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ABSTRACT

The preparation of new oxygen ion conductors through the use of layered

intergrowth structures has been investigated. An oxygen-deficient,

brownmillerite-like material (AMO2.5, A = Sr or Ba, M = Sc, In, or Ga) was

always used as one component to provide the vacancies necessary for oxygen

ion conduction. The other component was either a perovskite material

(AM'0 3, A = Sr or Ba, M' = Ti, Zr, or Hf) or the Aurivillius phase, Bi4Ti 30 12 .

All samples were characterized by powder X-ray diffraction for structural

determination and ac impedance measurements for determination of the

oxygen ion conductivity.

The brownmillerite-perovskite intergrowths, (AMO2. 5)x(AM'03)y, showed

moderate oxygen ion conductivity, with the best samples (Ba 3In 2TiO8 and

Ba3In 2HfO8) having conductivities of 10-3 S cm-1 at 900 C. These materials

generally did not show an ordered structure, but rather the cubic perovskite

structure with disordered oxygen vacancies. Many of these materials exhibit

non-linear behavior in Arrhenius plots of conductivity, and this is most
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likely due to protonic conduction at low temperatures. High temperature

powder X-ray diffraction on Ba3In2TiO8 showed only an increase in the lattice

parameters with temperature with no change in symmetry. The high

temperature conductivities were found to correlate well with free volume in

the lattice, while the activation energies were primarily dependent on the

elements used, regardless of the ratio between brownmillerite and perovskite

units.

The Aurivillius-brownmillerite intergrowths, (Bi 4Ti301 2)x(BaMO 2.5)y,

exhibited high oxygen ion conductivity (1 x 10-1 S cm-' at 900 °C) above an

order-disorder transition. The order-disorder transitions, as observed in DTA

measurements, occurred between 700 and 800 °C. Conductivity jumps of

nearly three orders of magnitude were observed at temperatures

corresponding to the transitions identified by DTA measurements. These

materials have sufficient conductivities to merit further studies and device

testing.

Thesis Supervisor: Dr. Hans-Conrad zur Loye

Title: Paul Cook Career Development Professor of Chemistry
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1. INTRODUCTION

Oxygen ion conductors have been widely studied for applications as

components in fuel cells, oxygen sensors, and oxygen membrane catalysts.l

To achieve the relatively high oxygen fluxes required, 1 most of these systems

must be operated at high temperatures. Solid oxide fuel cells (SOFCs) based

on yttria-stabilized zirconia (YSZ), for instance, must be operated near

1000 OC. 2,3 There are many problems associated with such high temperatures,

including high cost, electrode incompatibility, and ultimately, degradation of

the electrolyte itself. It is, therefore, desirable to develop new materials with

high oxygen ion conductivities (10-2 - 10q1 S cm-') at lower temperatures (600 -

800 oC).4, 5 To design such a material, however, we must first determine how

oxygen ion conductivity is affected by various factors, such as structure,

vacancy concentration, and free volume. Some previous attempts have been

made to predict new materials; 5,6 however, these predictions apply only to a

small class of materials, so it is useful to explore other classes of materials.

The purpose of this thesis is to explore such factors in a new series of

materials with intrinsic vacancies.

Traditionally, the study of materials with intrinsic vacancies has been

limited because few are known. It has also been difficult to modify these

materials to improve upon the base conductivity. This thesis demonstrates a

new method for designing materials with intrinsic vacancies, namely the

incorporation of a material with intrinsic vacancies as a component of an

intergrowth structure. In this case, all oxygen deficient units are based on the

brownmillerite structure and variants (A 2M 205, A = Ca, Sr, Ba; M = Ga, Sc, In).

The other components in the intergrowth structure are either perovskite

based materials (AM'0 3, A = Ca, Sr, Ba; M = Ti, Zr, Hf) or Aurivillius phases
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(layered bismuth oxides, Bi2An 1MnO3n+ 3, specifically, Bi4Ti3 012). The

intergrowths are of the form (AMO2 5)(AM'O 3)y or (AMO2.5)(Bi 4Ti30 12)y. By

using the intergrowth approach we have control over the number of oxygen

vacancies in the structure. Other parameters such as structure and free

volume may also be affected by the intergrowths.

Brownmillerite structure materials were chosen as the source of

vacancies since several have recently been studied for oxygen ion

conductivity, 1,7-1 1 and brownmillerite-perovskite intergrowths have been

successfully prepared previously. 8,12 14 Intergrowths between brownmillerite

and Aurivillius phases were previously unknown, but Aurivillius-

perovskite intergrowths are common,l 5 -17 and the brownmillerite and

perovskite structures are very similar. 18 Additionally, Aurivillius phases

such as Bi2WO6 and Bi4V2011 are known to have very high oxygen ion

conductivity. 19, 2 0 The elements within the components were chosen to

minimize electrical conductivity. All elements other than bismuth are in

their highest oxidation state, and elements with multiple easily accessible

oxidation states were generally avoided.

Experimentally the primary focus of this thesis is the synthesis of a new

series of materials and the measurement of their ionic conductivity by ac

impedance spectroscopy. The materials were structurally characterized by

powder X-ray diffraction and some by powder neutron diffraction.

Simultaneous differential thermal analysis and thermogravimetric analysis

(DTA-TGA) were used to find phase transitions and to determine if there was

any weight loss in the samples during heating. Conductivity measurements

were taken as a function of temperature to obtain activation energies for all

samples. The conductivities of some samples were measured under different
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atmospheres to determine carrier types. The conductivity results are

correlated to vacancy concentrations, compositions, and lattice parameters.
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2. RECENT DEVELOPMENTS IN OXYGEN ION CONDUCTIVITY

This literature review begins with an overview of oxygen ion

conductors to provide a general background. The next section covers the

brownmillerite and perovskite materials, beginning with structural

descriptions and covering conductivity behavior of brownmillerite and

intergrowth compounds. The last section reviews the relevant data on the

Aurivillius phases, especially the widely studied Bi4V 2 011.

2.1 Oxygen Ion Conductors: General

Ionic conductors are a class of solids in which one set of ions is mobile.

This may occur through several pathways including transport through planes

or tunnels, interstitial migration, and vacancy hopping.l In oxygen ion

conductors, vacancy hopping is the most common transport mechanism, so

most studied materials have oxygen vacancies.2 The most common way to

create vacancies is through doping with cations with lower oxidation states,

creating extrinsic vacancies. Calcia- and yttria- stabilized zirconias are

examples of this, but many other materials including perovskites have also

been studied in this manner. Although this method has generally been

successful, it has limitations.3 Other materials, those with intrinsic vacancies,

have more sites than atoms, sometimes having crystallographically distinct

sites for vacancies. Mobility between these sites and filled sites is then critical

to oxygen ion conduction. One limitation in studying intrinsic vacancies is

that few such materials are known. It has also been difficult to make

modifications that improve on the intrinsic conductivity in these materials.

Any successful modifications have tradeoffs. The following examples are
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intended to illustrate these points and to provide a basis for comparison with

the materials presented in this thesis.

2.1.1 Fluorite Structure Oxides

The fluorite structure oxides are the most widely studied oxygen ion

conductors. These include ceria, thoria, and stabilized zirconia. In the

fluorite structure, MO2, each M is surrounded by eight equidistant oxygens

and each oxygen is tetrahedrally coordinated. 4 The oxygens are not close-

packed, allowing for a relatively large free volume in the lattice, which

minimizes the interaction energies involved in moving to a vacant site.

Ceria and thoria display the fluorite structure at all temperatures between

room temperature and their melting points, while zirconia displays the

fluorite structure only on doping, with yttria and calcia being the most

common dopants. 1 Although ceria and thoria have the cubic fluorite

structure, they also must be doped with aliovalent cations to introduce

vacancies. Calcia-doped zirconia, for instance, may be written as

Zr Cax2 x(Vo")x. 5 Without doping, the carrier concentration comes solely

from the defect concentration, and, consequently, the conductivity is not

particularly high. Although calcia generates more vacancies, yttria may be

more widely used due to a wider stability range as a dopant.1 The

conductivity of Zr0 .9Y0 .10 1. 95 (YSZ) is 10-1 S cm 1 at 900 OC.3 One reason for the

high ionic conductivity in the fluorite-type solutions may be the high

solubility of the dopant solid solutions. Yttria may be substituted to almost

x = 0.4.1

The conductivities in these materials follow the expected temperature

dependence shown in equation 2.1.
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oT = o0 exp
- E a (2.1)

From this formula a plot of ln(oT) versus 1/T should be linear, and the slope

is the activation energy (Ea). The ionic conductivity of these solid solutions

reaches a peak with small amounts of dopants (about 10 %) and then begins to

decrease as shown in Figure 2.1. This is generally attributed to factors such as

the formation of a superlattice based on ordering of the vacancies, association

between the vacancies and the dopants, and destabilization of the solid

solutions at high concentrations. 1 3 The ordering or clustering of defects

increases the activation energy:

Ea = AHm + 1 AHt, (2.2)
2

where AHm is the enthalpy required for migration through the lattice and AHt

is the trapping enthalpy which represents the attraction between the dopant

and the vacancy.6 ,7 Thus an increase in dopant concentration increases the

carrier concentration, but also increases the activation energy. Kilner and

Brook 7 have calculated AHm for various structures and found a value of 0.6

eV for the fluorite structure. The experimental activation energy for these

materials is around 1 eV, so the trapping energy is a sizable portion of the

activation process. 1 Over long periods of time at high temperatures, the

conductivity of stabilized zirconias has been observed to decrease. This

phenomenon has been attributed to phase separations or clustering. 6

Although these materials are the most widely studied and are already

used in some applications, they show little promise of improvement.

Significant problems such as instability and the required high temperatures

may ultimately limit their usage.
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2.1.2 Doped Perovskites

Other materials which have been studied through doping are

perovskites. The perovskite structure has the general formula ABO3 and can

accommodate a range of cations to give a variety of conductivity behaviors,

ranging from predominantly electronic (LaNiO 3) to ionic (LaAl03). In general

the behavior of these materials is similar to the zirconias, although the

conductivity is not as high. The materials are usually doped to create

vacancies, resulting in increased activation energies. This becomes especially

important in the case of the perovskites, since, as calculated by Kilner and

Brook,7 the intrinsic activation energy for the perovskite structure should be

0.8 + 0.2 eV, in contrast to 0.6 eV for the fluorite structure. This is due to the

smaller opening through which the oxygen ion must pass in the perovskite

structure. A number of solid solutions display conductivities of 5 x 10-3 S cm -1

at 800 °C, which is sufficient for low conductivity applications (oxygen sensors

and some catalysis) but insufficient for high flux applications (fuel cells and

some oxygen separation operations). 3

Sammells and co-workers 8 ,9 have studied doped perovskites and made

some empirical predictions. Their methods were based primarily on ionic

radius arguments in order to have a simple database from which to make

calculations. They found that systems with high "free volumes", that is more

unoccupied space in the lattice, had higher conductivities. Although this

might be expected, the opposite trend is observed for the fluorite structure

oxides. A high correlation between conductivity and the size of the critical

radius (the radius of the smallest area through which the oxygen must pass)

was also observed. Using these factors with estimated heats of formation,

they were able to predict three previously unstudied materials that are among
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the best perovskitic oxygen ion conductors. The best of these materials,

BaTh0.9Gd0.10 3, displayed phase instability in moderate temperature fuel cell

usage. l °0 Another doped perovskite which is particularly relevant to materials

in this thesis is Al-doped CaTiO 3. Iwahara l l found that although CaTiO 3

displayed electronic conduction at high P02, under fuel cell conditions, it is

almost a pure ionic conductor. The conductivity of this material is too low to

be used for low temperature fuel cells, however.

Perovskite materials have exhibited somewhat low oxygen ion

conduction. Without significant improvements, none of these materials is

likely to supplant YSZ as a commercially viable oxygen electrolyte. However,

this series of materials is much larger and more varied than the fluorite based

oxides and has received much less attention. Consequently, although no

ideal materials have been discovered so far, further studies of these materials

could help us to learn about oxygen ion conduction.

2.1.3 Bismuth Oxide

Another material that has been widely studied for its oxygen ion

conductivity is bismuth oxide. In contrast to the fluorite and perovskite

materials, bismuth oxide has intrinsic vacancies. At low temperatures

bismuth oxide exists in its -phase, which is not highly conductive. At

730 C, bismuth oxide undergoes a transition to the 6-phase, and displays a

corresponding jump in conductivity of about three orders of magnitude.l2

An Arrhenius plot of the conductivity of Bi2 03 is shown in Figure 2.2. The

structure of 6-Bi20 3 is similar to the fluorite structure where one quarter of

the anion sites are vacant: BiOl.5(Vo)0 5. Although these sites are ordered, the

polarizability of Bi3+ is thought to allow mobility in and out of the vacant

site.3
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One problem with bismuth oxide as an oxygen ion conductor is that

the transition to the §-phase occurs within 100 degrees of the melting point.

To avoid this problem, dopants may be used to stabilize the 6-phase to lower

temperatures. Using yttria as the dopant, (Bi20 3)1-x(Y 203) x, the structure can be

stabilized down to room temperature, and for x = 0.25 conductivities as high

as 1.3 x 102 S cm' have been observed at 500 °C.12 The conductivity of YSZ at

this temperature is only 5 x 10 4 S cml. A plot of the conductivities of

tungsten-stabilized Bi2 03 is shown in Figure 2.3 with pure bismuth oxide and

YSZ for comparison. Another problem with bismuth oxide is that it is easily

reduced. At oxygen partial pressures near one atmosphere, the transference

number of bismuth oxide and most of its solid solutions is close to unity, but

as the partial pressure decreases, Bi2 03 may be partially reduced and electronic

conductivity predominates below 10-13 bar.1

Although Bi2 03 has many limitations, its significant low-temperature

conductivity may find some applications in catalysis and other applications

not requiring low partial pressures of oxygen.

2.1.4 Conduction through Point Defects

A small number of materials without apparent vacancies are oxygen

ion conductors. The materials conduct through point defects in the materials.

Such defects are found in all materials. The two most common point defects

are Frenkel and Schottky defects. 5 Frenkel defects consist of pairs of cations

on interstitial sites and vacant cation sites, represented as follows for a simple

MO compound:

MM + Vi VM"+ Mi", (2.3)

where MM represents a metal on a metal site, Vi represents a vacancy on an

interstitial site, VM" represents a vacancy on a metal site with a corresponding
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double positive charge, and Mi" represents a metal on an interstitial site with

a double negative charge. An anti-Frenkel defect involves anions:

Oo + Vi - Vo" + Oi". (2.4)

Schottky defects are pairs of anion and cation vacancies:

MM + Oo < MO + VM" + V. (2.5)

These point defects may contribute to ionic or electronic conductivity

depending on the type and number of defects. In order to maintain

electroneutrality in the solid, the number of charges, and thus the relative

number of defects must balance:

2[Vo"] + 2[Mi*] + [h°] = 2[VM"] + 2[0i"] + [e']. (2.6)

This equilibrium is especially important at high oxygen partial pressures

where the species may be oxidized:

1/2 02 + Vi - Oi" + 2h', (2.7)

or at low partial pressures where reduction takes place:

00 -4 1/2 02 + Vo" + 2e'. (2.8)

The simplest combination of these equations gives the expected total

conductivity as a sum of electron, hole, and ionic contributions:

log(6) = log[A + B(po ) + (p 2 ) ] (2.9)

where A, B, and C represent the ionic, electronic, and hole contributions,

respectively. All three values are generally temperature dependent. Thus at

low oxygen partial pressures, n-type conductivity may predominate while p-

type conductivity may be possible at higher partial pressures of oxygen. If the

electron and hole conductivities or concentrations are small, the ionic

conductivity will predominate, and the conductivity will remain constant

over a range of oxygen partial pressures. Since both the electronic and hole

conductivities are dependent on oxygen concentration, lack of oxygen partial
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pressure dependence is an indicator of oxygen ions being the major charge

carrier. Slopes of 1/4 and -1/4 indicate p- and n-type conductivities,

respectively.

In a similar manner, protonic conduction in oxides can be studied

through the reaction of defects with water:

H 20 + Oo + V0o <- 20Ho. (2.10)

The OHo could also be viewed as Oo + Hi'. Thus if protons or hydroxide

ions are charge carriers, the conductivity would be expected to change with

atmospheric moisture concentrations.

2.2 Brownmillerite and Perovskite Materials

2.2.1 Structures

2.2.1.1 The perovskite structure

The idealized perovskite structure, named for the mineral CaTiO3, is a

simple cubic system in space group Pm3m with composition ABO3 having

one formula unit per unit cell.4 Although other oxidation states are possible,

all materials covered in this thesis have the oxidation states A 2+B 4+0 3. The

structure is shown in Figure 2.4. The B cation is octahedrally coordinated to

six oxygens, and these octahedra are corner-shared. The A cation sits in the

space between eight octahedra and has twelve nearest-neighbor oxygens. For

this simple system, the lattice parameters are about 4 A. There are many

possible distortions to this structure depending on the nature of the A and B

cations. 13
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Figure 2.4 The perovskite structure, ABO 3. Dark gray spheres are A, and light
gray octahedra are B0 6.
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2.2.1.2 The brownmillerite structure

The brownmillerite structure has the composition A 2MM'O5 and is

named for the mineral Ca2FeAlO5. The idealized brownmillerite structure is

orthorhombic in space group Ibm2.14 If the M and M' cations are identical,

the space group is Pcmn. 15 The brownmillerite structure can be viewed as the

perovskite structure with oxygen vacancies along the [101] direction in

alternate layers. This results in an increased unit cell relative to the

perovskite: a = /2ap, b = 4bp, c = 42cp. This structure is shown in Figure 2.5.

For comparison a perovskite structure is shown along the [101] direction in

Figure 2.6. Other perovskite related structures are possible for the

composition A 2M 205, including that of Ca2Mn2 05.16 It is also possible that the

oxygen vacancies in the structure do not order. This simply gives the

perovskite structure with a statistical occupancy of the oxygen sites.

2.2.1.3 Brownmillerite-perovskite intergrowths

All brownmillerite-perovskite intergrowths in this thesis are of the

type (AMO2.5)(AM'O 3)y. Two basic types of intergrowths exist -- ordered and

disordered. One possibility is to have disordered or random occupancy of M

and M' on the B cation site. In this case the unit cell will consist of only one

octahedral unit unless distortions decrease the symmetry. Intergrowths of

this type are isostructural to a simple perovskite (Figure 2.4). Ordered

intergrowths may be of block or layer type. The previously studied

brownmillerite-perovskite intergrowths were layer-type. The CaTiO3-

Ca2Fe205 system has been studied and two ordered intergrowths were found. 17

Ca 3Fe 2TiO 8 has the structure shown in Figure 2.6, where there are three

perovskite layers in a unit cell. Single crystals of this compound have not
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Figure 2.5 The brownmillerite structure, Ca2FeA10 5. White spheres are Ca,
dark gray represents (Al,Fe)0 4 tetrahedra, and light gray (Fe,Al)0 6 octahedra.
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Figure 2.6 The perovskite structure, ABO3 viewed along the [101] direction.
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Figure 2.7 The structure of Ca3Fe2TiO 8. White spheres are Ca. Light Gray
tetrahedra are (Fe,Ti)04, and gray octahedra are (Ti,Fe)0 4.
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been prepared, so several techniques have been used to establish the structure

including X-ray, electron, and neutron diffraction,17 and Mdssbauer

spectroscopy.18 The structure of Ca 4Fe2Ti2011 also has a single layer of

tetrahedra, but has three perovskite layers. No other ordered intergrowths

have been observed in the CaTiO 3-Ca2Fe2 05 system.

The compounds Ba3In2ZrO8 and Ba3In 2HfO8 were originally reported to

be isostructural with Ca3Fe2TiO8, 6 but further studies suggest that this system

is a disordered cubic solid-solution.19

2.2.2 Conductivities

2.2.2.1 Brownmillerite materials

SrFeO 3 x can exist for a wide range of x from 0 to 0.5. Of interest here is

the x = 0.5 endmember, which has the brownmillerite structure at room

temperature. In contrast to other brownmillerite structure materials,

Ca 2FeAlO5 and Ca 2Fe2O 5, Sr2Fe20 5 undergoes a structural order-disorder

transition.2 0,2 1 Through the use of high temperature diffraction this

compound has been observed to transform from an orthorhombic structure

with ordered oxygen vacancies at room temperature, to a cubic structure

(disordered perovskite) above 700 °C, and back to the original orthorhombic

structure when cooled. Ca2FeA105 and Ca2Fe 20 5 do not show a similar

transition and do not show oxygen ion conduction, which Sr 2Fe 20 5 does.22

In 1990, Goodenough et al.6 reported on a new series of oxygen ion

conductors. These materials consisted of Ba2In20 5 and a series of intergrowths

of Ba2In20 5 and BaMO 3 perovskite materials. Single crystal studies on

Sr 2In 20 5
23 and Ba2In 20 5

24 revealed that while Sr2In 205 has the brownmillerite

structure, Ba 2In 20 5 has the cubic perovskite structure with random partial
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occupancies of the oxygen site. Goodenough et al.6 indexed the X-ray powder

diffraction pattern of Ba2In 20 5 to an orthorhombic unit cell consistent with

the brownmillerite structure. This structural distortion has been observed in

polycrystalline samples by other researchers,2 5,2 6 although a full structural

refinement has not been performed. Goodenough et al. observed

conductivity in Ba2In 20 5 of about 10-' S cm -1 above 900 °C. Around 900 C a

jump in conductivity of more than an order of magnitude was observed.

This was attributed to a disordering of the oxygen vacancies at high

temperatures. Measurements of conductivity versus oxygen partial pressure

revealed p-type conductivity at high partial pressures of oxygen, and ionic

conductivity becoming predominant as oxygen partial pressures are reduced

to 10-3 atmospheres. The oxygen partial pressure dependence was only

studied down to 10-6 atmospheres, so the stability of this material at very low

partial pressures is unknown. In an attempt to alleviate the discontinuity,

the sample was doped with Ce4 ' on the indium site. At a doping level of

12.5% no discontinuity in the conductivity was observed; however, a change

in the activation energy was still present.

Other researchers have investigated Ba2In 20 5 to analyze the proposed

order-disorder transition. Prasanna and Navrotsky 25 performed heat capacity

measurements. They observed a first order transition (the heat capacity was

the same before and after the transition), but the observed entropy of the

transition itself was only four percent of that expected for a complete

disordering from the brownmillerite to the perovskite structure. They

suggest that full randomization of the oxygens does not occur; however, it

also seems possible that full ordering does not occur. Interestingly, although

the only single crystal structure of Ba2In 20 5
24 showed a defect perovskite,
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quenching of polycrystalline Ba2In 20 5 has not yielded the defect perovskite at

room temperature.

Adler et al.26 have also studied this material. Using high temperature

X-ray diffraction, they have observed that the sample maintains an

orthorhombic structure until 1200 °C, at which point a cubic X-ray pattern is

observed. Since this transition is significantly higher than that observed

using differential thermal analysis or by conductivity measurements, a

detailed high temperature 170 NMR study was performed. From this they

observed that the multiple oxygen peaks from the brownmillerite structure

began to coalesce by 920 °C, where a single broad peak was observed. They

explained their results as a two step process toward disordering. In the first

step, the structure could undergo reorganization within the oxygen deficient

layer. At higher temperatures the vacancies could be redistributed across

other layers as well, thus the shift to a cubic crystal structure at 1200 °C.

Other brownmillerite structure compounds have also been prepared

and studied for oxygen ion conduction. Ca 2Cr 20 5 was found to be

isostructural with Ca 2Fe 20 5.2 7 The conductivity of this material is not

particularly high (10-3 S cm' at 900 °C), but oxygen partial pressure

dependencies suggest that the conductivity is primarily ionic. Below 10-2

atmospheres of oxygen, the conductivity increased, indicative of n-type

electronic conduction. This material did not show any evidence of an order-

disorder type transition below 1000 °C, and it is unstable above this

temperature.

Schwartz et al.28 investigated Ba2GdInl-_GaxO5 (x = 0, 0.2, 0.4). The X-ray

diffraction of Ba 2GdInO5 was consistent with the brownmillerite structure

(Ibm2), and the other samples appeared to be similar. Both the x = 0.2 and 0.4

samples showed good conductivity (about 5 x 10-3 S cm '1 at 600 °C), and the
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activation energies were very low, 0.35 and 0.45 eV, respectively. They

suggest that the increased conductivity in these materials relative to Ba 2In20 5

is due to a higher free volume. They tested the materials in a hydrogen-

oxygen fuel cell at 600 °C and found no evidence of decomposition or

degradation after several days.

Takeda et al.29 studied a somewhat different series of materials based

on Sr2ScAlO 5. These materials show a disordered structure. When these

materials were prepared above 1500 °C, they showed no evidence of vacancy

ordering, giving a cubic X-ray diffraction pattern. They examined the

materials by TEM and did not observe any microdomains or evidence of short

range ordering. Sr 2ScAlO 5 shows only low levels of oxygen ion conduction

(10 4 S cm-' at 1000 °C), but increases in conductivity were observed for any

substitutions that they tried. Increasing the relative scandium to aluminum

ratio increased the lattice parameters and also the conductivity. In general

they found that the materials with the highest conductivities had the largest

lattice parameters. The best material they found, Srl.8Bao.2Scl.2A10.6Mgo.20 4. 9,

had a conductivity of 10-2 S cm-' at 1000 °C and the largest lattice parameters of

any of the materials studied. All of the materials showed transference

numbers greater than 0.8, but low densities in the materials most likely

contributed to diffusion. Many of these compounds showed evidence of a

different activation energy at temperatures below 400 °C, possibly indicating

some protonic conduction.

Brownmillerite materials which undergo order-disorder transitions

show significant conductivity above the order-disorder transition. These

materials are unlikely to be useful in pure form; however, stabilization of the

disordered structure to lower temperatures might create useful or interesting

materials.
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2.2.2.2 Brownmillerite-perovskite intergrowths

A series of brownmillerite-perovskite intergrowths, Ba3In2MO 8, M =

Ce, Zr, or Hf, were also investigated6 and showed interesting behavior, which

led to further investigations by many researchers. This initial study reported

anomalously high conductivities for all three materials at low temperatures

(10-3 S cm -' at 400 °C), and a saturation in conductivity above 500 °C. Low

temperature activation energies were about 0.7 eV. The transference

numbers, to, were found to be about 0.95. They used both quenching and slow

cooling of their samples to investigate the possibility of disorder frozen into

the samples, but the resultant conductivity differences were insignificant.

Conductivity isotherms for Ba3In 2ZrO8 versus oxygen partial pressure showed

predominantly oxygen ion conduction between 10-5 and 10-21 atmospheres of

oxygen.30

In later studies, Goodenough and co-workers 19 ,31 studied these

materials as a solid solution, BaZrlxInxO 3_0.5x, where x = 0.67 corresponds to

the previously studied Ba3In 2ZrO 8. They observed an orthorhombic

brownmillerite structure for x 2 0.8 and a cubic structure with disordered

oxygen vacancies for x < 0.8. An increased unit cell was observed for

0.4 < x < 0.8 versus lower values of x. This increase was non-linear. They

also reported increased conductivity and decreased activation energies for

samples in this composition region. These studies also presented the

likelihood of protonic rather than oxygen ion conduction, at least at low

temperatures. Samples equilibrated under wet air showed higher

conductivity than those heated under dried air. Samples heated under wet

air or wet nitrogen showed a region of high conductivity at low temperatures

with a plateau in conductivity between 400 and 500 °C. This is presumably
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due to a reduced number of carriers as the materials lose water.

Thermogravimetric analysis showed a weight uptake on cooling of about two

percent under wet nitrogen. This would roughly correspond to water filling

all of the vacant oxygen sites. Reversible loss of this weight is observed on

heating. Samples heated under nitrogen which had been dried over P 20 5 also

showed some weight uptake. This was attributed to residual oxygen in the

nitrogen.

Steele and co-workers 3 ,32 also investigated the BaZrlInxO3.. 5x solid

solution for x values of 0.6 to 0.8. They found the conductivity was highest

for x = 0.33, which also had the largest lattice parameters, but the conductivity

was about two orders of magnitude lower than that originally reported by

Goodenough. 6 They found that the activation energy increased with

increasing Zr content, which gave a corresponding increase in cell volume.

At the highest indium concentrations the conductivity decreased, possibly

indicating some short-range ordering in the system. They also reported that

Ca 3Fe 2TiO 8 showed conductivities about two orders of magnitude lower than

Ba3In 2ZrO8, suggesting that ordering in the structure would decrease the

conductivity.

This series of brownmillerite-perovskite intergrowths shows that ionic

conduction can be influenced by intergrowth structures. Oxygen ion

conductivity is observed, and this represents a possible new method for

preparation and study of various ionic conductors. This method allows

control over the number of oxygen vacancies as well as the ability to alter

promising materials to improve on conductivity. The low temperature

protonic conduction in these materials may also be useful.
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2.3 Aurivillius Phases

Oxygen ion conductivity has also been observed in the Aurivillius

phases, (Bi202)2 + (An-lMnO3 n+1 )2-. These consist of puckered bismuth oxide

sheets and perovskitic regions. The structures of Bi2WO6, n = 1, and

BaBi4Ti 401 5, n = 4, are shown in Figures 2.7 and 2.8, respectively. These

structures can usually be approximated by a tetragonal unit cell, a - 3.8 A and

c = 16, 25, 33, 41, 49 A for one through five layer systems.33 However, based on

their properties, such as ferroelectricity, and detailed crystal structure analyses,

lower symmetries are generally present.3 4 The large c parameter is due to the

stacking sequence, in which the unit cell contains two perovskite regions and

two bismuth oxide layers. The unit cell of BaBi4Ti4O1 5 is shown in Figure

2.10.

Although they have no intrinsic vacancies, Bi2WO6 and Bi2MoO6 show

high oxygen conduction.3 5, 36 Conductivity as high as 10-1 S cm-' has been

observed in single crystals of Bi2WO6 measured parallel to the bismuth oxide

plane, while conductivity in a direction perpendicular to the planes is about

100 times lower.36 The transference number is almost 1 at high PO2, but

decreases rapidly to about 0.3 under an oxygen partial pressure of 10-3

atmospheres.3 7 Observed conductivity values for polycrystalline samples are

somewhat lower (10-2 S cm-' at 900 °C), but still show transference numbers

close to unity for an air oxygen concentration cell.35 Bi2MoO6 has been used as

a catalyst for selective oxidation of olefins.3 8

Bi4V2O11 (Bi2VO5.5) is the only Aurivillius phases with intrinsic oxygen

vacancies. It was discovered simultaneously by Bush and Debreuille-

Gresse. 3 9,40 Its y-phase shows excellent oxygen ion conductivity above

570 C,41 but two other phases ( and P) exist at lower temperatures:
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Figure 2.8 The structure of Bi2WO6. White spheres are oxygen. Dark gray
spheres are bismuth, and octahedra are W0 6.
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Figure 2.9 The structure of BaBi4Ti4Ol 5. White spheres are oxygen. Light gray
spheres are Ba/Bi, and octahedra are TiO6.
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Figure 2.10 The structure of BaBi4Ti4O15, showing the unit cell. White
spheres are oxygen; light gray spheres are barium/bismuth; and dark gray
spheres are bismuth/barium. Medium gray octahedra are TiO6 and spheres of
the same color are Ti.
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450 °C 570 °Ca - Bi4V 2O 1 1 - Bi4 V2 Ol 1 570 0 y - Bi4V - Bi4V 2 0 11.(2.10)

Using DTA two phase transitions could be observed on heating and cooling,

although a significant hysteresis was observed for the a to transition on

heating versus the to a transition on cooling. High temperature X-ray

diffraction revealed that changes in crystallographic symmetry accompanied

the phase transitions. All three phases showed significant superstructures as

compared to the simplest analog, Bi2MoO6, so the structures have not yet been

fully elucidated. It is clear, however, that the symmetry is increased on

heating, indicating a decrease in ordering within the material. In the high

temperature phase the oxygen vacancies are presumably disordered, while

different orderings exist for each of the two low temperature phases.

Although single crystals are readily obtained, they are largely twinned, so

structural descriptions are minimal. Three conductivity regimes were

observed, corresponding to the three phases. Although all three phases show

significant oxygen ion conductivity, the high temperature phase is

particularly interesting. It exhibits an extremely low activation energy

(0.2 eV), a to close to unity, and a conductivity of about 10-1 S cm-1 at 600 OC.42

Abraham et al.43 further studied this material, attempting to stabilize

the y-phases to lower temperatures. By doping the vanadium site with other

metals, a new series of materials, the BIMEVOX family, is created. The solid

solution, Bi2Vl-xCuxO5.5 -3x/ 2 was the first to be reported and it is among the

best. It has been characterized by single crystal measurements, which show

that for x < 0.07 the solid solution takes on the structure of the a-phase, while

for 0.07 < x < 0.12 the solution is isostructural with the y-phase. Conductivity

measurements on single crystals of both structures indicated that the

structure was of primary importance to the conductivity. Crystals of the
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a-phase displayed a jump in conductivity, while crystals of the y-phase

displayed only a change in activation energy with no discontinuity in

conductivity. The materials stabilized into the y-phase had significantly

higher conductivities than those of the a-phase. The conductivity was

observed to be highest in a direction parallel to the bismuth oxygen layers and

more than an order of magnitude less perpendicular to the layers. The

conductivity of sintered powders is closer to that of the parallel direction.42

At high temperatures these materials have conductivities similar to YSZ and

Bi20 3 , but at lower temperatures they exhibit a significant improvement. The

conductivity of the BIMEVOX materials is almost two orders of magnitude

higher than Bi2 03 or YSZ below 400 OC.4 2 Several other dopants have been

used.44, 45 These also confirm that stabilization of the y-phase is more

important than the number of vacancies. Titanium and niobium doped

samples seem to conduct as well as the copper doped samples. Several other

metals (Li, A13', Ge4' ) were not as successful in stabilizing the y-phase and,

consequently, showed little improvement in conductivity.

Electrochemical measurements on these samples show a transference

number close to one, but some electronic conduction is present. 46

Measurements of conductivity as a function of oxygen partial pressure

revealed small changes in the conductivity (about 2% at 200 °C and 4% at

650 °C), indicating a small electronic contribution to the conductivity. A

concentration cell was used to evaluate the transference number, and the

materials were found to be very non-ideal. This was attributed to electrode

polarization due to slight electrical conductivity, but even this explanation

could not account for the observed deviations, especially at low temperatures.

Recently a detailed X-ray and neutron diffraction study has been

performed on powdered samples of the a-phase.47 They determined that this
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phase is likely monoclinic with ordered oxygen vacancies, giving tetrahedral

and octahedral vanadiums. They proposed a series of structural changes from

ordered oxygen vacancies in the a-phase, to non-equivalent vanadium-

oxygen octahedra for the P-phase, and a more symmetrical structure for the

y-phase. This work nonetheless ignores much of the superstructure which

has been observed in these materials.

The BIMEVOX family shows high oxygen ion conduction with

significant limitations. These materials could be useful for catalysis or oxygen

pumps, if electronic conduction is minimized. These materials have the

highest low temperature conductivity of any known materials and, therefore,

may be useful for low-temperature applications. Stability at low partial

pressures of oxygen and higher temperatures is unlikely.

2.4 Conclusions

Although many materials have been studied for oxygen ion

conduction, no single material is appropriate for all uses. YSZ must be used

at high temperatures, but does not possess long-term stability at those

temperatures. Bismuth oxide is easily reduced and has a low melting point.

The BIMEVOX family, although promising, has similar limitations. Further

studies of oxygen ion conductors are warranted to find improved materials.

The use of intergrowths appears to be a promising approach to find new

materials.
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3. EXPERIMENTAL METHODS

This section presents the details of the methods used in this thesis.

Sample preparation is presented first, followed by characterization techniques.

Powder X-ray diffraction (XRD) was used extensively to determine if samples

were single-phased as well as to determine the structures of the final

products. Neutron diffraction was also used for structure determination of

some samples. Complex impedance was used to measure the conductivity of

the samples. Simultaneous differential thermal analysis and

thermogravimetric analysis were used to analyze phase transitions.

3.1 Sample Preparation

All characterized samples were prepared by solid state reactions.

Unless a larger sample was needed for analysis, samples were prepared in five

gram quantities. Initially finely divided powders of the oxides or carbonates

were weighed out in stoichiometric quantities and ground under acetone

with an agate mortar and pestle. The acetone helps to keep the fine powders

in the bottom mortar. The starting materials, purities, and suppliers are listed

in Table 3.1. For the first heating, samples were ground for one-half to one

hour, while the acetone was allowed to evaporate. The acetone was further

allowed to evaporate for about an hour. After this, the samples were pressed

into 13 mm diameter pellets. Pellets were pressed at 5000 pounds using a

uniaxial press. A stainless steel die was used for the early experiments (most

of the brownmillerite-perovskite intergrowths), while a carbide press was

used for the later experiments. From this point the preparation of the two

types of intergrowths differs somewhat.
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Table 3.1 Suppliers and purities of starting materials

Material Supplier Purity

BaCO3 Johnson Matthey Aesar 99.9

SrCO3 Johnson Matthey 99.999

CaCO3 Johnson Matthey 99.97

TiO2, anatase Aldrich 99.9+

ZrO2 Spex 99.9

HfO2 Cerac 99.95

c-A120 3 Johnson Matthey 99.99

Ga20 3 Johnson Matthey 99.999

In203 Cerac 99.99

Sc203 Aran Isles 99.99

Bi2 0 3 Johnson Matthey Aesar 99.99
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3.1.1 Preparation of Brownmillerite-Perovskite Intergrowths

These samples were initially heated in an alumina boat to 1250 °C for

24 to 48 hours. The heating rates were 20 degrees per minute, while cooling

rates were 10 degrees per minute. The samples at this point were typically

highly cracked, with the pellet divided into several layers. Powder XRD of

samples at this point showed little of the final product and often little

reaction other than the loss of CO2 from the carbonate materials. Samples

were reground without using acetone and repelletized. Heating cycles at this

point depended on the sample. Ba3In2TiO8 could be prepared at temperatures

as low 1250 °C, while most other materials required temperatures of at least

1350 °C for complete reaction. Samples were reheated at progressively higher

temperatures until the reaction was complete as monitored by XRD. Typical

total reaction times were one to two weeks. A final heating cycle 50 to 100

degrees higher than previous temperatures was used in attempt to make

dense samples. Densities, however, were typically only about 65 percent of

the theoretical density based on XRD and predicted structures. The pellets

were stored in a vacuum dessicator when not being measured, as they were

found to crack after extended exposure to moisture.

3.1.2 Preparation of Aurivillius-Brownmillerite Intergrowths

The Aurivillius-brownmillerite intergrowths and the Aurivillius

phases were placed on platinum foil for all heating cycles to avoid reaction

with the alumina boat. All samples were initially heated slowly (10 to 30 °C

per hour) to 800 °C or slightly higher. Bismuth oxide is low melting, and

slow heating rates allowed reaction of Bi203 with other components before

the melting point was reached. It was important to stay below the melting
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point of the mixture at all times since the bismuth oxide mixtures quickly

leeched through the alumina crucibles if they were not contained by the

platinum foil. For the Aurivillius-brownmillerite intergrowths presented in

this thesis, optimal heating cycles were found to consist of heating over three

days to 800 °C, followed by two weeks at 850 to 900 °C with intermittent

grinding. To obtain dense samples, these materials were heated to 1000 or

1050 °C for two hours. These samples did not appear to have any significant

sensitivity to air or moisture.

3.2 X-ray Diffraction Measurements

Powder X-ray diffraction measurements were performed on a Rigaku

RU-300 rotating anode diffractometer using copper radiation. All

measurements were run at 50 kV and 200 mA. The same size slits were used

for all runs: divergence slit, 0.5 degrees; scatter slit 0.5 degrees; and receiving

slit, 0.15 mm. Routine measurements to check sample composition and

purity were run in continuous scan mode at a rate of 20 degrees per minute

and a step size of 0.04 degrees. Scans were routinely collected from 3 to 88 °

20. If the pellet remained intact through the heating cycle, X-ray

measurements were performed on pellets using the aluminum sample

holder, shown in Figure 3.1. Otherwise the pellets were ground, and small

amounts of the powder were mixed with a Collodion-amyl acetate binder and

applied to a glass slide. To determine lattice parameters, the slide preparation

technique was used, and an internal standard of silicon (NBS SRM #640B) or

mica (NBS SRM #675) was mixed with the sample at a ratio of approximately

1:1, as required to give comparable intensity to the sample. Slower scans were

used to accurately determine peak positions, either continuous scans at 5

degrees per minute and 0.01 degree steps or step scans at 0.01 degree step size
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Figure 3.1 Sample holder for X-ray diffraction measurements on pellets. The
sample holder consists of a machined aluminum block, and the sample is
held in place by set screws.
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and 0.5 second collection time. TREOR1 and the NRCVAX program PPLP2

were used to determine lattice parameters from the XRD patterns. Collection

for structural analysis using Rietveld refinement was much slower. Data

were collected from 5 to 105 or 140 degrees in step scan mode using 0.01 to 0.02

degree step sizes and 5 to 10 second counting times. Rietveld refinements

were performed using GSAS3 software.

High temperature XRD was performed on a Rigaku RU-200 rotating

anode diffractometer equipped with a Rigaku hot stage. The hot stage was

controlled by an Omega temperature controller. Two type R platinum-

rhodium thermocouples were used. One controlled the furnace temperature

and the other was attached to the sample holder and measured the sample

temperature. Samples for the hot stage had to be between 1 and 1.5 mm thick.

Thin pellets 13 mm in diameter were prepared and sintered. Due to the

vertical sample mounting of this stage, it was necessary for the pellet to be

sturdy enough to maintain its shape throughout the experiment. A

triangular file was used to notch the pellet, so that thin platinum wires could

be used to tie it to the sample holder. The sample holder is not designed to

align the sample automatically in any way. Before measurement on the high

temperature stage, samples were measured on the RU-300 to determine

accurate peak positions and lattice parameters. This measurement was used

to align the sample on the hot stage. Using the alignment mechanism on the

high temperature stage, it was possible to bring the 100 percent peak into

alignment, but alignment of other peaks was not assured. Therefore, the

room temperature measurement of the sample thus aligned on the hot stage

was calibrated against the previously obtained peak positions, and the same

calibrations were used for all samples. The RU-200 produces less power, so

samples were run at 40 kV and 150 mA. In addition the hot stage uses nickel
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foil as a shield for stray X-rays, so the overall intensity was significantly

decreased versus conventional room temperature measurements. All high

temperature diffraction measurements were run as step scans to improve the

limited signal intensity. A relatively small scan range was used, 29 to 64 20.

A step size of 0.02 degrees was used with a count time of 1.0 seconds. The

sample was allowed to equilibrate for about half an hour at each temperature.

3.3 Differential Thermal Analysis

Differential thermal analysis was used to look for phase transitions in

the materials. Measurements were performed in air on a TA Instruments

SDT 2960 simultaneous TGA/DTA. Samples were heated at 25 °C per minute

to 1000 °C in platinum crucibles.

3.4 Conductivity Measurements

3.4.1 Background

Ionic conductivity cannot be measured using simple dc conductivity.

Many other approaches are used, but the most common is complex

impedance. This technique measures the frequency dependent electrical

impedance. If electrical processes in the material have different frequency

dependencies, it can be used to distinguish between them. Phenomena such

as bulk, grain boundary, and electrode impedances are frequently separated by

this technique. A polycrystalline material is typically represented by a series

of three parallel RC elements as show in Figure 3.2. The Cole-Cole plot of the

complex impedance spectrum of a single RC element is a semicircle, and the

spectrum of the three elements in series is expected to give three semicircles

as shown in Figure 3.3. The Cole-Cole plot is a plot of the imaginary versus
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Figure 3.2 Electrical model for complex impedance of polycrystalline samples
showing a series of capacitor and resistor parallel circuits.
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Figure 3.3 Idealized complex impedance plot for a polycrystalline sample
showing three arcs: bulk, grain boundary, and electrode.
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the real impedance of the material. The resistance of each phenomena is

taken as the distance across the circle along the real axis. This is also

illustrated in Figure 3.3. For ionic conductors with blocking electrodes

(electrodes which do not supply or produce the ions involved in conduction,

in this case 0 2-) it is expected that the electrode impedances will be very large,

and this was observed at low temperatures. At higher temperatures the

platinum electrodes can catalyze the formation of 02-, so the electrode

resistance decreases.

3.4.2 Measurement of Complex Impedance

Disk shaped samples were used in all measurements. The faces of the

disk were sanded with 600 grade emery paper. The thickness and diameter of

the samples were then measured to 0.02 mm using calipers. The samples

were also weighed to determine the densities. The faces of some samples

were coated with platinum ink. The use of platinum ink necessitated

another brief heating cycle to remove the binder from the Pt. Silver paint

that required no heat treatment was also applied to some samples. No

difference was observed between samples measured with silver paint, with

platinum ink, and no coating. The pellet was mounted in the sample holder

shown in Figure 3.4. This sample holder was modified from that used by

Moon.4 It can be sealed to allow atmospheric control and gas flow through

the system. It consists of two half-inch double-bore mullite tubes which press

on the sides of the sample. If gas flow through the sample holder was desired,

a hole was drilled through the side of each tube into one of the bores. A

platinum wire runs down one bore of each tube, and a circular platinum

sheet approximately the same size as the pellet is attached to it by running the

wire through holes in the foil. A type K, chromel-alumel, thermocouple
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with an inconel sheath is inserted into one of the tubes. These tubes are

inserted into a 0.75 inch outer mullite tube which is in turn inserted into a

nickel or inconel tube. A series of Ultratorr® fittings are used to seal the

sample holder as well as to provide an attachment for springs. The sample is

spring loaded to insure good contact with thermal expansion. The springs

run from an Ultratorr® fitting at the end of each tube to the nickel tube. Due

to the spring loading, the sample was always found to adhere to the platinum

electrodes by the end of the run. This is most likely why no effect was

observed in applying platinum or silver directly to the samples. The tube is

grounded to provide electrical shielding for the sample. Rubber cord can be

used to seal the Ultratorr® fittings and allow feed-through of wires and

thermocouples. The external wires are fit with BNC connectors to allow easy

changing among samples.

Conductivity measurements on the sample were performed using a

Solartron 1260 Impedance/Gain-Phase Analyzer with Z-Plot software. 5 A

frequency range of 5 MHz to 1 Hz was scanned, taking 10 measurements per

decade. Measurements were taken as a function of temperature at a rate of

two to four measurements per day. It was found experimentally that sample

equilibration at a given temperature was not reached in less than four hours.

Samples were typically measured from about 400 to 950 °C in increments of

50 °C. Samples were also measured on cooling in similar although staggered

increments.

The resistance of the sample can be determined at each temperature

through Cole-Cole plots of the impedance. The intercept (the resistance) is

found by fitting the circle and calculating the intercepts with the x-axis. The

conductivity can then be calculated from the resistance as follows:



72

( = ( (3.1)

where L and A are the length and area and R is the resistance. An Arrhenius

of ln(cT) versus 1/T to determine the activation energy, based on the

equation,

(= exp a (3.2)

Although ln(aT) must be used to fit the data, log(c) is often used for clarity

and adds little curvature to the plot.

3.4.3 Measurement of Oxygen Partial Pressure Dependencies

The oxygen partial pressure dependence of some samples was

measured. The gas flow system shown in Figure 3.5 was set up to accomplish

this. Premixed tanks of oxygen-argon mixtures and CO/CO2 mixtures in

argon were purchased from Middlesex or Matheson. The actual mixtures are

listed in Table 3.2. The CO/CO2 mixtures were used to obtain low oxygen

partial pressures. The partial pressure of such mixtures can be predicted from

Equation 3.3,6

29508 PCO2
log P 2 = _ + 9.071 + 21og. (3.3)

T Pco

These were set up so that adjacent cylinders could be mixed to increase the

effective number of gases. An MKS #247 4-channel readout with two 1200

series mass flow controllers was used to control flow rates in the gases. The

two controllers had maximum flow rates of 50 and 200 ccm. The gases were
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passed through a stainless steel tube filled with stainless steel shot to provide

mixing. The gases were measured for oxygen content using the zirconia

oxygen sensors illustrated in Figure 3.6. The oxygen sensors were constructed

from zirconia tubes with a single open end. The tubes had an external

diameter of 0.75 inches and were about 12 inches long. The inside and

outside of the tube end was coated with platinum ink to create electrodes.

These were sealed using Ultratorr® fittings in a manner similar to that of the

sample holders. In this case, however, extra fittings were required to allow

gas flow in and out of the same end of the sample holder. A one-quarter inch

diameter alumina tube was used as an oxygen conduit to the inner end of the

tube, as well as an electrical insulator for a platinum wire which ran to the

end of the tube and was connected to a piece of platinum foil in contact with

the tube end. The external electrode ran down a secondary alumina tube of

small diameter. These oxygen sensors were placed directly before and after

the sample in the gas flow path. The oxygen content was determined by

measuring the voltage through the zirconia sensor and using the Nernst

equation:

RT P 0EMF = -- In (3.4)
4F Po 2 (ref)

The samples were measured under several different gas mixtures at a single

temperature. Only two measurements were taken per day so that each gas

could be allowed to equilibrate for several hours. Measurements were

performed from high to low po2 to minimize any effects from irreversible

sample or electrode degradation.
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Table 3.2 Gases used in oxygen partial pressure measurements

Tank Gas Grade

1 Oxygen 4

2 100 ppm 02 in Argon certified

3 1 % 02 in Argon certified

4 Argon 5

5 CO2 4

6 1000 ppm CO, 1% CO2 in Argon certified

7 100 ppm CO, 10 % CO2 in Argon certified

8 1% CO, 1000 ppm CO2 in Argon certified
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Figure 3.5 Diagram of the gas flow system for measuring oxygen partial
pressure dependencies
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Figure 3.6 Diagram of the oxygen sensor used in the gas flow system.
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3.5 Neutron Diffraction Measurements

Neutron diffraction measurements on polycrystalline samples were

run at Brookhaven National Laboratory on the H4S diffractometer with the

help of Uli Wildgruber. Neutron diffraction was used to elucidate the oxygen

ordering in these materials since X-ray diffraction is not particularly sensitive

to oxygen relative to the large metals in these samples. Samples were

prepared as pellets of approximately ten grams. Measurements were collected

from 5 to 120 ° 20 in 0.1 step sizes. Data were collected at each point for a

fixed number of counts on a fraction of the beam. This is due to fluctuation

in the neutron flux. The wavelength of the neutrons was calibrated versus a

cerium oxide sample to 1.355 nm. These data were collected by computer and

also analyzed using GSAS. The structures were analyzed using both XRD and

neutron data.
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Intergrowths
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4. BROWNMILLERITE-PEROVSKITE INTERGROWTHS

Based on the initial results by Goodenough and co-workers described in

Chapter 2,1,2 the brownmillerite-perovskite series seemed worthy of further

investigation. At this point, only one intergrowth combination,

(BaInO2.5)(BaMO 3), had been studied. Several permutations of these materials

could be used to study trends in oxygen ion conduction. For example, the

number of vacancies in these materials can be controlled by changing the

ratio of brownmillerite to perovskite units, while changing the metal on a

specific site can change the lattice parameters and have an effect on metal and

oxygen vacancy ordering. Substitutions were made for all three metals in the

intergrowth system to give the new series (AMO2.5)x(AM'O 3)y, (A = Ca, Sr, or

Ba; M = Al, Ga, Sc, or In; M' = Ti, Zr, or Hf).3 Relative ratios, x to y, of 2:2, 2:1,

3:1, and 4:1 were prepared for various combinations of the cations. In all cases

the A cation was the same in both components of the intergrowth.

4.1 Synthesis

All materials that were successfully prepared had to be heated above

1200 C. Below this temperature little reaction occurred, as observed by

powder XRD. In choosing appropriate temperatures for sample preparation

several factors were considered. Higher temperatures generally yielded a

material which appeared to be a solid solution by X-ray diffraction, while at

slightly lower temperatures, some ordering could be observed. The

temperature range in which an ordered material forms seems to be relatively

narrow (about 50 C), and the materials generally decompose if heated at

slightly lower temperatures (1200 to 1250 C for most samples) for extended

periods of time. Once formed, the materials show no evidence of
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decomposition when heated at temperatures below 1000 °C. However, these

materials were generally sensitive to atmospheric conditions, most likely

moisture, and pellets were found to crack or crumble over a period of a few

days to a few weeks if exposed to air. Although materials of high theoretical

density (the measured density of a pellet versus the crystallographic density)

are generally desired for conductivity measurements, few of these materials

could be prepared with densities significantly greater than 65 percent of the

theoretical density.

Although many of these compounds were successfully prepared, a

number of these materials proved difficult to make. All gallium-containing

samples were found to be low-melting (below 1300 °C), and no single-phased

materials were found in these systems. The synthesis of all aluminum

samples was equally unsuccessful. Since Ca2A120 5 has not previously been

reported, it seems this lattice site is too large for aluminum. However,

materials such as Ba3Sc 2TiO8 could be made even though Ba 2Sc 20 5 is not

especially stable and is known to decompose above 1000 °C. To start this

study, it would have been desirable to study all of the A 2M 20 5 compounds;

however, Ba2In 20 5 appears to be the only one of these compositions to form a

stable crystalline phase which can be sintered and whose ionic conductivity

can be measured. It was found that Ba2Sc20 5 could be prepared only as a fine

powder, while Sr2Sc20 5 and Sr2In 205 could not be prepared at all. In general it

was easier to form these solid solutions with barium than with strontium.

No single-phased materials were made with calcium. This is most likely due

to the smaller size of calcium. In general it was easier to make the

brownmillerite-perovskite intergrowths with titanium than with zirconium

or hafnium, and with indium rather than scandium, gallium or aluminum.
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4.2 X-ray Diffraction

X-ray diffraction measurements established that most of these

perovskite-brownmillerite intergrowths crystallize in the cubic perovskite

structure, ABO3. This corresponds to a disordering of the M and M' cations

on the B site. Lattice parameters for materials showing cubic symmetry are

listed in Table 4.1. The formulas for these materials are also listed as solid

solutions to permit easy comparisons of their oxygen contents and vacancy

concentrations. Although slight ordering was observed in some of these

materials, no well-behaved, ordered intergrowths were found. However,

even in the disordered solid solutions, some "superstructure" peaks were

occasionally observed. In particular, a low intensity peak with a d-spacing of

12 times the cubic lattice parameter was observed in many materials. This

could be due to oxygen ordering or partial ordering of the M and M' cations.

If full ordering of these cations were achieved, superstructure peaks should

have been much more intense than those that were observed. The X-ray

diffraction patterns of Ba3In 2TiO 8 and Ba3Sc2TiO 8 are shown in Figures 4.1 and

4.2 along with their Rietveld refinement patterns. The XRD patterns shown

in Figures 4.1 and 4.2 have been refined as a disordered solid solution by

Rietveld refinement using the GSAS4 refinement package. The conditions

and results of the Rietveld refinements are listed in Tables 4.2 and 4.3.

4.3 Conductivity

Although complex impedance can ideally separate out grain boundary

and bulk effects, this was seldom observed in these samples and may be due

to the low sample density. The Cole-Cole plot for Ba 3In 2TiO 8 at 200 °C is

shown in Figure 4.3. The plot shows a single semicircle for the combined
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Table 4.1 Lattice parameters for brownmillerite-perovskite intergrowths

a, cubic lattice parameter
Compound Solid solution formula (a,)

Sr 3In2ZrO8 SrIno.67Zro.3302.67 4.066(1)

Sr4In2Zr2011 SrIno.5Zro. 50 2 .7 5 4.065(2)

Sr 4In 3ZrO 10 .5 SrIno.75Zr0.2502.625 4.048(2)

Sr 5In4ZrO1 3 SrIno.8Zro.202 .60 4.040(3)

Sr 3In2HfO8 SrIno.67Hfo 3302.6 7 4.102(1)

Sr4In 2Hf201l SrIno.sHfo.50 2.75 4.101(1)

Ba 3In 2TiO 8 BaIno.67Tio.3302 .6 7 4.19520(7)*

Ba4In 2Ti20 11 BaIno.5Tio.50 2.75 4.1258(4)

Ba3Sc2 TiO 8 BaSco.67Tio.3302.67 4.15531 (5)*

Ba 3In 2HfO8 BaIno.67Hfo.3302.6 7 4.224(1)

*from Rietveld analysis
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Figure 4.1 Rietveld refinement of the XRD pattern for Ba 3In2TiO8 showing the
observed (crosses), calculated (line), and difference (bottom line) plots.
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Figure 4.2 Rietveld refinement of the XRD pattern for Ba 3Sc2TiO8 showing the
observed (crosses), calculated (line), and difference (bottom line) plots.
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Table 4.2 Rietveld refinement data for powder XRD of Ba3In 2TiO 8

Formula

Space Group

a, A

z

x, 

20 scan range (°)

Step Interval (20)

Number of unique reflections

Number of structural parameters
(including lattice parameters and
thermal parameters)

Number of background parameters

Number of profile parameters

Rwp

Rexp

Goodness of Fit (Rwp/Rexp)

Ba

In

Ti

O

x

1/2

0

0

1/2

1/2

0

0

0

BaIno.6 7TiO.3302.67

Pm3m

4.19520(7)

1

1.54059

15-140

0.01

56

4

6

6

12.6

9.4

1.34

Z

1/2

0

0

0tOtO
sO

occupancy

1

0.66667

0.33333

0.88889
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Table 4.3 Rietveld refinement data for powder XRD of Ba 3Sc2TiO8

Formula

Space Group

a, A

z

BaSco.67TiO.3302.67

Pm3m

4.15531(5)

1

1.54059

20 scan range ()

Step Interval (20)

Number of unique reflections

Number of structural parameters
(including lattice parameters and
thermal parameters)

Number of background parameters

Number of profile parameters

Rwp

Rexp

Goodness of Fit (Rwp/Rexp)

Ba

In

Sc

x

1/2

0

0

1/2

0

0

15-140

0.01

56

6

6

8

12.7

7.7

1.65

z

1/2

0

0

occupancy

1

0.66667

0.33333

0 1/2 0 0 0.88889
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bulk and grain boundary resistances and a much larger arc for the electrode.

The assignment of these features was achieved by using different sample

thicknesses. Since the electrode is not affected by the sample thickness, the

portion of the plot which does not change can be attributed to the electrode.

With increasing temperatures, the relative size of the arcs changes. A typical

high temperature plot, that of Sr4In 3Zr01 0. 5 at 900 °C, is shown in Figure 4.4.

In this case the bulk arc is no longer observed; however, it can be seen that the

bulk and grain boundary resistances are of comparable magnitudes, about

2000 Q.

Some typical Arrhenius plots are shown in Figures 4.5 through 4.8.

Figure 4.5 shows the behavior of Sr4In 2HfOll. This compound had a rather

low conductivity (2 x 10-4 S cm-1 at 900 °C) with a low activation energy

(0.52 eV). Its conductivity behavior could be readily fit to a linear plot of log

conductivity versus reciprocal temperature. Figure 4.6 shows the

temperature dependence of the conductivity of Sr4In 2Zr2Oll. This material

also exhibited linear Arrhenius behavior and a low activation energy of

0.48 eV for the bulk material. To compare Sr4In 2Zr2O11 to Sr4In 2Hf2 Oll,

however, the activation energy for the total conductivity of Sr4In 2Zr2Ol,0

1.20 eV, must be used. Thus the activation energy increases significantly in

moving from Hf to Zr, which may be related to the size difference between Zr

and Hf ions. The conductivity of Sr4In 2Zr2Oll is less than that of Sr4In 2Hf2011

at all measured temperatures. The temperature dependence for the

conductivity of Sr3In 2HfO8 is illustrated in Figure 4.7. This conductivity

exhibits nonlinear behavior. From previous research on Ba3In 2ZrO 8 it would

seem possible that there are two conduction processes here: protonic

conduction at low temperature and oxygen ion conduction at higher

temperatures. Several other materials display this behavior in greater or
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Figure 4.4 Cole-Cole plot for Sr4In 3ZrO10 .5 at 900 °C, showing a single arc for
the grain boundary conductivity process and a second small arc for the
electrode. The bulk conductivity process cannot be observed at this
temperature, but its magnitude is calculated as the left intercept of the grain
boundary process.
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Figure 4.5 A plot of log conductivity of Sr4In2Hf2Oll versus 1/T exhibits a
linear Arrhenius behavior with an activation energy of 0.52 eV.
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Figure 4.6 A plot of log conductivity versus 1000/T for the bulk conductivity
of Sr4In 2Zr 201O exhibits linear Arrhenius behavior with an activation of
0.48 eV.
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Figure 4.7 Log conductivity versus 1000/T for Sr 3In 2HfO8. A change in
activation energy is observed.
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Figure 4.8 An Arrhenius plot of bulk conductivity for Ba3In 2TiO8 displays
significant curvature.

5.0

'7

0.0

-5.0



95

lesser degrees. Ba3In 2TiO8, for instance, also exhibited nonlinear Arrhenius

behavior (Figure 4.8). Since this material was among the easiest to synthesize,

it was used for several other studies including the measurements of protonic

conductivity. Total conductivities and activation energies for the studied

materials are listed in Table 4.4.

Using the lattice parameters obtained from X-ray diffraction

measurements and Shannon's radii, 5 the "free volume" in the sample can be

calculated. The free volumeswere calculated for the simple cubic unit cells

listed in Table 4.1 and correlated to conductivities and activation energies. A

plot of activation energy versus free volume is shown in Figure 4.9. Clusters

of the materials containing the same elements can be observed in this plot.

No overall trend is observed to describe the behavior in the clusters;

however, for either A cation (Sr or Ba) the clusters with higher free volumes

had lower activation energies. All compositions in the Sr-In-Zr series had

higher activation energies than all compounds in the Sr-In-Hf series, and

Ba-Sc-Ti and Ba-In-Ti containing samples had higher activation energies than

Ba-In-Hf containing samples. The relationship between materials such as

Sr 3In 2HfO8 and Ba3In 2HfO 8 is not clear in this plot. They have very different

free volumes, but similar activation energies. Some trend in free volumes

appears to be present, but it is not clear which alterations to a material would

give a change in activation energy with a change in the free volume. From

the data collected here, however, modifications in a material that change the

free volume only slightly change the activation energy the most.

A plot of high temperature conductivity (900 C) versus free volume is

shown in Figure 4.10. This is somewhat more predictive as there is basically a
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Table 4.4 Conductivities and activation energies of brownmillerite-
perovskite intergrowths.

Log(o) at 500 °C Log(o) at 900 C Activation energy
Compound (eV)

Sr3In 2ZrO8 -6.30 -3.87 1.08

Sr4In 2Zr2Oll -6.46 -4.55 1.20

Sr 4In 3ZrO510. -6.81 -4.27 1.21

Sr5In4ZrO13 -6.93 -4.30 1.24

Sr 3In 2HfO8 -5.38 -3.78 0.49

Sr4In 2Hf20 11 -5.36 -3.66 0.52

Ba 3In 2TiO 8 -4.55 -2.92 0.81

Ba4In 2Ti2O 11 -4.90 -2.85 0.83

Ba3In 2HfO8 -3.82 -2.82 0.48

Ba3Sc2TiO 8 -4.99 -3.17 0.89
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perovskite intergrowths.
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linear relationship. Materials with larger free volumes have lower activation

energies.

4.4 High Temperature Powder XRD

High temperature X-ray diffraction was used to investigate the

behavior of Ba3In 2TiO 8. Figure 4.11 shows a plot of the cubic lattice parameter

versus temperature. This displays a general increase in the lattice parameter.

No change in symmetry, however, was observed, suggesting that changes in

long-range cation ordering are not responsible for the curvature in the

Arrhenius plots. It is not apparent from these high temperature

measurements that there exists any short-range cation order on the B site or

any ordering of the oxygen vacancies.

4.5 Neutron Diffraction

Powder neutron diffraction was used to investigate the oxygen vacancy

ordering in Ba3In 2TiO 8 and Ba3Sc 2TiO8. The neutron diffraction patterns

could be fit to the disordered cubic solid solution in space group Pnm3m. The

refinements for Ba3In 2TiO8 and Ba3Sc 2TiO8 are shown in Figures 4.12 and 4.13,

respectively. The specifics of the refinements are listed in Tables 4.5 and 4.6.

The background for both samples is relatively high, which most likely

indicates some amount of moisture present in the samples. Attempts to

refine the oxygen content of these materials to model oxygen uptake in lattice

sites were not positive. Increasing the occupancy of the oxygen site worsened

rather than improving the fit.
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Figure 4.11 Cubic lattice parameter, a, versus temperature for Ba3In 2TiO8s.
Only an expansion in the lattice parameters was observed, no change in
symmetry.
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Figure 4.13 Rietveld refinement of the neutron diffraction pattern of Ba 3Sc2TiO8
showing the observed (crosses), calculated (line), and difference (bottom line)
plots.

I I I I I I I I I i I

I I I I I I I I I I I I I I I I I I

...., , .. , , .. , ,A-A - .. . -- , ,,, ._.

l W - - -,.. -l .. . l

I I I I I I I I I I



103

Table 4.5 Rietveld refinement data for powder neutron diffraction of
Ba 3In 2TiO 8

Formula

Space Group

a, A

z

x, A

20 scan range (0)

Step Interval (20)

Number of unique reflections

Number of structural parameters
(including lattice parameters and
thermal parameters)

Number of background parameters

Number of profile parameters

Rwp

Rexp

Goodness of Fit (Rwp/Rexp)

x

1/2Ba

In

Ti

0

0

0 1/2

Y

1/2

0

0

0sOTO
SO

BaIn0.67Tio.3302.67

Pm3m

4.19520(7)

1

1.356

15-105

0.1

26

4

6

6

19.3

13.4

1.44

Z

1/2

0

0

0

occupancy

1

0.66667

0.33333

0.88889
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Table 4.6 Rietveld refinement data for powder neutron diffraction of
Ba 3Sc2TiO8

Formula

Space Group

a, A

z

,A

20 scan range (°)

Step Interval (20)

Number of unique reflections

Number of structural parameters
(including lattice parameters and
thermal parameters)

Number of background parameters

Number of profile parameters

Rwp

Rexp

Goodness of Fit (Rwp/Rexp)

x

Ba 1/2

Sc 0

Ti 0

1/2

0

0

BaSco.67Tio.3302.67

Pm3m

4.15531(5)

1

1.356

10-105

0.1

23

4

12

6

10.5

6.8

1.54

z

1/2

0

0

occupancy

1

0.66667

0.33333

0 1/2 0 0 0.88889
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4.6 Thermogravimetric Analysis

TGA measurements were used to determine if there were any weight

loss in the samples during heating, to indicate, for example, loss of absorbed

water or loss of oxygen due to sample reduction. Ba3In 2TiO 8 and Ba 3Sc2TiO8

were heated under forming gas (5% H 2/N 2), and a small weight loss was

observed. Both samples exhibited about one percent weight loss (Figures 4.14

and 4.15), which corresponds to approximately half of an oxygen. This is in

contrast with Ba3In 2ZrO8 which shows uptake or loss of weight corresponding

to a whole oxygen on cooling and heating as mentioned in Chapter 2. It is

possible that these samples could also undergo further weight uptake with

time, as no special effort was made to increase the oxygen content. From

these studies it can be concluded that some component, presumably H20 or

02, is being weakly adsorbed or intercalated into the material, although it is

not clear how this affects the conductivity.

4.7 Measurements under Controlled Atmospheres

4.7.1 Measurements under Moisture-controlled Atmospheres

To investigate the effects of the weight uptake on the ionic

conductivity and to investigate the possibility of protonic conduction in these

samples, the conductivity of Ba3In 2TiO8 was measured under air, air dried

over drierite, and air sparged through water. Plots of log conductivity versus

1000/T are shown in Figures 4.16 through 4.18. The same sample was used

for all measurements. The sample was first heated under air, then dried air,

and finally wet air. Under air a hysteresis was observed as the sample became

more conductive after one heating cycle. This increase in conductivity was

not reversed on heating in dried air. The high temperature regions of both



106

1I AA 
IUU.LZ

100

o 99.75
e0
a.)

.- 4 99.5

99.25

99
0 100 200 300 400 500

Temperature °C

Figure 4.14 TGA of Ba3In2TiO 8 under H 2/N 2 shows a weight loss of about one
percent.
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Figure 4.16 A plot of log conductivity versus 1/T for Ba3In 2TiO8 in air shows
curvature on heating with a hysteresis on cooling.
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plots are nearly identical. The conductivity measured during the initial

heating cycle under wet air was not significantly different from the two

previous runs, but on cooling, the sample maintained a high conductivity. A

plateau in conductivity was observed between 250 and 500 °C. A second

linear region of conductivity is observed at low temperatures in wet air. This

data is consistent with a sample exhibiting protonic conduction at low

temperatures and oxygen ion conduction at higher temperatures. The low

temperature protonic conductivity might be useful in high temperature pH

sensors or other applications.

4.7.2 Measurements under Different Oxygen Partial Pressures

The conductivities of two samples were measured in atmospheres

other than air. The conductivity of Sr 4In 2ZrOll was determined under air and

nitrogen, and no change in conductivity or activation energy was observed

between the two runs. This lack of conductivity dependence on oxygen

partial pressure indicates that the sample is predominantly an ionic

conductor in this range of oxygen partial pressure. Ba3Sc2TiO 8 was measured

under a variety of different oxygen pressures, with slightly different results.

A double log plot of conductivity versus oxygen partial pressure showed

increasing conductivity for partial pressures greater than

10-10 atm (Figure 4.19). This increase in conductivity is consistent with p-type

conductivity, and the high Po 2 region could be fit to a slope of 1/4. This

indicates that at least for the titanium-containing samples there is significant

electrical conductivity. This is most likely due to the uptake of a small

amount of excess oxygen in the material. The oxygen donates electrons to the

system, leading to an electronic component in the conductivity.
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Figure 4.19 Log conductivity versus log oxygen partial pressure for Ba3Sc2TiO8
at 800 C. This displayed a decrease in conductivity at lower oxygen partial
pressures. The slope of 1/4 is consistent with p-type conductivity.
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4.8 Conclusions

These brownmillerite-perovskite solid-solutions show a wide range of

behaviors. No exceptional oxygen ion conductors were found, although

some of the activation energies are extremely low. The free volumes were

found to correlate well with the high temperature conductivity, as well as

with the activation energy. The activation energy, however, seemed to be

most affected by specific cation changes, more so than volume changes, since

activation energies for different ratios of a set of elements were generally

similar. The low temperature protonic conductivity might be useful in high

temperature pH sensors or other applications.
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Intergrowths
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5. AURIVILLIUS-BROWNMILLERITE INTERGROWTHS

From the brownmillerite-perovskite intergrowths described in the

previous chapter, it was observed that the intergrowth approach was a viable

route to achieve oxygen ion conduction. Since the Aurivillius type layered

bismuth oxide materials are among the best low temperature oxygen ion

conductors, we set out to modify these compounds through the use of

intergrowths. It is known that perovskite layers could be added to some of

these materials, for example Bi4Ti3 012 + BaTiO3 - BaBi4Ti40l5. Consequently,

the addition of brownmillerite-like layers also seemed possible, e.g.,

Bi4Ti 3 012 + BaInO 2.5 - BaBi 4Ti 3InO 14.5. From work on the brownmillerite-

perovskite intergrowths, it was determined that the Ba-In-Ti and Ba-Sc-Ti

systems could be easily prepared and readily formed a disordered solid

solution between In and Ti or Sc and Ti. Thus Bi4Ti3012 was chosen as the

starting Aurivillius phase, and BaMO 2.5 as the brownmillerite-like series.l-3

5.1 Non-oxygen-deficient Materials

Before investigating any of these new materials, several previously

known Aurivillius phases were studied for comparison. BaBi2Nb 20 9 and

BaBi4Ti4 015 were prepared, and their conductivities were measured.

BaBi4Ti4O 15 can be viewed as an Aurivillius-perovskite intergrowth:

Bi4Ti3012 + BaTiO 3. XRD patterns for both materials were consistent with

previously reported data (JCPDS #40,355 and #35,757). A plot showing the

conductivity as a function of 1000/T for both materials is shown in Figure 5.1.

Both materials displayed linear behavior indicative of a single conduction

mechanism. The activation energy of BaBi2Nb 20 9 was determined to be quite

high, 1.5 eV, while that of BaBi4Ti 40 1 5 was substantially lower, 0.7 eV. The
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Figure 5.1 Log conductivity versus 1000/T for the non-oxygen deficient
Aurivillius phases BaBi4Ti401 5 and BaBi2Nb 20 9. These display linear
Arrhenius behavior with high activation energies.
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overall conductivities are rather low, less than 10-2 S cm-1 at 950 °C. A typical

impedance plot is shown in Figure 5.2. This exhibits a large arc due to the

bulk and grain boundary effects. At low frequencies, a small arc due to the

electrode is observed. The small electrode resistance may indicate that there

is substantial electronic conductivity in these samples. Since there are no

vacancies, however, high oxygen conduction was not expected.

5.2 Oxygen Deficient Materials

5.2.1 Structural Characterization

BaBi4Ti 3ScO 4 .5, BaBi4Ti3InO14.5, and BaBi4Ti3GaO 14.5, were prepared by

solid state reactions and characterized by powder XRD. The powder XRD

pattern of BaBi 4Ti 3GaOl4. 5 is shown in Figure 5.3. The XRD patterns of

BaBi4Ti3ScO 14.5 and BaBi4Ti3InOl4.5 are almost identical. These can all be

indexed to a tetragonal unit cell which represents an additional ordering

relative to BaBi 4Ti4 015, aM = /2aTi, bM = I2bTi, CM = CTi. The lattice parameters

for all three compounds are listed in Table 5.1 along with the lattice

parameters of BaBi4Ti40 5 indexed to the same cell. Table 5.2 lists the

indexing of the powder XRD pattern for BaBi 4Ti 3GaOl4.5. There are many

possible distortions to the idealized structure which could give rise to these

lattice parameters including ordering of the oxygen vacancies or,

alternatively, ordering of the B-cations in the perovskite layers. The peaks

that result from in this extra ordering are very weak, suggesting that they are

due to ordering of the oxygen vacancies rather than the B-cations. This is

further supported by the fact that all peaks with greater than five percent

relative intensity could be indexed to the simpler cell of the parent

compound.
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Figure 5.2 Cole-Cole plot for BaBi4Ti4Ol5 at 750 C showing a single arc for the
bulk and grain boundary processes. The electrode arc is very small in this
material.
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Table 5.1 Lattice Parameters for Aurivillius-brownmillerite Intergrowths

Compound a (A) c (A)

BaBi4Ti4Ol5* 5.462(3)* 41.85(1)

BaBi4Ti3GaO 14.5 5.449(3) 41.81 (3)

BaBi4Ti3InO 14.5 5.663(4) 41.91(3)

BaBi4Ti3ScO14.5 5.682(3) 41.74(3)

*The a parameter for BaBi4Ti 401 5 (3.862 A) was multiplied by 12 for

comparison.
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Table 5.2 Indexed X-ray diffraction data for BaBi4Ti 4GaOl 4.5

h k I dcalc dobs Ir

0 0 4 10.453 10.456 2
0 0 6 6.968 6.976 3
0 0 8 5.226 5.221 14
1 0 3 5.075 5.087 2
0 0 10 4.181 4.182 11
1 1 1 3.837 3.844 13
1 1 4 3.615 3.596 6
1 1 5 3.499 3.500 1
1 1 7 3.238 3.217 30
1 1 8 3.101 3.105 2
1 1 9 2.966 2.966 100
1 0 12 2.935 2.937 11
1 1 10 2.833 2.831 2
2 0 2 2.702 2.723 27
2 0 6 2.537 2.543 1
2 1 3 2.400 2.397 2
0 0 18 2.323 2.320 7
2 0 10 2.283 2.286 12
1 1 15 2.258 2.258 1
2 1 9 2.158 2.168 3
0 0 20 2.091 2.092 2
0 2 13 2.079 2.075 3
1 2 12 1.997 1.994 3
2 2 0 1.927 1.930 9
1 1 19 1.911 1.911 4
0 0 24 1.742 1.744 7
1 1 23 1.644 1.640 1
3 0 12 1.611 1.619 10
1 1 25 1.534 1.533 2
3 1 14 1.493 1.499 3
1 1 26 1.484 1.483 3
1 3 16 1.439 1.437 3
0 4 0 1.362 1.366 2
0 1 34 1.200 1.198 1
2 0 32 1.178 1.179 1
0 3 28 1.153 1.152 1

I
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5.2.2 Conductivity Measurements

Impedance plots for BaBi4Ti 3InOl4.5 at low (675 °C) and high (825 °C)

temperatures are shown in Figures 5.4 and 5.5. The low temperature plot

displays a single arc for bulk and grain boundary effects and a somewhat

smaller arc for the electrode. At higher temperatures the conductivity is so

high that the sample arc cannot be observed, but the resistance can still be

determined from the intercept of the electrode arc. BaBi4Ti3 ScO4. 5 and

BaBi4Ti 3GaO 14.5 behaved similarly.

The results of the conductivity measurements on these samples were

very interesting. An Arrhenius plot of conductivity for BaBi 4Ti 3InOl4.5 is

shown in Figure 5.6. It exhibits a region of low conductivity and high

activation energy (0.95 eV) at low temperatures, a jump in conductivity of

almost two orders of magnitude near 800 °C, followed by a region of high

conductivity and low activation energy at high temperatures. The

conductivity in the high temperature regime is about 101 S cm -' with a low

activation energy of 0.35 eV. This transition is observed both on heating and

cooling. Conductivity jumps such as this are typical for samples which

undergo order-disorder transitions.4

An Arrhenius plot of conductivity for BaBi4Ti3ScO14.5 is shown in

Figure 5.7. This displays a similar jump in conductivity, but for this sample a

hysteresis is observed between the heating and cooling cycles. Low

temperature conductivities and activation energy (1.01 eV) in this sample are

similar to those observed for BaBi4Ti 3InO 14.5. The high temperature

conductivities are also similar; however, the activation energy, as calculated

from this data, is somewhat higher (0.49 eV). It is not clear, however, that the

activation energy is actually higher. Assuming this transition is very slow,
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Figure 5.4 The Cole-Cole plot for BaBi4Ti3InO14.5 at 675 °C displays a single arc
for bulk and grain boundary processes and a wide arc for the electrode.
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Figure 5.6 Arrhenius plot conductivity for BaBi4Ti 3InO1l45 displaying a jump
in the conductivity near 800 °C.
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Figure 5.7 Log conductivity versus 1000/T for BaBi4Ti 3ScO 14.5 displaying a
jump in conductivity. A hysteresis is observed between heating and cooling.
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some of the points may be taken while the sample has not fully converted to

the high temperature phase. Further studies on this sample confirmed that

the phase transition is in fact slow. A sample left at 725 °C for one week

eventually relaxed to the low temperature phase. Considering a slow phase

transition such as this one, it seemed likely that the high conductivity could

be retained if the sample were quenched. Cooling the sample from 800 "C by

opening the furnace and allowing the sample to cool rapidly did not

accomplish this however. The sample still showed low conductivity at 300 to

400 C. It is not fully clear from this procedure whether the sample ordered

too rapidly at low temperatures to be quenched in the disordered state or

whether the barriers for conduction at low temperatures are so high that the

disordered structure does not give rise to high conductivity.

An Arrhenius plot of conductivity for the third sample,

BaBi4Ti3GaOl4.5, is shown in Figure 5.8. It exhibits a less abrupt transition

than the previous two samples when measurements are taken at the same

rate (three to four points per day at 50 degree intervals). When measured at a

slower rate (two points per day at 50 degree intervals), the curvature in this

plot is lessened. This is shown in Figure 5.9 and indicates that the disordering

process in these materials on heating may also be slow. Based on the

information from Figure 5.9, it is also possible that there is a third

conductivity process at lower temperatures; however, too few points were

collected to prove or disprove this possibility. Alternatively, this might be

low temperature protonic conduction as shown for the brownmillerite-

perovskite materials in Chapter 4 or possibly another low temperature phase

transition, as seen in Bi4V2 O11 .5
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5.2.3 Differential Thermal Analysis

Differential Thermal Analysis was used to investigate these phase

transitions. Figure 5.10 shows a DTA plot for BaBi4Ti3InOl4.5. This exhibits a

phase transition above 800 C. All three samples display similar DTA

behavior. No transition is observed on cooling, but based on the conductivity

data, abrupt transitions would not be expected on the time scale of DTA runs

(30 minutes). These transitions are relatively weak in the DTA on heating,

and if less abrupt on cooling, might be too small to notice. The same sample

can be cycled through the DTA multiple times, and in this case, the later

signals are decreased relative to the first run. This could indicate that the

sample does not fully re-order on the short time scale of a DTA run. In the

case of the BaBi 4Ti 3GaOl4.5 no second phase transition was observed at low

temperatures, suggesting that the change in conductivity at low temperatures

is most likely not due to a phase change, but rather a change in the

conduction process. The simultaneous TGA measurement showed no

detectable weight loss below 1100 °C for any of the samples confirming that

the observed order-disorder transitions are an intrinsic property rather than

externally induced by oxygen loss.

5.2.4 Conductivity as a Function of Oxygen Partial Pressure

A plot of log conductivity at 700 C versus log P 0 2 for BaBi4Ti 3GaOl4.5

is shown in Figure 5.11. This displays no dependence on oxygen partial

pressure to 10-18 atm 02. Below this value the sample apparently decomposes

as the conductivity change was not reversible. No conductivity increase was

observed when the decomposed sample was re-exposed to oxygen. On

removal from the sample holder, the pellet had flattened and densified. The
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Figure 5.10 DTA plot of BaBi 4Ti 3GaO1 4.5 displaying a transition above 800 °C.
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Figure 5.11 Log conductivity at 700 C versus log Po 2 for BaBi4Ti3GaOl4.5.
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electrodes were significantly attacked, but there was no evidence of bismuth

metal. This result indicates that the sample has an unusually high tolerance

to reduction, considering that it contain bismuth. The lack of dependence on

oxygen partial pressure indicates that the conductivity is predominantly ionic

over a wide range of oxygen partial pressures which is important for some

applications.

5.2.5 Measurement of Transference Numbers using a Concentration Cell

A concentration cell was constructed in a manner similar to that of the

oxygen sensors. A sample of BaBi4Ti 3GaO 14.5 was sealed between two mullite

tubes using light pressure at 800 °C. Air was used for the reference electrode,

while oxygen and mixtures of oxygen in argon were used at the other

electrode. The pellet had a thickness of approximately 5 mm, which is

actually thicker than desired for such a measurement. However, this

thickness minimizes oxygen diffusion through pores in the pellet. The

transference numbers were calculated by measuring the oxygen content using

the zirconia sensors and calculating the voltage expected at the sample

temperature for each oxygen pressure. The transference number is simply the

ratio between the observed and expected voltages, as any electronic

conductivity present in the sample reduces the voltage. At 800 °C all

measurements indicated transference numbers greater than 0.90. The data are

shown in Figure 5.12. In Figure 5.12 it appears that the transference number

decreases with oxygen concentration; however, the observed voltages

fluctuated, so associated error bars are shown in Figure 5.13 to represent the

confidence interval of each measurement. The large error bars for 0.5 atm

Po2 are due to limitations in the accuracy of the voltmeter in measuring

very low voltage. It is, therefore, likely that the transference number here is
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actually closer to 0.95. At lower oxygen partial pressures, the calculated

transference number is sometimes greater than unity. Since the error bars

extend below one, it is possible that this is simply within the error of the

measurement, but it is also possible that this material has a higher

transference number than the YSZ sensors. The observed decrease in

transference number would, however, be consistent with the observation that

CaTiO3 displayed ideal oxygen ion conduction under fuel cell conditions

(high oxygen gradients) but not under atmospheric conditions.6 Due to the

thickness of the sample, the large resistance made it difficult to take

measurements at lower temperatures, but at low Po 2 (5 x 10-6 atm) the

voltage was large enough to compensate. At 650 °C and Po2 of 5 x 10-6 atm a

transference number of 0.85 was obtained. This indicates that there is some

electronic conductivity present in the low temperature, ordered region, but

the conductivity is still largely ionic.

5.3 Conclusions

These materials display transitions in plots of oxygen ion conductivity

versus reciprocal temperature which are consistent with a phase transition in

the materials. Above the transition temperature the conductivity is high

enough to be used in many applications. Few materials with such high

conductivity possess the same stability to the range of oxygen partial pressures

exhibited by BaBi4Ti3GaOl4.5. The high transference numbers observed in the

concentration cell indicate that this material may have some possible uses in

devices.

Based on the transitions observed in these materials, it seems likely

that at low temperatures the oxygen vacancies order or that a large attraction

exists between the trivalent cation and the oxygen vacancies. Such an
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interaction should result in an increase in the activation energy and a

decrease in the conductivity, which is observed. At higher temperatures the

interaction between the trivalent cations and vacancies can be readily

overcome by the entropy of the system, leading to some degree of disorder in

the oxygen vacancies. Thus, extremely low activation energies are observed

and conductivities are high.

5.4 Future Work

Several other composition in this series seem possible, although many

have already been tried unsuccessfully. The addition of a second

brownmillerite layer to these materials, for instance, was not successful in

initial attempts, although different heating cycles or starting from ternary

rather than binary oxides might give different results. Substitution of

strontium for barium yielded a mixture of the three layer phase, Bi4Ti30 12 ,

and a five layer phase, presumably Sr2Bi4Ti3Ga201 7. In the non-oxygen

deficient Aurivillius compounds several Sr-Bi-Ti-O phases are known to

exist. SrBi4Ti40 15, Sr2Bi4Ti5018 , and SrBi 8Ti 70 27 , have all been previously

prepared; and it, therefore seems likely that several phases might be prepared

in the Sr-Bi-Ti-Ga-O system if the proper conditions are found.

In this work, the use of transition metal ions with multiple oxidation

states was avoided, but the addition of such ions can create a system which

has mixed electronic/ionic conductivity. Such a material could be as for an

electrode material in various devices or for catalysis.

In order for these materials to be of commercial use, different

preparation techniques such as solution or sol-gel precursor methods need to

be investigated. These methods allow the fabrication of samples of different

shapes and generally greater densities. The use of such precursors might also
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facilitate the preparation of some of the compounds which could not be

successfully prepared by solid state reaction. Once such methods are worked

out, the material should be tested for viability in devices or application in

catalysis.
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