of a calculation to be presented here in a later
section., The physical significance of the constants is dif-
ficult to interpret, and it is therefore impossible at the
moment to tell whether the discrepancy is due only to an un-
lucky cholce of the constants in the Scheil-Wegener calculation

or to the very use of these constants.

Dehinger and Knapp: The quasi-chemical theory (i.e. the

so-called first approximation) gives information about the

excess number of AA, AB or BB bonds compared with the random
case. Dehlinger and Knapp(36’37) have in esgence tried to cal-
eculate the same thing by modifying the zeroth approximation.

They assume that there is a certain execess number of AA bonds

and that these are gathered in clusters containing only component
A. All the clusters are assumed to be of the same size and the

zeroth approximation is assumed to hold for the distribution of
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the rest of the atoms in the matrix and also for the distribu-
tion of the clusters in the specimen. The slze and number of
the clusters can be calculated by minimizing the free energy
of the whole system.

It 1s apparent that this theory is only an approximation

for the quasi-chemleal theory, which does not contain any re-

striectlons about the geometric arrangement of the excess
number of bonds. Dehlinger and Knapp themselves claim that
thelr treatment gives the final state reached at cold harden-
ing of age-hardenling alloys, especially Al-Ag alloys, and this
view has been aceepted by Hardy and Heal(38) and by Guinier(Bg).
However, the above discussion shows that the quasi-chemical
theory in any case might be a better approximation than the
Dehlinger-Knapp treatment and it does not seem likely that
the cold hardening process involves only the adjustment with
temperature of the local atomie arrangement predicted by the

quasgsi-chemical theory.
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V. X-RAY THEORY OF PERIODIC STRUGTUBES

1. Previous Work

A periodic varliation in composition can be detected by
X-ray diffraction only if the scattering power of the atomiec
planes or the distance between them varies with the composition.
The effeet of a periodic variation of the distance has actually

fn
(ko) and by Kochendorfer

been treated theoretically by Dehlingér
in another conneection., On considering the influence of elas-
tic strains, caused by cold working, on the broadening of X-ray
reflections, they calculated the effect of a sinusoidel varia-
tion of the lattlice spacing in one direetion in a erystal and
found that the main reflections should be surrounded by satel-
lites.

Daniel and.Lipson(MZ) reported that such satellites were
observed by Bradley after an annealing treatment of a Cu-Ni-Fe
alloy. This alloy.lies within a miscibility gap with a peak
at 800°C. It was previously found by Bradley, Cox and
Goldschmidt(uB) that the same alloy on slow cooling from above
the miscibility gap did not separate into two FCC phases as it
should according to the phase diagram. Instead two slightly
tetragonal face centered phases were observed, one with the
c~axis a little larger than the two a-axes, the other with

the c-axls a 1little shorter, Their a-axes were ldentical.

The structure could be explained by assuming that the trans-

formation on slow cooling lead to e lamellar structure con-

gisting of plates of one of the stable phases alternating with

(b1

)
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plates of the other stable phase. The most copper rich of
these phases has a little larger unit cell than the copper poor
phase and the tetragonallty couid thus be explained ag a con-
sequence of retained coherency between the different lamellae.

Daniel and Lipson annealed homogenized and quenched speci-
mens inside the miseibility gap and found that the early
stages of the transformation gave rise to satellites to the
main reflections; these grew closer to the main reflections
as the‘annealing was continued. At the same time satellites
of higher order appeared outside the first set of satellites.
As all the satellites moved closer to the main reflection the
intensity of the higher order satellites increased and the
diffraction pattern gradually changed into that for two tetrag-
onal phases,

Danlel and Lipson suggested that the annealing causes a
periodic variation of the composition along the [106] direction.
There should then be a periodic variation of both the scatter-
ing power and the lattice spacing. The variation in scattering
power can be calculated from the atomic secattering powers.

The variation in lattice spacing can be calculatgd from the
known variation of the molar volume with oomposition(bB), as-
suming that the spaclngs perpendicular to the directlion of the
perlodic variation are unchanged due to coherency in the crystal.
Daniel and Lipson treated the effect of these two variations
gseparately, using some approximations, and they found that both

give rise to satellites. However, the variation of the lattice
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spacing does not give any satellites at the zeroth reflection,
whereas the variation of the scattering power does. Inasmuch
ag such satellites were not observed, 1%t was concluded that
only the variation of the lattice spacing is lmportant. This
was to be expected because Cu, N1 and Fe have very simllar
atomic scattering powers.
The distance in reciprocal space between the first order

satellites and the main refleetion is equal to % where Q 1s
the wave length of the periodic variation, measured in mumber

of unit eells. Daniel and Lipson derived the equaticn,

Q=h tan® / (n?2+x242) SO (48)
which relates the wave length Q and the difference in Bragg
angle, 59, between a satellite and i1ts maln refleection. h, k
and 1 are the three indices of the main reflection, h belng
the index for the aq direction, in which the perlodie variation
takes place. This equation shows that the wave length Q is
increased as the satellites move closer to‘the main reflection.

Daniel and Lipson(bu)

pointed out that the X-ray diffraction
would simply show the presence of two tetragonal phases when
the wave length Q is large enough. Both the satellites and
the tetragonal diffraction patterns could thus be explained
on the same basils,

By assuming that the perlodic variation is éinusoidal,
Daniel and Lipson could calculate theoretically the intensity
of the satellites at different main reflections, but they did

not obtain agreement wlth measured data without the use of a
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(k5)

somewhat arbitrary correction for extinction. Hargreaves
suggested that the composition always changes abruptly from
one extreme value to the other. Even the early stages of the
transformation, which give rigse to satellites, can then bhe
described as lamellar struectures. He also showed that the
intensitles could be accounted for without the use of the
extinction correction, suggested by Daniel and Lipson. In-
stead Hargreaves had to assume that there may be untransformed
reglons in a specimen.

It was observed by Hargreaves that the satellites on the
two sides of a main reflection have somewhat different inten-
sities. ©Such asymmetry should oecur when the varliations in
gcattering power and lattice spacing are both significant but
a quantitative calculation indicated that the variatlion in
scattering power was too low to account for the observed in-
tensity. Hargreaves therefore suggested that the asymmetry
is due to an asymmetric location of the alloy in the miscibility
gap. This would give rise to a difference in the amount of the
two stable phases and consequently a difference in thickness
of the two kinds of lamellae. All the X—ray‘treatment by
Daniel and Lipson and by Hargreaves assumed that the composi-
tion of the alloy was located exactly in the middle of the
miscibility gap.

Balll and Zakharova(aé)

followed Hargreaves suggestion and
treated theoretically the case of different thickness of the

two kinds of lamellae. They derived an expression for the
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agymmetry, which showed that the asymmetry should increase
with the wave length Q, and also reported(47) that a speeimen
was observed to display conslderable asymmetry but only after
a long annealing treatment.

There is difficulty in understaﬁding how the wave length
of the periodic structure can increase continuously, as the
measurements by Daniel and Lipson indicate. It was pointed
out by Guinier(39) that 1f a specimen has been completely
transformed to a perfect periodic structure of a certain wave
length, the wave length can increase to a slightly higher value
only by a complete dissolution of the old structure and forma-
tion of a compleftely new one.

Guinier suggested that the early stages of the transforma-
tion conglst of zones, each of which contains a central lamella
of one of the extreme compositions, surrounded by two lamellae
of the other extreme composition. The value @, measured on the
diffraction pattern, i1s then approximately equal to the width
of such a zone. As long as the different zones are far apart,
the value of Q can increase contimousgly simply by a lateral
growth of the zones, Fig. 12. This model also predlcts an
appreciable width of the satellites, whereas the previous
models predict sharp satellites. It has in fact been observed
that the satellites are much broader than the main reflections
and this supports Guinier'!s viewpoint.

An attempt will be preéented here to treat theoretically

e more general model which covers all the models reviewed above
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FIG. 12. INCREASE OF Q BY LATERAL GROWTH OF
ZONE, AS SUGGESTED BY GUINIER
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and also holds for an arbltrary number of lamellae in each

tranasformed reglon.

2. Application to FCC Structures

Previous theoretical treatments have only been concerned
with gsimple cublic systems and it was assumed that the effect
of a periodic variation of the lattice spacing is the same
for the Cu~Ni-Fe alloys which have a FCC structure. The con-
ditions for this to be true will first be examined.

The amplitude of the scattered x-radiation in a certaln

direction from a FCC crystal is proportional to the strmecture

factor,

F(R) = Z: Z§[1 y oMiRlay + ap) | FiR(a,+e,)
Mo B

iR + 2niR(n.a, + n.a, +n.8
+oiRlas 9’1)]- . 1%2

272 3 3) (49)

where R is the veector in reeiprocal space, and 8y, &, and'aB,

are the three vectors defining the unit cell. Kl, 3

are the numbers of unit cells along the sides of the crystal,

Nz and N

assuming it has the shape of a rectangular prism. F(R) can be

rearranged
zumazmz_ o 2T 1RasN

. TiR(ay + &,) | (1+e TiR(ag - az)ﬂ . eZniRnlal (50)
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The first two factors show that F(R) has appreciable values

only when Baz and RaB are whole numbers. Then
2IlR&2N2 271.’13&3133

F(R) = eanaz =l e, ol (1 4 iR(82 v 83)y,
e -1 e 3.1

Z: - eniﬁ(al . az)) . JZHiRRgey
5 (51)

When there is a distortion alY(nl) along the aq direction, one
ingtead obtains

e wiR(a, + a,)
F(R) = “Z7iRa “ZriBa, (1L *e 273
821 34 e 31

) M

Z (1 + e&riﬂ[al(% + Y(%)) + ‘kazj y . e27t.’n.l@'.e9.:,.(:'11 +¥(ny)) (52)?1'

Nl . ‘::‘é | ‘

If the distortion is so small that a,(% + Y(%)) can be ap- 1

proximated by %al, this can be written as

aznnaznz_l 2TiRasNg | [1+enia(a1 + a,) . TiR(a, + a3)'

F(R) = “pniRa, — ~ZviFs, e .
e -1 e -1

mR(a, + a,) 2MiRa, (n + Y(nq)) |
Qs )] ] e 2 (53
1

This seems to be a very good approximation for the Cu-Ni-Fe

alloys and 1t 1is thus Justiflable to study only the part of

the structure factor, F(R), which depends upon the distortion i
in the al-direction. James(na)

G(R). We find

has denoted this quantity
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6(R) = Zg:f eZHiBal(nl + ¥(ny)) (54)
. 1 )

3. Treatment of a More General Model

A basic assumption in all the previous work has been that
the lattice parameter is proportional to the composition and
the same assumption will be adopted here. We shall consider
a distortion Y(n) which is zero except between the values n®
and n° + an wherein it is a periodic function with a wave
length Q. An is thus assumed to be a multiple of Q, say
An/Q = v. The distortion in the region n°® to n® + an can

thus be expressed as a Fourier series. We shall write
21Raq Y(n) = Z,;—— [ oycos2nnm/Q + /Smsinznnmm] (55)

It is then possible to write also the exponential funetion as

a Fourier series.

2niRa4¥(n
e 11(n) =M - iN + 22 [(B.p - 18 )cos2mnp/Q +
P |

- =M - - - 2rinp/Q
+(Tp 1Up)s1n2nnp/Q M 1N‘-b2;;I§Bb + Hﬁ)' 1(5p Tp)} e /&,

_ _ 2ninp/Q (56)
+ {(ap AAREICR np)} e |

where the set of coefficlents M, N, Rp, ﬁp, 2p,,and‘ﬂp can be-

calculated from the set of coefficients «m and Pm. Eq. (54%)

now gives
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Nl-l-n° An-1

| 2riRa-n oxiRa. Y(n) oriRe~n

- - n-=

2miRa;n®  gZMRAIN1, P
e * “2niRa - (1 - M+1N) 2xma +
e 1—1 1 -l

2ni(Ra1+p-)4n
+ {(R+U)—i(s—'l')} =
P

) 2t (Bay + E)

21(Ra; - %) An

+{(R-U)-1(s+r)}° % =1
P p P pJ) 21(Re; - Q)
e -~

The intensity of the scattered radiation is proportional
to the product G(R)G(R)*. This product gives sharp ilntensi-
ties for Ral = h, where h is any whole number, but it also
contains terms which represent diffuse 1nténsi‘cies if An is

gemall. The largest of these dliffuse terms are

a2 2| sin®tRajan Z:{ 2 _ 21.
[(1 M) +N]sinznﬁa1 + {(Bp"f' Up) " + (8 Tp)}

. sin E(Ba + B)An {(R 4 (s + 1 )2} s1n? T(Rey - Q)Aﬁ]
sin 1L(Ba + B) P 311’1271(3& p)J

The first term is symmeiric around the main reflection, the
other terms have their maxima at Re; = h % % These terms

(57)

(58)
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represent satellites to the sharp reflections at Bal = h. The

intensity of each satelllte decreases from the maximum value

Q
of a satellite as expressed by the dlstance between these two

at Ray ¥ 3 = h to zero when (Rey * B) An = han - 1. The wildth

points is thuse

3
ol

- 1 = =1 =
h+%-— [ZE (han - 1) *%]"An

(59)

The width is thus equal to the distance between adjoining satel-

lites when there is only one period 1in the distorted region,
i.e. when v = 1. This is the model suggested by Guinler. Ve
can now see that the satellites become rapidly sharper if v is
inecreased. Actually, this equation can be used to calculate

v from the width, assuming that all the distorted regions in a
sample have the same value of Q.

The asymmetry of the intensities of the satellites is

(AI)pgz.I.E I+p=&'pp p%
Imean Io*ly R§+ni+s§+1p

(60)

For any quantitative comparison of the intensities, it is neces-

sary to evaluate the coefficlents M, N, Bp, Sp, T, and U§ in
‘ P

Eq. (58) from the coefficients oy and By, which deseribe the
distortion Y(n) in Eq. (55). This can be done by means of the

relations

elXco82mnm/Q - JG(“h) + 21J1(¢m)c082nn/Q -

- 2J2(“h)coshun/q - 21J3(“k)cosénn/Q ceeans

(61)
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eiﬁmsinZnnm/Q = Je(Pm) + 21J1(Fm)sin2nn/Q, +

+z.72.(/3m)cosunn/q + 21J3(/3m)sin6un/q, (62)

GZMBa Y(n) o the

where the J's are Bessel functions.
product of these series for all the m values. This whole
product 1s very complicated and we shall therefore study
separately the two parts of it which are made up of only the
ol terms and of only the Pterms.

These partlal products can be written

[ o]
e 1Z cos2mnm/Q = A, - 1B +Z - s2n 6
xp 1 L « coszmam/Q = Aq o * & (A - 1B )cos2ump/Q (63)
o
e iZ in2n =C,+ ¢.co82un - 1D 8in2 64
xp 1L f sin2mn/Q 0 Zp (Cpcos2nnp/Q ,8sinzmp/Q)  (64)
In order to make the distorfion small at n = n® and n = n+ an,
o(0 muet be very close to m; o(m whereas Fe = 0.
For reasonably small distortions one finds that 00 =1,
Ao = cosofo and BO = - sino(a and all the other constants are
very small. The largeet terms in the full product are there-
fore co o 160}3@ = t:m!.ote + 1sino(o. One finds for the first
two coefficients in Eq. (56)
M = cos 04@
N =-sin « | (65)

0
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According to Eq. (58) the diffuse intensity close to the main

reflection is then proportional to

(1 - M)z +N2 =1 + cos%do - 2co08 dg +-sin2d@ =
= 2 - 2008y = bgin? * °‘9 (66)

However, no sueh intensity has been observed experimentally
and hence we shall conclude that the distortion is such that
Xy = 0. It is then natural to assume, as digbGninier, that

all ¢¢, = 0 in view of the relation o, = Z « These
n 0 m=’1<im

conditions are fulfilled if Y(n) = - Y(-n). We can then im-

‘mediately identify the coefficients in Eq. (64) with those in

Eq. (56) and we find

w=cy = aop) [1- 255 T3 eeenne ]
=°1=]l"e(/3m) [- 20t 32 - 25332 ........ ]
(67)

t= 0y = [ 3o(fy) (-2l +23 03 - 2393 ...... o]

- _n 1, .1 .2 1.3

Rp= Cp = Il 75(fp) [232+2J232—2J1J1........ ]

U= DZ-EJO(P,‘) [- 202 ....... : ]
N=8 =T =0
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where the following shorthand notation has been used

m_ Jp(A
I3 = ?ﬁ— | (68)

All terms with m or p larger than 3 have been neglected which
18 a very good approximation for the earlier stages of the
tranaformation, when Q is small.

The expression for the asymmetry, Eq. (60), can now be

written

4R U )
S S L N (69)

—)
I;;;; P RS + Ug
The only way of having no asymmetry 1s to have Pm = 0 for all
even m, whieh is fulfilled if Y(n) = - Y(n + #Q). This results
in Rp = 0 for all odd p and qp = 0 for all even p. The product
RpUp is thus zero for all p. For small degrees of asymmetry,

one can use the approximation

Al B al _, U |
Taean bote =¥ T T o oven T PRy e

and one finds for instance

(25 b -—-T——"J% oo —T—TJl(Fz) = 24 (71)
Tpean P71 -9 1 To ) 2
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4., Application to a Specific Case

The general treatment presented here can be applied to
any specific model by evaluating the dﬁland‘pm coefficienta
and chooaing the appropriate value for v. The value v = O
holds for the models suggested by Daniel and Lipson, Hargreaves,
and Balli and Zakharova, v = 1 holds for Guinier's model. The
model suggested by Daniel and Lipson simply gives all &, = 0,
/31 = constant, and Pm = 0 for all m>1.

Both Hargreaves, Balli and Zakharova, and Gulnier assumed
that there is an abrupt change in composition between the two
kinds of lamellae. Fig. (13) shows such a model with one

zone (v = 1). Using the approximation
n n.

ay + Y(n') ='é2;; (a - aq) = ﬁ{/ (a - ay)dn (72)

for the distortion in a certain plane, n'. a is the variable

spacing 1n the aq direction. One finds for the coeffieients
in Eq. (55)

X =0
m
1)®
- L:~l§ 2R21Q(€y + &p)sinmm _ P (73)
Pn T m &+ 4

where 81 and 52 are the relative changes in lattice spacling 1in
the two kinds of lamellae. 1In Chapter III some indication was
found that there 1s no abrupt change in composition. However,
taking a somewhat more gradual change into account will affect
the Pn values comparatively little.

The Bm values glven by Eg. (73) can now be used to calculate
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the set of coefficients, M, N, Bp’ 8 ,T and U from Ea. (67)
P P

and Eq. (68), and the relative intensities of the satellites
can then be computed from Eq. (58).
It 1s seen immediately from Eq. (73) that the condition
for no asymmebtry 1is €i = 52, because this makes 3, = 0 for
all even m, The condlition 1s thus that the cbgpag;tipn of
the alloy lies in the middle of the miscibility gap, as would
be expected. This is the case treated by Hargreaves and Guinier.
(81 + &,) 1s of the order of 0.02 in the case of Cu-Ni-Fe
alloys and the highest reflection we shall consider has
Ra; =h = 3. It is then found that Jq (Fl) is much larger
than all the Bessel functions of higher order, when @<50. It
is therefore a good approximation to neglect all h;gher orders
for small Q. Only the first order satellites (p = 1) then have
appreciable intensity. However, if Q grows to larger values
the intensity of the first order satellites starts to decrease,
as they move closer to the maln reflection, and higher order
satellites become visible. Finally, for very large Q, the low
order satellites have negligible intensity and the only visible
ones are those which are situated where the sharp reflections
for lattices with the spacings al(l + &1) and aq(1 - &) fall,
which of.course 1s to be expected. The diffraction pattern
then simply shows the presence of two coherent,'tetragonal
phases., Such late stages'qf the transformation for which hlgher

orders of the Bessel functlons cannot be neglected are very
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difficult to treat quantitatively with the above method, using
the Bessel expansions. An exact treatment is then simpler and
wlll therefore be presented in the next section.

5. Exact Treatment

We shall treat the same kind of variation in composition
a8 is shown in Fig. (13). Suppose the center strip contains
2c unit cells with the spacing al(l + €1) and the side strips
contain b unit cells each, with the spacing aI(l - 62). Let
the origln be in the middle of the center strip. Then

(b+c-%) ( (m) b+e-% -& -(55%)
ZNRal n + n
~(b+c-;) 2:;- Z;; -(e~%) -(b+e-2)

2eiRa) (b + ¢ - & + &) 3'2"1351(1 - E2)b

e . -+
-2nlRa. (L - &)
e 1 2" 1

2“13&1(% + %El) eZEiRal(l + El)cd

+ e L - +
e2 1Ba1(1 * cl) )

-2niRa (% + %Cl) . e-ZIiRal(l *&)e

-1 N
e-ZIiBal(l + el)

+e

g

te ) 2ni (1 - &,) -
e Ral 2 1l

-

) . 8lnTRay (1 + &£4)e
= 2608'“733-1(1 + 51)0 ml(l + 51)
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in nRa, (1 - €,)Db
+2cos xRal [(1 - é’z)b—Q]‘ :13 nBai(l — C:) (74)

Suppose‘there are v periods like the one shown in Fig. (13)
immediately following each other in the distorted region. Then

6(R) = Z 2™ iRay(n + ¥(n)) _
N
1

- e2 T 18&3_11 gin nB.alﬂl sin u:Ra.]_Q.v

* 5in TRa,  sin nRa; +

sinm Rale

ainnRaj. . (1 + & )e
+ 1)
sin rRalQ

S— +
gin TrRal(l + El)

2cos nBal(l +£1)c .

8in TRa, (1 - &,)D
+ 2@08 TRa, [(1 -~£2)b - Q]' sinnnal(l - 527“ (75)

The quantity u is the distance from the center of the distorted
region to the center of the specimen. The factor in front of
the bracket shows that the Intensity has a series of maxima
close to Bal = m/Q, where m is any whole number. One can as
well write Ra; = h % % where p is any whole number less than
3Q + 1. These mexima are thus the centers of the satellites.
At the ideal position of the satellites, Ra, = h % %, Eq. (75)
simplifies to

sin mRa, (1 + &;)2e sin mRal(l - 52)2‘0
SInTRE (T + &7 7 sinwhe, (1 = &)

G(R) = v - (76)
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which also can be written
G(R) = v - sinTRay (1 + &) 2¢ {%osec TRa (1l + £4) -
- cosec TRaq (1l - 52)} (77)

It is thus very simple to calculate the intensities of higher
order satellites with this equation.

Eq. (77) has been used to calculate the influence of the
quantity v on the width of the satellites, and Fig. (14) shows
the result in a very asymmetric case. It is obvious that an
increase of v from 1 to 2 could easlly be observed whereas a
further increase of v affects the width comparatively little.
Fig. (14) will be used in a later section for an evaluation of
v from experimentéi observations of the width of satellites.

"Unit cell" has been used by all previous authors as the
unit length for the wave length Q, being the natural unit in
the X-ray theory. The natural unit in the thermodynamic treat-
ment is atomlc plane, however, and the symbol 4 was therefore
used in Chapters II and III in order to avoid confusion. There
1s always a simple relation between the two units. When the
considered direction 1s [100] in a FCC struéture, there are

two atomiec planes per unit cell.
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VI. EXPERIMENTAL WORK

1. Preparation of Alloys

It was desired to make up a complete series of alloys in
a pseudo-binary section of the ternary system. The tie-lines
_in the miscibility gap have been determined by means of mag-
netic and resistance measurements by K8ater and Dannghl(u9).
Their results show that the tie-lines point almost direetly
toward the Cu-corner. See Fig. (13A). The deviation varies
with the temperature and there is consequently no true pseudo-
binary section. A sectlon through the Cu-corner was selected.

The alloys were made from carbonyl nickel, spectrographie
copper and a speclally purified iron received from the Battelle
Memorial Institute. A high-frequency vacuum furnace was used
and the melts were cast in a copper mold uadef vacuum. This
procedure minimized gegregation. The castings were sealed
under vacuum in separate Vycor tubes and givem a homogenlza-
tion anneal at 950°C for 10 days. They were quenched into
brine by breaking the Vycor tubes under the liquid surface and
were then ground with a carborundum wheel. The metallic powder
could be separated from the carborundum with a magnet and the
fractlon passing through a 325 mesh sieve was used for these -
experiments. Coarser fractions were used for chemical analysis,
and these analyses are listed in Appendix II. Fig.r(15) shows
the compositions of all these alloys and also the phase dlagram

after slow cooling determined by Bradley, Cox and Goldschmidt(uB).
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e

FIG. 15. COMPOSITION OF ALLOYS PLOTTED IN
"PHASE DIAGRAM AFTER SLOW COOLING"
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Cu

FlG. ISA. PHASE DIAGRAM FOR THE Cu-Ni-Fe SYSTEM
SHOWING THE MISCIBILITY GAP AND TIE-LINES
FOR ONE ALLOY AT THREE TEMPERATURES
(ACCORDING TO KOSTER AND DANNOHL ).
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All the current alloys lie very close to the section through
the Cu-corner and the point Nig 7Feo 31 and ftheir compositions
canktherefore be written Gul—x(ﬂio.7Feo.3)X' The value of x
wlll be used in the following to characterize each alloy.

2. Experimental Technique

The first annealing experiments revealed that the trans-
formation 1s very fast in a certain temperature range. The
following technlque was used for most of the experiments in
order to make certain that the specimens would come to tempera-
ture equllibrium with their surroundings very rapidly.

Capillaries with an outer diameter of about 0.7 mm and an
inner diameter of about 0.4 mm were drawn from thicker guartz
tubes. They were filled with metallic powder to a length of
about 7 mm and sealed under an atmosphere of about 50 mm He.
These tubes were dropped down into a 5 mm thick quartz tube
leading into a furnace held at a temperature 100°C above the
peak of the miscibillity gap. The quartz tube was lifted out
of 1ts furnace after at least 2 hours and the samples were
fpoured'into another quartz tube leading into another furnace
held at a temperature within the miscibility gap. The samples
were removed after different annealing times by the same method
and quenched in brine. The thin quartz capillaries could now
be broken and the metalllic powder which had sintered to a rod
could be used directly in a 19¢cm Debye-Scherrer camera. An
exposure time of 4 hours was usually adopted.

The distance between satellites was measured optically.

The uncertalnty of this measurement depends on the width of
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the satellites, which is appreciable compared to their distance.
One part of this width 1s inherent and will be discussed later,
another part is the width of the main refleetion, which is in-
herited by the satellites. This part is considerable if one
does not eliminate the Kn, from the K&y radlation, which can

be done with the technique employed by Hargreaves(b5). The
intensity of the remalning Kdi radiation is greatly decreased,
and Hargreaves did not find it convenient to wuse his refined
technique when the satellites themselves were weak. This is
the case at the early stages of the transformation. In the
present investigation the interest is focussed on these astages
and therefore the primitive technique used by Daniel and
Lipson(bz) was employed. Most of the measurements were made
on the satellites of the (200) line in order to minimize the
effeet of this instrumental broadening on the width of the
satellitea. The (311) reflectlion was used in some cases, when
the satellites were very weak, because of the higher intensity

of this reflection and i1ts satellites.

3. Measurements of the Phaseé Diagram

The composition and temperature of the peak of the miselbili-
ty gap was determined by annealing samples F and G at 1119 and
1111°K. Only the F sample at 1111°K separated into two phases
and the peak was calculated from a measurement of the lattice
parameter of these two phases, using the relation between lat-
tice parameter and composition determined by Bradley, Cox and

(43)

Goldschmidt and assuming that the shape of the upper part



- 66 -

of the migcibility gap 1s that given by the zeroth approxima-
tion. The result was Ty = 1116°K and Xy = 0.47. This mis-
clbility gap is thus unusually symmetric and it may thus be
a good approximation to assume that the interaction energy

is independent of composition.

No accurate determination was made of the miscibility gap
at lower temperatures but it was established that it follows
fairly well the miscibility gap predicted by the zeroth or
first approximation. These two approximations predict almost
the same shape of the miscibility gap and their spinodals are
also rather close to each other as is shown in Fig. (16). The
migeibility gap and splnocdal for the zeroth approximation were

computed from the well known equations(27)

™. 2 - » 1 1n A
T =, =X = n-—— 8
A B
Spinodal: EE 2 = = 1 (79)
T Z kT 27X X
A"B
The following equations were derived for the first approximation.
A _
Miscibility gap: ;E 1n zﬁl_ = ﬁ% = %.ln f& +1ln *B =z (80)
' R Y
*5 VB
T y Y . 1- 1 Z -1
. M ———— R — T 1n — & +1 81
Spinodal: _T.__.ln 75 = EF - 3 ( 3 (Z-2)2 | (81)
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k, Measurements of Satellites

Fig. (17) shows all the compositions and temperatures,
at which the development of the satellites was followed. The
check marks represent runs where no reaction was ever found.
They may lie outside the real miscibility gap and thus in-
dicate a slight asymmetry 1n agreement with the experimental
value of the peak composition. The miscibllity gap according
to the first approximation 1s also shown. Fach point usually
repregsents a serles of four different annealing times. The
average wave lengths of the periodic structures were calcu-
lated from the measured distance between the center of the
satellites by means of Eq. (48), and the results are presented
in Figs. (18) to (23). The numerical values are given in
Appendix TII.

Daniel and Lipson plotted their wave length data versus
the logarithm of the annealing time. We are interested in ex-
trapolating the data to zero time and have therefore plotted
the data against the square root of the anneasling time. It
is possible to represent the measured data with straight lines
for low annealing times in this kind of a plot, and it seems
Justified to assume that the wave length of the first structure
to form is given fairly well by the intersections of these
streight lines with the wave length axis. These extrapolated
values are also given 1in Appendix TII.

The results for the C and F alloy are also presented on

& logarithmic plot in Figs. (24) and (25) because this plot
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allows the data from a wide range of ftemperatures to be repre-
sented in the same dlagram.

It was always attempted to extend the measurements at each
temperature to as short annealing times as possible. The first
measurement in each serles was, therefore, made on very wesk
satellites and the accuracy is not very high. The data ob-
tained for the longest anneallng times are also of rather poor
accuracy because the satellites then are very close to the main
reflections.

(44) found that the growth of the wave

Daniel and Lipson

length with time could be represented by an equation
Q=204 + 62 log & (82)

where G1 is & funection of the temperature, and 02 is a constant.
The present measurements were extended to a larger range of
times and temperatures and the results plotted in Figs. (24)
and (25) clearly show that the data are not well represented
by straight lines in the logarithmic plot, and also that the
slope of the curves, which 18 the constant Cz in Danielfs and
Lipson's equation, in fact decreases with temperature.
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VII. DISCUSSION OF EXPERIMENTAL RESULTS

1. Rate of Transformation for tThe Symmefric Alloy

The shortest time at which the satellites were detected for
each temperature is plotted logarithmically against the inverse
temperature in Fig. (26) for the most symmetric alloy F. A
theoretical growth rate has also been plotted in the same figure.
It was calculated under the rather crude assﬁmption that the
rate of transformation would be proportional to the diffusion
coefficient, D, and to the difference in free energy, aF, be-
tween the initial, homogeneous state 2nd the final, stable state.

@ = congt. aF - D - (83)

The wave length, d, which was considered in Section III.7, is
here included in the constant, because it varies only slightly
with temperature. The diffusion coefficient has been determined
by Baniel(5®). Ro calculation of the absolute rate could be
made from these simple assumptions, and only the variation with
temperature of the theoretical curve is therefore slgnifiecant.
It was displaced horizontally to give the best fit with the
experimental polnts.

There is a close agreement between the theoretical growth
rate curve and the experimental points. It thus seems possible
to explain the variation with temperature of the measured rate
of formation on the basls of a varlation in the rate of develop-
ment of nueclel into a detectable structure. This process of

development may involve an increase in the degree of segregatlion,
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i.e., the amplitude, as well as a geometrical growth. Eq. (83)
might apply falrly well to both of these processes. There 1is
consequently no experimental indication of a difference in the
nucleatlion process at the different temperatures. This is in
accordance with the predictions of the nucleation theories;
because the symmetric alloy is always inside the spinodal
when 1t is inside the miscibllity gap and there should conse-
quently be no differences in the nucleation process.

Borellus and co—workers(19) have used a method to evaluate
the spinodal temperature from C-eurves, which resulis in a
temperature below the nose of the C-curve. On the other hand,
some authors(24) have interpreted the temperature of the nose
as the temperature below which there is no retardation due to
nucleation difficulties. These interpretations do not seem
warranted in view of the above results. It is possible of
course, that fthey would be fairly ecorreet if applied to a C-
curve measured for an extremely early stage of the transforma-
tion. However, at present there does not seem to be any avall-
able method sensitive enough for such measurements, and all
experimental observations therefore seem to be largely determined
by the growth process.

2. VYariation of Wave Length with Temperature

The extrapolated wave length values for the most symmetric
alloy F are plotted versus the temperature in Fig. (27). The
theoretical curves for the critical wave length, Qopit? and the

optimum wave length, g as calculated for the symmetric

opt’
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composition, are also presented. Any wave length larger than
Qopy g CON be nucleated without any activation barrier, and
qopt is the wave length of the structure which in Section
ITI.? wes aésumed to develop to a detectable stage in shortest
time. The experimental values fall quite close to qopt at the
higher temperatures and show a similar variation with tempera-
ture. This again indicates that the nucleation process might
occur according to the nucleation theory but the growth process
determines what will be observed experimentally.

The somewhat poorer agreement aﬁ the lower temperatures
may be due to an ineffective quenching through the higher
temperature region. Long wave lengths could be nucleated
during the quenching and later grow to a detectable stage at
the lower annealing temperature. In order to test this, some
specimens were quenched from above the miscibility gap into
brine and later heated to the low annealing temperature. How-
ever, they showed the same wave lengths as specimens which were
dropped directly intc the annealing furnace'rrom the high tem-
perature.

3. Varilaftlion of Wave Length with Composgition

The extrapolated wave length values at 1003°K are plotted
versus the composition in Fig. (28). The theoretical curves
for Qrit and dopt are also presented. qopt was calculated
only for the symmetric composition. It is known to approach
the solubllity limits asymptotically, however, and could thus

be drawn tentatively. depit Wos calculated accurately from
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Eq. (18). It goes to infinity at the spinodal and no wave
length can be nucleated outside the splinodal without an activa-
tion free energy. It should be noticed that the ecritical wave

length, qcr 1s defined as the shortest wave length which

¢’
can be nucleated without any activation barrier and not as the
shortest wave length that 1is stable. Only for the symmetric
alloy are these two definitions identical, as 1s shown by Figs.
(5) and (6). -

The experimental points show the same behavior as the curve

for the optimum wave length, both inside and outside the

G—opt ’
spinodal.and there is no noticeable change at the splnodal.
The shortest annealing time which gave detectable satellites
was approximately the same for all the alloys and did not show
any discontinuity at the spinodal, either. These facts agaln
may indicate that the growth conditions are predominant. Con-
gider for instance an alloy inside the spinodal but very close

to 1t. Any wave length longer than g can be nucleated at

erit
once without any retardation. However, it may develop so
slowly that 1t does not become measurable before a wave length
shorter than qcrit has had time both to nucleate and develop.
In other words, the incubation time for nucleation of wave

lengths shorter than qcr may be short compared with the

it
time 1t takes to develop a structure to a measﬁrable stage.
The composition of the alloy could thus be changed to fall out-
side the spinodal without any main difference in the transforma-
tlon process, and the incubation time may still be much too

short to be measurable.
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The suggestion that the incubation time for nucleation is
very short close to the spinodal is supported by Fig. (8).
This figure shows that the activation barrier for alloys out-
side the spinodal does not decrease sharply toward zero if
the composition is changed toward the spinodal. Instead the
actlvation free energy approaches the value zero very slowly
and there is in faet no sharp discontinuity at the spinodal.

An alternative explanation of the experimental observa-
tions is that the spinodal is not uniquely defined for a real.
gystem with imperfections. No discontinuity should then be
expected at the theoretical spinodal. This explanation will
be further discussed in a later sectlion.

The éxperimental C-curve for the alloy C is shown in Fig.
(29), and no discontinuity can be detected at the theoretical
spinodal in this case either.

4, Conclusions from Experimental Work

It seems possible to explain all the experimental observa-
tions in accordance with the nucleation theories, but they do
not provide any critical test of these theories, because the
growth process seems predominant. They do not even provide a
test of the significance of the spinodal, which is predieted
by Borelius!, Hobstetter's and the present theories.

The present theory is the only one which makes any pre-
dictions about the'transformation product and 1s more susceptible
to testiné. The measured wave lengths show a fair agreement

with these predictions and thus lend some support to the present
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theory. The very existence of the perilodic structures in the
Cu-Ni-Fe alloys could be taken as a supvort for this theory.
It must bg remembered, however, that the theory only treats
compositional variations in one direction and it does not
predict that perliodic structures should form in preference to
any other structure which involves compositional changes in
all three directions.

In view of the above results, 1t seems even more hopeless
to test the significance of the spinodal by measurements on
other than exchange transformations. This has been tried many
times, however(9’18’23’2“).

5. The Nature of the Spinodal

The experiments undertaken have not been able to prove the
significance of the spinodal. This result was explained in
the preceding sectlons as due to the predominance of the growth
process. It was gtill assumed that the spinodal may be sig-
nificant for the nucleation process itself. In this section,
several factors will be discussed which might even remove the
significance of the theoretical spinocdal.

(1) By definition, the spinodal is the locus of all points
where»@?F/dxz = 0, which gives a well defined curve in the tem-
peraturé-composition diagram if one considers equilibrium states.
However, when a specimen is quenched from a high temperature
down into the spinodal, the short-range arrangement of the
atoms 1s much more random than the equilibrium state at the

new temperature. The first approximation of the nearest-
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neighbor interaction model predicts an increased clustering as
the temperatpre is lowered, and the theoretical spinodal at
each temperature holds only for systems with the prescribed
degree of clustering. It ftakes some time for the atoms to
rearrange, and before this happens the actual spinodal might
approximate that for a random solution. This spinodal is given
by Eq. (79) and has been plotted in the phase diagram of Fig.
(30) according to the first approximation, assuming a constant
interaction energy, ¥ . Fig. (30) shows that the actual spin-
odal in this case 1g displaced outwards when the temperature
is close to the peak of the miscibility gap. It is thus pos-
sible for a quenched specimen between the two spinodels of
Fig. (30) to start transforming without any retardation.

Scheill and Wegener(35) have also calculated the spinodal
for random solution but'they found it to fall inside the equili-
brium spinodal. It seems that thelr calculation 1s in error
and two possible explanations for the discrepancy are given
in Section IV.5.

(2) It is usually assumed that the interaction energy v is
independent of the configuration of the atoms on the lattice
gites. The thermodynamic quantitites (e.g. Ea. (38)), the
shape of the miscibility gap (Eqs. (78) and (79)) and the short-
range arrangement of the atoms in a homogeneous solution (Eg.
(40)) can then all be computed from the same value of V.
However, 1f there is a considerable difference 1in size between
the two kinds of atoms in a binary solution, the strains might

play an lmportant role. The strain energy of a randomly mixed
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solutlion can apparently be decreased by an ordering of the
atoms, which corresponds to negative ¥ values. It can also

be decreased by separation of the different kinds of atoms,
whilch correéponds to positlve v values. The interaction energy
might thus be strongly dependent on the configuration and the
value calculated from the shape of the miscibility gap may

not be the right one for a calculation of the spinodal for a
homogeneous solution., The Au-~Ni system may illustrate this
cage, It has a miscibility gap but X-ray measurementa(30)
indicate that homogeneous solutions contain short—rgnge order.
There 18 consequently no ftrue spinodal for homogeneous solutions
inside the miselbility gap. It is not surprising that Au-Ni
alloys do not transform by means of an exchange transformation.
An alloy quenched inside the miselblility geap remains homogeneous
until nuclel of new orientations form on grain boundaries and
inclusions(zu).

It is quite possible that the maln reason why Cu-Ni-Fe
alloys show exchange transformation i1s the similarity of the
atomic sizes, However, there i1s a definite difference in size
and this may distort considerably the result of the theoretlcal
calculation of the spinodal.

(3) The structure of the specimens have hitherto been %treated
as qulte homogeneous. However, there are usually heterogeneities
in reél specimens, for instance, surfaces, grain and subgrain
boundaries, dislocations, and impurities. The criterion for

the spinodal, q?F/dxz = 0, gives different alloy compositions

at such heterogeneities. It is thus quite possible that the



nucleation in alloys outside the spinodal calculated for a
homogeneous region can occur witihout any retardation. The
nucleation must then be characterized as heterogeneous.

It was suggested by Hargreaves(n5) that the transformation
begins at particular points and spreads gradually through the
specimen, and he presents photomicrographs in support of this
guggestion. This should indicate that the nucleation actuslly
is heterogeneous. However, Hargreaves mentioned that Daniel(Sl)
concluded from microscopic observations that the transforma-
tion was homogeneous instead. In order to decide whose ob-
servations are correct, the present alloys were examined micro-
scoplcally after different annealing treatments. The same
gtructures were observed as those publlished by Hargreaves,
but in the oplnlion of the present author they give no proof
of heterogeneous nucleation. A saturated solution of K.Cr.0

277277

with 1% HCl and 1% HZS was used as etching agent. It had

Oy
a 8taining effect on all the transformed specimens but not

on the quenched specimens. For the early stages of the trans-
formation the etching time necessary to develop the color was
shorter the longer the annealing time, i.e. the more the trans-
formation had proceeded. Each grain always showed a uniform
color and this may indicate that the transformatlion proceeds
uniformly in each grain. There was a difference in color be-
tween neighboring grains, probably due to the difference in
orientation.

The above microscopic obgservations do not rule out the pos-

sibillity of heterogeneous nucleation. However, if the trans-
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formation starts at certain prefefred sites and spreads grad-
ually through the whole specimen, these sites must be exceed-
ingly close to each other or the growth rate must be very high;
otherwise it should have been posgsible to detect transformed
regions in an untransfdrmad matrix., It is possible that dis-
locations or impurlties could furnlsh preferred sites for
heterogeneous nucleation in such a large number that the trans-
formation appears uniform.

6. Discussion of Guinier's Model

It was mentlioned in Sectlion IV.1 that the satellites have
a conslderable width, whereas all the older models predict
sharp satellites, Guinier(39) pointed out that such a width
would be expected if each transformed region only contained
one central lamella surrounded by two lamellae of the other
kind. With the same model he also explained the continuous
growth of the wave length (see Fig. (12)).

An alternative explanation of the width and the continuous
growth is offered by the conclusion in Section III.9 that the
nucleatlion process should give rise to a spectrum of wave
lengths., In Section IIT.10, the continuous growth of the
average wave length was explained from this standpoint.

These two explanations are in fact rather similar. The
maln difference is that Guinler suggests a specific kind of a
zone as the carrier of the spectrum of wave lengths. Hls model
has advantages as well as disadvantages. The main advantage
13 that 1t gilves a specific predictlon about the spectrum of

wave lengths, 1.e., the width of the satellites. Guinier
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claimed that the predicted width i1s of the same order of mag-
nitude as the observed width. In the present investigation
these observations were confirmed for the first stages of the
transformation. The width then corresponds to the value 1 of
the quantity v, introduced in Section V.3. However, the satel-
lites soon become sharper, the width corfesponding to the v
values 2 or 3 (see Fig. (14)). In terms of Guinler's model
this could be explained by an interference between different
zones as they grow closer to each other. In view of the the-
oretical treatment of the nucleation process developed in
Chapters II and III, it is simply a consequence of the dis-
appearance of the shortest wave lengths due to the higher de-
gree of stability of the longer wave lengths. It should be
noticed, however, that this treatmént does not give any de-
talled pleture of the different stages of the transformation.
The reason is that it is mainly concerned with different kinds
of equilibrium states.

A disadvantage of Guinler's model is that it assumes the
matrix surrounding a zone will stay homogeneous until it is
reached by the laterally growing zone. Instead, the whole
matrix should start to transform spontaneously if the alloy 1is
within the spinodal. Moreover, if the spontaneous transforma-
tion is prevented, for instance by the influence of strains as
suggested in Section VI.5, the growth process should not pro-
ceed as Guinler suggested. He proposed that the two side strips
of the zone receive material by downhill diffusion from the
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surrounding matrix and that this material can be transferred
to the center lamellae by uphill diffusion. However, if the
alloy is within fthe spinodal, there should be uphlill diffusion
also betweeh the side strips and the surrounding mafrix. This
would give rise to more lamellae outside the original zone.
This growth process is demonstrated schematically in Fig. (31),
where the sharp discontinuities in composition have also been
eliminated in view of the results in Chapter III.

An attempt was made to compute quantitatively the growth
process by means of the dlffusion equatlon derived in Section
IIT.6, Such a computation is theoretically possible, of course,
but it was found too difficult to make it accurate enough to
give any significant results.

For alloys outside the spinodal, on the other hand, there
are no such objections to Guinier's model. 1In fact, it seems
to give a very reasonable pieture of the transformation process
in such alloys. However, no discontinuity wasg observed at the
spinodal, nelther for the width, nor for any other quantity.
This indicates that there is no main difference in the trans—
formatlion process outside and inside the spinodal, and approxi-
mately the same model should be chosen for both cases. It is
poésible\that the suggested change of.Guinier's model inside
the spinodal is not very significant and Guinier's model may
consequently hold falrly well on both sides of the spinodal.
The reason may be that the sidewise growth, which has been dis-
cussed here, is of minor importance compared with the edgewise

growth of the zone.
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VIII. SUMMARY AND CONCLUSIONS

It has been shown how a nucleation theory can be develop-
ed for exchange transformations without using the condept of
size for nuclel. Only compositional variations in one crystal-
line direction are conslidered, however. The new nucleation
theory predicts spontaneous nucleation inside the spinodal
in agreement with Borelius' and Hobstetter's theories. The
activation energy for nucleation outside the spinodal is much
lower according to the new theory than given by Becker's and
Hobstetter's theories.

Measurements on Cu-Ni-Fe alloys inside the miscibility
gap were unable to prove the significance of the spinodal ex-
perimentally. The reason may be that the process of develop-
ment of nuclei into detectable structures, and not the nuclea-
tion process itself, determines the apparent incubation time.
Another explanation may be that the theoretical spinodal has
no significance on the nucleation process in real systems with
imperfections.

It is not possible to declde from the experiments whether
the nucleation process in the Cu-Ni-TFe alloys 1s homogeneous
or heterogeneous.,

The new nucleation theory predicts that exchange trans-
formations should lead to structures with a periodic variation
of the composition. Such structures are found in Cu-Ni-Fe al-

loys and experimental measurements of the wave lengths show a
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fair agreement with the predictions. This lends some supporst
to the new nucleatlion theory. The picture of the transforma-
tion obtained from the new theory is compared with Gulnier's
model and it is found that they are rather similar. A slight
change of Guinier's model is suggested.

Several previous X-ray treatments of periodic structures
are brought together to a more general treatment, which can
be applied to any physical model for the transformation. Equa-
tions are derived for the influence of the number of perilods
in each transformed region on the width of the satellites,
and also fgr the asymmetry of the intensity of the satelliltes.

The validity of the interaction energy concept is dis-
cussed, and 1t is shown that the quasi-chemical theory can
be derived without the usual assumption that the interaction
energy is independent of temperature and composition., The
derivation shows that the interaction energy should not be
calculated from experimental HM values, &8s is usually done,
but from FM.

Coherent grain boundaries and anti-phase domailn boundarles
are examined theoretically. It is found that they show a grad-
ual change in composition and phase, and not an abrupt change
as 18 usually assumed. The grain boundary energy is calcu-
lated for a coherent grain boundary and a value conslderably
lower than the one obtained by Becker is found.

A new diffusion equafion is derived for crystalline struc-

tures, which takes into account the third derivative of the
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concentration as well as the first derivative, l.e., the

gradient 1tself.

IX. SUGGESTIONS FOR FUTURE WORK

1. The significance of the spinodal on the nucleation
process should be tested on more exchange transformations,
e.2. the one ocecuring inside the miseibility gap of the Al-Zn
system.

2. The conditions for the formation of layered struectures
in exchange transformations should be examined. 3Such struc-
tures should be looked for in more systema, e.g. in the Fe-Cr
and the Al-Zn systems.

3. The predictions of the wave length of the periodile
structures should be teated again, 1f another system is dls-
covered that gives layered structures.

4, A new attempt should be made to calculate quantita-
tively the development of a Guinier Zone by means of the
revised diffusion equation. Perhaps an electroniec computer

could be successfully employed.
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APPENDIX I

Derivation of Free Energy for lavered Structure

The free energy of mixing according to the zeroth approxi-
mation is
™ = YNZx(1-x) + NkT [xlnx + (l-x)ln(l—x)]
and the partial free energy 1s obtained by

M
Fﬁ = FM - (1-x) %-— = YNZ(1-x)% + NkTlnx

The change in free energy of an atomic plane containing
m atoms, caused by a change of its composition from x° to xP
by an exchange of atoms with a large reservoir of the composi-

tion x°, is given by

o el el

=P
= - ymZ(xP - x°)2 + mkT [xpln 22 i-(l-xp)ln i-x
x° 1-x°

where the interfacial energy has been neglected.
Becker(7> derived the interfaclal energy between two planes

of different compositions and obtained

- (<P _ <D+1y2
F o= vymg(xP - xP™)
where 9 is the number of nearest neighbors, for a given aton,
which are situated in a nelghboring plane.

The total change in free energy when a homogeneous specimen

of composition x° 1s transformed into a state where succeeding



have the compositions xp, xpﬂ', xp*z, ete., is thus
+1, 2
F= -vym Zp._[z(ch--x‘:’)2 - g(xp—xp ) :} +

+ mkT 2[xp1n -;z-i- + (1-2)1n l—':;%]
x

1-x
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APPENDIX II

Compogition of Alloys

Atomic % Cu

Atomic % Ni

84.9
79.7
74,3
644
56.0
L8.3
39.6
33.8
2,9

10.5
14,2
18.0
2L.8
30.7
36.6
42,2
be.2
53.0

Atomic % Fe
1.6
6.1
7.7
10.8
13.3
15.1

18.2
20.0
22.1
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Wave-Lengths Q in Unit Cells for Different Alloys

Temp. Time
o in min A B G E F G H I J
1111 60 (520)
1100 o Lg
0.17 56
005 61
2 75
1080 o¥ 36
0.15 41
0.5 51
2 61
1050 o% 57 39 31 27 27
0.2 37
0.5 68 50 15} 36 L4
2 87 59 52 50
16 (185) 128 90 70 72
1003 o* Lg 34 28 23 23 23
0.33 38 34
1.5 61 L9 by 37 38 35
5 63 70 59 51 46 45 bg
16 101 101 77 69 59 57 60
30 128 110 81 68 70 74
180 150 102 102 111
895 o* 50 k1 34 28 22 22 22 22
15 58 51 43 38 32 34
60 68 73 61 5l 50 by 41 43 41
o2k (110) 81 76 78 69 61 57 60 54
720 (145) 121 121 93 8k 74 72 74 72
800 o* hg 138 34 32 25 23 21 21 21
2ho - 60 4 39 31 30 :
480 L 34 30
960 63 52 ¥4 Ll L3 35 34 36 37
2880 68 62 59 53 L7 Lo 4h hly Lo
11880 119 78 81 76 3 61 60 60 60
720 o% 20
2880 28
11880 36
662 18720 No satellites

*Extrapolated values.



