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Abstract

Optimal trajectories for a 2-axis gimbaled test table are generated to calibrate errors
in inertial systems caused by angular motion. The covariance matrix from a Kalman
filter is used to determine calibration uncertainty produced by a particular test ta-
ble trajectory. A conjugate gradient optimization method is employed to compute
trajectories which minimize the calibration uncertainty. Models are derived for both
a ring laser gyro IMU and a micro-mechanical IMU. These models are incorporated
in a Mathematica script program which is used to develop the Kalman filter and
optimization equations.

The optimal trajectories that are generated do yield more accurate calibrations
than traditional test table trajectories. They achieve higher accuracy by making
several calibration terms simultaneously observable instead of isolating each term for
a short period. Improvements in calibration accuracy of over 50% for the ring laser
gyro IMU and between 15% and 60% for the micro-mechanical IMU are achieved by
the optimal trajectories. However, numerical problems, especially in the ring laser
gyro Kalman filter equations, are caused by high observability of certain states. They
impose limitations on the test table gimbal angular rates and accelerations which
make direct comparison of the calibration trajectories unclear.
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Chapter 1

Introduction

1.1 Background and Motivation

The emergence of micro-mechanical inertial instruments and the increasing popularity
of GPS are enabling the design of very small, low cost guidance systems for a wide
range of new applications. Draper Laboratory is currently developing a guidance and
contrel system for a 5 inch artillery shell for the Extended Range Guided Munitions
(ERGM) project. This system must be able to fit inside the shell’s fuse well, survive
an 8,000 GG acceleration and navigate accurately in hostile jamming envirenments. To
meet these specifications a GPS with a strapdown, micro-mechanical INS is proposed
for the guidance system.

During flight, the artillery shell spin rate will be slowed to approximately 1 Hz.
Since the INS is in a strapdown configuration this angular rate will be imposed on
the inertial instrument;. The errors in the INS caused by angular motion must be
calibrated for the system to compute an accurate navigation sclution.

The purpose of this thesis is to calibrate errors in a strapdown INS caused by
angular motion of the system. Optimal trajectories for a 2-axis gimbal table will be
determined that maximize the observability of angular motion errors, producing a

high accuracy calibration.
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1.2 Guidance and Navigation

In recent years, advances in sensor and computer technologies have made automatic
guidance of acrospace vehicles more practical in terms of cost, size and fidelity. A
principle task of all guidance systems is navigation. Navigation involves the determi-
‘nation of a physical body’s position and velocity relative to some reference frame [3].
There are a wide array of sensor systems available that may be used to obtain a
navigation solution.

One category of sensor systems depends on navigation references external to the
vehicle to obtain the navigation solution. Examples of these systems include star
trackers, magnetic compasses, global positioning system (GPS), Doppler radars and
ground based radio beacons. These types of systems are of great value but suffer
limitations such as limited range and the possibility of signal loss or jamming.

The other category, known as inertial systems, does not rely on any external
references. An inertial navigation system (INS) is a self contained system that utilizes
the inertial properties of its sensors to obtain the information needed to navigate. All
of the disadvantages of the first category of systems may be eliminated or minimized
by a well designed INS [16]. In addition, an INS readily provides information on
the vehicle orientation or attitude which is often difficult to obtain using external
referencing systems. Inertial systems, however, rely on a numerical integration of
force measurements to compute the velocity and a second integration to compute the
position of the vehicle. Depending on the quality of the INS, the navigation solution
may drift far from true position and velocity.

A complete guidance system may utilize one or a combination of several of the
sensor systems described above. Combinations of sensor systems often reduce the
disadvantages of using any one system alone. The GPS/inertial sensor combination
has received much attention especially for military applications. This combination
affords a more accurate navigation solution and computes vehicle orientation using
smaller, less expensive inertial instruments than would be required of a guidance

system with INS only.
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1.3 Inertial Systems

For an inertial naviga‘tion system to compute a navigaticn solution it must perform
four functions: instrument a reference frame, measure a specific force, have knowledge
of the gravitational field and time integrate the specific force data to compute position
and velocity [3]. These tasks are performed using an inertial measurement unit (IMU)
consisting of gyroscopes and accelerometers and performing numerical integrations
and perhaps coordinate transformations using a digital computer. IMUs are used in
two types of inertial navigation systems: gimbaled and strapdown.

In a gimbaled system, the inertial instruments are mounted inside a set of at least
three mechanical gimbals that are controlled using feedback from the gyroscopes to
create an inertially non-rotating platform for the accelerometers. The accelerometer
information is then time integrated by the computer to obtain the vehicle position
and velocity.

In a strapdown system, all inertial sensors are fixed to the vehicle body and the
navigation computer executes a complex algorithm which uses measurements from
the gyroscopes and accelerometers to compute the navigation solution.

Gimbaled systems in general yield a more accurate navigation solution than strap-
down systems since there is no angular motion imposed on the inertial sensors. How-
ever, because of the necessity for mechanical gimbals, they are larger, more expensive

and have higher power consumption than strapdown systemns.

1.4 Inertial System Calibration

Before inertial instruments may be used in a navigation system they must be properly
calibrated to determine their general input-output behavior and account for errors
in the instrument measurements. The number of terms calibrated in an IMU varies
with the accuracy required of the navigation system and the ﬁdeiity of the gyroscopes
and accelerometers.

If inertial systems were perfect they would be able to exactly measure accelera-
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tion and angular rate. Real systems however are prone to measurement errors that
must be compensated for before a meaningful navigation solution can be computed.
An accurate compensation of measurement errors relies on knowledge of the inertial
system errors that are obtained through calibration. IMU errors may be classified
as static or dynamic. The difference between the two classifications is in the gimbal

table motion typically used to calibrate the terms in each class.

1.4.1 Static Errors

Static errors may be calibrated by holding the IMU package steady at particular
orientation for a set amount of time before moving to the next orientation. Only the
data gathered while the gimbal table is at rest are used in the calibration while data
collected during the test table maneuvering are neglected.

Common static error terms calibrated in gyroscopes are bias and g-sensitive terms.
A bias manifests itself as a constant gyroscope measurement when the instrument is
at rest in inertial space. Once the gyroscope bias is known, it must be subtracted
from the gyroscope measurement to obtain the true angular rate sensed by the instru-
ment. Accelerations on a gyroscope may have significant effects on its measurement
of angular velocity. These effects are called g-sensitive errors. Gyroscope g-sensitivity
is normally calibrated by holding the instrument at different orientations and deter-
mining the effect of gravity on its measurement of the earth’s rotation.

The major static errors in accelerometers are bias, scale factor and misalignments.
Bias is a constant accelerometer output when there is no acceleration imposed on the
instrutnent. Scale factor is the proportionality constant between true acceleration and
accelerometer measurement. This term is calculated by positioning the accelerometer
to sense gravity and dividing the known gravitational acceleration by the accelerom-
eter measurement. The accelerometers in an IMU are arranged approximately in an
orthogonal triad with each sensitive axis aligned with an IMU body axis. Misalign-
ment errors occur when the accelerometer triad is not exactly orthogonal or their
axes are not perfectly aligned with the IMU body. When an IMU has accelerometer

misalignments, small components of an acceleration along one IMU body axis will be
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sensed by accelerometers that are approximately orthogonal to that axis.

1.4.2 Dynamic Errors

Dynamic errors are observable when the IMU undergoes angular motion. They are
determined by rotating the test table gimbals through a known trajectory and cor-
relating the measurements from the gyros and accelerometers with the test table
motion

The most prevalent gyroscope dynamic errors are scale factor and misalignments.
Gyroscope scale factor is the proportionality constant between a known angular veloc-
ity about the instrument sensitive axis and the gyroscope measurement. Depending
on the quality of the gyroscope, there may be scale factor nonlinearities that re-
quire the calibration of w? and w® terms to more accurately capture the gyroscope
input-output behavior. Misalignment errors are caused when the input axes of the
gyroscope triad are not in line with the corresponding IMU body axes. When the
IMU is rotated about one of its body axes, components of the angular velocity will
be observed by the gyroscopes supposedly orthogonal to that axis.

The major dynamic errors present in accelerometers are lever arms. These errors
are classified as a size effect since the major contributing factors are the physical size
of the accelerometers and their spatial locations in the IMU. Ideally, when an IMU
undergoes pure rotation, no measurement should be yielded by the accelerometers.
Lever arm errors are created when the accelerometers sense IMU accelerations at
points that are not at the center of the IMU body frame. These errors cause the

instruments to sense centripetal accelerations when the IMU is rotated.

1.5 Previous Work

The calibration of inertial systems, because of its difficulty and need for high preci-
sion, has been the focus of intense research. Accurate error models for gyroscopes
and acceleremeters have been derived in [2] and the application of optimal estima-

tion techniques such as weighted least squares and Kalman filtering to estimate the
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calibration terms has been covered in [4] and [11]. The calibration techniques that
have been developed however use test table trajectories that are not optimal.

Optimum test table positions for calibrating strapdown inertial systems have been
determined in {19], but these trajectories are only good for static error terms. An
attempt at determining optimal test table trajectories for calibrating dynamic errors
in accelerometers was made in [15], but the trajectories found, while better than a
previously existing trajectory, were not optimal.

The goal of this thesis is to determine optimal test table trajectories for calibrating
dynamic errors in inertial systems. Using these trajectories will provide high accuracy
calibrations of inertial system errors caused by angular motion of the IMU. This will
allow improved navigation of vehicles that spin or encounter high angular rates while

maneuvering.
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Chapter 2

Model Formulation

2.1 Mathematical Notation

2.1.1 Vectors and Matrices

Vectors are rows or columns of numbers and will generally be denoted as lower case
letters. When the vector components are written out, they will be enclosed by floor
brackets, ||, if a row vector, or braces, {-}, if a column vector. If a vector quantity
is expressed in a particular frame of reference, the reference frame will appear as a
superscript. Matrices will be denoted as upper case letters and their components

enclosed by square brackets, [-]-

Angular Velocity

Angular velocity is a special vector that relates the angular rate occurring between
two reference frames. The lower case Greek letter w js reserved for angular velocity
vectors. The complete notation for the angular velocity of frame b with respect to
frame ¢ expressed in frame e coordinates is given by wf. Some basic rules governing

angular velocity vectors are

a

— Wy (2.1)

[

o

!
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and

Wy = wfq + wg. (2.2)

Coordinate Transformations

A common operation on vector quantities is changing the frame of reference in which
the vector is expressed. The transformation of a vector from frame b to frame e may
be accomplished by premultiplying the vector by a direction cosine matrix, denoted

Ct. Performing this transformation on the vector r? is given by the equation
r¢ = Cerb. (2.3)

Transformation matrices are orthogonal. A matrix @ is orthogonal if QQ7 = I.

This useful property permits the reference frames of a direction cosine matrix to be

reversed using the formula
Ct = ()", (2.4)

e

Derivatives

Applying Newton’s Laws of motion requires time derivatives of vectors expressed in
an inertial frame. One method of obtaining an inertial time derivative is to apply the
theorem of Coriolis. Let r® be a vector expressed in the d-frame. The time rate of

change of this vector relative to the inertial frame i is
#=Cy (i +wh x rt). (2.5)

The same result may be obtained using the properties of direction cosine matrices.

In this case, the transformation of r° to the i-frame is given by
g

rt=Cjr’. (2.6)
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Taking time derivatives of both sides yields
i = Cirt 4 Ci b, (2.7)
The time derivative of the direction cosine matrix C} is given by the formula
Ci=Ci b (2.8)

where %, is the skew symmetric cross product matrix of the angular velocity vector

wh, = |wr wy wZJT and is given by

The result is
7 = Cj (7 + ) (2.10)

which is completely analogous to equation (2.5) with the substitution of the cross

product matrix Q, for w x .
Another type of derivative is the gradient denoted by tiie V operator. Given &

scalar valued function f(z), where z is the vector |z, x2 z3]7, the gradient is given

by

af
oz 1

Vi)=1{ 2 }. (2.11)

dza

of

dz3
If f is a function of more than one vector, say = and y, the operation V, f(z,y) is the
gradient of f taken with respect to the components of vector y.

The final type of derivative that will be employed is denoted by the operator D.
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Given a vector valued function

f (2.12)

falz) ]

.

where z is an m-vector, the derivative D f is given by

8h ... Oh
8y OTm
Df=| :+ + + [. (2.13)
n ... Ofn
o) &2m

As with the gradient, subscripts on D may be used if f is a function of more than

one vector.

2.1.2 Reference Frames

A number of reference frames are needed to effectively model an IMU. An inertial
frame is defined to be fixed in space, although in this thesis, a non-rotating earth
centered frame will be considered inertial. The next frame is earth centered earth
fixed (ecef) which rotates in the inertial frame at the earth’s rotation rate. The
local level or navigation frame consists of up, east and north components relative to
the IMU location on the earth. Figure 2-1 shows the definitions and relationships
between the local level, ecef and inertial frames. The final basic reference frame is
the body frame whose components are fixed in the IMU. In addition to the basic
reference frames, intermediate frames are used in the model derivation. These frames
are defined as they are needed. A summary of the reference frames described above,

their components and abbreviations is given in Table 2.1.
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Figure 2-1: Definitions of the local level (U E N) and inertial (XY Z) reference

frames.

|  Frame Components Abbreviation |
body T, Y, 2 b
local level | up, east, north (U E'N) n
inertial X, VY, z )
ecef X,y z e
intermediate oy, 2 v, g

Table 2.1: Standard reference frames
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Figure 2-2: Diagram of the two axis test table used in the calibration.
2.2 Gimbal Table Characteristics

A gimbal table or test table is a device frequently used to calibrate inertial instru-
ments. It generally consists of two or three concentric rings, each able to rotate
about a different axis at any angular velocity or acceleration under the mechanical
constraints of the table. In this thesis, a two axis gimbal table is assumed for the
calibration trajectory optimization. A schematic of this test table showing the rela-
tionship of the gimbal axes and their orientations in the local level frame is shown in
Figure 2-2. When the test table is in the neutral position its outer gimbal has posi-
tive rotation about local level north and the inner gimbal positive rotation is about
Iocal level east. This sequence of rotations is shown in Figure 2-3. The complete
transformation from the local level frame to the body frame may be achieved by an
outer gimbal rotation through an angle # to an intermediate (z' y' z') frame and then

rotating the inner gimbal an angle ¢ about the intermediate y’ axis to the body frame.

The two direction cosine matrices corresponding to these rotations are
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Figure 2-3: Euler angle rotation sequence of two axis gimbal table.

cosf sin@ O
C¥ = | —sind cosd 0 (2.14)
0 0 1

cos¢p 0 —sing
Ch = 0 1 0 : (2.15)
| sing 0 cos¢

The complete transformation from local level to body is given by Ct = CC¥, which

results in
cosfcos¢ sinfcos¢ —sing

0 —sin @ cos @ 0 . (2.16)

cosfsing sinfsing coso

The angular velocity of the body with respect to local level is simply the sum of
the gimbal angle rates. These angular rates, 0 and ¢, are shown in Figure 2-3 to

act along the intermediate axes 2’ and y' respectively. Therefore the expression for
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angular velocity in body frame coordinates, w?,, is determined to be

bl

0
wﬁb = C'f,', ¢ (2.17)
]
= [—ésinqﬁ, é, écosd)JT. (2.18)

2.3 Total Angular Velocity

The body frame angular velocity in equation (2.18) accounts for angular motion of
the body frame relative to a local level frame. To calcnlate the complete expression
for angular velocity of the body frame with respect to the inertial frame, the angular
velocity of local level in inertial space, win, must be added to w,;. Since the test table
used in the calibration is mounted on the ground, the local level frame is earth fixed.
Therefore wy, is simply earth rate or Q. The angular velocity of the body frame in

inertial space expressed in the body frame is

wh = wb +ub, : (2.19)
e . b
0 ~@sin ¢
= cicrd o + é (2.20)
Q2 6 cos ¢

where the direction cosine matrix from ecef to local level depends only on the latitude

angle 7y, and is given by

COS Yiat 0 sin Nat
cr = 0o 1 o |. (2.21)

—sinY 0 coSYig

For completeness, earth rate has been included in the total angular velocity vector.

However, when calibrating dvnamic errors in inertial systems, the earth’s rotation
¥ ! 2
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rate of 15.041 %%5 is insignificant compared to the test table gimbal rates. It will

therefore be neglected in the actval angular velocity model.

2.4 Inertial Instrument Error Models

A typical IMU consists of three gyroscopes and three accelerbmeters, each set mounted
in an orthogonal triad. These instruments are used to measure the angular velocity
and linear acceleration of the IMU platform relative to inertial space. The mea-
surements are then used to compute the attitude, position and velocity of the sys-
tem. Errors in the measurement introduced by the gyros and accelerometers may be
compensated for if the instrument errors are accurately calibrated. To perform the
calibration, navigation error models must be constructed which depict the position,
velocity and attitude errors produced by the instruments under known translational

and rotational motion.

2.4.1 Gyroscope Errors

The navigation attitude error model used for the gyroscopes assumes a -angle for-
mulation [3]. In this formulation an error angle vector, v, is defined which consists
of the transformation error angles in the direction cosine matrix C2 [3]. To derive
the t-angle differential equations, assume that there are small angle errors in C2.
To obtain the correct transformation, an additional direction cosine matrix from the
actual body frame b to an erroneous body frame ¢ is needed such that C? = CJC?.

This matrix is defined to be the small angle direction cosine matrix

1 _"pz "fby
—’lyby wm 1
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Taking the time derivative of C} using the formula in equation (2.8) results in the

following matrix diflerential equation:

0. —'(/‘)z "/}y ‘;wzwz - d’ywy —w; + wy“-’m wy + Yoy
d’z 0 Y | = w; + "/”zwy — YW, — Yoy —wy + wzwy
_ijy ¢z 0 —wy + Y, Wy + Yyw; —Pywy ~ Yrwz

(2.23)
By enforcing the small angle assumptions that g, vy, ¥, = 0, equation (2.23) may

be reduced to

"nb:l.' wz
Yy f =9 wy or equivalently ¢’ = why. (2.24)
¢Z UJZ

In the case of inertial instrument calibration, the angular velocity vector wg, corre-
sponds to the difference between the true angular velocity in inertial space and the

gyroscope measurement of angular velocity, that is
Wb = Wip — Wig (225)

The angular velocity vector wy, is referred to as the gyro output error vector and
is denoted ¢,. Since the inertial instruments are fixed in the body frame, the gyro
outpﬁt error vector is generally expressed in body coordinates.

A final term in the attitude error dynamic model is a white noise process, 74, which
represents a random walk in angle that commonly occurs in gyroscope measurements.

The complete y-angle dynamic model is then given by the differential equation
¥ = Cled + 1. (2.26)
For the purposss of navigation, the -angle vector is usually expressed in local level

coordinates. To obtain the differential equation governing ", the following transfor-
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Gyroscope azes

Body azis | Gyro 1 | Gyro 2 | Gyro 3
X input | output | output
y output | input spin
z spin | spin input

Table 2.2: Gyro axis definition in body frame

mation to the inertial frame is needed:
Y= Ciy™. (2.27)

Differentiating this result with respect to time yields

Po= Cig" + Cigp® (2.28)
= Cu{¥" + QY™ (2.29)

Substituting for ¢* from equation (2.26), and rearranging and transforming the ex-

pression from the inertial frame to the local level frame gives
P = Cpeb — " + 1, (2.30)

or equivalently

Y™ = Cpeb — Wl x Y™ + 1. (2.31)

Each gyro has orthogonal input, output and spin axes which are used to define
directions of sensitivity to error terms. In practice, the gyro triad is bolted inside the
inner gimbal in an orientation that facilitates the mount. To maintain simplicity of
the model however, it is assumed here that each gyro input, output and spin axis, is
aligned with one of the body axes. This axis definition is given in Table 2.2.

The complete gyroscope output error vector including both static and dynamic
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errors is given by the linear model

where
T . .

B, = [by by bys]” = gyro bias coefficients,
sfg mog msy ]

M, = mog sf; msg | = scale factor and misalignment matrix,
mog3 msg3 8 f g3 J
adigy adog adsg

A = | adop adip adsy | = g-sensitive coefficient matrix.

adogs adsgz adig

In all, there are 21 gyroscope calibration coefficients considered in the attitude error

model.

2.4.2 Accelerometer Errors

The navigation error model for the accelerometers may be built up from the differen-
tial equation relating the accelerometer output error vector, ¢,, to the position error,
or:

67 = Cied + n, (2.33)

where ¢, is the difference between true acceler_ation of the inertial instrument package
including gravity and the accelerometer measurements. For the purposes of calibra-
tion, position and velocity errors are generally expressed in the local level frame so
that

ort = C 6r™. (2.34)
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Differentiating with respect to time yields

o = CiL&™ + Clorm (2.35)
= CL(67" + Q%.6r™). (2.36)

The equation above may be differentiated again and simplified to yield the full ex-

pression for acceleration
07 = CL(6™ + 200 6™ + QI 6r™ + QP QF 677). (2.37)

In this equation, the’angular velocity of local level in the inertial frame is constant,
making term Q;‘n equal to zero. In addition, since the calibration is performed by
merely spinning the inertial instruments in a gimbal table at a fixed location on the
earth, there is no actual translation of the instruments in the local level frame. There-
fore the Coriolis term 2%, 67" drops out of the acceleration equation and QF QF §r"
may be absorbed into the local gravity vector. The only term remaining on the right
hand side of equation (2.37) is the acceleration error in the local level frame caused by
instrument errors. By substituting in the accelerometer output error equation (2.33),

the navigation equation may be expressed in the following form:

60" = Creéd 4+, (2.38)
&t = Su™. (2.39)

Like the gyroscopes, the accelerometer triad is generally fastened in the inner
gimbal in the most convenient orientation for mounting. Each accelerometer has
a reference frame consisting of orthogonal input, output and pendulous axes. The
definitions for the accelerometer axis directions assumed in this thesis are given in
Table 2.3.

The complete accelerometer error model accounts for the basic static and dynamic
errors including bias, scale factor, misalignment and lever arm errors. The lever arm

of an accelerometer is the position of the accelerometer relative to the center of test
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Accelerometer azes
Body azis | Accel 1 Accel 2 Accel 3
X input output output
y output input pendulous
VA pendulous | pendulous input

Table 2.3: Accelerometer axis definition in body frame

iz

Figure 2-4: Diagram of general accelerometer position in the body frame.

table rotation. A non-zero lever arm then means the accelerometer will sense angular
and centripetal accelerations during test table maneuvering. A diagram of a general
lever arm vector is given in Figure 2-4. The equation to compute the acceleration of
this instrument caused by test table rotation with angular velocity w;, and acceleration
Wi 18

b b

a® = wf x Wl x 6L + wh, x SL. (2.40)

An accelerometer only senses accelerations along its input axis. In Figure 2-4 the
accelerometer input axis is aligned with the first body frame axis, so only the first

component of a® is observable.

The net accelerometer output error vector in body frame coordinates caused by
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all error terms is given by the model

& =B, +Mg"+L, (2.41)
where

B, = |ba ba2 a3 _IT = accelerometer bias coefficients,

$fa1  MOs1 MPa
M, = | mon sfi2 mpe | = scale factor and misalignment matrix,

MOgz MPa3 Sf al

(wh, X wh, X 6Lay + Wl X §La1)s
Lo = { (whxwh x8Lep+ &b x 8Lg), ¢ = lever arm error contribution.

L (wfb X wfi,b X 5La3 + wfb X 6La3)z

(2.42)
The (), notation in the lever arm contribution vector L denotes the x component of
the vector enclosed in parenthesis. There are 21 individual accelerometer parameters
to be calibrated. When the accelerometers and gyroscopes are considered together,

there are a total of 42 calibration coefficients in the complete system.

2.5 Model Assembly

Now that the attitude and acceleration error modzls have been derived the complete
system model may be assembled. The complete system may be modeled by the

following set of linear, time varying differential equations driven by white noise:

Il

z(t) F(t)z(t) + w(t) (2.43)
z(t) = H(t)z(t) +v(?t) (2.44)
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where

F(t) = system dynamics matrix,

H(t) = measurement geometry matrix,
z(t) = system state vector,

z(t) = measurement vector,

w(t) = process noise vector ~ N(0,Q(t)),

v(t) = measurement noise vector ~ N(0, R(t)).

In this case, the system state is comprised of both static and dynamic states. The
dynamic states are the navigation position, velocity and attitude errors while the

static states are the gyro and accelerometer error coefficients. The state vector takes

the form:
z(t) = |8r(t) dv(t) () c|T (2.45)
where
dr(t) = 3 x 1 vector of position errors,
du(t) = 3 x 1 vector of velocity errors,
¥(t) = 3 x 1 vector of attitude errors,
¢ = 42 x 1 vector of gyro and accelerometer calibration coefficients.

Given this state, the system dynamics matrix has the block form:

(o1 o 0o |
00 0 D"
F(t) = i (2.46)
0 0 Dyo" Deym
00 0 0 |

After performing the necessary derivatives on d9™ and ™ the resulting system matrix,
F(t), is found to be linear in the state but dependent on the gimbal angles, angular
rates and angular accelerations.

The measurements taken during calibration are the position errors and attitude

errors corrupted by white noise. The measurement geometry matrix, H (t), in equa-
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tion (2.44) is then simply the block form constant matrix:

1000
H= . (2.47)

001710

2.6 Kalman Filter Formulation

When caiibrating inertial instruments, a Kalman filter is typically employed to obtain
an optimal estimate of the system states, which include the calibration parameters.
For the system model given in equations (2.43) and (2.44) the continuous time Kalman

filter equations for the state estimate and error covariance propagation are [9];

£(t) = F(@)E{t)+ POHT(R™(t) [2(t) ~ H(8)Z(2)], (2.48)
P(t) = F)P@E)+POFT(t)+Q(t) — POHT@)R'()H()P(t). (2.49)

In the covariance propagation equation, Q(¢) and R(t) are the respective process and
measurement noise covariance matrices.

The goal of this thesis is to determine the optimum test table trajectories that
maximize the observability of the inertial instrument errors. When these observ-
abilities are maximized, the estimation error variances at the final time, ¢;, will be
minimized yielding the most accurate estimate of the calibration parameters. The
state estimation error variances are the diagonal elements of the covariance matrix

P(t). Therefore a reasonable optimization objective is to minimize the cost
Cost = tr {P(ts)}. (2.50)

This minimization may be accomplished by applying ar appropriate control to the
system which affects the dynamics of the Kalman filter error covariance propagation
equation.

In the derivation of the system dynamics matrix, F(¢) in equation (2.46) is found

to be a function of the gimbal table angles, angular rates and angular accelerations.
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By selecting the inner gimbal acceleration, ¢, and the outer gimbal acceleration, ay,

as the controls, the gimbal angles and angular velocities may be determined by the

system of differential equations

() [oo010]f
6 0001
4 y = {
We 0000
L@ ) 000 0]

subject to the angular acceleration and angular velocity constraints

lag(®)] <
las(t)| <
lwe(t)| <
|we(t)] <

¢

We

¢ +

W9J

¢max
oma:c
¢maa:

Bma:r

L

Qg

Gg

(2.51)

2.52)

(

(2.53)
(2.54)
(

2.55)

where Onazs Omaz; Pmaz o0nd 8,0 are the maximum accelerations and velocities ob-

tainable by the inner and outer gimbals of the two-axis test table.

The test table dynamics in equation (2.51) may be appended to the error covari-

ance propagation equation (2.49) yielding the complete system of differential equa-

tions that describes the behavior of the state estimate error covariances driven by the

controls ay and oy.
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Chapter 3

Trajectory Optimization

3.1 Optimization by Gradient Methods

In unconstrained parameter optimization problems, the goal is to select a vector of
parameters, u, to optimize a criterion J(u). An effective way to solve problems of
this type numerically is by invoking a class of algorithms called gradient algorithms.
Gradient algorithms start with an initial guess of the parameters in u and then use
derivatives of J{u) to produce a new set of parameters which bring J(u) closer to the
optimum value. First order gradient algorithms compute a new vector u;,; from u;
using only the gradient of J(u). The first order method known as steepest descent is

given by the formula
Uip1 = U; — 6,-VJ(u,-) (31)

where the step size ¢; is selected according to constraints on the amount of change
allowed in the parameter vector at each step. Second order gradient algorithms
employ second order derivatives in the optimization. The Newton-Raphson method,

a well known second order algorithm, is given by the formula

o) -1
Uiyl = U — [E%J(ui)} VJ(u;). (3.2)
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Constraints are satisfied by introducing penalty functions into the cost function that
add large additional cost if the constraints are not met.

Each method however has advantages and disadvantages. Steepest descent is
inherently simple since only the gradient VJ is computed, but has the disadvantage
of slow convergence when the solution nears the optimum. Second order algorithms
are generally quicker to converge near the optimum but have the major drawback
of requiring the computation of [Z%J (u,-)]“1 [14] [6]. A conjugate gradient method,
first proposed by Hestenes and Stiefel in 1952 and refined by Fletcher and Reeves
in 1964 [17], improves the convergence method of steepest descent by incorporating
information contained in a second order gradient without actually having to compute
it as in Newton-Raphson. The result is a powerful and efficient algorithm for solving
unconstrained parameter optimization.

The conjugate gradient algorithm starts by establishing an initial guess uy and

setting so = —V.J(ug). Then fori =0,1,2,...,

Uil = U+ 058, (3.3)
a; = arg Igl}l{]l J(u; + as;), (3.4)
siv1 = =~VJ(ujn1) + Bisi, (3.5)
g = VI (uiy1) - VI(uir1) (3.6)

VJ(’U,i) : VJ(U,)

Although this method requires only function and gradient evaluations, it has been
shown in [14] to converge much faster than the method of steepest descent with

convergence stability properties superior to second-order Newton’s methods.
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3.2 Conjugate Gradient Algorithm for Trajectory
Optimization

The general formulation of an optimal control problem is to minimize a cost function

of the form
]
J = c(z(ty)) + /0 " d(z(t), u(t)) dt (3.7)

subject to the system dynamics
£(t) = flz(t), u(t) (3.8)

with the given initial state z(0). In these equations, x is an n vector, u is an m vector
and t; is the fixed final time. The algorithm may be simplified by defining a scalar

valued Hamiltonian function:
n
H(:L‘, u,A) = d(z, ’U.) + Z Aifie (3.9)
=1

Let A(¢) be the solution to the adjoint equation

A(t) = =V H(z,u,)) (3.10)
with the boundary condition
A(ty) = Ve(z(ty)). (3.11)
The gradient is then
g9{u) =V H(z,u, A). (3.12)

Define u;(t) to be the i** approximation of the optimal control. The algorithm is
started by selecting an arbitrary initial trajectory ug, integrating the state equa-
tions (3.8) and storing the state trajectories. Next, the adjoint equations (3.10) are

integrated backwards in time and the adjoint trajectories are stored. The gradi-
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ent trajectory go is then computed and the initial direction vector is defined to be
$9 = —go. Once initialized, the following algorithm is repeated until the solution u()

converges to an optimum value:

a; = arg 1512161 J(u; + as;) (3.13)

Yiny = U; + 8; (3.14)

git1 = g(uiy1) (3.15)

{9is1) Gis1)

g, = 2rhfutl/ 3.16

’ <gi1 gz) ( )

Si41 = —@ip1 + OiSi (3.17)

where
ty
(9,90 = [ 9u(®) 9s(8) . (3.18)

The major difficulty with this method is the minimization in equation (3.13). In
practice an exact analytical minimization is generally not possible, and the evaluation
of J(u;+as;) is typically computationally prohibitive [14] [17]. Instead the parameter
«; is normally chosen to either simply reduce the cost at each stage or be the minimum
in a polynnmial interpolation of the cost function. Using this step adjustment logic,
however, may lead to poor conjugate directions and sharply decrease the rate of
convergence [10].

Another limitation of the conjugate gradient method is that, like all gradient
methods, it is only able to solve unconstrained optimization problems. However,
gradient algorithms may be used to obtain approximations to optimal solutions by
the addition of integral penalty functions to the cost function [6]. A good discussion
of commonly used penalty functions may be found in [8].

Finally, gradient methods are only able to determine local maxima and minima
in a cost function. This problem may bé alleviated by executing the algorithm using
several initial control trajectories. Although there are no criteria to determine whether
the global minimum or maximum has been located, several of the local extrema will

be found and one of these trajectories is likely to be better than the rest.
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Chapter 4

Implementation

4.1 Dynamic Error Models

Two types of inertial systems are considered. One is a ring laser gyro IMU package,
the other is a micro-mechanical IMU. Aside from a large difference in the physical size
of the IMU packages, eacn system has a slightly different error model and a different
random walk on the navigation solution. These differences will result in different
optimal trajectories for calibrating each system.

In Chapter 2, Model Formulation, a general navigator system dynamics model was

derived to be

(si)] [o 1 o o (o] [90)]

st 00 0 Dol sut y
. .() p = . K ® L g (4.1)

(1) 0 0 Dyo™ Dy ¥(t) Mo

¢ ) oo o o |l ¢ ) (o]

where

" = Cpeh—wh x ¢ (4.2)
§im = CPe. (4.3)

The terms eg and € are the gyroscope and accelerometer cutput error vectors. Origi-
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nally, these error vectors were derived to includé both static and dynamic instrument
errors. This thesis however is only concerned with calibrating dynamic errors, so only
these errors will be included in the navigator model.

‘The state vector in the navigator system model is comprised of four separate
vectors. The first three, ér, 6v and represent the navigator pbsition, velocity and
attitude errors respectively and each has three components. The vector ¢ contains
the dynamic error terms in the system model. The number of components in ¢ varies

with the inertial system that is modeled and its desired accuracy.

4.1.1 Ring Laser Gyro IMU

A ring laser gyro IMU consists of three accelerometers and three ring laser gyroscopes.
Ring laser gyros are widely used in strapdown navigation systems since they have
excellent scale factor stability over a wide dynamic range of angular rates [18]. The
error models for these instruments then typically approximate gyroscope scale factor
as linear with angular velocity about the input axis. Since only dynamic errors are

considered, the accelerometer and gyroscope output error models are

(w:’b X Q)ibb X 6La1 + l':dtbb X é‘Lal).’l‘
€= 4 {wh x wh x 6L + Wb x 0La2), (4.4)

b .
(w.?b X “-’ib X 6La3 + wfb X 5La3)z

and
sfo1 Moy msy wy
e =1 mo fo2 ms (4.5)
g 92 SJg2 92 w2 :
Mogs MSgz S fgs w3

where wi, wy and w3 are components of the angular velocity vector wf. Included in
these models are 3 lever arm vectors each with 3 components and a 9 component
misalignment matrix for a total of 18 dynamic error terms. Therefore the complete

navigator model for the ring laser gyro IMU navigator has 27 states.
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4.1.2 Micro-Mechanical IMU

New manufacturing technologies has enabled the development of micro-mechanical
inertial instruments that offer a significant reduction in size from the ring laser gyrc
systems. However, poor measurements given by micro-mechanical Instruments make
them inappropriate for most navigation system applications. The accelerometer dy-
namic error model for the micro-mechanical IMU is the same as for the ring laser gyro
IMU, but the poor gyroscope scale factor stability requires the addition of the nonlin-
ear scale factor terms, w? and w3, in the gyroscope error model. The micro-mechanical

gyroscope dynamic error model is:

sfqr mog msy, Wy l- 5f20 0 0 w2
€ = MOg2  Sfg2 sy, wp ¢+ 0 sf2,, 0 wy? ¢(4.6)
MOy3 MSg3  $fys w3 ] 0 0 s5f2,; w42
5f34 0 0 w;® ‘
+1 0 sf3, o wy? (4.7)
0 0  sf3,; ws? I

where wy, wy and wy are components of the angular velocity vector usf,. The gyroscope

error mode! for this case contains an additional 6 error terms to account for the scale
factor nonlinearity. As a result, the micro-mechanical IMU navigator model has a

total of 33 states.

4.2 Computer Software

The actual problem in this thesis is to determine a test table trajectory that mini-
mizes the estimation uncertainty of the final navigator state. The navigator differen-
tial equations in (4.1) are linear in the state and driven by Gaussian white noise. A
Kalman filter will then provide the optimal estimate of the navigator state and the es
timation error covariance matrix. Therefore the differentjal equations that govern the

trajectory optimization are the Kalman filter covariance propagation equation (2.49)
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and the test table dynamics (2.51). These differential equations are repeated below

for clarity:

P(t) = F(t)P(2) + P(t)F" (1) + Q(t) — P})H" ())R™ () H(H) P(¢t)

4 . 3 »

] v T
001‘0[¢ 00

0 0001 9 0 0] ag

) (= e +

f.;.)d, 0 00O Wy 10 Ceg

\CIJQJ _0000_ (.(JaJ _0 1-

The covariance matrix P(t) is a symmetric, n x n matrix where n is the number of
states in the navigator model [9]. In the case of the micro-mechanical IMU with a 33
state navigator model, P(?) is comprised of 1089 first order differential equations. By
exploiting the symmetry of a covariance matrix, only the upper triangular components
of the Kalman filter covariance propagation equation must be integrated. This reduces
the number of differential equations in an n x n system to 251‘2111

The derivation of the equations required for the trajectory optimization problem
and the numerical optimization calculations are extremely complex and tedious tasks.
Software such as Mathematica and the C programming language are used extensively

so that a high speed digital computer could be employed to perform these tasks.

4.2.1 Model Derivation Software

The large number of navigator states and the complexity of the error models made it
unreasonable to obtain the complete expression of the covariance propagation differ-
ential equation by hand. The program Mathematica is designed to perform symbolic
mathematical calculations and is well suited to derive all the equations needed in
the optimization problem starting from basic principles. Mathematica script files are
developed to derive the Kalman filter covariance propagation differential equations
with the appended gimbal table dynamics and compute analytical expressions for the
gradient and adjoint equations required for the trajectory optimization. The script

file written for the micro-mechanical system is included iz Appendix A. The Math-
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ematica script for the ring laser gyro IMU system is nearly identical except for a

simpler gyroscope error model.

4.2.2 Optimization Software

A general unconstrained tra jectory optimization software package is developed to exe-
cute the conjugate gradient algorithm presented in Chapter 3. The software is written
entirely in the C programming language and it is designed to directly implement the
system model equation output files from the Mathematica model derivation script.

A complete user’s manual for the software is included in Appendix B.

Validation

The trajectory optimization software is validated against a simple, linear quadratic,
optimal regulator problem. A problem of this type has a well known exact solu-

tion [13]. The general problem statement is to minimize the cost
T=4"(t)) Salty) + [ 7 T8 Q) 2(t) + o7 (1) B2) u(t) dt, (4.8)
subject to the system dynamics
E(t) = A(t) z(t) + B(t) u(t) (4.9)

with the initial condition
£(0) = . (4.10)

The optimal control, u(t), that minimizes the cost J is then given by
u(t) = —F(t) z(t) (4.11)

where
F(t) = R™(t) B™(t) P(z) (4.12)
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and P(t) is the symmetric, positive semidefinite matrix which satisfies the matrix

Riccati equation
—P(t) = P(t) A(t) + AT(t) P(t) — P(t) B(t) R™(t) BT(t) P(t) + Q(¢),  (4.13)

with the terminal condition
P(tg) = S. (4.14)

The example system used in the validation is second order, single input and time

invariant with the following system, initial condition and cost matrices:

Lo 1 0 1
A= , B = , Xp= (415)
-25 -2 1 0
3 3 1 00
Q=1 , R=15. 8= (4.16)
32 00

The exact solution for the optimal control is computed and compared to the optimal
control obtained by the conjugate gradient trajectory optimization. In both cases, a
forward Euler numerical integration with a AT of 0.001 seconds is used. Figure 4-1
shows the plots of the control trajectories computed using both methods and the

difference between them.

4.3 Numerical Issues

At this point, the trajectory optimization problem is defined and the mathematical
models of the system are derived. There are several issues remaining that involve
the Kalman filter initialization, incorporation of the test table constraints and the
accuracy and storage limitations involved with the optimal trajectory computation.

These issues must be considered before a solution may be computed.
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Figure 4-1: Validation of optimal control achieved by conjugate gradient trajectory
optimization.
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State Variance Units

Position error 40 mm?*

Velocity error 300 mm?®/s*

Attitude error 2400 urad®
Lever Arm 2000 mm?

Scale Factor | 1x10° | purad®
Misalignment | 324 x 10° | urad®

Table 4.1: Initial covariance matrix diagonal elements

4.3.1 Kaiman Filter

Propagating the Kalman filter covariance matrix using equation (2.49) requires the
system model matrices F(t) and H(t), measurement and process noise covariance
matrices (}(t) and R(t), and an initial state estimate error covariance matrix P(0).

The initial covariance matrix is assumed to be a diagonal matrix with the initial
state uncertainties as the diagonal elements. The initial state estimation error vari-
ances are listed in Table 4.1. This set of numbers is used to initialize the covariance
matrix for both the ring laser gyro and the micro-mechanical IMUs.

The general navigator system model, derived in Chapter 2, assuined the form

z(t) = F(t)x(t) + w(t) (4.17)
z(t) = H(@®)z(t) + v(t). (4.18)

In this system, w(t) and v(t) are stationary, zero mean, uncorrelated, Gaussian white
noise random processes. They represent the process and measurement noise vectors

respectively with covariance matrices defined as

Q) = E{w@®)w’(t)} (4.19)
Rit) = E{o(t)v"(1)}. (4.20)

The only navigator states subject to process noise are the velocity errors, dv, and

attitude errors, ©). Process noise must be added to these states to properly model the
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Random walk | Laser IMU | Micro IMU Units
Accelerometer 0.006 0.065 ft/s/v/hr
Gyroscope 0.006 1.4 deg/vhr

Table 4.2: Random walk behavior of ring laser gyro and micro-mechanical IMUs.

Measurement | Noise 1-0 | Units
Position error 0.01 it
Attitude error 1.0 arc sec

Table 4.3: Measurement noise standard deviations.

random walk in the accelerometer and gyroscope readings respectively. The position
errors, dr, are the time integrations of the velocity errors, and the calibration error
term states are constants, so there is no process noise on these states. The process
noise variances are determined by squaring the random walk standard deviation of
the inertial instruments. Typical random walk characteristics of ring laser gyro and
micro-mechanical IMUs are shown in Table 4.2.

All of the measurements are affected by measurement noise. The measurement
noise is caused by the test table itself and its associated data collection devices so
the measurement noise covariance matrix, R(t) is the same for both IMU types.
Typical measurement noise standard deviations for dis :rete measurements are given

in Table 4.3.

4.3.2 Test Table Constraints

The conjugate gradient methcd solves unconstrained optimization problems. The
calibration problem, however, has inequality constraints imposed by the test table's
mechanical limitations. These constraints are dealt with indirectly by adding cost
when the states or controls describing the test table motion near a constraint bound-

ary. The gimbals of the two axis test table described in this thesis are subject to the
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following maximum angular velocities and accelerations:

Omez = Pmaz = 180 deg/s (4.21)
Omaz = Omaz = 270 deg/s?. (4.22)

The overall objective of the trajectory optimization is to minimize the trace of the
final state estimate error covariance matrix. To account for the test table constraints,
an integral penalty function term is added to the cost function. With this additional

term, the cost function takes the form
¢
Cost = tr {P(t;)} + /0 ! fwp, we, ag, ag) dt. (4.23)

Several types of integral penalty functions are valid for inequality constraints. Two
of the most common types are those with polynomial or logarithmic integrands [8].

For an integrand f(z) and the inequality constraints
lz;| <max;, i=1,...,n (4.24)
the general forms for these penalty functions are:

. = z; \™
polynomial : f(z) = gcz (m) (4.25)

I

i ¢; [- log(max; + z;) ~ log(max; — ;)]  (4.26)

i=1

logarithmic :  f(x)

where ¢; are positive scaling constants and m; are positive, even integers. Both
types of penalty functions may be tuned to have similar behavior. To compare their
behavior, a 20* order polynomial penalty function and a logarithmic penalty function
scaled by 0.1 are applied to a hypothetical state constrained to be less than 100. The
shapes of these functions are plotted in Figure 4-2. For the purpose of this thesis,
a 20" order polynomial integral penalty function is deemed adequate to satisfy the

test table inequality constraints. When this penalty tunction is incorporated, the
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(4.27)

Cost = tr {P(ty)} + /th

This cost function is used for both the ring laser gyro and micro-mechanical IMUs.

4.3.3 Computational Limitations

The complexity of this optimization problem and the available computer power ham-
pers the computation of the optimal trajectories. Various computational limitations
encountered when computing a solution lead to trade-offs between the trajectory
length, level of accuracy and computation time. The two dominant factors that
contribute to these computational difficulties are the numerical integrators and the

memory requirements.
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Numerical Integration Methods

The trajectory optimization software permits the choice of two numerical integration
methods: forward Euler and 4** order Runge-Kutta. These methods solve the basic

system of first order differential equations:

B1t) = film:i(),- ... zm(t), 1) (4.28)
Ba(t) = falza(t), ..., zm(t), 2) (4.29)

: : (4.30)
Emt) = fu(@1(2), ..., Tm(t),1). (4.31)

The forward Euler method solves the system of differential equations by applying
the formula:

n=0,12,...

g™ =g 4+ AT - fi(2?, ..., 2", ") { (4.32)

i=1,...,m
where AT is the integration time step. This is the simplest and fastest way to solve
the first order differential equations in the system but is subject to inaccuracy and
instability if AT is chosen to be too large or when integrating stiff systems [7].

The 4% order Runge-Kutta method attempts to improve the accuracy and stability
of the forward Euler method without the need to compute higher order derivatives. It
accomplishes this goal by evaluating f(z,t) at intermediate points on each subinterval.

Differential equations are solved using this method by applying the formula:

. 1 n=0,1,2,...
:l?;H- =.’E?+—(k1+2k2+2k3+k4) (4.33)
6 i=1,...,m
where
ky = Asz(ﬂi?,,fB?n, t") (4.34)
1 AT
ky = AT-f, (a:;‘+%k1,...,x?n+§k1, t"+7) (4.35)
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(4.36)

i

ks = AT, (x3+%k2,...,z;+%k2, t"+§2£)

ki = AT- f; (z? +ka,..., 20 + k3, t" + AT) (4.37)

In the case of trajectory optimization, the function f(x,t) may not be an explicit
function of time but is always implicitly dependent on time through the time varying
control trajectory that is being optimized. The control trajectory data is available
at each whole time step but not at the half time steps required by the Runge-Kutta
method. An approximation of the half time step control data is obtained by per-
forming a linear interpolation on the surrounding data. The interpolation reduces
the accuracy of the method but in practice it has been observed to still be both more
stable and accurate than forward Euler.

The major advantage the forward Euler integration method has over the 4** order
Runge-Kutta is in computation time. Computation of a 2 minute optimal trajectory
using forward Euler integration with a AT of 0.005 seconds takes approximately 10
hours on a Sun Sparc 20 workstation. Since the 4** order Runge-Kutta requires 4
times as many function evaluations to integrate a differential equation, a solution
using this method takes approximately 30 to 40 hours using the same integration
time step. However, the increase in solution accuracy and stability afforded by Runge-
Kutta integration made it the choice for the trajectory optimizations, while forward

Euler was used only to gain preliminary results.

Memory Requirements

Performing a trajectory optimization using the conjugate gradient method generally
requires the storage of the entire state, adjoint, gradient, control and conjugate direc-
tion trajectories. Depending on the optimization problem, it may not be necessary
to save the trajectories for all of the states, adjoints and gradients. For the problem
in this thesis, however, storage of all trajectories is required.

The states in the calibration problem are defined to be the upper triangular com-
ponents of the Kalman filter covariance matrix plus the 4 test table states. This

amounts to 382 states for the ring laser gyro IMU and 565 states for the micro-
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mechanical IMU. The conjugate gradient method also requires as many adjoints as
states, and, since a 2 axis test table is being used, there are 2 control, gradient and
conjugate direction trajectories. In all, a total of 770 trajectories must be stored
for the ring laser gyro IMU case and 1136 for the micro-mechanical IMU case. The
tremendous memory demands that these storage requirements impose on the com-
puter limit the trajectory lengths to 120 seconds when a 0.005 second integration

time step is used.
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Chapter 5

Results

Optimal test table trajectories for the ring laser gyro IMU and the micro-mechanical
IMU are generated. The calibration term estimation errors obtained when using
the optimal trajectories are then compared to a benchmark calibration which uses a
traditional test table trajectory. All of the test table trajectories evaluated are 120
seconds long.

The benchmark calibration trajectory for each IMU is comprised of two types
of maneuvers. The first type is a scale factor maneuver in which the test table
spins about each IMU body axis. This maneuver maximizes the observability of
the gyroscope scale factors, misalignments and 3 of the 9 accelerometer lever arm
components. The second type is a lever arm maneuver. In this maneuver, the test
table gimbals undergo arbitrarily chosen constant angular accelerations in an attempt
to afford observability to the remaining lever arm components rendered unobservable
by the scale factor maneuvers.

Numerical problems are encountered during integration of the Kalman filter co-
variance matrix differential equation when large gimbal accelerations are commanded
or some of the error terms become too observable. These factors lead to an ill-
conditioned covariance matrix, a problem common in Kalman filtering particularly
if the measurements are very accurate {1]. When performing the benchmark calibra-
tions, covariance matrix condition problems are overcome by restricting the gimbal

accelerations to be small at all times and not allowing high gimbal velocities during
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Benchmark Trajectory: State Estimate 1-o
State Azis 1 | Azis 2 | Azis 8 | Units

Scale Factor | 1.437 | 1.061 | 1.447 ppm
Misalignment 1 | 1.196 | 1.586 | 1.610 | urad
Misalignment 2 | 1.636 | 1.607 | 1.198 | prad

Lever Arm 1 | 0.2781 | 0.5830 | 1.791 mm

Lever Arm 2 | 5.190 | 0.3052 | 7.903 mm

Lever Arm 3 | 2.562 | 0.5159 | 0.2829 | mm

Table 5.1: Laser IMU benchmark trajectory calibration accuracy.

the scale factor maneuvers. This is accomplished by processing each maneuver in the
benchmark trajectory separately and initializing each new maneuver with the final

covariance matrix from the previous maneuver.

5.1 Ring Laser Gyro IMU

5.1.1 Benchmark Trajectory

The benchmark test table trajectory generated to calibrate the ring laser gyro IMU
consists of 3, 30 second scale factor maneuvers and a final 30 second lever arm ma-
neuver. Since a linear scale factor model is assumed for ring laser gyroscopes, only a
single angular velocity is needed in each scale factor calibration maneuver. The gimbal
angles and angular velocities for this test table trajectory are plotted in Figure 5-1.

The angular velocities selected for this trajectory are governed by the numerical
stability of the covariance propagation equation. Numerical problems caused by high
scale factor observability occur each time the benchmark trajectory isolates a scale
factor term by spinning about a gyroscope input axis. Although faster spin rates
during the scale factor maneuvers would result in a better calibration, they cannot
be handled by the Kalman filter.

The final calibration uncertainties are listed in Table 5.1. These numbers represent
the calibration error standard deviations produced by the benchmark trajectory. They

are computed by taking the square roots of the diagonal elements in the final Kalman

58



8

Gimbal Angle (deg)
§
g o

-200
-300
~400
-500

40

Gimbal Velocity (deg/s)

— Quter Gimbal
-—-~ Inner Gimbal

k1 L

20

40

60 80
Time (s)

4 1

20

40

60 80
Time (s)

100

120

Figure 5-1: Laser IMU benchmark test table gimbal angles and velocities.
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Figure 5-2: Benchmark trajectory gyroscope scale factor 1-o histories.

filter covariance matrix. Time histories of these calibration uncertainties may be
plotted to reveal how the calibration term observabilities vary with the test table
maneuvering. Figure 5-2 shows the effect of the benchmark test table trajectory on
the uncertainty in the gyroscope scale factor estimates. As expected, the scale factors
are most observable during the first three scale factor maneuvers. The misalignment
observabillities followed a similar trend as seen in Figure 5-3.

During the scale factor maneuvers, only 1 lever arm component of each accelerom-
eter is observable. This is clearly seen in the lever arm estimate uncertainty traces
plotted in Figure 5-4. The reason for this effect is that an accelerometer may only
measure acceleration along its input axis. When the IMU is spinning about one of
its body axes, only the input axis component of centripétal acceleration is sensed

by the instrument. The diagram in Figure 5-5 shows, as heavy dashed lines, the
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Figure 5-5: Lever arm component observability during body axis angular rate.

two accelerometer lever arm components that are observable when the IMU is spun
at a constant angular velocity about its y-body axis. The remaining 6 lever arm

components are calibrated during the final 30 second lever arm maneuver.

5.1.2 Optimized Trajectory

Several optimal trajectories for the ring laser gyro IMU were generated using different
initial control trajectories. The test table control that produced the lowest covari-
ance matrix trace is plotted in Figure 5-6 with the resulting calibration uncertainties
resulting given in Table 5.2. These uncertainties represent a significant improvement
on the benchmark case. A list of the average percent reduction in calibration uncer-
tainty for each error term is shown in Table 5.3. For every error term, a greater than
50% improvement in calibration uncertainty is achieved. There would be a smaller
difference between the calibration uncertainties, especially in scale factor, if the nu-
merical problems were less severe. Even though the optimal trajectory is computed
with same covariance propagation equation as the benchmark, it is able to attain
higher gimbal angular velocities since it does not isolate any of the error terms.

The time histories of the scale factor, misalignment and lever arm uncertainties
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Optimized Trajectory: State Estimate 1-o

State Azis 1 | Azis 2 | Azis 3 | Unats
Scale Factor | 0.4176 | 0.8684 | 0.4187 | ppm
Misalignment 1 | 0.7195 | 0.6417 | 0.6468 | prad
Misalignment 2 | 0.6512 | 0.6478 | 0.7243 | prad
Lever Arm 1 | 0.3369 | 0.3667 | 0.4775 | mm
Lever Arm 2 | 2.076 | 0.3108 | 1.546 mm
Lever Arm 3 | 0.5501 | 0.3903 | 0.3495 | mm

Table 5.2: Optimized laser IMU trajectory calibration accuracy.

| Calibration term | Reduction in 1-0 uncertainty
Scale Factor 57 %
Misalignment 1 54 %
Misalignment 2 54 %
Lever Arm 1 55 %
Lever Arm 2 71 %
Lever Arm 3 62 %

Table 5.3: Calibration improvement by optimal laser IMU trajectory.
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Figure 5-7: Optimized trajectory gyroscope scale factor 1-o histories.

are plotted in Figures 5-7, 5-8 and 5-9 respectively. The plots show that the optimal
trajectory is able to reduce the calibration uncertainties for every error term simul-

taneously. Also, most of the uncertainty is diminished within the first 30 seconds of

test table maneuvering.

5.2 Micro-Mechanical IMU

5.2.1 Benchmark Trajectory

The benchmark test table trajectory used to calibrate the micro-mechanical IMU
follows a similar pattern as the ring laser gyro IMU trajectory. It is also comprised
of 3, 30 second scale factor maneuvers and a 30 second lever arm maneuver. In this

case, however, three different angular rates are used in each scale factor maneuver.
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Benchmark Trajectory: State Estimate 1-o
State Azis 1 | Azis 2 | Axis 3 Units
Scale Factor | 85.30 | 76.24 | 85.62 ppm
w? 40.78 | 48.42 | 41.16 ppm/rad/s
w? 32.12 1 29.59 |32.35 | ppm/rad?/s’
Misalignment 1 | 48.81 | 50.05 | 50.05 prad
Misalignment 2 | 50.07 | 50.16 | 48.82 purad
Lever Arm 1 | 0.2069 | 0.3416 | 2.038 min
Lever Arm 2 | 3.852 | 0.2082 | 6.363 mm
Lever Arm 3 | 1.925 | 0.3257 | 0.2014 mm

Table 5.4: Micro IMU benchmark trajectory calibration accuracy.

This more complicated maneuver is needed to calibrate the nonlinear scale factor.
The test table gimbal angles and angular velocities for this trajectory are plotted in
Figure 5-10.

Numerical problems encountered while integrating the covariance matrix differ-
ential equation are less severe in this case. This is because the greater process noise
variance and the nonlinear scale factor make it difficult to isolate any calibration
term. As a result, much higher gimbal angular velocities can be commanded during
the scale factor maneuvers. The calibration error standard deviations produced
when using this benchmark trajectory are listed in Table 5.4. The calibration un-
certainty time histories are plotted to show how the benchmark maneuvers affected
the observability of each error term. Scale factor uncertainty is traced in Figure 5-
11. These plots show that Kalman filter has difficulty distinguishing the scale factor,
w? and w3 terms during the scale factor maneuvers. The drop in the uncertainties
between 90 and 120 seconds indicates that the lever arm maneuver helps to increase
the observability of these terms. The scale factor maneuvers, however, are able to
produce high observability of the gyroscope misalignments as seen in Figure 5-12.
Finally, the lever arm uncertainty time histories, plotted in Figure 5-13, behave as
expected. Three lever arm components are highly observable during the scale factor

maneuvers, and the remaining 6 terms are unobservable until the lever arm maneuver.
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Optimized Trajectory: State Estimate 1-o
State Azxis 1 | Azis 2 | Axzis § Units
Scale Factor | 72.15 |[63.11 | 71.72 ppm
w? 21.29 11645 |19.94 ppm/rad/s
w? 15.05 [ 14.56 |14.16 | ppm/rad®/s’
Misalignment 1 | 23.97 | 38.20 | 38.20 prad
Misalignment 2 | 37.15 | 37.14 | 23.76 prad
Lever Arm 1 | 0.3188 | 0.3302 | 0.4755 mm
Lever Arm 2 | 4.994 | 0.3297 | 3.578 mm
Lever Arm 3 | 0.4821 | 0.3284 | 0.3179 mm

Table 5.5: Micro IMU optimized trajectory calibration accuracy.

5.2.2 Optimized Trajectory

Arriving at a good optimal micro-mechanical IMU calikration trajectory required
many trials with different initial trajectories. Several of the optimized trajectories
represented local minima in the cost function that gave high observability to all cal-
ibration terms except the number 2 gyroscope scale factor, w? and w® terms. This
problem was fixed by selecting an initial trajectory that made these neglected terms
initially observable. The best of the optimized trajectories generated using this tech-
nique is plotted in Figure 5-14 with the resulting calibration uncertainties resulting
given in Table 5.5. While calibration uncertainties are lower than those from the
benchmark trajectory, the improvement is not as pronounced as in the ring laser gyro
IMU calibrations.

A list of the average percent reduction in calibration uncertainty for each error
term is shown in Table 5.6. The improvement in calibration uncertainty is between
15% and 60% for each error term. The time histories of the scale factor, misalignment
and lever arm uncertainties are plotted in Figures 5-15, 5-16 and 5-17 respectively.
These plots show that several calibration term uncertainties are reduced simultane-

ously, but the reduction is not as swift as in the ring laser gyro calibration.
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Calibration term | Reduction in 1-o uncertainty |
Scale Factor 16 %

w* 56 %

W 53 %
Misalignment 1 33 %
Misalignment 2 34 %

Lever Arm 1 57 %
Lever Arm 2 15 %
Lever Arm 3 54 %

Table 5.6: Calibration improvement by optimal micro IMU trajectory.
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Chapter 6

Conclusions

6.1 Summary

The goal of this thesis was to compute optimal trajectories for a 2-axis test table to
calibrate dynamic errors in ineriial systems. The covariance propagation equation
from a Kalman filter was used to determine calibration uncertainty resulting from a
test table trajectory. A conjugate gradient optimization algorithm computed trajec-
tories that maximized IMU error observabilities by minimizing the trace of the final
covariance matrix. Mathematical models were derived for both ring laser gyro and
micro-mechanical IMUs. The models were incorporated in a script for the Mathemat-
ica software package which developed the Kalman filter covariance matrix differential
equation as well as the adjoint and gradient equations needed for the optimization.

Optimal trajectories were generated that yielded more accurate calibrations than
traditional test table trajectories. These trajectories achieved higher calibration ac-
curacy by increasing the observability of several error terms simultaneously instead
of isolating the individual errors. The ring laser gyro IMU calibration optimal tra-
jectories could improve calibration accuracy by over 50% while the micro-mechanical
optimal trajectories could achieve accuracy improvements that were between 15% and
60%.

Numerical problems associated with the Kalman filter covariance propagation

equation limited the range of allowable test table motion. The equation became ill
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conditioned when an IMU error term observability was high compared to the other
terms. This problem was more pronounced in the ring laser gyro IMU case since
the linear scale factor model and low process noise variance made it easy to isolate
certain error terms. As a result, a direct comparison of the optimal and traditicnal

trajectory for this case unfairly favored the optimal trajectory.

6.2 Proposed Future Work

Numerical problems were frequently encountered while integrating the Kalman filter
covariance propagation equation. These problems were caused by high observability
of some states which lead to ill conditioned covariance equations. They could be
alleviated by incorporating a continuous time version of a square root or U-D factor-
ization Kalman filter algorithm. In these types of algorithms, a square root of the
covariance matrix is propagated which increases its precision and guarantees positive
definiteness [5].

The trajectory optimization required the storage of the entire control, covariance,
adjoint, gradient and direction trajectories. This imposed a tremendous random
access memory (RAM) requirement on the computer. As a result, the trajectory
lengths were limited to 120 seconds. The amount of RAM required may be reduced
by saving the optimization trajectories to disk and loading small portions into RAM
as they are needed. This technique will, however, greatly increase the optimization
computation time. Other memory savings could come from simplifications in the
covariance matrix propagation equation. Since only the diagonal elements of the
covariance matrix are required by the cost function, it may be possible to neglect
some of the off-diagonal terms without adversely affecting the cost.

The optimal test table trajectories generated in this thesis were found to increase
the observability of several calibration terms simultaneously. This property could
be exploited to yield minimum time calibration trajectories which would be valuable
for fast factory calibrations of mass produced inertial systems. Including time as a

parameter to be minimized would require simple modifications to the optimization
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equations that have already been developed.

83



84



Appendix A

Micro-Mechanical System Model
Mathematica Script

The trajectory optimization in this thesis requires the determination of a Kalman
filter covariance matrix differential equation and its associated gradient and adjoint
equations for two types of navigators. The large number of states and the complexity
of the navigator models, however, make the derivation of these equations far too
difficult to perform by hand. Instead, the Mathematica software package is used
to execute the numerous and lengthy symbolic mathematical computations required.
This appendix presents the Mathematica script used to derive the necessary trajectory

optimization equations for the micro-mechanical IMU.

(* Need to add the vector analysis package to perform *)

cross product: <<Calculus‘VectorAnalysis‘ *)

Print["Defining constants and direction cosine matrices."]

(* Constants *)
nu = 2; (* number of controls *)
n = 33; (* number of navigator states *)
nn = (n n + n)/2 (* number of upper triangular *)

(* elements in an n x n matrix *)
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HOUR = 3600; (* secondg/hour

LAT = 42.364 Degree //N; (* latitude of gimbal table
WE = 15.041 Degree / HOUR //N; (% earth rotation rate

G=1; (* gravity

(* 2 axis test table rotations: x = outer gimbal,

y = inner gimbal

c1 = {{ Cos[x[t]], Sin{x[t]], 0},
{-8in{x[t]], Cos[x[tl], O},
{ 0, 0, 1}}

€2 = {{ Cosly[tl], 0, -Sin[y[tll},
{ 0, 1, 0},

{ Sin[y[t]], 0, Cosly[tll}}

{* Direction cosine matrix from local level UEN to
sensor platform xyz *)

Cnb = C2 . Ct

(* DCM from body xyz to local level UEN
Cbn = Transpose[Cnb]

(* Compute angular velocity vector of the semnsor

(* platform frame in inertial space

omegaNB = {-x’[t]*Sin[y[t]], f’[t], x’ [t1*Cos[y[t]11}

omegaEARTH = {WE#Sin[LAT], 0, WE*Cos[LAT1}
omegaEARTH = {0, 0, 0} (* neglect earth rate *)
omegaIN = Cnb . omegaEARTH

omega = omegalN + omegalNB

omegadot = D[omega,t]
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(* Gravity vector in sensor platform frame *)

gB = Cnb . {—G’ 03 0}

Print["Assembling accelerometer errors."]

(* Assemble accelerometer errors *)
lax = {laxx, laxy, laxz}
lax = CrossProduct[omega, CrossProduct[omega, lax]] +

CrossProduct [omegadot, lax]

lay = {layx, layy, layz}

lay = CrossProduct[omega, CrossProduct[omega, layl] +
CrossProduct [omegadot, lay]

laz = {lazx, lazy, lazz}

laz = CrossProductfomega, CrossProductfomega, laz]l +
CrossProduct [omegadot, laz]

lever = {lax[[1]], lay[[2]1}, laz[[3]11}

Print["Assembling gyroscope errors."]

(* Assemble gyroscope errors *)
sf = {sfx*omegal[[1]], sfyxomegal[2]], sfz*omegal[3]11}

mi = {mix*omegal[[2]], miy*omegal[[1]], miz*omegal[[1]]1}

m2 = {m2z*omegal[3]], m2y*omegall3]], m2z+omegal[[2]1]}

w2 = {w2x+omegal[[1]]*omegal[1]], w2y*omegal[[2]]*omegall2]1],
w2z+omega[[3]]*omega[[3]]}

w3 = {w3x+omega[[1]]*omega[[1]]*omegal[[1]],
w3y*omega[[2]]*omega[[2]]*omegal[2]1],
w3z+omega[[3]] *omega [ [3]]*omegal[3]11}

eab lever

it

egb = sf + m1 + m2 + w2 + w3
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ea = Cbn . eab

eg = Cbn . egb

dv

{dvx, dvy, dvz}
psi = {psix, psiy, psiz}

(* Coriolis term *)

cor = CrossProduct[omegaEARTH, psil

psidot = eg - cor

dVdot = ea

dR = {dRx, dRy, dRz}
dRdot = dV

Print["Forming system and measurement matrices F aund H."]

(* Matrix form of dRdot and dVdot equations *)

dRMATt = { D[dRdot,dRx] , D[dRdot,dRy] , D{dRdot,dRz] |,
DIdRdot,dVx] , D[dRdot,dVy]l , D[dRdot,dVz] ,
D[dRdot,psix] , D[dRdot,psiy]l , D[dRdot,psiz] ,
D[dRdot,laxx] , D[dRdot,laxy] , D[dRdot,laxz] ,
D[dRdot,sfx] , D[dRdot,mix] , D{dRdot,m2x} ,
D[dRdot,w2x] , D[dRdot,w3x] |,
D[dRdot,layx] , D[dRdot,layy] , D[dRdot,layz] ,
D[dRdot,sfy]l] , D[dRdot,mly] , D[dRdot,m2yl |,
D[dRdot,w2y] , D[dRdot,w3y] |,
D[dRdot,lazx] , D[dRdot,lazy] , DI[dRdot,lazz] ,
D[dRdot,sfz] , D{dRdot,m1z] , D[dRdot,m2z] ,
D{dRdot,w2z] , D{dRdot,w3z] }
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dVvMATt = { D[dVdot,dRx] ,
D[dVdot,dvVx] ,
D[dvdot,psix] ,
D[dvdot,laxx] ,
D[dvdot,sfx] |,
D[dvdot,w2x] ,
D[dvdot,layx] ,

D[dvdot,sfyl ,
DidVdot,w2yl ,
D[dvdot,lazx] ,
Dldvdot,sfz] |,
D[dvdot,w2z] ,

D[dvdot,dRy]
Dldvdot,dVy]
D[dVdot,psiy]
D[dvdot,laxy]
D[dVdot ,mix]
D[dVdot,w3x]
D[dvdot,layy]
D[dVdot,m1y]
D[dVdot ,w3y]
D[dVdot,lazy]
D[dVdot,miz]
D[dvdot,w3z] }

(* Matrix form of psidot equation

, DIpsidot,dRy]

psiMATt = { D[psidect,dRx]
D[psidot,dvx]
D[psidot,psix]
D[psidot,laxx]
D[psidot,sfx]
Dpsidot,w2x]
D[psidot,layx]
DI[psidot,sfy]
D[psidot,w2y]l

Dipsidot, lazx]
D[psidot,sfz]
DIpsidot,w2z]
dRMAT = Transpose[dRMATt]
dVMAT = Traunspose[dVMATt]

psiMAT = Transpose [psiMATt]

E]

2

s

3

2

2

H]

3

>

>

H

Dipsidot,dVy]

Dipsidot,psiyl
Dipsidot,laxy]

Dipsidot,m1x]

D[psidot,w3x]

D[psidot,layy]

D[psidot,miy]

D[psidot,w3y]

D[psidot,lazy]

Dlpsidot,miz]

D[dvdot,dRz] ,
D[dvdot,dVz]
D[dVdot,peiz] ,
D[dVdot,laxz] ,
Dfdvdot ,m2x] ,

D[dvdot,layz] ,
D[dVdot,m2y]

D[dvdot,lazz] ,
D[dVdot ,m2z] ,

?

r

3

b}

3

Dlpsidot,w3z] }
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Join[dRMAT, dVMAT, psiMAT, Tablel[0, {n-9}, {n}]]
F /. {zx[t] -> plnn+1], y[t] -> plon+2], x’[t] -> plan+3],
y’ [t] -> pinn+4], x?7[t] ~> ul1], y’’[t] -> u[2]}

b2 B |
LI} [}

Ft = Transpose[F]

(* Measurement geometry matrix *)
Hit = Join[IdentityMatrix[3], Table[0, {n-3}, {3}]]
H2t = Join[Table[0,{6},{3}], IdentityMatrix[3],

Table[0,{n-6-3},{3}]1]
H = Join[Transpose[Hit], Transpose[H2t]]
Ht = Transposel[H]

Print["Forming Kalman filter covariance matrix
differential equations."]

(* Process noise matrix *)

Qvar = Arraylq, n];

Q = DiagonalMatrix[Qvar]

(* Measurement noise matrix *)
Rvar = Array([r, Dimensions([H][[1]]];
R = DiagonalMatrix[Rvar]

Rinv = Inverse[R]

(* Covariance matrix element index mapping *)

1+(i-Dn - (i=2) (i-1)/2 /; j==i

1]

index([i_,j_]

index[i_,j_] index[i,il + (j~1) /; j>i

indexli_,j_] index[j,1i] /; j<i

P = Table[p{index([i,jl], {i,n}, {j,n}]
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(* Kalman filter covariance dynamics
Pd=F .P+P . Ft+Q~-P.Ht . Rinv . H . P
Pd = Pd /. 0.->C

Print["Appending gimbal table dynamics equations."]

(* Gimbal table dynamics

X = {p[nn+1], p[nn+2], p[nn+3], plnn+4]} (* states are
(* gimbal angles and angular rates

U = {ul1], ul2]} (* controls are gimbal accelerations

4 = {{0,0,1,0},{0,0,0,1},{0,0,0,0},{0,0,0,0}2}

B = {{0,0},{0,0},{1,0},{0,1}}

Xdot = A . X+B .U

Print ["Forming penalty and terminal cost functions."]

(* Integrand of state and control penalty function

g =(p[nn+3]/WMAX)~20 + (p[an+4]/WMAX)"20 +
(ul1]/AMAX) 20 + (uf2]/AMAX)~20;

(* Terminal cost: Trace of the final covariance matrix

tcost = Sum[p[index[i,il], {i,n}];

Print["Defining Hamiltonian."]

(* Lagrange multipliers

LAM = Array[lam, nn]

LAMX = {lam[nn+1], lam[nn+2], lam[nn+3], lam[nn+4]}

(* Hamiltonian formulation

Hamtempl = 0;
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Do[ Dol If[ j>=i, Hamtempl = Hamtempl +
LAM[[index{i,j1]] Pd[[i,j]13, {i, o}, {j, n}]
Hamtemp2 = LAMX . Xdot

Ham = g + Hamtempl + Hamtemp2

Print["Defining gradient."]
(* Gradient formulation *)

grd = {D[Ham,ul1]], D[Ham,ul2]1]}

Print["Defining adjoint equatioms."]

(* Adjoint formulation *)
-D[Ham, p[il]l, {i, nn}]

-D{Ham, X[[i-nn]1], {i, nn+i, nn+4}]

L

Do[lamdot[i]
Do[lamdot [i]

Print ["Unwrapping covariance equations."]
(* Covariance dynamics unwrapped *)
Do[ Do[ If[ j>=i, Pdotlindex[i,jl] =
PAl[i,j11], {i, n}l1, {j, n}l;
Do[ Pdot[i] = Xdot[[i-nnl], {i, nn+1, nn+4}];

Print["Writing C-form of gradient, adjoint and
covariance equations."]
(x C-form of gradient, adjoint and system equations *)
Dol lamdot[i] = CForm[lamdot{il], {i,nn+4}];
Do[ Pdot[i] = CForm[Pdot[il]l, {i,nn+4}]1;
Do[ grad[i] = CForm[grd[[iJ]], {i,nu}]l;
g = CFormlgl;

Print["Saving equations to files."]
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Print[* Covariance,"]
Save["pdot", Pdot];
Print[" Adjoint,"]
Save["lamdot", lamdot];
Print[" Gradient,"]
Save["grad", grad];
Print[" Cost function,"]
Save["g", gl;

Print ["DONE."]

(* NOTES:

(* The system jtates in the optimization problem are the
(* Kalman filter state covariances given by p[1] through
(* p[on] and the gimbal table angles and angular rates

(* which are plnn+1] though p[nn+4] for a two axis table.
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Appendix B

User Guide to the General
Unconstrained Trajectory

Optimization Software

B.1 Introduction

The purpose of this document is to serve as a user’s guide and reference manual to
the software package created to optimize trajectories using the conjugate gradient
method [14]. The software was developed at Draper Laboratory in conjunction with
research towards a master of science degree at MIT to compute optimal test table
trajectories for calibrating inertial systems. Although originally created to solve a
very specific problem, the software was designed to be easily modified to solve a
general class of trajectory optimization problems. The program is written entirely in
the C programming language, however little knowledge of C is required to effectively

modify the code to solve a particular problem.
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B.2 Optimization Method

B.2.1 Problem Class

This program solves the class of continuous time, unconstrained, fixed final time, tra-
jectory optimization problems. The general problem in this class has a cost function

of the form
7 = clx(ty) + | Y a(x(t), u(r)) dt (B.1)

subject to the system dynamics
x(t) = £(x(t), u(t)) (B.2)

with the initial state z(0). In these equations, z is an n vector, u is an m vector
and ¢y is the final time. The goal is to minimize the cost J by optimizing the control

trajectory u.

B.2.2 Conjugate Gradient Algorithm

Because of their complexity, trajectory optimization probiems typically need to be
solved numerically. The relative simplicity of gradient algorithms make them among
the most widely used numerical methods to solve these problems. Of the gradient
algorithms, the first order method of steepest descent and the second order Newton-
Raphson method are the best known [17]. Both of these methods however have
disadvantages which limit their usefulness. Steepest descent is the most simple of the
gradient algorithms but is slow to converge when the solution nears the optimum.
Newton-Raphson is quicker to converge, but is prone to instability and requires a
second order gradient computation which is usually difficult and sometimes impossi-
ble [8]. The conjugate gradient method of trajectory optimization requires the com-
putation of only a first order gradient but has been shown to possess the convergence
properties of second methods while maintaining greater stability [14].

Implementing the conjugate gradient algorithm requires the formation of a Hamnil-
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tonian function. The Hamiltonian is defined to be
H(x,u,p) = d(x,u) + pTf(x, u) (B.3)

where p is obtained in the solution of the adjoint equation

D) =~ H(x,u,p) (8.4
with the boundary condition
de
plty)= 5| . (B.5)

t»—-tf

The gradient is then computed to be the following:

glu) = o (B.6)

Let the trajectory u*(t) be the ' approximation to the optimal trajectory. The
algorithm is started by selecting an arbitrary initial trajectory u®, integrating the
state equations (B.2) and storing the state trajectories. The adjoint equations (B.4)
are then solved backwards in time and their trajectories stored. Finally the gradient
is computed from equation (B.6). After these initial computations the algorithm

proceeds as follows:

s = —g° (B.7)
a' = arg glzig J(u* + as?) (B.8)
utl =yt gl (B.9)
gt = g(ut) (B.10)

_ (g1, git1)

b = =25 _/ B.11
. &'.g) (B-11)
sz+1 _ _gz+1+bzsz (Bl?)

where
. L7 .
¢ = [ get)at (B.13)
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Equation (B.8) shows that the conjugate gradient method reduces an trajectory op-
timization problem into a series of line minimizations. This property unfortunately
also represents a major difficulty with the algorithm. Depending on the complexity
of the system, performing this line minimization can become very computationally
expensive [14] [17]. A compromise which slows the convergence of the algorithm but
is computationally feasible is to keep reducing the step size «; by a constant reduction
factor until the cost begins to increase and then choosing the step size that produced
the lowest cost. In practice, this step size selection method does indeed work, but
care must be taken in selecting the step size reduction factor. Choosing a reduction
factor that is too small will require a large number of function evaluations while one
that is too large may not produce a good approximation to the minimum cost. In this
software a step size adjustment logic has been developed which attempts to maximize
the speed of convergence while minimizing the number of computations. This logic
will be discussed in Section 5.

Another limitation of the conjugate gradient algorithm common to all gradient-
type algorithms is that only local minima or maxima may be determined. The local
extremum that the algorithm finds depends on the choice of initial trajectory. If
the problem is suspected of containing several local extrema, the algorithm should
be executed numerous times each with a different initial trajectory. While there is
still no guarantee that the global minimum or maximum will be found, one of the

optimized trajectories may be found to be better than the others.

B.3 Basic Operation

B.3.1 Content and Compilation

The trajectory optimization software consists of nine files of C-code, two header files
and a make file. The main program resides in cg.c and the remainder of the C-code
files are euler_int.c, rk_int.c, cg-func.c, system.c, adjoint.c adjoint_bc.c,

gradient.c and cost.c, the header files are globe.h, cg.h and the make file is
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Makefile.

The instructions in this manual on the compilation and operation of the program
are valid for a computer running the UNIX operating system. The preferred compiler
is the GNU C compiler gcc. All user commands to be entered verbatim at the UNIX
command line prompt dencted >> will appear in the typewriter font. Computer
output will also be in typewriter font and it will be distinguished by a ## prompt at
the beginning of each line. Input of the user’s choice will be italicized. For example

the lines
>> 1s name

## 1s: name: No such file or directory

ask the user execute UNIX command to list a file or the contents directory with a
name of the user’s choice. The computer responds that it cannot find the file or

directory the user asked for.

To compile the program for the first time type the commands
>> make
The program may also be explicitly compiled with the command
>> gcc -o sim *.c -1m

Both commands will automatically build the entire program the first time and create
an executable file named sim. If the program is modified, it may be recompiled using
one of the commands above. The advantage of using make is that if one file has been
edited after the initial compilation, only that file will be recompiled where using gcc

explicitly will rebuild the entire program.

B.3.2 Program Execution

Prior to executing the program the first time, a directory named DATA must be created

in the same directory as the executable file sim. This is done with the command

>> mkdir DATA
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To execute the program then simply type sim on the command line. The software
responds by asking the user three questions about the final time of the trajectory, the
integration time step and the numerical integrator type. An example of the series of

commands and computer output seen during an execution is as follows:

>> sim
## Enter the final time in seconds: finaltime
## Enter the integration time step in seconds:dt

## Integration method (Forward Euler = 0, Runge-Kutta = 1):int

The program then begins the trajectory optimization and reports the latest cost and
conjugate gradient step size from equation (B.8) to the screen. Upon completion,
the program writes useful data to data files named adjoint, control, direction,

gradient, state and time_data in the directory DATA.

B.4 Program Structure

The trajectory optimization software was designed to be easily modified so an opti-
mization can be obtained for a general class of problems. The basic components are
the main program, numerical integrator, system model, general function library and

the output data files.

B.4.1 Main Program Algorithm

The main program resides in the file cg.c. This segment of the software calls the
functions that control the user interface, memory allocation, the conjugate gradient

algorithm and data output. The basic algorithm of the main program is as follows:
e Declare local variables.
o Ask user to define final time, integration time step and integration type.

e Initialize global parameters.
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e Allocate memory to arrays.
» Set initial state.

Generate arbitrary initial control trajectory.

Integrate state equations.

Compute initial cost.

e Compute adjoint boundary conditions.

Integrate adjoint equations.

Initialize gradient and direction trajectories.

Iterate on conjugate gradient algorithm until optimization is achieved.

[a—

. Compute new control.
2. Integrate state equations.

3. Compute new cost. If (new cost > old cost), then reduce step size and

goto step 1.
4. Compute adjoint boundary conditions.
5. Integrate adjoint equations.
6. Calculate gradient.

7. Calculate direction.
e Write final data to data files and end.

To maintain modularity in the program each step in main program algorithm is
broken down into a logical series of function calls. These functions are contained in

the remaining . c files.
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B.4.2 Numerical Integration Functions

There are two numerical integration methods available in the software: forward Euler
and fourth order Runge-Kutta. These methods are used to solve the basic first order

differential equation:
Z(t) = f(z(t),t) with z(0) =z (B.14)

The forward Euler method solve a system of first order equations by applying the

formula:
Tpt1 = Tn + AT - f(Zp,8,) n=0,1,... (B.15)

where AT is the integration time step. This is the simplest and fastest way to solve
the first order differential equations in the system but is subject to inaccuracy and
instability if AT is chosen to be too large or when integrating stiff systems.

The fourth order Runge-Kutta method attempts to improve the accuracy and
stability of the forward Euler method without the need to compute higher deriva-
tives [7]. It accomplishes this goal by evaluating f(z,t) at selected sub-points on

each subinterval. Differential equations are solved using this method by applying the

formula:
1
Tpt1 = Zn + 6(/61 + 2ko + 2k3 + k4) (B.lﬁ)
where
ki = AT - f(z,, tn) (B.17)
ke = AT f(z, + %kl, tn + %) (B.18)
ks = AT - f(z, + %l@ y ta + %I) (B.19)
k4 = AT. f(:l?n + k3 y In AT) (B20)

In the case of trajectory optimization, the function f(x,t) may not be an explicit
function of time but is always implicitly dependent on time through the time vary-

ing control trajectory that is being optimized. The control trajectory data is only
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available at each integer time step but not at the half time steps required by the
Runge-Kutta method. An approximation of the half time step control data is ob-
tained by performing a linear interpolation on the surrounding data at the integer
time steps. The interpolation reduces the accuracy of the method but in practice it
has been observed to still be both more stable and accurate than forward Euler.
The forward Euler and Runge-Kutta numerical integration functions are contained
in the files euler_int.c and rk_int.c respectively. Each file contains two functions,
integrate_system(-} which integrates the state equations and computes the inte-
gral and terminal costs, returning the total cost, and integrate_adjoint(-) which

integrates the adjoint equations backwards in time.

B.4.3 System Model Files

The files system. c, adjoint.c, adjoint_bc.c, gradient.c and cost.c contain func-
tions which hold the user defined equations for the system, adjoint, adjoint boundary
conditions, gradient and cost. Below is a listing of each file and the equation it

contains.
system.c : X(t) = f(x(t), u())

adjoint.c : p(t) = —ZH(x(t),u(t), p(t))

(B.21)

adjoint.bc.c : plt;)= &

gradient.c : g(u)= 5

cost.c : J=c(x(t))+ fo d(x(t),u(t))dt.
The equations in each function must appear in a specific form having proper variable

names and using the appropriate C language syntax. These standards are discussed

in Section 5, Modification and Customization.
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B.4.4 General Function Library

The largest library of functions is cg_func.c. This file contains the functions that set
the global parameters, allocate memory to one and two dimensional arrays, generate
the initial control trajectory and state, compute the conjugate direction trajectory
and write data to the screen and data files. It also is home to the function min_J(.)
which is responsible for iterating on the steps (1) — (3) in the conjugate gradient
algorithm listed in Subsection 4.1 and adjusting the step size until a lower cost is

obtained.

B.4.5 Data Handling and Storage

The various trajectories in the program are stored in arrays whose dimensions are de-
termined by the data type, the final time and the integration time step. For instance,
consider a system with three states, a final simulation time of ¢; = 10 seconds and an
integration time step of At = 0.1 seconds. The array containing the complete set of
state trajectories consists of three rows and N= gfz = 100 columns. If the state array
is named x, then the ninth element of the second state resides in x[2] [9].

At points during the program execution and at its conclusion, several arrays are
written to text files in the directory DATA. There are five trajectory files including
control, state, adjoint, gradient and direction. These files contain the final
trajectories described by the file names. Since these files may be very large, only the
control trajectory is written in its entirety. The remaining data is written at a user
defined interval. Control of the data write interval will be covered in the next section.
An additional non-trajectory file named time_data contains only three numbers, the

integration time step, the data file write interval and the final time.

B.5 Modification and Customization

When customizing the software to solve a particular problem, several modifications

must be made to the code. The modifications range from substituting in the new sys-
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tem model to altering the conjugate gradient step size logic. The software is designed
so that only a minimal number of functions need to be altered during customization.
Once the program is modified in any way, it must then be recompiled before exe-
cution. This section discusses the details of how to modify the software to solve a
new problem by presenting an example of a hypothetical system. To demonstrate the

necessary modifications, consider the following trajectory optimization problem:

Ty = To+u 1
System : 3, = g, ; x(0)=4 0 (B.22)
T3 = sin(dz;) — 3e%2 + 233 + u, 2
t
Cost : J =127 4+ x5 + /0 "qem 4 522+ (lnw,)” + 242 dt (B.23)

The adjoint equations are then computed to be:

p1 = —4€"™ —p, — 4p; cos(dx) (B.24)
P2 = —p1-+3pze™ (B.25)
p3 = ~10z3—2p; (B.26)

with the boundary conditions

pilty) = 2x1(ty) , palty) =1 , ps(ty) =0 (B.27)

Calculating the gradient yields:

2lnu
g = L (B.28)

Uy
g2 = 4dus+ps (B.29)

The equations for this hypothetical system may be put into the software almost
exactly as they appear on paper with a few notable exceptions. General rules for

converting the equations into the proper form are:
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e Subscripts map to numbers in square brackets, e.g. p3 = p[3].

Time derivatives appear as they are spoken, e.g. &, = xdot [2].

All multiplications must be explicitly typed with and asterisk, e.g. 4p,xz; =
4xp[2]*x[1].

Trigonometric, logarithmic, etc. functions must be part of the C math library

math.h (see [12] for details).
e All lines must end in a semicolon.

Applying these rules on all the equations and inserting the equations into the proper
files is the first step in customizing the software. When inserting new equations into
the functions, care must be taken to change only the equations and not tamper with

the architecture of the function itself.

B.5.1 Equation File Modifications

The following is a list of the equation files that must be modified when inserting a
new system into the trajectory optimization software. Each listing begins with the file
name, describes its contents and shows exactiy how the equations of the hypothetical

system should look when inserted into each file.

system.c contains the complete system of first order state equations in a single
function sys.eqn(-). Converting the state equations of the example intc the

proper form yields:

xdot{1] = x[2] + u[1];
xdot[2] = x[3];
xdot[3] = sin(4.0*x[1]) - 3.0*exp{(x[2]) + 2.0*x[3] + u[2];

adjoint.c contains the set of coupled of first order adjoint differential equations

in the function adj.eqn(-). Converting the adjoint equations of the example
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problem yields:

pdot[1] = -4.0*exp(x(1]) - pl2] - 4.0%p[3]*cos(4.0*x[1]);
pdot[2] = -p[1] + 3.0*p[3]*exp(x[2]);
pdot [3] = -10.0*x[3] - 2.0*p[3];

adjoint_bc.c contains the equations that determine adjoint boundary conditions in

the function adjoint_bc(-). Converting the adjoint boundary conditions of the

example problem yields:

pfl1] = 2.0%x[11[N];
pfl2] = 1.0;
= 0.0;

pf [3]

gradient.c contains the gradient equations in the function gradient (-). The equa-
tions in this file are slightly different from the state and adjoint equations. The
gradient equations are embedded in a loop, so an extra index is required on

each state, control and adjoint element. Conversion of these equations yields:

2.0xlog(ul[11 [i]1)/ul11[i1 + pl[11[il;
4.0+ul2] [i] + p[31[il;

gl1][1]
gl2] [i]

cost.c contains the integral and terminal cost equations in two functions int_cost (:)
and term_cost(-). Both sets of equations require an extra index similar to the
gradient equations. Also since the integral cost is approximated as the sum of a
series, the cost-to-date, Jin, must be added to the equation. The integral cost

equations are then converted to:

J = Jin + 4.0*exp(x[1]1[i]) + 2.0*pow(x[2][i],2) +
5.0%pow(x[3] [i],2) + pow(log(u[1][il},2) +
2.0xpow(ul2] [i],2);
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and the terminal cost equations are converted to:

terminal = pow(x[1][N],2) + x[21[n];

If the system is very large, the equations may be quickly generated using the
Mathematica software Package. A simple script file may be created which derives the
adjoint, adjoint boundary condition and gradient equations from the set of first order
differential equations representing the system model and the cost function. These
files are then be converted into a form similar to what is required by the conjugate
gradient software and saved. Below, a Mathematica script is given which generates

all the equations for the example system.

(* Mathematica Script to formulate the gradient *)
(* and adjoint equations for a basic unconstrained *)
(+ trajectory optimization problem with a given *)
(* system model and cost function. *)
(* Number of states ang controls | *)
n = 3: (* number of states %)

nu = 2; (; number of controls )

(* System model differential equations *)
xdot[1] = x[2] + u[1];

xdot[2] = x[1];

xdot[3] = Sin[4*x[1]] - 3*Exp[x[2]] + 2xx[3] + ul27;

(* Integrand of state ang control penalty function *)
d = 4+Exp[x[1]] + 5+x[3]"2 + Log[ul111~2 + 2#u[2] ~2;

(* Terminal cost: Trace of the final covariance matrix *)

¢ =x[1]1"2 + x[2];

108



(koo o ook koo ook ok R K Ao ok KR ok Kk ko )
(x#xxkxrkksk CHANGE NOTHING BELOW THIS LINE sskokkokkkk)
(ks oKk A KRR ok ok Ak ok Ak ok )
(* Create Lagrange multipliers *)

P = Arraylp, nl;

(* Hamiltonian formulation *)
Hamtemp = O;
Do[Hamtemp = Hamtemp + P[[i]] xdot[i], {i, n}];

Ham = d + Hamtemp;

(* Gradient formulation *)

Do[grd[i] = D[Ham,u[i]], {i,nu}];

(* Adjoint formulation *)

Dolpdot[i] = -D[Ham, x[i]], {i, n}];

(* Adjoint boundary conditions *)

Dofpf[i]l = Dlc, x[ill, {i,n}];

(* C-form of gradient, adjoint and system equations *)
CForm[xdot[i]1]1, {i,n}];
CForm[pdot[ill, {i,n}];

Dol xdot[il
Do pdotl[i]

Dol pflil] = CForm[pf[ill, {i,n}];
Dol grdl[i] = CForm(grd[il], {i,nu}];
d = CForm[d];
¢ = CForm[c];
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(* Save equations to files *)
Print["Saving equations to files."]
Print["  System,"]

Save["xdot", xdot];

Print[" Adjoint,"]

Save["pdot", pdot];

Print[" Adjoint boundary condition,"]
Save["pf", pfl;

Print[" Gradient,"]

Save["grd", grdl;

Print[* Integral cost,"]

Save["d", d];

Print[" Terminal cost,"]

Save["c", c];

Print ["DONE. "]

Unfortunately the CForm command in Mathematica does not actually produce stan-
dard C syntax and uses parenthesis instead of square brackets when indexing one and
two dimensional arrays. These problems may be fixed by directly editing the equation
files saved by the script. While any editor may be used for this task, in practice the
UNIX string editor sed has been found very useful.

This script may be easily modified to accommodate any system model and cost
function. An adept Mathematica programmer make further modifications to the
script and may derive the mathematical model of the system itself from the underlying

physics thereby eliminating human calculation error.

B.5.2 State and Control Inifializatiori

The functions responsible for creating the initial control trajectory and state are in

the file cg_func.c. For the example problem, the following equations describing the
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initial state are substituted into the function initialize. state(-):

x{11[1] = 1.0;
x[21[1] = 0.0;
x[31[1] = 2.0;

The initial control trajectories are generated in function initialize_ control(-).
Making modifications to this function is the only time a working knowledge of C
syntax is necessary. A wide range of trajectories may be generated using for loops,
if statements and various mathematical functions. For the example problem consider

an initial control trajectory governed by the following equations:

0 for t<Y4
ui(t) = .
sin(t) for £+ <t<t (B.30)
UQ(t) =1

where t; is the final time in seconds. The equivalent C-code that generates this

trajectory is:

for (i = 1; i <= N; i++)

{
if (i <= N/2)
ul1][i] = 0.0;
else

ul1][i] = sin(i*DT);

u[2][i] = 1.0;

An excellent reference for C syntax is {12].
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B.5.3 Global Parameters

The final step in converting the software is properly setting seven global parameters
that define the size of the system, the minimum allowable conjugate gradient step
size, the step size adjustment logic and the data file sparseness. These parameters
are set in the function parameters(-) which resides in the file cg_func.c.

The first two parameters CONTROL_DIM and STATE_DIM are defined to be the number
of controls and states in the system. Since the example system has two controls and
three states, these parameters would be set to 2 and 3 respectively.

The next paramieter, TOL, is the optimization tolerance. It controls when the
program exits based on the conjugate gradient step size. When the step size, o
in equation (B.8), falls below the value of TOL the trajectory is considered to be
optimized and the program exits. It is the responsibility of the user to determine this
condition of optimality since there are no hard rules or techniques available.

The conjugate gradient algorithm was shown in Section 2 to require the computa-
tion of step size o that minimizes a cost. In practice however, calculating o exactly is
usually either computationally not feasible or impossible. To alleviate this problem
a step size adjustment logic has been developed which starts with an initial guess
for o and chooses subsequent step sizes according to a predetermined set of rules.
The three parameters ALPHA, ALP_DEC and ALP_INC are used to control the conjugate
gradient step size adjustment logic in the function min_J(-). The step size selec-
tion algorithm is started by evaluating the cost with an initial step size & = ALPHA.
This initial step is deliberately chosen to be too large so that a lower cost will be
achieved by reducing the step size. The step size is iteratively reduced according to
Onew = ALPDEC X qgq until J(opnew) > J(@oq)- The step ayq is then selected to
generate the new control. When minimization is performed again, the initial step
is chosen to be @ = ALP_INC X a,y. The selection of parameters ALPHA, ALP_DEC
and ALP_INC depends heavily on the system being optimized. In general, the most
conservative practice is to set ALP._DEC close to one, and adjust ALPHA and ALP_INC

to increase the rate of convergence.
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The final global parameter under the user’s control is the data file time incre-
ment DTF. Since the final control trajectory is the most important data produced
by the program execution, every point of the trajectory is written to its output file
DATA/control. To save disk space, the remaining trajectory output files in the direc-
tory DATA: state, direction, gradient and adjoint are normally written to at a
longer time interval than than the integration time step DT. Thus the parameter DTF
is the AT of the nonessential data files in seconds. For example, if the integration
time step is set to 0.1 seconds but knowledge of the state at a one second time time

interval is sufficient for the analysis, the parameter DTF would simply be set to 1.0.

B.6 Additional Comments

The software package documented in this manual implements a conjugate gradient
optimization algorithm for solving unconstrained, fixed terminal time, trajectory op-
timization problems. However, if the problem involves constraints, this software may
still be used effectively. When using gradient-type algorithms to solve constrained
optimization problems, it is common practice to model state and control constraints
by adding penalty functions to the cost function. The final answer will then be an ap-

proximation of the exact optirnum solution. A detailed discussion of penalty functions

may be found in {8].
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