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Abstract

Frost flowers are saline ice crystals grown on the surface of young sea ice. The flowers
are accompanied by saline slush patches underneath the ice crystals. Frost flowers
have become a research interest in the study of sea ice remote sensing owing to their
role in the observed enhancement of radar backscatter from thin sea ice. Various field
observations have associated this increase with frost flower growth. In this thesis,
based on the volume integral equation approach, an electromagnetic scattering model
is developed to model the variability of microwave radar signatures with frost flower

growth.

A controlled laboratory experiment (CRRELEX 1995) was carried out in 1995
to investigate relation between the C-Band polarimetric radar signatures of thin sea
ice and the frost flower growth. The observed backscattering coefficients showed a
nonmonotonic trend with the coverage of frost flowers on the ice surface, especially,
a backscatter minin.am occurred in the early stage of frost flower growth which co-
incided with an abrupt change in the saline ice surface salinity. The experimental
measurements also suggested that the small ice crystals have little impact on the
backscatter, while the slush patches yield a 3-5 dB backscatter increase over bare ice.

In the part of sea ice, a physical multilayer model is used. The salinity profiles
are taken into account to derive the effective permittivity profile by using mixing
formulas. For the model of frost flowers, the ice crystals are neglected due to their
small contributions to the backscattering coefficients and the co-polarized ratio. The
slush patches are modeled as a thin saline layer composed of an agglomeration of
small square slush units of fixed thickness. An accumulation process of slush patches
is developed based on a random walk algorithm to model the dynamic growth process
of frost flowers.



Due to the high permittivity contrast between the slush patches and sea ice,
the volume integral equation approach is used to calculate the scattered field , in
which a half-space dyadic Green’s function is used to take into account the coupled
volume-surface interaction. In the volume integral formulation, the infinite layer
approximation is used to estimate the internal field of the slush layer. A simple
geometry is used to model the slush unit, and the stationary-phase method is applied
to express the total scattered field as the product of the single unit’s contribution and
a configuration factor. The backscattering coefficients are obtained by averaging over
many simulated realizations. This Monte Carlo scattering model is then applied to
interpret the observed temporal variation of the polarimetric signatures of thin saline
ice covered with frost flowers observed in CRRELEX 1995.

The simulation results are compared to the experimental data and match the levels
of time-series data well. The scattering model produces higher o,, backscattering
coefficients than oy, backscattering coefficients. The contribution of saline slush
patches to the enhancement of radar backscatter is demonstrated in the simulation
results. The simulation values of the co-polarized ratios or the HH-VV difference are
close to the measurements. The time variation and trend of the simulation results
also follow the similar trend as those of the experimental data. In addition, the
simulation results show the minima which coincide with the observed minima. The
observed minimum can be explained by the scattering model in terms of the difference
between the surface and slush salinities.

Thesis Supervisor: Professor Jin Au Kong
Title: Professor of Electrical Engineering

Thesis Supervisor: Dr. Kung-Hau Ding
Title: Research Scientist
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Chapter 1

Introduction

1.1 Background

The global climate change depends upon mény factors, among which lies sea ice. The
presence of ice on the ocean surface affects the air-ocean heat exchange[39]. Since sea
ice covers roughly 13% of the world ocean surface during some portion of the year and
interacts dynamically with the atmosphere and the ocean, changes in the thermal and
geological properties of sea ice will disturb the global climate directly[13, 22]. The
study of sea ice is a very active research field, as a result, many detailed measurements
of sea ice properties have been carried out over the years. Those measurements in-
clude on-site, airborne, and space-borne active and passive microwave remote-sensing
measurements[2]. The advantage of using microwave sensors is owing to their ability
to penetrate through clouds and do not depend on the solar illumination[10].
Various electromagnetic scattering models based on either continuous or discrete
random medium approaches have been developed for the study of sea ice remote
sensing[38, 37, 44, 5, 11, 25]. In the continuous random medium model, the scatter-
ing comes from a random fluctuation of the medium’s dielectric properties[37, 44, 25].

The fluctuation is usually described by its mean, variance, and spatial correlation



function[37, 44, 25]. While in the discrete random medium model, the discrete scat-
terers with distinct geometries are randomly imbedded in a homogeneous background
medium[38, 37, 44, 5, 11]. Particles with canonical shapes such as spheres, cylinders,
discs, spheroids, and ellipsoids are among the most commonly used models.

The sea ice medium is usually modeled as a multilayer random medium composed
of a stack of horizontal, inhomogeneous layers of different dielectric properties and
with flat or rough interfaces{5, 10]. The top half-space is air and the bottom half-space
i~ sea water. The other layers of sea ice consists of pure ice as their backgrounds and
spheroidal or ellipsoidal brine inclusions or air bubbles randomly embedded within
them. The shape, size, and density distributions of the inhomogeneities could be
specified to match the real physical conditions. Such a multilayer structure could be
used to model both young, first-year, and multi-year sea ice. The difference between
young and multi-year sea ice is that the former contains only brine pockets as the
scatterers, while the latter has both brine and air inclusions embedded in ice[5, 10].

There are two important scattering mechanisms for sea ice: volume scattering
from internal inhomogeneities, and surface scattering from rough boundaries between
different layers. In order to accurately analyze the polarimetric radar measurements
from sea ice, it is important to take into account the interaction between these two
types of scattering mechanisms. Both analytic wave theory (WT) and radiative trans-
fer theory (RT) have been applied to model microwave scattering from geophysical
terrain[37]. The analytic wave theory starts from Maxwell’s equations which can in-
clude the effects of multiple scattering and mutual coherent wave interactions. In
general, the formulations based on the wave approach are very complicated; solu-
tions are pursued by making approximations such as Born and/or distorted Born
approximations(37, 25]. On the other hand, the radiative transfer theory is based

on the energy transport equation and neglects the coherent nature of fields. How-



ever, the RT theo ry includes the multiple scattering effects and obeys the energy
conservation[38, 37, 5, 11]. The advantage of using RT theory is that it could be
applied to deal with scattering problems with much more complex geometry, such
as the vegetation canopy|[16], and rough or flat surface boundary conditions can be
imposed at the interfaces of the layered structure[37).

Recently, an inversion algorithm for retrieving sea ice thickness based on a dy-
namic electromagnetic scattering model of sea ice and time-series radar measurements
has been developed[40, 41, 32, 33]. This scattering model consists of a saline ice
growth model, describing the dynamic variation of ice characteristics, coupled with
an electromagnetic scattering model based on either analytic wave approach[40, 41]
or radiative transfer method[32, 33] using a continuous random medium model[40, 41]
or a discrete random medium model[32, 33]. The inversion algorithm uses a para-
metric estimation technique and has demonstrated an accurate reconstruction of the

evolution of ice growth using the CRRELEX 93 indoor experimental data[32, 33].

1.2 Thin Sea Ice with Frost Flowers

Detection of new ice formation and ice thickness is important in understanding the
dynamics of sea ice cover and the heat exchange betweenn the ocean and the atmo-
sphere. In particular, the winter net oceanic heat input to the atmosphere through
the thin ice cover can be 1 to 2 orders of magnitude greater than from parennial
icel23]. Also, the growth of new sea ice is responsible for the salinity balance in upper
layers of the ocean, as well as the change of albedo of the ocean surface[12]. There-
fore, the information about thin sea ice is essential, at least regionally, to the Earth’s
radiation budget balance.

Frost flowers occur frequently on thin sea ice cover during the Arctic and Antarctic

cold season(8, 31, 19]. Frost flowers are fragile saline ice crystals which grow on the
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surface of young sea ice and are accompanied by the presence of a saline slush layer
under the flowers[20, 21}.

Figure 1-1 shows the photograph of frost flowers grown in an indoor laboratory
experiment, where the flowers densely cover the ice surface[29]. The flower ice crystals
consists of thin ice platelets or needles with very high salinities[Martin & Perovich],
which can grow up to a height of 10-30 mm. The thickness of the saline patch
underneath the ice crystals is about 1-4 mm, which has also very high salinity[20, 29].
Their salinities are of the order of 100 practical salinity unit(psu).

In a field study on the surface of lead sea ice, Perovich and Richter-Menge[31]
observed that frost flower crystals have three different morphological types: clumps,
stellar dendrites, and needles, depending on air temperature, as well as the presence
of highly saline skim of brine onn the ice surface. They also gave the description of
the growth and decay of frost flowers. They suggested the physical mechanisms that
the upward expulsion of brine from the ice interior into the flower ice crystals and the
surface skims is associated with the cooling of bulk ice.

In laboratory studies of Martin et al.[20, 21], they described a laboratory tech-
niques for growing frost flowers and the physical processes accompanying the growth.
They found that flowers grow for the following reasons: within the ice, the thermo-
molecular pressure gradient transports brine to the surface[7], where it evaporates
into the cold unstable convective boundary layer. The combination of evaporation
and sublimation leaves a dense brine layer at the surface and forms a region of super-
saturated vapor immediately above the ice. The height of the region of supersaturated
vapor in part determines the height to which the ice crystals grow[20, 21]. The other
determining factor of the flower height and growth is the range of temperatures in
the convective boundary layer.

Because of the associated surface salinity change, the appearance of frost flowers
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on ice surface can have a significant impact on the microwave radar signatures of
young ice. In a passive remote sensing study of thin saline ice, Wensnahan et al.[43]
presented the temporal variations of microwave emissions from thin (0-9 cm) saline
ice over a variety of frequencies (6.7,10,19,37, and 90 GHz). They observed a signif-
icant decrease in the brightness temperature at higher frequencies associated with a
rapid increase in the ice surface temperature. They suggested that this is a result of
the upward transport of warm brine from the interior of the sea ice to the surface.
Similarly, active microwave measurements also show a distinctive variability during
the early stage of sea ice growth. Hallikainer: and Winebrenner[15] have associated
the observed sharp increase of backscatter to young sea ice at C and X bands with ei-
ther an increased ice surface roughness or the volume sca ttering from the frost flower
crystals. Onstott[30] observed a backscattering increase of 12-15 dB from young sea
ice which is also attributed to the frost flowers. Ulander et al.[39] compared backscat-
ter values calculated from the field observations of surface properties of several young
sea ice sites with ERS-1 synthetic aperture radar (SAR) observations for the same
sites. A backscatter increase of 5-10 dB is observed, with the largest increase oc-
curring for snow-infiltrated flowers. Field observations also suggested that the flower
formation makes the ice appear brighter to microwave backscatter. An increase of
approximately 6 dB associated with the young ice growth is observed from the ERS-1
SAR images of a lead in the Beaufort Seaf29]. Nghiem et al.[29] suggested that frost
flowers are the cause of the enhanced radar backscatter.

A laboratory study on C-band radar backscatter from frost flowers on saline ice
was conducted, during February 1995 (CRRELEX 1995)[29], to investigate the vari-
ability in the radar signatures acco_mpanied with the growth of frost flowers. The
experimental results suggested that the strong C-band radar backscatter increase of

the ordér of 5 dB, over the background radar return from thin bare ice, can be used



as an index to mark the nearly full coverage (90% areal coverage) of frost flowers.

1.3 Description of Thesis

The second chapter is dedicated to the controlled experiment which provides times-
series measurements of the physical conditions and the actual backscattering coeffi-
cients. The thesis, strictly based on the experiment, will proceed with the construction
of the electromagnetic scattering model for sea ice covered with frost flowers. So, the
attempt is made to model the whole scattering picture piece by piece starting with sea
ice in Chapter 3, where the model of sea ice is introduced based on the actual phys-
ical properties of sea ice which has shortly discussed in Chapter 1. Decisions about
the physical model is given suporting evidence. The third chapter also includes the
modeling of the slush lajfer where it is plausible that the ice crystals are neglected.
It also includes how to randomly create various realizations for the model average
calculation, which are crucial parameter specifications.

Accordingly, the scattered field is calculated in Chapter 4 by the volume integral
equation approach in combination with the infinite-layer approximation to estimate
the internal field of the slush layer. The solution is however simplified for com-
putational purposes by engaging the method of stationary phase; the computation
aspect of the Monte Carlo simulation is implied. The total scattered field is de-
rived from a single slush unit contribution, where the same slush unit is used for
the simulation of frost flower growth, since the volume integral calculation for the |
whole slush Iayer takes an extremely large amount of time. Then, the calculation
of backscattering coefficients with the simulation parameters derived from the frost
flower experiment, which is discussed in Chapter 2, appears in Chapter 5. Moreover,
the simulation results are also compared to the experimental observations in the same

chapter. Eventually, the thesis is summarized in the last chapter.



Chapter 2

Laboratory Investigations on
Radar Backscatter from Frost

Flowers on Saline Ice

Frost flowers form frequently on thin sea ice during the Arctic cold season, which
account for the enhanced radar backscatter from young sea ice[29]. During February
1995, Jet Propulsion Laboratory (JPL), University of Washington (UW), Cold Re-
gions Research and Engineering Laboratory (CRREL), and Massachusetts Institute
of Technology (MIT) conducted a series of laboratory experiments on saline ice in an
indoor cold room at CRREL to investigate the effect of frost flower growth on the
C-Band polarimetric radar response from the sea ice and to identify radar character-
istics of thin sea ice covered with frost flowers[28]. In this chapter, the evolution of
measured C-band polarimetric backscatter signatures and the physical characteristics
of the growth of frost flowers on saliﬁe ice are briefly described and discussed. The

detailed experimental setup, procedures, and findings have been reported by Nghiem

et al.[29)].



2.1 Description of The Experiment

The frost flower experiments were performed in an indoor cold room, which is a two-
story refrigerated facility called ”the Pit”, at CRREL. The air temperature in the
room could be controlled to within 2°C. A freezing pool in the lower level was used
to grow the ice. The pool was filled with a volume of sodium chloride solution of 31
practical salinity units (psu) to a 90cm depth. In fact, it has been shown that the
laboratory sodium chloride ice and the sea ice in Arctic have similar characteristics
in their growth rates, temperature profiles, salinity profiles, brine volumes, desalina-
tion effects, crystallographic structures, and intercellular spacings for the thickness of
young ice under consideration[1, 26).

The C-band (5 GHz) polarimetric radar system was set on the upper floor of the
cold room. The antenna aperture was in the far field about 3 m away from the sea
water pit on the lower floor. The antenna was put inside an anechoic enclosure to
treat the multipath problem. Anechoic absorbers were also used to cover the wall and
the floor. The controlling system of the polarimetric scal;terometer was outside the
cold room where all system operations were done including RF control, polarization
switching, antenna pointing, and data acquisition. The setup allowed the antenna
to be pointed at any incident and azimuthal directions. The video camera looked
normaily downward to the ice surface at the field of view (FOV) covering the surface
area of 0.5mx0.5m. Lamps were attached to the sides of two catwalks alongside the
water pit for the video lighting. Additional absorbers were used to shield the video
system and the catwalks together with the lamps were also covered with absorbers
such that unwant ed reflections and multipath effects had the least influence in radar
measurements. Another computer setup was also outside the cold room to take time-
series images of the frost-flower growth. A thermistor string was submerged into

water from the beginning of the ice growth to obtain the temperature profile data.



The room temperature was lowered to —28°C to initiate the ice growth. Once the
saline ice sheet started to form, the physical characteristics of ice and flower and radar
backscatter were measured at 6- to 12-hour intervals throughout the experiment.
Ice characterization measurements include the thickness of ice and slush layer and
the salinities of frost flower, slush layer, and the adjacent bare ice. Data for air
temperature, ice surface temperature, water temperature, and approximate thickness
of the humidity layer were also collected. Besides the video recording of frost flower
growth, closeup photographs of frost flowers were also taken.

This frost flower experiment lasted about 3 days, during which time the ice thick-
ness grew to a 15-cm thickness and the water salinity increased from approximately
31 to 35 psu. At the termination of the experiment, the flower areal coverage seemed

to reach what appeared to be its final coverage.

2.2 Experimental Measurements

2.2.1 Frost Flower Observation

The ice sheet was grown from open water without seediﬁg. The air temperature was
kept between —29°C and —28°C, which was a favorable condition for the growth of
frost flowers[20]. At an ice thickness of 1 cm, some frost flowers started to appear
on the surface of the ice. The flowers began as individual small crystals with no
slush underneath. As crystals grew laterally into clusters, the slush layer, which is
the basal area under the crystals, formed and increased in thickness beneath the
flowers. In contrast, the slush layer did not exist on the bare ice surface outside
the flower clusters. During the first day, the growth of frost flowers was slow and
the areal coverage was less than 20%. The flower growth rate increased during the

second day and more than 85% flower coverage was achieved. At the end, the frost
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flower formation covered 90% of the ice surface. The frost flowers were composed of
dendritic ice crystals and were about 10-20 mm high. The slush layer th ickness was
about 2-4 mm. It was also found that the air temperature at the top of the flowers
was approximately —21°C, and the temperature below the flowers within the slush
layer was approximately —11°C. Although the flower top temperature was lower, the
slush layer temperature is consistent with dendritic flower growth{29].

Later in the experiment, the dendrites were observed to transform slowly into
needles. The needles had a length of 10 mm and a diameter of less than 1 mm. The
change of frost flower crystal during its growth is due to the ice surface temperature
decreases as the ice thickness increases[14]. This decrease in ice surface temperature
with increasing thickness means that the initial conditions favor dendritic crystals
and that needles form later. Additionally, the inset measurements showed that the
needles had a temperature of —17°C at the top of the slush layer and a temperature
of —25°C at the top of the flowers. Compared with the higher temperature of the
dendritic flower crystals, it suggests that the transition from dendrites to needles is
associated with the cooling of the ice surface caused by the increase in ice thickness.
In addition, the ice surface temperature under the slush layer was observed to be
about 8°C-10°C warmer than the temperatures of the a djacent bare ice, the cause
of this is the insulating effect of frost flowers[21].

The time-series photographs of frost flowers on saline ice illustrating the stages
of frost flower growth[29] are shown in Figure 2-1. The percentage areal coverage
was obtained from the digitized images[29]. Figure 2-2 (a) shows the evolution of ice
thickness during the 3-day growth, and Figure 2-2 (b) shows the corresponding areal
coverage of frost flowers on the ice surface. The decrease of bulk ice salinity is plotted
in Figure 2-2 (c), which is due to the desalination effect. The circles in Figure 2-2

represent the measurement data[29]. From Figure 2-2, we can see that as the areal
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coverage of frost flowers increases from 0 to 90%, the ice thickness grows from 5 to
15¢m, and the bulk salinity drops from 15 to 11 psu.

The physical characterizations of saline ice also include the time-series measure-
ments of the salinities of ice surface, frost flower, and slush layer, which are shown in
Figures 2-3 (a), (b), and (c), respectively. Figure 2-3 (a) shows a high leap in the
surface salinity occurred around the 32nd hour. However, during this time period of

growth, generally, both flower salinity and slush salinity increase with time.

2.2.2 Radar Backscatter Measurements

Throughout the ice growth with increasing frost flower coverage, fully polarimetric C-
band backscatter data were taken at incident angles ranging from 0° to 45°. At each
incident angles, data were collected at all linear polarization combinations of trans-
mitted and received signals with 401 frequency points, 20 time coherent averaging,
and 4 different azimuthal angles for independent sampling[28].

Figures 2-4 (a) and (b) present the measured backscattering coefficients, ony
and oy, versus the elapsed time at two different observation angles 25° and 35°,
respectively. As shown in Figure 2-4, both vertical and horizontal backscattering
coefficients increase with time, hence the flower coverage and the ice thickness, until
a minimum occurs at about the 35th hour[29]. A cross examination with Figure 2-3
(a) shows that the time of the backscatter minimum coincides with the time at which
an abrupt change happened in the ice surface salinity. The backscattering return is
higher for the smaller observation angle because of a longer attenuation path through
the frost flower constituents at a larger observation angle.

In order to determine the contributions of slush patches to the radar polarimetric
signatures, three sets of backscatter data, at the final stage of frost flower growth

were taken from ice first, with all constituents of frost flowers included, then with
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Figure 2-1: Sequence of video images showing the growth of frost flowers at 4-hour
intervals starting at 0400 local time, which corresponds to an elapsed time of 16 hours.
The 10-cm ruler shown at the lower left position provides a scale for the images.[29)

13
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angle, of saline ice covered with frost flowers from CRRELEX 1995{29]. Circles are
backscatter data for o,, and asterisks are backscatter data for os.
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the flufly ice crystals removed, and finally with all the slush patches taken away.
Tables 2-1 and 2-2 compare the backscattering coefficients and the co-polarized ratio,
= c%h”:, respectively, at two incident angles of 25 and 35 degrees, for the ice with full
frost flowers (90% areal coverage), for the ice with slush patches exposed but without
ice crystals, and for the bare ice with all slush patches removed. The difference of
backscatter between the with full frost flowers and the ice with slush patches only
was less than 2 decibels.

From Table 2.1, it is found that the case of ice with slush patches exposed gives
the highest backscattering return, and the difference is around 1 dB compared to that
prior to the removal of ice crystals. The lower return for the case of full frost flowers
is due to the attenuation caused by the lossy fluffy ice crystals. Bare ice without frost
flowers, however, results in the lowest backscattering coefficients. This suggests that
the flower ice crystals contribute little to the C-band microwave backscatter because
of their small sizes. The higher radar return with the full frost flower cover compared

to that of bare ice accounts primarily for the enhanced radar backscatter observed in

SAR images.
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Ice Covering 25° 35°
Oy Ohh Ty Ohh
Full Frose Flowers -22.4 -22.7 -22.7 -26.0
Slush Patches -20.8 -21.8 -22.0 -24.8
None(Bare Ice) -25.2 -25.8 -26.9 -28.4

Table 2.1: Comparisons of backscatter o,, and g, at two angles of 25° and 35°, for
the full frost flower formation(about 90% in areal coverage), for slush patches exposed
by removing flower ice crystals in the frost flower formation, and for the bare ice with
all slush patches removed.
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Ice Covering 25° 35°
va/o'hh avv/ghh

Full Frost Flowers 0.25 3.4

Slush Patches 1.0 2.8

None(Bare Ice) 0.5 1.6

Table 2.2: Comparison of co-polarized ratio between the horizontal and vertical re-
turns at two angles of 25° and 35°. These are for the full frost flower formation (about
90% in areal coverage), for slush patches exposed by removing flower ice crystals, and
for the bare ice with all slush patches removed.
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Chapter 3

Physical Model of Saline Ice

Covered with Frost Flowers

According to the experimental observations described in Chapter 2, the contribu-
tion flower crystals to the C-band radar backscatter is much smaller compared to
the contribution from the slush layer. Therefore, the following development of the
electromagnetic scattering model for 7saline ice covered with frost flowers, the focus
will be on the modeling of scattering from slush patches. However, the gfowth of
flowers is a dynamic process, a viable model must accompany a reliable and plausible
frost flower growth process which can artificially generate desired areal coverages with

random appearance of slush patches. For this purpose, a growth process based on;
random walk is used to generate realizations of slush patches on top of ice surfacé. To
avoid any preferred configuration, an ensemble of realizations for each slush coverage
will be created to perform the configuration average. This Monte Carlo simulation
approach will be used in Chapter 5 to compute backscattering coefficients. In the
following, the models of sea ice and slush patches are described in connection with

the invented growth process thereafter.
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3.1 Multilayer Model of Sea Ice

In this study, the scattering from brine pockets within the saline ice is neglected. The
sea ice is modeled as a stack of homogeneous horizontal layers with a finite thickness.
The effective permittivity of each ice layer is determined from empirical formulas
which will be described briefly in the following. The well-known C-shiaped salinity
profile of sea ice[42, 24, 9] is taken into account in the computation of effective sea ice
permittivity. A quadric polynomial will be used to simulate the salinity profile based
on the measured surface and average salinities.

A linear temperature profile is also assumed within the sea ice layer[42]. Figure
3.1 shows the schematic diagram of a slush patch on top of the sea ice surface with the
distribution of temperature and salinity within the ice. The uppermost medium is air
with permittivity ¢p and the lower half space is saline water with complex permittivity
€

The sea ice layer and sea water beneath the frost flowers all affect the overall
electromagnetic interactions with sea ice. Both brine inclusions within the ice layers
and the roﬁgh interfaces contribute to the backscatter. Another contribution is from
the coupled volume and surface interactions where the reflection property of the
boundary between air and ice plays an important role in determining the internal
fields of slush patches. However, in the development of the scattering mddel, the
complexities of scattering by rough interfaces and brines are neglected. The validity

of this model will be demonstrated by comparison with the experimental data.

3.1.1 Modeling of the Salinity Profile

The salinity profile within the ice is assumed to be only dependent upon the depth
from the surface. This assumption is equivalent to assume that the positions of brine

pockets are uniformly distributed in the horizontal directions of the sea ice layer.
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Salinity profiles in thinner ice tend to be C-shaped[42]. Moreqver, the mere informa-
tion about the surface and bulk salinities, which were measured in the experiment,
does not allow much flexibility of viable profiles. The functional form of the model
salinity profile contains at most two unknowns which can be determined from the
measured salinities. Furthermore, since the profile is expected not to be too fast-
varying, we choose low-order polynomial to model the salinity profile. Let s(£) be the
salinity as a function of the depth &, the salinity profile is assumed of the following

form:

s(€) = as(§ — &o)* + ao (3.1)

where & is the depth at which the salinity profile has its minimum, and ao(psu) and
a4(psu/m?) are the expansion coefficients. It is noted that there are three unknowns,
&0, Gg, and ay, in the model profile of (3.1) , which have to be determined from the
measured surface and average salinities. It leaves £ to be an adjustable parameter
to give the best matched results while most other parameters are settled.

Let

5(0) = Ssurface (32)
< 3 2= Spulk (3.3)

, where Surface and Sy are the measured surface and bulk salinities respectively.

The average < s >¢ can be expressed as
d

where d is the thickness of the sea ice. Substituting (3.1) into (3.4) , we get
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< 8 >¢= ap + 7(d* — 5% + 104°%; — 1043 + 5¢3) (3.5)

From (3.2) , (3.3) ,and (3.5) , ap and a4 can be solved in terms of &.

L d* — 5d3& + 10d%€3 — 10dE} + 5§
0 = Ssurface di — 5d3& + 10d2§3 — 10d£3

— Sbulk ( 5 ) (3.6)

d* — 5d3€, + 104262 — 10dE3

_ s(sbulk "" ssurface)
“= (d“ — 5%, + 104%€% — 10d§3) (3.7)

This salinity profile will be applied in determining the effective permittivities of

sea ice layers.

3.1.2 Modeling of the Dielectric Property of Sea Ice

The young sea ice is a mixture of pure ice and brine inclusions, and its effective
complex dielectric constant is a weighted average of the complex dielectric constants.
of the constituent components[37]. Throughout the range of microwave frequencies,
the complex dielectric constant of pure ice is almost invariant[38]. The real part of

the dielectric constant is around 3.2 and imaginary part is quite small.
Effective Dielectric Constant of Saline Water
To compute the complex dielectric constant of saline water, an equation of the Debye-

form has been developed[35]

63 - €m g

: 3.8
E°°+1—-2'271'f7'+i271‘(:'of (38)

€& =
where ¢, is the relative complex dielectric constant of saline water, ¢, and ¢, are
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the static and high frequency relative dielectric constants of the saline water, 7 is
the relaxation time, f is the frequency, o is the ionic conductivity of the dissolved
salts, and ¢ is the permittivity of free space. The ionic conductivity is assumed to
be independent of the frequency[35, 17]. In [35], a series of simple polynomial fits to
real measured permittivity for saline water have been given for the four parameters
€s, €0, T, and o, each of which is a function of the temperature only. According to

[35], the constants are

—$e0-5193+0.08755t 4 5 _ 99 9oy
. (3.9)
—1el0334+0.1100  + ~ _99 goCY

939.66 — 19.068¢

$ = ( 10.737 — ¢ ) (3.10)
82.79 + 8.19¢2

o= ( 15.68 + t2 ) (3.11)

T= (1.099010—10 +1.3603 x 10712¢ + 2.0894 x 107132 + 2.8167 x 10"1%3) (3.12)
- 2n .

As the ice changes temperature, internal melting or freezing within the brine in-
clusions affect the brine volume of the ice. Cox and Weeks[6] developed an expression
which gives the fractional volume of brines, f;, in sea ice as a function of its temper-

ature and salinity.

piSi
fo= (Fl O pisz-Fz(t)) (3.13)

where S; is the salinity of the ice (ppt), ¢ is the temperature in °C, and for —2°C >

t> —22.9°C,
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Fy(t) = —4.732 - 22.45¢t — 0.6397¢% — 0.01074¢3 (3.14)
Fy(t) = 0.08903 — 0.01763t — 5.33 x 10~%2 — 8.801 x 10~%¢* (3.15)

pi = 0.917 — 0.0001403¢ (3.16)

In the expression (3.13) , the fractional volume of air in ice has been neglected.

Effective Dielectric Constant of Sea Ice

Assuming the brine pockets to be randomly oriented ellipsoids, the effective per-
mittivity of sea ice, ¢.sy, can then be calculated using Polder-van Santen mixing
formula[34]

3

f Ecfs
€eff =€+ (€5 — €) (3.17)
I 3 g €ess + Ni(€s — €egy)

here ¢ is the complex permittivity of ice, €, is the permittivity of brine inclusions, f is

the fractional volume of brines, and V; is the depolarization factor of brine particles

;040

N; = ~ ds 3 : . 3.18
/0 2(s+ a?)2(s + a?)z (s + a})? (3-18)

with @1, a2, and a; being the semi-axes of an ellipsoidal particle. Equation (3.17)

is solved self-consistently to obtain €.z;.

3.1.3 Reflection Coefficients of Stratified Sea Ice Medium

The reflection coefficient for the infinite medium with an arbitrary continuously-

varying permittivity profile is difficult to evaluate. However, the formula for calcu-
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lating reflection coefficients from a stratified medium is well documented. Hence,
in the sea-ice model, we approximate the continuous profile by a piecewise constant
profile consisting of layers of constant permittivity. Therefore, sea ice can be viewed
as comprising homogeneous layers of certain fixed permittivities.

Since, with the salinity and temperature profiles, the permittivity can be calcu-
lated at any depth, we know the permittivity profile in any layer in the multilayer
model. The permittivity still continuously varics within each layer. Therefore, to
use the homogeneous layers for simulation calculations, the permittivity assigned to
a layer is the average of the permittivities at the two end surfaces of the layer.

Figure 3-2 illustrates the dielectric model of sea ice. As indicated, the salinity
and temperature profiles are discretized. This amounts to a stack of homogeneous
layers with constant permittivities.

Consider a plane wave incident on a stratified isotropic medium with boundaries
at z=—dy, —d,, -+ -, —dp, in Figure 3-3. The layer between the mth and the (m+1)th
regions is the plane z = —d,,. The (n+1)th region is semi-infinite and is labeled as
region t. The permittivity and permeability in each region are denoted by ¢ and
;. The plane wave is assumed to be incident from the region 0. Note that, without
loss of generality, all field vectors are assumed independent of y. That is, the partial
derivative with respect to Y, 5%, always vanishes for each vector entity.

The ratio, R; = %f, between the amplitude of the upward-going wave amplitude

and that of the downward-going wave is[18]

e2ik1sdr (1 - EZI_—) eika+nzhi)d -

+ 1(2+1)
T _2ikgy1)adi
Rt(H-l)e e +R(l+l)

R (3.19)

Ry
__ =pregny k), . . ..
where Rjg41) = joooh P and pg1) = _L.._L_“(‘H) o for TE waves. Duality gives similar

results for TM waves.

Ry is the TE reflection coefficient for plane waves traveling downwards from region
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Figure 3-2: The dielectric model of sea ice where the salinity profile relates to the
permittivity through a formula.
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Figure 3-3: A layered medium where the z-axis is normal to all interfaces.
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0. Therefore, R, is written in the form

2ik=do (1 — __12_) e2ilk1:+k:)do
RO = + RDI
| 2i(k2:+k1:)d)
R{)l Leﬁkudo + e2ikzd) + (1 E’f;) €
Roy Ri2 L g2k2:d1 e2t%2: 92 +
Rz Ras . .
) L621ktzdn + Rt
(3.20)
For TM waves, the similar expression as in  (3.20) still holds except that
_ P _ kg
Ry = Ee— and py41) = PR

3.2 Modeling of Frost Flowers

The areal coverage pattern of frost flowers on young sea ice surface does not have a
simple geometric feature. Nevertheless, a naturally occurring accumulation process
is always expected to be random. Although the picture of the actual configuration
can be entered into the scattering model, there is no guarantee that merely our
macroscopic calculation will be able to account completely for the randomness in the
microscopic level. Therefore, the Monte Carlo simulation approach, which is reliable
and widely applied in similar situations, is pursued.

The growth process is done only at the macroscopic level. It only specifies the
center position of every tiny slush patch. To complete the model for frost flowers,
we should also specify the shape of every individual slush unit. Here we choose a
rectangular shape as the basic unit, which is indicated in Figure 3-4. The rectangular
patch in Figure 3-4 has a few advantages over other geometries in accordance with
the computational viewpoint.

It is obvious that, among the various two-dimensional geometric figures, polygons

are the easiest to be combined together with one side against another to form a larger
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Figure 3-4: The electromagnetic scattering model of frost flowers excluding the flower
crystals
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fully-connected two-dimensional figure. Among all the polygons, rectangles are most
convenient for building blocks. The set of rectangles can be arranged together simply
by always keeping every side parallel to another of their sides. Furthermore, we
can always construct an arbitrarily irregular area from rectangular building blocks
provided that the dimension of each building block is small enough. Thus, rectangular
patches are appropriate for later simulation of slush aggregation on sea ice surface.
Additionally, we benefit certain flexibility from rectangular building blocks. A slush
coverage with a variation of thickness across the ice surface can be simulated with
the sufficiently small horizontal dimensions, @ and b. In other words, d can depend
upon the position where a slush unit is placed. In our case, we use square p atches
(a = b) so that the generation of slush configurations is even more simplified and the
thickness dimension, d, is constant. The latter option is consistent with the reality.
As will be evident later, the vertical dimension of a slush unit is much smaller than its
horizontal dimension (d < a) in the specification of simulation parameters. Therefore,
the thickness parameter, d, being generalized into a variable with the average d < a

is not expected to make notable differences in terms of backscattering calculations.

3.3 Simulation of Frost Flower Growth

A random walk model is applied in this study to simulate the aggregation process
of frost flower formation owing to the fact that the covering pattern of frost flowers
is nondeterministic in nature. Since the contribution of frost flower crystals to the
C-band radar backscatter is small, only the base area of frost ﬂowérs, the slush layer,
is considered in this simulation. To imitate the randomness, a total slush layer is
thought of as a collection of many small rectangular slush patches. Moreover, the
slush layer is assumed to be uniform in thickness at each growth stage because the

vertical dimension of frost flower is much smaller than the horizontal dimensions.

32



In the attempt to simulate the CRREL experimental scenarios, we start from the
slush unit which is the buiiding block of any simulated slush coverage. From the
time-series data of the areal coverage, the dimensions of the corresponding slush unit
are designed so that each areal coverage can be accomplished by a number of its slush
units. The whole area of sea ice is also divided into blocks depicting the possible
placement of the small patches on the area. Consequently, the horizontal dimension
of a slush unit must be small enough to discretize the whole area and each areal
coverage simultaneously. Thus, the smaller the horizontal dimension of a slush unit
is, the more variation of the covering patterns of an areal coverage is. Moreover, it is
not crucial that the horizontal dimension of a slush unit is chosen differently for each
stage of the frost flower growth since a choice of slush unit dimensions corresponds
to a legitimate class of realizations or coverages. However, the vertical dimension is
determined according to the measured thicknesses of the slush layer at different stages.
Hence, we assume the thickness of the slush layer is uniform and only time-dependent.

With a few initial seed patches, slush patches are grown consecutively around the
seeds until the overall areal coverage is reached. The growing process is simulated by
a random-walk process. First, a slush patch is initialized randomly from a position.
Then, it travels through the two-dimensional space with four possible direction for
each step. In every step, the direction is determined randomly. This process is
repeated until the walking slush is attached to an “old” slush. In this manner, the
growth process of slush patches is simulai:éd. This scheme is illustrated in Figure 3-5.

In this case, a random walk can be initiated from the exterior; nevertheless, the
walk is limited inside the area of interest after the walk reaches it to speed up the
attachment of a new slush unit. For a fixed coverage, many of such realizations are
created to represent a sufficient ensemble of the specific physical picture, which is

resolved by the convergent ensemble average of the quantity of interest. In other
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words, specifically, the number of realizations has to be large enough to produce the

convergent results for backscattering coefficients.

34



Dl»
<Y

L».

e
<
i,

-
—

Figure 3-5: The illustrations of the frost flower growth process governed by a series of
two-dimensional random walks through the rectangular lattice which spans the area
of interest exactly.
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Chapter 4

Electromagnetic Model of Sea Ice

Covered with Frost Flowers

With the models for the saline ice layer and slush patches described in Chapter 3, an
appropriate and computationally feasible scheme for computation of backscattering
in presented in this chapter. As discussed in Chapter 2, the backscatter contributions
from flower crystals above slush patches and the scattering from brine inclusions and
rough interfaces are neglected. Therefore, in developing the scattering model for the
frost flowers, we only consider the effect of slush patches. In this scattering model,
we first calculate the electromagnetic scattering from a single slush unit first, and
then obtain the scattering from the overall slush patch pattern by incorporating the

structure factor.

4.1 Coherent Scat . .ring Formulation Based on

Volume Integral Equation

In case of the nonuniform slush thickness, the random surface scattering approach can

be considered. However, because of the layered medium below the rough surface, the
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problem does not satisfy the requirement of the random surface scattering. Since the
primary expectation is to obtain an accurate solution to the scattered field in some
analytic forms, the extended boundary condition method[37, 3] and the volume inte-
gral method[37, 3] are among the viable general approaches. The extended boundary
condition method is simple in the scattering problem for virtually any geometry in
free space since the free-space dyadic Green’s function takes a simple form in some
vector field bases. In the situation of an inhomogeneous r;mdium, the surface-integral
equation in the extended boundary condition method does not have an simple ana-
lytic solution. Similarly, the volume integral equation poses the same difficulty but
the single integral equation determines the electric field anywhere completel y. Al-
though there are numerical methods that can lead to a solution in either case, the
attempt to find an analytic expression for the scattered field is pursued through the
volume integral method as also suggested in [39].

Volume integral equation approach[27] is very useful when studying the scattering
problems with inhomogeneous volume scatterers. In the volume integral formulation,
the scattered field is related to the internal field of the scattering volume as expected.
The formula accounts for the inhomogeneity, €.(7), of the scattering volume by in-
cluding &(7), the wavenumber within the inhomogeneity.

Consider a particle with the permittivity €,(7) occupies region V},

&(F) TeVW
€(F) = #(7) ? (4.1)
€0 otherwise
From Maxwell’s curl equations[18]
V x E = iwpeH (4.2)
V x H(F) = —iwe(F)E(F) (4.3)
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E satisfies the electric field Helmholtz wave equation

V x V xE(F) — ke (F)E(F) =0 (4.4)
where k3 = w2y and €,(F) = 525-(:—)
Equation (4.4) can become an inhomogeneous Helmholtz wave equation
V xVxE~kE =ki(e.(F) - 1)E
= iwo[—iweo (€ (F) — 1) E] (4.5)

The right-hand side of (4.5) can be regarded as the equivalent induced current

which radiates to give the total electric field solution.

F(T) = /d?ﬁ(?, 7)- 2."‘-)Au["7:“”5("51'(?I) - 1)E] + F-irzc(F) (4-6)

or

F = Eme(7) + f &F(R2(F) — E)EF) - G(F,7) (4.7)

where Ejn. is the incident field which is also the solution to the homogeneous wave
equation (4.6) , and G(7,7) is the dyadic Green’s function. The dyadic Green’s

function ﬁ(?, 7) can be expressed in terms of scalar Green’s function g(7, 7).

G(r,7) = [? + Z—f} g(7,7) (4.8)
0
where
_ eikolFuT"l 19
g(r,r)_47FIF—T’| ( . )
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The derivation of (4.8) is given in Appendix A. To solve equations (4.6) and
(4.7) , an exact solution for the internal field E(7') within the integral. This requires
to solve Maxwell’s equations rigorously based on the given boundary conditions, or
other numerical methods such as the Method of Moments[18] in which the unknown
internal field is expanded in terms of some basis functions. However, in this study, an
approximate solution is sought for the internal field. The approximation is described

in the next section.

4.2 Infinite Layer Approximation

Now that the volume integral formulation is used, to obtain the scattered field, the
field internal to a slush patch is calculated using the infinite-layer approximation.
Since the vertical dimension of a slush layer is much smaller compared to the hori-
zontal expansion over sea ice in the experiment at all observations, the internal field
within the slush layer is thus approximated as the field of an infinite dielectric layer
model. Physically, the infinite-layer approximation assumes that the slush patch re-
sponds to an incident wave as though it is of infinite extent. However, when the slush
patch radiates the scattered field, it radiates as a patch of a finite dimension. The
reflection coefficients at the interface between sea ice and slush or the interface be-
tween sea ice and sea water, can be simply calculated from the effective permittivity
of sea ice using the layer model in Chapter 3.

Owing to the fact that the vertical extent of a slush layer is much smaller than the
horizontal extent, the object is assumed to span the whole interface between region
0 and region 1. This leads to the problem of layered media which is analytically
solvable. However, the resulting internal field is the approximated internal field of a
slush unit with finite volume.

For convenience, define the following for the use through the whole context of this
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Figure 4-1: The scattering picture of a slush layer in a half space where the lower
space is the medium which replaces sea ice
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Figure 3

Figure 4-2: The infinite extension of the slush layer in the calculation of the internal
field in the slush layer using the infinite-layer approximation
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paper. Also, k; is the incident propagation vector. So, for all ¢,

kioz = \/ K2 — K3, (4.10)
kio = kiy + 2kin; (4.11)

Given the permittivities and the incident wave, we can solve the two-layer prob-
lem as follows[37]. Note, however, that e; = ¢, and 2 and p indices can be used
interchangeably and kg = ;. First, we define a orthonormal triplet (k*, b, 5%) for

any nonzero propagation vector ka, where ka = ko, + 3kos-

. kX x 3

+ «
hi = |’::ff ~ 2| (4.12)
o = bt x b (4.13)

Suppose, the fields of the incident wave are

Eine = (Epihi + Euiti)e™ (4.14)

_— 1 ~ - _ .
Hinc = ;(Evihi — Ehii‘)i)ezku.u_+zkizz (415)

]
Given the H;, component in the TE case for region 1, 1=0,1,2, the perpendicular

components can be written as

~<TE 1 J
H = = F{V n [5H£E] (4.16)
EF = ’:2” V.xHBE (4.17)
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Similarly, Given the E;, component in the TM case for region 1, 1=0,1,2, the

perpendicular components can be written as

YR | 0
HM = ~—%V¢ x ETM (4.19)
1

Starting with the TE component of the incident wave, consider the horizontally
polarized incidence. Let #; and ¢; be the angles of the incident propagation vector

k;. Also, let the origin be at the center of the object. In region 0, i.e. for z > %

H, = ;—OEM sin 6;(e™*i* 4 RTEgthie)eiiL 7L (4.20)
0

In region 2, i.e. for —% < z < £, we have
gl 2 2

H, = ;_o Epsin 0;(Apetti* 4 Bpe-ik.-zzz)eiiuh (4.21)
0

In region 1, i.e. for z < —%, we have

H, = %Eh,- sin §;TT Beikis ki 71 (4.22)

Matching the boundary conditions for the continuity of the tangential magnetic

induction and the perpendicular magnetic field, we solve for A, and B, below, where

RTE —_— kiaz-kigz
af kiaz""kiﬁz‘

RIF — RTFe-tikiad

RTE e-—ikgzd —
TE pTE
1 - 2 R12

(4.23)
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i 1 kiz ik, 3 12\ —iki 8
et = 1 {(1 + Byt pragy b, "=-=‘=‘} (424)
, 1 e o d C ik d
Bpe—zkzz% — ,é_ {(1 —_ %—)e'k”g + RTE(]. + l];_ ,€ tk"‘g} (425)
2z 2z

Apply the similar procedure for the TM case. In region 0,

E, = —E,;sin 6;(e®=* + RTM¢~ikizz)gikiL Ty (4.26)

In region 2, i.e. for —-g <z< g, we have

Ez = —Em' sin 9,' (Cpeiki2’z + Dpe-ikizzz)eizu"a‘ (427)

In region 1, i.e. for z < —%, we have

E, = —E,;sin 6;TTM iz 2+ikiL 71 (4.28)

Matching the boundary conditions for the continuity of the tangential electric field

. . ki s —€n ks
and the electric flux density, we solve for Cp, and D, below, where RI}f = Jfez faife

€gkiaz teakig:
RTM p—ikizd _ Ry’ — Rip'e ket (4.29)
1= R
T | i €py k; ife. d €y k; i, d

C et = .,,{ = 4 Z)etkizs 4 RTM(= . 2 e""“f} 4.30
P 2 e k2z) (52 kzz) ( )

o ¢ 1 e Kkiz. ;2 e k; aod |
D.e—h2=% = Z ] (20 _ 2z kg | pTM S0 | Mzy ik g 4.31
v 2 { €2 ko, JerE + (62 kzz)e (4.31)

Finally, we can represent the incident field as the sum of TE and TM components:
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Eine = [A(E)RE:) + 9(F:)0(F:))e™ - B (4.32)

Then, from (4.21) , (4.27) ,and (4.32) , we can obtain the internal field in

region 2:
— P S — kl A A T
o |(AAEDHE) + ECHEIE) ) 557 +
2
(BAGDHE) + £ DEDAE)) 7] - B (433
2

where Ay, By, Cp, and D, are defined in  (4.24) , (4.25) , (4.30) ,and (4.31) .

4.3 Spectral Expansion of the Half-Space dyadic

Green’s function

A half-space Green’s function is used for the volume integral formulation to include
the interaction with the interface between the air and the sea ice. The reflection
coefficient at the interface between air and sea ice is calculated by using the layer
model for sea ice as previously mentioned and the recursive formula for the reflection
coefficient at each layer. Therefore, we have two equations for the half-space dyadic

Green’s function.

V x V x G(F,7) - k2G(F,7) = I6(F — ") (4.34)

when 7 is in region 0.

V x V x G(F,7) — K2G(F,F) = I6(F — ) (4.35)
where 7 is in region 1.
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Although each value of wavenumbers is associated with a free-space dyadic Green’s
function!, ﬁ,—(?, ) [— + —;VV] el T ihe boundary conditions for (4.35) and

Anfr—7| ?

(4.34) below are not satisfied using those dyads.

3-G(ro, ) = - G(F1, 7) (4.36)
£ x G(ro, ™) = 2 x G(r1, ) (4.37)

where 7y and 7, indicate that the dyadic is defined in region 0 and 1 respectively.
Then, we might need to solve the equations (4.35) and (4.34) directly in the
frequency domain. Since we have already solved the free-space case, some insights
into the solution of the half-space case are expected to be obtained from the free-
space solution. Owing to the fact that the 7-space solution is irrelevant as previously
mentioned, we eventually focus on the the k-space solution or the spectral expansion

of the free-space dyadic Green’s function.

relta )——zz&(r—r)——// &, dcyko
{[geR Thge®7) + [ 7 oge R 7]} (4:38)

for +(z — z') > 0.

With the spectral expansion, we view the operation of the dyadic Green’s function
on a frequency component of a vector field by simply looking at the spectrum of the
dyadic Green'’s function itself. Thus, we consider the integrand in (4.38) for more
details. From the understanding of the details which are packed into the expression
for the free-space dyadic Green’s function, we hope for a systematic deduction towards

the case of a layered medium.

1Gee appendix A
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For z > 2z, the observation point is forward in the z-direction; therefore, the free-
space dyadic Green’s function propagates waves which has the positive &, from 7, the
"source” point, to 7, the ”observation” point. Therefore, the dyadic Green’s function
has two terms for é- and h-polarizations or TE and TM polarizations respectively.
The case of z < 2’ can be thought of in the similar fashion. The only index 0 shows
that the propagation takes place in the only medium indexed 0.

For a layered medium, we employ ﬁaﬂ (7,7) as the dyadic Green’s function for 7
in region o and 7 in region (3. For the half-space case as Figure 4-3, the indices take
values of 0 and 1.

In our case, we are only interested in ﬁoo (7,7) since the field point and transmit-
ter are located in region 0. We can then make a similar argument about terms in
the spectral expansion to that argument we have made about the free-space dyadic
Green’s function. Nevertheless, a rigorous derivation of the half-space dyadic Green’s
function is given in Appendix B.

For z > Z/, the half-space dyadic Green’s function ﬁoo(ﬁ?"’) contains a direct
propagation and a reflected propagation. The former is represented by the same
expressions as in the free-space dyadic Green’s function. The latter corresponds to a
downward free-space propagation from the point 7 to the interface, the reflection at
the interface, and a upward free-space propagation from the surface to the point 7.

For z < 2, we only expect the change in the direct propagation terms since the
reflected propagation, as an interaction with the interface, only depends on z and
2', not their relation. The direct propagation integrand merely follows the free-space
case. Hence, the half-space Green'’s function ﬁog(?", 7) for £(z — 2') > 0 and 7, FeVp

is expressed as
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Figure 4-3: The picture of a half-space medium with the incidence in region
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ﬁgo(?,?—") = —226 1" —F ) + — 871'2 / / dk dk { hieiﬁi}{ﬁaﬁe-—iﬁi’}

+{ge® THage R0 T} + RTE(ky, by, koo) (i ™ "Hhge %0 )
FRTM (kg by, kop) (87 €0 T} o e -F'}} (4.39)

for £(z — 2'} > 0, where the reflection coefficients R*® and RT™ are calculated by
considering the effective reflection at the top surface of the ice. With the layer model,

the reflection coefficients are given in Chapter 3 as fy.

4.4 Scattered Electric Field

We substitute the spectral expansion of the half-space dyadic Green’s function into

the expression for the scattered field from the model. Then, we obtain

o k? dk dky iFy Fy[j+ —ikg 7
Es= S?/dr-"( 1)/ f {{hi o THhge e T}
sk ke Ty ok —iky 7 TE 4 kT F [ —iky F
+{oye™ " Hipe }+ R kg, by, ko) {hge™ "Hhge }
BT g, by o) (85 €5 T {5 € R0 7} - B () (4.40)

where the internal field, E;,;(7), is estimated by the infinite layer approximation as

Eiu(T) ~ [(AR(E])h(kq) + Z—‘I’Cﬁ@;)@(ﬁg))eﬁff’

o

+(BAENR(E) + °D (& )o(Ey )™ ™ (4.41)

where A, B, C and D are obtained from A,, B,, C, and D, as defined in (4.24) ,
(4.25) , (4.30) and (4.31) by replacing e; with €; and €, with €.
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By observétion, the five-fold integral of the total field in the spectral form in
(4.41) does not have a simple form. However, the volume integral corresponding
to the rectangular shape of each slush unit of the slush layer can be simplied into
a double integral of the spectrum by performing the volume integral analytically.

We can rewrite F; as the sum of volume integrals with domains V;, Vs, ..., which

correspond to slush units 1, 2, ... :

dk dk,

{{h:!: zko }{h:i: —zko r}+

Bo= b2 =13 [
{53 e:ko T {oe —ikE }+ RTE(kmky’koz){izg-eiﬁa‘f}{ﬁaewiigf'}+
BT™ (k. by, ko) {7 € T Hige %o -'*}} : [(Ah(%{l)fz(z,-) + :—:ca(E;)ﬁ(E,.)) et
+ (BB(E:;)iz(E,-) + %Dﬁ(ﬁg)ﬁ(a)) eﬂf*] - Ei (4.42)

By performing the integral over 7 directly, we can obtain the analytic represen-
tation of E; in terms of a double integral over k-space. Note that 7, is the center

position of the m-th slush unit.

— dk.dk, Y ik o+ =sin((kz — kiz)a) sin((ky, — kiy)b)
Es 871'2 60 Z/ -/ ko (k tz)a (k _kiy)b {

et et e(ky)e (k) Aci®a—F)Tm pG-) 4 et (R;, )6 (R:) Bei®a k) Fm pH)
o307 &(F)e(F:) AeFaFo)Tm pU) 4 itk o (R7y)o (i) BefFa ko) Fm pG)
+REE (ks by, ko2)23 65 .23y )(F) A Fa—R)Fm =)
RyT (kz, ky, koz)eg &g .0k, )0 (k ;) Beika g )Fm (=)
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+R5;M(kz, ky, ka)@gf?Eé(E,—l)é(E,)Ae’(E—l _PO—)‘?” F(_-)

+BIM (k,, by, kos)ig oy (k)i (i) Be'Fa 80 1 ¥m =)

ki _ T _
+égég.é(k‘§)é(k.-)k—ce=@$ R )m ) 4 egeg.v(kﬂ)v(k,-)k—’De'(E?i-m-fm F)
1 1

%Ce‘@ﬁ F)m Pl 4 ﬁ;ﬁg.a(‘ﬁ;ﬁ)ﬁ(ﬁi)g‘ipeﬂ ~F5)Fm ()
1 1
. — ks . .
+RIE (kg by, kos)éd ég 6k 1) é(Fs) Elce'(*i’? ~kg)Fm po(—+)
1

& e e 1 T ki i-"-'—_-’- T —
+RIZ (g, ky, koz)ég &5 .U(Eg)v(ki)ape (R ) Fom =)

+REM (kg by, Kon)o5 85 2R3 )é(Fs) %_ Cei 5 —F3)Fm Frl—+)
1

T TR _ -
+RIM (ky, ky, ko.) o5 05 0(R1)0(R:) }-C-I-De*@?? *mfmF(-ﬂ} iy (4.43)
where
(1) _ sin((:l:k(,z + kﬂz)d)
F (Fo, & Fn)d (4.44)

This evaluation certainly reduce a great deal of computational complexity in gen-
eral. Nevertheless, the final result still requires double integrals over k-space for all
the slush units, so the computation is still very intensive. Fortunately, the scattered
field we need to calculate is in the far-field region. :\s we can see in the following
section, in the far-field region, the scattered field from over all slush patches Vj, V3,

.. can be approximated as the scattered field from a single patch times a structure
factor related to the center position of Vi, V4, ... . This approximation could reduce
a lot of computational complexity.

To calculate the scattered field from one slush patch, we still need to carry out the

numerical integration over the k-space. Again, on the basis of the far-field assumption,

we can use stationary-phase method to get an approximated analytic result.
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4.4.1 Method of Stationary Phase

The method as explained in [4] addresses the key features of the stationary phase
integral. First of all, the exponent of the exponetial function in the integrand is
nonlinear in the integration variables and oscillates rapidly, in contrast, the other
factors in the integrand vary slowly. We intend to verify later that the surface integral
concerning the bistatic scattering coeflicients is a stationary phase integral. Hence,
this method can be applied efficiently to the expression of our interest.

We intend to express a general stationary phase integral in the form that fits our

specific purpose. Therefore, let’s express a stationary phase integral in the form

I(7) = / / dk ey U (kg Ky )e?he ) (4.45)

where ¢(ks, ky) =k -7 = koo’ + kyy' + ko ko, ky)2'.

Clearly, note that, given a function ¢, there is a unique function, &, which only
differs by the bilinear function, f(kz,k,) = kzz' + kyy'. According to the notion of
stationary phase integrals, ¥ is slowly varying and ¢ is nonlinear. Hence, &, is also
nonlinear. It is quite clear, therefore, that the integral associated to the scattered
field has fallen into this category so far since k, = m for a wavenumber
k.

We pay attention to the point on the surface of integration where the phase
function is almost stationary in all directions in some of its neighborhoods. If such
point exists, the phases of waves emanating from the neighborhood of the so-called
stationary point of the phase function are nearly in phase with each other, so the
waves interfere constructively in propagating toward an observer in the far zone. On
the other hand, those phases outside the neighborhood, however, are out of phase,
so the waves interfere destructively toward the same observer. As a result, to the

observer in the far zone, the scattered wave appears as though it comes from only
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a small neighborhood of the stationary point of the phase function, the stationary
phase point.

The derivatives of the phase function ¢ can be easily computed. At the stationary
phase point (k.s, kys), %qﬁ = () and -a%qﬁ = 0. That is, k;g and k,s are the solution

of the system of equations

0
z + Z’a—kzkz(kxs, kys) =0 (446)
y’ + Z'%’%(’%s, kyS) =0 (4.47)
Y

Let Q(kz, k,) be the second-order expansion of ¢ around the stationary phase

point (k;g, k,s). Therefore, Q takes the form

QUkz, ky) = k2 + Bhoky + vk (4.48)

By approximating the phase function up to the second order corresponding to

in (4.48) , the stationary phase integral (4.45) is now approximated by

D7) = U(k,s, kys)e—ifﬁ(kzs,k,,s) //dkxdkyeiQ(k"kv) (4.49)

Note that all first-order derivatives are identically zero at a stationary phase point.
This is the stationary phase approximation to the stationary phase integral (4.44) .
The resulting double Gaussian integral can be carried out analytically. Moreover, by
some linear transformations in the integration variables, the integral can be simplified
into the product of two Gaussian integrals.

The stationary phase approximation reads that the component of the waves at
the stationary phase point contributes the most in the process represented by the

integration provided that the phase differences among the wave components are much
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greater that the amplitude differences among them. Accordingly, the approximated
expression takes the amplitudes at the stationary phase point as the representative
of the whole spectrum since the constructive interference is only located around the
stationary phase point. Therefore, the wave component at the stationary phase point
dominates through the process. The fact that the amplitude distribution is relatively
stationary supports the extraction of the amplitude term evaluated at the stationary
phase point outside the integral. Furthermore, in certain situations, we expect further

and more specific physical interpretation of the method of stationary phase.

4.4.2 Far-Field Approximation of the Half-Space dyadic Green’s
function

Starting from the half-space dyadic Green’s function,

T ) = s -+ [ wdkzdky{ it ik FY (% —ikp 7
Goo(F,T) = —224(T r)+87r2/_00/_00 e {hEeo T} {hEe 0 T}

(R T e T o BT (ke by hos) (€™ MR e R T
+RTE (ky, by, ko) {57 7} i e—Fo T }} (4.50)

for £(z —2') >0

We have a particular interest in the far-field range corresponding to the regime

z > 2z'. Then, for z > 2/, we rearrange (4.50) into
g

<l

i o oo digdky (s
o) =gz [, [ T ()

et

(05 03] + BVE (kg by, kor)e'Fo ¥8)7 R Ry
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T Ty —f
+RTM (kg ky, ks )€™ Fo TR )T [ﬁa*ﬁo*]} e o Tetto T (4.51)
We want to calculate an approximated expression for (4.51) by applying the
stationary phase method on the integral part. Accordingly, the phase associated to
the integrand is

¢’(kx, ky) = 75;--7:

Thus, we have, at the stationary point,

ka: ka

-z 2 4.52

== (4.52)

ky ko,

i (4.53)
The stationary point is, therefore, (koZ, ko¥). At the point, we have

ki = kot (4.54)

Besides the notation we have employed for h and 8, the additional notation below
displays the functional definition of the basis elements more clearly. The two notations

will be used interchangeably for convenience.

o Exz . .
— hE)xE ;-
"R = ayer - M
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where n is an index of layers in a z-layered medium.

To construct the quadratic form of the phase function, the second-order partial

derivatives of the phase function are calculated:
02 1 k2
akQ ‘p(kzs k ) (k[lz kﬂz)

ks 1 k2

5 koK,
3k, 0k, B(kzr ky) = 275~ =3

Then, from stationary-phase approximation, the dyadic Green’s function is

Gool, ) = {[RAR(E)] + [6(7)5(7)]

+RTE(k T)e'ko( r +r)r[ (T)h(f'—)]-l-RTM(k e iko(—F~+7).7 ['U(T)?J(T )]} —ikof T I
(4.55)

where 7~ = 7 — 2(7),Z and I(7) is defined as

; . x o0 fOO it (p24 ,2\k2 (024222
1(7) = gogge®tothod) [* [ g g emar (TRt GDE) (4 56)

The analytic expression for I(7) is yet to be found. Changing the integration

variables with &, = 2k k. and k = 2k 2Ak:y, we further obtain

. oo oo
I(T) — Zz_g_ezkor / / dkmdkye(—(x2+zz)k§+2:.~:ykzk,—(y2+z2)k§) (4.57)
7[) —00 J—00
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In order to perform the k, integration, the exponent can be arranged into

2,2
zy )k2

zy
Ic
y2+227 "

—(@®+ 222+ 2zykoky— (P +2°)k2 = —(YP+2%) (ky— 5 ko) — (27427 -

Therefore, I(7) becomes

(z2+y2+z2)z2k2
I(F) = —ekor / et
y:+ z2

Eventually, perform the k. integral to obtain

P T T ikor
T ==
) = \/y + zz\j L_L)_xz*; 21‘2 2028 Aqr

Consequently, the approximated half-space dyadic Green’s function is

1kr

Guw(7,7) {[h(r)h(r)] + [0(7)8(7))

+RTE(k T)ezko(—r +#).F [h(r)h(f'—)] +RTM(k e tko(—F~ +F).7 [6(F)8 (7 )]}e-zknrr
(4.58)
This expression for the dyadic Green’s function is indeed the far-field approxi-
mation identified by the spherical wave term, 9;—:',—?. The terms in  (4.58) state
that the main contributions in the propagator are the direct propagation towards the

observation direction and the direct reflection into the observation direction.

4.4.3 Single Slush Contribution and Scattered Field

We already have the expression for the half-space dyadic Green’s function in (4.58) .
Hence, an expression for the scattered field can be obtained from the volume integral

equation and the infinite layer approximation in Chapter 4. Here, let k be the wave
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number of the air.

Under the stationary-phase approximation above, the scattered field is

ikr R A
Es(r) = ko {[R®AM] + ()9 (7)]} - /V dr' (e () = 1)e "7 By ()

+ { BB (k) ARG + RT™M (ko) 5(A0( N} - [ dr'(er(r) = Ve ™ ™ Bine(F)
(4.59)

Recall that the internal field E;;(7) is found to be

Buutr) = [(45(Ea000F) + EcoBarof®) 537
1

+ (B@(E;;)@(E,-) + %Dﬁ(ﬁ)@(ﬁi)) efff’-f] -Eio.
1

In the previous growth process, we denote the positions of slush units by 7,
m=1,---,N, where N is the number of the building blocks or slush units used to
achieve a slush coverage. Though, note that z,, = 0 since we only displace slush units

on the two-dimensional interface. Hence, the expression in (4.59) is rewritten as

2 zkr R .
Bulr) = 5 [ 0 o] ({0 + 9ot}
/ & (e-(7') — 1)e T Ey, (7)
+ { RTE (ko) [R(F)A(F)] + BT (ko) [0(F) ()]}

: /V (e (T) - 1)e-"k°f“f’E-m(r4)] (4.60)

where 1} is the volume of the slush unit positioned at the origin.
The only part that depends on the configuration of slush positions 7, in (4.60) is

the factor SV _, e!®i—#)Fm  Therefore, under the stationary phase approximation, our
m=1
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expression for the scattered field can be simplified into the product of a configuration
factor and the single-unit contribution.

Since we need to generate the most variety of the slush coverage to ensure correct
ensemble averages, the slush unit is chosen to be as small as possible up to a number of
constraints including the validity of results and computational resources and efficiency.
Thus, a slush cover is composed of many slush units in the simulation process. As a
result, the ability to calculate the total scattered field by only calculating the single-
unit contribution and a simple sum of phases can reduce the numerical complexity
tremendously.

However, the stationary-phase approximation for the scattering from one slush
may not be accurate enough. The near-field effect should be included for a better
prediction of the scattering model. But we still can use the conclusion from stationary-
phase approach that the overall scattered field is the product of the scattered field
from one slush times the structure factor. Here, we postulate the following when the

observation is in the far-field range.

N
Es(7) = [ ei(k"kS)'F’”] - Es(7) (4.61)
m=1

where 7,, is position of slush m and Ej; is the scattered field from one slush located
at the originZ. In (4.61) , Ejg, is calculated from numerical inetgral over k, and ky,
which is different from stationary-phase approach in (4.60) . However, since (4.61)
results from the far-field expression in (4.60) , the approximation in (4.61) is
also under the assumption that the multiple-scattering effect is negligible. Thus, by
using (4.61) , we do not consider the scattered field from one slush induced by the

scattered field from another slush.

2Although, for the stationary-phase expression, the single-slush contribution at the origin differs
from that at another place on sea ice by a phase which depends merely on the relative position, the
disparity is complicated for the exact expression.
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Chapter 5

Monte Carlo Simulation Results

5.1 Backscattering Coefficients

For an incident field F;5 of 8 polarization and the scattered field E;, of a polarization,

the backscattering coefficient o, is defined as[19]

lim Awr?|Egql?

.l
T — 0 AIEiﬂlz (5 )

0‘03 B

where r is the observation distance and A is the illuminated area.

In the Monte Carlo simulation, for each realization, the model will consist of
a finite number of slush patches with known positions. However, the locations of
stlush patches will vary among different realizations. Each model realization used to
calculate the scattered field is generated in the process described in Chapter 3.

The backscattering coefficients will be calculated for many realizations and av-
eraged to obtain the ensemble averages which are the expected simulation values.
Besides averaging over various slush unit configurations, we calculate the backscat-
tering coefficients over many azimuthal angles which diversify the ensemble given a

fixed slush coverage and fixed angle of incidence. With the rectangular slush unit we
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have exploited, the scattering problem obviously does not have the azimuthal sym-

metry; therefore, the azimuthal consideration is essential for the ensemble average.

5.2 Simulation Parameters

Table 5.1 shows the simulation parameters used in the simulation of the time-series
backscattering data. Apart from the scattering angle, the parameters are of physical
measurements or their derivatives from all the stages of frost flower growth, where
the permittivities are calculated from the mixing formulas given in Chapter 3. The
information about salinities is transformed into relative permittivities which are rele-
vant to their use in calculating the scattered field. Only the areal coverage is used for
the generation of slush configurations; therefore, it is the only physical measurements

which effects the ensemble and the averaging process.

5.3 Results

The developed frost flower covered saline ice scattering model will be validated through
the comparison with experimental measurements. The data set used is a time series
measurements of the backscattering coefficients at 25 and 35 degrees. The radar
backscatter was measured at approximately 6-hour intervals throughout the 3-day
period of the experiment [1]. At those angles, the co-polarized backscattering coeffi-
cients increased with time except for a sharp fall to the minimum around the 32nd
hour. This specific time has been found to coincide with a sharp rise in the surface
salinity.

The simulation results compared with the experimental observations are shown in
Figure 5-1. The goal of this part of study is to interpret the time series of data at each

angle of observation, especially the observed minima and the trend. The sharp rise in
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Figure 5-1: The time-series simulation results of the backscattering coeflicients com-
pared with the experimental measurements. The isolated points are experimental
measurements; the continuous lines are the simulation results. Circles indicate 0,y
and stars indicate op,. The full line indicates o,, and the dotted line indicate opy,.
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the surface salinity is an important factor of the well-observed minima. Furthermore,
the physical conditions like temperature and salinity will affect the electromagnetic
properties of ice, such as the permittivity.

As a result, the levels of simulation results agree with the levels of the experimental
data. The simulation results exhibit the fact that o,, has observed higher than
onn. Moreover, the local minima are observed in the simulation results and coincide
with the experimental results. The minima can be related to the minimum salinity
difference between the slush patch and the surface when the surface salinity abruptly
changes. In addition, the co-polarized ratios are shown at each incident angle in Table

5.2. The experimental and simulation values agree within 1 dB.
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Elapsed Areal Slush €slush €sur face Ewater

time(hr) | coverage(%) | thickness(mm)
32 20 1.0 12.4849.32i | 5.43+1.24i | 60.34-41.01
36 40 1.0 14.02+11.36i | 9.22+5.15i | 60.3+41.0i
42 60 1.5 16.57+14.79i | 9.22+5.151 | 60.3+41.0i
52 80 2.0 17.25+15.71i | 9.224-5.15i | 60.3+41.0i
60 85 2.9 17.25+15.71i | 9.22+5.15i | 60.3+41.01
66 90 3.0 17.25415.71i | 9.22+5.151 | 60.3+41.0i

Table 5.1: Simulation parameters in time series
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Co-Polarized | Incident Angles
Ratio 25° 35°
Experimental | 1.0 dB | 2.8 dB
Values
Simulation |2.0dB | 3.5 dB
Values

Table 5.2: The co-polarized ratios at 25 and 35 degrees. The experimental data are
for slush patches exposed by removing flower ice crystals in the frost flower forma-
tion(about 90% in areal coverage). The simulation values are the calculated results
at the areal coverage of 90%.
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Chapter 6

Summary

A laboratory experiment at the Geophysical Research Facility in the Cold Regions
Research and Engineering Laboratory was conducted during February 1995 to inves-
tigate the characteristics of radar backscatter from thin sea ice covered with frost
flowers[29]. Polarimetric C-band radar measurements of the backscatter from the
ice were made at approximately 6-hour intervals throughout the 3-day period. The
observed backscattering coefficients had a similar nonmonotonic trend for ovy and
ouu, where the coefficient oy is always higher than oy y. Additionally, the observed
minima in backscatters were associated with the abrupt increase in the surface salin-
ity occurred early in the flower growth. Furthermore, the radar backscatter of the
saline ice covered with frost flowers was 5 dB higher than that of bare ice at the frost
flower areal coverage of 90%. At this coverage, the slush patches yielded a backscatter
increase of 3-5 dB over that of bare ice. Thus, the experiment has demonstrated that
the small ice crystals has little impact on the backscatter.

This thesis develops a theoretical electromagnetic scattering model for sea ice
covered with frost flowers. In the part of sea ice, a physical multilayer model is
used. The salinity profiles are taken into account to derive the effective permittivity

profile by using mixing formulas. For the model of frost flowers, the ice crystals are
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neglected due to their small contributions to the backscattering coefficients and the
co-polarized ratio. The slush patches are modeled as a thin saline layer composed
of an agglomeration of small square slush units of fixed thickness. Thus, initialized
with a few seeds, the flower growth is simulated by the accumulation of slush units.
With the two-dimensional random walk scheme, a random walk is performed on a
new slush unit until it attaches to one of the existing slush patches. Many realizations
of the slush coverage are generated to perform the ensemble average for the Monte
Carlo simulation.

Due to the high permittivity contrast between the slush patches and sea ice,
the volume integral equation approach is used to calculate the scattered field , in
which a half-space dyadic Green’s function is used to take into account the coupled
volume-surface interaction. In the volume integral formulation, the infinite layer
approximation is used to estimate the internal field of the slush layer. A simple
geometry is used to model the slush unit, and the stationary-phase method is applied
to express the total scattered field as the product of the single unit’s contribution
and a configuration factor. The multiple-scattering effect is, however, ignored in the
resulting expression. Thus, the desired simulation results are the ensemble average of
the backscattering coefficients which follow directly from the scattered field for each
configuration.

The simulation results are compared to the experimental data and match the levels
of time-series data well. The scattering model produces higher o,, backscattering
coefficients than oy, backscattering coefficients. The contribution of saline slush
patches to the enhancement of radar backscatter is demonstrated in the simulation
results. The simulation values of the co-polarized ratios or the HH-VV difference are
close to the measurements. The time variation and trend of the simulation results

also follow the similar trend as those of the experimental data. In addition, the
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simulation results show the minima which coincide with the observed minima. The
observed minimum can be explained by the scattering model in terms of the difference
between the surface and slush salinities.

In this study, an electromagnetic scattering model is developed, which successfully
describes the polarimetric signatures of saline ice with the presence of frost flowers.
The measured backscattering coefficients and co-polarized ratios are imitated by the
simulation results with small errors. However, the model can be improved by adopting
the ice crystals into the model and by engaging a better computational scheme. For
instance, using the same volume integral equation approach, the slush patches can
be discretized and soived by the method of moments which automatically includes
multiple-scattering effects and near-field interactions with the ice surface. Also, the
consideration of the ice crystals may reduce the disparity between the simulation

results and the measurements.
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Appendix A

Free-Space Dyadic Green’s

Function

From Maxwell’s equations, the electric field, E, satisfies

VxVxE—KE=iwpl (4.1)

The solution of E can be expressed as a convolution integral over current distri-
bution J(F).

E = iwp / &G, ) - T(F) (4.2)

where 5(7, 7) is the free-space dyadic Green’s function which satisfies the inhomoge-

neous wave equation.

V x V x G(F,7) — kG, 7) = I8(r — ) (A.3)

where T = & + §jij + 22 is the unit dyad and 8(F) is the Dirac delta function.

In the Cartesian coordinate system (£, §, 2), the dyad _@—(T, 7') can be expressed,
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in terms of the dyad basis {&Bla, B=uzx,uy, z} as

G, 7) =G, 7)2 + GV (™) + TV F,7)z (A4)
where
GO (7, 7) = (£Goz + §Gye + 8Grs) (A.5)
GY(7,7) = (8Gay + §Gyy + 8Gy) (A.6)
GO(F,7) = (£C,s + §G,: + £Gs2) (A.7)

The three vector constituent functions G (7,7), G (F,7), and G (7,7) can

be interpreted as the electric fields satisfying the following equations:

V x V x GO, 7) — k2GO(F,7) = 36(F - ) (A.8)
V x V x GY(F,7) - B2GY (7, 7) = §6(F - F) (A.9)
V x V x GO(r,7) — k3G (7,7) = 26(7F — ) (4.10)

By taking the divergence on both sides of (A.3) , the divergence of the curl

vanishes, we have

= 1
V-G=-5ViF-7) (A.11)

Again, in terms of the vector contituent functions, we have

@ oy 18

V-G FT) = kz—axé(r ) (A.12)
W) e ___la S

V.-GV, T) = k2—6y6(r ') (A-13)



V-G 7)) = —5 5,00 ~T) (A.14)

Using (A.12) - (A.14) and the identity V x Vx = VV-—V?, equations (A.8)
- (A.10) become

@) (o I S NP
(V2 + )G (FT)=—(2+ va_)-:;)é(r —7) (A.15)
=) (2 ot N T
(V2 +k2)Gy (’I',T) = —(y+pV'a—y)5(T—“T) (A].G)
(V2 + RGO, ) = — (5 + v )5 - 7) (A17)
’ k2 " 0z ]

Recall that the scalar Green’s function, g(7,7 ), satisfying

(V2 + K%)g(7,7) = —6(F — ) (A.18)

By comparing (A.15) - (A.17) with (A.18) , we have

_(I) — =y A _1_ _a_ _

GF )=+ k2Vax)g(r,r) (A.19)

GO ) = (1 + 5V )T, 7) (A.20)
? k2 ay 1

GO ) = (2 + mV 2 )g(F,T) (4.21)
’ k20277

Substituting (A.19) - (A.21) into (A.4) , the free-space dyadic Green’s

function is expressed as

ar ) =T+ ;}Z-VV)g(T, ) (A.22)
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Appendix B

Spectral Representation of the
Free-Space Dyadic Green’s

Function

The dyadic Green’s function G(7,7) can be expressed in terms of the scalar Green’s

function as!

G = [7+ Elivv] o7, 7) (B.1)

where k£ = 27" is the wavenumber of free space, and

eiko |7"—'1""|

g(r,7) = p (B.2)
The Fourier transform pairs of g(7) and G(k) are
.| ® kT
90) = G [ / /_ ~ dReFTG(R) (B.3)

1See appendix A
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and

where dk = dk.dk,dk,. Substituting (B.4) into (B.3) , we have
9() = Gy f / /_oo b (B.5)
To integrate (B.5) over k., equation (B.5) can be rewritten as
tkoz
— ik €
90) = G575 / dre / s (B.6)

where dkr = dk,dky, kr = ki + kyjj, Tr = z% + yj, and k2 = k2 + k3~

Let kZ, = k2 — k%, the two poles of the integrand of the equation (B.6) are
at tko,. The integration with respect to k£, in (B.6) can be performed by using
the contour integration method. Figure B-1 shows how the contour integration is
chosen by considering the convergence of the k,-integral itself. For z > 0, the upper
half of the complex k,-plane is closed by an infinite semi-circular contour running in
the positive sense; for z < 0, the lower half of the complex k,-plane is closed by an

infinite semi-circular contour running in the negative sense. Hence, we obtain

gu(F) = T(B)e™ * (B.7)

for 2 > 0, where T'(k) and Ei,t are defined as, respectively

. q 1
=g | [ kb (B:8)
Ey = dke + ik, + ko, (B.9)

With the time dependence of e~%* ¢ ¥ and e ¥ represent an upward-going and a
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Figure B-1: Diagram of the complex regions of the k. contour integration scheme

74



downward-going wave, respectively. For z # 0, the first derivative of ¢(7) with respect

to z is.

a%gi (7) = T()(&iko,)e®o ™ (B.10)

Equation (B.10) shows the discontinuity of the first derivative of g(7). However,

we can obtain an expression for the sum of the second-order partial derivatives with

‘respect to x and y,

(62 &

22+ o) o(7) = TN )7

for &z > 0. BY adding k2 on both sides of equation (B.10) , it becomes

? P — —
(5; taE Tt ko) 9(F) = T(k)(—k3,)e™ 7 (B.11)

for £z > 0. BY using (B.11) and the equation (V2 + k2)g(F) = —4(7), we get

2 s
?9%‘59(?) = —0(7) — T(k) (K5, )e™o T (B.12)

for £z > 0. (B.12) can be easily extended to

T a(r =) = o —7) - TR E3)e € (B13)

for (2 — 2') > 0.
From equations (B.13) and (B.6) , we can obtain
UVg(F —7) = —336(r,7) — T(R)Fe R eio =7 (B.14)

for +(z — 2') > 0.
Substituting (B.14) and (B.0) , the desired integral representation of G(r,™)
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s

G, 7) = —255(F - 7) - T(R) [T - bk & €7 (B.15)

for :l:(é —-2)>0.

To relate G(F, 7) with the polarizations, two sets of orthonormal bases k%, hZ, %
are constructed for wave polarizations in the medium with wavenumber £,,. k;{‘ corre-
sponds to the wave propagating in the positive z-direction, and Ec; corresponds to the
wave propagating in the negative z-direction. This basis is especially convenient for
a stratified medium in the z-direction, where the phase-matching condition forces &,
and k,, the x and y components of the propagation vector, to remain fixed throughout
the medium. Figure B-2 shows how the constructed family of bases fit in a stratified
medium.

. it 7+ “t
The expressions of k7, h7, andvy are

i = Tcl—(:ikx + gy £ 2hns) (B.16)
with kn, = (/K2 — kZ — K,

. 3 v Lt
pr o 2 XK (B.17)

&% kgl
oF = kX x hE (B.18)

and

T — kxkx = hth* 4 o%or (B.19)

In terms of (B.16) - (B.19) , the free-space dyadic Green’s function can be
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Figure B-2: Illustration: the orientation of basis elements for the wave polarization
in a stratified medium
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expressed in the form

G(F,7) = —336(F—7) — T(E) { [hxe® T|[hte—® 7] + [agteiﬁ][ﬁ[fe-i??]} (B.20)

for +£(z — 2') > 0, where T'(k) is defined in (B.7) .
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Appendix C

Half-Space Dyadic Green’s

Function

By virtue of the fact that each layer is homogeneous and plane-stratified, it is possible
to generate from the free-space dyadic Green'’s function the half-space dyadic Green’s
function by using the method of scattering superposition[36].

When the observation point 7 is in the region 0, the field must consist of both
upward-going (reflected) and downward-going (incident) waves. Thus, the dyadic

Green’s function Goo(T has the following form
ﬁoo (-’f, T’) = T(E) {[i&aeizg F + RTEilgeiE:'F] [i’tae_iz‘;'?]

+og ¢ ¥ 4 RTM g+ eiFy Flloge F’]} (C.1)

for z > 2'. Here RT® and RT™ are Fresnel reflection coefficients to be determined by
the boundary conditions. The dyadic Green’s function b_-m(i"‘, 7) in the region 1 has

the form:
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Guolr,7) = T(R) { [T g Fllhe ™ ™) + [T a7 e FJoge® )L (C.2)

for z < 2.

Here TT% and T™™ are Fresnel transmission coefficients to be determined by the

boundary conditions as well.

The Loundary conditions are the continuity of the tangential components of the

electric and magnetic fields at the interface at z=0:

Zx 500(7, 7'4) =z X ﬁm(?, T’)

Z2xV X Eoo(?,?’) =zxVx ﬁIO(F':"_“F)

The boundary condition in (C.3) yields

2 x (hy + RTERY) = 2 x (TTEhY)

for the component perpendicular to the plane of incidence, and

2x (5 + R™p) = 2 x (T™7)

for the component in the plane of incidence.

From the facts that A} and A> are identical for n=0, 1,

and that
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knz ~ ~
=M gk, + )

VEE+ K2k,

the equations (C.5) and (C.6) are reduced into

LS5

xﬁ;f;:—-z“'xi;;

T™® =1+ R™

ko, k
TTM — Moz Ml pTM
klz kO(l R )

Similarly, the other boundary condition (C.0) yields

£ x (ky x by + RTPEy x hi) = 2 x (TTEk] x A)

for the component perpendicular to the plane of incidence and

™
X
X
bﬂ
~
g
=
X
[t
<

£ x (kg x 95 + R™E§ x of) =
for the component in the plane of incidence.
From the fact that
kL x bt =0
the equations (C.7) and (C.8) are reduced to
TE _ Koz  oTE
-T"% = —(R"® -1)
klz

TT™ = %(RTM +1)

Thus, the solutions for the reflection and transmission coefficients are
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R™ ko, + k; (C'12)
k2ko, — K2k €1ko, — €0k
RTM== 170z ofrlz — 1~02 o1z c1
k%k()z + kgklz €1koz + €0k, ( 3)
prm - _2kokik: (C.15)

 kZko, + kiky.

The coefficients exactly coincide with the reflection and transmission coefficients
in the treatment of a plane wave incidence on the interface of a half-space medium.
Furthermore, the fact reassures that the derivation of the expansion of the half-space
dyadic Green’s function from the spectral expansion of the free-space dyadic Green’s
function. From this observation, it can be verified that the integral expression for
the dyadic Green’s function is indeed the spectral expansion of the dyadic Green’s
function. The operation of the dyadic Green’s function on each frequency component
of a wave appears clearly in the integrand up to a factor of 'ié%" The spectral expansion
is two-dimensional becaus;: the wavenumbers only depend on the property of the
medium and are fixed. Thus, only the direction of the propagation vector can be

freely specified and doing so takes two angular parameters.
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