
An Algorithm for Reducing Atmospheric Density

Model Errors Using Satellite Observation Data in

Real-Time
by

Sarah Elizabeth Bergstrom
Bachelor of Science, Swarthmore College, 2000

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

© Massachusetts Institute of Technology 2002. All rights reserved.

A uthor
Department of Aeronautics and Astronautics

lay 10, 2002
2

Certified by.
/Dr. Paul J. Cefola

Technical Staff, the MIT Lincoln Laboratory
Lecturer, Department of Aeronautics and Astronautics

Thesis Supervisor

Certified by...
Dr. Ron J. Proulx

Prin ipal Member of the Technical Staff,
the Charles Stark Draper Laboratory

Thesis SuDervisor

Accepted by...... ...
Wallace E. Vander Velde

Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

MASSACHUSETTS iSTITUt
OF TECHNOLOGY

AUG 13 J00 .AEROA!

THIS PAGE INTENTIONALLY LEFT BLANK

2

An Algorithm for Reducing Atmospheric Density Model

Errors Using Satellite Observation Data in Real-Time

by

Sarah Elizabeth Bergstrom

Submitted to the Department of Aeronautics and Astronautics
on May 24, 2002, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Atmospheric density mismodeling is a large source of errors in satellite orbit determi-
nation and prediction in the 200-600 kilometer range. Algorithms for correcting or
"calibrating" an existing atmospheric density model to improve accuracy have been
seen as a major way to reduce these errors. This thesis examines one particular algo-
rithm, which does not require launching special "calibration satellites" or new sensor
platforms. It relies solely on the large quantity of observations of existing satellites,
which are already being made for space catalog maintenance. By processing these
satellite observations in near real-time, a linear correction factor can be determined
and forecasted into the near future. As a side benefit, improved estimates of the
ballistic coefficients of some satellites are also produced. Also, statistics concerning
the accuracy of the underlying density model can also be extracted from the correc-
tion. This algorithm had previously been implemented and the implementation had
been partially validated using simulated data. This thesis describes the completion
of the validation process using simulated data and the beginning of the real data
validation process. It is also intended to serve as a manual for using and modifying
the implementation of the algorithm.

Thesis Supervisor: Dr. Paul J. Cefola
Title: Technical Staff, the MIT Lincoln Laboratory and Lecturer, Department of
Aeronautics and Astronautics

Thesis Supervisor: Dr. Ron J. Proulx
Title: Principal Member of the Technical Staff, the Charles Stark Draper Laboratory

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

Acknowledgments

First, and foremost, I want to thank my thesis advisor at the MIT Lincoln Laboratory

(LL), Dr. Paul Cefola.

I'd also like to thank Dr. Ronald Proulx at the Charles Stark Draper Laboratory

(CSDL), who has been a part of this research project since its commencement. He has

offered continuing encouragement and technical assistance throughout this project,

including enormous help with the seemingly-neverending adventures in file transfer

between CSDL and LL.

Second, I want to thank George Granholm, Jack Fischer, Prof. Andrey Nazarenko,

and Dr. Vasiliy Yurasov for their fine work, upon which all of my endeavours here

have depended. Their papers and theses have been a continual source of inspiration

and insight into the intricacies of atmospheric density modelling and satellite orbit

determination. Thanks especially to George for finding time in his busy schedule with

the U.S. Air Force to provide some initial guidance on working with the software.

Thanks go to Lt. Col. David Vallado (USAF) for providing real observation data.

At LL, I'd like to extend thanks to Group 98 Leader Dr. Sid Sridharan for

supporting this project. I'd also like to thank Jim Apicella and Sherry Robarge for

computer support, Zach Folcik for assistance with the gtds-granholm makefiles and

various other software, and Gladys Chaput, Kathy Fellows, Bonnie Tuohy, and Nancy

Alusow for administrative and travel assistance.

At CSDL, I'd like to thank Darryl Sargent for his help in coordinating the joint

work between the Labs. I'd also like to thank Linda Leonard for computer support

in the EDCF computing facility.

I'd like to thank Dr. Richard Battin at MIT for cultivating my interest in orbital

mechanics and pointing me at this research project. Thanks also go to my academic

advisor, Dr. J. P. Clarke, for giving me the freedom to pursue what interested me

most, and for assisting with travel arrangements, along with assistance from Jennie

Leith and Marie Stuppard.

On a personal level, I'd like to thank my family for their encouragement of all

5

my academic endeavours. To my best friend Jen - you've always been ahead of me,

inspiring me to keep going. To my beloved Dave, thanks for being there for me. To

my roommate (and LATEX consultant) Chaos - thanks for putting up with the dishes I

didn't wash during the last few weeks of every semester, and for being a great friend.

6

Contents

1 Introduction 17

1.1 Atmospheric Density Modeling . 17

1.1.1 A Brief History . 17

1.1.2 An Overview of the Entire Atmosphere 18

1.1.3 Thermosphere Modeling Details 21

1.1.4 M odel Errors . 23

1.1.5 A New Empiricism . 23

1.2 Prior Work on this Algorithm . 24

1.2.1 Nazarenko and Yurasov's Original Development 24

1.2.2 George Granholm's Work . 24

1.3 Outline of this Thesis . 25

2 Mathematical Details 29

2.1 Basic Concepts . 29

2.2 Linear Correction Factors . 30

2.3 Ballistic Factors to Correction Coefficients 31

2.3.1 Fitting Ballistic Factors to Data 31

2.3.2 Deriving Corrections from Ballistic Factors 32

2.3.3 Weighted Least Squares . 33

2.3.4 Solution Boundaries . 36

2.4 Forecasting Linear Correction Factors 37

2.5 Ballistic Factor Estimation . 38

2.5.1 BFE basic process . 38

7

CONTENTS

2.5.2 Derivation for One Standard Satellite 39

2.5.3 Multiple Standard Satellites 43

3 Implementation Overview 45

3.1 Computer Code . 45

3.1.1 G T D S . 46

3.1.2 Atm oC al .. 47

3.2 D ata Flow . 48

4 Simulated Data Validation 51

4.1 Simulated Data Generation . 51

4.1.1 Preparation ... 52

4.1.2 Truth Orbit Generation . 53

4.2 Reproduction of Prior Results using Simulated Data 55

4.2.1 Data Flow Verification . 55

4.2.2 Differences between Truth and Fit Models 57

4.2.3 Simulating "Noisy" Observations 61

5 New Validation Results with Simulated Data 65

5.1 Ballistic Factor Distortion . 66

5.2 R esults . 70

5.2.1 D ata Flow . 70

5.2.2 Effects on Atmospheric Density Correction 70

5.2.3 Convergence . 73

5.2.4 Update Cycle Length . 73

5.2.5 Height Dependence of Errors 73

5.2.6 Global Distortion/Correction Effects 78

5.2.7 Omitting Recalculation of kI Values 80

8

CONTENTS 9

6 Real Data Validation 83

6.1 Data Preparation 83

6.1.1 Conversion of B3 Observations 83

6.1.2 Station D ata . 85

6.1.3 Observation Scheduling . 85

6.1.4 Current Status . 85

7 Conclusions and Future Work 91

7.1 C onclusions . 91

7.2 Future W ork . 91

7.2.1 Further Tests . 92

7.2.2 GTDS Bugs . 93

7.2.3 New GTDS Features . 93

7.2.4 GTDS Integration . 94

7.2.5 AtmoCal Refinements . 94

7.2.6 Major AtmoCal Additions/Changes 95

A Key to Symbols, Abbreviations, Etc. 99

A.1 Text Conventions . 99

A.2 Expressions and Abbreviations . 100

B Implementation Miscellanea 105

B.1 CVS and Revision Control . 105

B.2 File Names and Locations . 106

B.3 Environment Variables . 109

C GTDS 111

C.1 GTDS Changes . 111

C.2 GTDS Data Files . 113

C.3 Additions to the Metzinger Test Cases 116

10 CONTENTS

C.4 List of Known Bugs/Issues 129

D Annotated Code 131

D.1 TLE2osc.pl . 132

D .2 genobs.pl. 141

D .3 distort-bfs.m . 151

D .4 estbfs.pl . 154

D .5 calcvars.pl . 174

D.6 Drivers for estbfs.pl and calcvars.pl 183

D .7 cale b.m . 191

D .8 D ates.pin . 198

D .9 b3conv.pl . 202

D.10 Other Utilities . 208

D.11 Graphing Utilities . 212

E File Utilities and Formats 219

E.1 B3 to OBSCARD Conversion Utility 219

E.2 Building New GTDS Binary Files . 222

E.3 Detailed File Formats . 222

E.4 GTDS Input Decks . 225

F IX Notes 231

Bibliography 233

About the Author 241

List of Figures

1-1 Atmospheric Regions . 19

1-2 Atmospheric Composition at Low Exospheric Temperature 20

1-3 Atmospheric Composition at High Exospheric Temperature 21

1-4 Summary of George Granholm's Work 25

2-1 Flowchart for Overall AtmoCal Operation 31

2-2 Visual Representation of the Fit Window for Satellite j 32

2-3 Ratio of True Density to Jacchia 1971 Model Density 34

2-4 Block Diagram for Correction Factor Forecasting 38

2-5 Flowchart for Ballistic Factor Updating Cycle 44

3-1 AtmoCal Operation Flowchart Including File Names 48

4-1 Flowchart for Simulated Observation Creation 54

4-2 B-values with No Noise, No Mismodeling 56

4-3 Linear Atmospheric Density Correction Factors with No Noise, No Mis-

m odelling . 56

4-4 Observed Daily Mean and Schatten Ap Values for 12/15/99-2/15/00 58

4-5 Daily and Schatten F10.7 Values for 12/15/99-2/15/00 58

4-6 Observed F10 .7 and ap Values During Fit Window 59

4-7 B-values with No Noise, Schatten Mismodeling 60

11

LIST OF FIGURES

4-8 Linear Atmospheric Density Correction Factors with No Noise, Schat-

ten M ism odeling . 60

4-9 B-values with Observation Noise, No Mismodelling 63

4-10 Linear Atmospheric Density Correction Factors with Observation Noise,

No M ism odeling .. 63

4-11 B-values with Observation Noise, Schatten Mismodelling 64

4-12 Linear Atmospheric Density Correction Factors with Observation Noise,

Schatten Mismodeling . 64

5-1 Distribution of (undistorted) Ballistic Factors for All Satellites 67

5-2 Distribution of Ballistic Factors for the Standard Satellites used in BFE

validation . 67

5-3 Distribution of Perigee Heights for All Satellites 68

5-4 Distribution of Perigee Heights for the Standard Satellites used in BFE

validation . 68

5-5 Ballistic Factor Distortion Ratios . 69

5-6 BF Percent Errors after Iteration, with No Noise, No Mismodeling, No

Initial D istortion . 71

5-7 BF Errors Sorted by Initial BF, with No Noise, No Mismodelling, No

Initial D istortion . 72

5-8 Comparison of B-values with and without Initial Ballistic Factor Dis-

tortion . 72

5-9 Convergence for five-day case . 74

5-10 Convergence for ten-day case . 74

5-11 Percent Errors for all Satellites before BFE iteration 75

5-12 Percent Errors for all Satellites after 5 BFE iterations 75

5-13 Average Absolute Percent Deviation as a Function of Iteration Period

(exam ple 1) . 76

12

LIST OF FIGURES

5-14 Average Absolute Percent Deviation as a Function of Iteration Period

(exam ple 2) . 76

5-15 Remaining Errors After Iteration, Sorted by Perigee Height 77

5-16 BFE iteration with No Global Distortion 78

5-17 Percent Errors for all Satellites before BFE iteration, with no Global

D istortion . 79

5-18 Percent Errors for all Satellites after 5 BFE iterations, with no Global

D istortion . 79

6-1 Flowchart for Real Observation Preparation 84

B-1 File Structure for Large Data Files 107

B-2 File Structure for AtmoCal and Small Data Files 107

B-3 File Structure for gtds-granholm . 108

13

LIST OF FIGURES

THIS PAGE INTENTIONALLY LEFT BLANK

14

List of Tables

Statistics for B-values with No Noise, No Mismodeling

Statistics for B-values with No Noise, Schatten Mismodeling

Statistics for B-values with Observation Noise, No Mismodeling . . .

Statistics for B-values with Observation Noise, Schatten Mismodeling

5.1 Statistics for Ballistic Factor "Improvements" with No Noise, No Mis-

modeling, No Initial Distortion

B.1 Common CVS commands

B.2 Environment Variable List

C.1 GTDS Code Alteration List

C.2 List of GTDS Data Files . . .

D.1 TLE2osc.pl Fact Sheet

D.2 genobs.pl Fact Sheet

D.3 distort-bfs.m Fact Sheet . . .

D.4 estbfs.pl Fact Sheet

D.5 calcvars.pl Fact Sheet

D.6 runestbfs.pl Fact Sheet

D.7 runcalevars.pl Fact Sheet . . .

D.8 bfe-iter.pl Fact Sheet

D.9 calcb.m Fact Sheet

. 71

. 106

. 109

. 1 12

. 113

. 132

. 141

. 151

. 154

. 174

. 183

. 183

. 184

. 191

15

4.1

4.2

4.3

4.4

55

57

62

62

LIST OF TABLES

D.10 Dates.pm Fact Sheet 198

D.11 b3conv.pl Fact Sheet 202

D.12 dateconvert.pl Fact Sheet . 208

D.13 get-peri.pl Fact Sheet . 208

D.14 read-b.m Fact Sheet . 212

D.15 analyze-atmcal.m Fact Sheet . 212

D.16 readinitinfo.m Fact Sheet . 212

E.1 List of NORADPP Files Modified . 221

E.2 OBSCARD Format~. 223

E.3 Format of initinfo.txt . 224

E.4 Format of jac-densvars.txt . 224

E.5 Format of ballfcts.txt . 224

E.6 Format of Station Card 0 . 227

E.7 Format of Station Card 1 . 228

E.8 Format of ATMCAL card . 229

16

Chapter 1

Introduction

1.1 Atmospheric Density Modeling

1.1.1 A Brief History

When Sputnik was launched in 1957 [7], very little was known about the nature of

the atmosphere above 100 kilometers. Data from the first high-altitude sounding

rockets and satellites in the late 1950's and early 1960's provided enough information

for researchers to create elementary models, based mainly on the ideal gas equation

and the hydrostatic equation [42]. Most notable among these early models was that

of Luigi Jacchia, based in part on earlier models by Marcel Nicolet [23]. In 1977,

Alan Hedin published the first of a series of models based on (and named after) Mass

Spectrometer and Incoherent Scatter (MSIS) data[19]. The MSIS models are still

under active development, with the Naval Research Laboratory's NRLMSISE-2000

being the most recent version[44].

A multitude of other models have also been created since the 1970's, but none, as

of yet', has demonstrated any significant improvement over the Jacchia-Roberts 1971

'The cited comparison was performed before MSISE-90 and NRLMSISE-2000 were available.
These and other recent models may offer some improvements, although the same modeling difficulties
listed in Section 1.1.4 apply.

17

CHAPTER 1. INTRODUCTION

(JR-71) model [34]. All models seem to show a 10-15% error in quiet and normal

conditions, with errors potentially reaching 30% in highly perturbed conditions.

Increasing the accuracy of atmospheric density models would allow satellite orbits

to be determined and predicted into the future with higher precision and for longer

time periods. This in turn allows for more efficient planning of maneuvers, including

routine stationkeeping as well as collision-avoidance, de-orbiting, or maneuvers to

transition between two orbits. Collision avoidance is especially important now that

the International Space Station (ISS) orbits in the 300-400 kilometer region[58].

1.1.2 An Overview of the Entire Atmosphere

Most people are only familiar with the lowest region of the atmosphere, called the

troposphere, which extends for the first 11 kilometers above the Earth's surface. All

weather takes place in this region, and it behaves according to simple, intuitive prin-

ciples. As one ascends through the troposphere, the air gets colder, since the main

source of heat in this region is the surface of the Earth, and thinner, due to decreased

gravitational forces, but remains relatively similar in composition. (All of the regions

of the Earth's atmosphere are summarized in Figures 1-1, 1-2 and 1-3.)

Beyond the troposphere, the temperature begins to rise again, due to the effects of

solar radiation on atmospheric oxygen. Some components of ultraviolet solar radiation

split molecular oxygen (02) into atomic oxygen (0) and ozone (03), while others are

absorbed by the ozone and heat both the ozone molecules and the surrounding air.

This region, formally called the stratosphere, familiar to most people as "the ozone

layer" extends upwards to approximately 50 kilometers, where the ozone heating effect

no longer dominates, and the temperature begins to drop once more. This region

of decreasing temperature, known as the mesosphere, extends to approximately 90

kilometers, whereupon solar radiation heating again begins to dominate. Everything

above this final temperature inflection point, known as the mesopause, is referred

18

1.1. ATMOSPHERIC DENSITY MODELING 19

to as the thermosphere, because of the extremely high temperatures2 reached in the

region. The various regions of the atmosphere and average temperature are shown in

Figure 1-13.

Troposphere Stratopause Homopause exospheric temperature

200

100

300(

200

100

varies from 600 to 20000K,
Tropopause Mesopause depending on time/season

0-

Stratosphere Mesosphere Thermosphere>

Homosphere Hetemosphere

0 20 40 60 80 100 300 600 900 1201
Height (km)

Figure 1-1: Atmospheric Regions

Two other regional divisions are often found in atmospheric modeling literature:

the ionosphere, which refers to the region of the atmosphere containing ionized parti-

cles (roughly equivalent to the thermosphere), and the exosphere, which is the entire

atmosphere above the exobase, which is the point at which individual gas atoms may

be thought of as being in individual orbits around the earth. The exospheric temper-

ature is the temperature that is asymptotically approached in the exosphere as the

height increases to infinity, as seen in Figure 1-1.

Another important division of the atmosphere occurs around 100 kilometers,

where the composition of the atmosphere begins to change. Below this point, known

2Note that a strict, scientific definition of "temperature", based on the kinetic energy of individual
gas molecules, must be used in this region, since gas densities are so low that a thermometer would
be useless.

3Figure 1-1 is based closely on figures in [26] and [42].

20 CHAPTER 1. INTRODUCTION

as the homopause, the atmosphere contains the familiar mix of 78 percent nitrogen

(N 2), 21 percent oxygen (02), 1 percent argon (Ar), with trace amounts of water

vapor and other compounds. Around the homopause, the air becomes thin enough

that particle collisions become rare. This has two effects: first, atomic oxygen be-

comes a major component, since the atoms rarely collide to reform 02, and mixing

no longer keeps the proportions of various components steady. Instead, the particles

of each component gas react individually to the Earth's gravitational field, and the

components stratify by molecular weight. Approximate individual concentrations 4 in

the 200-600 kilometer range are shown below for lower and upper extreme exospheric

temperatures (500 and 1900 'K) 5 .

Exospheric Temperature 500*K

2 510 . 10
500 -1 Temperature

6- 490 E -I o(N2)
m 480 -log(02)

470 -,k - -1go

E 470 2
450 - log(A)

200 250 300 350 400 500 600 log(He)

Height (km)

Figure 1-2: Atmospheric Composition at Low Exospheric Temperature

Normal daytime temperatures are in the 1500-2000 'Krange, and nighttime tem-

peratures during quiet periods fall in the 500-700 'Krange. Thus, values close to

or at the extremes shown in Figures 1-2 and 1-3 tend to be seen on a daily basis,

with the density at any particular altitude in the thermosphere fluctuating by several

hundred percent.

4 Hydrogen is not included in the JR-71 model below 500 kilometers.
5 Figure 1-2 uses data from pages 78-79 and Figure 1-3 uses data from pages 106-107 of Jacchia's

1971 model [25].

1.1. ATMOSPHERIC DENSITY MODELING 21

Exospheric Temperature 1900'K

2 2000 12
1 0 -U- Temperature

~1600
~~~ 140- og(N2)

1200 2________ -4--Io(

1000 0
200 250 300 350 400 500 600 - log(He)

Height (km) Iog(H)

Figure 1-3: Atmospheric Composition at High Exospheric Temperature

1.1.3 Thermosphere Modeling Details

Most modern thermospheric density models include several major factors:

Lower Boundary Conditions: Thermospheric models must have a starting point,

and most start at altitudes between 90 and 120 kilometers, setting either con-

stant or seasonally-dependent boundary conditions[25, 17]. (The E (for Ex-

tended) in the MSISE-series models denotes that a model for the lower atmo-

sphere has been linked to these boundary conditions from the other side, but

we are only concerned here with the thermospheric model.)

Diurnal Variation: This is simply the exospheric temperature difference between

day and night. The maximum density increase due to the sun's heating effect

occurs around 2 pm local solar time, at a latitude known as the sub-solar point,

and the minimum around 3 am. The strength of this effect and the location of

the sub-solar point varies seasonally, and is well-understood[25].

Annual and Semi-annual Variations: There are several seasonal atmospheric

composition changes, including the winter helium bulge and some low-altitude

hydrogen variations. The hydrogen variations are sometimes modeled as tem-

perature variations for simplicity and compatibility with boundary conditions.



CHAPTER 1. INTRODUCTION

These phenomena are well measured, although the accuracy to which they are

modeled varies, especially at lower altitudes[25].

Solar Activity Variations: Extreme ultraviolet (EUV) radiation from the sun is

the primary source of heat in the thermosphere, and the amount of radiation

produced by the sun varies greatly over the 11-year solar cycle and with sunspot

activity. Since no appreciable amount of the EUV wavelengths which cause

heating reach the surface of the earth, we rely on measurements of the solar

radio flux at a wavelength of 10.7 cm (which is a frequency of 2800 MHz). This

radio flux is known as the F 1 0.7 index, and is usually tabulated on a, daily basis,

along with the average flux (F10 .7 ) seen over the preceding 90 or 180 days. The

F 1 0.7 index is used to determine short-term variations due to sunspots and other

temporary solar phenomenon, while F1 0.7 gives a measure of the average flux

seen during that portion of the 11-year solar cycle. Past values of F10 .7 from the

appropriate time in the solar cycle can be used to create lists of predicted F 10 .7

values. Ken Schatten designed one such prediction method, details of which can

be found on his web site[49]. Measurements of the actual EUV radiation taken

from various upper-atmospheric experiments in the 1960's and 1970's were used

to determine that the F1 0 .7 and F10 .7 indices are more accurate than the Call

K plage index or visible sunspot observations. [33]

Geomagnetic Activity Variations: Geomagnetic storms, caused by coronal mass

ejections and other solar eruptions create strong short-term density fluctua-

tions[57]. The planetary geomagnetic index ap (or the closesly related index Ky)

is used as the indicator for these effects. The ap index is usually tabulated as

a smoothed daily average, and the K, index is not smoothed (and is tablulated

every 3 hours), and both are useful in density calculation [36].

22



1.1. ATMOSPHERIC DENSITY MODELING

1.1.4 Model Errors

The solar and geomagnetic activity variations discussed in the preceding list are the

effects that give rise to the greatest errors in atmospheric density determination and

prediction. First, F 10 .7 , F 10 .7 , ap, and K, are not perfect indicators of the underlying

effects. Attempts to replace both of them are underway, but no replacements have

yet been widely adopted[44, 52]. Second, none of the methods for predicting future

values of these indices are able to capture the random nature of unexpected sunspots

or coronal mass ejections.

1.1.5 A New Empiricism

Observational data has always been at the core of atmospheric density models, but

it was not until the past decade, when sufficient computer speed and storage capabil-

ities became available, that the idea of improving models by incorporating real-time

data from large numbers of satellites became popular. The hope is that the so-called

15% (one-sigma) barrier can be broken consistently by using this algorithm or an-

other"calibration method" [36]. This project is one of several in this field - the High

Accuracy Satellite Drag Model (HASDM) is another, and Frank Marcos also has a

project in this area[51, 35]. One major alternative to the "calibration" method is

the use of satellites with direct atmospheric drag and/or composition observation

capabilities, instead of relying solely on ground-based data. Current projects in-

clude the CHAMP and GRACE satellites, which are both near-spherical and carry

high-accuracy accelerometers, and the DMSP satellite, which measures atmospheric

density and composition, and the TIMED satellite, which will measure EUV radiation

directly[36]. These projects, however, are costly, while the "calibration" methods re-

quire only a small amount of processor time, using data that is already being collected

for space catalog maintenance.

23



CHAPTER 1. INTRODUCTION

1.2 Prior Work on this Algorithm

1.2.1 Nazarenko and Yurasov's Original Development

This algorithm was originally developed and tested by Andrey Nazarenko and Vasiliy

Yurasov in the early and mid-1990's. In 1997, the Charles Stark Draper Laboratory

(CDSL) commissioned a report detailing the latest implementation of Nazarenko and

Yurasov's work[41]. This report for CSDL provided both theoretical and empirical

support for the algorithm, which appeared both promising and portable.

1.2.2 George Granholm's Work

The algorithm was re-implemented from scratch beginning in 1999 by George Gran-

holm at CSDL[13]. This new implementation used the Goddard Trajectory Determi-

nation System (GTDS)[14] to calculate satellite trajectories (and atmospheric den-

sities), on a SGI-UNIX platform. JR-71 was chosen as the underlying atmospheric

density model since it was already fully implemented in GTDS, is considered to be

one of the most accurate models available, and is in common usage. George im-

plemented the atmospheric density correction algorithm by creating a series of Perl

scripts that automatically run GTDS and several MATLAB routines (also written by

Granholm). To verify that his implementation was functioning properly, he created

simulated testing data, and proved that the main components of the algorithm were

operating properly. The flowchart in Figure 1-4 shows the sections that Granholm

wrote, completed and/or validated. The dotted lines denote sections that Granholm

began, which were not completed due to time constraints.

In March 2001, Dr. Paul Cefola, who had been one of the major investigators of

the atmospheric density correction project at CSDL, retired from CSDL and assumed

a position at the MIT Lincoln Laboratory (LL). Subsequently, in May 2001, LL

technical staff met with the CSDL technical and project office staff, and an agreement

was made that the project should become a joint CSDL-LL venture.

24



1.3. OUTLINE OF THIS THESIS 25

GTDS
JR-71 Atmospheric File I/O: AtnoCal
DensityCorrection.: 21 Potted
0 Created 1 V alidated D ensity D ensity
0 V alidated Correction Correction

C alculations: Predictions:
(9 Created 0 Created
10 Validated El V alidated

SimulatedObs: Real Obs Ballistic factor
0 Created El Used to impr ovement:

design sim. El First draft
obs. Not of code.
directlyused. Unfinished.

Figure 1-4: Summary of George Granholm's Work

During the summer of 2001, the code was moved by the author and Ron Proulx

to the Pisces SGI-UNIX machine at LL, and was given the name AtmoCal.

1.3 Outline of this Thesis

The following outline is intended to serve as an index for finding particular information

in the remainder of this thesis.

Chapter 1: Introduction details the motivation and the history of this project.

Chapter 2: Mathematical Details includes the derivation of all of the equations

used in the atmospheric density correction process. The first part (Sections 2.2-

2.3.4) derives the main atmospheric density correction algorithm, the second

(Section 2.4) describes the current techniques used to predict the correction

factors into the future, and the third (Sections 2.5.1-2.5.3) derives the ballistic

factor improvement algorithm.

Chapter 3: Implementation Overview gives a brief description of the current

software implementation of the algorithm detailed in Chapter 2. Details of the

computer code are left to the appendices.



CHAPTER 1. INTRODUCTION

Chapter 4: Simulated Data Validation describes and gives results from the sec-

tions of George Granholm's simulated data validation process which were re-

created on the Pisces machine at LL. It also includes an overview of how the

simulated data was generated.

Chapter 5: New Validation Results with Simulated Data shows the results

of validating the ballistic factor updating algorithm with simulated data.

Chapter 6: Real Data Validation gives an overview of the process of running

AtmoCal on real data.

Chapter 7: Conclusions and Future Work summarizes the current state and

the future goals of this project.

Appendix A: Key to Symbols, Abbreviations, Etc. lists all of the mathemat-

ical symbols, abbreviations, acronyms, and text conventions used in preparing

this thesis.

Appendix B: Implementation Miscellanea describes the use of the Concurrent

Version System (CVS) for configuration management and gives information on

file locations and shortcuts needed for running AtmoCal.

Appendix C: GTDS describes Granholm's alterations to GTDS and the validation

process, which was repeated at LL. This appendix also includes a list of the

GTDS binary and text data files used while running AtmoCal.

Appendix D: Annotated Code contains the full text of each of the AtmoCal rou-

tines. It also includes tables of user options for AtmoCal routines.

Appendix E: File Utilities and Formats describes the utility for converting NO-

RAD B3 observations to OBSCARD format and lists the formats of all of the

AtmoCal I/O files.

26



1.3. OUTLINE OF THIS THESIS 27

Appendix F: I4TEX Notes includes information on the creation of this thesis.

Bibliography lists all of the works consulted in preparing this thesis.



28 CHAPTER 1. INTRODUCTION

THIS PAGE INTENTIONALLY LEFT BLANK



Chapter 2

Mathematical Details

2.1 Basic Concepts

A wealth of data is constantly being collected on every object in orbit around the

Earth. This data is used to maintain the U.S. space catalog, determine desired orbit

corrections, and predict collision risks. The goal of this and other atmospheric density

correction methods is to provide a "correction factor" of some sort, which improves

an existing atmospheric density model. The correction factor could then be used by

anyone using the same density model, in order to improve satellite orbit determination

and prediction.

Thus, we need to find a simple and robust way to extract information about the

errors of the atmospheric density model from observations of multiple satellites. Once

the errors can be quantified, a correction factor that removes or reduces them can then

be determined. The algorithm detailed in this thesis, as it is currently operational,

provides a linear correction factor for the JR-71 model, using data from over 300

satellites in low earth orbit (LEO).

29



30 CHAPTER 2. MATHEMATICAL DETAILS

2.2 Linear Correction Factors

The algorithm operates by determining a linear density correction for every three-

hour span where sufficient data' is present, and then predicting those correction

factors, in three-hour spans, into the near future. The time period of three hours

was chosen because it was long enough to accumulate sufficent data under normal

conditions. If more data becomes available, this period could be shortened. A linear

model was chosen by Nazarenko and Yurasov because it would not try to extract too

much information from the data,, but would model the observed errors reasonably

well. Thus, we want to determine some linear coefficients bij and b2j that describe

the best correction factor in a given three-hour interval. Designating satellite height

by h, the fundamental linear correction equation for the three-hour span tj is:

correction (h, tj) = bij + b2j (h - 400) (2.1)
200

Aside from the observational data (in range/azimuth/elevation format) , the al-

gorithm requires only tabulated values of the ballistic factor of each satellite in the

catalog. The a priori values for the ballistic factors should be the best ones available

when correction begins. (The improvement of ballistic factor estimates is described

in Section 2.5. Note that the definition of ballistic factor 2 used in this paper is:

CDAx (2.2)
2m

For each three-hour period, then, we want to calculate the correction factor that

best approximates the actual difference 6p between the model density pm and the true

density p.

'To be precise, 35 data points, in the form of observed ballistic factors, are required for each
3-hour span. The description of how those ballistic factors are created and processed is detailed
later in this chapter.

2 The AtmoCal software performs conversions between the tabulated values of k and Ax in meters
and Ax in kilometers and mass m when required for the use of GTDS, using a standard value of 2.2
for CD.



2.3. BALLISTIC FACTORS TO CORRECTION COEFFICIENTS

p m = + =O PM 1+ 6P) (2.3)

The entire operation of the algorithm can be summarized in the flowchart in Figure

2-1:

b, and b2
b, and bz values

(real or simulate list of I values values with including
with associated associated futureRangefAzB Determine timesLandiheit Construct Forecast imesform at cmdidalW"Ln r501iea

4 values. ...... ......... Variations

* iteration occxs
ance/solar revoluti

Determine and
Up date ballistic factors by Pre dict Orbits for
c al culating and applying any satellite
corr ection factors 6 and zb

Figure 2-1: Flowchart for Overall AtmoCal Operation

2.3 Ballistic Factors to Correction Coefficients

2.3.1 Fitting Ballistic Factors to Data

Ballistic factors are determined by fitting orbits to three-day blocks3 of the observa-

tional data. GTDS uses the tabulated ballistic factor as an initial guess, and iterates

to find the state vector and the observed ballistic factor. This observed ballistic factor

k is attributed to time j, at the middle of the three-day span, and the fit window is

moved forward three hours4 . The process is repeated until the end of the fit period

is reached. This does, however, mean that there is a 1.5 day gap between the start of

3 In highly perturbed conditions, or when data is sparse, the three-day window can easily be
lengthened to five days or more.

4This is a batch-fit method, and was chosen both for consistency with Nazarenko and Yurasov's
implementation, and for software simplicity. Granholm discusses the possibility of using recursive
methods in Chapter 2 of his thesis, but this capability has not yet been incorporated into AtmoCal.

31



32 CHAPTER 2. MATHEMATICAL DETAILS

data collection and the first linear correction factor, as well as a 1.5 day gap between

the last observation-based (as opposed to prediction-based) correction factor and the

end of the data. Any fit runs that do not converge or have a high convergence error

at the end of the GTDS run are thrown out, since the remaining observations should

be sufficient.

3 days

1. 5 days
- - - - - - P

3 hrs
3 hrs

_ _ _ _ _ _ I _ __ _ _

3 hrs
~I1I

3 hrs |

4,.
k~.

Figure 2-2: Visual Representation of the Fit Window for Satellite j

2.3.2 Deriving Corrections from Ballistic Factors

The derivation of an expression for 6 begins with the equation for the period rate'
OM

of a satellite's orbit. Note that f(x) is some unspecified function (connected to the

equations of motion) of the state vector x of orbital elements6 .

(2.4)

This equation can then be rewritten in terms of the observed ballistic factor and

the model density, with the assumption that the observed orbital elements closely

match the actual ones.

5Any orbital element that is directly related to the energy of the orbit may be substituted for

period rate, yielding a similar derivation.
6Any set of orbital elements which fully describe the motion of the satellite is acceptable.

T = ki - p(hyj, tj ) - f (x)



2.3. BALLISTIC FACTORS TO CORRECTION COEFFICIENTS

TO = k m - pm(h, tj) - f(x) (2.5)

By dividing Equation 2.4 by Equation 2.5, and assuming that the observed period

rate is a good approximation of the actual period rate (i.e. 1j ~~ T j) an expression

for -- in terms of the observed and actual ballistic factors is obtained.
PM

ki .p(h,ti) 1
T i k -pm(h,tj)

I ij p(hy,t )

ki pm(h,tj)

k_-1 ~ h2jti) (2.6)
ki Pm(hy,t)

2.3.3 Weighted Least Squares

Now, we have a long list of density corrections expressed as ballistic factor ratios,

each associated with a time and height. To convert these into single three-hour

linear corrections requires some sort of fitting algorithm. Jaeck-Berger and Barlier

showed that the errors in Jacchia's 1971 (J71) model are approximately zero-mean and

Gaussian. Figure 2-3, reprinted from their work[27], demonstrates this adequately.

The dotted line is the normal J71 model, while the solid line is a modified version

of J71 described in Jaeck-Berger and Barlier's paper. Both have an approximately

normal distribution, with a mean of one, implying that errors of the form 6p = -
P

are also normally-distributed, with a mean of zero. Since the JR-71 model differs

from J71 only in the mathematical methods used to calculate several quantities (the

JR-71 model was designed to reduce computation time and the size of the required

data tables), the results for J71 also apply to JR-71[25, 48].

Since the average error in the density model is zero, a weighted least-squares

method provides an appropriate fit. For this method, each error term is defined as:

33



34 CHAPTER 2. MATHEMATICAL DETAILS

T 1 1 Ir r I u i p

S Pe

Figure 2-3: Ratio of True Density to Jacchia 1971 Model Density

ki h - - 400
'Aij = -I - byj + b2; (2.7)

ki 200

The A-terms are grouped into a matrix:

A Ij

Aj = i(2.8)

S to

Som saeltshvIoewl-nw auatdblitcfcosta tes n



2.3. BALLISTIC FACTORS TO CORRECTION COEFFICIENTS

the weighting matrix reflects this7 .

1

W*
(2.9)

02Mr

Next, we define two matrices, F and B, which together give the linear correction

equation detailed in Equation 2.1.

- 400)/200

- 400)/200

b ul
b2jJ

Lastly, we define a matrix aj of the ballistic factor ratio terms.

Ic)- 1

cm) - 1

We can then write a cost function using the matrices defined in the previous

equations:

I(bj) = A W Aj = (aj - Fjbj)TW(aj - Fjbj) (2.13)

That cost function has the standard least-squares solution:

'Standard and non-standard satellites are treated identically in this step, since the tabulated
ballistic factor variances already reflect that standard satellites have better-known characteristics.
See Section 2.5 for the definitions of standard and non-standars satellites, and for details on reducing
the variances for non-standard satellites.

1 (h

1 (hmj

bj=

(2.10)

(2.11)

aj =

(k /

(kmj/I

(2.12)

35



36 CHAPTER 2. MATHEMATICAL DETAILS

6j = (FfWFj)1 Ff Waj (2.14)

These linear correction factors are constant throughout their respective three-hour

spans, and change only with height. Latitude and longitude are not included. Like the

decision to use only a linear, rather than a second or higher-order model, this choice

was made by Nazarenko in order to avoid attempting to extract too much information

from limited data. If location-dependent phenomena dominate the remaining errors

when such a correction is applied, and sufficient data is available, this limitation

should be re-examined.

2.3.4 Solution Boundaries

Any values in aj that exceed a certain tolerance (usually 3-sigma) are discarded

before the least-squares solution is carried out. This should discard any outlying

values, possibly due to flawed data. Another test is performed by placing a tolerance

on the p value GTDS gives as a measure of convergence. Since a large amount of

data is available, it seems preferable to simply throw out any questionable points.

Boundaries have also been set on how large these linear correction factors can

be [13, 41]. These boundaries are based on the fact that a maximum of 30% error

at low altitudes, and a factor of two error at high altitudes seem appropriate based

on observations of errors[34]. These rules yield the following boundary equations (at

time t):

= b - by E (-0.3, 0.3) (2.15)
Pm h=200

6P = b + b2j E (-.5, 2.0) (2.16)
Pm h=600



2.4. FORECASTING LINEAR CORRECTION FACTORS

2.4 Forecasting Linear Correction Factors

The next section of AtmoCal is that which predicts these correction factors into the

near future. Since the prediction equations are identical for byj and b2j , the generic

variable x(t) will represent either of them in this section. The linear correction factors

by and by are both modeled as measurements of independent stochastic processes.

First, each "process" is split into a random and a deterministic component:

x(t) = Xd(t) + Xr (t) (2.17)

The deterministic component is then modeled as a sum of sinusoids8, with A - 2,r
T

and T ~ 27 days (one solar rotation):

d (to)
Xd(t) = T + (Xd(to)- 2 - cos(A(t - to)) + A sin(A(t - to)) (2.18)

An unweighted least-squares curve fit is used to determine the various coefficients

(z, Xd(to), and Xd(to)) in the above equation. The random component is modeled as a

stationary Gaussian random process, with the correlation function Kx,(T) and power

spectral density Sxrxr(s) as follows:

Kx,(T) = o' - ea (2.19)

2o a
SXr, (S) -

2 
-

2  (2.20)az - s

Nazarenko and Yurasov empirically determined that o2 should be in the range

0.1-0.6, and a should be .241/day[40]. A scalar Kalman filter can then be used to

project the random component into the future, as a function of to, the last recorded

time.

8This equation can easily be modified if any major, non-sinusoidal, patterns begin to appear in
the corrections, but for now appears suitable.

37



CHAPTER 2. MATHEMATICAL DETAILS

2r(t) = e-"t t') - :r(to) (2.21)

This entire operation can also be represented as a block diagram, shown in Figure

2-4.

Gaussian 202 a
white --- H(s) =X

noise

Figure 2-4: Block Diagram for Correction Factor Forecasting

2.5 Ballistic Factor Estimation

2.5.1 BFE basic process

The ballistic factor updating cycle, which is delimited in Figure 2-1 with dotted

lines, is the only section of AtmoCal that does not need to run in near real-time. It

requires a larger amount of computer space and time, since it must process a span of

observations totalling much more than three days. Some ways to reduce the amount

of computer resources required will be discussed in Section 7.1. Since this process

only needs to be run occasionally (normally once per 27-day solar rotation), it is

usually not a problem to allocate the resources required. After the updated ballistic

factors are available, they are incorporated into the real-time orbit determination and

prediction section.

The first step in improving ballistic factor estimations is the separation of the

satellites in the catalog into two groups: "standard", and "non-standard". Standard

satellites have well-known, invariant ballistic factors and masses, and should make

up 5-10% of the satellites used. Non-standard satellites may have less well-known

38



2.5. BALLISTIC FACTOR ESTIMATION

and/or slowly varying characteristics. (Observations of objects with highly erratic

or completely unknown ballistic factors, including debris and satellites undergoing

reconfiguration, should be omitted entirely from those used in the atmospheric density

correction process. Satellites with abnormally high eccentricity values should also be

omitted. These satellites can still benefit from using the corrected atmospheric density

model, but should not be included in its creation.) The tabulated ballistic factors for

standard satellites will not be changed by the ballistic factor updating cycle.

2.5.2 Derivation for One Standard Satellite

The ballistic factor updating equations are presented first for the case where there is

only one standard satellite. This simplifies the derivation, and the equations can then

be easily adapted for multiple standard satellites. The heart of the ballistic factor

updating algorithm is the use of "quality factors", or Q-factors, which are used to

determine how much an individual ballistic factor should be modified to more closely

match the results from other satellites. Nazarenko and Yurasov tested five different

Q-factors, and the one used in AtmoCal was the one empirically proven to be most

effective. The A error values below are the same ones defined in Equation 2.7.

First, we define a Q-factor in terms of the error terms for the standard satellite.

QS = jEN, where (2.22)

N, = the set of time spans that contain observations of standard satellite s.

IN,| = the number of such spans.

Then, using the same format, we define a Q-factor for each non-standard satellite.

39



40 CHAPTER 2. MATHEMATICAL DETAILS

EAni

Q jEN (2.23)
|Nn|

N, =the set of time spans that contain observations of non-standard satellite n.

INnlI the number of such spans.

First, we want to use these Q-factors to find a global correction factor , which

will remove any overall bias in the tabulated ballistic factors of all of the non-standard

satellites. Such biases are included in the simulated data validation, although it seems

unlikely that a clear-cut division between standard and non-standard satellites would

appear in real data. (If no such bias exists, the following formulas can still be applied

without changing the tabulated ballistic factors, since ( will equal 1. If the inclusion

of the global correction factor appears to be slowing convergence, it can be turned off

with a software option.) In the following formulae, k, is the actual, unknown ballistic

factor of non-standard satellite n, and k-, is the a priori tabulated value.

kn kn (2.24)

To obtain this global correction factor, we begin with the equations for the resid-

ual sum of the errors for all non-standard satellites and standard satellites. Since

atmospheric density errors are assumed to be zero-mean (see Section 2.3.3), these

sums must equal zero, whether we use the tabulated or observed ballistic factors to

calculate them. Note that byj and b2j denote the ideal correction factors, while b1 and

bq denote the actual values obtained from Equation 2.14.)

For non-standard satellites and empirical measurements: (2.25)

k~- + - h - 400
bE +n bY"20 =EA7j 0

jGNn n jeNn 6j+6'(



2.5. BALLISTIC FACTOR ESTIMATION

For non-standard satellites and ideal corrections: (2.26)

E >n- E b + b2j h - 400 += Aj = 0
jEN, k jN, ( 200

For the single standard satellite and ideal corrections: (2.27)

k -h6 - 400
- (b1b + b23 200 )) ZA = 0

jENs jENs

By substituting Equations 2.25 and 2.26 into Equation 2.24, we obtain the follow-

ing relationship:

hn - 400 hn - 400
6 - 1(j + b2j 200 ) =) by + by ( 200 ) (2.28)

jEN, j eNn

The global correction factor approximately represents the bias of the variation

model caused by the bias of the tabulated ballistic factors9 . Each biased non-standard

ballistic factor moves the calculated atmospheric density correction factor away from

the ideal variation. Thus, the ideal correction factors are related to those observed

by the standard satellite by the following equation:

E- s b + bj ( 2 400 (by + b- 400 ) (2.29)

Combining Equations 2.27 and 2.29, we get:

9The extension of this approximation to multiple standard satellites is based partly on the fact
that standard satellites make up only a small fraction of the list of satellites being used for atmo-
spheric density correction. If this is not the case, this equation should be re-examined. The addition
scaling factor based on the percentage of standard satellites in the catalog may be required.

41



CHAPTER 2. MATHEMATICAL DETAILS

jEN + b hsN -400 k (2.30)( - E by +b 200 E (230
j ENs j ENs

Subtracting EjEN (bj + b2j (hj24 00 )) from both sides yields:

kj -b(hs - 400 j (h_ - 400)

- bj + bq 200 / jENb + b22 *200 -((-1) (2.31)
j ENs jEN Ns jE Ns

Substituting the expression for Q, and |N| as defined in Equation 2.22 into the

left-hand side of the prior equation, and rearranging, we obtain the final definition

for (:

+ 1+ - INI (2.32)
j ENS (b& + b2j (hj2400))

We then turn to the individual satellite correction factor, which is determined

from the average bias between an individual satellite's k-value and those of all of

the non-standard satellites. The derivation is derived in an identical fashion to the

derivation of ( above, and is not repeated here. The resulting individual correction

factor @, is:

kF = n - k (2.33)

Qn - |Nn|
1nNS 1j + b (hji4O (2.34)

EEN, ,1 + 2h00

This entire operation is summarized in Figure 2-5.

Nazarenko determined that 3-4 iterations (with a cycle length of 20 or more days)

were normally enough to ensure convergence, and that convergence is improved if the

global correction factor is only applied on the first iteration. This makes logical sense,

since there should be sufficient data in the initial cycle to remove a simple bias in the

42



2.5. BALLISTIC FACTOR ESTIMATION

table. AtmoCal is normally set to operate in this fashion, although that behavior can

be easily changed.

2.5.3 Multiple Standard Satellites

Expanding the ballistic factor algorithm to include multiple standard satellites is very

straightforward. The single Q, value is replaced by a height-dependent linear function

F(h):

F(h) = ai + a 2* h -200 (2.35)
200

Each individual Q, value is viewed as a noisy (white, zero-mean Gaussian noise)

measurement of F(h), taken at the average perigee height h8 for that satellite over

the entire update cycle. An unweighted linear least-squares fit is used to fit F(h)

to the list of Q, values. Then, F(h,) is calculated for each individual non-standard

satellite, and substituted for Q, in Equation 2.32.

43



CHAPTER 2. MATHEMATICAL DETAILS

Begin iteration :
raw observations n kange/Az/El format

initinfo_#txt file containing current "best estimates" ofk and oj.

Fit orbits to data (using GTDS), to determine

ballistic factors k.

list of ky values

Perform least-squares fit (Eq. 12), with aj as

weights, to find correction values b and b21

from k4 and ki

list oftime-ordered i, and i2, values

Calculate residuals (Ad) and Q., values (Eqs. 8,17,22,30).
Calculate and apply 4j for non-standard s atellites. (Eqs. 18,25)

intermediate k values

Recalculate residuals and calculate Q, values (Eqs. 8,17)
Determine and apply ifor non-standard satellites (Eqs. 26,27).
Calculate new variances aj (Eq. 29)

initinfo#_+Ltxt file containing updated estimates of ki and o.

Return to top, using the same raw observations, but
new value s of ki and oj.

Figure 2-5: Flowchart for Ballistic Factor Updating Cycle

44



Chapter 3

Implementation Overview

3.1 Computer Code

George Granholm chose to use Perl as the main language for AtmoCal, since it is

especially good at handling file input/output and UNIX process control. The ability

to spawn multiple subprocesses allows AtmoCal to run more quickly on a multi-

processor computer, since multiple copies of GTDS can run at once, on different

processors. Perl is more user-friendly and tolerant of slight differences in input file

format than languages like FORTRAN and C, and is far more flexible and portable

than using UNIX shell scripts. Perl also does not need to be manually recompiled

when changes are made, which means that small changes can be made in one script

without needing to recompile and relink the entire set of AtmoCal routines. For these

reasons, Perl was chosen for AtmoCal, and is generally the language used to create

"wrappers" for older FORTRAN programs[59].

Matrix algebra in Perl is facilitated by using the MatrixReal module, but detailed

analyses and statistics are still clumsy in Perl. Thus, MATLAB was used for the

in-depth mathematics involved in calculating and predicting the byj and b2j atmo-

spheric density correction coefficients. Several MATLAB scripts were also created for

analyzing and graphing results, and have been included in AtmoCal.

45



CHAPTER 3. IMPLEMENTATION OVERVIEW

3.1.1 GTDS

The first step in creating AtmoCal was to modify GTDS to include atmospheric

density corrections. Granholm chose, after some examination, to start with Jack

Fischer's NT-GTDS PR-5 version. This version was ported to the SGI-UNIX platform

and validated using the standard "Metzinger" test cases[38]. The JR-71 model, which

is fully supported in PR-5 GTDS, was altered to include the option of reading byj

and b2j values from a file and applying them after all of the other model effects are

calculated. This altered version of GTDS is henceforth referred to as gtds-granholm.

Several main GTDS routines were changed, a routine called CALCCALJAC was

added to calculate the appropriate density correction from the b-values, and a new

optional GTDS control card called ATMCAL was created. This card includes an

option for specifying the underlying density model to be corrected, although only

JR-71 is currently supported. The file containing by and b2j values has been given

a reference number (106), and the three routines that calculate JR-71 density in

various regions have been altered. Note that this means that, while corrections are

calculated in the 200-600 kilometer range, they are applied throughout the JR-71

model, starting at 90 kilometers. A detailed list of the changes made to each file are

listed in Appendix C, as well as a listing of the precise versions of each binary data

file containing GTDS physical model information that are required to reproduce the

validation cases and the results in this thesis.

When the project was moved from the Charles Stark Draper Laboratory (CSDL),

to the MIT Lincoln Laboratory (LL), both the unaltered GTDS and gtds-granholm

were compiled on the new machine (also an SGI-UNIX platform) and re-validated

using the Metzinger test cases. Both versions were placed under version management

using CVS (Concurrent Version Management System)[46, 47]. No modifications ex-

cept for the addition of new coordinate system transformationsI not used by AtmoCal

or the Metzinger test cases have been made since the validation. Shell scripts to run

1These routines were added by Paul Cefola and Zach Folcik, and are not described in this thesis.

46



3.1. COMPU TER CODE

each of the Metzinger test cases, along with two added test cases for the NAVSPA-

SUR PPT2 routines and one new test case for the atmospheric density correction

routines are also included in the CVS tree for gtds-granholm. (See Appendix C.3 for

more details on running these new test cases.)

The current version of gtds-granholm inherited several limitations and bugs from

the NT-GTDS version. Three of these were fixed by George Granholm, and should be

re-incorporated into any new versions of UNIX-GTDS, even if those versions do not

contain the atmospheric density modifications. These were: the ability to produce

ascii, rather than binary, output files was added (by porting the appropriate sections

of VAX-GTDS, which already had this capability), a bug that crashed DC runs

that spanned a year boundary, and a bug that would crash DATASIM runs if no

observations were created for a specific satellite and station. More details are included

in Granholm's thesis, on page 59[13].

3.1.2 AtmoCal

AtmoCal is written mainly in Perl, since that language handles large data files el-

egantly, and also is capable of sending the many GTDS runs required t.o different

processors on a multi-processor machine, if available. Some of the large matrix cal-

culations, including the main weighted least-squares solution, are implemented in

MATLAB[37]. The MATLAB sections were modified from Granholm's versions so

that no extra packages beyond basic MATLAB were required, and were tested to

verify that no changes were required after MATLAB was upgraded from version 5.x

to 6.x. The entire Atmo(al source code was put under version management using

CVS. The version number for all files at the publication of this thesis was set to 2.0

to facilitate easy retrieval of the version used to produce the results contained herein 2

The minor changes made to AtmoCal are too numerous to describe in detail,

but the main categories of changes were: many corrections of typographical errors,

2See Appendix B for information on retrieving a particular version by number.

47



48 CHAPTER 3. IMPLEMENTATION OVERVIEW

replacements of hard-coded directory paths to ones involving environment variables,

and more user-defined options to increase flexibility. The user-defined options are now

all located in a block at the beginning of each program. Driver programs (runestbfs.pl,

runcalcvars.pl, and bfciter.pl) for the estbfs.pl and calcvars.pl subroutines were cre-

ated to manage running both the normal near real-time correction-finding process

and the longer ballistic factor iteration.

3.2 Data Flow

The various scripts and data files used to run the main portion of AtmoCal can be

summarized in Figure 3-1, which is a modified version of Figure 2-1.

initinfo.txt (tabul ate d k,
values)
00063 datasim.obscard temporaryfiles.
00179~daasim.obscard bafcts. txt .ort

array mp~txtjac_densvars.txt:

br ###al.obscd bdifet5.txt or -P b, and bl values

for real obs. b calcvars.pl cdc bm
converted estffspl runing values calc bm: F or ec ast

to obscard dgra anhm: Construct Linear
form at it k, values to ........... ........ Variaticns V an ati ons

observations
bfe iter-pl:
iter ati on o ccix s
S onc e/solar r evolutionD

Pre clict Orbits for

calcvars.pI (2a half) 4. any satellite
Update ballistic factors by
c alculating and applying
c orre ction factors , and bi

Figure 3-1: AtmoCal Operation Flowchart Including File Names

Descriptions of the layout of all of the AtmoCal file types (and some other formats)

are listed in Appendix E. The preparation of the initinfo.txt and OBSCARD data

files for real and simulated data sets are detailed in Sections 4.1.1 (simulated) and



3.2. DATA FLOW

6.1 (real).

One important thing to note when working with AtmoCal is that there are up to

three separate areas where files are stored. Small input and output files, including

the tables of satellite characteristics, the output b-values, and the various logs created

during operation, are located in the same directory structure as the AtmoCal code

itself. The large number of long ascii data files created by individual GTDS runs

are stored in another directory structure, allowing the large files to be kept on a

different disk, if desired. (This was the case on the machine at CSDL.) Options were

added to automatically delete some or all of these large files after the data relevant

for AtmoCal (usually the ballistic factor and the convergence measure) have been

extracted. Finally, the gtds-granholm code may be in an entirely separate location, if

desired. The locations of all three file structures are specified by environment variables

(instructions on setting these up can be found in Appendix B.3). An overview of the

file structures can be found in Appendix B.2.

49



CHAPTER 3. IMPLEMENTATION OVERVIEW

THIS PAGE INTENTIONALLY LEFT BLANK

50



Chapter 4

Simulated Data Validation

In order to prove that the AtmoCal code is operating properly, and to determine that

the underlying algorithm is providing useful corrections, a validation process was

designed and begun by George Granholm. This validation process used simulated

satellite orbits, since this approach produces a "truth" orbit, which can then be used

to evaluate the success of the algorithm. Granholm completed all sections of the

validation except for testing the effects of errors in the initial ballistic factors, and

the efficacy of the ballistic factor iteration.

4.1 Simulated Data Generation

Two months of real tracking data were graciously provided to this project early in

2000, by Lt. Col. Dave Vallado (USAF). The simulated data was constructed to

closely match the real data, both in time and satellite distribution. This was done to

ensure that the simulated data was representative of what would normally be available

in real-time operation[4], as well as to facilitate the transition to real data validation.

One noteworthy facet of both the simulated and real data sets is that, since they

cover a period beginning on December 15, 1999 and ending on February 12, 2000, Y2K

problems with GTDS and helper utilities are very obvious, and had to be addressed.

51



CHAPTER 4. SIMULATED DATA VALIDATION

NORAD assumes that all dates fall in the range 1956-2055, and this assumption has

been used throughout AtmoCal when two-digit dates were required. In some cases,

the year 2000 is denoted by year "100", and, while clumsy, this notation is compatible

with the GTDS OBSCARD data format.

This validation method differs slightly from the one used by Nazarenko and

Yurasov: they directly simulated the observed ballistic factors, and added error and

noise at that point. Simulating the actual satellite observations adds another layer

of complexity to the process, and made working with simulated data closely resemble

processing real data.

4.1.1 Preparation

To operate AtmoCal with either real or simulated data, we must compile a list con-

taining an initial orbit estimation and an a-priori ballistic factor estimate for every

satellite being used for density correction. The first step in determining these is to

obtain the real two-line element sets (TLEs) for each satellite at the beginning' of the

fit interval. These TLEs were obtained via the Jet Propulsion Laboratory's anony-

mous FTP site[54]. This site is, unfortunately, no longer available (as of February 5,

2002).

George Granholm sorted these TLEs to find the 454 with perigee heights in the

200-600 kilometer range, and then eliminated any satellites with apogee heights above

800 kilometers. Objects known to be debris or in a rapidly decaying orbit were

discarded, leaving 335 objects. These 335 satellites were then the only ones used

both in simulated and real data processing.

The remainder of the preparation is automated by the TLE2osc.pl Perl script.

The script begins by processing the TLE file, formatting the TLE for each of these

objects to be compatible with GTDS, which requires two conversions. First, the

'To be more precise, the TLEs must be at least one minute before the beginning of the fit interval,
but should be as close to this time as availability permits.

52



4.1. SIMULATED DATA GENERATION

NORAD day-of-year, which is given in the form YYDDD, must be converted to

a Julian date. The Dates.pm Perl module was created, and contains formulae for

converting between Julian and Gregorian calendar dates[10]. Second, the ballistic

coefficient must be converted from BSTAR (which is in measured units of inverse

Earth radii) to the format given in Equation 2.2 (where k is measured in m2/kg).

This is done using the following formula, adapted from one defined by Vallado[55]:

k = 6.3708105 * BSTAR (4.1)

This k value is then separated into drag coefficient CD, cross-sectional area A,

and mass m, by assuming that CD = 2.2 and using the radar cross-section (RCS)

for Ax, we can solve for the mass[43]. The RCS values are taken from a file (also

provided by Dave Vallado)[56]. These k values are also used to create the table of a

priori ballistic factors contained in the initirnfo.txt file, details of which can be found

in Appendix E.3.

Once these conversions are complete, GTDS EPHEM can be used to convert the

TLEs into osculating elements, to propagate the truth orbits (creating the .output

files required by GTDS DATASIM for simulating observations) and the .output files

containing a priori state vectors, required by estbfs.pl[21].

4.1.2 Truth Orbit Generation

The genobs.pl script then uses GTDS DATASIM routine to propagate these initial

ephemerides forward. Only four ground stations were used to produce all obser-

vations: Eglin AFB, Florida (EGLQ); Kaena Point, Hawaii (KAEQ); Fylingdales,

England (FLYQ); and Grand Forks, North Dakota (PARQ). These locations were

chosen by Granholm to produce observations similar in quantity and geometry to

those found in real NORAD data. Since Kaena Point is the only one of the four not

equipped with a phased array radar system, its observation rate was modeled as half

53



CHAPTER 4. SIMULATED DATA VALIDATION

that of the other stations.

In order to speed up the process, Granholm chose to use a truncated version

(4x4) of the JGM2 gravity model. Since the same gravity model is used throughout

the validation process with simulated data, it should not affect the results. (This

is the reason for the "lowgrav" designations seen in the directory structures for the

simulated data files.) It is, however, recommended that a more accurate model be

used when working with real data. (To alter this, look in the GTDS keyword list[15]

for information on the POTFIELD, MAXDEGEQ, and MAXORDEG cards in the

GTDS input deck.)

Figure 4-1: Flowchart for Simulated Observation Creation

54



4.2. REPRODUCTION OF PRIOR RESULTS USING SIMULATED DATA

Table 4.1: Statistics for B-values with No Noise, No Mismodeling
Mean Value of bij 1.4066e-08
Mean Value of b: -2.0349e-08

Largest Value of bij 7.7292e-08
Largest Value of b2j -1.71749e-07

Largest Correction Factor 2.1312e-07
(taken at 200 km during span #55/56)

4.2 Reproduction of Prior Results using Simulated

Data

To verify that all sections of AtmoCal were working properly on Pisces, George

Granholm's validation process was repeated and compared to the original results.

First, the TLE2osc.pl and genobs.pl scripts were re-run to produce simulated data,

and compared to the older versions using the xdif f command. The results were iden-

tical to those obtained by Granholm. (The newly created noisy data had different

noise values, obviously, but the underlying truth orbits and the characteristics of the

noise were identical to Granholm's results.)

4.2.1 Data Flow Verification

The first test was designed to catch any major problems in data input/output. (Y2K

errors, mismatched coordinates, etc. On Pisces, the main concern was finding any

inconsistencies in file management left over from the transfer.) Observations were

generated without any noise, the same values of F1 0 .7 and ap used for orbit gen-

eration were used by the ballistic factor estimation process. Since the models are

identical, any deviation of the b-values from zero should only be the result of round-

off and GTDS fit-convergence error. The resulting b-values Granholm obtained were

extremely small, proving that this was, in fact, the case. These results were repro-

duced on Pisces. (Compare Figure 4-2 to Figures 5.1 and 5.2 of Granholm's thesis[13],

noting that the scales differ substantially.)

55



SIMULATED DATA VALIDATION

Figure 4-2: B-values with No Noise, No Mismodeling

Figure 4-3: Linear

modelling
Atmospheric Density Correction Factors with No Noise, No Mis-

CH APT ER 4.56



4.2. REPRODUCTION OF PRIOR RESULTS USING SIMULATED DATA

4.2.2 Differences between Truth and Fit Models

Once the basic data flow had been verified, model error was introduced. As men-

tioned in Section 1.1.4, the major sources of error in JR-71 are due to the inability

of the ap/K, and F 10.7 indicies to properly reflect atmospheric effects, and to the

difficulties inherent in predicting these indices. To simulate these errors, the observed

ap and F1 0.7 values (which were used in data creation) are replaced by those found2

using Ken Schatten's prediction method[49]. Schatten's predictions consist of a sin-

gle number per month, and intermediate values are interpolated. Using the Schatten

predictions simply requires replacing the GTDS binary file jrdaLnomn_new.dat with

jrdat-nomn.dat, which only contained real observations through mid-1997.

The differences between the observed3 and Schatten values for ap and F10.7 during

the entire simulated data period are shown in Figures 4-4 and 4-54. Values of F10.7
and ap for just the fit period used in the simulated data fit windows are given in 4-6,

using the same scale as the graphs of byj and b2j values, to facilitate comparison.

With this mismodelling, using the same simulated observations as in Section 4.2.1,

new atmospheric density corrections were generated. These are summarized in Table

4.2 and Figures 4-7 and 4-8.

2 It appears that Granholm was using specifically the "late" series of prediction values according
to the lists on Schatten's web site[49].

3 Geomagnetic activity is shown as daily mean ap in order to make the graph more legible, but
GTDS actually uses the more accurate 3-hour values, and uses K, in place of ap*

4These figures are similar to Figures 4.3 and 5.9 in Granholm's thesis.

Table 4.2: Statistics for B-values with No Noise, Schatten Mismodeling
Mean Value of byj -0.010652
Mean Value of by 0.0047594

Largest Value of byj 0.22353
Largest Value of b2j 0.15967

Largest Correction Factor 0.38028
(taken at 600 km during span #29/225)

57



CHAPTER 4. SIMULATED DATA VALIDATION

Average Planetary Amplitude (Ap)

60-

50 -

40 -

30 -

20 -

10 -

0
02,

AiY I

Observed Values

-Schatten Predict
Values

Figure 4-4: Observed Daily Mean and Schatten Ap Values for 12/15/99-2/15/00

F10.7 cm (2800MHz) Flux

250

200 --A- --------- --- --- -------

T--- Observed Values
150 - -- - -- - -----e

100 --------------------------------- --- Schatten Predict
Values

0 ---- ------ ------ --- -------

Figure 4-5: Daily and Schatten F10.7 Values for 12/15/99-2/15/00

w

2-

-------- ----- ---- ---------- - -

--- -- --- -- --- -- --- --- - ---- --- -
-------- ----- ----- - --

58



4.2. REPRODUCTION OF PRIOR RESULTS USING SIMULATED DATA 59

Figure 4-6: Observed F10 .7 and ap Values During Fit Window



CHAPTER 4. SIMULATED DATA VALIDATION

Figure 4-7: B-values with No Noise, Schatten Mismodeling

Figure 4-8: Linear Atmospheric Density Correction Factors with No Noise, Schatten

Mismodeling

60



4.2. REPRODUCTION OF PRIOR RESULTS USING SIMULATED DATA

4.2.3 Simulating "Noisy" Observations

Noise was added to the observations using parameters determined by Capt. Jack

Fischer (USAF) in his Station Location and Accuracy Database (SLAD), described

on page 317 of his thesis[9]. In the SLAD, he lists an accuracy figure' for each type of

observation available from over 70 stations. These 70 stations include EGLQ, FLYQ,

KAEQ, and PARQ, the four used for creating the simulated data.

When the gtds-granholm code is compiled with optimization on, Granholm discov-

ered that the random number generation used to add noise to observations is no longer

random. This problem was not present when the "debug" version of gtds-granholm,

which is not optimized', is used. Until the origins of this bug are traced and fixed,

genobs.pl should always be set to call "gtds-dbg.exe" instead of "gtds.exe". The

optimized version can and should be used in all other sections, since it runs faster.

Finally, noisy observations were created, using the same orbit ephemerides as the

non-noisy observations. A somewhat perplexing facet of the GTDS randu.for routine

was discovered while creating new noisy observations. The new observations were,

in fact, identical to the old noisy observations. While this did verify that the noisy-

observations process had not been disturbed by changes made to other sections of

genobs.pl, this was not the desired result. The randu.for GTDS subroutine already

was noted to show problems when optimized - this may be another symptom of a

larger problem in the GTDS random number generation.

Using the noisy observations and no mismodeling, the by and bq values were

larger than without noise, but still clustered around zero and showed no particular

pattern. (See Table 4.3, Figure 4-9, and 4-10.) The largest values came during the

first span, and may have been partly due to some sort of edge phenomenon. Once the

'Please note that, due to the sensitive nature of the SLAD contents, as well as the data used to
create the SLAD, the actual accuracy figures are not publicly available. Please contact Dr. Paul
Cefola at the MIT Lincoln Laboratory or Dr. Ron Proulx at the Charles Stark Draper Laboratory
for information about obtaining a copy of the full SLAD results.

6A separate makefile for compiling this debug version is included in the gtds-granholm CVS
distribution.

61



SIMULATED DATA VALIDATION

Schatten data was substituted, the b-values closely resembled those seen found using

noiseless observations and Schatten data. (See Table 4.4, Figure 4-11, and 4-12.)

Therefore, we can conclude that the amount of noise seen in these observations does

not appear to introduce significant errors in determining by

other errors are present.

and b2j values when

Table 4.3: Statistics for B-values with Observation Noise, No Mismodeling
Mean Value of by 2.8290e-05
Mean Value of bq -2.2410e-04
Max Value of byj -1.0398e-03
Max Value of bq 8.3397e-03

Max Correction Factor 8.2578e-03
(taken at 600 km during span #1/56)

Table 4.4: Statistics for B-values with Observation Noise, Schatten Mismodeling
Mean Value of by -0.010364
Mean Value of b2j 4.7286e-03
Max Value of b1j .22318
Max Value of by .16058

Max Correction Factor .37960
(taken at 600 km during span #25/225)

CH APT ER 4.62



4.2. REPRODUCTION OF PRIOR RESULTS USING SIMULATED DATA

I-

Figure 4-9: B-values with Observation Noise. No Mismodelling

Figure 4-10: Linear Atmospheric Density Correction Factors with Observation Noise,
No Mismodeling

63



CHAPTER 4. SIMULATED DATA VALIDATION

Figure 4-11: B-values with Observation Noise, Schatten Mismodellin

Figure 4-12: Linear Atmospheric Density Correction Factors with Observation Noise,
Schatten Mismodeling

64



Chapter 5

New Validation Results with

Simulated Data

The only section of AtmoCal that Granholm did not validate was the update cycle for

ballistic factor estimation (BFE). This section is marked with dotted lines in Figure 2-

1. Section 2.5 contains the mathematical details of the BFE updating cycle. In order

to validate this section, the updating cycle must be shown to provide improvements

to inaccurate a priori ballistic factors.

The same simulated data (with and without observation noise), as described in

Chapter 4 were used to test the BFE updating cycle. First, the entire process was

run without noise, mismodeling, or inaccuracy in the initial ballistic factors. Then,

the original set of tabulated ballistic factors were separated into "standard" and

"non-standard" satellites, and the a-priori ballistic factors for non-standard satellites

were distorted. The atmospheric density correction process was run, with both noise

and density mismodeling included, and updated ballistic factors were calculated for

non-standard satellites.

65



66 CHAPTER 5. NEW VALIDATION RESULTS WITH SIMULATED DATA

5.1 Ballistic Factor Distortion

Every tenth satellite (when sorted by NSSC#) was chosen to be a standard satellite.

As is shown in Figures 5-1, 5-3, 5-2 and 5-4, this yielded a representative group of

satellites. All of the other satellites were designated non-standard, and distorted

ballistic factors (k,) were generated for these satellites. Non-standard satellites were

all initially assigned the same oa value, which was twice the one assigned to standard

satellites.

First, all of the original k, values were multiplied by a global distortion factor

(1, uniformly distributed between zero and one), and then each individual k, was

multiplied by a different, individual distortion factor (p2, also uniformly distributed

between zero and one). The distortion equation, with weights mk and ak is:

ki = ki(1 + m* (1 - 0.5) + ak((2 - 0.5)) (5.1)

This is almost identical to the distortion method used by Nazarenko and Yurasov,

except that Granholm used a larger individual bias1 . Granholm chose ak =1.6, rather

than Nazarenko's choice of ak= 0.4, but both used mk =1. The MATLAB program

distorLbfs.m was created by Granholm to perform this distortion, and was modified

to eliminate use of the optional MATLAB statistics package. The global distortion

factor was also made optional, set by a flag in the code. Figure 5-5 shows examples

of the results of the distortion, with and without a global bias. These results were

typical, and were used in the all of the cases shown in the results section.

'It seems unrealistic to assume that all non-standard satellites have a bias that is not present
in the standard satellites. Since the primary goal of this investigation, however, was to reproduce
Nazarenko and Yurasov's results, the global bias was included. It seems likely that when working
with real data, a global bias will not be present, and the global correction factor need not be
calculated.



5.1. BALLISTIC FACTOR DISTORTION

005 0 Iats
Ballistic Coefficient (m2/kg)

02 0.25

Figure 5-1: Distribution of (undistorted) Ballistic Factors for All Satellites

0

E

=11

Standard Satellites

o O0 GA 015
Ballistic Coefficient (m2/kg)

Figure 5-2: Distribution of Ballistic Factors for the Standard Satellites used in BFE
validation

67

w

0
Cw
-0
E 100

ID

02 025

14z)vI



68 CHAPTER 5. NEW VALIDATION RESULTS WITH SIMULATED DATA

All Satellites

(V

in

0

E

30

25

is

10-

5-

0
200 250 wo

Figure 5-3: Distribution

Perigee Height (km)

of Perigee Heights

550 800 650

for All Satellites

4 5

4

3-5

33

in

.0

z

1

035

Standard Satellites

71
mo me 4m sec 4W0 ec

Perigee Height (km)

Figure 5-4: Distribution of Perigee Heights for the Standard Satellites used in BFE

validation



5.1. BALLISTIC FACTOR DISTORTION

No global distort ion

Distortion Ratio

V)

0

E

40

With global distortion

Distortion Ratio

Figure 5-5: Ballistic Factor Distortion Ratios

69

70

.0

E

10

3A

10

0
OL-
O's



70 CHAPTER 5. NEW VALIDATION RESULTS WITH SIMULATED DATA

5.2 Results

5.2.1 Data Flow

To ensure that the algorithm was operating properly, the ballistic factor updating

routines were run on the ten-day set of results from Section 4.2.1, where no noise or

mismodelling were included. Undistorted ballistic factors were used, and every tenth

satellite was designated "standard". As expected, the "updated" ballistic factors

were nearly identical to the original ones. Satellite #19764 was the only one that

showed a large change in ballistic factor2 . Satellite #19764 appeared to be simply a

random outlier, since it had a sufficient number of observations (35), and the GTDS

pi values, used as a convergence test, were similar to those for other satellites. It

does have one of the smallest ballistic factors in the data set, which may have played

a part in the errors. In general, absolute corrections to other satellites increased with

increasing ballistic factor, while percent corrections showed no dependence on initial

ballistic factor. This was expected, since the corrections are applied as ratios, not

absolute amounts. Figure 5-7 does show a few other satellites with small ballistic

factors yielding larger-than average corrections. Satellite #19764 was removed from

the data set used for Figure 5-6 in order to make it easier to read the rest of the

data3 .

5.2.2 Effects on Atmospheric Density Correction

The distorted ballistic factors did affect the resulting atmospheric density corrections,

since the global bias in the ballistic factors translated into a bias (in the opposite

direction) in density corrections. This can be seen in Figures 5-8, which compares the

by and b2j values obtained with and without ballistic factor distortion. Both sets of

b-values were calculated with observation noise and atmospheric mismodeling.

2Five satellites did not have enough observations to update their ballistic factors.
3Note that the figures and averages still include the standard satellites, adding some extra zeros.



5.2. RESULTS

Table 5.1: Statistics for Ballistic Factor "Improvements"
eling, No Initial Distortion

with No Noise, No Mismod-

Figure 5-6: BF Percent Errors after Iteration, with No Noise, No Mismodeling, No
Initial Distortion

Q-factor coefficient a1  9.7520e-08
Q-factor coefficient a 2  -7.0650e-08

Mean correction to a single satellite -1.0263e-08
Mean correction omitting #19764 -7.2929e-11

Maximum correction to a single satellite -3.4139e-06
This correction was applied to satellite 19764

Second largest correction 9.4470e-09
This correction was applied to satellite 00179

71



72 CHAPTER 5. NEW VALIDATION RESULTS WITH SIMULATED DATA

x10

'U

0.5

0

-0.5

-1

x
t0,

t~3
5

0

0

10
-7

iitial Bastic Factor

0.05 0.1 0.15
initial Ballistic Pactfor

0.2 0.25

Figure 5-7: BF Errors Sorted by Initial BF, with No Noise, No Mismodelling, No
Initial Distortion

Figure 5-8: Comparison of B-values with and without Initial Ballistic Factor Distor-

tion

x

x

X xx-

X X

0.05 0. 0,1 02 0.

xpoz.xxx : 5 x x
I I I I

I



5.2. RESULTS

5.2.3 Convergence

The ballistic factor updating cycle converged in all test cases. Some individual satel-

lites, especially those with large initial distortions, did not have any converging GTDS

DC runs, and thus no new ballistic factors were computed for them. These few out-

lying cases did not impede the convergence of the overall iteration 4 Figures 5-9 and

5-10 show the average absolute percent deviation (taken across all satellites 5) for a

five-day and a ten-day run using the distorted ballistic factors shown on the left side

of Figure 5-5, which include global distortion. Similar results were obtained with

different initial distortions. .The individual percent deviations for all of the satellites6

in the ten-day case after 5 iterations are shown in Figures 5-11 and 5-12.

5.2.4 Update Cycle Length

Nazarenko and Yurasov found that a cycle length of 20+ days (about one solar rota-

tion) was optimal[41], and this was confirmed by the new results, although any length

over 10 days performed well. Figures 5-13 and 5-14 show the results for two cases'.

Also, the longer test cases not only had lower final errors, but generally took fewer

iterations to converge, which is an added benefit.

5.2.5 Height Dependence of Errors

Nazarenko and Yurasov showed results that indicated that the remaining ballistic

factor error after iteration increased with altitude. This effect was not seen in these

4In a real-data processing case, satellites that repeatedly fail to yield converging results should
probably be removed from the list used for atmospheric density correction.

5Standard satellites were included in these and all other statistics.
6Again, standard satellites are included, and can clearly be seen as the zeros in the graph.

Satellites that did not have enough observed ballistic factors to update their ballistic factor are
likewise still included, and account for the handful of large errors remaining after ten days.

7Example 1 in Figure 5-13 is the same example as used in Figure 5-9. Example 2 was included
mostly to show a case where increasing update cycle length from 10 to 20 days provides further
improvement, which was the case in several tests.

73



74 CHAPTER 5. NEW VALIDATION RESULTS WITH SIMULATED DATA

Average % Deviation

U

a_

1.5 2 2.5 3 3.5
Iteration Number (zero = initial value)

Figure 5-9: Convergence for five-day case

Average % Deviation

35

U

a_

25

0 0.5 1 1.5 2 2.5 3 3.5
Iteration Number (zero = initial value)

4 4.5

Figure 5-10: Convergence for ten-day case

5



75

Before first iteration

150 200

Satellite Index
350

Figure 5-11: Percent Errors for all Satellites before BFE iteration

After 5 Iterations

0 50 100 150 200

Satellite Index
250 300 350

Figure 5-12: Percent Errors for all Satellites after 5 BFE iterations

5.2. RESULTS

rC
0

CU

C
U
L..

C
0

a)

a)
U

CL



76 CHAPTER 5.

40

55
0j

NEW VALIDATION RESULTS WITH SIMULATED DATA

Average % Deviation

Days

Figure 5-13:

(example 1)
Average Absolute Percent Deviation as a Function of Iteration Period

Average % Deviation

'E

Days
30

Figure 5-14:

(example 2)

Average Absolute Percent Deviation as a Function of Iteration Period



5.2. RES ULTS

140

120

4

Q [_

250 300 350 400 450
Height (km)~

5t 55- 110 V

Figure 5-15: Remaining Errors After Iteration, Sorted by Perigee Height

test cases. Figure 5-15 shows the remaining ballistic factor errors from Figure 5-12

sorted by height'. Nazarenko and Yurasov's group of 214 test satellites included fewer

high-altitude objects than the current set of 335 used here. The apparent removal

of the height-dependence may be due to using more high-altitude objects, including

more high-altitude standard satellites, or it may have been an artifact of the methods

used to create their simulated observations.

8The standard satellites and the satellites that did not have enough observations are, again,
included in this figure.

77

01' 0

A K

x AK



78 CHAPTER 5. NEW VALIDATION RESULTS WITH SIMULATED DATA

5.2.6 Global Distortion/Correction Effects

Substantially smaller final errors were seen when starting with ballistic factors that did

not include a global distortion. When a global distortion was included, the ballistic

factors converged, as a group, to a level of global distortion smaller than the initial

distortion, but not non-zero. Figure 5-16 shows some results from a five-day run using

the initial ballistic factors shown on the right side of Figure 5-5, which include only

an individual distortion factor.

Unexpectedly, the same was true to a lesser extent of results including no initial

global distortion (see Figures 5-17 and 5-18, which were created using the same five-

day run as 5-16. Some form of global bias, which varies between data sets, is affecting

the final results, and is not fixed by a global correction factor.

Since a global distortion factor seems unlikely to occur in real data, it stands to

reason that BFE iteration results using real data will show better convergence than

those using globally-distorted, simulated data, and that using the global correction

factor does not substantially affect results with no global distortion. It remains to be

determined why all runs show a final bias.

Figure 5-16: BFE iteration with No Global Distortion

-==~ -~



5.2. RESULTS

C

150 200
Satelite index

350

Figure 5-17: Percent
Distortion

Errors for all Satellites before BFE iteration, with no Global

Figure 5-18: Percent Errors for all Satellites after

Distortion

5 BFE iterations, with no Global

79



80 CHAPTER 5. NEW VALIDATION RESULTS WITH SIMULATED DATA

5.2.7 Omitting Recalculation of kg Values

The only difference when calculating kc values on the second or later iteration is

that the initial guess (kj) has been altered, and for standard satellites, there is no

difference. Unless the changes in kg are large, the new observed ballistic factor will

be close to or identical to the one from the previous iteration. Since the calculation

of observed ballistic factors is the most time-consuming part of the BFE iteration

(consuming days on Pisces, while the calculation of b-values and improved ballistic

factors takes minutes), it may be desirable to omit some or all of these recalculations.

The first ten lines of ballfcts_1.txt.sort and ballfcts-2.txt.sort from a five-day BFE

run show only small differences from each other, and from the beginning of a run using

an undistorted initinfo.txt, and this is true throughout the files. Satellite #01377 is

the only standard satellite in the sample, and therefore shows no difference at all.

Thus, it follows that running just the section of the atmospheric density correction

process contained in calcvars.pl on the first set of calculated observed ballistic factors

should yield similar results as running both estbfs.pl and calcvars.pl in sequence. This

appears to be the case, but no detailed testing was done on this subject.

from ballfcts-1.txt. sort.
00063 2451529.0000

00179 2451529.0000

00229 2451529.0000

00369 2451529.0000

00399 2451529.0000

00603 2451529.0000

00647 2451529.0000

00840 2451529.0000

00841 2451529.0000

01377 2451529.0000

2.1419918442E-03

9.1365130324E-02

5.0787569299E-03

2.3303299086E-03

2.1316206550E-03

1.0232360197E-02

9.3286234496E-03

5.3827785326E-03

5.8017187661E-03

3.8215995676E-03

5.4550800000E+02

5.6590800000E+02

5.7169200000E+02

5.5214400000E+02

6.0128400000E+02

4.3948200000E+02

5.5297800000E+02

5.3713000000E+02

5.3224500000E+02

4.8779800000E+02



5.2. RESULTS

from ballfcts_2.txt.sort...
00063 2451529.0000 2.1423138046E-03 5.4550800000E+02

00179 2451529.0000 9.3842153463E-02 5.6571900000E+02

00229 2451529.0000 5.0783218336E-03 5.7169200000E+02

00369 2451529.0000 2.3210805693E-03 5.5214500000E+02

00399 2451529.0000 2.1320345989E-03 6.0128300000E+02

00603 2451529.0000 9.8788911606E-03 4.3942200000E+02

00647 2451529.0000 9.3258156189E-03 5.5297900000E+02

00840 2451529.0000 5.3916855047E-03 5.3713000000E+02

00841 2451529.0000 5.8017115098E-03 5.3224500000E+02

01377 2451529.0000 3.8215995676E-03 4.8779800000E+02

from ballfcts. txt. sort using perfect initinfo.txt...
00063 2451529.0000 2.1419665216E-03 5.4550800000E+02
00179 2451529.0000 8.5986001561E-02 5.6637300000E+02
00229 2451529.0000 5.0779275783E-03 5.7169200000E+02
00369 2451529.0000 2.3176282674E-03 5.5214600000E+02
00399 2451529.0000 2.1304389253E-03 6.0128300000E+02
00603 2451529.0000 1.0223934090E-02 4.3951300000E+02
00647 2451529.0000 9.3276782062E-03 5.5297800000E+02
00840 2451529.0000 5.3952466937E-03 5.3713100000E+02
00841 2451529.0000 5.8016916534E-03 5.3224400000E+02
01377 2451529.0000 3.8215995676E-03 4.8779800000E+02

81



82 CHAPTER 5. NEW VALIDATION RESULTS WITH SIMULATED DATA

THIS PAGE INTENTIONALLY LEFT BLANK



Chapter 6

Real Data Validation

Validation with real data does not allow for the detailed comparisons seen in the

prior two chapters, but is required in order to begin applying the algorithm and

analyzing its performance on a large scale. This thesis includes only the first steps in

the real data validation process. This limited effort simply to proves that AtmoCal

will operate on real data (provided in NORAD B3 format) and will yield reasonable

results for the interval examined. This allows for future

6.1 Data Preparation

The initinfo.txt files and the a priori state vectors are created using TLE2osc.pl,

in the same manner as for simulated observations. At this point, standard and non-

standard satellites should be chosen, and initinfo.txt modified accordingly. (Currently,

this requires changing an N to an S for each standard satellite by hand, and selecting

appropriate guesses for initial error variances.)

6.1.1 Conversion of B3 Observations

NORAD provides observations in B3 format[9], which is not compatible with GTDS

or AtmoCal. Thus, the first step in real data processing is to convert the data to

83



CHAPTER 6. REAL DATA VALIDATION

OBSCARD format, identical to that produced by the genobs.pl script for simulated

data,. Joe Lombardo at CSDL wrote a conversion utility called "runadcob", which

was later ported to FORTRAN 77 by Leo Early and modified by Jack Fischer and

renamed "NORADPP". The details of NORADPP and some new modifications are

described in Appendix E.1. The b3cono.pl Perl script uses this utility to convert a

file containing B3 observations for many satellites into separate OBSCARD files for

each satellite. (All of the required files for compiling and running the NORADPP, as

well as b3conv.pl are included in the utils/b3conv directory of the AtmoCal CVS

library.

The AtmoCal code automatically disregards observations for any satellite not

included in initinfo.txt, so the files created by b3conv.pl do not need any further

sorting. The following flowchart is the real data analogue of Figure 4-1:

Figure 6-1: Flowchart for Real Observation Preparation

84



6.1. DATA PREPARATION

6.1.2 Station Data

Since the real data included more stations than those used in generating the simulated

data, GTDS station cards (0 and 1) had to be added for several other stations. Those

were generated1 using data from Fischer's SLAD[9]. The .msg files created during

the NORAD B3 to OBSCARD conversion list the stations used, and the individual

station cards were created by hand. Automating this procedure would be helpful, but

is not currently included in AtmoCal. Adding additional stations is the only change

that should be made to AtmoCal (version 2.0, as reproduced in this thesis) before

processing real data.

6.1.3 Observation Scheduling

Granholm included a section in estbfs.pl to determine if new observations were avail-

able during a given time interval for a particular satellite. This worked by looking

at the GTDS DATASIM output files created when the simulated observations were

generated. Since no such files were available for real data, this section is skipped when

processing real data. This could somewhat increase the number of GTDS DC runs

required, but decreases preparation time, since the times of the input observations do

not need to be converted into a observation schedule.

6.1.4 Current Status

At this point, the GTDS DC runs required to calculate kg values run properly when

called by the AtmoCal estbfs.pl routine. These DC runs had convergence measures

(using the pi value) similar to those using noisy simulated data and a mismodeled

atmosphere. Due to time constraints, more detailed results are not yet available.

They can, however, now be produced, and the real data validation process can begin

in earnest.

'For a copy of the SLAD, contact Dr. Paul Cefola at the MIT Lincoln Laboratory.

85



CHAPTER 6. REAL DATA VALIDATION

A sample GTDS input deck (automatically created by AtmoCal) and the output

of runestbfs.pl are reproduced on the following few pages, demonstrating AtmoCal

running on real observations. The results 2 shown are for satellite NSSC #00063,

since it happened to be the first on the list of 335.

2 User options were set to choose the appropriate directories on Pisces, $simulated = 0, and the
particular satellite was selected by deleting the others from initinfo.txt.

86



6.1. DATA PREPARATION

Input Deck for the first GTDS run on #00063 using real data

CONTROL DC

EPOCH

ELEMENT1 1 1

ELEMENT2

ORBTYPE 2 1

OBSINPUT 5

DMOPT

/FLYF 1 0346

/PPWQ 1 0388

/PPWF 1 0389

/EGLQ 1 0399

/NAVQ 1 0745

END

DCOPT

/FLYF 0 1 4

/PPWQ 0 1 4

/PPWF 0 1 4

/EGLQ 0 1 4

/NAVQ 0 1 4

ELLMODEL 1

/FLYF 200001

/PPWQ 200001

/PPWF 200001

/EGLQ 200001

/NAVQ 200001

TRACKELV 3

EDIT

PRINTOUT 1

CONVERG 25 6

END

OGOPT

DRAG 1

ATMOSDEN

DRAGPAR 3 0

DRAGPAR 1

SCPARAM

MAXDEGEQ 1
MAXORDEQ 1
MAXDEGVE 1
MAXORDVE 1
POTFIELD 1 4

SOLRAD 1

END

FIN

CONTROL EPHEM

OUTPUT 1 2

ORBTYPE 2 1

OGOPT

ATMOSDEN

60016A
991215

1 3512.468417

-3.437224880

1 60.
991215000000.0000

3 388.900
3 82.780
3 82.780
3 0.380
3 305.300

5 35.0
5 40.0

5 40.0

5 30.0

5 1979.0

6378.135

000
5274.365230

4.810807515

2843.015660

-4.736111427

991218000000.0000

541242.8299

390809.3764

390810.1652

303420.7790

333314.3388

54.0

36.0

36.0

45.0

64.8

298.26

3591947.6900

2383857.3529

2383856.8705

2734706.5526

2611413.5272

54.0

36.0

36.0

45.0

122.4

5.0
3.0

1.OD-4

1

2.2

1.1300000000E-06

4

4

4

4

1.0

630.745847292649

OUTPUT
000000.0991216

60.0

60016A
10800.0

87

00063

00063



CHAPTER 6. REAL DATA VALIDATION

DRAG 1
DRAGPAR 3 0

SCPARAM

POTFIELD 1 4

MAXDEGEQ 1

MAXORDEQ 1

SOLRAD 1

END

FIN

1

2.2

1.1300000000E-06 630.745847292649

4.0

4.0

1.0

CONTROL EPHEM

OUTPUT 1 2 1 991226

ORBTYPE 2 1 1 60.0

OGOPT

ATMOSDEN

DRAG 1

DRAGPAR 3 0

SCPARAM

POTFIELD 1 4

MAXDEGEQ 1

MAXORDEQ 1

SOLRAD 1

END

FIN

1

1

2.2

1.1300000000E-06 630.745847292649

4.0

4.0

1.0

88

OUTPUT

000000.0

60016A
86400.0

00063



6.1. DATA PREPARATION 89

Output of runestbfs.pl for the first GTDS run on #00063 using real data

pisces 291% runestbfs.pl

estbfs.pl: Processing /AtmoDenTrk/atm-cal/realdata/initinfo.txt
Process # 1

Job started at 17:37:28 EST 5/22/102

Processing NORAD Catalog #00063
Process # 1
Run number 1
Epoch 991215 000000.0000

UNIX-GTDS
Charles Stark Draper Laboratory

Run started at: 17:37:28 EST 5/22/102
Run ended at: 17:37:33 EST 5/22/102
Run converged with rhol = 0.35230740e+01

Processing NORAD Catalog #00063
Process # 1
Run number 2
Epoch 991215 030000.0000

UNIX-GTDS
Charles Stark Draper Laboratory

Run started at: 17:37:33 EST 5/22/102
Run ended at: 17:37:37 EST 5/22/102
Run converged with rhol = 0.35230738e+01



CHAPTER 6. REAL DATA VALIDATION

THIS PAGE INTENTIONALLY LEFT BLANK

90



Chapter 7

Conclusions and Future Work

7.1 Conclusions

The AtmoCal code now contains all the functionality of Nazarenko and Yurasov's

initial implementation. All sections of both the code and the algorithm itself have

now been validated using simulated data. All of the files employed in AtmoCal and

gtds-granholm have been placed under configuration management, and are ready for

further development. The ballistic factor estimation appears to converge even in ex-

tremely perturbed circumstances, although large speed and accuracy improvements

using only small refinements may be possible. The main atmospheric density correc-

tion routines have also been proven to operate properly on a small piece of real data,

although time constraints prevented a full-scale test on real data.

7.2 Future Work

Now that AtmoCal is operational, there are three major areas for future work. First,

the performance of the current version of the AtmoCal algorithm should be further

investigated, with both real and simulated data. Second, there are a number of

minor improvements to gtds-granholm and AtmoCal that would improve speed and

91



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

useability. Finally, there are a variety of major additions that are desireable, ranging

from adding corrections for other atmospheric density models, including different

correction models (quadratic, etc. in place of linear), to integrating the results of

direct atmospheric observation.

7.2.1 Further Tests

Comprehensive Performance Analysis Granholm chose a representative group

of satellites and examined the improvements gained in orbit determination and

prediction for that group. These tests, or some like them, should be repeated

on all 335 satellites used in the simulated data test, as well as examining the

effects on orbit determination and prediction for satellites not included in the

initial list. (This could be done simply by re-running the correction process

for 300 of the satellites, and then examining those results as applied to the

other 35.) Statistical measures for considering the effects on all 335 satellites

should be developed to give an "average" performance index for this or any

other atmospheric density correction algorithm[1, 45].

The Satellite List George Granholm showed that the atmospheric density correc-

tions found using only 214 satellites were nearly identical to those found using

335 satellites (see page 101 of his thesis[13]). This was done to show consistency

with Nazarenko's results, since Nazarenko worked with a list of 214 satellites[41].

A comprehensive study of the effects of varying the number of satellites and the

number of standard satellites would help future users choose which satellites to

include and which to list as standard.

Data Density Nazarenko chose 3-hour atmospheric density correction spans based

on the number of raw observations that were available. If that number were

increased, shorter spans might provide more accurate corrections. And, if ob-

servations were scarce for a particular time period, it would be useful to know

92



7.2. FUTURE WORK

how long of a correction span is feasible.

Real Data Performance Analysis Working with real data does not lend itself as

easily to performance analysis, since there is no "truth" model for comparison.

Nevertheless, real data analysis is important for showing that an algorithm is

not just a theoretical fancy. Any performance analyses (including the ones

performed in this thesis and in Granholm's thesis) conducted using simulated

data should be repeated with real data. The BFE iteration should be run on

real data, possibly using initial ballistic factors distorted in the same manner

as those used with simulated data to facilitate comparison. -

7.2.2 GTDS Bugs

Granholm found several bugs in the GTDS implementation (gtds-granholm) used

with AtmoCal. These bugs have not yet been addressed, since workarounds were

included in AtmoCal. The most important one, which should be addressed first, is

the random-number generation bug. Details are included in C.4. The other major

problem is that the PR-5 version of GTDS is not Y2K compliant. There have been

efforts to make other versions of GTDS Y2K compliant, most notably Chris Sabol's

work on the CSDL PC version of GTDS, but those changes have not been merged

into the gtds-granholm source tree. This correction would also require changes in all

of the AtmoCal routines, since AtmoCal compensates for this deficiency in GTDS.

(Since the available real data stretched from December 1999 to February 2000, Y2K

issues were prevalent.)

7.2.3 New GTDS Features

There has been interest in applying this type of atmospheric density correction to

other density models, especially MSISE-90[17] or the new NRLMSISE-2000 [44]. Also,

to facilitate further comparison with Nazarenko and Yurasov's results[41], the GOST

93



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

model would be a desirable addition[12]. Jacchia-70 may also be a useful addition,

since this model is still in use by the USAF. Jacchia-70 has been partially implemented

in gtds-granholm, but some features required for AtmoCal have not been added.

NRLMSISE-2000, GOST, and other desired models would first need to be added to

gtds-granholm, and then any model would need to be fully tested before they could

be used with AtmoCal. (Jack Fischer's MSISE-90 implementation is already available

in the current gtds-granholm version, and thus would be easier to include in future

AtmoCal releases.)

7.2.4 GTDS Integration

Currently, several versions of Research and Development (R&D) GTDS exist, the SGI

version of gtds-granholm among them, as well as the IBM-PC version and the VAX

version. Various improvements have been included in some, but not others. Features

not included currently in gtds-granholm include Scott Carter's work to include the

50x50 Geopotential, J2000 coordinate system, and solid Earth tide models, as well as

Chris Sabol's aforementioned Y2K fixes. Both these, and other new features, should

be incorporated into all R&D GTDS versions. A re-integration of the variant GTDS

development trees would be beneficial to users of all versions.

7.2.5 AtmoCal Refinements

Several minor refinements to the AtmoCal code would make it more portable and

accessible. There is no user interface to speak of - options are set by directly modifying

the Perl and MATLAB code. (All of the options have been moved to a marked block

at the beginning of each program to make them more visible.) Eventually, in order to

provide a useful atmospheric density correction service, this code should be put into

a format where it can be run with one or two commands, a single set of options, and

an easy-to-use, standardized output format.

94



7.2. FUTURE TVORK

More analysis tools would also be useful, as would more conversion utilities for

other types of data. Currently, AtmoCal requires input in the form of an initial set of

TLEs and RCS values, and observations in NORAD B3 or GTDS OBSCARD format.

7.2.6 Major AtmoCal Additions/Changes

The following list of possible AtmoCal feature additions includes some taken from

suggestions and questions made by numerous participants in the Quebec City (August

2001) and San Antonio (January 2002) AAS/AIAA conferences, as well as fellow LL

group 98 personnel.

Many of these additions are intended to address any possible statistical biases

created by the data processing methods currently employed. Before any of these

methods are chosen, an in-depth study of the possible statistical problems in the

mathematics behind AtmoCal should be performed. The method has been shown,

in its present form, to provide improvements, but greater accuracy may be possible

with simple changes based on a deeper statistical understanding.

Data Types Currently, AtmoCal processes only raw satellite observations, and does

not distinguish between observations from various types of observation plat-

forms. Several experiments have been planned, including CHAMP and GRACE,

which will take direct measurements of atmospheric density[36]. AtmoCal was

designed not to need direct atmospheric measurements or "calibration satel-

lites", but it would be foolish not to use all available data. Any "calibration

satellite" projects can already be included, since they could be listed as stan-

dard satellites with extremely well-known ballistic factors. Direct accelerometer

measurements could not be included in quite this fashion, but it seems reason-

able to assume that they could be converted into a form compatible with the

current weighted least-squares fit. A relationship akin to Equation 2.6 should be

derived, and then an expression for 6ij could be found. The appropriate weights

for accelerometer data in the least-squares fit would likely be much higher than

95



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

those for normal satellite observational data, but this could be determined em-

pirically.

Data Density and Quality As described in Section 2.2, all of the k, values are ob-

tained by using equal-length, overlapping spans (nominally three day fit spans,

offset by three hours). This results in a similar data density for each satel-

lite in the catalog, since a particular satellite only lacks an observation for any

time span where the GTDS DC run did not converge. However, individual

spans for specific satellites with higher data densities may have more accurate

kg estimates, and perhaps should be weighted accordingly. Also, some stations

provide much more accurate measurements than others, and this may also affect

the accuracy of individual kI values. (Adding the capability to weight individ-

ual spans independently of satellite could be done hand-in-hand with adding

support for weighting results by the accuracy of the measurement type.)

Ballistic Factor Update Cycle The ballistic factor update cycle is currently the

slowest part of the algorithm, and much of this may be caused by unnecessary

re-processing of data. See Sections 5.2.7 for more details. A systematic study of

the effects of using the global correction factor also should be made, as well as

a study of the effects, if any, of changing the percentage of standard satellites.

Recursive Fit Methods Granholm supported adding a recursive fit method as an

alternative the three-hour fit windows. This method involves first obtaining

valid fits for each satellite at the beginning of the observation interval, but this

only needs to be done once. These initial fits need not be three days, but are

simply as long as is necessary to get a good fit for all of the satellites. (If a

particular satellite takes much longer to converge, or does not converge at all, it

should be removed from the list used.) Then, each new observation is processed

and yields a ballistic factor estimate. This method does mean that satellites

with higher data densities will figure more prominently in the final corrections

96



7.2. FUTURE WORK

data, this may add a statistical bias that would affect both the correction process

and the ballistic factor update process, especially if the satellite in question had

an inaccurate ballistic factor. In general, the entire operation of AtmoCal could

be altered to run recursively, processing each new observation and the resultant

k, byj , and b2j values as they occur.

New Correction Models The linear correction model was chosen in order to avoid

extracting too much information from the data. It is not yet certain how close

a linear fit comes to an "optimal extraction" which provides the most accurate

corrections possible, while still being robust.

Automatic Adjustments All of the fit options, like correction span and fit span are

currently chosen once by the user. Automatic fit lengthening for satellites with

little data or ones that previously did not converge would decrease the number of

divergent GTDS DC runs, speeding up the process and providing more accurate

corrections. There is also the possibility of automatically choosing the standard

satellites (as well as flagging satellites that are so non-standard that they should

be removed from the list used).

Converting between Density Models Currently, only one atmospheric density

model (JR-71) is supported, and corrections calculated for that model are not

applicable to any other model. There is the possibility of devising a method to

convert corrections between models. An initial step might be by analogy to the

methods used to convert orbits from SGP4 to special perturbations[22], where

orbits are propagated forward and backwards.

97



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

THIS PAGE INTENTIONALLY LEFT BLANK

98



Appendix A

Key to Symbols, Abbreviations,

Etc.

A.1 Text Conventions

Entire programs, programming languages, and CVS distributions are referred to

using regular roman text. Examples include AtmoCal, GTDS, MATLAB, CVS,

gtds-granholm.

Specific filenames and directory structures are usually written in italics, like this:

filename. ext.

A typewriter font is used for variable names, brief code quotes, and computer

instructions. Variables will usually appear as $variablename (for a normal perl

variable), %variablename (for an array in perl), or VARIABLENAME (for a FORTRAN

variable). Computer instructions will include a quoted prompt (promptX), which,

obviously, should not be typed when entering the instructions.

To agree with conventions used elsewhere, GTDS card decks are referred to using

capital letters. (For example, DCOPT is the differential corrections option subdeck.

Mathematical scalar variables are normally denoted by italics, and matrices by

capital, bold roman letters.

99



APPENDIX A. KEY TO SYMBOLS, ABBREVIATIONS, ETC.

A.2 Expressions and Abbreviations

This list is intended to be exhaustive. All expressions and abbreviations are either

defined where first used or should be obvious in meaning, but this list is included for

reference. They are listed below in alphabetical order by english letter, followed by

alphabetical order by greek letter.

bij is the ideal value of the bias coefficient of the linear correction factor at time j.
See Equation 2.1.

b2j is the ideal value of the slope

j. See Equation 2.1.

bij is the calculated value of the

time j. See Equation 2.14.

b2j is the calculated value of the

time j. See Equation 2.14.

coefficient of the linear correction factor at time

bias coefficient of the linear correction factor at

bias coefficient of the linear correction factor at

F1 0.7 is the 10.7 cm flux, used as a proxy for EUV radiation.

F1 0.7 is the average value of F 10.7.

FRN is the FORTRAN reference number used to

GTDS.

refer to a particular data file by

Gregorian Date The Gregorian calendar is the one used by most people in the U.S.A.

GTDS uses the Gregorian date in some places, although usually the year field is

replaced by year - 1900. This results in references to "year 100" when working

with data from 2000 CE.

i is an index denoting a particular satellite in the catalog. (AtmoCal normally

sorts satellites by NSSC number, but that is an arbitrary choice.)

j is an index denoting a particular time.

100



A.2. EXPRESSIONS AND ABBREVIATIONS

JR-71 is the atmospheric density model created in 1971 by Charles Roberts [48],

based on Luigi Jacchia's 1970 atmospheric density model [24].

Julian Date The Julian dating system gives a single floating point number for any

particular date and time after noon (Universal Time) on January 1, 4713 BCE.

This dating system is convenient, since it does not have months with irregu-

lar days, leap years, etc., and hours, minutes, and seconds are converted into

fractions of days.

ki is the true ballistic factor for satellite i.

ki is the approximate, tabulated value of the ballistic factor for satellite i. (Nor-

mally, this is obtained from some sort of time-average.)

k, is the true ballistic factor for non-standard satellite n.

k is the approximate, tabulated value of the ballistic factor for non-standard satel-

lite n. (Initial values are normally obtained from some sort of time-average, and

are updated as detailed in Section 2.5.)

k, is the true ballistic factor for standard satellite s.

k is the approximate, tabulated value of the ballistic factor for satellite s. (Nor-

mally, this is found by some sort of time-average, and is expected to be quite

accurate for all standard satellites.)

kI is the observed ballistic factor for satellite i at time tj.

Modified Julian Date GTDS uses a modified version of the Julian date system. The

MJD = JD - 2430000, which corresponds to a reference date "0.0" at noon on

January 5, 1941. These MJDs are used in creating the GTDS$075 binary file.

Other modified Julian dates are used by various people and programs, in order

to shorten the number of digits required for storing recent dates.

101



APPENDIX A. KEY TO SYMBOLS, ABBREVIATIONS. ETC.

MSIS is one of a series of atmospheric density models based on work by A. Hedin. The

initials stand for "Mass Spectrometer and Incoherent Scatter", which were the

types of data used to create the model. [19]. The later MSISE and NRLMSISE

models are also often referred to simply as MSIS models.

MSISE The MSISE models are "Extended" MSIS models, which include the lower

and middle thermosphere. [17]

n is an index denoting a particular non-standard satellite in the catalog.

N, is the set of timespans that contain observations of non-standard satellite n.

Nel is the number of timespans that contain observations of non-standard satellite

n.

NRLMSISE is the name of the Naval Research Laboratory's new version of A. Hedin's

Extended MSIS model. [44]

N, is the set of timespans that contain observations of standard satellite s.

IN,| is the number of timespans that contain observations of standard satellite s.

range/az/el stands for "range, azimuth, and elevation", which is a common format

for satellite observations.

s is an index denoting a particular standard satellite in the catalog.

tj is time interval j.

6p is the difference between the model atmospheric density and the true atmo-

spheric density.

A is the difference between the actual and observed ballistic factor for satellite i

at time j. See Equation 2.7.

p is the true atmospheric density.

102



A.2. EXPRESSIONS AND ABBREVIATIONS

pm is the model atmospheric density.

103



APPENDIX A. KEY TO SYMBOLS, ABBREVIATIONS, ETC.

THIS PAGE INTENTIONALLY LEFT BLANK

104



Appendix B

Implementation Miscellanea

B.1 CVS and Revision Control

The Concurrent Version System (CVS) was used for configuration management and

revision control on both gtds-granholm and AtmoCal[46]. CVS is the most widely

used package for revision control on a UNIX/LINUX platform, and is freely available.

CVS operates by maintaining a repository of all of the code for a given project, and

allowing users to "check out" a copy for individual use and alteration. When a user

feels that their changes should be included in the repository, they can "check in"

the altered code, which is then available to everyone on the project. Copies of older

versions are always kept, and each new "check in" increases the version number for

an individual file, so that versions are easily identifiable. A log is also kept of all

changes. This enables multiple people working on the same code to ensure that one

person's changes do not interfere with someone else's work. Version management is

also important just for tracking changes (and recovering from accidental mistakes).

105



IMPLEMENTATION MISCELLANEA

To retrieve the versions of gtds-granholm and AtmoCal used to produce the results

in this thesis, on the Pisces machine, execute the following commands1 :

prompt% cvs checkout gtds-granholm

prompt% cvs checkout AtmoCal

Some common CVS commands are listed below, although a manual (like the CVS

Pocket Reference [47]) is recommended for doing anything more complicated than

checking out and running a copy of gtds-granholm and AtmoCal[46].

Table B.1: Common CVS commands
Command Syntax Function. List of Important Flags

cvs add file Adds a new file or directory -m "message describing new
to a repository file/directory"

cvs commit file Commits changes to a repos- -m " message describing
itory changes"

-r [revision number]
cvs history file(s) Shows revision history for

file
cvs remove file Remove a file from the -f (deletes file before remov-

repository ing)
cvs update files(s) Update files from repository -j [revision numberi will

that were changed by other merge files. Use with cau-
users tion.

B.2 File Names and Locations

A graphical representation of the three file structures required for running AtmoCal

and gtds-granholm are shown in Figures B.2, B.2, and B.2.

1AtmoCal must be checked out in the directory specified by the $ATM-CAL environment variable,
but gtds-granholm may be checked out elsewhere, provided that the $GTDSDIR environment variable
is set properly.

106 A PPRNDIX B.



B.2. FILE NAMES AND LOCATIONS

Figure B-1: File Structure for Large Data Files

$STORAGE

$ATMEPHEM

lowgrav and other initial
ephemeris data sets.

$ATMDC

noise mismodel

noise nomismodel

and data directories for other
individual correction runs,
paralleling those in $ATMCAL..

$ATMDATASIM

lowgrav lowgravnoise

and other simulated data sets...

$ATM_REALDATA

rawb3 obscard

also contains copies of
STATFILE. DAT, noradpp.exe,
and the CONTROL DAT files
created by b3conv pl, as well as
any other additional raw or
converted real data directories...

Figure B-2: File Structure for AtmoCal and Small Data Files

$ATMCAL

"noisemismodel", etc.
Individual data directories, paralleling those in $ATMDC. Contains

initinfo.tx, ballfcts.txt jac densvars.txt, logfiles, etc. (Many of these contain
iter#/run# or run# subdirectories.)

AtmoC al
Main AtmoCal Perl scripts.

analysis utils
various graphing and b3conv

statistics tools B3->obscard converter.

include gtds binaries
contains Perlgdsbnrerotins/ e s GTDS binary file tools.

subr outines/module s

107



108

source ($GTDSSRC)
source code

$GTDS_DIR

exe ($GTDSEXE)
executable files and makefiles

data ($GTDS DATA) and ($GTDS LOC)
binary data files (Set $GTDS_LOC to a different directory containing

binary files for Metzinger test cases, if desired.)

lib ($G TDS LIB)
used for compilation.

include
common-blocks, etc. for compilation

gtds test ($GTDSTEST)
contains scripts to run Metzinger test cases.

unused, but included directories:

source-db g
Contains another copy of source
code. Debug version is currently

compiled using regular source
directory, so this isn't needed.

builddata
Assorted files left over from

Granholm's creation of
gtdsRranholm. Saved in case

something is needed later.

APPENDIX B. IMPLEMENTATION MISCELLANEA

Figure B-3: File Structure for gtds-granholm



B.3. ENVIRONMENT VARIABLES

B.3 Environment Variables

The following list of environment variables are required for using AtmoCal. These

environment variables inform AtmoCal about the locations of various sections of

the directory structures shown in the previous section. The directory specified by

$ATMCAL is the one in which a CVS checkout of AtmoCal should be performed,

and gtds-granholm can be checked out there as well, or elsewhere. The environment

variable $GTDS-)IR must be set to the directory created by the check-out process. The

directories for large data storage ($STORAGE and its subdirectories), should be created

by hand before running- AtmoCal, since some are not automatically created. While

some of the following variables are redundant, reducing the number of environment

variables was not a priority, and both copies of a redundant variable are required by

different scripts.

If a user is using csh or tcsh for their login shell, the following list is formatted

so that it may be cut-and-pasted directly into their .cshrc file. Users of bash or an-

other shell should consult their system administrator for help on setting environment

variables. The $GTDSDIR, $STORAGE, and $ATMCAL directories should obviously

be changed, and if the implementation is not on Pisces, the two CVS variables should

be changed to the appropriate values.

Table B.2: Environment Variable List

setenv CVSROOT /lccroot/repository # location of CVS repository******PISCES-SPECIFIC

setenv CVSEDITOR 'emacs -nw' # choose an editor for CVS ******PISCES-SPECIFIC

setenv GTDSDIR /AtmoDenTrk/gtds-granholm # for a variety of things

setenv GTDSSRC $GTDSDIR/source # used by gtds-granholm makefile

setenv GTDSLIB $GTDSDIR/lib # also used by gtds-granholm makefile

setenv GTDSDATA $GTDSDIR/data # GTDS binary data files, for atmcal

setenv GTDSLOC $GTDSDIR/data # GTDS binary data files, for running Metzinger tests

setenv GTDSEXE $GTDSDIR/exe # location of GTDS executable

continued on next page...

109



110 APPENDIX B. IMPLEMENTATION MISCELLANEA

... continued from previous page

setenv GTDSTEST $GTDSDIR/gtds-test # location of scripts for running Metzinger tests

setenv STORAGE /AtmoDenTrk/bergstrom # large file storage

setenv ATM_EPHEM $STORAGE/ephem-runs # storage for GTDS EPHEM runs

setenv ATMDATASIM $STORAGE/datasimruns # storage for GTDS DATASIM runs

setenv ATMDATA $STORAGE/realdata # location of real data

setenv ATMDC $STORAGE/dc-runs # storage for GTDS DC runs (these can be quite large)

setenv ATMCAL /AtmoDenTrk/atm-cal # AtmoCal should be in $ATMCAL/AtmoCal



Appendix C

GTDS

C.1 GTDS Changes

No changes to the GTDS subroutines that apply the atmospheric density correction

factors have been made to gtds-granholm since George Granholm created it. The

code has been put under revision control, and the included makefile1 has been revised

because of differences between the Pisces machine at LL and the DC1 machine at

CSDL. Shell scripts to run each of the Metzinger test cases were added. Finally, Paul

Cefola and Zach Folcik have added options that allow SGI GTDS to input and output

quasi-inertial (USM compatible) and J2000 coordinates.

All of the changes made by Granholm, as well as those made by Cefola and Folcik,

to the original PR-5 version of GTDS are listed in the following table, which is based

on a nearly-identical section on pages 56-59 of his thesis, and the information is

reproduced here for completeness. The routines can each be found in the source code

file [routine].for.

'A makefile is a text file that contains instructions on how the source code should be compiled
into an executable. If a properly-written makefile exists, a user need only type make all at the
prompt in order to compile the code, or make all -f /filename] if the name of the makefile is
not makefile or Makefile. This is relevant to gtds-granholm, since makefiles for both the optimized
(Makefile) and debug (Makefile-dbg) versions are included in the CVS distribution.

111



APPENDIX C. GTDS

Table C.1: GTDS Code Alteration List

Routines directly used in atmospheric correction
Routine Description Change
ATMCALJACBD Initializes variables in com- added routine

mon block /ATMCALJAC/
BARODE Calculates JR-71 density in added call to CALCCALJAC

90-100 kilometer range
CALCCALJAC Main atmospheric density added routine

correction routine
DIFFDE Calculates JR-71 density in added call to CALCCALJAC

100-125 kilometer range
FILESBD Defines FRN for I/O files added FRN 106 for JR-71 correc-

tions file
HIALT Calculates JR-71 density added call to CALCCALJAC

above 125 kilometers
INITCALJAC Reads in JR-71 corrections added routine

file (FRN 106)
JACROB Driver routine for JR-71 added call to INITCALJAC

model
SETDAF Opens files added opening FRN 106
SETOGI Handles orbit generator added ATMCAL card

cards after DRAG in
SETORB

SETORB Interprets optional orbit added interpretation of ATMCAL
generator cards card

SHUTDAF Closes I/O files added closing FRN 106
Variables added in ATMCALJAC common block

Variable Description Type
CALBIJAC Array of byj values Output, REAL*8
CALB2JAC Array of b2j values Output, REAL*8
CALINITJAC Switch to initialize ATM- Input/Output, Logical

CALJAC common block
CALSWITJAC Switch to turn on JR-71 Input, Logical

correction
DATEBEGJAC Beginning date of correction Output, REAL*8

file
DATEENDJAC Ending date of correction Output, REAL*8

file
continued on next page...

112



C.2. GTDS DATA FILES

... continued from previous page

Routine Description Change
SPANEPCHJAC Array of span length for Output, REAL*8

each span j
Routines changed to fix bugs or include features

Routine Description Change

ASCIIORBIDATA Writes .ASCII text files ported routine from VAX-GTDS
along with .ORB1 binary
files

ELEME Converts element sets Removed debugging print state-
among Cartesian, Keple- ment
rian, and spherical formats

FILESBD Defines FRN for I/O files Added FRNs 101-105 for .ASCII
files

OBSWF Writes observation working fixed year-rollover bug
file for DATASIM

ORBI Writes .ORB1 binary files added call to
ASCII-ORBIDATA

SETDAF Opens files added opening FRN 101-105, and
made data file opens read-only to
permit multi-user access

STARPT generates printer sum- Added test to ensure there was a
mary report of passes in non-zero number of records to fix
DATASIM run the no-observations bug.

C.2 GTDS Data Files

The following table lists the particular GTDS binary files required when executing

the Metzinger test cases [38] and when running AtmoCal. Links to these files must

be created in the current directory in the format GTDS$###, where ### stands

for the three-digit FORTRAN reference number (FRN) of the data file. These links

are automatically created by Atmocal and the *. com files that run the Metzinger test

cases. The binary or ascii GTDS input and output files are also linked in the same

fashion, and the ones commonly used with AtmoCal and the Metzinger test cases are

also included in the table. This includes the ascii data file (described in more detail

in Section E.3) containing the atmospheric density correction coefficients.

113



APPENDIX C. GTDS

Table C.2: List of GTDS Data Files

FRN Description File Name(s) Notes
001 stub for small sfdir.dat Universally applica-

files directory ble.
002 Harris-Priester atmosden.dat Universally applica-

atmosphere ble.
density tables

008 Earth Geopo- radarsat-earthfld.dat Updated for Radarsat
tential Field FD Program. Use for
(21x21 models) gtds-granholm.

old-earthfld.dat Baseline version. Use
for Metzinger test
cases.

013 Error Messages errormsg.dat Universally applica-
ble.

014 SLP Mean of june94.msgen.slp.mn1950.dat Updated in 1994. Use
1950 (from for gtds-granholm.
GSFC)

gtds.de96.s1p1950.bin.data Older version. Use for
Metzinger test cases.

015 list of ob- #####_datasim.obscard used by GTDS DC
servations in subroutine, created by
OBSCARD genobs.pl
format

#####_datasim.obscard created by converting
B3 observations

023 Modified New- newcomb. dat Universally applica-
comb Operator ble.
File

038 Timing Coeffi- june94.msgen.slp.timcof.dat Updated in 1994. Use
cient File (from for gtds-granholm.
GSFC)

gtds. de96. timecoef. bin. data Older version. Use for
Metzinger test cases.

075 Jacchia-Roberts jacchia.data Covers 03/02/1966 to
Atmospheric 02/15/1986. Use for
Density Model Metzinger test cases.
data

continued on next page...

114



C.2. GTDS DATA FILES

... continued from previous page
FRN| Description I

115

File Name(s)
jrdat-nomn. dat

jrdat-nomn-new. dat

Notes
Covers 01/10/1980 to
09/30/2008. Uses real
data through 1997.
Use for gtds-granholm
to introduce mismod-
eling.
Covers 01/10/1980 to
09/30/2008. Uses real
data through 2000.
Use for gtds-granholm
when simulating data
and when no mismod-
eling is desired.

076 MSISE-90 it ms90_nomn Covers 01/10/1980
Atmospheric to 09/30/2008. Uses
Density Model real data through
data 1997. (Analogous to

jrdat-nomn.)
078 SLP True of june94.msgen.slp.tod1950.dat Updated in 1994. Use

Date (from for gtds-granholm.
GSFC)

gtds.de96.slptod.bin.data Older version. Use for
Metzinger test cases.

106 Jacchia-Roberts jacdensvars.txt Created by AtmoCal.

Correction File The filename may
include a number

(e.g. jac-densvars1.txt
if ballistic factor
iteration is running.

Many of the files used for the Metzinger test cases are older and may be considered

obsolete when compared with new versions, but are still required for reproducing the

validation results, and may be appropriate if working with older data. All of the data

files listed in the following table are included in the gtds-granholm CVS source tree,

in the data subdirectory, with the exception of the input/output files and versions of

the atmospheric density correction file (FRN 106) created by AtmoCal.

If AtmoCal is to be run for time periods later than the end of 2000, a new version



APPENDIX C. GTDS

of the JR-71 Atmospheric Density Model data file (FRN 075) should be built. This

file contains values for K, and exospheric temperature (which is dependent on F 1 0.7 )

used by the JR-71 model, listed by modified Julian date (MJD = JD - 2430000).

Utilities for converting the data files between binary and ascii versions (which may

be modified or appended to) are available for various platforms. A UNIX utility for

doing so is included in the utils/gtds-binaries/jacchia subdirectory of AtmoCal.

C.3 Additions to the Metzinger Test Cases

The Metzinger test cases are included in the gtds-granholm CVS tree. The gtds-test

directory contains all of the .com files that run individual tests, along with run-all.com

and clear-output.com, which are used to run all of the test cases and to delete all of

the output files created by the test cases, respectively.

The current version of gtds-granholm includes several additions to the main GTDS

core. Most notable are the NORAD PPT2 theory and the atmospheric density cor-

rection for the JR-71 model. Both of these were added after the Metzinger test cases

were created, and so are not included. Paul Cefola supplied two test cases for the

PPT2 theory (listed as cases #22 and #23), and an atmospheric density correction

case was created (listed as case #25, leaving case #24 for an additional PPT2 test

case). Scripts to run all of the test cases were updated or created and added to the

gtds-granholm CVS source tree, in the gtdsitest directory. The following pages give

the details of these new test cases, in the same format as the Metzinger test cases.

116



GTDS Implementation Comparisons
RUN # 22
Run Description: PPT2

This test case is the first of two designed to test the PPT2 routines
Parameter IBM SGI A

(start of ephem) value value IBM - SGI
X-position -4362.799993995842 -4362.799993995843 1.00OOe-12
Y-position -4996.725762887517 -4996.725762887517 0
Z-position 58.34324887128177 58.34324887128177 0
X-velocity 2.460574958340194 2.460574958340194 0
Y-velocity -2.171362444742125 -2.171362444742125 0
Z-velocity 7.023659023412546 7.023659023412548 -2.0000e-15

Parameter IBM-PC SGI A
(end of ephem) value value IBM-PC - SGI
X-position -3698.959898403356 -3698.959898403598 2.4200e-10
Y-position -5108.586932191689 -5108.586932191692 3.00OOe-12
Z-position 2138.612735536394 2138.612735536028 3.6600e-10
X-velocity 4.058805916691082 4.058805960119506 -4.3428e-8
Y-velocity -0.2793133613614866 -0.2793133643505460 2.9891e-09
Z-velocity 6.567329961251271 6.567330031521115 -7.0270e-08



Input Deck for Run 22: PPT2

EPHEM

820223.0

8 19 1 6635.0814

228.6393
5.37D-8

8 2 1 820224.0

19 1 8 1.0

CONTROL

EPOCH

ELEMENT1

ELEMENT2

ELEMENT7

OUTPUT

ORBTYPE

OGOPT

POTFIELD

STATEPAR

STATETAB

DRAGPAR

END

FIN

0.0
0.010201164

271.2229
0.0
0.0

5.0

1 7
3
1 2 3 4.0
7

NSSC 9494

64.9567
88.164558

3600.0
3.0

6.0



Output from IBM-PC version

GTDS FINAL REPORT

SATELLITE NAME

SATELLITE NUMBER
RUN REFERENCE DATE
RUN EPOCH DATE
RUN FINAL TIME

TOTAL TIME OF FLIGHT
CAUSE OF TERMINATION

CENTRAL BODY IS EARTH (INERTIAL SYSTEM)
X -0.3698959898403356E+04 Y
VX 0.4058805916691082E+01 V

SMA 0.6641090937280772E+04
LAN 0.2249825559215082E+03
EA 0.1075884737303912E+03
PR 0.6579004698292076E+04
APH 0.3250421762694677E+03

RA 0.2340929380179728E+03

AZ 0.2653647127553109E+02

NSSC
9494

FEB 23, 1982
FEB 23, 1982

FEB 24, 1982

1 DAYS
SPECIFIED TIME

***END CONDITIONS***

-0.5108586932191689E
Y -0.2793133613614866E

0 HRS 0 MINS
0 HRS 0 MINS
0 HRS 0 MINS

0 HRS 0 MINS
OF FLIGHT REACHED

"NORAD" TRUE OF
+04 Z
+00 VZ

ECC 0.9348801209777984E-02
AP 0.2726586686448444E+03
P 0.1496129390682183E+01
APR 0.6703177176269468E+04
C3 -0.3000995089212615E+02

DEC 0.1873068078222401E+02

RMAG 0.6659852040875556E+04

***INITIAL CONDITIONS***
CENTRAL BODY IS EARTH (INERTIAL SYSTEM)
X -0.4362799993995842E+04 Y -0.4996725762887517E+04
VX 0.2460574958340194E+01 VY -0.2171362444742125E+01

SMA 0.6635081399999997E+04

LAN 0.2286392999999999E+03
EA 0.8874890230765868E+02

PR 0.6567395846485223E+04
APH 0.3246319535147713E+03

RA 0.2288747564790733E+03

AZ 0.2504433545387155E+02

ECC
AP
P

APR
C3

INC
MA
SLR
PH
TA

0.00000 SECONDS
0.00000 SECONDS

0.00000 SECONDS

0.00000 SECONDS

REF. -- EARTH EQUATOR
0.2138612735536394E+04
0.6567329961251271E+01

0.6496916825830493E+02
0.1070778675769625E+03
0.6640510505374604E+04
0.2008696982920756E+03
0.1080983674296496E+03

VPA 0.8948938505007797E+02

VMAG 0.7725396057364970E+01

"NORAD" TRUE OF
Z

VZ

0.1020116400000378E-01
0.2712228999999976E+03
0.1494099074174506E+01

0.6702766953514772E+04
-0.3003713155620669E+02

INC
MA
SLR
PH
TA

DEC 0.5039289725295981E+00
RMAG 0.6633603550997212E+04

REF. -- EARTH EQUATOR
0.5834324887128177E+02

0.7023659023412546E+01

0.6495669999999998E+02

0.8816455800000188E+02
0.6634390928568162E+04

0.1892608464852228E+03

0.8933332183825829E+02

VPA 0.8941564554736215E+02

VMAG 0.7752485412383039E+01

PAGE 19



Output from gtds-granholm on SGI-UNIX

1

GTDS FINAL REPORT PAE1

SATELLITE NAME
SATELLITE NUMBER
RUN REFERENCE DATE
RUN EPOCH DATE
RUN FINAL TIME
TOTAL TIME OF FLIGHT
CAUSE OF TERMINATION

NSSC
9494

FEB 23, 1982
FEB 23, 1982

FEB 24, 1982

1 DAYS
SPECIFIED TIME

***END CONDITIONS***
CENTRAL BODY IS EARTH (INERTIAL SYSTEM)
X -0.3698959898403598D+04 Y -0.5108586932191692D+04
VX 0.4058805960119506D+01 VY -0.2793133643505460D+00

0.6641091078597903D+04
0.2249825559215084D+03
0.1075883490613897D+03

0.6579004881108011D+04
0.3250422760877955D+03

ECC
AP
P
APR
C3

RA 0.2340929380179712D+03
AZ 0.2653647127553051D+02

CENTRAL BODY IS EARTH (INERTIAL SYSTE
X -0.4362799993995843D+04

VX 0.2460574958340194D+01

"NORAD" TRUE OF
Z
VZ

0.9348794762049925D-02

0.2726587933083938D+03
0.1496129438436848D+01
0.6703177276087796D+04

-0.3000995025353829D+02

DEC 0.1873068078222063D+02
RMAG 0.6659852040875576D+04

***INITIAL CONDITIONS***
IM)

Y -0.4996725762887517D+04

VY -0.2171362444742125D+01

INC
MA
SLR
PH
TA

REF. -- EARTH EQUATOR
0.2138612735536028D+04
0.6567330031521115D+01

0.6496916825830496D+02
0.1070777429079298D+03
0.6640510647480014D+04
0.2008698811080103D+03

0.1080982427660965D+03

VPA 0.8948938505007749D+02
VMAG 0.7725396140025803D+01

"NORAD" TRUE OF
Z
VZ

REF. -- EARTH EQUATOR

0.5834324887128177D+02

0.7023659023412548D+01

0.6635081400000000D+04

0.2286393000000000D+03

0.8874890230765665D+02

0.6567395846485167D+04

0.3246319535148332D+03

ECC
AP
P
APR
C3

RA 0.2288747564790735D+03
AZ 0.2504433545387155D+02

0.1020116400001255D-01

0.2712228999999993D+03

0.1494099074174507D+01

0.6702766953514833D+04

-0.3003713155620668D+02

DEC 0.5039289725295982D+00

RMAG 0.6633603550997212D+04

INC 0.6495670000000001D+02

MA 0.8816455799999986D+02

SLR 0.6634390928568164D+04

PH 0.1892608464851664D+03

TA 0.8933332183825677D+02

VPA 0.8941564554736216D+02

VMAG 0.7752485412383041D+01

0 HRS
0 HRS
0 HRS
0 HRS

OF FLIGHT

0 MINS
0 MINS
0 MINS
0 MINS

REACHED

0.00000
0.00000
0.00000
0.00000

SECONDS

SECONDS
SECONDS
SECONDS

SMA
LAN
EA
PR
APH

SMA
LAN
EA

PR
APH

PAGE 19



GTDS Implementation Comparisons
RUN # 23
Run Description: PPT2_DSST

This test case is the second of two designed to test the PPT2 routines, using the Draper Semianalytical Satellite
Theory (DSST).

Parameter IBM-PC SGI A
(start of ephem) value value IBM-PC - SGI
X-position -4395.322718525774 -4395.322718525774 0
Y-position -4969.867719377015 -4969.867719377015 0
Z-position -55.43442842496479 -55.43442842496481 3.0000e-14
X-velocity 1.460354979847724 1.460354979847724 0
Y-velocity -1.385569234061044 -1.385569234061044 0
Z-velocity 7.485026733917411 7.485026733917411 0

Parameter IBM SGI A

(end of ephem) value value IBM - SGI
X-position -4066.935924059110 -4066.935924059165 5.50OOe-11
Y-position -4950.373019647758 -4950.373019647797 3.9000e-11
Z-position 1745.839972520243 1745.839972520178 6.50OOe-11
X-velocity 2.857256375140294 2.857256375140107 1.8700e-13
Y-velocity 0.1955615298471337 0.1955615298469322 2.015e-13
Z-velocity 7.200507756981554 7.200507756981573 -1.9000e-14



Input Deck for Run 23: PPT2_DSST

EPHEM

820223.0
8 19 1 6635.0814

228.6393

CONTROL

EPOCH

ELEMENT1

ELEMENT2

ELEMENT7

OUTPUT

ORBTYPE

OGOPT

POTFIELD

MAXDEGEQ

MAXORDEQ

PPT2_POS

PPT2_COF

PPT2_MDY

PPT2_TLC

PPT2_OUT

END

FIN

2

1

7

3

3

5

5

1

1

8

3

4

1

0.0
820224.0

1.0

5.0
5.0
180.0
43200.0

2.

1.0

0.0
0.0010201164

271.2229
0.0

0.0

-4.0

NSSC 9494

8

19

1

1

1

2

1

5

5

74.9567
88.164558

3600.0
2.0

+4.0



Output from IBM-PC version

GTDS FINAL REPORT

SATELLITE NAME
SATELLITE NUMBER
RUN REFERENCE DATE
RUN EPOCH DATE

RUN FINAL TIME

TOTAL TIME OF FLIGHT
CAUSE OF TERMINATION

NSSC
9494

FEB 23, 1982
FEB 23, 1982

FEB 24, 1982

1 DAYS
SPECIFIED TIME

0 HRS
0 HRS
0 HRS
0 HRS

OF FLIGHT

0 MINS
0 MINS
0 MINS
0 MINS

REACHED

0.00000
0.00000
0.00000

SECONDS
SECONDS

SECONDS

0.00000 SECONDS

***END CONDITIONS***

CENTRAL BODY IS EARTH (INERTIAL SYSTEM)

X -0.4066935924059110E+04 Y -0.4950373019647758E+04

VX 0.2857256375140294E+01 VY 0.1955615298471337E+00

SMA 0.6642861474678574E+04
LAN 0.2263977269652457E+03

0.3182248698783509E+03
0.6639480694303033E+04

0.2681072550541148E+03

RA 0.2305954826571028E+03

AZ 0.1559778711201418E+02

CENTRAL BODY IS EARTH (INERTIAL SYSTE

X -0.4395322718525774E+04

VX 0.1460354979847724E+01

ECC 0.5089343483117673E-03
AP 0.5759183759472086E+02

P 0.1496727740323145E+01
APR 0.6646242255054115E+04
C3 -0.3000195226976088E+02

DEC 0.1524305312449083E+02
RMAG 0.6640340206172306E+04

***INITIAL CONDITIONS***

IM)

Y -0.4969867719377015E+04

VY -0.1385569234061044E+01

"NORAD" TRUE OF
Z

VZ

INC
MA
SLR
PH
TA

REF. -- EARTH EQUATOR
0.1745839972520243E+04

0.7200507756981554E+01

0.7496416526150213E+02
0.3182442963879283E+03

0.6642859754083317E+04
0.2613456943030333E+03
0.3182054396803783E+03

VPA 0.9001942651134878E+02

VMAG 0.7749159326248721E+01

"NORAD" TRUE OF REF. -- EARTH EQUATOR

Z -0.5543442842496479E+02

VZ 0.7485026733917411E+01

0.6635081399999998E+04

0.2286392999999999E+03
0.8822297825519422E+02

0.6628312844648744E+04
0.2637149553512527E+03

ECC
AP
P

APR
C3

0.1020116399966777E-02

0.2712228999999877E+03

0.1494099074174506E+01

0.6641849955351253E+04

-0.3003713155620669E+02

INC
MA

SLR
PH

TA

0.7495670000000000E+02

0.8816455800001597E+02

0.6635074495285680E+04

0.2501778446487433E+03

0.8828139944454566E+02

RA 0.2285106384484784E+03
AZ 0.1504383749398396E+02

VPA 0.8994157973466987E+02
VMAG 0.7751004062507056E+01

PAGE 19

EA
PR
APH

SMA
LAN
EA

PR
APH

DEC -0.4787124722071585E+00
RMAG 0.6634871507719595E+04



Output from gtds-granholm on SGI-UNIX

1

GTDS FINAL REPORT PAE1

SATELLITE NAME
SATELLITE NUMBER
RUN REFERENCE DATE
RUN EPOCH DATE
RUN FINAL TIME
TOTAL TIME OF FLIGHT
CAUSE OF TERMINATION

FEB
FEB

NSSC
9494

23, 1982
23, 1982

FEB 24, 1982

1 DAYS
SPECIFIED TIME

0 HRS
0 HRS
0 HRS
0 HRS

OF FLIGHT

0 MINS
0 MINS
0 MINS
0 MINS

REACHED

0.00000 SECONDS
0.00000
0.00000
0.00000

SECONDS

SECONDS

SECONDS

***END CONDITIONS***
CENTRAL BODY IS EARTH (INERTIAL SYSTEM)
X -0.4066935924059165D+04 Y -0.4950373019647797D+04
VX 0.2857256375140107D+01 VY 0.1955615298469322D+00

"NORAD" TRUE OF REF. -- EARTH EQUATOR
Z 0.1745839972520178D+04
VZ 0.7200507756981573D+01

0.6642861474678571D+04

0.2263977269652458D+03
0.3182248698796784D+03

0.6639480694303045D+04
0.2681072550540948D+03

ECC
AP
P

APR
C3

RA 0.2305954826571028D+03
AZ 0.1559778711201413D+02

CENTRAL BODY IS EARTH (INERTIAL SYST
X -0.4395322718525774D+04
VX 0.1460354979847724D+01

0.6635081399999998D+04
0.2286393000000000D+03

0.8822297825519223D+02
0.6628312844648587D+04

0.2637149553514091D+03

RA 0.2285106384484785D+03
AZ 0.1504383749398397D+02

0.5089343483094239D-03
0.5759183759339012D+02

0.1496727740323144D+01
0.6646242255054095D+04
-0.3000195226976090D+02

DEC 0.1524305312449015D+02
RMAG 0.6640340206172353D+04

***INITIAL CONDITIONS***

EM)
Y -0.4969867719377015D+04
VY -0.1385569234061044D+01

ECC 0.1020116399990371D-02

AP 0.2712228999999878D+03
P 0.1494099074174506D+01

APR 0.6641849955351409D+04
C3 -0.3003713155620669D+02

DEC -0.4787124722071587D+00
RMAG 0.6634871507719595D+04

INC
MA

SLR
PH
TA

0.7496416526150215D+02

0.3182442963892545D+03
0.6642859754083313D+04

0.2613456943030451D+03
0.3182054396817085D+03

VPA 0.9001942651134750D+02
VMAG 0.7749159326248664D+01

"NORAD" TRUE OF REF. -- EARTH EQUATOR
Z -0.5543442842496481D+02
VZ 0.7485026733917411D+01

INC 0.7495670000000001D+02

MA 0.8816455800001398D+02
SLR 0.6635074495285680D+04

PH 0.2501778446485869D+03
TA 0.8828139944454574D+02

VPA 0.8994157973466987D+02
VMAG 0.7751004062507056D+01

SMA
LAN
EA

PR
APH

SMA
LAN
EA

PR

APH

PAGE 19



GTDS Implementation Comparisons
RUN #25
Run Description: EPHEMM50_COWELLJACCHIA-CORR

This run is a modified version of run #12 designed to test the atmospheric density correction routines. A set of
correction factors is applied to the JR-71 model, found in the file testcase-jac-densvars.txt. This run generates a 3 day
ephemeris from an initial osculating keplerian state vector using the Cowell orbit generator. The GEM-10B gravity
model is used.

Parameter SGI
(start of ephem) value
X-position 150.5086950768926
Y-position -1146.217167965407
Z-position -6990.621444318102
X-velocity -6.964869483515692
Y-velocity 2.707531390482961
Z-velocity -0.5944769832228497

Parameter SGI

(end of ephem) value
X-position 3885.285299122795
Y-position -436.0351407180455
Z-position 5916.839606713098
X-velocity 5.784088135415042
Y-velocity -2.596727010799154
Z-velocity -3.991908863790896



Input Deck for Run 25: EPHEM-M50COWELL-JACCHIACORR

EPHEM

820224.0

1 2 1 7077.8
158.1

1 2 1 820227.0

2 1 1 60.0

0.0
0.0011
89.4

0.0

LNDSAT-4 8207201 00000100

00000200

98.2
176.0
43200.

00000300

00000400

00000500

00000600

00000700
1

1

CONTROL

EPOCH

ELEMENT1

ELEMENT2

OUTPUT

ORBTYPE

OGOPT

DRAG

ATMOSDEN

ATMCAL

SCPARAM

POTFIELD

OUTOPT

END

FIN

1.D-6 100. DO

820224000000. 820227000000.
00000710

00000800

00000900

60.

1 1

1 6
1

1



Contents of jacchia-corr.txt for Run 25: EPHEM-M50_COWELLJACCHIACORR

2445024.5000

2445024.6250

2445024.7500

2445024.8750

2445025.0000

2445025.1250

2445025.2500

2445025.3750
2445025.5000

2445025.6250

2445025.7500
2445025.8750
2445026.0000

2445026.1250

2445026.2500

2445026.3750

2445026.5000

2445026.6250

2445026.7500

2445026.8750

2445027.0000

2.OOOOOOOOOOE-01

2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01
2.OOOOOOOOOOE-01

1.OOOOOOOOOOE-01

1.OOOOOOOOOOE-01

1.OOOOOOOOOOE-01

1.OOOOOOOOOOE-01
1.OOOOOOOOOOE-01

1.OOOOOOOOOOE-01

1.OOOOOOOOOOE-01

1.OOOOOOOOOOE-01
1.OOOOOOOOOOE-01

1.OOOOOOOOOOE-01

1.OOOOOOOOOOE-01
1.OOOOOOOOOOE-01

1.OOOOOOOOOOE-01
1.OOOOOOOOOOE-01

1.OOOOOOOOOOE-01
1.OOOOOOOOOOE-01
1.OOOOOOOOOOE-01

1.OOOOOOOOOOE-01
1.OOOOOOOOOOE-01

1.OOOOOOOOOOE-01

1.OOOOOOOOOOE-01



Output from gtds-granholm on SGI-UNIX

GTDS FINAL REPORT

SATELLITE NAME
SATELLITE NUMBER
RUN REFERENCE DATE
RUN EPOCH DATE
RUN FINAL TIME
TOTAL TIME OF FLIGHT
CAUSE OF TERMINATION

CENTRAL BODY IS EARTH (INERTIAL SYSTEM)
X 0.3885285299122795D+04 Y
VX 0.5784088135415042D+01 V

SMA
LAN
EA
PR
APH

0.7082881037729563D+04
0.1610200796951653D+03
0.1920496879622824D+03

0.7073693932446265D+04
0.7139301430128617D+03

LNDSAT-4
8207201

FEB 24, 1982
FEB 24, 1982
FEB 27, 1982

3 DAYS
SPECIFIED TIME

0 HRS
0 HRS
0 HRS
0 HRS

OF FLIGHT

***END CONDITIONS***

-0.4360351407180455D+03

Y -0.2596727010799154D+01

ECC
AP
P

APR
C3

RA 0.3535966421180496D+03
AZ 0.1949707386649364D+03

0.1297085922290635D-02
0.2905176602292393D+03
0.1647871725313703D+01

0.7092068143012862D+04
-0.2813829837580983D+02

0 MINS
0 MINS
0 MINS
0 MINS

REACHED

0.00000
0.00000
0.00000
0.00000

SECONDS

SECONDS

SECONDS
SECONDS

MEAN OF 1950.0 -- EARTH EQUATOR

Z 0.5916839606713098D+04
VZ -0.3991908863790896D+01

INC

MA
SLR
PH
TA

DEC 0.5654442695725306D+02
RMAG 0.7091865722860912D+04

0.9818746774924638D+02
0.1920652024849152D+03
0.7082869121264634D+04

0.6955559324462647D+03
0.1920341832671292D+03

VPA 0.9001551453530473D+02
VMAG 0.7492262882712758D+01

***INITIAL CONDITIOIS***
CENTRAL BODY IS EARTH (INERTIAL SYSTEM)
X 0.1505086950768926D+03 Y -0.1146217167965407D+04
VX -0.6964869483515692D+01 VY 0.2707531390482961D+01

SMA 0.7077800000000003D+04 ECC 0.1099999999988060D-02
LAN 0.1581000000000001D+03 AP 0.8940000000000003D+02
EA 0.1760043916076793D+03 P 0.1646098845766884D+01
PR 0.7070014420000087D+04 APR 0.7085585579999919D+04
APH 0.7074475799999191D+03 C3 -0.2815849840345869D+02

MEAN OF 1950.0 -- EARTH EQUATOR
Z -0.6990621444318102D+04
VZ -0.5944769832228497D+00

INC 0.9820000000000002D+02

MA 0.1760000000000000D+03
SLR 0.7077791435862003D+04

PH 0.6918764200000869D+03
TA 0.1760087808084915D+03

RA 0.2774806566775013D+03
AZ 0.2409486213137905D+03

DEC -0.8060983937027528D+02
RMAG 0.7085566656322731D+04

VPA 0.8999560838967234D+02
VMAG 0.7496234790642598D+01

PAGE 12



C.4. LIST OF KNOWN BUGS/ISSUES

C.4 List of Known Bugs/Issues

As mentioned in Section 7.2.2, several bugs still exist in gtds-granholm. The following

list is partially quoted from Appendix B.4 of Granholm's thesis [131, and includes both

a description of the bug and its effect on the AtmoCal code:

1) Hang-up Error: This error sometimes occurs when low-altitude objects are

calculated to impact the Earth. GTDS appears to hang up and mus be manually

interrupted. A possible culprit is the SECHECK.FOR routine. This error may

be reducing the number of runs that converge in the density correction process.

All AtmoCal routines that call GTDS include the $time-limit variable, which

contains the number of seconds for which GTDS may run. After that much

time has elapsed, AtmoCal assumes that GTDS has hit a hang-up error and

terminates the run.

2) DC Epoch Limitation: When using an input .OBS file (GTDS$ 029) for a

DC run, GTDS halts execution unless the start of the OBSINPUT card matches

the solve-for epoch.

3) Random Number Generation Bug: There appears to be a bias in ran-

dom noise added to observations using DATASIM only when the optimized

compilation of GTDS is executed. If the non-optimized (debug) version of the

code is used, the bias disappears. The source of the error appears to be the

RAND U.FOR routine. Every time random noise is generated for the same list of

satellites, using the same initial conditions, identical results are produced. This

is most likely the result of using the same seed for the pseudorandom number

generation.

4) Residual Plot Error: DC Residual plots are not functional.

5) Y2K Bug in Station Pass Report: The full date field does not appear for

dates after Jan 1, 2000 in the DATASIM Station Pass Report.

129



130 APPENDIX C. GTDS

There are other Y2K errors as well, which should be fixed in gtds-granholm when-

ever a patch from the another development tree of GTDS is merged into gtds-granholm.

Chris Sabol at CSDL has developed a Y2K patch for the PC version of GTDS. Since

gtds-granholm only alters a few minor sections of GTDS, merging the two versions

should not only be possible, but quite simple. (This would probably be done using

context diffs. A "context diff" is a line-by-line list of differences between two version

of a piece of software. CVS stores information about earlier versions by using context

diffs, and numerous UNIX utilities exist for manipulating diffs. Type man dif f at a

UNIX prompt for more details.) .



Appendix D

Annotated Code

This chapter contains the code of all of the files included in the AtmoCal CVS distri-

bution at the time of printing this thesis'. This version can be retrieved by checking

out AtmoCal Version 2.0, even if newer versions have become available. (Version 1.0

contains the code as it was at the start of this research, which is similar but not

identical to the code printed in Granholm's thesis[13], and most portions will not run

properly or at all without modification on Pisces, since there are direct references to

the directory structure on the DC1 machine at CSDL, as well as some unfinished and

undocumented changes Granholm made after publication of his thesis.)

Please note: the line numbers in this documentation will not always exactly match

those seen in the code, since a handful of extremely long lines have been line-wrapped.

'The only differences between the code printed here and the CVS distribution are possible changes
to the user-defined options, since those are set by the user before each individual run.

131



APPENDIX D. ANNOTATED CODE

D.1 TLE2osc.pl

Table D.1: TLE2osc.pl Fact Sheet

Function Performs initial setup for both simulated and real data
processing.

Language Perl

Type Main Program
Location Main AtmoCal directory
Input Files TLE file (contains two-line element sets)

RCS file (contains radar cross-sectional areas of satellites)
Other Code Req'd Dates.pm, Filehandle.pm, Localmath.pm
Environment Variables $ATM CAL and $ATM EPHEM must be set.
Data Structure Requires: The $ATM-CAL and $ATMEPHEM directories

must exist.
Creates: The $ATMCAL$modeLopt and
$ATM_EPHEM/$modeL opt directories are created,
if not already present.

Output Files initinfo.txt in $ATM-CAL$mode Lopt
.output, .orbit, .orbl, .ascii files for each satellite in
$ATMEPHEM/$modeLopt (optional - if $initinfo-only
is set to 1, these are not created)

User-Defined Variables

$start-epoch Starting time (Llmin after last TLE)
$end-epoch Ending time for orbit generation (If working with real

data, this can be fairly arbitrary, as long as it is after the
$start-epoch.)

$model-opt Directory in $ATMEPHEM for output files
$tle-file Path to TLE file
$rcsfile Path to RCS file
$time-limit Allowed time (in seconds) for individual GTDS EPHEM

runs. Normally 180.
$initinfo-only 0 normally, 1 to. only create initinfo.txt and not run

GTDS EPHEM

132



D.1. TLE2OSC.PL

Commented Code (TLE2osc.pl)

# TLE2osc.pl - TLE Conversion Program

5 # Author:

# George R. Granholm
# 22 Mar 00

10 #

# Header section: All user-definable variables are here.

15 ##############################################################

# Add environment-specific path and import modules.

BEGIN {
20 push @INC, "$ENV{ATMCAL}/AtmoCal/include";

}

use Dates; # Necessary to use cal2jul, jul2cal, & get-time subroutines
use FileHandle; # For autoflush

25

# Set options and variables

$start-epoch "991215 000000.0"; # Must be at least

$end-epoch ="1000211 000000.0";

30 $modeLfopt "lowgrav-new";

$tfefile "$ENV{ATMCAL}/200_600_tles.txt";

1 minute after last TLE epoch

$rcsfile "$ENV{ATMCAL}/rcs.txt";
$time-limit 180;

35 $initinfo-only 0; # if this is 1, only create initinfo.txt

($start-ymd, $start-hms) = split(" ", $start-epoch);
($end-ymd, $end-hms) = split(" ", $end-epoch);

40 # Open necessary files

mkdir "$ENV{ATMCAL}/${model-opt}", 0777;

mkdir "$ENV{ATMEPHEM}/${model-opt}", 0777;
chdir "$ENV{ATMCAL}/${model opt}"; # This keeps the GTDS$FRN symlinks out of

45 # the code directory.
$fogfiEe "$ENV{ATMCAL}/${modelopt}/TLE2osc . log";

$initfile "$ENV{ATMCAL}/${model-opt}/initinfo.txt";

open LOGINFO, ">>$logfile" or die "Unable to create $logfile, died";
open STDERR, ">>&LOGINFO" or die "Unable to redirect stderr to $logfile, died";

#!/usr/bin/perl -w

133



APPENDIX D. ANNOTATED CODE

50 open TLES, $tte-file or die "Invalid TLE filename: $!\n";
open INITINFO, ">$initfile" or die "Unable to create $initfile, died";

foreach $fh ("STDOUT", "LOGINF0", "STDERR", "INITINFO") {
$fh ->autoflush(l);

55 }

# Write header to $logfile and STDOUT

foreach $fh ("STDOUT", "LOGINFO") {
60 print $fh "-"x 50,"\n";

print $fh "-" x 50,\n";

print $fh "\tTLE2osc.pl: Processing $tlejfile\n";
print $fh "-" x 50,"\n";
print $fh ("\tJob started at ", get-tine, "\n");

65 print $fh "-" x 50,"\n";

}

# Read in RCS into $rcs{$catnun} hash

70 open RCSFILE, "<$rcsfile" or die "Unable to open $rcsfile, died";
while (defined($rcsfine = <RCSFILE>)) {

chop $rcsfine;
($catnum, $area) = split(" ", $rcsfine);
$catnum = sprintf "%5.5d", $catnum;

75 if ($area) { $rcs{$catnum} = $area;}
else { $rcs{$catnum} = 2.2;} # Set default to 2.2 m^-2 if no data

}
close RCSFILE;

80 ##############################################################

# Main Loop through TLE file #

##############################################################

85

# Read from TLE file

LINE: while (defined($Vine = <TLES>)) { # Main loop through TLE file

90 next LINE if ($fine =~ /^[^12][^\s][^\d]/);
if ($fine =~ s/^1\s(\d{5})\w\s(\d{5})\s*(\w{l,3})//) { # Match first TLE line

$catnum= $1;
$intttdes $2 . $3;
chop $ine;

95 ©line = split(" ",$fine);
$norad-date = $fine[O];

# Convert NORAD epoch to calender date

100 ($yr, $day) = ($norad-date

134



D.1. TLE2OSC.PL

$yr-days = cal2jul($yr,1,1,0,0,0); # First convert year to Julian date
$nor-juldat ($yr-days + $day - 1); # Add day number to Julian date
©nor-caldat jul2cal($norjuldat); # Convert back to calender date
($norcaldat[0]) = ($norcaldat[0] =~ /\d{2}(\d{2})/); # Two-digit year
if ($norcaldat[0] == 0) {$nor-caldat[0] = "100";} # GTDS Y2K fix
$ymd = join("",@norcaldat[0 2]);
$hms = join("",@norcaldat[3 5]);

# Calculate end time of GP4 propagation (one minute after NORAD epoch)

$gp4end-jul $nor-juldat + 1/1440; # Next minute after NORAD epoch
@gp4end-cal jul2cal($gp4endjul);
($gp4endcal[0]) = ($gp4end-ca[0] =~ /\d{2}(\d{2})/); # Two-digit year
if ($gp4endca[0] == 0) {$gp4endca[0J = "100";} # GTDS Y2K fix
$gp4end-ymd join(" ",@gp4endcal[0 .. 2]);
$gp4end-hms join("",@gp4endcal[3 .. 5]);

# Read remaining elements

120 $dndt = $Eine[1];
$d2ndt2 = $Eine[2];
$bstar = $fine[3];

# Convert d2n/dt2 and B* to standard numerical formats
125

if ($d2ndt2 /(-*)(\d{5})([+-]\d)/) {
$d2ndt2 $1 . "0." . $2 . "E" . $3;

}

130 if ($bstar /(-*)(\d{5})([+-]\d)/) {
$bstar $1 . "0." . $2 . "E" . $3;

}

# Apply Dave Vallado's multiplier to obtain B from B*, and
135 # compute drag coefficient using RCS area and default C-d

$bafE-fact = 6.3708105*$bstar; # where B = 1/2 (Ax/m) C-d
$Ax = $rcs{$catnum}; # in m^2

$Cd = 2.2; # Default LEO C-d
140 $mass ($Ax*$C-d)/(2*$bal -fact); # in kg

$Ax-km = sprintf("X7.10E",($Ax/1000000)); # Convert to km^2

}

145 elsif ($fine /^2\s(\d{5})/) { # Match second TLE line
if ($bstar == 0 ) {next LINE};
chop $ine;
Aline =split(", ",$fine);
$incE $Eine[2];

150 $raan $Eine[3];
$ecc $Eine[4];

105

110

115

135



136 APPENDIX D. ANNOTATED CODE

$aop $tlne[5];
$ma $Eine[6];
$mm = $Fine[7];

155

# Convert eccentricity to standard numerical format

if ($ecc /(\d{7})/) {
$ecc = "0." $1;

160 }

# Separate mean motion from rev number if necessary

if ((length($mm) > 11) && ($mm =~ /(\d{1,2}\.\d{8})/)) {
165 $mm = $1;

}
##############################################################

170 # Run GTDS EPHEM to create .OUTPUT and .ORBIT/.ORB1 file #

##############################################################

unless ($initinfo-only==1) {

175 # Write GTDS card file

$ephem-card = "${catnum}_ephem.gtds";
$output-file = "${catnumlephem. output";
$orbit-file "${catnumlephem. orbit";

180 $orbl-file "${catnum}_ephem.orb1";
$asciL-file "${catnum}_ephem.ascii";

open(EPHEMCARD, ">$ENV{ATMEPHEM}/${model-opt}/$ephem card")
or die "Unable to open $ENV{ATMEPHEM}/${model opt}/$ephem_card, died";

185 write EPHEMCARD;
close EPHEMCARD;

# Make standard data file links

190 system q { /usr/bin/tcsh -c 'rm GTDS\$* >& /dev/null' };
# Remove any GTDS$* links

symlink("$ENV{GTDSDATA}/sfdir.dat", "GTDS\$001");
symlink("$ENV{GTDSDATA}/atmosden.dat", "GTDS\$002");
symlink("$ENV{GTDSDATA}/radarsat earthfld.dat", "GTDS\$008");

195 symlink("$ENV{GTDSDATA}/errormsg.dat", "GTDS\$013");
symlink("$ENV{GTDSDATA}/june94.msgen. slp.mn1950.dat","GTDS\$014");
symlink("$ENV{GTDSDATA}/newcomb. dat", "GTDS\$023");
symlink("$ENV{GTDSDATA}/june94.msgen. slp .timcof .dat","GTDS\$038");
symlink(" $ENV{GTDSDATA}/j rdat nomnnew. dat ", "GTDS\$075");

200 symlink("$ENV{GTDSDATA}/june94.msgen. slp. t odl950. dat ", "GTDS\$078");

# Make satellite-specific data links



D.1. TLE2OSC.PL

symlink(" $ENV{ATMEPHEM}

symlink(" $ENV{ATMEPHEM}
symlink(" $ENV{ATMEPHEM}
symlink(" $ENV{ATMEPHEM}

symlink(" $ENV{ATMEPHEM}

/${modelopt}

/${model-opt}

/${model-opt}

/${modelopt}

/${model-opt}

/$ephem-card",

/$output-file",

/$orbitfile",

/$orblfile",

/$ascii-file",

"GTDS\$005");
"GTDS\$006");
"GTDS\$020");
"GTDS\$024");

"GTDS\$101");

# Run GTDS!

foreach $fh ("STDOUT","LOGINFO") {
print $fh "-" x 40,"\n";
print $fh " Processing NORAD Catalog \#$catnum\n";
print $fh "-" x 40,"\n;
print $fh "UNIX-GTDS\n";
print $fh "Charles Stark Draper Laboratory\n\n";
print $fh "MIT Lincoln Laboratory\n\n";

print $fh ("Run started at: ", get-timeo, "\n");

}

undef $chiEd id;

if ($child-id = fork) { # Parent process here

local $SIG{USR1} = sub { # Define anonymous sub to kill GTDS

(my $gtds-id) - split (" ", 'ps I grep gtds');

foreach $fh ("STDOUT","LOGINFO") {
print $fh "GTDS run has exceeded time limit;\n";
print $fh "Killing process $gtds.id\n";

}

kill 'QUIT', $gtds~id;

waitpid $child-id, 0; # Wait for child process to finish

elsif (defined $child-id) { # Child process here

$par-id = getppid;

local $SIG{ALRM} = sub { # Define local ALRM signal handler
kill 'USRi', $par-id; # Send USR1 signal to parent if local alarm goes off
foreach $fh ("STDOUT","LOGINFO") {

print $fh "Sending USR1 to $par-id. \n";

}

alarm $time-limit; # Initialize alarm to go off in $time-limit sec

system("dbx $ENV{ GTDSEXJEDBG}/gtds-dbg.exe");

205

210

215

220

225

230

235

}

240

245

250

137



APPENDIX D. ANNOTATED CODE

# system("$ENV{ GTDSEXE}/gtdsdbg.exe");
255 system("$ENV{GTDS_EXE}/gtds . exe ");

alarm 0; # Turn off alarm if GTDS finishes before $time-limit
die "Exiting child process.

}

260 foreach $fh ("STDOUT","LOGINFO") {
print $fh ("Run ended at: ", get-time(, "\n");

I

# Compress output files using gzip
265 # These files are used by genobs.pl and estbfs.pl.

foreach $fh ("STDOUT","LOGINFO") {
print $fh ("Compressing .orbit file. . .\n");

270

system "gzip -v -f $ENV{ATMEPHEM}/${model-opt}/$orbit-file";
system "gzip -v -f $ENV{ATMEPHEM}/${model-opt}/$output_file";

system q { /usr/bin/tcsh -c 'rm GTDS\$* >& /dev/null'
275 # Remove any GTDS$* links

system q { /usr/bin/tcsh -c 'rm tmp.* >& /dev/null' };
# Remove any temp files

} # $initinfo-only flag skips to here.
280

# Write line in INITINFO array

$stan-flag = ' S' ;
$var = 1E-6;
$obs-type = 29;
printf INITINFO

$intf-des, $baEE-

# All satellites are standard
# Default variance for standard satellites
# Obs type for simulated observations

"%5s %8s %7.10E %7.10E %7.10E %1s %2d\n", $catnum,
_fact, $Ax, $var, $stan-flag, $obs-type;

}
290

}

close TLES;
close INITINFO;

295 close LOGINFO;

EPHEM card deck formatting == == == ==

300 format EPHEMCARD
CONTROL EPHEM @<<<<<<< @

$inte-des, $catnum
EPOCH <<<<<<<<<<<<<<<<<<<<< <<

$ymd, $hms

285

138



D.1. TLE2OSC.PL

305 ELEMENTI 8 18 1 -<<<<<<<<<<<<<<<<<<< q<<<<<<<<<<<<<<<<<<<

$ecc, $incf
A<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<

$aop, $ma
«<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<

@<<<<<<<<<<<<<<<<<<<
$dndt, $d2ndt2, $bstar

OUTPUT 1 2 1 Q<<<<<<<<<<<<<<<<<<< a<<<<<<<<<<<<<<<<<<< 60.0
315 $gp4end-ymd,

ORBTYPE 14 1 8 1
OGOPT
POTFIELD 1 7
END

320 FIN
CONTROL EPHEM

$gp4end-hms

OUTPUT
$intf-des, $catnum

OUTPUT 1 2 1 q<<<<<<<<<<<<<<<<<<< Q<<<<<<<<<<<<<<<<<<< 86400.0
$start-ymd, $start-hms

325 ORBTYPE 2 1 1 60.0
OGOPT
ATMOSDEN 1
DRAG 1 1
DRAGPAR 3 0 o<<<<<<<<<<<<<<<<<<<

330
SCPARAM

$C-d
q<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<<

$Ax-km, $mass
POTFIELD 1 4
MAXDEGEQ 1

335 MAXORDEQ 1
SOLRAD 1 1
END
FIN
CONTROL EPHEM

340

4.0
4.0

.0

OUTPUT A<<<<<<< @>>>>>>>
$intf-des, $catnum

OUTPUT 1 2 1 q<<<<<<<<<<<<<<<<<<< 0<<<<<<<<<<<<<<<<<<< 86400.0
$end-ymd, $end-hms

ORBTYPE 2 1 1 60.0
OGOPT

345 ATMOSDEN 1
DRAG 1 1
DRAGPAR 3 0 @<<<<<<<<<<<<<<<<<<<

$C-d
@<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<<SCPARAM

350 $Ax-km, $mass
POTFIELD 1 4
MAXDEGEQ 1
MAXORDEQ 1
SOLRAD 1

355 OUTOPT 2 2

4.0
4.0

1.0
1 @>>>>>>@<<<<<<<<<<<< @>>>>>>@<<<<<<<<<<<< 600

ELEMENT2
$mm,

310

ELEMENT3

A<<<<<<<<<<<<<<<<<<<
$raan,

139

@<<<<<<< @->>>>>>>



APPENDIX D. ANNOTATED CODE

$start-ymd, $start-hms, $end-ymd, $end-hms

140

END
FIN

360



D.2. GENOBS.PL

D.2 genobs.pl

Table D.2: genobs.pl Fact Sheet

Function Generates simulated observations

Language Perl

Type Main Program
Location Main AtmoCal directory

Input Files initinfo.txt (created by TLE2osc.pl)
initial ephemerides in .output, .orbit files (also created
by TLE2osc.pl) in $ATiMEPHEM/$ephemopt

Environment Variables $ATMDATASIM must be set.

Data Structure Requires: The $ATMCAL, $ATMEPHEM, and $ATMDATASIM
directories must exist.
Creates: The $ATMCAL/$datasim_opt and
$ATMDATASIM/$datasimopt directories are cre-
ated, if not already present.

Output Files .output, .obscard files containing simulated observations

User-Defined Variables

$start-epoch Starting time (normally identical to that used in
TLE2osc.pl)

$end-epoch Ending time
$ephem-opt Location of TLE2osc.pl output files (should equal value

$model-opt in TLE2osc.pl run

$datasim-opt Directory in $ATMDATASIM for output files

$time-limit Allowed time (in seconds) for individual GTDS
DATASIM runs. Normally 180.

$noise Flag for including noise in observations. 1 for noise, 0 for
no noise. Other values are potentially available to use for
different noise models.

Commented Code (genobs.pl) #!/usr/bin/perl -w

# genobs.pl - Observation Generator Program

5 # Author:

# George R. Granholm

# 06 Apr 00

10 # Revision .History:

# Removed explicit directories, added more comments.

141



142 APPENDIX D. ANNOTATED CODE

# Sarah E. Bergstrom
# 01 May 2002

15 #

##############################################################

# Header section: All user-definable variables are here. #

20 ##############################################################

# Import modules

BEGIN {
25 push @INC, "$ENV{ATMCAL}/AtmoCal/include";

}

use Dates;
use Localmath;

30 use FileHandle;

# Set variables and options

$start-epoch ="991215 000000.0";
35 $end-epoch "1000211 000000.0";

$ephem-opt "lowgrav";
$datasim-opt = "lowgrav";

$time-limit 180;
$noise 0; # 1 = noise. 0 no noise.

40

##############################################################

# Preparation Section. #

45 ##############################################################
# set up directory stuff.

mkdir "$ENV{ATMDATASIM}/${datasim-opt}", 0777;
chdir "$ENV{ATMCAL}/${datasim-opt}"; #this keeps all of the GTDS$0## files

50 # out of the CVS directory.
$fogfile "$ENV{ATMCAL}/${datasim-opt}/genobs.log";
$initfile "$ENV{ATMCAL}/${datasim-opt}/initinfo.txt";
*PI \3.14159265358979;

55

# Define hash which contains obs types

%obstype = (
RANG => 1,

60 AZ => 4,
EL > 5,



D.2. GENOBS.PL

# Format start epoch
65

($start-ymd, $start-hms) = split(" ", $start-epoch);
$start-ymd2 = $start-ymd;
if (length($startymd2) == 7) {

($startymd2) = ($start-ymd2 /(\d{6})$/); # Take off GTDS Y2K fix
70 } # for Julian date conversion

($y,$m,$d) ($start-ymd2 /^(\d{2})(\d{2})(\d{2})/);
($h,$mn,$s) ($start-hms /^(\d{2})(\d{2})(\d{2}[.\s]*\d*)/);
$start.jul = cal2jul($y,$m,$d,$h,$mn,$s);

75 # Calculate interval times for tracking schedule

$end-intervall = $start-jul + 1/4; # Six hours after start
$end-interval2 = $start-jul + 2/4; # Twelve hours after start
$end-interval3 $start-jul + 3/4; # Eighteen hours after start

80 $end-interval4 = $start-jul + 1; # Twenty-four hours after start
@interval1 jul2cal($end-intervall);
@interval2 jul2cal($end interval2);
@dinterval3 jul2cal($end interval3);
@interval4 jul2cal($end-interval4);

85 ($intervall[O]) = ($intervall[O] =~ /\d(2}(\d{2})/); # Two-digit year
if ($intervafl[O] == 0) {$intervall[0] = "100";} # GTDS Y2K fix
($intervae2[0]) = ($intervaf2[0] =~ /\d{2}(\d{2})/); # Two-digit year
if ($intervaE2[0] == 0) {$intervaf2[0] = "100";} # GTDS Y2K fix
($intervaf3[0]) = ($intervaf3[0] =~ /\d{2}(\d{2})/); # Two-digit year

90 if ($intervae3[0] == 0) {$intervaE3[0] = "100";} # GTDS Y2K fix
($intervaf4[0]) = ($intervae4[0] =~ /\d{2}(\d{2})/); # Two-digit year
if ($intervaf4[0] == 0) {$intervaf4[0] = "100";} # GTDS Y2K fix

$intervall-ymdhms = join(" ",@intervall);
95 $intervaf2_ymdhms = join(" ",@interval2);

$intervaf3_ymdhms = join(" ",@dinterval3);
$intervaf4_ymdhms = join(" ",@interval4);

# Format end epoch

($end-ymd, $endhrns) = split(" ", $end-epoch);
$end-ymd2 = $end-ymd;
if (length($end ymd2) == 7) {

($end_ymd2) = ($end-ymd2 /(\d{6})$/);

}
# Take off GTDS Y2K fix

($y,$m,$d) ($end-ymd2 /^(\d{2})(\d{2})(\d{2})/);
($h,$mn,$s) ($end-hms /^(\d{2})(\d{2})(\d{2}[.\s]*\d*)/);
$end-jul = cal2jul($y,$m,$d,$h,$mn,$s);

110 $span-len = round($end-jul - $start-jul);

# Open log file

open LOGINFO, ">$1ogfile" or die "Unable to open $logfile, died";

143

100

105



144 APPENDIX D. ANNOTATED CODE

115 open STDERR, ">>&LOGINFO" or die "Unable to redirect stderr, died";

foreach $fh ("STDOUT", "LOGINF0", "STDERR") {
$fh ->autoflush(1);

}
120

# Write header to $logfile and STDOUT

foreach $fh ("STDOUT", "LOGINFO") {
print $fh "-" x 50,\n";

125 print $fh "-"x 50,"\n";

print $fh "\tgenobs.pl: Processing $initfile\n";

print $fh "-" x 50,"\n";
print $fh ("\tJob started at ", get-time(, "\n");

print $fh "-" x 50,"\n";

130 }

# Open and read $initpile

open INITINFO, "<$initfile" or die "Unable to open $initfile, died";

135

INITLINE: while (defined($Eine = <INITINFO>)) {

$ine =~ s/^(\d{5})\s//;
$initinfo{$1} [ split(" ",$fine) ];

140 }

close INITINFO;

##############################################################

145 # #

# Main program loop (by $catnum) #

##############################################################

150 foreach $catnum (sort keys %initinfo) {

foreach $fh ("STDOUT","LOGINFO") {
print $fh "-" x 40,"\n";
print $fh " Processing NORAD Catalog \#$catnum\n";

155 print $fh "-" x 40,"\n

}

$intf-des = $initinfo{$catnum}[0];

160 # Write GTDS card file (with or w/o noise parameters)

$datasimcard = "${catnum}_datasim.gtds";

$output-file "${catnum}_datasim.output";

$orbit-file "${catnumlephem.orbit";

165 $obs-file "${catnum}_datasim.obscard";



D.2. GENOBS.PL

if ($noise) {
open(DATASIMCARDNOISE, ">$ENV{ATMDATASIM}/${datasim-opt}/$datasim card")

or die "Unable to open $ENV{ATMDATASIM}/${datasim-opt}/$datasimcard, died";
170 write DATASIMCARDNOISE;

close DATASIMCARDNOISE;
} else {

open(DATASIM CARD, ">$ENV{ATMDATASIM}/${datasim-opt}/$datasim-card")
175 or die "Unable to open $ENV{ATMDATASIM}/${datasim-opt}/$datasimcard, died";

write DATASIM-CARD;
close DATASIMCARD;

}

180 # Make standard data file links

system q { /usr/bin/tcsh -c 'rm GTDS\$* >& /dev/null' }; # Remove any GTDS$* links
system q { /usr/bin/tcsh -c 'rm tmp.* >& /dev/null' }; # Remove any temp files

185 ##############################################################

# GTDS BINARY FILE LINKS (change as needed) #

symlink("$ENV{GTDS_DATA}/sf dir.dat", "GTDS\$001");
190 symlink("$ENV{GTDS_ DATA}/atmosden. dat", "GTDS\$002");

symlink("$ENV{GTDSDATA}/radarsatearthfld.dat", "GTDS\$008");
symlink("$ENV{GTDSDATA}/errormsg. dat", "GTDS\$013");
symlink("$ENV{GTDSDATA}/june94.msgen.slp.mn1950.dat", "GTDS\$014");
symlink("$ENV{GTDSDATA}/newcomb.dat", "GTDS\$023");

195 symlink("$ENV{GTDSDATA}/june94.msgen.slp .timcof .dat", "GTDS\$038");
symlink(" $ENV{GTDSDATA}/j rdatnomnnew.dat ", "GTDS\$075");
symlink("$ENV{GTDSDATA}/june94.msgen.slp.todl950.dat", "GTDS\$078");

200 ##############################################################

# Inflate .orbit file

foreach $fh ("STDOUT","LOGINFO") {
print $fh ("Inflating .orbit file. .\n"

205 }
system "gunzip -v $ENV{ATMEPHEM}/${ephem-opt}/${orbit_file}.gz";

# Make job-specific data links

210 symlink("$ENV{ATMDATASIM}/${datasim-opt}/$datasim card","GTDS\$005");
symlink("$ENV{ATMDATASIM}/${datasimmopt}/$output-file", "GTDS\$006");
symlink("$ENV{ATMEPHEM}/${ephem-opt}/$orbit_file", "GTDS\$020");

# Run GTDS!
215

foreach $fh ("STDOUT","LOGINFO") {

145



146 APPENDIX D. ANNOTATED CODE

print $fh "\nUNIX-GTDS\n";

print $fh "Charles Stark Draper Laboratory\n\n";

print $fh ("Run started at: ", get-time(, "\n");
220 }

undef $child-id;

if ($child-id = fork) { # Parent process here

225

local $SIG{USR1} sub { # Define anonymous sub to kill GTDS

(my $gtds-id) split (" ", 'ps I grep gtds');

230 foreach $fh ("STDOUT","LOGINFO") {
print $fh "GTDS run has exceeded $timelimit seconds;\n";
print $fh "Killing process $gtds-id\n";

}

235 kill 'QUIT', $gtds-id;

};
waitpid $child-id, 0; # Wait for child process to finish

}

240 elsif (defined $child-id) { # Child process here

$par-id = getppid;

local $SIG{ALRM} = sub { # Define local ALRM signal handler
245 kill 'USR1', $par-id; # Send USR1 signal to parent if local alarm goes off

foreach $fh ("STDOUT","LOGINFO") {
print $fh "Sending USR1 to $par-id. .\n";

}

250

alarm $time-limit; # Initialize alarm to go off in

# $time-limit sec

#### RUN GTDSGRANHOLM. You must use _DBG version if noise is included,
# and it won't hurt to do so if noise isn't included.

255

# system("$ENV{ GTDSE XE}/gtds.exe");
system(" $ENV{GTDSEXE}/gtds-dbg. exe");

alarm 0; # Turn off alarm if GTDS finishes before $time-limit
die "Exiting child process.

260 }

foreach $fh ("STDOUT","LOGINFO") {
print $fh ("Run ended at: ", get-time(, "\n");

}
265

system q { /usr/bin/tcsh -c 'rm GTDS\$* >& /dev/null' };
# Remove any GTDS$* links



D.2. GENOBS.PL

system q { /usr/bin/tcsh -c 'rm tmp. * >& /dev/null' }; # Remove any temp files

270 foreach $fh ("STDOUT","LOGINFO") {
print $fh ("Compressing .orbit file. . .\n");

}

# Recompress .orbit file

system "gzip -v $ENV{ATM_EPHEM}/${ephem-opt}/$orbitfile";

275 # Read .output file and create OBSCARD file (FRN 15)

foreach $fh ("STDOUT","LOGINFO") {
print $fh ("Writing OBSCARD\n");

}
280

open OUTFILE, "<$ENV{ATMDATASIM}/${datasim-opt}/$outputfile" or die
"Unable to open $ENV{ATMDATASIM}/${datasim-opt}/$outputjfile, died";

open OBSCARD, ">$ENV{ATMDATASIM}/${datasim-opt}/$obsfile" or die
"Unable to open $ENV{ATMDATASIM}/${datasim-opt}/$obsfile, died";

285 printf OBSCARD "OBSCARD \n";

OBSLINE: while (defined($outline = <OUTFILE>
if ($outline =~ m/

-\s{O,1}(\d{6,7})\s+

(\d{5,6}\.\d{3})\s+
(\w{4})\s+

(\w+)\s+
(O\.\d{16})D([-+]\d{2})
/x) {
$ymd = $1;
$hms = sprintf "X010.3f", $2;
$statid = $3;
$type = $obstype{$4};
$observtn = sprintf("X16.14fEX03s", $5, $6);
if (($type == 4) || ($type == 5)) {

$observtn = ($observtn*$PI)/180; # Conv

}
write OBSCARD;

}
305 elsif ($outline =~ /^\s+RETURN 1/) {

printf OBSCARD "END \n";
last OBSLINE;

}
}

310

close OUTFILE;
close OBSCARD;

)) {

ert to radians

}
foreach $fh ("STDOUT","LOGINFO") {

print $fh ("Observation Generation Complete. Exiting. . .n")

}

147

290

295

300

315



APPENDIX D. ANNOTATED CODE

320 close LOGINFO;

##############################################################

# OBSCARD File Format #
325 # #

##############################################################

#234567890#234567890#234567890#234567890#234567890#234567890#234567890#234567890

format OBSCARD =
330 @<<< q>> @>>>>>>@<<<<<<<<<<<< Q<<<<<<<<<<<<<<<<<<<

A<<<<<<<<<<<<<<<<<<<
$statid, $type, $ymd, $hms, $observtn, $observtn

335 ##############################################################

# DATASIM Card Deck Format (without noise) #

##############################################################
340 #234567890#234567890#234567890#234567890#234567890#234567890#234567890#234567890

format DATASIMCARD =
CONTROL - DATAMGT

345 OGOPT
POTFIELD 1 4
END
FIN
CONTROL DATASIM

350
DMOPT
/FLYQ 1 0346 3 338.900 541242.8299
/PARQ 1 0396 3 347.300 484329.1839
/EGLQ 1 0399 3 0.380 303420.7790

355 /KAEQ 1 0932 3 300.459648 213419.4537
END
DCOPT
DSP.EA1 1 0 A<<<<<<<<<<<<<<<<<<<

@q<<<<<<< @Q>>>>>>>
$inttfdes, $catnum

Q<<<<<<< >>>>>>>
$intf-des, $catnum

3591947.6900
2620600.8719
2734706.5526

2014359.7376002

@<<<<<<<<<<<<<<<<<< 60.0
$start-ymd, $start-hms

360 DSPEA2 20 1 @ @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<
$noise, $end-ymd, $end-hms

DSPEA3 2 1 0
ELLMODEL 1 6378.135 298.26
/FLYQ 200001

365 /PARQ 200001
/EGLQ 200001
/KAEQ 200001
/FLYQ 7 1 >> 60.0 24.0 5.0

$span-len

148



D.2. GENOBS.PL

370 /PARQ

/EGLQ

7 1 @z>> 60.0
$span-len

7 1 0>> 60.0
$span-len

/KAEQ 7 1 Q>> 120.0

24.0

24.0

24.0

5.0

5.0

5.0
$span-len

/FLYQ 9 1 @>>>>>>@<<<<<<<<<<<< @<<< < <<<<<
$start-ymd, $start-hms, $intervatlymdhms

/PARQ 9 1 q<<<<<<<<<<<<<<<<<<< a<<<<<<<<<<<<<<<<<<
$interval-ymdhms, $intervaL2_ymdhms

380 /EGLQ 9 1 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<
$intervae2_ymdhms, $intervae3_ymdhms

/KAEQ 91 @<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<
$intervaf3_ymdhms, $intervaf4_ymdhms

TRACKELV 3
385 END

FIN

5.0

390 #

# DATASIM Card Deck Format (with noise)

##############################################################

#234567890#234567890#234567890#234567890#234567890#234567890#2,34567890#234567890
395

format DATASIM-CARD NOISE =
CONTROL DATAMGT

OGOPT
400 POTFIELD 1 4

END
FIN
CONTROL DATASIM

$inttfdes, $catnum

@<<<<<<< @>>>>>>>
$intf-des, $catnum

3591947.6900
2620600.8719
2734706.5526

2014359.7376002

405 DMOPT
/FLYQ
/PARQ
/EGLQ
/KAEQ

410 END
DCOPT
DSPEA1

$start-ymd, $start-hms
DSPEA2 20 1 A @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<

415 $noise, $end-ymd, $end-hms
DSPEA3 2 1 0
/FLYQ 0 1 4 5 35.0 54.0 54.0
/PARQ 0 1 4 5 48.0 54.0 46.8
/EGLQ 0 1 4 5 30.0 45.0 45.0

420 /KAEQ 0 1 4 5 4.631 29.5 30.42

1 0346
1 0396
1 0399
1 0932

3
3
3
3

338.900
347.300

0.380
300.459648

541242.8299
484329.1839
303420.7790

213419.4537

375

1 0 @<<<<<<<<<<<<<<<<<<< «<<<<<<<<<<<<<<<<<< 60.0

149



ANNOTATED CODE

ELLMODEL 1 6378.135 298.26
/FLYQ 200001
/PARQ 200001
/EGLQ 200001

425 /KAEQ 200001
/FLYQ 7 1 a>> 60.0 24.0 5.0

$span len
/PARQ 7 1 0>> 60.0 24.0 5.0

$span.len
430 /EGLQ 7 1 @>> 60.0 24.0 5.0

$span-len
/KAEQ 7 1 d>> 120.0 24.0 5.0

$spa nlen
/FLYQ 9 1 >>>>>>@<<<<<<<<<<<< << <

435 $start-ymd, $start-hms, $intervafllymdhms
/PARQ 9 1 @a<<<<<<<<<<<<<<<<<<< @Q<<

$interval lymdhns, $intervaC2_ymdhms
/EGLQ 9 1 @<<<<<<<<<<<<<<<<<<<@A<<<<<

$intervaC2_ymdhrms, $intervaf3-ymdhms
440 /KAEQ 9 1 a<<<<<<<<<<<<<<<<<<< @< «<<

$intervae3_ymdhns, $interva4_ymdhms
TRACKELV 3 5.0
END
FIN

445 .

150 A PPRNDT X D-



D.3. DISTORT-BFS.M

D.3 distort bfs.m

Table D.3: distort-bfs.m Fact Sheet

Function Distorts a-priori ballistic factors for testing BFE itera-
tion

Language MATLAB

Type MATLAB program
Location Main AtmoCal directory

Input Files instinfo.txt (in the current directory)
Environment Variables None.
Data Structure Requires: None

Creates: initinfo_. txt
Output Files .intitinfo_0.txt (in the current directory)

User-Defined Variables

m-k weight for global distortion factor: nominally 1, set to
zero for no global distortion.

a_k weight for individual distortion factor: nominally 1.6.

151



APPENDIX D. ANNOTATED CODE

Commented Code (distortbfs.m) % distort-bfs.m - Distorts A-priori Ballistic Factors

% Author:

5 % GCeorge R. Granholm
% 23 May 00

% Modified by:
% Sarah E. Bergstrom

10 % 13 Aug 01

% Changed statements to not require the MATLAB stat package (rnd instead of unifrnd).

% This program processes the file 'initinfo.txt' and produces the file
15 % 'initinfo_0.txt'. The non-standard ballistic factors are distorted

% using Eq. 1.15 in DFY 98 Stage 2 of Nazarenko's report.

clear all;
warning off;

20 more off;

% Set options

% To remove the global weight entirely, set m-k to zero.
% To remove both weights (just mark every tenth satellite as standard), set m-k=a-k=0.

25
m k 1; % The weight of the bias in all ballistic factors
a-k 1.6; % The weight of the random error for each ballistic factor

% Calculate bias for all ballistic factors
30

xi_1 = rnd(0,1); % Uniform between 0 and 1

% Open input and output files

35 initid fopen('initinfo.txt','r');
outid fopen('initinfo_0.txt','w');

line fgetl(initid);
index 1;

40

% Begin main loop

while line -1

45 catnum line(1:5);
intl-id line(7:14);
bf-orig str2num(line(16:31));
area = line(33:48);
sigma str2num(line(50:65));

152



D.3. DISTORT-BFS.M

50 flag line(67:67);
type line(69:70);

% Skip every tenth object

55 if index == 10
b = 1;
index = 0;

else

60 % Calculate distortion factor for non-standard objects

xi_2 = rnd(0,1); % Uniform between 0 and 1
b = (1 + m-k*(xi_1 - 0.5) + a-k*(xi_2 - 0.5));

65 % Set a-priori sigma, flag

sigma = sigma*2;

flag = 'N';

70 end

% Apply distortion factor

bf-new = bf-orig*b;
75

% Write new line to 'initinfo_0.txt'

fprintf(outid,'X%5s %8s X7.10E X16s %7.10E X1s %2s\n', catnum, intl_id,
bf-new, area, sigma, flag, type);

80

line = fgetl(initid);
index = index + 1;

end

85

fclose(initid);
fclose(outid);

153



APPENDIX D. ANNOTATED CODE

D.4 estbfs.pl

Table D.4: estbfs.pl Fact Sheet

Function Runs GTDS DC many times to create list of observed
ballistic factors.

Language Perl
Type Subroutine for driver programs runestbfs.pl and

bfe iter.pl
Location AtmoCal include subdirectory
Input Files $initfile containing table of a-priori ballistic coefficient

values
.output ephemerides files in $ATMEPHEM/$ephem-opt
created by TLE2osc.pl

.obscard files in $ATMDATASIM/$data_opt or
$ATMREALDATA/$dataopt

Data Structure Requires: $ATM-CAL, $ATMEPHEM, and one of
$ATM-DATASIM or $ATMREALDATA as appropriate
Creates:$ATM_ CA L/$iteropt, $ATMDC/$iteropt

Output Files $blfcfile file containing ballistic coefficients
optional (depending on $keep-data) tarred and gzipped

(see note below) NSSC#_dcall.output.tar.gz GTDS out-
put files in $ATMDC/$iteropt

Syntax &e stbf s ($start _epoch, $end-epoch, $ephem-opt,
$data-opt, $iter-opt, $initfile, $blfcfile,
$numprocs, $keep-data, $simulated);

User-Defined Variables
also see driver program listings

$print-sched Flag to print schedule of passes
$increment Amount to shift each DC span by, in days. Equals the

length of the correction span, normally 0.125 (3 hrs).
$fit-len Length of fit span, in days. Normally 3.
$diverge-tol Allowed length of "sparse" data period and/or period of

consecutive divergent runs, in days.
$timelimit Allowed time (in seconds) for individual GTDS DC runs.

Normally 300.
continued on next page...

154



D.4. ESTBFS.PL

... continued from previous page

$rhol-tol Tolerance for accepting the results of an individual GTDS
DC run, based on the GTDS-generated convergence mea-
sure p.

Note: Tar and gzip are two indispensible Unix utilities for working with large

blocks of data. Tar combines several files into one (originally for tape archives, hence

the name). Gzip compresses the files, and is extremely effective when working with

ascii text files like those produced by GTDS. AtmoCal automatically tars/gzips and

untars/gunzips files when needed. To uncompress and split an archive called file-

name.tar.gz by hand, type:

prompt% gunzip filename.tar.gz

prompt% tar xvf filename.tar

The built-in Unix manuals (type man tar and man gzip) have much more infor-

mation on using these utilities.

155



156 APPENDIX D. ANNOTATED CODE

Commented Code (estbfs.pl) # estbfs.pl - Ballistic Factor Estimator Subroutine

# Author:

5 # George R. Granholm
# 09 Apr 00

# Edited by Sarah E. Bergstrom to make it a subroutine.
# 19 Oct 01

10 #

sub estbfs {

##############################################################
15 # #

# Header section. All user-definable variables are in here. #

##############################################################

20 # Add environment-specific path and import modules

BEGIN {
push @INC, "$ENV{ATMCAL}/AtmoCal/include";

}
25

use Dates;
use Localmath;
use FileHandle;

30 sub numerically { $a <=> $b }; # To sort in ascending order

$print-sched 0; # Flag to print pass schedule; 1 = yes, 0 no
$increment 0.125; # Shift span for each DC by this much (days)
$fit-len 3; # Length of each fit span (days)

35 $diverge-tol 11; # Allowed length of "sparse" area in data (days)
# (or num. of days of consecutive divergent runs)

$time-limit = 300; # Allowed duration of GTDS run (secs)
$rhol-tol 10; # Max absolute value of $rhol

40 my ($start-epoch,$end-epoch,$ephem opt,$data-opt,$iter-opt,
$initfiee,$bffcf ie,$nu m-procs,$keep-data,$simulated) = @_;

mkdir "$ENV{ATMCAL}/${iter-opt}",0777;
mkdir "$ENV{ATMDC}/${iter-opt}",0777;

45

##############################################################

# Preparation Section #



D.4. ESTBFS.PL

50 ##############################################################

# Read and format start epoch

($startyrnd, $start-hms) = split(" ", $start-epoch);

55 if (length($startymd) == 7) {
($start-ymd) = ($start-ymd =~ /(\d{6})$/); # Take off GTDS Y2K fix

} # for Julian date conversion
($y,$m,$d) ($startymd /^(\d{2})(\d{2})(\d{2})/);
($h,$mn,$s) ($start-hms /^(\d{2})(\d{2})(\d{2}{.\s]*\d*)/);

60 $start-jul = cal2jul($y,$m,$d,$h,$mn,$s);

# Read and format end epoch

($end-ymd., $end-hms) = split(" ", $end-epoch);
65 if (length($end _ymd) == 7) {

($end-ymd) = ($end-ymd =/(\d{6)$/);

}
($y,$m,$d) = ($end-ymd /^(\d{2})(\d{2})(\d{2})/);
($h,$mn,$s) ($end-hms /^(\d{2})(\d{2})(\d{2}{.\s]*\d*)/);

70 $end-jul = cal2jul($y,$m,$d,$h,$mn,$s);

# Open and read $initflle

open INITINFO, "$initfile" or die "Unable to open $initfile, died";

75

INITLINE: while (defined($eine = <INITINFO>)) {

$fine =~ s/^(\d{5})\s//;
$initinfo{$1} = split(" ",$Eine) ];

80 )

close INITINFO;
@initinfo = sort keys %initinfo;

85 # Open output file so that all processes can access it

open BALLFCTS, ">>$blfcfile" or die "Unable to open $blfcfile, died";

##############################################################

90 # #

# Process-Specific Preparation Section #

##############################################################

95 # Spawn appropriate number of processes

$child_id[1] = $$; # Parent process number

SPAWN: for ($proc-num 2; $proc-num <= $num-procs; $proc num-++) {
100 $child_id[$proc-num] fork; # The parent knows all process nums

157



158 APPENDIX D. ANNOTATED CODE

if ($chifd-id[$proc-num] == 0) { # The child only knows the parent's
$child-id[$proc-num] = $$; # And its own process num
last SPAWN; }

}
105

# Create subdirectories for each process

if ($$ == $child-id[l]) { $proc-num = 1 }
$iter-opt .= "/run${proc-num}";

110 mkdir "$ENV{ATMCAL}/${iter-opt}",0777;
mkdir "$ENV{ATMDC}/${iter-opt}",0777;
chdir "$ENV{ATMCAL}/${iter-opt}";
$ogfile = "$ENV{ATMCAL}/${iteropt}/estbfs. log";

115 # Open or redirect files

open LOGINFO, ">>$logfile" or die "Unable to open $logfile, died";
open STDERR, ">>&LOGINFO" or die "Unable to redirect stderr, died";

# Redirect STDERR to LOGINFO
120

foreach $fh ("STDOUT", "LOGINF0", "STDERR", "BALLFCTS") {
$fh->autoflush(l);

}

125 # Write header to $logfile and STDOUT

foreach $fh ("STDOUT", "LOGINFO") {
print $fh "-" x 50,"\n";
print $fh "-" x 50,"\n";

130 print $fh "\testbfs.pl: Processing ${initfile}\n";
print $fh "\tProcess \# ${proc-num}\n";
print $fh "-" x 50,"\n";
print $fh ("\tJob started at ", get-time(, "\n");
print $fh "-" x 50,"\n";

135 }

# Assign chunk of

for ($i = 1; $1 <= $num-procs; $i++) {
140 $cutoff[$i] = int(($#initinfo/$num-procs)*$i);

}
$cutoff[0] -1;

©objects = @initinfo[($cutoff[$proc-num- 1]+1). .$cutoff[$proc-num]];
145

##############################################################

# Main Loop by $catnum: initialization for specific sat. #

150 ##############################################################



DA. ESTBFS.PL 159

# Begin main loop by $catnum

OBJLOOP: foreach $catnum (@objects) {
155

# Initialize variables

$intL des = $initinfo{$catnum}[0];

160 $ephem-output = "$ENV{ATMEPHEM}/${ephem-opt}/${catnum}_ephem. output";

if ($simulated) {
$obs-file = "$ENV{ATMDATASIM}/${data-opt}/${catnum}_datasim. obscard";
$datasimoutput = "$ENV{ATMDATASIM}/${data-opt}/${catnum}_datasim. output";

165 # Read in array of observation times. If an .obscard file doesn't
# exist for a particular satellite, skip it. This allows for there
# to be satellites in the initinfo.txt (or initinfo_#.txt) list that
# don't show up in a particular run.

170 open SIMOUT, $datasim-output or next OBJLOOP;

$index = 0;
while (defined($simine = <SIMOUT>)) {

if ($simfine =~ /^\s+INTERVAL\s{1,2}\d{1,2}/) {
175 foreach $i (1.4) {

$simfine = <SIMOUT>;
if ($simfine =~ m{ # Match start of pass

^\s+TIME\s1ST\sOB\s\=\s*

(\d+)\s+
180 (\d+)\st

(\d+\.\d+)

-Ix) {
$obstart-ymd = $1;
$obstart-hms = sprintf("X04d", $2) . sprintf("X06.3f",$3);

185 }
elsif ($simeine =~ m{ # Match end of pass

^\s+TIME\sLAST\sOB\=\s*
(\d+)\s+
(\d+)\s+

190 (\d+\.\d+)

}x) {
$obend-ymd = $1;
$obend-hms = sprintf("X04d", $2) . sprintf("%06.3f ",$3);

195 if (length($obstart-ymd) == 7) {
($obstart-ymd) = ($obstart-ymd =~ /(\d{6})$/);

}
($y,$m,$d) = ($obstart-ymd /^(\d{2})(\d{2})(\d{2})/);
($h,$mn,$s) ($obstart-hms ~/^(\d{2)(\d{2})(\d{2}[.\s]*\d*)/);

200 $obstart-jul = cal2jul($y,$m,$d,$h,$mn,$s);

if (length($obend-ymd) == 7) {



160 APPENDIX D. ANNOTATED CODE

($obend-ymd) = ($obend-ymd =~ /(\d{6})$/);

}
205 ($y,$m,$d) ($obend-ymd /^(\d{2})(\d{2})(\d{2})/);

($h,$mn,$s) ($obend-hms /^(\d{2})(\d{2})(\d{2}[.\s]*\d*)/);
$obend-jul cal2jul($y,$m,$d,$h,$mn,$s);

if ($obstart-jul != $obend-jul) { # If pass contains any obs
210 $obstart[$index] $obstart-jul; # Store in respective arrays

$obend[$index] $obend-jul;
$index++;

}
}

215 }
}

}
close SIMOUT;

220 # Sort and parse array of observation times

(qobstart sort numerically dobstart;
@dobend sort numerically @obend;

225 for ($1 = 1; $i <= $#obstart; $i++) { # Eliminate overlap
if ($obstart[$i] <= $obend[$i-1]) {

splice(dobstart,$i, 1);
splice (@obend,$ i- 1, 1);
$i 1;

230 }
}

if ($print-sched) {
open SIMSCHED, ">$ENV{ATMDC}/${iter-opt}/${catnum}_sched.txt";

235 for ($i = 0; $i <= $#obend; $i++) {
print SIMSCHED "Span ${i}: $obstart[$i] - $obend[$i]\n";
Gobstart-greg = jul2cal($obstart[$i]);
$start-greg = join(" ",@obstart-greg);
Aobend-greg = jul2cal($obend[$i]);

240 $end-greg = join("",@obend-greg);
print SIMSCHED "Gregorian: $start-greg - $end-greg\n";

}
close SIMSCHED;

}
245

# Since real data doesn't have an .output file, skip that.
# Eventually, reading the .obscard file could be used here (and for
# simulated data as well). For now, it doesn't slow things down much
# (if at all) to assume that every time increment has new data.

250

} else {
$obs-file = "$ENV{ATMREALDATA}/${data-opt}/${catnum}.obscard";

}



D.4. ESTBFS.PL

255 # Calculate mass and area for DC

$baEEffact = $initinfo{$catnum}[1]; # Can be "perfect" B value or with error
$Ax = $initinfo{$catnum}[2];
$C-d 2.2; # Default for LEO

260 $mass ($Ax*$C-d)/(2*$baf -fact); # in kg
$Ax-km = sprintf("X7.10E",($Ax/1000000)); # Convert to km^2

# $obs-type = $initinfo{$catnum}[5]; # Stub for real data ... ?

265 # Initialize DC start and end epochs

$dc-start-jul = $start-jul;
$dc-end-jul $start-jul + $fitlen;
$div-cnt = 0; # Identifies last run that converged

270 $run-num 1;
$first-run 1;
$in-span 1;
$have-obs = 1;
undef %conv-epoch; # Hash of converged epochs

275

##############################################################

# Main Loop by $catnum continued: Set up for GTDS DC run #

280 ##############################################################

# Begin loop for DC spans

DCLOOP: while ($in-span) {
285

$converged = 0;
$1 = 0;
if ($first-run) {$have-obs 1;}
else {$have-obs = 0;

290

# Test if there are any new observations for this object
if ($simulated) {

TESTOBS: while (!$first-run && ($i <= $#obstart)) {

295 if ((($obstart[$i] >= ($dc-end-jul - $increment)) &&
($obstart[$i] <= $dc-end-jul)) or

(($obend[$i] >= ($dc-end-jul - $increment)) &&
($obend[$i] <= $dc-end-jul))) {

$have-obs = 1;
300 last TESTOBS;

}
} continue {$i++;}

} else {
$have-obs = 1;

161



162 APPENDIX D. ANNOTATED CODE

305 }
next DCLOOP unless ($have-obs);

# Continue with run

310 foreach $fh ("STDOUT","LOGINFO") {
print $fh "-" x 40,"\n";
print $fh " Processing NORAD Catalog \#$catnum\n";
print $fh " Process \# $proc-num\n";
print $fh " Run number $run-num\n";

315 }

@dcstart-cal = jul2cal($dc-start-jul);

# Check if $diverge-tol has been exceeded; assign Julian date
320 # to look for in .output file and assign epoch & epoch advance date

if (!$first-run && (($dc-start-jul - (cal2jul(@d{ $conv-epoch{$div-cnt} })))
> $diverge-tol)) {

foreach $fh ("STDOUT","LOGINFO") {
325 print $fh "Object $catnum not converged for $diverge-tol

consecutive days;\n";
print $fh "Going to next object\n";

}
next OBJLOOP;

330 }
elsif (!$first-run && (($conv-epoch{$div-cnt}[l -

$dc-start-cal[l]) && # If last epoch that converged
($conv-epoch{$div-cnt}[2] ==
$dc-start-cal[2]))) { # is on same day as current epoch

335 $read jul = sprintf("X12. 4f ",$dc-start-jul);
@epoch = @de-start-cal;
$epoch-adv = 0;

}

340 else { # Either first run or epoch is on different day as last conv. epoch
$readjul = sprintf("X.12.4f",cal2jul(@dcstart-cal[O..2],0,0,0));
Aepoch = (@dc-start-cal[O..2],0,0,0);
if (($dc-start-cal[3] 0) && ($dc-start-cal[4] 0) &&

($dc-start-cal[5] 0)) {$epoch-adv = 0;}
345 else {

$epoch-adv 1;
Gepoch-adv =dc-start-cal;

}
}

350

# Format $epoch-adv for GTDS

if ($epoch-adv) {
($epoch-adv[0]) = ($epoch-adv[0] =~ /\d{2}(\d{2})$/);

355 if ($epoch-adv[0] == 0) {$epoch-adv[0] = 100};



D.4. ESTBFS.PL

$epoch-adv-ymd = join(" ",@depoch-adv[0..2]);
$epoch-adv-hms = join("", @epoch adv [3..5]);

}
else {

$epoch-adv-ymd =
$epoch-adv-hms =

}

# Format rest of dates for GTDS

$dc-strt-eph-jul = cal2jul(@dcstart-cal[0. .2],0,0,0) + 1; # Beg of nxt day aftr epoch

@dc-end-cal = jul2cal($dc-end-jul);
@dcstrt-eph-cal = jul2cal($dc-strt-eph-jul);

370 @dcend-eph-cal = jul2cal($dc-start-jul + $diverge-tol);
# Allowd num days w/o coIvrg

($epoch[0]) ($epoch[0] =~ /\d{2}(\d{2})$/);
($dc-start-cal[0]) = ($dc-start-cal[0] /\d{2}(\d{2})$/);

375 ($dc-end-cal[0]) ($dc end-cal[0] /\d{2}(\d{2})$/);
($dc-strt-eph-cal[0]) ($dc-strt-eph-cal[0] /\d{2}(\d{2})$/);
($dc-end-eph-cal[0]) = ($dc-end-eph-cal[0] /\d{2}(\d{2})$/);

if
380 if

if
if
if

($epoch[0] =- 0)
($dc-start-cal[0] 0)
($dc-end-cal[0] 0)
($dc-strt-eph-cal[0]
($dc-end-eph-cal[0]

0)
0)

{$epoch[O] = "100";}
{$dc.start-cal[O] ="100";}
{$dc-end-cal[O] "100";}
{$dc-strt-eph-cal[O] "100";}
{$dc-end-eph-cal[0] "100";}

385 $epoch-ymd
$epoch-hms
$dc-start-ymd
$dc-start-hms
$dc-end-ymd

390 $dc-end-hms
$dc-strt-eph-ymd
$dc-strt-eph-hms
$dc-end-eph-ymd
$dc-end-eph-hms

395

= join("",@epoch[0..2]);
= join("",@epoch[3..5]);
= join("",@dc-start-cal[0. .2]);
=join(" ",@dc-start-cal[3..5]);

join("",@dcend-cal[0..2]);
join("", dcend cal[3. .5]);
join("",@dc-strt-eph-cal[O. .2]);
"000000.0";

= join(" ",@dcend-eph-cal[0..2]);
"000000.0";

# Assign input and output file names

if ($first-run) {$dc-input-file = $ephemoutput;}
else {$dc-input-file =

"$ENV{ATMDC}/${iter-opt}/${catnum}dc_${div-cnt}.output";}400

# Get a-priori elements from appropriate .output file

open INFILE, $dc-input-file or die "Unable to open $dc-input-file, died";
405 $endffag = 0;

360

365

163



ANNOTATED CODE

410

415

420

425

430 }

435

440

445

450

if ($first-run) { # Then read from EPHEM output file

EPHEMLINE: while (defined($infine = <INFILE>)) {

if ($infine =~ /^ ENTERED ORBINT/) {
$endffag 1;

}
elsif ($endffag && ($infine /^ DATE.*JULIAN DATE = $read-jul/ )) {

while (defined($intine = <INFILE>)) {
if ($infine =~ m{

^\sX\s*(-*\d+\.\d+)
\s*Y\s*(-*\d+\.\d+)
\s*Z\s*(-*\d+\.\d+)
\s*DX\s*(-*\d+\.\d+)
\s*DY\s*(-*\d+\.\d+)
\s*DZ\s*(-*\d+\.\d+)
}x ) {
(aprioris = ($1$2,$3,$4,$5,$6);
last EPHEMLINE;

}
}

}
}

else { # Read from appropriate DC .output file

DCLINE: while (defined($infine = <INFILE>)) {

if ($infine =- /^ DATE.*JULIAN DATE = $read-jul/ ) {
while (defined($i nfine = <INFILE>)) {

if ($infine =~ m{
^\sX\s*(-*\d+\.\d+)

\s*Y\s*(-*\d+\.\d+)
\s*Z\s*(-*\d+\.\d+)
\s*DX\s*(-*\d+\.\d+)
\s*DY\s*(-*\d+\.\d+)
\s*DZ\s*(-*\d+\.\d+)
Ix ) {
@aprioris = ($1,$2,$3,$4,$5,$6);
last DCLINE;

}
}

}
}

}

close INFILE;
455

# Write GTDS DC card file

164 APPENDIX D.



D.4. ESTBFS.PL

$dc-card = "${catnum}_dc_${run-num}.gtds";

$dc-output-file = "${catnum}_dc_${run-num}. output";

460

my $fife="$ENV{ATM_DC}/${iter-opt}/$dc-card";

if ($simutated) {
open (DCCARDSIM, ">$file") I die("Unable to open $file, $!");

write DCCARD-SIM;
465 close DCCARDSIM;

} else {
open (DC-CARDREAL, ">$file") die("Unable to open $file, $!");

write DCCARDREAL;
close DCCARDREAL;

470 }

# Make standard data file links. (Multiple options for some

# files are included - comment out all but one.)

475 system q { /usr/bin/tcsh -c 'rm GTDS\$* >& /dev/null'

# Remove any GTDS$* links

system q { /usr/bin/tcsh -c 'rm tmp.* >& /dev/null' }; # Remove any temp files

symlink("$ENV{GTDSDATA/sfdir.dat", "GTDS\$001");
480 symlink("$ENV{GTDSDATA}/atmosden.dat", "GTDS\$002");

symlink("$ENV{GTDSDATA}/radarsat_earthfld. dat", "GTDS\$008");
symlink("$ENV{GTDSDATA}/errormsg.dat", "GTDS\$013");
symlink("$ENV{GTDSDATA}/june94.msgen.slp.mn1950.dat", "GTDS\$014");
symlink(" $ENV{GTDSDATA}/newcomb. dat ", "GTDS\$023");

485 symlink("$ENV{GTDSDATA}/june94.msgen. slp .timcof .dat", "GTDS\$038");
symlink(" $ENV{GTDSDATA}/j rdat-nomn.dat", "GTDS\$075");

# symlink("$ENV{ G TDSDA TA}/jrdat-nomn-new. dat", "GTDS\$075");
symlink("$ENV{GTDSDATA}/june94.msgen.slp.tod950.dat", "GTDS\$078");

490 # Make job-specific data links

symlink("$ENV{ATMDC}/${iter-opt}/$dc-card", "GTDS\$005");
symlink("$ENV{ATMDC}/${iter-opt}/$dc-output_file", "GTDS\$006");
symlink("$obs-file", "GTDS\$015");

495 # $obs-file is set up appropriately in the scheduling section.

##############################################################

# Main Loop by $catnum continued: Run GTDS DC #

500 # #

##############################################################

foreach $fh ("STDOUT","LOGINFO") {
print $fh " Epoch ${dcstartymd} ${dcstart_hms}\n";

505 print $fh "-" x 40,"\n";
print $fh "\nUNIX-GTDS\n";

print $fh "Charles Stark Draper Laboratory\n\n";

print $fh ("Run started at: ", get-time(, "\n");

165



APPENDIX D. ANNOTATED CODE

}

undef $grandchild-id;

if ($grandchildid = fork) {

local $SIG{USR1} = sub {

# Parent or first-generation child process

# Define anonymous sub to kill GTDS

# The next several lines contain debug stuff. Uncomment if having problems
# with process control.

waitpid $grandchilEdid, 0; # Wait for child process to finish

elsif (defined $grandchifd-id) { # Grandchild process

local $SIG{ALRM} = sub { # Define local ALRM signal handler
kill 'USR1', $child[id{$procnum]; # Send USR1 signal to parent

# if local alarm goes off
foreach $fh ("STDOUT","LOGINFO") {

545 # DEBUG

550

I
555

code, again
print $fh "${procnum} Sending USR1 to $child-id[$proc-numl. .\n";

}

alarm $timelimit; # Initialize alarm to go off in $time-limit sec
system(" $ENV{GTDSEXE}/gtds .exe ");
alarm 0; # Turn off alarm if GTDS finishes before $time-limit
die "Exiting grandchild process. . .\n";

foreach $fh ("STDOUT","LOGINFO") {
print $fh ("Run ended at: ", get-timeo, "\n");

}

166

510

515

520 #

525 #

530

print "Process ${ procnum}\n";

foreach $line (
print $line;

}
print"${proc num} Grandchild $grandchild id\n";

$ps = 'ps -f | grep -v grep I grep $grandchilfdid I grep gtds';
print "${procnum} $ps\n"; #another debug lines

($uid,$gtds-id) = split (" ",$ps);
foreach $fh ("STDOUT","LOGINFO") {

print $fh "GTDS run has exceeded time limit;\n";
print $fh "Killing process $gtds-id\n";

}
kill 'QUIT', $gtds-id;

535

}

540



D.4. ESTBFS.PL 167

560 # #
# Main Loop by $catnum continued: Process GTDS DC output #

##############################################################

565 # Read GTDS outfile.
# Test if run converged; set flags and read $rho], $ht-per

open OUTFILE, "GTDS\$006" or die "Couldn't open GTDS\$006, $!\n";
$ht-per = 0;

570 $rhol = 0;

OUTLINE: while (defined($outflne = <OUTFILE>)) {
if (!$converged && ($outeine /^\s+\*{5} DC CONVERGED/)) {

$converged = 1;
575 $div-cnt = $run-num;

$conv-epoch{$run-num} [ adcstart-cal ];
if ($conv-epoch{$run-nun}[0] > 99) { # Remove GTDS formatting if necessary

$conv-epoch{$run-num}[0] - 100;
$conv-epoch{$run-num}[0] = sprintf("%02d", $conv-epoch{$run-num}[0]);

580 }
if ($first-run) {$first-run 0;}

}
if ($converged) {

if (!$ht-per && ($outfine /^\s+HT\. OF PERIFOCUS\s+(\d+\.\d+)\s/)) {
585 $ht-per = $1;

}
if ($ht-per && ($outfine s/^\s+AERO VARIATION

\(RHO1\)\s+=\s*(- *\d\.\d{8})D([ +-]\d{2})/$le$2/)) {
$rhol = $outline;

590
# Throw out $rhol values that are obviously not valid

if (abs($rhol) > $rhol-tol) {$converged = 0;}
last OUTLINE;

595

}
}

close OUTFILE;
600

# If converged, write to log, write line to ballfcts.txt

if ($converged) {
foreach $fh ("STDOUT","LOGINFO") {

605 print $fh ("Run converged with rhol = $rhol.\n");

}
$attrib-time = ($dc-start-jul + $dc-end-jul)/2;
$C-d-est = $C-d*(1+$rhol);
$B-est = ($C-d-est*$Ax)/(2*$mass);

610 printf BALLFCTS "%5s X12.4f X7.10E %7.10E\n", $catnum, $attribtime,



168 APPENDIX D. ANNOTATED CODE

$B-est, $ht-per;

}

else {
615 foreach $fh ("STDOUT","LOGINFO") {

print $fh ("Run diverged or bad rhol: $rhol\n");

}
}

620 ##############################################################

# Main Loop by $catnum continued: finish loop and clean up #

##############################################################

625
system q { /usr/bin/tcsh -c 'rm GTDS\$* >& /dev/null'

# Remove any GTDS$* links

system q { /usr/bin/tcsh -c 'rm tmp.* >& /dev/null' }; # Remove any temp files
system q { /usr/bin/tcsh -c 'rm core >& /dev/null' }; # Remove core

630
# Increment counters and check for end-of-run.

} continue {

635 $dc-start-jul += $increment;

$dc-end-jul += $increment;
$run-num += 1;

if ($dc-end-jul > $end-jul) {$in-span = 0;}

}
640

} continue {

# Deal with large data files generated by DC runs by zipping or
# deleting, depending on the value of the $keep-data input variable.

645

if ($keep-data == 1) {
foreach $fh ("STDOUT","LOGINFO") {

print $fh ("Compacting .output and .gtds files. . .\n")

}
650 system qq! tar cf $ENV{ATMDC}/${iter-opt}/${catnum}-dcall.output.tar \\

$ENV{ATMDC}/${iter-opt}/${catnum}dc\[0 -9\]\*.output;
gzip -v $ENV{ATMDC}/${iter-opt}/${catnum}dc-all.output.tar;
rm $ENV{ATMDC}/${iter-opt}/${catnum}_dc-\[0-9\]\*.output; !;

system qq! tar cf $ENV{ATM-DC}/${iter-opt}/${catnum}_dcall.gtds.tar \\
655 $ENV{ATMDC}/${iter-opt}/${catnum}_dc_\[0-9\]\*.gtds;

gzip -v $ENV{ATMDC}/${iter-opt}/${catnum}_dcall.gtds.tar;
rm $ENV{ATMDC}/${iter-opt}/${catnum}dc_\[0-9\]\*.gtds;

}
else {

660 foreach $fh ("STDOUT","LOGINFO") {
print $fh ("Deleting .output and .gtds files. . .\n)



D.4. ESTBFS.PL

}
system

665

I
I

qq(rm \\
$ENV{ATM-DC}/${iteropt}/${catnum}_dc\[0- 9\]\*.output;
rm $ENV{ATM-DC}/${iter-opt}/${catnum}_dc \[0-9\]\*.gtds;);

670 #
# Other cleanup

675 # If parent, wait for slow-finishing children processes

if ($proc-num =. 1) {
for ($1 2; $1 < $num-procs; $i++) {

waitpid $chiEd-id[$i],O;
foreach $fh ("STDOUT","LOGINFO") {

print $fh ("Ended process $i at or before: ", get-time(, ".\n");

I
foreach $fh ("STDOUT","LOGINF0") {

print $fh ("Ballistic Factor Estimation Complete.\n");

685 )
}

}
else {

print LOGINFO ("Process $procnum finished
690 close LOGINFO;

close BALLFCTS;
die ("Ending process $proc-num");

# This is probably not the cleanest way to end
# but it works.

695

}

close LOGINFO;
close BALLFCTS;

700 return;

at: ", get-time(,".\n");

child processes,

# DC Card Deck Format: Sim Data #
705 # #

##############################################################

#234567890#234567890#234567890#234567890#234567890#234567890#234567890#234567890

format DCCARD_
710 CONTROL DC

EPOCH

@<<<<<<< A>>>>>>>
$intf-des, $catnum

@<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<

169

680



ANNOTATED CODE

(>>>>>>@<<<<<<<<<<<
$epoch-ymd, $epoch-hms, $epoch-adv-ymd, $epoch-adv-hms

715 ELEMENT1 1 1 1 @<<<<<<<<<<<<<<<<<<< Q<<<<<<<<<<<<<<<<<<

$aprioris[0], $aprioris[1], $aprioris[2]
@q<<<<<<<<<<<<<<<<<<< @Q<<<<<<<<<<<<<<<<<<ELEMENT2

720 $aprioris[3],
ORBTYPE 2 1 1 60.
OBSINPUT 5 @>>>

$aprioris[4], $aprioris[5]

>>>@<<<<<<<<<<<< (>>>>>>@<<<<<<<<<<<
$dc-start-ymd, $dc-start hms, $dc-end-ymd, $dc-end-hms

DMOPT
725 /FLYQ 1 0346

/PARQ 1 0396
/EGLQ 1 0399
/KAEQ 1 0932
END

730 DCOPT
/FLYQ 0 1 4
/PARQ 0 1 4
/EGLQ 0 1 4
/KAEQ 0 1 4

735 ELLMODEL 1
/FLYQ 200001
/PARQ 200001
/EGLQ 200001
/KAEQ 200001

740 TRACKELV 3

3
3
3
3

5
5
5
5

338.900
347.300

0.380
300.459648

35.0
48.0
30.0
4.631
6378.135

541242.8299
484329.1839
303420.7790

213419.4537

54.0
54.0
45.0
29.5
298.26

3591947.6900
2620600.8719
2734706.5526

2014359.7376002

54.0
46.8
45.0
30.42

5.0
EDIT 3.0
PRINTOUT 1 1
CONVERG 25 6 1.OD-4
END

745 OGOPT
DRAG 1 1
ATMOSDEN 1
DRAGPAR 3 0 @<<<<<<<<<<<<<<<<<<<

$C-d
750 DRAGPAR 1

SCPARAM
$Ax-km,

MAXDEGEQ 1
MAXORDEQ 1

755 MAXDEGVE 1
MAXORDVE 1
POTFIELD 1 4
SOLRAD 1 1
END

760 FIN
CONTROL EPHEM

$mass
4
4
4
4

.0

OUTPUT @<<<<<<< @>>>>>>>
$intE des, $catnum

OUTPUT 1 2 1 «<<<<<<<<<<<<<<<<<<< q<<<<<<<<<<<<<<<<<< 10800.0

170 A PP ENDIX D.

@<<<<<<<<<<<<<<<<<<<@A<<<<<<<<<<<<<<<<<<



D.4. ESTBFS.PL 171

$dc-strt-eph-ymd, $dc-strt-eph-hms
765 ORBTYPE 2 1 1 60.0

OGOPT
ATMOSDEN 1
DRAG 1 1
DRAGPAR 3 0 2.2

770 SCPARAM @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<
$Ax-km, $mass

POTFIELD 1 4
MAXDEGEQ 1 4.0
MAXORDEQ 1 4.0

775 SOLRAD 1 1.0
END
FIN
CONTROL EPHEM OUTPUT @<<<<<<< A>>>>>>>

$intE-des, $catnum
780 OUTPUT 1 2 1 A<<<<<<<<<<<<<<<<<<< «<<<<<<<<<<<<<<<<<< 86400.0

$dc-end-eph-ymd, $dc-end-eph-hms
ORBTYPE 2 1 1 60.0
OGOPT
ATMOSDEN 1

785 DRAG 1 1
DRAGPAR 3 0 2.2
SCPARAM @<<<<<<<<<<<<<<<<<<< q<<<<<<<<<<<<<<<<<<

$Ax-km, $mass
POTFIELD 1 4

790 MAXDEGEQ 1 4.0
MAXORDEQ 1 4.0
SOLRAD 1 1.0
END
FIN

795 .
##############################################################

# DC Card Deck Format: Real Data #

800 ##############################################################

#234567890#234567890#234567890#234567890#234567890#234567890#234567890#234567890

format DCCARDREAL
CONTROL DC -<<<<<<< q>>>>>>>

805 $intt-des, $catnum
EPOCH q<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<
@0>>>>>>@a<<<<<<<<<<<

$epoch-ymd, $epoch-hms, $epoch-adv-ymd, $epoch-adv-hms
ELEMENTI 1 1 1 <<<<<<<<<<<<<<<<<<< <<< <<<<<

810 «<<<<<<<<<<<<<<<<<<<
$aprioris[0], $aprioris[1], $aprioris[2]

ELEMENT2 <<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<
@Q<<<<<<<<<<<<<<<<<<<

$aprioris[3], $aprioris[4], $aprioris[5]



172 APPENDIX D. ANNOTATED CODE

815 ORBTYPE 2 1 1 60.
OBSINPUT 5 @>>>>>>@<<<<<<<<<<<< «>>>>>>@<<<<<<<<<<<

$dc-start-ymd, $dc-start-hms, $dc-end-ymd, $dc-end-hms
DMOPT
/FLYF 1 0346

820 /PPWQ 1 0388
/PPWF 1 0389
/EGLQ 1 0399
/NAVQ 1 0745
END

825 DCOPT
/FLYF 0 1 4
/PPWQ 0 1 4
/PPWF 0 1 4
/EGLQ 0 1 4

830 /NAVQ 0 1 4 5
ELLMODEL 1
/FLYF 200001
/PPWQ 200001
/PPWF 200001

835 /EGLQ 200001
/NAVQ 200001
TRACKELV 3
EDIT
PRINTOUT 1

840 CONVERG 25
END
OGOPT
DRAG 1
ATMOSDEN

845 DRAGPAR 3 C

3
3
3
3
3

388.900
82.780
82.780
0.380

305.300

5 35.0
5 40.0

5 40.0
5 30.0
1979.0

6378.135

6

541242.8299
390809.3764
390810.1652

303420.7790
333314.3388

54.0
36.0
36.0

45.0
64.8

298.26

3591947.6900
2383857.3529
2383856.8705

2734706.5526
2611413.5272

54.0
36.0
36.0

45.0
122.4

5.0
3.0
1

1.0D-4

1
1

$C-d
DRAGPAR 1
SCPARAM Q<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<

$Axkm,
850 MAXDEGEQ 1

MAXORDEQ 1
MAXDEGVE 1
MAXORDVE 1
POTFIELD 1 4

855 SOLRAD 1 1
END
FIN
CONTROL EPHEM

$mass
4
4
4
4

.0

OUTPUT @<<<<<<< Q>>>>>>>
$intftdes, $catnum

860 OUTPUT 1 2 1 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<< 10800.0

ORBTYPE
OGOPT
ATMOSDEN

865 DRAG 1

$dc-strt-eplymd, $dc-strt-eph-hms
2 1 1 60.0

1
1

0



D.4. ESTBFS.PL

DRAGPAR 3 0 2.2
SCPARAM A<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<

$Ax-km,
POTFIELD 1 4

870 MAXDEGEQ 1
MAXORDEQ 1
SOLRAD 1 1
END
FIN

875 CONTROL EPHEM

$mass

4.0
4.0
.0

OUTPUT @<<<<<<< A>>>>>>>
$intf-des, $catnum

OUTPUT 1 2 1 q<<<<<<<<<<<<<<<<<<< Q<<<<<<<<<<<<<<<<<< 86400.0
$dc-end-eph-ymd, $dc-end-eph-hms

ORBTYPE 2 1 1 60.0
880 OGOPT

ATMOSDEN 1
DRAG 1 1
DRAGPAR 3 0 2.2
SCPARAM @<

885 $

POTFIELD 1 4
MAXDEGEQ 1
MAXORDEQ 1
SOLRAD 1

890 END
FIN

<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<
Ax-km, $mass

4.0
4.0

1.0

} # closes sub estbfs

895 1; # returns true for require statement in dr-atmcal.pl

900

173



APPENDIX D. ANNOTATED CODE

D.5 calcvars.pl

Table D.5: calcvars.pl Fact Sheet

Function Calculates and predicts atmospheric density corrections.
Optionally calculates improved ballistic factors.

Language Perl
Type Subroutine
Location AtmoCal include subdirectory
Input Files initinfo.txt and ballfcts.txt or initinfo_(#-1).txt and

ballfcts_#.txt
Environment Variables $ATMCAL must be set.
Data Structure Requires: $ATMCAL/$iter-opt must exist.

Creates: None.
Output Files calcvars.log in $ATMCAL$iter opt, ballfcts.txt.sort, ar-

ray-tmp.txt, and jacdensvars.txt, or ballfcts_#.txt.sort,
arraytmp#. txt, jac densvars_#.txt and initinfo_#. txt in
$ATM-CAL/$dc opt

Syntax &calcvars($dcopt, $iter-opt, $initfile,
$outfile, $blfcfile, $tmpfile, $dnsvarfile,
$iterate, $do-global);

User-Defined Variables

$tau-min minimum length of correction span (nominally .125 (lays,
which is 3 hours).

$min-numk . minimum number of ballistic factor estimations required
per span.

$increment amount to lengthen $tau.min by if necessary.

174



D.5. CALCVARS.PL

Commented Code # calcoars.pl - Density Variation Calculator Program

# Author:

5 # George R. Granholm

# 30 Apr 00

10 sub calevars {

##############################################################

# Header section #
15 # #

##############################################################

# Add environment-specific path and import modules

20 BEGIN {
push @INC, "$ENV{ATMCAL}/AtmoCal/include";

}

use Dates;

25 use Localmath;

use FileHandle;

use MatrixReal;

# Read input options

30

my ($dc-opt,$iter-opt,$initfile,$initnew,$btfcfile,$tmpfite,$dnsvarfile,$bfe-iterate,$do-global) = _;

# Set options & variables

35 $eogfife "$ENV{ATMCAL}/${iteropt}/calcvars.log";

$sortdfife $bffcfiee . sort";

$tau min .125; # Minimum length of each span j (days)

$min-num-k = 35;
40 # Minimum number of ballistic factor estimation per span j

$increment = .125; # Increment to add to $tau-min

# Define f_1 and f_2 (linear density variation functions)

45 sub Li {
return "1";

}

sub L2 {

175



176 APPENDIX D. ANNOTATED CODE

50 my $h = shift(@_);
my $value = ($h - 400)/200;
return $value;

}

55 # Open or redirect files

open LOGINFO, ">>$logfile" or die "Unable to open $logfile, died";
open STDERR, ">>&LOGINFO" or die "Unable to redirect stderr, died";

# Redirect STDERR to LOGINFO
60 open TMPFILE, ">$tmpfile" or die "Unable to open $tmpfile, died";

foreach $fh ("STDOUT", "LOGINFO", "STDERR", "TMPFILE") {
$fh ->autoflush(l);

}
65

# Write header to $logfile and STDOUT

foreach $fh ("STDOUT", "LOGINFO") {
print $fh "-"x 50,"\n";

70 print $fh "-" x 50,"
print $fh "\tcalcvars.pl: Processing ${initfile}\n";
print $fh "-" x 50,"\n";

print $fh ("\tJob started at ", get-timeo, "\n");
print $fh "-" x 50,"\n";

75 }

# Open and read $initfile

$std-count = 0;
80 $nonstd-count = 0;

open INITINFO, "$initfile" or die "Unable to open $initfile, died";

INITLINE: while (defined($eine = <INITINFO>)) {
85

90

$ine =~ s/^(\d{5})\s//;
$initinfo{$l} = [ split(" ",$fine) ];
if ($initinfo{$1}[4] eq 'S') {

$initinfo-std{$1} = $initinfo{$1};
$stdcount++;

}
else {

$initinfo-nonstd{$1} = $initinfo{$l};
$nonstd-count++;

95 )

}

close INITINFO;
100



D.5. CALCVARS.PL 177

# Sort $blfcfile by attribution time

foreach $fh ("STDOUT", "LOGINFO") {
print $fh "Sorting ballistic factors by attribution time. . .\n";

105 }

# A test should be put to make sure $blfcfile exists. The following
# doesn't work properly, though. (it always dies)
# unless (-e $blfcfile) {die "$blfcfle does not exist, died";}

110
system "sort -nk2,2 $blfcfile > $sortdfile";

# Read $sortdfile into

115 undef $Eine;
undef @blfcs;
open BLFCFILE, "$sortdfile" or die "Unable to open $sortdfile, died";
$index = 0;

120 while (defined($Vine = <BLFCFILE>)) {
$bEfcs[$index] [ split(" ",$Eine) ];
$index++;

}

125 close BLFCFILE;

$j = 0;
$span-time[0] = $bffcs[O][1];
$end-time = $bffcs[$#blfcs][1];

130 $isave = 0;

foreach $fh ("STDOUT", "LOGINFO") {
print $fh "Building $tmpfile. . .\n";

}
135

# Begin main loop

while ($span-time[$j] <= $end-time) {

140 $tau[$j] = $tau-min;

COUNTBLFCS: for ($i = $i-save; $i <= $#blfcs; $i++) {
if ($btfcs[$][1] < ($span-time[$j] + $tau[$j])) {

# Put in test for negative ball. factors here??
145 $temp-array[$i-$i-save] = $btfcs[$i];

}
else {

$i-save = $i;
last COUNTBLFCS;

150 }
}



APPENDIX D.

# Test for enough estimations in span

155 if ($#temp-array < $min-numk) {
$tau[$j] += $increment;
$i-save -= ($#temp-array+1);
goto COUNTBLFCS;

}
160

else {

# Define arrays for MATLAB input

165 foreach $fh ("STDOUT", "LOGINFO") {
print $fh "Span $j: [$spantime [$j] "
$span-time[$j] + $tau[$j],")\n";

}
170 undef c@F;

undef CIGa;
undef CP;

print TMPFILE "$span.time [$j] ", ($#temp-array+1), "\n";

for ($n = 0; $n <= $#temp-array; $n++) {
$F[$n] = [ f_1($temp-array[$n][3]), f_2($temp-array[$n][3]) ];
$a[$n] = ($temp-array[$n][2]/$initinfo{$temp-array[$n][0]}[1]) - 1;
$P[$n] = 1/$initinfo{$temp-array[$n][0]}[3];
print TMPFILE "$F[$n] [01 $F[$nl [1] $a[$n] $P[$n]\n";

}

} continue {
185 undef @temp-array;

$j++;
$span-time[$j] = $span-time[$j-1] + $tau[$j-1];

}

190 close TMPFILE;

# Run MATLAB to calculate density variations

system q { /usr/bin/tcsh -c 'rm startup.m >& /dev/null' }; # Remove startup.m
195 symlink("$ENV{ATMCAL}/calc_b. m", "startup.m"); # Make link

system 'matlab'; # Run calcb
system q { /usr/bin/tesh -c 'rm startup.m >& /dev/null' }; # Remove startup.m

# Load in densvars.txt
200

$index = 0;

178 ANNOTATED CODE

175

180

}



D.5. CALCVARS.PL

open DENSVARS, "<$dnsvarfile";

205 while (defined($denstine = <DENSVARS>)) {
$densvars[$index] [ split(" ",$densfine) ];
$index++;

}
210 close DENSVARS;

if ($bfeiterate) {
# Calculate residuals for estimation of "true" ballistic factors

215 foreach $fh ("STDOUT", "LOGINFO") {
print $fh ("Calculating \"true\" ballistic factors. . .\n

}

$densvars[$index] = $densvars[$index-1];
220 $densvars[$index][0] += $tau-min*2;

$j = 0;
undef %resid-sum;
undef %height-avg;
undef %N;

225 undef %Delta-part;
undef %Delta-sqrd;
undef %Q;

for ($i 0; $i <= $#blfcs; $i++) {
230

if ($bffcs[$i][1] >= $densvars[$j+1][0]) {
$j++;

}-
235 $residsum{$bfcs[$i][o]} += (1 + $densvars[$j][1]*L1($btfcs[$i][3]) +

$densvars[$j][2]*f_2($bffcs[$i][3]));
$height-avg{$bfcs[$i][0]} += $btfcs[$i][3];
$N{$bffcs[$i][O]} += 1;
$Deltapart{$bffcs[$i][0]} += ($btfcs[$i][2]/$initinfo{$bfcs[$i][0]}1[]) - 1;

240 $Dettasqrd{$bfcs[$i][0]} += (($bffcs[$i][2]/$initinfo{$bfcs[$i][0]}[1]) - 1
- $densvars[$j][1]*L1($bfcs[$i][3])
- $densvars[$j][2]*L2($bffcs[$i][3]))**2;

245 if ($do-global == 1) {

# Organize data for first-stage corrections

undef $F;
250 undef $F-trans;

undef $x;
undef $a;
$F = new Math: :MatrixReal($std-count,2);

179



180 APPENDIX D. ANNOTATED CODE

$Ftrans = new Math::MatrixReal(2,$std-count);
255 $x = new Math::MatrixReal($std count,1);

$a = new Math::MatrixReal(2,1);
$row = 1;

STDSAT: foreach $catnum (sort keys %initinfo-std) {
260

next STDSAT unless ($N{$catnum});

# Calculate Q factor and average height for each standard sat.

265 $height avg{$catnum} *= 1/$N{$catnum};
$Q{$catnum} = ($Dettapart{$catnum} - $resid-sum{$catnum} +

$N{$catnum})/$N{$catnum};

# Store Eq.(2.36) calculations and Q values in $F and $a matrices

270

$fl = 1;
$f2 = ($height_avg{$catnum}-200)/200;
$F->assign($row,1,$fl);
$F ->assign($row,2,$f2);

275 $x->assign($rowl,$Q{$catnum});

$row++;

}
280

# Calculate a[1] and a[2] in Eq.(2.36) using least squares

$F_trans->transpose($F);
$prod = $F-trans*$F;

285 $LR-prod = $prod ->decomposeLRO;
$prod-inv = $LRprod->invert_LR(;
$prod2 = $F-trans*$x;

$a = $prod-inv*$prod2;
290

$al $a->element(1,1);
$a2 $a ->element(2,1);
foreach $fh ("STDOUT", "LOGINFO") {

print $fh "Al = ${al} and A2 = ${a2}\n";
295 }

# Apply 1st stage correction factor in Eq.(2.37)

foreach $fh ("STDOUT", "LOGINFO") {
300 print $fh "Calculating Global Correction Factors . . .\n

}

NONSTDSAT: foreach $catnum (sort keys %initinfo-nonstd) {
if ($N{$catnum}) {



D.5. CALCVARS.PL 181

305 print LOGINFO "${N{$catnum}} observations for satellite ${catnum}\n";

}
else {

print LOGINFO "No observations for satellite ${catnum}\n";

}
310 next NONSTDSAT unless ($N{$catnum});

$height_avg{$catnum} *= 1/$N{$catnum};
$Q{$catnum} = ($Deltapart{$catnum} - $resid sum{$catnum} +

$N{$catnum})/$N{$catnum};
$xi = 1 + ($al + $a2*(($height-avg{$catnum} - 200)/200))*

315 $N{$catnum}/$resid-sum{$catnum};
$initinfo{$catnum}[1] *- $xi;
print LOGINFO "${xi}, ${catnum}\n";

}
320

# Apply second-stage correction factor in Eq.(2.32)

# First recalculate residuals with corrected "true" ballistic factors
# Note: $resid-sum and $N do not change

325

undef %Delta-part;
undef %Q;

for ($1 = 0; $i <= $#blfcs; $i++) {
330 $Detta part{$bfcs[$i][O]} += ($bEfcs[$i][2]/$initinfo{$btfcs[$i][0]}[1]) - 1;

}

# Now calculate correction factor
foreach $fh ("STDOUT","LOGINFO") {

335 print $fh "Calculating individual correction factors. . .\n";

}
NONSTDSAT2: foreach $catnum (sort keys %initinfo-nonstd) {

next NONSTDSAT2 unless ($N{$catnum});
340

$Q{$catnum} = ($Dettapart{$catnum} - $resid-sum{$catnum} +
$N{$catnum})/$N{$catnum};

$psi = 1 + $Q{$catnum}*$N{$catnum}/$resid-sum{$catnum};
$initinfo{$catnum}[l] *= $psi;

345 print LOGINFO "${psi}, ${catnum}\n";

}
}
else { # If not first iteration

350

# Calculate second-stage correction factor only

NONSTDSAT3: foreach $catnum (sort keys %initinfo-nonstd) {
if ($N{$catnum}) {

355 print LOGINFO "${N{$catnum}} observations for satellite ${catnum}\n";



182 APPENDIX D. ANNOTATED CODE

}

next NONSTDSAT3 unless ($N{$catnum});
$Q{$catnum} = ($Deeta-part{$catnum} - $resid-sum{$catnum} +

360 $N{$catnum})/$N{$catnum};
$psi = 1 + $Q{$catnum}*$N{$catnum}/$resid-sum{$catnum};
print LOGINFO "Psi = ${psi} for satellite ${catnum}\n";

$initinfo{$catnum}[l] *= $psi;

}
365 )

# Calculate variance using ML estimate:

SAT: foreach $catnum (sort keys %initinfo) {
370

next SAT unless ($N{$catnum});
$initinfo{$catnum}[3] = $Defta-sqrd{$catnum}/$N{$catnum};

}

375 # Write new initinfo.txt

open INITNEW, ">$initnew";

foreach $catnum (sort keys %initinfo) {
380 printf INITNEW "%5s X8s %7.10E %7.10E %7.10E %1s X2d\n", $catnum,

$initinfo{$catnum}[0],$initinfo{$catnum}[l],$initinfo{$catnum}[2],$initinfo{$catnum}[3],
$initinfo{$catnum}[4],

$initinfo{$catnum}[5]

}
385

close INITNEW;
} # End BFE iteration

foreach $fh ("STDOUT", "LOGINFO") {
390 print $fh "-" x 50,"\n";

print $fh ("\tJob ended at ", get-time(, "\n");

print $fh "-" x 50,"\n";

}

395 close LOGINFO;

} # End subroutine

1; # Returns true for require statement in dr-atmcal.pl

400



D.6. DRIVERS FOR ESTBFS.PL AND CALCVARS.PL

D.6 Drivers for estbfs.pl and calcvars.pl

Table D.6: runestbfs.pl Fact Sheet

Function Runs the estbfs.pl subroutine once.

Language Perl

Type Main Program
Location Main AtmoCal Directory
Input Files None (see estbfs.pl fact sheet)
Environment Variables $ATMCAL and $ATMDC must be properly set.
Data Structure Requires: $A TM-DC must exist.

Creates: $ATMDC/$dcopt

Output Files None (see estbfs.pl fact sheet)

User-Defined Variables
Also see variables for estbfs.pl

$start-epoch Beginning of fit window

$end.epoch End of fit window
$ephem-opt subdirectory in $ATM-EPHEM for initial ephemerides

created by TLE2osc.pl

$data-opt subdirectory containing OBSCARD data (in
$ATMDATASIM for simulated observations, and
in $ATM-REALDATA for real observations)

$dc-opt subdirectory in $A TMDC and $A TM CA L for data and
log files

$num-procs Number of processes to spawn in estbfs.pl - must be at
least 1

$keep-data Save large data files? 1=yes, O=no.

$iterate is this part of a BFE iteration? 1=yes, 0=no.
$iter iteration number (is irrelevant if $iterate=O)
$simulated Is this simulated data? 1=yes, O=no.

Table D.7: runcalcvars.pl Fact Sheet

Function Runs the calcvars.pl subroutine once.

Language Perl

Type Main Program
Location Main AtmoCal directory

Input Files None (see calcvars.pl fact sheet)
Environment Variables Requires: $ATMCAL properly set.

continued on next page...

183



APPENDIX D. ANNOTATED CODE

Table D.8: bfe-iter.pl Fact Sheet

Function Runs estbfs.pl and calcvars.pl repeatedly for improving
BFEs.

Language Perl

Type Main Program

Location Main AtmoCal directory

Input Files None (see estbfs.pl and calcvars.pl fact sheets)
Environment Variables Requires: $ATMCAL, $ATMDC must be properly set.

Creates: $ATMITER, $ATMTMP, $ATMDNSVAR,
$ATMITEROPT for calc-b.m to use.

Data Structure

Creates:

Output Files None (see estbfs.pl and calcvars.pl fact sheets)

User-Defined Variables

$start-epoch Beginning of fit window

$end-epoch End of fit window

$ephem-opt subdirectory in $ATM-EPHEM for initial ephemerides
created by TLE2osc.pl

$data-opt subdirectory containing OBSCARD data (in

$ATMDATASIM for simulated observations, and

in $ATMREALDATA for real observations)

continued on next page...

... continued from previous page

Creates: $ATMITER, $ATM-TMP, $ATMDNSVAR,
$ATMITEROPT for calc-b.m to use.

Data Structure Requires: None (see calcvars.pl fact sheet)
Creates: None (see calcoars.pl fact sheet)

Output Files None (see calcvars.pl fact sheet)

User-Defined Variables

$dc-opt subdirectory in $ATMDC and $ATMCAL for data and
log files (normally the same as that used in the preceding
runestbfs.pl run.

$iterate is this part of a BFE iteration? 1=yes, O=no.

$iter iteration number (is irrelevant if $iterate=O)

$do-global apply global ballistic factor correction? 1=yes, 0=no.
(irrelevant if $iterate=O.)

184



D.6. DRIVERS FOR ESTBFS.PL AND CALCVARS.PL

... continued from previous page

$dc-opt subdirectory in $ATMDC and $ATMCAL for data and
log files

$num-procs Number of processes to spawn in estbfs.pl - must be at
least 1

$keep-data Save large data files? 1=yes, O=no.
$iterate is this part of a BFE iteration? 1=yes, O=no.
$iter iteration number (is irrelevant if $iterate=O)
$simulated Is this simulated data? 1=yes, O=no.
$do-global apply global ballistic factor correction? 1=yes, O=no.

(irrelevant if $iterate=0.)
$num-iters Number of times to iterate - must be at least 1
$startiter Starting iteration number. Normally 1, can be set higher

to run iterations one at a time or to restart after a crash.
$datafilestosave Sets which large data files to save: "all", "none", or

"last", which saves only those from the final iteration.

185



186 APPENDIX D. ANNOTATED CODE

Commented Code (runestbfs.pl) #!/usr/bin/perl -w

# runestbfs.pl Drives just the estbfs.pl subroutine.

5 # Author:

# Sarah E. Bergstrom

# May 02, 2002

10
##############################################################

# Header section #

15 ##############################################################

# Include subroutines

BEGIN {
20 push AINC, "$ENV{ATMCAL}/AtmoCal/include";

}

require "estbfs.pl";

25 # Set file options and variables

$start-epoch "991215 000000.0";
$end-epoch "1000115 000000.0";
$ephemopt "lowgrav"; # locatio'n of initial ephemerides

30 $data-opt = "lowgrav-noise"; # location of simulated (or real) data.

$dc-opt = "noisemismodel"; # playground for GTDS large files

$num-procs 1; # Number of processes to spawn in estbfs.pl (including parent)
$keep-data=1; # Save large data files?

$iterate=0; # Is this part of BFE iteration?
35 $iter=1; # Iteration number, only used if iterate=1.

$simulated=1; # 1 = sim data, 0 = real data.

# Call estbfs.pl with appropriate options

40 mkdir "$ENV{ATMDC}/${dc.opt}",0777;

if ($iterate) {
$iter-opt $dc-opt . "/iter${iter}";

$initfile "$ENV{ATMCAL}/${dc-opt}/initinfo.txt_" . ($iter-1) . ".txt";

45 $befcfile "$ENV{ATMCAL}/${dc-opt}/ballfcts_" . $iter . ".txt";

mkdir "$ENV{ATMCAL}/${iter-opt}",0777;

mkdir "$ENV{ATMDC}/${iteropt}",0777;

} else {
$iter-opt $dc-opt;



D.6. DRIVERS FOR ESTBFS.PL AND C.A LCVA RS.PL 187

50 $initfile = "$ENV{ATMCAL}/${dc-opt}/initinfo.txt";

$bffcfile "$ENV{ATMCAL}/${dcopt}/ballfcts .txt";

}

&estbfs($start-epoch,$end-epoch,$ephem opt.,$data-opt,$iter-opt,
55 $initfite,$bEfcfife,$num _procs,$keepdata,$simulated);

60

65

Commented Code (runcalcvars.pl) #!/usr/ bin/perl -w

# runcalcvars.pl - Run just calcoars.pl.

5 ##############################################################

# Header section

####################################################gg####ggg#

10

# Include subroutines

BEGIN {
push @INC, " $ENV{ATMCA L}/AtmoCal/include";

15 }

require 'calcvars . pl';

# Set file options and variables
20

$dc-opt "nonoise-mismodel";
$iterate 0; # Is this part of a BFE iteration? 1=yes, O=no.
$iter 1; # set this by hand, only used if $iterate=1.
$do-global = 1; # only looked at if $iterate=1

25

if ($iterate) {

30 $iter-opt $dc-opt . "/iter${iter}";

$initfife "$ENV{ATMCAL}/${dc-opt}/initinfo_" . ($iter-1) . ".txt";
$btfcfile "$ENV{ATMCAL}/${dc-opt}/ballfcts_" . $iter . ".txt";



APPENDIX D. ANNOTATED CODE

$outfife
$tmpfife

35 $dnsvarfife

"$ENV{ATMCAL}/${dcopt}/initinfo_" $iter ".txt";

"$ENV{ATMCAL}/${dc-opt}/array-tmp_" . $iter ".txt";

= "$ENV{ATMCAL}/${dc-opt}/jac-densvars_ " . $iter . ".txt";

} else {

$iter-opt = $dc-opt;

40 $initfilee "$ENV{ATMCAL}/${dcopt}/initinfo.txt";

$bffcfile "$ENV{ATMCAL}/${dc-opt}/ballfcts.txt";

$outfile "$ENV{ATMCAL}/${dcopt}/junk.txt";

# $outfile 'junk.txt" because it won't actually be used, but it was

# easier just to put a placeholder in.

45 $tmpfife = "$ENV{ATMCAL}/${dc-opt}/array-tmp.txt";
$dnsvarfiee "$ENV{ATMCAL}/${dc-opt}/jac-densvars.txt";

$iter=1;

50
}

# Call calcvars.pl with appropriate options

$ENV{ATMITER} $iter;
$ENV{ATMTMP} $tmpfile;

55 $ENV{ATM_DNSVAR} = $dnsvarfite
$ENV{ATMITEROPT} = $iter-opt

# So that MATLAB can access the variables

&calcvars($dc-opt,$iter-opt,$initfite,$outfile,$btfcfilte,$tmpfile,$dnsvarfile,

$iterate,$do-global);

60

65

Commented Code (bfe-iter.pl) #!/usr/bin/perl -w

# bfe-iter.pl - Ballistic Factor Estimation Iteration Program

5 # Author:

# George R. Granholm
# 23 May 00

10 # Edited to make estbfs.pl a real subroutine
# 19 Oct 01

188



D.6. DRIVERS FOR ESTBFS.PL AND CALCVARS.PL 189

# Various and sundry minor changes, including formatting
# 01 Mar 02

15 #

##########################################################g##g

# Header section #
20 #

##############################################################

# Include subroutines

25 BEGIN {
push @INC, " $ENV{ATMCA L}/AtmoCal/include";

}

require "estbfs .pl";
30 require "calcvars.pl";

# Set file options and variables:
# Options affecting both estbfs.pl and calcvars.pl:

35 $start-epoch ="991220 000000.0";
$end-epoch = "991223 000000.0";
$ephemopt "lowgrav";
$data-opt "lowgrav-noise"; # in $ATMREALDATA for real, $ATMDATASIM for sim
$dc-opt = "test2";

40 $numiters = 1; # Number of iterations in est. of "true" ball. factors
$start-iter 1; # 1 normally.
$simulated 1;

mkdir "$ENV{ATMDC}/${dc-opt}",0777;
45

# Options affecting estbfs.pl only:
$numprocs = 1;

# Number of processes to spawn in estbfs.pl (including parent)

50 $datafies-to-save = "none";
# May be set to "all", "last", or "none" (anything else also = "none")

if ($datafies-to-save eq "all") { $keep-data = 1; }
else { $keep-data = 0; }

55 # Options affecting calcvars.pl only:
$when-global = "first"; # Set to "first", "all", "none". (anything else also "none".)

60 # Main Section



190 APPENDIX D. ANNOTATED CODE

for ($iter = $start-iter; $iter <= $num-iters; $iter++) {
65

# Generate iteration-specific options for estbfs.pl

$iter-opt = $dc-opt . "/iter${iter}";
mkdir "$ENV{ATMCAL}/${iter-opt}",0777;

70 mkdir "$ENV{ATMDC}/${iter-opt}",0777;

$initfife "$ENV{ATMCAL}/${dc-opt}/initinfo_" . ($iter-1) . ".txt";

$befcfile "$ENV{ATMCAL}/${dc-opt}/ballfcts_" . $iter ".txt";

75 if (($datafifes-to-save eq "last") && ($iter == $num-iters)) {
$keep-data = 1;

}

# Call estbfs.pl
80

&estbfs($start-epoch,$end epoch,$ephem-opt,$data -opt,$iter-opt,
$initfi(e,$b fcfite,$num-procs,$keep-data, $simulated);

# Generate additional iteration-specific options for calcvars.pl

85

if ($when-global == "all) | | (($iter == 1) && ($when.global == "first") {
$doglobal=1;

} else { $do-global=O; }

90 $tmpfile = "$ENV{ATM-CAL}/${dc-opt}/array-tmp_" . $iter . ".txt";

$dnsvarfile = "$ENV{ATMCAL}/${dc-opt}/jac-densvars-" . $iter . ".txt";
$initnew = "$ENV{ATMCAL}/${dc-opt}/initinfo-" . $iter . ".txt";

$ENV{ATM_ITER} = $iter; # So that MATLAB can access the variables

95 $ENV{ATMTMP} = $tmpfile;

$ENV{ATMDNSVAR} = $dnsvarfile;

$ENV{ATM_ITEROPT} = $iter.opt;

&calcvars($dc-opt,$iter-opt,$initfile,$initnew,$blfcfile,$tmpfile,$dnsvarfile,

100 $do-global, $simulated);

}



D.7. CALCB.M

D.7 calc-b.m

Table D.9: calcb.m Fact Sheet

Function Perform weighted linear least-squares calculation to de-
termine byj and b2y

Language MATLAB
Type Subroutine of calcvars.pl
Location Main AtmoCal directory

Input Files array-tmp.txt or arraytmp_#.txt
Environment Variables $ATMITER, $ATMTMP, $ATMDNSVAR, $ATMITEROPT

must be set by runcalcvars.pl or bfeiter.pl
Data Structure Required: None

Creates: None
Output Files jac-densvars.txt or jacdensvars_#.txt and calc-b.log

User-Defined Variables

NONE

191



APPENDIX D. ANNOTATED CODE

Commented Code (calc'b.m) % calc'b.m

% Author:

5 % George R. Granholm
% 1 May 00

- Density Variation Coefficient Calculator

10 clear all;
warning off;
more off;

% Set environment variables and filenames
15

[status, ATM'CAL] = unix('echo $ATMCAL');
[status,iter] = unix('echo $ATMITER');
[status,ATMTMP] = unix('echo $ATMTMP');
[status,ATM-DNSVAR] = unix('echo $ATMDNSVAR');

20 [status,ATMITEROPT] = unix('echo $ATMITEROPT');

ATMCAL = ATMCAL(1:length(ATMCAL) -1); % Remove newline
iter = iter(1:length(iter) -1);
ATMTMP = ATMTMP(1:length(ATMTMP)-1);

25 ATMDNSVAR = ATM -DNSVAR(1:length(ATM-DNSVAR) -1);
ATMITEROPT = ATMITEROPT(1:length(ATMITER OPT)-1);

model-opt = ATMITEROPT;
tmpfile ATMTMP;

30 outfile = ATMDNSVAR;
logfile 'calc_b.log';

% Open files and initialize variables

35 logid
toler
frcst-day
T
lambda

40 time-grid
sigma-b1
sigma-b2
sigmabl
sigma-b2

45 alpha
calcflag

fopen(strcat(ATMCAL,'/',model-opt,'' ,logfile),' a');
3; % Num. of sigma tolerance for measurements

s 0; % Number of days to forecast
27; % Assumed period of density variations

_r

2*pi/T;
.125;
0.07;
0.07;
0.4;
0.3;

0.241;
1;

% Time grid for forecasting (days)
% Std dev of WGN in b1
% Std dev of WGN in b2
% Std dev of Gauss-Markov RP for b1
% Std dev of Gauss-Markov RP for b2

% Rate of decay of correlation

% Input flag
% 1 = calculate dens vars

% 2 = read from infile

192



D.7. CALCB.M 193

50 if (calc-flag==1)

% Begin loop to calculate density variations in data span

tempid fopen(tmpfile,'r');

55 outid fopen(outfile,'w');

j = 1;
line fgetl(tempid); % Get first line

while line ~= -1
60

clear F a P Pvec;

values = str2num(line);
if length(values) ~= 2

65 fprintf(logid,'Error - improper formatting of array-tmp.txt\n');
disp('Error - improper formatting of array-tmp.txt\n');
return

end
start-time(j) = values(1);

70 array-len = values(2);

% Read in data for span j

for i = 1:array-len,
75 values = str2num(fgetl(tempid));

F(i,1) = values(1);
F(i,2) = values(2);
a(i) = values(3);

Pvec(i) = values(4);
80 end

P = diag(Pvec);

% Test for erroneous measurements
85

a-avg = mean(a);
a-sigma = std(a);

delete-count = 0;
90 i = 1;

while i<=array-len,
if (abs(a(i)-a-avg)/a-sigma) > toler

95 F(i,:) =[; % Delete offending row
a(i) []; % from matrices or

P(i,:) []; % vectors

P(:,i)
array-len array-len - 1;

100 delete-count = delete-count + 1;



194 APPENDIX D. ANNOTATED CODE

end
i = i+1;

105 end

disp(sprintf('%3d meas. > %2d-sigma tol.'..
delete-count, toler));

fprintf(logid,'X3d meas. > X2d-sigma tol.
110 delete-count, toler);

% Calculate b1 and b2 for span j

b = (inv(F'*P*F))*(F'*P*a');
115 densvars(j,1:2) = b';

% Print line to output file

fprintf(outid,'%12.4f X%
120 fprintf(logid,'%12.4f X

disp(sprintf('%12.4f X%

10.10E %
10.10E X%
10.10E X%

10.10E \n',starttime(j),b);

10.10E \n',start-time(j),b);

10. 10E',start -time(j),b));

line = fgetl(tempid);

j j + 1;
125

end

% End loop to calculate density variations in data span

130 else.

% Read dens vars in data span from file

outid fopen(outfile, I a+');

135 line fgetl(outid); % Get first line

j=1;

while line ~= -1

140 values = str2num(line);

start-time(j) = values(1);

densvars(j,1:2) = [values(2) values(3)];

line = fgetl(outid);

j =j 1;
145

end

end

150 % Do forecasting if desired



D.7. CALCB.A

if (frcst-days)

fprintf(logid,'Calculating deterministic component. . .\n');
155 disp(sprintf('Calculating deterministic component . . .));

% First solve for deterministic component

j-max = j - 1;
160 t_0 = start-time(j-max);

for j = 1:j-max,
G(j,1:3) (1 -cos(lambda*(start-time(j) - t_0)))

cos(lambda* (start-time(j) t_0)) ...
sin(lambda*(start time(j) t_0)) );

165

end

Z_bl = densvars(:,l);
Z_b2 = densvars(:,2);

170

S_bl - (inv(G'*G))*(G'*Z_b1);
S_b2 = (inv(G'*G))*(G'*Z_b2);

x-bar-b1 = S-b1(l);
175 x_bar_b2 = S-b2(1);

x_O_bI = S-bl(2);
x_0 b2 = S-b2(2);
xdot_0-b1 = Sbl(3);
xdot_0_b2 = S-b2(3);

180

% Calculate estimate of deterministic component over entire time interval

j-frcst-max = j-max + frcst-days/time-grid;

185 for j=1:j-frcst-max,
if (j>j-max)

start-time(j) = start-time(j-1) + time-grid;
end

190 determ(j,1) = x-bar-b1 + (x_0_b1-x-bar-b1)*cos(lambda*(start -time(j) - t_0)) ...
+ (xdotO-bl /lambda)*sin (lambda* (start-time(j) - t_0));

determ(j,2) = x_bar_b2 + (x_0_b2-x-bar-b2)*cos(lambda*(start-time(j) - t_0)) ...
+ (xdot 0_b2/lambda)*sin(lambda*(start-time(j) - t_0));

195 end

% Calculate estimate of random component using scalar Kalman filter

fprintf(logid,'Calculating random component . . .\n');
200 disp(sprintf('Calculating random component. .')

p pred-bl(l) = sigma-bl^2; % The bi filter variance at j=1

195



APPENDIX D. ANNOTATED CODE

p-pred-b2(1)
x-pred-bl(1)

205 x-pred b2(1)

sigma_b2^2;
0;
0;

% The b2 filter variance at j=1
% The prediction of bi at j=1
% The prediction of b2 at j=1

for j=1:j-max,

% Calculate residuals (which function as measurements of y(j))

210

y-bl(j) = densvars(j,1) - determ(j,1);
y_b2(j) = densvars(j,2) - determ(j,2);

% Compute Kalman gain

g-bl(j) = p_pred_bl(j)/(ppred-bl(j) + sigma-bl^2);
g_b2(j) = p_predb2(j)/(ppred_b2(j) + sigma_b2^2);

% Update states and errors based on actual measurement

x-curr-bl(j)
x-curr-b2(j)
p-curr-bl(j)
p-curr-b2(j)

x-pred-bl(j) + g_b1(j)*(y_bl(j)-xpred_b1(j));
x-pred-b2(j) + gb2(j)*(y_b2(j)-xpred_b2(j));
(p-pred-bl(j)*sigma-bl^2)/(p-predbl(j)+sigma-bl^2);
(p-pred-b2(j)*sigma-b2^2)/(p-pred-b2(j)+sigma-b2^2);

225

% Prediction ahead to next time step

tau = start-time(j+1) - start-time(j);

x-pred_bl(j+1) = exp(-alpha*tau)*x-curr-b1(j);
230 xpred_b2(j+1) = exp(-alpha*tau)*x-curr-b2(j);

p_predbl(j+1) = exp(-2*alpha*tau)*pcurr_b1(j) + ...

(1-exp(-2*alpha*tau))*sigma-blr^2;
p_predb2(j+1) = exp(-2*alpha*tau)*pcurr_b2(j) + ...

(1-exp(-2*alpha*tau))*sigma-b2_r^2;
235

end

% Save estimates of random component at beginning of forecast span

240 x-r_0_b1 = x-curr-bl(j);

xr_0_b2 = x-curr-b2(j);

% Write predicted density variations with deterministic + random components

245 for j=j_max+1:j_frcstmax,

densvars(j,1) = determ(j,1) + exp(-alpha* (start-time(j) -t0))*x-r_0_b1;
densvars(j,2) = determ(j,2) + exp(-alpha* (start-time(j) -t0))*x r_0_b2;

250 fprintf(outid, 'X12.4f X 10. 10E X/ 10. 10E \n',start-time(j),densvars(j,1:2));

fprintf(logid,'X12.4f X 10. 10E X 10. 10E \n' ,start-time(j),densvars(j,1:2));

disp(sprintf(' X12.4f X 10. 10E X 10. 1OE',start-time(j),densvars(j,1:2)));

215

220

196



D.7. CALC B.M

end
255

end

warning on;

260 if (calc-flag==1)
fclose(tempid);

end

fclose(outid);
265 fclose(logid);

exit;

197



198

D.8 Dates.pm

Table D.10: Dates.pm Fact Sheet

Function Converts dates with the jul2cal and cal2jul subroutines.
Language Perl
Type Perl Module
Location AtmoCal include subdirectory
Syntax jdate = cal2jul(year, month, day, hour, minute, sec-

ond.sss)
(year, month, day, hour, minute, second.sss) =
jul2cal(jdate)

User-Defined Variables

NONE

APPENDIX D. ANNOTATED CODE



D.8. DATES.PM 199

Commented Code (Dates.pm) #!/usr/bin/perl

# Dates Package

5 # This package contains the following subroutines:

#- -- --- ---- --- -------

# cal2jul($y,$m,$d,$h,$mn,$s) converts conventional calender dates into Julian
# dates. The returned date is in units of days and fractions of days. The input

10 # date is entered in the following units:

# '$d - day '$h' - hour
# $m'- month '$mn' - minute
# $y - four-digit year '$s' - second

15 #
# Note - this function is only valid for dates after JD 0, i.e.
# dates after -4713 Nov 23. Conversions are accurate to
# 1/10000 of a second or better.

20 # -- - --- --- --

# jul2cal($jdate) converts Julian dates into Gregorian calender dates.
# The returned date is in the following units:

# '$d - day '$h' - hour
25 # '$m' - month '$mn' - minute

# '$y' - four-digit year '$s' - second

# Note - this function is only valid for dates after JD 0, i.e.
# dates after .-4713 Nov. 23. Conversions are accurate to

30 # 1/10000 of a second or better.

# -- -- -- - - -- - -- - -- -- -- -----

# get-time() invokes the Perl localtime function and converts to a string with
# the following format:

35 # "hh:mm EST MM/DD/YY"

# ------------ ------ ------

package Dates;
40 require Exporter;

@ISA = qw(Exporter);

@EXPORT = qw(cal2jul jul2cal get-time);

# Add environment-specific path and import modules
45

BEGIN {
push @INC, "$ENV{ATMCAL}/AtmoCal/include";

}
use Localmath;



200

50

sub cal2jul {

my $jdate;
my ($y, $m, $d, $h, $mn, $s) =0@);

55

if (length($y) == 2) {
if ($y > 56) { $y "19" $y; }
else { $y = "20" $y; }

}
60

if ($m 0) {$m = 1;}
if ($d 0) {$d = 1;}

$jdate = int((1461*($y+4800+int(($m-14)/12)))/4) + int(367*($m-2-12*
65 int(($m-14)/12))/12) - int(3*int(($y+4900+int(($m-14)/12))/100)/4) + $d

32075.5 + $h/24 + $mn/1440 + $s/86400;

return $jdate;

70 }

sub jul2cal {

my ($jdate) = -;

75 my ($f, $n, $i, $j, $d, $m, $y
$s, $h, $mn, $rndjdate, $var, $ints, $fracts, $fr);

Calculate year, month, day

80 $rndjdate round($jdate);

$E = $rndjdate + 68569;
$n = int((4*$E)/146097);
$f = $E - int((146097*$n+3)/4);

85 $1 = int((4000*($f+1))/1461001);
$E= $E - int((1461*$i)/4) + 31;
$j int((80*$E)/2447);
$d $f - int((2447*$j)/80);
$E int($j/11);

90 $m $j + 2 - 12*$E;
$y 100*($n-49) + $i + $;

#=== Calculate hour, minute, second

95 $jdate = $jdate - cal2jul($y,$m,$d,0,0,0);
$h = int($jdate*24);
$jdate = $jdate*24 - $h;
$mn = int($jdate*60);
$jdate = $jdate*60 - $mn;

100 $s = $jdate*60;

APPENDIX D. ANNOTATED CODE



D.8. DATES.PM

#=== Force month, day, hour, min, second to two-digit format with padded zeroes

$ints = int($s);
105 $fr = sprintf("%.4f ", ($s - $ints)); # force 0.1 millisecond accuracy

if ($fr == 1) {$fr = "0.9999";}
($fracts) = ($fr =- /^O(\..*)/);
foreach $var ($m, $d, $h, $mn, $ints) {

$var = (sprintf "X2.2d",$var);
110 }

$s = $ints . $fracts;

return ($y, $m, $d, $h, $mn, $s);

}
115

sub get-time {

my (@time, $time, $date, $tot);

120 otime = (localtime);

$time = sprintf("X2.2d",$time[2]) . . sprintf("%2.2d",$time[1]) .i":
. sprintf("%2.2d",$time[O]) . " EST ";

$date = ($time[4] +1) . "/" . $time[3] . "/" . $time[5];
$tot = $time . $date;

125

return $tot;

}

130

135

140

201



APPENDIX D. ANNOTATED CODE

D.9 b3conv.pl

Table D.11: b3conv.pl Fact Sheet

Function Convert multiple files of NORAD B3 observations to OB-

SCARD format

Language Perl

Type Main Program

Location AtmoCal utils/b3conv subdirectory

Input Files initinfo.txt, STATFILE.DAT and one or more observa-

tion files specified by the $obsmatch variable, in the

$ATM-REALDATA/$obspath directory
Environment Variables $ATMREALDATA must be set.

Data Structure Requires a properly-compiled copy of noradpp.exe in the

same directory.

Creates: None.

Output Files OBSCARD files for each satellite, as specified by

$outputsuff ix in $ATM_REALDATA $outpuLpath

directory.

User-Defined Variables

$obspath directory containing B3 observations (in

$ATMREALDATA)
$rawmatch Pattern2 (like ".obs") that all B3 observation files match.

$logfile Log File name (can include a relative path from

$ATMREALDATA)
$outpath directory for OBSCARD observations (in

$ATMREALDATA)
$outsuffix Suffix for OBSCARD files. Normally ".obscard".

$msgsuff ix Suffix for individual satellite log files. Normally ".msg"

or ".log".

202



D.9. B3CONV.PL 203

Commented Code (b3conv.pl) #!/usr/bin/per
use strict;
no strict "refs";

5 my ($rawmatch, $rawpath, $rawdir, @rawlist, $infiee, $fh);
my ($tempfite, $tempoutfife, $tempcfean, $tempsort, $sorthead);
my ($header, $taieer, $satstring, $rawname);
my ($rawfite, $outsuffix, $outpath, $msgsuffix);
my ($Eogfile, $Eine,$outfile,$msgfile);

10 my ($entry, $sat, $station, $year, $day, $jyear, $start-ymd, $end-ymd);
my ($new-start-ymd, $new-end-ymd, $firstfoop);
my (%satlist,%stations, Osd, @ed);

# Add environment-specific path and import modules.
15

BEGIN {
push @INC, "$ENV{ATMCAL}/AtmoCal/include";

}

20 use Dates; # Necessary to use cal2jul, jul2cal, & get-time subroutines
# Note that Dates uses Localmath

# This script takes a file in B3 format containing many satellites

# and stations, and automatically creates the CONTROL.DAT files and
25 # runs the conversion to GTDS obscard format.

chdir "$ENV{ATM_REALDATA}" or die "Can't chdir to $ENV{ATMREALDATA}";
$rawpath = "rawb3";

$rawmatch = ".obs"

30 $eogfile "b3conv.log";

$outpath "test";

$outsuffix ".obscard";

$msgsuffix ".msg";
%satlist =;

35

$rawdir $rawpath;
opendir RAWDIR, $rawdir or die "Cannot open $rawdir, died";
@rawlist = grep /$rawmatch/, readdir(RAWDIR);
closedir RAWDIR;

40

# print STDOUT"

open LOGFILE, ">$logfile" or die "Unable to open $logfile, died";

45 # Open and read $initfile

foreach $fh ("LOGFILE", "STDOUT") {
print $fh "Processing initinfo.txt. . . \n";

}



204 APPENDIX D. ANNOTATED CODE

50

open INITINFO, "<initinfo.txt" or die "Unable to open initinfo.txt, died";

INITLINE: while (defined($Eine = <INITINFO>)) {

55 $ine =~ s/^(\d{5})\s//;
$sattist{$1}=1;

}

60 close INITINFO;

# Open and read STATIONS.DAT file

foreach $fh ("LOGFILE", "STDOUT") {
65 print $fh "Processing station list. . .

}

# Currently, not much is done with the station list.

70 open STATFILE, "<STATFILE.DAT" or die "Unable to open STATFILE.DAT, died";

STATLINE: while (defined($flne= <STATFILE>)) {
$eine =~ /\s+(\d+)\s{5}(\w{4})/;
$stations{$1}=$2;

}
75

close STATFILE;

$header = $outpath . "/header.txt";
$taifer =$outpath . "/tailer.txt";

80

open HEADFILE, ">$header";
print HEADFILE "OBSCARD\n";
close HEADFILE;
open TAILFILE, ">$tailer";

85 print TAILFILE "END\n";
close TAILFILE;

foreach $sat (sort keys %satlist) {

90 foreach $fh ("LOGFILE", "STDOUT") {
print $fh "Processing satellite $sat. .. \n";

}

$tempfife = $outpath . "/" . $sat . ".tempfile";

95 if (-e $tempfiee) { system("rm $tempfile"); }
foreach $rawname (@rawlist) {

$rawfiEe = $rawpath . "/" . $rawname;
$satstring = "U" . $sat;
system("grep $satstring $rawfile >>$tempfile");

100 }



D.9. B3CONV.PL 205

open INFILE,"$tempfile" or die "Can't open $tempfile: $!\n";

foreach $fh ("LOGFILE", "STDOUT") {
105 print $fh "Determining Obs. Start/End times ... \n

I

$firstfoop = 1;

110 while ($entry = <INFILE>) { # Process the first few fields

$entry /U(\w{5})(\w{3})(\w{2})(\w{3}).*$/;
if ($1 $sat) {

$station=$2;
115 $year=$3;

$day=$4;

$jyear = cal2jul($year,1,1,0,0.0); # gets the Julian date of the
# beginning of that year.

120 # Note: assumes dates in 1956-2055

@sd = jul2cal($jyear+$day-1);
@ed = jul2cal($jyear+$day+1);

125 if ($firstfoop == 1) {
$start-ymd ($sd[0]-1900) $sd[1] . $sd[2];
$end-ymd ($ed[0]-1900) . $ed[1] . $ed[2];
$firstfoop 0;

} else {
130 $new-start-ymd ($sd[0]-1900) . $sd[1] . $sd[2];

$new-end-ymd ($ed[0]-1900) . $ed[1] . $ed[2];

}

if ($new-start-ymd < $start-ymd) {
135 $start-ymd = $new-start-ymd;

I
elsif ($new-end-ymd > $end-ymd) {

$end-ymd = $new-end-ymd;

}
140 }

close INFILE;

if (length($start-ymd) == 6) {
$start-ymd = "0" . $start-ymd;

145 }
if (length($end ymd) == 6) {

$end-ymd = "0" . $end-ymd;

}

150 foreach $fh ("LOGFILE", "STDOUT") {
print $fh "Converting observations. . . \n";



206 APPENDIX D. ANNOTATED CODE

}

$outfile = $outpath "/" $sat . $outsuffix;
155 $tempoutfile $outpath "/" $sat . $outsuffix . ".temp";

$tempclean $tempoutfile ".clean";

$tempsort $tempoutfife . ".sort";
$sorthead $tempsort ".head";

160 $msgfife $outpath . "". $sat . $msgsuffix;

open(CARD, ">CONTROL.DAT") or die "Can't create card $!\n";
write CARD;
close CARD;

165 system(" $ENV{ATMREALDATA}/noradpp. exe");

foreach $fh ("LOGFILE", "STDOUT") {
print $fh "Sorting observations. . .\n";

}
170

system("rm $tempfile");
system("grep -F ' .' $tempoutfile >$tempclean");
system("rm $tempoutfile");
system("sort -n -k3 $tempclean >$tempsort");

175 system("rm $tempclean");

system("cat $header $tempsort >$sorthead");
system("rm $tempsort");

system("cat $sorthead $tailer >$outfile");
system("rm $sorthead");

180 }

foreach $fh ("LOGFILE", "STDOUT") {
print $fh "Finished processing satellite $sat.\n";

}
185 }

system("rm $header");

system("rm $tailer");

close LOGFILE;
190

# CONTROL.DAT formatting
#123456789#123456789#123456789#123456789#123456789#123456789#
format CARD =
SATELLITE DESIGNATOR NSSC «<<<<

195 ${sat}

START DATE (YYYMMDD.) : @>>>>>>.
$start-ymd

STOP DATE (YYYMMDD.) : @>>>>>>.
$end-ymd

200 NORAD OBS DATA INPUT FILE : @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$tempfife

GTDS OBS DATA OUTPUT FILE : @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<



D.9. B3CONV.PL

OUTPUT PRINT FILE
205

210

215

220

$tempoutfile

$msgfile

207



APPENDIX D. ANNOTATRD CODE

D.10 Other Utilities

Several other utilities are included in the AtmoCal package. The dateconvert.pl script
is an interactive interface to the Dates.pm perl module, the getperi.pl script was
written by Granholm to parse GTDS EPHEM output files for perigee height.

Table D.12: dateconvert.pl Fact Sheet

Function Converts dates interactively
Language Perl

Type Main Program

Location AtmoCal utils directory
Syntax Run at UNIX prompt. Program will ask for all relevant

information.

Table D.13: get-peri.pl Fact Sheet

Function Parses GTDS EPHEM .output files for perigee height
Function Converts dates interactively
Language Perl
Type Main Program
Location AtmoCal utils directory
Environment Variables $ATMEPHEM must be set.
Input files initinfo.txt in same directory as get peri.pl

#####_ephem.output files in
$A TMEPHEM/$modeLopt

User-Defined Variables

$model-opt Directory in $ATM EPHEM containing GTDS EPHEM
.output files.

208



D.10. OTHER UTILITIES 209

Commented Code (dateconvert.pl) #!/usr/ bin/perl -w

# This is just a little front-end for the routines in Dates.pm. Mostly
# intended so that I could quickly convert a date from Julian to Gregorian

5 # to verify that I was looking at the right place in a dataset.
# Sarah Bergstrom

BEGIN {
push @INC, "$ENV{ATMCAL}/AtmoCal/include";

10 }

use Dates;
use Localmath;

15 print STDOUT " Choose an option:\n [1] Julian -- > Gregorian.\n [2] Gregorian -- >

Julian\n [3] Quit.\n";

$choice = <STDIN>;
chomp $choice;

20

while ($choice !=3 ) {

if ($choice == 1) {
print STDOUT "Type Julian date:\n";

25 $juf= <STDIN>;
chomp $juf;
($y, $m, $d, $h, $n, $s) = jul2ca($juf);
print STDOUT "$h:$n:$s on $m/$d/$y.\n";

} else {
30 print STDOUT "Year.\n";

$y = <STDIN>;
chomp $y;
print STDOUT "Month.\n";
$m = <STDIN>;

35 chomp $m;
print STDOUT "Day.\n";
$d = <STDIN>;
chomp $d;
print STDOUT "Hours, Min, Sec =0n";

40 $jul = cal2jul($y,$m,$d,0,0,0);
print STDOUT "Julian Date $jul.\n";

}
print STDOUT " Choose an option:\n [1] Julian -- > Gregorian.\n [2] Gregorian -- >

Julian\n [3] Quit.\n";
45 $choice = <STDIN>;

chomp $choice;

}



APPENDIX D. ANNOTATED CODE

Commented Code (get-peri.pl)

# get-peri.pl

5 # Author:

# George R. Granholm

# 5 Apr 00

10 # This file is used to parse GTDS
# It uses the following files:

# initinfo.txt -

#!/usr/ bin/perl

.output files for perigee height.

contains desired catalog numbers in

format output by TLE2osc.pl
15 #

# #####-ephem.output - the name of the output file, where
# ##### is the NORAD catalog number.
# get-peni assumes that the .output
# files are in the $GTDSSTOR global var.

20 #

$modee-opt = "highgrav";

open INITINFO, "initinfo.txt" or die "Can't find initinfo.txt";
25

INITLINE: while ($fine = <INITINFO>) {

$fine =- s/^(\d{5})\s//;
$initinfo{$1} = [ split(", ",$fine) ];

30

}

close INITINFO;

35 READOUTPUT: foreach $catnum (keys %initinfo) {

open OUTFILE, "$ENV{ATMEPHEM}/${model-opt}/${catnum_lephem. output" or die
"Unable to find file $ENV{ATMEPHEM}/${model-opt}/${catnumlephem.output, died"

$endffag = 0;
40

while ($outfine = <OUTFILE>) {

if ($outline /^ ENDED ORBIT FILE/) {
$endflag 1;

}
elsif ($endffag && ($outline /.* PH (0\.\d{16}D[+-]\d{2})\s*$/)) {

$ph = $1;
last;

210

45



D.10. OTHER UTILITIES

50 }
}

$ph{$catnum} = $ph;
close OUTFILE;

open PERIHTS, ">perigees.txt" or die "Unable to open perigees.txt, died";
foreach $catnum (keys %ph) {

print PERIHTS "$catnum: $ph{$catnum} km\n";

}

}

211

55

60



APPENDIX D. ANNOTATED CODE

D.11 Graphing Utilities

Table D.14: readb.m Fact Sheet

Function Reads a jac-densvars.txt-format file, calculates some
statistics, and plots byj and b2j values (example graphs:
Figures 4-2 and 4-3).

Language MATLAB
Type main MATLAB routine
Location AtmoCal analysis subdirectory
Input Files Prompts for a filename (relative path to current direc-

tory)
Output Files None - graphs must be saved by hand.

User-Defined Variables

None, but prompts for input file.

Table D.15: analyze-atmcal.m Fact Sheet

Function Reads a series of initinfo_#.txt files, calculates some
statistics, and creates a series of plots. (An example of
the fourth plot type can be seen in Figure 5-10.)

Language MATLAB
Type main MATLAB routine
Location AtmoCal analysis subdirectory
Input Files None, but see readinitinfo.m fact sheet.
Data Structure Requires: readinitinfo.m must be in the same directory.
Output Files None - graphs must be saved by hand.

User-Defined Variables

Prompts for number of iterations and whether or not
an initinfo. txt truth file exists.

Table D.16: readinitinfo.m Fact Sheet

Function Reads an initinfo. txt-formatted file into a series of MAT-
LAB arrays.

Language MATLAB
Type main MATLAB routine, called by analyze-atmcal.m but

can stand alone as well.
continued on next page...

212



D.11. GRAPHING UTILITIES 213

... continued from previous page

Location AtmoCal analysi's directory

Input Files iniinfo.txt-formatted file specified by f ilename.

Output Files None.

User-Defined Variables
these must be defined before running readinitinfo.m3

f ilename Name of file to read

n numerical index for file (maximum 20). When called by
analyze atmcal.m, this is set to iteration number + 1,
with the truth file in index 1).



214 APPENDIX D. ANNOTATED CODE

Other utilities George Granholm's "rca-plots.m" and "rca-plots-novel.m" have
been included in the AtmoCal analysis directory without modification. These utilities
appear to have been used to create the plots showing distance and velocity error for
individual satellites in Granholm's thesis. These utilities have not been run on Pisces,
and may or may not work as included in AtmoCal.

Commented Code (read b.m) % This MATLAB script reads a file of b-values

(created by calc-b.m)
% plots them, and does some simple statistics.

5 clear
clf

filename='j ac_ densvars . txt';
%'1flename='jac-densvars_1.txt';

10
[time, bl, 1)2] = textread(filena me, '%ffff')

%o The following is a bit of a kludge - rather than convert julian to
% to calendar, just plot days-since-start. The first b-value is

15 % 1.5 days into the original fit window. Obviously, if the fit span
% is changed to something other than 3 days, fix this.

time = time - time(1) + 1.5;

20 subplot(2,1,1);
title('Coefficient Bl');
xlabel('Time since beginning of fit window (days)');
plot(time,bl);
subplot(2,1,2);

25 title('Coefficient B2');
xlabel('Time since beginning of fit window (days)');
plot(time,b2);

avgbl = mean(bl)
30 avgb2 = mean(b2)

stdbl = std(bl)
stdb2 = std(b2)
maxb1 = max(bl)
maxb2 = max(b2)

35

x=200:50:600;

[a,b]=size(b1);
y=1:1:a;
z=bl*ones(size(x))+b2*(x-400)/200;

40

pause;
subplot(1,1,1);
title(' Correction Factor');



D.11. GRAPHING UTILITIES 215

xlabel('Height (km)');
45 ylabel('Time since beginning of fit window (days)';

surf (x,y,z)



216 APPENDIX D. ANNOTATED CODE

Commented Code (analyze atmcal.m) % This program reads in the initinfo
files from an atmcal run and plots
% the convergence (or lack thereof) of the ballistic coefficients.

5 % Ask the user if there is a "truth" file. If there isn't. then it will
% assume that the truth is the results of the last iteration. It '1 still
% be obvious if it didn't converge...

clear
10 clf

type=input('Type 1 for analysis with a truth file, 2 for analysis from real data:\n');

% Ask the user how many iterations were run so it knows how many data files
% to look for.

15 iters=input('How many iterations were run?\n');

if type == 1
filename='initinfo.txt '; n=1;
elseif type == 2

20 filename=strcat('initinfo_',int2str(iters),' .txt'); n=1;
end

readinitinfo

25 devper=zeros(max(size(nssc num)) ,iters+ 1);
avgdevper=zeros(1,iters+ 1);
stddevper= zeros(1,iters+ 1);
maxvar=zeros(1,iters+ 1);
avgvar=zeros(1,iters+ 1);

30

for n=2:iters+2

m=n-i;
filename=strcat('initinfo_',int2str(m-1),' .txt');

35 readinitinfo

devper(:,m)=100*((Ki(:,n)-Ki(:,1))./Ki(:,1));
maxdevper(m)=max(devper(:,m));
avgdevper(m) =mean (devper(:,m));
stddevper(m)=std(devper(:,n));

40 maxvar(m)=max(sigma i squared(:,m));
avgvar(m)=mean(sigma-i-squared(:,m));

end

% The relevant information are the Kis and the sigma-i-squareds. The
45 % other fields should match up, since they're from the same run.

% Plot the actual Ki values.
subplot(2,2,1)



D.11. GRAPHING UTILITIES 217

50 plot(nssc-num,Ki)
xlabel('NSSC Satellite Number')
ylabel('Ballistic Coefficient Ki')
title('Ki Data')
% Plot the deviations in %.

55 subplot(2,2,2)
plot(nssc-num(:,2:iters+2),devper)
xlabel('NSSC Satellite Number')
ylabel('Deviation from "true" Ki, in X')
title('Percent Deviations of Ki values from True/Final values')

60 % Plot the maximum deviation in %.
subplot(2,2,3)
iter- indices=0:iters;
plot(iter-indices,maxdevper)
xlabel('Iteration Number (zero=initial value)')

65 ylabel('Percent')
title('Maximum X Deviation')
% Plot the average deviation in %.
subplot (2,2,4)
plot(iter-indices,avgdevper)

70 xlabel('Iteration Number (zero=initial value)')

ylabel(' Percent')

title('Average X Deviation')



APPENDIX D. ANNOTATED CODE

Commented Code (readinitinfo.m) % This rn-file takes an
reads it into matlab.
% SEB 1/26/01
% The following lines are commented out so that it can be called from

5 % analyze-atmcal with standardized filenames and indicies.
% It's not a function because that would be a pain with variable-size
% inputs.
%filename =input('Input a filename here:\n','s');
%n=input('Numerical index for this file?\n');

10

if exist('filelist')
oldfilelist=filelist;

else
oldfilelist=strvcat(' , ' , ' ' , ','

15 end
filelist='
for a=1:10 % maximum twenty files

if n>10
disp ('N too large. . .

20 else
if a~=n

filelis =strvcat(filelist,oldfilelist(a,:));
else

,' I, I ,I I);

filelist=strvcat(filelist,filenane);
25 end

end
end

[nssc-num(:,n),intl-num(:,n),Ki(:,n),RCS(:,n),sigma-i-squared(:,n),std-s(:,n),obstype(:,n)]
textread(filename,'Xu %s Xf Xf Xf Xs %u');

initinfo-layout file and

218



Appendix E

File Utilities and Formats

E.1 B3 to OBSCARD Conversion Utility

The real data available to this project consisted of several groups of time-sorted ob-

servations, all in NORAD B3 format. These files each contained observations for

hundreds of different objects. This format is substantially different from that of

OBSCARD files, which only contain observations for one satellite/object. Thus, a

conversion utility must loop through each B3 file, looking for an individual satellite.

Jack Fischer modified Joe Lombardo's runadcob utility to allow the use of a control

card to specify the desired satellite, so that recompilation was not required for each

satellite of interest. His modifications are described in his thesis, and are well doc-

umented in the code[9]. Jack Fischer called the utility "NORADPP", for NORAD

Pre-Processor, and that name has been retained. The B3 files available did not pre-

cisely fit the B3 format as outlined by Fischer and the "NORADPP" code - this is

due to varying standards, and the code was modified to read the alternate format.

The original format statements were commented out, and should be restored and/or

altered if necessary

'The statements in question fall at the end of the runadcob.for file, which includes a brief de-
scription of the differences.

219



APPENDIX E. FILE UTILITIES AND FORMATS

To facilitate the conversion of multiple files containing hundreds of different satel-

lites, a Perl script were created to run noradpp.exe on every satellite in a particular file

or group of files, and to sort and merge multiple OBSCARD files for the same satellite.

The NORADPP source code and the b3conv.pl script are included in the AtmoCal

CVS package, in the utils/b3conv subdirectory, and the user options for b3conv.pl are

listed in Appendix D.9. The b3conv.plscript requires a copy of initinfo.txt2 containing

all of the satellites which should be processed, since it saves a significant amount of

time and resources if only the desired observations are converted.

Several minor alterations were also made to the NORADPP code, as described in

the following table and documented in the code itself. (Use grep or another search

utility to look for the "CSEB" delimiters.) The OBSCARD format uses "100" to

denote the year 2000 (101 = 2001, etc.), , while B3 format uses "00". All years were

converted to fall between 1956 and 2055, and the resulting three-digit dates are now

handled appropriately by NORADPP[10].

One final caution: the OBSCARD files created may be substantially larger than

the original NORAD B3 files, since OBSCARD files require three lines, not one, for

a range/az/el observation triple.

The NORADPP code can be compiled and linked on a 64-bit SGI-UNIX platform

(using the MIPSpro Fortran 77 compiler, which is included in the SGI IRIX operating

system) by issuing the following commands:

prompt% f77 -c -64 -02 *.for

prompt% f77 -o noradpp *.o

The OBSCARD format is described in the following section, for the use of anyone

who wishes to build a converter similar to NORADPP for another observation format.

A detailed description of the B3 format can be found in Fischer's thesis[9], on pages

2Actually, only the first field of initinfo.tzt, containing the NSSC# of the satellite, is read. So
this script could be used with an initinfo.txt file containing only an NSSC# per line.

220



E.1. B3 TO OBSCARD CONVERSION UTILITY

Table E.1: List of NORADPP Files Modified
Filename Modification

obsdat.cmn changed name from obsdat#.cmn to
obsdat.cmn, since # is often used as
a comment character

astron.for changed include 'obsdat#.cmn' to
include 'obsdat .cmn'

changed format to allow three-digit
years.
changed subroutine call from DATE to
NEWDATE

azimut.for changed format to allow three-digit
years.

elevat.for changed format to allow three-digit
years.

newdate.for renamed date.for to avoid conflict with
built-in unix date utility

ranger.for changed format to allow three-digit
years.

ranges.for changed format to allow three-digit
years.

runadcob.for (Main File) lengthened allowable file-
names from A12 to A30
finished support for named log files
added support for three-digit years in
CONTROL.DAT
added two extra spaces in format for
reading B3 files to agree with AtmoCal
real data
changed subroutine call from DATE to
NEWDATE

221



APPENDIX E. FILE UTILITIES AND FORMATS

315-316, and is not repeated here. The only differences between that format and the

one used here were that the ITYPE field was moved one space right (to column 75)

and the EQNYR field was moved two spaces to the right (to column 77).

E.2 Building New GTDS Binary Files

Since a near-real time implementation of AtmoCal should be supplied with up-to-

date lists of F10 .7 and K, the appropriate GTDS binary files must be constantly

rewritten to include new data. Thus, a pair of programs have been included in the

AtmoCal CVS distribution which can convert a properly formatted text file to the

GTDS$075 binary file format, and vice versa. These utilities can be found in the

utils/gtdsbinaries/jacchia subdirectory. (The utils/gtds-binaries/other subdirectory

contains some untested utilities for working with the other GTDS binary files.)

E.3 Detailed File Formats

The main types of files used and/or created by AtmoCal and gtds-granholm are:

OBSCARD format OBSCARD files are ascii text files created by GTDS DATASIM

and NORADPP, and contain a list of observations for a single satellite. As used

in AtmoCal, they conform to the format called "LAYOUT 3" in the GTDS data

set reference[30], with the year field lengthened. Observations created by NO-

RADPP contain identical data in the "corrected" and "uncorrected" data fields.

Table E.2 contains the updated version of "Layout 3" with three-digit dates.

The first line must contain OBSCARDU and the last line must contain ENDLuuu,

where "u" denotes a space, in place of the station name.

222



E.3. DETAILED FILE FORMATS

Table E.2: OBSCARD Format

Spaces Variable Name Contents

in OBSCRD

1-8 SNAME Station Name (usually only the first 4 char-
acters are used, e.g. FLYQ, KAEQ)

9-11 MTYPE Observation Type:
1 = Range
4 = Azimuth
5 = Elevation
9 = Range Rate

12-14 IGATE Range-gating indicator. (Not used in any
of the data in this project)

15-16 Empty space

17-38 RI Observation Time (YYYMMDDHH-
MMSS.SSSS)

39-59 OMi Uncorrected Observation

60-80 OM2 Corrected Observation

Example for one

satellite 00063):

Range/Az/El observation (from the simulated observations of

OBSCARD
KAEQ 1 991215214600.000 0. 20433717982159E+04 0. 20433717982159E+04

KAEQ 4 991215214600.000 2.37436203800539 2.37436203800539

KAEQ 5 991215214600.000 0.135035811832215 0.135035811832215

END

TLE format Two-line element sets contain data that, when used with the NORAD

SGP4/SDP4 model, provides the position and velocity of a satellite. Atmo-

Cal uses TLEs to obtain initial orbit estimates, which are then used to create

simulated observations and as initial guesses for GTDS DC runs. For more

information on reading TLEs, see reference [28].

initinfo.txt This file, created by TLE2osc.pl and used by genobs.pl, estbfs.pl, and

calcvars.pl, lists the ballistic factors and other pertinent characteristics of each

satellite. Granholm chose 29 as the observation type for simulated data, and

15 for real observations, but this data is currently unused, and all copies of

initinfo.txt currently just contain 29 in this field.

223



APPENDIX E. FILE UTILITIES AND FORMATS

Table E.3: Format of instinfo.txt

Spaces 1-5 8-14 16-31 32-47 48-63 65 67-68
Type Int 5 Char 7 Exp. 11 Exp. 11 Exp. 11 Char 1 Int 2
Info. NSSC# Int'l Des. ki RCS o-i2 (S)tandard Obs.Type

or real = 15
(N)on-St. sim = 29

Example:

00063 60016A 1.9706828120E-03 1.1300000000E+00 1.0000000000E-06 S 29

00179 61015BD 9.0312609648E-02 1.6670000000E-01 1.0000000000E-06 S 29

jacdensvars.txt The density variations file (FRN 106) contains time-sorted by

b2j values. The format is:

Table E.4: Format of jac-densvars.txt

and

Spaces 1-12 15-30 33-48
Type F12.4 Exp. 15 Exp. 15
Info. Julian Date BI B2

Example:

2451529.0000 8.0705485337E-03 1.3900485352E-02

2451529.1250 1.8248157892E-02 3.7869159153E-02

2451529.2500 4.8232116750E-02 3.3850276952E-02

ballfcts.txt The obseived ballistic coefficient list ballfcts.txt contains all of the bal-

listic factor estimations from the GTDS DC runs. This file is later sorted by

date/time into ballfcts.tzt.sort, since the initial observed kI values may not be

in order if multiple processes are used. The format is:

Table E.5: Format of ballfcts.txt

Spaces 1-5 7-18 20-35 37-52
Type Int. 5 F10.2 Exp. 15 Exp. 15
Info. NSSC# Julian Date tj kIc Height hi

224



E.4. GTDS INPUT DECKS

Example:

11849 2451529.0000 1.4818508931E-03 5.3087600000E+02 00063 2451529.0000

2.1419918442E-03 5.4550800000E+02 :

GTDS binary data files The GTDS binary data file formats are not detailed here.

Please refer to a copy of the report "Data Set Layouts for the Goddard Tra-

jectory Determination System" [30]. Copies of the binary-to-ascii and ascii-to-

binary converters for these files have been included in AtmoCal, in the utils

directory, but no rigorous tests have been made on these utilities.

RCS file The radar cross-section (RCS) file contains a list of NSSC numbers and-

radar-cross sections, obtained from Dave Vallado.[56]. The NSSC numbers can

either include the leading zeros (e.g. 00063) or be truncated (and flushed left

or right).

Example:

1 20.4200
2

10096 11.1735

E.4 GTDS Input Decks

A copy of the list of GTDS keywords[15] for creating GTDS input decks is a must-

have for anyone who wants to make major changes to the input decks automatically

created by AtmoCal. The details of each of these decks are too long to enumerate

here, since they can all be looked up in the GTDS keyword guide. A few subdecks,

however, are especially noteworthy, and are listed below.

POTFIELD, MAXDEGEQ, MAXORDEG are the cards where the truncated

(4x4) JGM2 gravitational model was chosen. This should be changed to a more

accurate gravitational model when processing real data.

225



APPENDIX E. FILE UTILITIES AND FORMATS

Station Card 0 lists station noise characteristics. If new simulated data is being

generated with different stations, or if real data with more stations is being

processed, station card 0 must be added for each new station. The parameters

for this card should come from the SLAD[9] or some similar source. Note that

genobs.pl includes two versions of the GTDS DATASIM input deck, one with

noise, and one without. Make sure to add any new stations to the noisy deck,

since otherwise the noise characteristics will be ignored. The format for Station

Card 0 is shown in Table E.6. For a complete list of observation types, see

Table A-2 in the GTDS keyword guide[15]. If a station has more than three

observation types, more than one Station Card 0 can be used.

Station Card 1 lists station locations. When working with real data, more stations

will appear than just the original four stations used for simulated data genera-

tion. The locations of these stations must be included in the GTDS DC input

deck, using station card 1. Table E.7 gives a partial description of the Sta-

tion Card 1 format sufficient for creating new cards to be used with AtmoCal.

(Station Card 1 can also be used for landmarks, which is not detailed here.)

Station Card 2 This card contains information about the ellipsoid model used and

other station dependent data. Currently, this card looks like the example given

below for all stations used. (Replace the **** with the station name.) See also

the entry for the ELLMODEL card in the GTDS keyword list[15].

Example:

/**** 200001

226



EA. GTDS INPUT DECKS

Table E.6: Format of Station Card 0
Columns Format Description

1-8 A8 Station Name
9 Il =0 (card number) - defines Station Card

number. Station Card 0 defines station-
dependent noise.

10-11 12 First observation type
Types seen in available data:
=1 Range
=4 Azimuth
=5 Elevation
=9 Range-Rate

12-14 13 Second observation type
15-17 13 Third observation type
18-38 G21.14 Error associated with first observation

type
39-59 G21.14 Error associated with second observation

type
39-59 G21.14 Error associated with third observation

type

227



APPENDIX E. FILE UTILITIES AND FORMATS

Table E.7: Format of Station Card 1
Columns Format Description

1-8 A8 Station Name
9 11 =1 (card number) - defines Station Card

number. Station Card 1 defines tracking sta-
tion type..

10 iX Blank
11-14 14 Station catalog number.
15-17 13 Station type (the last letter of the station

name matches the letter(s) in parentheses
listed below):
=1 VHF (V)
=2 Minitrack (M)
=3 C-band (T,Q,F)
=4 S-band (G)
=5 USB-30 foot (S,A,W)
=6 USB-85 foot (S,A,W)
=7 SRE-VHF (X,Y,Z)
=8 ATS (R)
=9 ATS-ground transponder(B)
=10 DSN (D)
=11 SRE (S)
=12 Laser (L)
=13 Optical (C)
=14 X-Y Parabolic (E,4)

18-38 G21.14 Height above/below sea level
39-59 G21.14 Geodetic latitude (ddmmss.ssss)
39-59 G21.14 Geodetic longitude (ddmmss.ssss)

228



E.4. GTDS INPUT DECKS

ATMCAL Control Card To turn the atmospheric density correction on, make

sure FRN 106 is linked to the appropriate file, and use the ATMCAL control

card. Most of the fields are currently unused, giving options for further cus-

tomizing the atmospheric density correction process. It must be placed in the

OGOPT subdeck for a GTDS DC, EPHEM, or FILTER run. The format for

this card is shown in Table E.8.

Table E.8: Format of ATMCAL card
Columns Format Description

1-8 A8 ATMCAL - Input card for atmospheric
corrections.

9-11 13 Turn on/off atmospheric correction
=0 Off (default)
=1 On

12-14 13 Number of atmospheric density model to
apply corrections to (only JR71 is cur-
rently operational):
=1 Jacchia-Roberts 1971
=2 Harris-Priester
=3 Jacchia-64
=4 Jacchia-70
=5 MSIS-77
=6-8 Reserved for RADARSAT
=9 MSISE-90
=10 Reserved for GOST

15-17 13 Unused
18-38 G21.14 Unused
39-59 G21.14 Unused
60-80 G21.14 Unused

229



APPENDIX E. FILE UTILITIES AND FORMATS

THIS PAGE INTENTIONALLY LEFT BLANK

230



Appendix F

lATEX Notes

This thesis was created using UEX 2E and BIBTEX on Windows, Unix, and Macintosh

platforms. The MikTex distribution[50] and the TeXShell editing package[53] were

used under Windows 2000, the TeXShop editing package[29] was used under Mac OS

X, the built-in Emacs LATEX and BIBTEX editors[6 were used under Solaris 8, and

the teTeX distribution[8] was used under both Solaris 8 and Mac OS X. A modified

version of the MIT thesis class was used, and a personalized bibliography style file

(sebplain.bst), as well as the gra.phicx, hhline, Igrind, Iscape, and supertabular packages.

All of the files required to print this thesis can be obtained from Dr. Paul Cefola,

and are on the CD containing this research project, in the thesis/source directory. To

compile from a command prompt 1 , type the following commands:

prompt% pdflatex sebthesis.tex
prompt% bibtex sebthesis
prompt% pdflatex sebthesis.tex
prompt% pdflatex sebthesis.tex

This will create a file called sebthesis.pdf in the same directory, which should be

'If using an editing package, the compilation can probably be run by pressing a series of buttons
which issue commands corresponding to those listed. See the documentation of your particular
LATEX distribution for details.

231



232 APPENDIX F. IYkX NOTES

identical to this paper copy. Please note that the repeated pdf latex commands are

not superfluous - the first is required to set up the list of citations for the BIBIPX

bibliography creation, and the second and third are both required to properly create

internal references (e.g. Appendix F).

Copies of the graphics created using Word or Excel in their original Microsoft

Office format can be found in the thesis/worddocs directory.



Bibliography

[1] W. N. Barker and R. N. Wallner. The Accuracy of General Perturbations and

Semianalytic Satellite Ephemeris Theories. In .Proceedings of the AAS/AIAA

Astrodynamics Specialist Conference, Halifax, Nova Scotia, Canada, 1995.

AAS/AIAA. AAS 95-432.

[2] Sarah E. Bergstrom, Paul J. Cefola, Ronald J. Proulx, Andrey I. Nazarenko,

and Vasiliy S. Yurasov. Validation Results of an Algorithm for Real-Time At-

mospheric Density and Correction. In Proceedings of the AAS/AIAA Spaceflight

Mechanics Meeting, San Antonio, TX, January 2002. AAS/AIAA.

[3] Sarah E. Bergstrom, Paul J. Cefola, Ronald J. Proulx, Andrey I. Nazarenko, and

Vasiliy S. Yurasov. Atmospheric Density Correction Using Space Catalog Data.

In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Quebec

City, Canada, August 2001. AAS/AIAA.

[4] Paul Cefola,. Wayne McClain, and Dave Carter. Single Station Orbit Determina-

tion for Landsat 6. In Proceedings of the AAS/AIA A Astrodynamics Specialist

Conference, Portland, OR, August 1990. AIAA/AAS. AAS 90-2923.

[5] National Geophysical Data Center. Solar-Terrestrial Physics Divi-

sion FTP Site. Public FTP site. ap and K, data are in the

ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETICDATA/INDICES/KPAP/ di-

233



BIBLIOGRAPHY

rectory, and F 10 .7 data (described as 2800 MHz, rather than 10.7 cm) are in the

ftp://ftp.ngdc.noaa. gov/STP/SOLARDATA/SOLARRADIO/FLUX/ directory.

[6] Gnu EMACS, version 20.7.1. Computer Software, May 2001. Available at

http://www.gnu.org/software/emacs/emacs.html.

[7] Eugene M. Emme. Aeronautics and Astronautics: An American Chronology

of Science and Technology in the Eploration of Space, 1915-1960. National

Aeronautics and Space Administration, Washington, DC, 1961. Pages 77-88 were

cited by http://www.hq.nasa.gov/office/pao/History/Timeline/1955-57.html.

[8] Thomas Esser. TeTeX, version 1.0. Computer software, February 2000. Available

at http://www.tug.org/teTeX/.

[9] J.D. Fischer. The Evolution of Highly Eccentric Orbits. Master's thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA, June 1998. CSDL-T-1310.

[10] Henry F. Fliegel and Thomas C. Van Flandern. A Machine Algorithm for Pro-

cessing Calendar Dates. Communications of the ACM, 11(10):657, October 1968.

[11] Michel Goosens, Frank Mittlebach, and Alexander Samarin. The LIIY Com-

panion. Addison-Wesley Longman, Inc., Reading, Massachusetts, 1994.

[12] Upper atmosphere of the Earth: Density model for ballistic maintenance of Earth

artificial satellite flights. Technical Report GOST 25645.115-84, Moscow, 1984.

[13] George R. Granholm. Near-Real Time Atmospheric Density Model Correction

Using Space Catalog Data. Master's thesis, Massachusetts Institute of Technol-

ogy, Cambridge, MA, June 2000. CSDL-T-1380.

[14] Goddard Trajectory Determination Software. Computer Software. SGI-UNIX

version, based on PR-5.

234



BIBLIOGRAPHY

[15] Goddard Trajectory Determination System (GTDS) User's Guide. Technical

report, Charles Stark Draper Laboratory, Updated by Rick Metzinger: 1995.

Copies available through Dr. Paul Cefola, (718)-981-5723.

[16] A. E. Hedin. A Revised Thermospheric Model Based on Mass Spectrome-

ter and Incoherent Scatter Data: MSIS-83. Journal of Geophysical Research,

88(A12):10170-10188, December 1983.

[17] A. E. Hedin. Extension of the MSIS Thermosphere Model into the Middle and

Lower Atmosphere. Journal of Geophysical Research, 96(A2):1159-1172, Febru-

ary 1991.

[18] A. E. Hedin, C. A. Reber, G. P. Newton, N. W. Spencer, H. C. Brinton, H. G.

Mayr, and W. E. Potter. A Global Thermospheric Model Based on Mass Spec-

trometer and I ncoherent Scatter Data. MSIS 2. Composition. Journal of Geo-

physical Research, 82(16):2148-2156, jun 1977.

[19] A. E. Hedin, J. E. Salah, J. V. Evans, C. A. Reber, G. P Newton, N. W.

Spencer, D. C. Kayser, D. Alcayd6, P. Bauer, L. Cogger, and J. P. McClure.

A Global Thermospheric Model Based on Mass Spectrometer and Incoherent

Scatter Data. MSIS 1. N2 Density and Temperature. Journal of Geophysical

Research, 82(16):2139-2147, June 1977.

[20] Alan E. Hedin. MSIS-86 Thermospheric Model. Journal of Geophysical Research,

92(A5):4649-4662, May 1987.

[21] Herriges. NORAD General Perturbation Satellite Theories: An Independent

Analysis. Master's thesis, Massachusetts Institute of Technology, Cambridge,

MA, June 1987 (revised in 1988). Copies available through Paul Cefola at the

MIT Lincoln Laboratory.

[22] Felix R. Hoots and Richard G. France. Transformations Between Element Sets.

Technical report, Space Command, United States Air Force, June 1986.

235



BIBLIOGRAPHY

[23] Luigi G. Jacchia. Static Diffusion Models of the Upper Atmosphere with Empir-

ical Temperature Profiles. Smithsonian Contributions to Astrophysics, 8(9):215-

257, 1965.

[24] Luigi G. Jacchia. New Static Models of the Thermosphere and Exosphere with

Empirical Temperature Profiles. SAO Special Report 313, Smithsonian Astro-

physical Observatory, Cambridge, MA, May 1970.

[25] Luigi G. Jacchia. New Static Models of the Thermosphere and Exosphere with

Empirical Temperature Profiles. SAO Special Report 332, Smithsonian Astro-

physical Observatory, Cambridge, MA, May 1971.

[26] Luigi G. Jacchia. The Earth's Upper Atmosphere. Sky and Telescope, pages

155-159, 229-232, 294-299, March and April and May 1975. (This article was

published as a three-part serial).

[27] C. Jaeck-Berger and F. Barlier. Review of Drag Effects on Satellite Orbits for

Geodynamic Studies. In The Use of Artificial Satellites for Geodesy and Geo-

dynamics, Proceedings of the International Symposium on Geodesy and Geody-

namics, pages 275-311, Athens, Greece, May 1973. National Technical University

of Athens.

[28] T. S. Kelso. CELESTRAK: Norad Two-Line Element Set For-

mat. Web Page, December 2000. Accessed May 2002 at

http://www.celestrak.com/NORAD/documentation/tle-fmt.shtml.

[29] Richard Koch and Dirk Olmes. TeXShop, version 1.19. Computer software,

March 2002. Available at http://www.uoregon.edu/ koch/texshop/texshop.html.

[30] J.R. Kuhn. Data Set Layouts for the Goddard Trajectory Determination System

(GTDS). Technical Report Contract NAS 5-24300, National Aeronautics and

Space Administration, Goddard Space Flight Center, Greenbelt, MD, December

1979. Task Assignments 717 and 740.

236



BIBLIOGRAPHY

[31] Leslie Lamport. BITEX: A Document Preparation System. Addison-Wesley Pub-

lishing Company, Inc., Reading, Massachusetts, 1986.

[32] G. Laneve. Small Satellites for Aeronomic Missions in the Lower Theromo-

sphere. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference,

pages 1999-2014, Sun Valley, ID, August 1997. Vol. 97, pt.2, Advances in the

Astronautical Sciences.

[33] J. Lean. Solar EUV Irradiances and Indices. In D. Rees, editor, COSPAR

International Reference Atmosphere: 1986, volume 8, number 5-6 of Advances

in Space Research, chapter 7, pages 263-292. Pergamon Press, Inc., Elmsford,

New York, 1988.

[34] F. A. Marcos. Accuracy of Atmosphere Drag Models at Low Satellite Altitudes.

Adv. Space Research, 10(3):417-422, 1990.

[35] F. A. Marcos, M. Kendra, J. Griffin, J. Bass, J. Liu, and D. Larson. Precision

Low Earth Orbit Determination Using Atmospheric Density Calibration. Journal

of the Astronautical Sciences, 46:395, 1998.

[36] Frank A. Marcos and Felix R. Hoots. A Perpective on Neutral Density Progress.

In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Quebec

City, Canada, August 2001. AAS/AIAA.

[37] Mathworks, Inc. MATLAB Computer Software, September 2000. Version

6.0.0.88 Release 12.

[38] R.W. Metzinger. Validation of the Workstation Version of R&D GTDS. Tech-

nical report, Charles Stark Draper Laboratory, Cambridge, MA, February 1993.

Copies available through Dr. Paul Cefola, (781)-981-5723.

237



BIBLIOGRAPHY

[39] James G. Miller. Atmospheric Density Model Errors and Variations in the Bal-

listic Coefficient. In Proceedings of the AAS/AIAA Astrodynamics Specialist

Conference, Quebec City, Canada, August 2001. AAS 01-395.

[40] Andrey I. Nazarenko. A-priori and A-posteriori Orbit Prediction Errors Evalu-

ation of Low Height Artificial Earth Satellites. Cosmic Research, 29(4), 1991.

[41] Andrey I. Nazarenko. Atmospheric Density Tracking Studies. Technical Re-

port CSDL-C-6505, Scientific-Industrial Firm "NUCLON" for the Charles Stark

Draper Laboratory, August 1999.

[42] Marcel Nicolet. La Constitution et la Composition de l'atmosphere superieure.

In C. Dewitt, J. Hieblot, and A. Lebean, editors, Geophysics, The Earth's En-

vironment, pages 201-277. Gorden and Breach, Science Publishers, New York,

NY, 1963. Article is in french.

[43] C. Pardini and L. Anselmo. Calibration of Semi-Empirical Atmosphere Mod-

els Through the Orbital Decay of Spherical Satellites. In Proceedings of the

AAS/AIAA Astrodynamics Specialist Conference. AIAA/AAS, August 1999.

AAS 99-384.

[44] J. Picone, A. Hedin, D. Drob, and J. Lean. NRLMSISE-00 Empirical Atmo-

spheric Model: Comparisons to Data and Standard Models. In Proceedings of

the AAS AIAA Astrodynamics Specialist Conference, Quebec City, Canada, Au-

gust 2001. AAS/AIAA. AAS 01-394.

[45] T.D. Platt and L. E. Herder. Ranking Satellite Propagators: A Statistical Ap-

proach. In Proceedings of the 1995 Space Surveillance Workshop, Lexington, MA,

1995. MIT Lincoln Laboratory. ESC-TR-95-022.

[46] Derek Price. The Concurrent Version System. Computer software, 2001. Avail-

able at http://www.cvshome.org.

238



BIBLIOGRAPHY

[47] Gregor N. Purdy. CVS Pocket Reference. O'Reilly & Associates, Inc., Sebastol,

CA, 2000.

[48] Charles E. Roberts. An Analytic Model for Upper Atmosphere Densities Based

Upon Jacchia's 1970 Models. Celestial Mechanics, 4:368-377, December 1971.

[49] Ken Schatten. Solar Activity Prediction Methods. Web Page, September 1997.

http://denali.gsfc.nasa.gov/926/schatten/sunpred.htm.

[50] Christian Schenk. MikTeX, version 2.1. Computer software, June 2001. Available

at http://www.miktex.org.

[51] M. F. Storz. Satellite drag accuracy improvements estimated from orbital en-

ergy dissipation rates. Advances in the Astronautical Sciences, 103(2):1307-1327,

2000. AAS 99-385, presented at the AAS/AIAA Astrodynamics Specialist Con-

ference in Girdwood, AK, August 1999.

[52] M. F. Storz. Modeling and Simulation Tool for the High Accuracy Satellite Drag

Model. In Proceedings of the AAS/AIA A Astrodynamics Specialist Conference,

Quebec City, Canada, August 2001. AAS/AIAA.

[53] Dick Struve and Peter Nagel. TeXShell, version 0.63. Computer software, Octo-

ber 2000. Available at http://www.projectory.de/texshell/index.html.

[54] Allen Thompson. FTP site for NORAD Two-Line Elements. Web Page.

ftp://kilroy.jpl.nasa.gov/pub/space/elements/satelem, Accessed February, 2000.

This site is no longer available, as of February 5, 2002.

[55] D. A. Vallado. Fundamentals of Astrodynamics and Applications. Space Tech-

nology series. McGraw-Hill, New York, NY, 1997.

[56] David Vallado. Private e-mail to Paul Cefola, May 2002.

239



240 BIBLIOGRAPHY

[57] Rodney Viereck and J. Joselyn. Solar Cycle Effects on Thermospheric Density

and Satellite Drag. In Proceedings of the AAS/AIAA Astrodynamics Specialist

Conference. AAS/AIAA, August 1999. AAS 99-379.

[58] Jesco von Puttkamer. ISS Visibility Data. Web Page, May 2002.

http://www.hq.nasa.gov/osf/station/viewing/issvis.html.

[59] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.

O'Reilly & Associates, Inc., Sebastopol, CA, second edition, 1996.

[60] J. R. Wright. Sequential Orbit Determination with Auto-Correlated Gravity

Modelling Errors. Journal of Guidance and Control, 4(3):304-309, May 1981.



About the Author

In 1999, while an intern at NASA Glenn Research Center, Sarah Bergstrom decided

to concentrate her studies in Aerospace Engineering. She graduated in May of 2000

from Swarthmore College with a B.S. in Engineering and a minor in Classical Greek.

She then enrolled at MIT in pursuit of a Master of Science in Aeronautical and

Astronautical Engineering, focusing on orbital mechanics and control systems. After

her expected graduation in June 2002, she intends to work on aerospace control

systems at the Scientific Systems Company in Woburn, MA. She can be reached by

email at sbergst1#alum.swarthmore.edu or sarah-berystrom alum.mit.edu.

241



THIS PAGE INTENTIONALLY LEFT BLANK

242


