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ABSTRACT

Only ten years after the increased addition of methyl-tert-butylether (MTBE) to
U.S. gasolines, nationwide MTBE contamination of thousands of drinking water supply
wells has been widely documented, reflecting enormous environmental and economic
costs. Due to its abundance in gasoline, high aqueous solubility, and slow degradation
rate in aquifers, MTBE has migrated in significant quantities from subsurface gasoline
spills to a substantial number of community and private drinking water wells in a short
period of time. For the purposes of this project, it was hypothesized that the tendency for
gasoline additives to contaminate subsurface drinking water resources could be
accurately predicted a priori using a generalized transport model.

A screening method was developed to predict both the migration times of gasoline
constituents from a leaking underground fuel tank (LUFT) to a community drinking
water supply well and expected contaminant levels in the well. A review of literature
revealed that U.S. municipal drinking water supplies are typically found in shallow sand
and gravel aquifers. A subsurface transport model was parameterized based on the
proximity of community supply wells to LUFTs (1000 m); probable characteristics of
sand and gravel aquifers; typical pumping rates of community supply wells (80 to 400
gal/min); and reasonable gasoline spill volumes from LUFTs (100 to 1000 gal). The
transport model was tailored to individual solutes based on their estimated abundances in
gasoline, gasoline—water partition coefficients (K,y), and estimated organic matter—water
partition coefficients (Kop).

Transport calculations were conducted for 17 polar and four nonpolar compounds
currently proposed for or found in contemporary U.S. gasolines, including MTBE,
ethanol, and methanol. Subsurface degradation processes were not considered. The
transport model predicted MTBE concentrations of 40 to 500 ppb in municipal wells,
which compared favorably with observed well concentrations at a significant proportion
of sites in the U.S. The transport model therefore captured the order of magnitude of
observed MTBE contamination of municipal wells without any use of adjustable or
“fitted” parameters.



Subsurface transport calculations of gasoline constituents required prior
knowledge or estimation of their gasoline—water partition coefficient and organic matter—
water partition coefficients. In anticipation of the need to conduct transport calculations
for novel or previously unstudied compounds, a review of methods for calculating or
predicting solute partition coefficients in gasoline-water, organic matter—water, and
octanol-water systems was conducted. Additionally, a new linear solvation energy
relationship (LSER) was developed for estimating gasoline-water partition coefficients
of organic compounds, having an estimated standard error of 0.22 log Ky units.
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Chapter 1
Introduction. Assessing the Impact of Fuel Additives on National
Drinking Water Resources: Development of a Transport Modeling Methodology

1-1. Motivation and purpose

Accumulated experience with environmental contamination has continually led western
society to reconsider questions about anthropogenic compounds, including the following:
(1) How much of the contaminant is released into the environment? (2) Once in the
environment, how does the contaminant transport and transform, thereby controlling exposures
to humans and ecosystems? (3) When these exposures occur, what health effects will result?
The answers to these questions generate the basis for estimating the social costs of
environmental contaminants of interest.

These inquiries are not all feasibly addressed for most chemicals. Question 1 is usually
the easiest to answer. In the case of groundwater contamination by fuels, the characteristics of
releases are directly related to the estimated number of leaking fuel storage tanks and spillage
releases from automobiles during refuelling. Question 3 is probably the hardest to answer:
health effects studies are expensive and frequently inconclusive, and usually give information
about only certain types of toxicity effects.

Since toxicity and health effects of a contaminant are difficult to address, heavy scientific
focus is frequently placed on question 2, the environmental behavior of a contaminant: sow does
the compound travel and react in the environment, thereby resulting in human and ecological
exposures? When this critical issue is resolved, the level of need for aggressive health effects
testing and envionmental monitoring can be established. For example, although gasoline is
composed of hundreds of compounds, toxicity testing and environmental monitoring is only
relevant for the few components that may produce significant exposures in the environment.

This preliminary environmental assessment raises a more salient and useful point,
however. The transport and reaction behavior of a chemical could be studied before it is
introduced to society on a large scale. This pre-emptive modeling could avert future
environmental and human health damage and properly focus nationwide contaminant
characterization and health effects testing.

In other words, if the environmental transport and reaction behavior of compounds such
as tetraethyllead (TEL) and methyl-zert-butylether (MTBE) had been studied before they were
added to gasoline, the massive environmental, human health, and economic costs incurred by
their use might have been avoided. Industrial lead use has increased ambient atmospheric lead
concentrations by a factor of 300 [1], and the use of TEL in U.S. gasoline has been linked to
child lead poisoning on a national scale [1]. MTBE use in gasolines has resulted in the closure
of thousands of drinking water supplies in the U.S. over only a few years, thereby constituting
enormous economic and environmental setbacks for society [2-8].
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Literally thousands of compounds are used or imported at quantities greater than 1
million 1bs per year in the U.S., but basic toxicity data exist for only 10% of these [9]. Over
70,000 synthetic chemicals are now commercially used in the U.S., and about 1000 new
compounds are developed for industrial or commercial use every year [10]. In light of
accelerating chemical production, the ability to a priori assess the environmental transport
behaviors of proposed commercial compounds clearly has enormous potential benefits in terms
of future human health and ecological and economic cost avoidance. Specifically, the
development of a modeling tool to predict the exposure levels of future gasoline additives is an
important need, based on past experience with TEL and MTBE.

The purpose of this study was therefore to address the following problem. Given a
hypothetical newly proposed organic gasoline additive, can one: (1) predict the subsurface
transport behavior and drinking water exposures that will result, on a nationwide scale; and (2)
tailor these predictions to individual compounds based on physical property estimation methods?
If feasible and accurate, such calculations would allow the threat of future proposed gasoline
additives to drinking water resources to be rapidly screened before these additives are used
nationwide.

1-2. The “ensemble average” transport modeling approach

How does one go about developing a model to predict a nationwide subsurface
contamination problem? General methodologies for the prediction of compound transport in
site-specific hydrogeologic settings have been mapped extensively [11-14]. This foundation can
be extended to assess the environmental impact of contamination at a multitude, or distribution,
of sites.

Clearly, making specific environmental contamination predictions for every leaking
underground fuel tank (LUFT) site in the U.S. is a cost-prohibitive evaluation of the potential
environmental costs of using a newly proposed gasoline additive. If possible, the hydrogeology
of these sites must instead be generalized to model an “ensemble average” of probable transport
behaviors in various hydrogeologic settings. The ensemble methodology does not specifically
predict contaminant behavior at any individual site, but it might predict the order of magnitude
effects at many or most sites. In other words, I hope to predict the nationwide drinking water
contamination consequences of specific gasoline additives by calculating the average behavior of
many gasoline spills.

Fortunately, some common sense can be used to restrict the set of gasoline spills under
consideration. Since the receptor of interest is drinking water, it is useful to consider only those
gasoline spills that are within reasonable vicinity of a community water supply well.
Additionally, as a first approximation, only LUFT sources of contamination will be considered.
LUFTs are a considerable source of groundwater contamination by gasoline: over 330,000
confirmed releases from regulated LUFTs were reported to EPA between 1988 and 1998 [15].
Substantial data exist on both LUFT locations and their locations relative to community supply
wells [16].
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Restricting the ensemble approach to this subset of gasoline spills substantially focuses
the scope of the transport problem. Investigation of the literature reveals that if only areas near
community supply wells are considered, variability in the transport parameters of the sites is
significantly reduced. In other words, under these assumptions, critical hydrogeologic
characteristics of the transport problem are somewhat generalizable. This is discussed in greater
detail in Chapter 3.

The ensemble approach is intended as a screening tool for regulators concerned about
what compounds should be put in gasoline. It is therefore not very useful for modeling
individual site contamination. A larger goal of this approach is to lay additional groundwork for

the large scale modeling of contamination transport, such as that in urban airsheds, rivers, or
lakes [17-20].

1-3. Physical property estimation methods

As stated previously, rapid and accurate estimation of physical properties is desirable in
the context of a transport screening model for gasoline additives. The rationale for this is two-
fold. First, the whole point of a screening method is that it provides a low-cost tool for quickly
determining whether a particular societal activity is likely to cause substantial risks or costs.
Generally, laboratory measurement of physical properties relevant to environmental transport
requires time and money, whereas a modeling procedure is rapid and inexpensive. Second, the
“ensemble” approach is proposed with the larger goal of applicability to many kinds of
chemicals in other commercial and industrial contexts.

The current “state of the science” for calculating phase partitioning in pertinent
environmental media is therefore reviewed, including estimation methods of octanol-water
partition coefficients, gasoline—water partition coefficients, and organic matter—water partition
coefficients.

1-4. Outline of thesis work

Chapter 2 addresses the composition of contemporary gasoline and the U.S. regulatory
guidelines that protect water supplies from contamination by gasoline components. Although
gasoline includes several heteroatomic organic (and hence somewhat water-soluble) compounds,
most of these chemicals are not considered in regulatory guidelines, nor are they tested for in
drinking water supplies. A set of two dozen relevant compounds found in gasoline was selected
to test the physical property estimation methods and the transport modeling approach.

In Chapter 3, the transport model is outlined and the basis of the ensemble approach is
defended using hydrogeologic data. Transport model parameters were derived and an example

calculation is shown.

Chapter 4 is an overview of physical property estimation methods of partition
coefficients and some benchmarks describing their accuracy and robustness. This chapter
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describes the current state of the science, but it may also give insight into the future of physical
property calculation methods.

In Chapter 5, the transport method and some physical property estimation methods are
applied to several of the heteroatomic organic compounds found in gasoline (from Chapter 2).
This chapter thus provides practical examples of the subsurface transport screening model.
Additionally, it serves as a preliminary assessment of the potential drinking water impacts of the
current (known) formulation of gasoline.

Conclusions and recommendations for future research and policy needs are discussed in
Chapter 6.
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Chapter 2
Identification of Current Fuel Additives: The Chemical Structures
and Abundances of Polar Compounds Found in Western Gasolines

2-1. Introduction

In an environmental context, fuels are conventionally viewed as a mixture of nonpolar
hydrocarbons. A few small, aromatic hydrocarbon components, which are somewhat water-
soluble and therefore mobile in aquifers, are considered possible groundwater contaminants,
according to regulatory and academic literature. More recently, the oxygenate, methyl-terz-
butylether (MTBE), has been discovered to widely contaminate municipal water supplies, from
leaking gasoline underground storage tanks or spills [1]. Other potential oxygenates have also
come under scrutiny as a result [2-4].

In reality, fuels contain a variety of organic compounds with heteroatom-containing
(nitrogen, oxygen, or sulfur) substituents. These compounds are generally more polar than
hydrocarbon components. As a result, they are more water-soluble and thus more likely to
transport rapidly and in significant quantities to drinking water wells. Regulatory and wellhead
protection literature neither mentions the presence of heteroatom-containing compounds nor
considers them an important threat to groundwater. Consequently, neither municipalities nor
regulators are encouraged to analyze community drinking water supplies for them.

The purposes of this chapter were to: (1) briefly discuss how contamination of municipal
water supplies by fuel constituents and additives is treated in current regulatory and academic
literature; (2) review a list of heteroatomic organic compounds which are either additives or
refining byproducts currently found in gasoline; and (3) motivate the development of subsurface
transport modeling efforts focused on heteroatomic organic compounds found in gasoline.

2-2. Currently evaluated compounds in fuels

In regulatory guides and associated literature for municipalities regarding water supply
contamination, the EPA characterizes gasoline and diesel fuel as posing a contamination threat
from either “hydrocarbons,” “volatile organic compounds” (VOCs), or “oxygenates” [5-7].
Exactly what compounds do these phrases refer to?

EPA wellhead protection guide literature describes “hydrocarbons” as the following
compounds [8]: benzene, toluene, ethylbenzene, xylenes, C,-substituted benzenes, and
naphthalene. “Volatile organic compounds” are described in the Safe Drinking Water Act as
[9]: benzene, toluene, ethylbenzene, xylenes, and several other chlorinated compounds (by law,
there are no chlorinated compounds in gasoline). Currently used “oxygenates” include MTBE
and ethanol, although several other oxygen-containing compounds have been proposed as fuel
additives in academic and EPA literature [6].
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Thus, according to regulatory literature, only a few oxygenates and aromatic
hydrocarbons are considered potential threats to water supplies from leaking underground fuel
tanks (LUFTs). Until recently [10, 11], studies which considered water contamination by fuel
constituents other than hydrocarbons and oxygenates have generally focused on identifying
parties reponsible for fuel-associated subsurface contamination [12, 13].

In federal regulatory code (CFR), rules on the specific chemical composition of fuel
constituents and additives are unrestrictive. Fuel additives must be registered with the EPA,
with information about their chemical composition or the precise process for their production
[14]. EPA approves fuel additive compositions without academic or public oversight, as patent
privacy precludes the agency from sharing specific composition information with the public.
The only other notable restriction on gasoline, diesel fuel, and fuel additive compositions is that
they “contain no elements other than carbon, hydrogen, oxygen, nitrogen, and/or sulfur.”
Additionally, they must contain less than 1.5 percent wt/wt oxygen and less than 1000 ppm
sulfur (the sulfur limit is currently undergoing revision, however) [14]. In summary,
heteroatom-containing compounds in gasoline other than those specifically mentioned thus far
(i.e., compounds other than MTBE, ethanol, benzene, toluene, ethylbenzene, xylenes,
propylbenzene, or naphthalene) are largely unregulated. Their potential impact on human health
and the environment as related to fuel spills is entirely unstudied in the public record.

2-3. Gasoline additives (other than oxygenates)

There are several specific compounds intentionally added to gasoline (Table 2-1). These
compounds and mixtures improve engine performance, clean and lubricate engine valves,
increase the octane number, improve emissions quality, preserve fuels during storage, and
perform other functions [10, 15-19]. The concentrations of such compounds are in the 10 to 400
ppm range; lower than the abundances of typically studied gasoline constituents.

Table 2-1. A list of gasoline additives

C..=5to12 ppm

fuel

N,N’-disalicylidene-1,2-diaminopropane [15] r?ﬂ\w-f' -
Use: chelating agent used to inactivate copper ; /—D
OH HO

polyisobutylated amines [16] \

Use: detergent/dispersant g

C,. = 100 to 250 ppm ) N> i
n=13to 25
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polyisobutylene mannich bases [16]
Use: detergent/dispersant
C,. = 100 to 250 ppm

aminated polypropylene oxides [16]
Use: detergent carrier fluid
C,.. = 100 to 250 ppm

imidazolines [16]
Use: detergent/dispersant
C.. =20 to 60 ppm

N,N’-disecbutyl-p-phenylenediamine

(N,N’-dialkyl-p-phenylenediamines) [15]
Use: antioxidant (preservative)
C,.=5to020ppm

fuel

2,4-dimethyl-6-tertbutylphenol [15]
Use: antioxidant (preservative)
C,..=5to 100 ppm

fuel

butylated hydroxytoluene (BHT) [15]
Use: antioxidant
C. . =5to 100 ppm

fuel

cerium (or other metal) naphthenates [17]
Use: catalyst
C,.=25to 50 ppm

furfural [15]
Use: dye/marker
C

fuel — °
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diphenylamine [15]
Use: dye/marker | g
Cou=? ;

fuel —

2-4. Other polar compounds found in gasoline

In addition to gasoline additive compounds documented in the literature, there are several
heteroatom-containing compounds which have been measured in U.S. and European gasolines
(Table 2-2) [10-13, 18, 19]. These compounds may have originated in the crude oil as a result
of natural processes, or they may have been formed or added during petroleum refining.

Table 2-2. A list of other polar compounds found in retail gasolines

| A
benzotriazole [10] E;[ N
£ =7 v

fuel —

I-methylbenzotriazole [10] 2 ni
Cfuel = I - N!?H

NH,

aniline [12, 10, 11, 13]
C..,=0.1to 2] ppm[17]

fuel

p-toluidine [12, 10, 13]
C..=0.2to 37 ppm [17]

o-toluidine [12, 10, 11]
C.u=0.2to 24 ppm [17]

3,4-dimethylaniline [10]
C,. =est.upto 16 ppm [10]

fuel

2,6-dimethylaniline [10] NH;
C,. =est. up to 16 ppm [10] \@/
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phenol [12, 10, 11, 13]
C. =0.8to 170 ppm [10]

fuel

p-cresol [12, 10, 13]
C. =0.3to 120 ppm [10]

fuel

o-cresol [12, 10, 13]
C,.=1.5t0 130 ppm [10]

3,4-dimethylphenol [12, 10, 11, 13]
C,. = est. up to 40 ppm [10]

2,6-dimethylphenol [11]
C.  =est. up to 40 ppm [10]

fuel

3,4,5-trimethylphenol [12, 10]
C.. =7

fuel —

2,4,6-trimethylphenol [12, 10]
C

fuel — °

thiophene [18, 19]
C,,=181t0 178 ppm [19]

benzothiophene [18, 19]
C,..=0to 385 ppm [19]

OH

OH

OH

OH

OH

OH

OH
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2-5. Discussion and conclusions

Like MTBE, most of the compounds shown in Tables 2-1 and 2-2 are fairly low
molecular weight and include one or more heteroatom-containing substituents. As a result, they
are likely to be polar, somewhat water-soluble, and poorly retarded in aquifers. The high water
solubility of these compounds will enhance their partitioning from fuel non-aqueous phase liquid
(NAPL) to groundwater after a subsurface spill or leak. Thus, although many of the
heteroatomic organic compounds shown here are present in fuels at low concentrations, they
may create high aqueous plume concentrations in aquifers as a result of their partitioning
behavior.

Unlike MTBE, the compounds in Tables 2-1 and 2-2 are not generally tested for in
municipal water supplies. Whether they are currently contaminating water supplies as
prevalently as MTBE is entirely unknown, since they may or may not have the same low “odor
threshold” that originally brought MTBE to light as a potential drinking water safety threat [6].
It is important to note that the list of gasoline additives presented here is not necessarily
comprehensive. Due to trade privacy barriers, such a compilation would require rigorous
experimental analysis of retail gasolines, which is beyond the scope of this study. However,
published experimental investigations of gasoline components have generally considered the
most light and highly polar compounds, that is, those most likely to solubilize in water [10-13].

The potential problem of water-soluble, highly mobile compounds transporting from fuel
leaks to water supplies was the focus of quantitative modeling efforts discussed in subsequent
chapters. The goal of these efforts was to propose a general modeling methodology by which
proposed gasoline additivés might be systematically pre-evaluated before use.
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Chapter 3
Fugacity and Transport Calculations:
Modeling the Partitioning and Mobility of Gasoline Additives
From Leaking Underground Fuel Tanks (LUFTs)

3-1. Introduction and motivation

In this chapter, fugacity calculations and transport models were used together to describe
how compounds in leaked or spilled gasoline: (1) partition from gasoline to water; (2) partition
from water to aquifer solids (i.e., sorb); and (3) advect and disperse downgradient with the
ambient groundwater flow towards municipal wells or other important water resources. The
goal of the modeling approach was to assess the likely non-degraded groundwater concentrations
and migration times of fuel constituents at downgradient municipal supply wells. The ultimate
objective was to develop a screening methodology for evaluating whether any compound added
to gasoline might contaminate significant numbers of municipal wells on a national scale,
assuming chemical degradation in the subsurface was negligible.

Fugacity-based modeling assumes chemical equilibrium between all phases of interest,
and therefore assumes that time scales of physical phenomena (e.g., groundwater flow) are slow
relative to time scales of physical chemistry phenomena (e.g., partitioning between various
phases). Fugacity-based models have been used previously to assess compound transport in a
number of environmental contexts, including subsurface contamination [1, 2], air-shed modeling
[3], and large scale and global transport [4-6].

An entire chapter was devoted to fugacity-driven transport modeling in order to
emphasize that the threat of water supply contamination by fuel constituents is primarily
controlled by differences in compound physical properties (e.g., the aqueous activity coefficient
of naphthalene vs. that of MTBE) rather than variability in hydrogeologic contexts (e.g., alluvial
aquifers vs. karst aquifers). There were three primary reasons for this approach to evaluating the
mobility of organic compounds in subsurface environments. First, regardless of the specific
hydrogeology, compound properties will drastically influence compound mobility and transport.
Second, since the general problem of fuel leaks and spills is one that includes literally hundreds
of thousands of subsurface systems, it makes little sense to evaluate the threats posed by gasoline
components to groundwater with a “site-specific” modeling approach. For example, both MTBE
and naphthalene are abundant fuel components exposed to the same set of hydrogeological
conditions in fuel spills. However, MTBE, rather than naphthalene, has caused contamination
on a large scale (thousands of sites) as a result of its unique physical properties [7, 8]. Finally,
this investigation revealed that many hydrogeologic features in the vicinity of municipal water
supply wells can be generalized. In other words, there is little variability in the transport
parameters of these aquifers. In fact, the geological characteristics common to municipality
water supply aquifers make them particularly vulnerable to contamination by highly water-
soluble compounds such as those found in fuels (see Chapter 2). Accordingly, a highly relevant
hydrogeologic context could be proposed to evaluate fuel additive transport from leaking
underground fuel tank (LUFT) spills to municipal water wells.
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Since the transport model is intended to screen the potential mobility of anthropogenic
organic compounds, biological and chemical attenuation processes were not discussed here. The
rates of degradation processes vary widely in different geochemical environments and depend
highly on characteristics of local microbial communities and on properties of the compound of
interest. As a result, most attenuation processes are difficult to predict even for site specific
conditions without accompanying expensive and time-intensive experimental investigation. An
important premise of this study is that environmental fugacity and transport behaviors of organic
compounds can be more inexpensively and reliably predicted under a wide range of conditions
than can environmental degradability. The purpose of this study was therefore to evaluate the
potential threat that compounds may pose on the basis of their mobility in the environment. If
individual compounds are shown to create significant risks based on their environmental
transport behaviors, rigorous studies of their environmental transformation rates should be
conducted.

The goals of this chapter were to: (1) describe fugacity calculations of the fuel-water
partitioning and aquifer solid-water partitioning of organic compounds and discuss the validity
of underlying assumptions; (2) describe a transport modeling approach which computes the
advection and dispersion of a contaminant plume as it migrates through the subsurface and
dilutes in a municipal supply well; and (3) combine the fugacity and transport calculations to
develop a general subsurface transport screening model which reflects probable non-degraded
contaminant concentrations at municipal wells downgradient of LUFTs. A “recipe” of complete
and succinct instructions for conducting a detailed transport model calculation is given at the end
of the Summary and Conclusions part of this chapter (section 3-8).

3-2. Fugacity computations of fuel-water partitioning

Consider a gasoline leak from an underground storage tank (Figure 3-1). As fuel
percolates through the vadose (unsaturated) zone, it pools on the water table. Since the aquifers
of interest in this study are generally coarse grained and shallow (refer to section 3-4), gasoline
transport through the vadose (unsaturated) zone was assumed to occur relatively quickly. Next,
individual compounds in the fuel mixture partition into the groundwater. The fuel-water inter-
face was considered equilibrated with respect to chemical partitioning. In other words,
partitioning kinetics were assumed fast relative to groundwater flow and dispersion processes on
the sub-grain scale. Finally, dissolved compounds are transported downgradient with the
groundwater flow and are subject to sorption to aquifer solids (retardation) en route. Sorption
kinetics were also treated as fast relative to groundwater flow and sorption equilibrium was
therefore assumed, as is discussed later (see section 3-3).
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Figure 3-1. Subsurface transport of compounds from a leaking underground storage tank

The fuel-water partition coefficient, K, , describes the equilibrium concentrations of a
compound between two adjacent phases:

K_=C/C, (3-1)

where C, = concentration in fuel [mol L"], and
C, = concentration in water [mol L"].

The partitioning of a solute is governed by the activity coefficients of the solute in
different phases:

K. = WLV (3-2)

where V, = molar volume of fuel phase (~0.12 L mol™),
V, = molar volume of aqueous phase (~ 0.018 L mol™),
Y, = activity coefficient of solute in fuel [mol, mol_, "], and
Y, = activity coefficient of solute in water [mol molwlm"].

An activity coefficient describes the nonideality of the solute in the phase of interest: the pure
liquid phase of the solute itself is considered the “ideal” (reference) state, definitionally having
an activity coefficient value of unity. The molar volume of the aqueous phase is treated as
equivalent to that of pure water. The molar volume of the fuel phase is formulated as the sum of
fractional molar volumes of major fuel components (see section 5-3). The solute activity
coefficient is proportional to the exponent of the partial molar excess free energy of solution,
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AG,. The excess free energy of solubilization represents the energetic cost of transferring the
solute to a solution other than its pure liquid state (or reference state, in which AG® = 0):

Y = exp(AG,/(RT)) (3-3)

If the solute activity coefficients, y, and v,, are known, K, can be used to approximate the
solute concentration in the groundwater immediately adjacent to the fuel, given the fuel
concentration of the solute:

C =CJK, (3-4)

The dissolved solute is now subject to the physical and chemical processes of groundwater
transport as the solute plume migrates away from the fuel spill. Dispersion in the aquifer matrix
will dilute and broaden the contaminant plume, and sorption to aquifer solids will retard its
progress as it migrates (advects) with groundwater flow through the subsurface.

3-3. Fugacity modeling of sorption and retardation in the subsurface

The longitudinal velocity of the groundwater flow relative to the average rate of
contaminant migration is defined as the retardation factor, R:

R=v (3-5)

water Vcontaminam
For non-retarded transport, R = 1. Retardation occurs as a result of sorption of the contaminant
to aquifer solids, thereby decreasing the contaminant’s effective migration velocity through the
subsurface. The retardation factor was formulated assuming that as a contaminant moves
through the subsurface, a certain amount of it must spend time being sorbed to aquifer solids to
maintain chemical equilibrium. The aqueous mass of the contaminant was considered here to be
the portion that can migrate via groundwater flow at any given point in time (i.e., colloid-
facilitated transport is ignored). The retardation factor can be expressed [9]:

R=1+Kp(1-0)/d (3-6)

where K, = sorption coefficient [L. water / kg solid],
p, = solids density [kg solid / L solid], and
¢ = porosity [L water / L bulk aquifer material].

This derivation of the retardation factor (R) assumes that sorption equilibrium is achieved
quickly relative to groundwater flow.

Organic compounds may sorb to multiple aquifer solid phases. However, studies have
suggested that the organic matter in aquifer materials is the dominant sorbent for most nonpolar
organic compounds [10-16]. These studies also suggest that sorption of nonpolar organic
compounds to organic matter is approximately linear as a function of solute concentration
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[13, 14], and that sorption behavior is similar for different sorbents [10-15]. Linear sorption
isotherms suggest that the solute is partitioning between solvent phases (i.e., water and organic
matter), rather than sticking to surfaces (adsorption). Adsorption is usually somewhat nonlinear,
characterized by limited sorption sites with increased concentration or enhancement of sorption
sites with increased concentration [17, 18]. As a modeling simplification, therefore, sorption
was assumed here to occur dominantly to organic matter in the aquifer material:

Kd = fumI(om (3‘7)

where f = aquifer solids mass fraction of natural organic matter, and
K. = organic-matter/water partition coefficient.

The retardation factor may now be expressed:

R=1+f K p (1-0)/¢ (3-8)

3-4. Advective - diffusive transport in the subsurface

The subsurface transport of a contaminant plume is governed by advection with ground-
water (migration), retardation (sorption to solid phases), dispersion in three dimensions, and
degradative processes. Representative field dispersivities, relevant hydrogeological
characteristics, and length scales to municipal wells were needed.

The hydrologic characterization of nationwide municipal well contamination by LUFTs
can only be general. In the derivation of a subsurface transport model, the behavior of the
groundwater contamination plume was treated as a longitudinally averaged slug with lateral and
vertical Gaussian concentration distributions. This approach begs the question: why wasn’t a
more mathematically rigorous computational algorithm used, given the physical constraints of
the system? A numerical calculation could easily have been devised to produce a three-
dimensional plume distribution, with a precisely defined solute peak concentration and plume
centroid. However, the level of overall hydrogeologic variability inherent in the thousands of
subsurface sites considered here undermines the usefulness of such precision. Kitanidis reports
that, especially when the regularity of hydrogeologic morphology is uncertain, the gaussian-like
spreading of a plume does not necessarily reflect the extent of dilution of regions within the
plume [19]. Clearly, the regularity of geological formations in the distribution of sites under
consideration in this work (see section 3-5) is highly variable. The concentration distribution of
the plume was therefore treated as a probabilistic, rather than deterministic, entity.

Additionally, variability in input parameters (see section 3-5) superimposed still more
uncertainty on model results. Therefore, it would have been an exercise in overmodeling to treat
subsurface contaminant migration using a highly precise transport algorithm, thereby assuming a
higher level of information than was actually available. Accordingly, the 3-dimensional
transport problem was solved by simply scaling the transport processes, as is described here. It
is important to note that because of the uncertainty inherent in the modeling approach, the
calculated municipal well contaminant concentrations must be interpreted as order-of-magnitude
estimates. This is discussed further in Chapter 5.
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The groundwater velocity (v), retardation (R) of the compound via sorption to aquifer
solids, and transport distance (L ) can be used to estimate the time of arrival (t, ) of the front of a
plug flow (i.e., non-dispersive) plume travelling from a LUST to a municipal well:

tArr, plug-flow = I"xlzlV (3-9)

In general, however, the time of arrival of the leading edge of the solute front is earlier than that
suggested by plug-flow, depending on the extent of longitudinal dispersion of the plume. The
longitudinal dispersion of the plume must therefore be characterized before the time of arrival of
the solute front can be determined. The solute front is described (eqn 3-10) as the section of the
plume that lies a distance G, , ahead of the plug flow front:

S|

=(L -0

x, disp

R/ (3-10)

tAn’, front

where ©

«.aip = the square root of longitudinal variance of the dispersion-related plume spread.

The spatial variance (6,”) of the plume in any given direction i can be described as a
function of the plume transport time (t) and dispersion coefficient (E,) [20]:

do//dt = 2(E/R) (3-11)

Assuming that dispersion is approximately Fickian (i.e., described as a random walk process),
eqn 3-11 can be integrated from t = 0 to the arrival time of the plume at the well (t =t, ) with E,
considered constant [20]:

6’ = 2(E/R)t, (3-12)

It 1s well known that the dispersion coefficient, E,, is not constant with respect to time in the
field, contrary to eqn 3-11. In field studies, it has been shown that E, is proportional to the size
of the plume [Welty, 1989 #21; Chrysikopoulos, 1992 #22; Kitanidis, 1988 #23]. The
dispersion coefficients used for modeling purposes here were empirically derived from field
studies which assumed constant (time-averaged) Fickian dispersion [21]. This modeling
approach is valid because the field studies from which the dispersion coefficient values were
calculated involved transport over a spatial scale which was comparable to the transport scale
considered here.

In this study, computing the extent of dispersion of the plume has practical value for
three reasons. Longitudinal dispersion shortens the amount of time required for the contaminant
to reach water supply wells (eqn 3-10). Additionally, longitudinal dispersion increases the
spatial variance (or spread) of the plume, and therefore may decrease the average rate at which
the contaminant enters the well. Finally, transverse and vertical dispersion determine whether
the capture zone of the well is likely to draw the entire depth and breadth of the plume. We
computed the probable extent of dispersion in all three dimensions, and addressed the
consequences for transport accordingly.
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Consider the simple case of a municipal well drawing from the entire depth of a shallow
aquifer in a relatively uniform flow field (Figure 3-2). The capture zone width of the well, b, is:

b=0Q,/(vho) (3-13)
where Q, , = well pumping rate [m’/day],
v = ambient groundwater velocity [m/day],

h = depth of the aquifer [m], and
¢ = aquifer solids porosity (unitless).

>X

Figure 3-2. Streamline diagram of a well capture zone in a uniform flow field

The rate at which contaminant mass enters the well was calculated by multiplying the
total mass of the contaminant in the plume (m_ ) by the velocity at which the contaminant is

total

transported (v/R), divided by the length of the plume at the well (roughly 2c

X, fmal):

dm/dtinto well — mtoLaIV/ (20)(, ﬁnalR) (3-14)
It is important to note that eqn 3-14 is a poor approximation for the contaminant mass flux into
the well if the plume is very long as a result of leaching slowly out of the gasoline spill. In this
case, the contaminant mass flux is approximated using the “steady state” transport solution
described in section 7 of this chapter (eqns 3-39 and 3-40). The concentration of the compound
in the water supply (C,_,) was determined by the rate at which mass of the compound enters a
municipal well, divided by the pumping rate of the well (Q,_,):

Cwell = (dm/dtimo well)/QwelI (3— 1 5)
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3-5. Realistic field transport parameters

In order to make realistic calculations of contaminants transporting from LUFTs to
community supply wells, reasonable field transport parameters were estimated. The choice of
each transport parameter value is discussed in detail, based on literature review and a survey of
six selected communities in the U.S (Table 3-1). The survey results included too few
communities to be very useful as an independent data set and are therefore shown mostly for
validation of transport parameter estimates. The field parameters values chosen for the transport
mode] are shown in Table 3-2.

Agquifer characteristics. A brief review of relevant literature demonstrated that municipal
and domestic water supply wells are typically (purposefully) located in aquifers with high
hydraulic conductivities (10~ to 10° cm/s) and porosities (0.10 to 0.50) [22-24]. In the U.S., the
significant majority of water supply wells are drilled in unconsolidated deposits composed of
glacial outwash sand/gravel or sedimentary/aeolian sand/silt deposits [22, 23]. To a lesser
extent, fractured formation aquifers such as karst or fractured basalt are also exploited [22, 23].
Based on survey data (Table 3-1), we additionally hypothesized that the aquifers in which
municipal wells are located generally have low organic carbon levels, with a solids organic
matter fraction typically ranging from O to 0.005. For modeling purposes, we considered a sand
and gravel unconsolidated aquifer with a saturated thickness of about 15 meters (50 feet) and
solids organic matter fraction (f ) of 0.001.

Longitudinal groundwater velocity, v, determines the rate of subsurface transport of the
contaminant. A review of field studies gives data for ambient groundwater velocities in several
sand and gravel aquifers (n = 16) in the U.S. and Europe [21]:

range: v =0.0003 to 31 [m/day]
median: v=0.75 [m/day]
mean: v=4.9 [m/day]

The longitudinal groundwater velocity was therefore assumed to be a constant value of
approximately 1 meter per day in a uniform flow field. As shown by the data given above, this
is a representative value for unconsolidated materials with high hydraulic conductivities. It is
important to recognize that ambient groundwater velocity is a critical transport parameter which
is highly variable between sites and regions, and results must be interpreted accordingly.

Distance to municipal wells, L , sets the physical scale of the transport problem. In a
recent nationwide survey of about 26,000 community water supply wells in 31 states, 35 percent
of municipal drinking water wells were found to be within 1,000 meters of at least one reported
leaking underground gasoline tank [7]. Therefore, a representative LUFT to well distance of
about 1,000 meters was assumed.

Dispersion coefficients E, E , and E, represent the scale-dependent tendency for a plume
to spread and dilute in the longitudinal (x), transverse (y), and vertical (z) directions. The
dispersion coefficients are equivalent to the longitudinal (a ), transverse (a,), and vertical (a)
dispersivities multiplied by the longitudinal component of groundwater velocity, v [20]:
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E, =va [m’/day] (3-16)

Dispersivity, a, reflects the tendency of a solute plume to dilute and spread during flow
through a porous media. In the field, observed dispersivities are determined by the size of the
flow regime, since geologic heterogeneities in the aquifer occur on multiple scales [20].
Representative field values of dispersivity in sand and gravel aquifers were obtained from data in
a review by Gelhar et al., based on experimental transport distances of 500 to 1,500 meters [21]:

dispersivity observed in field [21]

dispersivity range average median n
a_ [m] 7.6 to 234 50 20 7
a, [m] 1to4.2 3 4 3
a, [m] 0.31 0.3 0.3 1

For comparison, according to the U.S. Environmental Protection Agency Composite
Landfill Model (EPACML), typical subsurface dispersivities for a transport distance of 1000 m
would be assigned the following probabilities in a stochastic simulation [20]:

dispersivity by probability

dispersivity p=0.1 p=0.6 p=0.3
a_[m] 0.078 t0 0.78 0.78t0 7.8 0.78t0 78
a, [m] 0.010t0 0.10 0.10to 1.0 0.10to 10
a, [m] 0.00049 to 0.0049 0.0049 to 0.049 0.0049 to 0.49

The following dispersivity values were considered representative for modeling purposes
here:

a =10m a=1m a=0.1m

Well Pumping Rate, Q,,,, can range widely, depending on the needs of the community
and the specific hydrologic setting. A survey of several communities suggested a municipal well
pumping rate range of 435 to 7620 m'/day (80 to 1400 gal/min; Table 3-1). A higher pumping
rate increases the likelihood that the capture zone will contain an entire contaminant plume, but
it also lowers the effective concentration of the contaminant by diluting it with a greater volume
of ambient groundwater. A pumping rate value of 2180 m’/day (400 gal/min) was thought to be
reasonable for screening model purposes.

Table 3-1 shows a brief summary of data taken in the field survey. Fuel storage tank
distances to community water supply wells (L) were estimated based on known well and service
station locations. In a few cases this data was not retrieved. Typical or average well pumping
rates (Q,,,) and well screen depths (d,) are also listed. Aquifer material fraction organic matter
data (f ) is based on measurements taken in studies of local surface aquifers.
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Table 3-1. Summary of water supply survey data for 6 randomly chosen U.S. communities

location aquifer type L [m] Q.. lgpm] £ d [m] citations
Forestdale, MA sand/gravel <200  200-350 0.0003 10-18  [25, 26]
Guymon, OK silt/sand/clay  300-700 80-900 0-0.01 130 [27, 28]
Columbus, MS sand/gravel - 1400 0.0006 300 [29, 30]
Chillicothe, OH sand/gravel ~ 700-900 900 0.002 20-30 [31, 32]
Brush, CO alluvium - 600-1400 0.001 30-40 [33, 34]
College Station, TX sand - 200 - 1000 [35]

Table 3-2. Summary of model field transport parameters

aquifer material sand and gravel
porosity 0 0.25
fraction of organic matter fom 0.001
temperature T 15°C
aquifer saturated thickness d 25m
water table depth d, 5m
ambient groundwater velocity v 1 m/day
well pumping rate Q,, 2180 m’/day
calculated capture zone width b 350 m
distance from LUST to municipal well L, 1000 m
longitudinal dispersivity a 10 m
transverse dispersivity a, I m
vertical dispersivity a 0.1 m

3-6. Estimation of contaminant plume initial conditions

For modeling purposes, a spill volume (¥,) of about 0.38 m’ (100 gal) of gasoline was
assumed to have reached a shallow water table. The fuel non-aqueous phase liquid (NAPL) was
assumed to spread on the water table quickly, relative to the time required for fuel components
to leach out of the fuel via dissolution into the groundwater. The groundwater passing by under
the fuel NAPL was then assumed to equilibrate a vertical cross section of water with a width
equal to that of the NAPL pool (Figure 3-3). The depth (H) of the plume that is equilibrated
with the NAPL when it leaves the NAPL pool was assumed equivalent to the square root of the
variance of dispersion-related vertical plume spread (i.e., one standard deviation of the
dispersion vertical transport term) [36].

H =0, = V(B )(VR)) = V(2(va )(L,,/V)) (3-17)

spill

H=vV(al_,) (3-18)
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where H = depth of the equilibrated plume [m], and
L_., = length of the NAPL pool [m].

spill

Groundwater

? Flow

Figure 3-3. Zone of contamination beneath the NAPL phase

If the spill spreads in an approximately circular fashion (Figure 3-3), the length of NAPL
spill that passing groundwater is exposed to varies as 2\(r” - y*), where r is the radius of the spill.
The dimensions of the NAPL pool were chosen so that the saturated thickness of the NAPL lens
was about 5 cm. For a 100 gallon spill, this translates into a lens diameter of about 3.1 m, after
correcting for aquifer porosity. The cross-sectional area (A) of contamination leaving the NAPL

pool was found by integrating the depth of the plume as it leaves the NAPL over the width of the
plume:

A = J [V(2a (length of exposure))]dy (3-19)

Since A is an even function over -t to r, the integral limits can be simplified:
A= 2 [ Va2V - y))ldy (3-20)

A=[4a] [ r[‘\f (r* - yH1dy (3-21)

No satisfactory analytical solution to this integral was found. It is a well-behaved function that

can be numerically integrated with nominal error. In this work, the midpoint-method numerical
integration approximation was used, with N = 1000 intervals [37]. A fitting function was found
which empirically relates the computed value of A [m’] to the NAPL spill radius, r [m]:
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A=3.49r"Va i = 1.000 (3-22)

A list of the transport model initial conditions is given in Table 3-3, based on the NAPL
characteristics described above.

Table 3-3. Summary of estimated transport model initial conditions and NAPL pool parameters

volume of the NAPL gasoline lens ¥ 0.38 m’
radius of the NAPL lens r 1.56 m

vertical dispersivity on a 10 m scale [21] a 0.002 m
initial cross-sectional area of plume A 0.30 m’

3-7. Calculation of contaminant plume transport

The plume was assumed to spread in 3 dimensions with a Gaussian distribution as it
migrated away from the NAPL spill. The mass leaving rate of the compound from the NAPL
pool was approximated as:

dn]/dtoutofNAPL = 'QPCW = '(AV/¢)CW (3-23)
where Q, = flux of groundwater through area A (Figure 3-3) at the NAPL edge [m’/day].

The rate at which the fuel spill is depleted was calculated by relating the aqueous concentration
of the equilibrated plume with the fuel-water partition coefficient of the compound of interest
(eqn 3-4):

dmy/dt = -(A/O)VC/K,, (3-24)

out of NAPL

dmy/dt = -(A/O)VI/(¥K ) (3-25)

‘out of NAPL

where ¥, = volume of fuel spill [m’], and
m = mass of compound in fuel [mol].

The mass of the compound in the fuel varies as a function of time, so the compound
concentration in the fuel experiences first-order decay:

Mg = Mg exp('AVt/(Wfow)) (3'26)

Ct,fuel = Co,fuel EXp(—AVt/((bsvlfow)) (3 -27)

The amount of time required to deplete the fuel of 75% of the compound (i.e., two fuel
concentration “half-lives”), excluding a weak plume tail, is therefore:

21n(0.5)/(Av) (3-28)

fw

tdeplction =- ¢¥fK
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The initial length of the plume, approximated as a slug of uniform concentration, is therefore:

lx, initial — thepleﬁon/R (3'29)
Note that the initial plume length cannot be smaller than the original spill, so it is also always
true that:

lx. initial 2 2r (3'30)
The initial lateral concentration distribution was assumed Gaussian. The initial lateral spread
reflects the width of the spill (2r):

O, i = /2 (3-31)
The initial vertical spread was calculated based on the length of the spill (2r) and the vertical
dispersivity, a, (see eqn 3-18):

S, initia = \/(23221‘) (3-32)

Clearly, the initial shape of the plume depends highly on the geometry of the NAPL spill
(which is unlikely to be circular, as idealized here), heterogeneities in the aquifer material, etc.
The methods employed here are intended to capture only the rough magnitude of initial vertical
and transverse spread: trial calculations demonstrated that the extent of the initial dispersion did
not significantly affect the final vertical and transverse dimensions of the plume.

Two general descriptions were used to characterize the plume transport of different
contaminants from the fuel NAPL spill to a water supply well. Some contaminants leach slowly
out of the fuel and thereby generate a plume that is long relative to transport-induced
longitudinal spreading. These compounds were said to create steady state plumes, in which
longitudinal spreading does not significantly dilute the contaminant as it travels towards the
water supply well. Conversely, a contaminant may transfer quickly to the aqueous phase and
generate a shorter slug plume which can be effectively diluted by longitudinal dispersion during
transport. In both cases, it was assumed that the capture zone of the well draws the entire plume.
This is realistic, since, based on the parameters suggested here, the calculated capture zone width
(b) is 260 m, and the lateral spread of the plume is on the order of 40 m when it reaches the well
(see section 3-9).

The plume behaves approximately as a “slug” as long as the initial length of the plume,

1, i 18 €8S than the extent of longitudinal spreading which occurs during transport:

<2V(2alL) (3-33)

lx,initia]
But using eqn 3-29, we see that:
Vt,o/R <2¥(2a L) (3-34)

depletion
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Plugging eqn 3-28 into the t, . . term in eqn 3-34 and solving for K, /R, we find that the
condition for a “slug” plume is controlled by the ratio of the fuel-water partition coefficient to
the retardation factor:

K, /R < - (AV(2a L))/($¥ In(0.5)) (3-35)

Eqn 3-35 implies that the condition for a slug plume is K, /R < 644 (unitless) for a 100
gallon spill and K, /R < 175 for a 1000 gallon spill. In this case, the initial variance of the
plume, o, ., can be related to the 2" moment of a slug of uniform concentration, (o) 712

Using the assumption of Fickian dispersion (eqns 3-11 and 3-12), the final longitudinal variance
of the plume was described by summing the initial variance and the transport-induced variance:

O, o = O, o + 2EMO, . =(1 . /12 + 2(E /R)t

x, final x, initial Ar, front

(3-36)

Arr, front

The final longitudinal spread (expressed as the square root of the plume variance) is therefore:

cyx, final = —\/((lx,initial)z/lz + 2(E)(/lz)tArr, front) (3-37)
In this case, the mass transfer rate into the well is given by eqn 3-14:
dm/dtinto well, slug = mmta.lV/(zcx,ﬁnalR) (3-38)

If the K, /R value is sufficiently high (K, /R > 644 for a 100 gallon spill and K, /R > 175
for a 1000 gallon spill), the NAPL will generate a “steady state” plume. In this event, the
plume length is significantly greater than the extent of longitudinal dispersion during transport to
the well, or:

1,..>2V(2aL) (3-39)

x.initial

This implies (from eqn 3-35) that:
K, /R > - (AV(2a L ))/(¢* In(0.5)) (3-40)

During steady state plume transport, eqn 3-14 cannot be applied, but it is approximately true
that:

dm/dt,

into well, steady state

= (dm/dt - (A/O)VI/(¥K. ) (3-41)

out of NAPL) =

Regardless of whether the transport is described as steady state or slug, the arrival time of
the leading edge of the solute front at the well may be much earlier than calculated from plug-
flow (described by eqn 3-9). The leading edge of the solute front was defined here as the section
of the plume that lies ahead of the plug flow front by a length of the square root of the variance
of dispersion-related spread (eqn 3-42). The solute front was treated as Gaussian and therefore
has a concentration of roughly 1/3 of the steady state plume concentration. Under these
conditions, the time of arrival of the solute front is given by:
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=(L, - o 4, RV (3-42)

tArr. front

where the longitudinal dispersion is itself a function of t

Arr, from:
Gx. disp = V(2(Ex/R)tAn front) (3 '43)

Eqns 3-42 and 3-43 may be coupled to find t as an explicit function of E :

A, front
e som = LRIV = RV)(-E /v +-N(E IV + 2EL /v)) (3-44)

Finally, the extent of lateral and longitudinal dispersion that the plume displays when it
reaches the supply well may be treated as a Fickian process (eqns 3-31 and 3-32):

Cy. final = \/(G

y, initial

’ + 2(E1/R)tArr front) (3—45)

Cz,ﬁnal = \/(c

z, initial

’ + 2(E’l/l{)tAn' fmnt) (3-46)

3-8. Summary and discussion

The fugacity/transport screening model method proposed here allows the user to predict
probable arrival times and concentrations of gasoline component solutes in community water
supply wells. The theoretical framework is based on physical property data of the compound of
interest and a generalized description of the hydrogeology was used to derive a transport,
dispersion and dilution calculation.

The relevance of this approach lies in its generality. In principle, any organic compound
added to gasoline may be screened for its potential to create significant water supply
contamination on a national scale. Data is provided to assess the validity and usefulness of the
screening model, in the results section (see Chapter 5).

Understanding the choices of hydrogeologic parameter values is crucial to interpreting
the screening model results. The parameter values suggested here were chosen to represent a
relatively probable scenario, rather than an unusually ‘high risk’ scenario. It is important to note
that there are many very realistic ways in which the water supply may be at greater risk than
proposed here. Fractured-rock aquifers may provide much more rapid transport with less plume
spreading and less dilution. Larger spills would result in a higher mass transfer rate and thus
higher contaminant concentrations in the water supply. Municipal wells with lower pumping
rates (or private wells) would create smaller capture zones and dilute the plume less, thus
resulting in higher water supply concentrations. These are only a few examples.

Alternatively, several other factors and processes may serve to mitigate contamination
risks to groundwater supplies. In many cases, the ambient groundwater velocity is a fraction of
the value suggested here, thereby extending transport times of unretarded contaminants to
decades (eqn 3-44) and proportionately decreasing their mass transfer rate into wells (eqns 3-38
and 3-41). Biodegradation, which is not addressed in this work, may attenuate the plume over a
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short distance. Many wells draw from deep, confined aquifers, or far enough below the water
table to avoid drawing the plume into their capture zone. In many cases, the water table is very
deep, so that a significant amount of time is required for the gasoline NAPL to reach the
saturated zone, increasing the extent of biological or chemical attenuation.

A complete partitioning and transport calculation based on the concepts developed here
involves the following steps:

(1) Estimation of the equilibrium water concentration of the compound, based on the fuel
concentration and fuel/water partition coefficient (eqn 3-4).

(2) Estimation of the retardation factor of the compound in aquifer material, based on the
organic-matter/water partition coefficient of the compound (eqn 3-8).

(3) Estimation of the time of arrival of the compound at a municipal water supply well,
based on the rate of retardation and extent of dispersion (eqn 3-44).

(4) Computation of A, the cross-section of contamination area at the spill (eqn 3-22).

(5) Characterization of the transport process as “slug” or “steady state” (see eqns 3-35
and 3-40).

(6) Estimation of the final lateral and vertical spread of the plume (eqns 3-45 and 3-46,
with initial spread values given by eqns 3-31 and 3-32).

(7) Estimation of the concentration of the compound in the water supply well (eqn 3-15),
based on the subsurface mass flux of the contaminant (eqn 3-38 or 3-41) and the well
pumping rate.
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3-9. Example calculation of MTBE transport from a NAPL spill to a municipal well

The following calculation output was produced by a gnu c++ transport program, and is
parameterized using the “input file” shown below. The raw program code is included in the
appendix, and compiled executables are available for both PC (Windows 98 or Windows NT)
and UNIX (Solaris) operating systems. Using the hydrogeologic parameters discussed here with
the partitioning properties of MTBE (see Chapter 5 for data), the following input file is
constructed:

parameter file for MTBE transport calculation

*+* transport.c parameter file -- edit with guidance!! *=**
Please edit only the numerical values in this file..

compound properties:

molecular weight 88.15
fuel concentration [ppm] 100000
Kfw 16
Kom 8

spill description:

NAPL volume [mA3] 0.38
NAPL lens thickness [m] 0.05
hydrogeologic parameters:
fom 0.001
porosity 0.25
aquifer solids density [g/cmA3] 2.5
groundwater velocity [m/day] 1
aquifer saturated thickness [m] 25
a(x) [m] 10
a(y) [m] 1
a(z) [m] 0.1
well pumping rate [mA3/day] 1635
well distance [m] 1000

The transport program extracts parameter data from the input file, and produces both on-
screen output and an output file using the algorithm outlined in this chapter. If multiple runs are
conducted, results will be serially appended to the output file. Interpretation of the results is
discussed in Chapter 5 of this work.
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transport.c on-screen output for MTBE transport calculation

* * * * * &

NOTE TO USER: Welcome to transport.c, a program designed to characterize
the contamination plume created by gasoline components. Change inputs
using the transparms.dat parameter file. This program is not exception-
handled and will bail if the parameter file is incorrectly modified.

- = - PRELIMINARY DATA CHECK - - -

solute molec wt = 88.15

solute fuel concentration = 100000 ppm
solute Kfw 16

solute Kom 8

NAPL volume = 0.3785 m*3 = 100 gallons

NAPL thickness = 0.05 m

fraction of organic matter = 0.001

porosity = 0.25

aquifer solids density = 2.5 g/cm*3
groundwater longitudinal velocity = 1 m/day
aquifer saturated thickness = 25 m
dispersivities (in meters) = 10 [x] 1 [y] 0.1 [=z]
well pumping rate = 1635 m*3/day

distance to the supply well = 1000 m

- - - TRANSPORT.C FULL RESULTS -~ = =
The time of arrival of the solute front is 920 days.
The plug-flow time of arrival is 1100 days.

The initial plume length is 6.5 meters
The initial spread of the plume is:
[¥]l] 3.1 meters

[z] 0.79 meters

The plume transport type is 'slug’.
The final spread of the plume is:

[x] 130 meters

[yl 42 meters

[z] 13 meters

The width of the well capture zone is 350 meters.

The agueous concentration at the spill is:
0.053 mol/L or 4700 ppm

The aqueous concentration in the well is:
5.3e-07 mol/L or 0.047 ppm

transport.out (the transport output file) for MTBE transport calculation

** TRANSPORT.C RESULTS SUMMARY **

t_arr C_well C_well plume dispersion, [m] transport
run# [days] [ppb] [M] x b4 z type
1 920 47 5.3E-07 130 42 13 slug
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Chapter 4
Physical Property Estimation Methods Relating to
Subsurface Transport of Gasoline Constituents

4-1. Introduction and motivation

The partition coefficients of organic compounds are the fundamental parameters used in
fugacity-based models. In the interest of developing a screening tool, it was useful to examine
how these physical properties might be calculated from quantitative structure activity
relationships (QSARs), rather than measurements in the laboratory. Accordingly, methods used
to predict partition coefficients from chemical structure were briefly evaluated.

A substantial literature exists on the topic of physical chemical property estimation. This
review only addressed methods relevant to subsurface transport modeling of fuel solutes.
Additionally, I have restricted discussion to those methods which appear the most
comprehensive and accurate in their predictive power.

The purpose of this chapter was to: (1) briefly survey and discuss the theory of methods
for estimating aqueous activity coefficients, fuel activity coefficients / fuel-water partition
coefficients, organic matter—water partition coefficients, octanol-water partition coefficients;
and (2) discuss the role of Linear Solvation Energy Relationships (LSERs) and recent
developments in ab initio calculations of activity coefficients.

4-2. Aqueous activity coefficient estimation

The aqueous activity coefficients of different organic compounds can vary over many
orders of magnitude. Since activity coefficients of organic compounds in other phases typically
vary much less, the characteristic transport behavior of a particular organic compound from
spills in the subsurface is frequently controlled by the value of its aqueous activity coefficient.
As aresult, the validity of the subsurface mobility prediction is particularly sensitive to the
accuracy of this parameter. Theories of aqueous solubilization will therefore be discussed in
some detail.

A. The solution theory behind AQUAFAC

A considerable number of methods have been developed to predict aqueous activity
coefficients, especially fragment methods and linear free energy relationships (LFERs) with
other properties [1-6]. Probably the most accurate and comprehensive fragment method is
AQUAFAC, developed in several papers by P.B. Myrdal, S.H. Yalkowsky and many others
[7-11]. This method relies on the following conceptualization of the excess free energy of
solubilization, which is composed of enthalpic and entropic components [12]:

AGS=AH_ - TAS__ - TAS_ (4-1)

iceberg mix
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where AG” = excess free energy of solubilization in water,
AH_, = enthalpy of mixing,
AS,,.. = entropy of aqueous ice-crystal formation along the solute surface, and

AS = entropy of mixing.

The individual components AH_, and AS,_, of the solubilization energy are postulated as the
sums of contributions, X;, from i parts, or “fragments,” that make up a non-ionic solute
molecule:

AH,, =Z(1,A) (4-2)

ASiceberg = Zl(hlAl) (4_3)
where T, = solute-water interfacial tension per unit area of solute fragment i,
h, = entropy of ice-crystal formation per unit area of solute fragment i, and
A, = molecular surface area of fragment i.

Myrdal et al. thus hypothesize that fragments of an organic solute molecule each generate a
characteristic contribution to the components AH . and TAS, The entropy of mixing term,

iceberg [7]"
AS__, is derived from combinatorial mixing and solvent volume effects [13]:

AS,, = R(-XInX - (1-X)In(1-X) + XIn(V/V_)) (4-4)

where R = molar gas constant,
X = mole fraction of the solute in water,
VJ, = solute molar volume, and
V_. = water-solute mixture molar volume.

Using these approximations, the activity coefficient for any organic solute in water may be
calculated, provided that the energetic contributions from all of its individual fragments have
been found from the known solubilities of other organic molecules. The aqueous activity
coefficient is then:

Yw = exp(AG,/(RT)) (4-5)

This approach can make good approximations. However, the assumption that fragments
of the organic solute individually generate constant contributions to the free energy of
solubilization is not completely valid for different organic molecules. We can examine this
assumption in further detail by looking at its validity for the individual enthalpic and entropic
components of AG .

The partial molar enthalpy of mixing (AH . =Xt _A) represents the enthalpic cost of
placing an organic solute in a polar solvent, such as water. T, is the interfacial tension of the
organic solute in an aqueous solvation cavity: it is the integral of the theoretical solute-water
adhesion energy over the aqueously solvated area of the solute. T, is represented as a sum over
the surface area of the solute because it is presumed to vary over the surface of the solute
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molecule. The partial molar enthalpy of mixing of an organic molecule can be approximated
using empirically derived molecular fragment contributions, but this is not strictly valid. For
example, electron-withdrawing or electron-donating groups on the solute molecule may change
the electronic densities of neighboring groups through inductive effects [14]. Additionally,
steric effects created by some fragments may reduce the extent to which neighboring fragments
are able to interact with the solvent (water) [14]. Consequently, the interfacial tensions of
individual parts of the solute molecule depend on the nature of neighboring parts within the
solute molecule itself. Thus, calculating the partial molar enthalpy as a sum of independent
molecular fragment contributions is only an approximation.

The so-called entropy of iceberg formation derives from the hypothesis that a solvated
organic solute causes the surrounding water molecules to form approximately crystalline layers
along its hydrophobic surfaces [15]. The entropy of iceberg formation contributes the energetic
cost of this increase in solvent organization. Similar to the interfacial surface tension, the extent
of iceberg formation probably depends on the steric and electronic environment of individual
parts of the surface of the organic solute molecule. For this reason, the entropy of iceberg
formation probably cannot be exactly derived as a sum of characteristic contributions from
individual solute fragments. However, the success of the AQUAFAC model shows that it is
probably a good approximation.

AQUAFAC predicts the aqueous activity coefficient with an absolute average error of a
factor of 1.5 to 3, depending the family of compound [7-11]. Regression optimizations have
been conducted using many types of organic moieties, so that AQUAFAC can make predictions
for a wide variety of compounds.

B. The Mobile Order and Disorder (MOD) theory of solvation

Mobile order and disorder theory predicts the energy of aqueous solvation of organic
molecules using a different theoretical approach than AQUAFAC. Huyskens and Siegel argue
that the hydrophobic effect mostly results from the decreased domain of mobility of meandering
water molecules [16-19]. If correct, their derivations imply that the aqueous activity coefficient,
Y..» is mostly entropic in nature. Huyskens and Siegel propose that, in the liquid phase, the
protons of a water molecule spend most of their time “following” an electron-donating (oxygen)
group. The water molecule therefore experiences a lower entropy in bulk solution than if its
orientation with respect to neighboring molecules was non-preferential (i.e., random). Unlike a
solid phase, however, the neighbors of the water molecule physically exchange locations within
a short time frame. Huyskins and Siegel refer to this intermediate level of order, in between
random orientation and crystalline, as a “mobile order.” They argue that when thinking about
the entropy loss related to increased solvent order around the solute molecule, it is incorrect to
treat the solvating water molecules as a “quasi-lattice” structure.

Huyskens and Siegel derive the entropic cost of “mobile order” in water from only three
properties: (1) the fraction of time during which protons are hydrogen-bonded vs. free; (2) the
volume that a water molecule could occupy while hydrogen-bonded to one proton donor; and (3)
the volume of the standardized domain. The “standardized domain” of a water molecule is

51



defined as the molar volume of the bulk liquid divided by N, Avogadro’s number. The derived
entropic cost associated with the mobile order is given as:

ASmobile order = R ln{(’Y—Y(l - Y)Y—l )(VO/DOm )1—7} (4'6)

where v = time fraction during which protons are H-bonded vs free,
V, = volume that an H-bonding water molecule may occupy, and
Dom = volume of the standardized domain of a water molecule.

Huyskens and Siegel then argue that solvation of an organic solute causes a loss of
entropy related purely to the increased standardized domain of adjacent water molecules. This is
hypothesized to be the dominant energetic term of the hydrophobic effect.

Additional solubility contributions are derived to formulate a total solubility equation for
non-ionic aqueous solutes. The only necessary parameters are the compound molar volume (V)
and derived solute-solvent specific interaction stability constants (K_,). The volume fraction
solubility (P,) is given as:

®. =B+F+0 4-7)
B = 0.5 (V/V, - 1) +0.5In(®, + DV, /V,)
F=-,® V./V,

O== In(l +K/V,)

where @, = volume fraction solubility of solute, B,
@, = volume fraction of solvent (water) at solubility,
V, = molar volume of solute [cm’/mol],
V,, = molar volume of water [cm’/mol],
r,, = water “structuration factor,” having a value of 2.0 (a water donates two protons),
K, = solute-solvent stability constant (a derived parameter for various substructures), and
i = index of solute-solvent interaction sites.

In eqn 4-7, “B” is the correction for the entropy of mixing resulting from the size
difference of the solute and solvent molecules. “F” accounts for the hydrogen-bonded chains of
water molecules that form around the solute, the proposed origin of the hydrophobic effect [20].
“O” expresses the enthalpic impact of proton-accepting sites on the solute. Ruelle has also
derived a general expression similar to the “O” term to account for proton-donating sites on
solutes [21, 22]. V, can be estimated using a reliable fragment method [23] or molecular
simulation calculations, and K, is an empirically adjusted parameter.

Using MOD theory, P. Ruelle predicts the solubilities of 531 organic compounds with

weak hydrogen bonding capacities with an average absolute error of 2.3-fold in the solubility or
0.37 base-10 log solubility units [20].
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4-3. Fuel activity coefficient and fuel-water partition coefficient estimation
A. The UNIQUAC functional-group activity coefficients (UNIFAC) [24]

UNIFAC is a fragment contribution contribution method based on the statistical
thermodynamics UNIQUAC (universal quasi-chemical equation [25]) solvation expression and
the ASOG (analytical solution-of-groups [26, 27]) model. For a mixture of several solutes, each
solute can be composed of individual structural fragments. The excess free energy of solution is
assumed to be the sum of independent contributions of fragment pair-wise interactions between
solute molecules.

The UNIFAC method requires two adjustable parameters for each fragment-fragment
interaction in solution. As a result, comprehensive predictive capability using the approximately
78 proposed fragments in recent UNIFAC revisions requires literally thousands of adjusted
parameters from experimental solution data. For a large number of fragment-fragment
interactions, parameters have not yet been derived. As a consequence, UNIFAC is frequently
unable to make predictions for molecules or mixtures with multiple functional groups. The
robustness of UNIFAC lies in its ability to be extended to any solute mixture or system, such as
gasoline. The recently modified UNIFAC method also has improved accuracy over a range of
temperatures (273 to 413 K), but requires three times as many parameters [28, 29]. Several
authors have investigated UNIFAC’s predictive accuracy for systems of environmental interest
(Table 4-1), citing the absolute average error (AAE) [30-33]. Errors range up to a factor of
three in the partition coefficient.

Table 4-1. Previous studies of the accuracy of UNIFAC predicted octanol-water partition
coefficients

system parameter author N AAE

K., (octanol-water) Park and Back (2000) 39 factor of 0.70 in the K,
K, (octanol-water) Lin and Sandler (1999) 226 factor of 0.41 in the K,
Yctanor Li et al. (1995) 131 factor of 2.0 in the y

Kan and Tomson (1996) 66 factorof 3.2 inthey,

Yaaer

B. Mobile Order and Disorder Theory

The MOD theory has been used to predict activity coefficients of solutes in organic
solvents, as described in several papers by Huyskens, Siegel and Ruelle [16-18, 21, 22]. Unlike
UNIFAC, the MOD model is currently derived for binary rather than multicomponent solutions
such as fuels. The MOD model is more general than UNIFAC, however, in the sense that it may
be applied to any organic solute for a given solvent. Since the MOD theory is not currently
formulated to make predictions for mixtures, solute partitioning behavior in nonpolar solvents
such as hexane or toluene must be used to approximate solute partitioning in gasoline.

Ruelle fitted MOD parameters for two solvent systems and tested predictions for several

non-polar, polar, and hydrogen bonding organic compounds (Table 4-2) [22]. Generally these
estimates were accurate within a factor of three.
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Table 4-2. Previous studies of the accuracy of MOD predicted partition coefficients [22]

partition coefficient N RMSE r
K., (octanol-water) 1844 factor of 2.9 in the K__ 0.988
K, (hexane-water) 102 factor of 2.7 in the K, 0.984

C. Linear free energy relationships (LFERs)

Linear free energy relationships are frequently developed to relate organic compound
partitioning in one solvent-solvent system to partioning in another solvent-solvent system. Data
from Hansch and Leo yields a LFER between log K, (octanol-water) and log K, (hexane-
water) for polar and nonpolar compounds with moderate success [34]:

logK,, = 1.66logK _ - 2.26 N=16 r'=0.79 (4-8)
D. Linear solvation energy relationships (LSERs)

Linear solvation energy relationships are designed to reflect the principle solute-solvent
intermolecular interactions responsible for solvation and partitioning behavior. LSERs have
substantially advanced the accuracy of partition coefficient calculations. LSER theory postulates
that the essential characteristics that will determine the solvation behavior of any compound is
captured by the molecular descriptors: R, o BH and V ; and that the solvation behavior of
any mixture (solvent) is captured by characteristic coefficients: r, s, a, and b, plus a constant, c.
The solute and mixture parameters are a linearly related to find the partition coefficient, via:

log K, , =c¢,- ¢, + (1, - [,)*R,, + (s, - 8,)*1" + (a, - a,)*Za", + (b, - b)*Ep",
+ (Vl - VZ)*Vx,i (4-9)

for any solute i partitioning between mixtures 1 and 2,

where R, = solute excess sodium D-line molar refraction (not identical to molar refraction) [35],
! = solute polarity/polarizability [36],
o' = experimentally determined solute acidity [37],
B" = experimentally determined solute basicity [38], and
V, = solute McGowan molecular volume [39].

The molecular solute parameters used in regression eqn 4-9 may be found in published
databases, experimentally determined, or calculated [35-41].

In principle, a partition coefficient can be calculated for any characterized solute
partitioning between any two characterized mixtures or solvents. Solute descriptors are related
to solute physical properties; mixture coefficients are found via regression from literature
partition coefficient values. Many partitioning systems have been characterized, (e.g., examples
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in Table 4-3). The largest deviations (AAE ~ 0.25) of the LSERs shown in Table 4-3
correspond to only a factor of 0.78 in the partition coefficients.

Table 4-3. Previous studies of the accuracy of LSER predicted partition coefficients

Partition system N r AAE oflog K error factor in K
octanol-water [40] 613 0.997 0.12 0.32 B
hexadecane-water [40] 370 0.998 0.12 0.32
cyclohexane-water [40] 170 0.997 0.13 0.35
methanol(dry)-water [42] 93 0.988 0.16 0.45
1-pentanol(dry)-water [42] 59 0.996 0.11 0.29
1-heptanol(dry)-water [42] 38 0.997 0.081 0.21
chloroform-water [43] 335 0.97 0.25 0.78

No previous studies have investigated LSERs for gasoline-water systems. A proposed
linear relationship between the base-10 log of the gasoline-water partition coefficient and three
solute solvatochromic parameters is developed in Chapter 5 of this work.

4-4. Organic matter-water partition coefficient estimation

There is a substantial literature on the prediction of organic matter—water partitioning
(K,,) or organic carbon-water partitioning (K ) of polar and nonpolar organic compounds [44-
47]. Generally, the organic matter content of a sediment is believed to be about a factor of 2
greater than the organic carbon content, and a typical approximate conversion is [48]:

K.~2K,, (4-10)

A recent, comprehensive review of K _and K__ prediction methods by Gawlik et al.
categorizes them into four major approaches [46]: estimation from aqueous solubility; estimation
from K ; estimation using reverse-phase HPLC capacity factor; and estimation from molecular
parameters, topological indices, and linear solvation energy relationships (LSERs).

Gschwend and Wu have shown, however, that improper analytical approaches for
quantifying soil-water partitioning have led to highly biased estimates of the K _ in much of the
sorption literature [49]. In particular, these authors find that failure to account for colloidally-
bound organic compounds in batch equilibrium partitioning experiments leads to underestimated
K,.’s and incorrect conclusions about the nature of the sorption process. Clearly, estimation
models based on regressions with poorly derived data are unlikely to accurately reflect soil—
water partitioning in nature. Therefore we must carefully consider the data quality of established
soil-water partition coefficient regressions before accepting the resulting models.

Predicted K values must be interpreted with legitimate sources of error in mind. Due to
the heterogeneous nature of natural organic matter in sediments, measured K__values for a
single organic compound may vary by a factor of two between different sediments [48].
Additionally, linear regressions between K and other physical properties are generally most

55



accurate when only specific families of organic compounds are considered [48)]. General
“heterogeneous” regressions which include many families of compounds are less accurate.
Therefore, the best strategy to predict the K _ of a novel compound is to use a general
heterogeneous estimator only if there is not a family-specific regression appropriate for that
compound.

Schwarzenbach et al. have compiled critically reviewed experimentally determined K_’s
for different families of hydrophobic (highly water insoluble) and hydrophilic (highly water
soluble) organic compounds [48]. These authors find reasonably good predictive LFERs
between K _and K, for several compound families:

aromatic hydrocarbons logK = 1.0llogK  —0.72 (4-11a)
N=10 r' =0.99

chlorinated hydrocarbons logK =0.88logk —0.27 (4-11b)
N=12 r'=0.97

chloro-s-triazines logK =0.37logK  +1.15 (4-11¢)
N=6 r'=0.93

phenyl ureas logK =1.12logK  +0.15 (4-11d)
N=6 ' =0.93

While the best fits were found for individual families of compounds, a reliable general
correlation including all of the compounds in the data set was also found:

all compounds logK =0.82logKk  +0.14 (4-12)
N =34 r2 =0.93

4-5. Octanol-water partition coefficient estimation

Many reliable methods have been developed to predict K [40, 50-53]. The most
accurate of the comprehensive methods is probably Hansch and Leo’s ClogP fragment/factor
contribution method [34]. These authors use a fragment contribution approach, modified with
molecular structure factors. The factors improve on the fragment method with additive
correction terms for branching, long chains, polyhalogenation, rings, and other structural
arrangement details that are not captured by the sum of the fragment contributions. The root
mean squared error of K, values predicted using ClogP version 4.0 corresponds to a factor of
1.9 in the partition coefficient, based on a test against 10,000 published values [54, 55].
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4-6. Ab initio approaches to estimating organic and aqueous solvation parameters

A number of ab initio approaches to estimating solvation energies have been developed
or are in progress. Several continuum solvation models focus on computation of the electrostatic
interaction energies of organic molecules with aqueous or organic solvents, including the
Polarizable Continuum Model (PCM) [56], the Solvation Model (SM) [57, 58], and the
Conductor-like Screening Model for Real Solvents (COSMO- RS) [59]. These models present
the advantage of theoretically rigorous treatments of the specific interactions of solute and
solvent molecules. None of these methods incorporate a general solvation theory into their
calculations, however. In recent work, Lin and Sandler rely on statistical mechanics to derive
the Group Contribution Solvation (GCS) model based on the UNIQUAC solvation theory and
parameterize it using ab initio interaction energy calculations [31, 60].

A. The Conductor-like Screening Model for Real Solvents (COSMO-RS)

COSMO-RS is probably the most theoretically justified of the continuum solvation
models. Earlier continuum solvation models (PCM, SM) approximate the electrostatic part of
the solvation energy as a dielectric field around a solute, and determine the field strength from
the corresponding dielectric constant of the solvent. COSMO-RS improves on this
approximation by calculating the extent to which a solvent screens the charge density of the
solute molecule.

Dielectric models respond linearly to molecular surface electric fields, which is
physically unrealistic [61-63]. COSMO-RS initially approximates the solute as ideally screened,
or perfectly grounded, and proceeds to optimize the approximation by finding the “misfit
energies,” or deviations from ideal screening, between the solute and adjacent solvent molecules.

The boundary condition used in COSMO-RS is as follows:
O =D +D(q*) =0 (4-13)

The total electric field flux (@) is the sum of contributions from the solute (B) and screening
charges (q*) lining the solute cavity. ®_ must be net zero. The charges are determined by f(g),
where € is the dielectric constant:

f(e) = (e - D/(e +0.5) (4-14)

For calculation purposes, the screening charges are discretized into patches along the sur-
face of the solute molecule. The screening charges are set at the ideally screened state and
simultaneously optimized until the energy of residual charges from solute/solvent electrostatic
interactions is at a minimum. This optimization is performed within the framework of a DMol
Density Functional Theory (DFT) molecular orbital energy minimization, used to
simultaneously find the optimal electron density of the solute.

The COSMO-RS formulation for the chemical potential of a solute B in solvent S,
relative to the ideally screened state, is:
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1’ = [(p*(6)W’(6)),do - AKTInA® - kTInX® (4-15)

where ¢ = the screening charge density,
p’(0) = the “c-profile,” or distribution of solute surface patches with respect to G,
W (o) = the “o-potential of S,” or the chemical potential of one additional patch with
charge density &, on a molar basis,
A = the number of patch sets that are independent, per solute (a fitted parameter),
A’ = the surface area of the solvent molecule, and
X* = the mole fraction of B in the solvent S.

Finding the change in free energy corresponding to transfer of a solute from its pure phase (B) to
a different solvent (S):

AG,, =y -1,° =0 (4-16)
0 = Af(c) - AkTIn(AYA®) - kTInX" (4-17)
where Af(c) = J(p* (o)1’ (0))do - [(p* (o)W’ (0)),do

The first term in eqn 4-17 integrates the weighted screening charge potential over the
solute surface to find the electrostatic costs of screening of the solute and cavitation of the
solvent. The second term is derived from the solvent ensemble derivation, but it does not
rigorously account for the combinatorial factors in statistical mechanical treatments of solvation.
The third term relates the standard chemical potential to the real chemical potential of the solute
via the solute mole fraction. No crystallization energy (melting) cost is considered here, that is,
the chemical potential formulation addresses solvation of liquids or hypothetical liquids.

Finally, the activity coefficient corresponds to:

¥ = (AYAP)exp(-Af(c)/kT) (4-18)
B. The Group Contribution Solvation (GCS) model

Unlike any methods discussed up to this point, the GCS model integrates a rigorous
statistical mechanics solvation framework with quantum mechanical computations of
electrostatic interaction energies between solute and solvent molecules. The GCS model uses
the Polarizable Continuum Model [64] to calculate the electrostatic and induction interactions
and the method of Amovilli and Mennucci [65] to calculate dispersion and repulsion
contributions. These methods are used to parameterize UNIQUAC molecular interaction terms
for partition coefficients.

The UNIQUAC system is decomposed into two parts: AG™, a sum of terms representing
the energetic costs of cavity formation in the solvent; and AG™, a sum of terms representing the
energetic contribution of electronic (charge) interactions between the solute and solvent mole-
cules.
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The study reveals that a key variable in the quantum calculation, the scale factor, can be
parameterized for different structural functionalities in a given solvent. The scale factor repre-
sents a correction to the proximity of the dielectric field around the solute molecule. In other
words, a scale factor value other than one implies that the solvent does not induce the same
dielectric field at the solute surface as it does in the bulk solution (where the average dielectric
field is equal to the dielectric constant). It turns out that if a characteristic scale factor is
optimized for individual solute structural fragments in a given solvent, solvation energy
predictions can be made with high accuracy. This strongly supports the hypothesis that
electronic interactions between individual solute fragments and given a solvent are relatively
characteristic (i.e., independent of each other).

The GCS also finds that the AG™ for a solute in a given solvent is proportional to the van
der Waals surface area of the geometry-optimized solute for a given family of organic solutes.
This relationship is found to have a nearly perfect correlation factor (r* = 1.00), and it
presumably can be decomposed into a group contribution calculation method for any solute, for
a given solvent. By using the quantum calculations to find linear free energy relationships such
as these, the need to use ab initio calculations to solve every new problem is circumvented. Ab
initio methods may only be necessary to optimize fragment contributions to AG™ for solutes in a
given solvent.

Because the GCS generalizes the behavior of the solvent, it is much easier to calculate
partition coefficients than individual activity coefficients. This results from the fact that
calculating a partition coefficient, say between octanol and water, does not require an
understanding of the solute interaction behavior with itself in the pure phase. It only requires a
parameterized relationship between the activities in the aqueous and octanol phases. For the
infinite dilution partition coefficient of solute B in solvents o and w:

RTIn(y,/v,) = RTIn(y,(comb)/y(comb)) + RTq,(T, - T,) + AG ™ - AG™  (4-19)

where vy, = infinite dilution activity coefficient in solvent s,
v¥,(comb) = combinatorial expression from the UNIQUAC equation,
q, = van der Waals surface area of the solute B, and
T, = interaction energy parameter between solute molecule B and solvent molecule, s.

Unlike UNIFAC, the GCS model cannot be generally parameterized for any solvent or
solvent mixture. Interaction parameters and AG™ values for solute fragments must be separately
determined for each solvent. The nature of the system suggests that empirical fitting methods
may eventually be used to find these parameters, rather than computationally expensive quantum
calculations.

Since the properties of the solvents have already been accurately evaluated (as in the case
of water and octanol), the necessary input parameters for a partition coefficient calculation are
only the molecular volume, molecular surface area, and AG™. Molecular volume and surface
area are easily calculable with molecular simulations methods or software, and AG™ may be
determined from a group contribution method. The GCS model makes predicitions for the
partitioning of alkanes, alkenes, alkynes, cyclic alkanes, alcohols, esters, nitrates, halogenated
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alkanes, ketones, amines, nitriles, amides, and phenyl compounds in several mixture systems
with an absolute average error of only 15% to 30% in the partition coefficient (Table 4-4) [31,
60]:

Table 4-4. Previous studies of the accuracy of GCS predicted partition coefficients [31, 60]

partition coefficient N AAE (factor of errorin K )
K, (octanol-water) 226 0.26 B
K, (hexane-water) 18 0.22

K, (acetonitrile-water) 14 0.18

K., (octanol-water) 15 0.14

An important caveat in Lin and Sandler’s work is that it has been parameterized using
only homologous series’ of solutes. It will not be well-validated until its efficacy with
significantly more varied and complex structures has been established.

4-7. Conclusions and outlook

A number of approaches have been developed in an effort to explain and predict
solvation energies and partition coefficients. Some generalizations can be made about the state
of the science.

(1) Activity coefficient estimation for organic solutes in solvents of environmental
interest (water, octanol, hexane) is becoming accurate and comprehensive.

(2) It 1s easier to predict a partition coefficient between two well-characterized solvents,
than to predict an activity coefficient of an organic compound. This results from the fact that for
a partition coefficient between solvents, e.g. hexane and water, the properties of the solvents
remain constant during parameterization over a range of solutes. For the direct prediction of an
activity coefficient on the other hand, computation of solvation effects in the pure solute must be
incorporated in the model. Thus, a model for partition coefficients is actually more physically
constrained than a model for activity coefficients. An exception may be the pure phase vapor
pressure, which is rapidly becoming predictable with high accuracy for almost any organic
compound [66-68].

(3) The unification of ab initio energetics computations with rigorous solvation theory is
very recent, and it has additional room for development. The Group Contribution Solvation
(GCS) model makes predictions of unprecedented accuracy using the Polarizable Continuum
Model (PCM) solvation approximation and UNIQUAC. The Mobile Order and Disorder theory
has not yet been developed with the use of ab initio calculations, however, and the GCS
approach is not currently established as a rigorous solvation model.

(4) There is not a consensus on the best theoretical approach to modeling aqueous

solvation. The use of ab initio computations to develop the investigation of the underlying
physical chemistry will hopefully help to push this forward.
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(5) The prediction of organic matter-water partition coefficients still involves significant
uncertainty. This results largely from measurement inaccuracy in the experimental data, and the
highly variable nature of organic matter. Some attempts are being made to improve predictive
accuracy with characteristic factors related to the organic matter composition (ratio of C, Hto N,
O, S, for instance). No attempts have been made to involve highly theoretical computations
such as those used in the GCS model, however.

(6) Linear solvation energy relationships (LSERs) are a highly accurate and robust tool

for prediction of partition coefficients. However, they require prior knowledge or estimation of
the molecular descriptors developed by Abraham et al. [35, 40].
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Chapter 5
Prediction Results of the Physical Property Estimation Methods
and Subsurface Transport Model for Gasoline Constituents

5-1. Introduction

It has already been shown that gasoline contamination of community supply wells by
leaking underground fuel tanks (LUFTs) depends heavily on the partitioning properties of the
individual gasoline solutes. The ability to predict the water supply well contamination and
environmental partitioning properties of gasoline constituents is therefore a critical exercise. In
this chapter, the subsurface transport behaviors and associated partition coefficients of over
twenty compounds found in gasoline were evaluated.

Several physical property estimation methods were used to predict the gasoline—water
partition coefficients (K,,), organic matter~water partition coefficients (K_ ), and octanol-water
partition coefficients (K .) of gasoline solutes. The K and K values are critical parameters for
modeling the subsurface transport behavior of individual orgamc compounds from a gasoline
spill in the phreatic (saturated) zone. The K_, was chosen because it is highly studied and can be
accurately predicted, and very large databases make the K, convenient to relate to other
solvation properties via LFERs (linear free energy relationships). Additionally, these properties
reflect varying levels complexity of organic mixtures, and hence they may give insight into the
limitations of modeling attempts to capture organic mixture—water partitioning behavior.

Where feasible, model predictions were tested against experimental data as a preliminary
evaluation of accuracy and robustness using a common set of compounds found in gasoline. The
data set is relatively diverse, including compounds that are large and small; polar and nonpolar;
unsubstituted and highly substituted with moieties containing heteroatoms. It was hoped that
this set, albeit small, would probe the weaknesses and strengths of the physical property models
in informative ways.

The transport assessment method outlined in Chapter 3 was used to predict subsurface
travel times and contaminant concentrations of gasoline components in proximate municipal
water supply wells. Transport model results are useful for several reasons. First, these
predictions provided a basis for evaluating the validity of the “ensemble” transport modeling
approach (i.e., attempting to capture typical or average transport behavior). Additionally, the
model results suggest other compounds which may currently pose significant risks to municipal
drinking water wells in the U.S., thus guiding future studies. Finally, the transport model may
be used to evaluate future gasoline additives or formulations a priori to ensure that these
compounds will not pose large scale threats to national drinking water resources.

5-2. A proposed gasoline-water partitioning Linear Free Energy Relationship (LFER)
The simplest approach to predicting the gasoline-water partition coefficient (K,)is

probably by use of a LFER with K . The K , partitioning system is useful because it is a well-
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characterized property for most organic compounds, from large databases and highly studied
estimation methods (as described in Chapter 4). Additionally, K_ values reflect the energetic
contributions of solvation in both water and a mixture (water-saturated octanol) with both polar
and non-polar functionalities. The water-saturated octanol mixture is therefore potentially useful
to compare to gasoline, as both mixtures contain both polar and nonpolar functionalities.

Method: A regression of log K and log K was performed using 26 solutes found in
gasoline. The solutes were qualitatively grouped as either “polar” and “nonpolar” based on the
presence or absence of heteroatomic moieties (Table 5-1). They were additionally grouped by
their ability to accept hydrogen bonds, based on the presence of outer shell lone pair electrons;
or donate hydrogen bonds, based on the presence of acidic protons.

Table 5-1. Measured K, and K data at 25°C

compound K K polarity hydrogen bonding
1 benzene 130 220 (220, 217, 350) nonpolar none
2 toluene 540 690 (690, 687, 1250) nonpolar none
3 ethylbenzene 1410 2200 (2200, 4500) nonpolar none
4  m-xylene 1580 2200 (2200, 4350) nonpolar none
5 o-xylene 1320 2200 (2200, 3630) nonpolar none
6 p-xylene 1410 2200 (2200, 4350) nonpolar none
7 naphthalene 2000 1500 nonpolar none
8  methylbenzotriazole 13.4 2.7 polar acceptor
9 thiophene 78 110 polar acceptor
10 methyl-fert-butylether 8.7 16 polar acceptor
11 benzothiophene 1320 1700 polar acceptor
12 methanol 0.17 0.0051 (0.0051, 0.0055) polar  acceptor + donor
13 ethanol 0.49 0.015 (0.0083, 0.022)  polar  acceptor + donor
14 benzotriazole 25.7 0.20 polar  acceptor + donor
15 aniline 7.9 3.1 polar  acceptor + donor
16 p-toluidine 24.5 12 polar  acceptor + donor
17 o-toluidine 209 12 polar  acceptor + donor
18 3,4-dimethylaniline 110 29 polar  acceptor + donor
19 2,6-dimethylaniline 69.2 39 polar  acceptor + donor
20 phenol 29.5 3.2 polar  acceptor + donor
21 p-cresol 87 9.3 polar  acceptor + donor
22 o-cresol 39 14 polar  acceptor + donor
23  3,4-dimethylphenol 170 22 polar  acceptor + donor
24 2,6-dimethylphenol 230 44 polar  acceptor + donor
25 3,4,5-trimethylphenol 777 53 polar  acceptor + donor
26 2,4,6-trimethylphenol 540 120 polar  acceptor + donor

* Data obtained from the database provided by BioByte Inc. with ClogP [1-3].
® Data obtained from Schmidt et al., Cline et al., Stephenson, and Heermann and Powers
[4-7]. Where multiple values were found in the literature, they are all listed parenthetically. The

K,, value chosen here represents either data from one method or an average of listed data.
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Results: A regression grouping all of the solutes revealed a relatively poor fit:

all compounds logK , =1.33logK , - 1.13 (5-1)
N =26 AAE=043 r’'=0.87

The absolute average error (AAE) of 0.43 log K , units corresponds to a factor of 2.7 in the K.
Separating compounds into different families yielded improved predictive relationships, but
there were still significant outliers (Figure 5-1):

non-H bonders and H bond acceptors logK , =1.11logK , —0.21 (5-2)
N=11 AAE=0.17 r'=0992

H bond donors and acceptors logk , =1.18logK  -1.16 (5-3)
N=15 AAE=036 1'=0.88

4 T ] 1 1 ¥ 1 H i
A non-hydrogen bonders
+ hydrogen bond acceptors A
3r #* hydrogen bond acceptors and donors E
A+ AAE =0.17 log units, r*=0.992
2l * AAE=0.36 log units, r*=0.88 _
N=26 *
1 - -
=
o
¥
o
L
or .
-1k -
-2 "
_3 1 i ] 1 1 ] L i
-1 -0.5 0 0.5 1 1.5 2 25 3 35

logKow

Figure 5-1. LFER between log K, and log K, for different compound families
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Where multiple data were available (Table 5-1) or authors suggested measurement errors,
error bars were estimated (Figure 5-1). The strong outliers in this dataset mostly fell below the
existing regression lines and included the fused-ring aromatic compounds. Benzotriazole
(log K, = -0.70), 1-methylbenzotriazole (log K,. = 0.43), and naphthalene (log K , = 3.18) all
fell significantly below the family-specific regressions. The only other fused-ring aromatic
structure considered in the data set was benzothiophene. This suggests that the fused-ring
aromatic structures may have an additional affinity for water-saturated octanol over gasoline
than do the single-ring structures. This may reflect the ability of water-saturated octanol to
interact better (than the gasoline mixture) with the increased density of 7 electrons that is found
in fused-ring aromatic structures. It is important to bear in mind that the literature partition
coefficient measurements used here had estimated measurement errors of much as 50 to 80%. In
other words, some of the observed discrepancy in the LFER fit may simply be related to poor
data. Alternatively, the observed outlier trend may reflect an important general limitation of the
model: multiple types of solute-solvent interactions can undermine the predictive capability of
single-variable LFERs [8].

The regression line for hydrogen bond donors and acceptors was shifted about 1 log K,
unit lower than the regression line for non-hydrogen bonders and hydrogen bond acceptors. This
corroborates the chemical intuition that compounds which can better facilitate hydrogen-bonding
should have a higher affinity for water-saturated octanol than for gasoline.

Conclusions: It seems likely that a useful K , predictive tool may be developed from a
larger dataset. Outliers suggested that, if the data are correct, predictive capability of the LFER
for fused-ring aromatic structures may benefit from some type of correction factor. The
log K,, —log K, LFERSs for individual groups gave more accurate predictions than UNIFAC,
which is discussed in the next section (5-3). This is not a rigorous comparison, however, since
the LFER prediction statistics were obtained using data from which they were fitted.

5-3. UNIFAC and AQUAFAC predictions of gasoline—water partitioning

UNIFAC is a generalized fragment-contribution method based on the statistical
thermodynamics UNIQUAC solvation theory. UNIFAC has the advantage of being able to
compute the activities for components of any hypothetical mixture at a range of temperatures.
However, it has the disadvantage of requiring 6N* parameters for a mixture containing N
fragment types. In practice, the activity coefficients of many kinds of mixtures cannot be
calculated, because many of the required UNIFAC parameters have not yet been fitted from
laboratory measurements. UNIFAC is discussed further in Chapter 3.

Method: A hypothetical gasoline mixture was derived from components listed in
Schubert and Johansen [9]. These authors obtained a finished motor gasoline representing the
1989 U.S. “industry average” composition and analyzed the gasoline mixture for hundreds of
hydrocarbon components through several different laboratories. Gasoline compositions vary
widely regionally, seasonally, and have changed during the last ten years. However, this
composition is useful for predictive calculations, since it represents a relatively contemporary
gasoline mixture that does not incorporate highly unusual chemical characteristics.
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A hypothetical conventional (i.e., not oxygenated) gasoline mixture is hereafter referred
to as conventional syngas, composed of the components that average greater than 1.8% by mass
in the gasoline analyzed by Schubert and Johansen. The 17 components of conventional syngas
consist of 48% hydrocarbons, 47% lightweight aromatics, and 5% olephins by mass (Table 5-2).
The mole fraction concentrations and UNIFAC-predicted activity coefficients of the components
were also calculated, showing that the syngas components experience near ideality in solution
(activity coefficient ~ 1). This matches conventional expectations about mixtures of nonpolar
hydrocarbons.

It is worth noting that current legislation imposes a limit of 1% vol/vol, or about 1.2%
wt/ wt, benzene in gasoline and thus prohibits the formulation observed in syngas (4.3% wt/wt
benzene). It might be argued that syngas is therefore less relevant because it does not
realistically represent today’s conventional finished motor gasoline. Howeuver, it should be kept
in mind that the composition of gasoline continually changes in response to evolving demands
from both automobile manufacturers and regulators. The important point is that the solvation
properties of syngas should adequately represent the conventional gasolines of both 1989 and
today.

Presumably, addition of an oxygenate to conventional gasoline may change the solvation
properties of the mixture. 10% (vol/vol) MTBE was added to syngas, keeping other relative
concentrations proportional, and a new composition was produced, hereafter referred to as
oxygenated syngas (Table 5-3). Because the density of MTBE is nearly identical to that of

Table 5-2. Composition of the hypothetical gasoline mixture, ‘conventional syngas”

gasoline mass fraction mole fraction = UNIFAC-calculated
component abundance abundance _activity coefficient at 25 °C
butane 0.083 0.1275 1.05

pentane 0.075 0.0928 1.09

hexane 0.058 0.0601 1.10

heptane 0.022 0.0196 1.09

octane 0.020 0.0156 1.06
2-methylpentane 0.058 0.0601 1.10
2,3-dimethylbutane 0.040 0.0415 1.10
2,2,4-trimethylpentane 0.106 0.0828 1.08
methylcyclopentane 0.021 0.0223 1.07
2,-methyl-2-butene 0.018 0.0229 1.07
1-hexene 0.034 0.0361 1.02
benzene 0.043 0.0491 1.15

toluene 0.162 0.1570 1.15

xylenes 0.062 0.0521 1.08
ethylbenzene 0.073 0.0692 1.10
1,2,3-trimethylbenzene 0.092 0.0683 0.97
naphthalene 0.033 0.0230 1.56
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typical conventional gasolines (p
syngas was also 10% (wt/wt).

~ 0.75), the mass abundance of MTBE in oxygenated

gasoline

Assuming Agamat’s law applies to the syngas mixtures, the syngas molar volume was
approximated as the mole fraction abundance-weighted average of the component molar
volumes, based on literature pure liquid phase density data [10]:

Ve = 0.001*Z (X *mw /p,) fori=1 to N mixture components (5-4)

syngas

where V= the molar volume of syngas, L/mol,
X, = mole fraction of component i,
mw, = molecular weight of component i, g/mol, and

p, = pure phase liquid density of component i, g/cm’.

The calculated molar volumes were V. =0.1215L/moland V, __ =0.1212 L/mol.
After formulation of both conventional and oxygenated syngas, the partition coefficients
of several heteroatom-containing solutes between syngas and water were predicted. Solutes
were individually added to the syngas mixtures at realistic concentrations (Table 5-4) and their
syngas activity coefficients were calculated using UNIFAC. Additionally, the aqueous activity
coefficients of these compounds were calculated using both UNIFAC and AQUAFAC (both
models are discussed in Chapter 3). Thus, both UNIFAC and AQUAFAC-based activity

Table 5-3. Composition of “oxygenated syngas”

gasoline mass fraction mole fraction UNIFAC-calculated
component abundance abundance activity coefficient at 25° C
butane 0.075 0.1150 1.06
pentane 0.067 0.0828 1.10
hexane 0.052 0.0538 1.12
heptane 0.020 0.0178 1.11
octane 0.018 0.0140 1.08
2-methylpentane 0.052 0.0538 1.12
2,3-dimethylbutane 0.036 0.0373 1.12
2,2 4-trimethylpentane 0.095 0.0736 1.10
methylcyclopentane 0.019 0.0201 1.09
2,-methyl-2-butene 0.016 0.0203 1.07
1-hexene 0.031 0.0328 1.04
benzene 0.039 0.0445 1.12
toluene 0.146 0.1413 1.14
xylenes 0.056 0.0470 1.08
ethylbenzene 0.066 0.0625 1.09
1,2,3-trimethylbenzene 0.083 0.0615 0.98
naphthalene 0.030 0.0208 1.51
methyl-tert-butylether 0.100 0.1011 1.21
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coefficient predictions were used to compute syngas-water partition coefficients, from the
relationship discussed in Chapter 3 (see eqn 3-2):

ng = (Ywawr* Vwater)/('ygasoh'ne * Vgeuoline) (5- 5 )

Table 5-4. Representative abundances of several compounds found in gasoline

concentration

compound in gasoline
1 aniline 20 ppm*
2 p-toluidine 30 ppm®
3 o-toluidine 20 ppm’
4 3,4-dimethylaniline 15 ppm’
5 2,6-dimethylaniline 15 ppm’
6 phenol 150 ppm*
7 p-cresol 100 ppm*
8 o-cresol 100 ppm*
9 3,4-dimethylphenol 30 ppm*
10 2,6-dimethylphenol 30 ppm®
11 3,4,5-trimethylphenol i
12 2,4,6-trimethylphenol i
13 thiophene 150 ppm°
14 benzothiophene 300 ppm’
15  methyl-t-butylether 10.0% wt/wt’
16  methanol 10.6% wt/wt'’
17  ethanol 10.5% wt/wt
18 benzene 1.2% wt/wt’
19 toluene 16.2% wt/wt’
20 ethylbenzene 7.3% wt/wt*
21 n-propylbenzene 0.66% wt/wt*
22 naphthalene 3.3% wt/wt’
23 m-xylene 2.7% wt/wt’
24 o-xylene 2.7% wtiwt
25 p-xylene 2.7% wt/wt’

‘ Based on measurements of several gasolines by Schmidt [4].

* Although these compounds have been identified in gasoline [4], their abundances have
not yet been reported to my knowledge. Their activity coefficients were therefore calculated in

UNIFAUC at infinite dilution.

‘ These quantities represent high estimates based on measurements by Quimby et al. and

Martin et al. [11, 12]. It should be noted that recent legislation has drastically reduced the
allowable amount of sulfur in gasoline.

¢ Corresponds to 10% vol/vol.

* These quantities were based on data from Schubert and Johansen [9]. For the xylenes,
only data for o-xylene were listed. The proposed abundances for p-xylene and m-xylene were
therefore hypothetical.
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Results: Activity coefficients were predicted for the 25 gasoline solutes (from Table 5-4)
in both syngas and water (Table 5-5). Syngas activity coefficients were calculated using
UNIFAC and aqueous activity coefficients were calculated using both UNIFAC and
AQUAFAC. Note that both methanol and ethanol were treated here as hypothetically abundant
solutes in syngas (10% vol/vol). Because these two solutes are very polar relative to the syngas
mixture, their syngas activity coefficients depend highly on their concentrations in the syngas
mixture. Methanol and ethanol were expected to partition mostly into the aqueous phase,
therefore their activity coefficients in conventional syngas (Table 5-5) were calculated under
infinite dilution conditions. The calculated and observed partition coefficients (Table 5-6)
support this expectation. The MTBE activity coefficient for conventional gasoline (Table 5-6)
was also calculated at infinite dilution.

Some activity coefficient values were not found, for varying reasons. UNIFAC lacked
the interaction parameters between some of the different functional groups in the cases of the

Table 5-5. Syngas and aqueous activity coefficients for 25 gasoline solutes calculated using
UNIFAC and AQUAFAC

gasoline (conventional) (oxygenated)

SOIUte ’yu yngas, UNIFAC syngas, UNIFAC- ’y" ater, UNIFAC: Y atert AQUAFAC
aniline 6.4 - 120 270
p-toluidine 4.8 - 470 440
o-toluidine 4.8 - 470 440
3,4-dimethylaniline 3.7 - 1800 700
2,6-dimethylaniline 3.7 - 1800 700
phenol 8.8 33 11 65
p-cresol 6.9 2.6 43 110
o-cresol 6.9 2.6 43 110
3,4-dimethylphenol 5.5 2.1 170 170
2,6-dimethylphenol 5.5 2.1 170 170
3,4,5-trimethylphenol 4.4 1.7 680 270
2,4,6-trimethylphenol 44 1.7 680 270
thiophene L5 - - 2200
benzothiophene 2.1 - - 19000
methyl-tert-butylether 1.3 1.2 230 1200
methanol 17 - 2.3 1.5
ethanol 15 - 7.6 5.1
benzene 1.15 1.12 2400 4400
toluene 1.15 1.14 12000 7000
ethylbenzene 1.10 1.09 34000 23000
n-propylbenzene 1.06 1.05 110000 83000
naphthalene 1.6 1.5 140000 79000
m-xylene 1.08 1.08 56000 11000
o-xylene 1.08 1.08 56000 11000
p-xylene 1.08 1.08 56000 11000
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sulfur and nitrogen containing compounds. For example, UNIFAC lacked sulfide-water
interaction parameters, so only AQUAFAC could be used to calculate the aqueous activity
coefficient for thiophene and benzothiophene. In addition, UNIFAC lacked sulfide-ether
interactions parameters, so the sulfide activity coefficients could not be calculated in (MTBE)
oxygenated syngas. As a result, only one type of prediction could be made for thiophene and
benzothiophene (column 1 of Table 5-5). Similar problems limited the types of calculations that
could be made for nitrogen-bearing compounds.

Table 5-6. Measured and calculated K , values for several compounds found in gasolines

gasoline measured U/A, conv.® U/U, conv.” UJ/A, oxyg.” U/U, oxyg. ¢
solute K. calc. K. calc. K | calc. K.. calc. K.
aniline 3.1 6.4 2.9 - -
p-toluidine 12 14 14 - -
o-toluidine 12 14 14 - -
3,4-dimethylaniline 29 28 72 - -
2,6-dimethylaniline 39 28 72 - -
phenol 3.2 1.1 0.19 3.0 0.5
p-cresol 9.3 2.3 0.93 6.0 2.5
o-cresol 14 2.3 0.93 6.0 2.5
3,4-dimethylphenol 22 4.6 4.65 12 12
2,6-dimethylphenol 44 4.6 4.65 12 12
3,4,5-trimethylphenol 53 9.3 23 24 59
2,4,6-trimethylphenol 120 9.3 23 24 59
thiophene 110 220 - - -
benzothiophene 1700 1400 - - -
methyl-t-butylether 16 140 27 150 28
methanol 0.0051 0.013 0.020 - -
ethanol 0.015 0.051 0.075 - -
benzene 220 570 310 580 320
toluene 690 900 1600 910 1600
ethylbenzene 2200 3200 4600 3200 4600
naphthalene 1500 7600 13000 7800 14000
m-xylene 2200 1500 7400 1500 7400
o-xylene 2200 1500 7400 1500 7400
p-xylene 2200 1500 7400 1500 7400

*“U/A, conv” refers to a K, calculated from a conventional syngas activity coefficient
calculated using UNIFAC and an aqueous activity coefficient calculated using AQUAFAC.

®«U/U, conv” refers to a K, calculated from a conventional syngas activity coefficient
and an aqueous activity coefficient both calculated using UNIFAC.

““U/A, oxyg” refers to a K calculated from an oxygenated syngas activity coefficient
calculated using UNIFAC and an aqueous activity coefficient calculated using AQUAFAC.

‘“U/U, oxyg” refers to a K,, calculated from a oxygenated syngas activity coefficient
and an aqueous activity coefficient both calculated using UNIFAC.
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Using the UNIFAC- and AQUAFAC-calculated activity coefficients (Table 5-5), the
gasoline—water partition coefficients of gasoline solutes were computed (using eqn 5-5) for both
conventional and oxygenated gasoline (Table 5-6). The partition coefficient calculations were
conducted using a syngas molar volume of 0.12 L/mol as given by eqn 5-4, and an aqueous
molar volume of 0.0180 L/mol. Ethanol and methanol have no entries for columns 4 and 5
(Table 5-6) because they were presumed to replace MTBE at 10% vol/vol, rather than be added
with it. Consequently they were only modeled in conventional syngas as a 10% vol/vol mixture.

Experimentally measured K, values compared reasonably with K, predictions for both
conventional and oxygenated syngas (Figures 5-2, 5-3, 5-4, and 5-5). The dotted line signifies a
factor of two in the error of the predictions, demonstrating that this modeling approach was
useful but inaccurate.
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Figure 5-2. Partition coefficients between conventional syngas and water, calculated
using UNIFAC for activity coefficients in both conventional syngas and water
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Figure 5-3. Partition coefficients between conventional syngas and water, calculated using
UNIFAC (for activity coefficients in syngas) and AQUAFAC (for activity coefficients in water)

The UNIFAC/AQUAFAC modeling approach captured the trend of the measurement
data, but still displayed significant error (Figures 5-2, 5-3). Inspection of the data revealed that
the K, for substituted phenols was consistently underpredicted, regardless of whether
AQUAFAC or UNIFAC was used to calculate the aqueous activity coefficient. This suggests
that the UNIFAC gasoline activity coefficient computation for phenols was overpredicted (i.e.,
the phenols are more “comfortable” in the gasoline solution environment than the computations
suggest). The K | values for methanol, ethanol, MTBE and naphthalene were all significantly
overpredicted. Other K, predictions were within a factor of two of measured values. There did
not appear to be a clear trend in differences between predictions based on AQUAFAC and
UNIFAC calculation of the aqueous activity coefficient. The model statistics were slightly
better if AQUAFAC was used to calculate the aqueous activity coefficient (the K,, average
absolute error factor was ~ 2.6), rather than UNIFAC (ng AAE factor of 3.5).
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Figure 5-4. Partition coefficients between oxygenated (10% MTBE) syngas and water,
calculated using UNIFAC for activity coefficients in both oxygenated syngas and water

When MTBE was added to the syngas mixture, fewer compounds could be modeled, but
prediction errors decreased (Figures 5-4, 5-5). K, calculations for phenols improved notably
when MTBE was added to the syngas mixture. Anilines and aromatic sulfides were not included
in this dataset, because of the limitations of the UNIFAC parameter set. Other K, predictions
were similar to calculations made for conventional gasoline (Figures 5-2, 5-3). As with
conventional gasoline, the model statistics were slightly better when AQUAFAC was used to
calculate the aqueous activity coefficient (K, AAE factor of 2.3) rather than UNIFAC (K, AAE
factor of 2.9).

Hence, UNIFAC provided useful but inaccurate predictions of ng. Trends between the
errors and solute chemical structures did not clarify UNIFAC’s failure to give better results.
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Figure 5-5. Partition coefficients between oxygenated (10% MTBE) syngas and water, calculated
using UNIFAC (for activity coefficients in syngas) and AQUAFAC (for activity coefficients in water)

5-4. Linear Solvation Energy Relationship predictions of gasoline—water partitioning

Linear solvation energy relationships (LSERs) have been used to predict partition
coefficients for many systems. Solvation parameters (R,, ', oM, ZBH, and V) that are
characteristic for individual solutes are linearly combined to find the log transformed partition
coefficients for different gas-liquid and liquid-liquid systems (see section 4-3):

log K, = Ac + Ar*R, + As*nt" + Aa*Za" + Ab*ZB" + Am*V, (5-6)

The appropriate multipliers (Ac, Ar, As, Aa, Ab, and Am) to the solvation parameters for

individual partitioning systems are generally determined by least squares multiple regression
[13].
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Method: Using the published K,, values of 29 gasoline solutes and the estimated K.,
values of 9 n-alkanes, the multipliers to five LSER solvation parameters [14-16] were
determined. The smallest 9 n-alkanes (n =1, 2, ... 9) were assumed to have a gasoline activity
coefficient of approximately 1.0 (Tables 5-2, 5- 3) based on the observation that gasoline
mixtures are composed of mostly hydrocarbons [9]. The alkane K., values were therefore
determined from eqn 5-5 using published aqueous activity coefficients (based on hypothetical
liquid phase solubilities) [17], a gasoline activity coefficient of unity, a gasoline molar volume
of 0.12 L/mol (from eqn 5-4), and aqueous phase molar volume of 0.018 L/mol. K., values for
the rest of the solutes (Table 5-8) were obtained from measurements performed usmg real or
simulated gasolines by Heerman and Powers, Schmidt et al., Cline et al., and Stephenson [4-7].
Singular value decomposition [13] was used to perform the least squares multiple regression
between the solvation parameters and log K , values of the solutes.

Results: Regression of the LSER gave very good fit statistics:

logK = 0.11-0.38R, - 025" - 1.50Za" - 6.47ZB" + 4.84V (5-7)
N =138
AAE =0.11 log units (error factor of 1.30 in the partition coefficient)
' =0.998

The uncertainty in the regression multipliers, however, was significant. Assuming that the
population of possible multiplier values is normally distributed, the standard error of the individual
multipliers can be estimated from the matrices used in the singular value decomposition method
[18]. Although a good fit was found, only two of the regressed multipliers, Ab and Am, were
statistically significant in the current formulation of the LSER (Table 5-7).

Table 5-7. Estimated uncertainties of the LSER solvation parameter multipliers

affected estimated estimated standard error
multiplier solvation parameter multiplier value of multiplier
Ac none (intercept) 0.1 +—-1.2
Ar R, -04 +/-2.4
As ! -03 +/-2.7
Aa ol ~-15 +/-2.0
Ab B -6.5 +/-2.6
Am \'A 4.8 +/-1.2

Accordingly, the four extraneous solvation parameters (the intercept, R, 7" and ZO(.H) were
individually applied in a three-variable LSER with the only two statistically significant parameters
(ZB" and V ):

log K, = Ax*X + Ab*Zf" + Am*V, (5-8)

where X = the tested solvation parameter.
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Table 5-8. Measured or estimated K,,, values and solvation parameters used in the LSER regression

Kew R n" o B* Vv solute

20 (est.) 0.000 0.00 0.00 0.00 0.2495 methane

100 (est.) 0.000 0.00 0.00 0.00 0.3904 ethane

630 (est.) 0.000 0.00 0.00 0.00 0.5313 n-propane

3200 (est.) 0.000 0.00 0.00 0.00 0.6722 n-butane

1.5%10% (est.) 0.000 0.00 0.00 0.00 0.8131 n-pentane

5.6¥10* (est.) 0.000 0.00 0.00 0.00 0.9540 n-hexane

2.7%10° (est.) 0.000 0.00 0.00 0.00 1.0949 n-heptane

1.3*¥10° (est.) 0.000 0.00 0.00 0.00 1.2358 n-octane

7.2%10° (est.) 0.000 0.00 0.00 0.00 1.3767 n-nonane

3.1 0.955 096 0.26 041 03816 aniline

12 0.923 095 0.23 045 0957 p-toluidine

12 0.966 092 023 045 0.957 o-toluidine

29 0.972 0.89 020 046 1.098 2,6-dimethylaniline
3.2 0.805 0.89 0.60 030 0.775 phenol

9.3 0.820 0.87 0.57 031 0916 p-cresol

14 0.840 0.86 0.52 030 0916 o-cresol

22 0.830 0.86 0.56 039 1.057 3,4-dimethylphenol
44 0.860 0.79 0.54 039 1.057 2,6-dimethylphenol
53 0.830 0.88 055 044 1.198 3,4,5-trimethylphenol
120 0.860 0.79 0.37 044 1.198 2,4,6-trimethylphenol
0.0051 0.278 044 043 047 0.308 methanol

0.015 0.246 042 037 048 0.449 ethanol

0.059 0.212 036 033 056 0.590 isopropanol

0.14 0.180 0.30 031 0.60 0.731 tert-butanol

16 0.024 0.19 0.00 045 0.872 MTBE

5.9 0.106 0.62 0.00 045 0.747 ethylacetate

110 0.687 0.56 0.00 0.15 0.641 thiophene

1700 1.323 0.88 0.00 020 1.010 benzothiophene
220 0.610 0.52 0.00 0.14 0.716 benzene

690 0.601 0.52 0.00 0.14 0.857 toluene

2200 0.613 0.51 0.00 0.15 0.998 ethylbenzene
18500 0.604 0.50 0.00 0.15 1.139 n-propylbenzene
2200 0.623 0.52 0.00 0.16 0.998 m-xylene

2200 0.663 0.56 0.00 0.16 0.998 0-xylene

2200 0.613 0.52 0.00 0.16 0.998 p-Xylene

13800 0.728 0.61 0.00 0.19 1.139 1,2,3-trimethylbenzene
12500 0.630 0.51 0.00 0.18 1.139 4-ethyltoluene
1500 1.340 0.92 0.00 0.20 1.085 naphthalene

In this way, the LSER was reconstructed so as to minimize the number of necessary parameters
and reduce the overall uncertainty of the regression. It is important to note that the multiplier
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values are only physically meaningful to the extent that they explain the relative importance of the
solvation parameters. In other words, the significance of the solvation parameters in
gasoline—water partitioning is what was tested in this series of regressions.

Table §-9. Estimated standard error of isolated LSER multipliers

Ab O, Am Oa, Ac Ar As Aa O Omodel
-8.06 +/-0.85 476 +/-0.38 - - - - - 0.28
-8.22 +/-1.23 449 +/-0.94 029 - - - 4+/-093 0.27
-7.57 +/-0.98 5.04 +/-0.50 - 069 - - +-072 0.21
-6.98 +/—1.28 5.05 +/-0.45 - - -1.03 - +/-099 0.20
-6.76 +/—1.45 471 +/-0.46 - - - -1.74 +/-1.37 0.20

Absence of a multiplier entry, denoted “-* in Table 5-9, indicates that the corresponding
parameter was not included in the regression (the multiplier was set to zero). The estimated
standard deviation of the multipliers is denoted Gy, and the estimated standard deviation of the
predicted log K, under the constraints of the applied multipliers is denoted Gmoger-

The first row in Table 5-9 shows that application of only the solute basicity parameter
(ZB") and volume parameter (V) provided an adequate description the behavior of the system,
generating a model standard error of only 0.28 in the log K . The uncertainties of the Ac, Ar
and As multipliers were equivalent to or larger than the multiplier values themselves,
demonstrating that the LSER constant, solute excess molar refraction, and solute polarity
parameters did not contribute significantly to model performance. The solute acidity multiplier
(Aa) uncertainty was nearly 80% of the acidity multiplier value. However, it was the third most
statistically significant variable in the model fit (after Ab and Am). This trend agrees with
previous work on LSERs describing partition coefficients between nonpolar phases such as
hexadecane or cyclohexane and water. In these studies, the solute volume term (V) and basicity
term (EBH) are resolved as the dominant model parameters with the acidity term (o™ third in
importance [14-16].

Note that as the number of parameters in the model was increased, the multiplier
uncertainties increased (i.e., the validity of the model fit decreased). In the effort to achieve a
balance between minimalist parameterization and inclusion of physically significant processes,
three solvation parameters were chosen to describe an optimal predictive LSER for
gasoline—water partitioning:

log K =-1.74Za" - 6.763p" + 471V, (5-9)
N =38
AAE = 0.20 log units (a factor of 1.58 in the partition coefficient)
r’ = 0.994
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Although the total number of fitted parameters has been halved, the regression statistics were
very similar to those given by the original LSER (eqn 5-7). Thus, the multiplier uncertainty was
substantially decreased (Table 5-9 vs Table 5-7).

A final test was conducted on the improved K_, LSER (eqn 5-9) in order to validate its
predictive capability. The predictive capability of a model is most robustly validated with an
independent data set that was not used in the fitting of the model itself. Therefore, 37 data
points were regressed with eqn 5-9 to generate model multiplier values, and this model fit was
used to predict the remaining (38") data point. This procedure was iterated in round robin
fashion 38 times, each time using a subset of 37 fitting points to predict a different 38" point. In
this way, all of the data could be used to test the model from an independent regression set. The
model predictive error found in the round robin validation test was only slightly greater than the

model error found in the original regressions, demonstrating the robustness of the model
(Figure 5-6).
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Figure 5-6. Round robin prediction test of the derived gasoline-water LSER using independent data
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5-5. ClogP v. 4.0 predictions of octanol-water partitioning

In this section, a traditional fragment/factor contribution method was used to estimate K_
values for a set of compounds found in gasoline. ClogP has been parameterized using a database
of over 10,000 compounds [1, 2].

Method: The ClogP predicted log K , values were compared to experimentally measured
values (Table 5-10). Experimental values were obtained from the ClogP database.

Results: ClogP is highly accurate and is continually revised, based on improved data sets
and data analysis. It is able to make predictions for a very wide variety of complex compounds
and is highly accurate, making it a powerful modeling tool [2]. It demonstrates the usefulness
that an empirical partition constant model can attain with decades of well-guided effort.
Unfortunately, the factors and fragments of the ClogP algorithm are not explicitly published, so
it was difficult to make specific interpretations of the model results shown here. Only one
prediction out of the set, for 3,4-dimethylphenol, approached an error of 25% in the K_,. This
probably represents the best accuracy that can be expected inside of laboratory measurement
error.

Table 5-10. Experimentally measured and ClogP calculated K s at 25° C

compound calc. logK meas. logK |
benzotriazole 141 144
1-methylbenzotriazole 1.064 1.13
aniline 0.915 0.90
p-toluidine 141 1.39
o-toluidine 1.36 1.32
2,6-dimethylaniline 1.81 1.84
phenol 1.47 1.47
p-cresol 1.97 1.94
o-cresol 1.97 1.95
3,4-dimethylphenol 2.42 2.23
2,6-dimethylphenol 2.47 2.36
thiophene 1.79 1.89
benzothiophene 3.17 3.12
methyl-tert-butylether 1.05 0.94
methanol -0.76 -0.77
ethanol -0.24 -0.31
benzene 2.14 2.13
toluene 2.67 2.73
o-xylene 3.09 3.12
m-xylene 3.14 3.20
p-Xylene 3.14 3.15
ethylbenzene 3.17 3.15
naphthalene 3.32 3.30
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Figure 5-7. Measured vs ClogP predicted logK_, values for 23 gasoline solutes

Conclusions: ClogP is clearly a powerfully accurate, empirical prediction tool

(Figure 5-7). This makes the K, an attractive system with which to build correlations with other
properties such as K or K .

5-6. Results of the organic matter—water partition coefficient estimation method
Unlike other physical properties, the K _ solvent environment is highly variable. As a

result, K values for the same compound in different systems (such as sediment organic matter

vs soil organic matter) may vary up to a factor of two or more [17]. In this section, a LFER was
used to estimate K _ values in place of real K , data.

Method: A series of log K  —1log K LFERs derived by Schwarzenbach et al. [17] was
used to estimate the K__ values of 21 compounds found in gasoline:
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aromatic hydrocarbons logk = 1.01logK —0.72 (5-10a)
N=10 r'=0.99

chlorinated hydrocarbons logK  =0.88logK  —0.27 (5-10b)
N=12 r'=0.97

chloro-s-triazines logk  =0.37logK  + 1.15 (5-10c)
N=6 r'=0.93

phenyl ureas logKk = 1.12logK  +0.15 (5-10d)
N=6 r'=0.93

general correlation (all compounds) logK  =0.82logK  +0.14 (5-11)

N=34 r'=0.93

Where appropriate, compound family specific LFERs (eqn 5-10) were used to estimate
the K__ values of gasoline constituents; otherwise the general correlation (eqn 5-11) was used
(Table 5-11). K values were taken from experimental data and ClogP-predicted K, values
were used where measured values were not available (Table 5-10).

Table 5-11. LFER-estimated K__ values for 21 compounds found in U.S. gasolines

compound log K K.
aniline 0.88 7.6
p-toluidine 1.28 19
o-toluidine 1.22 17
3,4-dimethylaniline 1.67 46
2,6-dimethylaniline 1.62 42
phenol 1.35 22
p-cresol 1.73 54
o-cresol 1.74 55
3,4-dimethylphenol 1.97 93
2,6-dimethylphenol 2.08 120
N,N'-disalicylidene-1,2-diaminopropane 1.42 26
thiophene 1.69 49
benzothiophene 2.70 500
MTBE 0.91 8.1
di-sec-butyl-p-phenylenediamine 3.31 2100
methanol -0.49 0.33
ethanol -0.11 0.77
benzene 1.43 27
toluene 2.04 110
ethylbenzene 2.46 290
naphthalene 2.61 410
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5-7. Transport calculations of compounds found in gasoline

The subsurface transport model was used to predict the transport times of 21 gasoline
constituents from LUFTSs to community supply wells and to calculate the expected constituent
concentrations in the wells. These compounds represent the subset of polar gasoline constituents
tabulated in Chapter 2 for which gasoline concentration data are available. Additionally,
common aromatic hydrocarbon contaminants are included for comparison. As described in
Chapter 3, the transport model calculated solute partitioning into groundwater from gasoline
NAPL pooled on the water table; individual solute advection towards the groundwater well and
dispersion in three dimensions; and solute sorption to aquifer sediment (retardation).

Method: Degradative (reaction) processes were presumed nonexistent, and transport
behavior was controlled by fuel concentration, fuel-water partition coefficient and organic
matter—water partition coefficient of each gasoline solute. Environmental parameters reflecting
the “standard” subsurface transport scenario formulated in chapter were considered (Table 5-12).
Besides the standard case, three additional transport parameter sets were tested to assess the
sensitivity of the transport system to important changes in hydrogeologic and contamination
characteristics. These included a parameter set with increased sediment organic matter content
(0.5% instead of 0.1%); a parameter set with decreased well pumping rate (80 gal/min instead of

400 gal/min); and a parameter set with increased gasoline spill size (1000 gallons instead of 100
gallons).

Table 5-12. Subsurface transport parameters for the standard case

NAPL volume [m’] 0.38 (100 gallons)
NAPL lens thickness [m] 0.05

sediment fraction of organic matter (f_ ) 0.001

sediment porosity 0.25

sediment density [g/cm’] 2.5

groundwater velocity [m/day] 1

aquifer saturated thickness [m] 25

dispersivity (x) [m] 10

dispersivity (y) [m] 1

dispersivity (z) [m] 0.1

well pumping rate [m’/day] 2180 (400 gal/min)
well distance from LUFT [m] 1000

Compound fuel concentrations were taken from literature measurements or estimates
(Table 5-13). Fuel-water partition coefficients were taken from literature or were calculated.
Organic matter—water partition coefficients were taken from estimated values calculated in the
previous section. It should also be noted that some compounds under consideration can ionize
via acid-base chemistry under normal aquifer pH conditions (pH ~ 5 to 9). If a contaminant is
partly ionized in groundwater, it will have an enhanced effective aqueous concentration, because
the ionic species will not partition appreciably into fuel or natural organic matter. In other
words, ionization of fuel contaminants can facilitate their subsurface transport by increasing
their effective aqueous concentration. Additionally, however, ionized species are subject to
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Table 5-13. Physical property inputs for the subsurface transport calculation

gasoline concentration (calc.)
solute in fuel [ppm] pK * K, K
aniline 20° 4.6 3.1° 7.8
p-toluidine 30° 5.2 12 19
o-toluidine 20° 4.5 12° 17
3,4-dimethylaniline 15 5.2 29° 46
2,6-dimethylaniline 15* 3.9 39° 42
phenol 150° 9.9 3.2° 22
p-cresol 100* 10.3 9.3 54
o-cresol 100* 10.3 14* 55
3,4-dimethylphenol 30" 10.4 22° 93
2,6-dimethylphenol 30 10.6 44* 120
N,N’-disalicylidene-

1,2-diaminopropane 12° 11.8 940° 26
thiophene 150 - 110° 49
benzothiophene 300 - 1700* 500
methyl-zert-butylether 100000° - 16' 8.1
di-sec-butyl-p-phenylenediamine 20° ? 11000000° 2100
methanol 106000° 15.3 0.0051' 0.33
ethanol 105000° 15.9 0.015" 0.77
benzene 12000’ - 220° 27
toluene 162000° - 690' 110
ethylbenzene 73000° - 2200 290
naphthalene 33000° - 1500’ 410

* Schmidt [4].
®* Owen [19].

‘ Schubert and Johansen [9].

¢ Johnson et al. [20].

° corresponds to 10% vol/vol.

“Cline et al. [5].

# calculated from AQUAFAC estimation of the aqueous activity coefficients and

UNIFAC estimation of the gasoline activity coefficient, with 10% MTBE.

" Heerman and Powers [6].

' corresponds to 1% vol/vol, as imposed by current legislation.

" Quimby et al. [12].
“ Howard and Meylan [21].

cation exchange with aquifer sediments. Acid-base chemistry was not treated quantitatively here
since it is highly dependent on groundwater pH.

Results: The transport method was used to predict plume types, front arrival times,
municipal well water concentrations, and plume spreading for the standard case and three
perturbation tests (Tables 5-14, 5-15, 5-16, and 5-17, Figures 5-8, 5-9, 5-10, and 5-11). The
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Table 5-14. Transport model results for the standard case

plume front arrival well concentration plume spread [m]
compound type time [days] _ [ppbl [M] X VvV Z
aniline slug 920 0.0093 1.OE-10 130 42 13
p-toluidine slug 990 0.013 1.2E-10 130 42 13
o-toluidine slug 980 0.088 82E-11 130 42 13
3,4-dimethylaniline slug 1200 0.0055 4.5E-11 130 42 13
2,6-dimethylaniline slug 1100 0.0056  4.6E-11 130 42 13
phenol slug 1000 0.064 6.8E-10 130 42 13
p-cresol slug 1200 0.035 33E-10 130 42 13
o-cresol slug 1200 0.035 3.2E-10 130 42 13
3,4-dimethylphenol slug 1500 0.0087 7.1E-11 130 42 13
2,6-dimethylphenol slug 1600 0.0078 6.4E-11 130 42 13
N,N’-disalicylidene-
1,2-diaminopropane steady state 1000 0.0053 1.9E-11 - 42 13

thiophene slug 1200 0.054 6.4E-10 130 42 13
benzothiophene slug 4100 0.03 22E-10 140 42 13
methyl-tert-butylether slug 920 47 5.3E-7 130 42 13
di-sec-butyl-p-

phenylenediamine steady state 15000 7.6E-07 3.4E-15 - 42 13
methanol slug 870 52 1.6E-6 130 42 13
ethanol slug 870 52 1.1E-6 130 42 13
benzene slug 1000 4.9 6.2E-8 130 42 13
toluene slug 1600 41 4.5E-7 140 42 13
ethylbenzene steady state 2800 14 1.3E-7 - 42 13
naphthalene slug 3500 3.8 2.9E-8 140 42 13

plume “spread” refers to the square root of the spatial variance induced by dispersion during
transport (i.e., one standard deviation of the plume distribution). The location of the solute front
refers to one standard deviation (one unit of plume spread) in front of the plug flow front,
corresponding to a solute concentration roughly 1/3 that of the plume concentration near the
centroid. The calculated well concentration is the expected value (average) contaminant
concentration in the well water when the centroid nears the well. The plume “type” was
determined by the initial length of the plume relative to the longitudinal spreading that occurs
during transport. If the initial plume length was less than two units of dispersion-induced plume
spread, the plume was treated as a slug. Otherwise, the plume was treated as a steady state
source.

Presuming that the transport model reasonably captured the quantitative behavior of organic
compounds in these types of subsurface systems, transport calculation results using the four
parameter sets studied here should indicate probable observations for non-degraded compounds
at numerous sites in the U.S. These kinds of results should reveal research and policy needs for
large scale well-testing for individual compounds in gasoline and further biodegradability
research. Eventually, such screening could lay the foundations for informed decision-making in
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Figure 5-8. Arrival time of solute front vs well water concentration: the standard case

U.S. EPA (Environmental Protection Agency) and API (American Petroleum Institute) policy
directing the industry-wide use of gasoline additives.

A. The standard case

The proposed standard transport case gave credible results (Table 5-14, Figure 5-8). The
predicted MTBE well concentrations (about 50 ppb) were very comparable to community supply
well concentrations observed in nationwide surveys [20]. Methanol and ethanol behaved very
similarly to MTBE, partitioning quickly into the groundwater (experiencing “slug” transport)
and arriving at the receptor well 2.5 to 4 months sooner than the average groundwater flow (as a
result of longitudinal dispersion). Many other compounds (benzene, phenol, aniline, cresols,
toluidines) also experienced nearly non-retarded transport in the model. The predicted
concentrations of these compounds in the municipal well water were significantly lower than the
concentrations of MTBE, however, since they are much less abundant in gasoline. Notably,
toluene is predicted to contaminate the well in concentrations comparable to that of MTBE and
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Table 5-15. Transport model results for the increased sediment organic matter content (0.5%) case

plume front arrival well concentration plume spread [m]

compound type time [days]  [ppb] [M] X y z
aniline slug 1100 0.0076  8.2E-11 130 42 13
p-toluidine slug 1500 0.0087 8.1E-11 130 42 13
o-toluidine slug 1400 0.006 5.6E-11 130 42 13
3,4-dimethylaniline slug 2400 0.0027 2.2E-11 130 42 13
2,6-dimethylaniline slug 2200 0.0029 2.4E-11 130 42 13
phenol slug 1600 0.041 43E-10 130 42 13
p-cresol slug 2600 0.016 1.5E-10 130 42 13
o-cresol slug 2700 0.016 1.5E-10 130 42 13
3,4-dimethylphenol slug 3900 0.033 27E-11 130 42 13
2,6-dimethylphenol slug 4800 0.0027 2.2E-11 130 42 13
N,N’-disalicylidene-

1,2-diaminopropane slug 1700 0.0027 97E-12 140 42 13
thiophene slug 2500 0.026 3.1E-10 130 42 13
benzothiophene slug 17000 0.0075  5.6E-11 130 42 13
MTBE slug 1100 38 4.3E-7 130 42 13
di-sec-butyl-p-

phenylenediamine steady state 69000 7.6E-7  34E-15 - 42 13
methanol slug 880 52 1.6E-6 130 42 13
ethanol slug 890 50 1.1E-6 130 42 13
benzene slug 1700 2.9 3.8E-8 130 42 13
toluene slug 4400 15 1.7E-7 130 42 13
ethylbenzene slug 10000 3.0 2.8E-8 130 42 13
naphthalene slug 14000 0.99 7.7E-9 130 42 13

ethanol (neglecting biodegradation), but toluene is expected to require roughly twice as much
transport time (4.4 years).

The model predicted high concentrations of both benzene and toluene in the municipal
supply well water on a relatively short time frame (less than 5 years). This elicits a need for
closer examination, since MTBE has contaminated wells on a widespread basis, whereas
benzene and toluene have contaminated a much smaller fraction of municipal wells [20, 22].
Several investigations strongly suggest that BTEX (benzene, toluene, ethylbenzene and xylenes)
are relatively degradable under typical aquifer conditions, whereas MTBE degrades very slowly
in most aquifers [23-26]. Since degradability was not considered for the purposes of the
“screening” model proposed here, the results did not capture this observation. The degradability
of BTEX explains the observation that these compounds rarely contaminate water supplies.
Nevertheless, the utility of the model is evident. Had a screening transport model been used to
assess the potential for groundwater damage from either BTEX or MTBE before they were
substantially investigated by scientists and regulators, the results would have clearly advised
further study of the biodegradability of these compounds in aquifers.
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Figure 5-9. Arrival time of solute front vs well water concentration: increased sediment organic matter

Field study results corroborate predicted subsurface retardation values for benzene and
MTBE. In a plume characterization by Landmeyer et al., in a silty sand aquifer (sediment
organic matter not reported) with an ambient groundwater flow of 0.1 to 0.4 m/day, benzene
travelled about 1.25 times more slowly than MTBE (which was considered non-retarded) [27].
Other studies document a retardation factor of 1.2 to 1.3 for benzene in aquifers [28]. Given an
aquifer sediment organic matter of 0.1% (the standard case), the transport model computed a
retardation factor of 1.15 for benzene and about 1.06 for MTBE, in general agreement with the
field study observations.

Several highly polar compounds were predicted in the municipal well water at
concentrations an order of magnitude lower than benzene. Phenol, aniline and their methylated
analogues approached concentrations of 0.1 ppb in the municipal water. If the groundwater also
happened to have a pH near the pK of one of these contaminants (< 5 in the case of the
substituted anilines and > 9 in the case of the phenols), the contaminant would significantly
ionize. However, since the compounds under consideration are experiencing relatively non-
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Table 5-16. Transport model results for the decreased well pumping rate (80 gal/min) case

plume front arrival well concentration plume spread [m]

compound type time [days]  [ppbl] M] X |y z
aniline slug 920 0.047 5.0E-10 130 42 13
p-toluidine slug 990 0.065 6.1E-10 130 42 13
o-toluidine slug 980 0.044 4.1E-10 130 42 13
3,4-dimethylaniline slug 1200 0.028 23E-10 130 42 13
2,6-dimethylaniline slug 1100 0.028 2.3E-10 130 42 13
phenol slug 1000 0.32 3.4E-9 130 42 13
p-cresol slug 1200 0.18 1.6E-9 130 42 13
o-cresol slug 1200 0.18 1.6E-9 130 42 13
3,4-dimethylphenol slug 1500 0.044 3.6E-10 130 42 13
2,6-dimethylphenol slug 1600 0.039 3.2E-10 130 42 13
N,N’-disalicylidene-

1,2-diaminopropane steady state 1000 0.027 9.4E-11 - 42 13
thiophene slug 1200 0.27 3.2E-9 130 42 13
benzothiophene slug 4100 0.15 1.1E-9 140 42 13
MTBE slug 920 230 2.6E-6 130 42 13
di-sec-butyl-p-

phenylenediamine steady state 15000 3.8E-6 1.7E-14 - 42 13
methanol slug 870 260 8.2E-6 130 42 13
ethanol slug 870 260 5.6E-6 130 42 13
benzene slug 1000 24 1.3E-7 130 42 13
toluene slug 1600 210 2.2E-6 140 42 13
ethylbenzene steady state 2800 69 6.5E-7 - 42 13
naphthalene slug 3500 19 1.5E-7 140 42 13

retarded slug transport, their subsurface travel times and well concentrations probably would not
be significantly affected under these conditions. Therefore, the expected well concentrations of
the minor polar constituents are probably too low to be of interest to regulators. However, they

are near a concentration range that may pose risks under different conditions (i.e., increased
gasoline spill size, decreased well pumping rate of household wells, etc). It is also important to
bear in mind that the reported model concentrations reflect a longitudinally averaged plume
since uncertainty in hydrogeologic characteristics prevents us from incorporating better
resolution of physical processes into the model [29]. The actual risks posed by these compounds
was beyond the scope of this work, however, since a review of their known biodegradability in
aquifer conditions was not conducted here.

B. Increased sediment organic matter (f = 0.005)
In some water supply aquifers, the retardation of compounds in the subsurface may be
underestimated by the standard case. It was thus deemed useful to test the sensitivity of the

transport predictions to increased levels of organic matter (Table 5-15, Figure 5-9). By inflating
the sediment organic matter abundance 5-fold, the retardation factor was substantially increased
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Figure 5-10. Arrival time of solute front vs well water concentration: decreased well pumping rate

for nonpolar compounds such as BTEX and benzothiophene. The expected transport times of
benzene and toluene were increased to 5 years and 12 years, respectively. This reflects a
retardation factor for benzene of about 2.0, significantly higher than the values of 1.2 to 1.3
previously observed in field studies [27, 28]. The transport behavior of highly soluble
compounds such as ethanol and methanol was unaffected by the increased abundance of
sediment organic matter. The model predicted a retardation factor of 1.26 for MTBE.

An increased but realistic abundance of sediment organic matter substantially reduced the
predicted risk of contamination by nonpolar compounds such as BTEX. However, the predicted
arrival times of highly polar fuel components were changed by only months.

C. Decreased well pumping rate (80 gal/min)

The standard transport case represented a system in which the municipal well was of
considerable size (400 gal/min), although significantly larger (e.g., ~1000 gal/min) wells are
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Table 5-17. Transport model results for the increased spill size (1000 gal) case

plume front arrival well concentration plume spread [m]

compound type time [days] _ [ppbl M] Xy 7z
aniline slug 920 0.093 1.0E-9 130 43 13
p-toluidine slug 990 0.13 1.2E-9 130 43 13
o-toluidine slug 980 0.088 8.2E-10 130 43 13
3,4-dimethylaniline slug 1200 0.055 4.5E-10 130 43 13
2,6-dimethylaniline slug 1100 0.056 4.6E-10 130 43 13
phenol slug 1000 0.64 6.8E-9 130 43 13
p-cresol slug 1200 0.35 3.3E-9 130 43 13
o-cresol slug 1200 0.35 3.2E-9 130 43 13
3,4-dimethylphenol slug 1500 0.087 7.1E-10 130 43 13
2,6-dimethylphenol slug 1600 0.078 6.4E-10 130 43 13

N,N’-disalicylidene-
1,2-diaminopropane steady state 1000 0.030 1.2E-10 - 43 13
thiophene slug 1200 0.54 6.4E-9 130 43 13
benzothiophene slug 4100 0.27 2.0E-9 150 43 13
MTBE slug 920 470 5.3E-6 130 43 13
di-sec-butyl-p-

phenylenediamine steady state 15000 4.3E-6 1.9E-14 - 43 13
methanol slug 870 520 1.6E-5 130 43 13
ethanol slug 870 520 1.1E-5 130 43 13
benzene slug 1000 47 6.0E-7 140 43 13
toluene steady state 1600 550 6E-6 - 43 13
ethylbenzene steady state 2800 78 7.3E-7 - 43 13
naphthalene steady state 3500 51 4.0E-7 - 43 13

frequently also implemented. In general, an increased pumping rate was hypothesized to
decrease the well water pollutant concentration, because the plume was believed to constitute a
small fraction of the capture zone cross-sectional area. In other words, a high pumping rate
draws water from a large area, effectively diluting the plume. The calculated transverse plume
spread in table 5-16 (42 m) may be compared to a representative capture zone width (350 m, for
the standard case) in order to establish the validity of this assumption for a 400 gal/min well.

Similarly, a decreased pumping rate will result in an increased pollutant concentration in
the well water, as the contamination plume likely constitutes a larger proportion of the
subsurface water drawn into the well. It was important to consider how the transport system
would respond to decreased well pumping rate, as this more closely reflects the risks
experienced by small communities or household municipal wells (Figure 5-10, Table 5-14). If
the well pumping rate was decreased 5-fold to 80 gal/min, the transport model predicted
increased solute concentrations by about a factor of 5 relative to the standard case. All other
transport characteristics were similar to those predicted in the standard case. This presents the
potential for contamination of small wells by possibly relevant concentrations of minor gasoline
components such as phenol, the cresols, or thiophene (predicted C_, ~ 0.1 to 0.3 ppb).
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Figure 5-11. Arrival time of solute front vs well water concentration: increased spill size

D. Increased gasoline spill volume (1000 gallons)

If a 10-fold larger NAPL spill was considered, the transport model predicted results
similar to the standard case except with solute concentrations increased by a factor of 10
(Table 5-17, Figure 5-11). As discussed previously, this increases the risk posed by minor polar
gasoline components that may otherwise appear relatively benign. Phenol, the cresols and
thiophene have predicted supply well concentrations approaching 1 ppb and short calculated
transport times (less than 3 years) under these conditions.

Discussion and Conclusions: It is important to bear in mind that the pollutant
concentrations calculated here reflect uniform hydrogeology and spatial averaging of the plume,
as well as many other averaged parameters. The calculated concentrations were therefore useful
as order-of-magnitude screening indicators rather than specific predictions. Nevertheless, some
important conclusions may be drawn from the results.

96



Preliminary analyses suggested that the transport model approach was accurate for
nondegraded compounds. Several studies suggest that in either aerobic or anaerobic conditions,
MTBE degradation in saturated soils is generally slow relative to the transport time of MTBE
considered here (900 to 1000 days) [24-26]. MTBE contamination data is therefore useful for
validation of the transport model. Inspection of the literature by Johnson et al. shows that
municipal wells in the U.S. have been contaminated by as much as 600 ppb MTBE, although
this appears rare [20]. However, a substantial number of US community supply wells have
documented MTBE levels above 20 ppb. Additionally, studies in Maine suggest that thousands
of regional household wells may contain in excess of 35 ppb MTBE contamination [30].

Evidence suggests that most of the household well contamination in Maine may be related to
small spills related to homeowner releases or even automobile accidents [20]. The transport
model generally predicted the correct range of observed MTBE contamination, calculating 40 to
500 ppb MTBE in community supply wells, depending on conditions (well pumping rate, spill
size, etc). It was difficult to draw more specific conclusions about contamination of household
wells, since the parameterization of the hydrogeologic model in Chapter 3 was conducted
specifically for municipal well supply aquifers. It is clear, however, that the low pumping rates
associated with private wells should result in a lower dilution factor and therefore high
contaminant concentrations relative to municipal wells, other factors being equal.

While the transport model apparently predicted a similar order of magnitude of MTBE
contamination as is observed in nationwide municipal well surveys, the level of uncertainty in
the predictions was not quantitatively treated here. As outlined in Chapter 3, the “ensemble”
transport model approach was originally aimed at capturing an expected value or average
description of gasoline contaminant transport behavior at thousands of potential or existing
community supply wells in the US. Accordingly, the physical description and parameters of the
transport system were given representative or average characterizations, based on review of
relevant literature. However, the information presented did not relate a detailed study of the
variability in the model parameters. The next logical step in the analysis developed here would
be estimation of variability in the transport model parameters and a detailed study of the
resulting overall variability in the model predictions. This might allow the model to reflect the
probability distribution of expected outcomes in the transport system; a result that could not be
resolved at the current level of analysis.

The general implications of the model predictions regarding different gasoline
constituents were clear. The transport model predicted that, if undegraded, oxygenates such as
MTBE, ethanol, or methanol will contaminate municipal wells at significant (40 to 500 ppb)
levels within short time frames (less than 3 years). Model predictions additionally suggested that
benzene and toluene may also create a substantial contamination risk, arriving at wells within 3
to 10 years at well water concentrations of 3 to 50 ppb (for benzene) or 15 to 550 ppb (for
toluene). However, past experience with benzene and toluene shows that they are generally
degradable in aquifer conditions on such time frames. As a result, these compounds do not pose
a large scale contamination risk of the same order as MTBE.

Model predictions also suggested that minor gasoline constituents such as thiophene,
phenol, and the cresols, dimethylphenols, and toluidines are less likely than MTBE to present
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contamination risks as a result of their lower concentrations in gasoline. However, these minor
constituents still approach significant contamination levels under certain conditions. Very
realistic changes in parameter values (e.g., increased spill size or low pumping rates of
household wells) may easily result in substantial contamination risks from these (minor
constituent) compounds if they degrade slowly in the environment. Further analysis of the
potential for minor gasoline constituents to contaminate drinking water supplies would therefore
constitute a worthwhile future effort.

5-8. Conclusions

The physical property estimation methods demonstrate that with guided effort, partition
coefficients can be computed highly accurately for complex solvent systems such as octanol and
water. For the more complicated gasoline—water and organic matter—water systems, partitioning
can be closely correlated to the K_ for individual compound families. This suggests that, like
the K ,, the K may eventually be predicted with much higher accuracy as well. The estimation
methods examined here were sufficiently accurate to be used as a screening tool with a
subsurface transport model.

LSERs constitute a promising approach to partition coefficient estimation. A derived K,
LSER modeled known partitioning data with good accuracy, although further validation with a
broader range of compound types is needed.

The transport calculations predicted municipal well MTBE concentrations that fall within
the same order of magnitude as those observed in nationwide surveys. The preliminary
predictions are encouraging, because the model was not “fitted” in any way and was completely
derived and parameterized using fundamental physical and chemical transport principles. The
accuracy of its results should therefore motivate further validation tests with MTBE and other
compounds found in gasoline. Insights gained from MTBE and BTEX predictions led to the
conclusion that some previously unstudied minor gasoline constituents, such as thiophene,
phenol, p-cresol, o-cresol, p-toluidine, o-toluidine, and dimethylphenols may also pose
contamination risks to many U.S. drinking water supplies.
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Chapter 6

Summary and Conclusions

The goal of this work was to characterize the subsurface transport of gasoline solutes from
leaking underground fuel tanks (LUFTs) and the corresponding national impact on drinking water
wells. The transport model provided a preliminary screening assessment of the need for
biodegradability testing, health screening tests, and more extensive environmental impact studies of
compounds added to or found in gasoline. This approach is proposed as a general screening tool
for future gasoline additives and reformulations. Additionally, a similar approach could be used to
assess the possible risks associated with JP (aviation) and diesel fuels. If proposed fuel additives
(such as alkylates, recently proposed for use in gasoline) were methodically screened before
implementation, nationwide drinking water contamination events such as that caused by MTBE
could be easily avoided.

In Chapter 2, gasoline was reported to include a number of polar organic compounds at
concentrations ranging from a few ppm to mass percent levels. Many of these compounds are
highly water-soluble and are therefore likely to transport large distances rapidly in the subsurface.
However, they are neither studied in environmental literature nor mentioned in community or
government agency regulatory guides as potential contamination threats to drinking water.
Consequently, like MTBE, they are useful test subjects for developing a subsurface transport
screening methodology.

In Chapter 3, it was proposed that the hydrogeological parameters which describe
subsurface transport near shallow drinking water wells are not highly variable when the large
majority of sites in the U.S. is considered. Aquifers chosen as community drinking water supplies
require a substantial pumping capacity and are usually composed of porous, highly conductive,
unconsolidated sediments. As a result, the characteristics of these aquifers can be generalized for
transport calculation purposes. Combined with information about typical distances between
community supply wells and LUFTs and groundwater flow rates, preliminary transport calculations
can be conducted for novel organic compounds added to gasoline.

After establishing the subsurface hydrogeology of the system, contaminant physical
properties were needed to parameterize the transport model. Environmentally relevant partition
coefficients for the vast majority of compounds that are used in industry or commerce have not
been measured. In the interest of developing the model as a screening tool, it was assumed that the
partition coefficients of future or proposed gasoline additives or reformulations may not be known
a priori and therefore must be estimated. Chapter 4 outlined the current state of partition
coefficient estimation for organic compounds in gasoline-water (Kyy), octanol-water (K,y), and
organic matter-water (Kom) mixture pairs. Traditional empirical group contribution calculations
such as UNIFAC and AQUAFAC demonstrate accuracy within an order of magnitude for K,,, and
Kow. Quantum mechanically based calculation methods are rapidly becoming competitive, but
require further validation before they may be considered comprehensively accurate.

Linear solvation energy relationships (LSERs) have been suggested as models for
partitioning in a number of liquid mixture and gas phase systems. They appear more accurate than
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any other method reviewed for finding partition coefficients in general. However, LSER
calculations require both regression parameters for individual partitioning systems and
independently derived solute solvation parameters. Solvation parameters have been compiled for
hundreds of compounds [1, 2], but their measurement or derivation for novel compounds is not
necessarily trivial, as is discussed elsewhere [3].

In Chapter 5, subsurface transport calculations and physical property estimation methods
were applied to 21 solutes found in gasoline. Linear free energy relationship regressions between
Kgw and K,y produced good fits only for individual compound families, and therefore may not be
generally applicable for other types of organic compounds. A linear solvation energy relationship
was derived for K, providing an additional tool for future calculations. The estimated Kqw LSER
standard error of 0.22 log K, units was determined from a validation test of model predictions
against independent data. The LSER regression suggested that, similar to previously studied
hexadecane-water and cyclohexane—water systems, partitioning in the gasoline—water system was
controlled primarily by solute volume, solute basicity, and solute acidity.

The transport model calculated a municipal well MTBE concentration range of 40 to 500
ppb, depending on parameter settings. These calculations agree with observations in nationwide
community water supply surveys, which report observed municipal supply well MTBE
concentrations of 20 to 600 ppb. The model demonstrated good predictive capability considering
that it was not fitted in any way and was derived only from physical and chemical transport
principles. The expected variability in the transport model predictions resulting from parameter
variability was not analyzed, however. Therefore, insight into the probability distribution of
predicted transport outcomes was not resolved.

The transport model predicts essentially unretarded migration of MTBE, methanol and
ethanol in the subsurface, calculating municipal well concentrations of 40 to 500 ppb for these
solutes. This is a realistic result for MTBE, which has been found highly resistant to
biodegradation in a range of subsurface environments. It seems likely that methanol and ethanol
may experience significant biodegradation on the time scale of interest in the transport model (850
to 950 days). However, the potential health impact of methanol contamination of drinking water
wells may still be substantial. The transport model predicts retarded migration of benzene, toluene
and ethylbenzene to municipal wells, with significant expected concentrations (10 to 500 ppb).
Large scale surveys do not generally support this prediction [4]. This should not be a surprising
result, as BTEX are believed relatively biodegradable on the time scale of transport in the model
(3 to 10 years) [5].

Transport predictions for oxygenates should be interpreted carefully. If future oxygenates
or other highly mobile compounds added to fuels are reasonably biodegradable on transport time
scales (unlike MTBE), these compounds may quickly consume the available dissolved oxygen in
the path of the plume. In this case, other compounds which are difficult to degrade under anaerobic
conditions (such as benzene) may suddenly pose a much more significant threat [6].

According to the transport model, other studied solutes may be found in municipal wells at

environmentally relevant concentrations. Cresols, toluidines, and thiophene are predicted to
contaminate municipal wells at low ppb levels, depending on model parameter settings. These
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transport predictions may not appear to constitute an important risk. However, if any of these
minor gasoline constituents are persistent (non-degraded) in the subsurface and toxic to human
health, widespread and hazardous exposures could quickly result. Additionally, such exposures
could remain undetected for years, even if they occurred on a large scale. The transport model
results demonstrate that minor gasoline constituents can and should be screened as possible
drinking water pollutants. These compounds are not “obvious” culprits as large scale contaminants
and are therefore unlikely to receive due attention.

The combined physical property estimation and transport model approach was both feasible
and useful as a screening tool for predicting gasoline additive exposures resulting from subsurface
spills. Predictions of MTBE contamination of drinking water wells showed good agreement with
field observations. The transport model was poor as a site-specific model of subsurface transport,
relative to the current state of the science. Rather, it was designed to assess the potential exposures
related to subsurface contamination from thousands of gasoline spills. Thus, it could quantitatively
guide regulators and industry in understanding a critical aspect of the social and environmental
costs of individual gasoline formulations and additives.
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Appendix
Transport program C++ code

This code and the compiled executables (for Windows and Unix (Solaris)
systems) are available in electronic format from the author.

#include <iostream.h>
#include <math.h>
#include <fstream.h>
#include <string>

#include <iomanip.h>

void WELCOME(void);

double ROUND(double, int);

void READ_SPILL_DATA(char *, double &, double &, double &, double &, double &, double &);

void READ_ENV_DATA(char *, double &, double &, double &, double &, double &, double &, double &, double &, double
&, double &);

double PLUME_INIT(double &, double &);
void WRITEFILE(char *, string, double, double, double, double, double, double);

int main()

{
const double Pi = 3.14159265;
char *datafile = "transport_parms.dat*;

WELCOME();

/I cout << "Please enter a one-word abbreviation for the compound name\n"
/I <<"inten letters or less:\n? *;

// cin >> compoundname;

double Cf, Kfw, Kom;  // partition constants, fuel concentration

double mw; // molecular weight

double V_NAPL, H_NAPL;  // NAPL spill volume, NAPL spill thickness
double fuel_density = 0.75;

READ_SPILL_DATA(datafile, mw, Cf, Kfw, Kom, V_NAPL, H_NAPL);

double fom, porosity, sed_density; // aquifer sediment properties

double v, H; // groundwater velocity, aquifer thickness
double ax, ay, az; /1 dispersivities
double Qwell, Lx; // well pumping rate, distance from spill

READ_ENV_DATA(datafile, fom, porosity, sed_density, v, H, ax, ay, az, Qwell, Lx);

// DATA CHECK:
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cout<<"\n\n - - - PRELIMINARY DATA CHECK - - \n";
cout << "\n solute molec wt = " << mw << endl;
cout << * solute fuel concentration =" << Cf << * ppm\n";
cout << " solute Kfw = " << Kfw << end|;
cout << " solute Kom =" << Kom << end|;
cout << “ NAPL volume =" << V_NAPL << "m~"3 ="
<< ROUND(264.2*V_NAPL,3) << " gallons\n®;
cout << " NAPL thickness =" << H_NAPL << * m\n*;
cout << " fraction of organic matter = " << fom << end|
<< " porosity =" << porosity << endl
<< " sediment density =" << sed_density << " g/cm”3\n"
<< " groundwater longitudinal velocity = * << v << " m/day\n”
<< " aquifer saturated thickness =" << H << * m\n"
<< " dispersivities (in meters) =" << ax << " [x] " << ay << "[y] " <<az << "[2]" << endl
<< " well pumping rate = " << Qwall << " m"3/day\n"
<< " distance to the supply well =" << Lx << “ m\n";

// MAIN PROGRAM ALGORITHM

double mass = Cf*fuel_density*V_NAPL; // total mass of compound, in [g]

double EX, Ey, Ez; / dispersion coefficients

Ex = ax*v;
Ey = ay"v;
Ez = az'v;

double Cw; // aqueous equilibrium concentration with fuel, mol/L
double R;  // retardation factor

Cw = (Cf*fuel_density/(mw*1000))/Kfw; // Cw is in mol/L
double Cwppm = Cw*mw*1000; // Cwppm is in ppm

R =1 + fom*Kom*sed_density*(1-porosity)/porosity;

doubler; //radius of NAPL spill

r = sqri(V_NAPL/(PI*H_NAPL)):

double az_spill = 0.002; // vertical dispersivity on a 10 m scale, (Gelhar)

// Estimation of the initial plume cross_section
double A = PLUME_INIT(r, az_spill);

double t_depletion = -porosity*V_NAPL*Kfw*l0og(0.25)/(A*v);

double length_init = v*t_depletion/R;  // initial length in x direction

if (length_init < 2*r)  // lower bound is size of spill

length_init = 2*r;

double DEVy_init = 2™r;
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double DEVz_init = sqrt(2*az*2*r);

double Tarr; // arrival time of the front of the solute plume

Tarr = (RV)*(Lx + Ex/v - sQri(EX*EX/(v*V) + 2*Ex*Lx/V));

double Tarr_plugflow = Lx*R/v; // arrival time for plug flow front

double DEVx_final = sqrt( pow(length_init,2)/12 + 2*Ex*Tarr/R );
double DEVy_final = sqrt( pow(DEVy_init,2) + 2*Ey*Tarr/R );
double DEVz_final = sqrt( pow(DEVz_init,2) + 2*Ez*Tarn/R );

string transport_type;
double dmdt_well;
if (length_init < 2*sqri(2*ax*Lx)) // slug type transport

{
dmdt_well = mass*v/(2*DEVx_final*R); {/ units: g/day
transport_type = "slug";

else // steady state type transport

{
dmdt_wesll = (A/porosity)*v*mass/(V_NAPL*Kfw); // units: g/day
transport_type = "steady state";

double Cwellppm = dmdt_well/Qwell; /! units: mg/L
double Cwell = Cwellppm/(1000*mw); /! units: mol/L
double b = Qwell/(v*H*porosity); // capture zone width

// SUMMARY AND RESULTS

string go;

cout << "\npress any key followed by a return to continue\n”;
cin >> go;

cout<<™\n --- TRANSPORT.C FULL RESULTS - - -\n%;

cout << "\nThe time of arrival of the solute frontis "
<< ROUND(Tarr,2) << " days."
<< "\nThe plug-flow time of arrival is "
<< ROUND(Tarr_plugflow,2) << " days.\n"
<< "\nThe initial plume length is "
<< ROUND(length_init,2) << " meters\n”
<< "\nThe initial spread of the plume is:\n"
<< "Hy] " <« ROUND(DEVy_init,2) << " meters\n*
<< "\t[z] " << ROUND(DEVz_init,2) << " meters\n"
<< "\nThe plume transport type is " << transport_type << *'.\n";
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cout << "\nThe final spread of the plume is:\n";
if (transport_type == "slug")
cout << "[x] " << ROUND(DEVx_final,2) << " meters\n";

cout << "tfy] " << ROUND(DEVYy_final,2) << * meters\n"
<< "W[z] * << ROUND(DEVz_final,2) << " meters\n"
<< "\nThe width of the well capture zone is * << ROUND(b,2)
<< " meters.\n"
<< "\nThe aqueous concentration at the spill is:\n"
<< "\' << ROUND(Cw,2) << "mol/L "
<<"or "<<ROUND{Cwppm,2) << " ppm\n"
<< "\nThe aqueous concentration in the well is:\n"
<<"\t' << ROUND(Cwell,2) << " mol/L "
<<"or "<<ROUND(Cwellppm,2) << " ppm\n\n";

// DEBUGGING CODE
/I cout << "The final dev(x) should be " << sgrt(pow(DEVx_init,2) + 2"Ex*Tar/R) << endl;
/I cout << "The Tarr should be " << (Lx - sqrt(2*(Ex/R)*Tarn)*R/v << end};

char* outfilename = "transport.out";

string writebool;

cout << "Write results to file " << outfilename << " ? [y or n]: *;
cin >> writebool;

if (writebool =="y")

WRITEFILE(outfilename, transport_type, Tarr, Cwell, Cwellppm, DEVx_final, DEVy_final, DEVz_final);
}

return O;

}

void WELCOMEY()
{
cout << "

<< "\nNOTE TO USER: Welcome to transport.c, a program designed to "
<< "characterize\nthe contamination plume created by gasoline "
<< "components. Change inputs\nusing the transparms.dat parameter *
<< "file. This program is not exception-\nhandled and will bail *
<< "if the parameter file is incorrectly modified.";

kKK Kk kAN

double ROUND(double x, int sigfigs) // round double to int sigfigs
double x_rounded = 0;
double mag = ceil(log10(fabs(x}));

/1 if (floor(x/pow(10,mag-2)) <= 15) // if 1st digit < 1.5, increase sigfigs
/I sigfigs = sigfigs + 1;

x_rounded = pow(10,mag-sigfigs)*floor(x/pow(10,mag-sigfigs) + 0.5);

return x_rounded;

}
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void READ_SPILL_DATA(char *datafile, double &mw, double &Cf, double &Kfw, double &Kom, double &V_NAPL, double
&H_NAPL)

ifstream infile(datafile, ios::in);
if (linfile)
{
cerr << "\nWhere the heck is " << datafile << 2!l "
<< "I cant find it.\nA program needs data to run, you know..."
<< "\nExiting.\n\n";
exit(1);

string dummy, dummy2;

while (infile >> dummy)

if (dummy2 == "molecular" && dummy == "weight")
infile >> mw;
if (dummy2 == "fue!" && dummy == "concentration")

infile >> dummy;
infile >> Cf;

}
if (dummy == "Kfw")
infile >> Kfw;
if (dummy == "Kom")
infile >> Kom;
if (dummy2 == "NAPL" && dummy == "volume")
{

infile >> dummy;
infile >> V_NAPL,;

}
if (dummy2 == "lens" && dummy == “thickness")

infile >> dummy;
infile >> H_NAPL;
}

dummy2 = dummy;
)
}

void READ_ENV_DATA(char *datafile, double &fom, double &porosity, double &density, double &v, double &H, double
&ax, double &ay, double &az, double &Qwell, double &1 x)
{

ifstream infile(datafile, ios::in);
if (linfile)
{
cerr << "\nWhere the heck is ™ << datafile << ™21l "
<< "l can't find it.\nA program needs data to run, you know..."
<< "\nExiting.\n\n";
exit(1);
}

string dummy, dummy2;

while (infile >> dummy)

{

if (dummy == “fom")
infile >> fom;
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if (dummy == "porosity")
infile >> porosity;
if (dummy2 == "sediment" && dummy == "density")

infile >> dummy;
infile >> density;

if (dummy2 == "groundwater" && dummy == "velocity")

infile >> dummy;
infile >> v;

if (dummy2 == "saturated" && dummy == "thickness")

infile >> dummy;
infile >> H;

if (dummy == "a(x)")

infile >> dummy;
infile >> ax;

)
if (dummy == "a(y)")
{

infile >> dummy;
infile >> ay;
}
if (dummy == "a(z)")
{
infile >> dummy;
infile >> az;

}
if (dummy2 == "pumping" && dummy == "rate")

infile >> dummy;
infile >> Qwell;

if (dummy2 == "well" && dummy == "distance")
infile >> dummy;

infile >> Lx;

}

dummy2 = dummy;
}
}

double PLUME_INIT(double &r, double &az)
double Area = 0;

int N = static_cast<int>(r*1000);
double del = static_cast<int>(r*1000)/(1000*static_cast<double>{N));

for (inti=0;i<N; i++)
Area += del*pow((r'r - pow((i*del + del/2},2)),0.25);

Area = 2*2*sqrt(az)*Area;

return Area;

}
void WRITEFILE(char *filename, string transport_type, double Tarr, double Cwell, double Cwell_ppm, double DEVx_final,
double DEVy_final, double DEVz_final)

int newfile_flag = 0;
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ifstream findfile(filename, ios::in);
if (findfile)
newfile_flag = 1;

if (newfile_flag == 0)
{
findfile >> dummy;
findfile >> dummy?2;

it (dummy I= "*** || dummy2 != "TRANSPORT.C")
{

cerr << " *** ERROR **"\n"
<< "You have designated the file " << filename << " for *
<< "another use \nTransport.c will not produce an output summary "
<< "file until the filename\n™ << filename << "' is available for "
<< "writing.\nExiting.\n";

exit(1);

}
}

if (newfile_flag == 0)

while (findfile >> dummy)
if (dummy == "slug" Il dummy == "steady")
runs_counter++;

findfile.close();
ofstream outfile(filename, ios::app);

if (newfile_flag == 1)
{

cout << "This is run # 1\n";
outfile << setw(55) << "** TRANSPORT.C RESULTS SUMMARY **\n\n"
/ << setw(5) << "trial"
<< setw(13) << "t_arr"
<< setw(10) << "C_well"
<< setw(10) << "C_well"
<< setw(25) << "plume dispersion, [m]"
<< setw(14) << "transport" << endl
<< 88tw(6) << "run# "
<< 86tw(7) << "[days]"
<< s6tw(10) << "[ppb] "
<< setw(10) << “[M] "
<< setw(7) << "x"
<< setw(7) << "y"
<< setw(7) << "z*
<< setw(15) << "type" << end|;

if (newfile_flag == Q)
cout << “This is run # " << runs_counter << end|;

outfile << setw(2) << runs_counter
<< setw(10) << ROUND(Tarr,2)
<< setw(10) << ROUND(Cwell_ppm*1000,2)
<< setw(11) << ROUND(Cwell,2);
if (transport_type == "steady state")
outfile << setw(8) << "- *;
else
outfile << setw(8) << ROUND(DEVx_final,2);
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outfile << setw(7) << ROUND(DEVYy_final,2)
<< setw(7) << ROUND(DEVz_final,2)
<< " " << transport_type << endl;
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