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ABSTRACT

In order to examine the importance of sediment resuspension on the sediment bed-to-
water column transport of hydrophobic organic contaminants (HOCs) in the lower Hudson
Estuary, the following areas of research were pursued: 1) a passive, in situ sampler, a
polyethylene device (PED), for measuring HOCs in the aquatic environment was developed; 2)
the desorption rate of pyrene, a polycyclic aromatic hydrocarbon (PAH), from native Hudson
River sediments was measured, and 3) pyrene and 2,2',5,5'-tetrachlorobiphenyl (PCB #52), a
polychlorinated biphenyl (PCB), concentrations were measured in the lower Hudson Estuary so
that the input of these chemicals as a result of sediment resuspension could be compared to
modeling expectations and the contribution of sediment resuspension to these chemicals' cycling
could be quantified.

The use of a new passive, in situ sampler, a polyethylene device (PED), for measuring
hydrophobic organic contaminants (HOCs) in the aquatic environment was demonstrated. Like
semipermeable membrane devices (SPMDs) and solid-phase microextraction (SPME), PEDs
passively measure the concentration of chemical present in the dissolved phase. PEDs provide
for in situ, time-averaged measurements with fast equilibration times (on the order of days) and
simple laboratory extraction. Polyethylene-water equilibrium partitioning constants (KPEWs) and
polyethylene diffusivity coefficients (DPEs) were measured in the laboratory so that dissolved
concentrations could be calculated subsequent to PED extraction. KpEws for eleven PAHs and
PCBs were found to correlate closely with octanol-water equilibrium partitioning constants
(Kows; log KPEW = 1.1 log Kow-0.45, R 2 = 0.85). Temperature and salinity dependence of KPEW

for the chemical of interest can be predicted with that chemical's excess enthalpy of solution and
Setschenow constant, respectively. DPES for several HOCs were measured in the laboratory so
that the time for equilibrium uptake in the field could be predicted. PEDs allowed for quick, in
situ, time-averaged measurements of phenanthrene and pyrene at pM concentrations and PCB
#52 at fM concentrations in Boston Harbor seawater.

Observations of disequilibrium between sorbed HOCs (e.g., PAHs & PCBs) and the
surrounding environmental waters indicate that the times for desorption are important for
understanding the fate of HOCs. Settling and resuspended particles can play a significant role in
the cycling of HOCs. For PAHs, like pyrene, these chemicals' strong affinity for black carbon in
the environment makes the rate of desorption less certain. The desorption rate for pyrene from
native Hudson River sediment was measured in the laboratory and a diffusion rate constant
(effective diffusivity/particle radius 2) ranging from 1.OE-7 to 5.6E-7 s- was measured. The
results were in good agreement with a physically- and chemically-based model for estimating
effective diffusivity and the rate of desorption.



The elevated levels of PAHs and PCBs in the sediments of the lower Hudson Estuary
coupled with the tidally-driven sediment resuspension that occurs there, provide for the transport
of these HOCs to and from the overlying water column. PED-measured dissolved concentrations
of pyrene and PCB #52 were quantified during both neap and spring tides during April and
October field campaigns in order to assess the impact of increased sediment resuspension. The
chemical potential in the sediments was found to be higher than that of the overlying waters for
both pyrene and PCB #52. The input due to sediment resuspension to the lower Hudson Estuary
was estimated to be 640 - 2200 g/day for pyrene and 12 - 32 g/day for PCB #52 during April
1999, and 62 - 800 g/day for pyrene and 4.4 - 10 g/day for PCB #52 during October 2000. A
comparison to other sources and sinks suggest that sediment resuspension is an important source.
A one-box model was used to estimate the dissolved concentration within the estuary. This
allowed for the validity of the model to be assessed and for missing sources or sinks to be
examined. In April 1999 resuspended sediments appear to have served as a source of pyrene to
the estuary, while during October 2000 the sediments and water were close to equilibrium
suggesting a diminished source of pyrene to the overlying water. In contrast, mixing diagrams in
April 1999 suggest that the resuspended sediments were serving as a sink, scavenging PCB #52.
However, the sediment and water samples indicate that there was a driving force from the
sediments to the water. A possible explanation for this observation may be the scavenging of
PCB #52 by "cleaner" sediments throughout the estuary. In October 2000, as with pyrene, the
sediments and water were more closely equilibrated with respect to PCB #52. These results show
that sediment resuspension is important to the cycling of PAHs and PCBs in the lower Hudson
Estuary.

Thesis Supervisor: Philip M. Gschwend
Title: Professor of Civil and Environmental Engineering
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CHAPTER 1: INTRODUCTION

Once in the aquatic environment, the hydrophobic nature of polycyclic aromatic

hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) causes them to

preferentially sorb to the sediments (1). Consequently, even after the input of these

contaminants has ceased or diminished, the sediments can remain a source of pollutants

to the surrounding water. Recent studies indicate that the sediments of urban bodies of

water are a source of hydrophobic organic contaminants (HOCs) to the overlying water

column (2-6). The significant resuspension events that occur in the lower Hudson

Estuary (7-9) may result in large fluxes of PAHs and PCBs to the surrounding waters.

Recent studies in the Hudson (3,10) suggest that this is the case. It is important to

improve our understanding of the extent to which sediment resuspension and subsequent

chemical desorption play a role in the release of PAHs and PCBs to the water column so

that we may improve our understanding of the mechanisms governing the fate of these

chemicals in the environment. This improved understanding will aid environmental

regulators and scientists in understanding the effects of these chemicals on the

surrounding ecosystem and organisms and allow for the selection of appropriate sediment

quality criteria (11,12).

The U.S. Environmental Protection Agency (EPA) estimates that approximately

10% of the sediment underlying U.S. surface waters is sufficiently contaminated with

toxic pollutants to pose potential risks to fish and to humans and wildlife who eat fish

(12). The U.S. EPA has studied data from 1,372 of the 2,111 watersheds in the

continental U.S., and 96 of these studied watersheds have been identified to contain

''areas of probable concern" where potential adverse effects of sediment contamination

15



are more likely to be found (12). Similarly, out of 22 coastal embayments sampled by the

U.S. National Oceanographic and Atmospheric Administration (NOAA) 11% of the

surveyed area was found to be toxic in an amphipod survival test (13). Because of the

contaminated sediments present throughout the United States as well as other parts of the

world, the transfer of HOCs from the sediments to the surrounding waters is an important

area of study.

The suspension of contaminated particles is of particular concern as it allows for

direct contact between sorbed pollutants and the surrounding water. Several researchers

have studied the importance of particle cycling on the fate of PAHs and PCBs in lakes

(14-16) and estuaries (17-19). Depending on the difference in chemical potential

between the sediments and water, particles may serve as a source or sink for HOCs in the

surrounding waters.

The scavenging of PCBs onto settling particles has been observed in the aquatic

environment. Jeremiason et al. (20) used sediment traps to estimate that over 50% of the

total Lake Superior water PCB burden is transported each year by settling particles to

within 5 m of the lake bottom. However, they estimate that only 2-5% of the settling

PCBs accumulate in bottom sediments, suggesting that most of the PCBs are recycled in

the bottom waters. In contrast, sediments with a greater chemical potential than the

surrounding water may provide for the bed-to-water transfer of PAHs and PCBs. Capel

and Eisenreich (21) observed elevated PCB concentrations in Lake Superior during the

spring months when sediments are resuspended tens of meters into the water column.

They observed the water column to have a PCB signature closely aligned to the PCB

signature observed in the sediments during the spring months, while the summer PCB
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water column signature was dissimilar to the underlying sediments. Maskaoui et al. (22)

measured PAH porewater concentrations that were greater than surface water levels in

the Jiulong River Estuary suggesting that the sediments may, in fact, serve as a source of

PAHs to the overlying waters. In the Hudson River Estuary, sediment-bound PCBs were

above equilibrium with the overlying water, suggesting that Hudson River sediments are

a source of PCBs to the surrounding waters (3). Achman et al. have estimated that the

sediment-exchange fluxes of PCBs are 2 to 100 times greater than the advective fluxes.

The overall goal of this research was to further our understanding of the fate of

PAHs and PCBs in the aquatic environment, specifically, the importance of sediment

resuspension on the sediment-water transport of HOCs in the lower Hudson Estuary. In

order to accomplish this goal the following tasks were completed: 1) a passive, in situ

sampler, a polyethylene device (PED), for measuring HOCs in the aquatic environment

was developed; 2) the desorption rates of pyrene, a PAH, from native Hudson River

sediments were measured, and 3) using chemical concentrations measured in the lower

Hudson Estuary, the input of pyrene and 2,2',5,5'-tetrachlorobiphenyl (PCB #52), a PCB,

due to sediment resuspension was quantified.

In Chapter 2, the parameters necessary for PED use were measured in the

laboratory, and their use in the aquatic environment was demonstrated. PEDs, which are

simply strips of low-density polyethylene, provide for in situ, time-averaged

measurements with fast equilibration times and simple laboratory extraction.

Polyethylene-water equilibrium partitioning constants and polyethylene diffusivity

coefficients were measured in the laboratory so that dissolved concentrations could be

calculated subsequent to PED extractions. PED sampling in Boston Harbor provided for

17



time-averaged measurements of phenanthrene and pyrene at pM concentrations and PCB

#52 at fM concentrations.

In Chapter 3, the desorption kinetics of pyrene from native Hudson River

sediments were measured. Laboratory desorption experiments were performed using

time-resolved, laser-induced fluorescence and the results were modeled with the

physically-based desorption model proposed by Wu and Gschwend (23,24). The

measured rate constant was then used to estimate the time for pyrene desorption in the

lower Hudson Estuary.

In Chapter 4, the importance of sediment resuspension to the inputs of dissolved

pyrene and PCB #52 were examined. PED-measured dissolved concentrations were

collected during both neap and spring tides in order to assess the impact of increased

sediment resuspension. Dissolved concentrations were examined with respect to salinity,

which was used as an index of conservative mixing, in order to observe conservative or

non-conservative behavior within the estuary. The magnitudes of the predominant

sources and sinks of pyrene and PCB #52 were estimated. Finally, dissolved

concentrations of each chemical in the estuary were models with a one-box model

approach in order to assess the validity of the model and check for any missing sources or

sinks.

Finally, major conclusions and areas of future work are discussed in Chapter 5.
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CHAPTER 2: POLYETHYLENE DEVICES: SAMPLERS FOR MEASURING TRACE

DISSOLVED HYDROPHOBIC ORGANIC CONTAMINANTS IN THE AQUATIC ENVIRONMENT

INTRODUCTION

Many hydrophobic organic contaminants (HOCs) including polycyclic aromatic

hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are toxic. Unfortunately,

these toxic chemicals are prevalent in the aquatic environment. While only a small

fraction of the HOCs in the environment are present in the dissolved phase, it is the

chemical's activity, which is closely related to this dissolved level, that controls the

diffusive transport into other surrounding phases (i.e., volatilization, sorption, and passive

uptake into organisms). Until recently, measuring the concentrations of dissolved HOCs

has required the extraction of large volumes of water due to their low dissolved

concentrations in the environment. This water must also be filtered in order to remove

particulate matter; however, depending on the size of filter used, colloids and even larger

particles may still be present in this "dissolved" fraction.

In the 1970's, scientists began Mussel Watch (25) a program where the

concentrations of pollutants in mussels were measured in order to monitor the quality of

the waters in which the mussels lived. Because mussels concentrate chemicals by up to

factors of 105 depending on the chemical, a much smaller sample can be analyzed than

could be if the water is extracted. However, differences in biological or biochemical

activities of the mussels were believed to result in some of the temporal and spatial

variations observed in the mussel data.
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Recently, two samplers based on the passive partitioning of HOCs into a

hydrophobic phase have been used to measure HOCs in the dissolved phase. Huckins et

al. (26) developed lipid-containing polyethylene tubes called semipermeable membrane

devices (SPMDs) to passively monitor the concentration of HOCs dissolved in the water.

Arthur and Pawliszyn (27) developed solid phase microextraction (SPME) for the

concentration of organic chemicals onto chemically modified fused silica fibers followed

by thermal desorption directly into an analyzing instrument. Both samplers are widely

used.

SPMDs can serve as a surrogate to organisms living in the aquatic environment.

They measure a chemical's activity in the environment while limiting variability due to

biological activity (28). SPMDs allow for a time-averaged measurement of the

concentrations of HOCs present (29). The chemicals of interest are concentrated into the

triolein as well as the polyethylene tubing allowing for the recovery of large quantities of

these chemicals (30). Laboratory experiments have been performed to measure the

partitioning of HOCs into SPMDs and the rate of HOC uptake, allowing water

concentrations to be calculated (29,30). At water flow rates less than 0.28 cm/s, chemical

uptake may be limited by a water-controlled boundary layer (31). However, recovery

compounds can be added to the SPMD prior to deployment in order to correct for

variations in analyte uptake (32,33).

While SPMDs have proven to be useful samplers of the aquatic environment,

many sampling difficulties still exist. SPMDs require protective housing for their

deployment in order to avoid damage (32). We have found them to tear in the field

resulting in a loss of an unknown quantity of the lipid inside. This loss makes it difficult
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to calculate the HOC concentration that was in the water. Separating the triolein and its

component fatty acids (i.e., oleic acid) from the HOC requires extra separation steps (32).

Lengthy deployment times (14-30 days) required for SPMDs can be inconvenient and can

enable biofouling which alters the uptake rates for the analytes of interest (32).

Another sampling method, SPME, has also been used for the passive

measurement of HOCs in environmental samples (34). SPME allows for the desorption

of the concentrated extract directly into the analyzing instrument. First, a polymer-coated

silica fiber is exposed to the sample allowing the chemical of interest to absorb into the

polymer. The fiber is then placed into the hot injector of a gas chromatograph or other

instrument and thermally desorbed. This method does not require solvents and allows for

simplified sample extraction (35). Varying polymer types and thicknesses have been used

to suit the chemicals of interest (35). SPME fibers can be reused in order to limit cost.

However, SPME fibers are fragile (35) so that sampling the environment directly is not

always practical. In fact, high percentages of suspended matter in moving water can

cause fiber damage (35). Typically, environmental samples are collected and then SPME

sampling is done in the laboratory. Unfortunately, this method does not yield time-

averaged concentration results. The reuse of fibers is limited by carryover of chemicals

from previous extractions, and a blank of the fiber should be run at least once between

samples (34). Potter & Pawliszyn (34) found carryover to be significant for

benz(a)anthracene, benzo(a)pyrene, and pentachlorobiphenyl even after four fiber blanks.

Because the volume of polymer coated on the fibers is less that that of the triolein and

polymer volume used in SPMDs, detection limits for SPME are generally not as low as

those for SPMDs.
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In our study, a new passive sampler called a polyethylene device (PED) is

introduced. PEDs, which are simply strips of low-density polyethylene, provide a simple

and effective method for the passive, in situ sampling of HOCs dissolved in water. They

combine the best of SPMDs and SPME. If tearing occurs, this is not a problem as there is

no triolein to leak out. Also, the single layer of plastic exposed on both sides allows for

faster equilibration times. This enables environmental observations to be made in shorter

times. It also results in less time for the formation of biofilms. Similar to SPMIDs,

reference compounds can be impregnated into the PEDs in order to correct for any

variations in uptake rate that may be caused by biofouling or a water-controlled boundary

layer. The absence of triolein greatly simplifies the extract cleanup procedure. While

PEDs cannot be inserted directly into the detector as SPME fibers are, their larger volume

allows for a greater mass of chemical to be collected. Because they are easily used in

situ, time-averaged environmental concentrations can be measured. As polyethylene is

inexpensive, there is no need to reuse PEDs, eliminating any carryover problems that

occur with SPME.

Because PEDs sample by diffusive uptake, an understanding of the polyethylene-

water partitioning (KPEw) as well as the diffusivity in polyethylene (DPE) for the chemical

of interest is needed. Here we report KPEW and DPE values for several PAHs and PCBs.

Temperature and salinity effects on the KPEW for selected chemicals were examined, and

the temperature dependencies of DPE were also tested. Finally, we used KPEWs and DPEs

to quantify HOC concentrations for PED samples from Boston Harbor.
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THEORY

In order to solve for the concentration of chemical present in the water of interest,

the KPEW (L3/M) must be known. The KPEW is the ratio of the concentration of chemical

in polyethylene (CPE; MIM) and the concentration of chemical in water (C,; M/L3 ) at

equilibrium:

KPEW - CPE (2.1)
Cw

With this KPEW and the measured CPE, the concentration of the chemical in the water at

equilibrium can be estimated.

Because it may not always be possible or convenient to keep the PEDs in the

environment for the time required for equilibration, it is important to understand the

kinetics of uptake. When a plane sheet is suspended in a large volume of solution such

that the amount of solute taken up by the sheet is a negligible fraction of the total solute

mass, the concentration in the solution remains constant (36). This is the case for a PED

in a large body of water (e.g. a lake, river, harbor, etc.). However, for a limited volume

of solution (as is typical in laboratory experiments), a decrease in the concentration of

solute in the solution will result because a significant fraction of solute will diffuse into

the polyethylene (PE) sheet. Consequently, the empirically observed uptake rate varies

as a function of the percentage of total chemical finally taken up by the sheet. The time

for equilibration increases as the size of the water body increases. For example, for

pyrene diffusing into polyethylene with a 78 gm thickness, it takes 3.4 days to reach 50%

of equilibrium in an infinite bath (i.e., large body of water), while it only takes 1.3 hours

to reach 50% equilibrium when 90% of the total solute mass is finally taken up by the
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sheet. The total mass of pyrene diffused into the PE in the first case is ten times greater

than in the latter case, which results in longer equilibration times.

The limited volume case (i.e., the laboratory) allows one to measure the change in

concentration in the solution over time. Assuming there is no water boundary limitation

to transfer, the results can be used to estimate the diffusivity of the solute in the PE sheet.

Crank (36) solved Fick's second law for the diffusion of a chemical from a stirred

solution of limited volume into both sides of a plane sheet:

M1  - 2a(1+ a) exp( Dq2t/12) (2.2)
M . na1+a+a2q

where M, and M. are the total amount of chemical in the sheet at time t and at infinite

time, respectively (M), D is the diffusion coefficient (L2/T), t is time (T), and 1 is one-half

of the sheet thickness (L). The values of q, are the non-zero positive roots of:

tan (qn)= -a -qn (2.3)

and cc is the ratio of the volume of solution, Vw (L3), to the mass of the PE sheet, MassPE

(M), divided by the partition coefficient:

a = (VW I MassPE) (2.4)
KpEW

In other words, u is the ratio of the dissolved to sorbed chemical at equilibrium. The

fractional uptake,fpE, into the PE sheet at equilibrium may also be used to solve for

a. The fpE is equivalent to 1/(1+a). For example, if 75 percent of the chemical in the

PE-water system is in the sheet at equilibrium, fPE is 0.75, and a is 0.33. Equation 2.2

can be used to estimate D by solving for the best fit with experimental data.
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When there is an infinite amount of solute or a bath that is so large that the

solution concentration does not change due to PED uptake (an infinite bath case), the

following equation, also from Crank (36), can be used to solve for M/M.:

Mt 0 8 , 2 2t
' l exp -D n+ _-

M.~ (+1)2 7r2 2 12M. 8= (e2n ~j t 2(2.5)

By combining Eqs. 2.1 and 2.5, one can solve for C,, as a function of CPE, KPEW, D, t, and

1:

Cw = 8 CPE 1 (2.6)

KPEW .1- ( ) 2 -exp {in+ -
n= (2n +1) 2 7 2 12

As t approaches infinity, C, approaches CPE/KPEW. Diffusivity and KPEW can be obtained

from lab experiments; and CPE, t and I can be measured in field-deployed PEDs allowing

one to solve for C, in an infinite bath (i.e., an environmental case).

EXPERIMENTAL SECTION

Materials

Methanol (MeOH), acetone, methylene chloride (DCM), and hexane solvents

were all JT Baker Ultra-resi-analyzed (Phillipsburg, NJ).

Low-density polyethylene (0.92 g/cm3) from two different manufacturers was

used in the experiments. The first polyethylene (Brentwood Plastics, Inc., Brentwood,

MO) was 70 ± 1 ptm thick. The second (Carlisle Plastic, Inc., Minneapolis, MN) was 51

± 3 pm thick. Prior to use, PE was pre-cleaned with 500 mL of methylene chloride for a
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minimum of 48 hours, followed with methanol (24 hr), and finally clean water (24 hr).

PEDs were kept in clean water (treatment explained below) until use.

All water was reverse osmosis pretreated and run through an ion-exchange resin

and activated carbon filter system (Aries Vaponics, Rockland, MA) until a resistance of

18 M was achieved. The water was then treated with ultraviolet light (Aquafine total

organic carbon reduction unit, Valencia, CA) and filtered with a 0.22 gm filter

(Millipore, Bedford, MA). This low-carbon water was found to have less than 0.3 mg/L

of total organic carbon (TOC) upon analysis on a Shimadzu TOC-5000 (Columbia, MD).
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Water Sampling Experiment

In order to sample a PED-water system multiple times so that the time-

dependence of concentration could be repeatedly observed, a closed incubation apparatus

that allowed for the sampling of a small fraction of water was developed. Phenanthrene

and pyrene were examined in the first set of experiments and 2,2',5,5'-

tetrachlorobiphenyl (PCB #52) was measured in the following experiments. One

polyethylene device (PED) was placed in one of two opaque 13-L stainless-steel beakers

with stainless steel lids (Polar Ware, Sheboygan, WI). Each beaker was filled with 10 L

of water. Phenanthrene and pyrene beaker concentrations were 150 pg/L (300 p.L of

5000 ptg/mL in MeOH, Supelco, Bellefonte, PA) and 20 gg/L (200 gL of 1000 pg/mL in

MeOH, Supelco), respectively. The PCB # 52 concentration was 16 gg/L (400 pL of 400

pg/mL in acetone prepared by dissolving 10 mg PCB #52, UltraScientific, N. Kingstown,

RI). No PED was added to the second beaker, which served as a control.

The beaker solutions were allowed to equilibrate overnight after the chemicals of

interest had been added. The PAH solutions were subsampled (3 mL) over time and

analyzed via fluorescence spectroscopy (see below). The PCB #52 solutions were

subsampled (10 mL) over time, extracted into 0.5 mL hexane, recovery corrected with

hexachlorobenzene (10 p1 of 1 Rg/mL in acetone, Kodak Eastman, Rochester, NY), and

analyzed with a gas chromatograph-electron capture detector (GC-ECD; see below).

Several subsamples were taken and analyzed over a period of several hours to measure

the initial water concentration.

The PEDs were punctured with sixteen-gauge stainless-steel or copper wire

approximately every 3 cm in an accordion fashion. The wire was then bent into a circle
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(-11 cm in diameter) and attached to a stainless steel rod, which could be rotated. The

PED was pulled flat against the wire in a circle. Then the PED was added to the first

beaker and spun at speeds ranging from approximately 1 m/s (90 rev/min) to 0.3 m/s (30

rev/min) in order to mimic a typical water flow in the field. Because no change in uptake

rate was observed upon changing the spinning from 1 m/s to 0.3 m/s, the chemical uptake

rate is not thought to have been water-boundary controlled with in this range of spinning

rates. Approximately 500 mg of PED was used in the PAH experiment, and 90 mg in the

PCB experiment. The beakers were subsampled every 20 to 30 minutes initially and at

longer time intervals after the PED and water in the first beaker had reached equilibrium

(Figure 2.1).

Lab experiments allowed for the determination of the fraction of chemical present

in the water at equilibrium (Figure 2.1). Assuming that the chemical is present only in

the water or the PED (i.e., there are no wall effects, transformations, or losses), one may

solve for the KPEW as a function of the fraction of the chemical in the waterf, at

equilibrium:

KPEW= (1/ f- (2.7)
rPEW

where rPEW is the polyethylene-to-water phase ratio (M/L3 ). Any losses observed in the

control beaker were used to correct the f. This control-correctedf, was calculated as:

fw = CW,t,PED CW,O,Control (2.8)
CWA,,PED CW,t,Control

where CW,t,PED is the water concentration in the PED beaker at time t, CW,O,PED, is the

water concentration in the PED beaker just before the PED is added, CWO,COntrOI is the

water concentration in the control beaker at time zero just before the PED is added to the
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PED beaker, and CWtControl is the concentration in the water in the control beaker at time

t.

In order to measure the temperature dependence of KPEW, partitioning

experiments were performed at several temperatures. The temperature was gradually

decreased and finally increased to rule out chemical degradation as the cause for the

decreased water concentrations. Several PAH uptake experiments were also performed at

varying temperatures to investigate the importance of temperature on kinetics. The

temperature of the beakers was maintained by placing them in a 40-L insulated tank

attached to a refrigerated 28-L recirculator (Forma Scientific, model 2100, Marietta, OH)

and kept constant at temperatures ranging from 3 ± 0.3 to 24 ± 0.30C for 24 hours before

the water concentrations were measured.

In order to measure the salinity dependence of KPEW on the PAHs, sodium

chloride (NaCl) was added to the beakers to create a 0.1 M NaCl solution. Phenanthrene

and pyrene calibration solutions with 0.5 M NaCl were made and fluorescence intensities

were measured to insure that salinity had no effect on fluorescence.

Fluorescence intensities for phenanthrene and pyrene were measured over time

for the PED laboratory experiments performed at 23'C. Over this period 1.4% of the

water was removed for sampling purposes. A linear fit of the control beaker

concentration data showed the fluorescence intensities decreasing by 6% for both

phenanthrene and pyrene over the course of the experiment (130 hours; Figure 2.1). This

small loss from the control beaker suggests that losses due to biodegradation,

volatilization, etc. were small compared to uptake by the PED. As the stainless-steel
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beakers are opaque, photodegradation can also be excluded as a possible decay

mechanism.

A PAH mass balance was performed at the end of the 2-day 22 0C lab experiment

(Table 2.1). The PED was extracted in 540 mL of hexane for 48 hours, and the

phenanthrene and pyrene fluorescences were measured. For both phenanthrene and

pyrene, the total mass measured was in good agreement with the mass added. For

phenanthrene extracted from the beaker wall, an overlapping peak (dio-phenanthrene

which had been added as a mass spectrometer recovery standard) prohibited us from

measuring the intensity of phenanthrene. It can only be said that it was less than the

height of the shoulder of the overlapping peak. However, the mass of phenanthrene and

pyrene measured on the beaker walls of the experiment performed at 14 0C was found to

be 2 pg of phenanthrene for both the control beaker extract and the PED beaker extract.

If this was the value of phenanthrene on the wall at the end of the 220C experiment, the

total phenanthrene recovered was 1471 pg, which is 98% of the mass added. For pyrene,

99% of the chemical added was in the water or in the PED. These mass balances indicate

that there was little or no photodegradation or biodegradation. Because 98% of

phenanthrene and 99% of pyrene was found to be in one of two phases (water and PED),

our assumption that this was a two-phase system appears to be a valid one.

The concentrations of PCB #52 were measured in both the PED and the control

beaker throughout the course of the PCB experiment. A linear fit of the control beaker

concentration data indicated that the PCB #52 concentration increased by 5% over the

first 160 hours of the experiment (Figure 2.1). This is within the standard deviation of

the measurements. However, over the entire course of this 71-day experiment, there was
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considerable loss of PCB #52. The water, PED (if present), and beaker walls were

extracted for both the PED beaker and the control beaker, so that a mass balance on each

beaker and its contents could be performed (Table 2.1). The PED was extracted in

hexane for 48 hours. Water samples from each of the beakers were extracted as

discussed previously, and the beaker walls were extracted with DCM. Cl-benzene was

used as a recovery standard for all of the extracts. The samples were analyzed on a gas

chromatograph-mass spectrometer (see below).

Approximately 50% of the PCB #52 initially added was recovered at the end of

the 71-day experiment. We estimate that between 6 and 24% of PCB #52 was lost due to

volatilization over the time period of the experiment. This assumes that the PCBs in the

water and air have equilibrated, and that each time the beaker is sampled, the PCBs in the

headspace are lost. However, as the beaker lids were not airtight, it is possible that there

was greater PCB loss due to volatilization over the 71-day period. Between 1 and 3% of

the PCB was removed from the beaker due to sample removal. Because of the agreement

between the total beaker extracts in both beakers, PCB concentrations were corrected

with the control beaker (see above).

PED and Water Extraction Experiment

In order to measure multiple KPEWs in the same experiment, multiple round-

bottom flasks were prepared with water containing known concentrations of several

PCBs or several PAHs and one small piece of PED (- 4 mg) per flask. All of the

experiments were performed at room temperature (23 C), unless otherwise noted.
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The PCB PED and water extraction experiments were performed by Rainer

Lohmann in the Gschwend laboratory. A 4-L aqueous solution containing PCBs (# 29

and 69 at 20 pg/mL, UltraScientific) was prepared from a 200-pg/ptL PCB solution in

acetone and transferred into 250 mL flasks. A small piece of PED (- 4 mg) was added to

each flask. The flasks were then tumbled for increasing time intervals (6, 12, 24 hrs, 2, 4,

7 days, and three were removed at 14 days) in order to ensure equilibrium. The PEDs

were extracted in 5 mL of DCM followed by 5 mL of hexane. For most samples, the

aqueous phase was also solvent-extracted. A 25 1tL internal PCB-standard (# 35, 60,

114, and 169 at 200 pg/ptL) was added prior to extraction, and a 10-ttL aliquot of a 10

ng/piL m-terphenyl solution was used as an injection standard.

A 4-L water solution containing 60 ng/L phenanthrene, 30 ng/L 2-methyl-

phenanthrene and pyrene, 20 ng/L benz(a)anthracene, 40 ng/L chrysene, 200 ng/L

benzo(a)pyrene, and 90 ng/L perylene was prepared. The phenanthrene and pyrene

solutions were the same used in the water sampling experiment. Chrysene (95%), 2-

methyl-phenanthrene (99%), perylene (>99%), benzo(e)pyrene (99%; all from Aldrich,

Milwaukee, WI) and benz(a)anthracene (Accustandard Inc.; New Haven, CT) were

dissolved in acetone, and subsequently added to the water solution. Approximately 500

mL of this solution was added to each of six 500-mL glass round-bottom flasks.

Prior to the partitioning experiment, six 7-mg PED circles were stirred in a 50 mL

glass round-bottom flask with 50 mL of acetone containing 4 gg/mL d1 2-

benz(a)anthracene (2000 ptg/mL dissolved in DCM from UltraScientific) and

fluoranthene (98% from Aldrich). Impregnating the plastic with these PAHs allowed us

to ensure that equilibrium had been reached at the end of the experiment. For example,
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one would expect the KPEWS for the deuterated and non-deuterated benz(a)anthracene to

be equal at equilibrium. The circles and acetone solution were stirred with a glass-

covered stir bar for 26 hr. The PED circles were then placed in 50 mL of water and

stirred for 1 hr. This process was repeated two more times to insure that all of the

acetone had been removed. While a small quantity of PAHs may also have been

removed, their low solubility and higher molecular weight allowed for a minimal loss.

Each circle was then cut into two pieces. Approximately three-fifths of each

circle was added to one of the six round-bottom flasks, and the remaining two-fifths was

extracted (see below). Each of the flasks was stirred on a stir plate with a glass-covered

stir bar and covered in foil to avoid photodegradation. The water and PED of each flask

was extracted and analyzed at increasing time intervals (9.9, 18, and four flasks at 28

days).

The PED pieces were extracted in 10 mL of hexane for at least 48 hours. A

solution of dio-phenanthrene, dio-pyrene, and d12-perylene (100-+1 of 200-pg/pl in hexane

for PED extracts; in acetone for water extracts) was added as a recovery standard. The

water was extracted in 500 mL glass volumetric flasks (3 x 10 mL of hexane). The

extracts were reduced to approximately 100 RI, and a 10-p aliquot of a 4-ng/pl m-

terphenyl solution was added as an injection standard for subsequent analysis.

The KPEW was calculated for each HOC as the ratio of the measured concentration

of the solute in the PED and the measured concentration of the solute in water at

equilibrium (Eq. 2.1). The average of the KPEWS measured at equilibrium was taken in

order to calculate the best value.
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Infinite Bath Experiment

In order to evaluate the diffusivity values measured in the non-infinite bath water

sampling experiments, the same water sampling system (see above) was set up with a

very small mass of PED such that the water concentration would remain constant

(phenanthrene: 25 gg/L and pyrene: 0.85 ptg/L), mimicking the field. In contrast to the

previous experiments, only 1.1 mg of PED was added. This allowed for a predicted 1%

and 0.2% fractional uptake at equilibrium for pyrene and phenanthrene, respectively.

The experiment was performed at 20 *C. After 7.3 hr before equilibrium was reached,

the PED was removed and extracted in a quartz cuvette (NSG Precision Cells Inc.,

Farmingdale, NY) in 3 mL of hexane for 48 hr. Synchronous fluorescence (see below)

was used to measure the mass of phenanthrene and pyrene present in the PED as well as

in the water before and after the PED was added. Throughout the experiment, the water

concentration of phenanthrene and pyrene remained constant (CphenO = 25.0 ± 0.4 pg/L,

CphenF = 24.9 ± 0.4 pg/L; CpyrO = 0.84 + 0.3 [tg/L; CpyrF = 0.85 ± 0.03 pg/L).

PED Deployment in Boston Harbor

In order to test the applicability of PED use in the aquatic environment, sampling

was performed in Boston Harbor, MA, in December 2000. PEDs (85 cm x 5 cm x 51

gm) were deployed at two locations within the Harbor. The first PED was hung from a

navigational buoy (#12) across from Logan Airport (N 42' 20.955 min, W 710 01.124

min), 2m below the water surface. The second PED was attached to our own float near

the mouth of the Charles River (N 42' 22.261 min, W 71V 03.382 min), also 2 m from the

surface. The water temperatures at the airport and Charles River locations were 2 and
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3"C, respectively, and the water salinity was 33 psu at both locations. Both PEDs were

deployed for 15 days, and 4-L water samples were taken at the same location at the time

of PED recovery.

In the laboratory, the PEDs were rinsed in low-carbon water, wiped with a Kim

wipe in order to remove any visible biofilm, and extracted in DCM. The water samples

were also extracted in DCM, and recovery standards were added to both extracts. The

samples were analyzed on the GC-MS as described below. Particulate organic carbon

from the total water samples was measured by filtering a known volume of the sample on

a glass fiber filter (Whatman, Maidstone, England). The filtered solids were then dried

(80'C), weighed, and analyzed with a PE 2400 CHN elemental analyzer (Perkin Elmer

Corp., Norwalk, CT).

Synchronous Fluorescence

Synchronous fluorescence (37) allowed for the simultaneous measurement of the

concentrations of pyrene and phenanthrene in both water and hexane. The samples were

scanned at room temperature (23 C) in quartz cuvettes (NSG Precision Cells Inc.) on a

Perkin Elmer Luminescence Spectrometer LS 50B between 250 and 350 nm with an

offset of 55 nm, slit widths for the emission and excitation beams of 7 nm, and a scan

speed of 1500 nm/min. Phenanthrene and pyrene intensity were measured at 292 nm and

319 nm, respectively. The measurement error (one standard deviation, s.d.) for

phenanthrene and pyrene were 0.6 and 1.3%, respectively. A calibration curve for

phenanthrene and pyrene dissolved in water as well as hexane was completed each day in

order to account for variations in the lamp. The s.d. for the equilibrium concentrations

35



measured before the PED was added was within 0.3% (phenanthrene) and 0.2% (pyrene)

of the mean. The s.d.'s for the concentrations measured once the PED and water had

equilibrated were on average within 1% and 3% of the mean for phenanthrene and

pyrene, respectively. The measured intensities were at least 15 times greater than

intensities measured for water only.

GC-ECD

The PCB #52 extracts from the water sampling experiment were separated on a

Carlo Erba high-resolution gas chromatograph (HRGC-5300) with a DB-5 column (J&W

Scientific; Folsom, CA; ID 0.32 mm; 0.25 iim film, 30 m length) and analyzed using an

electron capture detector (ECD-40; Milan, Italy). The extract (1 [tL) was injected cold

on-column, and the GC was temperature programmed from 70'C to 300'C at 20'C/min

and held at 300'C for 3 minutes. The ECD was run with a 95% argon and 5% methane

make-up gas at 300'C. A calibration curve for PCB # 52 and C16-benzene was completed

each day in order to account for instrument variations.

PCB #52 concentrations were recovery corrected with C16-benzene recoveries (78

6%). The s.d. (n = 4) for the PCB #52 beaker equilibrium concentrations measured

before the PED was added was within 0.9% of the mean. The s.d. (n = 5) for the

concentrations measured once the PED and water had equilibrated was within 7% of the

mean. The peak heights were at the least 50 times greater than the baseline.

GC-MS

Extracts from PED and water extraction experiments were analyzed on a gas

chromatograph (GC; Hewlett Packard 6890 Series) -mass spectrometer (MS; JEOL MS-
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GCmate). The extracts (1 [d) were injected splitless and separated on a J&W Scientific

(Folsom, CA) 30 m x 0.32 mm DB-5 (0.25 [tm film thickness) fused-silica capillary

column. For PCBs, the injection port was at 300'C, and the GC-temperature program

started at 70'C, ramped at 20 0C/min to 180 0C, increased by 4C/min to 260'C, reached

280'C in a minute where it was held for 4 min. For PAHs, the injection port was at

280'C, and GC was temperature programmed from 70'C to 180'C at 20"C/min and

continued to 300*C at 6"C/min. The MS was operated at a resolution of 500 in EI+ mode

and selected ion monitoring (SIM) was used. PCBs and PAHs were quantified relative to

the internal recovery standards.

RESULTS AND DISCUSSION

Equilibrium Constants

The KPEWs measured in both experimental setups (the water sampling experiment

and the PED and water extraction experiments explained above) for phenanthrene and

pyrene match within error [Table 2.2, (38-41)]. The water sampling KPEW measured for

PCB #52 was also consistent with the PCB KPEWs measured in the PED and water

extraction experiment. The KPEW for phenanthrene estimated by Huckins et al. (29)is in

good agreement with the numbers presented here; however, the KPEW for PCB #52 is not.

The experiments performed by Huckins et al. (29) did not reach equilibrium, and the

KPEWS were estimated by modeling the uptake data. The differing PCB #52 KPEW

estimated in their work may be due to modeling error.

Within both compound classes, the KPEWs increase with increasing molecular

weight. This is to be expected since van der Waal's forces are a function of size, and as
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the volume of these hydrophobic molecules increase, so does their affinity for the PE and

their aversion to the water. Because of the large body of literature on octanol-water

partition coefficients (Kow) and the limited importance of hydrogen bonding on the KPEw

of these HOCs, the correlation between KPEw and Kow was examined (Figure 2.2). The

measured Kows for PAHs cited in Mackay et al. (40) were averaged and 1 s.d. was

calculated (Table 2.2). There were no Kow values for 2-methyl-phenanthrene referenced

in Mackay et al. (40) so a value from Hansch et al. (41) was used. Because the Kow value

cited for perylene was significantly lower than the Kow for PAHs of comparable and

smaller molecular weights, the Kow reported here is from Sangster (39). There was a

good linear correlation between log KPEw and log Kow for the combined set of HOCs (R2

= 0.85; Figure 2.2). The linear fit of the log KPEw and log Kow for the individual

compound classes was still better. For example, PAHs improved to R2= 0.95 (n = 8) and

PCBs to R2 = 0.99 (n = 3). Interestingly, the log KPEw -log Kow correlations indicate that

the KPEw'S for PAHs are greater than KpEw's for PCBs with the same Kow. One

explanation for this observation may be that the planar structure of the PAHs enhances

their partitioning into the hydrocarbon chains of the polymer over that of the non-planar

PCBs measured in this study. It is conceivable that the linear nature of the polyethylene

is more compatible with the planar PAHs than the non-planar PCBs. These KPEW-Kow

correlations allow one to estimate an HOC's KPEw with a Kow.

By assuming that the aqueous activity coefficient is the only variable governing

KPEw that has significant temperature dependence (i.e., the excess enthalpy of solution in

PE 0), KPEw was related to the excess enthalpy of solution in water, AHse(kJ/mol).
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AHSe
ln(KpEw ) ~ +C (2.9)

RT

where R is the gas constant (kJ/molK), T is the absolute temperature (K), and C is a

constant. Examining the partition data as a function of ]/(RT) yielded estimates of

corresponding AHse values (Figure 2.3). The AHSe for phenanthrene was found to be 18

1 kJ/mol. This is the value that Schwarzenbach et al. (42) estimate for the AHSe of

phenanthrene. We also measured an AHse for pyrene of 29 ± 2 kJ/mol. This is also

comparable to the AHsh for pyrene estimate by Schwarzenbach et al. [25 kJ/mol; (42)

Finally, the AHSe for PCB #52 was found to be 12 ± 5 kJ/mol, comparing reasonably well

with 16 kJ/mol estimated for 2,3,4,5 tetrachlorobiphenyl [calculated with values from

(43) These measurements indicate that a chemical's KPEW can be adjusted for temperature

with that particular chemical's AHs.

Salinity can also affect a chemical's partition coefficient. Assuming that salt only

influences PE-water partitioning due to effects in the aqueous solution, we expect:

KPEW,salt = 1 0 KS -[Salt] (2.10)
KPEW

where Ks is the Setschenow constant (M-), and [Salt] is the salt concentration (M).

Assuming Ks is 0.28 for phenanthrene and 0.29 for pyrene (42) and calculating KpEWsalt

KPEW for a 0.1 M NaCl water solution, one finds that the KPEW,sait is expected to be 1.07

times greater than KPEW for both phenanthrene and pyrene. Experimental measurements

indicate that KpEW,salt was 1.07 times greater than KPEW for phenanthrene and 1.05 times

greater for pyrene. These findings indicate that the Setschenow correlation can be used

for adjusting KPEW for salt effects. While the effect of a 0.1 M NaCl solution is only 7%,
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correcting for salt effects becomes more important at higher salinities. For example, a

0.5 M NaCl solution, which is similar to the salinity of ocean water, will result in a 40%

increase in the KPEW for pyrene.

Diffusivity Constants

In order to solve for HOC diffusivities in PE, a mass balance was used to fit Eq.

2.2 for observed Cw:

CW W@t=wJ= - 1-1 2  ea+a) exp(-Dqn -(Cwt@t=0 - Cwt=) (2.11)
n=1+a qn

The concentration data collected during the lab experiments were fit to Eq. 2.11, and the

sum of the squared differences were minimized to solve for the diffusivity of each

chemical (phenanthrene, pyrene, and PCB #52) in polyethylene at 23'C (Figure 2.4;

Table 2.3). The PAH and PCB experimental data were obtained from the water sampling

experiments. Equation 2.11 appears to fit the phenanthrene data quite well, but does not

fit the higher molecular weight pyrene and PCB #52 as well. For these HOCs, diffusion

is slower than the fitted value initially and then becomes greater than the calculated

diffusivity in the second half of the time course. This trend is also visible for

phenanthrene, but to a lesser extent. The best fits for the PAHs measured in the

experiments at 5, 14, and 22'C show the same results as the experiment at 23'C. The

concentration data for the laboratory experiments suggest that the diffusivities of the

HOCs increased with time. It is possible that the chemical of interest may be acting as a

plasticizer, causing diffusivity to increase with increasing absorbate concentration.

The diffusivities measured above along with KPEws were used to predict the

dissolved concentrations of phenanthrene and pyrene in an infinite bath lab experiment

40



(see above). The PED concentration, DPE, and KPEW were used to calculate Cw according

to Eq. 2.3. For phenanthrene, this value compared favorably to the directly-measured

water concentration (Table 2.4). For pyrene, Eq. 2.3 over-predicted the water

concentration by about a factor of two. This was likely caused by an under-prediction of

the fractional uptake (31% uptake predicted with Eq. 2.5 vs. 56% measured fractional

uptake; Table 2.4). A diffusivity of 6 E-1 1 cm 2/s would provide for the observed 56%

fractional uptake. This is consistent with the greater-than-calculated diffusivity observed

in the second half of the water sampling time courses (Figure 2.4).

Several researchers have measured the diffusivities of hydrocarbons in

polyethylene (44-47). However, there are many difficulties in comparing experimental

data on diffusion in polymers. These comparisons are difficult because of the variations

in morphological characteristics (e.g., degree of crystallinity) of the polymer. Only one

value for the diffusivity of phenanthrene in polyethylene, one for pyrene, and one for

PCB #52 were found in the literature (29,48). Huckins et al. (29) measured diffusion

coefficients for phenanthrene and PCB #52 in SPMDs in an open system (Table 2.3).

Although the diffusivity measured by Huckins et al. is for diffusion through triolein and

polyethylene, one might expect the diffusion through a plastic to be much slower than

that through a liquid. Consequently, the "total" diffusivity should be similar to the

diffusivity in polyethylene alone. The phenanthrene and PCB #52 diffusivities measured

here and by Huckins et al. are well within a factor of three.

Simko et al. (48) measured the diffusivity of pyrene in low-density polyethylene

to be 5 E- 10 cm 2/s; this is more than an order of magnitude greater than the measured

value of 2 E-11 cm 2/s in this study. It is important to note, however, that the
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experimental setup of Simko et al. was very different from the one used here. They

measured the concentrations of pyrene in a polyethylene sheet composed of five layers.

In order to prepare this five-layer sheet, they heated and pressed the polyethylene for

several minutes. This heating and cooling may have a significant effect on the

crystallinity of the polymer, which may have affected the diffusivity (49).

The diffusivities calculated with Eq. 2.11 were used to calculate the time for 90%

of equilibrium in an infinite bath diffusing into a PED with a 51 gm thickness (Eq. 2.5;

Table 2.3). These times illustrate the importance of the kinetics on PED uptake. For

example, a field experiment of 7 days (23 C) will allow phenanthrene and pyrene to

come to equilibrium; however, PCB #52 will not have equilibrated and Eq. 2.6 will be

needed to correct for uptake kinetics.

The diffusivities of chemicals in various media have been observed to relate to the

molar volume of the chemical (50). We examined the correlation between the DPE for our

measured values as well as literature values (44-46) and LeBas molar volumes (Figure

2.5). In general, our measured DpEs are lower than the literature values. However, it is

important to consider that the majority of the literature studies measure the uptake of a

chemical into a semi-infinite sheet. This method assumes a constant concentration at the

sheet surface and uses a different method of solution. Considering our lower-than-

literature-reported values and the apparent diffusivities increasing with time, it is possible

that our DPE are underestimated, and that the time for equilibrium may be less than we

have predicted.

Our laboratory experiments suggest that the DpEs measured for our chemicals

were, in fact, increasing with time. This may be an experimental problem where late time
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losses have been attributed to uptake when, in fact, they are due to other loss

mechanisms. The increasing chemical uptake rate may be a real phenomenon due to the

absorbate itself serving as a plasticizer. Future work is needed to understand this

increasing diffusivity with time.

The DPEs measured in this study also appear to be less than those measured in

other studies. These lower-than-literature values may be due to sampling artifacts (e.g.

losses inferred to represent PE uptake are actually due to other loss mechanisms).

Alternatively, the observed DpEs may be lower because of differences in PE structure.

For example, the plastic used in this study may be more crystalline than the other plastics

studied. Our current kinetic observations serve as a good starting point for estimating the

time for equilibrium, which will aid in predicting the required sampling exposure time.

In order to account for these DPE inaccuracies and possible biofouling that may occur in

the field, impregnating PEDs with internal standards (see above) will allow for the

fractional uptake to be estimated. For example, one would expect dio-phenanthrene to

desorb from the PED at the same rate phenanthrene was absorbed. With this rate

constant, the fractional uptake of phenanthrene could be estimated based on field

conditions.

In order to adjust diffusivity for temperature, it is necessary to know the

diffusivity activation energy. The Arrhenius equation can be used to solve for this

energy:

D = A exp(-E I RT) (2.12)

where A is a pre-exponential factor (cm 2/s) and E is the activation energy (kJ/mol). A

plot of ln(D) vs. 1/(RT) allowed for the use of the slope to solve for the activation energy
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of diffusion for phenanthrene and pyrene (Figure 2.6). With this method, the activation

energies ± 1 s.d. for phenanthrene and pyrene were estimated to be 46 ± 10 kJ/mol and 45

± 12 kJ/mol, respectively. Activation energies for the diffusivity of about 40 different

hydrocarbons in low-density polyethylene compiled by Flynn (44) ranged from 34 to 87

kJ/mol. Our estimated activation energies are within this range. An activation energy of

diffusivity of 45 kJ/mol and a temperature drop of 10'C will cause the diffusion

coefficient to decrease by a factor of two.

Environmental Measurements

To demonstrate the effectiveness of PEDs for environmental sampling, we used

them to assess HOCs in Boston Harbor seawater in December 2000. Total water extracts

were used to calculate dissolved concentrations (Table 2.5). The dissolved fraction was

estimated with particulate organic carbon measurements and organic matter-water

partitioning coefficients corrected for water temperature and salinity. KPEWS measured at

23'C were corrected for temperature and salt effects and used to calculate the dissolved

HOC concentrations corresponding to the PED extracts. The previously measured

diffusivities were corrected for temperature, and the PCB #52 concentration was

corrected to account for the percentage of equilibrium that had been attained within 15

days at 2 and 3C (Table 2.5). Considering that total water extracts measure one point in

time and are therefore not directly comparable to PED measurements, which provide for

a time average, the total water extracts and PED measurements are in good agreement.

HOC concentrations for PEDs and total water extraction measurements for phenanthrene
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as well as pyrene in Boston Harbor were similar, although not identical (Table 2.5). PCB

#52 total water extracts were within a factor of three of the PED-measured concentration.

In order to remove the temporal variability present in Boston Harbor, several liters of

harbor water should be collected for laboratory experiments. Subsamples could then be

measured with a PED or extracted in the lab, and the resulting concentrations could be

compared. This approach would help to remove temporal variability assuming that any

laboratory sources and sinks could be eliminated or corrected for. As discussed

previously, we believe there is greater error associated with those HOC concentrations

that are measured with PEDs that have not yet equilibrated (i.e., PCB #52) with the

surrounding water and must be corrected with diffusivity. This error may help to explain

the higher PED sample concentrations.

The phenanthrene concentrations measured in December 2000 (40 and 80 pM) are

comparable to the 100 pM phenanthrene concentration measured by Flores (4) with a

SPMD at the airport location in February 1998. The pyrene concentrations we measured

(20 pM) at the airport are several times less than the 100 pM concentration measured

with in situ fluorescence detection by Rudnick (51) near the airport in November 1997.

This apparent decrease in PAH concentration may be partially explained by the

implementation of secondary treatment for Boston's municipal wastewater in July 1998

and the relocation of the wastewater outfall to 9.5 miles off-shore in September 2000.

PCB #52 particulate samples collected in outer Boston Harbor near the airport in July of

1996 by Gustafsson (52) were used to estimate dissolved concentrations of 400 fM. This

value is comparable to the PCB #52 concentrations we measured in December 2000 in

45



the inner harbor (100 to 200 fM). In this instance, the temporal and spatial differences in

these samples make them difficult to compare.

Applications

Initial experiments indicate that PEDs are useful devices for the measurement of

dissolved HOCs in the water column. Polyethylene is readily available in varying

thicknesses and is inexpensive. KPEWS can be estimated with Kows and adjusted for

temperature and salinity. Diffusivities can be used to estimate the time for equilibrium.

PEDs can be impregnated with internal standards so that the rate of desorption within the

surrounding environment can be measured and used to correct for the uptake rate of the

chemicals of interest.

PEDs allow for the measurements of HOCs that are "truly dissolved." "Truly

dissolved" refers to those chemicals which are not sorbed to particulate matter or

colloids. This dissolved fraction controls the diffusive transport into the surrounding

environment. Consequently, it is an important fraction to measure.

As PEDs require days (depending on the chemical and temperature) to reach

equilibrium with the surrounding water, they allow for a time-averaged measurement.

This is useful for determining the level of pollutant exposure for organisms living in the

sampled environment. Using different PED thicknesses will allow for the measurement

of varying lengths of time. For example, decreasing the PED thickness from 80 to 40 ptm

cuts the uptake time by 75%.

The large polyethylene-water partition coefficients for HOCs make the

measurement of small concentrations of HOCs much less labor intensive than the
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extraction of large volumes of water. In our hands, we have been able to measure

concentrations as low as 200 fM (e.g., PCB #52). These large partition coefficients will

facilitate the extraction of a mass of chemical that is greater than the analyzer's detection

limit. Additionally, these larger concentrations generally allow for more accurate

measurements.
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Table 2.1. Masses of chemicals measured at the end of a PAH and a PCB water
sampling lab experiments.

PED or Incubation Mass in Mass in Mass on Mass
Chemical Control Time Water PED Wall Total Added

Beaker (day) (pg) (pg) (pg) (mg) (mg)

phenanthrene Beaker 2 998 471 <24 14693 1500

pyrene BeDr 2 56 142 3 201 200

PCB #52 Beaker 71 14 1 69 ±10 0.6 84 ±11 160

PCB #52 Control 71 70 10 - 4 74 ±10 160BeakerII
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Table 2.2. Polycyclic aromatic hydrocarbon

23oCa
Log Kpewb

Chemical PED & Water
Extraction Exp.

(PAH) and polychlorinated biphenyl (PCB) equilibrium partitioning coefficients @

b
Log Kpew

Water Sampling
Experiment

Log Kpewb
Huckins et al.

PAHs
Phenanthrene

2-Methyl Phenanthrene
Fluoranthene

Pyrene
Benz(a)anthracene

d12-Benz(a)anthracene
Chrysene

Benzo(e)pyrene
Perylene

PCBs
2,4,5 TriCB (#29)

2,2',5,5' TetraCB (#52)
2,3',4,6 TetraCB (#69)

4.3 ± 0.1
4.8 ± 0.2
4.9 ± 0.1
5.0 ± 0.1
5.7 ± 0.1
5.7 ± 0.1
5.7 t 0.1
6.2 ± 0.1
6.5 ± 0.2

5.1 ±0.1e

5.6 ± 0.2

4.23 ± 0.02

5.02 ± 0.03

5.4 ± 0.1

4.2

4.6

4.5 ± 0.1
5.2

5.1 ±0.2
5.0 ± 0.2

5.62 ± 0.02

5.9 ± 0.1
6.3+0.2d

6.3

5.6
5.8
6.0

Mackay et al.
Hansch et al.
Mackay et al.
Mackay et al.
Mackay et al.

(1992)
(1995)
(1992)
(1992)
(1992)

Mackay et al. (1992)
Mackay et al. (1992)
Sangster (1989)

Hawker & Connell (1988)
Hawker & Connell (1988)
Hawker & Connell (1988)

aErrors shown are ± 1 s.d. blog [(mol/kgPE)/(mOl/Lw)]. 'log [(mol/Lo)/(mol/Lw)]. d The Kow for benzo(a)pyrene is used for

comparison as there were no experimental data available for benzo(e)pyrene. *These values were measured by Rainer Lohmann in the

Gschwend Laboratory.
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Table 2.3. Diffusivities in polyethylene measured for phenanthrene, pyrene, and
2,2',5,5'- tetrachlorobiphenyl (PCB #52).

Time for 90% Huckins et al., Simko et al., LeBas Molar
This study equilibrium in 1993 1999 Volume

Chemical (cm2/s @ 230C) an infinite bath (cm 2/s @ 18'C) (cm 2/s @ 244C) (cm 3/mol)
(day)

phenanthrene 2 E-10 0.4 7 E-11 199

pyrene 2 E-11 3 5 E-10 214

PCB #52 7 E-12 10 2 E-11 268
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Table 2.4. Measured and calculated
bath experiment.

values for phenanthrene and pyrene in the infinite-

Diffusivity
Water Concentration (pg/L) Fractional Uptake (cm 2 /s)

Measured Predicted with Measured Predicted with Table Required for
Eq. 2.6 and Eq. 2.5 and 2.3 measured

Chemical DPE from DPE from fractional
Table 2.3a Table 2.3 uptakec

phenanthrene 25 23 0.85 0.79 2 E-10 1 E-10

pyrene 0.85 1.5 0.56 0.31 2 E-11 6 E-11

CPE measured with synchronous fluorescence tollowing extraction in hexane. Log KPEW Or
phenanthrene: 4.23 and pyrene: 5.02. bCalculated as (CPEmeasured/KpEW)/CWmeasued- CUsing this
diffusivity in Eq. 2.5 results in the measured fractional uptake.
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Table 2.5. Phenanthrene, pyrene, and 2,2',5,5'-tetrachlorobiphenyl (PCB #52)
concentrations measured with both total water extraction and PED methods.

Dissolved Conc. Estimated Dissolved Conc. Estimated

Chemical Location from total water dissolved from PED equilibrium
extracts fractione extractsf percentage at

(pM) (pM) 15 days

Aipra40 0.99 80
phenanthrene Airporta40.9801%Charles River? 70 0.99 70 100%

Airporta 20 0.98 20
pyrene Charles River? 40 0.98 10 100%

Airporta < 0. 0.93 0.2
Charles River" < 0. 07  0.94 0.2

aWater temperature 2'C, 2 m depth, particulate organic carbon 0.2 mg/L, and salinity 33 psu.
"Water temperature 3C, 2 m depth, particulate organic carbon 0.2 mg/L, and salinity 33 psu.
cDissolved concentrations were calculated from total water extracts and corrected for the
predicted fraction of chemical in dissolved phase. dThe ion ratio measured indicated that there
may have been an interfering ion, and that peak area may overestimate the mass present. eThe
fraction of chemical present in the dissolved phase was estimated with particulate organic carbon
measurements and organic-matter partitioning coefficients corrected for water temperature and
salinity. 'Dissolved concentrations were calculated from PED extracts with KPEW corrected for
water temperature and salinity effects.
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Figure 2.1. Water concentration vs. time for phenanthrene (solid diamonds) and
2,2',5,5'-tetrachlorobiphenyl (#52; solid triangles ) measured in laboratory experiments
with spinning PED show that the system has reached equilibrium. Control beaker
concentrations for phenanthrene (open diamonds) and 2,2'5,5'-tetrachlorobiphenyl
(open triangles) show no other significant losses.
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Figure 2.2. Log KPEw vs. Log Kow at 23"C for PAHs (solid diamonds) and PCBs (solid

squares). The best-linear equation for each chemical group is: PAHs: 1.2x- 0.97 (R2

0.95); PCBs: 1.lx-1.3 (R2 = 0.99)
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Figure 2.3. In KPEW vs. 1/(RT) for 2,2',5,5'-tetrachlorobiphenyl (PCB #52; solid

diamond), pyrene (solid triangle), and phenanthrene (solid square). The effect of 0.1 M

NaCl on KPEWs for pyrene (open triangle) and phenanthrene (open square) are indicated

with open symbols.
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the literature (solid square), aromatic hydrocarbons in the literature (solid diamond),
saturated hydrocarbons in the literature (open diamond).
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CHAPTER 3: DESORPTION KINETICS OF PYRENE FROM NATIVE LOWER HUDSON

ESTUARY SEDIMENTS

INTRODUCTION

Observations of disequilibrium between sorbed hydrophobic organic contaminants

[HOCs; e.g., polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls

(PCBs)] and the surrounding environmental waters (3,53,54) indicate that the time for

desorption is important for understanding the fate of HOCs. The settling and resuspension

of particles can play a significant role in the cycling of HOCs (15,55,56). In areas of

significant sediment resuspension, depending on the time of solid-water contact, the

desorption of HOCs from suspended particles may be a significant source or sink of

contaminants to or from the surrounding waters. For example, Achman et al. (3) have

estimated that the input due to the desorption of PCBs from resuspended sediments in the

lower Hudson Estuary is similar in magnitude to the boundary-layer-diffusion-controlled

release from the bed.

For PAHs, these molecules' strong affinity for black carbon in the environment

(19,57-59) makes their desorption kinetics more complicated. For example, in laboratory

experiments, Accardi-Dey & Gschwend (59) found the sorption of pyrene onto black

carbon had a half-life of approximately 1 day in contrast to a half-life on the order of hours

for pyrene sorption onto natural sediment. Our current understanding of the desorption

kinetics of PAHs from native sediments is limited and is an area where more study is

needed.

Many models have been developed to simulate sorption kinetics. The one-box

model is the simplest of the models. This model assumes that the sorption rate is a first-
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order function of the difference in concentration between the bulk solution and the solution

equilibrated with the sorbent is quantified with a single rate constant, k. This model

implies that only one process is the limiting step for mass transfer across a boundary.

Unfortunately, this simplified model does not fit experimental data well. Several

researchers have observed a rapid initial uptake followed by a slower uptake rate (60,61) In

order to account for these differing rates of desorption, a two-box model is often applied

(62,63). This model applies to situations where there are two types of sorbents, two

chemical reactions, or a more accessible sorbing site paired with one that is less accessible.

Wu and Gschwend (23,24) developed a model of sorption kinetics based on known

physical and chemical processes (i.e., molecular diffusion and phase partitioning). Their

model describes the kinetics of solution-solid exchange as a radial diffusive penetration of

organic pollutants into or out of porous natural aggregates. The sorbate molecules are

assumed to diffuse through the pore fluids in the interstices of natural silt aggregates while

undergoing microscale equilibrium partitioning between the mobile and immobile phases

of the silt aggregates. They developed a model to explain the time rate of change of the

sorbed compound per unit volume:

eS(r)= f a2 S(r) 2 aS(r) (3.1)
at f[ ar 2 + r ar

where S(r) is the local total volumetric concentration in porous sorbent (mol/cm3), r is the

radial distance, and

Deff = Dm-n f (n,) (3.2)
(1- n)ps Kd

where D,, is the pore fluid diffusivity of the sorbate (cm 2/s), n is the porosity of the sorbent

(cm 3 of fluid/cm 3 total), ps is the specific gravity of the sorbent (g/cm3), Kd is the solid-

60



water partition coefficient ([mol/kg]/[mol/L]), andf is a correction factor which is a

function of intraaggregate porosity and tortuosity (T). The model was found to fit

laboratory sorption data for chlorobenzenes to soils and river sediments once the fitting

porosity n was adjusted (23). Using a correction factor of n1 , an empirical choice of n =

0.13 allowed for a fit of reasonable accuracy. Using the Wu and Gschwend model, Eq. 3.1

can be solved analytically for diffusion into a well-stirred bath with particles that are

uniform in size (36):

Mr * 6a(a +1)exp(-Dff q2 / a2

=1- 9±aq 2 (3.3)M_ 9 + 9a + q 2 2

where Mt and M. are the total amount of chemical in the water at time t and at infinite time,

respectively (M), t is time (T), and a is the particles' spherical radius (L). The values of qn

are the non-zero positive roots of:

tan(qn)= 3qn (3.4)
3+ Crq2

and a is the ratio of the volume of solution to the mass of solids divided by the partition

coefficient:

a = (Vw IMassp (3.5)
Kd

where Vw is the volume of water (L3) and Massp is the dry mass of the sediment particles

(M). Simply stated, c is the ratio of the dissolved to the sorbed chemical at equilibrium.

The fractional uptake, fw, into the water at equilibrium may also be used to solve for

a. Thefw is equivalent to 11(1+1/a) or 1/(1+ rsw*Kd) where rsw is the ratio of solid to

water or Massp/Vw. For example, if 25% of the chemical in the particle-water system is in

the water at equilibrium, fw is 0.25, u is 0.33, and rsw*Kd is 3. Eq. 3.3 can be used to
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estimate De/a 2 by solving for the best fit with experimental data. The limited volume case

(i.e., the laboratory) allows one to measure the change in concentration in the solution over

time. The results can be used to estimate the effective diffusivity of the solute within the

particles. Once the Defja 2 has been solved for in the laboratory case, the a can be adjusted

for the solid-to-water ratio in the field, and the time for sorption or desorption in the field

can be estimated.

In this study we examined pyrene, a PAH, in order to estimate the desorption rates

of pyrene from native Hudson Estuary sediment. The use of native sediments allowed for

the study of the effects of black carbon on PAH desorption. Due to the slower sorption

times for PAHs to black carbon, PAHs that are added to sediments in the laboratory may

not be representative of the PAHs sorbed to environmental sediments. On shorter time

scales, these added PAHs may not partition into the sediments in the same manner as native

PAHs. Laboratory experiments were performed and the results evaluated with the

physically-based desorption model proposed by Wu and Gschwend (23,24) with respect to

pyrene desorption from natural sediment (i.e., unaltered sediment with no pyrene addition).

The most abundant size class (38-88 tm) of a Hudson River sediment from an area of

significant resuspension was used in the experiment. Finally, the measured Defa2 was used

to estimate the time for pyrene desorption in the lower Hudson Estuary. To our knowledge,

this is the first study on the desorption of a PAH from native sediment.
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EXPERIMENTAL SECTION

Materials

Sediment was collected with a 50x50 cm box corer from the lower Hudson Estuary

in an area of significant sediment resuspension approximately 14 km north of the Battery

(400 49.209'N, 730 58.270'W) on October 4, 2000 (Southern Estuarine Turbidity

Maximum, SETM; Figure 4.1). The sediment was divided into one-centimeter depth

intervals and stored in glass amber jars at 4'C. The 0 to 2 cm depth fraction was wet-

sieved with standard sieves (sizes: 710, 250, 177, 149, 105, 88, and 38 Rm). Clean water

(see below) was used to rinse the sediment through each of the sieves. Each size fraction

was then rinsed into an amber jar where the particles were allowed to settle, and the excess

water was decanted off. Each size class was weighed and a subsample of each size class

was weighed, dried at 75'C, and weighed again so that the solid mass fraction could be

determined. The particle density of the 38 - 88 pm size class was measured with a specific

gravity flask (64).

All water was reverse osmosis pretreated and run through an ion-exchange resin

and activated carbon filter system (Aries Vaponics, Rockland, MA) until a resistance of 18

MQ was achieved. The water was then treated with ultraviolet light (Aquafine total

organic carbon reduction unit, Valencia, CA) and filtered with a 0.22 pm filter (Millipore,

Bedford, MA). This low-carbon water was found to have less than 0.3 mg/L of total

organic carbon (TOC) upon analysis on a Shimadzu TOC-5000 (Columbia, MD).

Methanol (MeOH), acetone, methylene chloride (DCM), and hexane solvents were all JT

Baker Ultra-resi-analyzed (Phillipsburg, NJ).
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Desorption Experiments

In order to sample the sediment-water mixture multiple times so that the change in

pyrene water concentration could be measured over time, two opaque 13-L stainless-steel

beakers with stainless steel lids (Polar Ware, Sheboygan, WI) were used. Each beaker was

filled with 10 L of clean water. The control beaker contained 30 ng/L of pyrene (added via

10 mL of 30 gg/L in water from dilution of 1000 gg/mL in MeOH, Supelco, Bellefonte,

PA) and was allowed to equilibrate overnight. Once the baseline concentration (0 ng/L

pyrene) in the experimental beaker, had been established, 5.15 g of the 38-88 gm fraction

of wet sediment (3 g dry weight) were added and continuously stirred with a motor-driven

stainless steel stirring rod. This experiment was performed twice. The first experiment

was performed at 23.8 ± 0.5'C and the second was performed at 25.2 ± 0.4'C.

For both experiments, the pyrene water concentration was measured in both beakers

over time with time-gated, laser-induced fluorescence (LIF; see below). Unfortunately,

difficulties with the LIF optical trigger (see below) made the measurements over the initial

20 hr of the first experiment suspect. Consequently, we only have confidence in the data

collected after hour 20 of this experiment. No trigger problems were experienced in the

second experiment. In order to measure fluorescence in the beaker with sediment, the

stirring was stopped for approximately 10 min in order to allow for particle settling. A

Stokes settling calculation [particle density = 2.66 g/cm3 (measured as discussed above), T

= 25'C] indicated that 38 jim particles should settle within 4 min; however, as the water

was murky even after 10 minutes, it is suspected that the particles became smaller with

stirring. The end of the LIF fiber optic probe (stainless steel casing; 1.3 cm diam. x 10 cm

long; see below for optical fiber specifications) was placed in the beaker and three or more
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pyrene measurements were taken; each measurement takes approximately 1 min to

perform. As soon as the measurements were completed, the stirring in the beaker was

reinitiated with the stir rod. The stirring was fast initially in order to resuspend any

particles that may have settled. After a minute of fast stirring, the speed was lowered to

approximately 150 rev/s. The control beaker was measured at similar time intervals to the

beaker with sediment.

For the first experiment, calibration curves using 10, 20, 40, and 60 ng/L pyrene

solutions in 1-L amber bottles were completed within 4 hr or less of each measurement.

During the second experiment, a 0 ng/L pyrene measurement was added to further

constrain the lower portion of the calibration curves, and a calibration curve was completed

immediately before or after each pair of desorption and control beaker measurements.

Deviations in the calibration-curve-derived control beaker concentrations were used to

correct the concentration in the beaker with sediment. The calibration curve was first used

to calculate the pyrene concentration present in the beaker with sediment. Then this value

was divided by the calibration-curve-derived concentration in the control beaker and

multiplied by the spiked concentration (30 ng/L).

Inner Filter Effects

Attenuation of the excitation beam and/or absorption of emitted radiation by an

excess concentration of fluorophore or by the presence of an additional absorbing species

in solution is commonly called the "inner filter effect." Additional pyrene fluorescence

measurements were made with and without particles present in order to test for inner filter

effects. Following the desorption experiment, the particles in the beaker were allowed to

settle for 15 days. After this time, the solution was clear, and particles were visible on the
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bottom of the beaker. A Stokes settling calculation [particle density = 2.66 g/cm 3

(measured as discussed earlier), T = 25'C] indicated that particles as small as 1 pm should

settle within 4 days. Several LIF measurements were taken over an hour. The particles

were resuspended by first manually stirring the beaker with a stainless steel stirring rod and

subsequently using the motor-driven stirrer for several minutes of continuous stirring.

Then stirring was stopped and LIF measurements were taken at multiple particle-settling

times.

Over the period of the fluorescence measurement checks, a gradual increase in the

LIF system response over time was observed in all of the calibration standards. For

example, the 10 ng/L standard intensity increased from 5800 @ 1:20 PM to 7300 at 3:30

PM. This increase in response is believed to be due to instrument "warm-up" and has been

experienced previously by other instrument users.

Sediment and Water Extraction

After 10 days, the water-sediment mixture from the first experiment was

centrifuged, so that the water and sediment could be separated for subsequent extraction. A

500 mL subsample of the water was extracted in a 1 -L separatory funnel with 50 mL of

DCM followed by two more 30 mL extractions. djo-Pyrene (50 ptl of 500 pg/gl in MeOH)

was added prior to extraction for recovery correction. The extract was dried with

anhydrous sodium sulfate (Na2SO 4 ), transferred to hexane, and reduced to approximately 2

mL.

A 1.2 g (dry weight) subsample of sediment was extracted in a 50-mL glass

centrifuge tube with 2 mL of acetone and 30 mL of DCM. d14-p-Terphenyl was added

prior to extraction for recovery correction. The sediment-solvent mixture was agitated with
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a Vortex mixer for 1 min, the sediment was allowed to settle for 30 min, and the solvent

was decanted into a 250-mL round-bottom flask. This process was repeated twice, and

repeated two more times with only 3 mL of acetone in order to remove any residual pyrene.

The extract was concentrated and exchanged into approximately 3 mL of hexane. A 50-+L

aliquot of a 3 ng/pL m-terphenyl solution was added to both the water and sediment

extracts as an injection standard.

GC-MS

Sediment and water extracts were analyzed on a gas chromatograph (GC; Hewlett

Packard 6890 Series) -mass spectrometer (MS; JEOL MS-GCmate). The extracts (1 gl)

were injected splitless and separated on a J&W Scientific (Folsom, CA) 30 m x 0.32 mm

DB-5 (0.25 [tm film thickness) fused-silica capillary column. The injection port was at

280'C, and GC was temperature programmed from 70*C to 180'C at 20*C/min and

continued to 300'C at 6"C/min. The MS was operated at a resolution of 500 in EI+ mode

and selected ion monitoring (SIM) was used. Pyrene was quantified relative to the internal

recovery standards. Recoveries for the added d1o-pyrene and d 4-p-terphenyl were

quantified relative to an m-terphenyl injection standard and were 66% for the sediment

extraction and 68% for the water extraction.

Laser Induced Fluorescence

A time-resolved, laser-induced fluorescence spectrometer system (65)was used to

measure the dissolved pyrene concentration in situ. While the system can be used to

measured fluorescence as a function of time (time-resolved), here pyrene intensity was

measured at one delayed time (time-gated). The system consists of a pulsed nitrogen laser

67



(X = 337 nm, 600 ps pulse width, 1.3 mJ pulse-', Photon Technology, Model PL2300) lens

focused onto a 400 gm diameter silica optical delivery fiber. A concentric ring of 9 x 200

[tm diameter fibers delivers the emission radiation to a -m imaging spectrograph (SPEX,

Model 270M) whose output is focused on the input lens of a gated, intensified 1024 x 256

pixel charge-coupled camera (Princeton, Model ICCD-1024). The camera is thermo-

electrically cooled and controlled by a Princeton Instruments Model ST130 controller and

CSMA software. A time delay unit (Princeton Instruments Model PG-200) controls the

time gating via a 100 gm fiber connecting the laser and the optical trigger on the delay unit

(65). Pyrene intensity was measured at a 128 ns delay with a gate width of 50 ns at 391 nm.

The pyrene detection limit for this system is on the order of 5 ng/L (51).

The ICCD was read after each pulse and the fluorescence responses to 100 pulses

from the laser were summed to create the fluorescence spectra. The CSMA software

provided for a spectral display of emission fluorescence from 350 to 550 nm with a

resolution of approximately 0.3 nm. The data was extracted from the CSMA files to a flat

ASCII format using a C-program written by Steven Rudnick (51). The data was then

filtered (smoothed with a low-pass filter) and plotted using a Matlab code written by

Steven Rudnick and modified by Steven Margulis (Appendix A). The peak height of

interest (Raman @ 371 nm; pyrene @ 391 nm) was quantified using a Matlab code written

by Steven Margulis (Appendix A).

Organic and Black Carbon Analysis

A subsample of the sediment that was collected from the desorption experiment (38

- 88 jim) was analyzed for both organic and black carbon. The sediment was dried (70'C)

and crushed with a metal spoon. A 40 mg sample was combusted in a precombusted
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crucible in a Sybron F-A1730 Thermolyne muffle furnace (Dubuque, IA) under air for 24

hr at 375'C. This method combusts the more labile organic carbon (OC) leaving the

recalcitrant black carbon [BC; (58,59)].

Combusted (BC) and untreated (OC & BC) sediment were subsampled and weighed

(~ 10 mg) into Ag capsules. In order to remove any inorganic carbon (IC) that may be

present, 50 pl of clean water and 50 gI of sulfurous acid (>6% SO 2 by weight; Fisher

Scientific, Fair Lawn, NJ) were added to each subsample. No effervescence was observed

suggesting that there was little to no IC present. The samples were dried at room

temperature overnight in a laminar flow hood.

The samples were then analyzed for carbon with a Perkin-Elmer 2400 CHN

Elemental Analyzer (Norwalk, CT). Response factors were determined using an

acetanilide standard (reproducible to within ±0.3%). Sample blanks were found to have

less than 3 ptg of carbon and were subtracted from the sample carbon measurements. Three

replicates for both the combusted and untreated samples were run and found to have a

relative standard deviation of ± 0.05%. The weight percent carbon in the combusted

samples (BC) was subtracted from the weight percent carbon measured in the untreated

samples (OC & BC) to quantify the weight percent of OC.

RESULTS AND DISCUSSION

Sediment Particle Distribution

The sediment particles were dominated by the smaller size fractions (Figure 3.1).

The 38 - 88 gm size class made up 62% of the particles on a dry mass basis, while the < 38

ptm size class was the second most abundant group (13%). The 105 - 149 pm size class
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made up 12% and the 88 - 105 ptm size class was 5% of the total. The remaining 9% of the

particles were all larger than 149 tm. Because the 38 - 88 ptm particle size class was the

most abundant class present at this Hudson site, it was used in the desorption experiments

for estimating representative rates of pyrene desorption in the lower Hudson Estuary.

Laboratory Desorption

The first desorption experiment indicated that the pyrene had reached equilibrium

within the first 22 hr (Figure 3.2). The pyrene concentration in the system was measured

up to 140 hr and appeared to remain constant over the 22 to 140 hr period suggesting that

no further pyrene desorption was occurring. Control-corrected equilibrium pyrene

concentrations in the beaker with sediment averaged 13 ± 2 ng/L. This value is consistent

with the equilibrium pyrene concentration measured in the desorption beaker of the 2nd

experiment (15 ± 2 ng/L). In this experiment, there were no problems with the trigger, and

the system appeared to reach equilibrium within 2 hr. In the 1st experiment, the LIF-

measured control beaker concentrations (after hour 20) ranged from 26 to 34 ng/L with an

average concentration of 32 ± 2 ng/L (n = 7). In the second experiment, the concentrations

ranged from 27 to 33 ng/L with an average concentration of 30 ± 2 ng/L (n = 12), implying

very good accuracy and ±7% precision. Adding the 0 ng/L concentration to the calibration

curve and an increase in the frequency with which calibration curves were completed may

have helped to improve the measurement accuracy in the second experiment.

Fluorescence Measurement Checks

Within error, fluorescence measurements with the LIF were not affected by

particle-derived inner filter effects (Figure 3.3). Pyrene fluorescence intensities in particle-
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free water (15 days of settling; 7200 ± 500) were 5% less than the intensities measured in

water with particles (6 to 13 min of settling; 7600 ± 600). However, as these

measurements are within 1 standard deviation (s.d.) of the other, fluorescence

measurements with the LIF are not believed to have been affected by particle-derived inner

filter effects. If inner filtering were occurring, one would expect intensities to decrease in

the presence of particles; however, in this experiment, the intensity increased slightly. This

increase is believed to be the result of instrument warm-up because an increase in response

for the pyrene standards was also observed.

Dissolved organic carbon quenching effects were calculated to be minimal. The

total organic carbon concentration in our experiment was 6 mg/L (3 g sediment * 2%

organic carbon / 10 L). If we assume that 10% of this carbon became dissolved (0.6 mg/L)

and that the pyrene-DOC partition coefficient is 105 L/kgDOC (66,67)only 6% of the pyrene

would be bound to DOC. This percentage is comparable to the error for our measurements

in the control beaker; however this error would be systematic rather than random.

Solid-Water and Black-Carbon Partitioning

The solid-water partitioning coefficient was calculated as the ratio of the pyrene

sediment concentration and the dissolved pyrene concentration. The dissolved pyrene

concentrations at equilibrium were measured independently with LIF and via a water

extraction followed by GCMS analysis (both discussed previously). The LIF-measured

pyrene concentrations measured were 13 ± 2 ng/L (1st experiment) and 15 ± 2 ng/L (2nd

experiment; Table 3.1). The GCMS-analyzed concentration in the water extract was 15

ng/L. Replicate GCMS measurements in our laboratory suggest that this number is

accurate to within approximately 20%. Because of the improved calibration curve protocol
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in the 2nd desorption experiment, and the GCMS-measured value, the dissolved

concentration was assumed to be 15 ng/L. Using this value and the measured sediment

concentration (800 ng/g), we calculated a Kd of 53,000 ± 12,000 (L/kg). The error (1 s.d.)

was propagated from the measurement error in each of the variables following the general

method for error propagation (68).

The black carbon-water partitioning coefficient KBC ([gg/kgBC]/[gg/L]v) for the 38 -

88 gm size class of Hudson River sediment was estimated according to (59):

Kd- foc Koc (3.6)
KBC -36

fBCC% 1I

where foc is the weight fraction of organic carbon in the solid phase, KoC is the OC-

normalized partitioning coefficient ([mol/kgoc]/[mol/L]),fBc is the weight fraction of BC in

the solid phase, and v is the Freundlich exponent appropriate for the specific BC-PAH

pairing of interest. This assumes that both pyrene sorbed fractions had equilibrated after 10

days. Based on the constant pyrene concentration measured over time (Figure 3.2), this

assumption seems appropriate. The parameters Kd,fBc,foc, and Cw were measured (see

above). A log Koc value of 4.7 (69,70) and a Freundlich exponent of 0.62 (59) measured by

others were used in the calculations. The weight percentage of OC and BC were measured

as 1.85 ± 0.01 and 0.17 0.01, respectively. Using these values, the log KBC is 6.8 ± 0.4

according to Eq. 3.8. Again error was propagated with measurement errors (68). This log

KBC is 0.5 log units greater than the log KBC (6.25 ± 0.14) measured in Boston Harbor

sediments (59) However, given the large error associated with our KBC, these values are just

within the error of the other. However, the KBC measured in this study is more closely

aligned with log KBC measured for diesel particulate using a batch sorption method (6.6)
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and column experiments [7.0; (71)]. This finding may indicate that the black carbon

associated with our smaller size class of sediment (38 - 88 [tm) is more similar to diesel-

combustion derived black carbon.

Rearranging Eq. 3.6 to solve for Kd, one can calculate the magnitude of each

"piece" of Kd: focKoc andfBCKBcCW(V J. According to this equation, only 2% of the

pyrene was sorbed to organic carbon, while 98% of the pyrene was black carbon-sorbed.

Interestingly, 6% of the pyrene in the system desorbed from the sediments. Consequently,

the desorption rate measured in our system is thought to include both organic and black

carbon desorption. At least 66% of the pyrene is desorbing from black carbon; however, if

equilibrium partitioning is maintained throughout the desorption, 98% of the pyrene is

desorbing from black carbon. Using the same organic and black carbon partitioning model,

Lohmann et al. (72) estimated that 95% of the pyrene in a sediment sample from the same

location (all size fractions) at the 0-4 cm depth was black carbon-sorbed. In Boston Harbor

sediments, they estimated that 92% of the pyrene was sorbed to black carbon.

Radial Diffusion Rate Constant

In order to estimate the radial diffusion rate constant, Defa2 , with the desorption

measurements, a mass balance was used to solve Eq. 3.3 for the concentration in the water

as a function of time, Cw(t):

CW(0=CWt=- I- 6a(a + 1) exp(-Degf qnla 3.7)
n=1 9+9a+qna

The water concentration data collected during the lab experiments were fit to Eq. 3.7 with

the exception of the initial water concentration (time = 0). The following equation, which

is derived from a solution discussed in Crank (36) and is suitable for small times, was used
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to fit the initial water concentration values because the use of 30 terms in Eq. 3.7 was not

sufficient to bring the M/M. term to zero at t = 0:

Cw(t)=Cw@t(1+a 1- 717 eerfc Y1 Dfe t 1/2 Y2 eerfc{- 372 De(.
Y1 +Y2 a (a 2 ) I y+Y2 a a 2

where

y I- (1+-a 12+1 , Y2 = Y - 1
2 3

and

eerfc(z) = exp z 2erfc(z)

Each set of pyrene water concentration measurements taken within a 5 min period

of time were averaged and the standard deviation calculated. The sum of the squared

differences between the measured and estimated (Eq. 3.7 & 3.8) values were minimized to

solve for the Defa2 for pyrene in the sediment particles. Fitting the first four data points in

this manner provided for a Defa2 of 5.6E-7 s~1 (Figure 3.4). When only the first two data

points were fit to Eq. 3.7 and 3.8, the Defa was 1.E-7 s

The Kd measured at equilibrium (Table 3.1) was used to estimate a based on Eq.

3.5. However, it should be noted that Kd is believed to be a function of Cw (Eq. 3.6).

According to Eq. 3.6, Kd decreases as Cw increases. Consequently, the Kd at the earlier

desorption times may have been smaller in magnitude. Because lower values of Kd

correspond to longer times of desorption (see below), the Defa2 rate constants estimated

here may be low estimates.

As we discussed previously, desorption can be modeled with a first-order rate

constant. While this model does not fit experimental data as well as an intraparticle
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diffusion model, its simplicity and single fitting parameter make it a desirable model for a

first approximation or use with box-model systems. In a closed system, the fractional

uptake can be modeled with a first-order desorption rate constant according to:

M' - 1 -exp[-k,2(1 + a ] (3.9)
M2

where k2 is the desorption first-order rate constant. Both k2 and Dela2 are directly related

to the reciprocal of the sorption time scale (24). Based on this, Wu and Gschwend

(24)matched the first-order solution with the radial diffusion model at half-equilibration

time (M/M. = 0.5). In a closed system, k2 is related to Dejya 2 by the following:

1.6+ 22.7 Defg / 2

k2 = ( .(3.10)

Fitting the first two experimental data points to Eq. 3.9 provided for a first-order

desorption half life of 0.80 hr (2.4 E-4 s-1; Table 3.2). Using Eq. 3.10 to solve for the k2

corresponding to the Dej/a2 for the first four data points (5.6 E-7 s-) resulted in a first-order

desorption half life of 0.11 hr. This smaller half-life is consistent with the greater rate of

desorption observed for this fit (Figure 3.4). The k2 half-life corresponding to the radial

diffusion rate constant fit to the first two data points was estimated as 0.64 hr with Eq. 3.10.

This value is well within a factor of two of the first-order desorption half-life estimated

with Eq. 3.9. One would expect these values to be the similar as they were both fit with the

two initial data points.

In an effort to assess the validity of our radial diffusion rate constant, Defa2 , the

model for effective diffusivity proposed by Wu and Gschwend (23)was used to estimate a
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De.ff In order to calculate the Deff in Eq. 3.2., the pore geometry factors, f(n, 'r) was related

to porosity in sediment beds as:

f (njr) = n' (3.11)

where the exponent, i, is between 1 and 2 (73). For simplicity, Wu and Gschwend (23)take

the i to be 1, and solve for Deff as:

Deff = 2 (3.12)
Ksj (I -n) p,

Using the intraaggregate porosity as a fitting parameter, they found the intraaggregate

porosities in their sediments to range from 0.07 to 0.17 (0.13 on average). The diffusivity

of pyrene in water (Dn) was estimated according to Hayduk and Laudie [7.7 E-6 cm 2/s;

(50)]. Using a porosity of 0.13 for the sediment used in this study, the Deff is 1.1 E- 12 cm2/s

(Table 3.3).

Using the range of particle radii present in the experimental sediment and the Deff

calculated according to Eq. 3.12 (1.1 E- 12 cm 2/s), the radial diffusion rate constant, Deja 2

ranges from 5.5 E-8 - 2.9 E-7 s-1 (Table 3.4). The Defa2 corresponding to a 38 pim particle

diameter (2.9 E-7 s-1) is within the span of the radial diffusion constants estimated (1.0 E-7

and 5.6 E-7s-1). The 64 ptm particle diameter corresponds to a Defa 2 of 1.0 E-7 s~ and is

equivalent to the radial diffusion rate constant estimated by fitting the first two data points

of experimental data with Eq. 3.7 and 3.8. Considering the positive correlation between

shrinking particle sizes and the energy input to the system, one might argue, that the

average particle diameter in our experimental system with continuous stirring may be on

the lower end of the particle range (e.g., 38 gm). If this is true, then the physically-based
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model proposed by Wu and Gschwend (23) is a reasonable predictor of the Deff for pyrene

in the native sediments tested.

Time for Desorption in the Lower Hudson Estuary

The rate of desorption is dependent on the solid-to-water ratio Massp/Vw or rsw in

the system as well as the solid-water partition coefficient, Kd. Using Eq 3.3 and Eq. 3.8 at

small times, the analytical solution for the radial diffusive desorption from or uptake by

spherical particles suspended in a closed system was solved for and is presented graphically

(Figure 3.5) in order to illustrate the importance of the ratio of the solid-to-water on the rate

of desorption. For example 300 mg/L of total suspended solids (TSS) corresponds to a

Kd*rs, of 15.9, so the dimensionless time for 50% of equilibrium (M/M. = 0.5) is 2 E-4.

However, if the TSS is only 10 mg/L, the Kd*rs, is 0.53, and the corresponding

dimensionless time is 1.5 E-2. This value is almost two orders of magnitude greater than

the desorption rate for 300 mg/L of TSS and illustrates the importance of the solid-to-water

ratio as well as the partitioning coefficient on the rates of desorption and sorption.

The Defa 2 measured in the laboratory were used to estimate the time for 50% and

90% desorption equilibrium for representative solid-to-water ratios measured in the lower

Hudson Estuary. This approach assumes that the Defa2 for all of the sediments in the

estuary are similar to the De1a2 measured for the 38 - 88 gm size class. Eq. 3.3 was used

to solve for the time at which M/M. was equal to 0.5 and 0.9. The range of Defa 2 ratios

measured in the laboratory for the 38 - 88 ptm sediment fraction (1.0 E-7 s- - 5.6 E-7s')

was used to calculate the time for 50% and 90% equilibrium. If we assume that the high-

TSS bottom waters of the lower Hudson Estuary have 300 mg/L TSS on average, it is
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estimated that it will take between 5 and 30 min to reach 50% equilibrium (Table 3.5).

Using the same approach, the time for 90% equilibrium ranges from 4 to 20 hr. Given the

2 to 7 day residence times for the waters of the lower Hudson Estuary (74), the sediment

and bottom water pyrene fractions are expected to be in equilibrium. If we assume an

average 10 mg/L TSS for surface waters of the lower Hudson (7), the time for 50%

equilibrium will range from 8 to 40 hr, while the time for 90% equilibrium is estimated to

range from 3 to 10 days. Depending on the residence time for the estuary, the sediment and

surface waters may or may not reach equilibrium. These findings illustrate the importance

of the solid-to-water ratio and the partitioning coefficient on predicting appropriate rates of

sorption and desorption.

Implications

Our findings suggest that the physically and chemically-based model for effective

diffusivity put forth by Wu and Gschwend (23,24) is appropriate for estimating the

desorption kinetics of pyrene in native sediments. Despite the fact that between 66 and

98% of the pyrene is believed to have been desorbing from black carbon, the retarded

radial diffusion model allowed for the estimation of an effective diffusivity that fit

experimental results. An improved understanding of the pyrene desorption rates in native

sediments is important for predicting the inputs of pyrene that may result from the

disequilibrium observed between the pyrene fractions in the sediments and overlying water

column. Based on the reasonable agreement between measured and modeled sorption rates

for chlorobenzenes observed by Wu and Gschwend (23,24) and the agreement between the

measured and modeled sorption rates for pyrene observed in this study, the physically and
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chemically-based model for effective diffusivity may be useful for estimating rates of

sorption and desorption for other HOCs as well.
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Table 3.1. Measured values used to calculate
partitioning coefficients.

Pyrene sediment concentration, Cs (ng/g)
Pyrene water concentration, Cw, (ng/L)
Solid-water partitioning coefficient), Kd (L/kg)

Weight percentage of OC in solid phase, foc
Weight percentage of BC in solid phase, fBC
Log (OC-normalized partitioning coefficient),
log Koc(Llkgoc)
Freundlich exponent, v
Log (Black carbon-normalized partitioning
coefficient), Log KBC (L/kgBC)
Organic carbon-sorbed fraction
Black carbon-sorbed fraction

solid-water and black-carbon normalized

800
15± 2

53,000 ±
12,000c

1.85 ± 0.0 1'
0.17 ±0.Ole

4.7'

0.62 ±0.129
6.8 ±0.4 h

15± 3 b

6.25 ± 0.14'

0.02
0.98

6.6i

aMeasured in beaker experiments with LIF. bGCMS-analyzed centrifuged water extract;
20% error assumed. 'Calculated as Cs/Cw. dMeasured with CHN analyzer and calculated
as weight percent (average ± 1 s.d.; n = 3) untreated sediment less the weight percent of
combusted sediment. *Weight percent (average ± 1 s.d.; n = 3). fValue from correlation
reported by Karickhoff (69). gMeasured value from Accardi-Dey & Gschwend (59).
hCalculated using Equation 3.6. 'Measured for Boston Harbor sediments (59). iMeasured
for diesel particulate matter (NIST standard reference material) using batch sorption
method (71). kMeasured for diesel particulate matter (NIST standard reference material)
using column experiments (71).
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Table 3.2. First-order desorption and radial diffusion rate constants.
1st-order

Dej/a2 desorption rate Half-life, t12

(s-1) constant, k2  (hr)
(s-1)

Estimated with Eq. 3.9 2.4 E-4 0.80

Estimated with Eq.
3.10 & 4-data-point-fit 5.6 E-7 1.7 E-3 0.11
radial diffusion rate
constant
Estimated with Eq.
3.10 & 2-data-point-fit 1.0 E-7 3.0 E-4 0.64
radial diffusion rate
constant

Table 3.3. Values used to calculate the effective diffusivity for 38 - 88 pm Hudson River
sediment.

Diffusivity of pyrene in water, Dm (cm 2/s) 7.7 E-6a

Solid-water partitioning coefficient, Kd (L/kg) 53,000

Particle density, ps (g/cm 3) 2.66

Intraaggregate porosity, n (Wu & Gschwend, 1986) 0. 13c

Calculated Effective Diffusivity, Deff, (cm 2/s) 1.1 E- 12 '

aCalculated according to Hayduk & Laudie (50); molar volume =158.9 cm 3/mol;
bviscosity = 0.8904 centipoise. Measured with a specific gravity flask according to

method in Blake (64). 'Typical intraporosity reported in Wu & Gschwend (23).
dCalculated according to Eq. 3.12.
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Table 3.4. Assumed particle

Particle Radius (gim)

radii with corresponding De&1 a2

Corresponding De a2
(Deff= 1.1E-12 cm /s)

19 2.9E-7

32 1.OE-7

44 5.5E-8
aDeff calculated according to Eq. 3.12.

Table 3.5. Range of total suspended solids in the lower Hudson Estuary and the
corresponding equilibration times for pyrene.a

Total suspended solidsb Time for 50% equilibriumc Time for 90% equilibriumc
(mg/L) (hr) (hr)

10 8-40 3 - 10 days

300 5 - 30 min 4-20

aThis assumes the De jy/a for all of the sediments in the estuary are similar to the
Defa2 for the 38 - 88 gm size class measured here. bThese are the end-members of
the range of total suspended solids measured in the lower Hudson Estuar
bCalculated according to Eq. 3.3; the first number corresponds to a Defa = 5.6 E-7
51 and the second number corresponds to a Deja 2 = 1.0 E-7 s-1
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Figure 3.1. Size distribution by dry mass of sediment from the lower Hudson Estuary

approximately 14 km north of the Battery (400 49.209' N, 730 58.270' W).

83

0.50 -
CO

0t5

U-

-0.40

0.30

0.20

0.10

0.00

-



-D

C

-a)
C
75

U)
C,)
6)

35

30

25

20

15

10

5

0

-5

35

S25

-5C

15

-5

n

N
E

- --

-P - ----

* U . - - -* --- ---- ---- --

U

1st Experiment

-10 10 30 50 70 90 110 130

Trigger Fixed Time (hr)

- -

- - - ----- -- -- - -- -- -- -- -------------------- -

2nd Experiment

-5 0 5 10 15 20 25

Time (hr)

Figure 3.2. Pyrene water concentration vs. time measured in laboratory experiments with
suspended sediment (solid diamond) show that in the 1st experiment (trigger difficulties),

the system reached equilibrium within 22 hr with an average concentration of 13 ± 2
ng/L. The pyrene concentration in the control beaker (solid square) was 32 ±4 ng/L. In
the 2nd experiment (no trigger difficulties), the system with suspended sediment (solid
diamond) reached equilibrium within approximately 2 hr with an average concentration of
15 ± 2 ng/L. Pyrene water concentrations in the control beaker (solid square; 2nd
experiment) show that the laser induced fluorescence measurements are consistent and
accurate (30 ± 2 ng/L).
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Figure 3.3. Pyrene fluorescence measured with laser induced fluorescence as a function
of time. First, the pyrene fluorescence intensity was measured after 15 days of particle
settling (solid diamond; 7200 ± 500; n=8). Following this measurement, the system was
stirred and the particles were suspended. The average of the pyrene intensities measured
between 6 and 13 min of particle settling (solid square) was 7600 ± 600 (n=8). The
average after 17 to 45 min of settling (solid triangle) was 8000 ± 400 (n=10).
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Figure 3.4. Dissolved pyrene (ng/L) (solid diamond) vs. time0 5 at 25 0C (2nd
experiment). The error bars are ± 1 s.d. When the first four experimental data points
were fit to Eq. 3.7 and 3.8, the resulting Defa2 was 5.6E-7s-I (dotted line). When only the
first two data points were used to fit Eq. 3.7 and 3.8, the Defa2 was 1.OE-7 s-1 (solid line).
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Figure 3.5. Analytical solutions for the radial diffusive desorption from or uptake by
spherical particles. The numbers on the curves (Kd*rW) are the ratio of the mass sorbed
on solids to the mass dissolved in solution at equilibrium. The Kd*r, value of 15.9
corresponds to a rs, of 300 mg/L (Kd = 53,000 L/kg), and the Kd*rs, = 0.53 corresponds
to a rs,= 10 mg/L.
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CHAPTER 4: THE IMPORTANCE OF SEDIMENT RESUSPENSION TO THE SEDIMENT-WATER

ExCHANGE OF PAHS AND PCBs IN THE LOWER HUDSON ESTUARY

INTRODUCTION

Once in the aquatic environment, the hydrophobic nature of polycyclic aromatic

hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) causes them to preferentially

sorb to the sediments (1). Consequently, even after the input of these contaminants has

ceased or diminished, the sediments can remain a source of pollutants to the surrounding

water. Recent studies indicate that the sediments of urban bodies of water are a source of

hydrophobic organic contaminants (HOCs) to the overlying water column (2-6). The

significant resuspension events that occur in the lower Hudson Estuary (7-9) are expected to

result in large fluxes of PAHs and PCBs to the surrounding waters. Recent studies in the

Hudson (3,10) suggest that this is the case. It is important to improve our understanding of

the extent to which sediment resuspension plays a role in the release of PAHs and PCBs to

the water column so that we may model the transport of pollutants. This improved

understanding will aid environmental regulatory agencies in establishing appropriate

guidelines. Specifically, understanding the mechanisms for and the magnitude of PAH and

PCB fluxes caused by sediment resuspension will aid the Environmental Protection Agency

in selecting appropriate sediment quality criteria (11,12).

Because of elevated concentrations of PAHs and PCBs in sediments, parts of the

lower Hudson Estuary are considered to be areas of environmental concern (75). Several

researchers have measured PAHs and PCBs in and near the lower Hudson River Estuary

(6,10,75-78). The average total PAH sediment concentration for the Hudson-Raritan

Estuary (40 pg/g) reported by Wolfe et al. (75) is ten times the "high" value (4 gg/g: 8 5th
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percentile of the national concentration range) reported by NOAA (79). The input of an

estimated 100 to 650 tons (80) of PCBs between the late 1940's and 1977 from electrical

capacitor manufacturing plants approximately 300 km from the mouth of the river may

have provided for elevated PCB concentrations in the lower Hudson Estuary. However, it

should be noted that due to the non-reactive nature of PCBs they are still abundant

throughout the environment and several other sources (e.g., wastewater, run-off,

atmospheric deposition, etc.) may contribute to PCB loading in the estuary. The average

total PCB sediment concentration for the Hudson-Raritan Estuary [300 ng/g; (75)] was

greater than the "high" value (200 ng/g) reported by NOAA (79). Because of the large

PAH and PCB concentrations measured in the sediments of the Hudson Estuary, an

improved understanding of how environmental processes like resuspension affect the fate

of PAHs and PCBs is needed.

The lower Hudson River estuary has been observed to have two estuarine turbidity

maxima on the western side of the river [Figure 4.1; (7)]. Geyer (8) observed near-bottom

suspended solids concentrations between 100 and 200 mg/L in the summer of 1992 and

between 100 and 400 mg/L concentrations during high discharge in 1993 at the southern

estuarine turbidity maximum site (Figure 4.1). However, these elevated suspended solid

concentrations were observed to drop to below 20 mg/L at slack tide, indicating the tidal

influence of sediment resuspension. Tidal cycles also influence suspended solid

concentrations. During spring tides, which are tides of greater-than-average change in

water level around the times of new and full moon, near-bottom suspended sediment

concentrations were found to reach values as high as 1800 mg/L. In contrast, near-bottom,

suspended sediment levels during neap tide, which is a tide of minimum change in water
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level occurring during the first and third quarters of the moon, were approximately six

times less (81).

The distance of salt-water intrusion up the Hudson from the Battery varies from

approximately 30 km during high freshwater discharge in the spring to approximately 100

km during low discharge in the fall (82). The flow in the Hudson Estuary is dominated by

tidal flow even during times of high discharge; tidal flow is between 10 and 100 times

greater than freshwater flow (83). Geyer (8) observed maximum flood currents to be 0.8

m/s and maximum ebb currents to be 1.2 m/s during low discharge conditions in 1992.

During high discharge conditions, Geyer (8) observed maximum flood and ebb currents to

be 1.5 m/s.

In this study the importance of sediment resuspension to the inputs of dissolved

pyrene, a PAH, and 2,2',5,5'-tetrachlorobiphenyl (PCB #52), a PCB, were examined. The

PED-measured dissolved concentrations were sampled during both neap and spring tides in

order to assess the impact of increased sediment resuspension. Dissolved concentrations

were examined with respect to salinity, which was used as an index of conservative mixing,

in order to observe conservative or non-conservative behavior. Sediment concentrations

were used to predict the expected direction of chemical movement based on the

concentration gradient between the sediments and the overlying water. The magnitudes of

the predominant sources and sinks of pyrene and PCB #52 were estimated. Finally, the

dissolved concentration of each chemical within the estuary was solved for with a simple

one-box model approach in order to assess the validity of the model and check for any

missing sources or sinks.
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EXPERIMENTAL SECTION

Study Area

The lower Hudson River Estuary empties into New York Harbor and is bordered by

northern New Jersey to the west and Manhattan Island and New York City to the east.

Sampling was performed along the estuary between New York Harbor and the town of

Hastings approximately 34 km up river (Figure 4.1) in April of 1999 and October of 2000.

During the April campaign, sampling was performed during neap (April 9 - 11, 1999) and

spring (April 15 - 18, 1999) tides at three stations: the Southern Site (SS) at the Battery

which is located next to the southern tip of Manhattan where the Hudson empties into New

York Harbor, the Southern Estuarine Turbidity Maximum (SETM) approximately 13 km

up the river, and the Northern Site (NS) which is approximately 34 km up the river from

the Battery near the town of Hastings (Table 4.1). During the October sampling campaign,

samples were collected during neap (October 4-6, 2000) and spring (October 12-14, 2000)

tides at four stations: the SS, the SETM, the Northern Estuarine Turbidity Maximum

(NETM; approximately 22 km from the Battery), and the NS. The NS was chosen to allow

for the estimation of the input of PAHs and PCBs flowing into the estuary. As the SETM

and NETM were observed to be areas of maximum resuspension, they would allow for an

estimate of the magnitude of PAH and PCB input from sediment resuspension. The

Battery (SS) was chosen to represent the output of PAHs and PCBs from the estuary. The

SS and NS also served as a sort of "control" site where the resuspended solids

concentrations are lower than those observed at the SETM and NETM.
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Polyethylene Devices

Polyethylene devices (PEDs) were used in order to measure the "dissolved"

concentrations of PAHs (e.g., pyrene) and PCBs (PCB #52). They were deployed in the

lower Hudson Estuary during the neap and spring tides of both sampling campaigns (Table

4.2). PEDs were deployed at the SS, the SETM, and the NS in April 1999 and at the SS,

the SETM, the NETM, and the NS in October 2000.

In April 1999, two different types of polyethylene were used in the field. The first

(Brentwood Plastics, Inc., Brentwood, MO) was 70 ± 1 ptm thick, and the second (Carlisle

Plastic, Inc., Minneapolis, MN) was 51 ±3 gm thick. In October 2000, only the 51 gm-

thick polyethylene was used. The PEDs used in the field were approximately 3 cm wide,

90 cm long, and 70 gm or 51 ptm thick depending on the manufacturer. Prior to

deployment, the PEDs for the April campaign were extracted with methylene chloride

(MeCl2 ; JT Baker Ultra-resi-analyzed) twice (2 days each time). They were then dried in a

laminar flow hood for a minimum of 6 hours. After drying, the PEDs were stored in amber

glass jars with screw-on, teflon-lined polypropylene covers. Prior to use, PEDs for the

October campaign were pre-cleaned with 500 mL of MeCl2 for a minimum of 48 hr,

followed with methanol (24 hr), and finally clean water (see below; 24 hr). October PEDs

were kept in clean water until use. The night before deployment, the PEDs were each

punctured with a piece of MeCl2-rinsed, 16-gauge, stainless steel wire in an accordion

manner and stored in a 1-gallon Ziploc bag.

Water was reverse osmosis pretreated and run through an ion-exchange resin and

activated carbon filter system (Aries Vaponics, Rockland, MA) until a resistance of 18 M
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was achieved. The water was then treated with ultraviolet light (Aquafine TOC reduction

unit, Valencia, CA) and filtered with a 0.22 pm filter (Millipore).

During the April 1999 campaign, the boat was anchored, the engine turned off, and

the stainless-steel wire with the PEDs was attached to a nylon rope. The nylon rope was

anchored to the bottom and kept vertical with a float. PEDs were attached to the rope so

that they would be at varying depths from the bottom (Table 4.2). The plastic bags were

left around the PEDs until just before the each PED went into the water. During the

October 2000 campaign, the same protocol was followed except the PEDs were attached to

a chain anchored to the bottom. The bottom PEDs were kept vertical with a float

approximately 5 m from the bottom, and the "surface" PED was attached to the chain 2 m

below a surface buoy.

Extra PEDs were taken into the field and handled on deck in the same manner that

the deployed PEDs were in order to determine the PAHs and PCBs present in the air that

would also be in contact with the PEDs that were deployed in the water. In April, while the

buoy for the PED deployment was being lowered into the water, the blank PED was

exposed to the air. As this PED was exposed for the duration of the buoy deployment

(approximately 15 minutes), the April blanks were exposed longer than each of the

individual water-sampling PEDs. In October, the blank PEDs were exposed during the

same period of exposure time as an individual water-sampling PED at each site.

The PEDs were deployed for between approximately 2 and 3 days (Table 4.2). At

recovery, the rope or chain was lifted from the water and as soon as each PED left the

water, it was removed from the wire and placed in a glass amber jar with a teflon-lined

polypropylene screw lid. Blank PEDs were re-exposed during recovery.
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Water Sampling

Water samples and hydrographic data were collected during the neap and spring

tides of the April 1999 campaign as well as during the spring tide of the October 2000

campaign. During the April 1999 neap tide, hydrographic data was collected at the SS and

the NS, and only a few water samples were collected (Table 4.3). During the April 1999

spring tide hydrographic data and water samples were collected. The NS near Hastings

was sampled during maximum flood. The SETM was sampled during maximum ebb, and

the SS was sampled during maximum flood. Samples were typically collected 2 m from

the surface and then several samples were typically collected 1, 2, and 3 m from the

bottom.

During the October spring tide, water and hydrographic data were collected at the

SS, the SETM, the NETM, and the NS (Table 4.3). The SS was sampled during slack tide

(October 12 & 14, 2000). The NETM was sampled during ebb (October 12) and flood

(October 14) tide. The NS was sampled during slack (October 12) and flood (October 14)

tide. Samples were typically collected at 2 m depth and 1 and 2 m from the river bottom.

On October 13, 2000 (spring tide), water samples and hydrographic data were collected

approximately every hour for one 12-hr tidal cycle at the SETM.

Water was collected for total suspended solids measurements, particulate organic

and black carbon analysis. A positive-displacement, gear-driven pump (SP-300; Fultz

Pumps, Inc., Lewistown, PA) attached to a water quality multiprobe was lowered over the

side of the boat. The water was pumped through MeCl2-rinsed, /4"diameter, aluminum

tubing into 300 mL, clear glass, glass-stoppered, BOD bottles pre-combusted at 4500C.
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The tops of the bottles were kept covered with aluminum foil to avoid any addition of

organic carbon not from the sample.

At the end of each day, between 40 and 120 mL of the water from each of the 300-

mL samples for organic carbon analysis was filtered using a hand-pumped vacuum with

pre-combusted 4.25-cm glass fiber filters (Whatman International Ltd., Springfield Mill,

England). During the October campaign, filters were rinsed with clean water immediately

following the sample filtering; however, April filters were not rinsed. Filters were then

folded and wrapped in aluminum foil and kept frozen until they could be analyzed for

particulate organic and black carbon. All samples were stored in ice until they could be

stored in the laboratory freezer at 00C.

As mentioned previously, the water-displacement pump was attached to a water

quality multiprobe (DataSonde 4; Hydrolab Corporation, Austin, TX). This probe allowed

for the measurement of the following parameters at the time of sampling: depth,

temperature, conductivity, and turbidity.

Sediment Sampling

In April and June of 1999, sediment was collected at the SETM with a hydraulically

dampened, gravity corer (84). Subsequent to collection the cores were stored at 60C.

Because this coring method provides for an 11-cm diameter core encased in polycarbonate,

sediments from the inner section of the core were collected to avoid any organic

contamination. During the October campaign, sediment was collected with a 50 x 50 cm

box-corer at each of the four sites over a two-day period (October 4-5). Metal spatulas and

spoons were used to collect the surface sediment at 1-cm depth intervals at the surface and
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2-cm depth intervals at greater depth (2 to 7 cm). The sediment was stored in glass amber

jars at 4"C.

PED Extraction

The PEDs were stored in the glass amber jars at 00C until they were extracted.

PEDs from the April campaign were extracted in 500 mL of MeCl2 in glass-stoppered

bottles for 1 week. PEDs from the October campaign were extracted in 60 mL of MeCl 2

two times for a minimum of 24 hr each time. All bottles were covered with foil to prevent

photodegradation. The PEDs from the neap tide of the April campaign were spiked with

d12-benz(a)anthracene as a recovery standard, while the spring tide April PEDs were spiked

with several recovery PAHs (dio-phenanthrene, p-terphenyl, and d12-perylene). The PEDs

from the October campaign were spiked with a PAH and PCB recovery standard (dio-

phenanthrene, d14-terphenyl, d12-benz(a)anthracene, d12-perylene, 2,3',4,6-C 4 B,

2,2',3,4',5-Cl5B, and 2,2',3,4,5,6'-Cl6B). The extracts were dried with anhydrous sodium

sulfate (Na2SO 4) and stored overnight at 00C. Subsequently, samples were concentrated

with a Kuderna-Danish apparatus or via rotary evaporation followed by N2 blow down.

GC-MS

PED extracts were analyzed on a gas chromatograph (GC; Hewlett Packard 6890

Series) -mass spectrometer (MS; JEOL MS-GCmate). The extracts (1 pl) were injected

splitless and separated on a J&W Scientific (Folsom, CA) 30 m x 0.32 mm DB-5 (0.25 gm

film thickness) fused-silica capillary column. For PCBs (e.g., PCB #52), the injection port

was at 300'C, and the GC-temperature program started at 70'C, ramped at 20'C/min to

180 0C, increased by 40C/min to 2600C, reached 280'C in a minute where it was held for 4
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min. For PAHs (e.g., pyrene), the injection port was at 280'C, and GC was temperature

programmed from 70'C to 180'C at 20"C/min and continued to 3000C at 60C/min.

The MS was operated at a resolution of 500 in EI+ mode and selected ion

monitoring (SIM) was used. PCBs and PAHs were quantified relative to the internal

recovery standards. Pyrene was quantified relative to the dl 2-benz(a)anthracene, p-

terphenyl, or d14-terphenyl recovery standards. PCB #52 was quantified relative to the

2,3',4,6-Cl4B recovery standard. Recoveries were calculated relative to the injection

standard (p-terphenyl or m-terphenyl).

The concentration of pyrene and PCB #52 present in the water was calculated by

first subtracting off the mass of the respective chemicals measured in the blanks (Table

4.4). Pyrene blanks never exceeded 2.9% of the mass measured in the water sampling PED

and averaged 0.89 ± 0.76% and 0.69 ± 0.75% during the April 1999 and October 2000

campaigns, respectively. The PCB #52 blanks during the April 1999 campaign averaged

14 ± 10% of the mass measured in the water sampling PED with the highest percentage

measured at 33%. The PCB #52 blanks during the October campaign were much smaller

averaging 0.33 ± 0.25% and ranging from 0.01 to 1.0% of the mass measured in the

sample.

The concentrations of dissolved pyrene and PCB #52 present in the water column

were calculated using their respective polyethylene-water partition coefficients (KPEw;

Table 2.2) adjusted for temperature and salinity and temperature-adjusted diffusivities

(Table 2.3). This method is presented in Chapter 2.
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Total Suspended Solids

Because the turbidity probe broke during the April campaign, only filtered water

samples were used to estimate the total suspended solids (TSS). During the October

campaign, filtered water samples as well as Hydrolab turbidity measurements were

collected. After the April campaign, each folded filter was transferred to a new aluminum

foil envelope as the salt in the samples had begun to corrode the foil. The filters were first

weighed, and then placed in a small utility oven (Model 1300U; VWR Scientific, So.

Plainfield, NJ) at 70'C in order to dry. They were weighed each of the two following days

until they had reached a constant weight indicating that they were dry. The average weight

of five different clean filters was used to subtract from the total weight to calculate the

mass of solids present. In order to correct for the additional mass of the salt present on the

April filters, water was added to a pre-weighed, clean filter until it was saturated. The mass

of the pre-weighed filter was subtracted from the saturated filter mass in order to calculate

the mass of water present at saturation. The density of water was used to calculate the

volume of water present, and using the salinity of the water, the additional mass due to salt

was calculated. The salt mass was estimated to be between 12 and 87 % of the total

suspended solid mass (including salt), depending on the salinity of the water.

The Hydrolab turbidity sensor consists of an infrared emitter and a photodiode

detector. The sensor measures the intensity of light scattered at 900 from an infrared light

source of 880 nm. The turbidity sensor was calibrated with clean water (0 mg/L) and a 100

mg/L kaolinite suspension in water. However, the corresponding filtered samples were

measured to have consistently higher total suspended solids than the Hydrolab-measured

samples. It is suspected that the kaolinite solution may not be representative of the
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suspended solids observed in the Hudson Estuary. A correlation between filter-measured

and Hydrolab-measured TSS (Filter-measured TSS = 1.67*Hydrolab-measured TSS +

39.5; R2 = 0.96) was used to estimate the true TSS concentrations from Hydrolab

measurements.

Organic and Black Carbon Analysis

Both sediments and TSS filters were analyzed for organic carbon (OC) and black

carbon (BC). The sediment samples were ground with a mortar and pestle, and both

sediments and filters were dried at 700C. The dried filters were subsampled with a 4 mm-

diameter cork-borer. The filter subsamples and sediments were added to tared silver

capsules (D2029, 8 x 5 mm; Elemental Microanalysis Ltd., Manchester, NH) and weighed

using an electrical microbalance (Cahn 25 Automatic Electrobalance; Ventron Corp.,

Cerritos, CA). In order to remove inorganic carbon, low-carbon water and 1 M HCl were

added directly to the capsules following the procedure outlined by Gustafsson et al. (58).

The samples were analyzed with a PE 2400 CHN elemental analyzer (Perkin Elmer Corp.,

Norwalk, CT). The instrument detection limit was approximately 3 pg of C per input.

Response factors were determined using an acetanilide standard. The relative standard

deviation of these response factors within batches was ± 0.3%. Blanks were prepared for

each batch of samples; the average blank was 4.7 ± 1.2 gg of C (n=5).

Portions of the remaining dried filter and sediment samples were added to

preweighed and low-carbon-water rinsed porcelain crucibles with a silica glazed surface

(Coors Ceramics, Golden, CO). The black carbon analysis procedure developed by

Gustafsson et al. (58) was used to remove the "non-black" organic carbon. The crucibles

with samples were placed into a muffle furnace (Thermolyne Model F-A1730) equipped
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with an auxiliary temperature controller (Thermolyne Furnatrol 133, Sybron Corp.,

Dubuque, IA) and covered with precombusted aluminum foil. The samples were oxidized

in the presence of air for 24 hours at 3750C. After the samples had cooled, the same

method outlined above for the removal of inorganic carbon was followed, and the samples

were analyzed with the PE 2400 CHN analyzer as discussed above.

RESULTS AND DISCUSSION

Temperature and Salinity

The estuary is more strongly stratified during the neap tides than during the spring

tides (Figures 4.2 & 4.3). A significant vertical salinity gradient was observed during both

the April 1999 and October 2000 neap tides. For example, the average surface salinity (2

m depth) at the SS was 9 psu, while the average bottom-water salinity was 27 psu during

the neap tide in April 1999. The vertical salinity gradient during spring tides was much

smaller than the gradient observed during neap tides. During the spring tide in April 1999,

the average salinity at 2 m was 21 psu, while the average salinity in the bottom waters was

22 psu.

Temperature variations within the estuary were less dramatic than the salinity

gradients. The temperature difference along the vertical ranged from 0 to 0.7*C. The

greatest vertical temperature gradient was observed at the NS during the April 1999 neap

tide. At this time, the surface temperature was 8.8"C while the bottom-water temperature

was 8. 1C. In general, the spring tide vertical temperature gradient was smaller (i.e., 0 to

0. 1"C) with the largest vertical temperature gradient at the SS, where the temperature

difference was 0.2"C in April 1999 and 0.60C in October 2000. The along-estuary
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temperature difference (from the NS to the SS) was as large as 1.4*C during the April 1999

neap tide. In April, the harbor waters were colder than those upstream at the NS. In

contrast, the surface-water temperatures measured during the October 2000 spring tide

increased from the NS to the SS. Perhaps most noticeable is the temperature difference

between the April and October campaigns where April water temperatures were between 7

and 9"C and October temperatures were between 16 and 17'C.

Total Suspended Solids

The total suspended solid (TSS) concentration was found to increase during flood

and ebb tide and drop to smaller levels during slack tide (Figure 4.4). This was most

noticeable in the bottom waters (6.5 to 8 m depth) suggesting that presently resuspended

sediments were responsible for the increased TSS. For example, approximately an hour

before maximum flood, the TSS concentration was 680 mg/L at 7.9 m depth.

Approximately one hour before slack tide, the TSS had dropped to 60 mg/L. Subsequently,

at maximum ebb, the TSS at 6.9 m depth increased to 1000 mg/L. The average TSS over

the course of the tidal cycle was 390 mg/L. These significant fluctuations in TSS illustrate

the importance of the tidal cycle on sediment resuspension as well as the temporal

variability within the estuary.

A much smaller TSS variability was observed at 2 m depth. At maximum flood,

TSS at 2 m was 76 mg/L, while at slack tide it had dropped to 50 mg/L. The TSS levels

increased to 120 mg/L at maximum ebb. The tidally-averaged TSS at 2 m depth was 71

mg/L. TSS was observed to increase with depth at the other sites during flood and ebb

tides (Figures 4.5b&c). There is an increase in TSS with increasing depth at the NETM

during both ebb and flood tide and at the NS during flood tide. As expected, the TSS
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concentrations in the bottom waters at the NS are not as high as those in the NETM bottom

waters during flood tide. The TSS concentrations measured during slack tide at the SS

change very little over depth as is the case for the TSS during slack tide at the NS (Figures

4.5a&c). Again, the influence of tidal cycle on TSS is apparent. Geyer et al. (81) also

observed increases in TSS with depth as well as with flood and ebb tide.

Filtered water samples also showed an increase in TSS with depth (Tables 4.6 &

4.7). For example, the TSS concentration at 2 m depth at the SS during spring tide in April

was 68 mg/L, while the TSS at 7.9 m at the same location and time was 120 mg/L. In

agreement with observations by Geyer et al. (81) the bottom-water neap-tide TSS during a

changing tide (ebb tide at the SS) was six times smaller than the bottom-water spring-tide

TSS during a changing tide (flood tide at the SS). Also in agreement with the observations

of other researchers (7,81) the SETM had higher TSS levels than the NS and the SS during

flood and ebb tides during the spring tide of April 1999, illustrating why it is called the

Southern Estuarine Turbidity Maximum. Fewer comparisons can be made with the October

2000 filtered TSS as they are all spring tide measurements and the SS and NS samples

were collected during slack tide in contrast to the SETM and NETM samples which were

collected during flood and ebb tides. As observed in April 1999, the increasing turbidity

with depth is apparent at the three sites where multiple samples were collected at varying

depths.

Organic and Black Carbon

The percentage of OC measured in TSS samples collected in April 1999 ranged

from 1.5 to 13% (Tables 4.6 & 4.7) with an average of 4.2 ± 2.9 % OC. The percentage of

organic carbon measured on October 2000 TSS ranged from 2.0 to 4.7% with an average of
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3.3 ± 0.9%. As the mass of the April filters was corrected for with an estimate of salt

content, there is greater error associated with these values. This may explain the larger

standard deviation associated with the average; however, it is also possible that the

suspended OC was more variable within the estuary. The suspended OC percentages

measured in this study are comparable to those measured by Achman et al. (3)

approximately 11 km north of the Battery in 1992 and 1993. Their average TSS OC

percentages ranged from 3.24 ± 0.52% to 4.07 ± 0.12%.

The TSS were measured to contain between 0.08 and 0.25% BC in April 1999 with

an average of 0.13 ± 0.05%. In October 2000, the few TSS samples measured were found

to range from <0.3 to 0.5% BC. These values are comparable to sediment black carbon

percentages measured in the East River in August 1996 by Mitra et al. (6). These

researchers found the black carbon percentages ranging from 0.25 to 0.55%. The

percentages of BC in TSS measured in this study are up to an order of magnitude lower

than the percentage of BC measured in TSS samples collected in the Mississippi River and

the Gulf of Mexico in April and November of 1999 (85). These researchers measured

between 0.47 and 7.8% BC in TSS. However, they also measured high percentages of OC

in the TSS; the TSS contained between 24 and 32% OC. The Mississippi River TSS

appears to have contained a much higher percentage of OC and BC than the Hudson River

TSS we measured.

Dissolved Spring and Neap Pyrene and PCB #52

PED-measured dissolved pyrene concentrations in the lower estuary ranged from 1 to

10 ng/L during the April 1999 sampling campaign (Figure 4.6). The dissolved pyrene

concentrations measured during the October 2000 campaign ranged from 5 to 60 ng/L (Figure
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4.7). The October concentrations were an order of magnitude greater than the April

concentrations in several locations within the estuary. The dissolved pyrene concentrations

measured in this study are comparable to values measured in New York Harbor at the mouth of

the Hudson River in July 1998 using an XAD-2 resin [10 & 16 ng/L; (86)]. They are also

similar to "dissolved" pyrene measured in filtered water samples taken south of the Harlem

River [nearest to the NETM; (87)] where pyrene values ranged from 11 to 19 ng/L in these

filtered water samples collected between December 1998 and October 2001.

PED-measured PCB #52 concentrations ranged from 4 to 300 pg/L during the April

1999 sampling campaign (Figure 4.8). The October 2000 concentrations ranged from 100 to

400 pg/L (Figure 4.9). As with pyrene there was an order of magnitude increase in PCB #52

concentrations at multiple locations between April 1999 and October 2000. These values are

comparable to measurements by Totten et al. (88) in New York Harbor at the mouth of the

Hudson River in July 1998 using an XAD-2 resin. Totten et al. measured 237 and 275 pg/L

concentrations for PCB # 52 & 43; however as PCB #43 is present at less than 0.05% in all

Aroclor mixtures (89), the measured concentration is likely to be predominantly PCB #52.

XAD-measured PCB #52 water concentrations south of the Harlem River collected between

December 1998 and October 2001 ranged from 11 to 340 pg/L (87). The PED-measured

dissolved concentrations for additional PAHs (phenanthrene and benzo(a)pyrene) and PCBs (#95, #105,

and #128) are presented in Appendix B.

Estuarine Activity

In order to study the importance of sediment resuspension, pyrene and PCB #52

dissolved concentrations during both the neap and spring tides were examined with respect to

salinity (Figures 4.10 - 4.13). In the absence of a source or a sink for the chemical, the
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physical mixing of the river and ocean waters will result in a linear or conservative

relationship. If all other sources and sinks of the chemical of interest remain constant during

the spring and neap tides, a non-conservative behavior may be attributed to sediment

resuspension. The dissolved pyrene concentration in the mid-salinity region of the estuary

increased between spring and neap tides (Figure 4.10). This suggests that the sediment

resuspension observed in the lower Hudson Estuary may be a source of dissolved pyrene to the

estuary. In contrast, during the October sampling campaign, the along-estuary mixing

appeared much more conservative (Figure 4.11). The largest dissolved concentration during

the October neap tide was in the SS surface water, which is not an area of significant sediment

resuspension. The October spring tide dissolved pyrene-salinity correlation is linear

suggesting conservative behavior. During October the pyrene concentrations appear to be

highest at the SS suggesting that the harbor waters may be a source of pyrene to the estuary.

It is important to note, that because the spring tide waters are more vertically well-

mixed, spring tide mixing diagrams are more conducive to identifying sources and sinks within

the estuary. The vertical stratification present during the neap tides, provides for a more

pronounced bottom-water saltwater intrusion at the Battery (SS), and a freshwater outflow on

the surface of the estuary. This stratification provides for a much different water path

throughout the estuary than the path observed during spring tides. Consequently, sources and

sinks are more difficult to identify with a mixing diagram.

During April 1999 the PCB #52 concentration in the mid-salinity region of the estuary

appears to decrease between neap and spring tides (Figure 4.12). This may suggest that PCB

#52 is being scavenged by the resuspended sediments, which are serving as a sink. The surface

concentrations measured during the neap tide are larger than the concentrations at greater depth
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with the exception of the NS sample at 3-m depth. One could hypothesize that during the neap

tide when there is less resuspension and the estuary is vertically stratified, the PCB #52 in the

bottom salty layer is being scavenged by particles. Then during spring tide and increased

sediment resuspension, the PCB #52 at the SETM is scavenged further resulting in the small

concentrations at all depths.

The dissolved PCB #52-salinity correlation in October 2000 is much more linear

(Figure 4.13). Consequently, it is difficult to point to either a source or a sink for PCB #52

within the estuary. Interestingly, for both April 1999 and October 2000 the upper river appears

to be the source of PCBs to the estuary. This finding may suggest that the PCB "hot spots"

approximately 300 km upriver are affecting PCB loading into the lower estuary.

Sediment Concentrations

Two sediment samples from the SETM were collected in April and June 1999. The

pyrene concentration was 1600 ng/g in both samples (Table 4.7). Sediment at the SS, the

SETM, and the NS were collected again in October 2000 and measured to have pyrene

concentrations ranging from 330 to 4200 ng/g (Table 4.8). Consistent with a harbor source, the

sediment concentrations are greatest at the mouth of the river and decreased moving landward

up river. There appears to have been a decrease in the sediment concentration over time,

which may suggest that the sediment is indeed a source of pyrene to the overlying waters.

However, Woodruff et al. (9) observed a seasonal progression in the spatial distribution of

sedimentation with sediment accumulating near the mouth during the spring freshet period

(April '99), and as the freshet abated, the new sediment being eroded and re-deposited further

landward at the SETM (June '99). This sediment transport may also explain the change in

pyrene sediment concentrations over time. These sediment concentrations are comparable to
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the 1300 and 1700 ng/g of pyrene measured at 2.5 cm depth approximately 5 km north of the

Battery in 1977 (90). This study's values are also comparable to the surface sediment pyrene

concentration measured in the East River in August 1996 (2000 ng/g) by Mitra et al. (6).

PCB #52 sediment concentrations at the SETM were 32 and 31 ng/g in April and June,

respectively. Sediment collected in October 2000 at the same site was found to have 16 and 18

ng/g of PCB#52. Again, there appears to have been a decrease in the PCB #52 sediment

concentration with time. In light of the sediment movement observed by Woodruff et al. (9),

this decrease may be explained by the movement of "cleaner" sediment from the harbor. The

PCB #52 sediment concentrations measured here are comparable to PCB #52 surface sediment

concentrations measured by Long et al. (91) along the lower estuary in 1991 ranging from 21 to

55 ng/g.

Between 2.2 and 2.9% organic carbon (OC) was measured in the 1999 sediment

samples. These values are smaller than the percentage OC measured in the TSS at this site.

Interestingly, however, the bottom-most TSS-associated organic carbon (3.6%) is the most

similar in value. The percentage of black carbon in the SETM sediment was 0.20 and 0.21%.

This value is greater than the TSS-associated black carbon measured at this site (0.08 -

0.11%). Similar to the 1999 values, sediment OC ranged from 2.6 to 3.0% organic carbon in

the October 2000 sediment samples. The percentage of black carbon (BC) measured in the

October sediments ranged from 0.34 to 0.79%. The relatively large BC percentage measured

at the SS (0.79%) is not surprising given this site's urban nature and high boat traffic.

Estimated and Measured Dissolved Concentrations

In order to determine the direction of the thermodynamic driving force between the

sediment and the overlying water, dissolved pyrene and PCB #52 concentrations were
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estimated and compared to the PED-measured dissolved concentrations. First the sediment

concentrations and the appropriate partitioning coefficient were used to estimate the

porewater concentration in the sediment:

Cs
Cporewater = KS (4.1)

Kd

where Cporewater is the dissolved porewater concentration (pg/L), Cs is the sediment

concentration (pg/kg), and Kd is the solid-water partition coefficient (L/kg) and is estimated

according to the following (59):

Kd = focKoc + fBCKBCCw1 l (4.2)

where foc is the weight fraction of organic carbon in the solid phase, Koc is the OC-

normalized partitioning coefficient ([mol/kgoc]/[mol/L]),fBc is the weight fraction of BC is

the solid phase, KBC ( BC]/[g/L]') is the BC-water partition coefficient, Cw is the

dissolved concentration ( g/L), and v is the Freundlich exponent appropriate for the

specific BC-chemical pairing of interest. The porewater concentration was solved for

iteratively because the solid-water partition coefficient is a function of the dissolved or

porewater concentration. The foc andfBc were measured (see above). A log Koc value of

4.7 (69,70) was used for pyrene calculations, and a log Kom value of 4.9 (42) andfoM

estimated as 2 timesfoc was used for PCB #52 calculations. Koc values were adjusted for

temperature affects according to the following (42):

__s 11 1
Koc(T 2 ) = Koc(TO) H S -- (4.3)

R (T T2

where AHse is the excess enthalpy of solution in water (kJ/mol), R is the gas constant

(kJ/molK), and T is the absolute temperature (K). The AHSe's used for pyrene and PCB
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#52 were 29 and 12 kJ/mol, respectively (as measured in Chapter #2). Log KBC (6.4 for

pyrene and 5.9 for PCB #52) values were measured by Lohmann et al. (72) in the same

sediment collected at the SETM in October 2000. As Lohmann et al. used a v of 0.7, this

value has been used in the calculations here as well.

Pyrene porewater concentrations estimated with this method for April 1999 are over

an order of magnitude greater than PED-measured bottom-water pyrene concentrations,

suggesting a driving force out of the sediment (Table 4.9). This finding is consistent with

the non-conservative behavior observed in the pyrene mixing diagram (Figure 4.10). The

pyrene porewater concentration estimated for October is similar to the values measured in

the bottom-waters, suggesting that the sediments and water may be close to equilibrium.

This too is consistent with the conservative mixing behavior observed previously (Figure

4.11).

PCB #52 porewater concentrations estimated from sediment measurements in April

1999 are at least an order of magnitude greater than the PED-measured bottom water

concentrations (Table 4.10). This finding suggests a gradient out of the sediments to the

overlying water. However, this is contrary to the non-conservative mixing observed in the

PCB #52 mixing diagram where the estuary appeared to be serving as a sink. The PCB #52

porewater concentrations estimated for October 2000 are similar in magnitude to the

measured bottom water concentrations. In October, there may be a small driving force out

of the sediment. These October estimates support the conservative behavior observed in

the dissolved PCB #52-salinity correlation (Figure 4.13).
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In order to assess the importance of desorption kinetics, the fraction of chemical

desorbed was solved for according to the analytical solution for diffusion into a well-stirred

bath with particles that are uniform in size (36):

M, "I- 6a(a +1)exp(-Dff qn / a2
= .- 22(4.4)

M_ n=1 9+9a+qna

where M, and M. are the total amount of chemical in the water at time t and at

infinite time, respectively (M), Deff is the effective intraparticle diffusivity (L2/T), t is time

(T), and a is the particles' spherical radius (L). The values of qn are the non-zero positive

roots of:

tan(qn)= 3 qn 2 (4.5)
3+ aq2

and cc is the ratio of the volume of solution to the mass of solids divided by the partition

coefficient:

1
a- (4.6)

Kd [TSS]

The Deja 2 used for pyrene was 1.OE-7 s-1 (see Chapter 3). The smallest of the Defa2

values measured in Chapter 3 was used in order to get a limiting case estimate. The Deff for

PCB #52 was estimated according to (23):

Deff = Dn (4.7)
Kd( 1-n)ps

where D,, is the pore fluid diffusivity of the sorbate (cm 2/s), n is the porosity of the sorbent

(cm 3 of fluid/cm 3 total), and ps is the specific gravity of the sorbent (g/cm3). A D.1 of 4.8

E-6 cm 2/s (estimated according to (42)), an n of 0.13 (23), a p, of 2.66 g/cm 3 (Chapter 3),

and a Kdof 16,000 L/kg were used to estimate a Deff of 2.2 E-12 cm 2/s for PCB #52.
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Assuming an average particle radius of 32 tm, the Def/a2 calculated for PCB #52 was 2.2

E-7 s-. The TSS concentration was assumed to be 390 mg/L, the Kd's for pyrene and PCB

#52 were 27,000 and 16,000 L/kg, respectively.

Assuming an April spring tide residence time of 2.5 days (74), and an October

spring tide residence time of 4.6 days [estimated by scaling according to the ratio of

freshwater discharge in April 1999 (26,600 ft3/s) to freshwater discharge in October 2000

(14,400 ft3/s); (92)], the percentage of equilibrium achieved was estimated to be between

94 and 98% for both pyrene and PCB #52. This finding suggests that the desorption of

pyrene and PCB #52 into the bottom-waters is not limited by the time for desorption. The

estimated bottom water concentration including kinetics was estimated as the calculated

equilibrium porewater concentration multiplied by the estimated fraction equilibrium

(Tables 4.9 & 4.10). The combined equilibrium partitioning and desorption kinetics

calculations suggest a thermodynamic gradient out of the sediments into the overlying

water for pyrene and PCB #52 in April 1999, while suggesting little to no fugacity gradient

between the sediments and water column in October 2000.

The apparent sediment-water disequilibrium in April 1999 and equilibrium in

October 2000 along with the increase in pyrene and PCB #52 dissolved concentrations

from April to October may be explained by the seasonal sediment deposition observed by

Woodruff et al.(9). They observed sediment deposition in the seaward reaches of the

estuary during the freshet (April 1999) followed by the "return" of this sediment, which

was observed at the SETM in June 1999. One may hypothesize that older sediment was

exposed at the SETM during the freshet as sediment was re-deposited seaward. This newly

exposed older sediment may not have had sufficient contact time with the overlying water
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to equilibrate at the time of sampling. Consequently, the April 1999 sediments and water

column were observed to be in disequilibrium. In contrast, the October sediments, which

are believed to have been at the SETM since the previous June, had a significant span of

time in which to equilibrate. This "extra" time may have allowed for the observed

equilibrium between the sediment and water column and for the elevated pyrene and PCB

#52 concentrations observed in October 2000. These observations suggest the input of

HOC's from the sediments (e.g. resuspension inputs) may be correlated with the seasonal

movement of sediments within the estuary.

Magnitude of Sources and Sinks

The magnitude of the sources and sinks of pyrene and PCB #52 in the estuary were

estimated in April of 1999 and October 2000 where the control volume during spring tides

was defined as the section of the river between the Northern Site and the Southern Site.

During neap tides, the NS and SS were also defined as the end-points; however, only the

sources and sinks to the bottom waters (4 m from the river bottom) were estimated during

neap tides due the significant salinity stratification within the estuary. The following inputs

and sources were estimated: 1) desorption from or sorption to resuspended sediment, 2)

advective fluxes over the Northern and Southern boundaries due to river flow, and 3)

diffusive fluxes across the sediment-water boundary layer from the underlying sediment.

The following outputs and sinks were estimated: la) advective flux across the Northern

and Southern boundaries, 1b) advective fluxes from the bottom waters to the overlying

waters (neap tide), and 2) air-water exchange (spring tides only).

The input and output due to river flow, F (M/T) was calculated as:
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F =Q-Cw

where Q is the tidally-averaged flow rate (L3/T). A flow rate and salt balance including

freshwater flow, Qf, along with Knudsen's relation applied to the landward side of the

"box" were used to estimate Q's into, out of, and between the two layers of the estuary for

both neap and spring tides. Because the Hudson is a partially mixed estuary, it has a two-

layer structure with freshwater at the surface overlying saline water at the bottom. In

simplified terms, this dense saline water flows upriver, while the overlying fresh water

flows downriver. This structure was used to create a simplified input Q at the bottom of

the SS, an output Q at the surface of the SS, an input Q at the surface of the NS, and an

input or output Q at the bottom of the NS depending on the distance of saltwater intrusion.

Two additional Q's were estimated with respect to transport between the top and bottom

boxes. The freshwater flow rate was estimated at 1.4 times the discharge at Green Island

[Troy, NY; (93)]. The estimated Q's for neap and spring tides during April and October

are presented in Appendix C. The Cw's were measured as discussed previously.

The input due to the diffusive flux, D (MI/T), across the sediment-water boundary

was estimated as:

D= D@ sC -AMed (4.9)
6w Kd

where Sw is the diffusive boundary layer thickness at the sediment-water interface (L) and

Ased is the cross-sectional area over which the diffusive flux is occurring (L2). Cw and Cs

were measured. The Dm was estimated as 7.7 E-6 cm 2/s (50)and 4.8 E-6 cm 2/s (42)for

pyrene and PCB #52, respectively. The diffusive boundary layer thickness was estimated
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as 2 E-2 cm during both neap and spring tide. The 3wis often between 2 E-2 and 1 E-1 cm

thick and is dependent on the flow velocity of the overlying water and the surface

topography of the sediment (94). Because of the larger velocities observed in the lower

Hudson Estuary (95), the lower value of this range was used in this model. Kd was

estimated as discussed previously. Ased was estimated as 3.3 E7 m2.

The input due to sediment resuspension, R (MIT) was estimated according to the

following equation:

R = Cwj Vw (4.10)
Ks M_

where Vw is the volume of water and M/MO. is the fraction of equilibrium that has been

achieved and was solved according to Eq. 4.4. The t was assumed to be 1 day as the inputs

were estimated on a g/day basis.

As approximately 20% of the estuary undergoes significant sediment resuspension,

this portion was used to estimate input due to sediment resuspension. A tidally-averaged

surface-water and a bottom-water TSS were estimated as 71 and 390 mg/L, respectively

during spring tide based on the measurements made at the SETM on October 13, 2000.

The bottom-water TSS for neap tides was estimated as one-fifth of the spring tide value (78

mg/L). It may be more appropriate to estimate the TSS in the estuary as a step function

with TSS at 800 mg/L for 3 hr during max flood, followed by TSS = 50 mg/L for 3 hr

during slack tide, etc. This would allow for the changing "driving force" or chemical

potential within the estuary to be more accurately represented.

The output due to air-water exchange, AW (MI/T) was calculated according to:

AW =vto, Cw -A,,,f (4.11)
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where vtot is the water transfer velocity (cm/s), and As04 is the surface area of the water.

The vtot used in the calculations were 4.0 E-4 cm/s and 7.9 E-4 cm/s for pyrene and PCB

#52, respectively (42). vtt is defined as:

vot = zw + " (4.12)
Dm Da KH

where zv is the thickness of the stagnant water film at the air-water interface (cm), za is the

thickness of the adjacent stagnant air boundary layer (cm), Da is the chemical's diffusion

coefficient in air (cm2/s), and K H is the Henry's Law constant (L,/La). The zv was

estimated as 5 E-3 cm, and za as 0.1 cm. The zv is a low estimate, which will allow for an

upper value estimate of vtot. The Da's used in the calculations were 4.9 E-2 cm 2/s and 3.9

E-2 cm2/s for pyrene and PCB #52, respectively and estimated according to Schwarzenbach

et al. (42). The KH'S were 3.6 E-4 and 1.2 E-2 La/Lw for pyrene and PCB #52, respectively

(42). The surface area of the water was estimated as 4.0 E7 in2 .

For pyrene during the April 1999 spring tide, the advective inputs and outputs are of

similar magnitudes, and the inputs due to diffusive and sediment resuspension input are

comparable (Table 4.11). The output due to air-water exchange is two orders of magnitude

lower than the other sources and sinks. The advective inputs and outputs during the April

1999 neap tide are also of similar magnitude. The sediment diffusive input during the

April neap and spring tides were estimated to be equivalent; however, the neap diffusive

input may in fact be smaller depending on the water velocity, and the resulting diffusive

boundary layer thickness. The sediment resuspension input during the April neap tide was

estimated to be approximately a factor of three less than sediment diffusive input. Much of

this is due to the fact that only the desorption of pyrene from the suspended particles in the

bottom waters of the estuary have been estimated during neap tide. This assumption seems
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reasonable due to the stratified nature of the estuary during neap tides. During both tides in

April 1999, sediment resuspension and diffusive input appear to be the predominant inputs

of pyrene to the estuary.

During the October spring tide, the advective inputs and outputs are again

comparable to each other (Table 4.12). Again the sediment diffusive and resuspension

inputs are of similar magnitude; however, they are approximately a factor of two smaller

than the input estimated for the April 1999 spring tide. This is because the sediment and

water are more closely equilibrated during October than April causing less of an input from

the sediment. For the October neap tide bottom waters, the advective inputs are larger than

the outputs; however, they are within a factor of two. Again, there is a decrease in the

sediment diffusive and resuspension inputs between April and October neap tide. During

the October neap tide, the input due to sediment resuspension is a factor of ten smaller than

the input due to sediment boundary-layer diffusive input, which is again partially due to the

assumption of a limited height of resuspension, and the consequent decrease in the mass of

particles from which pyrene desorption was estimated. During spring tide in October 2000,

the sediment diffusive and resuspension inputs are still the predominant sources of pyrene

to the system; however they are less important than they were in April 1999. Similarly, the

input of pyrene due to diffusive and resuspension inputs have decreased between April and

October. This decrease in sediment sources between April and October is the result of

more closely equilibrated sediments and overlying waters present in October 2000.

As with pyrene, the April 1999 spring tide sources and sinks of PCB #52 were also

dominated by diffusive and sediment resuspension input (Table 4.13). The advective

inputs are slightly larger (15 vs. 6 g/day) than the advective outputs. Again, air-water
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exchange does not appear to be an important sink. The neap tide advective input and

output are again similar in magnitude. As in April 1999, the neap tide sediment

resuspension and diffusive input appear to be the dominant sources of PCB #52 to the

estuary with diffusive input three times greater than the input due to sediment resuspension

(39 vs. 12 g/day).

The October 2000 spring tide PCB #52 sources appear to be dominated by sediment

diffusive and resuspension inputs; however, these inputs are less than half of the April 1999

PCB #52 spring input. Again, advective inputs and outputs are of comparable magnitudes

(92 vs. 110 g/day). Because of the elevated PCB #52 concentrations within the estuary in

October, air-water exchange is a larger sink that in was in April 1999 (8 g/day in October

vs. 0.5 g/day in April). During the October 2000 neap tide, the PCB #52 advective outputs

were almost twice the advective inputs to the bottom waters. The sediment boundary-

layer diffusive inputs appear to be the largest source of PCB #52 to the October neap tide

bottom waters. The input due to resuspension is about four times smaller than the diffusive

input to the October 2000 neap tide waters. While sediment diffusion and resuspension

appear to be the most important sources of PCB #52 to the estuary, the importance of these

sources appears to have diminished in October 2000 due to the more closely equilibrated

sediments and overlying waters.

One-Box Model

Steady state was assumed, and a mass balance of the inputs and outputs was used to

solve for the Cw within the spring tide estuary:
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FIN + CS (VW t + Dn Ased

Cw = Kd M se (4.13)

QouT +voA,,, +Vw ' + mAse
M_ 8W

where FIN is the advective input (M/T) and QOUT is the water flow rate out of the system

(L3 /T). During the neap tide, the Cw within the bottom waters of the estuary were

calculated in a similar manner:

Cs Mt DM
FIN + w W M + AseN

Cw = Mt D (4.14)

QOUT +VW + ' Ased

In this case air-water exchange is not considered, and QOUT includes the flow rate from the

bottom waters to those above. The calculated Cw was then compared to the measured Cw

in order to access the validity of the model (Tables 4.15 & 4.16). The measured Cw was

estimated by averaging the PED-measured dissolved concentrations at the SETM for April

1999 and at the SETM and NETM for October 2000 within the appropriate control volume.

In April 1999 the estimated Cw for pyrene is about a factor of two larger than the

measured value during the spring tide (17 vs. 8.5 ng/L). Considering all of the parameters

that were estimated, these numbers are in good agreement. During the neap tide the

estimated pyrene Cw is over four times larger than the PED-measured value. The

inconsistency between the estimated and observed Cw's may suggest that one of the

sources has been over estimated or that there is a missing sink. As this model did not

include sink terms for bio- or photodegradation, which may remove pyrene from the

estuary, these processes may contribute to a missing sink. The greater discrepancy between

the estimated and observed values during neap tide may indicate that the inputs due to
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sediment resuspension were overestimated. For example, the estimated tidally-averaged

TSS vales may be too high.

During the April 1999 neap tide, the estimated PCB #52 concentration is four times

larger than the PED-measured concentration. During the spring tide, the model

overestimates the PCB #52 concentration by almost a factor of 30. This suggests that a

source has been overestimated or that there is a missing sink. In light of the apparent

driving force out of the sediments at the SETM and the apparent sink observed in the

mixing diagram, "cleaner" sediments within the estuary may be scavenging PCB #52

serving as the "missing sink." This hypothesis is further supported by the fact that

sediment resuspension is greater during the spring than neap tides, and that there appears to

be a larger sink for pyrene (only 8.7 ng/L) during the spring tide than during the neap tide

(61 ng/L).

As in April, the October 2000 estimated Cw for pyrene are about a factor of two

larger than the measured Cw for spring tide, and the neap-tide estimated pyrene Cw is

almost four times larger than the PED-measured value. Again considering all of the

estimated parameters, the agreement is good; however, there could be a small missing sink

(e.g., bio- or photodegradation) or a small overestimation of a source (e.g., an overestimate

of the TSS during neap tide). The October 2000 estimates for PCB #52 Cw's are in good

agreement (within 12% during spring tide and within 52% during neap tide) with the PED-

measured Cw's. In this case, the sources and sinks appear to have been modeled

appropriately.
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Implications

In April 1999 the sediments within the lower Hudson Estuary provided for the input

of pyrene to the overlying waters. However, the sediments and water appear to have been

more closely equilibrated during October 2000 suggesting that the sediments may have

provided for a significantly smaller source of pyrene to the waters of the Hudson. With

respect to PCB #52, mixing diagrams indicate that resuspended sediments may have

provided a sink for dissolved PCB #52 in April 1999; however, selected sediment samples

indicate that the sediment served as a source in April 1999. One explanation may be the

scavenging of PCB #52 by cleaner sediments within the estuary. October 2000 PCB #52

findings indicate that, as with pyrene, the sediments and waters of the lower Hudson are

more closely equilibrated with respect to PCB #52.

Estimates of the magnitudes of the sources and sinks of pyrene and PCB #52 to the

lower Hudson Estuary indicate that in April 1999, the largest sources of these chemicals

was due to sediment diffusive and resuspension input. Again, in October, diffusive and

resuspension provided for the largest input; however, more closely equilibrated October

sediments and water provided for a smaller input of both pyrene and PCB #52 from the

underlying sediments. The inputs due to these sources are of similar magnitude.

The April to October decrease in driving force observations may be explained by

the removal of sediment during the spring freshet coupled to the exposure of older

underlying sediments that did not have sufficient time to equilibrate with the overlying

water column at the time of sampling. Sediment redeposited in June of 1999 had ample

time in which to equilibrate with the overlying waters explaining the more closely

equilibrated system observed in October 2000. This observation suggests that there may be
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a seasonal trend in HOC inputs from underlying sediments. The dynamic changes in this

estuarine system make the modeling the fate of HOCs within it a challenge. Further

modeling that accounts for the dynamic as well as multi-dimensional nature of this system

is needed in order to assess the fate of PAHs and PCBs within the lower Hudson Estuary.
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Table 4.1. Sampling dates and coordinates.
Station Date Coordinates

Southern Site (SS; Battery) April 9 - 18, 1999 400 43.350' N 740 01.666' W
October 4 -14, 2000 400 45.597' N 740 00.931' W

Southern Estuarine Turbidity April 9 - 18, 1999 400 49.231' N 730 58.210' W
Maximum (SETM) October 4 -14, 2000 400 49.209' N 730 58.269' W

Northern Estuarine Turbidity
Maximum (NETM) October 4 -14, 2000 400 53.297' N 730 56.148' W

Northern Site (NS; Hastings) April 9 - 18, 1999 400 59.680' N 730 53.799' W
October 4 -14, 2000 400 5 8.594' N 730 54.175' W
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Table 4.2. PED Depths and Length of Deployment.
Length of Deployment Total Water Depth PED "Depths"

Station Date (days) (meters)a (meters from river bottom)b

Neap Spring Neap Spring Neap Spring

April 1999 2.90 3.13 12 12 9, 5.5, 3, 2, 1 10, 3.5, 1.5
October 2000 1.68 1.77 15.5 15 2 (below surface), 2, 1 2 (below surface), 2, 1

SETM April 1999 2.79 2.88 9.7 10 6.7, 5.5, 3, 2, 1 8.0, 3.5, 1.5

October 2000 2.03 1.78 8.8 9.4 2 (below surface), 2, 1 2 (below surface), 2, 1

NETM October 2000 1.79 1.83 6.6 5.8 2 (below surface), 2, 1 2 (below surface), 2, 1

April 1999 3.00 1.96 11.5 10 8.5, 5.5, 3, 2, 1 8, 3, 1
NS October 2000 1.70 1.86 8.5 7.3 2 (below surface), 2, 1 2 (below surface), 2, 1

aTotal water depth is a function of tidal cycle with a tidal range of 1.2 to 1.6 m (95). bValue are meters from river bottom unless otherwise

specified.
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Table 4.3. Hydrographic and water sampling depths.

Station Date Sampling Depth
(meters from surface)

Neap Tide Spring Tide
April 1999 1.8, 9.5, 10.5 2.0, 6.9, 7.9, 8.0, 8.9

SS October 2000 2,12.7, 14
2, 13.9, 15

SETM April 1999 3.0, 5.3, 6.3, 7.3
October 2000 1.9, 6.9, 7.9

NETM October 2000 - 2.0, 3.7, 4.82, 5.5, 6.5

April 1999 2.1, 9.5, 10.5 3.0, 6.7, 7.7, 8.7
NS October 2000 - 2.0, 5.1, 6.3

2, 6.3, 7.3

Table 4.4. Average PED blanks 1 s.d. as a percentage of the water-measured sample

Chemical April 1999 October 2000
Average Range Average Range

Pyrene 0.89 0.76% 0.086-1.9% 0.69 0.75% 0.023-2.9%
(n=33) (n =34)

PCB #52 14 10% 3.6 - 33% 0.33 0.25% 0.10- 1.0%
(n =6) (n=32)
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Table 4.5. Total suspended solids, organic and black carbon in the lower Hudson Estuary in April 1999.

Depth Flood Ebb Total Percent Percent Black
Neap or Station (meters from Date Time or Slack' Suspended Organic Carbon

Spring Tide surface) Solids (mg/L) Carbon

Neap Tide Ss 10.5 4/9/99 11:02 AM Ebb 21 3.3

Neap Tide Ss 10.7 4/9/99 afternoon 43 2.4

Spring Tide Ss 2 4/15/99 7:30 AM Flood 68 1.9 0.10

Spring Tide SS 6.9 4/15/99 7:25 AM Flood 160 1.5 0.11

Spring Tide SS 7.9 4/15/99 7:19 AM Flood 120 1.8 0.15

Spring Tide SETM 3 4/17/99 4:33 PM Ebb 190 13

Spring Tide SETM 5.3 4/17/99 4:26 PM Ebb 280 5.0 0.11

Spring Tide SETM 6.3 4/17/99 4:18 PM Ebb 320 4.6 0.08

Spring Tide SETM 7.3 4/17/99 4:11 PM Ebb 380 3.6 0.10

Spring Tide NS 3 4/15/99 8:28 AM Flood 110 6.9 0.25

Spring Tide NS 6.7 4/15/99 ~ 8:20 AM Flood 170 3.7 0.11

Spring Tide NS 7.7 4/15/99 8:15 AM Flood 220 4.0 0.16

Spring Tide NS 8.7 4/15/99 8:10 AM Flood 180 3.1
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Table 4.6. Total suspended solids, organic and black carbon in the lower Hudson Estuary in October 2000.a

Neap or Depth Flood, Ebb Total Percent Percent

Spring Tide Station (meters from Date Time or Slack' Suspended Organic Black
surface) Solids (mg/L) Carbon Carbon

Spring Tide SS 12.7 10/12/00 6:11 PM Slack 26 2.2

Spring Tide SETM 1.9 10/13/00 8:30 AM Flood 82 2.0 <0.3
Spring Tide SETM 6.9 10/13/00 8:20 AM Flood 320 2.9 <0.3
Spring Tide SETM 7.9 10/13/00 8:05 AM Flood 640 3.7 0.5

Spring Tide NETM 2.0 10/12/00 3:00 PM Ebb 180 3.6
Spring Tide NETM 3.7 10/12/00 2:52 PM Ebb 300 4.6
Spring Tide NETM 4.8 10/12/00 2:42 PM Ebb 420 4.7

Spring Tide NS 2.0 10/12/00 1:20 PM Slack 26 3.5
Spring Tide NS 5.1 10/12/00 1:05 PM Slack 44 3.0
Spring Tide NS 6.3 10/12/00 12:49 PM Slack 66 3.2

aThese values were measured by Rainer Lohmann.
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Table 4.7. Pyrene, PCB #52, organic carbon, and black carbon measured in lower
Hudson Estuary sediments in April and June 1999.

Sediment Pyrene PCB #52 Percent Percent
Location and Date Depth Png/g) (ng/g) organic black

(cm) carbon carbon
S. ETM, April 1999 0-2 1600 32 2.2 0.21
S. ETM, June 1999 0-2 1600 31 2.9 0.20

Table 4.8. Pyrene, PCB #52, organic carbon, and black carbon measured in lower
Hudson Estuary sediments in October 2000.

Sediment Pyrene PCB #52 Percent Percent
Location and Date Depth Png/g) (ng/g) organic black

(cm) carbon carbon
Southern Site, Oct. 2000 0 - 1 4200 3.0a 0.79a

S. ETM, Oct. 2000 0 - 1 840 16 2.6b 0.34b
S. ETM, Oct. 2000 1-2 1500 18 2.6b 0.34b

Northern Site, Oct. 2000 1 - 2 330

aMeasured in our lab by Rainer Lohmann. bOrganic and black carbon measurements are
for the 0-4 cm depth and were measured in our lab (72).
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Table 4.9. Estimated porewater concentration and the corresponding bottom-water concentration at the SETM in April 1999.

Estimated Estimated bottom PED-measured
Sediment Estimated solid- porewater Estimated water bottom-water

Chemical concentration water partitioning concentration fraction concentration concentration
(ng/g) coefficient (L/kg) (n )c equilibrium including kinetics (ng/L)f

(ng/L)e

Pyrene 1600 11,OO0a 140 0.94 140 3-10

PCB #52 32 15,0W 2.1 0.95 2.0 0.004 - 0.3

aEstimated with foc = 0.022 (measured), log Koc = 4.7 (69), fBc = 0.0021 (measured), log KBC = 6.4 (72). bEstimated with fom = 0.044 (estimated
as 2 times foc), log Kom = 4.90 (42), fBc = 0.0021 (measured), log KBC = 5.9 (72). 'Estimated as Cs/Kd. dEstimated according to Eq. 4.4 with
residence time of 2.5 days, a mass-to-volume ratio of 390 mg/L and Kd = 27,000 L/kg for pyrene and Kd = 16,000 L/kg for PCB #52. eEstimated
as the estimated porewater concentration multiplied by the estimated fraction equilibrium. fPED-measured concentration range during both neap
and spring tides.

Table 4.10. Estimated porewater concentration and the corresponding bottom-water concentration at the SETM in October 2000.
Estimated solid- Estimated Estimated PED-measured

Sediment Sediment water porewater Estimated bottom water bottom-water
Chemical depth concentration partitioning concentration fraction concentration concentration

(cm) (ng/g) coefficient cng/L)c equilibrium including (ng/L)'
(L/kg) kinetics (ng/L)e

Pyrene 0-1 840 25,000a 33 0.97 31 20-30

1-2 1500 20,000a 77 0.97 72 20-30

PCB #52 0-1 16 31,000b 0.51 0.98 0.50 0.2-0.3

1 - 2 18 30,000b 0.59 0.98 0.58 0.2 - 0.3
aEstimated with foc = 0.029 (measured), log Koc = 4.7 (69), fBc = 0.0034 (measured), log KBC = 6.4 (72). bEstimated with foM = 0.058 (estimated
as 2 times f0C), log KOM = 4.90 (42), fBc = 0.0034 (measured), log KBC = 5.9 (72). cEstimated as Cs/Kd. dEstimated according to Eq. 4.4 with
residence time of 4.6 days, a mass-to-volume ratio of 390 mg/L and Kd = 27,000 IUkg for pyrene and Kd = 16,000 L/kg for PCB #52. 'Estimated
as the estimated porewater concentration multiplied by the estimated fraction equilibrium. fPED-measured concentration range during both neap
and spring tides.
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Table 4.11. Magnitude of the sources and sinks of pyrene to the lower Hudson Estuary
in April 1999a
Sources (g/day): Spring Tide Neap Tide
Advective Inputs 1400 290
Sediment Diffusive Input 2300 2300
Sediment Resuspension Input 2200 640

Sinks (g/day):
Advective Output 1700 430
Air-Water Exchange 30
aNeap tide sources and sinks are only for the bottom-water box.

Table 4.12. Magnitude of the sources and sinks of pyrene to the lower Hudson Estuary
in October 2000a
Sources (g/day): Spring Tide Neap Tide
Advective Inputs 7200 2200
Sediment Diffusive Input 900 620
Sediment Resuspension Input 800 62

Sinks (g/day):
Advective Output 8000 1100
Air-Water Exchange 130 ---
aNeap tide sources and sinks are only for the bottom-water box.

Table 4.13. Magnitude of the sources and sinks of PCB #52 to the lower Hudson
Estuary in April 1 999a
Sources (g/day): Spring Tide Neap Tide
Advective Inputs 15 4.8
Sediment Diffusive Input 39 39
Sediment Resuspension Input 32 12

Sinks (g/day):
Advective Output 6 4.7
Air-Water Exchange 0.5 ---
aNeap tide sources and sinks are only for the bottom-water box.

Table 4.14. Magnitude of the sources and sinks of PCB #52 to the lower Hudson
Estuary in October 2000a
Sources (g/day): Spring Tide Neap Tide
Advective Inputs 92 5.1
Sediment Diffusive Input 18 18
Sediment Resuspension Input 10 4.4

Sinks (g/day):
Advective Output 110 9.6
Air-Water Exchange 8 ---
aNeap tide sources and sinks are only for the bottom-water box.
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Table 4.15. Mass-balance estimated Cw and PED-measured Cw for April 1999.
Spring Tide Neap Tide

Chemical Mass-balance PED-measured Mass-balance PED-measured
estimated Cw" Cwb estimated Cw' Cwd

Pyrene (ng/L) 17 8.5 15 3.4
PCB #52 (pg/L) 230 8.7 270 61
'Calculated according to Eq. 4.13. bThe average of the PED measurements in the vertical at the
SETM. cCalculated according to Eq. 4.14. dThe average of the PED measurements in the bottom
waters at the SETM.

Table 4.16. Mass-balance estimated Cw and PED-measured Cw for October 2000.
Spring Tide Neap Tide

Chemical Mass-balance PED-measured Mass-balance PED-measured
estimated Cw' Cwb estimated Cwc Cwd

Pyrene (ng/L) 23 13 57 16
PCB #52 (pg/L) 280 250 440 290
aCalculated according to Eq. 4.13. bThe average of the PED measurements in the vertical at the
SETM and NETM. cCalculated according to Eq. 4.14. dThe average of the PED measurements in
the bottom waters at the SETM and NETM.
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Figure 4.1. Sampling locations in the lower Hudson Estuary. The first set of stations
(circles): the Southern Site (SS); the Southern Estuarine Turbidity Maximum (SETM);
and the Northern Site (NS) were sampled in April 1999. The second set of stations

(triangles): SS, SETM, the Northern Estuarine Turbidity Maximum (NETM), and NS
were sampled in October 2000. The dark areas in the river are areas of high turbidity.
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Figure 4.2. Average salinity (practical salinity units; bold numbers in white squares)
and temperature (*C; regular font in shaded rectangles) in the lower Hudson Estuary
during neap tide (April 9-11, 1999) and spring tide (April 15-18, 1999). The neap tide
depths (meters below the surface) are 1.8, 9.5, and 10.5 at the Southern Site (SS),
approximately 2, 6,and 7 at the Southern Estuarine Turbidity Maximum (SETM) and
2.1, 9.5, and 10.5 at the Northern Site (NS). The spring tide depths (meters below the
surface) are 2.0, 7.9, and 8.9 at the SS, 3.0, 6.3, and 7.3 at the SETM, and 3.0, 7.7, and
8.7 at the NS. The shaded contours depict typical salinity profiles in the estuary during
neap and spring tides (74). During neap tide, the estuary is vertically stratified with the
denser salty water (dark contours) on the bottom and the fresher (less-dense) water
(lighter contours) on the surface. During the spring tide, the estuary becomes more
vertically well-mixed, and an along estuary salinity gradient is more visible with the
saltier waters (darker contours) are at the mouth of the river near the Battery and the
fresher water (lighter contour) upstream.
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Figure 4.3. Average salinity (practical salinity units; bold numbers in white squares)
and temperature (*C; regular font in shaded rectangles) in the lower Hudson Estuary
during neap tide (October 4-6, 2000) and spring tide (October 12-14, 2000). The neap
tide depths (meters below the surface) are 2, 13, and 14 at the Southern Site (SS), 2,
7,and 8 at the Southern Estuarine Turbidity Maximum (SETM), 2, 4, and 5 at the
Northern Estuarine Turbidity Maxiumum (NETM), and 2, 5, and 6 at the Northern Site
(NS). The spring tide depths (meters below the surface) are 2, 12.7, and 14 at the SS,
1.9, 6.9, and 7.9 at the SETM, 2.0, 3.7, and 4.8 at the NETM, and 2.0, 5.1, and 6.3 at the
NS. The contours depict representative salinity gradients during the neap and spring
tides in the estuary with darker shades representing saltier water and lighter shades
depicting fresher water (74).
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Figure 4.4. Total suspended solids (TSS) as a function of time at the SETM on
10/13/00 measured with the Hydrolab over the course of one tidal cycle. The TSS
measured at between 6.5 and 8 m depth (diamonds) averaged 390 mg/L over the tidal
cycle, while the TSS measured at approximately 2 m depth (squares) averaged 71 mg/L.
The slack tide, maximum flood, and maximum ebb times are for the George
Washington Bridge which is approximately 4 km upriver and were predicted with
Xtide, a tide-prediction program.
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Figure 4.5. Total suspended solids concentrations at the Southern Site (SS; a), the
Northern Estuarine Maximum (NETM; b), and the Northern Site (NS; c) as a function
of depth. The TSS concentrations at the SS were measured during slack tide on
10/12/00 between 18:11 and 18:38 (solid diamond) and during slack tide on 10/14/00
between 13:54 and 14:22 (open diamonds). TSS was measured at the NETM during
ebb tide on 10/12/00 between 14:41 and 15:07 (closed circles) and during flood tide on
10/14/00 between 10:55 and 11:13 (open circles). The TSS measurements at the NS
were collected during slack tide on 10/12/00 between 12:48 and 13:22 (solid triangles)
and during flood tide on 10/14/00 between 9:15 and 9:28 (open triangles).
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Figure 4.6. PED-measured dissolved pyrene concentration (ng/L) in the lower Hudson

Estuary during neap tide (April 9-11, 1999) and spring tide (April 15-18, 1999). The

neap tide depths (meters from the river bottom) are 9, 5.5, 2, and 1 at the Southern Site

(SS), 6.7, 2, and 1 at the Southern Estuarine Turbidity Maximum (SETM), and 8.5, 5.5,

2, and lat the Northern Site (NS). The spring tide depths (meters from the river bottom)

are 10, 3.5, and 1.5 at the SS, 8, 3.5, and 1.5 at the SETM, and 3 and 1 at the NS.

Contours depict representative salinity gradients within the estuary during neap and

spring tides with darker contours representing more saline water and the lighter

contours depicting fresher water (74).
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Figure 4.7. PED-measured dissolved pyrene concentration (ng/L) in the lower Hudson
Estuary during neap tide (October 4-6, 2000) and spring tide (October 12-14, 2000).
The upper-most PEDs are 2 m below the surface, and the deeper PEDs are 2 and 1 m
from the river bottom. Unfortunately, the spring PED 2 m from the bottom at the

Southern Estuarine Turbidity Maximum was contaminated. Contours depict
representative salinity gradients within the estuary during neap and spring tides with

darker contours representing more saline water and the lighter contours depicting
fresher water (74).
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Figure 4.8. PED-measured dissolved PCB #52 concentration (pg/L) in the lower

Hudson Estuary during neap tide (April 9-11, 1999) and spring tide (April 15-18, 1999).

The neap tide depths (meters from the river bottom) are 9, 3, and 1 at the Southern Site

(SS), 6.7, 3, and 1 at the Southern Estuarine Turbidity Maximum (SETM), and 8.5, 3,

and lat the Northern Site (NS). The spring tide depths (meters from the river bottom)

are 10, 3.5, and 1.5 at the SS, 8, 3.5, and 1.5 at the SETM, and 3 and 1 at the NS.

Contours depict representative salinity gradients within the estuary during neap and

spring tides with darker contours representing more saline water and the lighter

contours depicting fresher water (74).
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Figure 4.9. PED-measured dissolved PCB #52 (pg/L) in the lower Hudson Estuary
during neap tide (October 4-6, 2000) and spring tide (October 12-14, 2000). The upper-
most PEDs are 2 m below the surface, and the deeper PEDs are 2 and 1 m from the river
bottom. Unfortunately, the spring PED 2 m from the bottom at the Southern Estuarine
Turbidity Maximum was contaminated. Contours depict representative salinity
gradients within the estuary during neap and spring tides with darker contours
representing more saline water and the lighter contours depicting fresher water (74).
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Figure 4. 10. Dissolved pyrene concentration (ngIL) as a function of salinity (psu)
measured at the Northern Site (triangle), the S. ETM (square), and the Southern Site
(diamond) during neap tide (a) and spring tide (b) during the April 1999 sampling
campaign. "Error" bars in the x-direction depict the salinity range observed at this
location. Error bars in the y-direction represent a 25% measurement error.

140



C

0El)

Cl>
0

a.

a)

(0

8

7

6

5

4

3

2

1

60

50

40

30

20

10

0

0*

0 _a: Neap Tide

0-
0-
0 -

0-

0

0 5 10 15 20 25 3

Salinity (psu)

b: Spring Tide

0 5 10 15 20 25

0

30

Salinity (psu)

Figure 4.11. Dissolved pyrene concentration (ng/L) as a function of salinity (psu)
measured at the Northern Site (triangle), the N. ETM (circle), the S. ETM (square), and
the Southern Site (diamond) during neap tide (a) and spring tide (b) during the October
2000 sampling campaign. "Error" bars in the x-direction depict the salinity range
observed at this location. Error bars in the y-direction represent a 25% measurement
error.
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Figure 4.12. Dissolved PCB #52 concentration (ng/L) as a function of salinity (psu)

measured at the Northern Site (triangle), the S. ETM (square), and the Southern Site

(diamond) during neap tide (a) and spring tide (b) during the April 1999 sampling

campaign. "Error" bars in the x-direction depict the salinity range observed at this

location. Error bars in the y-direction represent a 25% measurement error.
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Figure 4.13. Dissolved PCB #52 concentration (ng/L) as a function of salinity (psu)

measured at the Northern Site (triangle), the N. ETM (circle), the S. ETM (square), and

the Southern Site (diamond) during neap tide (a) and spring tide (b) during the October

2000 sampling campaign. "Error" bars in the x-direction depict the salinity range

observed at this location. Error bars in the y-direction represent a 25% measurement

error.
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CHAPTER 5: CONCLUSIONS AND AREAS OF FUTURE WORK

CONCLUSIONS

The overall goal of this thesis was to assess the importance of sediment

resuspension to the input of PAHs and PCBs to the lower Hudson Estuary. In order to

accomplish this, three areas of work were pursued: 1) a passive sampler for the

measurement of "truly dissolved" HOCs was developed; 2) the desorption kinetics of

pyrene from native Hudson River sediments was measured and modeled with a

physically-based desorption model (23,24); and 3) the inputs of pyrene and PCB #52 into

the lower Hudson Estuary were examined with respect to sediment resuspension, and the

resultant inputs were quantified.

Initial experiments indicate that PEDs are useful devices for the measurement of

dissolved HOCs in the water column. Polyethylene is readily available in varying

thicknesses and is inexpensive. KPEWS can be estimated with Kows and adjusted for

temperature and salinity. Diffusivities can be used to estimate the time for equilibrium.

PEDs can be impregnated with internal standards so that the rate of desorption within the

surrounding environment can be measured and used to correct for the uptake rate of the

chemicals of interest.

As PEDs require days (depending on the chemical and temperature) to reach

equilibrium with the surrounding water, they allow for a time-averaged measurement.

This is useful for determining the level of pollutant exposure for organisms living in the

sampled environment. Using different PED thicknesses will allow for the measurement

of varying lengths of time. For example, decreasing the PED thickness from 80 to 40 Rm

cuts the uptake time by 75%.

144



The physically- and chemically-based model for effective diffusivity put forth by

Wu and Gschwend (23,24) appears to be appropriate for estimating the desorption kinetics

of pyrene in native sediments. Despite the fact that between 66 and 98% of the pyrene is

believed to have been desorbing from black carbon, the retarded radial diffusion model

allowed for the estimation of an effective diffusivity that fit experimental results. An

improved understanding of the pyrene desorption rates in native sediments is important

for predicting pyrene inputs resulting from the disequilibrium observed between the

pyrene fractions in the sediments and overlying water column.

In April 1999 the sediments within the lower Hudson Estuary provided for the

input of pyrene into the overlying waters. However, the sediments and water appear to

have been more closely equilibrated during October 2000 suggesting that the sediments

may have provided for a significantly smaller source of pyrene to the waters of the

Hudson. With respect to PCB #52, mixing diagrams indicate that resuspended sediments

may have provided a sink for dissolved PCB #52 in April 1999; however, the limited

sediment samples collected for this study indicate that the sediment served as a source in

April 1999. One explanation for this observation may be the scavenging of PCB #52 by

cleaner sediments within the estuary. October 2000 PCB #52 findings indicate that, as

with pyrene, the sediments and waters of the lower Hudson are more closely equilibrated

with respect to PCB #52.

Estimates of the magnitudes of the sources and sinks of pyrene and PCB #52 to

the lower Hudson Estuary indicate that in April 1999, the largest sources of these

chemicals was due to sediment diffusive and resuspension input, which are of

comparable magnitudes. The April to October decrease in driving force observations
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may be explained by the removal of sediment during the spring freshet coupled to the

exposure of older underlying sediments that did not have sufficient time to equilibrate

with the overlying water column at the time of sampling. Sediment redeposited in June

of 1999 had ample time in which to equilibrate with the overlying waters explaining the

more closely equilibrated system observed in October 2000. This observation suggests

that there may be a seasonal trend in HOC inputs from underlying sediments. The

dynamic changes in this estuarine system make the modeling the fate of HOCs within it a

challenge.

FUTURE WORK

As is often the case, the findings from this research have brought to light many

areas where an improved understanding and, consequently, future work is needed. The

following is a list of future work that should be pursued to further our understanding

within each of the areas of study pursued here.

PEDs

- Further experiments are needed to explain the causes for increasing DPE with

time. The plasticizer theory could be further tested by measuring the pyrene sorption into

a PED, and repeating the experiment with the same pyrene-sorbed PED. If the pyrene is

acting as a plasticizer, one would expect to see less of an increase in uptake rate as the

"plasticizer" concentration increases.

- The lower-than-literature DPE's measured in this study need to be further

investigated. An additional method for DPE measurement may remove sampling artifacts

that are resulting in the lower-than-literature values.
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- Further research is needed to verify that PEDs can be consistently impregnated

with internal standards so that the rate of desorption within the surrounding environment

can be measured and used to correct for the uptake rate of the chemicals of interest.

Desorption Kinetics

- The pyrene desorption experiment should be repeated with greater sampling

points during the first 2 hr of the experiment, allowing for a more accurate measurement

for the rate of pyrene desorption.

e Further pyrene desorption experiments should be performed with varying solid-

to-water ratios to verify and/or illustrate the importance of this parameter to desorption

rates.

- Desorption experiments for PCB #52 should be completed on native Hudson

River sediments in order measure a desorption rate constant for this chemical as well as

assess the validity of Wu and Gschwend (23,24) with respect to PCB's sorbed to native

sediments.

Hudson Sediment-Water Exchange

* Further modeling that accounts for the multi-dimensional nature of this system

is needed in order to assess the fate of PAHs and PCBs within the lower Hudson Estuary.

The model used here accounts for vertical variations on a limited scale, and does little to

account for across river variability.

- A more representative model that accounts for the cyclic nature of sediment

resuspension is needed to more accurately predict the input of HOCs due to sediment

resuspension. A series of step functions (over a particular time window, e.g., a residence
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time) representing the on-off nature of the tidal influence on resuspension events may be

a good first step.
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APPENDIX A: MATLAB CODE FOR PROCESSING LASER-INDUCED FLUORESCENCE

CSMA SOFTWARE OUTPUT

Directions for processing fluorescence data

Create a "home" directory (e.g. RachelDesorp)
in the C:\matlab directory. Put all data and
matlab data (*.mat) and scripts (*.m) files
in this home directory.

Put all *.spe data files in the csma\ra\
directory.

Run "processdata" in matlab to generate figures
in postprocess\figs\*.eps and peaks data in
postprocess\data\peaks.dat.

Run "plotmulti" in matlab to generate figures
with multiple spectra on a single plot.
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% driver file for fluorescence data
%processdata.m

% Input the directory where the *.spe data files are
datadirl='ra'

% Number of first file in ra###*.spe sequence
firstnum=1054;

" Enter the first number in the ra###*.spe file sequence that
" is to be processed
firstfile=1054;

% Enter the last number in the ra###*.spe file sequence that
% is to be processed
lastfile=1164;

% This queries the filenames contained in the data directory
datadir2=['csma\' datadiri];
D=dir(datadir2);
[Ntot,m] =size (D);

% Check to see if DATA file exists in POSTPROCESS/DATA/
fid=fopen('POSTPROCESS\DATA\peaks.dat');
if fid < 0

peaks=zeros(Ntot-2,4);
save POSTPROCESS\DATA\peaks.dat peaks -ascii

else
fclose(fid);

end
load ('POSTPROCESS/DATA/peaks.dat')

%if fid >0
" dataflag=l; % File already exists
" fclose(fid) ;
% load ('POSTPROCESS/DATA/peaks.dat')
%else
" dataflag=O; % File doesn't exist
% peaks=zeros(Ntot-2,4);
%end

ii=firstfile-firstnum+1;
for fileindex = (firstfile+3-firstnum) : (lastfile+3-firstnum)

filename=getfield(D(fileindex), 'name');

[pks]=plotl3sub(datadirl,filename,ii);

peaks(ii,:)=pks;

ii=ii+l;
end

%save POSTPROCESS\DATA\peaks .mat peaks
%save POSTPROCESS\DATA\peaks.dat peaks -ascii
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size(peaks)

fid=fopen('POSTPROCESS\DATA\peaks.dat','w');
for i=1:Ntot-2

% fprintf(fid,'%6i %6i %6.1f %15.6e \n', peaks(i,:));
fprintf(fid,'%7i %6i %6.1f %15.6e \n', peaks(i,:));

end
fclose(fid);

function [pks]=plotl3sub(dirc, filnm, ii)

%plotl3.m
% This code was modified by Steve Margulis to make

% it a subroutine as part of a postprocessing program

% ploti script for spectrometry
% plots single curve of exact filename - 300 grating
% requires center wavelength and title

% NOTE: This program changed by Steve Margulis so that
% all files (csma, temp, etc.) can be put in a single
% "home" directory and run from there. All calls below are

% now referenced to this home directory. However because the
% mvarget.exe program is hardwired to create the varpas.dat
% file in C:\matlab\temp directory a 'temp' directory must
% be created within the matlab directory before running.
% An additional line is added to copy the varpas.dat file
% to the proper working directory.

load mcorfact;
load ffsl;
%dirc = input ('Directory: ', 's');
%filnm = input ('File Name? XXXNNN: ', 's');
%%filepas = ['\csma\',dirc]; %Original line

filepas = ['csma\',dirc];
filepas = [filepas, '\'J;
filepas = [filepas, filnm];
%filepas = [filepas,'.spe'];
combuf = ['temp\mvarget.exe ', filepas];
dos (combuf);
% added by S.M.
%!copy C: \matlab\temp\varpas.dat temp\varpas.dat
dos ('copy C:\matlab\temp\varpas.dat temp\varpas.dat');
%!del C: \matlab\temp\varpas.dat
dos ('del C:\matlab\temp\varpas.dat');

load temp\varpas .dat;
yvals = varpas;
yvals = yvals.*mgcorr3;
yvals = filtfilt(b7,a7,yvals);
dos ('del temp\varpas.dat');
xval = mxgen3(450);
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% Compute wavelength and intensity of peak/s
%[ymaxl, imax]=max(yvals);
%xmaxl=xval (imax);

%[ymaxl,iimax]=max(yvals(135:185))
%xmaxl=xval (imax+134)

%plot (xval, yvals,'.')
%XLABEL ('Wavelength (nm) ')
%YLABEL ('Response')
%TITLE (f ilnm)
%text(xmaxl+10,ymaxl,['Peak: x= ' num2str(xmaxl) '; y=
num2str(ymaxl)])
%grid;

[nm,nn] =size (filnm);
%if nn == 9
if nn == 10

%file=filnm(1:5);
file=filnm(1:6);
ext=O;
[ymaxl, imax]=max(yvals);
xmaxl=xval (imax);

else
%file=filnm(1:6);
file=filnm(1:7);
ext=1;
[ymaxl,imax]=max(yvals(135:185));
xmaxl=xval (izmax+134);

end

plot (xval, yvals)
XLABEL ('Wavelength

YLABEL ('Response')
TITLE (filnm)

text(xmaxl+10,ymaxl,
num2str(ymax1)])
grid;

(nm) ' )

['Peak: x= ' num2str(maxl) '; y=

%filenum=str2num(filnm(3:5));
filenum=str2num(filnm(3:6));

eval(['print -depsc POSTPROCESS\FIGS\' file '.eps'])

pks=[filenum ext xmaxl ymaxl];

%save POSTPROCESS\DATA\peaks.mat peaks
%save POSTPROCESS\DATA\peaks.dat peaks -ascii

158



%anxgen3.m
function y = xgen3(ctr)
% generates x-axis for plots based on center wavelength - 300 grating

y = ctr - 107.56:.3136:ctr + 107.58;

%plotmulti

clear all
% Input the directory where the *.spe data files are

datadirl='ra'

% Number of first file in ra###*.spe sequence
firstnum=100;

% Rachel: type the numbers of the files you want

% to run here. Separate entries by a semi-colon.
files=[158; 183; 234; 261; 288; 345; 374];

Nfiles=length(files);
filestr=num2str(files);

% This queries the filenames contained in the data directory
datadir2=['csma\' datadiri];
D=dir(datadir2);
[Ntot,m]=size(D);

figure(1)
clf
hold on

S=['b' Im' Ig' 'k' 'c' 'r' 'y'];

for i=1:Nfiles

fileindex = files(i)+3-firstnum;

filename=getfield(D(fileindex), 'name')

[yvals,xvalJ=plotsub(datadirl,filename);

plot (xval, yvals,S(i))

end

XLABEL ('Wavelength (nm)')
YLABEL ('Response')
grid;
legend(filestr);
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function Eyvals,xval]=plotsub(dirc, filnm)

%plotsub.m
% This code was modified by Steve Margulis to make
% it a subroutine as part of a postprocessing program

% ploti script for spectrometry
% plots single curve of exact filename - 300 grating
% requires center wavelength and title

% NOTE: This program changed by Steve Margulis so that
% all files (csma, temp, etc.) can be put in a single
% "home" directory and run from there. All calls below are
% now referenced to this home directory. However because the
% mvarget.exe program is hardwired to create the varpas.dat
% file in C:\matlab\temp directory a 'temp' directory must
% be created within the matlab directory before running.
% An additional line is added to copy the varpas.dat file
% to the proper working directory.

load mcorfact;
load ffsi;
%dirc = input ('Directory: ', 's');
%filnm = input ('File Name? XXXNNN: ',' s');
%%filepas = ['\csma\',dirc]; %original line

filepas = ['csma\',dirc];
filepas = [filepas, '\'];
filepas = [filepas, filnm];
%filepas = [filepas,'.spe'J;
combuf = ['temp\mvarget.exe ', filepas];
dos (combuf);
% added by S.M.
%!copy C: \matlab\temp\varpas.dat temp\varpas.dat
dos ('copy C: \matlab\temp\varpas.dat temp\varpas.dat');
%!del C: \matlab\temp\varpas.dat
dos ('del C:\matlab\temp\varpas.dat');

load temp\varpas.dat;
yvals = varpas;
yvals = yvals.*mgcorr3;
yvals = filtfilt(b7,a7,yvals);
dos ('del temp\varpas.dat');
xval = mxgen3(450);

return
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APPENDIX B: PED-MEASURED DISSOLVED PAH AND PCB CONCENTRATIONS FOR

APRIL 1999 AND OCTOBER 2000
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April 1999 Lower Hudson Estuary PED-measured Dissolved Concentrations
Rachel Adams

Chemical
Phenanthrene
Pyrene
Benzo(a)pyrene

R (KJ/mol/K):
PED I (old; cm):

PED I (new; cm):

log KPEW

log (Lw/kgpe)
(23 C)

4.3
5

6.2

Time (d)
Hastings - Neap:
S. Conv. - Neap:
Battery - Neap:
Hastings - Spring:
S. Conv. - Spring:
Battery - Spring:

3
2.79
2.90
1.96
2.88
3.13

0.00831451
3.50E-03
2.70E-03

Excess
Enthalpy
(kJ/mol)

18
29
11

log KPEW

mult. factor log (Lw/kgpe)
23C --> 9C (9 C)

1.44
1.79
1.25

Mt/Minf
(new PED)

(t = 3.0 days)
0.968
0.575
0.342

Mt/Minf
(old PED)

(t = 3.0 days)
0.882
0.446
0.264

4.46
5.25
6.30

Mt/Minf
(new PED)

(t = 2.79 days)
0.960
0.555
0.330

Mt/Minf
(old PED)

(t = 2.79 days)
0.865
0.430
0.254

Ks
0.28
0.29
0.48

Mt/Minf
(new PED)

(t = 2.90 days)
0.964
0.566
0.336

Mt/Minf
(old PED)

(t = 2.90 days)
0.874
0.438
0.259

LeBas Vol.
(cmA3/mol)

199
214
265

Mt/Minf
(new PED)

(t = 1.96 days)
0.902
0.467
0.276

Mt/Minf
(old PED)

(t = 1.96 days)
0.770
0.360
0.213

Diffusivity Diffusivity @ 8 C
(cmA2/s) (cmA2/s)
1.00E-10 3.69E-11
2.OOE-11 7.37E-12
7.OOE-12 2.58E-12
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April 1999 Lower Hudson Estuary PED-measured Dissolved Concentrations
Rachel Adams

Location
Hastings
Hastings
Hastings
Hastings
Hastings
Hastings

Hastings
Hastings
Hastings

S. Conv.
S. Conv.
S. Conv.
S. Conv.
S. Conv.
S. Conv.

S.
S.
S.

Conv.
Conv.
Conv.

Battery
Battery
Battery
Battery
Battery
Battery

Battery
Battery
Battery

Time Depth
Neap (April 8-11) 8.5 m from bottom
Neap (April 8-11) 5.5 m from bottom
Neap (April 8-11) 5.5 m from bottom
Neap (April 8-11) 3 m from bottom
Neap (April 8-11) 2 m from bottom
Neap (April 8-11) 1 m from bottom

Spring (April
Spring (April
Spring (April

15-18) 8 m from bottom
15-18) 3 m from bottom
15-18) 1 m from bottom

Neap (April 8-11) 6.7 m from bottom
Neap (April 8-11) 5.5 m from bottom
Neap (April 8-11) 3 m from bottom
Neap (April 8-11) 2 m from bottom
Neap (April 8-11) 2 m from bottom
Neap (April 8-11) 1 m from bottom

Spring (April 15-18) 8 m from bottom
Spring (April 15-18) 3.5 m from bottom
Spring (April 15-18) 1.5 m from bottom

Neap (April 8-11) 9 m from bottom
Neap (April 8-11) 5.5 m from bottom
Neap (April 8-11) 3 m from bottom
Neap (April 8-11) 2 m from bottom
Neap (April 8-11) 2 m from bottom
Neap (April 8-11) 1 m from bottom

Spring (April 15-18)
Spring (April 15-18)
Spring (April 15-18)

10 m from bottom
3.5 m from bottom
1.5 m from bottom

Old or
New PE

new
new
old
new
new
new

Salinity Range
(from Rocky)

(psu)
1.9

14
14
17
17
17

old
old
old

old
old
new
old
new
old

new
new
new

old
old
old
old
new
old

old
old
old

6
6
6

8
13
19
19
19
19

12
12
12

6
17
20
27
27
27

20
21
21

2.1
18
18
18
18
18

7
7.5
7.5

12
18
20
20
20
20

15
18
18

12
25
27
27
27
27

21
23
23

Average Salinity
(psu)

2
16
16

17.5
17.5
17.5

6.5
6.75
6.75

10
15.5
19.5
19.5
19.5
19.5

13.5
15
15

9
21

23.5
27
27
27

20.5
22
22
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Salinity
Error
(psu)

0.1
2
2

0.5
0.5
0.5

Salinity
(Molarity)

0.03
0.24
0.24
0.27
0.27
0.27

0.10
0.10
0.10

0.15
0.23
0.30
0.30
0.30
0.30

0.20
0.23
0.23

0.14
0.32
0.36
0.41
0.41
0.41

0.31
0.33
0.33

0.5
0.75
0.75

2
2.5
0.5
0.5
0.5
0.5

1.5
3
3

3
4

3.5
0
0
0

0.5
1
1



April 1999 Lower Hudson Estuary PED-measured Dissolved Concentrations
Rachel Adams

Location
Hastings
Hastings
Hastings
Hastings
Hastings
Hastings

Hastings
Hastings
Hastings

S. Conv.
S. Conv.
S. Conv.
S. Conv.
S. Conv.
S. Conv.

Time
Neap (April 8-11)
Neap (April 8-11)
Neap (April 8-11)
Neap (April 8-11)
Neap (April 8-11)
Neap (April 8-11)

Spring (April 15-18)
Spring (April 15-18)
Spring (April 15-18)

Neap
Neap
Neap
Neap
Neap
Neap

(April 8-11)
(April 8-11)
(April 8-11)
(April 8-11)
(April 8-11)
(April 8-11)

Depth
8.5 m from bottom
5.5 m from bottom
5.5 m from bottom
3 m from bottom
2 m from bottom
1 m from bottom

8 m from
3 m from
1 m from

Phenanthrene
90

120
98

127
118
72

bottom
bottom
bottom

6.7 m from bottom
5.5 m from bottom
3 m from bottom
2 m from bottom
2 m from bottom
1 m from bottom

Spring (April 15-18) 8 m from bottom
Spring (April 15-18) 3.5 m from bottom
Spring (April 15-18) 1.5 m from bottom

Neap (April
Neap (April
Neap (April
Neap (April
Neap (April
Neap (April

8-11)
8-11)
8-11)
8-11)
8-11)
8-11)

9 m from bottom
5.5 m from bottom
3 m from bottom
2 m from bottom
2 m from bottom
1 m from bottom

Spring (April 15-18) 10 m from bottom
Spring (April 15-18) 3.5 m from bottom
Spring (April 15-18) 1.5 m from bottom

na/a PED
Pyrene

234
569
345
323
504
148

68
22

91
149

79
108
143

83
60

104

90
64
64
42
60
48

75
72
71

Benzo(a)pyrene

7
4

6

200
209

284
421
285
354
553
269

994
892

1134

213
229
201
119
271
132

531
471
538

5
4

ng/L
Phenanthrene Pyrene

2.2
4.7

3.3 3.7
2.6

3.6 4.1
1.2

2.9
0.9

5
4
6
4
7

9
12
39

3

2
4

8
6

Benzo(a)pyrene

0.006

0.006

2.9
3.0

3.3
5.2 4.7

2.3
3.6 3.8
4.3 4.5

2.9

2.6
1.9
3.3

8.5
7.5
9.6

2.5
2.1 2.4

2.0
1.3 1.2
1.7 2.0

1.3

2.4
2.3
2.3

5.4
4.7
5.4

0.010
0.009

0.006

0.006
0.008

0.010
0.014
0.046

0.004

0.003
0.004

0.011
0.008
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S.
S.

Conv.
Conv.
Conv.

Battery
Battery
Battery
Battery
Battery
Battery

Battery
Battery
Battery



April 1999 Lower Hudson Estuary PED-measured Dissolved Concentrations -- PCBs

from Hawker &
Connell, 1988

Kow
PCB Congener (Lw/Lo)

52 6.92E+05
95 1.35E+06

105 4.47E+06
128 5.50E+06

Spring Tide Salinity near surface:
Spring Tide Salinity near bottom:
Neap Tide Salinity near surface:
Neap Tide Salinity near bottom:

Kpe (est.)
(Lw/kgPE)

2.51 E+05
1.36E+06
1.17E+07
1.71 E+07

Excess Enthalpy
of sol.* (kJ/mol)

12
20
20
14

Kpe @ 8 C
(Lw/kgPE)

3.26E+05
2.10E+06
1.81 E+07
2:29E+07

Ks**
0.48
0.52
0.52
0.56

(mS/cm) (Molarity)
27.8 0.23
32.6 0.27

0.10
0.30

Kpe @ 8 C Kpe @ 8 C
& @ 0.10 M & @ 0.23 M

3.64E+05 4.19E+05
2.36E+06 2.75E+06
2.04E+07 2.37E+07
2.60E+07 3.06E+07

Old PED length (cm):
New PED length (cm):

R (kJ/mol/K):
T (C):

(psu)
17
19
7

21

Kpe @ 8 C
& @ 0.27 M

4.39E+05
2.89E+06
2.50E+07
3.24E+07
3.50E-03
2.55E-03

0.0083145
8

Kpe @ 8 C Kom
& 0.30 M (Ukg)
4.55E+05 3.70E+04
3.OOE+06 1.48E+05
2.59E+07 8.66E+05
3.37E+07 1.18E+06

Dpe est. @ 23C Dpe est @ 8 C
(cmA2/s) (cmA2/s)

7.OE-12 2.8E-12
4.OE-1 2 1.6E-1 2
4.OE-1 2 1.6E-1 2
1.OE-1 2 4.OE-1 3

Excess enthalpy of solution of liquid = excess enthalpy of solution of a solid - enthalpy of melting
PCB #52 measured experimentally; the remaining values calculated according to above eqn. with values from Shiu & Ma, 2000.

**Ks = 0.0018 * LeBas Molar Volume according to Xie et al., 1997
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1April 1999 Lower Hudson Estuary PED-Measured Dissolved Concentrations -- PCBs
4C 5C 60C 7C

D1 9-52 D23-44 D32-66 I D32-95 D39-99 D46-110 D54-105 I D53-146 D63-128 1 D66-174 D67-177

NEAP TIDE PED's at the Battery (SS)

0222BNP9 9 m 5.61 E+06
Tot.Xtr.Vol. (uL) 75

New or Old Old
PED dry wgt (g) 2.17 18291

Exposure Time (d) 2.9
Salinity (psu) 9 183

Salinity "Error" (psu) 3 0.27
Distance from bottom:

0222BNP3 3 m 1.21 E+06
Tot.Xtr.Vol. (uL) 200

New or Old Old
PED dry wgt (g) 1.96 4385

Exposure Time (d) 2.9
Salinity (psu) 23.5 34

Salinity "Error" (psu) 3.5 0.27
Distance from bottom:

0222BNP1 1 m 9.29E+05
Tot.Xtr.Vol. (uL) 200

New or Old Old
PED dry wgt (g) 2.07 3191

Exposure Time (d) 2.90
Salinity (psu) 27 24

Salinity "Error" (psu) 0 0.27

2.74E+06

8937

Area Cmpd. in extract (not %recovery corrected)
1.54E+06 1.48E+06 6.17E+05 1.52E+06 1.19E+05 6.47E+04 4.07E+04 1.80E+04 2.18E+04

Mass Cmpd. (pg) / (g) PED dry wgt.
5040 7036 2944 7253 567 408 257 141

Concentration calculated based on Kpe and time for diffusion into PED (pg/L)
14 0.14 0.10

171

0.21 0.21 0.10
Area Cmpd. in extract (not %recovery corrected)

5.85E+05 4.27E+05 4.43E+05 1.73E+05 3.88E+05 6.72E+04

2121 1549
Mass Cmpd. (pg) / (g) PED dry wgt.

2349 916 2055 356
Concentration calculated based on Kpe and time for diffusion into PED (pg/L)

3 0.07
0.21 0.21

Area Cmpd. in extract (not %recovery corrected)
5.17E+05 3.64E+05 4.63E+05 1.17E+05 3.09E+05

1776 1249
Mass Cmpd. (pg) / (g) PED dry wgt.

2323 587 1552
Concentration calculated based on Kpe and time for diffusion into PED (pg/L)

3
0.21

166



1April 1999 Lower Hudson Estuary PED-Measured Dissolved Concentrations -- PCBs
4 Cl 5C 6Cl

D19-52 D23-44 D32-66 I D32-95 D39-99 D46-110 D54-105 I D53-146 D63-128 D66-174

SPRING TIDE PED's at the Battery (SS)
Distance from bottom:

0222BSP1 10
Tot.Xtr.Vol. (uL) 175

New or Old Old
PED dry wgt (g) 1.96

Exposure Time (d) 3.125
Salinity (psu) 21

Salinity "Error" (psu) 0.5
Distance from bot

0222BSP4 3.5
Tot.Xtr.Vol. (uL) 125

New or Old Old
PED dry wgt (g) 1.78

Exposure Time (d) 3.125
Salinity (psu) 22

Salinity "Error" (psu) 1
Distance from bot

0222BSP2 1.5
Tot.Xtr.Vol. (uL) 175

New or Old Old
PED dry w t () 1.73

Exposure Time (d) 3.125
Salinity (psu) 22

Salinity "Error" (psu) 1

BATTERY FIELD BLANK PED

6.49E+05 3.49E+05

2354

18
0.28

tom:
4.11E+05

1638

12
0.28

tom:
1.18E+06

4825

38
0.28

4.36E+04

1266

2.60E+05

1037

6.76E+05

2772

Area Cmpd. in extract (not %recovery corrected)
2.41 E+05 2.35E+05 8.89E+04 2.17E+05

872
Mass Cmpd. (pg) / (g) PED dry wgt.

1244 471 1152
Concentration calculated based on Kpe and time for diffusion into PED (pg/L)

1.6
0.21

Area Cmpd. in extract (not %recovery corrected)
1.55E+05 1.28E+05 5.75E+04 1.42E+05 2.65E+04

619 743 335
Mass Cmpd. (pg) / (g) PED dry wgt.

828 154
Concentration calculated based on Kpe and time for diffusion into PED (pg/L)
0.7 0.03

0.21 0.21
Area Cmpd. in extract (not %recovery corrected)

4.64E+05 3.92E+05 1.60E+05 4.02E+05 3.52E+04

Mass Cmpd. (pg) / (g) PED dry wgt.
1903 2348 959 2411 211

Concentration calculated based on Kpe and time for diffusion into PED (pg/L)
3.3 0.04

0.21

5.64E+04
175
Old
1.78 174

0.21

Area Cmpd. in extract (not %recovery corrected)

Mass Cmpd. (pg) / (g) PED dry wgt.
328
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April 1999 Lower Hudson Estuary PED-Measured Dissolved Concentrations -- PCBs
4 Cl 5 CI 6 Cl 7 Cl

D19-52 D23-44 D32-66 I D32-95 D39-99 D46-110 D54-105 | D53-146 D63-128 I D66-174 D67-177

NEAP TIDE PED's at the SETM
Distance from Bottc

0228CNP7 6.7 m
Tot.Xtr.Vol. (uL) 200

New or Old
PED dry wgt (g)

Exposure Time (d)
Salinity (psu)

New
1.63
2.79

10

6.65E+06 2.83E+06 1.80E+06

32782

253

Salinity "Error" (psu) 2 0.37
Distance from Bottom:

0228CNP3 3 m 3.77E+06
Tot.Xtr.Vol. (uL) 175

New or Old New
PED dry wgt (g) 2.07 14684

Exposure Time (d) 2.79
Salinity (psu) 19.5 88

Salinity "Error" (psu) 0.5
Distance from Bottom:

0228CNP1
Tot.Xtr.Vol. (uL)

New or Old
PED dry wgt (g)

Exposure Time (d)
Salinity (psu)

Salinity "Error" (psu)

1 m
200
Old
2.28
2.79
19.5

0.5000

Area Cmpd. in extract (not %recovery corrected)
1.92E+06 8.60E+05 1.87E+06 1.45E+05 8.18E+04 4.12E+04 3.36E+04 2.88E+04

Mass Cmpd. (pg) / (g) PED dry wgt.

13965 8895 14957 6706 14587 1129 887 447 481
Concentration calculated based on Kpe and time for diffusion into PED (pg/L)

22 0.21 0.13
Fraction of Equilibrium

0.28 0.28 0.14

1.73E+06 1.08E+06 1.11E+06 4.54E+05
Area Cmpd. in extract (not %recovery corrected)

1.11E+06 1.31E+05 5.65E+04 5.18E+04

412

Mass Cmpd. (pg) / (g) PED dry wgt.

6756 4218 6866 2795 6861 809 484 443
Concentration calculated based on Kpe and time for diffusion into PED (pg/L)

7 0.12 0.10
Fraction of Equilibrium

0.37 0.28 0.28 0.14
Area Cmpd. in extract (not %recovery corrected)

9E+06 5.89E+05 3.92E+05 4.53E+05 1.67E+05 3.90E+05 3.22E+04

Mass Cmpd. (pg) / (g) PED dry wgt.

4179 2077 1383 2524 930 2175 179

33

0.27

3

C

Concentration calculated based on Kpe and time for diffusion into PED (pg/L)
0.04

Fraction of Equilibrium
.20 0.20
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April 1999 Lower Hudson Estuary PED-Measured Dissolved Concentrations -- PCBs
4 Cl

SD1 9-52 D23-44 D32-66 I D32-95 D39-99

SPRING TIDE PED's at the SETM
Distance from Bottom:

0228CSP8 8 m 4.02E+05
Tot.Xtr.Vol. (uL) 200

New or Old New
PED dry wgt (g) 1.85 1752

Exposure Time (d) 2.88
Salinity (psu) 13.5 11

Salinity "Error" (psu) 1.5 0.37
Distance from Bottom:

0228CSP3 3.5 m 3.37E+05
Tot.Xtr.Vol. (uL) 200

New or Old New
PED dry wgt (g) 1.52 1783

Exposure Time (d) 2.88
Salinity (psu) 15 11

Salinity "Error" (psu) 3 0.37
Distance from Bottom:

0228CSP1 1.5 m 1.90E+05
Tot.Xtr.Vol. (uL) 200

New or Old New
PED dry wgt (g) 1.96 779

Exposure Time (d) 2.88
Salinity (psu) 15 4

Salinity "Error" (psu) 3 0.37
CONVERGENCE FIELD BLANK PED

0228CBLK 6.30E+04
Tot.Xtr.Vol. (uL) 175

PED dry wgt (g) 1.96 259

1.

2.

1.

5 Cl 6 Cl
D46-110 D54-105 I D53-146 D63-128 I D66-174

Area Cmpd. in extract (not %recovery corrected)
38E+05 2.30E+04 8.14E+04 1.63E+05

Mass Cmpd. (pg) / (g) PED dry wgt.
817 100 5 560 1125

Concentration calculated based on Kpe and time for diffusion into PED (pg/L)
6

Fraction of Equilibrium
0.28

Area Cmpd. in extract (not %recovery corrected)
)OE+05 8.68E+04 1.10E+05 5.30E+04 1.06E+05

Mass Cmpd. (pg) / (g) PED dry wgt.
1055 459 923 443 884

Concentration calculated based on Kpe and time for diffusion into PED (pg/L)

Fraction of Equilibrium
0.28

Area Cmpd. in extract (not %recovery corrected)
02E+05 2.89E+05 9.10E+05 1.76E+04 9.46E+04

Mass Cmpd. (pg) / (g) PED dry wgt.
421 1190 5912 114 615

Concentration calculated based on Kpe and time for diffusion into PED (pg/L)
7

Fraction of Equilibrium
0.28

3.40E+04 3.27E+04

140 293 1035 213

Area Cmpd. in extract (not %recovery corrected)
8.38E+04

Mass Cmpd. (pg) / (g) PED dry wgt.
545
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lApril 1999 Lower Hudson Estuary PED-Measured Dissolved Concentrations - PCBs
4 CI 5 CI 6 Cl

D19-52 D23-44 D32-66 _ D32-95 D39-99 D46-110 D54-105 FD53-146 D63-128 D66-174

NEAP TIDE PED's at Hastings (NS)
Distance from Bottom:

0226HNP9 8.5 m 3.43E+06
Tot.Xtr.Vol. (uL)

New or Old
PED dry wgt (g)

Exposure Time (d)
Salinity (psu)

300
Old
2.17
3.00

2

Salinity "Error" (psu) 0.1
Distance from Bott

0226HNP3 3 m
Tot.Xtr.Vol. (uL) 300

New or Old New
PED dry wgt (g) 1.63

Exposure Time (d) 3.00
Salinity (psu) 17.5

Salinity "Error" (psu)
Distance

0226HNP1
Tot.Xtr.Vol. (uL)

New or Old
PED dry wgt (g)

Exposure Time (d)
Salinity (psu)

Salinity "Error" (psu)

0.5
from
1 m
300
Old
2.28
3.00

18

0.5

11779

125

0.28
om:

5.80E+06

26534

159

0.38
Bottom:

2.48E+06

8088

67

0.28

1.38E+06

4725

2.78E+06

12728

7.76E+05

2661

1.07E+06 3.54E+05

5468

12

0.21

Area Cmpd. in extract (not %recovery corrected)
7.95E+05 4.65E+04 4.65E+04 1.98E+04

Mass Cmpd. (pg) / (g) PED dry wgt.
1803 4047 237 326 139

Concentration calculated based on Kpe and time for diffusion into PED (pg/L)
0.06 0.05

Fraction of equilibrium

1.49E+06 1.62E+06 6.38E+05

6807 10975

13

0.29

1.24E+06

4036

0.21
Area Cmpd. in extract (not %recovery corrected)

1.55E+06 1.59E+05

0.21

Mass Cmpd. (pg) / (g) PED dry wgt.
4331 10495 1077

Concentration calculated based on Kpe and time for diffusion into PED (pg/L)
0.15

Fraction of equilibrium
0.29

6.46E+05 7.09E+05 2.66E+05

2109 3434 1288

6

Area Cmpd. in extract (not %recovery corrected)
6.56E+05

Mass Cmpd. (pg) / (g) PED dry wgt.
3180

Fraction of equilibrium
0.21
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1April 1999 Lower Hudson Estuary PED-Measured Dissolved Concentrations -- PCBs
4 Cl 5 CI 6 CI

D19-52 D23-44 D32-66 D32-95 D39-99 D46-110 D54-105 D53-146 D63-128 D66-174

SPRING TIDE PED's at Hastings (NS)
Distance from Bottom:

0226HSP8 8 m 5.58E+04 2.01 E+04 4.32E+04 1.29E+05
Tot.Xtr.Vol. (uL) 300

New or Old Old
PED dry wgt (g) 2.17 191 68.9 148 655

Exposure Time (d) 1.96
Salinity (psu) 7 2 2

Salinity "Error" (psu) 0.5 0.22 0.17
***This sample (Spring Hastings PED @ 8 m is suspect; it may have been switched wil

0226HSP3 3 m 1.68E+06 7.01 E+05 4.44E+05 5.62E+05
Tot.Xtr.Vol. (uL) 300

New or Old Old
PED dry wgt (g) 2.07 6064 2529 1603 3008

Exposure Time (d) 1.96
Salinity (psu) 6.75 75 8

Salinity "Error" (psu) 0.75 0.22
Distance from Bottom:

0226HSP1 1 m 3.12E+06
Tot.Xtr.Vol. (uL) 300

New or Old Old
PED dry wgt (g) 2.17 10699

Exposure Time (d) 1.96
Salinity (psu) 6.75 132

Salinity "Error" (psu) 0.75

0.17

1.45E+06

4962

Area Cmpd. in extract (not %recovery corrected)
2.1 OE+04

Mass Cmpd. (pg) / (g) PED dry wgt.
107

Concentration calculated based on Kpe and time for diffusion into PED (pg/L)

Fraction of equilibrium

Area Cmpd. in extract (not %recovery corrected)
1.80E+05 4.26E+05 5.01E+04

Mass Cmpd. (pg) / (g) PED dry wgt.
966 2280 268

Concentration calculated based on Kpe and time for diffusion into PED (pg/L)
0.08

Fraction of equilibrium

8.48E+05 8.63E+05 3.41 E+05

2910 4392

11

0.22 0.17

0.17
Area Cmpd. in extract (not %recovery corrected)

7.55E+05 5.28E+04

Mass Cmpd. (pg) / (g) PED dry wgt.
1737 3844 269

Concentration calculated based on Kpe and time for diffusion into PED (pg/L)
0.08

Fraction of equilibrium
0.17
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October 2000 Lower Hudson Estuary PED-measured Dissolved Concentrations--PAHs
Rachel Adams

PED I (cm): 2.70E-03

Chemical
Phenanthrene
Pyrene
Benzo(a)pyrene

log KPEW

log (Lw/kgpe)
(23 C)

4.3
5

6.2

Excess
Enthalpy
(kJ/mol)

18
29
11

log KPEW

mult. factor log (Lw/kgpe)
23C --> 17C (17 C)

1.16
1.28
1.10

4.37
5.11
6.24

LeBas Vol.
Ks (cmA3/mol)

0.28 199
0.29 214
0.48 265

Time (d)
Battery- Neap:
Battery- Spring:
Conv S.- Neap:
Conv S.- Neap-Spring:
Conv S.- Spring
Conv N.- Neap:
Conv N.- Neap-Spring:
Conv N.- Spring
Hastings - Neap:
Hastings - Spring:

1.68 Chemical
1.77 Phenanthrene
2.03 Pyrene
6.26 Benzo(a)pyrene
1.78
1.79
6.26
1.83
1.70
1.86

Diffusivity
(cmA2/s)

1.OOE-10
1.OOE-11
7.00E-12

Diffusivity @ 1
(cmA2/s)

6.9E-1 1
6.9E-12
4.8E-12

Mt/Minf
(t = 1.68 days)

0.972
0.417
0.349

Mt/Minf Mt/Minf Mt/Minf
(t = 2.03 days) (t = 6.26 days) (t = 1.78 days)

0.986 1.000 0.977
0.458 0.769 0.429
0.383 0.663 0.359
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October 2000 Lower Hudson Estuary PED-measured Dissolved Concentrations--PAHs
Rachel Adams

Location
Battery
Battery
Battery
Batt. Field Blank

Battery
Battery
Battery
Batt. Field Blank

S. Conv.
S. Conv.
S. Conv.
S. Conv. Field Blank

S. Conv.
S. Conv.
S. Conv.
S. Conv. Field Blank

S. Conv.
S. Conv.
S. Conv.
S. Conv. Field Blank

Time
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)

Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)

Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)

Depth
2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom

1 m from bottom
Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom

1 m from bottom
Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

Salinity Range
(from Rocky)

(psu)
17
27
27

23
25
25

10
20
20

10
14
14

13
15
15

20
27
27

23
25
25

12
25
25

24
26
26

20
22
22

Average Salinity
(psu)

18.5
27
27

23
25
25

11
22.5
22.5

17
20
20

16.5
18.5
18.5
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Salinity
"Error"
(psu)

1.5
0
0

Salinity
(Molarity)

0.16
0.23
0.23

0.20
0.21
0.21

0.09
0.19
0.19

0.14
0.17
0.17

0.14
0.16
0.16

0
0
0

1
2.5
2.5

7
6
6

3.5
3.5
3.5



October 2000 Lower Hudson Estuary PED-measured Dissolved Concentrations--PAHs
Rachel Adams

Location
N. Conv.
N. Conv.
N. Conv.
N. Conv. Field Blank

N. Conv.
N. Conv.
N. Conv.
N. Conv. Field Blank

N. Conv.
N. Conv.
N. Conv.
N. Conv. Field Blank

Hastings
Hastings
Hastings
Hastings-Field Blank

Hastings
Hastings
Hastings
Hastings-Field Blank

Time
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)

Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)

Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)

Depth
2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom

1 m from bottom
Field Blank

2 m below surf.
2 m from bottom

1 m from bottom
Field Blank

2 m below surf.
2 m from bottom

1 m from bottom
Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

Salinity Range
(from Rocky)

(psu)
6

10
10

6
10
10

12
13
13

7
17
17

8
12
12

10
22
22

17
20
20

17
20
20

9
22
22

13
15
15

Average Salinity
(psu)

8
16
16

11.5
15
15

14.5
16.5
16.5

8
19.5
19.5

10.5
13.5
13.5

174

Salinity
"Error"
(psu)

2
6
6

Salinity
(Molarity)

0.07
0.14
0.14

5.5
5
5

2.5
3.5
3.5

1
2.5
2.5

2.5
1.5
1.5

0.10
0.14
0.14

0.12
0.14
0.14

0.07
0.17
0.17

0.09
0.12
0.12



October 2000 Lower Hudson Estuary PED-measured Dissolved Concentrations--PAHs
Rachel Adams

Location
Battery
Battery
Battery
Batt. Field Blank

Battery
Battery
Battery
Batt. Field Blank

S. Conv.
S. Conv.
S. Conv.
S. Conv. Field Blank

S. Conv.
S. Conv.
S. Conv.
S. Conv. Field Blank

S. Conv.
S. Conv.
S. Conv.
S. Conv. Field Blank

Time
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)

Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)

Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)

Depth
2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2
2
1

m below surf.
m from bottom
m from bottom

Field Blank

Phenanthrene
59
20
31
14

43
32
32
7

25
14
12

7.9

72
68
77
5.1

37

41
6

nala PED
Pyrene

3357
2846
3076

9.9

Benzo(a)pyrene
60
47
43

b.d.l.

1653
1290
1402

1254
2035
1803

30

6438
6194

10285
2.4

1010

1032
1.90

34
25
26

19
22
24

b.d.l.

315
222
269

b.d.l.

35.2

31.6
b.d.l.

Phenanthrene
2.4
0.8
1.2

ng/L
Pyrene

1.7
1.2
1.2

1.0
0.5
0.5

2.8
2.6
3.0

1.5

1.6

57
46
50

26
20
22

20
31
27

60
56
94

17

17

Benzo(a)pyrene
0.083
0.061
0.056

0.044
0.031
0.032

0.026
0.027
0.029

0.233
0.160
0.194

0.048

0.043
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October 2000 Lower Hudson Estuary PED-measured Dissolved Concentrations--PAHs
Rachel Adams

Location
N. Conv.
N. Conv.
N. Conv.
N. Conv. Field Blank

N. Conv.
N. Conv.
N. Conv.
N. Conv. Field Blank

Time
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)

N. Conv. Spring (Oct 12-14)
N. Conv. Spring (Oct 12-14)
N. Conv. Spring (Oct 12-14)
N. Conv. Field Blank Spring (Oct 12-14)

Hastings Neap (Oct 4-6)
Hastings Neap (Oct 4-6)
Hastings Neap (Oct 4-6)
Hastings-Field Blank Neap (Oct 4-6)

Hastings Spring (Oct 12-14)
Hastings Spring (Oct 12-14)
Hastings Spring (Oct 12-14)
Hastings-Field Blank Spring (Oct 12-14)

Depth
2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

Phenanthrene
16
15
16
61

na/a PED
Pyrene

781
964

1285
13

11
10
17

6
4
5

8
2
2

10
9
9

Benzo(a)pyrene
27
26
34

b.d.l.

777
897

1783

472
627
869

290
558
832

565
664
755

Phenanthrene
0.67
0.61
0.65

38
52
65

12
14
16

14
10
17

21
19
19

0.4
0.4
0.7

0.24
0.17
0.19

0.33
0.10
0.10

0.41
0.36
0.36

ng/L
Pyrene

14
16
21

7
8

17

8
10
14

5
9

14

10
11
13

Benzo(a)pyrene
0.040
0.036
0.047

0.030
0.039
0.049

0.017
0.019
0.022

0.021
0.014
0.023

0.031
0.026
0.027
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October 2000 Lower Hudson Estuary PED-measured Dissolved Concentrations--PCBs
Rachel Adams

PED I (cm): 2.70E-03

Chemical
PCB #52
PCB #95
PCB #105
PCB #128

Battery-Neap:
Conv S.- Neap:
Conv S.- Neap-Spring
Conv S.- Spring
Conv N.- Neap:
Conv N.- Neap-Spring
Conv N.- Spring

from Hawker &
Connell, 1988

Kow
(Lw/Lo)

6.92E+05
1.35E+06
4.47E+06
5.50E+06

Time (d)
1.68
2.03
6.26
1.78
1.79
6.26
1.83

Kpe (est.) Excess Enthalpy
(Lw/kgPE) of sol.* (kJ/mol)

2.51 E+05 12
1.36E+06 20
1.17E+07 20
1.71E+07 14

Hastings - Neap
Hastings - Spring

mult. factor
23C --> 17C

1.11
1.18
1.18
1.12

Time (d)
1.70
1.86

log KPEW

log (Lw/kgpe) LeBas Volume
(17 C) (cmA3/mol.)

5.44 268.0
6.21 289.1
7.14 289.1
7.28 310.0

Chemical
PCB #52
PCB #95
PCB #105
PCB #128

Ks**
0.48
0.52
0.52
0.56

Mt/Minf
(t = 1.68 days) (t

0.349
0.264
0.264
0.133

log KPEW log KPEW

w/0.15 M salt w/0.20 M salt )pe est. @ 23C Dpe est @ 17
(Conv. S) (Battery) (cmA2/s) (cmA2/s)

5.52 5.54 7.OE-12 4.8E-12
6.28 6.31 4.OE-12 2.7E-12
7.22 7.25 4.OE-12 2.7E-12
7.37 7.39 1.0E-12 6.9E-13

Mt/Minf
= 2.03 days) (t

0.383
0.290
0.290
0.145

Mt/Minf
= 6.26 days) (t

0.663
0.508
0.508
0.254

Mt/Minf
= 1.78 days)

0.359
0.272
0.272
0.136
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October 2000 Lower Hudson Estuary PED-measured Dissolved Concentrations--PCBs
Rachel Adams

Location
Battery
Battery
Battery
Batt. Field Blank

Battery
Battery
Battery
Batt. Field Blank

S. Conv.
S. Conv.
S. Conv.
S. Conv. Field Blank

S. Conv.
S. Conv.
S. Conv.
S. Conv. Field Blank

S. Conv.
S. Conv.
S. Conv.
S. Conv. Field Blank

Time
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)

Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Neap-Spring (Oct
Neap-Spring (Oct
Neap-Spring (Oct
Neap-Spring (Oct

6-12)
6-12)
6-12)
6-12)

Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)

2
2
1

Depth
m below surf.
m from bottom
m from bottom

Field Blank

m below surf.
m from bottom
m from bottom

Field Blank

m below surf.
m from bottom
m from bottom

Field Blank

m
m
m

below surf.
from bottom
from bottom
Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

Salinity Range
(from Rocky)

(psu)
17
27
27

23
25
25

10
20
20

10
14
14

13
15
15
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Average
Salinity

(psu)
19
27
27

20
27
27

23
25
25

12
25
25

24
26
26

20
22
22

23
25
25

11
23
23

17
20
20

17
19
19

Salinity
Error
(psu)

2
0
0

0
0
0

1
3
3

7
6
6

4
4
4

Salinity
(Molarity)

0.16
0.23
0.23

0.20
0.21
0.21

0.09
0.19
0.19

0.14
0.17
0.17

0.14
0.16
0.16



October 2000 Lower
Rachel Adams

Location
N. Conv.
N. Conv.
N. Conv.
N. Conv. Field Blank

Conv.
Conv.
Conv.
Conv. Field Blank

Conv.
Conv.
Conv.
Conv. Field Blank

Hastings
Hastings
Hastings
Hastings

(C7)
(C7)
(C7)
(C7)

Hastings (C7)
Hastings (C7)
Hastings (C7)
Hastings (C7)

Hudson Estuary PED-measured Dissolved Concentrations--PCBs

Time
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)

Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)

Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)

2
2
1

2
2
1

Depth
m below surf.
m from bottom
m from bottom

Field Blank

m below surf.
m from bottom
m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2
2
1

m
m
m

below surf.
from bottom
from bottom

Field Blank

Salinity Range
(from Rocky)

(psu)
6

10
10

6
10
10

12
13
13

7
17
17

8
12
12
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Average
Salinity

(psu)

N.
N.
N.
N.

N.
N.
N.
N.

10
22
22

17
20
20

17
20
20

9
22
22

13
15
15

Salinity
Error
(psu)

2
6
6

6
5
5

3
4
4

1
3
3

8
16
16

12
15
15

15
17
17

8
20
20

11
14
14

3
2
2

Salinity
(Molarity)

0.07
0.14
0.14

0.10
0.13
0.13

0.12
0.14
0.14

0.07
0.17
0.17

0.09
0.12
0.12



October 2000 Lower Hudson Estuary PED-measured Dissolved Concentrations--PCBs
Rachel Adams

na/a PED
Location

Battery
Battery
Battery
Batt. Field Blank

Battery
Battery
Battery
Batt. Field Blank

S. Conv.
S. Conv.
S. Conv.
S. Conv. Field Blank

S. Conv.
S. Conv.
S. Conv.
S. Conv. Field Blank

S. Conv.
S. Conv.
S. Conv.
S. Conv. Field Blank

Time
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)

Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)

Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)

Depth
2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2
2
1

m below surf.
m from bottom
m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

PCB #52
28
13
14

0.15

35
24
23

0.05

37
34
26

0.1

72
54
58
0.1

32

30
0.10

PCB #95
15
8
9

0.14

19
13
15

0.09

19.0
15.3
11.1
0.1

40
31
33
0.1

17

16
0.10

PCB #105
1.4
1.1
1.2
0.0

1.4
1.1
1.2

0.006

2
2
1

b.d.l.

5
4
4

b.d.l.

1.9

2.0
b.d.l.

PCB #128
0.51
0.28
0.29
b.d.l.

0.51
0.28
0.29
b.d.l.

0.667
0.549
0.441
b.d.l.

1.64
1.25
1.34

b.d.l.

0.62

0.65
b.d.l.

PCB #52
245
104
115

291
196
191

312
260
196

332
242
260

278

249

PI/L
PCB #95 PCB #105

29 0.306
14 0.218
16 0.240

36
24
27

36
26
19

41
31
33

34

30

0.292
0.222
0.245

0.417
0.353
0.275

0.54
0.43
0.51

0.425

0.444
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PCB #128
0.163
0.081
0.086

0.155
0.083
0.088

0.198
0.163
0.131

0.280
0.206
0.222

0.196

0.205



October 2000 Lower Hudson Estuary PED-measured Dissolved Concentrations--PCBs
Rachel Adams

Location
N. Conv.
N. Conv.
N. Conv.
N. Conv. Field Blank

N. Conv.
N. Conv.
N. Conv.
N. Conv. Field Blank

N. Conv.
N. Conv.
N. Conv.
N. Conv. Field Blank

Hastings (C7)
Hastings (C7)
Hastings (C7)
Hastings (C7)

Hastings (C7)
Hastings (C7)
Hastings (C7)
Hastings (C7)

na/a PED
Time

Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)
Neap-Spring (Oct 6-12)

Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)

Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)
Neap (Oct 4-6)

Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)
Spring (Oct 12-14)

Depth
2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

2 m below surf.
2 m from bottom
1 m from bottom

Field Blank

PCB #52
36
42
40
0.1

72
54
58
0.1

35
26
22

0.09

35.0
35.2
28.5

0.2

38.6
37.7
32.5

0.1

PCB #95
18
21
20
0.1

40
31
33
0.1

18
13
11

0.10

16.1
17.1
14.1
0.1

16.5
16.0
14.3
0.1

PCB #105 PCB #128
1.9
2.1
2.1

b.d.l.

5
4
4

b.d.l.

1.5
1.3
1.1

0.015

1.1
1.4
1.2
0.0

1.4
1.4
1.3

b.d.1.

0.61
0.72
0.80
b.d.l.

1.64
1.25
1.34
b.d.l.

0.59
0.44
0.39
b.d.l.

0.41
0.5
0.4

b.d.l.

0.61
0.6
0.5

b.d.l.

WILL
PCB #52 PCB #95 PCB

334
361
344

349
254
273

305
221
185

325
293
237

350
333
287

20
22
21

43
32
35

35
25
22

34
32
26

34
32
28
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#105
0.25
0.25
0.25

0.57
0.45
0.54

0.333
0.287
0.248

0.263
0.296
0.256

0.334
0.334
0.303

PCB #128
0.115
0.124
0.138

0.297
0.217
0.234

0.193
0.139
0.123

0.150
0.158
0.139

0.206
0.205
0.182





APPENDIX C: ESTIMATED FLOW RATES USED IN MODELING CALCULATIONS
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Lower Hudson Estuary Flow Rates

Q in @ top
--- >

Q out @ bottom

North

Time of Year

April 9-11,1999
April 15 - 18, 1999

October 4 - 6, 2000
October 12 - 14, 2000

ern Site Sout

Q out @ top
--- >

Q in @ bottom

hern Site

Q in @ top Q in @ bottom Q out @ top Q out @ bottom Q from bottom to top
Tide (mA3/s) (mA3/s) (mA3/s) (mA3/s) (mA3/s)

Neap
Spring

Neap
Spring

2000
580

380
1280

2200
2850

530
3160

3400
3550

760
3440

800
-120

150
1010

1400

380
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Q from bottom to top
A


