A Graphical Programming Interface
for a Children’s Constructionist Learning Environment
by
Andrew C. Cheng
Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology
May 22, 1998

(Sune 19987
© Copyright 1998 Andrew C. Cheng. All rights reserved.

The author hereby grants to M.1.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis
and to grant others the right to do so.

Author ' e Y AR AN et TR~

Department of Electrical Engineering and Computer yfence
Mav 22, 1998

Certified by o N — o~

/gﬁ'fchel Res::lick

'i ,'heSlﬁ%eer,S@‘

MASSACHUSETTS @I EE by . _
OF TECHNOLUGY — Arthur Cv/Smith
Chairman, Department Committee on Graduate Theses
LIBRARIES
ARCHIVES 9

A Graphical Programming Interface
for a Children’s Constructionist Learning Environment
by

Andrew C. Cheng

Submitted to the Department of Electrical Engineering and Computer Science

May 22, 1998

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Pet Park Blocks is a graphical programming interface for children. It is designed to lower
the cognitive threshold for children to begin programming in Pet Park, a graphical online
virtual universe created by Austina De Bonte. Pet Park Blocks is a good interface for
beginners in Pet Park to learn basic programming concepts. The interface also provides a
smooth transition to the original textual Pet Park programming environment. In this
sense, Pet Park Blocks effectively provides scaffolding to help users think at one level
and transition smoothly to the next.

Thesis Supervisor: Michel Resnick
Title: Associate Professor, MIT Media Laboratory

2

Table of Contents

1. INTRODUCTION 4
1.1 DESCRIPTION OF PET PARKouviiiiiictieecteeeecteeceveceetttesee s eeessbaseesseeseessnsessesnessnnessessssenansesesnnnens 4
1.2 PROPERTIES OF CONSTRUCTIONISM.......uttieiieiiriieeieesrerenseerseeeessseensssensssessasesssssessssessnssesssssesssscsssens 6

D201 DIESIGN.neoneneiniiiticeectettctis ettt es sttt e s ettt e s b nes 6
1.2.2 OWHEISRIP ...ttt cerentee e st etessesssassse st essnes s s ssesest e saaasassstesese e sassrassnssssessusnsesssenns 7
1.2.3 COMURELY ...ttt sttt st et s et s et e e st e s et sn s e sesenmeeane 7
1.3 THESIS OVERVIEW.oooiiiiis teeeeeerieierntsreeeaeesereessssessssssssssssssaessessssssssssnsesesasessessssssnsssesssesssnsnssssrnns 8

2. TEXTUAL AND GRAPHICAL PROGRAMMING LANGUAGES 9

2.1 CHALLENGES INHERENT IN TEXTUAL LANGUAGES AND ADDRESSED BY GRAPHICAL LANGUAGES 9
2.1.1 Complexity Of EXPIeSSION..........cuuveueeeuririeiecteieriinscentiieeestesse et st esas e s estssaeneesmaesresessnessenasans 10
200.2 SYREQX ..ottt ettt ettt sttt et h et e s e s sb e r e sne e 11
2013 TYPIRG oottt et s e s s et e et et et et ses 12

2.2 OTHER USEFUL VIRTUES OF GRAPHICAL PROGRAMMING LANGUAGES.......ccccvccvrvieeevernereeiveennen. 13
22,1 ViSUAL MEIADROTS ...ttt ettt ser et st ese ettt e se s et 13
2.2.2 VIESHUL CUES weneeeeveeeeeeereeeeveeeeeeeeeeeseeeeseeeeeeiasesessesssssasssssesssssssssnssresessssssssssssssstsssessseessnsnsereserns 14
2.2.3 AAVANCEA VISUAL CUES...o.eeeeeeeeeeeeeeeaeeieeeeeeeeeeereeeeereeeieresessesasesssssrasssrasssssssssssssessesssesssnssasessss 16

2.3 LIMITATIONS OF GRAPHICAL PROGRAMMING ARE ACCEPTABLE.......ccccoceiteeetrrreeeeeeeeiecsiesnreneeesennns 16

3. EXISTING GRAPHICAL PROGRAMMING PARADIGMS 18
3.1 DATA FLOW AND CONTROL FLOW......ouvriiiiiiicii vt ccerrcente e e eeereee s eraesesesnssaeesssnesaeesnsesesensnsanens 18
32 RULE-BASED ENVIRONMENTS: AGENTSHEETS AND VISUAL AGENTALKevv cvevvveeieierenreneeeeennns 19
3.3 PROGRAMMING BY EXAMPLE: COCOA......uuvvvurieeiiiieieierreeieeereesssesetessaessnnsnestssesasesssessssssssssesessnns 21
34 CONTROL FLOW: LOGOBLOCKSceeeeeeieeeeeeeeeeeeeeeeeteeeteeeee e teeeseaaesssennseseassnsneessansensessnnesanan 22

4. FEATURES OF PET PARK BLOCKS 24
4.1 BASIC VISUAL STYLE: CONTROL FLOW.......ovvuiiiiiiiererreereieinecreeeereeeeeseseensnsnsesessaeseesessesrssssesessennes 24
4.2 TYPES .ottt et e e et eee s e e e e s st ae s e e s e bat e bee et a —arebeeae e s e s abntatrteeeae e tantaneeeenann 28
4.3 OVERLAID IMAGES FOR FEEDBATK ...ccoeeiiitittieieeiiereeeieeeeeeieeeesensneesneeneesssssseseseesneesessssnsessssssesnrans 29
4.4 ANIMATIONS AS LLABELS.......ooioitieiiitiiiiteiiesireecineseseeesaesessseessseeessssesssesssesessssesssssssssssesssesssssessserernen 30
4.5 SWITCHING FROM GRAPHIC MODE TO TEXT MODE......ccuviiteitieeecnreeeeenireeesnnreesneeeisasenesssssessnens 31
4.6 GRAPHICAL REPRESENTATION REFLECTS TEXT EQUIVALENTvvvereeeeeeeeenrrerecesneeveesssnseeeenneenns 32

5. IMPLEMENTATION: UNDER THE HOOD OF PET PARK BLOCKS 33
5.1 PROGRAM REPRESENTATION: PIECESeevttiiiieiiiiireiteeterieceeeiessrereteeseesssssssssssseesesessessssssssssesssses 33
52 GRAPHICAL REPRESENTATION OF PIECES: SQUAREScceuveiutieeetreetereeeeesivseesiseeessesesssssessssesssessens 35
53 PALETTES ..ot eeeeeeeteeeeete e ceteeteeece e e e e s teeseeestabes s s aensnseasenasssssssnsnbeseenssaseseessassssersssesessntesenen 35
5.4 WORKSPACEcoteevtiereriieeieeteeserseesseeesstsessssseassresstasasssesesssssstessnsassssssnsssesnsssssssesssssseasseesssssesssssnsen 36

6. FUTURE WORK AND CONCLUDING REMARKS 37
6.1 FINISH IMPLEMENTING VISUAL CUES AND OTHER TOOLSooooiiiiiieieeeeeecceeeeeeereaeee e e e 37
6.2 ENCAPSULATE PROGRAMMING RULES IN KNOWLEDGE BASEcccocumiiiectiiveeeeerec e eeceeeeeeaes 37
6.3 INCLUDE OTHER PROGRAMMING PARADIGMScovviiiiierinineeeeereeeeeeesanresssosesseesssosssesssssnsesosssessas 38
6.4 EMPIRICAL STUDIES ...oooiveevveiieieeereeeeeeeeineeeeseesseeeesssssesssssesssssnsssesesssrsssssssssessssssmsssesassssesnnesssssnnssn 38

1. Introduction

In recent years, educators have experimented with a new theory of learning called
constructionism. Under constructionism, children learn by choosing projects of their own
that involve design, and by sharing their designs (Papert 1993). Pet Park is a graphical
online virtual universe for children which emphasizes constructionist learning. It is a
computer realm where children can log on, create their own animated pets, and program
them to have animated sequences using a child-friendly version of Java called YoYo
(Begel 1997). Pet Park Blocks is a graphical programming interface that accompanies
Pet Park’s original textual programming interface. This graphical interface is intended to
help the younger users start programming and to help them make the transition to textual
programming. This cognitive assistance is called scaffolding. This thesis describes the
design goals and implementation of Pet Park Blocks. Pet Park Blocks can be best
understood after a more thorough explanation of Pet Park and its focus on

constructionism.

1.1 Description of Pet Park

Pet Park is a graphical online virtual universe for kids. Each child is represented by a
graphical entity called an avatar. Figure 1 shows two avatars in a Pet Park location called
“The Hotei.” The one in the chair is named Andrew and he inherits from a basic Pet Park
creature called Spotnik. All creatures that inherit from Spotnik look the same. This one
is saying, “Hello!” to the other avatar. A child can move his avatar from one virtual
location to another by selecting exits and other shortcuts. For example, in Figure 1 you

can see the Exit that looks like a doghouse. This is an exit to the Library. Children can

communicate to each other by typing messages that are seen by every other user within
the same location. The messages show up as text balloons above the avatar that said

them.

ik (Powered by Intel's MultiUser SDK) Client. . -~

Figure 1: A Pet Park location named “The Hotel”

Children can create new objects to add to Pet Park,

and program these objects with behaviors. A child

can create a dog that jumps and says, "Let’s have a

Figure 2: Spotnik at ease, surprised, Y .
and laughing party!" whenever three or more users are in the

dog’s location. Children can also program new animations for their avatars. For

example, Spotnik, comes with 20 basic animation clips, or scripts. See Figure 2 for

images of Spotnik. One script is called Surprise, and when it is called, it causes the
Spotnik avatar to jump up, open its eyes wide and cover its mouth in surprise. Another
script is called Laugh, and it causes Spotnik to laugh in the same standing position. A
child can create a new animation for his Spotnik avatar, called Congratulate:

Surprise

Laugh

say “Wow! That was great! Congratulations!”
This script plays the Surprise and Laugh animatiors and ends with the avatar saying,
"Wow! That was great! Congratulations!" All programming for Pet Park is done in a

child-friendly programming language called YoYo (Begel 1997). YoYo incorporates

many ideas from Java and from Logo.

1.2 Properties of Constructionism
Pet Park is a constructionist learning environment. Constructionism is a theory of

learning that emphasizes design, ownership, and community.

1.2.1 Design
Each new animation is a design project. The process of design is rich with learning
opportunities (Papert 1993). A child begins with a new animation concept and learns
many things as he figures out how to organize his thoughts, how to express them to other
children, how to realize them in the act of "building" a program, and how to fix the new
program iteratively until he gets what he had in mind.

In Pet Park, design is done through programming. Seymor Papert argues that

programming is an excellent constructionist learning activity (Papert 1980). When a
6

child writes a program, the child has to express his ideas explicitly and in the organized
fashion required by the programming language. This mode of expression is very
conducive to experimentation; a child can execute his program to see how thoroughly and
accurately he expressed his thoughts. In this way, programming is a way to make
thought processes more explicit and concrete and therefore more accessible to reflection

(Papert 1980).

1.2.2 Ownership

Each animation is a project of the child’s own choosing. Each child feels a sense of
ownership for his avatar because that avatar represents him or her to the other children.
Therefore the child is highly motivated to improve continually the avatar with
increasingly complex animations. The result is that the child is willing to spend time to
overcome obstacles and figure out problems that stand in the way of the completion of a
new animation script. The personal connection between the user and the avatar

engenders ownership of the ideas that are learned in the design process.

1.2.3 Community

Each new animation is constructed in an environment where other children can give
suggestions, assistance, and feedback. As a Pet Park user helps others, the user draws on
the knowledge acquired in other projects. This process strengthens and fleshes out the
user’s grip on the knowledge, while creating new opportunities to learn about effective
communication. Meanwhile, those who are receiving assistance are encouraged and
further motivated in their own projects. The set of design projects within the community

7

also provides fertile soil where new ideas can grow. Amy Bruckman has explored the
way that a community supports constructionist activities, and the way that design projects

enrich the community (Bruckman 1997).

1.3 Thesis Overview

Since much of the learning in Pet Park takes place while a child programs, special
attention must be paid to the programming interface. Pet Park Blocks is intended to
lower the cognitive threshold for children who want to join the community. The Pet Park
Blocks programming interface makes it easy for younger users to write basic programs.
It helps beginners learn some of the key concepts in programming and also provides a
smoother transition to programming with a textual language. This idea of helping
students at one level so that they can transition smoothly to the next level is called
scaffolding. Pet Park emphasizes learning in a constructionist environment, and Pet Park
Blocks helps younger and less experienced users get involved by providing scaffolding
for the programming environment.

The next section of this thesis describes the challenges that a young programmer
faces when using a textual programming interface. It also describes how a graphical
programming interface can reduce those challenges and also how such an interface can
provide useful aides to thinking. The third section of this thesis is a brief discussion of
several existing graphical programming languages and how they compare to the needs of
young Pet Park users. The fourth section describes the features of Pet Park Blocks that
are intended to provide scaffolding to users. Many of the features are borrowed from the
other graphical programming languages. Finally, the fifth section lays out the current

implementation of Pet Park Blocks.

2. Textual and Graphical Programming Languages

Both textual and graphical programming languages have their advantages and
disadvantages. = However, this thesis is only concerned with the programming
environment as experienced from the point of view of young and inexperienced

programmers.

2.1 Challenges Inherent in Textual Languages and Addressed by Graphical
Languages

Figure 3 shows the original Pet Park textual programming interface. All programming is
done in a child-friendly version of Java called YoYo. YoYo presents the expressive
power of Java in a simpler syntax that is strongly based on Logo. However, any textual

programming language presents a young user with certain challenges.

Figure 3: The original textual interface for Pet Park

2.1.1 Complexity of Expression

The ideal programming environment would allow the users to focus on what he or she
wants to express instead of how to express it. However, with a textual programming
interface, a child spends much of his time figuring out how to say things in the language.
For example, consider Figure 4. It shows the ways to express the same idea in three
different languages. The idea is to print out a message: "Hello World!" Figure 4a
shows how this is done in Java. Figure 4b is for YoYo, and Figure 4c is one graphical

alternative.

(4da) System.out.println(“Hello World!”);
(4b) say “Hello World!”

(4c) Programmer is to type e .
the desired text ! Hello BB
in the white balloon. World!
This text will be
printed to the screen
verbatim.

Figure 4: Three ways to print ""Hello World!"

As one moves from 4a to 4c, one can see that there is less to remember in order to
express the idea of saying, "Hello World!" In 4a, a child must remember to type the
string System.out.println even though this string includes ideas that the child

does not need to understand. YoYo abstracts away this excess. The concept in 4c moves

10

even closer to a plain representation of the idea since the avatar stands with an empty text
balloon waiting to be filled.
2.1.2 Syntax
The challenge of getting all the syntax correct in textual programming environments can
be frustrating, especially for young users. This challenge is deeply linked with the
previous one described above. Reconsider Figure 4. The YoYo code in 4b requires that
the user type say before the message. One can imagine forgetting which of the
following lines has the correct syntax:

say Hello World!

say, Hello World!

say, "Hello Worldti"

say: Hello World!

say: "Hello World!"
Pet Park actually uses two variations. When programming scripts in YoYo, a text
message must be enclosed in quotes. However, quotes are not necessary when a child
types at the command prompt what he or she wanis the avatar to say. This might confuse
a young programmer who could have the preconception that there is one correct syntax.
As he tries to figure out what the syntax is, the system allows for variations thus
potentially causing momentary confusion: "Wait. I thought it was supposed to be done
this way." The limited variation can cause further confusion: "I thought I could say it any
way I wanted to. I thought the computer would figure out what to do." Eventually a
child might wonder: "What would happen if I tried to include a quote mark in my
message?" During a conversation with a teacher, the child might have some trouble

understanding what an escape character is. Finally, the child could ask: "How would I

include an escape character in my message?"”
11

We can see here that the child is focusing on how to express an idea instead of
what idea to express. While this focus can be fruitful in learning the differences between
different programming languages, it is probably too esoteric for beginners in Pet Park.

Reconsider Figure 4c. The image suggests that whatever is typed in the text
balloon will appear verbatim when it is executed, because the image is actually identical
to the execution: some text will appear in a white balloon directly above the avatar. This
approach virtually eliminates the need for escape characters and other syntax.

A program that is easy to compose is also easy to debug. Reconsider Figure 4. A
Java syntax error is harder to find than a YoYo syntax error simply because Java
programs have more syntax for a programmer to wade through. However in a graphical
programming environment, errors can be prevented in real-time as the system notifies the
user that a certain thing cannot be done: "Sorry, only blue program blocks can go here."
This reduces the errors in programming to mostly conceptual errors: "Ah, I should put
more Laugh blocks here because a single Laugh block doesn’t represent as long of a
laugh as I wanted." A child will be freed from syntax concerns such as: "Was Laugh
supposed to be capitalized?" and will be able to think primarily of what concept is

missing or out of sequential order.

2.1.3 Typing
One last challenge is typing. The first program I ever tried to type into a computer was
one I found in the BASIC handbook for my Commodore64. The book said that the

program listed on the page would cause the computer to display a flower pattern and play

12

a nice melody. Itook a long time in entering the program into the computer because I did
not yet know how to type. Finally I executed the program and the computer displayed
something like toru wallpaper and from the keyboard speaker came the sounds of two
gunshots and a scream, played repeatedly. I spent another hour trying to correct any
typing mistakes and the final result was a program that displayed a black screen and
played no sound. I had no idea what many of the program lines meant, and, although that
was a very deep and serious problem, my most pressing concern was rather that the
endeavor was taking forever because I didnt know how to type. I quickly relapsed into
my previous mode of playing Montezuma’s Revenge, a video game. A graphical

programming environment can drastically reduce the amount of typing.

2.2 Other Useful Virtues of Graphical Programming Languages
In addition to eliminating or reducing certain challenges of textual programming

languages, graphical programming languages can provide useful visual cues.

2.2.1 Visual Metaphors

Graphical programming languages can represent certain common programming ideas in a
straightforward manner that makes the meaning visually clear. The term “visual
metaphor” is related to the ordinary meaning of “metaphor” which is: a figure of speech
literally meaning one thing, but used in place of another to emphasize the similarity
between them. A visual metaphor is a graphical convention for displaying a certain

program construct, where the convention makes the meaning of the construct obvious by

13

its similarity. For example, a branch can represent a conditional statement such as an if

in a sequence of blocks, with the boolean test at the branch.

2.2.1.1 Metaphor for Parallelism

Another geod example of a program construct that can be represented well by a visual
metaphor is parallelism. Two ségments of code that can execute in parallel can be
depicte(i in a graphicai programming environment as two geometrically parallel paths
through which the control of the program flows. In Figure 5, the arrows indicate that tﬁe
control runs along two paths simultaneously and rejoins at the end of the two parallel

code segments.

—<>>)>>)>)
>>>>>>>>>—->

Figure 5: A visual metaphor for parallelism

2.2.2 Visual Cues
Another way a graphical programming interface can help the programmer is by providing

visual cues. Two kinds of visual cues are described here.

2.2.2.1 Corresponding Shapes and Colors

In Pet Park, an animation such as Congratulate (see Section 1.1) is procedurally
abstracted and represented by that name: Congratulate. Animations can be called
one after another because every animation sequence begins and ends with the same image

of the avatar. This convention allows one animation to leave off where another will

14

begin, much the way cursive fonts on a computer have letters that begin and end at

corresponding points. In Pet Park Blocks, blocks such as the one shown in Figure 6

represent animations.

Congratulate

Figure 6: A Congratulate
animation block

i

Surprise

e

Laugh

.

Figure 7: How animation
blocks fit together

Notice the notch at the top and the protrusion at the
bottom. Animation blocks can be conﬁected in a vertical
column with the protrusion of a block fitting into the notch of
the next block as showﬂ in Figure 7. The blocks fit togethe'r
like jigsaw puzzle pieces. These notches and protrusions are a
visual hint to the programmer that pieces that do not have a
notch at the top cannot be connected at the bottom of animation
blocks. For example, a boolean operator such as an and piece
should not be connected to any animation block, since
animation blocks have no boolean value for the operator to use.
Therefore booleali operators are represented by graphical
entities which do not have top notches and bottom protrusions.

Figure 8 shows how boolean operators and variables fit

together horizontally, because boolean operators have concave sides that accept the round

convex sides of boolean variables.

@EDD " @o@

JUOTTETTI TR T

Figure 8: How boolean variables and operators fit together Figure 9: Contact edge

tinted

15

Pieces that correspond to each other can be color-coded. For example, all boolean
operators can be dark blue and boolean variables can be lighter blue. Also, the edge of an
if block that is meant to hold a boolean expression can be tinted blue, indicating that
only blue buuiean blocks could go there. Ir: Figure 9, the concave contact surface that the

if statement has for boolean variables is tinted blue.

2.2.2.2 Message Icons for Visual Feedback
Another visual cue that graphical programming environments can
provide is an occasional pop-up icon that notifies the user of what

action will take place if the user proceeds with the current mouse

operation. For example, if the user is dragging an animation block

Figure 10:
Visual cue

near a boolean operator, the system can determine that if the
animation block were dropped there, it would not connect with the boolean operator. The
system could then display a visual cue over the animation block, showing that it will be

rejected if dropped there. See Figure 9 for an example of this visual cue.

2.2.3 Advanced Visual Cues
An animation block can have, on its face, a little window showing the actual animation
sequence playing in a loop. This way, the block can be identified either by its text label

or its contents, the animation. Many other visual cues and metaphors are possible.

2.3 Limitations of Graphical Programming are Acceptable
Although there are limitations to graphical programming, most limitations are acceptable

in Pet Park Blocks because the interface is focused on providing scaffolding for beginner
16

programmers. These programmers will write simple programs and for that reason either
(1) they will not encounter these liimitations or (2) the limitations will not have too
negative an impact.

For example, one limitation is that graphical programming constructs usually take
up more screen space than their text equivalents. Therefore, screen space places a limit
on how much of the program the user can view at any given time. This limitation is
acceptable for beginner programmers because Pet Park Blocks is designed so that
programs tend to grow only in one direction: down. If a program does not fit on the
screen in its entirety, the programmer only has to scroll the program in one dimension.

A second limitation is that graphicél programming languages generally have less
expressive power than textual programming languages. This disadvantage is acceptable
for beginning users, however, since many basic ideas that they want express can be
represented graphically. For example, a new animation that is simply the result of
éhaining other animations together can be easily expressed in Pet Park Blocks by a
column of animation blocks.

As programmers grow in experience, their programs grow longer and require
more expressive power. They discover that there are things that cannot be done in Pet
Park Blocks. Therefore, they make the transition to the textual programming interface.
Pet Park Blocks has certain features that are designed to make the transition a

straightforward one. These features are discussed in Section 4.

17

3. Existing Graphical Programming Paradigms

The consideration of (1) several existing graphical programming paradigms and (2) how
they compare to the needs of Pet Park programmers can provide a context for
understanding the decisions made concerning the features, design, and implementation of
Pet Park Blocks. The following graphical programming languages are categorized by the

conceptual model they follow.

3.1 Data Flow and Control Flow

In the data flow paradigm, there are two basic graphical programming constructs: (1)
lines or arrows showing the path that data takes during the execution of the program, and
(2) blocks that represent transformations or operations that are done on the data.
Consider Figure 10 for an illustration of this. The program’s input is labeled as Source.
This statement is operated on by transform H1. The result of this is operated on
separately by transforms H2 and H3, and the final Answer is the sum of the results from
H2 and H3. Notice that the program implies‘ that the transformations done by H2 and H3
can be done simultaneously. This is another example of the use of the visual metaphor

for parallelism depicted in Figure 5.

H2

Data H1
source —P + L » Answer

H3

Figure 11: Data flow example

18

This programming style is useful for scientific applications where operations and
transformations are done on data. However, for the purposes of Pet Park, the data flow
paradigm is inappropriate. The basic grapﬁiéal programming constructs are not
transformations or operations but rather blocks that represent animation sequences. The
reason behind this is that YoYo is a control flow language. Programs are sequences of
actions that are occasionally modified by control structures such as loops and conditional
statements. Data is not passed from one operator to the next, but rather the control of the
environment flows through successive statements. Since Pet Park Blocks provides
scaffolding for beginner programmers to gradually transition to the YoYo textual

programming environment, Pet Park Blocks adheres to the control flow paradigm.

3.2 Rule-Based Environments: Agentsheets and Visual AgenTalk
Agentsheets (Repenning 1993) is a graphical language that compiles to Java. It was
developed by Alex Repenning at the University of Colorado. In Agentsheets, an agent is
an entity that is programmed with the ability to perceive and react to changes in its
environment. Agents are organized on a grid called an “agenisheet.” They
communicate with each other directly and also according to their relative position on the
agentsheet. For example, a programmer can create an agentsheet that represents the
ecosystem of a pond. The agents on this agentsheet represent the individual fish. Each
agent (or fish) can react to its environment by avoiding collisions with other fish,
swimming towards food, etc.

Visual AgenTalk is a rule-based graphical programming environment for

Agentsheets. Each agent can be programmed with a set of rules such as: “If the space on
19

the agentsheet grid immediately to my right is empty, then move to that space.” This is

represented by the graphical rule depicted in Figure 12.

Figure 12: An Agentsheets rule

In the example of the pond ecosystem, a fish agent can have any number of rules.
The agentsheet is associated with a virtual clock and with each passing clock tick, the
system goes through each agent and determines which rules to fire. Suppose a given fish
has five rules that are satisfied simultaneously on a given clock tick. The system chooses
which rules to fire by consulting the heuristic supplied by the programmer. One heuristic
is to choose one rule at random and fire it. Another heuristic is to impose an arbitrary
order and fire the first three. The agentsheet goes through this procedure for each agent.

This may sound similar to Pet Park, because Pet Park also has agents that can
react to the environment. However, there is a fundamental difference in the way the
behavior of an agent is specified in the two environments. In Agentsheets, an agent
obeys a set of specified rules. In Pet Park, agents follow an animation sequence specified
in YoYo code whenever the user and requests that the animation be activated. The entire

animation is a sequential matter and is not driven on each clock-tick by a set of rules.

20

3.3 Programming by Example: Cocoa

" Before T after Cocoa is a language developed at

Apple. It is actually based on an

early version of Agentsheets.

Cocoa is also rule-based, but it is

Before ' After
' - still noteworthy in this

discussion because it emphasizes

another programming paradigm:

Before - ‘ After programming by example. In

this paradigm, the programmer

shows the computer what to do

- , , by giving it an example. The
Before . - hfter

computer then figures out what

the equivalent program code

should be. Programming by

' Before G After .
S R example is also called

programming by demonstration.

Figure 13 shows the creation of a

" Before. - Cocoa rule that is the equivalent

of the Agentsheets rule shown

in Figure 12. The bottom image

is the final form of the rule. If

Figure 13: Creation of a Cocoa rule

the space immediately to the

21

right of the agent is empty, then the agent should move to that empty space. In order to
create this rule, the user clicks on a New Rule button. The top image in Figure 13 is
presented to the programmer, and each successive image shows the steps in creating the
rule. The agent is in a single grid square in a Before stage and an After stage. The
programmer needs to demonstrate to the computer that, if there is an open space to the
right of the agent, the agent should move to that space. This demonstration is done by
altering the After stage: the programmer needs to create an empty space to the right and
then show how the agent should move there, all by interacting only with the After-
stage. The After stage has round handles or tabs on the edges that can be dragged by
the mouse. The programmer drags the right handle one space to the right. The agent is
now next to an empty grid space to its right. The programmer then drags the agent from
its original location in After, to the empty space immediately to the right. Notice the
behavior of the Before stage: it mimics all the changes in the After stage except any
changes that involve the agent itself (such as a change in the agent’s location).
Programming by example is a very intuitive way of specifying rules. Pet Park
animations could be programmed this way if the environment supported the recording of
macros. However, the original textual programming environment involved writing YoYo

programs that call one animation after another.

3.4 Control Flow: LogoBlocks
LogoBlocks (Begel 1996) was developed at the Media Laboratory at MIT for the Cricket,
a tiny computer that can communicate through two sensors and can control two motors.

LogoBlocks emphasizes control flow. The graphical user interface consists of a

22

workspace and a set of palettes. Each palette holds program pieces in the form of shapes
with notches and protrusions that fit with other compatible pieces. The user builds a
program by dragging blocks from the palette to connect them together in the workspace.
Figure 14 shows a short LogoBlocks program. Notice that the or block has two
curved concave sides that correspond to the convex sides of the boolean blocks
SwitchA and SwitchB. The blocks are also color-coded: control structures such as
if-thens are yellow, actions such as Beep are green, and sc on. The color séheme
and the block shape convention are visual cues that show which blocks can fit together.

They are useful visual cues that Pet Park Blocks borrows.

Figure 14: A LogoBlocks Program

23

4. Features of Pet Park Blocks

The following features of Pet Park are designed to help beginner programmers get their feet wet
in programming in Pet Park so that they can later make a smooth transition to programming in the

textual programming interface with YoYo. This section describes both the intended features
as well as the ones that are actually implemented. See Figures 15 and 16 for an image of
the current implementation of Pet Park Blocks. Figure 15 is the graphic mode of the
programming interface. The right side displays the current palette. Two palettes are
available containing the animation blocks belonging to this Pet Park creature and its
parent. The left side is the workspace where the program is constructed. A program is
built by dragging blocks from the palette to the workspace where they are added to the
growing program. In Figure 15, the programmer is working on a dance script. So far,
the script includes two animation blocks called hop and wave. Figure 16 shows the new
textual programming interface. It still displays the palettes on the right. A user can click
on an animation block in a palette and then click in the text window on the left and the

code for that animation bock is copied into the program at that point.

4.1 Basic Visual Style: Control Flow

Pet Park Blocks borrows the intuitive visual style used in LogoBlocks: a program is
formed by placing blocks together on the screen. Each block represents some bit of
YoYo code, such as a short animation. An animation is a sequence of images. When an
animation block is executed, the images are displayed in order on the screen where the
Pet Park avatar is. The first and last images of each animation sequence are the same as

the default image for the avatar. This way, blocks can be connected in the sequence and

24

Figure 15: The Pet Park Blocks graphical interface

executed; each block leaves off where the next block begins. This convention is
borrowed from cursive fonts: each letter ends at the same point so that the next letter can
connect to it smoothly.

Each agent has his own library of animation blocks. For example, a child may be
represented by an avatar named Stacy. Stacy’s library of animations is initially empty.
Whenever the child creates a new animation for Stacy, this animation is added to Stacy’s

library. When the child is editing or creating an animation, these libraries as well as that
25

Figure 16: The new text interface

of the agent’s parent-creature appear in palettes. In the example, suppose that Stacy, the
avatar, is a Pet Park creature that inherits from the basic Pet Park creature called Spotnik.
The child can drag blocks from this palette to the workspace and connect it to the existing
program.

Each animation block has a notch at the top and a protrusion of the bottom like

the Logo Blocks ABoff and Beep shown in Figure 14. The blocks form a sequence

26

Figure 17: Program construction in progress

when they are connected in a vertical column with the beginning of the sequence at the
top. Programmers drag a block from the palette and drop it below the block they want to
connect it to; the blocks snap together if they are compatible. Figure 17 shows that a
programmer selected a Laugh animation block and is dragging a copy towards the place
where he or she wants to connect it to the program. As you can see, when a block is

selected in the palette, it is outlined in white to reflect that selection. The copy of Laugh

27

that is being dragged within the workspace is overlaid with a large red icon denoting that
the block will not attach correctly to anything if it is dropped in the current location.
Control flow statements such as repeat and conditional statements such as if
are available on a separate palette. Boolean operators as well as boolean variables that
are based on the properties of the avatar and the avatar’s environment are also available

on their own palette.

4.2 Types

Young programmers can learn about types from visual cues such as block shapes and
colors. If two blocks do not fit together like jigsaw puzzle pieces, then they are of
incompatible types or kinds. For example, the system will not allow an and block to
hold an animation block as one of its arguments; the and piece only takes boolean

pieces, this can be seen clearly by the corresponding shapes of the and piece and any

boolean piece. Figure 18 shows

an animation block, an and

piece and a boolean variable

piece. Figure 19 shows how the
Figure 18: An animation block, an and block and a

boolean variable block and piece fits with the boolean

piece.

A color scheme further

assists the programmer: dark

Figure 19: A boolean operator between two boolean blue boolean operators a_lways
variables

take light biue boolean pieces. Furthermore, any side of a piece that can be connected to

28

any other piece is shaded in the color that it expects. A dark blue boolean operator has

two light blue boolean edges. Figure 19 shows the shading.

4.3 Overlaid Images for Feedback

If the child tries to connect an animation block to a boolean operator, the animation block
is overlaid with an image which indicates that the block cannot be connected there (see
Figures 10 and 17). This image is a visual cue that gives the child feedback. This
feedback is very important; if it were absent, then the child might think that the system is
malfunctioning when he or she drops the animation block and it fails to connect as
intended. When the feedback is given, the child (1) gets the message that the block

cannot connect there and (2) the system knows that and is not malfunctioning.

4
v) Seo
-,__,-J 1T

Figure 20: Icons for (2) attaching a block to the bottom (b) inserting a block
(c) attaching a block to the right end
If the child tries to make a valid connection between two blocks, then the system
overlays an appropriate image to indicate what kind of connection will take place if the
block is dropped where the mouse currently is. Figure 20a shows the image that is
overlaid if the current block being dragged by the mouse is to be connected at the bottom

of a vertical sequence of blocks such as a sequence of animations. Figure 20b shows the

29

image that is overlaid in the block is to be inserted somewhere within the vertical
sequence. Figure 20c shows the image that is overlaid if the block is to be connected to
the end of a horizontal sequence of blocks such as a sequence of boolean variables and

boolean operators.'

4.4 Animations as Labels
An advanced visual cue that was discussed previously in this thesis can be used to label
animation blocks. The animation block can have, on its face, a small window that shows
the animation playing continuously in a loop. Therefore, the animation block is easily
identified by both the animation loop and the text label. See Figure 212

This advanced visual cue increases the ease with which
programs can be communicated to other children. Recall that
communication between members of the community is an
important part of constructionist learning.

What if the animation loop was displayed without the

text label? If the animation loop were complicated and long, it

Figure 21: Animation
as label

might be hard to identify the animation block at a glance. A
programmer might have to watch the better part of the animation loop in order to know
what it is. A text label identifies an animation block at the single glance. This is a trade-

off that we can discuss with the children who participate in Pet Park. This kind of

! These particular overlaid images are not currently implemented due to time constraints. However the

implementation would be trivial.
2 This capability is not currently implemented. However it would be simple to adapt the code that is
already used to display the animation in Pet Park.

30

conversation can be fruitful for them because they can learn how to think about slightly

more complicated design issues.

4.5 Switching from Graphic Mode to Text Mode

The ability to switch from graphic mode to text mode is perhaps the most effective way
that Pet Park Blocks helps beginner programmers transition smoothly to programming in
a textual envirorment. The user interface for the graphical programming environment
includes a button for switching to the text mode. This is a useful learning tool for a
beginner programmer who wants to learn the syntax for YoYo, because if the child wants
to see what YoYo syntax would look like for a new construct such as an if statement, he
or she can select the control structures palette, drag an empty if statement into the
workspace, connect some boolean properties and operators and some animation blocks,
and finally click on the switch button to see what the text equivalent is.

However, since the graphic implementation does not cover all of YoYo
exhaustively, this method of example generation will not work for all YoYo constructs.
The programmer learns here that there are limits to graphical programming. This limit
will encourage programmers who are mature enough, to move on to the textual interface,
because they will want more expressive power. In this way, Pet Park Blocks is an
addition to Pet Park that helps the environment accommodate users at whatever level they

need.

31

4.6 Graphical Representation Reflects Text Equivalent

One final feature of Pet Park Blocks that could be implemented is that the graphical
representation for program constructs such as an if statement can reflect the YoYo
equivalent. For example, the graphical i f program block can have text labels such as
brackets that reflect the YoYo syntax. When the user switches from graphic mode to the

text mode, the graphics can fade slowly and leave behind only the text.

32

5. Implementation: Under the Hood of Pet Park Blocks
This section describes the implementation of Pet Park Blocks. The key to understanding
Pet Park Blocks is understanding the Piece, the data structure used to represent the
different parts of the program that is constructed within the Workspace. The overall

design of the system is shown in Figure 22. The user manipulates the Workspace and the

USER

WORKSPACE PALETTE

SQUARE

v

PIECE

Figure 22: Architecture of Pet Park Blocks
Palette. Within these two spaces, Squares receive mouse events and in turn manipulate
Pieces. Each Piece represents one part of the program being constructed. A more
detailed description of these parts of the Pet Park Blocks system is included in the

sections below.

5.1 Program Representation: Pieces

A Piece is é data structure that represents program parts such as animation blocks,
boolean operators and variables, and control flow statements such as the if statement. A
Piece is aware of its own type. For example, an animation Piece is aware that it can only
accept connections at its top edge and its bottom edge. The Piece also contains the actual

YoYo code that it represents. When Pieces are connected together, there exists a total
33

IF

THEN ELSE

Y

Figure 23: An if-else program block

"

a2)
N
—
w
o
(9]
=)}

.

Figure 24: Total ordering of pieces

B

(%]

II
—
—

Figure 25: Expansion unit (8) added to
accommodate for piece attached to (4)

ordering, because each Piece has links to the
previous Piece and the next Piece. Pieces are
aware of what other Pieces are connected at
each of the four sides. Figure 23 shows an
if-else statement. Figure 24 shows the
Pieces that comprise the statement and the
total ordering of those Pieces. The Pieces in
Figure 23 that have no text label are expansion
units, which are automatically added to
accommodate for whatever is connected to the
then and the else Pieces. Units 3 and 5 are
expansion units. Figure 25 emphasizes the
expansion unit added to accommodate the
Piece was connected to the then Piece.

The total ordering is used when the
YoYo code is required. The first piece of the
program passes its code to the next piece,
which appends its own code to the code it

receives. It then sends this new accumulated

code to its next piece. This continues until the last piece in the program has all of the

code.

34

5.2 Graphical Representation of Pieces: Squares

All Pieces are represented graphically by Squares, which are basically Java Canvases.

Squares can accept certain mouse events depending on whether they reside in the Palette

space or in the Workspace. Mouse events determine what commands a Square sends to

its Piece.

5.3 Palettes

Figure 26: A palette

Palettes are the libraries that hold the program blocks that the
programmer can use when constructing a new program. See
Figure 26 for the Palette that holds the animation blocks for
Spotnik. A Pajette is basically a scroll pane with an array of |
Squares. When a Square receives a Mouse Down event, it
changes its image to indicate that its Piece has been selected
and that it has been copied into memory. The Mouse Down
event also clears the memory of old Pieces and un-selects
any Pieces that were previously selected. The Square

outlined in white in Figure 26 is a selected Square.

35

5.4 Workspace
The Workspace is a two-dimensional matrix of Squares, which receive mouse events

such as Mouse Down, Mouse Entered, and Mouse Exited. See Table 1 for a description

of what happens in each case.

Mouse event Piece selected No piece selected

Mouse entered | Square displays appropriate No action.
visual cues to indicate whether
selected piece can connect to
program at this point.

Mouse exited | Square reverts back to normal No action
appearance. ~

Mouse down If selected piece can connect to | If the Square is not empty, its piece
program at this point, Square is marked for deletion. Otherwise,

attaches it to the program and the | the Square takes no action.
system updates the rendering of
the program.

Table 1: Mouse events handled by the Workspace

36

6. Future Work and Concluding Remarks

6.1 Finish Implementing Visual Cues and Other Tools
There are still a few very useful visual cues that are not yet implemented. For example,
each Square is labeled with a text label and a static image. We can include the animation
itself as a label, as described in Section 4.4.

Another visual cue that would be useful is animation of parts of Pet Park Blocks.
For example, when the programmer drags a block into the Workspace and attaches it to
the program, Pet Park Blocks can animate the act of actually connecting the two blocks
and also play a clicking sound when the two blocks touch. If the programmer tries to
make an illegal connection, for example dropping an animation block next to a boolean
operator, the system can animate the two program blocks colliding a few times to indicate
that they do not fit together.

Another tool that can be added to the system is a Try button which, when
pressed, causes a small window to appear with the current program running. This way

the programmers can stop occasionally and see what they have created.

6.2 Encapsulate Programming Rules in Knowledge Base

The programming rules are currently embedded within the Piece. The Piece knows
which other kinds of Pieces it can connect to, and on which of the four sides, etc. This
knowledge is hard to alter once it is embedded. A good improvement to the system
would be to encapsulate the knowledge about such programming rules in a knowledge

base. This knowledge base would then be consulted whenever the system wants to check

37

whether a certain action is legal. This way, the knowledge would be easy to alter and
extend, apart from the actual Java code of the Pet Park Blocks system.

Along with the knowledge base, we can include the capability to give informative
error messages. For example, after any illegal operation, the system can print out the
reasons why the action was illegal. This error message is based entirely on the inferences
that the system made using the knowledge base. The explanation capability is common
in knowledge-based systems and it lends to the transparency of the task at hand. Another
way to provide this feature is to show the messages only when the programmer clicks on

a button marked Why was that illegal-?

6.3 Include Other Programming Paradigms

Pet Park Blocks can be expanded to include other programming paradigms. For example,
to write automated movement behaviors for an avatar, Pet Park Blocks can offer
programming by example, much the way Cocoa does (see Section 3.3). We can ask the
children about the different ways of programming. They may form their own ideas about

the different programming paradigms.

6.4 Empirical Studies

The system has not yet been tested thoroughly to see its effectiveness in providing
scaffolding for beginner programmers. Formal experiments should be conducted to
determine to what extent Pet Park Blocks lowers the cognitive threshold for young
beginners. Do some of the younger children find programming in the original textual
environment daunting? Austina De Bonte, the designer of Pet Park, has seen children as

young as 7 programming in YoYo with relatively few problems. Are there children who

38

cannot program in YoYo, but who can operate in a graphical programming environment?
These are questions that can only be answered with formal empirical studies.

Also studies should be conducted to gather feedback from children. We would like
to know what features the children would like to add to Pet Park Blocks and which
current features and visual cues are awkward or unclear. It is our hope that Pet Park can
be adapted for classroom use so that it enhances the opportunities for learning about

programming and communication.

39

Acknowledgments

First, I am constrained to thank God for teaching me what I really needed to know and for
giving me the grace to make it through MIT. Second, I would like to thank my parents
and my brother and sister for being such a great family. I would also like to thank Alicia
and Chris and all the good friends in God’s family. I would repeat the struggle of MIT
Jjust to be with all of you again.

My loudest thanks goes to (1) Mitchel Resnick, my advisor, for his patience and grace,

(2) Austina De Bonte for her excellent guidance, and (3) Jaime A. Meritt for his hard
work which gave me inspiration.

40

References

[1] Albright, Michael J. & Graf, David L., Editors. Teaching in the Information Age: the Role
of Educational Technology. Jossey-Bass Publishers. San Francisco. 1992.

[2] Apple Computer, Inc. "Apple’s Cocoa Site." http://cocoa.apple.com/cocoa/home.HTML

[3] Begel, Andrew. "LogoBlocks: A Graphical Programming Language for Interacting With
the World." MIT, 1996.

[4] Begel, Andrew."Bongo Home." http://el. www.media.mit.edu/bongo/
[5] Bigge, Morris L. Learning Theories for Teachers. Harper & Row. New York. 1964.

[6] De Bonte, Austina. " Pet Park: a Graphical, Virtual World for Kids." Master’s Thesis
Proposal, MIT, 1997.

[7]1 De Bonte, Austina, " Pet Park Home." http://www.media.mit.edu/~austina/petpark.html

[8] Bruckman, Amy. "MOOSE Crossing: Construction, Community, and Learning in a
NetworkEd Virtual World for Kids." Ph.D. Thesis, MIT, 1997.

[9] Cooper, James M. & Ryan, Kevin. Those Who Can, Teach. Houghton Mifflin Company.
Boston. 1995.

[10] Epistemology and Learning Group, MIT Media Laboratory. "A Cricket: Tiny Computers
for Big Ideas." http://el. www.media.mit.edu/people/fredm/projects/cricket/

[11] Gardner, Howard. The Unschooled Mind: How Children Think & How Schools Should
Teach. BasicBooks. New York, NY. 1991].

[12] Holt, John. How Children Learn. Pitman Publishing Corp. New York. 1967.

[13] Lewis, R. & Tagg, E.D., Editors. Trends in Computer Assisted Education. Blackwell
Scientific Publications. London. 1987.

[14] Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. BasicBooks.
New York, NY. 1993.

[15] Papert, Seymour. "Uses of Technology to Enhance Education." MIT A.I. Laboratory,
June, 1973.

[16] Repenning, Alex. "Agentsheets & VisualAgenTalk HomePage."
http://www.agentsheets.com/

[17] Resnick, Mitchel. Turtles, Termites, and Traffic Jams. MIT Press. Cambridge, MA. 1993.

41

THESIS PROCESSING SLIP

FIXED FIELD: ill. name

index biblio

» COPIES: Erchives) Aero Dewey @ Hum

Lindgren Music Rotch Science

TITLE VARES: »[]

NAME VARIES: »(X] Aitudipmae Claun - Ho

ma

IMPRINT: (COPYRIGHT)

» coLLaTion: &4l p

» ADD: DEGREE: » DEPT.:
SUPERVISORS:
NOTES:
cat'r: date:
page:
»oerr: E,E, b J13%

» YEAR:_|938 » pecree: /Y, Eng .

snave: CHENG, Andrew Q.

