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Abstract

Anand & Gurtin (2002) have recently developed a continuum theory for the elastic-
viscoplastic deformation of amorphous solids. Their theory is motivated by and builds
on the work of Parks, Argon, Boyce, Arruda, and their co-workers (e.g. Boyce et al.,
1988; Arruda & Boyce, 1993) on modeling the plastic deformation of amorphous
polymers. The theory of Anand & Gurtin (2002) carefully accounts for restrictions
placed on constitutive assumptions by frame-indifference and by a new mathematical
definition of an amorphous material based on the notion that the constitutive relations
for such materials should be invariant under all rotations of the reference configuration
and, independently, all rotations of the relaxed configuration. Also, they explicitly
account for the dependence of the Helmholtz free energy on the plastic deformation
in a thermodynamically consistent manner, a dependence which leads directly to a
backstress in the underlying flow rule. In addition to the standard kinematic and
stress variables, their theory contains two internal variables: a variable s > 0 that
represents an isotropic intermolecular resistance to plastic flow; and an unsigned
variable rq that represents the local free-volume.

In this thesis, we extend the work of Anand & Gurtin (2002) to model the de-
formation and fracture response of amorphous glassy polymers which exhibit both a
ductile mechanism of fracture associated with large plastic stretches and subsequent
chain scission and a brittle mode of fracture. For polymers such as polycarbonate
(PC), the brittle fracture mode is characterized by a mechanism of elastic cavitational
failure, which results in cleavage-type fracture similar to that observed in brittle frac-
ture of metals. In contrast, polymers such as polymethylmethacrylate (PMMA) and
polystyrene (PS) exhibit a brittle mode of fracture characterized by craze initiation,
flow, and breakdown.

To model crazing, we introduce a continuum constitutive relation which contains
the three ingredients of crazing - initiation, widening, and breakdown - in a suitable
statistically-averaged sense. We allow for local inelastic deformation due to shear
yielding in possible concurrence with that due to crazing, and introduce a craze initi-
ation criterion based on the local maximum principal tensile stress reaching a critical
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value which depends on the local mean normal stress. After crazing has initiated, our
continuum model represents the transition from shear-flow to craze-flow by a change
in the viscoplastic flow rule, in which the dilational inelastic deformation associated
with craze-plasticity is taken to occur in the direction of the local maximum principal
stress. Finally, for situations in which the local maximum tensile stress is positive,
craze-breakdown and fracture is taken to occur when a local tensile plastic craze strain
reaches a critical value. We apply our model to the techologically important polymer,
polymethylmethacrylate. We show that the constitutive model and fracture criteria,
when properly calibrated, are able to reasonably-well predict the macroscopic load-
displacement curves, and local aspects of the craze-flow and fracture processes in (a)
a thin plate with a circular hole under tension, and (b) notched-beams in four-point
bending.

For amorphous glassy polymers which show ductile tearing and brittle cavitational
fracture, as in the case of the fracture behavior of PC, we modify the model of Anand
& Gurtin (2002) for large elastic volume changes to accommodate the experimental
observation of the key role of the hydrostatic tension in the nucleation of internal
cracks. To model fracture we introduce two simple local fracture criteria: (i) Brittle
fracture is taken to occur when a local elastic volumetric strain reaches a failure value;
(ii) Ductile fracture will be taken to occur when a measure of the plastic stretch of
the polymer chains reaches a critical value. We show that the constitutive model
and fracture criteria, when suitably calibrated, are able to quantitatively capture the
notch-sensitive fracture response exhibited by notched-beams of polycarbonate in
bending.

To further demonstrate the capabilities of the constitutive model, we study the
micro-indentation behavior of PC and PMMA. Our work in this area builds upon the
development of novel flexure-based apparatuses for mechanical testing at the small
scale. Details of our nano- and micro-indentation apparatuses as well as a biaxial
compression/shear apparatus are presented. We analyze Berkovich and conical micro-
indentation and perform parametric studies with dimensional analysis to elucidate
the key material parameters that determine the indentation response. Our study of
the forward problem in indentation motivates a framework for the reverse problem
in indentation of amorphous glassy polymers. We show that an applicaton of our
proposed reverse approach is able to reasonably-well predict the macroscopic stress-
strain behavior of polystyrene (PS) in simple compression.

Thesis Supervisor: Lallit Anand
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

Anand & Gurtin (2002) have recently developed a continuum theory for the elastic-

viscoplastic deformation of amorphous solids. Their theory is motivated by and builds

on the work of Parks, Argon, Boyce, Arruda, and their co-workers (e.g. Boyce et al.,

1988; Arruda & Boyce, 1993) on modeling the plastic deformation of amorphous

polymers. The theory of Anand & Gurtin (2002) carefully accounts for restrictions

placed on constitutive assumptions by frame-indifference and by a new mathematical

definition of an amorphous material based on the notion that the constitutive relations

for such materials should be invariant under all rotations of the reference configuration

and, independently, all rotations of the relaxed configuration. Also, they explicitly

account for the dependence of the Helmholtz free energy on the plastic deformation

in a thermodynamically consistent manner, a dependence which leads directly to a

backstress in the underlying flow rule. In addition to the standard kinematic and

stress variables, their theory contains two internal variables: a variable s > 0 that

represents an isotropic intermolecular resistance to plastic flow; and an unsigned

variable r that represents the local free-volume. 1

In this thesis, we extend the work of Anand & Gurtin (2002) to model the de-

formation and fracture response of amorphous polymeric solids which exhibit both a

'It is commonly believed that the evolution of the local free-volume is the major reason for the

highly non-linear stress-strain behavior of glassy materials which precedes the yield-peak and gives

rise to the post-yield strain-softening.
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ductile mechanism of fracture associated with large plastic stretches and subsequent

chain scission and a brittle mode of fracture which depends upon the class of polymer

under consideration. For polymers such as polycarbonate (PC), the brittle fracture

mode is characterized by a cavitational mechanism, 2 which results in a cleavage-type

of fracture similar to that observed in brittle fracture of metals. In contrast, polymers

such as polymethylmethacrylate (PMMA) and polystyrene (PS) are well-known to

craze at room temperature in the absent of solvents.

To model crazing in amorphous polymeric solids, we introduce a continuum consti-

tutive relation which contains the three ingredients of crazing - initiation, widening,

and breakdown - in a suitable statistically-averaged sense. We allow for local inelastic

deformation due to shear yielding in possible concurrence with that due to crazing,

and introduce a craze initiation criterion based on the local maximum principal tensile

stress reaching a critical value which depends on the local mean normal stress. After

crazing has initiated, our continuum model represents the transition from shear-flow

to craze-flow by a change in the viscoplastic flow rule, in which the dilational inelastic

deformation associated with craze-plasticity is taken to occur in the direction of the

local maximum principal stress. Finally, for situations in which the local maximum

tensile stress is positive, craze-breakdown and fracture is taken to occur when a local

tensile plastic craze strain reaches a critical value. We have calibrated the consti-

tutive parameters in our model for PMMA under normal dry conditions. We show

that our model, when suitably calibrated and implemented, is able to reasonably-well

predict the macroscopic load-displacement curves, and local aspects of the craze-flow

and fracture processes in (a) a thin plate with a circular hole under tension, and (b)

notched beams in four-point bending.

For amorphous polymeric solids which exhibit ductile tearing and brittle cavita-

tional fracture, similar to the fracture behavior of PC, we modify the model of Anand

& Gurtin (2002) to account for large elastic volume changes to accommodate the

experimental observation of the key role of the hydrostatic tension in the nucleation

of internal cracks. To model the fracture we introduce two simple local fracture:

2 Polycarbonate is known to exhibit surface crazing in the present of solvents.
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(i) Brittle fracture is taken to occur when a local elastic volumetric strain reaches

a failure value; (ii) Ductile fracture will be taken to occur when a measure of the

plastic stretch of the polymer chains reaches a critical value. We show that our the-

ory, when suitably implemented and calibrated, is able to quantitatively predict the

experimentally-observed ductile failure response of blunt-notched beams, as well as

the competition between the brittle and ductile mechanisms in more sharply-notched

beams of polycarbonate in bending.

Our fracture experiments on PC and PMMA are concerned with applications when

specimens dimensions are on the order of mm and loads are in the range of kN. As a

final application for this thesis, we consider experimentation and constitutive model-

ing when dimensions of the specimens are on the order of nm to Pm with forces in the

pN to N range. We present novel flexure-based apparatuses for mechanical testing at

the small scale. As an application for our newly developed experimental capabilities,

we investigate the forward problem in indentation of amorphous polymeric solids,

with specific application to PC and PMMA. After demonstrating the applicability of

the constitutive model for predicting the indent morphologies and load-displacement,

or P-h curves, we elucidate through a parametric study and dimensional analysis

the key material parameters that determine the indentation response. The results

of our study of the forward approach, parametric studies, and dimensional analysis

motivate a framework for the reverse problem in indentation of amorphous polymeric

solids. We propose a first attempt at the reverse approach by extracting material

parameters for polystyrene (PS) from Berkovich indentation experiments and com-

paring the predicted stress-strain curves against the experimental results in simple

compression under monotonic loading and loading with an imposed strain-rate jump.

The predicted stress-strain responses are found to be in reasonable accord with the

macroscopic stress-strain curves for PS.

The plan of the thesis is as follows. In Chapter 2, we present our constitutive model

for the deformation and fracture response of glassy polymers due to shear-yielding

and crazing. We demonstrate the determination of material parameters for PMMA

and show our predictions of the deformation and fracture response of thin plates with
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circular windows and notched-beams in four-point bending. Chapter 3 presents the

constitutive equations proposed to model the deformation and fracture response of

materials undergoing elastic cavitational failure. The model is utilized to capture the

notch-sensitive fracture behavior of PC observed in four-point bending experiments

on blunt and sharp-notched beams. Chapter 4 details our study of the forward and

reverse problem in indentation of amorphous polymeric solids, which draws upon the

experimental capabilities for mechanical testing at the small scale. The novel testing

apparatuses - flexure-based designs for a microindenter, nanoindenter, and biaxial

compression/shear apparatus - are presented in the Appendices. We note that each

chapter has been composed as separate papers to allow for self-contained reading,

therefore some redundancy in the presentation exists.
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Chapter 2

Deformation and fracture due to

shear-yielding and crazing

2.1 Introduction

Under stress states where the maximum principal stress is compressive, amorphous

glassy polymers typically show extensive plastic deformation by a "shear yielding"

mechanism which involves profuse densely-packed microscopic shear bands; the ma-

terial shows substantial ductility, and eventual fracture occurs at large stretches by a

chain-scission mechanism. In contrast, under stress states where the maximum prin-

cipal stress is tensile, glassy polymers may at first show a little (or no) macroscopic

inelastic deformation due to shear yielding, but then the mechanism of inelastic de-

formation switches to "crazing". An individual craze is a thin plate-like microscopic

region in the material with a microstructure distinguished by a dense array of fib-

rils (interspersed with elongated voids) which span the boundaries of the individual

crazes. The plate boundaries of the crazes are typically oriented perpendicular to the

maximum principal stress direction, and the dominant inelastic deformation occurs

by craze widening in the local maximum principal stress direction. Macroscopically,

however, the material shows little ductility, and the nominally brittle fracture occurs

by craze breakdown, crack-formation and crack-growth to failure. In most high molec-

ular weight, flexible chain glassy polymers, such as polystyrene (PS) and polymethyl-
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methacrylate (PMMA), 1 fracture under stress states where the maximum principal

stress is tensile, is preceded by this craze initiation, widening, and breakdown process

(cf., e.g., Kambour, 1973; Kramer, 1983).

A significant advance in modeling the plastic deformation of amorphous poly-

mers by shear-yielding has been made by Parks, Argon, Boyce, Arruda, and their

co-workers (e.g. Park et al., 1985; Boyce et al., 1988; Arruda & Boyce, 1993), and by

Wu & Van der Giessen (1993); more recently, Anand & Gurtin (2002) have reformu-

lated the theory within a rigorous thermodynamic framework. In contrast, although

the phenomenon of crazing has been widely studied over the past four decades, and

considerable understanding of the micro-mechanisms of crazing and cracking in amor-

phous polymers has been developed (cf., e.g., Kambour, 1973; Amdres, 1973; Argon

& Hannoosh, 1977; Kramer, 1983; Narisawa & Yee, 1993; Donald, 1997.), the incorpo-

ration of this understanding into an engineering tool for the quantitative prediction of

the deformation and fracture response of glassy polymers is just beginning to emerge

(e.g., Estevez et al., 2000; Tijssens et al., 2000a; Tijssens et al., 2000b; Socrate et al.,

2001).

Most studies on fracture of glassy polymers are based on the standard framework

of linear elastic fracture mechanics (e.g. Kinloch & Young, 1983; Williams, 1984).

However, as noted by Estevez et al. (2000), this approach ignores the process of initi-

ation, widening and breakdown of crazes, and cannot be used when shear yielding of

the material may be occurring at other locations in the body, especially when there

are no initial sharp cracks in the body. Classical fracture mechanics cannot deal with

crack nucleation, and the numerical simulation of crack propagation has also been a

challenge for this classical theory. The recent work of Van der Giessen and co-workers

(Estevez et al., 2000; Tijssens et al., 2000a; Tijssens et al., 2000b) and Socrate et al.

(2001) is based on "cohesive surface" modeling of craze initiation, growth and break-

down.2 Cohesive surface modeling of fracture started more than 40 years ago with

'But not polycarbonate, which does not craze under normal circumstances in the absence of
solvents.

2 Socrate et al. (2001) do not consider the breakdown stage which leads to final fracture.
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the work of Barenblatt (1959) and Dugdale (1960). In recent years, cohesive surface

models have been widely used to numerically simulate fracture initiation and growth

by the finite-element method (e.g., Xu & Needleman, 1994; Camacho & Ortiz, 1996).

Typically, a set of cohesive surfaces are introduced in the finite element discretization

by the use of special interface elements which obey a non-linear interface traction-

separation constitutive relation which provides a phenomenological description for

the complex microscopic processes that lead to the formation of new traction-free

crack faces. The loss of cohesion, and thus crack nucleation and extension occurs

by the progressive decay of interface tractions. The interface traction-separation re-

lation usually includes a cohesive strength and cohesive work-to-fracture. Once the

local strength and work-to-fracture criteria across an interface are met, decohesion

occurs naturally across the interface, and traction-free cracks form and propagate

along element boundaries. An important characteristic of this methodology for mod-

eling fracture initiation and propagation is that macroscopic fracture criteria, based

on elastic or elastic-plastic analyses, such as K, = K1 C or J, = J1 C, are not needed,

because material strength and toughness, and crack nucleation and propagation are

all characterized by the local traction-separation relation and the cohesive surface

methodology.3 Of special note is that the interface constitutive model used by Van

der Giessen and co-workers (Estevez et al., 2000; Tijssens et al., 2000a; Tijssens et

al., 2000b) is an elastic-viscoplastic traction-separation relation which accounts for

the three separate stages of craze initiation, widening, and breakdown. While Van

der Giessen and co-workers have produced informative two-dimensional parametric

numerical studies on craze initiation, crack formation and crack growth around circu-

3There are still at least two key issues that need to be addressed in the cohesive surface modeling
of fracture: (a) While it is relatively straightforward to construct a traction-separation relation for
normal separation across an interface to model mode I conditions, elastic-plastic traction-separation
relations for combined opening and sliding, together with the experimental methods needed to
determine the parameters that might enter such coupled interface constitutive relations, are not
well-developed, even for two-dimensional problems, and this issue is expected to be substantially
more complicated in three dimensions. (b) The cohesive interface approach numerically restrains
the orientation of crack nucleation and propagation. Once a finite element mesh is chosen, the
crack can only nucleate and grow along the element boundaries. In the case of crazing, the initial
element boundaries may not be aligned perpendicular to the evolving local maximum principal stress
direction.
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lar holes in plates under far-field tension, and in cracked plates under mode I loading

conditions, much work remains to be done to correlate their parametric studies with

actual experimental results, and to develop a truly predictive numerical capability for

engineering design.

The purpose of the present chapter is to present an alternative approach to model-

ing the competition between shear-yielding and crazing, and to develop the framework

of an engineering tool for the quantitative prediction of the deformation and fracture

response of glassy polymers. Instead of attempting to represent each individual craze

with an interface element, we will use a continuum constitutive relation which con-

tains the three ingredients of crazing - initiation, widening, and breakdown - in

a suitable statistically-averaged sense. Our model shall not account for the typical

fine microstructural details of crazing; instead, for the continuum level of interest

here, the inelastic deformation due to crazing will be defined as an average over a

microstructural representative volume element that contains enough plate-like craze

regions to result in an acceptably smooth process at the macroscopic level (prior to

fracture). We will allow for local inleastic deformation due to shear yielding in pos-

sible concurrence with that due to crazing, and introduce a simple craze initiation

criterion based on the local maximum principal tensile stress reaching a critical value

which depends on the local mean normal stress. After crazing has initiated, our con-

tinuum model will represent the transition from shear-flow to craze-flow by a change

in the viscoplastic flow rule, in which the dilational inelastic deformation associated

with craze-plasticity will be taken to occur in the direction of the local maximum

principal stress. 4 Finally, in order to model fracture we shall adopt a simple rule: for

situations in which the local maximum tensile stress is positive, fracture will be taken

to occur when a local tensile plastic craze strain reaches a critical value.

We have implemented our constitutive model in the finite-element computer pro-

gram ABAQUS/Explicit (ABAQUS, 2001) by writing a user material subroutine.

4 By incorporating such a constitutive model which allows for a local switch in the flow rule from
shear-flow to craze-flow, we avoid a priori assumptions concerning the orientation and location of
interface elements for crazing, assumptions which are inherent in the cohesive interface approach.
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This finite-element program permits the modeling of failure, when user-specified crit-

ical values of certain parameters are reached, by an element-removal technique. By

employing an appropriately dense (but computationally efficient) finite element mesh,

we shall show that it is possible to predict, with reasonable quantitative accuracy, the

major features of the macroscopic deformation and fracture behavior of components

made from glassy polymers which craze.

In particular, we shall demonstrate that our model, when suitably implemented

and calibrated against a suite of experiments to determine the constitutive parameters

in the model for PMMA, is able to reasonably-well predict the macroscopic load-

displacement curves, and local aspects of the craze-flow and fracture processes in (a)

a thin plate with a circular hole under tension, and (b) notched beams in four-point

bending, made from this important glassy polymer.

The plan of the chapter is as follows. In Section 2.2 we develop our constitutive

model. In Section 2.3 we describe our experiments to calibrate the material param-

eters in the model for PMMA; we limit our study to experiments performed under

normal dry conditions. In Section 2.4 we verify the predictive capabilities of our

constitutive model and computational procedures for the deformation and fracture

response of notched components made from PMMA. We close in Section 2.5 with

some final remarks.

2.2 Constitutive equations for plastic deformation.

Fracture criteria

In this section we begin by summarizing the constitutive model for plastic deformation

of amorphous polymeric materials by the shear-yielding mechanism (Anand & Gurtin,

2002). The (isothermal) model is based on the mutliplicative decomposition, F =

FeFP, of the deformation gradient F into elastic and plastic parts, Fe and FP (Kroner,

1960; Lee, 1969).5 The theory also contains two internal variables: a variable s > 0

5 Notation: V and Div denote the gradient and divergence with respect to the material point
X in the reference configuration; grad and div denote these operators with respect to the point
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that represents an isotropic intermolecular resistance to plastic flow; and an unsigned

variable r7 that represents the local free-volume.6 Then, in terms of the variables

Helmholtz free energy per unit volume of the relaxed configuration,

T, T = TT, Cauchy stress,

F, detF > 0,

FP, det FP = 1,

s, s > 0,

and the definitions

deformation gradient,

plastic part of the deformation gradient,

isotropic resistance to plastic flow,

free-volume,

Fe = FFP- 1, det Fe > 0,

Ce = FeTFe,

E' = i (C e - ,

T e = ReTTRe,

a- = 1trT,

T = T - -

elastic deformation gradient,

elastic right Cauchy-Green strain,

elastic strain,

stress conjugate to the elastic strain Ee,

mean normal stress,

deviatoric stress,

left Cauchy-Green tensor corresponding to FP,

B= BP - }(trBP)1,

AP= ftrBP,

DP= sym(FPFP-1), trDP = 0,

deviatoric part of BP,

effective plastic stretch,

plastic stretching,

the constitutive equations, under the approximative assumption of small elastic stretches,

are:

x = y(X, t) in the deformed configuration, where y(X, t) is the motion; a superposed dot denotes
the material time-derivative. Throughout, we write F- 1 = (Fe)-1, FP-T = (FP) T, etc. We write
symA, skwA, respectively, for the symmetric, and skew parts of a tensor A. Also, the inner product
of tensors A and B is denoted by A -B, and the magnitude of A by JAI = v/A A.

'It is commonly believed that the evolution of the local free-volume is the major reason for the
highly non-linear stress-strain behavior of glassy materials, which precedes the yield-peak and gives
rise to the post-yield strain-softening.
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1. Free Energy:

The Helmholtz free energy is taken in the noninteractive form

V) = V)e(Ee) + OP(AP), (2.1)

where 0e is an elastic free energy, and OP a plastic free energy. The elastic free

energy is taken in the standard form for small elastic stretches

e = GIE e 2 + -K~trEe12, (2.2)0 2

where G and K are the elastic shear and bulk moduli, respectively. In amor-

phous polymeric materials the major part of OP arises from an "entropic" con-

tribution, and motivated by statistical mechanics models of rubber elasticity,7

is taken in the specific form

=RAL2 AP x+ln( X y-ln( Y) (2.3)
LIAL) smnhx AL smnhy

x = L- 1  P y =L 1  , (2.4)

where L-1 is the inverse' of the Langevin function L(...) = coth(... .)( .

This functional form for OP involves two material parameters: PR, called the

rubbery modulus, and AL, called the network locking stretch.

2. Equation for the stress:

Te 2GEe + K(trEe)1. (2.5)
DEe

7 Cf., Treloar, 1975; Arruda & Boyce, 1993; Anand, 1996.
8 To evaluate x = - (y) for a given y in the range 0 < y < 1, we numerically solve the non-linear

equation f(x) = L(x) - y = 0 for x. For numerically intensive calculations we approximate the
Langevin-inverse by the first 26 terms of its Taylor series expansion; see Appendix A.
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3. Equation for back stress:9

Sback = 2symo (
OBP

BP = pBp, with

1 OOP AL
3APOAP 3AP/

(2.6)

(2.7)-1 AP

(AL)

The back stress modulus p -+ oo as AP -+ AL, since [- 1 (z) -+ oc as z -+1.

4. Flow rule:

The evolution equation for FP is

FF = DPFP, FP(X, 0) = 1, (2.8)

with DP given by the flow rule

= IT' - SbackI,

VP = VO , 0 < m < 1,

and vP = vIDP 1,

are an equivalent shear stress and equivalent plastic shear strain-rate, respec-

tively. Here, vo is a reference plastic shear strain-rate, a a pressure sensitivity

parameter, and m a strain-rate sensitivity parameter. The limit m -+ 0 ren-

ders (4.4) rate-independent, while m = 1 renders (4.4) linearly viscous. The

equivalent plastic shear strain, -yP, is defined by -yP = fvP dt > 0.

5. Evolution equations for the internal variables s and r:

The evolution of s and r/ is taken to be governed by the coupled differential

29
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(2.9)

(2.10)

9Also see Arruda & Boyce, 1993.



equations1 0

= ho - ) VP,

= o -- ) vP,
SC, )

s(X, 0) = so,

7(X, 0) = 0,

§(rq) = scv[1 + b(77cv - 7)], (2.12)

where {ho, go, so, sc,, b, 77cx} are additional material parameters. Here s = §(q)

is a saturation value of s: e is positive for s < § and negative for s > 9. By

definition vP is nonnegative. Assuming that vP > 0, all solutions to the pair of

evolution equations satisfy

s -* sc, and rj a Tcv as t - oo.

We restrict attention to the initial conditions s = so with

so < s < scV(1 + b277e).

Also, as is tacit from (3.11)2, the free-volume is measured from the value r = 0

in the virgin state of the material, and thus r at any other time represents a

change in the free-volume from the initial state. Figure F-i shows the evolution

of s, 9 and r with -yP. We shall say that the flow has become "fully-developed"

when 77 -+ q7cv and s -+ sc.

10We expect that (and perhaps ho and go) may, in general, depend on vP, but currently there is

insufficient experimental evidence to warrant such a refinement.
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2.2.1 Modification of the constitutive equations for craze ini-

tiation, flow, and breakdown

The overall inelastic deformation due to craze initiation and growth is always inhomo-

geneous at the microstructural length scales associated with crazing. We emphasize

that our model shall not account for the typical fine microstructural details of crazing.

The spatially continuous fields that define our theory are to be considered as averages

meant to apply at length scales which are large compared to those associated with

the fine structure of the crazes and their distribution in a representative volume ele-

ment. That is, for the continuum level of interest here, the inelastic deformation due

to crazing will be defined as an average over a microstructural representative volume

element (the material neighborhood of a continuum material point X) that contains

enough plate-like craze regions to result in an acceptably smooth process.

What constitutes an appropriate model for craze initiation is probably the least

well-agreed-upon ingredient of the overall modeling of crazing in the literature. Argon

and coworkers (e.g., Argon & Hannoosh, 1977; Argon et al., 1977) have emphasized

that stress-based criteria governing initiation are hard to determine with precision

from experiments because of the importance of imperfections in controlling the local

stress states and the sites of craze initiation. In tension-torsion, stress-controlled ex-

periments on thin-walled tubular specimens with controlled micro-roughness, these

authors observed that at stress levels where the equivalent shear stress, f = VT0 7 T0 ,

and mean normal stress, -, were below ~ 0.5 of the yield strength Y of the material

(due to shear-yielding), there was a time delay between the application of stress, and

the first appearance of crazing. Their experiments showed that the delay time for

craze initiation decreases with increasing values of equivalent shear stress or mean

normal stress, and becomes negligible at stress levels greater than ~ 0.5 of the yield

strength of the material. Under these circumstances, craze-initiation may be con-

sidered an instantaneous event when a suitable local critical stress state is reached.

Since we are concerned with the competition between shear-yielding and crazing, and

eventually craze-breakdown and fracture, which typically occurs at stress levels higher
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than ~ 0.5 of the yield strength, we will ignore considerations of incubation times,

and adopt a simple time-independent stress-based criterion for craze initiation. In

this time-independent limit, Argon & Hannoosh (1977) have suggested that under

situations in which the local mean normal stress is positive, a- > 0, crazes initiate

when the local equivalent shear stress reaches a mean normal stress-dependent critical

value (their equation (22)):

A Y
T = icr(U) > 0, with er ((-) = Y (2.13)

C + 3u-/2Y Q

Here Q = 0.0133 is a fixed factor controlling the dependence ,cr on the mean normal

stress a-, and (A, C) are temperature-dependent material constants. Although, Argon

and co-workers have suggested (2.13) as the time-independent limiting form of their

detailed micro-mechanical time-dependent model," this criterion does not reveal that

at an instant when crazes might be considered to have initiated in a macroscopic

sense, they are typically oriented perpendicular to the maximum principal tensile

stress direction.

The earliest stress-based craze initiation criterion is due to Sternstein and co-

workers (e.g., Sternstein & Ongchin, 1969; Sternstein & Meyers, 1973). Based on

biaxial plane-stress (a 3 = 0) experiments on PMMA plates with circular holes, they

postulated that the critical condition for craze nucleation is when a "stress bias" UB

reaches a critical value

oB= A + B, (2.14)
o-

where A and B are temperature-dependent material parameters. Under plane stress

"They modeled craze-initiation by postulating: (i) the formation of microcavities by the arrest
of intense localized plastic flow at a molecular scale, with the rate at which such microcavities form
depending on the local equivalent shear stress; (ii) the growth of these microcavities by plastic
expansion into spongy craze nuclei, with the rate at which the microcavities grow depending on the
local equivalent shear stress and the mean normal stress; (iii) the subsequent growth of the spongy
craze nucleus by a meniscus instability mechanism, to initiate a macroscopic craze. Based on this
micro-mechanical model they developed an expression which provides an estimate for the time to
initiate a craze under a given stress state.
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conditions with o3 = 0, they defined the stress bias by UB = uI - C21. This quantity

is the difference between the maximum and intermediate principal stresses when a,

and c2 are positive; however, it becomes the difference between the maximum and

the minimum principal stress when either a, or 9 2 is compressive. Thus, as noted

by Oxborough & Bowden (1973), the physical interpretation of UB is unclear, nor

is it clear how to evaluate UB for a general triaxial stress state. A further difficulty

with this criterion is that while lOi - U2 represents an in-plane shear stress intensity,

the crazes actually nucleate and grow in the direction of the maximum principal

tensile stress. Noting this difficulty, Oxborough & Bowden (1973), based on their

own experiments on PS, found that their experimental data for craze initiation was

better fit to a criterion in which the maximum principal tensile strain 61 reaches a

critical value which depends on the mean normal stress a:

= i,cr(o) > 0, with Ei,cr = + Y', (2.15)

where X' and Y' are temperature-dependent parameters. Since i = {1 1 - v(U 2 + 9 3 )} /E

for an isotropic elastic material, with (E, v) the usual Young's modulus and Poisson's

ratio, this criterion may be written as

X
Ol - V(92 + U-3) = - + Y, (2.16)

where X = E X' and Y = E Y'. For plane stress this equation is very similar to the

criterion (2.14) proposed by Sternstein & Ongchin (1969).

The craze initiation criterion (2.16) of Oxborough & Bowden may be further

rearranged as a criterion in stress space, wherein craze initiation may be taken to

occur when the maximum principal stress a, reaches a critical value which depends

on the mean normal stress a:

0I = ai,cr(a) > 0, with Oi,cr(a) = c1 + + c3 a, (2.17)

where ci = Y/(1 + v), c2 = X/(1 + v), and c3 = 3 v/(1 + v).
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Based on this brief review of the literature, in this paper we shall assume that

crazing in a representative volume element (the material neighborhood of a continuum

material point X) can initiate provided the following two conditions are met:

(Cl) the maximum principal stress and the mean normal stress are positive

1
o 1 >O, 0 = (or -1 + Or + -3 ) > 0; (2.18)

3

and

(C2) the maximum principal stress o-1 reaches a mean normal stress-dependent crit-

ical value

(-1 = u1,r(o) > 0. (2.19)

To be specific, following Oxborough & Bowden (1973), we shall assume that

ol,cr (-) = Ci + C + C3 Or, (2.20)a-

with ci temperature-dependent positive constants for a given material.

After crazing has initiated and has become fully-developed, the average macro-

scopic plastic flow becomes oriented in the direction of the maximum principal stress.

The dominant inelastic deformation associated with fully-developed craze plasticity

occurs by widening of the crazes in the direction of the maximum principal stress.

Following Argon (1999), the macroscopic averaged tensile plastic strain rate P may

be kinematically related to the lateral translation of a given volume fraction of ac-

tive craze borders as depicted schematically in Figure F-2, which shows active planar

crazes separated by an average spacing h, thickening at an average rate 6, such that

P = -6h.

In our continuum model we will represent the transition from shear-flow to craze-

flow by a change in the flow rule. To do this we use a switching parameter X having
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values

S1 if conditions CI and C2 are met, (2.21)
0 otherwise.

Once the craze initiation conditions C1 and C2 have been met, the craze-flow will be

taken to continue as long as the maximum principal stress is positive. Accordingly,

we set

011

,To Sback VP i 2
( _P, P= vo(, if X = 0

DP =(2.22)

P ei (D e, 7= I, if X =1 and a- > 0.
I Scraze

Here, 0 is a reference craze strain rate, and Scraze is the resistance to craze-flow,

which we take to be a constant. Also, m is the strain-rate sensitivity parameter for

craze-flow, which is taken to be the same as that for shear-flow. We call

6P- / P dt (2.23)

the craze-strain.

Finally, in order to model craze-breakdown and fracture, we adopt the simple rule

that for situations in which a- > 0, craze-breakdown occurs when the local craze-

strain & reaches a failure value ep:

EP < Ec. (2.24)

On the other hand, for situations when -1 < 0, ductile fracture due to molecular

chain-scission will be taken to initiate when the effective plastic stretch, AP, reaches
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a critical value A':

AP < AP. (2.25)

We have implemented our constitutive model in the finite-element computer program

ABAQUS/Explicit (ABAQUS, 2001) by writing a user material subroutine. This

finite-element program permits the modeling of failure, by an element-removal tech-

nique. To avoid numerical instabilities, once either of the two fracture criteria are

met, the corresponding material resistances are not instantly set to zero, but rapidly

decreased to zero within a few increments.

2.3 Estimation of material parameters for PMMA

All experiments were conducted on specimens which were annealed at the glass tran-

sition temperature of the material, Tg = 105'C, for 2 hours, and then furnace-cooled

to room temperature in approximately 15 hours. The results reported here were for

experiments conducted under isothermal conditions at room temperature.

A representative true stress-true strain curve obtained from a simple compression

experiment1 2 conducted at a constant true strain rate of -0.001/s is shown in Fig. F-3.

The general features of the stress-strain curve are quite similar to those observed for

PC (see Fig. F-32). In an analogous manner to our pre-peak studies on PC, we have

investigated the pre-peak nonlinear stress-strain response of PMMA by conducting

plane strain tension experiments in which the strains are measured using a sensitive

extensometer. As anticipated, an initial experiment showed brittle fracture prior to

reaching a peak value, however a pre-peak non-linear response was observed. Using

the maximum load determined from our diagnostic experiment, five additional ex-

periments were performed to stress levels below the value necessary to cause fracture

and subsequently unloaded. The results shown in Fig. F-4 indicate a clear trend of

increasing residual strain upon unloading from increasing stress levels in the non-

1 2The data has been corrected to account for compliance contributions from the loading system.
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linear pre-peak regime. The residual strains upon unloading were found to recover a

negligible amount over a period of one hour. Consistent with our approach for PC, we

neglect this small recovery at zero loads, and consider the measured residual strains

after unloading as plastic strains. Thus, unloading from the initial approximately

linear region produces essentially no residual plastic strains and the response is con-

sidered to be "elastic", whereas unloading from any stress level above the stress at

which the stress-strain curve deviates from initial linearity, produces residual plastic

strains, and the response is considered to be "plastic".

With this as background, we discuss the calibration procedures to determine the

material parameters for our consititutive model, and also the failure values of the

craze-strain and the effective plastic stretch. Recall that the material parameters

that need to be determined are

1. The elastic shear and bulk moduli (G, K) in the elastic part of the free energy.

2. The parameters (pR, AL) in the plastic part of the free energy.

3. The parameters {vo, m, a, ho, go, sc, b, 77y, so} in the flow rule and the evolution

equations for (s, 77) for shear-flow.

4. The parameters {c 1 , c2 , c3 } in the craze initiation criterion, and the parameters

{o, scraze, m} in the function for craze-flow.

5. The parameters {',A'} in the failure criteria.

The values of elastic moduli (G, K) are determined by measuring the Young's

modulus E and Poisson's ratio v of the material in a compression experiment and us-

ing standard conversion relations of isotropic elasticity to obtain the elastic shear and

bulk moduli. The parameters {vo, m} are estimated by conducting a strain rate jump

experiment in simple compression. The pressure sensitivity parameter a is estimated

from compression experiments under superposed hydrostatic pressure reported in the

literature. The remaining parameters {ho, go, se,, b, nc, so} and (MR, AL) for shear-flow

may be estimated by fitting a stress-strain curve in compression to large strains.
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Values for the craze initiation parameters, {ci, c2, c3 }, are estimated from three

sets of experiments: (a) smooth-bar tension tests, (b) notched-bar tension tests, and

(c) tests on compact tension specimens (CTS) which contain the standard notch

geometry, but are not fatigue pre-cracked. These three sets of experiments are chosen

to provide a reasonably large range of positive mean normal stresses, -, at craze

initiation.

For the craze flow parameters, {0, scraze, m}, the strain-rate sensitivity m is taken

to be the same as that for shear-flow; the parameter scraze which represents the craze-

matter resistance to stretching is estimated from the stress levels observed in the

simple compression experiment at large values of compression. The parameter O is

chosen to ensure continuity of the magnitude of the plastic stretching IDPI at the

transition from shear-flow to craze-flow, this gives

_ Q ){ *scraze ( r* (2.26)
V2 (s* - au-*) \o J '

where a quantity with a superscript (*) denotes the value of the quantity at the instant

x = 1 when the change in the flow rule is triggered. The craze-breakdown parameter

e is estimated from the experiments on the notched compact-tension specimens.

Finally, since crazing is suppressed in plane strain compression, the parameter A

for ductile failure is obtained by fitting a load-displacement curve obtained from a

specimen which has been loaded to failure initiation in a plane strain compression

experiment.

Using a value of a = 0.204 (Rabinowitz et al., 1970), a value of v0 = 0.0017s-1

and a strain rate-sensitivity parameter m = 0.043 obtained from the strain rate jump

experiment shown in Fig. F-5, the parameters {G, K, PR, AL, h0, g0, sc,, b, r/, so} were

estimated1 3 by fitting the stress-strain curve for PMMA in simple compression, Fig. F-

3. The fit was performed by judiciously adjusting the values of these parameters in

finite element simulations of a simple compression experiment (assuming homoge-

neous deformation) using a single ABAQUS/C3D8R element. After a few attempts,

"A guideline for the calibration procedure is given in Appendix B.
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a reasonable fit was obtained, and the resulting stress-strain curve is shown in Fig. F-

3. The list of parameters obtained using this heuristic calibration procedure are:14

G = 1.17 GPa K = 3.04 GPa PR = 7.70 MPa AL = 1.51

v,= 0.0017 s- m = 0.043 a = 0.204

s,,= 37.8 MPa sc= 43.7 MPa h0 = 1.30 GPa

b = 790 g0 = 7.5 - 10-3 r/c, = 0.00025.

Material parameters for craze-initiation, craze-flow, and craze-breakdown are esti-

mated from suitable experiments and corresponding numerical simulations using the

following three-step process:

Step 1. First, the values for the craze-initiation parameters, {c 1 , c2, c3}, are estimated

from three sets of experiments and corresponding numerical simulations: (a) Simple

tension tests on smooth-bar specimens, which have an initial gauge section 6.35 mm

in diameter and 25.4mm in length, performed under displacement control at 0.0125

mm/s. (b) Notched-bar tension tests on 12.7 mm diameter cylindrical specimens with

a notch of root-radius 0.90 mm, depth 3.18 mm, and width 1.80 mm. An extensometer

was used to measure the local relative displacement across the notch faces as the

specimen was extended at a rate of 0.0125 mm/s. (c) Tests on ASTM standard

compact tension specimens (CTS) which contain a 600 notch, but are not fatigue

pre-cracked. The compact tension specimens were tested at a displacement rate of

0.0125 mm/s. These three sets of experiments were chosen to provide a reasonably

large range of positive mean normal stresses, a-, at craze initiation. In our study,

which is intended for engineering applications, we did not attempt to specially polish

our specimens, but used as-machined surfaces.1 5

To check the repeatability of the response of the smooth-bar tension specimens,

four identical specimens were tested. A representative load-displacement curve is

shown in Fig. F-6; for this specimen, fracture occurs abruptly at a displacement

of 1.64 mm. The measured displacements at fracture between the four experiments

1 4This list, although not unique, is adequate for present purposes.
1 5Typical surface roughness values for our specimens, resulting from the machining procedures

used, are on the order of 1 to 10 Pm.
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varied by less than 8%. All the smooth-bar specimens failed in the gauge section,

some at multiple locations, and the fracture surface was always perpendicular to the

tension direction. The PMMA tension specimens show nonlinearity prior to failure.

This indicates that the material has undergone some shear-yielding prior to craze-flow

and fracture.

The repeatability of the response of the notched-bar tension experiments was

investigated by conducting four experiments on nominally identical specimens. A

representative experimental load-displacement curve is shown in Fig. F-7; for this

specimen, fracture is seen to abruptly occur at a displacement of only 0.078 mm. The

displacement at fracture varied by less than 7% between the four specimens that were

tested.

A representative load-displacement response from the compact tension experi-

ments is shown in Fig. F-8. The repeatability of the peak load between the four

specimens was found to be within 2%. In these specimens, crazing initiated at the

notch root, and subsequently a front of a craze process zone propagated in a stable

manner into the specimen. The initiation of crazing occurs at a displacement of

approximately 0.47 mm, and the load asymptotically falls to about zero load after a

displacement of 1.2 mm.

To numerically model the smooth-bar tension and the notched-bar tension experi-

ments, one-half of the respective specimens were meshed with 390 ABAQUS/CAX4R

axisymmetric elements, and to model the CTS experiment, one half of the specimen

was meshed using 5278 plane strain ABAQUS/CPE4R, with a very fine mesh density

in the vicinity of the specimen mid-plane. The mesh design for the compact tension

specimen is shown in Fig. F-9a, with a detail of the fine mesh employed at the notch-

root shown in Fig. F-9b. To estimate the craze initiation parameters, the shear-flow

parameters for PMMA were used in the numerical simulations, but craze flow and

craze breakdown were numerically suppressed. These numerical simulations provide

estimates of c-1,cr and - at craze-initiation, which is taken to occur just prior to the

peak loads observed in the experiments. The values estimated for smooth-bar tension

are o-1,cr = 76.0 MPa, at - = 25.3 MPa; for notched-bar tension -1,cr = 68.9 MPa at
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a = 32.8 MPa; and for the compact tension specimen O1,cr = 65.2 MPa at or = 44.9

MPa. The three data points are plotted in Fig. F-10; estimated error bars associated

with each data point are also given. The parameters {ci, c2 , c3 } are estimated by

fitting Eq. 2.20 to this experimental data. The curve-fit using

ci = 45.60 MPa, c2 = 785.56 MPa 2 , c3 = 0,

is also shown in Fig. F-10. We caution that the values of craze-initiation parameters

are expected to be quite sensitive to the quality of the machined surfaces, and also

to the grade of the material from which the specimens are made. We also recognize

that three data points are perhaps not quite enough to unambiguously specify the

non-linear dependence of l,cr on a. However, the trend of a decreasing value of or,c,,

with an increasing value of the mean normal stress o, is clearly revealed by the data.

Information from more complete experimental programs, as it becomes available, can

easily be incorporated into our constitutive framework and numerical capability for

modeling crazing.

Step 2. Recall that we have assumed that the strain rate sensitivity parameter for

craze widening is taken to be the same as that for shear flow, m = 0.043, and that the

reference craze strain rate 0 is set by enforcing the continuity of the plastic stretching

in switching from shear-flow to craze-flow, equation (2.26). The craze-flow resistance

parameter Scraze is estimated from the stress levels observed in a simple compression

experiment at a large value of compression. From Fig. F-3 we estimate that

scraze = 200 MPa.

Step 3. The craze-breakdown parameter, EP, is estimated by repeating the numerical

calculations for the three sets of experiments, using both the shear-flow and the craze

initiation and craze flow parameters estimated above, and adjusting the value of CP

to match the failure portion of the load-displacement curves. Since craze-breakdown

and fracture occur rather abruptly in the smooth-bar and notched-bar tension exper-
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iments, the value of c' is best estimated from the notched compact-tension specimens

because of the stable crack propagation observed in these experiments. A value of

EP = 0.005

provides the best calibration to the load-displacement curves from the compact ten-

sion specimens. 16

Using the material parameters for shear-flow, together with those for craze initi-

ation, flow and break-down estimated above, Fig. F-11 shows the measured and nu-

merically calculated load-displacement curves for a smooth-bar tension experiment.

The load-displacement response is well captured by the model. Note that the initial

break in the numerical load-displacement curve is because of the onset of shear-flow,

which precedes the craze-flow and fracture in PMMA. Contour plots of the maximum

principal stress o-, and the mean normal stress -at a location just prior to peak load,

are shown in Fig. F-12a and Fig. F-12b, respectively. Once the craze-breakdown con-

ditions are met, the numerical simulation shows fracture at multiple locations, as

indicated in the "failed" mesh of Fig. F-12c. This numerical result is consistent with

the experimental observation that smooth-bar tension specimens fracture at multiple

locations in the gauge section.

Fig. F-13 shows the measured and numerically-calculated load-displacement curves

for a notched-bar tension experiment. Contour plots of a, and -at locations 1 and 2

on the numerical curve of Fig. F-13 are shown in Fig. F-14 and Fig. F-15, respectively.

The contours in Fig. F-14 indicate that crazing initiates at the notch-root. Fig. F-

15 shows that the craze front and the crack due to craze-breakdown propagate into

16In a remarkable set of experiments on specimens with near perfect surfaces and no trapped
foreign particles (made from fibers drawn from individual polystyrene pellets), Argon & Hannoosh
(1977) found that their PS specimens showed macroscopic inelastic deformation with a ductility of
5-8% (their Fig. 6). The macroscopic inelastic deformation was a result of extensive closely-spaced
crazes (a 10 pm apart) which produced whitening of the gauge section. Post-mortem microscopic
examination revealed that the crazes were = 0.5 pm wide. Based on a craze-width at craze-fracture
of a 0.5 pm, and a craze spacing of a 10 pm, one obtains a macroscopic craze strain of a 5%, as
observed by Argon & Hannoosh (1977). The smaller value of EP = 0.5% observed in our experiments
is directly attributable to the imperfections and surface roughness effects in our macroscopic less
well-controlled experiments.
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the specimen in a direction perpendicular to the applied tensile load on the notched

specimen.

Fig. F-16 shows the measured and numerically-calculated load-displacement curves

for an experiment on a compact tension specimen. Contour plots of a,, a, and JP

at locations 1 and 2 on the numerical curve of Fig. F-16 are shown in Fig. F-17 and

Fig. F-18, respectively. The contours in Fig. F-17 indicate that crazing initiates at

the notch-root, and those in Fig. F-18 show that the craze front and the crack due

to craze-breakdown propagate into the specimen in a direction perpendicular to the

applied tensile load on the notched compact tension specimen. Note that fracture

(as modeled by the element-removal technique) is confined to the elements adjacent

to the symmetry plane of the simulation, and the contours of the craze strain CP in

Fig. F-18c show that, while the elements adjacent to the traction-free crack face have

suffered some craze-flow, they have not failed due to craze-breakdown.

Finally, in order to obtain the material parameter AP for ductile fracture, results

from a plane strain compression experiment were utilized. In such an experiment

crazing and craze fracture are inhibited, but ductile fracture in the material can

still occur by the chain-scission mechanism at large values of AP. The full specimen

geometry of 11.88 mm by 12.83 mm with a specimen thickness of 4.6 mm is modeled

using a fine mesh of 3900 ABAQUS/CPE4R plane strain elements. The compression

platens are modeled using rigid surfaces, and a coefficient of friction of 0.08 is assumed

to model the interface friction between the lubricated PMMA and tool steel surfaces.

The measured and calculated load-displacement curves1 7 are shown in Fig. F-19; the

point of ductile fracture initiation is also indicated. A contour plot of AP at ductile

fracture initiation is shown in Fig. F-19b; this yields a value of

AP = 1.390,

for the initiation of ductile fracture.

17The experimental load-displacement curve has been corrected for machine and punch/die
compliances.
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2.4 Investigation of predictive capabilities of the

model

In this section we investigate the accuracy of the numerical predictions from our cali-

brated model for PMMA. We study the deformation and fracture of three prototypical

notched components: (a) a thin plate with a circular hole loaded in tension; and (b)

blunt and a sharp-notched beams loaded in four point bending.

2.4.1 Tension of a thin plate with a circular hole

The specimen geometry for this experiment is shown in Fig. F-20a. The full three-

dimensional geometry is modeled using 26,084 ABAQUS/C3D8R elements; a detail

of the fine mesh in the vicinity of the hole is shown in Fig. F-20b. Fig. F-21 shows

that the numerically-predicted load-displacement curve is in very good agreement

with the one that was experimentally-measured. Note that the load-displacement

curve is non-linear, once again showing evidence of some shear-flow prior to crazing.

The specimen fractured at a displacement of about 1.4 mm into multiple pieces, and

showed extensive crack-branching prior to final failure, Fig. F-22a.18 A corresponding

image from the numerical simulation is shown in Fig. F-22b.

Fig. F-23 and Fig. F-24 show contour plots of o-1 and a, respectively, at three

instances keyed to the numerical load-displacement curve in Fig. F-21. At location

1, Fig. F-23a and Fig. F-24a, the stress distribution shows that a maximum value

of o- = 74.7 MPa and a = 26.8 MPa occur at opposite edges of the hole. Since at

o- = 26.8 MPa, the critical value of o-1 is -1,,r = 74.9 MPa, the stress state at location

1 is just before that necessary to satisfy the craze-initiation criterion. By location 2,

Fig. F-23b and Fig. F-24b, craze flow and fracture have occurred at opposite edges

of the hole, as indicated by the removed elements.19 At this location, the fracture

18Four different experiments were conducted, and the overall response from the different exper-
iments was very similar, with the displacements at which fracture occurred varying by less than
4%.

9 Recall that we are using an element removal technique to model fracture propagation.
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process is seen to be symmetric about the window. However, by location 3, Fig. F-23c

and Fig. F-24c, the cracks have branched away from the centerline of the specimen;

this occurs because of small local numerical perturbations.

The numerical simulation nicely captures the major features observed in the phys-

ical experiment: (a) the non-linear load-displacement curve, (b) the process of crack

initiation and propagation with crack-branching, and (c) fracture into multiple pieces.

2.4.2 Notched-beam bending

Four-point bending experiments were conducted on the specimen geometries used for

PC testing shown in Fig. F-48. As indicated in the figure, specimens with a blunt

notch of a root radius of 4.76 mm and specimens with a sharp notch of a root radius

of 1.98 mm radius were tested. A specimen width of 50 mm was chosen so as to

approximate plane strain conditions at the notch root. A four-point bending fixture

was utilized with the specimen centerline coincident with the centerline of the fixture.

The experiments were performed by displacing the center rollers relative to the outer

rollers at a constant displacement rate of 2 mm/min. All rollers were constrained

during the experiments to ensure that they did not rotate.

Bending of the blunt-notched beam

The load-displacement response for the blunt-notched specimen is shown in Fig. F-

25; the experimental response of two specimens was repeatable to within 5%. The

load-displacement curve is linear until a displacement of approximately 3.5 mm, at

which point the curve deviates slightly from linearity. Failure occurs abruptly at a

displacement of 3.6 mm. Fracture appears to initiate at the apex of the notch-root

and the crack propagates along the specimen centerline. As well, a small ligament of

material is seen at the top edge of the beam, which results from deflection of the craze

front as it propagates into the compressive stress field at this location. Throughout

most of the fractured specimen cross-section, evidence of fibrils was observed. The

macroscopic observation is that the structure fails in a brittle manner as evidenced

by the attainment of small plastic stretches prior to failure, and after initiation, the
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crack propagates through the specimen cross-section in an unstable manner.

To simulate bending of the blunt-notched beam, the mesh shown in Fig F-51 is

employed. The load-displacement curve from the numerical simulation is compared

against the experimental response in Fig. F-25, where we note that the experimental

response has been corrected for an estimated compliance of 0.57 mm/kN resulting

from the loading system. The overall characteristics of the load-displacement curve

and final failure are considerably well predicted by the constitutive model and the

brittle fracture criterion. Granted that variations in the calibration experiments are

on the order of 7 to 8%, the model prediction of the experimental load-displacement

response is reasonable. We discuss errors associated with the beam bending experi-

ments in the next section.

Four displacement levels of interest are marked on the numerical load-displacement

curve shown in Fig. F-25. In Fig. F-26 and Fig. F-27 we show contour plots of the

maximum principal stress a, and the mean normal stress a corresponding to these

displacement levels:

" At location 1, Fig. F-26a and Fig. F-27a, the maximum positive values of a,

and a are concentrated at the notch-root. The initiation criterion for craze-flow

has not yet been satisfied.

* At location 2, Fig. F-26b and Fig. F-27b, the maximum value of a is 32.6

MPa and since the maximum value of ai at the notch-root just exceeds the
A

critical value of - + B = 69.0 MPa corresponding to a, craze-flow initiates at

the notch-root.

* At location 3, Fig. F-26c and Fig. F-27c, brittle fracture initiates at the notch-

root since the maximum value of E = cP. As indicated in the figures, an

element at the notch-root which has failed due to the brittle mechanism has

been removed from the mesh. Note as well that the craze-initiation criterion is

met at locations ahead of the notch-root, and this local condition drives craze-

flow into the beam along the specimen centerline, which is consistent with our

experimental observations of the post-mortem specimen.
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* By location 4, Fig. F-26d and Fig. F-27d, additional elements have undergone

craze-flow and have subsequently failed due to the brittle fracture mechanism.

At this location, the crack has propagated well into the specimen and the load

has decreased significantly.

Bending of the sharp-notched beam

Fig. F-28 shows the load-displacement response when the sharp-notched beam is

subjected to bending under the same loading conditions as were used for the blunt-

notched beam. The experimental response of two specimens was repeatable to within

4%. The load-displacement response of the sharp-notched specimen is similar to

that of the blunt-notched experiment, however there is no noticeable deviation from

linearity of the load-displacement curve. The material fails abruptly at a displacement

of 3.4 mm. The fracture surface and post-mortem specimen geometry are similar to

that observed for the blunt-notched beam, where it was again observed that fracture

occurs along the specimen centerline. The macroscopic observation is once again

that the structure fails in a brittle manner, and after initiation, the crack propagates

through the specimen cross-section in an unstable manner.

To simulate bending of the sharp-notched beam, the mesh shown in Fig F-56 is

used. The load-displacement curve from the numerical simulation is compared against

the experimental response in Fig. F-28. The numerically-predicted response is shown

in Fig. F-28; the numerical curve under-predicts the load at fracture by about 20%.

The reasons for this under-prediction are not known, but the fact that the actual loads

are higher, indicates that crazing in the four-point notch-bend experiment initiates

at higher levels of a, and - than those predicted by our curve fit for craze-initiation

in PMMA, shown in Fig. F-10. We attribute the major reason for this discrepancy

to the sensitivity of the craze-initiation criterion to various statistical effects such as

material variability and surface finish that we have not fully-explored in our work.

In Fig. F-29 we show the experimental points for the initiation of craze-flow com-

pared to the craze initiation line determined from our calibration experiments. The

experimental points were found by conducting the beam bending simulations with

craze-flow and fracture suppressed in the model. As can be seen from Fig. F-29, with
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recourse to the scatter associated with each experiment, the model prediction of the

initiation of craze-flow and subsequent brittle fracture is reasonable for the blunt and

sharp-notched beam bending experiments.

The numerically predicted craze-flow and brittle fracture processes are quite sim-

ilar to that observed for the case of the blunt-notched beam. For brevity, we show in

Fig. F-30 the contours of a, and - at initiation of craze-flow followed by contours of

a, and o- once the crack has propagated along the specimen centerline and well into

the beam. As can be seen from Fig. F-30a, the mean normal stress is concentrated

at the notch root and reaches a maximum value of 33.4 MPa. The corresponding

maximum principal stress attains a value of 68.8 MPa; this location corresponds to

incipient craze-flow. Similarly to the blunt-notched beam results, craze-flow initiates

at the notch-root and propagates into the beam along the specimen centerline, re-

sulting in the failed mesh geometry shown in Fig. F-30b. Thus, similar to the case of

the blunt-notched beam, in the sharp-notched beam the failure initiates due to the

brittle fracture condition being satisfied at the notch root once craze-flow initiates,

and the subsequent propagation of the crack occurs as the craze front propagates into

the beam.

2.5 Concluding remarks

Most previous models for fracture of glassy polymers have been based on the standard

framework of linear elastic fracture mechanics. This approach ignores the important

details of the process of crazing in flexible chain glassy polymers, and it cannot be

used when shear-yielding of the material may be occurring at other locations in the

body, especially when there are no initial sharp cracks in the body. Although the phe-

nomenon of crazing has been widely studied over the past four decades, and consid-

erable understanding of the micro-mechanisms of crazing and cracking in amorphous

polymers has been developed, the incorporation of this understanding into an engi-

neering tool for the quantitative prediction of the deformation and fracture response

of glassy polymers is just beginning to emerge. Of particular note is the recent work of
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Van der Giessen and co-workers (Estevez et al., 2000; Tijssens et al., 2000a; Tijssens

et al., 2000b), based on "cohesive surface" modeling of crazing. These authors used

an elastic-viscoplastic traction-separation relation which accounts for the three sepa-

rate stages of craze initiation, widening, and breakdown. While they have produced

informative two-dimensional numerical simulations, much work remains to be done

to correlate their parametric studies with actual experimental results. Here, instead

of attempting to represent each individual craze with an interface element, we have

developed a continuum-level model which contains the three ingredients of crazing

- initiation, widening, and breakdown - in a suitable statistically-averaged sense.

We have allowed for local inleastic deformation due to shear yielding in possible con-

currence with that due to crazing, and introduced a craze initiation criterion based

on the local maximum principal tensile stress reaching a critical value which depends

on the local mean normal stress. After crazing has initiated, our continuum model

represents the transition from shear-flow to craze-flow by a change in the viscoplastic

flow rule, in which the dilational inelastic deformation associated with craze-plasticity

is taken to occur in the direction of the local maximum principal stress. Finally, for

situations in which the local maximum tensile stress is positive, craze-breakdown and

fracture is taken to occur when a local tensile plastic craze strain reaches a critical

value. We have implemented our constitutive model in a finite-element computer

program. We have calibrated the constitutive parameters in our model for PMMA,

and shown that our model, when suitably calibrated and implemented, is able to

reasonably-well predict the macroscopic load-displacement curves, and local aspects

of the craze-flow and fracture processes in two prototypical notched components made

from this material.

In summary, we have attempted to develop the framework of an engineering tool

for the quantitative prediction of the deformation and fracture response of glassy

polymers. The results presented here represent a first step towards this goal. Much

additional work needs to be performed for this framework to be more-fully fleshed

out, and to be truly predictive. Some issues that need special further attention are

(i) Craze initiation: The central ingredient in the continuum model for crazing is
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the craze initiation criterion. It is well known that because of the importance of

imperfections in controlling the local stress states and the sites of craze initiation,

stress-based criteria for craze initiation are hard to determine with precision from

experiments. Thus, much work needs to be done to elucidate the statistical aspects

of craze intiation (and also craze breakdown). (ii) Effects of strain rate, temperature

and the environment: The present research needs to be extended by conducting

additional experiments at various strain-rates and temperatures. Further, we have

limited our attention to normal dry conditions. It is well known that crazing is very

sensitive to the environment, the effects of which need to be appropriately accounted

for.
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Chapter 3

Notch-sensitive fracture of

polycarbonate

3.1 Introduction

Engineering thermoplastics such as polycarbonate which exhibit significant ductility,

as evidenced by large strains to failure in smooth-bar tension or compression ex-

periments, have been found to be significantly notch-sensitive, in that they exhibit a

brittle mode of failure in notched specimens which generate a state of sufficiently large

hydrostatic tension ahead of the notch (e.g. Ishikawa et al., 1977; Zuber, 1985; Nim-

mer & Woods, 1992; Narisawa & Yee, 1993). Experimental observations on notched

specimens of polycarbonate tested in monotonic bending at moderately slow rates

at room temperature show that (a) if the notch has a reasonably large root radius,

then failure is initiated by ductile tearing at the notch root, while (b) if the notch

has a relatively small root radius, then the failure initiates in the form of a crack-like

feature at the tip of the plastic zone surrounding the notch, in the region of high

hydrostatic tension (e.g., see Fig. 6 of Ishikawa et al., 1977; also see Figs. 15-5 and

15-61 of Narisawa & Yee, 1993). These crack-like features have been called internal

crazes by Narisawa and his colleagues (e.g., Ishikawa et al., 1977; Narisawa & Yee,
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1993)1. However, it is unclear whether the internal crack-like features observed at

sharp notch-roots in polycarbonate exhibit the characteristic microstructural mor-

phology in which the faces of the crack-like features are bridged by highly-oriented

fibrils, as is typical for crazes in polymeric materials. Accordingly, here we refrain

from calling these internal crack-like features crazes, and simply associate the initia-

tion of such features at sharp notch-roots to be the outcome of internal cavitation in

the material.

Many experiments indicate that a hydrostatic tension plays a key role in the

nucleation of such an internal crack, and a critical value of the hydrostatic tension,

cYC, has been suggested as a suitable criterion for the nucleation of internal cracks

(e.g. Ishikawa et al., 1977; Nimmer & Woods, 1992). For example, Narisawa and his

colleagues have estimated a- for slow-cooled polycarbonate to be approximately 87-

89 MPa; to obtain such an estimate they used classical slip-line field analysis, coupled

with a measurement of the craze location below the notch-tip in three-point bending

experiments 2 . A similar estimate of -c ~ 90-100 MPa for polycarbonate has been

obtained by Nimmer & Woods (1992); they performed a finite element analysis, using

a non-hardening J 2-flow theory of plasticity, of a three-point bending experiment to

determine the hydrostatic stress field at the instant when the corresponding physical

experiment showed a load drop due to the initiation of an internal crack.

The purpose of this chapter is to develop a constitutive model and failure criteria

which can capture the competition between the ductile mechanism of inelastic de-

formation by "shear-yielding" and the eventual ductile tearing, typically observed in

amorphous thermoplastic materials under states of low triaxial tension, and the brit-

'They use this terminology to distinguish the internal crazes from surface crazes. Surface crazing
is a complex phenomenon which is time and temperature-dependent, and the initiation of surface
crazes is strongly affected by the environment, especially the presence of organic liquids. In contrast,
the occurrence of internal crazes is due primarily to mechanical conditions, and the environment
plays little or no role in their initiation and growth. However, unlike surface crazes which exhibit
a microstructural morphology in which the craze faces are bridged by highly-oriented fibrils (c.f.,
Fig. 15-6 of Narisawa & Yee, 1993), post-mortem examination (e.g., Zuber, 1985) of the faces of the
crack-like features of internal crazes observed in polycarbonate shows them to be relatively smooth
and featureless, similar to cleavage facets in metallic materials.

2Estimates of o- for initiation of internal cracks in other amorphous glassy polymers are given in
Table 15-1 of Narisawa & Yee, 1993.
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tle internal cracking phenomenon that is observed in states of high triaxial tension.

A significant advance in modeling the plastic deformation of amorphous polymers

by "shear-yielding" has been made by Parks, Argon, Boyce, Arruda, and their co-

workers (e.g. Parks et al., 1985; Boyce et al., 1988; Arruda & Boyce, 1993), and by

Wu & Van der Geissen (1993). More recently, Anand & Gurtin (2002) have refor-

mulated the theory within a rigorous thermodynamic framework, and introduced an

internal-state variable in the theory to represent the local free-volume in the material

to capture the highly non-linear stress-strain behavior that precedes the yield-peak

and gives rise to post-yield strain-softening. We shall build on this model for plastic

deformation of glassy polymers developed by the aforementioned authors. In particu-

lar, we shall extend the model to allow for large local elastic volumetric changes, and

as a first attempt to model fracture in such materials we will introduce two simple

local fracture criteria: (a) Brittle fracture will be taken to have occurred when a

local elastic volumetric strain has reached a critical value. (b) Ductile fracture will

be taken to have occurred when a local measure of plastic deformation, an effective

plastic stretch, has reached a critical value. We shall show that the constitutive model

and failure criteria, when suitably calibrated, are able to quantitatively predict the

ductile failure response of blunt-notched beams, as well as the competition between

the ductile and brittle mechanisms in more sharply-notched beams of polycarbonate

in bending.

The plan of this chapter is as follows. In Section 3.2 we summarize our constitutive

model and introduce local fracture criteria. In Section 3.3 we describe our experiments

to calibrate the material parameters in the model. In Section 3.4 we compare our

numerical predictions for (i) the deformation response of PC in simple and plane strain

compression and (ii) both the deformation and failure response of a "blunt"-notched

specimen geometry and a "sharp"-notched specimen geometry of polycarbonate under

four-point bending. We close in Section 3.5 with some final remarks.
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3.2 Constitutive equations for plastic deformation.

Fracture criteria

In this section we begin by summarizing the constitutive model for plastic deformation

of amorphous polymeric materials by the shear-yielding mechanism (Anand & Gurtin,

2002). The (isothermal) model is based on the mutliplicative decomposition, F =

FeFP, of the deformation gradient F into elastic and plastic parts, Fe and FP (Kroner,

1960; Lee, 1969).' The theory also contains two internal variables: a variable s > 0

that represents an isotropic intermolecular resistance to plastic flow; and an unsigned

variable 77 that represents the local free-volume.4 Then, in terms of the variables

Helmholtz free energy per unit volume of the relaxed configuration,

T, T = TT ,

F, detF > 0,

FP, det FP 1,

S, s > 0,

77,

and the definitions

Cauchy stress,

deformation gradient,

plastic part of the deformation gradient,

isotropic resistance to plastic flow,

free-volume,

3 Notation: V and Div denote the gradient and divergence with respect to the material point
X in the reference configuration; grad and div denote these operators with respect to the point
x = y(X, t) in the deformed configuration, where y(X, t) is the motion; a superposed dot denotes
the material time-derivative. Throughout, we write Fe- 1 = (Fe)-l, FPT = (FP)--T, etc. We write
symA, skwA, respectively, for the symmetric, and skew parts of a tensor A. Also, the inner product
of tensors A and B is denoted by A - B, and the magnitude of A by Al = v/A -A.

'It is commonly believed that the evolution of the local free-volume is the major reason for the
highly non-linear stress-strain behavior of glassy materials, which precedes the yield-peak and gives
rise to the post-yield strain-softening.
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Fe - FFP- 1 , det Fe > 0,

Ce = FeTFe,

E e = i (C e -,

T e =ReTTRe,

o-= }trT,

T= Te - o,

BP= FPFpT,

BP =BP - -(trBP)1,

AP = v/trBP,

DP= sym(FPFP-l), trDP = 0,

elastic deformation gradient,

elastic right Cauchy-Green strain,

elastic strain,

stress conjugate to the elastic strain E',

mean normal stress,

deviatoric stress,

left Cauchy-Green tensor corresponding to FP,

deviatoric part of BP,

effective plastic stretch,

plastic stretching,

the constitutive equations, under the approximative assumption of small elastic stretches,

are:

1. Free Energy:

The Helmholtz free energy is taken in the noninteractive form

= 4e(Ee) + OP(AP), (3.1)

where 4 e is an elastic free energy, and OP a plastic free energy. The elastic free

energy is taken in the standard form for small elastic stretches

1e = GIE e 2 + -K~trEe 12,
2

(3.2)

where G and K are the elastic shear and bulk moduli, respectively. In amor-

phous polymeric materials the major part of OP arises from an "entropic" con-

tribution, and motivated by statistical mechanics models of rubber elasticity,5

5 Cf., Treloar, 1975; Arruda & Boyce, 1993; Anand, 1996.
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is taken in the specific form

L AL
AP

x = (AL),

X +ln ( i x) -

y AL-y =~1 , 7

(3.3)

(3.4)

where L-1 is the inverse6 of the Langevin function L(... ) = coth(... ) - (-... -.

This functional form for OP involves two material parameters: PR, called the

rubbery modulus, and AL, called the network locking stretch.

2. Equation for the stress:

Te = 2GEe + K(trEe)1.
OEe 0 (3.5)

3. Equation for back stress: 7

Sback = 2symo ("p BP) - B

A OOP AL

3AP OAP "'(3AP

with (3.6)

(3.7)

The back stress modulus p -+ oo as AP -+ AL, since 12 1(z) -+ oo as z - 1.

4. Flow rule:

The evolution equation for FP is

P = DPFP, FP(X, 0) = 1, (3.8)

'To evaluate x = -1 (y) for a given y in the range 0 < y < 1, we numerically solve the non-linear
equation f(x) = L(x) - y = 0 for x. For numerically intensive calculations we approximate the
Langevin-inverse by the first 26 terms of its Taylor series expansion; see Appendix A.

7Also see Arruda & Boyce, 1993.
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with DP given by the flow rule

DPVPT - Sback

2;r_

where

1
Tr= |To-SackI, and vP == /|DPI,

are an equivalent shear stress and equivalent plastic shear strain-rate, respec-

tively. Here, vo is a reference plastic shear strain-rate, a a pressure sensitivity

parameter, and m a strain-rate sensitivity parameter. The limit m -+ 0 ren-

ders (4.4) rate-independent, while m = 1 renders (4.4) linearly viscous. The

equivalent plastic shear strain, 7P, is defined by yP = fvP dt > 0.

5. Evolution equations for the internal variables s and r):

The evolution of s and 77 is taken to be

equations8

= ho I - VP,

= go - - 1 v,
sc, )

governed by the coupled differential

s(X, 0) = so,

7 (X, 0) = 0, } (3.11)

with

s(q) = scv[1 + b(qcv - 77)],

where {ho, go, so, sc, b, rcj} are additional material parameters. Here §

is a saturation value of s: a is positive for s < § and negative for s >

definition P is nonnegative. Assuming that vP > 0, all solutions to the

(3.12)

= sg

s.By

pair of

8 We expect that 9 (and perhaps ho and go) may, in general, depend on vP, but currently there is
insufficient experimental evidence to warrant such a refinement.
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evolution equations satisfy

s -+ scv and -> 71cv as t -+ o.

We restrict attention to the initial conditions s = so with

s o < s < sc,(1+ b c ).

Also, as is tacit from (3.11)2, the free-volume is measured from the value 71 = 0

in the virgin state of the material, and thus T at any other time represents a

change in the free-volume from the initial state. Figure F-1 shows the evolution

of s, 9 and q with yP. We shall say that the flow has become "fully-developed"

when 77 -+ ncy and s -+ se,.

3.2.1 Modification of the model for large elastic volume changes

As indicated previously, many experiments indicate that hydrostatic tension plays a

key role in the nucleation of internal cracks. To accommodate this physical observa-

tion, we modify the elastic part of the constitutive model to allow for large elastic

volume changes. Thus, instead of using the stress-strain pair

1
Ee = 1 (Ce 1), Te =Re TTRe

2

which is appropriate for small elastic stretches, we shall use the conjugate stress-strain

pair

1
E - In Ce, T= (det Fe)ReTTRe, (3.13)

2

which is appropriate for large elastic stretches in isotropic materials (Anand, 1979)

to formulate the elastic stress-strain relations. Then denoting the volumetric and
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deviatoric part of the logarithmic elastic strain (3.13)1 by

e' = tr E ,
1

Ee = Ee- - e 1,
3

respectively, the elastic free energy is taken as9

0 = G|E |2 + (K(,e)2 ) 1 exp - (3.15)+

where G, K, and Ee are the shear modulus, the ground state bulk modulus, and a

critical value of the elastic volumetric strain, respectively.

The conjugate stress (3.13)2 is then given by

e a eT Me - 2GEO-+

and in this case the mean normal stress a = (1/3) tr T' is

K exp ( .) .

Hence, the generalized bulk modulus in this constitutive model is

with k -- K, as Ee -+0. (3.18)

Equation (3.17) for the mean normal stress - may be rewritten as

C (
a- =ac - exp 1 -

Ke
where Oc --

and e is the Neperian/Euler number. A plot of (c-/o-) versus (e/e), Fig. F-31, clearly

shows that - attains a maximum value oc, when ce = e'. The quantity oc represents

the cavitation strength of the material. Note that for most practical purposes the

material loses any stress-carrying capacity when E' > (4 to 10) x c'

9 The form for the volumetric response is motivated by the Universal Binding Energy Relation
(UBER) introduced by Rose et al. (1983) in a one-dimensional context of separation between atomic
planes in metals.
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K exp ~e) el.,e C el. (3.16)

(3.17)

(3.19)

K =
e ,e

-1 exp -
,e e
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Also note that the integral

c= j -dE' = e oc, ' = K(E,) 2 , (3.20)

represents a cavitation fracture energy per unit volume of the relaxed configuration.

In order to model fracture in polycarbonate we introduce two simple local fracture

criteria:

1. Brittle fracture will be taken to occur when a local elastic volumetric strain ce

reaches a failure value c':

e < e (3.21)

2. Ductile fracture will be taken to occur when the effective plastic stretch AP

reaches a critical value AP:

AP < A. (3.22)

We have implemented our constitutive model in the finite-element computer pro-

gram ABAQUS/Explicit (ABAQUS, 2001) by writing a user material subroutine.

This finite-element program permits the modeling of failure, when user-specified crit-

ical values of certain parameters are reached, by an element removal technique.

3.3 Estimation of material parameters for PC

As is well known, the mechanical response of amorphous thermoplastics is very sensi-

tive to prior thermo-mechanical processing history. In our work, all experiments were

conducted on specimens which were annealed at the glass transition temperature of

the material, Tg = 145'C, for 2 hours, and then furnace-cooled to room tempera-

ture in approximately 15 hours. All experiments reported here were conducted under

isothermal conditions at room temperature.
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A representative true stress-true strain curve obtained from a simple compression

experiment" conducted at a constant true strain rate of -0.001/s is shown in Fig. F-32.

After an initial approximately linear region, the stress-strain curve becomes markedly

nonlinear prior to reaching a peak in the stress; the material then strain-softens to

a quasi-plateau before beginning a broad region of rapid strain hardening. While

the existing models (e.g. Arruda & Boyce, 1993) account reasonably well for the

large strain strain-hardening regime, they do not adequately capture the pre-peak

nonlinearity and the subsequent strain softening,11 a "transient response" which is

not negligible, since the transient typically lasts for strain levels of ~ 25 percent.

Various investigators have typically attributed the pre-peak nonlinearity to some

sort of time-dependent recoverable "viscoelastic" response. To verify this conjecture,

we performed some plane strain tension experiments in which the strains could be ac-

curately measured using a sensitive extensometer. The engineering stress-engineering

strain response1 2 for a specimen loaded through its peak stress is shown in Fig. F-

33. Note that the features of the stress-strain curve prior to the peak are similar to

those observed in simple compression, Fig. F-32. The response in tension deviates

from linearity at a stress level of ~ 21 MPa and progresses in a nonlinear fashion to

a peak stress of ~ 56 MPa at a strain of ~~ 0.04. Five additional experiments were

performed to stress levels below the peak value, and the specimens were subsequently

unloaded, Fig. F-34; the resulting residual strains upon unloading from each stress

level are also indicated in this figure. Note that there is a clear trend of increasing

residual strain upon unloading from increasing stress levels in the non-linear pre-peak

regime. To test how much of this residual strain is recovered at zero load, the testing

machine was set to load-control after unloading each specimen, and the extensometer

response was monitored. The specimens exhibited only a very small amount of re-

covery at zero load over a time period of about one hour; for example, the specimen

10The data has been corrected to account for compliance contributions from the loading system.
"See Hasan and Boyce (1995) for a viscoelastic-viscoplastic formulation which is capable of cap-

turing the pre-peak nonlinearity and post-peak strain softening response of glassy polymers.
12Here, the engineering stress and engineering strain are used, because the specimen "necks" in

tension, and the subsequent response becomes inhomogeneous.
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unloaded from just prior to the peak recovered a strain of 0.09% in one hour out of

an initial residual strain of 0.22%. Accordingly, for present purposes, we will neglect

this small recovery at zero loads, and consider the measured residual strains after

unloading as plastic strains. Thus, unloading from the initial approximately linear

region" produces essentially no residual plastic strains and the response is considered

to be "elastic", whereas unloading from any stress level above the stress at which the

stress-strain curve deviates from initial linearity, produces residual plastic strains,

and the response is considered to be "plastic".

With this as background, we discuss below the results of our efforts at estimation

of the material parameters for our constitutive model, and also the failure values for

the brittle and ductile fracture criteria. Recall that the material parameters that

need to be determined are

1. The elastic shear and bulk moduli (G, K), and the critical value of the elastic

volumetric strain c' in the elastic part of the free energy.

2. The parameters (pR, AL) in the plastic part of the free energy.

3. The parameters {vo, m, a, so, ho, go, sc, b, Thet} in the flow rule and the evolution

equations for (s,0).

4. The parameters Ef and A' in the failure criteria.

The values of (G, K) are determined by measuring the Young's modulus and Pois-

son's ratio of the material in a compression experiment and using standard conversion

relations of isotropic elasticity to obtain the elastic shear and bulk moduli. The pa-

rameters (vo, m) in the flow function are determined from a strain rate increment

test in simple compression. The parameter a in the flow function is obtained by

conducting tension or compression tests under various levels of imposed hydrostatic

pressures. The parameters {ho, go, sev, b, ncv, so} and (pR, AL) may be estimated by

fitting a stress-strain curve in compression to large strains. The parameter A' for

"Within the accuracy of our strain-measuring techniques.
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ductile failure is obtained by fitting a load-displacement curve obtained from a spec-

imen which has been extended to failure in tension. And finally, the value of (Ce, 6 )

may be estimated from a load-displacement curve from a sharply notched-bar tension

specimen extended to failure in tension.

An experimental result from a strain rate jump experiment on PC conducted in

simple compression is shown in Fig. F-35. As the true strain rate is "instantaneously"

increased from -0.001/s to -0.01/s, the response shows a transient peak which satu-

rates to a steady-state value. Assuming that the deformation resistance s remains

constant and neglecting the change in the term ao- as the increment is imposed, the

relation for the equivalent plastic shear strain rate, Eq. 4.42, may be used to find

{vo, m}. The determination of vo and m is shown graphically in Fig. F-36. Using

these values, and a value of a = 0.08 from the data reported by Spitzig & Richmond

(1979), the parameters {G, K, ApR, AL, ho, go, se, b, rev, so} are estimated by fitting a

stress-strain curve for PC in simple compression, Fig. F-32.14 The fit was performed

by judiciously adjusting the values of these parameters in finite element simulations

of a simple compression experiment using a single ABAQUS/C3D8R element. After

multiple attempts, a reasonable fit was obtained, and this is shown in Fig. F-37. The

list 15 of parameters obtained using this heuristic calibration procedure are:

G = 0.857 GPa K = 2.24 GPa PR = 11.0 MPa AL 1.45

vo = 0.0017 s- m = 0.011 a = 0.080

so = 20.0 MPa se, = 24.0 MPa ho = 2.75 GPa

b = 825 go =6.0 - 10 3  qcv 0.001

In order to estimate the value of the parameter A' for ductile failure, we conducted

several tension experiments. The experiments were performed under displacement

control at 0.0125 mm/s on specimens with a gauge section of initial diameter of

6.35 mm, and length of 25.4 mm. A representative experimentally-measured load-

displacement response is shown in Fig. F-38. At the peak load of about 2.3 kN, a

pronounced neck forms in the gauge section, and the load subsequently decreases to

14See Appendix B for a guideline to calibration of the model.
15This list, although not unique, is adequate for present purposes.
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an approximate plateau value of 1.6 kN. The neck then propagates along the gauge

section until a displacement of 15.8 mm is reached. At the maximum displacement,

the entire section over which the neck has propagated develops a profuse number

of ring cracks around the circumference, and final separation occurs somewhere in

the necked region. To check the repeatability of the failure response, five identical

specimens were tested; the measured displacements at fracture varied less than 5%.

To numerically model a tension experiment, one half of a specimen was meshed

with 390 ABAQUS/CAX4R axisymmetric elements. The constitutive parameters

used in the simulation are those obtained from the fitting exercise for the compres-

sion experiments, and in this calibration step, the only adjustable parameter is the

failure value of the effective plastic stretch, AP; this was adjusted to match the final

displacements to "ductile" fracture. The fit shown in Fig. F-38 is obtained with

A' = 1.192.

Note that prior to the final ductile fracture, the load-displacement response from the

numerical simulation shown in Fig. F-38 constitutes a prediction for this response.

Contour plots of the effective plastic stretch AP are shown in Fig. F-39a,b,c at the

three displacement levels which have been marked by arrows in Fig. F-38. As can

be seen from the contour plots, the deformation is homogeneous until the peak load,

location 1, is attained at a maximum value of AP of 1.003. Subsequent to the peak

load, a localized neck forms at the center of the gauge section, location 2, and here the

maximum value of AP reaches 1.120. As the neck propagates along the gauge section,

AP continues to increase until it reaches a maximum value of 1.192, at location 3, at

which stage ductile fracture occurs.

To complete the calibration procedure one needs to determine the remaining pa-

rameters { , e}. To do this, notched-bar tension experiments were conducted. In

such experiments a state of high mean normal stress is generated ahead of the notch,

and brittle fracture is expected to occur if the notch is sufficiently sharp. The speci-

men geometry chosen to achieve this goal is a 12.7 mm cylindrical bar with a notch of
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3.18 mm depth and 1.80 mm width; the radius at the notch root is 0.90 mm. An ex-

tensometer was used to measure the local relative displacement across the notch as the

specimen was extended at a rate of 0.0125 mm/s. A representative experimentally-

measured load-displacement response curve is shown in Fig. F-40. The specimen fails

abruptly at a displacement of about 0.4 mm. The fracture surfaces show a smooth re-

gion with an rms roughness of 43 nm ahead of the notch root, indicative of a "brittle"

mechanism of failure, together with an indication of a moreductile failure response

at the notch root. In order to check the repeatability of the fracture response, five

specimens were tested and the measured displacements at fracture were found to vary

by less than 4%.

To numerically model a notched-bar tension experiment, one half of the specimen

was meshed with 390 ABAQUS/CAX4R axisymmetric elements. We note that in this

calibration step, the only adjustable parameters are {E, eC}. Since, E = (cre)/K,

and the value of K = 2.24 GPa has been fixed, we adjust the value of ac and the ratio

Xf = E , fit the experimental load-displacement curve. The quality of the fit

with the values'

Oc = 83.5 MPa and Xf = 4.0,

is shown in Fig. F-40. These values for {ac, Xf} correspond to

e= 0.1013, and E= 0.4053.

Shown in Fig. F-41 are contour plots of the mean normal stress a at two different

displacement levels indicated by arrows in Fig. F-40. During the initial linear loading

stage, a is maximum at the root of the notch, as can be observed in Fig. F-41a. As

deformation progresses, the load-displacement response becomes nonlinear, a plastic

zone develops at the notch root, and the maximum value of a becomes concentrated

ahead of the zone of plastic deformation. Brittle fracture eventually initiates in the

region of high triaxiality, and the crack propagates across the specimen. This response

16Note that this value of o- for polycarbonate is very similar to the value previous estimated by
Narisawa and his colleagues, e.g. Narisawa & Yee (1993).
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is consistent with the experimentally-observed mostly "brittle" fracture surface.

The parameters obtained from these three calibration steps complete the material

parameter determination for PC. In the next section, we use the calibrated model

to: (i) investigate the predictive capability of the model for the finite deformation

response of PC in simple compression with monotonic loading/unloading and plane

strain compression; (ii) compare numerical predictions for both the deformation and

failure response in four-point bending of a "blunt"-notched specimen geometry and

a "sharp"-notched specimen geometry against corresponding physical experiments.

3.4 Investigation of predictive capabilities of the

model

3.4.1 Compression experiments

The purpose of this section is to illustrate some of the finite deformation features that

our constitutive model is able to capture. In particular, we show model predictions

for (i) the reverse yield effect observed upon unloading in simple compression exper-

iments and (ii) the development of shear bands observed in plane strain compression

experiments.

Simple compression

In the previous chapter, the material parameters for the finite deformation response

were found by calibration to a monotonic compression experiment, where the effects

of the back stress are manisfest in the resulting stress-strain curve. Upon elastic

unloading, the existence of the back stress is observed as the cause of the so-called

reverse yield effect. To investigate the extent of reverse yield with increasing strains,

we performed simple compression experiments with a crosshead velocity of 0.0125

mm/s to a true strain of 17%, 59%, and 90% followed by unloading at the same dis-

placement rate. The experimental stress-strain curves are shown in Fig. F-42, where

a clear trend of an increasing extent of reverse yield with increasing strain is observed.
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In order to model the compression experiment, we assume that the deformation is

homogeneous and use a single ABAQUS/C3D8R element. The numerically predicted

stress-strain curves are shown in Fig. F-43 for each experiment. As can be seen

from the numerical curves, unloading in the experiments conducted to strains of 17%

and 59% is predominantly elastic, with the reverse yield observed in the experiments

under-predicted by the model. However, the model prediction of the experiment

conducted to a strain level of 90% reasonably predicts both the stress level for yield

upon unloading as well as the general curvature observed in the experiment during

reverse yield.

Considering that the material parameters are determined from a monotonic com-

pression experiment, the capability of the model to predict the features of reverse

yield upon unloading is impressive.

Plane strain compression

The predictive capabilities of the model are further demonstrated by an investiga-

tion of plane strain compression experiments. A plane strain die set made of D2

tool steel was used to conduct plane strain compression experiments on PC at a con-

stant true strain rate of -0.001/s. The resulting stress-strain curve assuming that

the deformation is homogeneous is shown in Fig. F-44, where a simple compres-

sion experiment and the corresponding model fit are shown for comparison. A single

ABAQUS/C3D8R element is used to model the plane strain compression experiment.

As can be seen from the prediction of the plane strain compression curve in Fig. F-44,

the model accurately predicts the peak stress and reasonably captures the full range

of the stress-strain response.

It should be emphasized that these results for plane strain compression assume

that the overall deformation is homogeneous. However, a post-mortem investigation

of the specimen clearly reveals that the deformation is in fact non-homogeneous. In

particular, evidence of shear bands throughout the specimen indicate that the de-

formation is a more complicated process. In order to demonstrate this important

point, we have conducted two additional plane strain compression experiments uti-
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lizing a specimen geometry with a gauge length of 12.4 mm and a cross-sectional

area of 4.6 mm x 26 mm, with 4.6 mm in the constraint direction. The experiments

were conducted at a cross-head velocity of 0.0125 mm/s, and the specimens were

unloaded at the same rate. The experimental results are shown in Fig. F-45, where

we have plotted the load-displacement curves to emphasize that the deformation is

non-homogeneous. After testing, the specimens were carefully sectioned in half in the

direction perpendicular to the constraint direction. The sectioned pieces were then

polished down to a 1 pm alumina slurry in tap water and viewed through polarizers

using a digital camera with a fiber optic light source. The experimental specimens

corresponding to locations "A" and "B" of Fig. F-45 are shown in Fig. F-46 and

Fig. F-47, respectively, where the loading axis is in the vertical direction. The figures

indicate that at the initial location "A" of Fig. F-45 three pronounced sets of conju-

gate bands have formed throughout the specimen cross-section. Shear bands initiate

from the edges due to the frictional effects in the experiments and a conjugate set

of bands is observed in the center section, where the edge effects on the deformation

should be minimized. The orientation of the bands with respect to the loading axis

is ±40.80. At location "B" of Fig. F-45, the orientation of the initial shear bands is

seen to have evolved with the deforming background field, while new sets of bands

have initiated with approximately the same orientation of ±40.8' observed for the

intial bands.

The experiments are modeled using a fine mesh of 3526 ABAQUS/CPE4R ele-

ments in order to accurately capture the details of the deformation process. The

contact between the dies and the specimen are modeled by using analytical rigid sur-

faces and a coefficient of friction of 0.08 was assumed to model the inevitable effects

of friction between the lubricated PC and tool steel. In order to constrain the spec-

imen, a single node in the center of the bottom edge of the mesh is held fixed. The

numerically predicted load-displacement curves are shown against the experiments in

Fig. F-45, where the model prediction is observed to be reasonable.

The simulation results for unloaded specimens at locations "A" and "B" of Fig. F-

45 are shown in comparison to the experimental specimens in Fig. F-46 and Fig. F-
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47, respectively. In Fig. F-46, contour plots of the equivalent plastic shear strain jf

indicate that the distinct nature of the bands 7 as well as the measured orientation

of t42.6' to the loading axis are in good accord with the experimental results. The

predicted bands in Fig. F-47 are seen to be diffuse in nature with an indication of

initial bands that have deformed with continued deformation. The orientation of the

bands is again in good accord with the experiment. As well, the overall morphology

of the specimen is well-captured by the model. Clearly, the deformation process in

plane strain compression is non-homogeneous.

We now investigate the predictive capability of our new constitutive model and

fracture criteria for experiments involving brittle and ductile fracture.

3.4.2 Notched-beam bending

Four-point bending experiments were conducted on the specimen geometries shown

in Fig. F-48. As indicated in this figure, specimens with a blunt notch of a root radius

of 4.76 mm and specimens with a sharp notch of a root radius of 1.98 mm radius were

tested. A specimen width of 50 mm was chosen so as to approximate plane strain

conditions at the notch root. A four-point bending fixture was utilized with the spec-

imen centerline coincident with the centerline of the fixture. The experiments were

performed by displacing the center rollers relative to the outer rollers at a constant

displacement rate of 2 mm/min. All rollers were constrained during the experiments

to ensure that they did not rotate.

Bending of the blunt-notched beam

The load-displacement response for the blunt-notched specimen is shown in Fig. F-

49. Three displacement levels of interest are marked on the load-displacement curve.

Fig. F-50a,b,c show three micrographs, corresponding to the indicated displacement

levels, of the specimen cross-section ahead of the notch. The micrographs were taken

in the unloaded configuration from polished cross-sections of the specimen. The image

"We note that the width of the shear band is determined by the element size since the localization
process occurs over a characteristic length scale.
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taken at location 1 shows that a zone of plastic deformation (by the shear-yielding

mechanism) has developed at the notch root. At location 2, the plastic zone has

extended a significant distance through the thickness of the specimen, and plastic-

deformation is also seen to have occurred at the back-face of the specimen. The

abrupt drop in the load-displacement curve indicates the initiation of failure; this

event is due to the nucleation of a crack at the notch root, and once the crack nu-

cleates, it propagates in a stable manner through the thickness of the specimen. The

crack is clearly visible in the micrograph corresponding to location 3. Thus, for the

case of the blunt-notched specimen in bending, the macroscopic observation is that

the structure fails in a ductile manner as evidenced by the attainment of large plastic

stretches prior to crack initiation, and after initiation the crack propagates in a stable

manner until final fracture.

To simulate bending of the blunt-notched beam, one-half of the beam is mod-

eled using 1509 ABAQUS/CPE4R plane strain elements with reduced integration.

A detail of the finite-element mesh and the mesh at the notch root are shown in

Fig. F-51. The load-displacement curve from the numerical simulation is compared

against the experimental response in Fig. F-52. A large part of the difference be-

tween the numerically-calculated and experimentally-measured curves is attributable

to machine compliance effects of the bending apparatus. The overall characteristics

of the load-displacement curve and final failure are reasonably well predicted by the

constitutive model and the ductile fracture criterion.

Four displacement levels of interest are marked on the numerical load-displacement

curve shown in Fig. F-52. In Fig. F-53 we show contour plots of the effective plastic

stretch AP corresponding to these displacement levels:

9 At location 1, Fig. F-53a, just prior to the initial peak on the load-displacement

curve, a small plastic zone has developed around the notch root, and AP has

a maximum value at the notch root of 1.014. This is physically similar to the

plastic zone seen in Fig. F-50a at an approximately similar location on the

load-displacement curve of the physical experiment.
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" At location 2, Fig. F-53b, the plastic zone at the notch root has grown in size,

with a maximum value of AP = 1.110 at a position slightly offset from the notch

root; the back-face has deformed plastically. These features are physically sim-

ilar to the plastic zone seen in Fig. F-50b at an approximately similar location

on the load-displacement curve of the physical experiment.

" At location 3, Fig. F-53c, the plastic zone at the notch root has grown further

in size. The effective plastic stretch has reached a maximum value of 1.192,

which is equal to the failure value of AP, and ductile failure is seen to initiate

at an element slightly offset from the centerline notch root. Recall that we are

modeling failure by the element removal technique.

* By location 4, Fig. F-53d, additional elements have reached the ductile fracture

condition AP = AP, and the corresponding elements have been removed. As the

ductile failure process progresses from location 3 to location 4, the "crack" prop-

agates both towards the specimen centerline and into the beam, as indicated

in Fig. F-53d. These features of ductile fracture are physically similar to those

seen in Fig. F-50c at an approximately similar location on the load-displacement

curve of the physical experiment.

Bending of the sharp-notched beam

Fig. F-54 shows the load-displacement response when the sharp-notched beam is

subjected to bending under the same loading conditions as were used for the blunt-

notched beam. The initial load-displacement response of the sharp-notched specimen

is similar to that of the blunt-notched experiment; here, however, the material fails

abruptly at a displacement of 12.4 mm. An investigation of the fracture surface

where the crack initiates reveals a surface roughness which varies in the nanometer

range 18 ; this indicates a fracture initiation mechanism which is "brittle" in nature. A

separate experiment was conducted and stopped just prior to the point of fracture.

An image of the polished cross-section is shown in Fig. F-55. Note that in addition

1 8The measured rms surface roughness is 43 nm.
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to the shear-yielding plastic zone, one clearly sees a crack-like feature at the tip of

the plastic zone19 . For more exhaustive experimental observations of such features

in sharp-notched beams, see Ishikawa et al. (1977) and Zuber (1985). The fracture

surface of the beam shows a smooth surface ahead of the notch root and into the

cross-section, indicative of brittle fracture, and also a small ligament at the notch

root which appears to have failed in a ductile manner.

To simulate bending of the sharp-notched beam bending, one-half of the beam

is modeled using 1370 ABAQUS/CPE4R plane strain elements with reduced inte-

gration. A detail of the finite-element mesh for the beam and a close-up of the fine

mesh employed at the notch root is shown in Fig. F-56a and Fig. F-56b, respectively.

Note that the mesh is refined at the contact locations with the rigid rollers in order

to minimize contact noise in the simulation. The load-displacement curve from the

numerical simulation is compared against the experimental response in Fig. F-57.

The experimental curve has been corrected for an estimated machine and bending rig

compliance of 0.57 mm/kN.

Four displacement levels of interest are marked on the numerical load-displacement

curve shown in Fig. F-57. In Fig. F-58 and Fig. F-59 we show contour plots of the

mean normal stress -, and the effective plastic stretch AP corresponding to these

displacement levels:

" At location 1, Fig. F-58a and Fig. F-59a, the maximum value of -= 82.1 MPa

occurs at a location just ahead of the notch root, while AP has a low value of

only 1.100 at a location slightly offset from the notch root. Since the cavitation

strength is o-, = 83.5 MPa, location 1 is at a state of incipient brittle fracture.

" At location 2, Fig. F-58b and Fig. F-59b, we observe that brittle fracture has

initiated at a location ahead of the plastic zone at the notch root. Comparison

of the location of brittle fracture initiation with the micrograph in Fig. F-55

indicates that the model accurately predicts the initiation site of brittle fracture.

1 9Minor experimental misalignment may have offset the crack slightly from the loading centerline.
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" By location 3, Fig. F-58c and Fig. F-59c, the "crack" has extended deeper

through the thickness of the specimen, but by now the remaining ligament

between the crack and the free-surface of the notch has also been sufficiently

plastically stretched to initiate ductile fracture at the free surface of the notch

root.

* By location 4, Fig. F-58d and Fig. F-59d, the remaining ligament has failed

completely by the ductile mechanism, and the crack has propagated further

in a brittle fashion through the thickness of the beam. During this stage of

the process, the values of AP remain below the critical value, as indicated in

Fig. F-59d.

Thus, in the sharp-notched beam the failure initiates due to the brittle fracture

condition being met ahead of the plastic zone at the notch root, and the subsequent

propagation of such a crack occurs by a competition between the brittle and ductile

criteria being satisfied at different locations along the crack, depending on the local

nature of the triaxiality constraints along the crack fronts. Our new constitutive

model and fracture criteria capture the intricate interplay of both the brittle fracture

and ductile failure mechanisms, and provide a reasonable prediction of the load-

displacement response of the sharp-notched PC beam in four-point bending.

3.5 Concluding remarks

We have developed a constitutive model and fracture criteria which can capture

the competition between the ductile mechanism of inelastic deformation by "shear-

yielding" and eventual ductile tearing, typically observed in amorphous thermoplastic

materials under states of low triaxial tension, and the "cracking" phenomenon that

is observed in states of high triaxial tension. Our constitutive model builds upon

the recent theory of Anand & Gurtin (2002) for plastic deformation of amorphous

polymeric materials. Our extensions consist of (a) generalizing the theory to allow

for large elastic volume changes; (b) introducing a brittle fracture criterion based
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on the local elastic volumetric strain reaching a critical value; and (c) introducing a

ductile fracture criterion based on an effective plastic stretch reaching a critical value.

We have shown that the constitutive model and failure criteria, when suitably cali-

brated, are able to quantitatively predict the ductile failure response of blunt-notched

beams of polycarbonate in bending, as well as the competition between the ductile

and brittle mechanisms in more sharply-notched beams.

We recognize that our numerical modelling of the ductile and brittle fracture

processes is "mesh-sensitive," and much needs to be done to refine the mesh (amongst

other considerations) to be able to better represent such fracture processes. However,

as a first attempt to model such highly nonlinear fracture processes in polymers, we

consider that the proposed constitutive model and failure criteria adequately capture

the competition between the ductile and brittle mechanisms of fracture initiation and

propagation.

The present research needs to be extended by conducting more detailed experi-

ments at various temperatures and strain-rates to see if the failure criteria continue to

have predictive capabilities under different temperature and strain rate conditions,2 0

and by conducting experiments on specimen geometries that might exhibit an even

more complicated interplay between the ductile and brittle fracture mechanisms. In

addition, statistical aspects of fracture criteria also need to be elucidated.

2 0The experiments of Narisawa and his colleagues (as summarized in Narisawa & Yee, 1993)
indicate that the value of o-, for polycarbonate is approximately independent of strain rate over a
range of rates varying from 10-4 to 10-1 per second. However, given the strong dependence of
the elastic moduli on temperature, we expect that the value of o-c will decrease with increasing
temperature (in this respect, the recent work of Johnson (2001) provides useful experimental results
on fracture of notched-bars of PC under various loading rates and ambient temperatures). Thus,
any adiabatic heating effects at higher strain rates are also expected to lower the value of o-c.
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Chapter 4

Micro-indentation of amorphous

polymeric solids

4.1 Introduction

The development of very low-load depth-sensing indentation instruments, over the

past twenty years or so, which allow one to make indents as shallow as a few nanome-

ters, make these instruments particularly well-suited for indentation experiments on

materials available only in small volumes, such as thin coatings (e.g., Pethica et al.,

1983; Oliver & Pharr, 1992). Since these instruments allow one to continuously record

both load, P, down to micro-Newtons, and indentation depths, h, down to nanometers

during the indentation cycle, results from such nano/microindentation experiments

hold the promise of the in situ estimation of mechanical properties of materials from

the measured P-h curves.

Indentation experiments have long been used to measure the hardness of ma-

terials. Interest in instrumented indentation experiments as a means to estimate a

wide variety of other mechanical properties (e.g, elastic moduli, yield strength, strain-

hardening characteristics, residual stresses, and fracture toughness - for very brittle

materials) has grown rapidly in recent years. It is clear from the recent literature

(e.g., Giannakopoulos et al., 1994; Larsson et al., 1996; Dao et al., 2001), that the

problem of estimating material properties from experimentally-measured P-h curves,
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depends crucially on the availability of a large catalog of numerically calculated P-

h curves, the attendant details of the time-varying "true projected contact areas",

"pile-up/sink-in profiles", and stress and strain distributions in the inhomogeneously

deforming volume of material under the indenter. Since in typical ductile metallic

materials the plastic strain levels under sharp indenters exceed - 0.15 in the majority

of the plastically deforming volume directly beneath an indenter, and can reach as

high as ~ 1.5 just beneath the indenter tip (see, e.g., Fig. 6 of Dao et al., 2001)

the numerical simulations of indentation need to be performed with accurate large

deformation constitutive models for the material being indented. With a focus on

metallic materials, most of the recent analyses of indentation (e.g., Cheng & Cheng,

1998; Cheng & Cheng, 1999; Dao et al., 2001) have been performed using a large

deformation version of the classical isotropic, rate-independent, elasto-plastic J2 flow

theory,' in which the strain-hardening during plastic deformation is modeled by a

flow condition of the form

( n
c = Y(,-?), with Y(e) = - I + /E)) (4.1)

where in standard notation, & is the Mises equivalent tensile stress, 0 is the equivalent

tensile plastic strain, a- is the tensile yield strength, n is the strain-hardening expo-

nent, and E is the Young's modulus. Suresh and co-workers (e.g., Giannakopolous

& Suresh, 1999; Venkatesh et al., 2000; Dao et al., 2001) have used the results from

such numerical analyses in conjunction with suitable scaling relations2 to develop a

promising methodology for estimating the Young's modulus, yield strength, strain-

hardening exponent, as well as the hardness of metallic materials from measured P-h

curves in microindentation.3

A search of the literature reveals that although numerous investigators have con-

'Previous finite element analyses (e.g., Bhattacharya & Nix, 1991; Giannakopolous et al., 1994;
Larsson et al., 1996) were typically performed using a small deformation theory.

2 Also see Cheng & Cheng, 1998; Cheng & Cheng, 1999.
3 Two of the earliest, and still widely-used, methods for estimating the hardness and Young's

modulus (from the maximum load and the initial unloading slope of the P-h curves) are those of

Doerner and Nix (1986) and Oliver and Pharr (1992).
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ducted nano/microindentation experiments to obtain P-h curves for polymeric mate-

rials (e.g., Briscoe & Sebastin, 1996; Briscoe et al., 1998), a corresponding method-

ology for extracting material property information from the experimental data is not

as well developed. 4 This situation exists primarily because baseline numerical analy-

ses of sharp indentation of polymeric materials using appropriate large deformation

constitutive models for the elastic-viscoplastic response of polymeric materials ap-

pear not to have been previously reported in the literature. Before one can use

experimentally-measured P-h curves from indentation experiments to extract mate-

rial property information for a given material, a particular constitutive model must

be assumed, the sensitivity of the P-h curves to variation in the values of the con-

stitutive parameters in the model must be studied, and the key material parameters

that dominate the P-h response must be determined. For instance, it is well known

that room temperature stress-strain curves obtained from large deformation compres-

sion5 experiments are very sensitive to (a) the range of strains: at small strains some

amorphous polymers show a strain softening phenomenon, but at large strains they

show a very rapid strain-hardening response; (b) changes in strain path: at large

strains polymeric materials exhibit a pronounced Bauschinger effect upon unloading;

(c) the effects of strain rate: room temperature for polymeric materials is usually

not far from their glass-transition or melt temperatures, and they show substantial

strain-rate sensitivity of plastic flow; (d) large hydrostatic pressures: most amorphous

polymeric materials show a sizable positive pressure-sensitivity of the resistance to

plastic flow. Without detailed numerical analyses of sharp indentation, it is unclear

as to which of these phenomena significantly effect the P-h curves, and which material

properties one can even hope to extract with reasonable accuracy.

A simple, rate-independent, power-law strain-hardening Mises type model, as has

been used to simulate the indentation response of metallic materials (e.g., Cheng &

Cheng, 1998; Dao et al., 2001), does not represent the various physical phenomena

strain-softening and then strain-hardening, Bauschinger effects, strain-rate sensi-

4However, see Rikards et al. (1998) for a recent attempt.
'And also tension experiments on polymers which do not craze.

77



tivity, pressure sensitivity of plastic flow - observed in polymeric materials. A more

sophisticated constitutive model which comprehends these effects is needed. Such a

model for amorphous polymeric materials undergoing plastic deformation by shear-

yielding has been developed by Parks, Argon, Boyce, Arruda, and their co-workers

(e.g. Parks et al., 1985; Boyce et al., 1988; Arruda & Boyce, 1993), and by Wu

& Van der Giessen (1993). Anand & Gurtin (2002) have recently reformulated the

model within a rigorous thermodynamic framework. In this paper we shall use this

model to study the sharp-indentation response of the amorphous polymeric materials

polycarbonate (PC) and polymethylmethacrylate (PMMA). Specifically we will (a)

first estimate the constitutive parameters in the model by fitting stress-strain curves

from large deformation compression tests, and other information available for these

materials in the literature; (b) next we will conduct instrumented micro-indentation

experiments using both Berkovich and conical indenters, and then by comparing the

measured P-h curves and residual indent morphologies against corresponding predic-

tions from finite-element analyses show that for both PC and PMMA the predicted

results are in reasonable agreement with the experiments; and finally, (c) with the

suitability of the constitutive model for these materials confirmed, we perform a sen-

sitivity study and dimensional analysis in order to find the key material parameters

that determine the P-h response and the residual indent morphology resulting from

sharp indentation of polymeric materials. Building upon these results, we propose a

simple scheme for the inverse approach in sharp-indentation of polymeric solids and

demonstrate an example application to indentation of polystyrene (PS).

The plan of the chapter is as follows. In Section 4.2 we summarize our constitutive

model for isotropic solids undergoing large deformations. In Section 4.3 we report our

experimental and numerical simulation procedures for micro-indentation. In order to

calibrate these procedures, we first perform a brief study of the indentation response

of the metallic alloy A16061-T6; this is reported in Section 4.3.1. In section 4.3.2

we report on the indentation experiments and simulations for PC and PMMA. In

Section 4.4 we present a parametric study to motivate a framework for the inverse

approach for indentation of amorphous polymeric solids. We present a methodology
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for the extraction of material properties from indentation data in Section 4.5 and

demonstrate an example application of an inverse approach for indentation of PS in

section 4.6. We close in Section 4.7 with some final remarks.

4.2 Constitutive model

The model is based on the multiplicative decomposition, F = FeFP, of the deforma-

tion gradient F into elastic and plastic parts, F' and FP (Kroner, 1960; Lee, 1969).6

We shall first consider a specialized form of this constitutive model which is suitable

for isotropic metallic materials, and then consider a more generalized form suitable

for amorphous polymeric materials.

4.2.1 Isotropic metallic materials

For metallic materials the theory uses one internal variable s > 0 that represents an

isotropic resistance to plastic flow. Then, in terms of the variables

T, T = TT, Cauchy stress,

F, det F > 0, deformation gradient,

FP, det FP = 1, plastic part of the deformation gradient,

s, s > 0, isotropic resistance to plastic flow,

and the definitions

6 Notation: V and Div denote the gradient and divergence with respect to the material point
X in the reference configuration; grad and div denote these operators with respect to the point
x = y(X, t) in the deformed configuration, where y(X, t) is the motion; a superposed dot denotes
the material time-derivative. Throughout, we write F- 1 = (Fe)-1, FP-T = (FP)-T, etc. We write

symA and skwA, respectively, for the symmetric, and skew parts of a tensor A. Also, the inner
product of tensors A and B is denoted by A -B, and the magnitude of A by JAl = v/A - A.
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Fe = FFP-', det Fe > 0,

E = (Fe TFe 1),

T e = R eT TRe

o- = }trT,

T= -TeU,

DP= sym(FPFP- 1 ), trDP = 0,

elastic deformation gradient,

elastic strain,

stress conjugate to the elastic strain Ee,

mean normal pressure,

deviatoric stress,

plastic stretching,

the constitutive equations, under the usual approximative assumption of small elastic

stretches, are:

1. Equation for the stress:

= 2GEe + K(trEe)1. (4.2)

where G and K are the elastic shear and bulk moduli, respectively.

2. Flow rule:

The evolution equation for FP is

#P = DPFP, FP(X, 0) = 1, (4.3)

with DP given by the flow rule

D VP T , < M < 1, (4.4)

where

= 1 T ,T /- and vP = v' lDP I, (4.5)

are an equivalent shear stress and equivalent plastic shear strain-rate, respec-

tively. Here, vo is a reference plastic shear strain-rate, and m a strain-rate

sensitivity parameter. The limit m -+ 0 renders (4.4) rate-independent, while
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m.= 1 renders (4.4) linearly viscous. The equivalent plastic shear strain, -yP, is

defined by y" = f vP dt > 0.

3. Evolution equation for the internal variables s:

The evolution of s is taken to be governed by the differential equation

= ho (I - S )P, s(X, 0) = so, (4.6)

where {so, ho, s, a} are additional material parameters.

To complete the constitutive model for a particular isotropic metal the consti-

tutive parameters/functions that need to be specified are

{G, K, vol, m, so, ho, s,, a}.

4.2.2 Amorphous polymeric materials

For polymeric materials, it is commonly believed that the evolution of the local

free-volume is the major reason for the highly non-linear stress-strain behavior of

glassy materials which precedes the yield-peak and gives rise to the post-yield strain-

softening. Accordingly, in this case the model employs two internal variables: a

variable s > 0 that represents an isotropic intermolecular resistance to plastic flow;

and an unsigned variable rq that represents the local free-volume. The model also ex-

plicitly accounts for the dependence of the free energy on the plastic deformation in a

thermodynamically consistent manner. In amorphous polymeric materials the major

part of this dependence arises from an "entropic" contribution due to the stretching

of the molecular chains. This dependence leads directly to a back stress in the under-

lying flow rule, which allows the model to capture the rapid strain-hardening response

after the initial yield-drop in monotonic deformations, as well as the Bauschinger-type

reverse-yielding phenomena typically observed in amorphous polymeric solids upon

unloading after large plastic deformations.

The constitutive equations for amorphous polymeric materials are summarized

81



below

1. Equation for the stress:

2GEe + K(trEe)1.

where G and K are the elastic shear and bulk moduli, respectively.

2. Flow rule:

#P = DPFP, FP(X,0) = 1,

with

1
p (Te- Sb

DP = vl 0 _;r back
, 0<rm<1,

and vP = v 2IDP I,

are an equivalent shear stress and equivalent plastic shear-strain rate, respec-

tively. Here, vo is a reference plastic shear-strain rate, m a strain-rate sensitivity

parameter, and a a pressure sensitivity parameter.

The tensor Sback represents a back stress, which using the definitions

BP = FPFPT,

BP = BP - }(trBP)1,

P = v'trBP,

left Cauchy-Green tensor corresponding to FP,

deviatoric part of BP,

effective plastic stretch,
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(4.8)

where

VP - VO ( iac) (4.9)

T = T - SbackI, (4.10)



is given by

Sback = fuB', with

P =- AR A L~1 ,P
(3AP (AL)

(4.11)

(4.12)

where L-' is the inverse of the Langevin function L(... ) = coth(.- ) - ( ... -1.

The back stress modulus t involves two material parameters: AR, called the

rubbery modulus, and AL called the network locking stretch; this modulus A -+ 00

as AP -+ AL, since t- 1(z) -+ oo as z -+ 1.

3. Evolution equations for the internal variables s and 1:

The evolution of s and q is taken to be

equations

= ho 1 - ) V,

=go -- ) vP,
sc ) V

governed by the coupled differential

s(X, 0) = so,

7(X, 0) = 0, I (4.13)

with

9(q) = scv[1 + b(?7cv - q)],

where {ho, go, sc, b, rjc,} are additional material parameters. Here s =

a saturation value of s: is positive for s < 9 and negative for s >

definition vP is nonnegative. Assuming that vP > 0, all solutions to the

evolution equations satisfy

s -+ sc and 77 -+ rcv as t -+ oo.

We restrict attention to the initial conditions s = so with

SO < s < scV(1 + b1 c7 ).

(4.14)

(,q) is

s.By

pair of
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Also, as is tacit from (4.13)2, the free-volume is measured from the value = 0

in the virgin state of the material, and thus Tj at any other time represents a

change in the free-volume from the initial state.

To complete the constitutive model for a particular amorphous polymeric material

the constitutive parameters/functions that need to be specified are

{G, K, vO, m, a, pR, AL, S0 o h0, a, g,, b, 7cv}.

We have implemented our constitutive models for metallic as well as polymeric ma-

terials in the finite-element computer program ABAQUS/Explicit (ABAQUS, 2001),

by writing user material subroutines.

4.3 Experimental and numerical simulation of sharp-

indentation

In order to calibrate our experimental and numerical simulation procedures for micro-

indentation, we first perform a brief study of the indentation response of the metallic

alloy A16061-T6. Following this calibration step, we study the indentation response of

the amorphous polymeric materials polycarbonate (PC) and polymethylmethacrylate

(PMMA).

4.3.1 Indentation of A16061-T6

Material parameters

We begin by estimating the material parameters for A16061-T6 in our constitutive

model for metallic materials. Recall that the material parameters that need to be

determined are

1. The elastic shear and bulk moduli (G, K).
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2. The reference shear strain rate vo and the strain-rate sensitivity parameter m

in the flow equation (4.4).

3. The initial deformation resistance so in shear, and the strain hardening param-

eters (ho, s, a) in (4.6).

The values of (G, K) are determined by measuring the Young's modulus of the

material in a tension experiment, E=66.5 GPa, assuming a value of 0.33 for the Pois-

son's ratio, and using standard conversion relations of isotropic elasticity to obtain

the elastic shear and bulk moduli. The parameters {vo, m} are estimated by conduct-

ing a strain rate jump experiment in simple tension to obtain vo = 0.0017 s-1 and

m = 0.002. The parameters {so, ho, s,, a} may be estimated by fitting a stress-strain

curve in compression to large strains. The fit was performed by adjusting the values

of these parameters in finite element simulations of a simple compression experiment

using a single ABAQUS/C3D8R element. The fit shown in Fig. F-60 was obtained

using the parameters:

G = 25.0 GPa K = 65.3 GPa v, = 0.0017 s-1 m = 0.002

s, = 165.1 MPa s, = 337.2 MPa ho = 6.60 GPa a = 3.98.

Indentation experiments and simulations

Indentation specimens from the same A16061-T6 were machined as discs, 25.4 mm

diameter and 6.35 mm high. The surfaces of the sample were polished in a 0.05 pm

diamond slurry to a mirror finish and thoroughly cleaned by rinsing with acetone.

These specimens were indented in a recently developed flexure-based instrumented

micro-indenter; see Fig. F-90. This instrument has a maximum load capacity of 8 N

with an accuracy of measurement of 80 jIN, while the maximum possible indenta-

tion depth is 1.25mm with an accuracy of measurement of 20 nm; further details

concerning the indenter may be found in Appendix C.

Loading-unloading indentation experiments using a Berkovich diamond indenter

were conducted under load control at a constant loading rate of 50 mN/s, to load

levels of 1.02 N, 3.27 N and 7.40 N. The measured P-h curves are shown in Fig. F-
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61a.7 A surface map of the residual indent from a test conducted to a peak load of

3.27 N is shown in Fig. F-61b; this figure clearly shows a large amount of pile-up of

the material around the indenter, the maximum height of the pile-up is approximately

1.45 pm. 8

Using the inherent six-fold symmetry of Berkovich indentation, the finite element

mesh used for the indentation simulation of A16061-T6 is shown in Fig. F-62a; the

mesh consists of 24713 ABAQUS/C3D8R elements. A detail of the mesh that directly

contacts the indenter shown in Fig. F-62b. The indenter was modeled using a rigid

surface (not shown), and contact was modeled as frictionless.

The numerically-predicted P-h curves are compared against the experimentally-

measured ones in Fig. F-61a. The loading curvature as well as the initial unloading

portions of the P-h curves of the simulations and the experiments are in excellent

accord. The numerically predicted indent morphology for the test conducted to 3.27 N

is shown in Fig. F-61c; this also compares reasonably well with the corresponding

optical micrograph shown in Fig. F-61b. The contour plots of indentation depth

shown in Fig. F-61c predict a large zone of piled up material around the indent, as is

observed in the experiment.

Profiles of the residual indents were also measured using a white-light, interfer-

ometric non-contact surface profiler. The profiles were determined in a plane which

is perpendicular to one of the faces of the indent, and which intersects the midpoint

of the trace of the indent edge on the surface; that is along the plane of the maxi-

mum pile-up height. Fig. F-63 shows a comparison of experimentally-measured and

numerically-predicted indentation profile corresponding to a maximum load of 3.27 N

'Repeatability of the P-h response was investigated by conducting ten tests to the 3.27 N load
level; the maximum variation in the response is on the order of 5%.

8I is well known that in indentation of metallic materials which have been previously strain-
hardened so that they exhibit an essentially perfectly plastic response to subsequent deformations,
the plastically displaced material tends to flow up the faces of the indenter, and hence results in a
"pile-up" in that location; the result is a barreling of the indentation impression along the flat faces
of the indenter (cf., e.g., Fig.2 of Lim & Chaudhari, 1999). On the other hand, for well-annealed
materials which still have a substantial strain-hardening capacity, the active plastically deforming
region is pushed further away from the indenter, with the final imprint sinking below the initial
surface level; this results in a pin-cushion like "sink-in" impression around the faces of the indenter
(cf., e.g., Fig.3 of Lim & Chaudhari, 1999).
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and 10pum depth, as well as a profile corresponding to a maximum load of 7.40 N and

15pm depth. The numerically predicted profiles were found by plotting the nodal

displacements of the relevant elements as a function of position from the center of

the indent. The experimental profiles exhibit a small amount of noise resulting from

the experimental method utilized. Granted that a refinement of the mesh may lead

to minor improvements in the predicted profiles, the relatively fine mesh presently

employed reasonably well predicts the pile-up height.

Finally note that the size of the individual indents in the experiments is of the

order of the grain size of the material ~ 20-50 pm. Thus, during the indentation

experiment we are probing the response of one or at most a few single crystals.

The fact that our continuum isotropic plasticity model performs reasonably well in

predicting not only the macroscopic P-h curves but also some of the details of the

indent morphology with reasonable accuracy, is quite remarkable.

In order to reduce computation time, a study of Berkovich indentation using a

coarse mesh of 3500 ABAQUS/C3D8R elements was conducted. As shown in Fig. F-

62c, the mesh employs substantially less elements in the contact region as compared

to that of Fig. F-62b and consequently, the simulation time was reduced by a factor of

10. The results of our study showed that while the P-h curves obtained from the fine

mesh and coarse simulations were indistinguishable from each other, the details of the

local fields under the indenter as well as the indent morphologies varied considerably.

For example, values of the equivalent plastic shear strain fyP were found to vary on

the order of 22% between simulations under the same loading conditions. Thus, a

coarse mesh' similar to that of Fig. F-62c is adequate to obtain the details of the P-h

curves, however, in order to accurately capture the local details of the indentation

process, a fine mesh similar to that of Fig. F-62b must be employed. For the remain-

der of our study on Berkovich indentation, we have used the computationally more

efficient coarse mesh to obtain our P-h curves, while the indent morphologies have

been obtained from simulations using the fine mesh.

9We note that our simulations use elements with reduced integration. The results using higher-
order elements may vary from our study.
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4.3.2 Indentation of PC and PMMA

Material parameters

We begin by estimating the material parameters for PC and PMMA in our constitu-

tive model for amorphous polymeric materials. To ensure consistent initial conditions

of the PC and PMMA samples for compression and indentation experiments, all spec-

imens were annealed at their glass transition temperatures (PC: Tg = 145'C, PMMA:

Tg = 105'C) for two hours and then furnace-cooled for fifteen hours.

Recall that the material parameters that need to be determined are

1. The elastic shear and bulk moduli (G, K).

2. The reference shear strain rate vo, the strain-rate sensitivity parameter m, and

the pressure sensitivity parameter a in the flow equation (4.9).

3. The parameters (AR, AL) for the back stress modulus, (4.12).

4. The parameters {ho, go, , b, , so} in the evolution equations for (s, r), (4.13,

4.14).

Focusing first on PC, the values of (G, K) are determined by measuring the

Young's modulus E = 2.28 GPa of the material from a tension experiment, assuming

a Poisson's ratio of v = 0.33, and using standard conversion relations of isotropic

elasticity to obtain the elastic shear and bulk moduli. The parameters {vo, m} are

estimated by conducting a strain rate jump experiment in simple compression; this

gave vo = 0.0017s 1 and m = 0.011. The pressure sensitivity parameter a = 0.08 was

estimated from the data reported by Spitzig and Richmond (1979). The parameters

{ ho, go, sc, b, 71c, so} and (PR, AL) were estimated by fitting a stress-strain curve in

compression to large strains. The fit was performed by adjusting the values of these

parameters in finite element simulations of a simple compression experiment (assum-

ing homogeneous deformation) using a single ABAQUS/C3D8R element. After a few

attempts, a reasonable fit was obtained, and this is shown in Fig. F-64a. The list of
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parameters obtained using this calibration procedure is:10

G = 0.857 GPa K = 2.24 GPa PR =11.0 MPa AL = 1.45

vo= 0.0017 s1 m = 0.011 a 0.080

so =20.0 MPa s,= 24.0 MPa ho =2.75 GPa a =1

b = 825 go= 6.0- 10-3 = 0.001.

The material parameters for PMMA are found in an analogous manner as that

used for PC. The quality of the curve fit to the simple compression experiment is

shown in Fig. F-64b. The list of parameters is:

G = 1.17 GPa K = 3.04 GPa PR = 7.70 MPa AL = 1.51

v, = 0.0017 s-1 m = 0.043 a = 0.204

so = 37.8 MPa s,= 43.7 MPa ho =1.30 GPa a = 1

b = 790 go= 7.5- 10- 3  7cv = 0.00025.

The value a = 0.204 for the pressure sensitivity parameter is from the data reported

by Rabinowitz et al. (1970). The values vo = 0.0017 s-1 and m = 0.043 were obtained

from a strain rate jump experiment. Note that PMMA shows a higher strain rate

sensitivity than PC at room temperature.

Indentation experiments and simulations

We have performed two types of sharp-indentation experiments: (a) using a Berkovich

diamond tip, and (b) using a conical diamond tip. The projected contact area for a

Berkovich indenter is A = 24.5h2 where h is the depth of indentation, while that for a

conical indenter, with semicone angle 6, is A = (7r tan2 0) h2 . The semicone angle of

the conical indenter was designed to be 0 = 70.3' so that the projected area per unit

depth for the conical indenter was the same as that for a Berkovich indenter. The

utility of experiments using conical indenters is that they allow the corresponding nu-

merical simulations to be performed as axisymmetric two-dimensional calculations,

rather than full-three dimensional calculations which are needed for Berkovich in-

dents.

"0These parameters, while not unique, are adequate for present purposes.
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Berkovich indentation of PC and PMMA

The indentation samples were machined from a 6.35 mm thick rolled sheet and are

12.7 mm x 25.4 mm in cross-section. All surfaces were polished in a 0.05 Pm alumina

slurry to ensure that the surface roughness is negligible in comparison to the indent

sizes. In the present experiments on PC and PMMA, the rms surface roughness is two

to three orders-of-magnitude smaller than the indent edge lengths. After polishing,

the samples were annealed at their respective glass transition temperatures and then

furnace-cooled for fifteen hours.

The experiments were conducted in load control at a rate of 50 mN/s to nom-

inal load levels of 1 N, 3 N and 7-8 N." Due to the low strain rate sensitivity of

PC at room temperature, our indentation experiments did not incorporate a dwell

time at the peak load. However, as we shall demonstrate, the P-h curve and more

specifically, the initial unloading slope, obtained during indentation of materials of

high strain rate sensitivity, such as PMMA, depend critically on the loading profile.

We perform a brief study on incorporating a dwell time in our loading profile for

Berkovich indentation of PMMA to elucidate the effects of creep in indentation of

polymers.

Representative results from our study of Berkovich indentation of PC are shown in

Fig. F-65. We have used the course mesh of Fig. F-62c to obtain the P-h curves shown

in Fig. F-65a. The model predictions are in good accord with the experimentally

obtained curves. An optical micrograph of a residual indent from a test conducted

to a peak load of 2.50 N is shown in Fig. F-65b, where the indent morphology is

consistent with material "sink-in" around the indenter tip. The fine numerical mesh

of Fig. F-62b was used to obtain the numerically predicted morphology shown in

Fig. F-65c. We note that while the overall residual indent morphology is indicative

of material "sink-in" around the indenter, a surface trace intersecting the center of

one of the pyramidal sides reveals that a small amount of material "piles-up" around

the indenter. The extent of this pile-up is only approximately 2% relative to the

"Repeatability of the P-h curves was investigated by conducting five experiments to the 3 N
nominal load level; the variation in the curves is on the order of 5%.
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depth of the indent, while for aluminum at a commensurate depth, the pile-up is

approximately 20%. The constitutive model accurately captures the general shape of

the residual indent, including the characteristic edge-curvature of the sink-in indent

morphology.

The P-h curves obtained from Berkovich indentation of PMMA are shown in

Fig. F-66a in comparison to the numerically predicted responses, where we note that

we have used the course mesh of Fig. F-62c to obtain the numerical curves. A residual

indent from the experiment conducted to a peak load of 3.30 N is shown in the

optical micrograph of Fig. F-66b; similarly to our results on PC, the residual indent is

indicative of a "sink-in" morphology. A comparison of this image with the numerically

predicted profile of Fig. F-66c demonstrates the capability of the model and the

fine mesh of Fig. F-62b to adequately capture the features of the residual indent

morphology.

While the general characteristics of the P-h curves for Berkovich indentation of

PMMA, Fig. F-66a, are similar to those observed in our study of PC, Fig. F-65a,

we note that a salient discrepancy between the initial unloading slopes is seen. Par-

ticularly, the initial unloading slope obtained for PMMA exhibits a feature typically

referred to as the "nose" effect (e.g. Briscoe & Sebastin, 1996), which causes the

initial unloading curvature to have a negative slope. The physical mechanism behind

this effect is creep of the material during the initial unloading period. To mitigate

the effects of creep, and to thus obtain a positive initial unloading slope, researchers

incorporate a dwell time, which may range from 10 s to 10 minutes, at the peak load.

We have conducted a dwell time experiment on PMMA. The material was loaded

at a constant loading rate of 30 mN/s and a dwell time of 300 s was imposed at the

peak load. The resulting experimental P-h curve is shown in Fig. F-67a in compari-

son to the model prediction. Clearly, the incorporation of a dwell period of 300 s has

eliminated "nose" effects during unloading in the experiment. As can be seen from

the comparison of the model to the experiment, the model somewhat underpredicts

the displacement observed during the dwell period. This is observed more clearly

in Fig. F-67b, where the dwell displacement is shown as a function of the imposed
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dwell time. Granted that the discrepancy between the results is considerable, we

emphasize that the model presently employed is an elastic-viscoplastic formulation.

For time scales such as those encountered during our 300 s dwell period, the exper-

imental response may indicate both viscoplastic as well as viscoelastic effects.1 2 In

Fig. F-68 we show loading curves for Berkovich indentation of PMMA conducted at

three different loading rates of 25 mN/s, 50 mN/s, and 250 mN/s. Corresponding

model predictions are also shown in comparison to the experimental results. The

load and displacement levels as well as the trend indicated by the rate-sensitive re-

sponse of the experiments are well-captured by the constitutive model. For the time

scale associated with the experiments in Fig. F-68, our numerical predictions indicate

that the response is dominated by the viscoplastic response of the material over any

viscoelastic effects. In contrast, the displacement measured during the 300 s dwell

period, Fig. F-67b, indicates a combination of the effects of both creep strains due to

the viscoplastic nature of the material as well as displacements due the viscoelasticity

of the material.

Comparison of Berkovich and conical indentations for PC and

PMMA

A comparison of experimental results for Berkovich and conical indentation of PC is

shown in Fig. F-69, where the loading rate for both experiments was 50 mN/s. As

can be seen from Fig. F-69, the P-h curves obtained using a conical indenter with a

semicone angle of 0 = 70.30 provide a good approximation for the P-h curves resulting

from Berkovich indentation.

Experimental and numerical results from our study on conical indentation of PC

and PMMA are shown in Fig. F-70a and Fig. F-70b, respectively. A mesh density

study was conducted to obtain a converged numerical result for both the P-h curves

and the residual indent morphologies; we have used this mesh to obtain the numerical

"See Hasan and Boyce (1995) for a viscoelastic-viscoplastic formulation for glassy polymers which

was shown to accurately capture the strains due to creep under uniaxial conditions.
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results shown in Fig. F-70. The model results are in good accord with the experimen-

tally obtained P-h curves. We note that the general features of the P-h curves shown

in Fig. F-70 are similar to those of the P-h curves obtained from Berkovich inden-

tation on PC and PMMA. Furthermore, a comparison of the strain levels observed

under the indenter tip at the same load level revealed that the local fields are in fact

similar. Thus, we propose to use conical indentation as a computationally efficient

method for our parametric studies. In the next section, we present results from our

parametric study and dimensional analysis to motivate a framework for the inverse

approach in indentation of polymeric solids.

4.4 Parametric study

The results of the previous section serve to validate the suitability of our constitutive

model for capturing the P-h curves and indent characteristics for Berkovich and con-

ical indentation of PC and PMMA. In this section, we present a parametric study to

motivate guidelines for property extraction from indentation data.

With recourse to our constitutive model, the indentation response for the class of

amorphous polymeric solids under consideration may be sufficiently determined by

the list of parameters:

{E, v, s0 , pR, AL, vo, m, a, h, h, O}, (4.15)

where h represents the indenter displacement, l is the indenter displacement rate,

and 0 is the semicone angle of the conical indenter. We expect that the effects of the

hardening/softening behavior of s coupled with the evolution of the local free-volume

r7 do not dominate the response of the polymer to indentation, therefore in (4.15) we

use an average value of the deformation resistance so to capture the effects of the

local resistance to plastic flow.

The sensitivity of the P-h curve to changes of t10% in the included angle of the

conical indenter is shown in Fig. F-71 for conical indentation of PC. While the P-h
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response is observed to be highly sensitive to the semicone angle, we emphasize that

in the present experiments, we concentrate on micro-indentation where the depths of

indentation are in the ptm range. Thus, the indentation experiments sample a portion

of the conical indenter tip which is orders of magnitude greater than the typical radii"

associated with the as-machined tips. Accordingly, for the present study, we assume

that the semicone angle is fixed at 70.30. Furthermore, we shall assume a value of

v = 0.33 is adequate for a considerable range of polymers. The list of parameters

that determine the indentation response reduces to

{E, s 0 , AR, AL, V0, m, a, h, h}. (4.16)

In Fig. F-72a, we show a contour plot of the equivalent plastic shear strain at a

peak load of 2.80 N for conical indentation of PC. As can be seen from Fig. F-64a,

the effect of the back stress is dominant for strain levels exceeding ~ 90%. The

contour plot of Fig. F-72a indicates that the region of material where strains exceed

90% only comprises approximately 22% of the zone of plastically deformed material

under the indenter tip. This result suggests that perhaps a material model of the

form shown in Fig. F-72b as a fit to simple compression of PC may be adequate to

capture the indentation P-h curve. We note that this model is an elastic-perfectly

plastic rate-dependent constitutive model with pressure-sensitive plastic flow. Numer-

ical predictions resulting from the model shown in Fig. F-72b are shown in Fig. F-73

compared against the experiments as well as the previous numerical calculations for

conical indentation of PC. Clearly, for the range of sharp-indentation under consider-

ation, the effects of the back stress may be neglected in determining the P-h response

and residual indent morphology predicted by the two models; the list of parameters

that determine the indentation P-h curve is accordingly approximated by

{E, so, vo, m, a, h, h}. (4.17)

1 3The conical indenter tip used in the present experiments has a tip radius of approximately 100
nm and is machined to within 1% of the design semicone angle of 70.30.
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The sensitivity of the P-h curve to changes in the pressure sensitivity parameter a

are shown in Fig. F-74, where a is varied from zero to a maximum value of 0.30. We

expect that this range should account for the majority of amorphous polymers under

consideration. We show the sensitivity of the P-h curves to changes in both E and so

in Fig. F-75a and Fig. F-75b, respectively. For both sets of P-h curves, the parameter

under consideration is varied by ±20%, as indicated on the plots. Comparison of

these curves indicates that the loading and unloading portions of the P-h curve are

sensitive to variations in E, whereas variations in so are seen to significantly effect

only the loading portion of the P-h curve. We shall draw upon this observation in the

next section when we present a methodology for property extraction from indentation

data.

Note as well that the effects of variations of 40% in both E and so are commen-

surate with variations in a from zero to 0.30, thus the P-h curve is more sensitive

to variations in E and so. The determination of a from a single indentation P-h

curve is generally not feasible. Indeed, at macroscopic scales, the pressure sensitivity

must be determined from a set of experiments involving tension and compression tests

conducted with a range of superposed hydrostatic pressures. In the next section, we

present a methodology for determining an experimental estimate of a using Berkovich

indentation in conjunction with spherical indentation.

In summary, the list of material parameters that dominate the indentation P-h

curve is given by

{E, so, vo, m, a, h,h}. (4.18)

With our parametric study as background, we proceed with a guideline for prop-

erty extraction from indentation data on amorphous polymeric solids.
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4.5 Guidelines for property extraction

In this section, we present our methodology for the determination of the list of ma-

terial parameters

{E, so, "0, m, a}. (4.19)

given an experimental data set for indentation of a sample of an amorphous polymeric

material. The procedure for property extraction consists of the following steps:

1. Determination of E. Previous researchers (e.g. Briscoe et al., 1998) have typ-

ically used an unloading analysis such as the approach of Oliver and Pharr

(1992) to estimate values of E from instrumented indentation data. However,

caution must be exercised when using an unloading analysis due to the effects

of creep on the estimate of the initial unloading slope, which is assumed to be

associated with purely elastic unloading when using the approach of Oliver and

Pharr. Since the strains due to creep depend upon both the peak load as well

as the unloading rate, the incorporation of a dwell period may not completely

mitigate the effects of creep on the estimated values of E.

To experimentally determine a valid approach for the estimation of E, we have

conducted Berkovich indentation on PMMA over a range of peak loads with

various loading and unloading rates and have analyzed the initial unloading

slopes to obtain values of Young's modulus E. In Fig. F-76a, three experiments

were conducted to a peak load of approximately 205 mN at a loading rate of

P, = 25 mN/s followed by a dwell period of 300 s. The experiments were then

unloaded at three different rates of P, = 25 mN/s, 50 mN/s and 250 mN/s.

As can be seen from the results, the highest unloading rate provides a final

unloading slope which is somewhat stiffer than that corresponding to the lower

unloading rates.

An unloading analysis following the approach of Oliver and Pharr (1992) was
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conducted by first estimating the initial unloading slope" Sm and

measuring the maximum depth hm and the maximum load Pm. The contact

depth h, was estimated from h, = hm - 0.75(Pm/Sm) with the corresponding

contact area Ac given by A, = 24.5h . The value of E was estimated by

assuming a value of v = 0.33 and calculating

E =f ( - v2 ) S6 , (4.20)

where the factor of 2.16 is introduced following the work of Cheng and Cheng

(1999). The factor f was estimated from our finite element calculations by

performing an unloading analysis on the simulation P-h data and comparing

the estimated value of E to that of 3.11 GPa used for the simulation. The

predicted value of E was found to vary from 3.11 GPa as a linear function of

the peak load Pm according to

f = 1 - 0.0539Pm. (4.21)

Table G.1 summarizes the values obtained from each experiment and the cor-

responding values of E are indicated for each curve in Fig. F-76. As can be

seen from Fig. F-76a, the experiment conducted at the highest unloading rate

of 250 mN/s provides the best estimate of E relative to the values found when

lower unloading rates are used. Since the extent of strain due to creep depends

upon the peak load and the unloading rate, our results indicate that the best

estimate of elastic properties is obtained from an experiment conducted at a

relatively low peak load with a high unloading rate.

In Fig. F-76b and Fig. F-76c, we present additional experimental results on

Berkovich indentation of PMMA to support our conclusion. For each set of

experiments, a dwell period of 300 s was used at the peak load. The effect

"For each test, unloading data corresponding to a range of 5% of the peak load was fit with a
linear regression to obtain an estimate of the initial unloading slope.
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of peak load on estimates for E is shown in Fig. F-76b, where the loading

and unloading rates were 25 mN/s for each experiment. The results appear to

indicate overestimation of E with increasing peak load. The effects of loading

and unloading rates on the calculated values of E are shown in Fig. F-76c, where

the experiments were conducted at loading and unloading rates of 25 mN/s, 250

mN/s and 1020 mN/s. The corresponding estimates of E shown for each test

clearly indicate gross error in estimating elastic properties from an unloading

analysis when the material shows considerable rate-sensitivity.

2. Determination of vo and m. In order to estimate the parameters v0 and m,

we take the reference value vo to be 0.001/s and propose to determine the

rate-sensitivity parameter m from indentation data which incorporates loading

rate-jump experiments. In order to determine the feasibility of this approach,

we have conducted a loading rate-jump experiment in Berkovich indentation of

PMMA as shown in Fig. F-77. Two rate-jumps were imposed; the jump from the

indicated stage 1 to stage 2 was for a rate jump from 25 mN/s to 250 mN/s and

that from stage 3 to stage 4 was from 250 mN/s to 1025 mN/s. The displacement

rates measured as the jump was imposed were hi = 0.353 pm/s, h2 = 2.154 [m/s

for stages 1 and 2, respectively, and h3 = 1.397 [m/s, h4 = 3.328 [m/s for

stages 3 and 4, respectively. The value of m was estimated by assuming that

the state of the material, as characterized by the deformation resistance s,

remains constant as the jump is instantaneously imposed. To estimate a nominal

measure of the stress-state under the indenter, we use the values of Pi = 0.337

N and P 2 = 0.390 N, where P 2 is estimated by extrapolating the curve during

stage 2 back to the displacement level at which the jump is enforced. In a

similar manner, the values of P 3 = 1.63 N and P 4 = 1.74 N were estimated.

The value of m for the jump from stage 1 to stage 2 was then calculated from

ln(P 2 /Pl)M = , (4.22)
ln(h2/hi)

with an analogous calculation yielding an estimation of the value of m for the
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jump from stages 3 to 4. The nominal strain-rates during the jump have been

approximated by hi/h,, where the displacement rate at stage i is hi and the

displacement at the instant the jump is imposed is h,. This procedure gives

a value of m = 0.081 for the jump from stage 1 to stage 2 and m = 0.075

for that corresponding to stages 3 and 4. While the estimated values of m

from our indentation rate-jump experiments are higher than that of m = 0.043

approximated from simple compression, we note that the value from simple

compression was estimated from the steady-state response of the material after

a strain-rate increment was imposed. However, an estimation of m from the

initial rate-jump response in simple compression provides a bound for m on the

order of 0.15, which provides a bound for our estimates from the indentation

rate-jump experiments.

3. Determination of so and a. As noted previously, in order to determine the pres-

sure sensitivity parameter a, experiments conducted in tension and compression

with various levels of superposed hydrostatic pressure must in general be per-

formed. While experimental results from a single indentation P-h curve would

not allow for a direct determination of a, we propose to introduce a different

stress-state under the indenter than that realized in Berkovich indentation by

using a spherical indenter. Our numerical results indicate that for indentation

of PMMA at 25 mN/s at a load level of 2.5 N for Berkovich and spherical in-

dentation using a 1.59 mm diameter stainless steel tip, the maximum value of

the hydrostatic pressure under the indenters is approximately 190 MPa and 130

MPa for Berkovich and spherical indentation, respectively. This difference of

60 MPa allows us to obtain a marked difference between the stress-states under

the indenter tips which provides a convenient method to estimate a between

two different indentation experiments. As a methodology to obtain an estimate

of so and a, we propose to use our predetermined values of E, vo and m and

to numerically fit the loading curve for Berkovich indentation by adjusting so

and a. Once a reasonable fit of the loading curve for Berkovich indentation is
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obtained, the loading curve for spherical indentation is independently predicted.

The process of fitting to Berkovich indentation data and predicting the spherical

indentation data is repeated until both numerical curves are in good accord with

the experimental results. Our method thus provides an independent method to

fit for values of so and a. As validation of the predictive capability of our con-

stitutive model for spherical indentation, we show a comparison of the predicted

loading curves for Berkovich and spherical indentation in Fig. F-78, where the

model predictions are seen to be in good accord with the experimental results.

In the next section, we demonstrate an application of our inverse approach to the

amorphous glassy polymer polystyrene.

4.6 Application to sharp-indentation of polystyrene

In this section, we apply our inverse approach to indentation data obtained for

polystyrene (PS). Recall that the list of material parameters that may be determined

from indentation data is given by

{E, so, vo, m, a}. (4.23)

The indentation and compression samples were machined from 12.3 mm thick stock

and polished in a 0.05pm alumina slurry. The samples were then annealed for two

hours at the glass transition temperature of 100 0C followed by quenching in ice-water

for 20 minutes.

Following our methodology, we have estimated the material parameters for PS

from (i) A Berkovich indentation experiment conducted at a suitably low-load with

a relatively high unloading rate for the estimation of E, (ii) a Berkovich indentation

experiment incorporating a loading rate-jump for the determination of vo and m,

and (iii) a spherical indentation experiment used in conjunction with our Berkovich

indentation data to determine so and a. We proceed in a step-by-step manner to

detail our process of property extraction from indentation data:
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1. The Berkovich indentation experiment shown in Fig. F-79a was conducted to

a peak load of approximately 19 mN at 2 mN/s. A dwell time of 300 s was

incorporated at the peak load and unloading was conducted at 20 mN/s. An

unloading analysis following the procedure outlined in the previous section was

performed. In performing the analysis, an initial unloading slope of Sm =

dP = 37.92 mN/[m measured at hm = 3.69 prm and a maximum load of
dh h=hm

Pm = 19.04 mN at initial unloading were calculated from the P-h data. The

contact depth h, was then estimated from h, = 3.31hm - 0.75(Pm/Sm), which

gives h, = Mm. Using the relation for the contact area A, for a Berkovich

geometry tip of A, = 24.5h 2 , the value of E was estimated from E = (1 -

v 2 ) m , where upon assuming a value of v = 0.33 yields a value of E

1.691 GPa for our PS samples.

2. The next step in the analysis is to perform a Berkovich indentation experiment

with a loading rate-jump imposed during loading; the experimental response is

shown in Fig. F-79b. The initial portion of the test, stage 1, was conducted

at a loading rate of 30 mN/s. Upon reaching a displacement of h, = 23.7 pm,

the rate was instantaneously increased one order-of-magnitude to stage 2. The

positive rate-sensitivity of the material is clearly seen in Fig. F-79b, as evidenced

by the increased stiffness of the P-h response with increasing loading rate. The

displacement rates measured as the jump was imposed were h1 = 0.384 pm/s

and h2 = 2.27 pm/s for stages 1 and 2, respectively. A value of vo = 0.001/s

was assumed and m is calculated was estimated by following the procedure

outlined in the previous section. To estimate a nominal measure of the stress-

state under the indenter, we use the values of P1 and P 2 , where P 2 is estimated

by extrapolating the curve during stage 2 back to the displacement level h, at

which the jump is enforced. The value of m was estimated from:

m ln(P2 /P 1 ) with vO = 0.001 s-. (4.24)
ln(h 2/hi)

This procedure gives a value of m = 0.0741.

101



3. Using our the values of E, m and vo thus obtained, we perform a numerical fit

of the loading portion of the P-h curve for Berkovich indentation conducted at

25 mN/s and independently predict the loading curve for spherical indentation

conducted at 25 mN/s. The results of our iterative fitting process are shown

in Fig. F-79c, where the values of so = 18.2 MPa and a = 0.10 were found to

provide a reasonable fit to both sets of indentation data.

With the values of {E, so, vo, m} thus estimated, the next step was to perform a

validation of our data by conducting simple compression experiments on our PS sam-

ples and comparing the predicted stress-strain response to the experimental response.

A stress-strain curve obtained from a simple compression experiment conducted at

a constant true-strain rate of -0.001/s is shown in Fig. F-80a in comparison to the

predicted response obtained with the material parameters estimated from indenta-

tion. We emphasize that this is a predicted response in simple compression based

upon two indentation experiments, with no a priori knowledge of the material be-

havior. Considering that frictional effects in the compression simulation have been

neglected, our initial approach for the reverse problem in indentation of amorphous

polymers is encouraging. As a final validation of our procedure, a strain-rate jump

experiment was performed in simple compression; the strain-rate was increased one

order-of-magnitude from -0.001/s to -0.01/s. The resulting experimentally obtained

stress-strain curve is shown in Fig. F-80b compared to the predicted response ob-

tained using our material parameters from indentation. The trend of the macroscopic

stress-strain curve as well as the levels are reasonably well-predicted by the constitu-

tive model. The strain-rate sensitivity parameter was estimated to be approximately

m = 0.04 from the strain-rate jump experiment in simple compression. While the

value of m = 0.0741 estimated from indentation is somewhat higher, it provides a

reasonable bound for our estimation of m.
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4.7 Concluding remarks

This chapter presents a study of the forward problem in instrumented sharp inden-

tation of amorphous polymeric solids, with application to PC and PMMA. We use

the constitutive model of Anand & Gurtin (2002) to model the material behavior.

Calibration of the model to the response of both PC and PMMA in simple com-

pression yields an excellent fit to the overall stress-strain response for strains up to

approximately 120%.

After calibrating our testing and modeling approach to a study of Berkovich in-

dentation of A16061-T6, we predict the P-h curves and indent morphologies for PC

and PMMA subjected to both conical and Berkovich indentation. The general fea-

tures of the P-h curves as well as the load and displacement levels are well predicted

by our constitutive model. A parametric study reveals that the dominant material

parameters that determine the indentation response are the Young's modulus E, an

average value of the deformation resistance so, and the rate-sensitivity parameter of

the material m. The back-stress and the pressure sensitivity of plastic flow are shown

to have a negligible effect on the P-h curves.

Our parametric study and dimensional analysis motivate a framework for a re-

verse approach for sharp-indentation of amorphous polymeric solids. As an example

application of a first attempt at an inverse scheme for the extraction of the mate-

rial parameters E, so and m we consider indentation of PS. From two indentation

experiments, we show that our approach is capable of reasonably-well predicting the

stress-strain response of PS in simple compression in monotonic loading as well as in

loading with a strain-rate jump imposed.

This work may be further developed by formulating a more rigorous framework

for the reverse problem in instrumented sharp-indentation of amorphous polymeric

solids. Our validation of the applicability of the constitutive model for predicting the

P-h curves and indent morphologies observed in micro-indentation of PC and PMMA

combined with our parametric study and simple framework for the reverse problem

establish a starting point for accomplishing this goal.
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Appendix A

Function inverse to the Langevin

function

To evaluate a = 1(b) for a given b in the range 0 < b < 1, we may numerically

solve the non-linear equation f(a) = L(a) - b = 0 for a. However, for numerically

intensive calculations, it is desirable to avoid an iterative solution scheme for L-'.

We instead use the following series expansion to approximate the function inverse to

the Langevin function:

/pR = 1 + 0.6c 2 + 0.5657c 4 + 0.5863c 6 + 0.6240c8 + 0.6657c 0 +

0.7043c12 + 0.7340c' 4 + 0.7510c' 6 + 0.7520c' 8 + 0.7353c 20 +

0.7020c 2 2 + 0.6547c24 + 0.5987c 26 + 0.5417c 28 + 0.4933c3 0 +

0.4643c32 + 0.4650c34 + 0.5042c3 6 + 0.5860c 38 + 0.7094c40 +

0.8654c42 + 1.0368c44 + 1.1978c 46 +1.3158c 48 + 1.3547c50, (A.1)

where c = A. The series expansion is compared to an iterative solution in Fig. F-81,
AL

where the expansion is seen to match the iterative solution to within 1% at a value

of AP = 0.99AL. Utilizing this series expansion is less expensive computationally than

an iterative approach when solving three-dimensional finite element simulations.
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Appendix B

Guideline for model calibration

In this appendix we present a guideline for our calibration procedure to obtain ma-

terial parameters for shear-yielding. For illustrative purposes, we demonstrate the

estimation of our material parameters for PC. Recall that the material parameters

that must be determined for our constitutive model for shear-yielding are:

1. The elastic shear and bulk moduli (G, K) in the elastic part of the free energy.

2. The parameters (MR, AL) in the plastic part of the free energy.

3. The parameters {vO, m, a, s0 , ho, go, sc, b, 7ec} in the flow rule and the evolution

equations for (s,rq).

The experimental estimates of (vo, m) are obtained by conducting a strain rate

jump experiment. In Fig. F-82, we show three simple compression experiments con-

ducted on PC, two of which were conducted at constant true strain rates of -0.001/s

and -0.01/s. The third experiment shows the response to a jump in the true strain

rate from -0.001/s to -0.01/s. As can be seen from Fig. F-82, the rate jump exper-

iment indicates an initial transient response upon the imposed jump followed by a

gradual saturation to a steady-state stress level which is approximately equal to that

of the corresponding experiment conducted monotonically at a strain rate of -0.01/s.

Using this result, we shall approximate a strain rate sensitivity parameter m from the

steady-state level attained after the strain rate jump is imposed. In Fig. F-83 we show
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the calculation of m from the strain-rate jump experiment in Fig. F-82. As indicated

in Fig. F-83, the reference equivalent shear strain rate vo is taken as vo = 0.0017/s,

which is a factor of 03 times the reference equivalent strain rate of 0.001/s. Recall

that the equivalent shear strain rate is given by

vP= v( . (B.1)
s - ao-

Assuming that the state of the material stays constant as the jump is imposed and

neglecting the change in ao, the value of m may be estimated from

M = I(B.2)
ln (V2'/V')'

where the subscripts 1 and 2 denote the true strain rate prior to and after the rate

jump is imposed, respectively. The construction line indicated in Fig. F-83 is ex-

trapolated back to the strain at which the rate increment is imposed. Note as well

that the strain rate jump is imposed prior to the strain range where the effects of the

back-stress become dominant on the material stress-strain response. Thus, the values

of t1 and t 2 may be estimated from the experiment by dividing the uniaxial values

by a factor of VI.

Using our values of (vo, m) and a value of a = 0.08 from Spitzig & Richmond

(1979), the remaining material parameters {G, K, pR, AL, h0 , go, so , b, rbc, so} are de-

termined from a stress-strain curve for simple compression of PC under monotonic

loading. A stress-strain curve for simple compression conducted at a constant true

strain rate of -0.001/s is shown in Fig. F-84, where we have indicated specific regions

of the stress-strain response and the corresponding material parameters that domi-

nate these regions. For the elastic constants, (G, K), it is convienient with respect

to the simple compression stress-strain response to work with the pair the Young's

modulus E and Possion's ratio v. The standard transformations of linear elasticity
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relate (E, v) to (G, K)

E-9KG an V ~ 3K - 2G] B3E = 7G and y=.(B.3)
3K+G 2 _3K+G_

As indicated in Fig. F-84, with a value of v = 0.33, the Young's modulus E determines

the initial linear slope of the stress-strain response. In general, if v is not known a

priori, a value of E may be determined from the initial loading slope of the simple

compression experiment,' and a value for v may then be determined from a plane

strain compression or tension experiment since the initial slope is given by E/(1- V2).

The deviation from initial linearity in Fig. F-84 is determined by the value of

so, and the slope during the initial nonlinearity is dominated by the value of ho,

with higher values of ho yielding a higher slope. The region of the stress-strain

curve just prior to the peak and until strains of approximately 35% is determined

predominantly by the paramters {b, 'qc, go}. In Fig. F-85, Fig. F-86 and Fig. F-87,

we show the sensitivity of the stress-strain curve to variations of 25% and 50% relative

to the fit values for PC for b, qcv and go, respectively. Following this region, the value

of scv determines the level at which the experimental response will tend to saturate

following the post-peak strain-softening response.

The parameters (pR, AL) in the plastic part of the free energy dominate the stress-

strain response at strain levels exceeding approximately 50%. The sensitivity of the

stress-strain response to variations of 25% and 50% in PR and AL relative to our fit

values for PC is shown in Fig. F-88 and Fig. F-89, respectively.

'Note that due to compliance effects in simple compression, the preferred experiment to determine
E is a tension test using an extensometer to isolate the displacement of the material over the gauge
section.
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Appendix C

Instrumented indentation

apparatus

C.1 Microindentation apparatus

The instrumented microindentation apparatus1 is shown in Fig. F-90. The system

uses a double compound spring, which consists of two identical compound springs

symmetrically disposed around a common centerline. The use of a double compound

spring minimizes the potential for rotations or parasitic deflections due to either

machining imperfections or to variations in the properties of the frame material.

Design and manufacturing issues concerning the indenter as well as several other

novel small scale testing devices recently developed at MIT may be found in Gearing

et al. (2002). All vendor information is contained in a vendor list in Appendix E. An

extension of the single apparatus indentation devices to a biaxial compression/shear

apparatus is presented in Appendix D.

The apparatus is an integral design machined from a 12.7 mm thick A17075-T6

rolled plate. Key dimensions of the design are shown in Fig. F-91, where tabs securing

the compound flexures to the frame are shown. These anchoring tabs ensure that the

flexure is not damaged when final milling is performed to level critical edges. The

'Various aspects of the design are patent pending.

114



tabs are milled off in the last machining step.

The monolithic system is cut by water-jet machining and is composed of a limited

number of assembled parts. Thus, errors due to assembly of multiple components

are eliminated. As well, the design incorporates "hard-stops" so that the bending

stressses in the compound springs do not exceed 100 MPa. For the A17075 plate

used, this maximum stress gives a safety factor of about 5 for yielding and allows

for a fatigue life of greater than 108 cycles. The design is scaleable, therefore a large

range of forces and displacements may be achieved simply by changing the geometry

of the system, the material used for the frame, and/or the actuators incorporated

into the system.

The "centerpiece" of the indenter indicated in Fig. F-90 is displaced by a voice coil

driven by a precision amplifier which receives an input signal from a 16-bit computer-

controlled data acquisition board. Flexure displacements are measured with commer-

cially available non-contacting eddy-current sensors with a resolution of 20 nm over a

range of 1.25 mm. The sensors may be changed to achieve better displacement resolu-

tion if desired. The system stiffness of Ks = 2.13 N/mm is found by precision weight

calibration, and the electronics have a linear transfer function of KE = 1.31 N/V. If a

voltage divider is incorporated, the best achievable electronic transfer function with

the current system is 13.1 mN/V. Calibration curves for the spring stiffness and the

driving electronics are shown in Figs. F-92 and F-93, respectively. The resolutions

of the electronics and the displacement sensors along with the appropriate transfer

functions determine the load resolution of 80 pN over a range of 8 N. In order to min-

imize environmental disturbances, the indentation system is secured to an isolation

table.

The specimen is held on a stiff vertical displacement stage which holds the dis-

placement sensor as close as possible to the specimen in order to minimize compliance

contributions from the specimen stage and the centerpiece. The system compliance

is estimated to be approximately 1200 N/mm, which is about 560 times as stiff as

the system spring constant. Various indenter geometries may be threaded into the

indenter frame as indicated in Fig. F-90.

115



A test is conducted by driving the indenter tip into a specimen and monitoring the

displacement as a function of output voltage from the computer. A curve demonstrat-

ing the acquired data is shown in Fig. F-94. The mechanical and electrical transfer

functions are then used to find the load on the specimen as a function of the inden-

tation depth, or P-h curve via

No contact with specimen:

KE - Output Voltage = Ks -Displacement, (C.1)

where Fig. F-94 shows this initial linear region prior to contact. This approach allows

for real-time calibration of KE with each indentation test. Once contact occurs as

indicated in Fig. F-94:

P = KE -Output Voltage - Ks -h (C.2)

and thus the P-h curve may be extracted from the acquired data. The Labview 6.0

virtual instruments (vi) also acquire elasped time as the test progresses. A graph of

P versus time allows for a calculation of the loading rate during the indentation test.

As a calibration of our experimental device and procedures, we have conducted

indentation experiments on fused silica, which has been suggested recently in the

literature as a benckmark material for indentation studies. Since fused silica is known

to fracture at loads exceeding about 300 mN, all tests were conducted below this limit.

Five experiments conducted at 5 mN/s are shown in Fig. F-95, where the repeatibility

of the results is excellent. Note as well that the displacement sensor resolution is

apparent in the experimental P-h curves. Following the approach of Oliver-Pharr

(1992), an analysis of the unloading slopes was conducted to find an approximate

value for the Young's modulus E of the fused silica. The analysis yielded a value

of E = 69.5 GPa, which compares well with the published value of 73 GPa. The
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hardness was calculated as approximately 6.6 GPa, which falls within the reported

range of values varying from 5.5 GPa to 9.7 GPa. The values for the Young's modulus

of fused silica appear to vary far less from source to source as compared to the values

of hardness. Thus, it appears that E is a more consistent value upon which to base

our experimental calibration.

Further examples of the capabilities of the apparatus are shown in Figure F-

96, which demonstrates the range of displacements attainable for a variety of soft

materials. The drastic difference in material response for an unfilled rubber versus a

polycarbonate sample is saliently observed.

C.2 Nanoindentation apparatus

The ability to scale the design of our flexure-based systems has been exploited to

produce the instrumented nanoindentation apparatus shown in Fig. F-97, where the

features of the system are similar to those of the microindenter of Fig. F-90. In

contrast to the microindenter, the nanoindenter uses a smaller capacity voice coil

and is designed to have a system spring stiffness of 0.25 N/mm, which is an order

of magnitude lower than that of the previous design. The key dimensions of the

nanoindenter are shown in Fig. F-98. The design is machined from a 6.35 mm thick

plate of A17075-T6. Once the design is machined via water-jet cutting, the tabs seen

in Fig. F-98 serve to secure the compound flexures. Edges that must be parallel

are milled or smoothed with EDM machining, and the tabs are carefully removed

as the final machining step. The design is machined from a 6.35 mm thick plate of

A17075-T6.

System calibration yields a spring constant of Ks = 0.253 N/mm and an electronic

transfer function of KE = 0.622 mN/V as shown in Figs. F-99 and F-100, respectively.

The nanoindenter has a force resolution of 4 pN over a range of 400 mN. With the

mechanical and electrical transfer functions known, data from an indentation test is

analyzed in a manner identical to that followed for the microindenter.

As a calibration of the nanoindentation apparatus, we conduct Berkovich indenta-
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tion of fused silica. The experiments were conducted at 1.20 mN/s, and the resulting

P-h curves are shown in Fig. F-101. A representative P-h curve obtained with the

nanoindentation apparatus is compared to a result from the microindentation appa-

ratus in Fig. F-102. The new testing range spanned by the nanoindenter is clearly

observed from Fig. F-102. This result underscores the scalable nature of our designs.

An analysis of the initial unloading slope yields a Young's modulus of E = 72.0

GPa and a hardness of 9.87 GPa. Whereas the value of E compares well both with

the bulk value of 73 GPa and with the microindentation result of 69.5 GPa, the

hardness of 9.87 GPa, albeit this value falls within the reported ranges of hardness,

is higher than the value of 6.6 GPa obtained with the microindenter. However, an

investigation of the residual Berkovich indent shows salient cracking at the edges of

the indents obtained with the microindenter and no apparent edges cracks on the

indents obtained in the load range of the nanoindenter. Thus, the Young's modulus

appears to be a more consistent value upon which to base calibration of different

indentation apparatuses if the candidate material chosen to benchmark from is fused

silica.
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Appendix D

Biaxial compression/shear

apparatus

The biaxial testing apparatus is shown in Fig. F-103. Two flat bodies whose inter-

facial response is to be investigated are brought together in the space denoted as

"specimen." One body is attached at the base of the "flexure for normal force," and

the opposing body is secured to the "shear displacement flexure." Normal forces

on the interface are applied using a voice-coil actuator acting through the "flexure

for normal force." Tangential displacements at the interface are achieved by actuat-

ing the "shear displacement flexure" with a piezo-electric inchworm actuator. The

tangential force arising from the interfacial interaction is measured by the resulting

displacement of the "flexure for shear force." All displacements are measured using

non-contacting eddy current sensors with a resolution of 20 nm over a range of 1.25

mm.

The design incorporates compound spring flexures within a monolithic frame and

possesses only a limited number of assembled parts. Thus, device assembly errors and

backlash are minimized. The use of the double compound springs for actuation in the

normal direction minimizes the potential for rotations or parasitic deflections due to

either machining imperfections or to variations in the properties of the frame material.

The frame is a monolithic, light weight design made of 12.7 mm thick A17075-T6 plate

and is 440 mm x 460 mm in size. Hard-stops ensure that the maximum bending stress
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in the spring webs does not exceed 5 MPa, which provides essentially infinite fatigue

life. The normal axis is nested within the shear load cell and has been designed

using FEA to minimize cross-talk between normal force application and shear force

measurement. The design also allows for the measurement of relative separation or

approach of the surfaces in the normal direction as a test is conducted.

The normal force is controlled with a resolution of 80 pN over a range of 5 N, the

shear force is measured with a resolution of 225 pN up to 15 N, tangential displace-

ment is imposed in 4 nm steps up to 6.35 mm, and the relative motion of the surfaces

in the normal direction is measured with a resolution of 20 nm over a range of 1.25

mm.1 Imposed displacement rates range from 0.5 [m/s to 600 pm/s. The entire

system rests upon a vibration-isolated table to minimize environmental disturbances.

Calibration of the flexure stiffness for each axis is achieved by measuring the

displacement of the axis under precision weights. In the present embodiment of the

design, the normal axis has a stiffness of 9.53 N/mm, and the stiffness of the tangential

axis is 43.2 N/mm as shown by the calibration curves in Fig. F-105. The electronics

driving the normal axis are calibrated by measuring the normal displacement due to

known computer output voltage ramps. The electronic system (consisting of a 16-

bit data acquisition board, a precision amplifier powered by a low-noise source, and

the voice coil) has a transfer function of 1.31 N/V, which yields the same calibration

curve as that shown in Fig. F-93 since the driving electronics are the same. All system

responses are highly linear over their operating ranges. The transfer functions of the

mechanical and electrical systems are utilized to apply a precise normal load on an

interface under compression.

The simple, compact physical design of the apparatus may be scaled to allow

for testing over a wide range of normal and shear forces, as well as a large range of

imposed tangential displacements. 2 Design and manufacturing issues concerning the

compression/shear apparatus as well as several other novel small scale testing devices

'Displacement sensors with improved sensitivity may be used for better force and displacement
resolution.

2Various aspects of the design are patent pending.
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recently developed at MIT may be found in Gearing et al. (2002).

An example of experimental data obtained with the biaxial apparatus is shown

by the tangential force-sliding distance response in Fig. F-106. The interface is an

A16111-T4 2 mm x 2 mm coupon (with an as-received surface texture) against polished

tool steel. A normal force of 1 N was imposed on the interface, and the tangential

sliding velocity was 6 pm/s, with regions where the tangential displacement was

reversed and then imposed again in the initial sliding direction. The negative sign on

the tangential force axis indicates motion in the opposite direction to that initially

imposed on the interface. The ability to precisely measure the tangential stiffness

of an interface (represented by the slope of the linear "unloading-reloading" regions)

is a novel capability of our apparatus. These "unloading-reloading" portions are

reminiscent of the classical results (at a more macroscopic scale) of Courtney-Pratt

and Eisner (1957), and serve as experimental motivation for adhering-slipping models

of interface friction (e.g. Anand, 1993; Gearing et al., 2001). The slope of the

"unloading-reloading" curve is termed the tangential stiffness in adherence in Anand

(1993), and previously was experimentally difficult to measure. The coefficient of

friction (defined as the ratio of the tangential force to the applied normal force) as a

function of sliding distance is shown in Fig. F-107, where we note that the measured

values of the coefficient of friction are consistent with previous standard pin-on-disk

friction tests.

A second diagnostic test was conducted to demonstrate the range of tangential

displacement rates attainable with the apparatus. A 1 mm thick 2 mm x 2 mm

coupon of polycarbonate (PC) was loaded against the polished tool steel surface with

a normal force of 750 mN. A sliding velocity of 100 pm/s was applied and the PC

specimen was displaced cyclically relative to the tool steel until the tangential force

reached a steady-state value of 171 mN, which occurred at a total displacement of

about 11 mm. At this state, the sliding velocity was reduced to 10 pm/s for an

additional 2 mm of sliding. The velocity was then increased to 500 Pm/s at the

final stage of sliding. Figure F-108 shows the tangential force as a function of sliding

distance as the sliding rate decrement and increment are imposed. The solid lines are
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the average value of the tangential force at the corresponding sliding velocity. We

note that this interface exhibits positive rate sensitivity. This result demonstrates the

range of displacement rates that may be obtained with the apparatus.

As further validation of our new testing capabilities, we investigate the frictional

response of two interfaces of relevance to MEMS. The first interface is single crystal

silicon (Si) contacting Si, and the second interface is a 1 pm thick diamond-like

carbon (DLC) thin film on Si contacting DLC on Si. Both tests were conducted on

as-fabricated 0.8 mm thick 2.2 mm x 2.2 mm diced square coupons against 0.8 mm

thick 12.7 mm x 12.7 mm pieces.

The normal load was held constant at 2 N as the interfaces were displaced relative

to each other at a velocity of 10 [m/s. Figure F-109 shows the measured tangential

force-sliding distance response, and Fig. F-110 shows the coefficient of friction as a

function of the imposed tangential sliding distance. At a sliding distance of 400 pm,

the coefficient of friction is 0.32 for the Si/Si interface, which compares to the much

lower value of 0.11 for the DLC/DLC interface. These results serve as confirmation

of the current trend to use DLC as low friction bearing surfaces for MEMS. The

evolution of the tangential force with sliding distance at imposed normal forces may

be utilized to develop improved friction models for the design of low friction and low

wear interfaces for MEMS.

The relative displacement of the interface in the normal direction is shown in

Fig. F-111, where it is noted that both interfaces showed a small amount of relative

approach as the tangential displacement was imposed. At a sliding distance of 400

pm, the relative displacement between the surfaces is about 621 nm for the Si/Si

interface as compared to 200 nm for the DLC/DLC interface.

We demonstrate an additional testing capability of the biaxial compression/shear

apparatus by conducting scratch testing of PC at various imposed normal forces as

shown in Fig. F-112 and Fig. F-113. The tests were conducted with a conical indenter

tip designed to have the same nominal contact area per unit depth as a Berkovich

indenter, which corresponds to an included angle of 140.60. The imposed scratch

velocity was 10 pm/s. The residual scratch morphology for the test performed at
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a normal force of 174 mN shown in Fig. F-112 indicates the excellent alignment of

the apparatus. Current research is underway to assess the utility of the scratch test

for extracting deformation and fracture information for polymeric materials with no

a priori knowledge of the material behavior. We note that in the conical scratch

tests results for PC with a conical indenter of 140.6' included angle, there was no

discernible evidence of fracture. Thus, studies into indenter tip geometries, normal

loads, sliding velocities, and material classes appropriate for extraction of fracture

properties are warranted.
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Appendix E

Vendor list

The following vendors are recommended sources for the indicated items:

" A17075-T6 sheet, Fused-silica: Goodfellow, www.goodfellow.com.

" Water-jet machining at MIT: Building 35 machine shop; Pappalardo Labora-

tory; Media Lab

" Final machining, EDM machining: RAMCO Machine, LLC, MA, 978-948-3778,

Randy Jezowski.

" Voice coils: BEI Sensors and Systems Co., CA, Model LA13-12-OOOA for the

micorindenter and Model LA05-05-000 for the nanoindenter.

" Precision current sources: Precision MicroDynamics, CA, Model BTA-28V-6A

Linear.

* Data acquisition and software: National Instruments, TX, PCI-6035E board.

" Displacment sensors: Kaman Instrumentaion, CO, Model SMU9000-5U.

" Isolation tables: Newport, CA, Model RG Series.

" Precision displacement stages: New Focus, Inc., CA, Model 9065-Z.

* Indentation tips: Gilmore Diamond Tools, Inc., RI, 401-438-0717, Mike Mihalec.
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* Piezo-electric inchworm actuator: Burleigh Instruments, NY, Model IW700.
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Appendix F

Figures
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Figure F-1: Evolution of s, . and r; with -yP.
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Figure F-2: An idealization of craze plasticity where the macroscopic averaged tensile
craze strain rate P is determined by the thickening rate 6 of crazes at an average
spacing h. After Argon (1999), Figure 7.
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Figure F-4: Plane strain tension of PMMA. True stress-strain responses for specimens
loaded to stress levels prior to the peak stress. Each test has been shifted horizontally
in order to elucidate individual responses. The residual strain upon unloading is
indicated above each curve.
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Figure F-5: Strain rate increment experiment on PMMA in
strain rate of -0.001/s is increased to -0.01/s.
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Figure F-6: Experimental load-displacement curve for a smooth-bar tension experi-
ment on PMMA.
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ment on PMMA.
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Figure F-8: Experimental load-displacement curve for an ASTM standard PMMA

compact tension specimen (without a sharp fatigue pre-crack).

134

0.4

0.35

0.3k

0.25-

0.2-

z

0
0j

0&
0

0

0
0

0

0

0
0
0
0

0

0.15

0.1

0.05

0.4 0.6 0.8 1 1.2



(a)

(b)

Figure F-9: Mesh design used to simulate the CTS experiment under mode I loading
conditions: (a) full mesh and (b) detail of fine mesh at the notch-root.
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Figure F-10: Fit of the craze-initiation criterion to the experimental data from
smooth-bar, notched-bar, and notched compact tension specimens.
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Figure F-11: Experimental and calculated load-displacement curves for a smooth-bar
tension specimen.
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Figure F-12: Contours of (a) o-1 and (b) a at incipient craze-flow, location 1 of
Fig. F-11; (c) Mesh at location 2 of Fig. F-11 showing fracture. Note that fracture
has occurred at multiple locations in the gauge section.
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Figure F-13: Experimental and calculated load-displacement curves for a notched-bar
tension specimen.
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Figure F-14: Contours of (a) -1 and (b) a at incipient craze-flow, location 1 marked
in Fig. F-13.
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Figure F-15: Contours of (a) a, and (b) a after craze-fracture has propagated part
of the way into the cross-section, location 2 marked in Fig. F-13.
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Figure F-16: Experimental and calculated load-displacement curves for a notched
compact tension specimen.

142

I'

/

/

z

0
0j1

0.2

0.15

0.1

0.05



a 1  (MPa)
-23.2
-10 .6
2 .01
14.7
27.3
39.9
52 . 5
65.2

aY (MPa)
-10.2
-2.33
5.54
13.4
21.3
29.2
37.0
44.9

p

0
5
1
1
2
2
3
3

OOE+00
14E-05
03E-04
54E-04
06E-04
57E-04
08E-04
60E-04

Figure F-17:
1 marked in

Contour plots of (a) o-, (b) a, and (c) E at incipient craze-flow, location

Fig. F-16. For clarity of presentation, the contour plots are focused on

the region in the vicinity of the notch-root.
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Figure F-18: Contour plots of (a) a-, (b) o-, and (c) & after craze-fracture has prop-
agated part of the way into the cross-section, location 2 marked in Fig. F-16. For
clarity of presentation, the contour plots are focused on the region in the vicinity of
the notch-root.
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Figure F-19: Fit of the ductile failure criterion in plane strain compression: (a) Load-
displacement curve. (b) Contour plot showing values of AP at the point of ductile
fracture.
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Figure F-20: Fracture of thin PMMA plates with circular windows; (a) Specimen
geometry with dimensions in mm. (b) Detail of the finite element mesh in the vicinity
of the hole.

146

10

+

25 -+

Thickness = 3.18



8 I I I I I I I

o EXPERIMENT
7 -- MODEL

6 1

5 2

z

4 - 3
O

3-

2-

0'
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DISPLACEMENT, mm

Figure F-21: Fracture of thin PMMA plates with circular windows; comparison of
the experimentally-measured and numerically-predicted load-displacement curves.
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(a)

(b)

Figure F-22: (a) Image of fractured specimen showing crack-branching and fractured

ligaments. Loading direction is vertical. (b) Result from corresponding numerical
calculation.
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Figure F-23: Contour plots of cr1 at (a) location 1, (b) location 2, and (c) location 3
indicated on the numerical curve in Fig. F-21. Loading direction is in the vertical.
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Figure F-24: Contour plots of o- at (a) location 1, (b) location 2, and (c) location 3
indicated on the numerical curve in Fig. F-21. Loading direction is in the vertical.
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Figure F-25: Comparison of the predicted load-displacement response for the blunt-
notched beam in bending against the experiment.
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(c) (d)

Figure F-26: Prediction of the fracture process in blunt-notch beam bending. Contour
plots of -1 corresponding to (a) location 1, (b) location 2, (c) location 3, and (d)
location 4, as indicated on the predicted curve in Fig. F-25. Brittle fracture initiates
at the notch-root as indicated in (c).
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Figure F-27: Prediction of the fracture process in blunt-notch beam bending. Contour
plots of a corresponding to (a) location 1, (b) location 2, (c) location 3, and (d)
location 4, as indicated on the predicted curve in Fig. F-25. Brittle fracture initiates
at the notch-root as indicated in (c).
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Figure F-28: Comparison of the predicted load-displacement response for the sharp-
notched beam in bending against the experiment.
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Figure F-29: Craze initiation criterion showing the location of experimental points
for the blunt and sharp-notched beam bending experiments.

155



Cy1 (MPa) (MPa)
-43.2 -43.2
-27.2 -27.2
-11.2 -11.2

4.80 4.80
20.8 208
36.8 36.8
52.8 52.8
68.8 68.8

G (MPa) a (MPa)
2-20.7
-13.0 -13.0
-5.24 -5.24
2.49 2.49
10.2 10.2
18.0 18.0
25.7 25.7
33 .4 33.4

(a) (b)

Figure F-30: Four-point bending of a sharp-notched beam. Contour plots of a-, and
-at (a) location 1, and (b) location 2 indicated in Fig. F-28. Brittle fracture occurs

along the specimen centerline.
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Figure F-31: Functional relationship prescribed between the mean normal stress and

the elastic volumetric strain. The initial slope is the ground state bulk modulus K,
and the cavitation fracture energy per unit volume is Fc.
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Figure F-32: Stress-strain response for simple compression of PC.
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Figure F-33: Plane strain tension of PC. Engineering stress-strain response for a
specimen loaded through its peak load.

159

70

60 F

50[
0z

C/)

C/)

z
Iu

z
uD

40[-

301

20

10|

0
0 0.15

i %



III I I I I I

0.22%

0.0

.07%

9

60

50

0'
) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

TRUE STRAIN

Figure F-34: Plane strain tension of PC. True stress-strain responses for specimens
loaded to stress levels prior to the peak stress. Each test has been shifted horizontally
in order to elucidate individual responses. The residual strain upon unloading is
indicated above each curve.
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Figure F-35: Strain rate increment experiment on PC in simple compression. The
initial true strain rate of -0.001/s is increased to -0.01/s as indicated.
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Figure F-36: Detail of the stress-strain curve of Fig. F-35 showing the calculation of
the strain-rate sensitivity parameter m. The indicated construction line is extrapo-
lated back to the strain at which the rate increment is imposed.
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Figure F-37: Fit of the constitutive model to the stress-strain response of PC in
simple compression.
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Figure F-38: Fit of the ductile fracture criterion in simple tension; experimental and
numerical load-displacement curves.
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Figure F-39: Model fit of ductile fracture in uniaxial tension: Contour plots of evo-
lution of AP for locations (b) 1, (c) 2, and (d) 3 as indicated on the numerical curve
in Fig. F-38
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Fit of the brittle fracture criterion in tension of a notched bar PC
specimen; experimental and numerical load-displacement curves.
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Figure F-41: Fit of the brittle fracture criterion in tension of a notched-bar PC
specimen; contour plots of a at (a) location 1 and (b) location 2 as indicated in
Fig. F-40.
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Figure F-42: Experimental stress-strain curves showing the reverse yield effect ob-
served for PC in simple compression.
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Figure F-43: Numerically predicted stress-strain curves for the loading-unloading
response of PC in simple compression.
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Figure F-44: Simple and plane strain compression experiments on
sponding model results.
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Figure F-45: Load-displacement curves for
PC with corresponding model results.
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Figure F-46: Plane strain compression experiment "A" of Fig. F-45: (a) Experimental
specimen. (b) Numerically predicted specimen showing contours of yP for direct
comparison with (a).
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Figure F-47: Plane strain compression experiment "B" of Fig. F-45: (a) Experimental
specimen. (b) Numerically predicted specimen showing contours of fyP for direct
comparison with (a).
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Figure F-48: Geometry of four-point bending experiments. All specimens have a 50
mm nominal width.

174

12.3 mm

I



10 15 20
DISPLACEMENT, mm

Figure F-49: Load-displacement curve for four-point bending of a
beam.
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(a) (b)

(c)

Figure F-50: Four-point bending of a blunt notched PC specimen: Micrographs of
unloaded specimen cross-sections are shown at: (a) location 1, (b) location 2, and (c)
location 3 as indicated on the load-displacement curve in Fig. F-49.
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Figure F-51: Mesh used for four-point bending of the blunt-notched beam: (a) whole
mesh using half-symmetry. (b) detail of the mesh at the notch-root.
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Figure F-52: Experimental and numerically predicted load-displacement curves for
four-point bending of a blunt-notched PC beam.
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Figure F-53: Prediction of the
plots of AP corresponding to
location 4 as indicated on the
at the notch root as indicated
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(d)

fracture process in blunt-notch beam bending. Contour
(a) location 1, (b)location 2, (c) location 3, and (d)
predicted curve in Fig. F-52. Ductile failure initiates
in (c) and propagates into the beam as seen in (d).
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Load-displacement curve for four-point bending of a sharp-notched PC
beam. The location indicated by "x" is the location of fracture.
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(a)

(b)

Figure F-55: (a) Micrograph of unloaded specimen cross-section at incipient fracture.
The crack initiates at the apex of the plastic zone; (b) close-up of the crack at the
apex of the plastic zone.
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Figure F-56: Mesh used for four-point bending of the sharp-notched beam: (a) whole

mesh using half-symmetry. (b) detail of the mesh at the notch-root.
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Figure F-57: Experimental and numerically predicted load-displacement curves for
four-point bending of a sharp-notched PC beam.
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Figure F-58: Prediction of the fracture process in sharp-notch beam bending. Contour
plots of - corresponding to (a) location 1, (b) location 2, (c) location 3, and (d)
location 4, as indicated on the predicted curve in Fig. F-57. Brittle fracture initiates
ahead of the notch root as indicated in (b).
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Figure F-59: Prediction of the fracture process in sharp-notch beam bending. Contour
plots of AP corresponding to (a) location 1, (b)location 2, (c) location 3, and (d)
location 4 as indicated on the predicted curve in Fig. F-57. Ductile failure initiates
at the notch root as indicated in (c) after brittle fracture initiates ahead of the notch.
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Figure F-60: Fit of the constitutive model for isotropic polycrystalline metals to large
deformation simple compression of A16061-T6.
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Figure F-61: Berkovich indentation of A16061-T6: (a) P-h curves with model predic-
tions. (b) Optical micrograph of residual indent morphology for test to 3.27N. (c)
Numerically predicted morphology for test to 3.27N.
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(a)

(b) (c)

Figure F-62: (a) Mesh design used for Berkovich indentation simulations; (b) Detailed
view of area in direct contact with the indenter tip. (c) Detailed view of a coarse
mesh design. The indenter is modeled using a rigid surface (not shown).
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Figure F-63: Comparison of experimentally-measured and numerically-predicted in-

dentation profiles corresponding to a maximum load of 3.27N and 10um depth, as
well as a maximum load of 7.40 N and 15prm depth are shown. Each profile is shown
in a plane which is perpendicular to one of the faces of the indent; the trace from

the deepest point of the indent, up the indent and onto and along the surface be-
ing indented is shown. The baseline for the profile height is at 0 pm. Material:
A16061-T6.
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Figure F-64: Fit of the constitutive model to simple
PMMA.
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Figure F-65: Berkovich indentation of PC: (a) P-h curves with model predictions. (b)
Optical micrograph of residual indent morphology for test to 2.5 N. (c) Numerically
predicted morphology for test to 2.5 N.
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F-66: Berkovich indentation of PMMA: (a) P-h curves with model predic-
(b) Optical micrograph of residual indent morphology for test to 3.30 N. (c)

Numerically predicted morphology for test to 3.30 N.
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Figure F-67: Model result compared with experimental data for Berkovich indentation
of PMMA with a dwell time of 300 s at a peak load of 2.40 N.
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Figure F-72: (a) Contour plot of the equivalent plastic shear strain fY" at a peak load
of 2.80 N for conical indentation of PC. (b) Fit of an elastic-perfectly plastic model

to simple compression of PC.
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Figure F-73: Prediction of conical indentation of PC using an elastic-perfectly plastic
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indent profile focused on the region of material pile-up.
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Figure F-76: Unloading analysis for Berkovich indentation of PMMA: (a) Results for
a 205 mN peak load with a loading rate of 25 mN/s and various unloading rates.
(b) Results for three peak load levels at equal loading and unloading rates. (c) P-h
curves for a peak load of 2.80 N and three different loading and unloading rates. The
values of E were calculated using the data given in Table I.
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stages 1 to 2 and from stages 3 to 4. Values of the calculated rate sensitivity parameter
m are given for each rate-jump test.
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Figure F-80: Comparison of the experimentally obtained stress-strain curves in simple
compression against the predicted responses based upon a reverse approach for sharp-
indentation: (a) Monotonic loading at -0.001/s. (b) Strain-rate jump experiment.
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Figure F-81: Comparison of the numerical solution of L-1 (AP/AL) to a series approx-
imation using twenty-five terms. The comparison is shown for a single element fit of
our model to the stress-strain curve of PMMA in compression. The series approxi-
mation is within 1% of the numerical solution at a value of AP/AL = 0.99.
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Figure F-82: Stress-strain curves for simple compression of PC under monotonic
loading at -0.001/s and -0.01/s compared to a strain rate jump experiment from
-0.001/s to -0.01/s.
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Figure F-83: Detail of the stress-strain curve for the strain rate jump experiment in
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cated construction line is extrapolated back to the strain at which the rate increment
is imposed.
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Figure F-85: Sensitivity of the model stress-strain curve for PC to variations in b.
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Figure F-87: Sensitivity of the model stress-strain curve for PC to variations in go.

213



C/)
w
Cl)

160

140

120

100

80

60

40

20

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TRUE STRAIN

Figure F-88: Sensitivity of the model stress-strain curve for PC to variations in MR.
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Figure F-90: Instrumented microindentation apparatus. The "centerpiece" transmits
the load from the voice coil to the sample to be indented.
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Figure F-92: Calibration curve for the system spring stiffness of the microindenter.
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Figure F-95: P-h curves for indentation of fused silica at 5 mN/s.
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Figure F-100: Calibration curve for the driving electronics of the nanoindenter.
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Figure F-103: Biaxial compression/shear apparatus.
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Figure F-109: Frictional response of MEMS interfaces at a normal force of 2 N.
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Figure F-110: Coefficient of friction for MEMS interfaces at a normal force of 2 N.
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Figure F-111: Relative displacement for MEMS interfaces at a normal force of 2 N.
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(a)

(b)

Figure F-112: Scratch testing of PC using a conical indenter tip at 10 pm/s: (a)

scratch morphology for a test conducted at a fixed normal force of 174 mN; (b)
cross-section of the scratch.
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Figure F-113: Scratch testing of PC using a conical indenter tip at 10 pm/s; tan-
gential force-displacement curves.
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Appendix G

Tables
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P, Pu Pm hm Sm he Ac f E Error
(mN/s) (mN/s) (N) (pm) (N/pm) (pm) (pm2 ) (GPa) (%)

25 25 0.205 8.63 0.251 8.02 1574.4 0.989 4.57 47.1
25 50 0.207 8.64 0.196 7.84 1507.6 0.989 3.65 17.4
25 250 0.207 8.61 0.186 7.78 1481.9 0.989 3.49 12.3
25 25 2.85 27.6 1.32 26.0 16530 0.846 6.33 104
25 25 0.92 18.9 0.499 17.6 7546.9 0.950 3.99 28.3

250 250 2.82 28.1 1.54 26.7 17435 0.848 7.24 133
1020 1020 2.85 27.3 2.29 26.4 17032 0.846 10.9 249

Table G.1: Experimental values used for the calculation of E from the P-h curves
shown in Fig. F-76. The "Error" is calculated relative to the reference value of E =

3.11 GPa.
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