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Abstract

A new constitutive model for plastic deformation of crystalline materials deforming by
slip and twinning has been formulated, and implemented in a finite-element program.
The overall plastic deformation of a crystal is always inhomogeneous at length scales
associated with slip and twinning, and is defined as an average over a representative-
volume element (RVE) that contains enough dislocation loops and twins to result
in an acceptably smooth process at the continuum level. We have simulated three
different structural levels by choosing RVEs as (i) a small part of a single crystal for
the analysis of single crystals, (i7) a whole single crystal for polycrystal simulations,
and (771) a group of crystals for a Taylor-type model of polycrystals.

By using comparisons between model predictions and macroscopically-measured
stress-strain curves and texture evolution we have deduced information about the
values of the single-crystal parameters. With the model so calibrated, we show that
the predictions for the texture and stress-strain curves from the model are in rea-
sonably good agreement with experiments in plane strain compression for differently
oriented Co-8%Fe single crystals and a-brass polycrystals. Our calculations also show
that for the high-symmetry f.c.c. brass, a Taylor-type model for crystals deforming
by combined slip and twinning is able to reasonably well predict the macroscopic
stress-strain curves and crystallographic texture evolution.

The theory of finite plastic deformation due to crystallographic slip and twinning
in materials with hexagonal close packed (h.c.p.) structure is in its beginning stages.
We have modified the constitutive model developed for f.c.c. materials and applied it
to analyze the inelastic deformation of magnesium. Results of full three-dimensional
finite element simulations are shown to be in a good accord with obtained experi-
mental data. Our calculations and experiments showed that basal slip and pyramidal
twinning play the dominant role in the deformation of magnesium at room temper-
ature. The macroscopic strain hardening observed in magnesium may for the most
part be attributed to the fast twin-induced texture evolution.

Thesis Supervisor: Lallit Anand
Title: Professor of Mechanical Engineering
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Chapter 1 Sl
Introduction

The purpose of the present dissertation to understand and model the deformation
processes of different polycrystalline materials, in which each grain can deform by
crystallographic slip and/or mechanical twinning. The nature of the structure and
anisotropy is very important for the properties of materials. In polycrystalline metals
the major cause of the anisotropic plastic response is crystallographic texture resulting
from the reorientation of the crystal lattices of grains during deformation. In this
work we intend to relate the macroscopic texture evolution and deformation modes
and structural transformations of single crystals.

There have been considerable recent advances in the understanding of anisotropy
due to crystallographic texturing, and a reasonably successful, physically-based elasto-
viscoplasticity theory for the deformation of face-centered-cubic single crystals and
polycrystals with high stacking fault energies at low homologous temperatures (<
0.3 of the melting temperature) and low strain rates (107> — 10" s7') is now well
established. The theory is able to predict the macroscopic anisotropic stress-strain
response, shape changes and the evolution of crystallographic texture in complex
deformation modes. It is also beginning to be applied to the analysis of deformation-
processing problems under isothermal and quasi-static conditions (e.g., Mathur and
Dawson, [1989], [1990]; Kalidindi et al., [1992]; Bronkhorst et al., [1992]; Anand and
Kalidindi, [1994]; Beaudoin et al., [1994]; Balasubramanian and Anand, [1996]).

The high stacking fault energy f.c.c. materials (e.g. Al, Cu) deform predominantly

17



by crystallographic slip, and the recent progress in the formulation of a mathematical
theory of polycrystalline plasticity has occurred primarily for materials with cubic
crystals which do not twin. In contrast, for f.c.c. materials with low stacking en-
ergies, e.g. copper, cobalt and several other alloys in addition to crystallographic
slip, deformation twinning plays an important role in maintaining generalized plastic
flow!. The deviation between these model predictions and experimental observations
increases with growing of strain and decreasing of the stacking fault energy. Such
deformation can no be longer explained by slip theories and models based on the
mechanism that strongly depends on stacking fault energy, such as twinning, have to
be considered.

The overall plastic deformation of a crystal is always inhomogeneous at length
scales associated with slip and twinning. Although twinning is very strong source
of a crystal inhomogeneous deformation, no crystal-plasticity based models for the
twirning-related large inhomogeneous plastic deformations of single crystals have
been reported.

The theory of finite plastic deformation due to crystallographic slip and mechan-
ical twinning in materials with hexagonal close packed (h.c.p.) structure, such as
maghesium, is less developed?. The development of constitutive models and atten-
dant computational procedures for these materials are of substantial technological
importance, because these lightweight materials can be used to create lighter weight
vehicles with improved fuel economy and reduced emissions, resulting in environmen-
tal benefits. The reason for the lack of progress for h.c.p. materials is the complexity
of the deformation modes present in these materials. In f.c.c. metals in addition
to the dominant mode of deformation which is slip on twelve {111} < 110 > slip
systems, there also exist additional twelve {111} < 112 > twin systems. Unlike

1Venables [1964] first recognized the relationship between the susceptibility of a metal to twin
and the value of its stacking fault energy. He showed that the critical resolved shear stress for
twinning decreased with decreasing stacking fault energy, as occurs for example in Cu-Zn alloys
with increasing amounts of zinc.

2Even a slip-based theory applicable to high temperature deformation of h.c.p. materials has not
been properly formulated yet. Some progress in numerical texture prediction was obtained by D. M.
Parks and S. Ahzi [1990], by S. Schoenfeld et al. [1995], and recently by S. Balasubramanian [1998].
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the f.c.c. materials, inelastic deformation of a h.c.p. crystal is highly anisotropic:
the deformation resistances of different slip systems are substantially different. Fur-
thermore, deformation twinning plays an important role in maintaining plastic flow.
Since twinning is sensitive to the sign of the applied stress, the yield strengths in
tension and compression are different (Kelley and Hosford [1968]). Our review of the -
literature shows that the crystal mechanics-based treatments of plasticity of mag-
nesium are incomplete and scattered. There does not exist a coherent set of data
- stress-strain curves, microstructure, and crystallographic texture evolution under
controlled basic modes of loading at different temperatures, where different slip and
twinning systems are known to be operative. Clearly there is a need for a complete
experimental-theoretical-computational study of plastic deformation of h.c.p. metals
due to slip and twinning.

While there is a considerable amount of research aimed at describing the twinning
patterns which exist in grains after transformation, (see I. Lifshiz [1948], J. M. Ball
and R. D. James [1987], R. V. Kohn [1991], Khachaturyan [1983], etc.) the role of
twinning in polycrystalline blasticity has not been extensive studied. Very little is
known about plastic deformation caused by combined slip and twinning modes. The
understanding of the development of textures related to both deformation mecha-
nisms, slip and twinning, is very limited. The analytical modeling and computational
accounting for twinning as a mechanism of inelastic deformation, texture evolution,
and strain hardening is in its nascent stages. Some of the early considerations of twin-
ning in texture development are those of Chin et al. [1969] Chin and Mammel [1969)].
For a brief review of this early work on twinning, see Chin [1975] and in correspondent
chapters of [1979]. Twinning is a more complicated deformation mode than slip be-
cause, in addition to the sudden large twinning shear, it produces a volume fraction of
the grain with a very different orientation than that of the rest of the grain; in a sense,
it produces new grains. The two major kinematic issues in modeling twinning are:
(2) The reorientation of the crystal lattice due to twinning. (i7) Since splitting a grain
and treating the twinned fractions as new orientations quickly lead to a numerically

unmanageable number of grains, clever ways to handle twinning are needed. Van
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Houtte [1978]; appears to have been the first to propose a simple tractable scheme for
reorientation of grains due to twinning during simulation of texture development in
a polycrystal. His scheme does not increase the number of crystals. In his approach,
if a grain twins, then the shear due to twinning is first treated as a “pseudo-slip,”
and the crystal lattice is given the twinning-related orientation only if a probabilistic
criterion, based on the relative volume fractions of the twinned and non-twinned parts
of a crystal, is met. Recently, Tome et al. [1991] and Lebensohn and Tome [1994]
have discussed some limitations of Van Houtte’s proposal, and have proposed two
new schemes of their own; however, their schemes are only applicable in the context
of Taylor-type and self-consistent polycrystal models. In this thesis we shall carry
out full finite-element modeling of polycrystalline aggregates deforming by slip and
twinning, and we will explore the applicability of Van Houtte’s scheme in predicting
the crystallographic texture of f.c.c. 70-30 brass and h.c.p. magnesium alloy AZ31B.
Finite element modeling of crystalline materials is a powerful simulation technique.
In finite element models of polycrystals (e.g. Bronkhorst et al. [1992], Kalidindi et
al., [1992], Anand and Kalidindi, [1994], and several others) both compatibility and
equilibrium are satisfied, and there is no need for the the Taylor [1938], Sachs [1928]
or other such hypotheses (see Gill Sevillano et al. [1981] for a review of these works),
which have been classically used to obtain the response of a polycrystalline aggregate.
The finite element procedure also permits us to simulate the heterogeneity of plastic
deformation in individual grains by subdividing the grains into small finite elements.
The calculations in which each finite element quadrature point represents a single
grain permit verification and calibration of constitutive models for polycrystals. The
results obtained at this structural level can be used for verification of the scheme at
the next structural level, where each element quadrature point represents a group of
grains. Such a calibrated averaging scheme (Taylor, Sachs, etc) provides computa-
tionally inexpensive first order approximate solutions for polycrystalline behavior.
The broad objective of this thesis has been to study the evolution of the crystallo-

graphic textures and the flow stress in f.c.c. and h.c.p. materials. The present work

focuses on:
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e Experimental and theoretical study of inelastic deformation of Polycrystalline
f.c.c. Cu— Zn 70-30 brass by slip and twinning.

e Computational study of inhomogeneous deformation of Single Crystalline f.c.c.
materials. We compare our model predictions against experiments of Chin et
al. [1969] on single Co — 8%Fe crystals.

e Experimental and theoretical study of inelastic deformation of Polycrystalline
h.c.p. magnesium alloy AZ31B due to both slip and twinning at low homologous
temperatures.

e Experimental study of inelastic deformation of Polycrystalline h.c.p. magne-

sium alloy AZ31B by slip alone at high homologous temperatures.

Currently the most important trend in crysﬁal plasticity is to simulate the pro-
cesses of texture evolution, and to develop adequate constitutive models suitable for
texture evolution and stress- strain response prediction of different classes of materials
in different material processing operations. The results of the studies mentioned above
motivated further development of constitutive models for single and poly- crystal plas-
ticity caused by both mechanisms: crystallographic slip and mechanical twinning.

Specifically, the purpose of the present study is to conduct a combined analytical-
experimental-computational research program to develop physically based constitu-
tive models and computational procedures for large anisotropic inelastic deformations
of f.c.c. low stacking fault energy alloys such as brass 70-30 and Co-8%Fe and of h.c.p
magnesium alloy. We validdte our numerical simulation capabilities by comparison
against measurements from physical experiments.

With this as background, the following have been accomplished in the present disser-

tation:

1. In Chapter 2 we set down a constitutive model which accounts for botk slip
and twinning. Since twinning occurs very rapidly, and visco-plastic models of
twinning are nebulous, we have formulated a rate-independent model to account
for twinning. In this chapter we also describe our scheme to determine the

active systems and the shear increments on the active slip and twin systems.
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We set down this model in an incremental form to emphasize the computational

procedure. The rate form of this model can be found in Appendix A.

We have implemented our constitutive equations in the finite element program
ABAQUS/Explicit [1995]. This computational capability allows us to perform
two types of finite element calculations: (i) where a finite element qﬁadrature
point represents a material point in a single grain and the constitutive response
is given through a single-crystal constitutive model, and (¢) where a finite
element quadrature point represents a material point in a polycrystalline sample

and the constitutive response is given through a Taylor-type polycrystal model.

. The finite element procedure permits us to simulate the heterogeneity of plas-
tic deformation in individual grains by subdividing the grains into small finite
elements. We have performed an evaluation of the constitutive model for plane
deformation of a single f.c.c. crystal by comparing predictions of texture evolu-
tion, mechanical twinning, and stress-strain response in the deformed spgcimen
against known experimental data (Chin et al., [1969]). These results are pre-

sented in Chapter 3.

. In Chapter 4 we simulate “nominally-homogeneous” deformations of plane-
strain compression and simple compression of a polycrystalline aggregate, using
a multitude of single crystals. Important ingredients in the theory are the slip

and twin resistances, and their interaction and evolution.

a. Direct measurements of the hardening interactions are difficult, if not im-
possible. Accordingly, we first perform our finite-element simulations for
the non-hardening case. That is, with s, denoting a constant shear resis-
tance for slip and sy, denoting a constant shear resistance for twinning, we
examine the capability of the model based on Van Houtte’s [1978] scheme
to handle the reorientation of the individual grains due to twinning, in or-
der to predict the evolution of crystallographic texture for three different

values of the ratio R = sy, /54, equal to 4, 1.1, and 0.8. A value of R =4
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activates only the slip systems, and we obtain the well-known “copper-
type” pole figures. A value of R = 0.8 activates both twinning and slip,
and this produces a “brass-type” texture, whereas a value R = 1.1 acti-
vates small amounts of twinning, which produces a “transition” texture.
These calculations show the important role of lattice reorientation due to

twinning in producing the experimentally-observed brass-type textures.

. Representation of slip-twin hardening and hardening interactions is one
of the major uncertainties, and much work needs to be done to improve
our understanding of these hardening interactions and their mathematical
representation. In this context, Hirsch et al., [1988], Leffers and Bilde-
Sorensen [1990], Leffers and Jensen [1991], and Leffers [1993] point out
that in rolled brass {111} < 112 > twins form as thin lamellae which
are not homogeneously distributed, but cluster to form bundles in grains.
These bundles are usually parallel to one plane of the {111} family. Sub-
sequent slip in grains containing such twin clusters occurs predominantly
on {111} < 110 > slip systems with slip planes parallel to the plane of
the twin bundles, and slip on other systems is restricted. Based on these
experimental observations, in Chapter 4 we make plausible assumptions
concerning the hardening part of the model, and use comparisons between
model predictions and macroscopically-measured stress-strain curves and
texture evolution to deduce information about the values of the single-
crystal parameters associated with slip and twin system deformation resis-
tances and hardening due to slip and twinning. We show that our model is
able to reproduce both the experimentally-measured pole figures and the
stress-strain curves in plane strain compression. Next, with the model so
calibrated, we show that the predictions for the texture and stress-strain
curves from the model are also in reasonably good agreement with exper-

iments in simple compression.

. We also evaluate the applicability of a Taylor-type model for combined

slip and twinning. Our calculations show that for the high-symmetry f.c.c.

23



brass, a Taylor-type model for crystals deforming by combined slip and
twinning is able to predict reasonably well the macroscopic stress-strain
curves and crystallographic texture evolution, in both plane-strain com-

pression and simple compression.

4. The combined experimental-theoretical study of the deformation of h.c.p. mag-
nesium alloy have been conducted at room temperature. Results of this research
is presented in Chapter 5. We performed a series of experiments to measure
the stress-strain response and texture evolution of polycrystalline magnesium
(magnesium alloy AZ31B) during different modes of deformation to large strain.
These were simple tension, simple compression, and a set of three plane strain
compression tests in different directions. A modified constitutive model suitable
for the analysis of deformation of magnesium and its alloys at room temperature
is developed and implemented in the finite-element program ABAQUS/Explicit
[1995]. Our numerical results have been verified by comparison against experi-

mental data.

a. The amount of shear produced by twinning is small in comparison with
slip, and, because of lack of activity of < ¢+ a > pyramidal slip systems,
the individual grains are essentially inextensible in c-direction. To main-
tain generalized plastic flow, additional important features are shown to be
operative in the deformation of polycrystalline magnesium (G. V. Raynor
[1959]): grain boundary sliding and prolific twinning and non-basal slip-
ping in grain boundary region. These features are localized in thin layers
around the grain boundary (Hauser et al., [1955]) only value a small con-
tribution to crystallographic texture. In order to account for these phe-
nomena we have constructed a combined crystal plasticity and isotropic
plasticity model, in which all non-crystallographic effects are localized in

a thin isotropic “boundary layer” next to grain boundary.

b. The predicted crystallographic textures and stress-strain curves are in good

agreement with experimentally observed curves. We demonstrate both
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numerically and experimentally that the main mechanisms of plastic de-
formation of magnesium at room temperature are basal < a > slip and
{1012} < 1011 > twinning.

c. We have shown that texture evolution and stress-strain curves of magne-
sium at room temperature can be predicted by this non-hardening model.
Polycrystalline strain hardening can be explained mostly by grain reorien-
tation during the deformation process. Our simulations demonstrate that
dominant mechanism contributing to the fast crystal lattice reorientation

is mechanical twinning.

5. In the high temperature deformation of magnesium, twinning is suppressed,
and number of < ¢+ a > pyramidal slip systems are expected to be active in
addition to the dominant basal plane slip. The experimental data of polycrys-
talline magnesium deformation at elevated temperature is scattered. In Chapter
6 we present our experimental results for simple tension and compression, and
plane strain compression to large strains. We measure the macroscopic stress
— strain behavior and the corresponding evolution of crystallographic texture,
and present these results together with microstructural analysis. Our numerical
estimations permit us to choose the most important slip systems and evaluate
deformation resistances for different systems in magnesium at high temperature.

This numerical data is given in Appendix D.

6. Chapter 7 gives some suggestions for future work. The present study builds
the foundation for detailed study of twin caused local inhomogeneity in poly-
crystalline aggregate. The single crystal model developed in Chapter 3 can be
generalized for polycrystalline aggregate by merging a number of initially dif-
ferent oriented single grains subdivided for small finite elements. That is the
next “meso-scale” structural level of crystal plasticity. Nobody doubts that the
larger the number of mesh elements the better the approximation we have. We
briefly discuss one possible approach to increase the number of elements based

on thermoactivation mechanisms and a stochastic self-consistent model. Also,
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some other suggestions for future research are presented.

We close in Chapter 8 with some conclusions and final remarks.
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Chapter 2

Constitutive model

2.1 Manifistation of the twinning in the f.c.c. a-
brass deformation process.

A direct manifestation of twinning is the different crystallographic texture that is
observed m 70-30 brass as compared to commercially pure copper, and this is one of
the classsical problems in texture research (e.g., Wasserman, [1963]; Dillamore and
Roberts, [1964]; Smallman and Green, [1964]; Goodman and Hu, [1968]). Fig. 2-1
shows a comparison of our measurements of the {111}, {100} and {110} pole figures
in brass and copper after plane strain compression of 100%. The differences betweeen
the {111} and {100} pole figures of brass and copper are quite pronounced.

Another material response characteristic which is different for a-brass as com-
pared to that for copper is the variation of the rate of strain hardening with strain.
Experimentally measured stress-strain curves and the corresponding relation between
the strain hardening rate d|o|/d|e| and true strain |¢| in plane-strain compression are
shown in Fig. 2-2 For copper the rate of strain hardening decreases continuously with
increasing strain (for the level of strains examined), while the rate of strain hardening
for the brass exhibits a plateau at intermediate strain levels. Extensive microscopic
observations by Asgari et al., [1997] show that the plateau in strain hardening rate

can be correlated with the onset of twinning, and it is the twin-twin and twin-slip
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hardening interactions which arrest the decrease in the strain hardening rate in brass
at these intermediate strain levels.

Hirsch et al. [1988], [1988a] have conducted detailed metallographic and x-ray
texture investigations on the mechanisms of deformation and texture evolution dur-
ing rolling of f.c.c. polycrystalline materials. With respect to their metallographic
observations, in their Fig. 2 they report that copper exhibits relatively homogeneous
slip and an equi-axed subgrain structure at low strains. Subsequently, superimposed
on this structure long band-like features of ~ 0.2 ym width form in individual grains,
at strains as low as 5%. They call these microstructural features “microbands.” The
orientation difference of the microbands with respect to the surrounding matrix is
usually only ~ 2°. They suggest that these microbands are formed by a process
of dislocation channeling on active slip systems, and represent strong locally con-
centrated dislocation glide. These microbands are not restricted to special crystal
orientations, and they may occur on all active slip planes. The number of these mi-
crobands increases with strain, and at moderate strains the dislocation microstructure
in individual flattened grains consists mainly of these features. At strains ¢ >~ 1,
macroscopic “shear bands” develop at ~ +35° to the rolling plane. These shear bands
cut through the microbands in a grain, and also across grain boundaries. In contrast,
they report that for 70-30 brass the dislocations are dissociated into partials, and nei-
ther cell structures nor microbands develop. At € ~ 0.20, fine deformation twins are
observed in some suitably oriented grains, and by € ~ 0.70 profuse twinning is present
in most grains (their Fig. 3a). As deformation progresses, the lamellar twin-parent
strncture becomes progressively aligned with the rolling plane, and they attribute this
to preferential shearing of both the matrix and the twin components on the common
{111} planes. At high strains, € > 1, after the twins have become strongly aligned,
macrospic shear bands form. The shear bands form as sheet-like structures at ~ £+35°
to the rolling plane. The width of these sheets is ~ 0.5 — 2 um, and they divide the
microstructure into rhomboidal shaped packets of twinned material (their Fig. 3d).
Hirch em et al. [1988] also describe the microstructure and texture evolution to strains

as large as € ~ 3, in which case the microstructural features become very complex,
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and numerous new shear bands form as deformation progresses (their Fig. 3e).

Hirsch et al. [1988] conclude that the microband and shear bands in copper only
affect small localized volumes, and that these features do not have a significant influ-
ence on the averaged macroscopic texture evolution at strains up to ~ 1. In contrast,
for 70-30 brass, mechanical twinning and shear band formation have a much larger
influence on rolling texture. In this paper, to isolate the effects of crystallographic
slip and twinning on texture evolution, we restrict our study to strains less than
~ 1 in plane strain compression, so that the contributions of shear bands to texture
evolution are minimal.

The analytical modeling and computational accounting for twinning as a mecha-
nism of inelastic deformation, texture evolution, and strain hardening is in its nascent
stages. We note that all previous attempts to model polycrystalline plasticity due
to both slip and twinning have been for the rigid-plastic, non-hardening case, and
have been limited to the Taylor [e.g. Van Houtte [1978]] or wne “self-consistent” (e.g.
Lebensohn and Tome [1994]) averaging schemes for polycrystalline materials. In this
chapter we present our formulation of an elastic-plastic model, whick also attempts
to capture the major features of strain hardening due to slip-twin interactions. We
present the model in an incremental form, suitable for numerical implementation.

The rate formulation of the constitutive equations is given in Appendix A.

2.2 Deformation of f.c.c. Single Crystals by Slip
and Twinning

The deformation of a single crystal is taken as the sum of contributions from two
independent atomic mechanisms: (¢) an overall “elastic” distortion of the lattice, and
(72) a “plastic” deformation due to slip and/or twinning that does not distort the
lattice geometry.

Slip in f.c.c. crystals occurs on twelve {111} < 110 > slip systems listed in Table

2.1. Note that on a given slip system, slip can occur in either the positive or negative
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< 110 > slip direction in a {111} plane.

Table 2.1: The Twelve {111} < 110 > Slip Systems

(111) (111 (111 (111
[011) [fo1] [1T0]|[011] [101] [i10] | [011] [101] [il0]|[011] [101] [110]

It is well known that an increment of plastic deformation due to slip does not
chalnge the lattice orientation. Figure 2-3 shows an idealized scheme for uniform
slip; the lattice is not changed, but the slip gives rise to steps on the crystal surface.
Twinning rotates the lattice in the region of the crystal that has twinned (e.g., Kelly
and Groves [1970]; Pitteri [1985], [1986]). Fig. 2-4a schematically shows the local
description of a twinned crystal, where we have two regions R; and R, which are
separated by a plane P with unit normal n.

For the case where the crystalline structure in R; can be obtained from the one

in R; by means of a rotation of 7 about an axis parallel to n,
Rf’l") =2n®n-—1,

the twin is called a Type-1 twin'. Another possibility is that R, is obtained from R;

by means of rotation of 7 about a crystallographic direction parallel to P, say m:
R =2m®m—1;

such a twin is called Type-2 twin. For either type of twin in simple crystal structures,
R, can also be obtained from R; by means of a simple shear of the Bravais Lattice,
and the reorientation due to deformation twinning is classically described in terms of
such a simple shear. Fig. 3b summarizes the standard crystallographer’s description
of the twinning shear. All points in the lattice on the upper side of the plane K; are

displaced in the 7, direction by amount u;, proportional to their distance above Kj.

1A Type-1 twin may alternatively be described by a reflection across P, Q = 1 -2n®n, in which
case it is called a reflection twin.
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Thus u; = o 2, where 7 is the amount of simple shear. The plane K;, which is
neither distorted nor rotated during the shear, is called the twinning plane, and n;
is the direction of shear. The plane containing 7, and the normal n to the twinning
plane is called the plane of shear S. It is easy to show that a vector parallel to
a direction 7, in S will be of the same length after the shear has been applied, if
the angle a that it makes with the normal to K; is given by vy = 2tana. Clearly,
all vectors in the plane through 7, which is normal to S are unchanged in length,
although rotated; this plane, AOB in Fig. 2-4b, is conventionally labelled K5, and
is called the second undistorted plane. The quantities { K, K2, 7,72} are called the
twinning elements. Twins whose shear elements K and 7, are rational, that is if the
directions associated with these elements pass through sets of points of the Bravais
lattice, while K> and 7, are irrational, form Type-1 twins. Alternatively, if K, and
my are rational, while K; and 7, are irrational, then the twins are of Type-2. Very
commonly, all four elements K, K5, 1, 7, are rational, the two types merge, and such
twins are called compound. In a cubic lattice, only compound twins are possible.
Fig. 2-5a shows the structure of a twin in a f.c.c. metal. In this case, the equivalent
symmetry rules connecting the differently-oriented parts are: (i) that R; is obtained
by a rotation of m about the [111] direction, or (¢z) that R, is obtained by a rotation
of m about the [112] direction. It can be seen in Fig. 2-5b that the nearest neighbor
relations are preserved at the boundary, but an error in the stacking of the (111)
planes occurs, such that the stacking sequence ABCABC is turned into ABCBAC.
Fig. 2-5c shows how the twinned crystal could have been produced by homogeneously

shearing part of a single crystal. The twinning elements for f.c.c. materials are
Ky =(111), m=[112], K,=(111), n,=[112]. (2.1)
The twinning shear corresponding to these elements may be written as
S=1+ym®n, m-n=0, 7 =1/V?2, (2.2)

where m is a unit vector in the 7, = [112] direction, and n the unit normal to the
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K, = (111) plane. The rotations which carry R; to R, are given by

RY) = 2n®n-1, (2.3)
R} = 2m®m-—-1. (2.4)

That is, if e, are the lattice vectors which generate the crystal in R;, then the lattice
vectors which generate the lattice in R, are given by & = R™e,. In all cases
(R™)2 = 1, that is, successive application of R* on any lattice vector returns it to
its original orientation.

The twelve {111} < 112 > twin systems are listed in Table 2.2. Note that unlike
the slip systems listed in Table 2.1 for which slip can occur in either the positive or
negative < 110 > slip direction in a {111} plane, twinning, because the underlying
atomic arrangement is polar in nature, can occur in only one < 112 > type direction
on a {111} plane, and the twin systems listed in Table 2.2 correspond to the easy
direction of twinning. We do not consider the possibility of “de-twinning” in this

thesis.

Table 2.2: The Twelve {111} < 112 > Twin Systems

(111) I11) (111) — (l1)
P11 [121] [112] | [211 [i21) [119]|[211) (121 [112]| 211 [121] [113

We assume that plastic deformation of a crystal due to slip and twinning arises
from a set of uniform shear increments occurring in small discrete volume-elements.
The overall plastic deformation of a crystal is always inhomogeneous at length scales
associated with slip and twinning, and should be defined as an average over a vol-
ume element that must contain enough dislocation loops and twins to result in an
acceptably smooth process at the continuum level of interest here. The smallest such
volume element abave which the plastic response can be considered smooth, is labeled
as a representative-volume element (RVE), and its volume denoted by V. We shall

take a small part of a crystal as a representative-volume element in our simulations of
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single crystal deformation, and the whole crystal as a represcntative-volume element
for polycrystalline simulations.

Consider a single slip system characterized by a pair of orthonormal unit vectors
my, and n, which define, respectively, the slip direction and the slip plane normal of a
slip system. At any given time, let there be n dislocation loops on such a slip system,
and let a; denote the area of the k-th dislocation loop, and let A = const. denote
the spacing between the slip planes. Then, at a given time, there exist n disk-like
volume elements with principal planes normal to the unit vector ng, each of volume
vx = h X ai, which can potentially slip. The total volume of these disk-like volume
elements is vy = h x ¥p_; ax. Let v¢; = b/h, with b denoting the magnitude of the
Burgers vector in the slip direction myg, be the transformation shear strain associated
with each such volume element. Then, an increment of plastic deformation resulting
from slip may be visualized as being produced by an increment Avg = h X YF Aay
of the volume of the disk-like elements, and the volume-averaged incremental plastic

deformation gradient for the crystal may be written as

Avg r_
Fpt(T) =1+ A’YSl mp ® ny, with A’)’sl = _{l/ﬂ Ytr = ‘b—%ﬂ, (25)

where A7, is the incremental shear due to slip which arises from the change in the
entire area of the slip planes swept by mobile segments of the dislocation loops (Fig.
2-6).

Next, consider a single twin system characterized by a pair of orthonormal unit
vectors mg and ny which define, respectively, the twir direction and the twin plane
normal of a twin system, and let «, be the twinning shear associated with this twin
system. At a given time we assume that there exist n lenticular volume elements
with principal planes normal to the unit vector ng, which can potentially twin. The
total volume of such lenticules is v, = >j.; v;, and their volume fraction in V is
f = vw/V. Then, an increment of plastic deformation resulting from twinning may
be visualized as being produced by an increment Awy, of the volume of the lenticular

elements, and the volume averaged incremental plastic deformation gradient for the
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crystal may be written as

Avyy,
FP(7) =1+ Aymo®mng,  with Ay =Afv, and Af= % (2.6)

where A<y, is the incremental shear due to twinning, and Af is the incremental
volume fraction of the crystal that has undergone twinning (Fig. 2-7).
- For combined slip and twin on multiple slip and twin systems, labeled by integers

1 and a, respectively, the kinematic expression generalizes to
Fry(r) =1+ ZA’yi St + ZA’y"‘ Sg, Si=mi®n;, SS=mi®ng, (2.7)
i a

where S} is the Schmid tensor for the i-th slip system, and S§ is the Schmid tensor
for the a-th twin system. Also,

b (T, Ag)’

Ay = v , and AY*=Af%", (2.8)

are the plastic shearing increments on the ¢-th slip system and the a-th twin system,
respectively. In writing the above, we have used the fact that the magnitude of the
Burgers’ vector b is the same for all the slip systems, and the twinning shear has
the same value vy = 1/v/2 for all the twin systems in a f.c.c. crystal. For later use

we define the twin fraction f*(7) of the crystal at time 7, which has deformed by

twinning on system a, by

o) = P:(T) , where I'*(7) = /0 ’ Ay*(£)dE. (2.9)

o

We have yet to specify under what conditions the shearing rates 4* and ¥ on
the slip and twin systems are non-zero. We shall do that once we define the resolved
shear stresses on the slip and twin systems, compare the values of these quantities to
the slip and twin system shear resistances s* > 0 and s* > 0, respectively, and more
completely formulate the flow rule.

For the development of elastic-plastic constitutive equations for a single crystal,
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we affix an orthonormal basis {e$°)} (i =1,2,3) to the atomic lattice of the crystal
to determine the orientation of a material neighborhood of the crystal. The reference
configuration of such a material neighborhood is assumed to be stress free. The cur-
rent configuration has deformation gradient F(¢) and Cauchy stress T(¢). Suppose
for the moment that the operative plastic mechanism up to this point is only crystal-
lographic slip. Then, associated with each material neighborhood we introduce a con-
ceptual local configuration which is intermediate between the reference configuration
and the current deformed configuration of the material neighborhood. Such a local
intermediate configuration is assumed to be obtained by unloading a material neigh-
borhood by reducing the stress to zero. The unloading process is again conceptual
in nature, in that we assume: (z) that it is possible to fix the current arrangement of
the material neighborhoods on the microscale so as not to allow any rearrangements
of the microstructure by slip or twinning as we reduce the stress to zero, thereby
undistorting the lattice; and (iZ) that it is possible to orient the unloaded configu-
ration such that {e§"} in this configuration has the same orientation with respect
to a fixed orthonormal basis {e,(g)} in space, as it did in the reference configuration.
Following Mandel [1974], such a relaxed configuration is referred to as isoclinic. The
deformation gradient associated with this specially-oriented relaxed configuration is
denoted by F?(t), it has det F?(¢) = 1, and is called the plastic deformation gradi-
ent. The elastic deformation gradient may then be defined by F¢(t) = F(t) F?(¢)™"
with det F¢(t) > 0. The plastic part F?(¢) in this multiplicative decomposition of
F(t) = F¢(¢t) FP(t) represents the cumulative effect of plastic deformation mecha-
nisms in the crystal, and the elastic part F¢(¢) describes the elastic distortion of the
lattice; it is this distortion that gives rise to the stress T(¢).

Now consider an incremental deformation occurring over an infinitesimal time
increment At = 7 — ¢, with relative deformation gradient F;(7), so that F(r) =
F.(7) F(t). If the plastic part of the incremental deformation is due to slip alone,
then F?(7) = F{(7) FP(t), with F?(7) = 1 + ¥; Ay* Si(¢), the lattice in the relaxed
configuration maintains the same orientation as it had at time ¢, and the elastic defor-

mation gradient which determines the stress T(7) is given by F¢(r) = F(7)F?(r) ",
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Fig. 2-8. In contrast, if the plastic part of the incremental deformation is due to
twinning alone, then Ff(7) = 1 + ¥, Av*S§(t), and twin fractions Af* = Ay*/v,
of the crysvtal have to be reoriented according to the appropriate rotations associated
with the new twin orientations. Treating the twinned fractions as new orientations
essentially involves introducing new crystals, and this quickly leads to a numerically-
unmanageable number of crystals in a calculation of the response of a polycrystal.
In Van Houtte’s [1978] approach, if a crystal twins, then the twin is first treated
as a “pseudo-slip,” and its lattice is given a twinning-related orientation only if a
) probabilistic criterion, based on the relative twin fractions of the twinned and non-
twinned parts of a crystal, is met. Specifically, during the “pseudo-slip” phase, with
fe(r) = T'*(7)/vo denoting the “twin fraction” corresponding to a twin system, Van
Houtte suggests that we compare the twin fraction f(+) = max {f*(7)} with a random
number § € [0.2,1]; if f > &, then the orientation of the RVE is replaced by the orien-
tation of the twinned part of the grain corresponding to the system a. That is, if Q(t)
denotes a rotation tensor? which brings the orthonormal crystal basis {e,(-c)(t)} to be
in correspondence with the fixed orthonormal global basis {eﬁg)}, el? = Q) e (1),
then for the reoriented crystal, for which the orientation of the crystal basis after
twinning is e§°’(r) = R‘w(t)e,(-c) (t), the corresponding relationship between the global
basis and the reoriented crystal basis is e = (Q(t) (R (t))T) e!”(r). Once a grain
is given a new twin-related orientation, the accumulated strain I'* on all twin sys-
tems in that grain is set to zero, Q(7) is set equal Q(7) = Q(t) (R*(¢))7, and the

algorithm continued.
2.3 Governing Equations and Time-Integration

Procedure

The governing variables of the model are: (i) The Cauchy stress, T. (i¢) The defor-

mation gradient, F. (ziz) Crystal slip systems and twin systems, labeled by integers 3

2Deriviation of the rotation tenscr form is presented in Appendix B.
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and «. Each slip system is specified by a unit normal n! to the slip plare, and a unit

vector m? denoting the slip direction; and each twin system is specified by a unit nor-

mal n¢ to the twin plane, and a unit vector m¢ denoting the twin direction. (iv) The

plastic deformation gradient, F?, with detF? = 1. The local configuration defined

by F? is relaxed, that is, T = 0. (v) The slip and twin systems have deformation
-esistances s > 0 and s > 0, respectively, in units of stress.

We take as given {F(t), F(7)}, {T(t), FP(¢)}, {mi(¢),ni(¢), s'(¢)}, and {mg(t), n3(t), s°(t)}-

Then the incremental problem is to calculate {T(7), FP(7)}, ymi(7), nf,'(T), si(1), },
{mg(7),n%(7), s*(7), }, and the orientation of the slip systems in the deformed con-

figuration at time 7 from
m; = Fe(r)mj(7), 0 =F¢(r)"Tny(r), (2.10)

m? = F*(1)mg(7),  n? =F*(r)""n3(7), (2.11)

T

and march forward in time.
For metallic materials the elastic stretch is usually infinitesimal, and accordingly

the constitutive equation for stress may be taken as a linear relation
T*(1) = C[E*(7)], (2.12)
where C is a fourth order anisotropic elasticity tensor. With
Ce(r) = (Fe(r))"F(), (2.13)
defining an elastic right Cauchy-Green tensor,
E°(1) = (1/2) {C*(r) — 1} (2.14)
is an elastic strain measure, and
T*(r) = Fe(r) ! {(det Fe(7)) T(7)} Fe(r)™ " (2.15)
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is a stress measure conjugate to the strain measure (2.14).

The scalar
() = {C°(7) T*(7)} - So(?) (2.16)

is the resolved shear stress, or the Schmid stress, on a slip or twin system at time 7.
For infinitesimal elastic stretches the resolved shear stress 7(7) may be approximated
by

7(T) = T*(7) - So(2)- (2.17)

Next, we define a trial elastic strain and stress at time 7 as follows. We fix the

value of F? at time ¢, and define a trial elastic deformation gradient by
e tr _ -1
Fe(r)” =F(r)F?r(t)"", (2.18)

in terms of which we define a trial elastic right Cauchy-Green tensor by

Ce(n)™ = (Fe(r)")TF(n) Y, (2.19)
a trial elastic strain by
Ee(r)tT = (1/2) {Ce('r)tr - 1} , (2.20)
a trial stress by
()" = ¢ [B(n)"], (2.21)

and trial resolved shear stresses on the slip and twin systems by
i AT e AT @i ar A\ e T qa
()" =T(1)" -Sp(t), 7%(r)" =T*(7)" - S5(2). (2.22)

For active slip and twin systems, both the trial and actual values of the resolved shear

stresses are well separated from zero, and it is reasonable to expect that
sign (Ti(T)) = sign (Ti(T)tr) , sign (7%(7)) = sign (’r“(’r)tr) . (2.23)
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With these definitions, the incremental flow rule is taken as
Pr(r) = {1+ 3 avtsien (') 8100 + £ 49" 850 | (0,

with
0 iflﬂhﬁjgam,

ZOiflﬂUfr>§@LJ

and
0 if ()t <o),

>0 if 7o(r)" > (). |

\
Systems for which

i) < @), (T <),

are inactive, and those for which

'r"(’r)tr > s'(t), T“(T)tr > s%(t),

are potentially active. We denote by

PA = {ili=1,---,m}, PA"={cla=1,---,n}

(2.24)

(2.25)

(2.26)

the potentially active slip and twin systems. The set of all potentially active slip and

twin systems is denoted simply by P.A. Of the potentially active systems, the p < m

slip systems, and the ¢ < n twin systems for which the shear increments are actually

non-zero are the active systems, and we denote the set of active systems by .4* and

A™ | respectively. The set of all active slip and twin systems is denoted by A.

Since the twin systems have been defined such that both 7% ('r)tr and 7%(7) are

positive valued on the potentially active as well as the active twin systems, to simplify

notation we let the index 7 extend over all slip and twin systems and write the
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incremental flow rule as

FP(r) = {1 + Z A~'sign (fr‘(r)tr) a(t)} FP(t). (2.27)
icPA 4
Also, the slip and twin systems resistances are denoted simply by s*; the evolution

equation for these resistances is taken in a generic form as

s(ry=s(t)+ Y. h7{#)Ay, i=1,---,N, (2.28)

jePA '
where kY are the hardening moduli, and N is the total number of slip and twin sys-
tems. The nature of the slip/twin hardening moduli is the least well understood part
of the theory. Accordingly, in the following section we will first examine texture evolu-
tion in a non-hardening model, and then we will construct an approximate hardening
model to also match the macroscopic strain hardening response of the brass under

study.

During plastic flow the active systems must satisfy the consistency condition

(1) = s'(r). (2.29)

The calculation of |7°(7)| proceeds as follows. Using (2.27), F¢(7) = F(7)FP~(7),

equations (2.18, 2.19, 2.20 ), and retaining terms of first order in Avy’, we obtain

E*(r) = E° (’l’)tr - j€§A A~’sign ('rj (T)tr) sym (Ce (T)trS{;(t)) , (2.30)

and then using (2.30) in (2.12), together with (2.17,2.21,2.23), gives

ITi(T)I = lri(r)tr

> {sign (Ti(T)tr) sign ('rj (T)tr)

jePA

Si(t) - C [sym (Ce(T)trS‘g(t))}} Ay, (231)
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Use of (2.31) in the consistency condition (2.29) gives

Y A =¥, iePA (2.32)
jePA

with
A7 = hY 4sign (Ti(r)tr) sign (Tj ('r)tr) Si(t) - C [sym (Ce(T)trS{;(t))}(z.%)

b= "r"('r)tr —5'(t) >0, (2.34)
¥ = Ay >0 (2.35)

Equation (2.32) is a system of linear equations for 29 = Av? > 0.

For the case of slip alone, Anand and Kothari [1996] have recently proposed an
iterative solution procedure based on the Singular Value Decomposition (SVD) of the
matrix A, to determine the active slip systems and the corresponding shear incre-

ments. In their procedure the shear increments are calculated as
zt = A,

where At is the pseudo-inverse of the matrix A, defined over all the potentially active
slip and twin systems. If A is singular, then from the set of non-unique solutions to
Az = b, the chosen solution is the one which has the minimum length ||z||;. If for
any system the solution 7 = A+’ < 0, then this system is inactive, and it is removed
from the set of potentially active systems. The reduced system Az = b is solved again
using the pseudo-inverse of the new A. This iterative procedure is continued until all
2’ = Ay? > 0. An alternate procedure which does not involve iterations, and which
is based on a constrained quadratic minimization statement of the problem, is given
in the next section. The solutions obtained by either method are identical.

To summarize, with ¢ denoting the current time, At is an infinitesimal time in-
crement, and 7 = ¢t + A¢. The algorithm is as follows:

Given: (1) {F(t),F(7)}; (2) {T(¢),F?(t)}; (3) the rotation tensor Q(t), which brings
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the orthonormal crystal basis {e,(c) (t)} to be in correspondence with a fixed orthonor-
mal basis {eﬁg)} in space; (4) {mi(t), ni(t), s*(t)}; and (5) the accumulated shears due
to twinning I'*(t), where the index i ranges over the previously active twin systems
since the last reorientation of the lattice.

Calculate: (a) {T(r),F?(7)}; (b) the accumulated shears due to twinning I'(7),
where the index ¢ ranges over the previously active twin systems since the last reori-
entation of the lattice; (c) the rotation tensor Q(7), which brings the orthonormal
crystal basis {e,(':) (’r)} to be in correspondence with a fixed orthonormal basis {egg)}
in space; (d) {mi(7),ni(7),s*(7), }; and (e) the orientation of the slip and systems

in the deformed configuration at time 7 from
mi = F(r)mi(r),  n}=F(r)ni(r),

and march forward in time.
The steps used in the calculation procedure are:
Step 1. Calculate the trial elastic strain E¢(7)" :
F(" = F(r)F@),
Ce(T)tr — (Fe(T)tr)TFe(T)tr’
E‘(n" = (1/2{C(n)" -1}
(2.36)

Step 2. Calculate the trial stress T*(T)tr :

(N = CE(NY].

Step 3. Calculate the trial resolved shear stress Ti(’)’)tr on each slip system :

i i i
S, = my®ny,

() = Tn).si.



Step 4. Determine the set P.A of the potentially active slip and twin systems which

satisfy
|7 (r)¥| = si(¢) > 0, (2.37)

for the slip systems, and
AT —si(t) >0 (2.38)

for the twin systems.
Step 5. Calculate the shear increments from the consistency condition:

Az = b,

where A is the possibly singular matrix defined over all the potentially active

slip and twin systems, with elements

A7 = B+ sign (r(r)¥) sign (r(r)) Si(2) - Clsym (C*(7)"'S3(2))],
b= ()" - ),

= Ay >0.

This calculation may be performed by using either the iterative method based on
the pseudo-inverse of A (Anand and Kothari, 1996), or the quadratic-minimization

method detailed in the next section.

Step 6. Update the plastic deformation gradient F?(7) :

FP(r) = 1+ ZA sign (7 (7)) Ay'SE (¢) }F? ().

Step 7. Check if det F?(7) = 1. If not, normalize F?(7) as :

FP(r) = [detFP(7)]™}/3 F?(7).

43



Step 8. Compute the elastic deformation gradient F¢(7) and the stress T*(7):

Fe(r) = F(r)F* (r)
T'(r) = C[E(7)].

Step 9. Update the variables {T(7), s'(7)} :

T(r) = Fe(r){[detF*(r)]™ T*(r)} F¢' (7)

s(r) = s+ > hIAY, i=1,---,N
jeA

Here, IV denotes the total number of slip and twin systems. For example, N =

24, for a f.c.c. crystal.
Step 10. Update the twin fractions f(7):

Ayt
Yo

fi(r) =)+ (2.39)

where the index 7 ranges over all the active twin systems.

Step 11. Rotate the lattice if a sufficiently large fraction of the grain has twinned.
Let f(7) = max{f*(7)} denote the maximum value of the twin fraction, and
let £ € [0.2,1] denote a random number. If f > £ set Q(7) = Q(¢) (R™(¢)).

Update the deformation resistances.
Step 12. Calculate the “texture” (mi,nt) :

m, = F(r)my(r),

ni = F (r)ni(r).

The single-crystal constitutive equations and the time-integration procedures de-
scribed in this section have been implemented in the finite-element program ABAQUS/Explicit

[1995] by writing a “user material” subroutine. The polycrystal calculations shown in
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the following chapter were carried out by modeling each crystal in a polycrystalline

aggregate as a single finite element quadroture point.

2.4 Determination of Active Systems and the Amount

of Shear

To find the active systems and the corresponding shear increments we need to solve

‘the linear problem
Az = b, (2.40)

subject to constraints
z; > 0. (2.41)

We may solve this problem using a minimization scheme as follows. First, we con-
struct a convex scalar function as a sum of discrepancy and penalty functions. The

discrepancy function is defined as
U = (Az — b)T(Ax - b), (2.42)

minimizing of which gives a solution of the linear system in the sense of least squares.
To take into account the constraints (2.41), we must add to the function U a penalty
function which helps in the satisfaction of the constraints. The form of penalty
functions depends on the iterative minimization procedure. We chose the conjugate
gradient method. This method converges to the minimum of the quadratic function
in a finite number of steps. The main idea of the method is to choose a secant
search direction in the subspace orthogonal to all the previous search directions. Two
variants of this approach are the Fletcher-Powell [1963], and the Fletcher-Reeves

[1964] algorithms. One of the simplest and most effective classes of penalty functions
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is the “cut-type”:

0 if condition is satisfied,
F(z) =
g(z) otherwise,
where g(z) is a positive function increasing with z moving away from the domain
where the condition is satisfied. We choose our penalty functions corresponding to
the constraint (2.41) in the following form:

U? = [min(z;, 0)]°.

2=
Together, the discrepancy and the penalty functions may be written as
U=U+ C Y ¥, (2.43)

where C is a scalar weighting coefficient. Provided that the system (2.40) is not
singular, the minimum of this function gives us the least square solution of the system
(2.40) subject to the constraints (2.41). If A is singular, the paraboloid degenerates
to a plane, and the system has an infinite number of solutions. Guided by the SVD
method outlined in the main body of the paper, we add another penalty term which

guarantees a minimum length solution. With this, the minimization function becomes
Ut =U+C Y0 + W Y (z:)% (2.44)

with gradient
G=2AT(Az—b)+2CV¥ + 2W z. (2.45)

Here W is another scalar weight coefficient. Since the last term should play a role
only at the end of the solution process, and since it does not affect the solution if the
matrix A is not singular, the weight W should be small in contrast to the weight
C. The weight coefficients C and W, and the desired minimum value of the gradient

||G|| are used to control the solution process.
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The solutions obtained by either the minimization method outlined above, or the
method based on the SVD decomposition of A, are identical. The advantage of the
method outlined in this section is that it avoids the iterative and repeated solution

of the system Az = b, using the SVD method to ensure that the constraints z; > 0

are satisfied.

This procedure explains the loss of uniqueness of the solution if one were to adopt
an assumption of selecting the operative slip systems by minimizing the sum of shears.
It can be understood from the point of view of convexity of objective function. We
can write the last term in the expression (2.44) as W (=¥ |z;|). If matrix [A] is
singular i.e., the system of equations is linearly dependent, then there exist the whole
domain each point of which satisfies to the minimum of the first two terms of (2.44).
A small variation of the variables does not change the gradient3. Subsequently, any
point of the domain is the solution of the problem. To obtain a unique solution, the
last term in the expression (2.44) should be a convex function.

We have evaluated this model by comparing the predictions of the stress-strain
response, the slip system activity and the evolution of the crystal lattice against
corresponding predictions of the rate-dependent models of Kalidindi et al., [1992]
and Anand and Kothari [1996]. Some results of our calculations are shown in Fig. 2-
9. We analyzed simple tension of a single [236] oriented copper crystal. It deforms by
two slip systems, first A3=(111)[101], than, when the crystal orientation of the tensile
axis reaches the [001]-[111] boundary of the stereographic triangle, the conjugate slip
system B5=(111)[011] becomes active. There are six slip systems activated in the [111]
orientation. The slip activity on all the systems is equal, and the crystal orientation
is stable, Fig. 2-10. This is very important case from the calculation point of view.
The matrix A here is singular and the last term in 2.44 played the principal role

in the obtaining of the solution. The results obtained by gradient method are not

3In matrix form the gradient of the function U* with non-convex penalty functions has a form:

G =2AT(Ax -b)+2C ¥ + W SIGN(x) (2.46)

¥ is a vector with coordinats ¥; and SIGN(x) is a vector with coordinates signz;.
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distinguishable from the resulfs of SVD calculations®.

41t is important to note that SVD method is made for solving linear systems and cannot be used
for nonlinear ones. For example, if one derives the incremental model using the two first terms of the
Taylor expansion of deformation gradient, the final system will be nonlinear. There is no difference
in the gradient method application if linear or nonlinear system is.
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Figure 2-1: Experimentally-measured crystallographic texture for (a). copper
(Bronkhorst et al., 1992), and (b) 70-30 brass after plane strain compression of 100%.
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Figure 2-2: (a) Stress-strain curves, and (b) rate of strain-hardening versus strain in
plane strain compression for 70-30 brass and copper.
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Figure 2-3: Deformation of crystallographic lattice by slip

51



!
o)
(b)

a local region of a crystal. (b) Crystallo-
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Figure 2-4: (a) Depiction of twinning in
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Figure 2-5: (a) A twinning plane K; and a shear plane S in a f.c.c. crystal. (b) Error

in stacking sequence of (111) planes at the twinning plane. The stacking sequence
ABCABC is turned into ABCBAC. (c) The twinning elements {K1, K>, 71,72} in a

f.c.c. crystal.
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Figure 2-6: Schematic of volume-averaged incremental plastic gradient in a crystal
due to slip.
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Figure 2-7: Schematic of volume-averaged incremental plastic gradient in a crystal
due to twinning. .
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Figure 2-9: Simple tension of a non-hardening crystal initially oriented in the [236]
direction. (a) Stress-strain curve; (b) slip shears; (c) inverse pole figure of the change
in the orientation of the tensile axis.
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Figure 2-10: Simple tension of a non-hardening crystal initially oriented in the [111]
direction. (a) Stress-strain curve; (b) slip shears; (c) inverse pole figure of the change
in the orientation of the tensile axis.
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Chapter 3

Inelastic Deformation of Face
Centered Cubic Single Crystals by

Slip and Twinning.

3.1 Background

In the present chapter we report on our computational experiments on texture evolu-
tion and twin bands formation in plane strain compression of single crystals of f.c.c.
materials.

There appears to be very little work devoted to detailed modeling of single crystal
inelastic deformation duc-to slip and twinning. The study of deformation twinning
in single crystals is in its nascent stage. Wassermann et al. [1963] and Narita and
Takamura [1974]; reported mostly experimental results. I. Lifshiz [1948], Khachatu-
ryan [1983], J. M. Ball and R. D. James [1987], Rosakis [1992] and several others
investigated the twinn-lamellae structure in a grain by minimization of elastic energy.
In their analysis, the effects of large plastic deformation and texture evolution were
neglected. Some of the early considerations of twinning in crystal plasticity models
are those of Chin et al. [1969]. In this early model the shear due to twinning was

treated as pseudo-slip, but the rotation due to twinning was not accounted for, and
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hence the model was not capable of predicting crystallographic texture evolution.
Evolution of texture due to slip and twinning has been considered by Van Houtte
[1978], and more recently by Tome and co-workers [1991] and [1994]. However, their
considerations have been for the rigid-plastic, non-hardening case, and have been lim-
ited to the Taylor (e.g., Van Houtte 1978) or the “self-consistent” (e.g., Lebensohn
and Tome, 1994) averagiﬁg schemes for polycrystalline materials.

Here, we shall explore the applicability of Chin’s and Van Houtte’s ideas to model
the respense of single crystals, and our RVE will be a small part of a single crystal.
The constitutive equations and time-integration scheme presented in the previous
chapter have been implemented in the finite-element program ABAQUS/Explicit [1995].
We shall show that the predictions for the texture and stress-strain response from the
model are in reasonably good agreement with experiments in plane strain compres-
sion for a differently oriented crystal. In this chapter we report on finite element
modeling to predict the operative twinning dominated deformations and crystallo-
graphic texture evolution during plane strain compression of f.c.c. single crystals
which have been experimentally studied by Chin et al. [1969]. We show that our
model, which is described in the previous chapter, is able to reasonably reproduce
both the experimentally-measured pole figures, and approximate the measured stress
levels during plane strain compression of two specially oriented crystals, one in which
two twin systems are operative, and another in which only one twin system is opera-
tive.

Let f denote the volume fraction of the twin system with the maximum value of
f* at a given time ¢, and let £ = 0.3 denote a representative maximum value of f
in a RVE. The lattice reorientation condition suggested by Van Houtte [1978], and
adopted here, is that if f > &, then the orientation of the RVE be replaced by the
twin related orientation!. That is, if {ef|i = 1,2, 3} denotes a local orthonormal basis

associated with the crystal lattice in the old relaxed configuration, then once this

1Van Houtte actually suggested use of a probablistic criterion with £ € [0, 1] denoting a random
number. In single crystal simulations, all RVEs have initially the same lattice orientation, and a big
fraction of elements reaches the critical condition at the same time. We use the trigger effect of the
first “twinned” element by wetting the threshold £ to a fixed number.
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criterion is met the crystal basis in the new relaxed configuration of the crystal be
taken as ef* = R'"Wef.

Further, if the lattice reorientation condition is met, then f* is reinitialized to
zero, and subsequent twinning in the RVE is suppressed by setting the twin system
deformation resistances to a large value. However, subsequent slip in this RVE is
allowed, and the values of all slip system resistances are set equal to the value of the
resistance for the slip system(s) parallel to the twin system with the maximum f*

prior to the reorientation.

3.2 Plane-Strain Deformation of F.C.C. Co-8% Fe
Single Crystals

The elastic constants for Co-8% Fe single crystals are taken to be the same as that

for Co (Simmons and Wang, 1971):
Cll = 260 GPa, 012 = 150 GP&, 044 = 78 GPa.

Slip in f.c.c. crystals occurs on twelve {111} < 110 > slip systems. Note that
on a given slip system, slip can occur in either the positive or negative < 110 > slip
direction in a {111} plane. Twinning in f.c.c. crystals occurs on twelve {111} < 112 >
twin systems. Note that unlike the slip systems twinning, because the underlying
atomic arrangement is polar in nature, can occur in only one < 112 > type direction
on a {111} plane, and the twin systems correspond to the easy direction of twinning?.

Representation of the slip-twin hardening and hardening interactions is one of
the major uncertainties, and much work needs to be done to improve our under-
standing of these hardening interactions and their mathematical representation. In
this preliminary study, we shall concentrate more on lattice reorientation due to slip
and twinning during plane strain compression of the crystals, and we will pay only

marginal attention to the details of the stress-strain response. Accordingly, during the

2We do not consider the possibility of “de-twinning” in this dissertation.
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“pseudo-slip” phase the slip and twin system deformation resistances will be taken as
constant. Leffers and co-workers (e.g., 1991, 1993) have reported that during plane
strain compression of brass, twins form thin lamellae which cluster tc form bundles
in grains, and that subsequent slip is restricted to planes which are parallel to these
twin bundles. We have modeled this important kinematic restriction on the activity
of the slip systems as follows. When the fraction f = max {f*}, the maximum value
of f* taken over all twin systems, reaches a value A = 0.05; slipping and twinning
in systems whose slip/twin planes are not parallel to the plane of the twin system
with maximum f® are restricted by choosing appropriate values of slip and twin re-
sistances. Let 7, denote the single-element set denoting the twin system for which f¢
reaches the value )\, with corresponding resistance sy, . Also, let Sy denote the set
of slip systems which are parallel to this twin system. Then sy,  is still taken to be

equal to its initial value sy x = 84,0, however for the other twinning systems, setting
s*=05"8mp, for adgT,, (3.1)
renders them inoperative. Similarly, for the slip systems we require

si(r) = s for i€ 8,,

s(t) = 5-s) for i¢gSh. (3.2)

We shall simulate plane-strain compression of two specially oriented single crystals
Co-8%Fe tested by Chin et al. [1969]. A schematic of plane-strain compression in a
channel-die fixture is shown in Fig. 3-1.

In the metallurgical literature, the geometry of such experiments is typically de-
scribed by a pair of Miller indices (hkl)[uvw], where (hkl) denotes the Miller indices of
the crystallographic plane parallel to the compression plane with outward unit normal
€2, as shown in Fig. 3-1, and [uvw] denotes the Miller indices of the crystallographic
direction parallel to the free direction, e; in Fig. 3-1. The particular orientations

of the crystals experimentally studied by Chin et al. (1969) that we have chosen to
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simulate in this paper are (110)[334] and (335)[556]. These initial crystal orienta-
tions may alternatively be described in terms of the Euler angle notation {6, ¢, w} of

Kalidindi et al. (1992); these Euler angles are listed in Table 3.1.

Table 3.1: Single-crystal orientations specified by Euler angles

Orientation 0 ¢ w
(110)[334] | 43.31 | 45 | 270
(335)[556 90 | 225 | 40.32

For the numerical simulation of plane strain compression, 900 two-dimensional
ABAQUS-CPE4R elements (continuum, plane-strain, 4-noded, reduced integration)
were assigned to the single crystal. Fig. 3-2 shows the initial mesh geometry. Each
finite element represents a RVE. In order to simulate a single crystal deformation,
the initial crystallographic lattice orientation of each RVE is taken the same.

It is important to note that our 2-D finite element simulations incorporate the full
3-D slip and twin system structure. With respect to Fig. 3-2, plane strain compression
was modeled by constraining the top and bottom boundaries of the mesh to remain
straight, with the bottom boundary subjected to zero displacement in the 2-direction,
and top boundary subjected to a negative displacement in the 2-direction for a total
compressive strain of 20%. For the vertical boundaries we imposed periodic boundary
conditions, defined as follows. Let 1 and u, respectively denote the displacements for
a node on the left boundary and another on the right boundary which is at the same
horizontal level in the initial mesh, and let d = u,—u; denote the relative displacement
for this pair of corresponding nodes on the left and right boundaries. Then, partially
periodic boundary conditions are specified by requiring that w,;yn; — Wwes: = d, where
U and where u,;g, are the vectors of displacements of all the nodes for the left and
right boundaries, respectively.

In the numerical simulations reported below, we have used the the following values

for the slip and twin resistances:

s = T0MPa; s§ = 40 MPa.
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We first simulated plane strain compression experiments on a (110)[334] oriented
crystal. A micrograph of the deformed specimen taken from Chin et al. [1969] is
shown in Fig. 3-3. This picture shows that a mixture of slip and twinning has
occurred on the (111) and (111) planes. Our corresponding finite element simulation
is shown in Fig.3-4. Our calculations also predict slip occurs on the (111)[101] and
(111)[011] systems, and twinning occurs on the (111)[121] and (111)[121] systems.
The elements twinned by the (111)[121] system are colored red, and those twinned
by the (111)[121] system are colored blue. The calculated twin bands intersect at an
angle close to that observed in the experiments (Fig. 3-3).

Texture evolution is one of the most important characteristics of slip/twin sys-
tems activity. Fig.3-5(a) presents the {111} pole figure® of the crystal in its initial
orientation. The pole figure predicted by the finite element calculations is shown in
Fig.3-5(b), together with the experimentally measured (Chin et al., 1969) pole figure
in Fig. 3-5(c). The agreement between numerically predicted and experimentally
measured texture is very good.

The stress-strain data of Chin et al. (1969) is shown in Fig.3-6. Note that they do
not report data for strains less than ~ 10%. It was this stress-strain data which was
chosen to estimate the slip and twin resistances used in our numerical simulations.
The computed stress-strain curve is also shown in Fig. 3-6. Overall, the computed
stress levels are in the range of that observed in the experiments. The first part of the
curve up to strains of less than = 2.5% corresponds to the general plastic deformation
by combined slip and twinning with twinning treated as pseudo-slip. The sudden
jump in the stress at a strain of approximately 2.5% corresponds to the attainment
of the first threshold when slip in certain elements is constrained to be operative on
slip systems which are parallel to the dominant twin systems. The subsequent drops
in stress on the calculated stress-strain curve correlate with the reorientation of the
crystallographic lattices of elements due to twinning. Note that if we were to increase
substantially the number of elements used in the finite element simulation, then the

computed curve would be smoother.

3All pole figures shown in this section are in stereographic projection.
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Next, we simulated plane strain compression of a (335)[556] oriented crystal. A
micrograph of the deformed specimen taken from Chin et al. [1969] is shown in Fig.
3-7. Chin et al. report that during the early stages of deformation, slip on (111)[110]
and (111)[110] systems predominated. With increasing deformation, twinning on
(111)[112] became predominant.

Our calculations, (in Fig.3-8) show the same twin system, (111)[112], to be dom-
inant at a strain of 20%. The twinned elements in the deformed finite element mesh
are colored red. Because of the activation of only one twin system, the macroscopic
shear deformations became significant and the mesh was visibly sheared. The twinned
regions of the (335)[556] single crystals have a new twin-related orientation, which
deforms easely than parent crystal. One can see from Fig 3-8 that the major defor-
mation occurs inside twinned regions. The {111} pole figure for the initial orientation
is shown in Fig.3-9(a).

The calculated and experimentally measured (Chin et al., 1969) textures after
plane strain compression to 20 % are shown in Figs. 3-9(b) and 3-9(c), respectively.
As for the previous calculation, the calculated texture captures the main features
of the experimental texture. The calculated stress-strain curve together with the
experimental data by Chin et al. (1969) is shown in Fig.3-10. The calculated stress

levels are in the right range.

3.3 Concluding Remarks

Our calculations clearly demonstrate the ability of our constitutive model and com-
putational procedure to capture the major features of plastic deformation of a single
crystal due to slip and twinning. However, as formulated, the constitutive model has
a number of limitations: (i) The model at this stage is essentially non-hardening.
(27) The important role of twin-boundary energy is neglected in the model. (i?)
There is no length scale in the model. Much work needs to be done to improve our
understanding of the slip and twin hardening and hardening interactions, and their

mathematical representation.
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The limitations in the finite element calculations are mostly related to our use of
a small number of elements. Because of the coarse mesh, the twin bands propagate at
an angle that is determined not only by the underlying slip and twin systems, but also
by the finite element mesh itself. A more refined mesh should mitigate this problem.
However, the problem of the width of the twin bands is not solved by refining the
mesh. For this, a suitable length scale associated with non-local effects of twinning

needs to be introduced into the constitutive model.
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Figure 3-1: Schematic of plane-strain compression experiments.
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Figure 3-2: Initial finite element mesh. Each finite element represents a RVE.

68



Figure 3-3: Micrograph of the (110)[334] oriented crystal showing twin bands (from
Chin et al., 1969). '

69



Figure 3-4: The deformed FEM mesh with calculated twin bands.
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{111}

(a)

Figure 3-5: {111} pole figures for [334] oriented crystal. Initial (a), FEM calculated
after plane strain compression to'20% (b), and experimentally measured (Chin et al.,
1969) {(c).
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Figure 3-6: Stress-strain data for plane strain compression of (110)[334] oriented
crystal.
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Figure 3-7: Micrograph of the (335)[556] oriented crystal showing twin bands (from
Chin et al., 1969).
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Figure 3-8: The deformed FEM mesh with calculated twin bands.
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Figure 3-9: {111} pole figures for (335)[556] oriented crystal. Initial (a), FEM calcu-
lated after plane strain compression to 20% (b), and experimentally measured (Chin
et al., 1969) (c). '
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Figure 3-10: Stress-strain data for plane strain compression of (335)[556] oriented
crystal.
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Chapter 4

Evaluation of the Constitutive
Model for FCC Polycrystalline

Materials

4.1 Experimental Procedure and Results for a-
brass

The material we study in this chapter is polycrystalline alloy, consisting of Cu/68.8 %
), Zn(29.5 %), Pb( 1.3 %), and remained elements, mostly Fe. This CuZn alloy system
is commonly known as a-brass or brass 70-30. X-ray analysis indicated face centered
cubic crystallographic structure with the lattice space a = 3.6853 A. Structure of
the as-received a-brass is shown in a scanning electron micrograph in Fig. 4-1. The
intrinsic stacking fault energy of such an alloy is v = 36 mJ/m? — almost half that of
the value for the pure copper, v = 73 mJ/m? (Thornton and Mitchell [1962]). In pure
copper twinning was observed only at low temperature. The commercial Cu 70%-
Zn 30% alloy twins at room temperature and has only two mode of deformations:
crystallographic slip and twinning.

As-received 70-30 brass was annealed at 600°C for one hour in an inert atmosphere.

Plane strain experiments were conducted at room temperature and at a quasi-static
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strain rate of 0.006 s~'. The dimensions of the plane strain compression specimens
were 12.7mm in the compression direction, 10 mm in the constrained direction, and
11mm in the free direction. For the simple compression experiments, cylindrical
specimens with an initial ratio between height and diameter of 1.5 were used. The
specimens were lubricated with MoS; lubricant and teflon film to reduce friction.
Mechanical tests were conducted to large deformations up to € = —1.

Servo-hydraulic Instron machines were used for mechanical testing. Data acqui-
sition and active test control was performed with LabTech Notebook software. This
software allows one to conduct experiments with controlled strain rate.

For‘ microstructural analysis the samples were electrolytically polished and chemi-
cally etched. Initial surface preparation for final electro-polishing starts from mechan-
ical polishing, using diamond-impregnated clothes. The preferred abrasive should be
diamond paste from 9 pym to 15 yum. A wheel speed of 300 rpm was generally used.
Brass is very soft metal and, the abrasive leaves micro scratchs that are hard to
distinguish from twins during microscopic analysis. Electrolytic polishing of brass
alleviates many of the problems specific to mechanical polishing. For this purpose a
solution of 2 parts of H3 PO, and 3 parts of H,O was used. The polishing regime has
two voltage bounds: if the voltage is less than the lower bound etching takes place,
and if the voltage is higher than the upper bound pitting is observed. For successful
polishing we should determine the low voltage bound, increase working voltage on
2 - 3 V and to check if polishing process running. If the sample is being polished,
we should hold the level of current. Current is a more important parameter than
voltage during the electric polishing procedure. In our experiments we used “Struers
Polectrol” in the following regime: the voltage U = 18V and flow rate f = 3 within
20 seconds. For brass 70-30 microanalysis the most clear results were obtained with
the usage of an etchant consisting of 5 parts HNQj, 5 parts of acetic acid, and 1 part
H3; PO, by immersing for 3-5 sec. Micrographes, typical for a-brass after plane strain
compression are shown in Fig. 4-2.

Experimental measurements of texture of the samples after deformation were car-

ried out by X-ray irradiation, using a Rigaku RU200 diffractometer. Pole figures were
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obtained by using the Shultz reflection method with copper-K, radiation. For most
of our pole figure measurements we used the following dimensions of the divergence
slit as 19, scatter slit as 5mm. To process the experimental data, the Preferred Orien-
tation Package (Kallend et al., [1991]) was employed. Each measured pole figure was
corrected for background and defocusing, and also extrapolated for the outer 15°.
The {111}, {100}, and {110} pole figures for plane strain compression after 100%
compression are shown in Fig. 2-1; all pole figures are equal-area projections of the
specified crystallographic planes.

For model verification and for the fitting model parameters we compared model
results against experimental ones. We show this comparison in the section describing

our numerical experiments.

4.2 Finite Element Simulations

Our literature search showed that all previous calculations of polycrystalline plastic-
ity due to slip and twinning have been limited to the Taylor (Van Houtte, [1978]),
Sachs (Leffers, [1993]), or self-consistent (Lebensohn and Tome, [1994]) averaging
schemes. These averaging schemes add another level of assumptions which may mask
some of the consequences of the underlying features in our constitutive model for
the response of a single crystal. To circumvent this difficulty we have performed
full three-dimensional finite-element calculations, in which each element represents a
single crystal. In the finite-element model of a polycrystal, both compatibility and
equilibrium conditions are satisfied; and there is no need for the Taylor, Sachs or
any other hypotheses, which have been classically used to obtain the response of
polycrystalline aggregates.

We use a set of 343 initially “randomly”-oriented crystals to simulate an initially
isotropic polycrystal. Fig. 4-3a shows the initial finite-element mesh using 343 ele-
ments to model such a polycrystal. The planes corresponding to z; = 0, z; = 0, and
z3 = 0 are confined such that all the nodes on these faces have zero u;, uo, and u;

displacements, respectively.
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The planes corresponding to x; = 0, zo = 0, and z3 = 0 are confined such that
all the nodes on these faces have zero u;, us, and uz displacements, respectively.
For plane-strain compression simulations the displacement for the outer face of the
specimen in the z; direction is set to u; = 0; the outer face in the z, direction has
zero tractions, while a negative uz displacement is applied on the outside z3-face of
the specimen.

For simulations of simple compression tests the constraint condition u; = 0 for
the outer face of the specimen in the z; direction was substituted by zero traction

condition.

4.2.1 Combined Slip and Twinning — Non-hardening Model

The material was modeled as an elastic-plastic, non-hardening material with elastic
moduli (Simmons and Wang, [1971]): C;; = 134 GPa, Ci; = 105 GPa,Cy =
70 GPa, a constant value of slip system resistance sy = 25 MPa, and three different
constant values of the twin system resistance s;,, such that the ratio R = s4,/ss
had three different values of R = 4, 1.1, and 0.8. The deformed configuration after
a nominal plane strain compression of 100% for a representative value of R is shown
in Fig. 4-3b.

The stress-strain curves corresponding to the three different values of R are shown
in Fig. 4-4. The stress-drops in Fig. 4-4 correspond to the beginning of the twin-
induced lattice reorientation process. Numerically, one can control where the stress-
drop occurs by changing the lower bound of the random number £ € [¢,1] used in
our algorithm to determine the onset of lattice reorientation due to twinning. For the
representative calculations shown here, we chose ¢ = 0.1.

The calculated pole figures after 100% plane strain compression for the three dif-
ferent values of the parameter R are shown in Fig. 4-5. The copper-type texture
obtained in this work for R = 4 is similar to the pole figures obtained for non-
hardening materials earlier by Bronkhorst et al., [1992]. Incorporation of twinning
changes the texture from copper-type to brass-type. The pole figures for R = 1.1

show a greater similarity to the experimentally observed textures of 70-30 brass after

80



100% plane strain compression, Fig. 2-1, than to the textures calculated for R = 0.8.
This is a reflection of the fact that for brass, slip is a more dominant mode of inelastic
deformation than twinning. Plastic deformation in brass begins by crystallographic
slip, and only after some finite deformation, when the slip systems have hardened
sufficiently that the critical deformation resistance for slip exceeds that for twinning,
does twinning occur. A non-hardening model is not able to capture this physical phe-
nomenon in sufficient detail. To analyze the effects of hardening on texture evolution
and stress-strain response we have developed a simple hardening model described in
the next section. However, we note that even an oversimplified non-hardening model
is able to catch the main features of the transition from a copner-type texture to a
brass-type texture, which is a direct manifestation of plasticity by combined slip and

twinning, rather than by slip alone.

4.2.2 Combined Slip and Twinning — Hardening Model

In this section we revert to our original notation s* and s®, for the slip and twin
resistance, respectively. Representation of the slip-twin hardening and hardening
interactions is one of the major uncertainties, and much work needs to be done to
improve our understanding of these hardening interactions and their mathematical
representation. A simple phenomenological model for the evolution of s* and s® is

formulated below.
During the “pseudo-slip” phase the twin system deformation resistances may be

taken as constant, and the slip system deformation resistances are taken to evolve in

the form (e.g. Kalidindi et al., [1992]):
s'(r) =s'(t) + Y_hY(t)Ay’, where hY =qhl. (4.1)
j
Here h¥ are components of the hardenirg matrix,

¢’ = [q+ (1 - q)6"] (4.2)
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is the matrix describing the latent hardening, with ¢ = 1.0 for co-planar systems and

q = 1.4 for non-coplanar systems’, and
j \a '
B = ho(1 — —g—) (4.3)

is the single slip hardening rate, with {hq, §,a} slip system hardening parameters,
which are taken to be identical for all slip systems. |

As mentioned previously, Leffers and co-workers (e.g.,[1990], [1991]) have reported
that during plane strain compression of brass, twins form thin lamellae which cluster
to form bundles in grains, and that subsequent slip is restricted to planes which
are parallel to these twin bundles. We have modeled this kinematic restriction on
the activity of the slip systems as follows. When the fraction f = max {f*}, the
maximum value of f* taken over all twin systems, reaches a value A (between 3% to
5%), slipping and twinning in systems whose slip/twin planes are not parallel to the
plane of the twin system with maximum f® are restricted by choosing appropriate
values of slip and twin resistances. Let 7, be the single element set denoting the twin
system for which f* reaches the value A, with corresponding resistance sy, ). Also,
let Sy denote the set of slip systems which are parallel to this twin system. Then the

evolution of sy, » may be taken in the saturation form

w t Qtw
w

where A, is the shear increment due to twinning in the major twin system, and
h&”, 84, and ay, are constants for particular material. Also, for the other twinning

systems, setting
s*(1) =5- styp, for agTh, (4.5)

renders them inoperative. Here sy, is the initial twinning resistance. For the slip.

We recognize that this is a greatly simplified description of latent hardening. However, our
numerical experiments show that the macroscopic stress-strain curves and crystallographic texture
evolution are not significantly altered when we change the values of q.
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systems co-planar with the major twin system, requiring
s'(1) =8 (t) + D_RIA)AY < swna(r), for i€ Sy,
J

keeps them operative. Also, since twin lamellae are serious obstacles to dislocation
glide they cause additional hardening of the slip systems not in S). A simple phe-

nomenological form for this hardening interaction is as follows:
s'(r) = §(t) + D_AI()AY + Ri,_,Ay™, for i ¢S, (4.6)
J

where A, is the shear increment due to twinning in the major twin system, and
the last term represents twin-slip hardenir:g. A simple saturation-type form for the

twin - slip hardening rate is

) i 1 Qg
h’;w—sl = hf)w—d (1 — ~S ( ) ) , (47)

Stw—sl

where hf)""“, Stw—si, and ag,_g are additional material constants.

Thus, to account for slip-twin interactions and the reorientation due to twinning
we chose two thresholds related to the “twin fraction” calculated by treating twinning
as a “pseudo-slip.” Slip is restricted to planes parallel to the dominant twin system
when the first threshold is reached, and the crystal lattice in the relaxed configuration
is rotated to the twinning-related orientation when the second threshold is reached.
The flowchart for calculations to model these twinning effects is given in Fig. 4-6.
To summarize, the hardening parameters in the model are si, s, the initial values of
the slip and twin resistances. The hardening parameters {ho, §, a} are associated with
slip hardening during the pseudo-slip phase. The hardening parameters {h§”, S, Qi }
are associated with the self-hardening of the major twin system. And the parameters
{hf,“’"s’, Stw—sls atw_sz} are associated with the enhanced hardening due to the inter-
action of the dominant twin system with the slip systems not parallel to it. These
parameters are obtained by judiciously adjusting their values so that the model re-

produces the plane strain compression stress-strain curve obtained from experiments
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on 70-30 brass. The stress-strain curve obtained from these experiments is shown
in Fig.4-7. Finite-element calculations for plane strain compression of an aggregate
of 343 initially randomly-oriented grains (with the same boundary conditions as in
the non-hardening calculations) were carried out with various values of the material
parameters. The process of curve-fitting the plane strain compression stress-strain

data to obtain the value of the hardening parameters yielded
sy = 25 MPa, s = 155 MPa,

ho = 135 MPa, 5 = 400 MPa, a = 2,
h¥ = 452 MPa, 5., = 245 MPa, a;, = 0.25, and
hi*=s! = 1.06 GPa, §1,_q = 245 MPa, az,_q = 0.25.

The quality of the curve-fit is shown in Fig. 4-7. One can see that the calculated
stress-strain response is very close to the experimentally observed one. The jumps on
the numerically calculated curve at strains greater than = 0.5 are due to the crystal
lattice rotations of the grains during twinning?.

The {111}, {100}, and {110} pole figures for plane strain compression after 100%
compression are shown in Fig. 4-8; all pole figures are equal-area projections of the
specified crystallographic planes. This figure also shows the numerically-predicted
pole figures. The agreement between the numerical prediction and experimental mea-
surements, especially for the {111} and {100} pole figures, is very good.

The numerical calculations show that because of the difference in values of si =
25 MPa and s§ = 155 MPa, in the initial stages of deformation the grains deform
by crystallographic slip only. The slip deformation resistances increase due to strain-
hardening, and at a level of macroscopic strain of approximately 10%-15%, the first

threshold, A = 0.04, for the twin fraction f = max{f®} used to restrict slip, is

2Comparison of the predicted stress-strain curves using 100 elements rather than 343 elements
shows that the curves are smoother when a larger number of elements are used in the polycrystal
model simulation.
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reached in some grains. At this stage the resistances for twinning on all systems
other than the twin system with maximum value of f® were set to values five times
their initial values, and our choice of hardening parameters ensures that the slip
resistances increase very fast for all systems other than those which are co-planar
with the dominant twin system; dominant crystallographic shearing occurs along the
chosen crystallographic plane in a given crystal. When the second threshold for the
twin fraction f = max { fA } is reached, f > ¢, £ €0.2,1], with £ a random number,
the crystal lattice is replaced with a twin-related one, and all slip system deformation
resistances and all twin system resistances are set to the values corresponding to
those for the active twin system. With our choice of material parameters, the crystal
lattice rotation due to twinning starts at about 45% macroscopic strain. Before this
level of deformation, the calculated pole figures are very close to those typical for
f.c.c. materials deforming by slip alone. In our model twinning affects the predicted
texture of the material in two ways: (¢) restriction of slip to slip planes parallel to the
dominant twin system in a grain; and (4z) reorientation of the lattice of grains to the
twin-related orientations. Our numerical experiments show that the first mechanism
alone is insufficient to produce the distinguishing “brass-type” texture.

Numerical results show that the “brass-texture” is a result of both constrained
slip, and the lattice reorientation due to twinning.

The set of material parameters fit to the plane strain compression data has also
been used to predict the response in simple compression. The initial and deformed
finite element mesh is shown in Fig. 4-9. The graphs in Fig. 4-10 show that
numerically-predicted stress-strain response is close to the experimentally measured
one. Fig. 4-11 shows the measured and predicted pole figures at strain of 100%. The

agreement is very good.
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4.2.3 Texture Evolution in Non-hardening and Hardening

Models for Slips Only

In this section we turn out our attention to the influence of slip hardening on texture
evolucion. As already noted by Bronkhorst et al. [1992], Kalidindi [1992], and as we
ourselves observed, the FEM calculations give a softer response when compared to
the response from the Taylor-type model for the same values of the slip hardening
parameters. The finite element calculations are a necessary step in evaluating of the
model (in particular, Taylor-type model) accuracy. However, even for this kind of
simulation the influence of hardening parameters on crystallographic texture is not
fully understood.

Our finite element calculations for plane strain compression in the non-hardening
case indicated that the resulting texture is much sharper than one obtained from
strain-hardening calculations and very close to the Taylor-type model texture. We
analyzed the influence of the boundary conditions and number of mesh elements on
texture evolution. We obtained very similar results when we performed the calcu-
lations with 343 3D elements that represent 343 grain orientations (cube 7 X 7 X
7), 675 3D elements that represent 675 grain orientations (parallelepiped 15 X 15 X
3), and 400 2D elements that represent 400 initial grain orientations (square 20 X
20). The comparison between nun-hardening finite element calculations and strain
hardening finite element calculations for copper to plane strain compression € = —1
is given in Fig. 4-14. The similarity between non-hardening finite element texture
prediction and Taylor-type model calculation, can be explained, from our point of

view, by the local homogeneity of strain field presented in the both models.

4.3 Taylor-Model Simulations

A very large body of literature exists on application of the Taylor model for texture
prediction. The main assumption of this model for a polycrystal is that the defor-

mation gradient in each grain is homogeneous and equal to the macroscopic one at
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a material point. The compatibility condition is automatically satisfied in this ap-
proximation; however, equilibrium holds only inside a grain, but is violated between
grains. If, in addition, we assume that all grains have equal volume, then the average
Cauchy stress at each macroscopic continuum point is simply the number-averaged

stress (Taylor, [1938]; Asaro and Needleman, [1985]):

1 kiN K
T=— T (4.8)
N k=1

where T* is the Cauchy stress in the k-th crystal, and N is the total number of
crystals comprising the material point.

By comparing the Taylor model predicted stress-strain responses and crystallo-
graphic textures against results from FEM simulations, Bronkhorst et al., [1992]
showed that a Taylor-type model of a polycrystal provides an acceptable descrip-
tion of the behavior of single-phase f.c.c. polycrystals deforming by slip alone. We
have employed the same method to check on the applicability of a Taylor model for
combined slip and twinning. With the material parameters calibrated for a full finite-
element model of a polycrystal, our Taylor model simulations slightly overpredict the
stress-strain responses in both plane strain compression and simple compression, Fig.
4-7 and Fig.4-10, respectively. Fig.4-12 and Fig. 4-13 show the predictions for the
crystallographic texture, using both the finite-element model and the Taylor model
for plane strain compression and simple compression, respectively. The texture pre-
dictions from the two modeling schemes are very similar. Thus, as for f.c.c. materials
which deform by slip alone, the Taylor model may also be used for obtaining compu-
tationally inexpensive and reasonably accurate predictions of both the stress-strain
curve and the crystallographic texture of f.c.c. materials deforming by combined slip

and twinning.

87



4.4 Concluding Remarks

To summarize, a rate-independent, elastic-plastic, constitutive model for plastic de-
formation of f.c.c. polycrystalline materials deforming by both slip and twinning has
been developed. The model was implemented in the finite-element program
ABAQUS/Explicit [1995].

Full finite-element models of a polycrystal (in which both compatibility and equi-
librium are satisfied) were used to carry out plane strain compression simulations. By
using comparisons between model predictions and macroscopically-measured stress-
strain curves on 70-30 brass, we deduced information about the values of the single-
crystal parameters associated with slip and twin system deformation resistances and
hardening due to slip and twinning. The predicted crystallographic texture from the
finite-element calculations is in good accord with experiments. The model also suc-
cessfully predicts the stress-strain response and crystallographic texture evolution in
simple compression experiments.

We have also evaluated the applicability of a simple Taylor-type model for com-
bined slip and twinning. Our experiments and calculations show that, for the high-
symmetry f.c.c. brass, a Taylor model for a polycrystal deforming by combined slip
and twinning is able to predict reasonably well the macroscopic stress-strain curves
and crystallographic texture evolution in both plane strain and simple compression.

We wish to emphasize that there are several limitations in the present model which
make it unsuitable for modeling the fine-scale features of deformation of single crys-
tals by slip and twinning. The two major limitations are: (z) During the pseudo-slip
phase, the amount of shear on twin systems never actually reaches the large value of
7 = 1/4/2 on any twin system. (i) The assumption that the lattice of the crystal is
unchanged until a large volume fraction of the crystal is “twinned,” and then, based
on a probabilistic criterion, the lattice is given the orientation corresponding to the
twin syste:.n with the largest accumulated pseudo-slip. This modeling assumption
does not comprehend the experimentally-observed layered -composite microstructure

of matrix and twin lamellae in single crystals. Nevertheless, as shown in this chapter,
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for a polycrystalline material, the major features of the averaged macroscopic tex-
ture evolution and stress-strain curves, are adequately represented by the model for

engineering simulations.
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Figure 4-1: The SEM micrograph of as-received a-brass.
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Figure 4-2: The optical micrographs of a-brass after plane-strain compression to
e = —0.5; magnifications (a) 400X and (b) 1000X
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(b) Deformed mesh

Figure 4-3: Representative (a) initial, and (b) deformed 3-D finite-element meshes

for plane strain compression.
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Figure 4-4: Stress-strain curves for non-hardening simulations of plane strain com-
pression for three different values of the ratio R = s;,,/sq = 4, 1.1, and 0.8.
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Figure 4-5: Crystallographic textures at 100% plane strain compression for non-
hardening simulations for three different values of the ratio R = s3,/s4 =
4, 1.1, and 0.8.

94



1

SHEARING IN TWIN SYSTEM IS TREATED AS
PSEUDOSLIP

F 0)=r, (T1)F" (t)
F.@)=1+ Ay s + Z_A'yﬂsg

slip

i

@ TWINNED FRACTION OF GRAIN 2

B=1PB /v ffe[0,1]
FB ® = f A’YB dt;
0

f= max {fﬂ}

PY RESTRICT SLIP IN PLANES WHICH ARE
NOT PARALLEL TO THE BUNDLE

RANDOMNUMBER  Ze[y, 1]
% 1S THE "ROTATION" THRESHOL

DO NOT ROTATELATTICEINTHE 4
®  RELAXED CONFIGURATION

CONTINUE TO 1

TWINNED "FRACTION" OF
GRAIN

A ..
r—

= =8
A"Z&r 'Yo—hi
1—-=A_ _'Yozhi
H h
=L = 2 h
Yo H

ROTATELATTICEINTHE  °
RELAXED CONFIGURATION

e
ef = RE,;, ef

SET
=0

SET deformation resistances at
the level reached by the active

| twin system atthattime, |
v
START OVER 6

Figure 4-6: Algorithm of the computational procedure

95



800

0 MPa

Experimental
-------- FEM Calculations
- - —-Taylor Model Simulations

0 I lJ I L) l ) I ) l L]
0.00 0.25 0.50 0.75 1.00 1.25

€

Figure 4-7: Comparison of the experimentally-measured stress-strain curves for plane
strain compression of a-brass against a finite-element model of a polycrystal, as well

as against a Taylor model.
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Figure 4-8: Comparison of experimentally-measured pole-figures after 100% plane
strain compression of a-brass against predictions from numerical simulations. (a)
Experimental results. (b) The discrete predictions from finite-element calculations
shown in (c), are smoothed to show grey-scale intensities using popLA.
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Figure 4-9: Representative (a) initial, and (b) deformed 3-D finite element meshes
for simple compression.
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Figure 4-10: Comparison of the experimentally-measured stress-strain curves for simp
le compression of a-brass against a finite element model of a polycrystal, as well as

against a Taylor model.
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Figure 4-11: Comparison of experimentally-measured pole-figures after 100% simple
compression of a-brass against predictions from numerical simulations. (a) Experi-
mental results. (b) The discrete predictions from finite-element calculations shown in
(c), are smoothed to show grey-scale intensities using popLA.
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Figure 4-12: Comparison of the pole-figures after 100% plane strain compression
predicted from a finite-element model of a polycrystal against those predicted by a
Taylor model.
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Figure 4-13: Comparison of the pole-figures after 100% simple compression predicted
from a finite-element model of a polycrystal against those predicted by a Taylor model.
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Figure 4-14: Comparison between the calculated pole figures (a) in non-hardening
and (b) in strain hardening models for copper plane strain compression to € = —1.
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Chapter 5

Plastic Deformation of HCP
Materials at Room Temperature.

Applications to Magnesium alloy

AZ31B.

In this chapter we present a constitutive model for h.c.p. metals at room temperature,
and calibrate the model parameters for the magnesium alloy AZ31B.

By using comparisons between model predictions and macroscopically-measured
stress-strain curves and texture evolution we have deduced information about the
values of the single-crystal parameters associated with slip and twin system deforma-
tion resistances. We show that a non-hardening model is able to reproduce both the
experimentally measured pole figures and the stress-strain curves in different modes
of deformation. Our calculations show that two main crystallographic mechanisms,
slip on basal (0001) < 1120 > systems and twinning on pyramidal {1012} < 1011 >
systems play the dominant role in the deformation of magnesium at room tempera-

ture.
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5.1 Mechanisms of plastic deformation in magne-
sium

In hexagonal structures crystallographic Miller-Bravais indices based on the three axes
ay, ag, and ag belonging to the basal plane and axis c orthogonal to them are used.
Fig. 5-1 shows indices of the directions in the hexagonal system. The basal plane
(0001) is the closest packed among all crystallographic planes in h.c.p. materials. The
crystal geometry, particularly, the ratio ¢/a, where a is interatomic distance on the
basal plane in any of the three < 1120 > directions and c is the distance between the
first and the third layers, governs the deformation behavior of h.c.p. materials. The
ideal c/a ratio, calculated on the basis of a hard sphere model is 1.633. However, in
real materials it varies from 1.567 for beryllium to 1.886 for cadmium. The increase
in c¢/a ratio means that the distance between the adjacent basal planes increases, so
they appear relatively more close-packed than alternative planes, for example, prism
or pyramidal. These planes are shown in Fig. 5-2. The smaller the ratio ¢/a, the
easier non-basal slip systems operate. The axial ratio for magnesium is close to the

ideal value and at room temperature equal to 1.624.

5.1.1 Crystallographic mechanisms of plastic deformation
in magnesium

Basal slip dominates in plastic deformation of magnesium, but pyramidal < a >
and prismatic < a > slip systems have also been observed even at room temperature
(Burke and Hibbard [1952]). The movement of dislocations produces slip on particular
planes, in a direction parallel to one of the close-packed rows of atoms, such as
[1120] illustrated in Fig. 5-2. The following table states the main slip and twin
systems frequently quoted for magnesium. One can see from Table 5.1 that the first
three most important slip systems have the same slip directions. Therefore, all h.c.p.

materials, and magnesium in particular, do not have enough independent slip systems
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Table 5.1: The main slip and twin systems in magnesium

Type of the systems

System

Ease of operation

Reference

basal < a > slip
pyramidal < a > slip
prismatic < a > slip
pyramidal < c+a >
slip

{0001} < 1120 >
{1101} < 1120 >
{1100} < 1120 >
{1122} < 1123 >

mainly at high T
mainly at high T
anomalous mode

Burke and
Hibbard [1952]

Morozumi
et al. [1975]

twinning
twinning

{1012} < 1011 >
{1011} < 1012 >

Yo = 1.066 rare

Hall [1954]

to accumulate arbitrary deformation!. Because of the limited nature of common slip
modes, twinning is one mechanism which allows plasticity in the < ¢ > direction. The
most common twinning mode in h.c.p. metals is {1012} < 1011 >. The direction of
shear associated with twinning depends on the ¢/a ratio (Yoo [1981], Hosford [1993]).
For all metals with c¢/a < /3 the direction of shear is [1011], and twinning occurs
" under tension parallel to the c axis. For those metals, where c/a > /3 the direction
of shear is [1011], and twinning occurs under compression parallel to the ¢ axis as
schematically shown in Fig. 5-3. There are several twinning systems in raagnesium
that are reported in literature but the dominant one is (1012)[1011] (Fig. 5-4a). The
correspondence schematic plan view of several hexagonal cells is given in Fig. 5-4b.
In addition to twinning on the {1012} plane, in rare cases twins on {1011} were
observed. Since this, {1011} twinning mode is relatively unimportant, it will not be

further considered. Thus, the twinning elements for h.c.p. magnesium are

K, =(1012), m =[1011], K,=(1012), n, = [1011]. (5.1)

In any material, five indep~ndent systems must be active for an arbitrary shape change. Our
numerical experiments with f.c.c. materials demonstrated that crystals with different orientations
operate different number of slip systems, but the average number of active slip system per grain is
exactly equal to five. As was mentioned in previous chapters, f.c.c. crystals have twelve possible slip
systems and several sets of five independent systems can be chosen for any prescribed deformation.
In contrast, in h.c.p. metals there is a lack of independent slip systems.
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The twinning shear corresponding to these elements may be written as
S=1+ym®n, m-n=0, 7 =0.129, (5.2)

where m is a unit vector in the 7, = [1011] direction, and n the unit normal to
the K; = (1012) plane. The most important role of twinning is reorientation of the
crystallographic lattice to the new position, where basal slip can be easily operated.
Fig. 5-4c schematically shows the local description of a twinned crystal, where we
have two regions R; and R, which are separated by a plane P with unit normal n.
For the case where the crystalline structure in R, can be obtained from the one in

R; by means of a rotation of 7 about an axis parallel to n,
R¥=2n®n —1,

Figure 5-4d shows the atom movement during the twinning. New atoms do not
exactly fit the atom sites of the original (parent) lattice. A minor movement, which
must be added to the twinning shear, is called a “shuffle.”

At room temperature, existence of pyramidal < ¢+ a > slip in magnesium is not
established but these systems are important at elevated temperatures when twinning
is suppressed.

In the end of this section we list directional cosines for all important slip/twin sys-
tems in Magnesium and Magnesium alloys. The Bravias lattice notation is not con-
venient for numerical modelling because of the absence of orthogonality. We transfer
the four indices’ notations into Miller indices by definition of the following orthogonal
Cartesian system (see Fig. 5-la) with unit vectors: e§—axis is [1210]; e§— axis is
[1010], and e§—axis is [0001]. In this Cartesian axis n is normal to a crystallographic
plane (written through Miller indices), m is a direction in this plane. The main slip
systems have the directional cosines shown in Tables 5.2 — 5.5 below.

The main {1012} < 1011 > twin systems have the following directional cosines in

the Cartesian system which shown in Table 5.6.
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Table 5.2: Basal Slip Systems (0001) < 1120 >

a | [n2]. | [m¢]. | Bravias indices
1{001|%-Lo| (0001)1120]
2001|130 | (0001)[2110]
3/001| -100 | (0001)[1210]

Table 5.3: Prismatic Slip Systems {1010} < 1120 >

a [nZ]. [m?]. | Bravias indices
1| o010 100 | (1010)[1210]
2| =8 1o | 180 | (0110)[2110]
3|-L-1o|-1%0| (1100)[1120]
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Table 5.4: Pyramidal < a > Slip Systems {1011} < 1120 >

a [n%], [m¢]. | Bravias indices
1 0 -y Y 100 (1011)[1210]
2| 7 —viar e | 1 F0 | (IR
3| viiir vitwr virss | 3 £ 0 | (Ton)[iT20)
4 0 ey -100 (1011)[1210]
5| -vfer st v |3 %0 (OT1D)[2I0)
6 _\/4¢:£c3a2 —\/aTc?c-u-s.a2 \/4;&13(;2 % "73 0 (1101)[1120]

Table 5.5: Pyramidal < ¢ + a > Slip Systems {1122} < 1123 >

[n¢], [m2], Bravias indices
TR T Es v | v v weky | (122)[1123)
ver O e e O e (1212)[1213]
2(~/m) 2(\/\4:6'7) (s/c2—+Ef) _2(\/cg+a2) _2(x/§-‘:—a2) (\/czc+a2) (2112)[2113]
ST 2(\/§ia2) Vo | averd 2(\/%) v | (1122)[1123]
~wera O W v O v (1212)[1213]
ST _2(\/;/23:(12) Varn | e 2(\/\c/2§'(+1—a2) AT (2112)[2113]
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Table 5.6: Pyramidal < ¢ + a > Twin Systems {1012} < 1011 >

i [n}], [m}]. Bravias indices
1 0 — oy ey 0 Py oty (1012)[1011]
2 0 e e 0 -7 Jatem (1012)[1011]
3 —2(\/f:3a2) —2(\/c2c+3a2) (c;/_%a?) g(m) 2(\/624:’3—05) 2(«?@) (1102)[1101]
4 2(\/c\£-c3a2) AVE T (x/?%) _2(\/c§3-3a2) _2(\/ﬁl3a2) V) (1102)[1101]
S| o v RS | Caven e e | (U201
6 2(\/;[:34;2) 2T (\/CT‘/:S,T) 2(\/93“:3-;5) 2(\/52‘/%5) VAT (0112)[0111]

5.1.2 Non-crystallographic effects of plastic deformation in
magnesium.

Deformation mechanisms in polycrystalline magnesium are much more complex than
for single crystals. As Raynor [1959] pointed out, in addition to basal slip and pyra-
midal twinning, there exist more prolific twinning and non-basal slipping caused by
inhomogeneous stressing and grain boundary constraints.

The most important non-crystallographic mechanism of inelastic deformations is
grain boundary sliding (Jillson [1950], Hauser et al. [1955], and Raynor [1959]) as
shown on micrograph in Fig. 5-5. Shear displacements across grain boundaries are
observable at relatively low strains. One can see from Fig. 5-5 that grain boundary
gives rise to multiple slip and twinning in the adjacent grain boundary area. This
additional plastic yielding results in stress relief.

Thus, in magnesium in addition to slip and twinning several noncrystallographic

features take part in maintaining generalized plastic flow. To account for them in
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numerical simulations two different approaches can be chosen. First, to subdivide
each grain into small RVE’s (as it was done for analysis of deformation of f.c.c.
single crystals) and allow multiple slip/twinning in the elements adjacent to grain
boundaries as well as sliding and separation between elements. This requires very
expensive numerical calculations in addition to special constitutive modeling of “grain
boundary and interface elements.” A second approach is not to focus on details of
local inhomogeneity inside each grain, but assume that all non-crystallographic and
grain boundaries effects can be described by a composite model where the grain
boundary region is modeled as “isotropic” while the interior of the grain is modeled
by crystal plasticity model. This method does not require additional information
about multiple slip/twin interaction near grain boundaries and is also computationally
inexpensive. Because the actual physical picture of the deformation process is still
far from clear, successful simulations of plastic deformation of h.c.p. structures are
rare. We aim to obtain a simple constitutive model and time-integration procedure
to simulate inelastic deformation of h.c.p. metals at room temperature. It is for
these reasons we concentrate on the second approach in our attempt to simulate the
deformation process of magnesium at room temperature.” We suggest a constitutive
model based on crystal plasticity by slip and twinning in the bulk of a grain, and an
“isotropic” plasticity component to model a thin grain boundary region. For purposes
of geometrical interpretation of the model, and because most non-crystallographic
effects are localized around grain boundaries, we imagine a “grain boundary layer”
which deforms in accordance with isotropic plasticity. The volume fraction of this
part of a crystal is a small and denoted by the £&. The rest of the crystal with volume
fraction (1 — &) deforms according to crystal plasticity theory. The schematic picture
of this combined model is given in Fig? 5-6. Texture evolution is described by the
crystal plasticity terms. The isotropic plasticity does not affect the crystallographic

texture, but serves the important function of bounding the stress levels.

2In this work we use volume-averaged models and that is why the model in Fig. 5-6 is only
one of possible geometrical interpretation. Actually, the features of isotropic plasticity and crystal
plasticity are averaged over the grain volume with different weights.
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5.1.3 Elastic properties of h.c.p. materials

There are twenty one elastic constants, that determines general elastic behavior of an
anisotropic body. This number can be greatly reduced, if the symmetry of crystals
is taken into a.ccount.l For the hexagonal single crystals, there are five independent
elastic moduli, Cy;, Ci2, Cis, Cs3, and Cs5, with Cyy, = Cyq, Co3 = Ci3, Cyy = Css,
and Cgs = %(Cu — Cy2). All other elements of the symmetric anisotropic elasticity

tensor C are zero. These five constants are defined as follows,

Cn = (ef®e])- Clej ®ef],
Ciz = (ej®ej)-Cle; ®e5),
013 = (e‘l’ ® ei) . C[e§ ® eg],

Cs3 = (e3®e3)-Clez ®ej),

$
I

(ef ® e3) - C[2sym{e] ® e3}],

where ef, 7 = 1,2,3 is an orthonormal basis aligned with the [1210], [1010], and
[0001] crystallographic directions of the h.c.p. lattice. The values of these elastic
parameters for a variety of materials are tabulated in standard books (e.g. Simmons
and Wang [1971]). Careful determination of the elastic constants for magnesium have

been carried out by Long and Smith [1957] using an ultrasonic pulse echo technique.

5.2 Experimental procedure and results.

In this section we describe the experimental program, which has been conducted to
study the magnesium alloy AZ31B. The mechanical tests include simple tension, sim-
ple compression, and plane strain compression in different directions. All experiments
presented were performed at quasi-static rates of deformation. These experiments are
simulated with a finite element model of a polycrystal using “single crystal” consti-

tutive equations.
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5.2.1 Material characterization

The material, alloy AZ31B, has the following composition: Mg - 96.486 %; Al —
2.798%; and Zn ~ 0.715% as spectrum analysis showed. Figure 5-7a shows the SEM
micrograph of the materials. The composition of inclusions seen in Fig. 5.5 is Mn,
Al, and Fe. The volume fraction of inclusions does not exceed 0.7%.

We used two types of materials for sample preparation: first, hot-extruded rod
for the uniaxial tension and compression tests, and second, hot-rolled plate for plane
strain compression tests. The average grain size for both rod and plate varies from
12pum to 25um. An optical micrograph of initial state of the rod form of alloy AZ31B
is shown in Fig. 5-7b.

For the microstructure analysis samples were polished and etched. Magnesium is
a very soft material, and mechanical finish polishing is always a laborious procedure.
Finish polishing is carried out with moderate pressure using 0.05 pm alumina or
diamond paste. However, even this procedure does not guarantee the absence of fine
scratches. For critical examination, electrolytic polishing procedure is recommended?®.
The etchant, which gives the clearest results, has a composition of 2 parts acetic acid,
2 parts distilled water, 5 parts ethanol (95%), and a small but necessary addition of
picric acid (1/3 part). The specimen was immersed face up with gentle agitation for
15 seconds. After that, it was washed in alcohol and dried. A heavy brown film was
developed and permitted observation of grain (twin) boundaries.

The plate has a strong fiber texture type orientation with relatively similar proper-
ties along the rolling and transverse directions. The results of hardness tests (Rockwell
scale K: ball 1/8” at 150 kg) are presented in Fig. 5-8 together with the notation for
plate faces and plate and rod directions which we will use in this work.

Crystallographic texture was measured by X-ray irradiation using a Rigaku RU200
diffractometer with pole figure goniometer. Partial pole figures were generated by
using the Schulz slit (Schulz [1949]) on {0001}, {1010}, {1011}, and {1120} crystal-

lographic planes. Copper K, radiation was used in the measurements. The typical

3We describe this procedure in the next chapter, devoted to experiments with magnesium at
elevated temperatures.
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dimensions of the slits for pole figure measurements are the following: divergence slit
DG = 1/2°% scatter slit SS = 3°%; receiving slit with height limit RS = 4mm. The
values of the 20 positions of the goniometer, at which each crystallographic plane sat-
isfies the Bragg law (Cullity [1978]), are close to each other for materials mentioned
above.

Crystallographic pole figures of the initial texture for both rod and plate samples
are given in Figures 5-9 and 5-10 respectively. The normal direction is parallel to the
cylindrical axis for the rod, and is parallel to the normal to the rolling plane for plate

samples.

5.2.2 Simple tension

The specimens were machined from 0.50” diameter rod. The gage section of the
specimen had a length of 1.75” and a diameter of 0.25”. Simple tension tests were
performed to final true strain 0.16, at which stage the specimens failed. Axial dis-
placemént was measured using both an extensometer and displacement control from
the Instron data acquisition system. The difference between these variants of strain

measurement was observed only at the late stage of loading when necking occurred.

1 and

Experiments were performed at constant true strain rates of 2 x 107°sec™
2 x 10~%sec™!. Stress-strain curves of both experiments are indistinguishable as
one can see from the graphs in Fig. 5-11. The {0001}, {1010}, {1011}, and {1120}
pole figures for simple tension after 15% are shown in Fig. 5-12. The intensity of the
{1010} pole corresponding to the prism planes increased drastically. Such a rapid
crystal reorientation cannot be explained by slip alone; it is caused by active twin-

ning. Optical micrograph presented in Fig. 5-13 shows twinning lamellae in deformed

sample after simple tension.
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5.2.3 Simple compression

The specimens were machined from the same rod and the length to diameter ratio*
was 1.1. Teflon film of 0.001” thickness was used as end lubrication. Displacement
control has been accomplished by the use of an extensometer. Simple compression
experiments were performed to final true strain about 0.18, at which stage the samples
fractured. )

Figure 5-14 illustrates the stress-strain responses at different strain rates. The
higher strain rate the lower stress level is. This “inverse” strain rate dependence is
specific for materials with twinning as a dominant deformation mode.

In simple compression crystals reorient from {1010} initial fiber texture (Fig. 5-9
to the strong {0001} fiber texture. The pole figures after compression to e = —0.18 are
shown in Fig. 5-15. The basal planes of the grains tend to be strongly aligned parallel
to the axis of loading. Deformation twinning is the dominant mechanism which can
provide fast lattice reorientation of the grains. Optical micrographs presented in
Fig. 5-16 clearly demonstrate twinning lamellae in deformed specimens after simple
compression.

After comparing Figs. 5-11 and 5-14 it is very interesting to note that yielding

occurs in tension at stresses which are almost three times larger than in compression.

5.2.4 Plane strain compression

The second set of experiments was performed for plane strain compression tests.
Plane strain compression specimens were machined from the plate specimens. Initially
specimens were made almost cubical with the constrained dimension direction 0.377+
0.003”. The specimens were lubricated on all four contact surfaces inside the fixture
with both a teflon film of 0.001” thickness and MoS, grease. For reliability of the
results each test was repeated at least twice. The typical deformation prior to fracture

did not exceed 20%. The initial plate already has strong texture. This is why the

4Such small ratio was chosen after a number of unsuccessful trials to conduct the test using
specimens with the higher value of the ratio. In the unsuccessful trials the specimens sheared.
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anisotropy of the polycrystalline samples resembles single crystal anisotropy (Kelley
and Hosford [1968]).

In all investigated samples twin lamellae were observed after deformation (see
Figs. 5-17(a) and (b)). In these figures the constraint direction is out of the page.
Figure 5-18 shows the experimental stress-strain curves and Figure 5-19 shows four
{0001}, {1010}, {1011}, and {1120} measured equal area projection pole figures after
an axial compressive strain of -0.15 parallel to the (direction eg in our nomenclature,
see Fig. 5-8). The basal planes of the magnesium crystals tend to be aligned along
the rolling direction of the plate. One can see very strong basal fiber texture.

Next two sets of experiments are:

(i) compression direction is the direction (ez) (see Fig. 5-8) with free direction (e;)
(i.e., compression in the plate rolling direction and free direction is plate transverse
direction). The stress-strain curves for polycrystalline specimens increased steadily
as shown in Fig. 5-20. The texture evolves to the basal plane, but more diffused than
we observed after compression in plate normal direction. The basal pole alignment
is accompanied with some spread of basal poles about the transverse direction. Four
equal area pole figures are presented in Fig. 5-21.

(4i) compression direction is the direction (ez) (see Fig. 5-8) with free direction (e3)
(i-e., compression in the plate rolling direction and free direction is the normal to
the rolling plane of the plate). It is interesting to note that with changing the free
direction to (eg) the qualitative character of the stress-strain relation changes as
shown in Fig. 5-22. The stress-strain curves rise more sleeply than in previous test,
and the curve is concave®. The significant feature of the texture is the strong basal
pole alignment in the thickness direction and greater rotational spread of basal poles
about rolling direction than about transverse direction. Please note that measured
pole figures in Fig. 5-23 resemble the pole figures after plane strain compression with
direction (e1) as a free direction but rotated on 90° about normal direction.

Texture evolution has a strong tendency to align the < ¢ > crystallographic axis

SExperiments, not reported here, show that concave stress-strain curves correspond to tests in
which direction (eg) is free direction.
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along the compressive stress direction of normal to the rolling plane. Significant
reorientation of the crystal lattice in all experiments were already observed after
axial strain to 15% — 20%.

5.2.3 Analysis of samples fractures

All specimens deformed at room temperature cracked. The amalysis of the fracture
surfaces and modes of fracture gives additional informaiion about the deformation
mechanisms. Cracked specimens after simple compression, simple tension, and plane
Straim compression tests are shown i Fig. 5-24. The angle between the compressive
axis and the normal to the crack plane is close to 357, The tensicn specimens exhibit
relatively hittle neddang before fracture and fractured by the apparent shear. Figure
3-25a shows the SEM micrographs of fracture surfaces of tension samples at noom
temperature. Figure 3-253b shows the SEM micrographs of fracture surfaces of com-
pression samples at room temperature. These micrographs support the suggestion
that the fractures were relatively brittle.

5.3 Combined crystal plasticity and isotropic plas-
ticity model

The constitutive model proposed in chapter 2 for fc.c. materials when applied for
the arpalysis of deformation of magnesium gave spurious results. Even with twinning
allowed, the stress lewel was very high and the twin systems were wery active. As a
result, the pumber of crystal lattice rotation was incredibly large. This led to saw-like
type of stress-strain curves, which (even qualitatively) did not resemble experimental
data. The incorrect stress levels caused errors in the texture prediction. To avoid
these difficulties we modified the constitutive model by incorporating an “isotropic
plasticity term,” which bounds the stress level and does not effect the lattice rotation.
The incremental plastic strain from the “isotropic” boundary layer is taken as £M
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with

0 if&gsth

G(t)—s:p § # ! op —
Ae {”(ts)(t)‘ “"} ’I;.,(t()ﬂ if & > sy,

M = (5.3)

Here T* is the deviator of Piola-Kirchhoff stress, s is the internal variable, s, is
the threshold, and & = 4/(3/2)T* - T*' is an equivalent stress. Please note that the
“isotropic term” is activated only if the stress & exceeds a threshold value: & > s¢.
The governing variables in the constitutive model are taken as: () The Cauchy
stress, T. (i7) The deformation gradient, F. (i4¢) Crystal slip and twin systems labeled
by integers 3. Each system is specified by a unit normal n} to the slip/twin plane, and
a unit vector mj denoting the slip/twin direction. The slip and twin systems (m}, n})
are assumed to be known in the reference configuration. The amount of shear, 7, and
the lattice rotation accompanying twinning, R™, are also assumed to be known. (iv)
A plastic deformation gradient, F?, with detF? = 1. This represents the cumulative
effect of dislocation motion and shear due to twinning on the active slip and twin
systems in the crystal. (v) The slip and twin system deformation resistances s* > 0; s
isotropic deformation resistance, with units of stress. (vi) The twin fractions f* > 0.
The elastic deformation gradient is defined by F¢ = FFP~! with det F¢ > 0, and
it describes the elastic distortion of the lattice; it is this distortion that gives rise to
the stress T. For metallic materials the constitutive equation for stress is taken as a

linear relation
T*(r) = C[E*(7)], (5.4)

where C is a fourth order anisotropic elasticity tensor. With
Ec=(1/2) {F"F -1} and T*= (detFe) F*'TF" (5.5)

The scalar 7(7) = {C®(7) T*(7)}-So(¢) is the Schmid stress on a slip or twin system
at time 7. Tensor S} = m} ® nj denotes the Schmid tensor for the i—th slip/twin

system. Then, the conditions for slip and twinning in the bulk of the crystal are taken
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as
¢ = ,'ril -s'<0. (5.6)

For the combined model the incremental flow rule is expressed as:

i i ifo S Sth
Fpt(”') =1+ (1 - f) ZA’)’ So +fM, M = 5(t)=5en ) L T'(t) . =
i Aé{ 3@ J #(2) ife > Sth
(5.7)

where F}(7) is the volume averaged incremental plastic deformation gradient for a
single crystal®, M is incremental isotropic plastic strain tensor, parameters &, Ae, and
m are constants, T*' is the deviator of Piola-Kirchhoff stress, s is an internal variable
with dimensions of stress,” sy, is the threshold, 6 = 4/(3/2)T* - T* is equivalent
stress, and Ay* > 0 is shear increment of the i—th slip/twin s'ystem.

All mathematical transformations are done in linear approximation, i.e., the in-

verse matrix F? ~'(7) can be written in the form:
FPri(r) =1 (1-€) 3} Av'S; —EM +0(€2 + Ay?) (5-8)

Also, the slip and twin systems resistances are denoted simply by s; the evolution

equation for these resistances is taken in a generic form as

s(ry=s@t)+ Y. rI@)AY, i=1,---,N, (5.9)
iePA
where A% are the hardening moduli, and N is the total number of slip and twin
systems. In the following section we will examine texture evolution and stress-strain
response in a non-hardening niodel, i.e., set hY = 0.
Next, we substitute equality (5.8) into the expression for elastic strain measure

and define a trial elastic strain and stress at time 7 in the same sense as it was done

Srefer to chapter 2 for all notations
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in previous chapters:

Fe(r)T = PP,
Ce(r)tr — (Fe(T)tI')TFe(T)tI"
E(nT = 1/2{c () -1}
T*('r)tr — C[Ee(r)tr]

r(nT = T ()" - Si).

As a result we obtain:

Es(r) = (1/2{C*(r) -1} =E(n)" -

%A A+Isign (Tj (T)tr) sym (CetrS{;) — £sym (Cetr M) . (5.10)
JE

In this expression P.A is the set of all potentially active slip and twin systems. The

relation (5.10) can be rewritten in a more instructive form, namely:

E(r) = Ef(r)Y5%! _ ¢sym (CebrMm) (5.11)

crystal

where we separated the crystal plasticity term E¢(7) and additional term

caused by isotropic plasticity. Use of linear relation between Piola-Kirchhoff stress

and Green elastic strain measure (5.4) together with (5.11) gives
T*(7) = T*('r)crysml -&C [sym (Cetr M)] (5.12)
From here we immediately obtain that

i (T)crystal' —¢c [sym (Cetr M)] -8, (5.13)

o -

or in expanded form:

Tf(T)trl _

Ti(’}'), =
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j€§A {sign (’r" ('r)tr) sign ('rj (T)tr)
Si) - € [sym (C*(n¥'si®) |} av -

£Si(t) - € [sym (Ce('r)trM(t))] (5.14)

Use of (5.14) in the consistency condition

7(r)| = 5'(7)
gives the linear system

Y A=, 1€ PA,
jePA

with

49 = 1 +sign (r'(n)) sign (7(1)) Si(t) -

c [sym (ce(r)tfsg(t))] , (5.15)
¥o= AT - s —esi@) - ¢ [sym (Ce(r)trM(t))] >0, (5.16)
@ = Ay >0 (5.17)

Thus, one can see that the only difference in the linear system arising from in-
corporating of the isotropic term M is change of the right side of the system. All
numerical approaches that have been developed for the analysis of f.c.c materials are
applicable here.

The isotropic term does not affect the texture evolution. The “crystallographic
part” of this model is responsible for lattice rotations. We keep the logic of the model
unchanged with respect to the constitutive model for f.c.c. materials (see chapter 2),
i.e., first, treat twinning as a pseudo-slip, and then rotate the lattice to new “twin-
related” orientation if a sufficiently large fraction of the grain has twinned. Let f

denote the volume fraction of the twin system with the maximum value of f* at a
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given time ¢, and let a random number £ € [0.3, 1] denote a representative maximum
value of f in a RVE. The lattice reorientation condition suggested by Van Houtte
[1978], and adopted here, is that if f > £, then the orientation of the RVE be replaced
by the twin related orientation. The single-crystal constitutive equations developed in
this section have been implemented in the finite element program ABAQUS/Explicit
[1995] by writing a user subroutine “VUMAT.” The polycrystal calculations shown
below have been carried cut by modeling each grain in polycrystalline magnesium as

a single finite element.

5.4 Verification of the constitutive model

In this section, we now evaluate the accuracy of the constitutive model in predicting
the stress response and texture evolution in h.c.p. magnesium alloy AZ31B at room
temperature. We compare the numerical predictions against experimental results,
described in section 5.2. We performed full three-dimensional finite element calcula-
tions in which each element represents a single crystal. Because the simulated mate-
rial had strong texture before “experiments, we analyzed the deformation of initially
anisotropic polycrystalline material. The popLA package was used to numerically
represent initial material texture. Experimentally measured initial textures of the
magnesium alloy AZ31B rod and plate and their numerical representations using 343
grain orientations are shown in Fig. 5-26 and Fig. 5-27 respectively. For the modeling
we used a set of 343 (cube 7 X 7 X 7) finite elements ABAQUS-C3D8R. Magnesium
was modeled as an elastic-plastic, non-hardening material. Elastic constants were

taken as (Simmons and Wang, [1971]):

Cu =58 GPa; 012 =25 GPG; 013 = 20.8 GPO,;
C33 = 61.2GPa; and Cs5 = 16.6 GPa.

Also, we take” £ = 0.05, Ae = 0.00003, and m = 0.07. for the “isotropic term” in the

model.

"the reason for such choice is as follows: the stable time increment in ABAQUS/Explicit calcu-
lation is approximately 0.03 and €3 ~ 0.001. Therefore, Ae = g At ~ 0.00003.
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The model parameters for rod specimens were estimated by a curve-fitting proce-
dure for simple tension experimental data. The model parameters for plate samples
were estimated from plane strain compression test where the compression direction
was normal to the plate rolling plane. Such a calibrated model has been used to
predict material behavior in other regimes of deformation. In order to simulate de-
formation at room temperature we use basal < a > slip systems, pyramidal < a >
slip systems, and pyramidal {1012} < 1011 > < ¢+ a > twinning mode.

We shall show that the major part of the macroscopic strain hardening of the

material may be explained by crystal lattice reorientation only.

5.4.1 Simple tension

Finite element calculations for simple tension of the aggregate of 343 grains were
carried out with various values of material parameters. The process of curve-fitting

stress-strain data to obtain the value of non-hardening model parameters yielded
Sbasal = 0.95 MPa, Spyramidal<a> = 105 MPa, Stwin = 18 MPa,

s, = 170 MPa, s = 220 MPa.

It is interesting to note that despite slip resistance for pyramidal < a > sys-
tems is much higher than resistance of basal plane slip systems, but the variation of
Spyramidal <a> influences the resulting stress-strain curve as shown in Fig. 5-28.

The quality of curve-fit is demonstrated in Fig. 5-29. Both the slip and twinning
systems were active in these model simulations. The {0001}, {1010}, {1011}, and
{1120} pole figures for simple tension after 15 % are shown in Fig. 5-30 together
with numerically-predicted pole figures. Qualitatively the character of the texture
is the same as was before deformation, but the sharpness of {1010} pole increased
more than twice. To give a complete information about preferred orientations, the
measured and numerically-predicted inverse pole figures are given in Fig. 5-31. The

tensile axis in most crystals is aligned with the {1010} poles. The agreement between
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the numerical results and experimental measurements is very good.
We see from the simulations that non-hardening model is capable to predict both
the stress-strain response and texture evolution in simple tension. Having estimated

all necessary parameters in the model, we simulated a simple compression experiment.

5.4.2 Simple compression

In simple compression crystals reoriented from {1010} initial fiber texture to the
strong {0001} fiber texture. The yield stress here depends on the value of Syyin.
Changes in values of pyramidal < @ > slip resistances influence the stress-strain level
in the same fashion as we observed for simple tension. In this case the pyramidal
< a > slip systems were active when grains aligned their < ¢ > axis along compression
direction and the resolved shear stress on the basal plane again was negligible.
Initial orientation is favorable for active basal slipping in simple compression.
Basal < a > slip activity prior the twinning may be the reason for the concave
shape of stress-strain curves. Experimentally measured and numerically predicted
stress-strain curves are shown in Fig. 5-32. A set of four equal area pole figures for
both the experiments and FEM calculations is presented in Fig. 5-33. Comparison
of numerically-predicted inverse pole figure against experimental results is given in
Fig. 5-34. Correlation between prediction and experiment is again very high. We
emphasize that simulations have been done using e non-hardening model. Changes

in stress levels, i.e. polycrystalline hardening, are related only with texture evolution.

5.4.3 Plane strain compression

The second set of calculations was performed for the simulation of plane strain com-
pression tests. For these simulation we also used a full three dimensional finite element
mesh as was done earlier for f.c.c. metals. The initial state of the plate was different

from that of the rod samples. It led to different initial values of the state variables in
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the isotropic part of our model.
st = 210 MPa, s = 295 MPa.

These parameters were obtained by a curve-fitting procedure for the case when com-
pression axis was parallel to the normal to the plate rolling plane and the free direc-
tion was parallel to the plate rolling direction. It is important to note, that other
parameters of this non-hardening model were the saine as that for rod specimens.
We simulated plane-strain compression experiments of this textured material and
compared our predictions for different directions of loading against measurements.

Figure 5-35 shows the experimental and calculated stress-strain curves and Figure
5-36 shows a comparison of the experimental and numerically-predicted equal area
projection pole figures after an axial compressive strain of -0.15 parallel to the previ-
ously compression direction (direction e, see Fig. 5-8). Figure 5-37 shows measured
and calculated inverse pole figures. The preferred orientation is qualitatively the same
as before loading, but basal pole is much more intense The stress-strain curve and
texture prediction are in very good agreement with experimental observations.

This model was used to predict material behavior for plane strain compression
of the sample in the direction (e2) (see Fig. 5-8 for notation) with free direction
(es) (i-e., compression in the plate rolling direction and free direction is plate normal
to the rolling directions). Results of computations are presented in Figs. 5-38, 5-
39, and 5-40. One can see that calculated results capture the main features of the
experimental data. Calculated stress-strain curves resemble experimental relations,
but stress level increases too fast in comparison against experimental data.

We show in Figures 5-41 and 5-42 the measured and predicted direct and inverse
pole figures for plane strain compression in the direction ez (see Fig. 5-8) with free
direction e; (i.e., compression in the plate rolling direction and free direction is plate
transfer direction). Both direct pole figures and inverse pole figures demonstrate the
ability of the model to predict the texture evolution.

We now consider the possibility of adding isotropic hardening of the boundary
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layer:

— _ 1/m
s(r) = 5(t) + h - Ae (%"—@) (5.18)
with the evolution equation for hA:
h=h- (1 _ Ss(f) ) (5.19)

Here s* is saturation resistance, hg and v are material constants. For plane strain
compression experiments, the better fit was obtained by the isotropic strain hardening

model with hardening parameters as follows:
So = S$tn = 90MPa; s* =320MPa; hy=60MPa; v =2

where hy and sy are initial values of the state variables h and § respectively. Com-
parison of predicted and measured stress-strain curves are presented in Figs. 5-43
and 5-44. One can see that numerical prediction is very close to actually observed
data. Anyhow, computational results demonstrate that the texture evolution is the
main mechanism of the magnesium strain hardening. Texture evolution has a strong
tendency to align the < ¢ > crystallographic axis along the compressive stress direc-
tion or normal to the rolling plane. Our numerical experiments demonstrated that
twinning {1012} < 1011 > is the most important mechanism of texture evolution.
If we suppressed twinning activities by adding the pyramidal < ¢ + a > slip system
{1122} < 1123 > (Morozumi et al. [1975]) in the model instead the “isotropic” term,
the tendency of grains to align is very weak and full reorientation of crystals from
fiber texture {1010} to fiber texture {0001} during 15% of simple compression (as

observed in experiments) is impossible?® However, these < ¢ + a > slip systems may

8We did numerical experiments in which isotropic plasticity term was substituted with additional
pyramidal {1122} < 1123 > slip systems with slip resistence s<cta> = 50M Pa. The twinning was
suppressed in this case. Incorporation of these pyramidal slip systems with s<ciq> = 250M Pa
gives reasonably good prediction of texture evolution and stress-strain curves. However, in this
case, accurnulated slip shears for these slip systems are significant and the traces of < c+a >
pyramidal slips should have been observed in experiments. Results of such kind observations at
room temperature are not mentioned in known publications.
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play an important role in bounding stress levels. Most probably they are active at

elevated temperatures, which case we consider in the next chapter.

5.5 Concluding remarks

An elastic—plastic, non-hardening model for plastic deformation of h.c.p. metals de-
forming by slip and twinning has been developed and implemented in the finite-
element program ABAQUS/Explicit (1995).

We performed a series of experiments to measure the stressistrain response and
texture evolution of polycrystalline magnesium (magnesium alloy AZ31B) during dif-
ferent modes of deformation to large strain.

The predicted crystallographic textures and stress-strain curves are in good agree-
ment with experimentally observed curves. We emphasize that the main mecha-
nisms of plastic deformation of magnesium at room temperature are basal slip and
{1012} < 1011 > twinning. Polycrystalline hardening can be explained mostly by
grain reorientation during the deformation process. Our simulations demonstrated
that the most important mechanism of fast crystal lattice rotation is mechanical twin-
ning. Finally, we note that the combined theoretical-nﬁmerical-experimental study of
polycrystalline magnesium presented here is the first of its kind and shows substantial

promise for further refinement.
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Figure 5-1: Structure of a h.c.p. crystal
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Figure 5-2: Typical slip systems in h.c.p. structures
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Figure 5-3: (a) Twinning plane and twinning direction in the h.c.p. structure,
(b) the direction of shear is [1011] for metals with ¢/a < v/3, and twinning occurs
under tension parallel to the ¢ axis; (c) for ¢/a > v/3 the direction of shear is [1011],
and twinning occurs under compression parallel to the c axis (After Hosford {1993]).
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Figure 5-4: Depiction of twinning in a local region of a h.c.p. crystal. (a) Hexagonal
cell showing atom position in adjacent (1210) planes. (b) Plan view of several hexag-
onal cells in {1210} planes. Squares indicate one (1210) plane, and circles show the
adjacent (1210) planes. Atoms belonging to the marked planes are shadowed black,
others are shadowed white. (c) The atom positions of “parent” and twinned lattices.
(d) The necessary movements of the atoms and twinning elements {Kj,7;, and 7, }
in h.c.p. magnesium (After Hosford [1993]).
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Figure 5-6: Combined crystal plasticity and isotropic plasticity model.
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Figure 5-7: Initial state of the magnesium alloy AZ31B. (a) SEM micrograph and (b)
optical micrograph with magnification 1000X.
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Figure 5-8: Samples notation for (a) plane strain compression and (b) for simple
compression tests.
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Figure 5-9: Equal area projection pole figures for initial state of rod samples.
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Figure 5-10: Equal area projection pole figures for initial state of plate samples.
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Figure 5-11: Axial true stress o versus axial true strain € response in simple tension
of the magnesium alloy AZ31B at room temperature.
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Figure 5-12: Experimental equal area projection pole figures of the magnesium alloy
AZ31B deformed in simple tension to € = 0.15.
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Figure 5-13: Optical micrograph of the specimen subjected to simple tension to € =
0.15.
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Figure 5-14: Axial true stress |o| versus axial true strain |e| response in simple com-
pression of the magnesium alloy AZ31B at room temperature.
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Figure 5-15: Experimental equal area projection pole figures of the magnesium alloy
AZ31B deformed in simple compression to € = 0.18.
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Figure 5-16: Optical micrograph of the specimen subjected to simple compression to
e =—0.18.
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Figure 5-18: True stress o versus true strain e response in plane strain compression
parallel to the normal direction of the plate of the magnesium alloy AZ31B at room

temperature.

145



{1010}

{1011} {1120}

Figure 5-19: Experimental equal area projection pole figures of the magnesium alloy
AZ31B deformed in plane strain compression to ¢ = —0.18 parallel to the plate normal
direction.
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Figure 5-20: True stress o versus true strain e response in plane strain compression
parallel to the rolling plane of the plate and with free direction parallel to the plate
transverese direction of the magnesium alloy AZ31B at room temperature.
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Figure 5-21: Experimental equal area projection pole figures of the magnesium alloy
AZ31B deformed in plane strain compression to € = —0.2 parallel to the plate rolling
direction with free direction is parallel to the plate transverse direction.
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Figure 5-22: True stress o versus true strain e response in plane strain compression
parallel to the plate rolling direction with free direction parallel to the plate normal
direction of the magnesium alloy AZ31B at room temperature.
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Figure 5-23: Experimental equal area projection pole figures of the magnesium alloy
AZ31B deformed in plane strain compression to € = —0.2 parallel to the plate rolling
direction with free direction parallel to the plate normal direction.
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Figure 5-24: Fractured specimens after simple compression, simple tension, and plane
strain compression tests (from left to right) at room temperature.
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Figure 5-25: Fractographes of the magnesium alloy AZ31B after (a) simple tension
and (b) simple compression at room temperature.
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Figure 5-26: Initial texture of magnesium rod. (a) Experimentally measured and (b)
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Figure 5-27: Initial texture of magnesium plate. (a) Experimentally measured and
(b) numerically represented using 343 grain orientations.
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Figure 5-28: Stress-strain curves in simple tension calculated for different values of

Spyramidal <a>-
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Figure 5-29: Experimentally measured and FEM predicted axial true stress o versus
axial true strain e response in simple tension of the magnesium alloy AZ31B at room

temperature.
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Figure 5-30: Experimentally measured (a) and FEM calculated (b) pole figures after
simple tension of the magnesium alloy AZ31B to 15%.
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Figure 5-31: Experimentally measured (a) and FEM calculated (b) inverse pole figures
after simple tension of the magnesium alloy AZ31B to 15%.
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Figure 5-32: Experimentally measured and FEM predicted axial true stress o versus
axial true strain € response in simple compression of the magnesium alloy AZ31B at
room temperature.
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Figure 5-33: Experimentally measured (a) and FEM calculated (b) pole figures after
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simple compression of the magnesium alloy AZ31B to 18%.
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Figure 5-34: Experimentally measured (a) and FEM calculated (b) inverse pole figures
after simple compression of the magnesium alloy AZ31B to 18%.
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Figure 5-35: Experimentally measured and FEM predicted true stress o versus true
strain € response in plane strain compression in the plate normal direction of the -

magnesium alloy AZ31B at room temperature.
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Figure 5-36: Experimentally measured (a) and FEM calculated (b) pole figures after
plane strain compression in the plate normal direction of the magnesium alloy AZ31B

to 20%.
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Figure 5-37: Experimentally measured (a) and FEM calculated (b) inverse pole figures
after plane strain compression in the plate normal direction of the magnesium alloy
AZ31B to 20%.
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Figure 5-38: Experimentally measured and FEM predicted true stress o versus true
strain € response in plane strain compression in the the plate rolling direction and
free direction is plate normal to the rolling direction.
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Figure 5-39: Experimentally measured (a) and FEM calculated (b) pole figures after
plane strain compression in the plate rolling direction and free direction is plate
normal to the rolling direction to 20%.
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Figure 5-40: Experimentally measured (a) and FEM calculated (b) inverse pole figures
after plane strain compression in the plate rolling direction and free direction is plate
normal to the rolling direction to 20%.
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Figure 5-41: Experimentally measured (a) and FEM calculated (b) pole figures after
plane strain compression in the plate rolling direction and free direction is plate
transverse direction to 20%.
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Figure 5-42: Experimentally measured (a) and FEM calculated (b) inverse pole figures
after plane strain compression in the plate rolling direction and free direction is plate
transverese direction to 20%.
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Figure 5-43: Experimentally measured and FEM predicted by isotropic hardening
model true stress o versus true strain € response in plane strain compression in the
the plate normal direction.
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Figure 5-44: Experimentally measured and FEM predicted by isotropic hardening
model true stress o versus true strain € response in plane strain compression in the
the plate rolling direction and free direction is plate normal to the rolling direction.
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Chapter 6

Plastic Deformation of Magnesium
at Elevated Temperatures.

Experimental Study.

We showed in the previous chapter that experimentally observed polycrystalline
strengthening of magnesium alloy AZ31B could be mainly explained on the basis of
grain reorientation mechanism, without any additional assumptions for strain hard-
ening. In this part of the thesis we turn our attention to material behavior at moder-
ately high temperatures. We show that the insignificance of polycrystalline hardening
at elevated temperatures is explained by the fact, that twinning is suppressed, and
therefore, texture evolves slowly in comparison with room temperature experiments.

We estimate the texture evolution and anisotropic stress-strain responses of h.c.p.
magnesium alloy AZ31B at temperatures! 350°C and 400°C. At these tempera-
tures we still assume that diffusion processes are second-order effects in magnesium
plastic flow. Raynor [1959] presented data for self-diffusion coefficients in mag-
nesium. He also derived the formula for the heat activation of self-diffusion, i.e.
D = exp(—32,000/RT) cm?/sec. For the testing temperature of 400°C this coeffi-

cient does not exceed the value of 3.3 - 107! cm?/sec, which is at least two orders of

lthe melting point reported for pure magnesium is 650° C.
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magnitude less than the minimum threshold value we should take into account. On
the other hand this range of temperatures is high enough to suppress twinning and
to activate non-basal slip systems. In single crystals in addition to basal, prismatic
< a >, and pyramidal < a > systems, slip may occur on the six second order pyra-
midal < ¢ + a > systems {1122} < 1123 >, and the degree of plasticity increases
markedly, becoming comparable to that of cubic metals. At 300° C' the possible elon-
gation before failure is approximately nine times that at room temperature, as noted
by Raynor [1959]. Very good example of this may be seen from the analysis of fracture
surfaces after tension tests. At high temperature the specimen was fractured leading
to an ideal (and very sharp) cup and cone appearance of Fig. 6-1a. For comparison
in Fig. 6-1b is shown the specimen tested at room temperature with typical shear
fracture. Figure 6-2 shows the SEM micrographs of the fracture surface after ten-
sion at 350°C. For the purposes of comparison, the SEM micrograph of the fracture
surface of the sample deformed at room temperature is also presented in the figure
6-2. These micrographs illustrate the postulate (Yoo [19¢"}) that at room temper-
ature magnesium is cracked by twin-induced cleavage fracture. With suppression of
twinning and activation of < ¢ + a > slip systems the intrinsic resistance to cleavage
increases as well as the ductility.

A specimen deformed by plane strain compression to € = —0.5 at 400°C was
electro-polished and etched. Optical micrographs shown in Fig. 6-3 clearly reveals
the absence of twins in the grains. The average grain size is much less than we observed
in the specimens deformed at room temperature. The tensile specimen fractured after
extensive necking. Our objective here is to estimate experimentally the role of non-
basal slip systems and twinning systems on deformability and anisotropic properties
of magnesium.

The greater part of the literature on the plastic deformation of magnesium at
elevated temperatures dates back to the 1950’s and is devoted to the investigation of
single crystal behavior (see, for example, Bakarian and Mathewson [1943], Reed-Hill
and Robertson [1957]). We attempted to fill this gap and analyzed the deformation

behavior of textured polycrystalline of magnesium alloy. The deformation of textured
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magnesium must be controlled by the same mechanisms observed in single crystals,

and the degree of anisotropy should depend on the intensity of the texture.

6.1 Experimental apparatus and sample prepara-
tion

For elevated temperature tests, a radiant furnace was used to bring the sample to
the desired temperature. The furnace, a Quad Elliptical Heating Chamber (Research
Inc.,), contains four quartz lamps with tungsten emitters (power 5 KW each; the
temperature of the emitters is approximately 2000°C). A water cooling system is
used to maintain working regime. The time required for the environment of the
furnace to reach 400° C is about 20 min. The furnace working area is 14 cm high
and 6 cm in diameter. This size is sufficient for simple and plane strain compression
tests. For conducting simple tension tests, special grips were developed. The sketch
of a simple tension test specimen and of a grip is shown in Fig. 6-4. The specimen
temperature was monitored by type-K thermocouples and a digital thermometer.
A Tigtech Inc., welder 116 SRL with inert argon atmosphere was used for welding
thermocouple to the specimen. The appropriate temperature was maintained by a
manual thermocontroller. To protect the hydraulic system against overheating, the
ceramic rod-platens were used during the experiments. The mechanical tests were
performed in the strain rate control mode? on an Instron 1350 servohydraulic machine
with real time data acquisition. As before, the simple compression specimens were
cylindrical and had a diameter of 12.7 mm (1/2”) with the ratio between length and
diameter of the sample close to 1.1. These dimensions of the specimens were chosen
to prevent specimen shearing during the test. Specimens for plane strain compression
tests were approximately cubes with dimension in the constraint direction of 8.9 mm
(0.35”). At high temperatures we can no longer use the same lubricants we used for

the room temperature tests. The lubricant used for the tests at 350° C' was oil-based

2because of high temperature we could not use the standard extensometer.
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graphite lubricant DAG41. For experiments conducted at 400° C, a methanol-based
lubricant containing 1 part boronitride and 8 parts glass powder 8463 was used. A
table of lubricants recommended for different temperature regimes is given in Brown
et. al. [1989].

Electrolytic polishing was used to obtain a stretch-free surface. The electrolyte
consisted of three parts 85% phosphoric acid (H3PO,) and five parts 95% ethanol;
both were cooled to approximately 0° C' before mixing using liquid nitrogen. Speci-
mens were polished through 15um diamond paste before electric polishing. Voltage
about 30 V was applied for 4 min. After polishing the specimen was rinsed in running

tap water.

6.2 Experimental procedure and test results

At elevated temperatures we conducted essentially the same tests as we did at room
temperature. The principal difference from the room temperature tests was in the
value of the final degree of deformation. Compression tests were conducted to true
strains —0.5 and —1.0; tension tests were conducted up to failure. The tests were
performed at constant true strain rates of 0.001 s~!. Material behavior at both
temperatures 350°C' and 400° C is qualitatively the same. Because the pole figures
for the two temperatures regimes are essentially the same they are shown only for
one temperature.

Several tension tests were performed at different temperatures. After about 10%
deformation, extensive necking was observed. This process of nonuniform deforma-
tion makes the true stress - true strain relations hard to determine. Accordingly,
figure 6-5 gives the engineering stress-engineering strain relations for different ele-
vated temperatures. The yield point drops very fast with increasing temperature.
This means that the experiments were done in regimes where slip resistances are very
sensitive to temperature changes. Pole figures at four crystallographic planes after
simple tension are shown in Figure 6-6. It is very important to note, according to

our data, the intensity of the fiber {1010} texture does not increase. This means
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that some mechanisms, most probably pyramidal slip and dynamic recrystalization3
together, make the texture more diffused. The absence of strong texture transition
leads to the non-hardening of polycrystalline in tension.

Figure 6-7 shows the stress-strain relations obtained from simple compression
tests.

As the temperature increases, the stress level drops significantly. The yield point
is about 35 MPa at 350° C and about 27 MPa at 400° C. The slip resistances decrease
with the temperature rise. Equal area projection pole figures for simple compression
after deformation of 100% are shown in Fig. 6-8. The intensity of the fiber structure
increases with deformation. One can see from graphs in Fig. 6-7 that the material
does not show strong strain hardening behavior. Initial softening (approximately
to € = —0.4) may be explained by texture evolution. The small polycrystalline
strengthening may be explained by both mechanisms: the texture evolution and strain
hardening of non-basal slip systems. The more crystals have re-oriented, aligning
their basal planes normal to the applied compressive load, the stronger the material
is under the same loading conditions.

Figure 6-9 shows the stress-strain relationship for plane strain compression per-
pendicular to the rolling plane of the initial plate. In this mode of deformation the
texture does not change qualitatively and only the intensity of the {0001} pole in-
creases with degree of deformation. This is one of explanations why the stress level
grows with deformation. The pole figures after ¢ = —1 are presented in Fig. 6-10.
As expected, the predominanting orientation after all simple compression and plane
compression tests was such that the basal planes were perpendicular to the direction
of the applied load. The rate of texture evolution is very slow at temperature 400C°.
A good example of this may be the plane strain compression test with compression
in the direction parallel to the plate rolling plane. The free direction in this test was
chosen to be parallel to the transverse direction of the as-received plate. The texture

even after deformation € = —1 is close to the initial one (Fig. 6-11). For comparison,

3Decreasing of the average grain size may be considered as an evidence that dynamic recrystal-
ization takes place in these conditions.
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the correspondent texture after compression to 20% at room temperature has a strong

basal pole (see Fig. 5-20). The stress-strain curve is given in Fig. 6-12.

6.3 Concluding remarks

Magnesium shows a considerable variation in strength and ductility depending on
temperature regime. The increase in ductility should be caused by activation of
< c+a > slip system {1122} < 1123 > at elevated temperatures as was observed
by Stohr and Poirier [1972]. These slip systems together with basal slip systems and
pyramidal < a > systems form the full system, which is able to accommodate any
prescribed deformation. Being active on < ¢ 4+ a > pyramidal crystallographic planes
slip system suppresses twinning activities. OQur observations do not show any traces
of twin lamellae at elevated temperatures. The observed stress-strain relationships
support the hypothesis that strain hardening effects in magnesium are negligible. The
strengthing of the material during deformation is caused mostly by crystal lattice

reorientation and strain hardening of non-basal slip systems.
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Figure 6-1: Samples after simple tension tests: at elevated (left) and at room (right)
temperatures.
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Figure 6-3: Micrograph of Magnesium alloy AZ31B deformed at 350°C by plane strain
compression to € = —0.5. Magnification is 1000X.
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Figure 6-4: Scetches of a grip (a) and (b) a specimen for tension tests in the quartz
furnace. All dimensions are given in mm.
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Figure 6-8: Experimentally measured texture in simple compression experiment to
100% on magnesium alloy AZ31B at elevated temperature
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Figure 6-9: Stress - strain relations for plane strain compression of magnesium alloy
AZ31B at two different elevated temperatures. Compression direction is parallel to
the rolling plane normal of the received sample.
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Figure 6-10: Experimentally measured texture in plane strain compression experiment
to 100% on magnesium alloy AZ31B at elevated temperature. Compression direction
is parallel to the normal of the rolling plane of the received specimen.
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Figure 6-11: Experimentally measured texture in plane strain compression experiment
to 100% on magnesium alloy AZ31B at elevated temperature. Compression direction
is parallel to the free direction of the received specimen.
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Figure 6-12: Stress - strain relations for plane strain compression of magnesium alloy
AZ31B at two different elevated temperatures. Compression direction is parallel to
the rolling direction of the received sample, free direction is parallel to the transverse

direction of the received sample.
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Chapter 7

Directions for future work

In this chapter we present some directions for future research envisioned by the author.

We have presented an incremental constitutive model which accounts for both
slip and twinning, and where the ability to predict polycrystalline macro behavior
through the single crystal model was clearly demonstrated.

However, single crystal inhomogeneous deformation is still one of the major un-
certainties in the understanding of single crystal constitutive laws. Much work needs
to be done to improve our understanding of slip-twin, twin-twin, slip-grain bound-
aries, and twin-grain boundaries hardening interactions and their formal description.
The role of twin/grain boundary energy in the deformation process is still not well
understood. Another group of unanswered questions, which is waiting for the proper
analysis, is the influence of stress and temperature distribution on slip and twin nu-
cleation and propagation.

One of the possible approaches to handle this group of problems is suggested
by V. Bulatov and A. Argon [1993]. Their model based on the idea of stochastic
inelastic transformations. The idea of this model may be applied for the analysis
of large deformation using the fact that characteristic time-scale is different for slip
and twinning. Slipping may be described by the constitutive model of Kalidindi and
Anand [1994], and twinning by Monte-Carlo simulations.

To extend the scope of the pbysically-based modeling of deformation processing

of different material classes, in addition to mentioned above, some further problems
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may be considered:

e The crystal plasticity models considered in this work should be extended to
other classes of crystal structures such as b.c.c. (a—Fe), tetragonal (In, 3—Sn),
rhombohedral (As, Sb), orthorhombic (o — U), etc. where deformation twin-
ning plays an important role in maintaining the generalized plastic flow. It is
important to estimate applicability of Taylor-type and other types of averaging

schemes for these crystallographic structures.

e With the increase of the degree of deformation, such effects as grain boundary

sliding and localized shear bands should be incorporated in the constitutive

model.

e In the chapter 4 we presented a model for inhomogeneous deformation of single
crystal by slip and twinning. The effective numerical scheme, which allows
to build a model of polycrystalline behavior from inhomogeneously deformed
single crystals, should be developed. This model would be able to analyze, in

particular, intergranular interactions.

e The last but not the least, the model proposed in this work was applied for
analysis of steady and quasi-static modes of deformation. The model should be

extended for dynamic simulations.
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Chapter 8

Closure

We have conducted a combined analytical-experimental - computational research pro-
gram in order to develop physically based constitutive models and computational pro-
cedures for large anisotropic inelastic deformations of materials by two main mech-
anisms: crystallographic slip and mechanical twinning. We validated our results
of numerical simulations by comparison against measurements from physical experi-

ments.

The main developments of this dissertation are the follows:

e A new incremental rate-independent crystal plasticity constitutive model which
accounts for both slip and twinning has been proposed along with a new scheme
to determine the active systems and the shear increments on the active slip and

twin systems.

o Constitutive equations have been implemented in the finite element program
ABAQUS/Explicit (1995) to simulate the deformations of plane-strain com-
pression and simple compression of a f.c.c. polycrystalline aggregate, using a
multitude of single crystals. The predicted crystallographic textures and stress-
strain responses from the finite element calculations are in good accord with

experiments.

e We have evaluated the applicability of a simple Taylor-type model for combined

slip and twinning. Our experiments and calculations show that, for the high-
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symmetry f.c.c. brass, a Taylor model for a polycrystal deforming by combined
slip and twinning is able to predict reasonably well the macroscopic stress-strain

curves and crystallographic textures.

We also have simulated the twinning-induced heterogeneity of plastic deforma- -
tion in individual f.c.c. grains by subdividing the grains into small finite eie-
ments. It has been shown that the developed constitutive model allows to cap-
ture the micromechanical behavior of a single crystal as well as macro-behavior

of polycrystalline aggregate.

The constitutive model was modified and applied foi prediction of the defor-
mation behavior of a h.c.p. magnesium alloy. The predicted crystallographic
textures and stress-strain curves are in good agreement with experimentally ob-
served curves. It is shown that basal < a > slip and pyramidal {1012} < 1011 >
twinning are the main mechanisms of plastic deformation of magnesium at room
temperature. Experimentally observed polycrystalline hardening at room tem-

perature is caused by grain reorientation during the deformation process.

Series of experiments on Mg alloy for simple tension and compression, and
plane strain compression to large strains at elevated temperatures have been
conducted. We find that magnesium shows a considerable variation in strength
and ductility depending on temperature regime. The significant (order of mag-
nitude). increase in ductility in comparison with room temperature experiments
has been observed at moderately high temperatures. This should be caused by
activation of < ¢ + a > pyramidal slip system, which together with basal $lip
systems and pyramidal < a > systems form the full system. Our numerical
experiments support the idea that {1122} < 1123 > slip systems play a crucial
role in maintaining generalized plastic flow in deformation of magnesium and
magnesium alloys at elevated temperatures. The experimental stress-strain re-
lationships support the hypothesis that strain hardening effects in magnesium

are not significant at high temperature.
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Appendix A

Rate Form of the Governing

Equations

A constitutive model for deformation of a single crystal by combined slip and twinning
is developed by modifying the widely used framework for crystal plasticity by slip
alone. The governing variables in the constitutive model are taken as: (i) The Cauchy
stress, T. (47) The deformation gradient, F. (i42) Crystal slip and twin systems labeled
by integers ¢. Each system is specified by a unit normal n}, to the slip/twin plane, and
a unit vector m{ denoting the slip/twin direction. The slip and twin systems (m}, nj)
are assaumed to be known in the reference configuration. The amount of shear, 7, and
the lattice rotation accompanying twinning, R™, are also assumed to be known. (iv)
A plastic deformation gradient, F?, with detF? = 1. This represents the cumulative
effect of dislocation motion and shear due to twinning on the active slip and twin
systems in the crystal. (v) The slip and twin system deformation resistances st > 0,
with units of stress. (vi) The twin fractions f* > 0.

The elastic deformation gradient is defined by F¢ = F FP~! with det F¢ > 0, and
it describes the elastic distortion of the lattice; it is this distortion that gives rise to
the stress T.

Let S = (det F)TF~T denote the first Piola-Kirchoff stress. Then, the stress
power per unit reference volume is w = Sy - F, which, since det F? = 1, is also equal

to the stress power per unit volume of the relaxed configuration determined by F?.
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This stress power may be additively decomposed as w = w® + wP, where w® = T" - E¢

is the elastic stress power per unit volume of the relaxed configuration, with
Ec=(1/2) {F*"Fe -1} and T*= (detF°) F*'TF*" (A.1)

the Green elastic strain measure and the symmetric second Piola-Kirchoff stress tensor

relative to the relaxed configuration, respectively, and
WP = (C°T*)- (FPF'),  C°=FTFe, (A.2)

is the plastic stress power per unit volume of the relaxed configuration.

Constitutive Equation For Stress:

Elastic stretches in metallic single crystals are generally small. Accordingly, the

constitutive equation for the stress in a metallic single crystal is taken as the linear

relation
T = C[E], (A.3)

where C is a fourth-order anisotropic elasticity tensor, where E€ and T* are the strain
and stress measures defined in equation (A.1).

Slip and Twinning Conditions:

Let

Si = m} ® n} (A.4)
denote the Schmid tensors, and consistent with equation (A.2), and let
7t = (C°T*) - S} (A.5)

denote the resolved shear stress on the ith slip/twin system. Then, the conditions for

slip and twinning are taken as

¢'=|r|-s <0 (A.6)
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Flow Rule:

The evolution of the plastic deformation gradient is
F¥ = LPF?, (A7)
with L given by the sum of the shearing rates on all the slip and twin systems

LP =" 4'sign(r") S}. (A.8)

)

The shearing rates are restricted as follows:
44>0, and #'¢'=0. (A.9)

Evolution Equations For Slip and Twin Resistances:

These are generically taken as
§=> hiy, (A.10)
J

where h¥ are the hardening moduli. More on this later.

Consistency Conditions:

During plastic flow the following consistency conditions must be satisfied:
V=0 if ¢ =0 (A.11)

The consistency conditions serve to determine the shearing rates 4* > 0 on the slip

and twin systems.

Evolution Equations For Twin Volume Fractions:

For the twin systems,
FF=4/vn=>0, (A.12)

where 7y is the twinning shear.

Lattice Reorientation Condition:
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Treating the twinned fractions as new orientations essentially involves introducing
new crystals, and this quickly leads to a numerically-unmanageable number of crystals
in a calculation of the response of a polycrystal. Van Houtte [1978] appears to have
been the first to propose a simple tractable scheme for reorientation due to twinning;
his scheme does not increase the number of crystals. In his approach, if a crystal
twins, then the twin is first treated as a “pseudo-slip,” and its lattice is given a
twinning-related orientation only if a probabilistic criterion, based on the relative
twin fractions of the twinned and non-twinned parts of a crystal, is met. Specifically,
during the “pseudo-slip” phase, with f*(7) = I'*(7) /v, denoting the “twin fraction”
corresponding to a twin system, Van Houtte suggests that we compare the twin
fraction f(7) = max{f*(r)} with a random number ¢ € [0,1]; if f > &, then the
orientation of the whole crystal is replaced by the orientation of the twinned part of the
grain corresponding to the system a. That is, if Q(t) denotes a rotation tensor which
brings the orthonormal crystal basis {e,("’ (t)} to be in correspondence with the fixed
orthonormal global basis {e§9 ) }, e? = Q(¢) e!”(¢), then for the reoriented crystal, for
which the orientation of the crystal basis after twinning is e{”(7) = R®(¢)e? (), the
corresponding relationship between the global basis and the reoriented crystal basis is
el? = (Q(t) (Rtw(t))T) e!9(7). Once a grain is given a new twin-related orientation,
the accumulated strain I'® on all twin systems in that grain is set to zero, Q(7) is set

equal Q(7) = Q(t) (R*(¢))7, and the algorithm continued.
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Appendix B

Twinning-related lattice rotation

For convenience, in this Appendix we list the matrix relations used to keep track of

the lattice reorientations due to twinning.

Let {ef]: = 1,2, 3} denote a local orthonormal basis associated with the crystal
lattice, and let {e{|i = 1,2, 3} denote a fixed global orthonormal basis. Let Q denote
the rotation tensor which brings the orthonormal crystal basis to be in correspondence
with the fixed orthonormal global basis, € = Qe!®. This last relation may be

written as
ef = sziefn, where Qp; = €°, - €. (B.1)
m .

Alternatively, with
@ =[a]", (B2)

we may write (B.1a) as

eg = Z Qime-ﬁn- (B3)

Following the notation of Kalidindi et al. [1992], the components of the matrix

[Q] may be calculated in terms of the resultant of three simple rotations, which are
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specified using Euler angles 0 < ¢ <27, 0< 0 <7,and 0 <w < 27 :

cosgcosw —singsinwcosf  singpcosw + cospsinwcosfd sinwsinf
[Ql=| —cos¢sinw —sinpcoswcosd —singsinw + cospcoswcosf coswsinb

sin ¢ sin 6 — cos ¢ sin @ cosf
(B.4)

Next, let the crystal basis after twinning be related to that before twinning by
et* =R%Wef, (B.5)

where R is the twinning rotation. Then, we may write

=Qet*, Q' = Qmr™)T, (B.6)

where Q* denotes the rotation tensor which brings the basis e$* to be in correspon-
dence with the fixed global basis.

Equation (B.6a) may be written as

= 3 Qes, (B.7)
where
_:m' — efn* . Q*e;:* — efn* . [Q(RtW)T] e“i:* — (Rtw c) [Q Rtw ] (Rtwelc)
= e, [R™)TQef = e, [(Rive; @ €5)TQ] €

= o [(Bre;@e )Q]e = BlyonaQn = B
(B.8)

In matrix notation,
— T r=
(@] =[&"]" [a]. (B9)
where [R™] is the matrix of components of the twin rotation in the crystal basis, and

the components of the matrix [Q] have been defined previously in (B.1). Finally,
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equation (B.7) may be rewritten as
ef =Y Qi.etr, (B.10)
m

where

@1=[@] =@ir~], (B.11)

to obtain the desired relationship between the crystal basis after twinning, {e’}, and

the fixed global basis, {e]}.
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Appendix C

Model of inelastic deformation of
f.c.c. single crystals with local

twinning shears.

In this Appendix we estimate the role of twinning sudden large shear on deformation
process. We use essentially the same model as described in chapter 2, but with minor
modifications. Hence, here we describe only these modifications and estimate their
importance. In our models each RVE contains enough twins to result in an acceptably
smooth process at the continuum level. If we continue to refine a finite element mesh,
we may reach the level when a RVE may contain only one twin. In this case the large
shear accompanying twinning should be taken into account.

The main assumption of these simulations is the following: when the lattice re-
orientation criterion is met, the RVE crystal lattice is rotated to “twin-related” ori-
entation and is also sheared. During “pseudo-slip” stage, the shear due to twinning
and slip is gradually accumulated, but when the twin fraction corresponding to the

dominant twin system f = max{f®} exceeds a value!, £ = 0.75 the incremental

1The value £ =~ 0.75 was chosen to ensure the stability of the numerical scheme when the
“twinned” element is subjected to large shear. The more mesh elements are in use, i.e., the finer the
RVE the smaller ¢ may be.
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plastic deformation is taken as due only to twinning on the dominant twin system,

FP(r) = 1+Ay*m§®n§, with (C.1)

Ay® mg - {(1 + 7§ m§ ® ng)°FP~*(t) — 1}ng,

Il

where 7, is the twinning shear.

After this, the crystal lattice of the RVE in the relaxed configuration is rotated
to the new twinning-related orientation. That is, if Q(f) denotes a rotation tensor
which brings the orthonormal crystal basis {egc) (t)} to be in correspondence with
the fixed orthonormal global basis {e,(-g)}, el? = Q(t) el (¢), then for the reoriented
region of the crystal for which the orientation of the crystal basis after twinning is
e§°) (r) =R™ (t)egc) (t), the corresponding relationship between the global basis and
the reoriented crystal basis is e{? = (Q(t) (R‘"’(t))T) el9(r).

At the time a RVE is given a new twin-related orientation, that is when Q(7)
is set equal Q(7) = Q(t) (R*™(¢))7, then, (i) the accumulated strain I'* on all twir
systems in that RVE is also set to zero, and (iz) since continued twinning of an already
twinned RVE is seldom observed in experiments, the twinning resistances are set at
a large number to suppress re-twinning, however slip in these regions is allowed, and
the slip resistances for the slip systems in the RVE are set at the levels reached by
the active slip system prior to reorientation.

To summarize, to account for slip-twin interactions and the reorientation due to
twinning, we choose two thresholds related to the ‘twin fraction’ calculated by treating
twinning as a ‘pseudo-slip’. Slip is restricted to planes parallel to the dominant twin
system when the first threshold is reached. The RVE is sheared to <y, and the crystal
lattice of the RVE in the relaxed configuration is rotated to the twinning-related
orientation when the second threshold is reached.

To trigger twinning, the initial twinning resistance of one element in the middle
of the mesh was set to 0.75 x st”. The finite element mesh deforms gradually during
“pseudo—slip.” When the twin fraction corresponding to the dominant twin system

exceeds a large value, f = max {f*} > £ =~ 0.75 in the trigger element, the element is
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suddenly sheared by an additional large amount and the crystal lattice in this element
is reoriented. Fig. C-1(a) shows an element in its initial state, and Fig. C-1(b) shows
the same element after “twinning.” The shear strain in the twinned element is close
to G.707.

We simulated the plane-strain compression experiments on a (110)[334] oriented
crystal. Finite element simulation is shown in Fig. C-2. Our calculations also predict
twinning occurs on the (111)[121] and (111)[121] systems. The elements twinned by
the (111)[121] system are colored red, and those twinned by the (111)[121] system are
colored blue. The calculated twin bands intersect at an angle close to that observed
in the experiments.

The highly non-uniform deformation that occurs in the crystal may be observed
in the contour plots of the equivalent plastic strain?, which is shown in Fig. C-3.
The strain level in the twinned region is almost three times the average strain in the
crystal. The stress-strain data is given in Fig. C-4. The saw-like shape of calculated
stress-strain curve illustrates that twinning is strong stress relaxation mechanism.
However, from numerical point of view, increase of the number of mesh elements
makes the stress-strain curve smoother. The calculated textures in this case are very
close to those shown in chapter 3 for calculations without local twinning-related large
shear, and we do not show them here.

Next, we simulated plane strain compression of a (335)[556] oriented crystal. Our
calculations, (in Fig. C-5), show twin system, (111)[112], to be dominant at a strain
of 20%. The twinned elements in the deformed finite element mesh are colored red.
The contours of equivalent plastic strain corresponding to this stage of deformation
is shown in Fig. C-6. The strain level in twinned region in this case is more than
twice the average strain in the rest of the crystal.

There are a lot of discussions about importance of elastic field of twin (see, for
example, K. S. Sree Harsha [1981]) on further crystal plastic deformation. The ap-

proach described in this appendix is automatically takes into account the elastic field

2An “equivalent plastic strain rate” and “equivalent plastic strain” are defined as follows: €” =

L7 and €r = [&%dt, where 5 = /3T - T".

o
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Figure C-1: Initial and twin-related sheared RVE.
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Figure C-2: The deformed FEM mesh with calculated twin bands of two systems.
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Figure C-3: Contours of equivalent plastic strain after plane strain compression of
single (110)[334] crystal to 20% .
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Figure C-4: The stress strain data for plane stress compression of single (110)[334]

crystal to 20%.

214



Figure C-5: The deformed FEM mesh with calculated twin bands of one system.
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Figure C-6: Contours of equivalent plastic strain after plane strain compression of
single (335)[556 crystal to 20% .
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when a region within a solid suffers a spontaneous change of form, (so-called Eshelby
inclusion problem (Eshelby [1957])). Our calculations showed that twinning shear
is very strong trigger mechanism. However, the resulting twin bands and correspon-
dent textures are similar to those calculated by modeling without accounting for large
twinning shear. This means that twin-related lattice reorientation mechanism is more

important than local stress concentrations in large inelastic deformations of crystals.
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Appendix D

Numerical experiments to
simulate deformation of Mg at

‘elevated temperatures.

The mechanism of plastic deformation of magnesium at elevated temperatures is still
not quite understood. Much work, both experimental and computational, needs to
be done to clarify the physical picture. To do the first step in numerical simulation
of high temperature deformation of magnesium we aimed to estimate the role of each
slip system on texture formation. The single-crystal rate-independent constitutive
equations' developed for h.c.p. materials deformed by slips only, have been imple-
mented in the finite element program ABAQUS/Explicit [1995] by writing a user
subroutine “VUMAT.” We considered the contribution of basal, prismatic < a >,
pyramidal < a >, and second order pyramidal < ¢+ a > slip systems to the plas-
tic flow of magnésium at elevated temperatures. The polycrystal calculations shown
below have been carried out by modeling each grain in polycrystalline magnesium as
a single finite element. We use a set of 343 initialiy oriented crystals to simulate a

textured polycrystal. Euler angles for the initial state were obtained by digitalizing

1We understand that plastic deformation at elevated temperature is rate-dependent. Our prelim-
inary rate-independent simulations have been done in order to estimate the role of each slip system

in maintaining plastic flow.
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of the sample initial textures.

We calibrate model parameters by comparison of the results of numerical exper-
iments with experimentally measured data for simple compression. It appears, that
the texture shift to the basal fiber type is caused mainly by basal < a > slips. Ac-
tivization of prismatic < a > and/or pyramidal < a > slip systems leads to increase
of {1120} pole intensity. In order to obtain the simple compression texture close
to experimentally measured, the basal slip deformation resistances should be signifi-
cantly lower than deformation resistances of other slip systems. Because the nature
of slip hardening is not clear, we used a non-hardening model as first approximation.

The set of parameters, which leads to reasonably good texture prediction is as

follows:

1 = 0.55 MPa, s = 9 MPa,

Sbasa. pyramidal<c+a>

Spyramidal<e> = 30 MPa, sprismatic<as = 30 MPa.

Initial rod texture (see Fig. 5-9 has a pole on {1010} crystallographic plane.
During deformation, this pole first shifts to the intermediate {1011} position, then
appears on {0001} pole figure, but does not reach the final basal pole position as
shown in Fig. D-1. Numerical experiments of simple compression to € = —l.é shows
that basal pole density continuously increases, but still does not reach the pole. The
calculated stress-strain relation has the same order as experimentally observed, but
gradually decrease with deformation.

Thus, we see that numerically predicted behavior in simple compression resembles
real material behavior, but predicted texture evolution is much slowly than observed.
Some additional mechanisms of plastic deformation should be incorporated in the

model to increase the rate of crystal reorientation.
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Figure D-1: FEM calculated pole figures after simple compression of h.c.p. magne-

sium to 100% at elevated temperature.
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