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Abstract

The effects of elasticity on flow stability were studied in three types of test
geometries that model more complex polymer processing operations: /) the rotational flow
between parallel plates or a cone and a plate, 2) the stagnation flow behind a cylinder or
other obstacle confined in a channel and 3) superposed plane Poiseuille flow of two fluids
in a channel. Laser Doppler velocimetry (LDV) and digital image analysis were used to
quantitatively characterize the onset conditions and the spatial and temporal characteristics
of the instabilities. Experimental stability diagrams were constructed to show the
dependence of the onset conditions on geometric aspect ratios and the elasticity of the flow
as measured by the Deborah number, De, which is the ratio of a characteristic timescale of
the fluid to a characteristic timescale of the flow. The expenmental results are compared to
 the predictions of a linear stability analysis as a means of testing the ability of constitutive
equations to determine the onset and form of elastic instabilities. Semidilute solution of a
high molecular weight polyisobutylene in a solvent of tetradecane and a low molecular
weight polybutene were used as test fluids. These ‘Boger' fluids are characterized by their
nearly constant viscosity and high elasticity.

In the parallel plate geometry, the flow was unstable to a spiral disturbance
consisting of nested Archimedean spirals that occupied only an annular region between the
plates due to the shear-rate dependence of the normal stress coefficient. The wavelength
and radial extent of the spiral cells were found to scale with the separation between the
plates. A similar instability occurred in the cone-and-plate geometry, but the lack of a
characteristic length scale and the uniform shear rate throughout the gap resulted in a
logarithmic spiral that filled the entire gap.

LDV was used to characterized the wake instability for flow past a cylinder
confined in a chaanel for a wide range of cylinder radius to channel half-height ratios. The
instability consisted of periodic variations in the streamwise velocity along the axis of the
cylinder. The critical Deborah number increased for small aspect ratios, and the shearing
flow between the cylinder and the channel walls did not determine the onset conditions for
large aspect ratios. The wavelength of the instability was comparable to the cylinder radius,
but the ratio of the wavelength to the radius increased for small aspect ratios. A qualitatively
similar instability was observed for a geometry without an upstream stagnation point, and
no instability was found for an axisymmetric stagnation flow.

Image analysis of experiments in the superposed plane Poiseuille flow geometry
showed that the system was capable of determining the stability of the interface for a wide
range of experimental conditions. Although an experimental stability diagram has not been
established for this system, present results show that quantitative measures of the growth
rate can be obtained.

Thesis Supervisors: Robert C. Armstrong Robert A. Brown
Professor Professor
Chemical Engineering - Chemical Engineering
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Chapter 1

Introduction

1.1 Motivation

Understanding the causes of viscoelastic flow instabilities is important to the
polymer processing ihdustry, whe;'e instabilities often limit the processing rates that can be
achieved. Instabilities such as sharkskinning and melt fracture ‘éan dramatically distort the
surface of an extruded polymer, and any instability that changes the flow history of the
polymer can lead to nonuniformities in the processing conditions and therefore the
properties of the final producf. A more thorough understanding of the causes of flow
instabilities can eventually lead to the uitimate goal of being able to determine a priori
necessary modifications to either the fluid's rheological properties or process design in
order to reach higher throughput in the absence of instabilities.

This thesis contains experimental characterizations of viscoelastic flow instabilities
in three different types of test flows that model portions of more complex polymer
processing operations. Furthermore, the experiments provide sufficient detail of the onset
conditions and structure of the instabilities to serve as a basis of comparison with linear
stability calculations and thereby test the ability of constitutive equations to accurately
capture the relevant physics of the instability mechanism.

Before any reliable numerical predictions can be made, it is first necessary to
demonstrate the ability of the constitutive equation and solution method to produce accurate
results in simpler test geometries, and detailed experimental data for these flows is therefore
necessary for comparison. Benchmark problems such as the flow past a cylinder in a
channel or a sphere in a tube and the axisymmetric contraction have been chosen as bases
for comparison (Brown and McKinley 1994), and considerable progress has been made in
recent years in the ability to accurately calculate the flow field in these geometries.
Experimentally, laser Doppler velocimetry (LDV) and flow-induced birefringence allow for
quantitative measures of the velocity and stress fields, respectively. Flow visualization
experiments using a sheet of light to illuminate a cross-section of the flow also can be used
to obtain streak photographs in which particle tracks approximate streamlines of the flow.
This method has been applied to a wide variety of non-Newtonian flows; see Boger and
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Walters (1993). This method allows qualitative features of the flow to be observed simply,
although it cannot provide quantitative measures of the velocity and is not useful for time-
dependent flows. Flow visunalization is combined with digital image analysis in this work to
measure quantitatively the structure of flow instabilities, and LDV can be used to measure
temporally- or spatially-varying velocities.

A meaningful comparison also requires that the experiments be performed with a
well-characterized test fluid in order to determine values of the parameters in the
constitutive equations. All models of viscoelastic fluids require at least a measure of the
fluid's zero-shear-rate viscosity and relaxation time, and many models contain additional
parameters that can be determined from knowledge of the shear-rate dependence of the
material properties. Newtonian fluids are completely characterized by their viscosity, but -
viscoelastic fluids also show normal stress differences, which manifest themselves in
experiments such as rod-climbing and the tubeless siphon (Bird et al. 1987a). Polymeric
fluids retain a 'fading memory' of their flow history that is characterized by a spectrum of
relaxation times. Furthermore, the extensional viscosity of polymer solutions can be 1000
times or more greater than the viscosity at high strain rates, whereas for Newtonian fluids
the extensional viscosity is three times the viscosity. The fluids used in this work are
'‘Boger' fluids (Boger 1977/78) consisting of a small amount of high molecular weight
polyisobutylene in a Newtonian solvent of low molecular weight polybutene and
tetradecane. These fluids are designed to be highly elastic while maintaining a nearly
constant viscosity in order to isolate elastic effects. Polymer melts and concentrated
solutions typically have viscosities that decrease dramatically with increasing shear rate,
and although the Boger fluids used here are sufficiently concentrated to exhibit a shear-
thinning viscosity, this effect is masked by the high solvent viscosity. These fluids are
well-suited for the optical experiments conducted here since they are transparent, and they
can also be used at room temperature and low pressures.

The effects of elasticity in a flow can be measured in terms of the Deborah number,
De, which is the ratio of the fluid's longest relaxation time, A, to a characteristic timescale
of the process, T

De = AT, (L.
where Tis taken to be a residence time or reciprocal rotation rate. For small values of the
Deborah number, the fluid is able to relax fully on the timescale of the flow, and elastic
effects will be negligible. However, for Deborah numbers of order unity, the fluid retains a
memory of its past deformations, and elasticity can begin to affect the flow, either by
modifying the velocity or stress fields, or by leading to an elastic instability. Elastic effects
can also be measured in terms of a Weissenberg number, We, which is the product of the
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fluid's relaxation time and a characteristic strain rate in the flow. The Deborah and
Weissenberg numbers are often related to one another by geometric ratios of the
experimental system. Due to the high viscosity of most polymeric ﬂu:ds the Reynolds
number is usually small and mema! effects can be negle‘ted

1.2 Viscoelastic Flow Instabilities

Instabilities have been observed for a wide range of flows, and previous work has
been reviewed by Petrie and Denn (1976) and Larson (1992). Although many questions
remain unanswered regarding the cause of instabilities such as extrudate distortions, others
such as the instabilities due to draw resonance and necking in fiber spinning are well
understood. The most thoroughly studied instability for Boger fluids is in Taylor-Couette
flow between two concentric, rotating cylinders. An inertial instability also exists for this
geometry, and small levels of elasticity have been shown to stabilize the flow, whereas
higher levels of elasticity and shear-thinning destabilize the flow, and elasticity can also
change the form of the instability from standing cells to an oscillatory mode. Larson et al.
(1990) showed that a purely elastic (i. e., in the limit of small Taylor number) instability
consisting of axially-periodic toroidal cells existed for a Boger fluid, and that its onset
could be predicted by the Oldroyd-B model. The theory predicted a shallow neutral stability
curve for the critical Deborah number as a function of the wavenumber of the disturbance,
and flow visualization experiments showed that the structure evolved from a single
wavelength near onset to a much finger structure, in agreement with the calculations of
Northey et al. (1992). The importance of the fluid's rheological properties was shown by
Shagfeh et al. (1992), who found that negative second normal stress differences and higher
solvent viscosity ratios both stabilized the flow. LDV measurements by Muller et al. (1993)
showed that the instability was oscillatory, in agreement with theoretical predictions. Many
other studies have been conducted for this flow, but the work described above
demonstrates that a simple test flow can be used to determine both thebretically and
experimentally the characteristics of a flow instability.

Although each of the instabilities studied in this thesis has been previously observed
experimentally, prior studies have not characterized the instabilities in sufficient detail to
provide a basis for comparison with theoretical studies.

The rotational flows between parallel plates or a cone and a plate are commonly
used for measuring the rheology of fluids, and the presence of an instability will lead to
erroneously high measures of the viscosity or normal stress coefficient. Rotational flows
are also encountered in polymer processing applications involving extrusion or spin
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coating. The instability has been previously reported by Jackson et al. (1984) and Magda
and Larson (1988). McKinley et al. (1991a) established an experimental stability diagram
by varying the gap between the plates or the cone angle, and showed a series of images of
the development of spiral vortices beyond the critical Deborah number. However, no
quantitative measures of the structure of the instability were obtained, and it is the goal of
this thesis to determine the spatial and temporal characteristics of the instability in both the
parallel pale and cone-and-plate geometries. Experimental observations of the instability
provides not only a basis for comparison with theoretical studies, but can also guide
analyses by ensuring that the correct form of the instability is studied. For example, the
analysis of Phan-Thien (1983) assumed that the instability for the flow between parallel
plates took the form of a single toroidal vortex, whereas the instability is actually found to
consist of nested spiral vortices.

The only previous study of the elastic wake instability for flow past a confined
cylinder is that of McKinley et al. (1993), who showed that the instability took the form of
axially periodic fluctuations in the streamwise velocity downstream of the rear stagnation
point. The present work extends on these experiments by determining the onset conditions
for a wider range of cylinder radius to channel half-height aspect ratios, examining further
the structure of the instability near the cylinder, and studying the sensitivity of the
instability to changes in the upstream flow conditions. Stagnation flows are important since
the strong extensional flow near the stagnation point can result in large elongational stresses
in the downstream wake.

The interfacial instability for superposed plane Poiseuille flow of two elastic liquids
has received considerable theoretical study, but no experimental data exist for
Boger fluids. This flow model the commercial process of coextrusion, where the desired
-uniform thickness of the layers is disrupted by the instability. Wilson and Khomami (1992,
1993a,b) have obtained detailed experimental data for the flow of two polymer melts, and
the experimental systemn used in this thesis is based on their system. By using Boger fluids,
the effects of elasticity on the instability can be more easily studied, and the experimental
system can also be used to study the instability for Newtonian fluids, for which no data
exist.

Chapter 2 provides more detail of previous work for each of the three flows
mentioned above, and Chapter 3 describes the fluids, the test geometries and the
experimental techniques. Experimental results and comparison to the linear stability
analysis of Oztekin are given in Chapter 4 for the rotational flow instabilities and in Chapter
S for the stagnation flows, and Chapter 6 describes the experimental results for the
interfacial instability.
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Chapter 2

Literature Review

This thesis considers viscoelastic flow instabilities in three different types of flows
that model important aspects of polymer processing: the rotational flow between paralle]
disks or a disk and a cone, the stagnation flow behind a constrained cylinder or
axisymmetric obstacle, and the interfacial instability between superposed fluids in plane
Poiseuille flow. This chapter discusses each of these flows and reviews previous studies of
viscoelastic flow in each geometry.

2.1 Rotational Flows of Viscoelastic Fluids

2.1.1 Parallel-Plate Geometry

The torsional motion of a non-Newtonian fluid between coaxial parallel disks is one
of the most common geometries employed in rheological measurements. Fluid samples are
placed in a narrow gap of height H between two coaxial parallel disks of radius R, as
shown in figure 2.1(a) and measurements of the torque and normal force exerted by ti.e
fluid on the upper plate are used to calculate the shear-rate-dependent material functions of
the fluid, as a steady or oscillatory shear flow is driven by rotating the other plate. A key
assumption in the subsequent analysis of such measurements, however, is that the flow is -
always steady and purely azimuthal for all rotation rates. Centrifugal effects, which
produce inertial secondary flows in such geometries, are usually negligible because of the
high viscosities of most viscoelastic solutions and melts; however, it has recently become
clear that secondary flows can develop even in simple geometries at vanishingly small
Reynolds number due to purely elastic instabilities that are entirely absent in the
corresponding flows of Newtonian liquids. Such instabilities have been documented in
circular Couette flows and Taylor-Dean flows as well as in torsional flows between coaxial
disks or between a cone-and-disk, and have recently been reviewed by Larson (1992).
Although the detailed mechanism and characteristic features of the elastic instability may
vary in each geometry, the driving force in each case is the large difference between the
extra normal stresses in the streamwise direction and the direction of the velocity gradient.
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This first normal stress difference acts normal to the curvilinear streamlines in the flow and
drives a secondary motion.

Viscoelastic modifications ‘o the steady, inertially-driven, secondary recirculation
that is present in confined rotating flows at finite Reynolds numbers have been known to
exist since the early observations of Giesekus (1965) and Griffiths et al. (1969). Detailed
experimental and theoretical studies (Hill 1972; Chiao and Chang 1990) in rotational flows
such as the disk-and-cylinder system with low geometric aspect ratios, (R/H) ~O(1), show
that as the rotation rate increases and viscoelastic effects become increasingly important, the
weak centrifugal outward motion near the rotating disk reverses direction and becomes
directed radially inwards towards the center of the disks. At still higher rotation rates, time-
dependent unsteady motions are observed and calculated. “

However, in systems with higher aspect ratios, such secondary motions are
typically negligible and the fluid motion is steady and one-dimensional. The first
experimental indications of a purely elastic instability in the creeping torsional flow of a
viscoelastic fluid were observed by Jackson et al. (1984). Measurements of the torque and
normal force exerted by a highly elastic polyacrylamide Boger fluid at high shear rates in a
parallel-plate rheometer showed a steady monotonic increase over a period of 20 minutes.
This time-dependent response resulted in an increase in the apparent viscosity and first
normal stress coefficient calculated for the fluid sample, and was interpreted as a time-
dependent shear-thickening or anti-thixotropic change associated with the microstructure of
the fluid. Subsequent measurements by Magda and Larson (1988) with a number of
different Boger fluids containing high molecular weight polystyrene (PS) or
polyisobutylene (PIB) showed that the critical shear rate required for the onset of this
apparent anti-thixotropic transition was not constant, but varied inversely with the
separation H between the plates, and therefore corresponded to an approximately constant
critical angular velocity £i;. Figure 2.2 shows the time dependence of the measured shear
and normal stresses for a PIB Boger fluid. After an initial rise to a seemingly steady value,
the stresses rise dramatically at ~2100 s and then fluctuate about a much higher value. This
observation was found to be in goud qualitative agreement with calculations performed by
Phan-Thien (1983) for the hydrodynamic stability of torsional motions of the Upper-
Convected Maxwell and Oldroyd-B models. In tkis analysis, Phan-Thien used the von
Kérmaén similarity forms for the velocity and stress fields which are valid when the disks
are infinite in extent and examined the linear stability of the base rotational shear flow with
respect to disturbances that can also be represented in similarity form. Infinitesimal
perturbations were found to grow exponentially in time for values of the Deborah number,
De = 24£2, that exceeded the critical value given by Deggy, = f(1— B)(5—28)] /2. In this
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expression, A, is the single relaxation time in the constitutive model and B = 735/np is the
dimensionless ratio of the solvent viscosity to the total viscosity in the Oldroyd-B model.
Hence, the critical rotation rate £2.ri; for the onset of this secondary motion is predicted to
be a function of the relaxation time and viscosity ratio of the fluid between the plates, but is
_ independent of the gap H between the plates.

Subsequent flow visualization experiments w1th another PIB Boger fluid
(McKinley et al. 1991a) showed that a number of the characteristics of this elastic
instability cannot be described even qualitatively by the analysis of Phan-Thien. In
particular, flow visualization and dynamic measurements of the shear stress and normal
stresses exerted on the plates clearly demonstrated that the flow transition is
nonaxisymmetric, overstable in time and corresponds to a subcritical bifurcation. Most
importantly, the spatial structure of the developing secondary flow consists of a radially
periodic structure that scales approximately with the gap H between the plates and not of a
single toroidal vortex extending across the entire radial span of the disks, as is expected
from perturbations of the similarity form considered by Phan-Thien. As the Deborah
number was increased beyond a critical value, these vortices increased in intensity with -
time and propagated both radially outwards from the center of the disks and inwards from
the free surface at the outer edge of the test geometry. By constructing an experimental
stability curve for a number of different aspect ratios R/H and rotation rates, McKinley ez
al. also showed that the instability is a function of both the rotation rate €2 and the
characteristic shear rate yz = £2R/H between the plates, as shown in figure 2.3. This latter
variation was attributed to the complex shear-rate-dependence of the viscoelastic material
functions of the test fluid studied. '

Highly elastic fluids, such as polymer melts, also can undergo another, entirely
different, type of rotational flow instability known as edge fracture in a‘parallel-plate
rheometer (Hutton 1969). Above a critical shear rate, a narrow concave mdentatxon appears
in the free surface of the fiuid near the xmdplane between the two disks. This indentation
rapidly propagates radially inwards in the form of a crack and the viscoelastic sample is
torn into two halves, one attached to each plate. Tanner and Keentok (1983) conjectured
that this instability is driven by the negative second normal stress difference N3 = (77 - %)
measured in many polymeric systems. This observation has been verified by Lee et al.
~ (1992), who showed that the critical second normal stress difference Nacri¢ required for
“edge fracture in one particular cone-and-plate geometry remained almost constant for five

different polymer solutions. ‘
Both the purely elastic instability discussed by McKinley et al. (1991a) and edge
fracture can severely limit the operating range of rotational rheometers for polymeric fluids,
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and the particular ordering of the transitions depends on the relative magnitudes of the first -
and second normal stress coefficients and the surface tension for a given polymeric fluid.
Dilute or weakly-entangled polymer solutions, such as the Boger fluids used in the present
experiments, typically have vanishingly small second normal stress coefficients and are not
prone to the edge-fracture ‘nstability. In their previous experiments, Lee et al. (1992) were
not able to observe edge fracture in a polystyrene-based Boger fluid over a wide range of
shear rates.

Although inertial transitions and secondary motions in the flow of Newtonian
liquids between co- and counter-rotating parallel disks have been the subject of extensive
theoretical and experimental attention (see the review by Zandbergen and Dijkstra 1987),
much less is known about the corresponding flow of viscoelastic fluids. Most of the
theoretical analyses have only considered the existence and stability of secondary flows
described by the von Kdrmén similarity form first analyzed by Phan-Thien (1983). Walsh
(1987) employed a numerical scheme to show the presence of a subcritical bifurcation from
the base torsional flow of an Upper-Convected Maxwell fluid at zero Reynolds number.
Similar results showing turning points in dynamic quantities such as the total torque exerted
on the plates and the presence of multiple axisymmetric steady-state solutions of similarity
form have been found by Ji et al. (1990) for the rotational flow of an Oldroyd-B fluid
between infinite co-axial parallel plates at finite Reynolds numbers. Figure 2.4 shows the
velocity components as functions of the axial position z for two different solution families
for =0 and 0.5 for De = 4. For Branch I, the radial velocity is antisymmetric and the
axial velocity is symmetric about the center of the gap, and the maximum azimuthal velocity
is at the bottom, faster moving plate. Branch II corresponds to an unstable solution, with
the maximum azimuthal velocity no longer at the bottom plate. Crewther et al. (1991) give a
detailed review and mathematical study of both axisymmetric and nonaxisymmetric flows
for the Oldroyd-B fluid and present examples of some of the hundreds of steady-state
solutions they obtained using a bifurcation tracking scheme.

The first analysis that considered disturbances not of the similarity form was
presented by Oztekin and Brown (1993) for the inertialess torsional flow of the Oldroyd-B
‘model between infinite parallel plates. These authors considered the linear stability of
infinitesimal normal mode disturbances to the base velocity and stress fields of the form

F(r,0,2,0) = f(z)e'@+imb+ot 2.1

Where F indicates any dimensionless disturbance variable, and all kinematic variables have
been nondimensionalized with the length scale H and the time scale £-!. In equation 2.1
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the dimensionless wavenumber & characterizes the radial form of disturbance, and m is an
integer describing the azimuthal dependence of the disturbance. Nonaxisymmetric
instabilities are incorporated by choosing m # 0. The dimensionless growth rate of the
disturbance is given by the complex growith rate ¢ = 6, +i0;. By linearizing the resulting
disturbance equations about a critical dimensionless radial location R*, the authors obtained
a separable matrix eigenvalue problem which they solved to find the spatial form of the
most unstable disturbance as a function of the local radial position R*, the Deborah
number, De, and the fluid rheology, as measured by the solvent viscosity ratio . Figure
2.5 shows the critical Weissenberg number (= R*De) for axisymmetric disturbances.
Calculations showed that the most dangerous perturbations led to spiral vortices with
positive or negative angle that traveled either radially outwards or inwards, respectively.
The critical rotation rate for growth of these disturbances and the azimuthal dependence of
the most unstable mode were sensitive functions of the fluid rheology and the local radial
position. Most significantly, these disturbances were unstable at large R* for Deborah
numbers considerably below the critical condition predicted by the Phan-Thien analysis,
and thus are more likely to be observed experimentally. The critical radial wavenumber & at
the onset of the instability was in good agreement with the few photographs presented by
McKinley et al., but quantitative comparison of the azimuthal structure and wavespeed
were inhibited by the lack of data. ‘

" The calculations of Oztekin and Brown were performed with the quasi-linear
Oldroyd-B model which predicts a constant viscosity 7)g and a constant first normal stress
coefficient ¥ g in steady torsional shear flows at all rotation rates. However, for Boger
fluids such as those used in the experiments of Magda and Larson and McKinley et al., it is
well known that although the viscosity is almost constant across many decades of shear
rate, the first normal stress coefficient is only constant at low shear rates and decreases
monotonically even at moderate shear rates (Prilutski ef al. 1983; Quinzani et al. 1990).
Despite this limitation, the predicted form of the neutral stability curve obtained by Oztekin
and Brown for the critical onset radius as a function of the Deborah number adequately
described the experimental measurements of McKinley er al. when the effective relaxation
time A; () for the test fluid was evaluated using the viscometric properties measured at the
shear rate corresponding to the maximum value of R* in the experimental apparatus and
this value was used as the single relaxation time in the Oldroyd-B model.

Since it is the relative magnitude of the first normal stress coefficient ¥,(Y)
compared to the viscosity which provides the driving force for these purely elastic
instabilities, Larson (1992) pointed out that shear-thinning phenomena may be expected to
have profound stabilizing effects on the bifurcation structure and stability of highly elastic
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flows. McKinley er al. (1991a) demonstrated that when the aspect ratio R/H of the plates
was increased at a fixed rotation rate, the increasing importance of shear-thinning effects
led to a progressive decrease in the amplitude of the ultimate unstable flow developing
between the plates. However, to date, few analytical studies of the stabilizing effects of
shear-thinring on purely elastic instabilities have appeared, primarily because of the greatly
increased complexity of the analysis which results. Phan-Thien (1985) briefly reported on a
linear stability analysis for the inertialess torsional motion of a fluid described by the Phan-
Thien-Tanner (PTT) constitutive equation between an infinite cone and disk, and showed
that whereas the flow of an Oldroyd-B fluid was unstable beyond a critical rotation rate for
a particular form of the disturbance kinematics, the corresponding motion of the PTT model
was always stable at all Deborah numbers. Larson et al. (1994) considered the effects of
shear-thinning in the viscoelastic material functions, the presence of a Newtonian solvent
contribution to the viscosity, and the effects of a distribution of relaxation times on the
stability of Taylor-Couette flows to axisymmetric disturbances using the K-BKZ model.
They showed that each of these effects increased the critical Deborah number based on the
longest relaxation time for the onset of the purely elastic instability. Comparison with
experimental observations gave reasonable agreement; however, the experimentally
determined critical conditions were consistently lower than experimental measurements,
and it was speculated that the most likely reason for this discrepancy was that the most
unstable disturbance is nonaxisymmetric.

2.1.2 Cone-and-Plate Geometry

The torsional motion of a fluid in the narrow gap between a plate and an inverted
cone is one of the most common viscometric flows used in the measurement of rheological
material functions. A typical cone-and-plate rheometer configuration is shown in figure
2.1(b) and consists of a precision machined conical fixture which is mounted with its
symmetry axis perpendicular to a flat circular disk. For creeping flow conditions and small
cone angles 6y << 1, the motion between the fixtures is purely azimuthal with no
recirculating secondary flow. Measurements of the total torque and normal force exerted by
the fluid on the lower plate as a function of the imposed rotation rate £2 of the cone are used
to determine the viscous and elastic material functions of the fluid sample as a function cf
the deformation rate in the gap. Analysis of the dynamic quantities measured in this
geometry is simplified because, in contrast to the corresponding motion between coaxial
parallel plates, the circular base flow between the cone and plate is homogeneous (at least




for slow flows and small cone angles), and the shear rate throughout the fluid is constant
with a value given by y = —qu, = £2/0 (Bird et al. 1987a).

For larger cone angles and/or finite Reynolds numbers, it is well known that the
purely circumferential flow cannot satisfy the equations of motion and a weak secondary
flow consisting of an axisymmetric toroidal vortex develops between the cone and plate
(Turian 1972; Heuser and Krause 1979). In Newtonian fluids this secondary motion is
driven by centrifugal forces and is directed radially outwards near the surface of the moving
fixture. However, early flow visualization experiments by Giesekus (1963) and Walters
and coworkers (Walters and Waters 1968; Griffiths and Walters 1970) with polymer
solutions in devices with large cone angles (6y = 30°, 60°) showed that elastic hoop
stresses directed along the curved streamlines can lead to a steady axisymmetric secondary
flow that is inwardly-directed near the moving fixture.

Such secondary motions in the cone-and-plate geometry have been accurately
described analytically by considering perturbation expansions of the governing momentum
and constitutive equations in terms of the cone angle 6y, the Reynolds number
Re = pQ2R2/n, and, for viscoelastic fluids, in terms of the Deborah number De = 1,2
which measures the relative importance of elastic effects to viscous effects in the flow. In
these expressions, p is the fluid density, 1) is the fluid viscosity and A; is a characteristic
relaxation time for the viscoelastic fluid. Early numerical solutions for a cone-and-plate
system of infinite radial extent were obtained by Giesekus (1963) and ‘by Walters and
Waters (1968) using second order fluid models (Bird et al. 1987a). Closed-form analytic
expressions for the axisymmetric secondary motions of the Oldroyd-B constitutive model
have been obtained for both the unbounded case (Olagunju and Cook 1992) and for a finite
cone-and-plate geometry incorporating a deformable free surface (Olagunju 1993). These
calculations corroborate the flow visualization results described above and also indicate that
if both inertial and elastic effects are important in the flow, then two distinct recirculations
may develop; an interior, elastically-dominated vortex that is inwardly-directed near the
moving surface and a second, inertially-driven recirculation at larger radii that is outwardly
directed.

All of the observations and calculations discussed above indicate that for viscous -
fluids with Re < 1 and for small cone angles, 6 < 10° (0.175 rad), these steady secondary
flows have a negligible effect (i.e. less than 1%) on the experimentally-measured material
- properties of the fluid in a rheometric device. Consequently the flow in a cone-and-plate
rheometer is assumed to be steady and one-dimensional at all rotation rates. However,
recent analyses have indicated that the presence of elastic normal stresses along the closed
circular streamlines can destabilize the torsional motion even under creeping flow and
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small-gap conditions, and ultimately lead to the onset of more complex non-viscometric
motions (Larson 1992). Phan-Thien (1985) considered the stability of the creeping motion
between a cone-and-plate for a viscoelastic fluid described by the quasilinear Oldroyd-B
model (Bird et al. 1987a). By considering axisymmetric disgufbanpes that could be
represented in a similarity form, Phan-Thien showed that there exists a critical Deborah
number Decrit =41 it beyond which the base azimuthal motiony is unstable to infinitesimal
perturbations. This stability criterion was found to be independent of the cone angle 6 and
to depend only on the solvent viscosity ratio of the fluid defined as B =1)5/1g, where 7; is
the viscous contribution of the Newtonian solvent, and 7 is the total viscosity predicted by
the constitutive model. More recent calculations by Olagunju and Cook (1993) extended
this analysis for the Oldroyd-B model to include O(1) inertial effects and axisymmetric
disturbance kinematics of a more general form. Asymptotic solutions of the governing
equations again indicate that at a critical Deborah number, Decs, there is an exchange of
stability and loss of uniqueness in the steady solution. Incorporéting inertial effects was
found to destabilize the steady axisymmetric base solution and to reduce the critical
Deborah number below the value found by Phan-Thien.

Experimental measurements also have suggested the presence of viscoelastic flow
instabilities in cone-and-plate geometries. Early qualitative flow visualization photographs
were presented by Kocherov et al. (1973) for polyethylene melts in a disc-type extruder
containing a cone-and-plate fixture at the exit. No torque or normal force measurements
were presented, but the introduction of tracer particles showed that the fluid pathlines were
not concentric circles but of a non-axisymmetric spiral form. The extent of this secondary
flow was found to depend on the rotation rate of the conical fixture and on the cone angle
6p. Although no quantitative measurements were presented, these spiral patterns were
labeled by Kocherov et al. as ‘spirals of Archimedes’. A similar flow instability in cone-
and-plate geometries with cone angles 6y < 10° was reported later +y Kulicke and Porter
(1979) in rheological studies of shear-thinning polymer snlutions. The unstable motion that
they observed resulted in a time-dependent increase in thc normal force exerted by the fluid
on the plates beyond a critical shear rate Ycrj; which was found to vary with the molecular

‘weight and concentration of the polymer. No observations of the spatial structure of the
flow between the cone and plate were provided; however, the authors did present
photographs of the deformable fluid surface at the edge of the conical fixtures. Following
the onset of unsteady motion, spatially-periodic surface irregularities were observed at the
interface which were interpreted in terms of recirculating secondary vortices. These vortices
scaled in size with the gap height at the edge of the cone-and-plate rheometer and slowly
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precessed in the direction of imposed rotation at a rate slower than the rotation rate of the
device.

Magda and Larson (1988) performed the first experiments connecting rheological
measurements in a cone-and-plate geometry with the linear stability analysis of Phan-Thien.
The experiments utilized highly-elastic, constant-viscosity Boger fluids to eliminate viscous
shear-thinning effects, and conical fixtures with angles in the range 2.5° < 6 < 10°. In
addition to documenting the time-dependent increase in the torque and normal forces
measured in the device, Magda and Larson also demonstrated that the critical shear-rate for
onset of instability varied inversely with the cone angle and thus corresponded to an
approximately constant critical value of the rotation rate, in accord with the analysis of
Phan-Thien. Subsequent measurements by Laun and Hingmann (1990) and McKinley et
al. (1991a) corroborated these observations; however, these studies also showed that the
detailed dynamics of the elastic cone-and-plate instability that are observed experimentally
are not of the form predicted by the Phan-Thien—Olagunju analyses, but correspond to a
subcritical Hopf bifurcation from the steady base flow.

No quantitative observations of the azimuthal spatial variation of the secondary flow
between a cone and a plate have ever been performed; however, the early work of
Kocherov et al. (1973) suggests that the unsteady flow observed will not be axisymmetric
but also will consist of spiral recirculating vortices. The close similarities between the
critical conditions and time-dependent torque/normal-force measurements in cone-and-plate
and parallel-plate geometries that have been observed by previous investigators (Magda and
Larson 1988; McKinley et al. 1991a) suggest that the elastic flow instabilities in both
configurations may be very similar. There are, however, a number of very important
differences between the cone-and-plate and i)arallel-plate geometries which make the
previous analysis for the coaxial-disk geometry inappropriate. Most importantly, in the
limit of small cone angles (6y << 1) the base shear flow between the cone and plate is a
homogeneous shear flow with a shear rate, y =£2/6,, that is independent of radial
location across the disk. Thus, at any given set of experimental conditions, both the shear
rate and the Deborah number will be uniform throughout the fluid, and it is not appropriate
to consider localized disturbances about a given critical radius R*, as was the case for the
paraliel-plate geometry. In addition, there is no characteristic length scale H between the
cone and the plate on which to base the scale of the secondary vortices, and the wavelength
of the most unstable, nonlocal disturbance mode may be expected to vary throughout the
fluid sample.
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2.2 Viscoelastic Stagnation Flows

The geometry of flow past a cylinder to be considered in this thesis is shown in
figure 2.6. The cylinder is centered between two parallel'channel walls, and the ratio of
the cylinder radius to the channel half-height is defined as R/H. Far upstream and
downstream the flow is fully-developed plane Poiseuille flow. The points S; and S5 are
stagnation points, where all velocity components and their derivatives are zero. Polymer
molecules will have long residence times near the stagnation points, which can lead to large
molecular extensions and highjelastic stresses, which in turn affect the flow field and drag.

Although the focus of this thesis is on viscoelastic flow past a cylinder, an
understanding of Newtonian flow past a cylinder is important for comparison with flows at
nonzero De. A brief review of Newtonian flow past a cylinder is therefore presented in
§2.2.1, followed by a more complete review of viscoelastic flow past a cylinder in §2.2.2.
Furthermore, the axisymmetric stagnation flow past a sphere is considered in §§2.2.3-4,
and stagnation flow instabilities are reviewed in §2.2.5.

2.2.1 Newtonian Flow Past a Cylinder

The inertialess equations of motion can be solved for uniform flow past a circular
cylinder to yield the stream function (Batchelor 1967)

V= Usine[ Ar+ 2_ —2€rlnr] , 2.2)
r

where U is the far-field velocity and the origin of the coordinate system is at the center of
the cylinder and A, B and C are constants. The drag force per unit length of the cylinder is

—lli = 2rnuUC, 2.3)

where 4 is the fluid viscosity. In equations 2.2-3, no choice of the constant C can
simultaneously provide a bounded velocity far from the cylinder and a nonzero drég force
on the cylinder. This inconsistency is known as Stokes' paradox, and exists for all
unbounded two-dimensional creeping flows (Happel and Brenner 1973).

Lamb (1932) used Oseen's linearization of the inertial terms to obtain an
approximate function which is accurate near the cylinder for distances up to r/R = 1/Re:
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Figure 2.6 Schematic diagram of viscoelastic flow past a cylinder. The cylinder
of radius R is centered in a channel of half-height H. A Cartesian coordinate system
is defined with its origin at the center of the cylinder.
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y = p—Tin [L_,ln(_t.)_&_], 2.4
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where 7is Euler's constant (= 0.577) and the drag coefficient for this solution is

87

1 . (2.5)
Re[a- -v+In8~1In Re]

G =

Stokes' paradox can alsc be avoided by the introduction of walls to bound the freestream
flow, in which the solution will depend on the aspect ratio Rc/H between the cylinder
- radius and the channel half-height, H. Faxén (1946) presented series expansions for the
drag force and pressure drop in creeping flow up to order (R./H)8. ‘the drag coefficient for
a cylinder moving through a channel with a velocity U normal to its axis can be expressed
as

4

[—0.9157 - m(%—)af 1.7244(%)2 + o(%-ﬂ |

The complete solutions are shown in figure 2.7 for both the case of a cylinder moving
through a channel (subscript '1') and a fixed cylinder with plane Poiseuille flow with
maximum velocity U in the channel (subscript '2'). The drag force is given by F; = uUr;
and the pressure drop is P; = uUp;. As the aspect ratio increases and the presence of the
walls becomes more important, the drag force increases dramatically.

The focus of this work is on the effect of elasticity on the flow field at low
Reynolds number, but the flow past a cylinder also changes with increasing Re. At low Re,
the streamlines are symmetric about the cylinder, but when inertial effects become
important near Re = 1, the streamlines begin to shift downstream. At Re ~ 6 a pair of
recirculating vortices appear downstream of the cylinder, as shown in figure 2.8, and they
extend further downstream with increasing Re. At Re ~40 the wake downstream of the
cylinder becomes unstable and oscillates with an amplitude that increases with distance
downstream of the cylinder. As Re is increased, the oscillation moves closer to the
cylinder, and at Re ~60 the vortices behind the cylinder begin to oscillate and shed from
alternate sides of the cylinder, resulting in the von K4rmén vortex street shown in figure
2.9. These oscillations continue until Re = 2500, and at Re =~ 4x105 the boundary layer
near the cylinder becomes unstable.

(2.6)

o)
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Figure 2.7 Drag force and pressure drop caused by the presence of walls for
Newtonian flow past a cylinder (from Faxén 1946) as functions of the cylinder-
channel ratic. The drag force is F = MUr; and the pressure drop is P = HUpj, where
i=1is for a cylinder moving through a channel, and i =2 is for plane Poiseuille
flow. The drag for a cylinder moving normal to the channel walls is given by ry,.
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Figure 2.9 Streaklines of the wake behind a cylinder for increasing Reynolds
number (from Homann, in Batchelor 1967).
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The drag coefficient for flow past a cylinder as a function of the Reynolds number
is shown in figure 2.10. It follows equation 2.5 at low Re, approaches a nearly constant
value at intermediate Re and drops sharply when the point of detachment of the wake shifts
from in front of the equator of the sphere to in back of the equator. o B

2.2.2 Viscoelastic Flow Past a Cylinder

Early studies of viscoelastic flow past a cylinder sought analytic solutions for the
stream function and drag coefficient at low De. Ultman and Denn (1971) used the Oseen
approximation to linearize both the equations of motion and the Upper Convected Maxwell
model about the streaming velocity. Further restricting the flow to small deformations
yielded the infinitesimal Maxwell model of linear viscoelasticity. Their analysis showed that
for ReDe < 1 the equation set is elliptic and has a continuous solution. However, for ReDe
>1 the equation set becomes hyperbolic and discontinuities can propagate along
streamlines. They also predicted drag reduction of O(ReDe) and a large upstream shift of
streamlines. Their experiments with a cylinder suspended in a cylindrical pipe showed a
large upstream shift of the streamlines for aqueous solutions of carboxymethyl cellulose
(CMC) and polyacrylamide (PAA). Their analytical technique was criticized by Mena and
Caswell (1974) and Zana ez al. (1975) since it reduced the order of the equations and led to
an approximation which was not uniformly valid.

Instead, Mena and Caswell matched outer (Oseen) and inner (Stokes) solutions to
obtain a solution valid for the entire flow field for Re << 1 and De << 1. They found an
O(De2) decrease in the drag coefficient and downstream shift of the streamlines for an
Oldroyd fluid.

Broadbent and Mena (1974) measured the drag on a cylinder in a square duct for an
aqueous PAA solution using a linear displacement transducer. Their results showed a
quadratic reduction in the drag relative to values for Newtonian fluids for Re < 0.1.
However, their flow visualization experiments were unable to detect any differences in the
streamlines between the PAA fluid and glycerol. Later experiments by Manero and Mena
(1981) used fluids consisting of PAA in water and glycerol/water to cover a wide range of
De. They observed a downstream shift of the streamlines for De < 1 and Re < 0.01,
whereas for De > 1 the streamlines were shifted upstream.

Dhahir and Walters (1989) examined the effects of fluid rheology on drag force and
streamlines by using Newtonian fluids, Boger fluids of PAA in a solvent consisting of corn
syrup and water, shear-thinning solutions of PAA/H,0 and solutions of the rigid rod
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molecule Xanthan gum, which have a shear-thinning viscosity, but lower normal stresses
than the PAA solutions and also a strain-thinning extensional viscosity. Their experiments
used a square duct and a cylinder with R/H = 0.6 that could be positioned asymmetrically
between the channel walls. They found that for an asymmetric arrangement fluid elasticity
resulted in relatively less fluid passing through the narrow gap, theréby exaggerating the
asymmetry. All fluids showed a decrease in the drag force as the eccentricity of the cylinder
was increased, and the viscoelastic fluids also showed a lift force normal to the flow and
directed toward the near wall that increased for larger eccentricities. Their calculations using
the Generalized Newtonian Fluid and Upper Convected Maxwell models provided
qualitative agreement for drag measurements as a function of De and eccentricity.

McKinley et al. (1993) used LDV to measure quantitatively the effects of elasticity
on the flow field past a cylinder centrally mounted in a rectangular channel. They used a
PIB Boger fluid and cylinder-channel aspect ratios between 0.17 and 0.50. Measurements
of the streamwise velocity along the centerplane showed no changes in the upstream
velocity profile with increasing De, while the downstream wake was extended with
increasing De. Flow visualization and LDV were used to show that beyond a critical De a
flow instability developed in the downstream wake. A steady, cellular structure was formed
in which the streamwise velocity became periodic along the neutral direction of the cylinder
axis. In figure 2.11, the centerplane of the flow cell has been illuminated by a sheet of laser
light, and the periodically spaced bright bands correspond to regions of higher scattering
particle density, and therefore higher streamwise velocity. This instability was characterized
in terms of its onset conditions and the spatial wavelength of the velocity fluctuations, and
it was found that the critical De and the ratio of the wavelength to the cylinder radius both
increased as the cylinder to channel height ratio was decreased. A second flow transition
was also observed at higher De when the flow became time-dependent, and the previously
stationary cells began to travel outward from the center of the cylinder.

LDV was combined with flow induced birefringence (FIB) by Baaijens et al.
(1994) to provide the first simultaneous measurements of the velocity and stress for flow
past a cylinder. They used a shear-thinning solution of PIB/tetradecane and an aspect ratio
of R/H = 0.49. Their velocity and first normal stress difference measurements upstream of
the cylinder agreed well with their simulations for De = 0.22 using a single-mode Phan-
Thien-Tanner (PTT) model. However, downstream of the cylinder the measured stresses
have different profiles than the calculated values across the channel and relax much more
slowly downstream. This discrepancy was attributed to problems with the experimental
system that were later corrected.
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Studies have also been conducted on the flow of viscoelastic fluids through an array
of cylinders. In this geometry, molecules at the upstream stagnation point have already
been extended by previous cylinders and the molecular extension can be accumulated
through the array. Georgiou et al. (1991) studied a single line of eccentrically positioned
cylinders in a duct, with alternate cylinders offset to opposite sides of the centerplane. Flow
visualization experiments with fluids similar to those used by Dhahir and Walters showed
little effect of viscoelasticity on the streamlines for the Boger fluid, whereas less of the
aqueous PAA solution passed through the narrow gap between the cylinder and the near
wall as De was increased. Pressure drop measurements across the geometry showed drag
reduction for the PAA solutions, whereas the Boger fluid showed initial drag reduction
followed by a large increase in the pressure drop at higher De. This same trend was shown
qualitatively for calculations with the Oldroyd-B constitutive equation.

Chmielewski and Jayaraman (1993) used flow visualization and LDV to study the
flow of a PIB Boger fluid and a PIB/decalin solution through square and hexagonal arrays
of cylinders. Beyond a critical Deborah number, streaklines for the Boger fluid become
asymmetric, indicating the presence of an elastic instability. The asymmetry was much
more pronounced for the square array, and no measurements were take to determine if this
was a three-dimensional instability similar to that observed by McKinley et al. Flow
resistance measurements for the Boger fluid showed increased resistance relative to the
Newtonian value for both arrays, with no initial decrease.

Numerical simulations of the flow past a cylinder have also been concerned with the
effect of elasticity on the streamlines and drag force. Townsend (1980) used a four-
constant Oldroyd model to study flow past a cylinder in an infinite domain with a uniform
flow imposed at a distance of 20 cylinder radii. Elasticity was found to cause a small
downstream shift of the streamlines, and incorporating a shear-thinning viscosity resulted
in a larger downstream shift. The drag was found to decrease for low Re (< 0.1) and
increase for Re > 5, in contrast to the results for a Newtonian fluid, for which the drag
coefficient decreases with increasing Re. For the range of parameters considered, shear-
thinning had little effect on the drag. Townsend (1984) also solved time-dependent flows
with the Oldroyd-B model in order to continue calculations up to De = 5. A further
downstream shift of the streamlines and a greater drag increase were found, as well as a
recirculation region behind the cylinder at Re = 2.5.

Chilcott and Rallison (1988) proposed a FENE dumbbell constitutive equation for
use in time-dependent calculations of creeping viscoelastic flow past cylinders, spheres and
bubbles. The fluid was considered to be a dilute solution of noninteracting dumbbells, and
separate equations were used for the evolution of the dumbbell extension and the polymeric
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stress. The flow considered was similar to that of Townsend, in that the cylinder was taken
to be in an infinite medium with uniform flow imposed at a constant radial position far from
the cylinder. Figure 2.12 shows contours of constant molecular extension for flow past a
cylinder at De = 8 with flow from left to right. Molecules are highly extended as they
approach the upstream stagnation point, in the region of high shear rates along the sides of
the cylinder and in the downstream wake. Because the velocity gradients vanish at the
stagnation points, molecules at the stagnation points are fully relaxed, and the regions of
highest deformation occur slightly away from the stagnation points. The drag was found to
increase for De > 1 and approach an asymptotic value at high De. The émymptotic value
increased when the fully extended length of the dumbbells was increased, due to a higher
value of the extensional viscosity. The streamwise velocity acc#alerated slightly relative to
that for a Newtonian fluid immediately downstream of the rear stagnation point, but further
downstream there was a large downstream shift of the streamlines. .

Carew and Townsend (1991) used both the Oldroyd-B and the PTT models to
study the effects of elasticity and shear-thinning in flow past a cylinder in a channel. The
cylinder-channel aspect ratio was 0.58, and both symmetrically and asymmetrically
positioned cylinders were considered. They found no differences in the streamlines for the
Newtonian and Oldroyd-B cases, and the shear-thinning of the PTT model led to a slight
upstream shift that increased for high eccentricity. The drag force for both models
decreased with increasing De or eccentricity, with the PTT value lower than the Oldroyd-B
value for De > 0.1. As observed in the experiments of Dhahir and Walters, they also found
a transverse force toward the near wall for eccentrically positioned cylinders.

2.2.3 Newtonian Flow Past a Sphere

Stokes obtained an analytic expression for the streamlines of the uniform flow of an
unbounded Newtonian fluid of viscosity i past a stationary sphere for Re = 0. He showed
that

r

2
=%Uo&2[—é-—§-f—s+2(—&-) ]xinze : @7

Integration of normal and shear stresses over the surface of the sphere yields the drag force
on the sphere

Fg =6muRU.,,. (2.8)

49




(a)

b
.o
..
-
-
-
..
-
.~
‘e
e
e
-

Figure 2.12 Contours of tr[ 7] for flow past a cylinder for De = 8 and L = 10. a)
Overall view showing the extent of the wake and b) detail showing high stress
gradients near the cylinder (from Chilcott and Rallison 1988).
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For a sphere falling through an unbounded liquid at steady state, this force must be
balanced by gravity . ‘
Fyy =2 7R(Ps — ), 29

where ps and pr are the densities of the sphere and the fluid, respectively. Knowing the
densities and the radius and measuring the terminal velocity of the sphere thus leads to a
simple way of measuring the viscosity of a Newtonian fluid in creeping flow.

The drag coefficient of Stokes’ flow past a sphere is

_ 6muRU _ 24
s =1 — =%’ (2.10)
5 PU RS

where Re is the Reynolds number based on the sphere diameter and unbounded fluid
velocity, 2psRsUs/LL.

A correction to equation 2.10 was obtained by Oseen to account for the effect of a
finite Re. Using a singular perturbation technique and matching inner and outer solutions
gives

&) =-2—{'-(1+1Re+ O(RelnRe)). .11
Re 16

A far more important correction that must be made to Cps is that required by the
presence of the cylinder walls near the sphere. The effect of walls is to increase the drag on
the sphere, and the drag enhancement increases with the aspect ratio of the sphere radius to
the cylinder radius, R¢/R., as was seen above for the presence of channel walls near a
cylinder.

Equation 2.8 can be rewritten for a bounded fluid as

F = 6muRy(K1Us + KoUy), (2.12)

where K1 and K3 are the wall correction factors for stagnant fluid and Poiseuille flow,
respectively. Bohlin (1960) extended on Faxén's work (1946) using the method of
reflections, which gives K1 and K3 as an expansion in R¢/R..

Haberman and Sayre (1958) expanded the stream function in both cylindrical and
spherical coordinates. Matching terms yields an infinite set of algebraic equations, but
keeping only the first two gives good agreement with the exact theory for Ry/R. < 0.5.
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This thesis will be cencerned with understanding the effect of increasing the
Deborah number at low Reynolds number. The problem of flow evolution with increasing
Reynolds number has been the subject of much previous work (See Clift e al. 1978). The
drag coefficient as a function of Re is shown in figure 2.10. For Re < 1 Stokes’ law is
closely followed, and the streamlines are symmetric fore and aft. As Re increases, the
streamlines are shifted downstream, and at Re = 20 a steady wake forms behind the sphere
and grows with Re.

At higher Re this wake becomes unstable, and vortices are shed from the sphere.
Kim and Pearlstein (1990) solved the linear stability problem, and showed that the flow is
stable up to at least Re = 190 for axisymmetric disturbances, but that a Hopf bifurcation
occurs at Re = 175 for nonaxisymmetric disturbances.

Vortices are shed at higher frequency at increasing Re, and the drag coefficient is
nearly constant over two decades from Re = 103 to 10°. At Re = 3.5x105, there is a
sudden drop in the drag coefficient associated with the boundary layer becoming turbulent,
which delays boundary layer separation. Achenbach (1972) has shown that Cp increases
slightly at higher Re as the angle of the laminar/turbulent transition moves forward on the
sphere.

2.2.4 Viscoelastic Flow Past a Sphere

The goal of past studies of viscoelastic flow past spheres has been to understand the
effect of elasticity on velocity profiles, the drag coefficient and wall effects. Only limited
efforts have been made toward understanding the stability of the flow with increasing
Deborah number.

The earliest study of viscoelastic flow past a sphere was that of Leslie and Tanner
(1961), who found that for creeping flow, an expansion ir De in the Oldroyd 6-constant
model predicts a slight downstream shift in streamlines and an O(De?) decrease in the drag
from the Newtonian case. Caswell and Schwarz (1962) obtained similar results from their
study of creeping flow of a third-order Rivlin-Erickson fluid by matching inner and outer
expansions of the stream function.

The first experimental study aimed at determining the effects of elasticity on the
drag coefficient and streamlines for flow past a sphere was that of Broadbent and Mena
(1974). The sphere was held in place in an open channel by a shaft, and the drag was
measured by a linear inductance displacement transducer. Using a 2% polyacrylamide
(PAA)/H,0 solution, they found that the drag reduction from the Stokes drag was
quadratic in velocity for Re < 0.3. "'
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Acharya et al. (1976) solved for an approximate stream function for flow of a
power law fluid past a sphere, from which they obtained an expression for the drag
coefficient as a function of the power law index. The drag coefficients for balls falling in
solutions of carboxymethylcellulose (CMC) and Carbopol followed their predictions for
Re < 1. They also studied shear-thinning solutions of PAA and poly(ethylene oxide)
(PEO), and found that the drag reduction would be accounted for simply by the shear rate-
dependent viscosity and their theory for inelastic fluids.

Numerical simulations have also predicted drag reduction for viscoelastic fluids.
Hassager and Bisgaard (1983) used a Lagrangian finite element method and the Upper
Convected Maxwell (UCM) model to predict the drag as a function of Rg/R; and De. They
found little deviation from Stokes’ law for Rg/R. < 0.3, but at Rg/R; = 0.5 the wall
correction factor decreased rapidly with De. v

Sugeng and Tanner (1986) obtained similar results for Rs/R; = 0.5 using the
modified Phan-Thien-Tanner model. Drag reduction of 40% occurred for a shear-thinning
fluid, while a UCM fluid showed drag reduction of 25%.

All of the above studies used shear-thinning polymer solutions. A lower viscosity
will lead to drag reduction with respect to the drag calculated based on the zero-shear
viscosity, and this can lead to seemingly diminished wall effects. In order to isolate the
effects of elasticity from viscous shear-thinning effects, recent efforts toward determining
the role of elasticity in drag reduction have focused on Boger fluids, which are highly
elastic with a nearly constant viscosity.

Chhabra et al. (1980) used a series of PAA/com syrup (CS) Boger fluids with zero-
shear-rate relaxation times of 0.037 s < Aj < 0.51 s in falling-ball experiments. Since their
largest sphere radius to tube radius ratio, Rg/R., was 0.07, no wall correction was made.
For De < 0.1 they observed no drag reduction, but beyond this De, the ratio of the
measured drag to that expected for Stokes’ flow decreased to an asymptotic value of 0.74
for De 2 0.7. They observed that drag reduction occurred only at shear rates for which ¥,
was shear-thinning. Similar results are reported by Chhabra and Uhlherr (1988) for other
PAA/CS Boger fluids.

A careful study of the effect of fluid rheology on drag was carried out by Mena ez
al. (1987) using four types of fluids: Newtonian (glycerol and glycerol/water); an inelastic,
shear-thinning fluid (Carbopol/ethylene glycol); an elastic shear-thinning PAA/H,0
solution; and a constant viscosity, elastic PAA/CS Boger fluid. Spheres were suspended
from thin wires, and the force required to pull the spheres through the fluids at a constant
velocity was measured. At low values of Rs/Rc, the drag reduction for both elastic
solutions followed an O(De2) dependence, as predicted by perturbation theories. However,
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for the PAA/H,O solution, the O(De?) dependence was followed to De ~ 3. For Ry/R.
values of 0.375 and 0.5, the drag reduction for the PAA/H,0 solution followed an O(De)
dependence. No high Rs/R. results were reported for the Boger fluid. It was shown that the
drag reduction for the inelastic fluid and the shear-thinning PAA/H,0 could be accounted
for by considering the shear rate-dependent viscosity. Furthermore, the drag reduction of
the Boger fluid followed exactly the trend of Chhabra et al. (1980).

In contrast to the drag reduction found for PAA/CS Boger fluids, drag enhancement
has been observed for polyisobutylene (PIB)/PB Boger fluids. Chmielewski et al. (1990)
used both PAA/CS and PIB/PB Boger fluids in falling-ball experiments. The drag
reduction for the PAA/CS fluid was similar to that of Chhabra ez al., while for De > 0.3 the
drag ratio of the PIB/PB fluid increased, reaching 1.15 at De = 0.7. In experiments by
Tirtaatmadja et al. (1990), test fluid M1 (a PIB/PB Boger fluid) showed a slight decrease in
drag for De > 0.1, followed by an increase in drag with respect to the Newtonian value for
De > 0.6. Based on intrinsic viscosity measurements, Chmielewski et al. note that PAA
molecules in corn syrup are more fully extended relative to their contour length than are
PIB molecules in polybutene. In terms of the calculations of Chilcott and Rallison (1988),
this implies a higher value of their parameter L for PIB, which has been shown (Lunsmann
et al. 1993) to lead to drag enhancement. Calculations by Harlen (1990) using the
birefringent strand technique also predicted an initial decrease in the drag, followed by an
increase at higher De. This method assumes that molecules in a narrow region downstream
of the stagnation point (the 'birefringent strand') are fully extended, while molecules
outside the region are not extended.

Lunsmann et al. (1993) compared the Oldroyd-B, UCM and Chilcott-Rallison
models for a sphere falling through a tube. The Oldroyd-B model showed a small
downstream shift in the velocity field, but a more pronounced shift in the stress field for
both Rg/R. = 0.5 and 0.125. For Rg/R; = 0.5, the modified drag coefficient, K, decreased
monotonically with increasing De for all values of the solvent viscosity ratio, as seen in
figure 2.13, where K= K(Rs/R., De) is the ratio of the drag for a falling sphere in a tube to
the drag for a sphere falling through a Newtonian fluid of the same viscosity. The
maximum decrease was for the UCM limit of no solvent viscosity, yielding a 30% decrease
at De = 1.5. A small decrease followed by a larger increase was found for all solvent
viscosity ratios for R¢/R. = 0.125, although the maximum deviation from the Newtonian
value was 5% at De = 2. Calculations with the Chilcott-Rallison model showed that loss of
convergence for the Oldroyd-B model was not due to an unbounded extensional viscosity,
but rather to the steep stress boundary layers in the sphere wake. The drag coefficient for
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R¢/R. = 0.5 decreased monotonically with De, but for R¢/R. = 0.125 the initial decrease
was followed by either an increase for L 2 10, or a further decrease for L = 5.

Similar results for the dependence of the drag coefficient on the viscosity ratio,
aspect ratio and L were obtained by Satrape and Crochet (1994) for the Chilcott-Rallison
model. They also showed that for extremely small values of L (L = 3.24) it was possible to
obtain a negative wake for the Chilcott-Rallison model, whereas all previous observations
of a negative wake had been for constitutive models or fluids with shear-thinning viscosity.
Furthermore, introduction of a second normal stress coefficient with a magnitude as large
as 20% of the first normal stress coefficient was found to increase the drag coefficient by
just 2%.

While most studies show at least initial drag reduction, there is less agreement on
the effect of elasticity on streamlines. Broadbent and Mena’s flow visualization by dye
injection failed to show any shift in streamlines with respect to Newtonian glycerolVH,O
solutions. A slight upstream shift of the streamlines was observed by Zana et al. (1975) for
PAA/H,0 solutions. However, the magnitude of the shift was much smaller than that
predicted by Ultman and Denn. They found that the amount of the shift and the distance
away from the flow axis at which elastic effects could be observed both increased with De.

Sigli and Contenceau (1977) obtained axial velocity profiles for spheres falling
through a cylinder of R¢/R; = 0.5 past a camera fixed in the laboratory reference frame. The
flow is symmetric about the center of the sphere for a Newtonian oil, while the flow pattern
is markedly different for a PEO/H,0 solution. The disturbance caused by the sphere in the
viscoelastic fluid at the same Re extends over a larger distance and is no longer symmetric.
Furthermore, near the sphere tue fluid moves in the same direction as the sphere, whereas
farther downstream the fluid velocity is directed away from the sphere. This has been
termed a ‘negative wake’ by Hassager (1979), who observed the same phenomenon for a |
bubble rising through a PAA/glycerol solution. The negative wake is a possible explanation
for the observation of Riddle et al. (1977) that two spheres falling along their centerline
converge for small initial separations, but diverge for large initial separations. Figure 2.14
shows the velocity profiles measured by Sigli and Contenceau for their PEO solution as a
function of the Deborah number based on the sphere velocityV,,. The velocities are relative
to a reference frame moving with the sphere (at -V, with respect to a laboratory reference
frame). V/V,= 1 is therefore stagnant fluid, while V/V,, > 1 indicates a negative wake.
Increasing De leads to a greater velocity overshoot and causes the maximum negative
velocity to move closer to the sphere. Experiments with different sphere/tube radius ratios
showed that increasing R¢/R. also led to a greater overshoot closer to the sphere.
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Bisgaard (1983) used a one-color LDV system focused at a point on the axis of a
cylinder filled with 1% PAA in glycerol, and the fluid velocity at that point was measured
as a function of time as a sphere fell along the axis. Knowing the sphere velocity allows the
data to be converted to velocity as a function of position. The velocity increases as the
sphere approaches the measuring volume, and then decreases and becomes negative behind
the sphere. The ratio of the magnitude of the maximum negative velocity to the magnitude
of the sphere velocity was about 0.04 for 11.4 < De < 66.5 and 0.04 < R¢/R; < 0.16. At
De > 40, oscillations were observed in the axial velocity downstream of the sphere, while
the radial velocity remained zero, as seen in figure 2.15. The Fourier spectrum of the
velocity signal was calculated, but no dominant frequency was found. By measuring the
velocity at a single point as the sphere passes by, it is impossible to distinguish spatial and
temporal instabilities in the sphere wake. No such oscillations were observed in a
- Newtonian fluid (glycerol/H,O) at a comparable Re, and the viscoelastic oscillations were
damped at higher Reynolds (and Deborah) number.

An upstream shift in the streamlines very close to the downstream stagnation point
followed by a downstream shift was found by Bush (1993) for flow past a sphere held in
place on the centerline of a cylinder. LDV measurements of Newtonian fluids and PAA
Boger fluids past a sphere with Rg/R¢ = 0.5 showed an initial acceleration for all De, but
over a shorter distance downstream as De was increased. Similar results were found for
finite element calculations using both the Oldroyd-B and PTT constitutive equations,
although for the PTT model the extent of the downstream shift was less sensitive to De,
which was in better agreement with the experimental results. Calculations for a sphere
falling through a cylinder showed that the acceleration was greatly reduced at all De due to
the fact that for the sphere fixed relative to the walls there are higher peak values of the
velocity and stress in the downstream wake. Figure 2.16 compares the contours of the
tensile stress 05z for the Oldroyd-B model for the two cases for De = 0.6, RJ/R; = 0.5 and
B =0.6. Bush (1994) extended this work to shear-thinning fluids. Elasticity was again
found to cause an initial upstream shift, but a high extensional viscosity was found to
reduce the shift. Increasing the ratio De/Tr was also shown to enhance the negative wake,
where T is the Trouton ratio, ﬁ(é)/n(ﬁé) , where €=U /3 R;.

Becker et al. (1993) used a digital imaging sysiem to measure the transient velocity
of a sphere released from rest. An aspect ratio of 0.24 was used for all spheres, and the test
fiuid was a PIB Boger fluid. An initial overshoot in the sphere velocity was observed,
followed by a monotonic decrease to a steady value. At the highest De, the velocity
overshoot was nearly 50% of the steady value. Based on the steady settling velocity, it was
found that there was a drag decrease at low De, followed by an increase at higher De. A
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Figure 2.15 Instability in the axial velocity in the wake of a falling sphere, Ry/R.
=0.12, De = 47.6 (from Bisgaard 1983).
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Lagrangian finite element method was also used with both smgle— and multimode Oldroyd-
B models to calculate the transxent velocity profile The sxngle mode ca]culanons show an
initial overshoot, although its magmtude is much hlgher than expenmentally observed and
nearly independent of De. The four-mode model was able to mcorporate both the short time
constants that determine the mltxal velocxty overshoot and the Iong txme constants that
influence the velocxty decay rate, thereby giving much better quantltanve agreement
especially at hngh De.

2.2.5 Stagnation Flow Instabilities

Flow past a sphere and flow past a cylinder are both complex mixtures of shearing
and extensional flows, although as seen in §§2.14, one of the most unportant features of
these flows is the rear stagnation point in each geometry. This sectnon bneﬂy considers
studies of purely extensional flow as it relates to flow instabilities.

Lagnado et al. (1984) considered the stability of the entire class of unbounded two-
dimensional linear flows that can be generated in a four-roll mill. By varying the relative
rotation speeds and directions of the rollers, pure rotational, simple shear and pure
extensional flows can be generated, as well as all intermediate flows. For the special case
of pure extensional flow, they showed that vorticity disturbances that are aperiodic in the
direction of the inlet streamlines will grow in time provided that the wavenumber in the
neutral direction is sufficiently small. In this case, the growth rate of the disturbance
vorticity from vortex line stretching in the base flow is greater than the decay rate due to
viscous diffusion in the neutral direction.

This analysis was extended (Lagnado ez al. 1985) to a general Oldroyd model in
which the fluid rheology was varied by using a time derivative in the constitutive equation
that was allowed to vary from corotational (yielding a shear-thmmng viscosity and constant
extensional viscosity) to codeformational (yielding constant viscosity and strain-thickening
extensional viscosity). For the codeformational derivative, the Oldroyd-B model was
recovered, and the Newtonian solution was modified by extending slightly the range of
unstable wavenumbers. However, for intermediate forms of the time derivative, there was
less destabilization or even stabilization at low De, but beyond a critical De the flow was
unstable to all wavenumbers in the neutral direction.

Flow visualization experiments of the flow of a Newtonian fluid (glycerol/water) in
a four-roll mill by Lagnado and Leal (1990) showed that for a finite geometry the transition
to three-dimensional flow was primarily an end effect. For a value of the roller length to
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gap width between rollers aspect ratio of 3.4, the flow was nearly two-dimensional
throughout the geometry for Re < 5, but as the Reynolds number was increased, pairs of
vortices formed at the ends of the geometry and grew until they met at the horizontal
midplane at Re = 37. At higher Re the flow lost its symmetry about the horizontal and
vertical midplanes, and for Re > 60, the flow became unsteady. For an aspect ratio of 12.7,
the end vortices did not grow enough to touch one another, and cells did not form along the
entire length of the rollers. For Re > 37 the vortices at each end became asymmetric, and
for Re > 55 vortices were periodically shed inward from each end.

Kerr and Dold (1994) also considered a two-dimensional linear stagnation flow,
U = (0, Ay, -Az), and showed that it was unstable to three-dimensional disturbances.
They showed that any nonlinear disturbance that initially had no component in the direction
of the outgoing streamlines (y) would not develop a streamwise component, and that
solutions existed that consisted of periodic rows of steady conterrotating vortices with their
axes parallel to the outgoing flow direction, as shown in figure 2.17. The vortices were
characterized in terms of two parameters: the strength of the converging flow relative to the
rate of viscous dissipation and the amplitude of the solutions, A. As the strength of the
flow was increased, the vortices were confined to a smaller region near the plane z = 0, and
as the amplitude was increased, the vortices developed into a spiral flow.

The stability of a planar extensional flow of a dilute solution of linear-locked
dumbbells was studied by Harris and Rallison (1994) using the birefringent strand
technique of Harlen et al. (1990) At high De, dumbbells along the outgoing flow axis are
assumed to be fully extended with a narrow region known as the birefringent strand, while
outside the strand the dumbbells are fully relaxed. Two different instabilities of the strand
were found. At moderate De, the strand is unstable to varicose disturbances in which the
strand width is unsteady. The perturbations to the strand width affects the extension of
dumbbells entering the strand, which in turn reinforces the perturbation. At higher De, a
sinuous instability occurred in which the strand lost its symmetry about the midplane of the
flow. Both of these instabilities were shown to agree qualitatively with instabilities
observed in the experiments of Miiller ef al. (1988) for flow in an axisymmetric opposed

jet.
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Figure 2.17 Three-dimensional representation of the periodic vdrtices, showing a
sheet of fluid being swept into the vortices (from Kerr and Dold 1994).
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2.3 Plane Poiseuille Flow of Superpdsed Fluids

The flow of two superposed Newtonian fluids in plane Poiseuilie flow is shown
schematically in figure 2.18. The interface of the fluids is defined as y = 0, and the velocity
profile for the fluids is determined by the ratio of the viscosities of the fluids, m = pp/y;,

and the depth ratio, n = dp/d; as

Uy =1+ay+hby?, (2.13a)
Uy =1+ayy+byy?, (2.13b)

where a1 =(m - n2)/(n2 + n), by = -(m + n)/(n2 + n), az = aj/m and by = by/m, and the
- velocities are nondimensionalized with respect to the interface velocity, Up. The maximum
velocity occurs in the less viscous fluid, and because the velocities are lower in the more
viscous fluid, it occupies a greater depth than the less viscous fluid for equal flowrates.
Figure 2.18 shows the stable base flow with the interface between the fluids located at y =
0 for all x, and this section reviews previous studies of instabilities of the interface. In
contrast to the purely elastic instabilities discussed above, an interfacial instability can occur
even for Newtonian fluids at Re = 0, although elasticity modifies the neutral stability
diagram. The interfacial instability also depends on a wide range of other parameters,
including the viscosity ratio, the depth ratio, the density ratio (r = p2/p;) and surface
tensicn. Previous efforts to determine the dependence of the interfacial instability on these
parameters for Newtonian fluids are discussed in §2.3.1, and the effects of shear-thinning
viscosity and elasticity are shown in §2.3.2.

2.3.1 Newtonian Fluids

The stability of the interface between two fluids in plane Poiseuille flow to long
wavelength disturbances of the form Y = f(y)explia(x —ct)] was considered for
Newtonian fluids of different viscosities by Yih (1967). It was shown that for fluids of
equal depths and equal density (n = r = 1), the flow was unstable if the two fluids had
different viscosities.

Yiantsios and Higgins (1988) extended Yih's results to unequal layer depths, and
showed that the interface is in general neutrally stable if the shear rate is continuous across
the interface, which occurs when the depth ratio is equal to the square root of the viscosity
ratio, ncrir= m1/2. The neutral stability diagram for longwave disturbances is shown in
figure 2.19. They studied a wide range of parameters affecting the interfacial stability, and
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Figure 2.18 Schematic diagram of plane Poiseuille flow of two superposed fluids
(from Yiantsios and Higgins 1988).
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Figure 2.19 Neutral stability diagram for long-wavelength disturbances in
Newtonian fluids for r = 1; S denotes stable regions, U denotes unstable regions
(from Yiantsios and Higgins 1988). v
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also considered large wavenumber disturbances. The neutral stability diagram in the a-n
plane is shown in figure 2.20 for a viscosity ratio of m = 20 and F = ¥= 0, where F = (r -
1)gd1/Uo? and X = o/p1d1Up? express the effects of gravity g and surface tension o,
respectively. The results are shown for Re = 10, but the neutral stability diagram was not
significantly altered for O < Re < 20. The flow was neutrally stable to all wavenumbers for
ncrit = m1/2, and for small wavenumbers, the neutral stability diagram was the same as
figure 2.19. However, for wavenumbers of O(1) or greater the flow was stabilized when
the depth of the more viscous fluid was below the critical value, i.e. n < m!/2, although the
flow was unstable for thin layers of the more viscous fluid (n << m!/2). For shortwave
disturbances (a >> 1), the stable region decreased, and the flow was asymptotically
unstable everywhere except for n = m!/2, The stabilizing effect of interfacial tension is
shown in figure 2.21, which is for the same parameters as figure 2.20, except 2= 0. All
wavenumbers were stabilized by surface tension, although the amount of stabilization
decreased for small wavenumbers. Gravity stabilized the flow at all wavenumbers when the
lower fluid was the more dense (r > 1), but was destabilizing if the upper fluid was the
more dense (7 < 1), as shown in figure 2.22. ‘ |

Hooper and Grimshaw (1985) considered the nonlinear evolution of the instability,
and they found that surface tension and nonlinear effects would cause the instability either
to return to the undisturbed state or to evolve to a finite amplitude steady state. They
showed that surface tension stabilized disturbances with wavenumbers above o = (d/s)1/2,
where d is the growth rate of the linear instability and s is a dimensionless surface tension.
Unstable waves were shown to grow initially and evolve to a steady state containing just a
few harmonics or to a quasiperiodic state in which energy was exchanged between several
two-mode states.

Anturkar er al. (1990) showed that the introduction of a third layer could
significantly alter the neutral stability curves. If the middle fluid were more viscous than the
outer fluids (which had equal viscosity), the flow became more stable to large wavenumber
disturbances for small values of the ratio of the flowrates of the middle and bottom layers
(g2/q1, analogous to n above) as the flowrate of the third layer (¢3) was increased. The
neutral stability curve at n = m1/2 for the two-fluid case also shifted to lower values of
g2/q1 as g3 was increased. As seen above in figure 2.22, gravity was able to stabilize the
flow for all wavenumbers at certain ratios of the flowrates, but only if each layer were more
dense than the one above it; otherwise, gravity was destabilizing.

Very little experimental data is available for the interfacial instability for Newtonian
fluids. Yu and Sparrow (1969) showed photographs of interfacial waves for a mineral
oil/water system with a viscosity ratio of m = 30, but neither the onset conditions nor the
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Figure 2.20 Neutral stability diagram for Newtonian fluids for Re = 10, m = 20,

r=1,F =X = 0; S denotes stable regions, U derotes unstable regions (from
Yiantsios and Higgins 1988).
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S dsesnotes stable regions, U denotes unstable regions (from Yiantsios and Higgins
1988). .

69




o1 b U

0.01

0.1 P U

}—-———-—-——.—.-_

0.01 ' 1

(o]
N
.A"
o

10
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Newtonian fluids for Re = 10, m =20, X=0and a) r= 1.5 and b) r = 0.5. The

dashed curves are for F = 0; S denotes stable regions, U denotes unstable regions
(from Yiantsios and Higgins 1988).

70




disturbance wavenumber was reported. The only quantitative experimental study of
instabilities of plane Poiseuille flow of Newtonian fluids was conducted by Kao and Park
(1972) using a mineral oil/water system with m = 20 and n = 1. A mechanical exciter was
used to introduce sinusoidal disturbances of varying frequency and amplitude, and the
downstream amplitude was measured by a wave gauge. They were able to measure the
growth or decay rates of disturbances over a wide range of Reynolds numbers and
constructed an experimental neutral stability diagram in terms of the wavenumber and
Reynolds number. They showed that the flow was stable to all disturbances below Re =
2300, based on the properties of water and the channel perimeter However, the instability
that they observed was not the mterfacxal instability dlscussed above but rather a shear
instability mode that exists only at high Re, and is also unstable for the case of a single
fluid for Re ~ 5800. A careful interpretation of these results by Yiantsios and Higgins
showed that for the parameters of the expenment both surface tensxon and gravity were
sufficiently strong stabilizing forces that the interfacial mode was in fact expected to be
stable at lower Re.

2.3.2 Non-Newtonian Fluids

The effects of inelastic non-Newtonian fluids and viscoelastic fluids on the
interfacial stability has also been studied. The stability boundaries are sensitive to shear-
thinning of the viscosity, and even small levels of elastxcxty influence the instability.
Experiments with polymer melts have shown agreement with analyses that have been
conducted for the Oldroyd-B model, although no systematic study of the effects of
elasticity has been conducted. ' | ‘

Khomami (1990a, b) showed that the longwave asymptotic stability diagram of Yih
for two Newtonian fluids was significantly altered for the flow of power-law fluids or
truncated power-law fluids, which have a constant viscosity below a critical shear rate. For
these models, the viscosity ratio was defined based on the shear rate at the interface, which
presented difficulties for the power-law model if the shear rate was too low, since the less
viscous fluid could become the more viscous fluid. It was found that the truncated power-
law fluids were more unstable than Newtonian fluids, especially at high depth ratios. In
this case the shear rate at the interface was high, and the effects of shear-thinning were the
greatest.

Pirarbasi and Liakopoulos (1995) presented the linear stability analysis for the
superposed flow of two Carreau-Yasuda fluids (Bird et al. 1987a). The viscosity for the
Carreau-Yasuda model can be written as
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. g l(v+17
n(y)=n0[1+(2.y)“]v % 2.14)

for each layer, where A determines the shear rate at which shear-thinning begins, v is the
power-law index and the value of a determines the transition region between the zero-shear-
rate and power-law regions. The stability diagram as a function of v and the depth ratio n
is shown in figure 2.23 for m =20, A = 1 and a =3 for each fluid and neglecting gravity
and surface tension. The Carreau-Yasuda model is similar to the truncated power-law
model, and in agreement with Khomami's results, longwaves were destabilized as the
degree of shear-thinning increased, and it was further shown that shortwaves were also
destabilized. Increasing the value of A stabilized shortwaves below the critical depth ratio
while destabilizing the longwaves above the critical depth ratio, and increasing the viscosity
ratio destabilized the flow at all wavenumbers.

The effects of elasticity on the interfacial instability were incorporated by Su and
Khomami (1992a) by using the Oldroyd-B model. In order to study purely elastic
instabilities, they used fluids of equal viscosity and density in each layer. Their longwave
asymptotic analysis showed that the interface was unstable if the more elastic fluid occupied
less than half the channel height, and their pseudospectral numerical technique further
showed that all wavenumbers were unstable. Furthermore, shortwaves were destabilized
even when the more elastic fluid occupied more than half the channel (n < 1). Calculations
of the growth rates showed that the magnitude of the growth or decay rate increased when
the jump in the normal stress difference across the interface was increased, and that the
fastest growing wavenumber was always of O(1).

This analysis was extended (Su and Khomami 1992b) by using a modified
Oldroyd-B model, in which the constant viscosity was replaced by a shear-thinning
viscosity described by a truncated power-law function. Figure 2.24 shows that for two
elastic fluids at low (and equal) Deborah numbers, all wavenumbers were stabilized for
depth ratios above the critical value n > m1/2, while shortwaves were destabilized for depth
ratios just below m!/2, Figure 2.25 shows similar neutral stability diagrams, but in this
case the Deborah number of the more viscous fluid was one-tenth of that for the more
viscous fluid. Comparing figures 2.25(a) with 2.24(b) and 2.25(b) with 2.24(c) shows
that reducing the relaxation time of the more viscous layer substantially stabilizes the flow.
Whereas for Newtonian fluids Yiantsios and Higgins showed that inertia had little effect on
the stability for Re < 20, Re = 0.5 was shown to overcome the stabilizing effect of
elasticity for De = 0.01 and destabilize the interface for depth ratios above the critical value,
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n>m1/2, The shear-thinning viscosity in the modified Oldroyd-B model led to complicated
neutral stability diagrams in which at sm.ll depth ratios the flow was destabilized because
of the decreased viscosity due to the high shear rate at the interface, and at intermediate
_ depth ratios the stability was very sensitive to the Deborah and Reynolds numbers.

Although the analyses described above have shown that the interfacial stability
depends on a wide range of parameters, few quantitative experimental studies have been
conducted. The experiments of Wilson and Khomami using polymer melts provide a basis
for comparison with the linear stability analyses, but no studies have been performed with
polymer solutions. The composition of Boger fluids can be modified to study more easily
the effects of elasticity on the interfacial instability.

Early experimental studies of the interfacial instability in polymer melts examined
extruded products to determine if the interface was stable for a given set of operating
conditions and materials, but did not attempt to determine growth rates or wavenumbers of
the instabilities. Han and Shetty (1978) coextruded three- and five-layer films of low
density polyethylene (LDPE) and polystyrene (PS) and of high density polyethylene
(HDPE) and PS, and photographs of the extruded product showed an irregular structure in
the plane of the flow direction and neutral direction (the x-z plane of figure 2.18), but the
structure in the x-y plane -vas not shown. No instability was observed with the PS/HDPE
system for any flow configuration, and this was attributed to the fact that the viscosities of
the two materials were comparable over the range of conditions tested. However, the PS
was much more viscous than the LDPE, and an instability was observed when PS formed
the outer layers, but not when it was core, although the analysis of Anturkar et al. indicated
that multilayer coextrusion of Newtonian fluids should be more unstable with the more
viscous component as the core layer.

Schrenk et al. (1978) studied multilayer coextrusion using high impact PS and an
acrylonitrile-butadiene-styrene (ABS) copolymer, and they attempted to show that the
instability was related to a critical interfacial shear stress. They were able to study the
interface shape by stopping the extruders, cooling the melt and then removing the polymer.
Inspection of the product showed that for 'incipient instability' the interface was periodic in
both the streamwise and neutral directions, and that higher flowrates led to 'severe
instability', in which the wave crests in the streamwise direction had folded over and the
structure was irregular in the neutral direction, as was found by Han and Shetty.

Twelve different polymer melts were used in 17 different two-fluid combinations
by Han et al. (1984). Rheological data were coupled with calculations using a truncated
power-law model to correlate the conditions for the onset of the instability with the
interfacial conditions. Their results showed that there was not a critical interfacial shear
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stress for the onset, in contrast to the speculation of Schrenk ef al. As Han and Shetty
found for the multilayer coextrusion system, it was difficult to separate the effects of
viscosity and elasticity stratification, since almost all of the unstable conditions
corresponded to having the less elastic, more viscous fluid occupy more than half the
channel. In only one case was the less elastic fluid also the less viscous, and this case was
stable.

A more detailed series of experiments aimed at constructing a neutral stability
diagram under a variety of experimental conditions was conducted by Wilson and
Khomami (1992, 1993a, b; Khomami and Wilson 1995). Polypropylene (PP) and HDPE
were coextruded through a metal die with four sets of optical windows along its length that
allowed the interface to be viewed. Images of the flow were recorded at each window, and
the images were analyzed to determine the growth or decay rates of disturbances to the
interface. These disturbances were introduced with a controllable frequency and amplitude
by periodically pulsing the flowrate of one of the polymers, thereby allowing the stability
of a wide range of wavenumbers to be studied.

Experimental measures of the growth rate are shown in figure 2.26 as a function of
the wavenumber based on the depth of PP (the more viscous and more elastic fluid), and
growth rates as small as (.0002 cm/cm could be resolved. Although a different range of
wavenumbers was unstable for each depth ratio, the maximum growth rate always occurred
near &= 1. Theoretical results from a modified Oldroyd-B model (using a truncated power-
law function for the viscosity) and the 'local-property’ Oldroyd-B model using values of
the viscosity and relaxation time based on the shear rate at the interface rather than the zero-
shear-rate values predicted higher growth rates than observed experimentally. The modified
Oldroyd-B model predicted a maximum growth rate near a = 1, and although the 'local
property' model gave better quantitative agreement in the range 0 £ & < 1, it predicted a
maximum growth rate for o= 3 and high growth rates for wavenumbers up to a = 6. The
stability diagram for these experiments is shown in figure 2.27 along with the neutral
stability curves from the modified Oldroyd-B model. The 'local property’ model predicted
the same critical depth ratio, but no stable region for large o and n. Although neither model
could capture the shear-thinning of the normal stresses, they both were able to predict at
Jeast qualitatively the critical conditions.

Experiments in a converging channel led to a more stable flow, since the smaller
channel height produced higher shear rates, and because the viscésity of the PP decreased
more sharply with increasing shear rate, the effective viscosity ratio decreased. In contrast,
experiments in a diverging channel resulted in a much more unstable flow.
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Figure 2.26 Experimental growth rates as a function of wavenumber for dz/d; =
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Khomami 1992).
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The effects of elasticity on the instability were isolated by conducting experiments
with the same interfacial viscosity ratio (1pp/MHDPE = 4.8) but different elasticity ratios.
This was made possible by performing experiments at two different temperatures and
adjusting the flowrates such that both the viscosity ratio and the depth ratic remained fixed,
but the first normal stress difference ratio at the interface changed. The maximum growth
rate was still found to be near a = 1, but for the experiments with the greater elasticity
ratio, the growth rate was higher and a broader range of wavenumbers was unstable.
Experiments with larger amplitude disturbances were also conducted to show that
subcritical bifurcations did not occur for this system, i.e., linearly stable wavenumbers
remained stable even for large initial disturbances. Instead, a supercritical bifurcation was
observed in which linearly unstable disturbances that had grown to large amplitude did not
remain sinusoidal but rather the wave crest bent back and eventually broke off due to the
velocity difference across the height of the wave. Renardy (1995) presented a weakly
nonlinear analysis of two UCM fluids for conditions qualitatively similar to those of the
experiments of Wilson and Khomami, and showed that supercritical bifurcations occurred
under most conditions, but that subcritical bifurcations were also possible, especially for
longer wavelengths.

The effect of chemical compatibility was investigated by using linear low-density
polyethylene (LLDPE) in place of PP for a series of experiments. The LLDPE has a
slightly higher viscosity than PP and an almost identical first normal stress coefficient, but
it was chemically compatible with the HDPE, so that interfacial diffusion and convective
mixing were possible. The experimentally measured critical depth ratio was higher for this
system even though the theory predicted a lower value, and smaller growth rates were
observed for the LLDPE/HDPE system, whereas the viscosity and elasticity ratios would
indicate that higher values should be observed. These differences were attributed to small-
scale interfacial mixing, which would lower the effective viscosity ratio and remove energy
from the disturbance.
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Chapter 3
Experimental Method

This chapter describes the experimental system used to study the viscoelastic flow
instabilities in three different types of flows. The fluids used in the experiments and the
constitutive equations used to model their flow are discussed in §3.1, the flow geometries
are described in §3.2, and the experimental techniques of laser Doppler velocimetry and
image analysis are outlined in §§3.3-4. |

3.1 Test Fluids

Although the flows to be studied in this thesis are complex and two- or three-
dimensional, it is necessary first to understand how the fluids to be studied behave in
simple, one-dimensional flows. Simple shear flows can provide information needed to
determine the parameters of constitutive models, which can then be used in numerical
simulations of complex flows. Although the parameters of nonlingar models can be
determined from the shear-rate-dependence of the steady shear material properties, the same
parameters also determine the elongational properties for many models. Obtaining reliable
values of the elongational properties remains experimentally difficult, but as better
measures become available, they can also be used to determine model parameters. Only by
fully understanding the fluid rheology can meaningful comparison be made between
numerical simulations and experimental results.

3.1.1 Rheological Methods

A summary of test flows used to determine material functions of non-Newtonian
fluids can be found in Bird et al. (1987a). The flows most relevant to the work in this
thesis are described here.

Steady Shear Flow

An example of steady shear flow is shown in figure 3.1, where fluid is placed
between two plates, and the top plate moves with a constant velocity V. This establishes a
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Figure 3.1 Shearing flow between parallel plates.
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constant velocity gradient, ¥ yx = V/H, between the plates. The viscosity of a fluid, 7, is
defined by the shear stress exerted by the fluid divided by the applied shear rate:

Tyx = "n(Y)ny 3.1
Newtonian fluids have a constant viscosity, g, while for non-Newtonian fluids the
viscosity will in general be a function of the shear rate.

For viscoelastic fiuids is steady shear flow, the first and second normal stress
coefficients, ¥; and ¥, are defined in terms of the normal stress differences Nj and N> as

Ny = Ty = Tyy = =H ()2 (32)

Ny=Tny =T, = —5”2(}’)7’3:; . (3.3)

Both ¥; and ¥, are identically zero for Newtonian fluids. Although ¥; is easily
obtainable, ¥, is more difficult to measure experimentally. ¥, is ex?ected to be much
smaller than ¥; and of opposite sign, and has been found to be nearly zero for Boger
fluids such as those used in this thesis (Magda et al. 1991).

Small-Amplitude Oscillatory Shear Flow

In this flow, V of figure 3.1 is equal to Vgcosaxt, and ¥ (1) is equal to ¥ Ocosar,
where y0 = Vo/H = }'ow for strain yo. For small strains, the shear stress can be
expressed in terms of its components in phase and out of phase with the shear rate as

Ty (t)=-1'(@)y°cosex — " (0)yOsinax , G4

where 7' is the dynamic viscosity and relates to the viscous nature of the fluid, while 7"
relates to the fluid's elasticity. For a Newtonian fluid, ' = u and n" = 0. These material
parameters are related to the steady shear flow material parameters in the limit of low shear
rate and frequency by

lim n'(@)= Lim n(y)="no, (3.5)
w0 ¥—0
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lim —M = lim '{’1(}') = "PI,O» (3.6)
w—0 O =0

Equation 3.4 can also be written in terms of the strain as
Tyy (1) = =G'(0)y sinax - G" (w)y cosa, 3.7)
“where G' = " 1is the storage modulus and G" = 7' @ is the loss modulus.

Shearfree Flows

The velocity field for shearfree flow as shown in figure 3.2 is

vx=—%éu+xk, (3.8)
=1 (1 39
Vy'"ag( -K)y, (3.9)
v, = &, (3.10)

where 0< k< 1and € isthe elongation rate. Three different limiting types of extensional
flow are possible depending on xand €:

uniaxial extension ¥ =0, € >0,
biaxial extension k=0, € <0,
planar extension x = 1.
Two material functions can be defined for shearfree flows:
Tpp = Tax = —Mh(E K)E, (3.11)

Tyy = Txx = ~Th(E K)E. o _ (3.12)

For ¥ =0, 7, =0, and for Newtonian fluids 7;(€,0) =3u and M,(€, 1) = 4.
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Measurements of the steady shear (1, ¥1) and linear viscoelastic (7', n") material
properties can be obtained using a Rheometrics Mechanical Spectrometer (RMS-800).
Fluid samples are placed either between two parallel coaxial circular plates or between a
plate and an inverted cone, as shown in figure 2.1. The bottom plate is rotated and the
torque and normal force exerted on the upper fixture are measured and used to calculate the
material properties based on the test geometry (Bird et al. 1987a). The bottom plate can be
rotated from 2x10-6 < £2 < 100 rad/s for steady shear flow and 10-3 < @ < 100 rad/s for
small-amplitude oscillatory shear flow. Two different transducers are used: the 'fluids
transducer' measures torques up to 100 g-cm and normal forces up to 100 g, while the
‘melts transducer' measures up to 2000 g-cm and 2000g. The minimum measurable value
for each is about 0.1% of its full scale. A recirculating fluid bath allows the fluid
temperature to be varied from -5 °C to 80 °C and controlled within £ 0.1 °C. An
oven/dewar combination can be used with the melts transducer to extend the temperature
range to -150 °C £ T < 500 °C with an accuracy of + 2 °C.

Difficulties in obtaining purely extensional flows have limited the availability of
reliable extensional viscosity data. For a discussion of the different experimental systems
used to attempt to measure shearfree material functions, see the special issue of The Journal
of Non-Newtonian Fluid Mechanics, 35 (1990). An alternative approach was taken by
Quinzani (1991), who combined flow induced birefringence measurements of stress and
laser Doppler velocimetry measurements of velocity along the centerplane of a 4:1 planar
contraction to yield‘the transient planar extensional viscosity, which could be used to
determine the parameters for different constitutive equations. Elongational viscosity data is
desirable for obtaining appropriate model parameters for analysis of flows with strong
extensional components, such as the stagnation flows discussed in §5.

3.1.2 Fluid Rheology

Four different viscoelastic test fluids were used for the experiments described in
§8§4-6. Each consisted of a small amount of a high molecular weight polyisobutylene (PIB)
(Exxon Vistanex L-120, MW ~ 1.8 x 106 g/mol) in a highly viscous Newtonian solvent.
These 'Boger fluids' (Boger 1977/78) were designed to have a viscosity that remains
nearly constant over a large range of shear rates, and yet be highly elastic. The fluids are
prepared by first dissolving the PIB in tetradecane (C14) and then mixing the PIB/C14 with
a low molecular weight polybutene (PB) (Amoco H100, MW ~ 900 g/mol or Amoco
H300, MW ~1300 g/mol). By varying the relative amounts of the three components, it is
possible to create fluids with a wide range of relaxation times and solvent viscosity ratios.
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The composition and zero-shear-rate viscometric properties (19, ¥,0) of each fluid
arc given in Table 3.1. Also shown are the solvent viscosity ratio = 1)5/1o and the
relaxation time for the Oldroyd-B model, A;= ¥y 0/21 Mp: where np' =10 - 7ls is the
polymeric contribution to the vxscosxty A shear—rate-dependent mean relaxation time of the
fluid can also be defined in terms of the steady shear properties as A.( ¥) = Yi(y)2n(y).
The value of this relaxation time decreases with i mcreasmg shear rate, and in the limit of
small shear rates it is equal to the value obtained from the upper convected Maxwell model.
Two Newtonian fluids were also used for studymg the interfacial 1nstab111ty The first of
these was the H100 PB, with a viscosity of 25 Pa-s, and the other was 2.7 wt% C14 in
H100 PB, with a viscosity of 13.7 Pa-s.

0.20% PIB

0.50% PIB

0.31% PIB (2)

0.31% PIB (1)

% Cl4
PB
1o [Pa-s]
ns [Pa's]
Y10 [Pa's?]
A1 [s]

Table 3.1 Viscometric properties of polyisobutylene (PIB) test fluids used in the
experiments of §§4-6.

The 0.31 wt% PIB fluid labeled (/) is the same fluid that has been thoroughly
characterized by Quinzani et al. (1990) and was used for the rotating flow and superposed
flow experiments of §§4 and 6. A much lafger volume was also used for the experiments
for flow past a cylinder of McKinley er al. (1993), but a test of the fluid rheology following
those experiments showed that the first normal stress coefficient had decreased by a factor
of five from the values reported in Quinzani et al., presumably due to mechanical
degradation. No measurable decrease was found in the viscosity, which is not surprising
since the viscosity is dominated by the low molecular weight solvent. The 0.31 wt% fluid
labeled (2) was then prepared for use in the stagnation flow experiments of §5, and its
original rheology was similar to that of the 0.31 wt% PIB (J) fluid, but after a small
number of passes through the flow system, a similar decrease in ¥; was found, and
subsequent measurements of the rheology showed that no further changes occurred over
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the course of the experiments. Figure 3.3 shows the viscometric properties of the 0.31
wt% PIB (2) fluid. The material properties were measured at temperatures of 9 ‘C < T <
41 °C, and are shifted to a reference temperature of 25 °C by means of time-temperature
superposition (Ferry 1980). The temperature dependence is described by an Arrhenius
equ'ation with a flow activation energy of AH = 61.7 kJ. A change of 1 °C in the fluid
temperature results in an 8% change in the fluid viscosity and relaxation time, and it is
therefore crucial to monitor carefully the ambient temperature and adjust the material
functions appropriately. All experimental results are corrected to a reference temperature of
25 °C. The viscosity has a zero-shear-rate value of 19 = 13.45 Pa-s and remains nearly
constant over four decades of shear rate due to the high solvent viscosity. The zero-shear-
rate value of the first normal stress coefficient is ¥ ¢ = 2.52 Pa-s2, and at higher shear
rates ‘P exhibits a complex shear-thinning behavior. No measurements have been made of
the second normal stress coefficient, but studies by Magda et al. (1991) indicate that for
PIB Boger fluids, ¥, = 0. The 0.31 wt% PIB (7) fluid has been thoroughly characterized
by Quinzani et al., and the solid curve in figure 3.3 is a fit to its original rheology.
Measurements by Tirtaatmadja and Sridhar (1993) show that for the 0.31 wt% fluid (Z)
{fluid A in their work), the uniaxial extensional viscosity is approximately 77 = 200070.
The material properties of the 0.2 wt% PIB and 0.5 wt% PIB fluid are shown in figures
3.4 and 3.5, respectively. For dilute, or semi-dilute solutions such as these Boger fluids,
the longest relaxation time depends on the concentration and molecular weight of the
polymeric solute, the polymer-solvent thermodynamic interactions and the viscosity of the
solvent that the chains are dissclved in (Ferry 1980). Since the same polyisobutylene is
used in all of the fluids and the chemical composition of the surrounding solvent is
essentially unchanged (in all cases the solvent is essentially athermal; Flory 1953), the
lower concentration of the polymer in the 0.20 wt% fluid is outweighed by the
significantly higher solvent viscosity of the H300 polybutene, resulting in a larger first
normal stress coefficient and a longer fluid relaxation time. The higher PIB concentration of
the 0.5 wt% fluid is partially offset by the lower solvent viscosity.

3.1.3 Constitutive Equations

One of the primary aims of the field of non-Newtonian fluid mechanics is to
describe the effects of elasticity in complex flows. The experimental results of §§4-6 show
that elasticity can cause flow instabilities, and efforts to model the effects of elasticity,
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Figure 3.3 Master curves for the viscometric properties of the 0.31 wt% (2) test
fluid at 25 °C: (@) viscosity i) (Pa's) and (H) first normal stress coefficient ¥;
(Pa-'s2). The dashed (- - -) curve is the prediction of the Giesekus model with =
10-3 and the (- - -) curve is the prediction of a four-mode Giesekus mode) using the
fm?ﬁﬁ ;f Table 3.2. The solid curve is the fit to the rheology of the 0.31 wt%
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Figure 3.4 Master curves for the viscometric properties of the 0.20 wt% test fluid
at 25 °C: (@) viscosity 1 (Pa-s), (M) first normal stress coefficient ¥4 (Pas2), (O)

dynamic viscosity n' (Pa's) and (O) 21"/@ (Pa's2). The solid curve is the
prediction of the Chilcott-Rallison model with L = 20.
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Figure 3.5 Master curves for the viscometric properties of the 0.50 wt% test fluid
at 25 °C: (@) viscosity 7 (Pa-s), (M) first normal stress coefficient ¥; (Pa-s2), (O)
dynamic viscosity ' (Pa-s) and (O) 2n"/o (Pa‘52).
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eithier by means of large-scale finite element simulations or through linear stability analysis
require a constitutive equation to relate the flow kinematics to the polymeric stress. A
comparison between the experiments and calculations serves as a test of the ability of the
constitutive equation to capture the relevant physics of the flow. This section describes the
four constitutive equations used to model the experimental results, and also gives the model
parametérs' for the fluids discussed in §3.1.2.

Maxwell

The linear viscoelastic data obtained from small-amplitude oscillatory shear flow
can be fit using the Maxwell model:

T+ l%r=—m’, (3.13)

where 7 is the stress tensor, ¥ [= Vv+(Vv)T} is the rate-of-strain tensor and A is the

ielaxation time. The dashed curve in figure 3.6 is the solution of equation 3.13 for the 0.31
wt% (2) fluid using the values of 1 = 13.45 Pa's and A = ¥} ¢/25p = 0.094 s. Bccause of
the broad molecular weight distribution of the PIB molecules, and the fact that even a
monodisperse polymer has many relaxation timescales, equation 3.13 fails to yield a
quantitative fit of the linear viscoelastic data. The effects of multiple timescales can be
incorporated by considering a multimode model

o) = fn,‘, % (8), (3.14)

k=1

where each of the 7 follows equation 3.13. The values of {1k , Ak } are obtained by fitting

the data of figure 3.6 using the Levenberg-Marquardt nonlinear regression method (Press er
al. 1985). Using the values of {7k, Ak } given in Table 3.2 resuits in the quantitative fit

shown in figure 3.6 as a solid curve.
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Figure 3.6 Master curves for the linear viscoelastic propemes of the 0 31 wt% (2)

test fluid at 25 °C: (@) dynamic viscosity 1’ (Pa-s) and (M) 2n"/w (Pa-s2). The

dashed (- - -) curve is the prediction of a single-mode Maxwell model, and the solid

'(l::ﬁ) %m;e is the prediction of a four-mode Maxwell mode] using the parameters of
e 3.2
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Ay [s] O

1.00 0.5
0.21 0.0002
0.08 0.001
0.014 0.5

solvent

Table 3.2 Linear viscoelastic spectrum for the 0.31 wt% (2) fluid. Also given are the
mobility parameters for the Giesekus model.

Oldroyd-B

The linear Maxwell model is limit=d to flows with small displacement gradients, but
it can be modified to be applicable to more general flows by replacing the time derivative of
the stress with its convected derivative 7(;), which is defined as

) = -33 +v- Vr—[(Vv)T T~ 1T- (Vv)] . (3.15)

The addition of a solvent viscosity 75 to the model results in the Oldroyd-B model (Oldroyd
1950) ’

T+ 47 = "770(7’ + /1'27’(1))’ (3.16)

where A (= A1) is the retardation time, where B is the solvent viscosity ratio n¢/no This

model can also be obtained from a molecular theory that considers infinitely extensible
Hookean dumbbeils in a Newtonian solvent of viscosity 7. The model predicts a constant

viscosity and constant first normal stress coefficient and a second normal stress coefficient
¥, of zero. The extensional viscosity becomes infinite at a strain rate of 4;€ = 0.5.
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Chilcott-Rallison

In this constitutive model, the molecules are considered to be a dilute solution of
noninteracting dumbbells with dimensionless concentration c, dissolved in a Newtonian
solvent of viscosity 77;. The two beads of the dumbbell are connected by a nonlinear elastic
spring with a finite maximum extensibility L, which represents the ratio of the fully
extended length of the dumbbell to its r.m.s. length at equilibrium. By eliminating the
second rank tensor describing the configuration of the dumbbells from the original
equations of Chilcott and Rallison, the constitutive equation for the polymeric contribution
to the stress 7, can be written simply as ’ ’

rp+lx(f'f-J =17, - (3.17)
f

where f= (Lz --r-]}:'—tr( ) ))/(L2 ~3) is the nonlinear spring modulus. The solvent is
P

~ Newtonian with constitutive equation 7, =~7)7 , and the total stress tensor is given by the
linear combination T=17;+ 7. -
In the limit L = o, the dumbbells become infinitely extensible and equation 3.17

simplifies to the Upper-Convected Maxwell model; the constitutive equation for the total
stress tensor 7 is then equivalent to the Oldroyd-B model. However, for finite values of L,

the model predicts the onset of shear-thinning in the first normal stress coefficient beyond
dimensionless shear rates of A,y = L’/ \/S(L2 —3) with an asymptotic decrease at high
shear rates which scales as ¥,(¥) ~ 7~'. The viscosity of the model remains constant with
a value ng=1ns + 1p and the polymeric contribution to the viscosity depends on the
concentration of dumbbells as 17, =7sc.  Like other dilute solution dumbbell models,
the Chilcott-Rallison model predicts a zero value of the second normal stress coefficient ¥,

at all shear rates.
This model predicts a finite extensional viscosity, with a Trouton ratio ﬁ/np that

scales as L2. In the absence of measurements of the extensional viscosity, the value of L
has been chosen to capture the shear-thinning behavior of ¥;(y) observed experimentally

at high shear rates. This criterion yields values of L = 20 for the 0.20 wt% fluid, as shown
by the solid curve in figure 3.4. The value of L for the 0.31 wt% () fluid based on ¥;(y)

has previously been found to be L = 12 (McKinley et al. 1993). The measurements of
Tirtaatmadja and Sridhar suggest that the Trouton ratio of this PIB Boger fluid in a
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homogeneous uniaxial extensional deformation is in the range 2-3x103. Using these
measurements to determine the extensibility parameter suggests significantly larger values
of L = 50. This important difference in the appropriate value of the model parameter L is
discussed further in §5.

Giesekus

The Giesekus model (Giesekus 1982) also provides a bounded extensional
viscosity, and shear-thinning of both the viscosity and normal stress coefficient.
Anisotropic hydrodynamic drag is incorporated through the addition of a term of the form

{Tp’fp}:
A o
B+ 4 %y, "a?,;{"p Ty} =TT, (3.18)

where « is the mobility factor. For a = 0, the Oldroyd-B model is recovered. The
viscosity is predicted to shear-thin as 7‘1 at high shear rates, although the addition of a
. solvent viscosity ensures a physically realistic value of d1112|/d7 > 0. The first normal
stress coefficient shear thins as 7’1'5 at high shear rates, and ¥,0 =-a'¥1,0/2. The fit of
this model to the 0.31 wt% PIB (2) fluid is shown in figure 3.3 for both a single-mode fit
using o = 0.001, and for a four-mode fit using the parameters given in Table 3.2. This

model also provides a bounded extensional viscosity at high strain rates that depends on the
same model parameter that governs the normal stress coefficient, in this case 7 =21y /a.

The extensional viscosity data of Tirtaatmadja and Sridhar therefore also predicts a values
of a = 0.001, in contrast to the Chilcott-Rallison model, for which markedly different

values of the model parameter are obtained from the shear and extensional data.
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3.2 Flow Geometries
3.2.1 Rotational Flows

All of the experimehtal measurements were conducted in the apparatus shown

schematically in figure 3.7. A cylindrical coordinate system (7,8,Z) is defined with origin
at the center of the upper, rotating disk. The plate separation H and the rotation rate  are
chosen to define characteristic length and time scales; all variables are then dimensionless
unless exphcxtly 1dent1ﬁed with carets The Deborah number is defined based on the
rotatxon rate as Deo }.1.() and the Wexsscnberg number is based on the shear rate, We =
AYR, where ¥R = QR/H. The base of the test cell consisted of a smooth, polished
plexiglass sheet supported by four threaded rods which could be independently adjusted to
' ensure that the plexiglass sheet was parallel to the upper disk. The position of the upper
disk was controlled using a two-axis lathe mount attached to the rigid frame of the
geometry, and the separation of the upper disk and the bottom plate was measured to within
*1 um using a digital micrometer. Special care was taken to ensure that the upper and
lower disks were parallel to within + 0.1°. The radius of the upper disk was held constant
at R = 40.0 mm, and gaps of H = 2.00 mm and H =3.50 mm were used in the
experiments. The choice of plate separations is experimentally constrained, since, for very
small separations, it becomes difficult to resolve the spatial structure of the secondary flow
that develops in the narrow gap, and for very large plate separations, gravity overcomes the
wetting forces which pin the fluid at the edge of the dxsks, and the sample runs out of the
rheometer.

Fluid samples were placed between the disk and the transparent lower plate, and
excess fluid beyond the edge of the disk was carefully removed to leave a smooth,
approximately cylindrical meniscus at the edge of the disks. According to the imalysis of
Olagunju (1994) and the material properties of the fluids given in §3.1.1, the maximum
surface deflection is only expected to deviate by a maximum of + 0.10 mm from a right

“cylinder and inertial secondary flows of von Kdrmén form can be completely ignored. The
steady torsional flow was driven by rotating the upper disk, which was attached to the
spindle of a high-torque d.c. gearmotor (Electrocraft E586). The angular rowation rate £2 of
the motor was accurately measured by a tachometer and was incremented in small steps
(typically 802 = 0.52 rad/s), until the onset of the instability was observed.

The flow was illuminated and visualized from a mirror placed below the plexiglass
base at an angle of 45°. Two fiber-optic light sources were positioned to illuminate the
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Figure 3.7 Schematic digram of the parallel plate geometry.
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entire region between the disk and the plate as uniformly as possible, and trace quantities of
small plate-like mica particles (Kalliroscope Corp., Groton, MA.) were uniformly
dispersed into the test fluids in order to increase the visibility of the secondary flow.

Images of the flow were recorded using a high-resolution monochrome CCD
camera (COHU 4910) and a Super-VHS video recorder (Panasonic AG1960). Since the
analog gain of the CCD camera is linear, spatial and temporal variations in the intensity of
the reflected light by the mica flakes are faithfully recorded as gray-scale variations in the
video-images. In §3.4, it is explained how these fluctuations can be used to calculate the
wavelength and wavespeed of the elastic instability that develdps above a critical rotation
rate, or Deborah number. Individual images (480 x 480 pixels) of the entire cross-sectional
area of the disk were digitized from each frame of the videotape hsing an 8-bit frame-
grabber (DIPIX P360), yielding a spatial resolution of ~ 0.18 mm/pixel. Although flow
cells can be readily distinguished visually in the fluid sample and also in the recorded
images, a series of image-processing operations were subsequently performed to enhance
the visibility of the cells. First, spatial nonuniformities in background light intensity were
corrected for by a pixel-by-pixel division of gray-scale values using a pre-recordéd
reference image of the steady flow, as suggested by Russ (1992). The random high-
frequency fluctuations in pixel intensity then were smoothed using a low-pass filter with a
5 pixel x 5 pixel kernel. Finally, the gray-scale histograms of the images were expanded
by simultaneously adjusting the contrast and brightness in order to give the best visual
definition of the cells. These processed images were analyzed to determine the
wavenumber, spiral number and wavespeed for each run as described below.

The geometric configuration of the cone-and-plate device is shown schematically in
figure 2.1(b), with the origin of a spherical coordinate system (7, 6, ¢) located at the apex
of the cone. In this work the lower plate is held fixed while the conical fixture is rotated at a
constant angular velocity £2. A set of conical fixtures with a constant radius of R =25 mm
and precisely machined cone angles of 6p = 4°, 6°, 10° and 15° were used in the
experiments. The lower plate consisted of a smooth, polished plexiglass sheet carefully
aligned to be perpendicular to the axis of rotation. In order to prevent frictional contact
between the apex of the cone and plate, the tip of each cone was truncated to leave a gap of
50 um at the center of the device. The rotation rate £2is used to define a characteristic time
scale for the flow, and the homogeneous shear rate in the gap is given by y = £2/6, for the
base flow. In these experiments, the maximum rotation rates attained are approximately
$max ~ 10 rad/s corresponding to a maximum shear-rate in the 4° cone of Ymax ~ 150 s-.
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3.2.2 Stagnation Flows

The flow geometry used for the experiments is shown schematically in figure 2.6.
The origin of the coordinate system is located at the center of the cylinder, with the x-axis
along the cylinder axis, the y-axis normal to the channel walls and the z-axis in the flow
direction. The internal dimensions of the channel are width Ax = 76.1 mm, height Ay =
12.7 mm and length Az = 279.0 mm, which allows the flow to become fully developed
before reaching the cylinder and provides a large downstream region in which to study the
instability. The channel is constructed of plexiglass in order to match closely the refractive
index of the test fluid. Although the ratio of the width of the channel to its height is only
6:1, a two-dimensional velocity profile is obtained over the central 80% of the channel, and
all measurements are restricted to this region.

The relative importance of the shearing flow in the gap between the cylinder and the
channel wall and the extensional flow downstream of the cylinder is examined by using
cylinders with a wide range of radii in this channel. Nine cylinders of radius R, 0.31 mm
< R £ 5.32 mm are used to obtain aspect ratios of 0.05 < R/H £ 0.84, where H is the half-
height of the channel. Cylinders with 0.17 < R/H < 0.84 are machined from aluminum
with ends of R = 3.18 mm to fit in holes in the side panels of the flow cell. These holes are
precisely positioned in the center of the panels to within £ 0.025 mm to ensure a symmetric
base flow. The smallest cylinders of R/H = 0.05 and 0.10 are stainless steel wires that are
welded to a support brace to prevent deflection by the flow.

TL: importance of the upstream flow conditions is investigated by replacing the
cylinder with a planar divider. This consists of a flat plate of height 2Rg;y forz<0 and a
radius of curvature Rgjy for z > 0. The parabolic velocity profile across the entire channel
for flow past a cylinder is therefore replaced by a parabolic velocity profile between the
divider and the channel wall on both sides for z < 0, while for z > 0 both geometries are the
same. Dividers are used with Rgjy/H of 0.23, 0.50 and 0.75. A tapered divider was also
used in order to remove the curvature of the cylinder or divider while retaining a stagnation
plane. The total included angle of the divider was 4°, and its minimum width was 0.2 mm.

Axisymmetric stagnation flows were also studied by using a rod with a rounded
end mounted in the center of a circular plexiglass tube. The radius of the tube was Ryype =
1.27 cm, and the radii of the cylinders were Ryoq = 0.64 and 0.32 cm. The end of each rod
was rounded with a radius of curvature equal to Ryo4. The rods were held in place by a
disk mounted across the plexiglass tube. Holes in the disk for Ryod < 7 < Rupe allowed the
fluid to pass through, and a distance of 15 cm from the disk to the rounded end assures
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fully developed flow. These rods could be inserted in the flow system to study either the
upstream or downstream stagnation point.

Two different timescales can be defined for the flow past a cylinder. Downstream
of the rear stagnation the velocity increases from zero to the freestream value over a
distance that scales with the cylinder radius, yielding 7} = R/vzmax, Where vz max is the
centerline streamwise velocity of the fully developed flow. A second timescale can be
defined base on a typical'shear rate in the gap between the cylinder and the channel wall, 7
= (H - R)2/Hv; max- Two dimensionless measures of the elastic effects are defined as

De = M}.’)Vz,male (3-19)
and We = A(Y vz maxH/(H-R)2, (3.20)

where De is the Deborah number and We is the Weissenberg number. Inertial effects are
measured in terms of the Reynolds number,

Re = 2pv, maxRIM(7). (3.21)

The maximum Reynolds number in any experiment is 0.02.

A schematic diagram of the fluid circulation system is shown in figure 3.8. Fluid
from a high density polyethylene (HDPE) collection tank is pumped to a 40 gallon
galvanized steel tank. The pump (Moyno, Model 2L8) is a positive displacement pump
which operates under low shear conditions to prevent polymer degradation. Fluid from the
tank flows to the geometry under nitrogen pressure. The flowrate can be controlled by
changing the nitrogen pressure and pump setting and by adjusting valves in the system.
The maximum flowrate is about 8 I/min. PVC tubing is used throughout the system, since
it is resistant to the tetradecane (C14) used as a solvent.

3.2.3 Superposed Plane Poiseuille Flow

The stability of the interface between two fluids flowing through a rectangular
channel] was studied in the geometry shown schematically in figure 3.9. The flow cell was
constructed of plexiglass in order to permit the interface to be viewed at any position along
the length of the channel, rather than from a limited number of viewing ports in a metal
geometry. The channel's height is 3.54 mm, its width is 40 mm, which ensures a two-
dimensional base flow throughout the central portion of the channel, and its length is 300
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Figure 3.8 Schematic diagram of the fluid circulation system.
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mm, which allows the amplitude of interfacial disturbances to be determined over a large
distance to determine their growth or decay rate.

Two fluids are pumped independently and are initially separated by a vane to
establish a fully-developed upstream flow. Each fluid is driven from a cylindrical cartridge
(Semco, C20) by a linear-drive stepper motor (Anaheim Automation, 23A102). Typical
flowrates range from 0.005 to 0.1 cm3/s, which correspond to displacements of the motor
of 1.5x10~4 to 0.003 cm/s. This resolution can be obtained by using a microstepping
controller (Anaheim Automation, DPMS256) which allows for step sizes as small as
2.5%10—6 cm. Furthermore, the flowrate of one of the fluids can be sinusoidally varied in
order to introduce a disturbance of known frequency into the flow.

As discussed in §2.3, one of the important parameters governing the stability of the
interface is the depth ratio of the two fluids. Because all of the fluids used for these
experiments have viscosities that are nearly independent of the shear rate, the solution to the
equations of motion for a Newtonian fluid is used to calculate the depth ratio and interfacial
velocity for a given viscosity ratio and set of flowrates. The Deborah number is then De =
Aluind/dy, where A; and dj are the time constant and depth of the more elastic fluid and ujy,
is the interfacial velocity.

The center of the flow cell is illuminated by a fiber optic light source, and images of
the flow are recorded using a high-resolution CCD camera (COHU, 4910) and a S-VHS
VCR (Panasonic, AG-1970P). An organic dye is added to one of the fluids to increase the
amount of scattered light and enhance the contrast at the interface between the two fluids.
The image of the flow was magnified to yield a spatial resolution of ~0.01 mm/pixel.
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3.3 Laser Doppler Velocimetry

Laser Doppler velocimetry (LDV) is a noninvasive means of accurately measuring
velocities on very small length scales and rapid time scales. Depending on the signal
processing used in conjunction with the optical components, either steady-state or time-
dependent velocities can be measured. LDV has found many applications in fluid
mechanics since various configurations allow for velocity measuremen:s between 10 um/s
to Mach 8. Many of these possibilities have been described by Durst ez al. (1981), and the
important features of the system that will be used in this work are discussed below.

~ Velocities are measured using LDV by detecting and analyzing the light scattered by
particles in a flowing fluid. As a particle passes through a laser beam, it will scatter light in
all directions which is shifted in frequency by an amount that is directly proportional to its
velocity. Since the amount of the shift to be measured (typically ~ 104 Hz for the velocities
measured in this work) is small compared to that of the incident beams (~ 6 x 1014 Hz) the
scattered light is heterodyned, or combined, with scattered light from another incident beam
of the same wavelength. A signal can then be obtained with a frequency which is the
frequency difference between the two scattered beams. This heterodyned light is then
collected by a photomultiplier, and the shifted frequency is determined.

The principle of laser Doppler velocimetry can be understood in terms of a simple
fringe model. When the beams intersect, constructive and destructive interference
establishes a diffraction pattern of alternately light and dark fringes. If a particle in the fluid
passes through the fringes, it will scatter light in all directions. The shift in frequency of
the scattered light (f5) can be thought of as the reciprocal of the time taken for the particle to
pass from one bright fringe to the next. The fringe spacing is

A

) (3.22)
2sing

ds =

where A is the wavelength of the light, o is the half-angle between the incident beams, and
dgis 1.2 pm in this system. The particle velocity is therefore

L , (3.23)
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where v is the component of velocity in the plane of the intersecting beams and normal to
the bisector of the beams.

A two-color laser Doppler velocimetry system (TSI 9100-12) is used in a back-
scatter configuratior. to provide accurate, noninvasive measurements the streamwise (vz)
and neutral direction (vx) components of the velocity. The light source is a 4 Watt Argon-
ion laser (Lexel, Model 95-4), and two separate wavelengths are used: green (A =514.5
nm) and blue (488 nm). Each color is split into two beams and passed through a series of
optics to focus all four beams at a single point, and each pair of beams independently
measures a separate component of the velocity. In the backscatter configuration the
scattered light is collected along the same optical train that is used for the incident beams.
The scattered light of each color passes through a filter and is collected by a
photomultiplier, which produces an analog signal that is directly proportional to the
intensity of the incident light. The measuring volume formed by intersecting beams is an
ellipsoid of approximately 20 pm x 20 pm X 80 pn, while the radius of the smallest
cylinder is 310 pum. Figure 3.10 schematically shows the optics of the LDV system and
fringes of the measuring volume for a pair of beams. The entire optical train is mounted on
a computer-controlled, three-dimensional translating table (TSI, Model 9500) which allows
for pointwise velocity measurements at any positior within the flow cell, or for velocity
scans throughout the flow cell. Steady, pointwise measurements are obtained when
Doppler-shifted light scattered by particles in the fluid is collected by the photomultiplier,
and the signal from the photomultiplier is sent to a dual-channel, fast Fourier spectrum
analyzer (Nicolet, Model 660B). The frequency spectrum of the ‘Deoppler burst’ caused by
a particle passing through the measuring volume is calculated, and about 50 spectra are
averaged to obtain a velocity measurement at a bosition. Steady velocity measurements can
be obtained in the range 0.04 - 400 cm/s with an accuracy of * 1%.

Time-dependent velocity measurements of velocities in the range 0.1 - 1000 cm/s
can also be made by using frequency trackers (DISA, Model S5N20/21) with an accuracy
of + 2%. The trackers lock onto the Doppler frequency and follow its evolution in time.
Use of the LDV system in this manner requires a high rate of data, because the tracker will
‘drop out’ if it is unable to follow the frequency continuously. Spatially-varying velocities
are recorded by using the frequency trackers to follow the Doppler frequency in time as the
measuring volume is translated through the flow cell.
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3.4 Image Analysis

3.4.1 Rotational Flows

The video-imaging system has been used to make quantitative measurements of the
spatial and temporal evolution of the secondary flow that develops in the fluid sample
above a critical rotation rate. In order to compare the experimental observations with the
results of the linear stability calculations, it is first necessary to understand the relationship
between the dimensionless parameters o, m and o describing the form of the normal mode
perturbations considered in the numerical analysis and the experimental quantities that are
actually observable through the transparent base of the rheometer. The experimental work
used a classical flow visualization technique (cf. Merzkirch 1987) based on the addition of
anisotropic seeding particles to the viscoelastic test fluid which align with the local direction
of the creeping flow between the plates. In a sicady two-dimensional flow, the locally-
averaged intensity of the reflected light is spatially uniform; however, following the onset
of a hydrodynamic instability, spatial and/or temporal variations in the intensity of the
reflected light at each point deve]op and can be used to infer the structure of the developing

secondary flow.
Since the observations are limited to two-dimensional images in the r-0 plane of the

test cell, the intensity of the reflected light I(r, 6, 1) at any image coordinates (r, 6) fixed
with respect to the center of the stationary base represents an integrated average of the
reflections from seed particles moving through that point but distributed over a range of
depths z in the fluid. If the observed flow instability is of the normal mode form, then the
gray-scale intensity of any pixel in the image obtained from the CCD array is expected to

vary as

1(r,0,1) = F(z) e'@r+imb+or (3.24)

where f(z) indicates an undetermined weighted z-average of the spatial form of the

disturbance to the base flow.

If a pixel is selected in a digitized, two-dimensional image with a maximum
intensity I,,,, and points of constant intensity are tracked across the image, then the locus
of these points at any instant in time will be given by

dl =0=iodr+imd0. (3.25)
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Or by integrating once as
r=-~g-(9+ 6p), (3.26)
where 6 sets the radial location Rg of the starting pOint with respect to the (arbitrary)
definition of the line given by 6= 0. |
The spatial locations of the recirculating vortices in the secondary flow given by
equation 3.26 are thus described by Archimedean Spirals (Davis 1993) and the winding
number of the spiral curves is given by m/a. The radial wavenumber ¢« is only
meaningfully defined for positive real numbers and azimuthal periodicity requires that m
takes integer values only. If m > O then the curves spiral inwards towards the origin with
increasing 6; if m < O then the curves spiral outwards. The local spiral angle € may be
conveniently defined from equation 3.25 as
—~dr +(m/r)

tang=-—:=
rdf o

3.27)

and can be interpreted as the ratio of the azimuthal wavenumber (m/r) at any given radius to
the radial wavenumber o

Sample curves are illustrated in figure 3.11 for a fixed value of radial wavenumber
a and increasing values of azimuthal wavenumber m =0, 1 and 2. In each case, the
azimuthal coordinate 6 is defined from the abscissa y = 0 and increases in the clockwise
direction. For nonaxisymmetric disturbances (m > 0), note that although azimuthal
periodicity at a fixed radius requires f{6) = {0 + 27), the locus of each line corresponding
to the maximum intensity of a secondary vortex is given parametrically in terms of 0 < 8 <
Ro/m. 1t also should be noted that by following the locus of a single spiral curve it is not
possible to determine the values of m and a unambiguously, but only the quotient m/cx.
The parameter m is determined independently, however, by noting that it indicates the
integer number of intertwined, non-intersecting curves that cross a circumferential arc at
every radius r.

Video-imaging measurements of variations in the intensity of the reflected light are
‘combined with these equations to determine the parameters describing the spatial form of
the instability. The temporal evolution of the secondary flow is quantified by making a
sequence of such observations at successive time intervals of 1/30th second. Profiles of
gray scale intensity as a function of radial position are presented in §4 and the peaks in the
profile are identified as local maxima in the magnitude of the secondary flow. Profiles at a

fixed azimuthal position for a sequence of elapsed times show that the instability consists of
radially-periodic vortices which iravel outwards across the disk. The radial wavenumber o

109




*3s583 Yor2 Ul sures o si pexds oy
JO 0 JaQUINUAABM [eIpes JY ], ‘7 = w ‘sfends olnounuAsixeuou pajsau (9) 1y = w ‘opowt OLUIUASIXRUOU
(@) ‘0 = w *opows oPunLASIXE (v) :9Z°¢ uonenba £q uaAld uwioj ayy Jo sfends uelpawiyosy [§°¢ 2andyy

110




can be calculated from either the Fourier spectrum of a single radial profile I(r), or from the
average of all observed peak-to-peak distances at different angular positions. The
wavespeed, ¢ = Im(0)/a, of the secondary flow is determined by measuring the position
- of the center of each vortex at successive time intervals. Linear regression using equation
3.26 of a series of radial intensity profiles at different azimuthal angles 6 in an image makes
it possible to determine if the secondary flow is axisymmetric or three-dimensional.
Information describing the temporal structure of the elastic instability at a single fixed point -
in space might be obtained from a time-series of LDV measurements (cf. McKinley e? al.
1991b); however, such observations fail to yield the global spatial form of the instability at
- any instant in time, so this approach has not been pursued here.

- The image analysis for the instability in the cone-and-plate geometry follows a
similar approach, but the interpretation of the intensity profiles must be modified due to the
altered spiral structure. The roll cells in the cone-and-plate geometry are wound into a well-
defined spiral structure with a characteristic logarithmic radial spacing across the disks.

-This section defines the normal mode decomposition used to describe infinitesimal
perturbations of this form and show that the two-dimensional planform of this
representation has the form of self-similar Bernoulli Spiral curves.

The nonlocal spatial form of the secondary motion that is observed in the
experiments, coupled with the lack of a characteristic length scale in the gap between the
rotating cone and stationary plate suggests the use of a coordinate transformation to
simplify the governing equations. A transformed radial coordinate, &, is defined by:

&=In(7/Ry), (3.28)

where 7 is the dimensional radial coordinate in a (7, 6, @) spherical polar coordinate
system and Ry is an arbitrary reference length scale, for example the finite radius of the
experimental geometry.

When expressed in this dimensionless transformed radial coordinate, the
experimental measurements of the separation between adjacent roll cells become equally-
spaced and the secondary motion can be represented by Archimedean Spirals as for the

- parallel-plate elastic instability. In transformed coordinates, the disturbances considered for
any dimensionless variable f in the linear stability analysis are then represented in the form

ia;E+imgp+ot
?

f(£.6.0,0)=F(B)e (3.29)
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where o is the dimensionless wavenumber in the transformed radial coordinate, m is an
integer indicating the periodicity in the azimuthal direction, o'is the dimensionless complex
growth rate of the disturbance scaled with £2-1, and the complex amplitude function F(6)
satisfies the boundary conditions of the disturbance equations on the upper and lower
fixtures.

Illumination of the fluid sample and observation of the reflected light results in a
time-series of two-dimensional video-images in the (7,¢) plane. If the disturbance

kinematics are of the form given by equation 3.29 then the intensity J of the images will
vary as ‘

I(F,lp;t) - Ioeia‘ ln(F/R0)+im¢+01, (3.30)

where I, represents an (unknown) depth average of the reflected light from the fluid
sample at each radial position.

Selecting a point in a single video-image corresponding to a maximum intensity in
the secondary motion and following the location of this recirculating vortex in the (7, ¢)
plane yields a locus of points given by

dl = (3)a7 +(&)dg =0 =S di + mdg. (3.31)
Rearranging and integrating this expression results in a spiral curve R(¢) defined
parametrically by

~(a; Im)¢ .

R(9) = Roe (3.32)
where —o < ¢ < o0 and Ry is an integration constant corresponding to the (arbitrary) radial
location at which the spiral curve passes through the point ¢ = 0.

The single curve defined by equation 3.32 is known as a Bernoulli spiral, and the
constant factor (—oz/m) is often defined as a winding number n. Unlike the Archimedean
spirals observed for the parallel-plate geometry, there is no well-defined length scale in the
radial direction. A rotation of the coordinate system by a factor ¢y is equivalent to a scaling
of the radial coordinate by a factor s= "% and this curve is a self-similar or fractal object
(Peitgen et al. 1993). Figure 3.12 by shows the maxima in the disturbance kinematics for a
fixed value of the wavenumber oy and different values of the azimuthal wavenumber m.
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Both of the wavenumbers (m and o) describing the disturbance can be determined
from experimental measurements of the gray-scale intensity I(7,¢). Measurements of the
radial locations (R;) of successive peak intensities taken radially outwards across the disk at
any fixed value of the azimuthal coordinate ¢ are related by a geometric series (cf. equation

3.30):

RI"{‘:‘ =% (3.33)

Non-zero values of the parameter |m| correspond to the integer number of

intertwined non-intersecting spiral curves; for m = 0 the disturbance corresponds to
axisymmetric toroidal vortices with a logarithmic radial spacing. The wavespeed of the
disturbance is determined by following the spatial translation of the spiral cells such that
DID{ = 0. The dimensional radial wavespeed & of the cellular disturbance is thus

calculated from equation 3.30 to vary linearly across the disk as

_6 _ Im(o)
E=35= 2; (3.34)

and the direction of propagation is determined from the sign of the imaginary part of the
eigenvalue 0.

3.4.2 Superposed Plane Poiseuille Fiow

In order to quantify the amplitude and wavenumber of the interfacial disturbances, a
series of image processing operatidns must be applied to the images obtained as described
in §3.2.3. For the magnification used, eaci frame of the videotape shows a region of the
channel ~6 mm long and its entire height. However, the wavelengths of the instabilities
studied here are typically 6 to 30 mm long, so a composite image of the flow is formed in
order to compress the scale in the flow direction. A framegrabber (Scion, LG-3) was used
to extract a single vertical line of pixels from images at rates from two to five frames per
second, depending on the amount of compression needed to study a given wavelength. The
compressed image shows the flow past a single point over a sufficiently long time so that
the time series of the interface position contains enough periods of the disturbance to allow
its wavenumber to be accurately determined by an FFT.
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In order to obtain the position of the interface, the images must be processed to
demarcate sharply the regions of the two fluids. All image processing was performed using
the Concept V.i image analysis library (Graftek) in the LabVIEW programming system
(National Instruments). The contrast between the two fluids was first increased by altering
the histogram of the gray scale values of the pixels such that gray scale values over a
selected interval were redistributed over the full range of 0 to 255. The interval was chosen
such that the contrast within the region corresponding to each fluid was decreased, while
the contrast between the two fluids was increased. After there was a clear contrast between
the two regions, the image was transformed to a binary image to aid with further
processing. A series of opening and closing operations were performed on the binary
image to eliminate isolated pixels without affecting the shape or position of the interface. A
Prewitt filter, a high-pass filter which highlights variations of intensity along the horizontal
and vertical axes, was used to locate the position of the interface. A curve of the detected
interface position can then be drawn on the original image to allow for a visual verification
that the image processing operations did not alter the interface. The series of points
corresponding to the interface position can then be used to determine the amplitude and
wavenumber of the disturbances.
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- Chapter 4

Rotational Flow Instabilities

The elastic flow instabilities in the torsional flows between parallel plates and
between a cone and a plate are studied by using a digital imaging system in order to
determine the spatial and temporal characteristics of the instabilities. The effects of
changing the flow geometry and fluid rheology are investigated for each case, and the
results are compared with the predictions of a linear stability analysis.

4.1 Parallel Plate Geometry

Experimental observations are presented which allow the determination of the
spatial and temporal characteristics of the purely elastic torsional flow instability between
parallel plates. The consequences of the flow instability on the total torque and thrust
exerted by the fluid on the plate are demonstrated in §4.1.1, and the limitations of the data
that can be obtained from such spatially-averaged measurements are summarized. A
detailed analysis of the spatial and temporal evolution of the flow instability in the 0.31
wt% Boger fluid for a fixed geometric aspect ratio of R/H = 20 is presented in §4.1.2, and
the spiral parameters describing the local form of the nonaxisymmetric disturbance are
determined. The effects of changing fluid rheology and aspect ratio on the instability are
shown in §4.1.3. Observations of « second flow transition that develops at later times from
well-defined spiral vortices of a single spiral number to a complex nonlinear state
composed of nonaxisymmetric disturbances with a spectrum of radial wavelengths are
described in §4.1.4.

4.1.1 Dynamic Torque and Normal Force Measurements

Previous measurements of the onset of the torsional flow instability typically have
been limited to dynamic measurements of the total tu.que 7and the total thrust, or normal
force, Fexerted on the stationary upper disk of a commercial parallel-plate rheometer as the
lower disk is rotated at various speeds (Magda and Larson 1988; Steiert and Wolff 1990;

McKinley et al. 1991a). Typical results are presented in figure 4.1 for the apparent first
normal stress difference, N14(f) = 4 K#)/mR2 measured in the 0.20 wt% PIB Boger fluid

during the start-up of steady shear flow in a Rheometrics RMS-800 Mechanical
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Spectrometer. The sensitive dependence of the instability on the angular rotation rate 2
between the plates is clearly observed. In each experiment, a fresh fluid sample is used, the
rotation rate is increased, and the aspect ratio R/H between the plates is decreased
propomonately, such that the nm‘j]shear-rate and thus the Werssen 4 number of the flow

and then decreases towards a-\s”teady asymptonc value,

Weissenberg number), re ardless of the rotatxongra ‘o b
expected from the fundamental rheological premxse that the rﬁatenﬂ_ zppropertxes ofa srmple
‘fluid are a unique function of the local (in a Lagrangian sense) defo;manon rate. For low
values of the rotation rate, the first normal stress difference smootfﬁy asymptotes to the
expected steady-state value and subsequently remains constant at all future times.
However, as the rotation rate is increased beyond a critical value of .(Lm =3. 90 rad/s, the
normal stress exhibits a rapld increase above the expected steady-state value to a final time-
dependent state. These complex aperiodic ﬂuctuatlons correspond to the onset and
nonlinear evolution of a nonaxrsymmetnc secondary ﬂow between the plates as shown in
§4.1.2. The magnitude of tlns transient increase in the normal ftr‘ess N 1a becomes larger,
and the induction time for onset of the instability becomes progr 'ss:vely shorter as the
rotation rate and Deborah number are increased. Similar behavmr is observed in the torque
exerted by the fluid on the plate. In McKinley et al. (1991a) a series of such measurements
were used to show that the initial growth in the stresses is exponential in time, that there is
hysteresis in the flow and thus that the instability is subcritical in rotation rate. However,
because the measured thrust and torque correspond to integrated values of the actual
stresses acting on the plate at each point, it is not possible to deduce information about the
spatial form of the instability. ' | |

4.1.2 Nonaxisymmetric Disturbances of Spiral Form

A series of observations depicting the evolution of the kinematics in the torsional
flow were made using the 0.31 wt% fluid with a fixed plate separation of H = 2.00 mm,
corresponding to an aspect ratio of R/H = 20. The series of gray-scale images shown in
figure 4.2 were obtained using the video-imaging system described in §3.3 and depict the
spatial and temporal evolution of the flow at a fixed rotation rate as it progresses from the
stable base flow (a), through a well-defined spatially-periodic spiral structure (b-d) before
ultimately developing into a nonlinear state with many modes present (e-f). A steady
rotational flow is initially established between the plates at a rotation rate below the critical
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Figure 4.2 Onset and growth of the purely elastic instability observed in the
torsional flow of the 0.31 wt% PIB fluid between coaxial parallel disks with R/H =
20: (a) flow appears stable shortly after the Deborah number is increased to Deg =

5.99 at f = 5:00:00 (min:sec:frame); (b) after an induction time of 90 s, the spatial
structure of the secondary flow becomes visible; (c-d) outward traveling
nonaxisymmetric secondary flow consisting of a single spiral vortex; (e) nonlinear
mode interaction; (f) ultimate fully nonlinear state.
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~ value £2crjt and the flow is observed for 5 minutes or more to ensure that it is stable; this
corresponds to the intensity of the light reflected by the seed particies being uniform across
the disk. At time f = 5:00:00 (min:sec:frame), the rotation rate is incremented to a slightly
supercritical value, corresponding to Deg = 5.99. The flow field shown in figure 4.2(a) is
already unstable, and measurements of the torque and normal force on the disks indicate
that the initially small changes in the stresses arising from the secondary flow are growing
exponentially. After 90 seconds, the seconda.ty ﬂow has grown m 1nten51ty sufficiently that
a faint spiral structure can be discerned in figure 4 2(b) near the center of the disk. The
strength of the secondary flow continues to mcrease, and after another 60 seconds, a well-
defined spiral secondary flow is clearly vxsxble in ﬁgure 4 2(c) Du'ect observatlon of the
videotape clearly shows that these spiral vomces travel steadlly outwards across the disk
but remain confined to a narrow annular nng The secondary ﬂow structure shown in
figure 4.2(d) was observed 0.60 s (18 video frames) aftcr figure 4 2(c) at which time the
vortices have moved outward by about one-half of 1tigxelr yavelength. Quantitative
measurements of the wavelength, wavespeed and azimuthal structure characterizing this -
instability are presented below. At longer times nonlinear interactions become important,
and the periodic spatial structure of the seeohdéx‘y flow begine to become less well-defined,
as shown in figure 4.2(e). Dynamic measurements indicate that the increases in the forces
exerted on the plates due to the secondary flow begin to saturate at this time. Ultimately, the
secondary flow becomes highly nonlinear with a wide spectrum of spatial structures
present, as shown in figure 4.2(f). This nonaxisymmetric itime-dependent flow will persist
until either the torsional motion is completely stopped, or the rotation rate is reduced below
a second, lower critical value for return to the steady state torsional flow. Sosne evidence of
polymer degradation is observed after long periods in the unstable state, as discussed by
McKinley et al. (1991a). o |

In order to quantify the secondary flow, it is necessary to enhance the visibility of
the structures observed in the sequences of video images, such as those shown in figure
4.2. Typical raw and postprocessed images are presented in figure 4.3 after application of
the image processing operations described m §3.4. Correcting for the nonuniform
background illumination increases the azimuthal visibility of the cellular structure around
the entire disk, while adjusting the brightness and contrast expands ﬂje histogram of gray-
scale values present to yield enhanced visual deﬁnition of the cells. However, as is clear
from an examination of figures 4.3(a) and (b), hese operatxons do not compromise the
fidelity of the spatial variation in the secondary flow structure.

A Cartesian coordinate system is superimposed on the digitized images of the
secondary flow with its origin at the center of the disk, as shown in figure 4.3, and the
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cylindrical coordinate system required for definition of the spiral disturbance forms
discussed in §3.4 is located with the line 6 = 0 aligned along the poSitive x-axis, and angles
increasing in the direction of rotation of the upper plate. For all the experimental results
presented here, @ increases in the clockwise direction. The radial structure of the instability
* is determined by measuring gray-scale variations in the intensity of the light reflected by the
seeding particles in the flow along any radial line passing through the origin, as
demonstrated in figure 4.4(a) for the radial line corresponding to 6 =-1.00 rad. In this
profile and all others presented in this work, the negative radial coordinates indicated on the
abscissa indicate distances along the radial line given by extending 6 — 6 + 7 rad.

The radial wavelength of the secondary flow can be calculated from such profiles in
a number of ways. A Fourier transform of the intensity profile yields the power spectrum
shown in figure 4.4(b) and the radial wavelength is determined as ):, = 3.57 £ 0.12 mm,
corresponding to a dimensionless radial wavenumber of o = 3.52 + 0.12 . Alternatively,
the radial separation between each pair of adjacent peaks in the intensity profile is calculated
as a function of the angular position as shown in figure 4.4(c). From such measurements,
the radial wavelength is found to be almost constant at different azimuthal positions with an
average value and standard deviation determined from figure 4.4(c) as /’L = 3.66 £ 0.53
. ,

The temporal evolution of the flow is determined unambiguously from a sequence
of radial intensity profiles along a line of constant 6, as shown in figure 4.5 for the same
angular position of 6 = —1.00 rad. The elapsed times given in figure 4.5 are the same as
those in figure 4.2, and the intensity of each profile has been vertically offset for clarity.
These profiles clearly show the traveling-wave structure of the secondary flow. At any
given instant in time, the disturbance appears radially periodic and the intensity of the
secondary flow passes through a maximum with increasing 7. The center of each vortex
moves radially outward with time; the growth and ultimate decay of the disturbance can be
followed by following the location of a particular crest as a function of time. The smallest
dimensionless radius at which an intensity peak can be detected is denoted as Rf, and the
largest radius at which the peaks are still distinguishable is denoted as R; . Although the
experimentally observed secondary flow consists of spiral vortices which propagate
radially outwards, it should be noted that they do not initiate at the center of the disks nor
do they travel completely out to the edge of the fixtures. Rather, the vortices start at a finite
radius, grow and then decay to zero amplitude at some second larger radial pbsition, and
are only visible for radial positions in the range 4.2 mm < 7 < 23.2 mm, corresponding to
dimensionless positions of 2.1 < r < 11.6. This is in sharp contrast to the predictions of the
linear stability analysis for an Oldroyd-B fluid, which predicts that the torsional flow is
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- Figure 4.4 Data for the calculation of the radial wavelength of the secondary flow

shown in figure 4.3. (a) Radial profile along @ = —1.00 rad; (b) Fourier spectrum
of radial intensity fluctvations; (c) average distance between the peaks in figure 4.3.
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linearly unstable to spiral disturbances of the same form as observed here for all radii
greater than a single critical radius R* = Rcm These disturbances subsequently decay
beyond a second critical radius due to shear-thinning of the first normal stress difference,
which reduces the relative importance of the elastic effects in the flow. The irregular
fluctuations in the baseline intensity near the center of the disk are caused by an imperfect
match between the background reference image and each successive image of the
instability. These fluctuations are present even between successive images of the uniform
base flow at subcritical rotation rates and typically arise because of small inhomogeneities
in the flow, such as minute au' bubbles, which are difficult to ehmmate and which migrate
. to the region of low shear near the center of the disks.

The radial position of each successive peak in the intensity profiles shown in figure
4.5 is determined for each time step, and is replotted in figure 4.6 as a function of time.
Linear regression through each series of points yields the wavespeed of the instability. The

 radial component of the wavespeed is determined as ¢,= 3.18 * 0.27 mm/s, equivalent to
a dimensionless value of ¢; = 0.23 + 0.02.

It is immediately apparent from figure 4.4(a) that the secondary flow is
nonaxisymmetric, because the peaks in the intensity profiles are located at different radial
positions on either side of the origin. However, from closer consideration of equation 3.26
and figure 3.11, it is clear that this single profile can only be used to determine that the
disturbance, if of spiral form, does not correspond to an even value of the integer spiral
number m. In order to determine precisely the nonaxisymmetric structure of the instability,
similar measurements of the radial structure are required across the disk at different angular
positions. As previously noted, the spiral number m only appears in equation 3.26 in the
product m/ct. Analysis of the data proceeds by selecting a trial value of m, and combining
this with an initial guess for the value of & taken from the independent measurements
shown in figure 4.3. Linear regression of the experimental data with equation 3.26 then
yields best fit values of o1 and 6 for a given value of m. Selection of the Archimedean
spiral which most closely describes the overall spatial form of the flow is then based on the
data regression which results in the highest correlation coefficient. For the flow of the 0.31
wt% fluid between parallel plates with an aspect ratio of R/H = 20, the spatial structure of
the secondary flow is best described by an outwardly-traveling spiral of positive angle (m =
1) with a dimensionless radial wavenumber o = 3.64. Figure 4.7(a) shows the positions
of the intensity maxima of the digitized image superimposed on a raw image of the
secondary flow. Figure 4.7(b) shows the same data as figure 4.7(a), but with the spiral
curve representing the instability ‘unwrapped' in the O-direction to demonstrate more
clearly how well this form of the disturbance can describe the experimentally observed

126




"S/UW LT°0 F 81°€ Se pajenofes si paadsaaem oy,
-awy pasderd Jo uonouny e se ¢y undy Jo sopyoid oy wouy pasnsesw syead S Jo SUOKISOG 9°p aandyyq

[urur] uopisog rerpey

¢ 0C SI ol s 0 ¢- 01~ SI- 0T~ Sc-
17 ._1_.__q_=.4lo.c

T T T[T T TP 1 ______q_—_‘_“___..__d
~ 1 1

—10'1
°®

i
! i | !
| | | '
| I | i
| ! ! |
| | ' |
! i ' 1
| | I (-
_ . . . _
| [ ' '
[ I ! |
i § | i
_ | ! |
! | ! !
| I _ |
| _ | _
| ! .

_.____________rb.__r._.___fb__

Lovao v b e b v bea iy m..—
it o N 2N

127

[s]3v




'PeI Gep'0 =0 pue ww o8| = 0 ‘| = w YPim suonisod asay)
01 9z'¢ uonenba Jo 11} 353q 9 Yim syead 3i) Jo suonIsod () mof; au Jo a3ew oapiA e uo pasodursadns
suonisod [eyinunze Juasajyip 18 sofyyoid ANsuajur wioly pauruuelep syead oY) Jo SUONISOJ (V) L'y andiy

0 [wuw] x

| 0 + 6 |  op 0  op
UpT ugil uQf] ug i1g uy ug

128

. 2%

o

%

i
i

L | _ _ _ 7 uonoaIIp
uone)0Yy




nonaxisymmetric flow. For m > 1, there would be m different curves corresponding to m
intertwined spiral vortices, each offset by an angular displacement of 277/m.

The quantitative values of the wavespeed, wavelength and azimuthal structure of the
instability also compare well with the linear stability analysis of Oztekin and Brown (1993).
If the apparent relaxation time of the fluid is evaluated at the local shear rate of 7= 16 s-!
corresponding to the onset radius Rl* , then the local shear-rate-dependent Deborah number
is De(9) = 2.8. At this Deborah number, the most unstable mode is predicted by Oztekin
and Brown to be a nonaxisymmetric disturbance with m = 1, a wavespeed of ¢; = 0.24 and
a wavenumber o = 3.13.

4.1.3 Effect of Aspect Ratio and Fluid Rheology

The linear stability analysis of Oztekin and Brown for the Oldroyd-B fluid indicated
that the spatial form of the instability scaled with the gap separation H between the parallel
plates and that the loci of the neutral stability curves were sensitive functions of the
dimensionless solvent viscosity ratio B. Sets of experiments similar to those described in
§4.1.2 have been performed for the two different PIB Boger fluids described in §3.2 by
using two different representative aspect ratios. The results from these experiments are
summarized in Table 4.1. The two fluids are differentiated in Table 4.1 and the subsequent

“text by their respective values of the solvent viscosity ratio, which are = 0.59 for the fluid
containing 0.31 wt% PIB, and 8 = 0.84 for the 0.20 wt% fluid.

‘Table 4.1 Critical conditions for the onset of the rotational flow instability for two
different viscoelastic PIB/PB/C14 test fluids.

In each fluid, enlarging the separation between the plates and decreasing the aspect
ratio R/H results in a small increase in the critical Deborah number required for onset of the
elastic instability. However, for the smaller aspect ratio of R/H = 11.4, the shear rate at the
edge of the disk, and thus the Weissenberg number at the onset of the flow instability, is
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actually lower. This is in good agreement with the earlier experimental and theoretical
tindings. For 2 larger gap, the local shear rate at any radial position across the plates at
onset is lower and shear-thinning effects are less important. Consequently, the spatial
extent of the secondary flow extends almost completely out to the edge of the disks. The
dimensional wavelength and wavespeed both increase as the gap is increased; however, the
dimensionless wavenumber o (scaled with the gap H) remains almost unchanged, as
expected from the analysis of Oztekin and Brown. The wavespeed also scales well with
gap size, and is in excellent agreement with the value predicted for the Oldroyd-B model
with the shear-rate-dependent relaxation time.

For the = 0.59 fluid, an axisymmetric instability consisting of concentric vortices
which travel radially outwards across the disk is observed for an aspect ratio of R/H =
11.4. Although Oztekin and Brown predict that the m = 1 mode should still be the most
unstable mode at these conditions, the spacing in the stability curves for different m is very
small, and the m = 0 mode is just slightly more stable at this De. The linear stability
analysis yields neutral stability curves along which the temporal growth rate of the
instability is zero and does not predict which finite amplitude states will be observed at
supercritical conditions. Such results must be found from a nonlinear analysis.

The Deborah number at the onset of the instability appears to increase slightly in the
second experiment, but in fact both values are overpredictions of the true critical Deborah
number. Very long induction times of greater than 1000 s are common for onset of the
elastic instability very close to the critical rotation rate (Jackson et al. 1984; Magda and
Larson 1988; McKinley et al. 1991a). However, to perform such experiments requires
careful isolation of the apparatus from external perturbations, and effects such as viscous
heating in the fluid, or long term temperature fluctuations in the laboratory. In these
experiments observation times at each rotation rate have been limited to ~300 s and after a
given Deg was determined to be stable for this period of time, the motor speed was
increased in steps of 802 = 0.52 rad/s, which corresponds to finite increments in Deg of
0.42 and 0.65 for the f = 0.59 and B = 0.84 fluids, respectively.

~ The predicted onset radius for the B = 0.59 fluid at Deg = 6.0 is Rf = 2.2, which
is in good agreement with the experimental results. The value of Rl* is defined as the radius
at which the instability begins to grow; however, because only cells that have already
grown to a finite amplitude large enough to produce a discernible peak in the radial intensity
profiles (see figure 4.5) can be detected, the values of R{ in Table 4.1 will necessarily tend
to overpredict the true onset radius.

The most important difference between the experimental results and the predictions
of Oztekin and Brown (1993) is that the Oldroyd-B model predicts that the flow should be
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unstable for all dimensionless radii greater than R;, whereas there is an experimentally
observed position R; beyond which the flow remains stable. Although the critical radius
Rl* for onset of the instability is predicted well for Deg = 6, the analysis using the Oldroyd-
B model predicts that the critical radius increases monotonically as the rotation rate is
decreased. There should therefore be a larger value of R* at which a secondary flow is
observed experimentally for Deborah numbers smaller than Deg = 6. As long as the value
.of the critical dimensionless radius Rf is less than the finite aspect ratio R/H of the
experimental apparatus, the instability should be observed from Rf outwards to the edge of
the disk, and as Dey is increased, the region of unsteady flow should move inwards. For
example, for Deg ~ 1, the analysis for the Oldroyd-B model with 8 = 0.59 predicts that
the flow will be unstable with m = 3 at R; = 19, whereas for Deg~ 3, m = 1 is the most
unstable mode for all dimensionless radii R* > 2.2. In contrast, experiments show that the
flow remains stable at all radii across the disk for all rotation rates below the critical rotation
rate corresponding to Deg = 6.35, when the cells form between Rf and Rg . As shown in
§4.3.2, this qualitative inconsistency with the linear analysis ‘can be alleviated by
considering a more realistic constitutive equation that includes shear-thinning of the first
normal stress coefficient. | o

Furthermore, the linear stability analysis predicts that muitiple spiral modes should
be present in the secondary flow, whereas it is clear from the ibbser\?ations that only a
single mode is observed at short times. For De(7) = 3, them = 1 mode is :predicted to be
most unstable in the sense that it has the smallest critical radius of R, =22 However, the
modes withm =0and m =2 are both unstable at the slightly larger ‘radlus of R, = 2.7.
The neutral stabllxty curves yield 1 no information about the temporal growth rates of the
different modes, or the amphtudes of the disturbances, and therefore no means of
determining which mode should be selected in an experiment.

For the §=0.84 ﬂl.lld, the onset of the mstabxhty was agam observed at Deo 6 for
both aspe .t ratios, and the shear—rate—dependent Deborah number based on the shear rate at
Rl was De(§) = 3, as observed for the § = 0.59 fluid. The analysxs for the Oldroyd-B
model predicts that for a given Deg, the critical radius Rl should be greater for the p=0.84
fluid, whereas the observed value of R; is slightly smaller for the B = 0.84 fluid than for
the f=0.59 fluid. The mstabxhty again extended across only a portion of the disk, and Rz
was found to decrease for the = 0.84 fluid. |

The secondary flow for the f = 0.84 fluid between parallel plates with an aspect
ratio of R/H = 20 was observed to have the form of two nested non-intersecting spirals, as
shown in figure 4.8, whereas for R/H = 11.4 a secondary flow with m = 1 was observed.
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Oztekin and Brown predict ihat the axisymmétn‘c mbde should be the most unstable for B=

0.84 and Deg = 6, although m = 1 and m = 2 are the next most unstable riodes The
wavenumber and wavespeed both scale with the gap size, with the wavenumber increasing
and the wavespeed decreasing relatwe to the B =0.59 fluid.

Experiments spanning a wider range of aspect ratios (R/H) and solvent viscosity
ratios (f3) are desirable; however, the range of parameters expenmenta]ly attainable are
constrained by a number of physxca.l consxderahons For disks with a given radlus R, larger
aspect ratios correspond to vortices of a smaller wavelength which are difficult to resolve
spatially. Furthermore, for very small gap separatxons, the region of unsteady flow given
by dimensionless radii in the range Rlcm <SR's chm would physically correspond to a
very narrow annular ring close to the center of the disk. The elastic instability will still be
present, but the contribution of the secondary flow to integrated measurements of the
torque and normal force on the plates will be negligible. On the other hand, for larger gap
separations the surface tension of the fluid is insufficient to overcome centrifugal and
gravitational body forces and the sample will be flung out of the gap between the plates.
The range of viscosity ratios ¢/ physically realizable with Boger fluids also is limited. If
the polymer concentration is increased in order to increase the relative contribution of 7p
then the polymer solution crosses over from the dilute to the entangled regime, and
stabilizing effects such as a nonzero value of the second normal stress coefficient ¥, and
pronounced shear-thinning in the viscosity become dominant. This typically constrains the
solvent contribution to be greater than 8> 0.50. Reducing the polymeric contribution to the
viscosity below 1p = 0.17 leads experimentally to very dilute nonentangled solutions with
short relaxation times, and the numerical stability calculations show that larger values of
result in increasing stabilization of the base circumferential flow. It thus becomes difficult
experimentally to achieve sufficiently high rotation rates and/or Deborah numbers to
observe this torsional flow instability.

4.1.4 Onset of Nonlinear Interactions

The results presented in §§4.1.2-3 are for times shortly after the onset of the
instability when the secondary flow consists only of a single spiral vortex which intensifies
as it travels across the disks. At longer times, the temporal measurements of normal force
shown in figure 4.1, and the video-images of the spatial form of the secondary flow shown
in figure 4.2 indicate that the subcritical instability eventually saturates as slower growing
modes become increasingly important and the flow enters a complex aperiodic state far
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from the base torsional flow. The beginnings of this transition can be seen in figure 4.9,
which shows results from the experiments with = 0.84 and R/H = 11.4. The critical Deg
was exceeded at = 16:00 min, and figures 4.9(a-c) show that initially a single spiral
with m = 1 and i, = 5.27 mm is present which intensifies with time and travels radially
outwards across the entire disk. However, at longer times this single spiral begins to split
at intermediate radial positions, as shown in figures 4.9(d-f). A single well-defined spatial
wavelength is still discernibie, but it is now much shorter than the single mode spiral
structures present in the linearly unstable regime, and the characteristic wavenumber has
approximately doubled to o = 6.49. The primary mode is clearly still in evidence at other
radial locations. Similar nonlinear mode interactions are observed for both fluids and all
aspect ratios examined. An example of the final unsteady flow reached at long times is
shown in figure 4.10, for the B = 0.59 fluid and R/H = 11.4. The initial spiral mode was
axisymmetric with m = O and a single well-defined radial wavelength of i, =5.94 mm,
and the steady torsional base flow remained stable for all radii less than 7 = 14.7 mm. As
the Fourier spectrum in figure 4.10(c) shows, the secondary flow can no longer be
characterized by a single wavelength. Although considerable power remains in disturbances
with wavelengths close to i, = 6 mm, shorter wavelength modes also are present. Close
examination of the videotape and images such as figure 4.10(a) reveals the presence of both
positive angle (m > 0) and negative angle (m < 0) spirals with a wide range of radial
wavelengths. These negative angle spirals have negative wavespeeds and move radially
inward unti} the nonlinear time-dependent secondary flow extends across the entire disk.
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Figure 4.9 Transition to nonlinear state for B=0.84 and R/H = 114 at flow
condition Deg = 6.18 and Re = 0.009: (a-c) initial secondary flow has the form of a

single spiral vortex with radial wavelength /'1:, = 5.27 mm; (d-f) as the instability

saturates, the cellular structure splits and the wavelength reduces to ):, = 3.39
mm.
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4.2 Cone-and-Plate Geometry

Expenmental observations are presented that illustrate the procedure by whrch the
spaual and temporal charactenstxcs of the purely elastnl cone

—plate mstabrhty are

of the ﬂow mstablhty
1"‘1§4 2.1, and the
1symmetnc dlsturbance
arymg the cone angle

are deterrmned The effects on the ﬂow mstabrhty oh systemancal
are demonstrated in §4 2.2. Fmally, the effects of changmg ﬂurd rheology are drscussed in
§4.2.3. ‘ o |

'4.2.1 Spiral Instability

The series of gray-scale images shown in figure 4.11 depict the spatial and temporal
evolution of the flow for the 0.31 wt% PIB Boger fluid and a conical fixture with 6p = 10°.
A steady torsional flow is initially established between the cone and plate at a rotation rate
‘below the critical va.ue £2rj; and this flow is observed for 5 rmnutes or longer to ensure
that it remains stable. Note that even in the steady base ﬂow the intensity of the light
reflected by the seed particles in the fluid is not radxally umform across the disk. This is
because the depth of the fluid samplc reﬂectrng the mcrdent hght increases radially
outwards from the apex of the cone which 1s located at the center of each image. The
Deborah number was then mcremented to a supercrmcal value of Deg=5.28 by
increasing the rotation rate of the conical ﬁxture at the time mdrcated by 21:00:00
(min: sec: frame) in figure 4.11. Although the flow i xs already unstable in figure 4.11(a), the
amphtude of the secondary flow is too small to be observed because of the slow temporal
growth rate of the disturbance near the critical condmons Seventy-ﬁve seconds later, the
secondary flow shown in figure 4.11(b) has grown sufficiently to be observed as a bright
spiral vortex. Direct observation of successive frames on the videotape reveal that this
spiral vortex slowly translates inwards towards the apex of the cone. The instability
continues to grow in intensity, and it is clear from figure 4.11(c) that there is a single spiral
that fills the entire region between the cone and plate. Eventually nonlinear interactions
become important, as shown in figure 4.11(d), and there is no longer a single clearly-
defined spatial structure to the flow. However, in contrast with observations of the fine-
scale turbulent motion observed following onset of inertial instabilities between a cone and
plate (Sdougos er al. 1984), it is clear that these elastically-driven disturbances continue to
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Figure 4.11 Onset and growth of the purely elastic instability observed in the

torsional flow of the 0.31 wt% PIB fluid in a cone-and-plate geometry with 6) =
10°: (a) flow appears stable shortly after the Deborah number is increased to a

supercritical value Deq = 5.28 at time 7 = 21:00:00 (min:sec:frame); (b) 75 sec
later the secondary flow becomes visible; (c) inward traveling non-axisymmetric
flow consisting of a single logarithmic spiral vortex; (d) ultimate fully nonlinear
state. Note that the direction of rotation of the upper conical fixture in this and all

subsequent figures is counterclockwise.
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propagate throughout the entire fluid sample and are composed of cellular structures with a
wide spectrum of spatial wavenumber. This non-axisymmetric time-dependent flow will
persist indefinitely, until either the rotational motion is completely stopped, or the rotation
rate is reduced below a second, lower critical value for return to the steady two-dimensional
torsional flow. This hysteresis is characteristic of a subcritical bifurcation and has been
documented clearly in the previous measurements of Magda and Larson (1988) and
McKinley et al. (1991).

Of course, the complex three-dimensional time-dependent flow that ultimately
develops at long times (cf. Fig 4.11d) cannot be described by a linearized stability analysis.
However, such a linear analysis can describe the initial growth of infinitesimal disturbances
in the fluid at short times and the slow transient evolution of the flow away from the steady
base motion following a small, carefully-controlled increase in the rotation rate beyond the
critical value it

In order to quantify the structure of the instability, the individual gray-scale images
are processed as described in §3.4 to enhance the visibility of the secondary flow. The
time-dependent evolution of the gray-scale intensity along a fixed radial line passing
through the origin is shown in figure 4.12. Each profile is taken from a different video-
image evenly spaced at 0.2 sec (6 video frames) apart and the profiles are offset vertically
for élarity. Negative radial coordinates on the abscissa indicate distances along the diametric
line given by extending ¢——> ¢ + mwrad. This series of profiles clearly shows that the
recirculation moves slowly inward, and that the instability fills the entire gap, in sharp
contrast to the Archimedean spiral instability in the parallel plate geometry, which only
filled an annular region between tiie disks. As-discussed in §4.1, the limited extent of the
elastic instability in the parallel plate geometry results from shear-thinning in the normal
stresses at the higher shear rates near the outer edge of the disk. By contrast, the
homogeneous base flow in the cone-and-plate geometry results in a shear rate that is
uniform throughout the sample. The intensity, the distance between successive maxima of
the line profiles, and the size of each cell increases with radius, as shown in figure 4.12.
The smaller cell size near the center of the geometry coupled with the fact that there are
fewer seed particles to reflect light in the narrow gap makes it difficult to resolve maxima at
radii of less than about 7 < 4 mm (0.16R).

From the form of the logarithmic similarity transform, we expect the magnitude of
the radial component of the wavespeed, é‘,, to increase linearly with radius (cf. equation
3.34). Although the profiles of figure 4.12 clearly show that the spiral travels radially
inwards, it is difficult to quantitatively measure ¢, from these profiles. The radial positions

of each maximum can be found at each time step, but any estimates of the wavespeed
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Figure 4.12 Temporal evolution of radial intensity profiles along a fixed line of

¢ = m/2 rad. The azimuthal origin ¢ = 0 is indicated in figure 3.12, and ¢
increases in the counterclockwise direction. The ordinate is vertically offset for each

" profile to show the translation of the cells, and the time scale is shown in (min:sec)
to correspond to the images shown in figure 4.11.
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require assuming that &, is constant over some interval Af. A more direct approach is to
calculate the wavespeed in transformed coordinates (&, 6, ¢), since the dimensionless
wavespeed cg is constant. The displacement of the &-location of each peak with
dimensionless time ¢ is shown in figure 4.13. From such plots, the dimensionless
wavespeed of the elastic spiral instability in a 10° cone-and-plate geometry was calculated
to be c¢ = -0.0107 £ 0.0030.

A sequence of radial profiles similar to those in figure 4.12 were also obtained at
different angular positions, at a fixed time, in order to study the azimuthal structure of the
instability. The wavenumber of the spiral varies linearly with radial position in physical (7,
6, ¢) space, but is a constant in the transformed (&, 6, @) coordinates. Without any
additional knowledge of the spatial structure of the flow, ¢ is determined from the
geometric series of the radial locations of successive peaks using equation 3.33. The plot of
the dimensionless ratio Rj43/R; shown in figure 4.14(a) gives an average value of Rj;j/Rj=
1.345, corresponding to a dimensionless wavenumber of o =21.2. The value of m
describing the non-axisymmetric structure of the flow instability often can be determined in
experiments directly by inspection of images such as figure 4.11, but for higher mode
numbers a more robust regression technique is necessary. In the (&, 6, ¢) domain the spiral
is of Archimedean form, so a linear regression of the experimental data analogous to those
reported in §4.1 yields the best fit values of oz and ¢y for a given choice of m. Selection of
the Archimedean spiral which most closely describes the overall spatial form of the
secondary motion is based on the linear regression which results in the highest correlation
coefficient. For the elastic instability shown in figures 4.11-13, m = ~1, where modes m <
0 indicate ‘negative angle spirals’ which spiral radially outwards as ¢ increases (cf.
equation 3.32). The ability of this spiral form to describe accurately the experimental data is
demonstrated in figure 4.3(b), where regression of the (&, ¢) coordinates of each peak R; to
equation 3.32 yields a single curve. For |m| > 1, there would be |m| different curves
corresponding to || intertwined spiral vortices each offset by an angular displacement of
27n/m. The slope of this single line gives the winding number n of the spiral defined in
equation 3.32 as n = 0.047, in good agreement with the values of m and o independently
determined above.

" The data in figure 4.14(b) can be viewed as the spiral structure of the elastic cone-
and-plate instability in (&, 6, ¢) coordinates when ‘unwrapped’ in the ¢-direction. This
description is contrasted directly to the original video-imaging observations in figure 4.15,
where the best fit line from figure 4.14(b) has been transformed back into (7, 6, ¢)
coordinates and juxtaposed directly with a raw image of the secondary flow structure. It is
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Figure 4.13 Positions of the peaks measured from the intensity profiles of figure
4.12 in the transformed domain (€, 6, ¢) as a function of dimensionless time. The
wavespeed is calculated to be ¢z =-0.0107 £ 0.0030.
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Figure 4.14 Determination of the spatial structure of the secondary flow. (a)
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143




| PRICII-=0p pue T[T =70 ‘|- = w s
suonisod asayy 03 Z¢"¢ uonenba jo 1y 153q ayy pue afew passasoid woiy paureiqo syead jo suonesof (q)

¢

*.01 = 0g pue 87°¢ = 02(7 1& paalasqo Ajiqejsul mopy ay) jo oFeus 0opIA mey (D) g1y dandyg

[wwa] x o [ww] x
0c ] 0 ol- 0¢- 0¢ 01 0 01~ 0c-

_______—_b.___—__________ ___________~_____r___.h_l_




clear that a single Bernoulli spiral provides an excellent description of the elastic cone-and-
plate instability.

4.2.2 Variation with Cone Angle 6y

Similar experimental measurements to those described above have also been
conducted using conical fixtures with cone angles of 4°, 6° and 15° with the 0.31 wt %
PIB Boger fluid, and are summarized in Table 4.2. Quantitative comparisons of the
experimental data with linear stability calculations are presented in §4.3. In general, the
observations show that as the cone angle is increased, the critical Deborah number Degcrit
increases and the transformed radial wavenumber o of the disturbance decreases. In
addition to this trend, the azimuthal mode number of the most unstable non-axisymmetric
disturbance is also found to increase as the cone angle decreased. In the 6° cone-and-plate
geometry a logarithmic spiral instability with m = -3 is observed very close to the critical
onset conditions. The three intertwined branches of this spiral instability are shown in
figure 4.16 superimposed on an image of the flow at Deg = 4.95. The wavenumber in this
geometry is determined to increase to ar = 30.4 and the dimensionless wavespeed
decreases slightly from the value determined in the 10° geometry to cg =-0.0128. This
increase in the azimuthal wavenumber at lower cone angles is consistent with the linear
stability calculations discussed in §4.3.

For the largest conical fixture (6y = 15°), gravitational body forces overcame the
surface tension in the large gap at the outer edge of the cone, and observations of the static
fluid meniscus shape showed that fluid only bridged the region between the fixtures out to
a reduced radius of R ~ 13 mm. For this large cone angle, the base ﬂow is not expected to
be purely azimuthal (Walters and Waters 1968, Olagunju 1993), however, no radial
recirculation was discernible from flow visualization. Desplte these experimental
nonidealities, as the Deborah number is incremented to a critical value of Deo 6.32, a
negative angle spiral instability with m = -1 is still observed i i "the fluid sample. The
wavenumber is determined to be oz =16.0 and the wavespeed is r,’ C uced to a value of ¢z =
-9.0x10-4.

- These variations in the critical conditions for onset of the instability with cone angle
are not unexpected and can be at least qualitatively explained by a stability analysis for the
quasilinear Oldroyd-B constitutive model. However, the most striking observation is that
for a cone angle of 4°, no elastic instability was observed at any rotation rate up to the
maximum obtainable Deborah number of Deg = 8.31 (Re = 0.42). The possibility that this
apparent lack of instability resulted simply from insufficient seeding in the thin fluid sample
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to reveal the secondary motion was eliminated by performing careful supplementary
experiments in a conventional rheometer (Rheometrics RMS-800). No time-dependent
variations in either the total torque or the normal force exerted on the fixtures was detected
over the same range of Deg. As discussed in §4.3, the complete elimination of this elastic
instability cannot be explained using the quasilinear Oldroyd-B model which actually
predicts that the critical Deborah number should decrease monotonically as the cone angle
decreases. However, the restabilization of the base flow is explained by incorporating a
constitutive equation that predicts a shear-rate-dependent first normal stress coefficient into
the analysis. By decreasing the cone angle of the geometry the shear rate ¥ =0/6,
experienced by the fluid sample is increased at any value of the rotation rate. Since the
apparent relaxation time A,(7) of the test fluids decreases with increasing shear rate, §4.3
shows that the increasing relative importance of viscous effects for small cone angles may
ultimately restabilize the base viscometric motion at all rotation rates.

4.2.3 Effect of Fluid Rheology

In order to explore the sensitivity of the spiral instability to small modifications in
the fluid rheology, tests were also conducted in each conical fixture with samples of the
0.20 wt% PIB/PB-H300/C14 Boger fluid. For completeness, the wavenumbers and
wavespeeds for each of the experimental conditions explored in this work are shown in
Table 4.2.

Fluid
0.31% PIB 4° — — — —
(B =0.59) 6 4.95 30.3 -0.0128 -3
10° 5.28 21.2 -0.0107 -1
15 6.32 - 16.0 -0.0009 -1
0.20% PIB 4° — — —_ -
(B=0.84) 6 7.60 45.0 -0.0001 0
10° 5.87 16.6 -0.0147 -1

Table 4.2 Summary of the variations in the Deborah number, wavenumber, wavespeed
and azimuthal mode number at onset of the eiastic instability observed experimentally in’
two elastic Boger fluids over a range of cone angles.
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In the 0.20 wt% elastic fluid, spiral instabilities only could be observed for the 6°
and 10° cones. In the 10° cone a single inward traveling spiral (m = —1) was again
observed, with a wavenumber slightly lower than that calculated in the 0.31 wt% fluid.
However, for the 6° cone the instability had the form of nearly stationary axisymmetric
cells, which were poorly defined and hard to resolve with the imaging system. Although it
is dangerous to infer trends from only two data points, the progressive increase in the
dimensionless wavenumber o of the spiral instability for the 0.20 wt% fluid appears
similar to that discussed in detail above for the 0.31 wt% fluid. Increasing the solvent
viscosity ratio also appears to shift consistently the elastic instability to higher Deborah
numbers.

Section 4.3 shows that most of the these variations in the spatio-temporal
characteristics of the instability can be explained by linear stability analysis of the Oldroyd-
B model. Somewhat more puzzling for the 0.20 wt% fluid data shown in Table 4.2 is the
apparent reversal in the trend of progressively decreasing values of the critical Deborah
number with smaller cone angles. Section 4.3 shows that this trend can be explained, at
least qualitatively, by considering the stability of a nonlinear constitutive model.
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4.3 Comparison with Linear Stability Analysis

In conjunction with the experimental studies discussed in §§4.1-2, a linear stability
analysis of the spiral instabilities was also conducted by A. Oztekin. Details of the analyses
can be found in Byars ez al. (1994) and McKinley et al. (1995), and the major conclusions
are briefly outlined here. |

4.3.1 Linear Stability Analysis
Parallel Plate Geometry

The linear stability analysis for the parallel plate geometry of Oztekin and Brown
(1993) for the Oldroyd-B model was extended to the Chilcott-Rallison model in order to
incorporate the effects of a shear-thinning first normal stress coefficient. The analysis was
restricted to radially localized disturbances of the velocity, stress and pressure that could be
written in the normal mode form A(z)ei@r+imé+ot where o is the radial wavenumber, m is
the azimuthal wavenumber, & is the temporal growth rate and A(z) is an amplitude function
that satisfies the boundary conditions on the upper and lower plates. Calculations were
performed for Deborah numbers and dumbbell extensibilities 0 £ Deg < 8 and 10 S L S oo,
respectively, for axisymmetric and positive angle spirals.

The neutral stability curves R*=R*(c) computed for axisymmetric (m = 0) and
nonaxisymmetric (m = 1) disturbances for § = 0.59 and several values of the dumbbell
extensibility L are shown in figure 4.17 for Deg = 1 and Deg = 5. The solid curve in each
plot represents the neutral stability curve R* = R*(cx) for the Oldroyd-B limit, L — . For
the Oldroyd-B model, there is a critical value R* = R};(0rs,) at each Deborah number that
corresponds to the minimum in the neutral stability curve R* = R*(@). For R* < Ryi(0crit)
the viscometric flow is stable for all values of the radial wavenumber a, whereas for any
R® > R0y, the flow is unstable to disturbances in some range of @, as previously
shown by Oztekin and Brown (1993). The shape of the neutral stability curves for the
nonlinear Chilcott-Rallison model is fundamentally different. These neutral stability curves
form closed loops; as a result, there is a finite range of radii
Ricrit(@1crit) < R* < Rcrit{@pcri) for which the viscometric base flow is unstable. For
all radii outside this range, i.e. R* < R]crit{®1crie) and R* > Rypi(@crit), the steady
flow is stable. The values Rjy;; and Ry, are, respectively, the minimum and maximum of
the neutral stability curves R*=R*(a). As L decreases and shear-thinning of ¥,(7)

149




¢ = 0aq (11) pue | =0aq (1) jo ssoquinu yeloqaq YPim
SIOUBQIMISIP OLAURUASIXRUOU | = W (g) Pue (( = W) SUIAWWASIXE (D) 10 7 JO SAN[EA SNOMIBA PUR 6670 =
g ynm [apows uosI{feY-NOJIYD 3 Joj panduwiod (wD) Y= Y SIAIND AN[iqels [enna UL, LIy andiy

| ol 1
e . 10 s - ot

ool Y
ot

-
=
-
o~
- -

~

— 001 - 0001 @

. : ,
"rl \.M °— ) ""\\ h8- 0“
~ - \ 1141 ’
I.III - II L’
"""“‘ 1 "’ \\\
Qﬂ - II"I(.\\\\ 4
0s1=7 1
o) ® m

0ol . - . 000! (

150




becomes increasingly important, the unstable region contained by R* becomes smaller and
ultimately disappears completely below a critical value of L. Monotonically increasing Degy
reduces the critical radii R* = R}y;( ;) for all curves, but also decreases the critical value

of the extensibility L for which the flow is stable everywhere to both axisymmetric and
nonaxisymmetric disturbances. The critical value of the radial wavenumber changes little
with Deg. The most dangerous radial wavenumbers for the onset ( Qjcrit) and for

disappearance (0tycyy) of the instability remain close to about ¢ =3 for both axisymmetric -
and nonaxisymmetric disturbances; this wavenumber corresponds to disturbances with a
wavelength of approximately twice the gap spacing.

Finite extensibility has only a small stabilizing effect on the value of Ry ;; compared
to the value obtained for the Oldroyd-B model. For low shear rates, the Chilcott-Rallison
model predicts quadratic growth in the basic state values of hoop stress 3’099. However, for
dimensionless shear rates exceeding De,R” 2 I /[8(L” - 3) shear-thinning in the normal
stress becomes appreciable and the neutral curves in figure 4.17 deviate significantly from
the Oldroyd-B limit. Ultimately, for R*> R3crit(@crit) the shear-thinning reduces the
gradient in the normal stress to the extent that the viscometric motion is restabilized.

For all values of the viscosity ratio §, the value of Deg.,;, increases and the range of
radii where the base flow is unstable shrinks as L is decreased and the shear-rate-
dependence of the first normal stress coefficient becomes increasingly important. Note also
that the predictions of the critical radii for the onset of instability R 1 are very similar for
both the Oldroyd-B and the Chilcott-Rallison models and that the critical value of R Serit
predicted by the Chilcott-Rallison fluid for any value of L has a weak dependence on De,

as shown in figure 4.18. These features of the neutral stability diagram can be explained
~ better by plots of the apparent Deborah number De = De,/ f, as a function of

~ dimensionless radius, which asymptotes to zero for all values of Deg and any finite value of
L due to shear-thinning in the first normal stress coefficient. For L = 50, the difference in
the apparent Deborah number for 3 £ De, < 8 is very small for radii beyond R* = 20. This
is consistent with the linear stability analysis for this fluid, which predicts the value of
Rocrit(@cri0) = 20, approximately independent of Deg. However, for much smaller values
of R* the shear-thinning of the normal stress is small and the apparent Deborah number is
not reduced significantly below the zero-shear-rate value of De. Therefore, the differences
between the predictions of R}, for the Oldroyd-B and the Chilcott-Rallison models are
small; this is seen in figure 4.18. ‘

The results in figure 4.18(5) show that no instability should be expected below a
critical Deborah number De( = 6, for a fluid described by = 0.59 and L =15. Beyond
this Deborah number disturbances are expected to be radially localized to a thin annular

151




'65°0=¢ (q) pue 06'0= g (&) Jo sones Kysoosia & 1oy
927 30 uonoun; e se Anpiqeisur smounudsixe ay) Jo josuo oys 3oy 49y snipes [eonwo sy L gI'p aand g

%q %aq
8 9 14 [4 0 8 9 L4 [4 0
v L v ™ v T v —oo - 2 v ¥ v —
AqEIS | Jqeis |
i ]
jol
o |
1 oor
1 001
4 0001 4 001

152




ring. This prediction is in good qualitative agreement with the experimental results shown
in Table 4.1. A more detailed comparison between the linear stability calculations and
observations is discussed in §4.3.2. ‘

Cone-and-Plate Geometry

The analysis for the cone-and-plate geometry follows a similar procedure, except
that it is written in the transformed coordinate system (&, ¢) and is therefore not restricted to
: radié.lly localized disturbances.

The neutral stability curves R*( 3 )= 1/ Bp( o ) for axisymmetric disturbances

(m=0) of the Chilcott-Rallison model with a solvent viscosity ratio of §=0.59 are
shown in figure 4.19 for a range of representative values of the extensibility parameter L .
The solid curve in each plot represents the neutral stability curves in the Oldroyd-B fluid
limit (L — o). The characteristics of the neutral stability curves for the Chilcott-Rallison
model are very differeﬁt; the locus of neutrally stable points (i.e. where Re(o) = 0) forms
a closed loop, and hence the viscometric base motion is only unstable for a finite range of
cone angles Bgcriy, (aécritl ) > 60 > Opcrit, (a;’m-tz) at each value of the extensibility
parameter L. The values of R:rit , =1/60crit, and Rc*mz =1/60crt, are, respectively, the
minimum and maximum of each neutral stability curve. As L decreases and the nonlinearity
in the FENE spring increases? shear-thinning in the elastic hoop stresses becomes
increasingly important and the unstable region becomes progressively smaller until it
eventually disappears completely below a critical value of the extensibility L. It can be seen
from comparisons of figures 4.19(a-b) that increasing the Deborah number increases the
destabilizing elastic stresses and a smaller critical value of L is required to restabilize the
base flow over all values of cone angle. |

. Stability diagrams for axisymmetric and non-axisymmetric disturbances to the
Chilcott-Rallison model are determined by calculating the critical cone angles at which the
base flow is destabilized for each value of Deg and L. The results of such calculations are
‘shown in figure 4.20. In the Oldroyd-B limit (L — o), a finite value of the critical cone
angle is predicted for any non-zero value of the Deborah number. For large cone angles
(and therefore small shear rates) the stability curves of the Chilcott-Rallison model closely
follow the Oldroyd-B stability loci. However, the curves diverge as the critical cone-angle
decreases and shear-thinning effects in the fluid become increasingly important. For finite
values of the extensibility L there exists a critical value of the Deborah number
(corresponding to the turning point in each of the curves plotted in figure 4.20) below
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which the base flow is stable for all cone angles. For Degy > Deyye, the base flow is
unstable over the finite range of cone angles 8pcrjt, > 6p > Oocrit, - but at lower values of
the Deborah number, the base torsional motion between a plate and a cone of any angle is
stable to all axisymmetric and non-axisyinmetric disturbances of spiral form. Of course,
this is subject to the important caveat that the purely azimuthal base flow is a valid
approximate solution to the inertialess equations of motion. This requires that 6y < 10°
(0.173 rad), or equivalently R >5.7.

The value of Deg; increases and the range of unstable cone angles shrinks for
both the axisymmetric and non-axisymmetric disturbances as the extensibility L is
decreased. At large Deborah numbers the variation in the upper stability boundary
R:ﬁtz =1/6pcrir, with De, is weak for all values of L and m, since the rate of shear-

thinning in the normal stresses asymptotically approaches 7'"1. Increasing the Deborah
number thus results in almost no change in the destabilizing elastic stresses predicted by the
Chilcott-Rallison model.

4.3.2 Comparison of Experiments and Linear Stability Analysis

Parallel Plate Geometry

The evolution of the disturbances and the shape of the neutral stability diagrams
predicted by the linear stability analysis of the nonlinear Chilcott-Rallison model are
consistent with the experimental observations. Most importantly, it shows that for a given
solvent viscosity ratio B and finite dumbbell extensibility L in the Chilcott-Rallison model,
the elastic flow instability is limited to an annular ring near the center of the disks. The
instability develops at the critical radius R'= Rfc,.;t(alc,it ) and the secondary motion
propagates radially outward as traveling spiral waves when the Deborah number exceeds
the critical Deborah number for the onset of instability. This disturbance flow dies out at a
second, larger critical radius R'= thc,it (03crit ) and the flow becomes laminar, steady and
purely azimuthal again.

The agreement between experiment and theory for the prediction of the critical
Deborah number is also greatly improved over the previous work of Oztekin and Brown
(1993). In the limit L o (corresponding to the quasilinear Oldroyd-B model), the present
analysis for infinite disks predicts that the critical value of Dey monotonically approaches
zero, and the torsional flow is always unstable for any finite Deg at large enough radii.
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However, when the magnitude of shear-thinning in the first normal stress\coefficient is
increased by decreasing the extensibility parameter L, the positive spatial gradients in the
normal stresses which provide the driving force of the elastic instability are decreased and
the critical value of Dey, is increased. For quantitative comparison, the experimental values.
(with appropriate error bounds) and the prediction from the linear stability anzlysis for the
critical Deborah number Deg = Deg;,(L) are shown in figure 4.21 for §=0.59 and 0.84.
The base flow remains stable everywhere for small values of Deg for both values of fand
all finite values of L. For a fixed viscosity ratio, the numerical value of the critical Deborah
number is dependent on the exact value of the extensibility parameter L, which is
determined experimentally from the best fit to the shear-rate-dependent first normal stress
coefficient ¥;(}) of the PIB/PB/C14 elastic liquids. The steep slopes of the numerically
calculated curves in figure 4.21 for L < 50 signify how sensitive the critical Deborah
number Degcrit is to changes in this extensibility parameter. This parameter can only be
determined approximately from the steady-shear-flow rheological data available, and only a
single-mode model was used in the calculations, so some discrepancy between the data and
computations in figure 4.21 is to be expected. In addition it should be noted that the
experimental values of Deqrit determined from the growth of finite amplitude perturbations
to the base flow underpredict the linear stability calculations, as expected for a flow
instability with a subcritical bifurcation structure. Both the experimental observations and
the numerical calculations shown in figure 4.21 also indicate that the degree of stabilization
by shear-thinning in the first normal stress coefficient is stronger for the higher solvent
viscosity ratio. Similar stabilizing effects were demonstrated by Larson et al. (1994) using
the K-BKZ model, and physically arise fromthe increased damping of the disturbance
energy that is obtained when the relative contribution of the Newtonian solvent viscosity is
increased. Numerical calculation is not continued for Deborah numbers beyond Deg = 8
because the critical onset radius of the disturbances becomes very small. Since the present
analysis is restricted to radially localized disturbances, it becomes unreliable when the onset
radius of the instabilities becomes too small.

The predictions from the linear stability analysis' for the axisymmetric and the
m =1 and m = 2 spiral vortices show that the difference in the critical onset radii for
these modes is very small for elastic fluids with = 0.59 or § = 0.84 and for the most
physically realistic values of the parameter L. It is therefore likely that both axisymmetric
and nonaxisymmetric vortices will be observed simultaneously in experiments. In fact,
both the current flow visualization experiments and previous observations by McKinley et
al. (1991a) show the existence of several modes once the disturbances reach finite
amplitude. Even close to the onset point of the instability, it is found that both the
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Figufe 4.21 The critical Deborah number Deg,,; as function of L for § = 0.59

and B = 0.84 predicted by experiments (@) and stability analysis (—) for the most
- dangerous instability mode.
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axisymmetric (m = 0) and the nonaxisymmetric (m = 1, m = 2) spiral vortices can be
observed in different experiments for slightly different values of the Deborah number, as
indicated in Table 4.1. For a solvent viscosity ratio of §=0. 59, ihe linear stability analysis
predicts the m = 1 nonaxisymmetric mode is always the most crmcal However, for most
values of the extensibility parameter L, the dxfference in the calcuiated onset radu of the
axisymmetric and m = 1 and m = 2 spiral vortices are very sma]}

Both the axisymmetric and nonax1symmetnc splral waves observed in the
experiments correspond to vortices with dnmensmnal radial spacmg of approximately twice
the gap between the plates, in good agrcement thh the calculatwns The experimentally
measured radial spacing between two bnght regions at a constant value of 6 corresponds to
the wavelength 2nt/c shown in the normal mode representatnon of the disturbances
(equation 3.26). A similar representation has been used for the flow of Newtonian fluids
over a rotating disk to compare the predlctxons for spiral angle between experiments and
calculations for the inertial instability, or Ekman spirals (Kobayashx et al. 1980; Malik
1986). Both the measured and the calculated wavenumbers of the axisymmetric and
nonaxisymmetric disturbances exhibit a weak dependence on Deg and B: the measured
wavenumbers for different values of Deg and J are 3.64 < @ < 4.11, and the calculated
wavenumbers vary in the range 3 < a < 4 for a broad range of Deg and . The
wavenumbers from both the experiments and the analysis increase slightly as f increases.

The dimensionless radial wavespeed of the disturbances observed in the
experiments remains approximately unchanged across the annular region of secondary
flow, and is measured to be ¢y = 0.23 for axisymmetric mode and spiral vortices in both
PIB/PB/C14 Boger fluids, as shown in Table 4.1. The linear stability analysis for the
axisymmetric mode (m = 0) predicts that the wavespeed of the disturbance depends on both
the Deborah number and the radial location R* being considered. For a fixed value of Deg
= 5.5, the radial wavespeed‘ is approximately 0.08 when instability starts at
R'= Rl*cﬁt( Oycrit) and is about 0.25 when disturbances decay again at
R'= R;cm (071t ). These values are relatively insensitive to the azimuthal form of the

disturbance. For example, the calculated values of the critical wavespeed are 0.07 and 0.19
for spiral vortices with a winding number m = 1. The agreement between the experiments
and the analysis is therefore good at larger radii. In fact, the compan'soh of the wavespeeds
predicted by experiments and analysis for the Oldroyd-B model is equally good if the
calculations are carried out at Deborah numbers based on the ‘apparent relaxation time’, De
= De(Y), evaluated at the local shear rate between the plates. The wavespeed of the
axisymmetric instability for the Oldroyd-B fluid model with a solvent viscosity ratio
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B =0.59 is calculated to be ¢, = 0.18 using a Deborah number corresponding to the local
shearrate at R* = Rf;ﬁt (0crir )= 3.5 (Oztekin and Brown 1993).

The critical values of the radii R* = Rjpry(0tcritJand R” = Roge(Olocry ) defining
the annular region of the unsteady flow determined from the experiments and stability
calculations are shown in figure 4.22(a) and (b) for solvent viscosity ratios of B=0.59 and
B = 0.84, respectively. The observations and the calculations with the Chilcott-Rallison
constitutive model are in qualitative agreement. Both show that the axisymmetric and spiral
vortices are confined to an annular region bounded by Ricy; and Ry ry;; however, the
stability analysis consistently predicts lower values of these critical radii. Since the
experimental observations of secondary motions are inherently finite in amplitude they are
expected to result in an overestimation of Rl* ; similarly, outwardly-traveling disturbances
of finite amplitude may be expected to decay more slowly than infinitesimal perturbations
and the decay radius Rz* will thus also be overestimated by the experiments. Closer
comparison between theory and experiment requires nonlinear calculations of the finite
~ amplitude states or the incorporation of a more complex constitutive model with a spectrum
of time constants which better describes the steady and transient material functions of the
elastic test fluids. The systematic differences between the experimental measurements and
the numerical predictions also may result from considering only radially-localized
disturbances. Since the disturbances are confined into a finite annular region for the
Chilcott-Rallison model, the validity of this assumption is easier to justify than it is in the
Oldroyd-B model for which the instabilities occur in an infinite domain. However, rigorous
removal of this assumption requires consideration of the fully two-dimensional
nonseparable eigenvalue problem in the (7, z) pfane for each spiral mode.

Although the analysis predicts that the difference in the onset radius of the radially
inward-traveling negative angle and outward-traveling positive angle spiral vortices is very
small, only positive angle spirals are observed by flow visualization at the linear stage of
the instability. This is probably due to the fact that negative angle spirals travel radially
inwards to smaller radii where the analysis suggests the base flow is linearly stable to all
disturbances of spiral form. Any small disturbances which can be represented in this form
will therefore be damped so that their amplitudes are never large enough to be detected in
the experiments. However, it is obvious from figures 4.2(e) and 4.2(f) that negative angle
spiral vortices are observed in the nonlinear motions observed at longer times. These
structures propagate radially inward toward the center of the disk and probably reflect back
from the center. The nonlinear interactions between these reflected waves and other
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traveling waves make the flow too complicated to decompose into discrete disturbance
modes.

Cone-and-Plate Geometry

The critical value of the wavenumbers o =g ;(6p) and cg = crerip(60)

determined from experiments and predicted by linear stability analysis for the axisymmetric
(m = 0) and non-axisymmetric disturbances with m = -1, -2 and -3 are shown in figure
4.23. As the cone angle decreases, the wavenumber steadily incre:-es, and the
experimental observations and numerical calculations for the critical wavenumber are in
excellent quantitative agreement. Additionally, the calculations show that the values of the
critical wavenumber of each mode are similar for all cone angles and also that these values
become very large as the cone angle approaches zero. The measured and calculated values
of the radial wavespeed of the disturbance also agree well for the smallest cone angle of
6, = 6°; however, for larger cone angles the wavespeed of the logarithmic spirals observed
in experiments is smaller than the predicted value for any mode. This discrepancy at larger
cone angles might be expected since both our experimental and numerical assumptions of a
purely azimuthal base flow become inaccurate for cone angles beyond 6y > 10°. The linear
stability analysis also predicts that the concentric waves (m = 0) travel faster than the non-
axisymmetric m = -1, -2 and -3 logarithmic spirals and that the wavespeed of the
recirculating vortices decreases as the cone angle is progressively reduced.

The Oldroyd-B model thus appears to provide an accurate description of the spatial
form of the elastic instability in cone-and-plate flows. However, under the typical flow
conditions attained at onset of these elastic instabilities, Boger fluids actually exhibit shear-
rate-dependent material properties; most notably, the first normal stress coefficient ¥;(y)
decreases monotonically as a function of increasing shear rate. Construction of an
experimental stability diagram and quantitative comparison of critical flow conditions at rhe
onset of the elastic instability therefore requires the definition of an appropriate relaxation
time for the test fluid. The Oldroyd-B fluid model of course does not predict any shear-rate
dependence in the viscometric properties; however, an ad hoc comparison between
experiments and linear stability calculations can be effected by defining an ‘apparent
relaxation time’ (McKinley et al. 1991; Larson et al. 1994) as 4;(y) = '}‘1(7'/)/ 2[1;(}") - 77;]-
In this fashion, the actual values of the viscosity and first normal stress coefficient for the
fluid are used to construct a new, Oldroyd-like time constant locally at each value of the
shear rate in the steady base state. This definition has the correct zero-shear-rate asymptote
given in Table 3.1 and, because linear stability calculations are only concerned with
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infinitesimal perturbations about the base state, spatial variations in the apparent relaxation
time may be expected to be very small at onset of stability.

A direct comparison of the experimentally-determined and numerically-predicted
stability diagram for cnset of the elastic spiral instability in cone-and-plate rheometers is
presented in figure 4.24. The shear-rate-dependent relaxation time A;(y) is used to
calculate an ‘apparent critical Deborah number’ De,g, ()= A;(¥)S2.i; and an ‘apparent
critical Weissenberg number’ Wem.h(}‘)s[De(}‘)/OO]crit for onset of instability in the
Boger fluid, and these values are compared with linear stability calculations for the most
unstable disturbance mode predicted using the Oldroyd-B model with f=0.59. This
critical Weissenberg number corresponds to either the critical dimensionless shear rate that
must be achieved for onset of instability in a series of experiments with a fixed conical
fixture, or alternatively to the critical cone angle for onset of instablity in linear stability
calculations at a fixed Deborah number.

In addition to the observations with the 0.31 wt% PIB Boger fluid, the hollow
circles in figure 4.24 indicate similar data extracted from the recent rheological studies of
the ‘M1’ international test fluid (Hudson and Ferguson 1990; Laun and Hingmann 1990;
Steiert and Wolff 1990). This is another polyisobutylene-based Boger fluid containing
0.244 wt% PIB in polybu.ene and kerosene, with a similar value of the solvent viscosity
ratio f; = 0.52 (Laun and Hingmann 1990). In these earlier studies using cone-and-plate
rheometers with cone angles in the range 1° < 6 < 4° the flow instability was interpreted in
terms of a ‘critical shear stress’ for structure formation. No information was given about
the spatial and temporal characteristics of the instabilities observed in the ‘M1’ fluid;
however, it appears likely that the instability is-identical to the traveling logarithmic spiral
vortices observed in the current investigation and is better interpreted in terms of a critical
Deborah number. It is clear from figure 4.24 that the agreement between the experiments
and theory for the prediction of onset of the elastic cone-and-plate instability is good for
both our PIB/PB/C14 and the ‘M1’ Boger fluid.

In order to compare the experimental observations with linear stability calculations it
is first necessary to choose an appropriate value of the dumbbell extensibility L. As
discussed above in §3.1, this parameter is best ascertained from extensional viscosity
measurements; however, in the absence of such data we resort to fitting the shear-rate-
dependence of the first normal stress coefficient ¥ (y)for the 0.31 wt% PIB Boger fluid.
Nonlinear regression results in the best fit value of L = 15 given in Table 3.1. However,
calculations with such a small value of L result in growth of spiral instabilities only at very
large values of Déo. Recent birefringence measurements in extensional flows through
packed beds (Evans et al. 1994) suggest that the molecular extensibility of the PIB
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Figure 4.24 Stability diagram for the onset of the elastic instabilities in a cone-
and-plate rheometer in terms of the shear-rate-dependent critical Weissenberg
number; (®) present experiments with 0.31 wt% PIB/PB/C14 Boger fluid, (O)
earlier experiments for M1 Boger fluid, (—) most unstable mode predicted by

linear stability analysis with Oldroyd-B model (8 = 0.59).
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molecules in a Boger fluid is actually considerably larger than the value obtained from only
considering the weak shear-rate-dependent variations in the viscometric properties, and
values in the range 30 < L < 100 are typically obtained for the extensibility of the
dumbbells in the Chilcott-Rallison constitutive model. In the comparisons presented below,
we find numerical stability calculations with values of L = 30 and L = 50 best describe the
experimentally-measured critical conditions for the 0.31 wt% PIB and 0.20 wt% PIB fluid
respectively. This discrepancy between experimental and numerical values of the nonlinear
parameter L is to be expected considering the limitations inherent in describing a
polydisperse semidilute polymer solution with a single mode FENE dumbbell model. A
more accurate comparison of experimental observations with linear stability analysis for a
multimode nonlinear viscoelastic constitutive equation has recently been presented by
Oztekin et al. (1994).

A composite stability diagram for comparison of experimental observations and
numerical calculations of the cone-and-plate instability in each fluid can be constructed in
several ways. The numerically-determined critical cone angles for the most unstable
azimuthal mode can be plotted as a function of the Deborah number Dey. However, for
consistency with the earlier work of McKinley et al. (1991), and the previous comparison
with the Oldroyd-B model (cf. figure 4.24) the stability diagram is presented here in terms
of the critical Weissenberg number We ; = ZIQ/GOCm(agcm,mcm ) as a function of the
zero-shear-rate Deborah number Dey, for the appropriate values of the solvent viscosity
ratio, = 0.59 and 8 = 0.84 respectively. In this parameter space, sets of experimental data
points with a given conical fixture thus describe straight lines extending from the origin
with slope 1/6,. Experimental measurements in each fluid corresponding to stable and
unstable base flow are marked in figure 4.25 by open (O) and closed (@) circles,
respectively. For comparison, the predictions from the linear stability analysis for the most
dangerous azimuthal disturbances are also shown in figure 4.25 for both the Oldroyd-B
limit (L = <) and for the nonlinear Chilcott-Rallison model with a value of L that best fits
the experimental data. For cone angles greater than 20°, a secondary flow consisting of a
weak toroidal motion is present, and the assumption of a purely azimuthal base flow is no
longer valid. ‘

. In contrast to the comparison presented previously in figure 4.24, there is no ad hoc
adjustment in the relaxation time made here and each figure represents a direct comparison.
The experiments in the 0.31 wt% PIB Boger fluid (8 = 0.59) indicate that the critical
Deborah number, below which no instability is seen, is Degc, =4.25 and also show that
fbr small cone angles (6p < 4°) the base flow is stable for all values of rotation rate
experimentally achievable in our experimental device. Also shown for completeness on this
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figure are additional experimental measurements performed earlier in a standard rheometer
(McKinley, 1991) using a conical fixture with 6y = 2.54° (0.04 rad). These observations
are in sharp contrast to the predictions for the Oldroyd-B model, which is qualitatively
incorrect and predicts Deg.q, — O for We >> 1. The experimental observations and the
linear stability calculations for the Chilcott-Rallison FENE dumbbell model with L = 30 and
B=0.59 are not in quantitative agreement, however the general characteristics are correct.
The predicted value of the critical Deborah number is Deg;, = 3.75 which is close to the
value determined by experiments. The analysis also predicts that the viscometric flow is
stable to all disturbances for all core angles below about 6,= 4.7° (0.08 rad).

' The stability diagram shown in figure 4.25(b) also provides an explanation for the
initially puzzling observation discussed in §4.2 of a large increase in the critical Deborah
number required for onset of instability in the experiments with the 0.20 wt% fluid in the 6°
geometry. The increase in the solvent viscosity ratio, f, shifts the neutral stability curve for
onset of spiral disturbances to higher Deborah numbers, and the locus of points in We —
Deg parameter space that are accessible with a 6° conical fixture now intersects the neutral
stability curve in the region where shear-thinning effects in the normal stress result in
increasing stabilization of the base azimuthal flow. A more extensive series of experiments
with a large number of different conical fixtures would allow the experimental stability
boundaries to be mapped -out with even greater precision; however, it is clear that the
nonlinéar constitutive model is capable of describing the key features of the stability
diagrams obtained in cone-and-plate experiments with Boger fluids.

The values of the FENE dumbbell extensibility parameters (L = 30, or L = 50) used
in the 'comparisons for the 0.31 wt% and 0.20 wt% PIB Boger fluids respectively, were
selected to provide the most reasonable description of the experimental stability data over
the range of parameter space represented in figure 4.25. Such values agree well with
estimates that can be deduced from recent uniaxial elongation studies with the 0.31 wt%
PIB Boger fluid performed by Tirtaatmadja and Sridhar (1993). However, these values are
inconsistent with the much smaller values of L = 15 or L = 20 independently obtained from
regression to the steady shear flow rheological data. The most plausible explanation for this
discrepancy lies in the poor approximation of the single mode constitutive models to the
linear viscoelastic spectrum of the test fluids. Previous rheological studies of the
viscometric properties of these Boger fluids clearly indicate a spectrum of relaxation times
(Quinzani et al. 1990). Even in experiments with monodisperse polymer solutions, a iarge
number of relaxation modes are available for microscopic deformation of the polymer
chains and different macroscopic viscometric tests probe differently weighted averages of
this relaxation spectrum (Larson et al. 1994). It should not be expected that a simple single-
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mode FENE dumbbell model can capture such phenomena even qualitatively. A detailed
stability analysis with a multi-mode constitutive model might improve the quantitative
comparison between theory and experiments; particularly since earlier rheological studies
indicate different nonlinear coefficients (e.g. FENE extensibilities) are associated with
different deformation modes (Quinzani et al. 1990).

This possibility has recently been investigated by considering the stability of
torsional motion between a cone and a plate with four-mode formulations of the Oldroyd-B
and Giesekus models. The results of this comparison are described by Oztekin e? al. (1994)
and show excellent agreement between analysis and experiment. They first showed that a
single-mode Giesekus model provided qualitative agreement with the experiments that was
comparable to the Chilcott-Rallison model. Figure 4.26 compares the critical value of the
geometric parameter R* = 1/0p.r; as a function of the Deborah number from the
calculations with a value of @ = 9x10~4 (solid curve) with the expermental measurements
for the 0.31 wt% PIB fluid (dashed curve). The linear stability analysis predicts both a
critical Deborah number below which the flow is stable for all cone angles, and a range of
cone angles for which the flow is unstable for De > Decrj;. However, the agreement with
the experimental results is only qualitative; furthermore, the analysis predicted that
axisymmetric disturbances (m = 0) were the most dangerous, whereas nonaxisymmetric
disturbances (m # 0) were observed experimentally.

As with the analysis for the single-mode Chilcott-Rallison model, the critical
Deborah number was underpredicted by the single-mode Giesekus model. This is a result
of the fact that the models overpredict the value of the first normal stress coefficient at
moderate rotation rates for the values of the nonlinear parameters (a or L) chosen. As
shown by Quinzani et al. (1990), a four-mode Giesekus model can quantitatively describe
the complex shear-thinning of the first normal stress coefficient, and the second mode of
the model determines the plateau behavior at intermediate shear rates (cf. figures 3.3-5).
However, it was shown that whereas neither the viscometric data of Quinzani ez al. nor the
transient elongational viscosity measurements of Tirtaatmadja and Sridhar (1993) were
known with sufficient accuracy to distinguish between values of a = 104 (as given by
Quinzani et al.) and o = 1.5x10-4, the linear stability analysis was very sensitive to the
value of . Calculations with four-mode Oldroyd-B and Giesekus models both showed

results similar to the single-mode Oldroyd-B and Chilcott-Rallison models for both the
wavenumber o and the wavespeed cg (see figure 4.23). However, the neutral stability

diagram showed a strong dependence on a;, and figure 4.27 shows that a; = 1.5x10—4
provides excellent quantitative agreement with the experimental results.
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Figure 4.26 Comparison of experimentally-determined and numerically-
calculated neutral stability curves for the onset of spiral instabilities between a cone
and a plate for the 0.31 wt% Boger fluid. Symbols indicate experimental
measurements of steady (O) or unsteady (@) base flow, the experimentally-
determined stability curve (- —-) and the predictions of the single-mode Giesekus

model with a = 9x10~4 (——). Error bars on the experiments are shown as a
heavy curve (from Oztekin ez al. 1994).
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Figure 4.27 Comparison of experimentally-determined and numericaily-
calculated neutral stability curves for the onset of spiral instabilities. Symbols
indicate experimental measurements of steady (O) or unsteady (®) base flow, the
experimentally-determined stability curve (- - -) and the predictions of the four-
mode Giesekus model with a; = 1.5x10~4 (——). Error bars on the experiments
are shown as a heavy curve (from Oztekin ez al. 1994).
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Connections between Parallel-Plate and Cone-and-Plate Instabilities

Although the spatial structures of the elastic instabilities presented for the
viscoelastic flow between a cone and a plate are very different from those for the flow
between coaxial parallel rotating disks, the numerous similarities between the base torsional
motion in two geometries and the form of the disturbance equations (after coordinate

transformation in the cone-and-plate or radial localization in the parallel-plate configuration)
suggest that these two spiral instabilities should be closely related. In the limit 8, — 0°, the

radial variation in the local gap between the cone and the plaie h(F) = 76, is very weak. If
localized displacements 67 about an arbitrary radial position such as Ry are considered, the

logarithmic radial coordinate transformation (equation 3.28) can be linearized as
§=ln(1+5f/R0) = 0r/ Ry. Substituting this linearized transform coordinate into the

disturbance kinematics described by equation 3.29, and defining the local gap between the
two fixtures as Ry6y = H, leads to

exp[iaéé +im¢ + ar] = exp[i( 0B )( 6f/H)+im¢ + O't] 4.1

By identifying the modified spatial wavenumber appearing in equation 4.1 as
ageo = opp, it becomes clear that this normal mode decomposition is equivalent to the
form of the Archimedean spiral disturbances considered above. In the limit of small cone
angles (ie. R =1/ 6, — =) we expect the dimensionless product g6y constructed from

the spatial wavenumber of the cone-and-plate disturbance to approach the dimensionless
radial wavenumber opp of the parallel-plate disturbance that can obtained in the limit
R = R/H — = by linearizing the radial variations in the corresponding disturbance
equations (Oztekin and Brown 1993). To verify this interconnection between the two
elastic instabilities, figure 4.28(a) shows the appropriate critical wavenuinbers for the onset
of axisymmetric instabilities in each geometry as a function of Deborah number for the
Oldroyd-B model with B =0.59 . For this quasi-linear model the critical value of the
geometric parameter R* in each geometry becomes infinite in the limit as Dey — 0. The
calculations clearly show that although the dimensionless wavenumber o of the cone-and-

plate disturbance becomes very large for small cone-angles (cf. figure 4.23) the product
ageo approaches the same asymptotic value (= 3.1) as the wavenumber app calculated for

the parallel-plate disturbance in the limit Dey — 0. A similar comparison could be drawn

from the predictions of the Chilcott-Rallison model; however, for each geometric
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configuration the curves would terminate at a non-zero value of the Deborah numbér,
corresponding to the appropriate value of Degcrit below which all disturbances of spiral
form are restabilized by shear-thinning in the viscoelastic hoop stress.

Another connection between the linear stability predictions for the onset of elastic
spiral instabilities in parallel-plate and cone-and-plate motions may be made by comparing
the stability diagrams for the two geometries. The critical onset conditions for the
axisymmetric disturbance modes for each geometry are plotted in figure 4.28(b) in terms of
the appropriate critical geometric parameter, i.e. the critical radial location R'= Forie/H in
the parallel-plate geometry and the critical cone angle R = 1/6gcre for the cone-and-plate
geometry. Given the results in figure 4.28(a), it is not surprising that the predictions of R’
for both geometries are similar to one part in 1000 as Deg — 0. However, it is very
interesting that the values of R remain very close for Deborah numbers as large as
Deg = 3. These results serve to justify two critical approximations made in the cone-and-
plate and parallel-plate analyses. One is the approximation applied to find the solution of
viscometric base flow between a cone and a plate. The results shown here indicate that the

onset of instability is not particularly sensitive to the approximate form of the solution for
the purely azimuthal base flow. At De, =3 the critical cone angle becomes as large as

15° —-20°; howevey, the corresponding value of R' =1/ 6, = 3 remains close to the value
of R* = Forit/H for flow between parallel plates, in which the kinematics of the inertialess
base flow are exact. Secondly, figure 4.28(b) shows that the critical conditions for onset of
spiral instabilities in the parallel-plate configuration are insensitive to the approximation of
localizing the disturbances. As described above, disturbances in the cone-and-plate
geometry are not localized to any particular region, in contrast with the analysis for flow
between parallel plates. The very close agreement in the values of the critical geometric
parameters R" for the onset of both instabilities over a wide range of Deborah numbers
serves to justify the localized disturbance assumption first applied by Oztekin and Brown
(1993).
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Chapter 5

Stagnation Flow Instabilities

5.1 Flow Past a Cylinder Confined in a Channel

LDV measurements are used to characterize the viscoelastic wake instability for a
wide range of cylinder radius to channel height ratios. Details of the onset conditions are
first presented, then further information about the spatial structure of the instability is
shown, and finally the effects of changing the upstream flow conditions are examined.

5.1.1 Onset of Three-dimensional Flow

The video-imaging experiments of McKinley er al. (1993) clearly demonstrate that
the instability has the form of a cellular structure in the wake of the cylinder. llumination of
the centerplane of the flow cell shows periodically spaced bright bands that cofrespond to
regions of higher streamwise velocity. Quantitative measures of the instability can be
obtained by LDV scans along the axis of the cylinder, as shown in figure 5.1 for
R/H = 0.63. Scans are shown of the streamwise velocity along the centerplane of the flow
cell one-half cylinder radius downstream of the stagnation point, i.e. {x, 0, 1.5R}. Before
the onset of the instability, the streamwise velocity, v, is uniform along the length of the
cylinder and the flow is two-dimensional, whereas beyond the critical conditions it
becomes periodic along the length of the cylinder. Careful measurements near the critical
conditions show that for increments of ADe = 0.01 there is no hysteresis in the flow, and
that this is a supercritical instability. These fluctuations in the streamwise velocity persist
downstream for a distance of about four cylinder radii, beyond which the flow is again
two-dimensional, as shown in figure 5.2.

' Although the instability persists only four radii downstream, full-field birefringence
measurements show that molecules are highly oriented by the stagnation: flow and remain
oriented over fifteen radii downstream of the cylinder. Figure 5.3 shows a series of images
of the birefringence in the wake of the cylinder for R/H = 0.5 for increasing De. Polarizers
with their axes of polarization crossed at 90° to one another are placed at each end of the
flow cell, and the images view the length of the flow cell in the direction of the cylinder
axis. In the absence of flow, no light should pass through the second polarizer. However,

175




0.75 ) ' I I i l |

R/H=0.63

0.50 {— N _ | —
A =t 031

1 0.28
_WMWMWWWW_ 0.24

025 |—= —
i 1 0.16

v, [cm/s]

0.00 | l 1 I | ' |
-20 -10 0 10 20

x [mm]

Figure 5.1 Axial profiles of the streamwise velocity v, for R/H = 0.63 across the
channel at ('R, ZR ) = (0, 1.5) as the Deborah number is increased from De =

0.16 to De = 0.31.
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Figure 5.2 Axial profiles of the streamwise velocity for R/H = 0.63 and De =
0.31 at y/R = 0 and increasing z/R.
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as De is increased, the flow aligns polymer molecules in the stagnation region, which rotate
the polah’zatibn of the light, resulting in the bright region (the 'birefringent strand") along
the centerplane for De 2 0.21. For this aspect ratio Decrjt = 0.31, indicating that the

presence of a birefringent strand region cannot be used as a criterion for flow stability,
~ although it does serve as an indicator of the extent of the extension-dominated region of the
flow. The birefringent strand extends over 15 radii downstream for De 2 0.35, whereas the
instability is only observed within four radii of the downstream stagnation point.

The birefringent strand grows in thickness, downstream extent and brightness as
the Deborah number is increased. The birefringence observed in these images is the
integrated effect along the entire width of the flow cell (76 mm), and attempts at observing
the cellular structure of the instability normal to the cylinder axis by full-field birefringence
were unsuccessful due to the narrow birefringent region (~2 mm). Furthermore, flow
induced birefringence measurements were made impractical by difficulties with measuring
the birefringence of three-component Boger fluids and the high residual stresses of the
plexiglass flow cell walls. Because flow induced birefringence measurements depend on
the flow field along the entire beam path, they could only be used for the two-dimensional
flow before the onset of the instability, and would not provide any further information
about the structure of the instability.

The critical conditions expressed as both Decrj; and Wert for 0.05-< R/H < 0.84
are shown in figure 5.4, along with the data from McKinley et al. Both fluids show the
same onset conditions, but neither Decyit nor Weit approaches an asymptotic limit for the
aspect ratios for which they would be expected to predominate. For small R/H, the cylinder
is well removed from the effects of the channel walls, and the cylinder radius becomes the
relevant length scale. However, Decrj;, which is based on R, does not approach a constant
value for small R/H, but instead increases as (R/H)-04 for small R/H. The scaling for Decrit
assumes that <v,>/R is a characteristic strain rate downstream of the cylinder. However, -
finite element simulations of Newtonian flow past a cylinder in a channel (Liu 1995) show
that the streamwise velocity is shifted further downstream for smaller values of R/H, such
that the velocity recovers to its freestream value over a distance much larger than R for
small R/H. An alternative definition of the Deborah number is De* = A€, , Where €,

~ is the maximum strain rate, which occurs at z/R ~ 1.7 for a Newtonian fluid. However,
Emax increases linearly with increasing R/H, so rescaling De based on €g,,, also fails to
provide an asymptotic limit at small R/H since De* decreases for decreasing R/H. The
shearing flow in the gap between the cylinder and the channel wall becomes important for
large R/H, but Wecrit continues to increase for large R/H. Purely elastic instabilities have
been observed in other flows with shearing along curved streamlines (Larson et al. 1990;

181




Joj Joquinu 3s0quassiap oY) () p

"H/H onel 19adse Jo suonouny e s8 MO [euoIsuSHIIP-3any JO 195U0 i)

UR JIqUINU YeIoqac]

%

(p) JO SULI2) UK SUCHIPUOD [eINL)) g andyy

H/Y . H/Y

0l 80 90 144 Z0 00 0’1 80 90 ¥o rAl 00

____r_nﬂwl_dli...._o I R B B R A L R
= - - e -
N . - n
S p—— Q S

3 3

_— — O S
i q -

| ~ i — ] ‘ ! _ d 0l i

182




Joo and Shagfeh 1992; Byars et al. 1994; McKinley et al. 1995), but for this flow Wecyit
increases dramatically as R/H increases. Although neither Decri¢ nor Wegrit as scaled here
shows an asymptotic limit, it should be noted that Decy; varies by only a factor of three
over the entire range of aspect ratios investigated, while Werj, varies by more than a factor
of 200, indicating that the instability scales primarily with the extensional flow in the wake
of the cylinder.

It should also be noted that although the composition is identical, the fluid used for
the current experiments is not the same fluid as used by McKinley et al. Rheological
measurements conducted after the completion of their experiments showed that the first
normal stress coefficient had decreased by a factor of five from the original value at all
shear rates, whereas no detectable change was observed for the viscosity. Another batch of
the same test fluid was prepared, and its rheological properties closely matched that given
by McKinley et al. However, following a small number of passes through the flow system,
the first normal stress coefficient of this fluid also decreased, presumably due to mechanical
degradation. Careful monitoring of the fluid's rheology over the course of the experiments
showed that no further decrease occurred. It is this lower value that is used throughout, and
all comparisons to McKinley et al. are based on the final rheological properties of their
fluid.

5.1.2 Spatial Structure of the Three-dimensional Flow

The periodic fluctuations of the streamwise velocity can be quantified by Fourier
analysis to yield a spatial wavelength, A, of the instability. A fast Fourier transform (FFT)
of the velocity profile produces a power spectrum as function of the spatial frequency,
fx (mm-1), which can be inverted to give the power spectrum in terms of the spatial
wavelength. Figure 5.5 shows a sample velocity profile for R/H = 0.34 and its power
spectrum, which shows that the wavelength of the disturbance is 1.85 £+ 0.09 mm. The
wavelengths for all aspect ratios made dimensionless with both the cylinder radius and the
gap width are shown in figure 5.6, along with the results from McKinley et al. The
‘wavelengths reported are for conditions close to Decrjy, although no variation in the
wavelength is observed for higher De.

As is the case for the onset conditions, neither the cylinder radius nor the gap width
seems to provide a satisfactory scaling. At intermediate values of the aspect ratio, the
wavelength nearly equals the cylinder radius, but for the smallest values, where the
cylinder radius is expected to be the only relevant physical dimension, the wavelength
increases to twice the cylinder radius. Equally striking is the fact that the current measures

183




W 60°0 F S8'1 =Yy st sourqImsIp i Jo YSusjoasm Y3 eyl s»oys wnnoAds .44 Sy
(9)°S¥'0=2Q pue '] = Y72 18 p£'0 = H/Y 10} ANOOJOA SSIMWIEIRS ay1 jo 9qyoud erxy (v) g°s aandyy

[wu] | [
£ (4 1 0 01 S 0 g o1~
T T T T 000 L O 00
g
g
I.mc.om
- v
- m I — 01 ﬂ.v..
8, 8
o | - =
.l..om.cm.
g mbL
.
. . X. - -
WW 600 F 681 ="Y
) | L1 | | S1'0 __:_:_;___;___po.u

184




01

80

*ID 32 ASJUTYO WO (@) PUre I0M JLALND

o (m) J0j umoNs A58 SINSIY Y - H *JOPUIAD Y} Ue [[em [ourreyd N usamidq ded sy (9) pue y ‘snipes
J3pURAd ) (D) YN PIfeds Yy ‘ANDOJIA SSIMWIBANS ) JO SUOKENINY 1P Jo P3udjeAep 9°S 3By

90

H

vo

(q

00

S0

01

sl

0c

(4 - H)/'}

00

0

0l

Hi
01 80 90 ¥0 Zo 00
i “ H 1— i _ i — '
—— m el
— . ——
_ B & -
- ¢ @ B —
n ¢ i
¢

1

0¢

4/

185




of the wavelength markedly differ from the previous measurements of McKinley et al.
Instead of approaching a value of A4/R = 1, McKinley's values increase as the cylinder
radius is decreased. Other than the slight differences in rheological properties mentioned
above, the experimental system used for this work is identical to that of McKinley et al.,
and the values of Ax/R for the smaliest aspect ra‘ios and the two different values observed
at intermediate aspect ratios suggest a weak wavelength selection mechanism for this
instability. Linear stability ané.lyses of other viscoelastic instabilities (Larson et al.; Joo and
Shagfeh 1992; Oztekin and Brown) have produced shallow neutral stability curves for the
critical wavelength, and experimental measures have confirmed that multiple wavelengths
are present above the critical conditions (Larson et al.; Joo and Shaqfeh 1994; Byars et al.
1994; McKinley et al. 1995). However, it should be noted that the discrepancy here is
between sets of experiments with different fluids, and that for a given fluid only a single
wavelength is observed up to De = 2Decri;.

In order to investigate the strength of the wavelength selection, a disturbance
velocity with a wavelength equal to that observed by McKinley et al. is introduced by
means of a cylinder with a sinusoidally varying radius. For the case of R/H = 0.50,
McKinley reported a wavelength of A4 = 3.03 £ 0.15 mm, while for the same aspect ratio
in the current work, 45 = 2.38 + 0.08 mm. The maximum radius of the cylinder is
3.175 mm (Rpax/H =0.50), the minimum radius is 0.9Rnax, and the wavelength of the
variations of the radius is 3.175 mm, as shown sc'hematically in figure 5.7(a). Figures
5.7(b-c) show that below De.r; fluctuations in the streamwise velocity are introduced with
the wavelength of the variation of the cylinder radius. However, beyond Decrj;, the
predominant wavelength is nearly equal to that measured for the circular cylinder, as shown
in figure 5.8, indicating a strong preference for the selected wavelength.

In addition to its wavelength, the instability can be characterized in terms of its
spatial extent. McKinley ez al. showed that the instability extends along the centerplane of
the geometry about four cylinder radii downstream of the rear stagnation point, and that it
also can be observed slightly away from the centerplane. Measurements close to the
cylinder show that the instability also exists along the cylinder upstream of the stagnation
point. Figure 5.9(a) shows axial scans at a constant radius of 1.25R and different azimuthal
positions for R/H = 0.50, where 6 = 0° is along the z-axis. The angular extent of the
instability increases linearly as the Deborah number is increased above Decrit. For the case
shown in figure 5.9, De - Deciy = 0.27, and the instability extends 45° upstream of the
stagnation point, while for higher De - Derj; the instability has been observed as far as 60°

upstream.
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The angular extent of the instability can be understood in the framework of an
extensionally-driven instability by considering velocity scans in the y-direction passing
below the cylinder. Such scans are shown in figure 5.10 for R/H = 0.34 at positions of
Z/R=12, 1.4, 1.6, 1.8 and 2.0. Close to the cylinder, the form of the velocity profiles
deviates from Newtonian profiles in that the minimum velocity is not on the centerplane,
but they are symmetric about the centerplane. However, measurements taken slightly above
Decrit show that the instability breaks the flow symmetry. Figure 5.11 shows that not only
is the local velocity maximum shifted off the centerplane, but also that the local minima
now have different values. This asymmetry is related to the axial scans shown above by
noting that the asymmetry about the centerplane has the same periodicity along the cylinder
axis as the fluctuations in the streamwise velocity. Figure 5.12 shows two y-direction
scans taken one-half radius apart along the length of the cylinder. In this distance, which
corresponds to Ax/2 for this aspect ratio, the asymmetry has reversed itself about the
centerplane. A measurement of v, taken along the length of the cylinder at, for example,
y/R= 0.25 would therefore pass through a maximum value at x/R = 0 and a minimum at
x/R = 0.5.

- The y-dependence of the velocity field shown in figure 5.11 and its axial
dependence shown in figure 5.12 also help to clarify the interpretation of axial scans along
the centerplane near the cylinder, such as in figure 5.5, where z/R = 1.5. In the region
where the y-direction profile has two local minima, the FFT of an axial profile near the
centerline contains a secondary peak at A4/2 due to the contributions from the cells on both
sides of the cylinder. Further downstream, the y-profile has a single minimum, and only a
single wavelength at A4 is observed for the axial scan, where A4 is the same wavelength
that is observed along the cylinder upstream of the stagnation point.

The interaction between the cells from opposite sides of the cylinder can be seen by
considering simultaneous measures of the streamwise velocity v; and the axial velocity vy,
as shown in figure 5.13 for R/H = 0.34, /R = 1.2, y/R = 0.2 and De = 0.69. Each
velocity component has a single wavelength, and the phase between the velocity
components is such that the oscillations in the axial velocity reinforce the oscillations in the
streamwise velocity. In figure 5.13, vx = 0 at positions where v, is at its maximum, and
vx > 0 at positions where dv,/dx > 0 and vy < 0 where dv,/dx < 0, thereby adding fluid to
regions of higher streamwise velocity and causing the cells to grow. In contrast, McKinley
et al. showed (see their figure 15) that at z/R = 1.4, y/R = 0, the wavelength for v, was
one-half that for vk, and that v, had a minimum where vyl reached a maximum, so that
fluid was removed from alternate cells and added to the neighboring cells, such that at z/R
= 2, v, displayed a single wavelength of Ax (see figure 16 of McKinley et al.).
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v z/<vz>

Figure 5.10 Transverse profiles of the streamwise velocity below the critical
Deborah number for R/H = 0.34 at positions of Z/R = 1.2, 1.4, 1.6, 1.8 and 2.0.
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v2/<vz>

o R L

Figure 5.11 Transverse profiles of the streamwise velocity above the critical
Deborah number for R/H = 0.34 at positions of ZZR = 1.2, 1.4, 1.6, 1.8 and 2.0.
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5.2 Effect of Stagnation Geometry

5.2.1 Planar Divider

Experiments are also conducted using a planar divider in place of the cylinder in
order to determine the importance of the upstream flow conditions on the instability. The
downstream stagnation point is still present, but the upstream stagnation point and the
convergingvﬂow in the gap is replaced with a fully developed shear flow in the gap between
the divider and the channel walls. The series of scans in figure 5.14 compare the
fluctuations of the streamwise velocity for the cylinder and planar divider with Rgj/H =
0.5. The critical Deborah number is nearly identical for this radius, but the structure of the
instability has changed slightly. The wavelength for the divider is shorter than that for the
cylinder, and the amplitude and downstream extent of the instability both also decrease.
The results for three dividers are compared to the previously shown results for the cylinder
in figure 5.15, which shows that Decrjt is the same as for the cylinder for Rg;y/H of 0.50
and 0.75 and much higher than for the cylinder for Rg;y/H of 0.23, and that the wavelength
of the instability is much shorter than for the cylinder for all values of Rg;v/H.

The effect of upstream flow conditions is further examined by using a tapered
divider with a total included angle of 4° and a minimum height at its tip of 0.2 mm, thereby
eliminating any curvature effects present in the cylinder or planar divider geometries.
Figure 5.16 shows velocity profiles along the centerplane for De = 0.07, 0.16, 0.22, 0.30,
0.37 and 0.42, where De = A( ¥ )<v>/H for this geometry, since no characteristic length
can be associated with the geometry. As with the cylinder and planar divider, there is a
downstream shift of the velocity profile as De increases. However, scans along the neutral
direction indicate that no equivalent instability is seen for this geometry, as shown in figure
5.17, although the interpretation of this result is made ambiguous by the flow geometry
itself. As figure 5.4 shows for the cylinder, Decr increases dramatically for small aspect
ratios, although if the divider half-height at its minimum is assumed to be equivalent to a
radius, the flow conditions shown in figure 5.17 should be well above the critical
conditions, since its De would be 3.1, whereas Decrit for a cylinder of this size is 1.25.
However, the results for the planar divider with Rg;y/H = 0.23 show that the scaling for
cylinders at small aspect ratios may not apply to other geometries. A more important
consideration is that the downstream extent and amplitude of any disturbance velocity are
also expected to scale with the equivalent radius. The instability for the cylinder with R/H =
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V(0,027 H)/V, 1nax

6 5 10
z/H

Figure 5.16 Streamwise profiles of the streamwise velocity along the centerplane
of the tapered divider as a function of De.
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Figure 5.17 Axial profiles of the streamwise velocity for the tapered divider at z =
0.06, 0.16 and 0.32 cm and De = 0.27. No fundamental frequency can be
determined from the profiles.
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0.05 at z/R = 2 for De - Decry; = 0.56 had streamwise velocity fluctuations of £0.02 cm/s
compared to a mean velocity of 0.15 cm/s. The closest measurements could be taken to this
divider was 0.06 cm, which is equivalent to z/H = 6, and the velocity is already 2 cm/s.
Any disturbance velocity would therefore be difficult to measure with this system, due to
both the relatively large distance from the stagnation point and the high background
velocity. The présent flow system is not well-suited for creating a purely planar extensional
flow, since, for example, if a divider with a flat end were used in place of a rounded end, a
recirculation region would exist behind the stagnation point, rather than the desired
extensional flow, as seen by Jones and Walters (1989) for flow past square obstacles.

5.2.2 Axisymmetric Stagnation Flow

The similarity between the instabilities observed for the cylinder and the planar
divider suggests that the geometry of a rod with a rounded end provides a good model for
investigating the stability of flow past a sphere. The difficulties involved with experiments
with spheres falling through viscoelastic fluids can be avoided with this geometry since the
rod is fixed in space and the fluid flows past it. Construction and operation of this system
are also considerably simpler than with magnetic levitation of a sphere (Byars 1992).

The axial velocity along the centerline for De = 0.06, 0.16, 0.25, 0.48 and 0.70 is
shown in figure 5.18 for Ryod/Rtube = 0.25. At higher Deborah numbers the velocity
profiles are shifted further downstream, as has been observed for flow past a sphere.
However, even at the maximum obtainable De of 0.70, no instability is seen in the wake,
and no negative wake is observed. In this coordinate system, a negative wake would be
indicated by vz/vzmax >1. In contrast to the measurements of Bisgaard (1983) for a 1%
PAA/glycerol solution (figure 2.16), the velocity recovers smoothly to its maximum for all
De. Similar measurements are also obtained at radial positions of r/Rrog = 0.2, 0.4, 0.6 and
0.8. In each case, the velocity profiles are shifted downstream with increasing De, and the
amount of the shift decreases for larger r/Rroq. The recovery to the fully-developed value is
smooth for all cases.

Time-dependent measures of the axial velocity are also obtained for De = 0.67.
Time series of the velocity are shown in figure 5.19 at a radial position of 7/Ryog = 1.2 and
angular positions of 6 = 0°, 22.5°, 45°, 67.5° and 90°, where 6 is defined in a cylindrical
coordinate system with its origin at the center of curvature of the rod and with 6 = 0° along
the axis of the tube. These scans indicate that the velocity is temporally steady at all
positions about the rod. '
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Figure 5:18 Streamwise profiles of the streamwise velocity along the centerline
of the axisymmetric stagnation geometry for Rpog/Ruube = 0.25 as a function of De.
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Figure 5.19 The streamwise velocity as a function of time at different azimuthal

positions for the ansymmetnc stagnation geometry with Rrod/Riybe = 0.25, De =
and r/Rrpg = 1.2.
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Although these sets of measurements do not indicate a flow instability for flow past
a sphere, it is difficult to prove conclusively that the flow is stable. However, it can be
shown that the flow conditions in these experiments produce a strong extensional flow.
Qualitative measures of the birefringence similar to those shown above for flow past a
cylinder are shown in figure 5.20. At the highest Deborah numbers, a birefringent strand
can be seen to extend over ten radii downstream. Because the amount of fluid passing
through the stagnation region in the axisymmetric geometry is much less than for the
cylinder, the birefringent strand is not expected to be as bright in this case even for
equivalent molecular extensions.

A more quantitative estimate of the strength of the extensional flow can be obtained
by using the experimental velocity profile and the FENE-P modél (Bird et al. 1987b) to
calculate the transient extension of molecules in the flow, <Q?/Q¢2>, which is the average
of the extension of the dumbbells in the flow compared to their fully extended length, Qp.
At high strain rates, the Trouton ratio equals 2b, so a value of b = 1000 is used based on
the data of Tirtaatmadja and Sridhar. Polynomial fits of the experimental velocity profiles in
figure 5.18 are differentiated to give the experimental strain rate profiles. For a stagnation
flow, the velocity should initially increase quadratically with distance, but the LDV system
cannot resolve velocities in this region for this flow. The resolution of the velocity profiles
yields strain rate profiles which are reliable to within 0.05Rog of the stagnation point. Due
to limitations in the resolution of the velocity measurements near the stagnation point, an
initial value of <02/Qg?> must be assumed at r/Ryoq = 1.05, rather than considering a fully
relaxed molecule at the stagnation point. Calculations using the Chilcott-Rallison model for

flow past a cylinder show that <Q2/Qg2> = 0.05 is a typical value at ZR=1.05forL=12

and De = O(1) (Liu 1995). Although a molecule that passes near the stagnation point may
have a long residence time in the extensional flow, the strain rates close to the stagnation
point are very low, and a large amount of extension is not expected for z/R < 1.05. Using
this initial guess for this flow results in the <Q2/Qq2> profiles shown in figure 5.21 for the
two highest Deborah numbers of figure 5.18. Figure 5.21(a) shows that for both Deborah
numbers the molecules become highly extended within a short distance downstream of the
stagnation point and then relax slowly as the strain rate decreases further downstream. If
the value of <Q2/Qo2> at r/Ryoq = 1.05 is taken to be 0.10, the maximum value of
<Q?/Q0?> nearly reaches the fully-extended value for the maximum strain rate of 26 s-1.
The higher strain rates for De = 0.70 lead to higher maximum extension than for De =
0.48, but as figure 5.21(b) shows, the higher De flow only leads to greater extension for
the first ~ 0.13 s and that both flows result in nearly equal extensions above 60% and in
similar relaxation profiles. In light of the high extension already achieved for this flow and
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~ the small changes at increased De, it seems unlikely that a stronger extensional flow would
lead to a qualitative change in the flow field resulting in a flow instability.

5.3 Comparison with Linear Stability Analysis

A linear stability analysis of viscoelastic flow past a cylinder was performed by
Oztekin (Oztekin et al. 1995) in an attempt to predict the flow instability observed here.
Although the analysis used a simplified flow geometry and a single-mode constitutive
equation, it was able to capture the importance of the extensional flow downstream of the
cylinder and predict the same dependence on the aspect ratio for the critical Deborah
number and wavelength of the instability. The purpose of this section is to compare the
experimental results of this thesis with this analysis.

The computational domain for the linear staBility analysis is shown in figure 5.22,
where instead of placing the cylinder in a channel, a uniform velocity has been imposed a
distance Ry, from the cylinder. The computational domain is limited to a narrow wedge
about the centerline in order to calculate the base flow in a similarity form. This also allows
the angle to be treated as a perturbation parameter for the disturbances, which can be
written as

A(r,6,2.1) =[4g(r) + 41 ()0 + Ay(r)6” ezt G

where A is the amplitude of a disturbance in pressure or a component of the velocity or
polymeric stress, a is the axial wavenumber of the disturbance and o is its temporal growth
rate.

The linear stability aspect ratio R/Ry, was related to the experimental aspect ratio
R/H by comparing the maximum strain rate and its downstream position as calculated from
the linear stability analysis and finite element simulations of flow past a cylinder in a
channel. For a Newtonian fluid, a given value of the aspect ratio gives the same result for
both cases for R/Ry, = R/H < 0.1, whereas for larger aspect ratios the similarity solution
yields a higher value of the maximum strain rate. For the Oldroyd-B model with 8= 0.59
and R/‘RW = R/H = 0.05, the maximum strain rate agreed well for the two methods for 0.1
< De £ 2.5, but the maximum tensile stress and the position of the maximum strain rate
showed only qualitative agreement. ' '

Neutral stability curves of Decrit = Decrit(a) for a single-mode Oldroyd-B model -
with 8 = 0.59 are shown in figure 5.23 for 0.025 < R/Ry < 0.1. Decyjt increases as R/Ry,
is decreased, and the critical dimensionless axial wavelength A4/R increases from 2.0 to 2.8
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Figure 5.22 Scehmatic diagram of the computational domain used in the linear
stability analysis. A polar coordinate system is defined with its origin at the center
of the solid cylinder. A porous cylinder is placed at r = Ry,.
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as R/Ry, is decreased for 0.1 to 0.025, although the neutral stability curves are very
shallow. At onset, the wavespeed is zero, in agreement with the experimental observations.
Dec.i; is nearly independent of the solvent viscosity ratio for 0.1 £ §< 0.99, but it
approaches infinity in the Newtonian limit of B = 1. Calculations with a single-mode
Giesekus model showed that Decrit and acrit are nearly independent of the mobility
parameter ¢ for < 0.01, as seen in figure 5.24. The Oldroyd-B model is recovered for o
= 0. For a value of o = 0.001 that most accurately characterizes the experimental fluid,
Decyit for R/Ry, = 6.7 increases from the Oldroyd-B value of 1.248 to 1.255, and the
neutral stability curve remains shallow, although for large values of & (e.g. o = 0.05)
disturbances with a < 2.26 become stable for all values of De for which the base flow can
be calculated. :

The critical Deborah number and wavelength for the Oldroyd-B model and the
Giesekus model with o= 0.001 and = 0.59 are compared to the experimentally measured
values as functions of the aspect ratio in figures 5.25 and 5.26. For the value of o = 0.001
that best describes the rheological properties of the test fluid, the predictions of the two
models are nearly identical. The linear stability analysis predicts a much lower Decrit for all
values of the aspect ratio, but shows a similar dependence with Dec;; increasing sharply for
small R/Ry. The predictions for the critical wavelength are in better quantitative agreement
with the experimental results, with both the linear stability analysis and experimental results
showing an increase in A4/R for small aspect ratios. The agreement is surprisingly good
considering that even the Newtonian flow fields differ in the two geometﬁes for R/H > 0.1
and that seven of the nine cylinders used in the experiments had aspect ratios greater than
0.1. Furthermore, although the critical wavelength agrees well with the experimental
results, the theory predicts a shallow neutral stability curve, whereas very strong
wavelength selection was found experimentally. The results indicate that both models can
qualitatively describe the instability, but that the inclusion of a bounded extensional
viscosity and shear-rate-dependent normal stress coefficient in the Giesekus model do not
improve the quantitative comparison.
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Figure 5.25 Comparison of experimentally-determined and numencally calculated
stability diagrams for the onset of the flow past a cylinder in Boger fluid with

B =0.59. In the figure, dashed line (- - -) indicates the prediction of the Oldroyd—
B model, and the solid curve (—) indicates the prediction of the Giesekus model

with indicated value of o and symbols indicate expemnental measurements of the
present work (M) and McKinley, Armstrong & Brown (1993) (@).
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Figure 5.26 Comparison of experimental measurements and predictions from
linear stability calculations with Giesekus model (B8 = 0.59) for the dimensionless

wavelength Acrit. Symbols indicate experimental measurements of the present work

(M) and McKinley, Armstrong & Brown (1993) (@) and the solid curve {(—)
indicates the predictions of the numerical calculation.
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Chapter 6
Superposed Plane Poiseuille Flow

The previous studies of superposed plane Poiseuille flow discussed in §2.3 showed
that a large number of parameters govern the interfacial stability. The results of this chapter
are not intended to provide a comprehensive study of all of the parameters that affect the
interfacial instability, but rather to demonstrate that an experimental system has been
constructed that can be used to determine the stability of the flow for a range of conditions,
and that the growth rate of the instability can be calculated. All of the fluids used here have
similar densities and chemical compositions, so the effects of gravity and surface tension
are expected to be small, and all experiments have been conducted using pairs of fluids
whose viscosities differ by a factor of approximately two. Whereas previous experimental
work has considered either low viscosity Newtonian fluids or polymer melts, this chapter
presents results for experiments using Boger fluids and Newtonian fluids with similar
viscosities. The stability of the flow has been studied by varying the elasticity of each layer,
the depth ratio, the vertical position of the separating vane and the wavenumber of the
introduced disturbance. All results have been nondimensionalized with respect to the
properties of the more viscous fluid (which is also the more elastic fluid for the Boger
fluids used here). The Deborah number is defined as De = Ajujn/d1, where Ap is the
relaxation time from Table 3.1, ujy is the interfacial velocity, and dj is the depth of the
more viscous fluid. Disturbance wavenumbers are defined as ¢ = 27d V/uint, Where Vv is
the frequency of the disturbance.

‘The experiments conducted in this system to date do not form as complete a picture
of the instability as for the stagnation and rotational flows above, but rather begin to
establish the stability boundaries for this system and suggest directions for future study.
The results for two Newtonian fluids are presented in §6.1, the effects of elasticity are
shown in §6.2 for a Boger fluid and a Newtonian fluid and in §6.3 for two Boger fluids,
‘and §6.4 outlines possible extensions of the current results.

6.1 Two Newtonian Fluids

In order to make meaningful statements about the effects of elasticity on the stability
boundaries for this system, experimental results are needed for Newtonian fluids as a basis
for comparison. Although linear stability calculations have been performed for the
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superposed flow of two Newtonian fluids, no experimental data are available to show if
these conditions can be achieved experimentally and if the effects of surface tension and
gravity can be neglected. The thorough study of the stability required to construct an
experimental neutral stability diagram has not been performed, and instead the results of
this section are intended to demonstrate the ability to determine the stability of the flow and
to provide specific cases for comparison with the results of §§6.2-.3.

Figure 6.1 shows a single frame of the videotape of the flow of two Newtonian
fluids with a wavenumber of & = 1.53 introduced by sinusoidally varying the flowrate of
the bottom fluid (H100 PB). For the fluids used in these experiments, the viscosity ratio is
m = 0.55, and in this experiment the depth ratio is n = 1.1. The upper and lower walls of
the channel can be seen by the reflections at the wall/fluid interfaces, and the addition of a
dye to the 2.7% C14/H100 fluid in the upper layer results in a clearly visible interface
between the two fluids. Although a slight deflection to the interface can be seen, because
the wavelength of the disturbance is comparable to the frame length, it is necessary to form
a composite image of the flow which compresses the horizontal scale in order to see the
spatial structure of the disturbance. Figure 6.2 shows a composite image for the same
conditions as figure 6.1, in which a single vertical line of pixels has been taken from the
center of the image every 0.2 s and added to the composite image in order to show the flow
at a point over a period of two minutes. The image processing algorithm described in §3.4
can be used to obtain the position of the interface as a function of time as shown in figure
6.3(a), and the FFT of the interface position yields the frequency and amplitude of the

disturbance (figure 6.3(b)). For the conditions used here, ujp; = 1.11 mm/s and d; = 1.69
mm, so that o= 1.53.

-

The results in figures 6.1-3 were all obtained at a distance of 10 cm downstream of
the vane tip where the fluids come into contact with one another, and by taking similar
measurements along the length of the channel, it is possible to determine the growth rate for
the disturbance. Because of the presence of small amplitude longwave disturbances as seen
in figure 6.3(a) and the difficulty of accurately determining pixel-sized variations in the
amplitude of disturbances, the amplitude of the disturbance is measured in terms of the
power spectral density (PSD) of the FFT at a given frequency. The PSD for v =0.16 =
0.01 s-! as a function of position along the channel is shown in figure 6.4. Also shown is a
fit to the measurements at x = 0.5, 5 and 10 cm showing that at least initially the amplitude
of the disturbance grows exponentially in space. The amplitude, A, of the PSD for v=
0.16 is given by A = Apexp(Bpspx), where Bpsp is the spatial growth rate and is found to
be Bpsp = 0.038 cm-! in this case. Because the amplitude of the PSD increases as the
square of the amplitude of the disturbance, the growth rate f§ for the amplitude of the
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Figure 6.4 Amplitude of the power spectral density (PSD) of the disturbance with
wavenumber 1.53 along the length of the channel for the conditions of figure 6.1.

The growth rate is fSpsp = 0.038 cm-l.
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disturbance is 0.019 cm-1. The spatial growth rate determined from the experiments can be
related to a dimensionless temporal growth rate by o«c; = fd; = 3.5x10-3, where ¢; is the
imaginary part of the wavespeed. This value is much higher than the value of O(10-5)
calculated by Su and Khomami (1992a) for two Newtonian fluids with a viscosity ratio of
0.5 and a depth ratio of 1. Their calculations were for Re = 0.1, but Su and Khomami
(1992b) showed that for Oldroyd-B fluids the growth rate was insensitive to the Reynolds
number for Re < 0.1. Between x = 10 cm and 20 cm, it is not possible to determine
whether the growth rate has decreased for large x due to nonlinear effects, or if the
measurement at x = 20 cm should be considered as part of the exponential growth region,
in which case ac; = 3.0x10-3. In either case, it is clear that the flow is unstable for these
conditions, as is to be expected from the neutral stability diagram given in figure 2.25(a),
where the depth ratio is defined as £=n-1 and the viscosity ratio is m = 0.5. For the
slightly higher viscosity ratio of the experiments, the critical depth ratio would be loge =
0.13, and the critical wavenumber for loge < 0.13 would increase slightly. Enlarging
figure 2.25(a) shows that the experimental condition of ¢ = 1.53 and loge = -0.04 is
expected to be unstable for m = 0.5, although further experiments near the stability
boundary are required to show that the neutral stability diagram can be reproduced.

Due to the similar chemical compositions of the two fluids, the effects of interfacial
tension are expected to be negligible, although no measures of the surface tension have
been made. In this and all other experiments, the more dense fluid is in the bottom layer, so
any gravitational effects will be stabilizing. For these fluids, the density ratio is » = 1.0023,
and for the conditions of the experiment F = (r - 1)gd{/uint? = 34. However, it is
misleading to compare this value to figure 2.23, because Yiantsios and Higgins show that
the gravitational term enters the interfacial stress balance as ReF. For this experiment, Re =
7.2x10"5 and ReF = 2.5x10-3, whereas the smallest value of ReF shown in figure 2.23 is
ReF =0.1. The stabilizing effects of gravity are therefore expected to be negligible.

Figure 6.3 shows that there is a small wavenumber disturbance present in addition
to the disturbance that is intentionally introduced. As shown below, this wavenuﬁuber can
grow rapidly for viscoelastic fluids, especially for large depth ratios. Experiments were
therefore carried out with Newtonian fluids as a basis for comparison, and although the
wavenumber is present even when not forced, its amplitude remains small throughout the
channel. Figure 6.5 shows a disturbance near the tip of the vane for a higher depth ratio of

=3.6 (loge = -0.56), which has a wavenumber of o = 0.21. Although figure 2.25
indicates that this disturbance should be unstable and it in fact seems to grow initially, a
growth rate could not be determined because the amplitude of the disturbance is too small
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(~one-fifth of those introduced above) and the growth rate is apparently too small. Small
amplitude disturbances with & ~ 0.2 were also observed for depth ratios of 2.7 and 4.9.

6.2 A Boger Fluid and a Newtonian Fluid

The effect of elasticity was first investigated by reproducing the conditions of
figures 6.1-4, but with the 2.7% C14/H100 fluid replaced by the 0.31% PIB (2) Boger
fluid. Composite images were formed of the interface along the channel and the interface
position was determined as shown in figure 6.6 for x = 5 cm and 20 cm. In contrast to the
results for two Newtonian fluids above, it can be seen that the wavenumber a=153
corresponding to v = 0.16 s-! decays, while the smaller wavenumber ¢ = 0.09 grows in-
this case. The growth rate was found to be ocj = -4.6x10-3 for ¢ =1.53 and although the
& = 0.09 disturbance is cle‘arly unstable, its growth rate could not be calculated since its
period is almost as long as the total measurement time. Although no linear stability
calculations exist for these conditions, the results agree at least qualitatively with the
calculations.of Su and Khomami shown in figure 2.26. For two Oldroyd-B fluids at low
Deborah number, when the more viscous is the less elastic, they showed that small
wavenumbers are unstable while larger wavenumbers are stable for depth ratios near unity.
Although the Newtonian fluid in the experiment is the more viscous, its Deborah number is
zero, while the Boger fluid has De = 0.78, whereas the calculations were for De = 0.001
and 0.01.

In order to determine the effects of the depth ratio on the stability and growth rate,
experiments were also attempted at depth ratios of 2.7, 3.6 and 4.9, i.e. with a thinner
layer of the 0.5% PIB Boger fluid and a thicker layer of the 2.7% C14/H100 fluid.
However, with the vane positioned vertically in the center of the channel, the large change
in the velocities as the two fluids come together resulted in a large disturbance to the
interface immediately downstream of the vane. This is shown in the series of sing]é frames
of the flow at the vane tip in figure 6.7 for n = 4.9 and De = 0.69. Figure 6.7(a) shows a

-smooth interface as the fluids come into contact, with the Boger fluid in the upper layer.

However, in figure 6.7(b) the Newtonian fluid pushes back into the Boger fluid, until in
figure 6.7(c) a large amplitude wave can be seen breaking. After this wave breaks, there is
no longer a clearly definable interface between the two fluids, and measurements of the
disturbance amplitudes further downstream are not possibie. The cycle of the Newtonian
fluid backing into the Boger fluid and forming a large amplitude wave repeats regularly
with a period of ~50 s. This set of experiments shows the importance of adjusting the vane
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position to establish a stable base flow before conducting experiments with the introduction
of a controlled disturbance.

6.3 Two Boger Fluids

_ When the two Boger fluids were used with the more elastic 0.5% PIB fluid in the
thinner layer, a disturbance was also introduced due to the mismatch in the fluid velocities
without any external forcing, although in this case the initial amplitude was smaller, which
allowed the growth rate of the disturbance to be measured. Three different depth ratios
were studied, and in each case the flowrates of the fluids were adjusted so that the Deborah
number based on the 0.5% PIB fluid remained constant at 0.81 and the frequency of the
disturbance was 0.02 s-1 in each case, corresponding to o = 0.18.
. The effect of the depth ratio on the growth rate of the disturbance is shown in figure
6.8, which shows the growth of the PSD for o = 0.18 for depth ratios of n = 2.7 and 4.9.
For n = 2.7, the disturbance grows throughout the geometry at a growth rate oc;j =
2.6x10-3, whereas for n = 4.9 the growth rate was acj = 0.017 and exponential growth
was observed only over the first 3 cm. At x = 6 cm, the amplitude was still growing at a
much lower rate, and beyond 6 cm the wave broke and no further measurements of the
interface could be obtained. These growth rates are of the same magnitude as those
calculated by Su and Khomami (1992b) for two Oldroyd-B fluids, although their results
were for a lower De and a greater difference in elasticity between the two fluids. The
composition of the PIB/PB/C14 Boger fluids used in these experiments can be tailored to
obtain fluids with a wide range of rheological properties. Future experiments can therefore
attempt to more closely reproduce the conditions of Su and Khomami, but the purpose of
the current experiments was to demonstrate the presence of an elastic instability for Boger
fluids and ensure that the growth rates were in the expected range and could be measured in
the test geometry. The flow was also unstable for n = 3.6, although in this case the initial
amplitude and the growth rate were both large enough that the wave had broken within 1
cm downstream of the vane, which was not sufficiently far to allow the growth rate to be
determined. |
Because of the large growth rate of the ¢ = 0.18 disturbance, it was not possible to
determine growth rates for other wavenumbers. Disturbances could still be introduced, but
the larger amplitude of the a = 0.18 disturbance made it more difficult to resolve their
amplitude, and after the o = 0.18 wave broke, no further measurements could be obtained.

In order to explore the stability of a wider range of wavenumbers, it is therefore necessary
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Figure 6.8 Amplitude of the power spectral density of the disturbance with
wavenumber a = 0.18 along the length of the channel for m = 0.61, De = 0.81 and
n = (M) 4.9 and (@) 2.7. The growth rate is fpsp = 0.480 cm-! for n = 4.9 and
0.055 cm-! forn =2.7. .
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to minimize any disturbance other than the one introduced by pulsing the flowrate of one of
the fluids. Figure 6.7 suggests that the curvature of the interface due to the different depth
ratios upstream and downstream of the vane leads to the o = 0.18 disturbance, so the
position of the vane was changed in order to achieve a more horizontal interface
immediately downstream of the vane.

When the vane was repositioned so that the upstream fluid depth more closely
corresponded to the downstream depth, no disturbance to the interface was caused near the
vane, and the interface remained flat for x <5 cm for n = 2.4, De = 0.22, and constant
flowrates. In order to begin to determine the dependence of the growth rate on the
wavenumber, experiments were conducted for these conditions with introduced
disturbances of ¢ = 2.9, 0.97 and 0.29. The flow was stable for o = 2.9, but the initial
aniplitudc of the disturbance was too small and it had decayed by 1 cm downstream, so a
growth rate could not be determined. Wavenumbers ¢ = 0.97 and 0.29 were also stable for
these conditions, and their growth rates were found to be oc; = -7.1x10-3 and -8.7x10-3,
respectively. As seen above in §2.3, the neutral stability diagram is sensitive to the Deborah
number and differences in elasticity between the two fluids, so it is difficult to extrapolate
from the available linear stability diagrams to the conditions of the present experiments.
Howeyver, the lower growth rate for ¢ = 0.29 at De = 0.22 compared to that of & =0.18 at
De = 0.81 agrees qualitatively with the experimental results of Wilson and Khomami and
the analysis of Su and Khomami, who found that the growth rate increased for a larger
normal stress difference change across the interface. They also found the highest growth
rate for & = O(1), although further experiments for more wavenumbers are required to
determine the highest growth rate for the current system.

6.4 Future Work

The results presented above clearly demonstrate that the interfacial instability can be
studied under a variety of conditions and that the growth rates are in the range that can be
measured for this system. However, the limited data currently available can only show
qualitative trends for the effects of elasticity and depth ratio, and only a single viscosity
ratio has been studied. The relatively large growth rate obtained for two Newtonian fluids
very close to the neutral stability curve suggests that further experiments should be
conducted with Newtonian fluids in order to gauge the ability of the experimental system to
determine accurately neutral stability boundaries. Further experiments also are required in
order to determine the effects of elasticity and the viscosity ratio on the stability boundaries
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and growth rate. Disturbances can be introduced to the flow with a range of wavenumbers
at a variety of depth ratios in order to produce a detailed stability diagram, and the Deborah
number of the flow can be varied by either using different fluids or changing the flowrates
of the fluids. Experiments with polymer melts have shown that chemical compatibility can
affect the stability of the flow, and this can be investigated in this system by using Boger
fluids based on polyacrylamide and corn syrup.
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Chapter 7

Conclusions

This thesis has presented detailed experimental data describing viscoelastic flow
instabilities in three different types of test flows that model more complex polymer
processing systems. Stability diagrams have been constructed showing the sensitivity of
the onset conditions to the flow geometry, and the spatial and temporal characteristics of the
instabilities have also been shown. These results coupled with the linear stability analyses
conducted in parallel provide a thorough description of the instabilities. The results also
serve as a basis for comparison with linear stability analysis, and can help determine what
level of detail is required in constitutive models to accurately predict elastic instabilities.

Previous studies of the instabilities in rotating flow geometries focused primarily on
the dramatic rise in the torque and normal force associated the instability as measured in
rtheometry experiments, whereas the current work is concerned with determining the spatial
and temporal characteristics of the secondary flow, as well as finding the onset conditions.
Video imaging of the flow showed that the instability has the form of traveling spiral cells
~ whose structure depends on the flow geometry and fluid, and digital image analysis gave

quantitative measures of the structure and wavespeed.
In the parallel plate geometry, the cells formed Archimedean spirals with a constant
radial wavelength. When the Deborah number is increased slightly above its critical value, a
single azimuthal mode of the instability is observed for short times, where the azimuthal
mode number is the number of nested spirals. The radial wavelength of the cells scaled
with the separation between the plates, and decreased slightly for the 0.20 wt% PIB fluid
with the higher solvent viscosity ratio. The vortices traveled outward at a constant velocity,
which scaled with the separation and the rotation rate, and was also slightly lower for the
0.20 wt% fluid. The cells did not extend across the entire disk, but were confined to an
annular region. The linear stability analysis of Oztekin and Brown using the Oldroyd-B
model yielded good agreement for the wavespeed, wavelength and azimuthal structure, but
. predicted that the flow should be unstable for all values of the radius greater than a critical
value that depended on the Deborah number. Calculations with the Chilcott-Rallison model
showed that the incorporation of a shear-rate-dependent first normal stress coefficient
resulted in the prediction of an outer radius beyond which the flow was restabilized. The
shear rate increases linearly with radius in this geometry, so at larger radii there is a lower
effective Deborah number, which leads to the restabilization.
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The cone-and-plate geometry differs from the parallel-plate geometry in that it does
not have characteristic length scale corresponding to the plate separation to scale the
wavelength or wavespeed. Instead, the instability takes the form of a self-similar
logarithmic spiral which fills the entire region between the two fixtures. The wavenumber
decreased for both fluids for increasing cone angle, and the measured value agreed well
with linear stability predictions using the Oldroyd-B model, although the observed
magnitude of the wavespeed was smaller than predicted. Because the shear rate is uniform
throughout the geometry, the vortices filled the entire gap, but the effect of shear rate on the
instability was measured by changing the cone angle. As the cone angle decreases, the
shear rate increases for a given rotation rate, which leads to stabilization of the flow for
small angles. As with the parallel-plate geometry, the linear stability analysis for the
Oldroyd-B model did not predict the restabilization, but did predict the critical wavenumber
well. Calculations for single-mode Chilcott-Rallison and Giesekus models showed
restabilization for small cone angles due to shear-thinning of the first normal stress
coefficient, and very good quéntitative agreement for the critical Deborah number was
obtained for a four-mode Giesekus model.

LDV measurements of the wake instability for flow past a cylinder extended
previous work by determining the effects of aspect ratio over a larger range, providing
greater detail of the structure of the instability and considering the influence of the upstream
flow .on the instability. An axisymmetric s{agnation flow was also studied, and no
instability was observed.

Experiments with large cylinder radius to channel height aspect ratios showed that
the onset of the instability does not depend on.the shearing flow between the cylinder and
the channel wall. In the rotational flows discussed above and in the Taylor-Coutte
geometry, shearing across curved streamlines can cause elastic instabilities, although that
mechanism does not seem to cause the instability for flow past a cylinder. For small aspect
ratios, the Deborah number based on the cylinder radius increased as the aspect ratio
decreased, as predicted by a linear stability analysis of the planar extensional flow,
although the critical Deborah number was lower than that observed experimentally. Even
for an aspect ratio of 0.05, the channel walls affect the strain rate in the downstream
stagnation region. _

The structure of the instability was characterized in terms of its wavelength and
spatial extent. The wavelength of the instability did not scale with any characteristic length
of the geometry, although the ratio of the wavelength to the cylinder radius increased as the
aspect ratio decreased, and for intermediate values of the aspect ratio, the wavelength was
nearly equal to the cylinder radius. This was lower than previously reported values, but an
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experiment designed to introduce a longer wavelength showed that there was a strong
selection of the shorter wavelength. The linear stability analysis predicted a larger value of
the wavelength that increased with decreasing aspect ratio over the range of the
experiments, but reached a plateau for even smaller aspect ratios. The instability was
shown to cause fluctuations in the streamwise velocity not only in the stagnation region,
but also near the cylinder upstream of the stagnation point, and the upstream extent
increased with increasing Deborah number. This was shown to be due to the fact that the
downstream velocity was not symmetric about the centerplane, and that the position of the
minimum velocity alternated about the centerplane with the same wavelength as the velocity
fluctuations. ,

Experiments with a planar divider with a rounded end had the same downstream
stagnation flow as the cylinder, but the upstream flow was modified to be fully developed
shearing flow. A similar instability was observed for this geometry, although the details of
the structure were slightly different. The axisymmetric analog of the planar divider is a rod

‘with a rounded end in a tube, and measurements of the streamwise velocity in this

geometry were both temporally and spatially stable, suggesting that flow past a sphere is
also stable.

Whereas the rotational flow and stagnation flows have been thoroughly
characterized both experimentally and theoretically, the experimental study of the interfacial
instability for superposed plane Poiseuille flow in only in its initial stage. Results are
shown that demonstrate the ability to obtain the position of the interface using image
analysis, and to calculate growth rates of disturbances. For the rotating flows, the temporal
characteristics of only the fastest growing spiral mode could be studied, and for flow past a
cylinder, introducing a wavelength other than the one selected by the flow required
construction of a cylinder with a radius that varied along its axis. In contrast, a wide range
of disturbance wavenumbers can be introduced to this system simply by sinusoidally
varying the flowrates of one of the fluids. This system therefore has the potential of
providing even more detailed information about the instability, leading to neutral stability
diagrams in terms of the fluid properties, the depth ratio and the wavenumber.
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