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Abstract

Airlines typically construct schedule plans based on the assumption that every flight leg
departs and arrives as planned. Because this optimistic scenario rarely occurs, these plans
are frequently disrupted and airlines often incur significant costs in addition to the orig-
mally planned costs. Flight delays and schedule disruptions also cause passenger delays
and disruptions, and disrupted passengers experience very long delays and contribute to
a significant amont of the total passenger delay. A more robust plan can alleviate fight
and passenger delays and disruptions and their effects in the operation, and eventually
reduce the operation costs. In this dissertation, we first define various robustness cri-
teria in the context of airline schedule planning. Then we present two new approaches
for robust airline schedule planning to achieve minimum passenger disruptions: Robust
Aircraft Maintenance Routing, and Flight Schedule Retiming.

Because each airplane usually flies a sequence of flights, delay of one flight might
propagate along the aircraft route to downstream flights and cause further delays and
disruptions. We propose a new approach to reduce delay propagations by intelligently
routing aircraft. We formulate this problem as a mixed integer programming problem
with stochastically generated inputs. An algorithmic solution approach is presented.
Computational results obtained by using data from a major U.S. airline show that this
approach could reduce delay propagations significantly, thus improving on-time perfor-
mance and reducing passenger disruptions.

Passengers miss their connections if there is not enough time for them to connect.
These passengers experience very long delays. We develop a new approach to mini-
mize the number of passenger misconnections by re-timing the departure times of flights.
within a small time window. We generate copies for each flight arc in the flight network
and let the model pick the set of flight copies that minimizes the number of disrupted



passengers. We show various ways to formulate the problem and study the properties of
these models. An algorithmic solution approach is presented. Computational results ob-
tained by using data from a major U.S. airline show that this approach could significantly
reduce the number of passenger misconnections.

Thesis Supervisor: Cynthia Barnhart
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Chapter 1

Introduction

1.1 The Airline Schedule Planning Process

Airline schedule planning is the process of generating a schedule that has the most rev-
enue potential and resolves a host of related issues involving fleet assignment, aircraft
maintenance routing and crew scheduling. Airline schedule planning has been extensively
studied in the past decade and numerous models and algorithmic approaches have been
developed. Barnhart and Talluri (1997) [12], Lohatepanont (2001) [56] and Cohn and
Barnhart (2003) [30] have presented structural overviews of this planning process and
detailed literature reviews. Here, we give a brief introduction.

The airline schedule planning problem is huge, complex and impractical to solve
directly. This problem is therefore often divided into sequential subproblems and each
one is solved sequentially. Airline schedule planning consists of four stages: schedule
generation, fleet assignment, maintenance routing and crew scheduling (See Figure 1-1).

Schedule Generation

The schedule generation problem determines markets, frequencies and specific times
to fly. The schedule affects every operational decision and has the biggest impact on an
airline’s profitability. The schedule planning step typically begins 12 months before the

schedule goes into operation and lasts approximately 9 months (Lohatepanont (2001)
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Figure 1-1: Airline Schedule Planning Process

[56]). The schedule generation step begins with route development, in which the airline
decides which markets it wants to serve based on forecasted demand information. In this
process, airlines try to keep serving their profit-making markets and look for new oppor-
tunities to expand. Then airlines need to determine the appropriate service frequency in
these markets. The objective here is to match the frequency to the forecasted demand.
Finally, airlines need to determine at what time these flights should be offered.

In the literature, optimization models are limited in the area of schedule generation.
This is mainly because that schedule generation involves strategic decisions of an airline
and its competitors, which is hard to be captured in a mathematical model. In addition,
there are an infinite number of feasible schedules, and it is very difficult to determine the
cost of each schedule, because it depends on the solutions to the subproblems. Despite
these difficulties, Teodorovic and Kremar-Nozic (1989) [76] present a methodology that

determines optimal flight frequencies on a network maximizing total profit and market
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share and minimizing the total schedule delay of all passengers on the network. Berge
(1994) [16] presents a sub-timetable optimization approach wherc a small part of the
network is optimized and augmented to the master timetable. However, most of the
research in this area focus on improving an existing schedule. Rexing et al. (2000) [65]
and Klabjan et al. (1999) [50] present models that allow the flight times to vary within
a given time window. Lohatepanont and Barnhart (2001) [57] present an integrated
model for schedule design and fleet assignment that considers an extended schedule with
optional flight legs and determines which flights to keep and which to discard. Using the
same idea of moving flight departure times in a small time window, we develop airline
operation models to minimize the number of passengers who miss their connections in
the operation. The details of these models are reported in Chapter 4.

Fleet Assignment

The fleet assignment problem assigns a specific aircraft type to each flight in the
schedule and tries to match the seat capacity of aircraft to the demand for each flight.
The goal of this problem is to minimize operating expenses and lost revenue caused by
insufficient capacity. This assignment has to satisfy some constraints such as balance of
aircraft in the network and restrictions on the number of available aircraft of each type.

Much research has been done in this area. Daskin and Panayotopoulos (1989) [33],
Abara (1989} [1], Hane et al. (1995) [42], Gu et al. (1994) [41], Clarke et al. (1996)
[26], Rexing et al. (2000) [65], Barnhart, Kniker and Lohatepanont (2001) [10], Barn-
hart, Farahat, and Lohatepanout (2001) [7] and many others study this problem from
various aspects. Hane et al. (1995) [42] present a multi-commodity flow model with side
constraints to solve the fleet assignment problem. They develop various ways to reduce
the problem size and improve the solution time, which make it possible to solve realistic
problems with thousands of flights in a reasonable time. Gu et al. (1994) [41] study the
complexity and behavior of the model presented in the paper by Hane et al. (1995) [42].
Rexing et al. (2000) [65] present a model to achieve minimum fleet assignment costs by

allowing flight departure times to move in a small time window. Barnhart , Kniker and
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Lohatepanont (2001) [L0] present an itinerary-based model determining fleet assignment
costs more accurately than the model by Hane et al. (1995) [42]. Barnhart, Farahat, and
Lohatepanout (2001) [7] present a composite-variable based fleet assignment model that
can model fleet assignment costs as accurately as the itinerary-based model but is easier
to solve. The fleet assignment models have been widely applied in practice, and signifi-
cant savings have been achieved. For example, a 100 million dollars per year savings in
operating costs at Delta Airlines has been reported by Subramanian et al. (1994) [73].

Maintenance Routing

The maintenance routing problem constructs a set of routes, one for each aircraft, to
ensure that all aircraft are maintained at the right place and right time. US Federal Avi-
ation Association (FAA) regulations require that airlines perform periodic maintenance
checks on their aircraft after a certain number of hours of flying. These requirements
are strictly enforced and an airplane will be grounded if it does not meet them. The
objective in this step is to find maintenance feasible routes for airplanes, given a fleeted
schedule and the number of available aircraft of each fleet type. We discuss this problem
in detail in Section 3.1.

Crew Scheduling

The crew scheduling problem assigns cockpit and cabin crews to flights to achieve
minimum cost. Crew scheduling is often done in two phases. First, the crew pairing
problem is solved to construct sequences of flights (crew pairings) in such a way that
each flight is included in exactly one pairing. Second, the crew assignment problem is
solved to assign specific crews to the pairings to create schedules. These schedules must
satisfy some requirements. For instance, pilots are qualified to fly only certain types of
aircraft; flight crews cannot be away from their base or stay on duty for a time period
longer than the respective limits. The focus of crew scheduling research has historically
been the crew pairing problem, in part because of tractability issues associated with the
crew assignment problem (Barnhart and Talluri (1997) [12]). Because the crew pairing

structure 1s very complex and the cost function is nonlinear, almost all of the existing
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models formulate the crew pairing problem as a set partitioning problem with one binary
decision variable for each pairing. This formulation eliminates the need to formulate
explicitly the complex pairing structure and allows linearization of the cost function.

Because the number of variables is huge, sometimes exceeding hundreds of millions,
most crew pairing research has focused on solution techniques for solving such large-scale
integer programs. Some recent work includes Anbil et al. (1992) [5] , Barnhart et al.
(1994) [8], Barnhart and Shenoi (1998) [11], Beasley and Cao (1996) [13], Chu et al
(1997) [25], Desaulniers et al. (1997) [34] , Hoffman and Padberg (1993) [43], Klabjan et
al. (1999) [49], Klabjan and Schwan (1999) [51], Vance et al. (1997) [79].

Once pairings are generated, they are combined with rest periods, vacations, training
time, etc. to create extended work schedules that can be performed by an individual.
The objective of the crew assignment problem is to find a minimum cost assignment
of employees to these work schedules. There are two approaches for crew assignment:
rostering and bidline generation. Rostering is a common practice in Europe by which
schedules are constructed for specific individuals. Bidline generation is a common practice
in North America. In this case, the cost-minimizing subset of schedules is selected without
individual specific action. Employees reveal their relative preferences for these schedules
through a bidding process. The airline then assigns schedules to employees based on
individual priority rankings.

Many of the research results on airline schedule planning have been applied in the
airline industry and have improved airlines’ performances. This notwithstanding, almost
all optimization models in this area have assumed that flights, crews, and passengers
will operate as planned. Thus, airlines typically construct plans that maximize revenue
or minimize cost based on the assumption that every flight leg departs and arrives as
planned. Because this optimistic scenario rarely occurs, these plans are frequently dis-
rupted and airlines often incur significant costs in addition to the originally planned cost.
Currently, the “optimal” planned schedules generated by US airlines’ schedule planning

systems are far from optimal in operations. It is estimated that the financial impact of
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irregularities on the daily operations of a single major U.S. domestic carrier may exceed
$440 million per annum in lost revenue, crew overtime pay, and passenger hospitality
costs {Clarke and Smith (1999) [28]). The cost of delays and disruptions is not only
significant, but also rapidly increasing. The Air Transport Association estimates that
delays cost consumers and airlines about $5.2 billion in 1999 and $6.5 billion in 2000.
(Air Transport Association website (2003) [3]).

1.2 Delay, Cancellation and Disruption

There are many reasons that can cause flight delays and cancellations, for instance,
severe weather conditions, unexpected aircraft and personnel failures, and congestion at
the airport and in the airspace. In the year 2000, about 30% of the flights were delayed,
and about 3.5% of the flights were cancelled . Since the schedule planning system used by
airlines that creates “optimal” schedules does not attempt to manage possible delays and
cancellations, the delays and cancellations often cause disruptions to airline schedules,
sometimes with significant negative effects.

Flight delays and cancellations not only lead to aircraft and crew schedule disruptions
but also cause passengers to be disrupted from their original itinerary. Passengers are
disrupted if their planned itineraries become infeasible because one of the flights in the
planned itinerary is cancelled or there is insufficient time for them to connect between
two flights. In 2000, it is estimated that about 4% of passengers were disrupted, among
which about half of them are connecting passengers (Bratu and Barnhart (2002) [21]).
The impacts of passenger disruptions are tremendous (Bratu and Barnhart {2002) [21]).
First, disrupted passengers incur very long delays: in one case study, the average delay
for disrupted passengers is estimated to be about 419 minutes, while the average delay
for non-disrupted passengers is 14 minutes. Second, passenger disruptions cause huge
direct revenue losses. Associated revenue losses include delay cost for passengers, airline

revenue loss due to passengers being served by other airlines, and overnight passenger
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costs. Third, there are some other significant potential losses, such as loss of goodwill.
In recent years (prior to September 11, 2001), flight delays and cancellations increased
significantly in the U.S.. In 2000, 30% of the flights were delayed, a 100% increase
compared to 1995, and about 140,000 flights were cancelled, a 500% increase compared
to 1995 (Bratu and Barnhart (2002) [21]). As staggering as these numbers are, it is
estimated that flight delays and cancellations might increase dramatically in the future:
alr traffic in US is expected to double in the next 10-15 years, and each 1% increase in air
traffic will bring about a 5% increase in delays (MIT Global Industry Program [61] and
Schaefer et al. (2001) [70]). This will lead to much more frequent and serious schedule
disruptions and tremendous revenue loss unless airline schedule planning and operations
are significantly improved. This has motivated our research in robust airline schedule

planning.

1.3 Contributions and QOutline

1.3.1 Contributions

Our contributions in this dissertation are summarized as follows:

1. We provide alternative definitions of robustness in the context of airline schedule
planning. These definitions can be applied to the overall airline schedule planning

process, not just to our two approaches.

2. We propose a new approach to generatc aircraft maintenance routes minimizing
delay propagation. We formulate the problem as a mixed integer program, and
develop an algorithmic approach to solve it. We investigate the value of our ro-
bust plan over the plan generated by conventional approaches using data from a
major U.S. airline. The results show that our approach could reduce delay propa-
gation significantly, improve on-time performance and reduce number of passengers

missing their connections.
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3. We propose a new approach to reduce passenger misconnections. We develop op-
timization models to minimize the expected total number of passenger misconnec-
tions by moving Hight departure times within a small time window. We analyze
the model properties and develop an algorithmic approach. The computational
results obtained by using data from a major U.S. airline show that this approach,
which has desirable computational properties, can reduce the number of disrupted

passengers significantly.

4. We present models that integrate our models with other steps in the airline schedule

planning process therefore gaining more robustness in schedule plans.

1.3.2 Thesis Outline

In Chapter 2, we first survey some general robust planning methodology and some meth-
ods proposed by researchers to generate robust airline schedule plans. We then provide
alternative definitions of robustness in the context of airline schedule planning. Finally
we present a modeling framework for robust airline schedule planning. In Chapter 3, we
present a robust aircraft maintenance routing model and its associated solution approach.
By routing aircraft in different ways, we can reduce the delay propagating through out
the network. We also present and analyze proof-of-concept results using data from a
major U.S. airline. In Chapter 4, we present the idea of rescheduling each flight within
a small time window to achieve minimum passenger disruptions. We show various ways
to model this problem and analyze the properties of the models. We also present and
analyze proof-of-concept results using data from a major U.S. airline. In Chapter 5, we
discuss possible extensions of our models to obtain more robust airline schedules. Finally,

in Chapter 6, we summarize our contributions and describe directions for future research.
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Chapter 2

Robust Airline Schedule Planning

2.1 Introduction

There are two ways to deal with schedule disruptions. One is to re-optimize the sched-
ule after the schedule disruptions occur, which is done in the operations stage. Another
approach to managing schedule disruptions is to build robustness into the planned sched-

ules, which must be done in the planning stage.

2.1.1 Schedule Recovery

When disruptions occur, the airlines must reschedule flight operations. An airline’s re-
covery policy determines which flight departures to postpone and cancel and how to
reroute the aircraft, pilots and passengers. Although very few airlines use automated
recovery policies, lots of research has been done in this area, Airlines typically recover
from disruptions in stages (Rosenberger et al. (2001) [66]). The first stage is to recover
alrcraft by rerouting aircraft and delaying and/or cancelling flight legs. The second stage
1s to recover crew by reassigning pilots and cabin crew and calling upon reserve pilots
and cabin crew. The third stage is to recover passengers. Related literature includes

Cao and Kanafani (1997) [23], Jarrah et al. (1993) [44], Lettovsky (1997) [54], Luo and
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Yu (1997) [58], Mathaisel (1996) [60], Teodorovic and Guberinic (1984) [75], Teodorovie
and Stojkovic (1995) [77], Thengvall et al. (2000) [78], Yan and Tu (1997) [32], Yan and
Yang (1996) [83] and Yu et al. (2003) [85]. Interested readers are referred to Clarke and
Smith (2000) [29] and Rosenberger et al. (2001) [66] for a detailed review.

2.1.2 Robust Planning

Building robust into schedule is a proactive way to deal with the schedule disruptions.
A more robust plan can alleviate the effects of disruptions on the operations, and hence
reduce operations costs. Hence, building robust schedule plans is as important as re-
optimizing disrupted schedule. Although the literature for schedule recovery is prolific,
rescarch on robust airline schedule planning is very limited (See Section 2.2), partly
because of some challenges of modeling this problem as described next.

In this dissertation we will focus on building robustness into the schedule plans.
We hope to build schedule plans that are “robust” by considering explicitly possible
delays and cancellations in our planning model. These robust schedule plans should be
less sensitive to delays and cancellations or more repairable than those generated by
conventional approaches, and therefore reduce the impact of schedule disruptions during
operations. Robust plans might not be optimal for “planned” operations, but should
minimize overall realized costs.

Modeling Robust Airline Schedule Planning: Challenges

"The robust airline schedule planning problem is very challenging. First, robustness is
difficult to define with definition of robustness often being problem specific. Depending on
the particular problem instance, a robust plan might be a plan that yields the minimum
cost for the worst case, or minimum expected cost, or a plan that minimizes costs and
satisfies a certain level of service requirements, or a plan that achieves other objectives.
There hasn’t been a systematic way in the literature to define robustness in the context
of airline schedule planning.

Second, the flows of aircraft, crew, passengers, and other resources interact over the
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hub-and-spoke networks operated by most major airlines in the U.S.. Hub-and-spoke
networks present major operational challenges, When severe weather conditions reduce
a hub airport capacity, departing aircraft queues start to form and delays grow exponen-
tially and propagate throughout the operation, affecting aircraft, crew and passengers.

Third, optimization models capturing stochasticity are often computationally in-
tractable for airline problems due to their large size. In fact, deterministic optimization
models for airline schedule planning are challenging to solve. The additional complexity
and problem size when stochasticity is considered leads to issues of tractability.

Last, it is difficult to balance robustness and costs when modeling these problems.
Conventional models for airline schedule planning minimize planned costs, while airlines’
ultimate goal is to minimize operation costs, which can be viewed as the sum of the
planned costs and the costs of delays and disruptions. Adding robustness to schedules
will reduce costs for delays and disruptions and hopefully lead to reductions in operation
costs. Schedule plans with added robustness might result in higher planned costs, but
it 1s hoped that the benefit of robust plans should exceed the increased planned costs.
The value of robustness is, however, hard to quantify and thus it is difficult for airlines
to determine how much they should pay to achieve certain levels of robustness. Based
on the above analysis, we can conclude that creative ideas are needed to develop robust
airline schedule planning methods.

Robust Aircraft Maintenance Routing

Given these inherent difficulties, we adopt the strategy of finding the most robust
solution without significantly added cost. Our first model focuses on the maintenance
routing problem for the following reason. In most optimization models for the aircraft
maintenance routing problem, the objective is to maximize through revenue, the potential
revenue obtained by offering passengers the opportunity to stay on the same aircraft
rather than make a connection at an airport. In practice, this additional revenue is very
difficult to determine accurately and the financial impact is relatively small (Cordeau et

al. (2000) [32], Klabjan et al. (1999) [50]). The aircraft maintenance routing problem can
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thus be cast as a feasibility problem. This gives us the opportunity to achieve robustness
through optimizing some appropriate objective. The challenge is what robustness can
achieve for the maintenance routing problem.

Because each airplane flies a sequence of flights, arrival delay of one flight may cause
departure delay for the next flight flown by the same aircraft if there is not enough
slack between these two flights. This phenomenon is called delay propagation. Delay
propagation often causes delays for downstream flights, and delays and disruptions for
crews and passengers on these flights. Fspecially at hubs where airplanes, crews and
passengers flows are interrelated, schedules are very sensitive to delays. Thus, preventing
flight delay propagation might help to reduce delays and disruptions for downstream
flights, passengers and crews. This motivates us to look for methods that can reduce
delay propagation. Because delays propagate along aircraft routes, delay propagation
can be reduced if aircraft routes are selected intelligently. In Chapter 3, we present a
method to select aircraft routes that satisfy maintenance requirements and minimize the
expected total propagated delay. We recognize this is only a step towards building robust
schedules, but it is a step that could significantly reduce delay propagation, improve on-
time performance and reduce the number of passengers missing their connections.

Flight Schedule Retiming

As described in Section 1.2, every year large numbers of passengers are disrupted
either because their flights are cancelled or because they do not have enough time to
connect to the next flight in their itinerary. This causes significant losses to airlines and
passengers and motivates us to look for methods that can reduce passenger disruptions.
In fact, if "slack" time is inserted into the schedule appropriately, many passengers might
be saved from missing their connections. To do this, we associate with all flights small
time window and solve an optimization problem to determine the flight departure times

to minimize the number of missed connections.
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2.2 Literature for Robust Planning

Although robust airline schedule planning is a relatively new concept, "robust planning"
has been studied by many rescarchers and applied in various fields such as robot design,
manufacturing, supply chain management and logistics, telecommunications, economics,
ecology, water and environmental management, and portfolio management in finance
(For detailed reviews, readers are referred to [72], (18], [33], [86], [45], [80]). The method-
ologies used include stochastic programming (Birge and Louveaux (1997) [19]), scenario
planning (Kouvelis and Yu (1997) [53], Mulvey et al. (1995) [62]), and fuzzy optimization
(Zimmermann (1991) [86] and Sakawa (1993) [69]).

2.2.1 General Robust Planning Methodology

Stochastic Programs are mathematical programs for which some of the data incorporated
in the objective or constraints is uncertain. Uncertainty is usually characterized by
probability distributions of the parameters. The goal is to find a feasible solution for all
(or almost all) the possible data instances, and to maximize or minimize the expectation
of some function of the decisions and the random variables. The most widely applied
and studied stochastic programming models are called fwo-stage models. The decision
maker takes some action in the first stage, after which a random event occurs affecting
the outcome of the first-stage decision. A recourse decision can then be made in the
second stage that minimizes the expected costs of the consequences of that decision. One
natural generalization of the two-stage model is the multi-stage models. The decision
maker makes one decision now, waits for some uncertainty to be realized, and then
makes another decision based on what has happened. The objective is to minimize the
expected costs of all decisions taken ([72]).

Stochastic optimization sometimes fail to meet decision making needs in an environ-
ment characterized by significant uncertainty. First of all, the stochastic programming

models are often computationally intractable when applied to practical problems, due
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to their large size. Another shortcoming of the stochastic programming approach is
that it requires the decision makers to determine the probability distributions of random
variables. This is not a trivial exercise in many cases, particularly when the decision
environments have multiple interdependent uncertain factors.

Mulvey et al. (1995) [62] adopt a scenario based approach to model robustness under
two dimensions. The first dimension is solution robust: a solution is robust with respect
to optimality if it remains close to optimal for any input data scenario to the model. The
second one is model robust: a solution is robust with respect to feasibility if it remains
almost feasible for any scenario realization. There are two distinct components in their
model: a structural component that is fixed and free of any noise in its input data, and a
control component that is subjected to noisy input data. This model allows the introduc-
tion of higher moments of distribution of random variables and uses a feasibility penalty
function to penalize violations of the control constraints under some of the scenarios.

Kouvelis and Yu (1997) [53] describe and formulate robustness for problems where
associated probabilities of realizations of uncertainties are unknown. They use min-maz
regret rules to minimize the worst-case costs among all possible realizations of uncer-
tainties. They use a scenario-based approach to represent the input data uncertainty. A
specific input data scenario represents a potential realization, which occurs with some
positive but perhaps unknown probability, of the important parameters.

To deal with imprecision quantitatively, concepts and techniques of probability theory
are often employed. Bellman and Zadeh (1970) [14] believe that this assumes imprecision
can be equated with randomness, which they think is a questionable assumption. To
differentiate between randomness and fuzziness, they develop the concepts of fuzzy goals,
fuzzy constraints, and fuzzy decisions. Since then, much research has been done in this
area, and the most successful application is in fuzzy control. Applying these concepts to
optimization has attracted researchers, but the methodology is still far from mature for
real-world applications. In fuzzy optimization, the objective can be optimized inexactly,

and the constraints can be satisfied to varying degrees. Most solution approaches reported
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in the literature transform a fuzzy problem into a general (so-called "crisp") problem.
The basic idea is that the objective function should be essentially smaller than or equal to
some "aspiration level", and this can be regarded as a constraint. The fuzzy optimization

1s defined as maximizing the minimum degree of satisfaction among all the constraints

(Yan and Luh (1997) [81]).

2.2.2 Robust Airline Schedule Planning

In part because traditional optimization models for airline schedule planning assume
flights will arrive and depart as planned, airlines have incurred billions of dollars of
revenue losses due to the disruptions in operations. Recognizing these, Yen and Birge
(2001) [84] present a stochastic programming model for crew scheduling, and solve only a
small problem instance. Ageeva (2000) [2] presents a robust aircraft maintenance routing
model to provide opportunities to swap planes. The basic idea is to generate routes so
that some routes will meet, that is, have a station in common for a given length of time,
twice. This allows a controller to swap the routing of these airplanes during the period of
disruptions and later swap them back to their original routes. This is helpful for airlines
to recover from flight delays.

Chebalov and Klabjan (2002) [24] propose a similar idea for crew scheduling. They
generate crew schedules with many opportunities for crew swapping, providing more
opportunities for airlines to recover disrupted crews. Besides the objective of minimizing
crew cost, they introduce the objective of maximizing the number of move-up crews, i.e.,
the crews that can potentially be swapped in operations. They define Copt as the planned
crew cost and 7 as the "robustness factor" measuring the additional crew cost airlines
are willing to pay for robustness.. Then, they add a constraint limit the crew costs to
(1 + 7)copt when the maximum number of move-up crews are obtained. They develop a
solution method based on Lagrangian decomposition in which they relax the constraints
assoclated with counting the number of move-up crews, and add these constraints with

penalty terms to the objective function.
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Rosenberger et al. (2001) [67] realize that airline decision makers usually cancel a
cycle when canceling a flight to achieve aircraft balance. Their goal then was to develop
a robust fleet assignment and aircraft rotation model with many short cycles. Building
a number of short cycles into the schedule makes it possible to isolate disruptions by
avoiding cancellations of the large number of flights in long cycles. They define hub
connectivity as the number of flight legs in a rotation beginning at a hub, ending at
a different hub, and only stopping at spokes in-between. They then prove that fleet
assignments with limited hub connectivity have more short cycles that begin and end
at hubs. They build a string based fleet assignment model based on the idea proposed
by Barnhart et al. (1998) [6]. Their model has two variants, one is to minimize fleet
assignment costs with one added constraint to limit hub connectivity. Another is to
minimize hub connectivity and add one constraint to constrain the fleet assignment cost.
They use simulation to validate the model and show that the new fleeting and routing
results perform better in operations than those generated by conventional models.

Schaefer et al. (2001) [70] propose a stochastic extension to the deterministic crew
scheduling problem. By simulation, they obtained a linear approximation of the expected
crew cost, then solve the resulting deterministic crew scheduling problem to minimize a
lower bound on the total crew costs. In the simulation, they assume a specific crew
recovery procedure called push-back crew recovery. In the push-back crew recovery pro-
cedure, a flight is delayed until all the resources are available. Their study is limited
to "frictional disruptions", in which disruptions last for only limited duration, and do
not include lengthy unscheduled maintenance disruptions and large-scale severe weather
conditions.

Yen and Birge (2001) [84] develop a two-stage stochastic integer programming model
to minimize total crew costs. The first stage is to determine the crew pairing using
expected pairing costs. In the second stage, they consider future actions due to disrup-
tions in the original schedule. Because a major source of delays caused by crews stems

from crews who are scheduled to switch planes, they try to find out solutions in which
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crew plane changes are minimized. They have a nonlinear recourse model and develop a
special branching algorithm that exploits problem structure to solve the problem.

Kang and Clarke (2002) [47] propose a methodology for deriving an airline sched-
ule that is robust from a revenue perspective with reduced impact from unpredictable
weather. This schedule 1s derived by partitioning a current airline schedule into sev-
eral independent schedules that are prioritized on the basis of revenue. Disruptions are
isolated in a layer, thus preventing disruptions from spreading over the network. The
resulting degradable awrline schedule provides airlines with a delay/cancellation policy
and may enable airlines to segregate the market based on passenger preference for con-
venience and reliability. They model the problem using an integer programming model

and solve it by linear approximations and column generation.

2.3 Definition of Robustness

In order to achieve robust airline schedules, robustness has to be defined in a systematic
way. We propose the following definitions. A schedule plan is called robust if it

- minimizes some cost, such as the cost for the worst case among all possible real-
izations of uncertainties, the expected realized costs, the deviations from the optimal
solutions under all realizations of uncertainties;

- minimizes aircraft/passenger/crew delays and/or disruptions; or

- 1s "easy” to recover aircraft/passenger/crew when disruptions occur; or

- isolates delays and schedule disruptions to avoid downstream impacts.

With the first criterion, the resulting fleet assignment results or crew schedules are
robust in that overall operational fleeting costs or crew costs are minimized.

With the second criterion, the aircraft, crew or passenger delays and disruptions are
minimized. The delay of one flight may cause the delays of downstream flights and
cause passengers and crews to miss their connections. In this dissertation, we propose

a method to reduce delay propagation without significantly increasing costs. Reducing
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delay propagation can improve aircraft on-time rates increase and reduce the numbers
of crews and passengers delayed or disrupted. We also propose models to minimize
passenger disruptions by adjusting flight departure times in a small time window. Crew
delays or disruptions will also cause tremendous revenue loss, because crew cost is the
second largest among all airline operating costs. In addition, one of the majn reasons that
cause {lights to be delayed or cancelled is late arrival of crew members. Thus, avoiding
crew delays and disruptions is also very important.

With the third criterion, the focus is to build schedule plans that are easier to recover
from disruptions than those without robustness built in. When disruptions occur, airlines
must reschedule flight operations. Tt would be good if the schedule plans are built in such
a way that they can be easily rescheduled when disruptions occur. Looking at how Airline
Operations Control Centers recover schedule plans from disruptions may help us find ways
to build plans that are easy to recover. For example, airlines sometimes swap airplanes
(and their routes) to help recovery from disruptions. Aircraft routes with a number of
swap opportunities might be easier to recover than those without such opportunities.
This is exactly what is proposed in Ageeva (2000) [2].

Finally, major U.S. airlines typically operate hub-and-spoke networks in which delays
and disruptions easily propagate throughout the network. If we can build schedule plans
that allow the isolation of delays and disruptions, then the spread of delays and disrup-
tions will be reduced. For example, because long delays or cancellations of flights in one
hub can seriously hurt the operation in another hub, When one flight has to be cancelled,
arrlines usually cancel a cycle of flights to avoid ferrying planes. If this cycle is very long,
then lots of flights will be cancelled unnecessarily and other downstream flights may be
impacted. Based on this observation, Rosenberger et al. (2001) [67], develop a model to

generate fleet, assignment and aircraft rotations with lots of short cycles.
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Figure 2-1: Robust Crietria and the Steps of Airline Schedule Planning

2.4 Robust Airline Schedule Planning Approaches

Based on these four alternative definitions for robustness, we propose the following map-
ping of airline schedule planning research to the alternative robustness definitions, as
illustrated in Figure 2-1.

As can be seen from Figure 2-1, there are many open research directions to pursue.
Our robust aircraft maintenance routing model combines isolation of delay and disruption
and maintenance routing . The robust maintenance routing problem can be described as
follows: Given a fleeted schedule, determine maintenance feasible aircraft routes that can
reduce delay propagation and its impacts. The basic idea is to optimize the allocation
of slack between flights using historical delay information. This will reduce delay prop-
agation and its downstream impacts. In Chapter 3 we present our model, algorithmic
solution approach, and computational results.

Because passenger disruptions occur frequently and cause tremendous revenue losses,
it 1s important to develop methods in the planning stage to reduce the possible passen-

ger disruptions. Our flight schedule retiming model to minimize passenger disruptions
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combines minimal disruption for passengers and schedule generation. Our idea is to al-
low a small time window for each flight and choose departure times that minimize the
expected total number of disrupted passengers. Models, algorithmic solution approaches
and computational results are presented in Chapter 4.

In recent years, more and more rescarch has been done to integrate different steps of
the airline schedule planning process. Our robustness definitions can be applied to each
individual planning steps and also to integrated models. In Chapter 5, we present ideas

on integrated robust schedule planning.
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Chapter 3

Robust Aircraft Maintenance

Routing

3.1 Introduction to Aircraft Maintenance Routing

3.1.1 Maintenance Requirements

The FAA mandates four main categories of airline safety checks: A-, B-, C-, and D-
checks, varying in scope, duration, and frequency (Clarke et al.,1996 [26], [27]). These
requirements are strict enforced and an aircraft will be grounded if any of the require-
ments are not met. To better illustrate the details of these safety checks, we summarize
the maintenance procedure followed by American Airlines as follows (AMR Corporation
(2002), [4]).

"PS" Daily Checks

Every aircraft is checked every day in its "PS" (Periodic Service) check. The aircraft
is visually inspected and its maintenance log book is checked for entries and maintenance
needs. The "PS" check can be performed overnight or during downtime in the flight day.

It averages approximately two man-hours,

"A" Checks
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The "A" check is more detailed than the "PS" check. "A" checks are performed
roughly once a week (approximately 60 flight hours). The "A" check is performed at one
of 40 stations around American’s system. It averages 10 - 20 man-hours.

"B" Checks

The "B" check is an even more thorough maintenance check. The "B" check is done
approximately once a month (roughly 300 - 500 flight hours). In addition to specific
service performed on the aircraft, a detailed series of systems and operational checks
are performed. American always performs "B" checks inside one of its hangars at seven
different cities around its system. A "B" check requires approximately 100 man-hours on
narrowbody aircraft (those with only one aisle) and approximately 200 - 300 man-hours
on widebody aircraft (those with two aisles).

"C" Checks

The "C" check is the most thorough type of maintenance work performed by Amer-
ican. The airframe — virtually the entire aircraft — goes through an exhaustive series
of checks, inspections and overhaul work. It is performed at either of American’s heavy
maintenance and engineering centers in Tulsa, Oklahoma or the Alliance Maintenance
Facility in Fort Worth, Texas. There are different levels of "C" checks depending on the
type of aircraft. These include:

Narrowbody "C" Checks

American does two types of "C" checks on its narrowbody planes. The first is a
"Light C" check, which occurs approximately once a year. It requires approximately
2,100 man-hours and three days to accomplish. Every fourth "Light C" check becomes
a "Heavy C" check. This check requires 20,000 - 30,000 man-hours and takes from three
to five weeks to accomplish.

Widebody "C" Checks

Because of the complexity of widebody aircraft, all "C" checks are "Heavy C" checks.
The complete airframe inspection and service is done every 15 - 18 months. It takes

approximately 10,000 man-hours and from two to four weeks to accomplish a widebody
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"C" check.

Jet Engine Overhauls

Modern jet engines are among the most reliable devices in aviation. American does
not replace and overhaul jet engines at a specific number of hours. Instead, American uses
a 24-hour-a-day "condition monitoring” process that scientifically tracks the condition of
every engine on every aircraft. In addition to visual inspection, technicians monitor the
internal condition of every engine, using such procedures as boroscope inspections and oil
sample spectographs. The goal is to réplace and overhaul an engine before a problem can
occur. ingine overhauls are performed at the Tulsa and Alliance-Fort Worth Maintenance
and Engineering facilities. The engine replacement is usually performed at one of the six

"B" check hangar locations around the country.

3.1.2 Aircraft Maintenance Routing Problem

The goal of the aircraft maintenance routing problem is to determine a sequence of flights,
called routes, to be flown by individual aircraft such that each flight is included in exactly
one route, and all aircraft can be maintained as necessary. Usually, the maintenance
routing problem considers only A checks. Among the four safety checks, A-checks are
the only type that need to performed frequently. While the A-checkrequirement is that
each aircraft be maintained after every 60 hours of flying, airlines typically enforce more
stringent maintenance requirements and require an A check every 40-45 hours of flying
(about three to four calendar days). Because the maintenance equipment requires large
capital investment and some other constraints, these checks are done at a limited number
of stations.

Some major airlines have an additional requirement that each aircraft have even
wear and tear. The aircraft flying different segments of the flight schedule will encounter
different conditions with respect to flight length, weather, other environmental conditions
and maintenance schedules (Barnhart et al. (1998) [6]). One method by which airlines

can ensure equal utilization of aircraft in a fleet over the long term is to require that
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every aircraft fly all the flights assigned to its flect.

3.1.3 Literature Review

Recent work in the area of maintenance routing includes Feo and Bard (1989) [38], Kabani
and Patty (1992) [46], Desaulniers et al. (1994) [35], Clarke et al. (1996) [27], Talluri
(1998) [74], Gopalan and Talluri (1998) [40], Barnhart et al. (1998) [6]. These models
assume that the Heeted schedule will repeat everyday and if the plane overnights at a
maintenance base, it has the opportunity to undergo maintenance.

As pointed out by Gopalan and Talluri (1998) [40], it is possible to incorporate mainte-
nance routing requirements into the fleet assignment model and formulate a joint model.
The integer programming problem for such models, however, become computationally
intractable, because the new constraints that have to be added to include maintenance
requirements destroy the structure that makes it easy to solve the integer programming
formulation for the fleet assignment problem.

Clarke et al. (1996) [26] add maintenance constraints to the flect assignment model
developed by Hane et al. (1995) [42] to ensure a sufficient number of maintenance oppor-
tunities for each fleet type. A maintenance opportunity exists when an aircraft overnights
at one of its maintenance stations. While this approach ensures aircraft have enough
maintenance on average, it does not guarantee that maintenance requirements will be
satisfied for each individual aircraft. To do so, an aircraft maintenance routing problem
has to be solved explicitly.

Aircraft maintenance routing models in the literature can be divided into two cate-
gories (Barnhart and Talluri (1997) [12]): those that use graph-theoretic heuristics and
those that use mathematical programming models.

The work of Talluri (1998) [74] and Gopalan and Talluri (1998) [40] is representative
of using graph-theoretic heuristics for maintenance routing. They model the problem as
one that generates a line-of-flight graph, and finds a special Euler Tour in that directed
graph. They fix all connections for each aircraft during the day to create lines of flying,

36



specifying the origin at the start of the day and the destination at the end of the day
for this aircraft. Using this idea, they present algorithms for finding 3-day and 4-day
maintenance routes.

Feo and Bard (1989) [38] study the maintenance location problem which involves
finding the minimum number of maintenance stations required to meet the specific 4-day
A-check requirement for a proposed flight schedule. They assume that the intermediate
stops during the day are not important. They formulate this problem as a min-cost,
multicommodity network flow problem with integer restrictions on the variables. Because
the size of the formulation is too large, they use heuristics to form maintenance routes.

Kabbani and Patty (1992) [46] study the maintenance routing problem for American
Airlines, where each aircraft needs to have an A-check every three days. They formulate
the problem as a set partitioning model where a column represents a possible week-long
route and a row represents a flight. They develop a pseudo-cost to penalize routings with
unfavorable characteristics such as violation of connection times, maintenarnce violations,
and identification routes where aircraft are isolated, flying between a small subset of
airports with no chance to receive maintenance. For some large size fleets, they separate
the problem into two subproblems.

Desaulniers et al. (1997) [35] present a general modeling and algorithmic framework
for fleeting, routing and scheduling problems. They try to determine a fleet schedule
that maximizes profits, given a fleet of aircraft, a set of flight leg over a one-day horizon,
departure time windows, and durations. They present two equivalent formulations: a
multicommodity network flow formulation and a set partitioning formulation. They
describe the network structure of the subproblem when a column generation technique
is used to solve the LP relaxation of the set partitioning formulation. In addition, they
present a Dantzig-Wolfe decomposition approach to solve the LP relaxation of the time
constrained multicommodity network flow formulation. In both cases, they use a branch-
and-bound algorithm to obtain integer solutions, and present optimal branching strategies

compatible with these column generation approaches.
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Clarke at al. (1996) [27] present a flight-based model for this problem and describe a
Lagrangian relaxation solution approach that adds subtour and maintenance constraints
as they are violated. They capture through-value in the objective function. Through-
value is the revenue that would be expected to be gained from additional passengers who
would be attracted to the service because of being able to stay on the same aircraft,
rather than having to change airplanes at the stopover point.

Barnhart et al. (1998) [6] present a string-based model for fleet assignment and
maintenance routing. A string is a sequence of connected flights that begins and ends at
maintenance stations, satisfies flow balance and is maintenance feasible. The complicat-
ing maintenance constraints are easily modeled in this variable definition. Because the
number of columns for this problem is huge, they exploit the network structure of the
problem and present a branch-and-price solution approach to solve it. To ensure even
wear-and -tear on each aircraft, they add constraints to force every aircraft to fly all the
flights assigned to its fleet.

It is important to note that none of these methods considers possible delays and
disruptions in the operation. Thus, while the solutions may appear optimal, in practice,

they may be far from optimal.

3.2 Delay Propagation

As we described above, delay of one flight might propagate along the aircraft routes
to downstream flights, which might further cause delays and disruptions of passengers
and crews. Before we present our model to select aircraft routings with minimum delay
propagation, we first provide some definitions.

Flight delays may be divided into two categories:

+ Propagated delay: flight delay caused by waiting for incoming aircraft. This delay
is a function of aircraft’s routing. For the major U.S. airline for which we have data, the

propagated delay is approximately 20-30% of the total delay.
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Figure 3-1: Departures, Arrivals and Delays

- Non-propagated delay: delay caused by all other reasons, not a function of routing.
We also call this independent delay (independent of routing).

Figure 3-1 illustrates the relationship of departures, arrivals, and delays. The solid
lines with arrow represent the original schedule for two flights ¢ and j. The dotted lines
with arrow represent the actual departures and arrivals of these flights. PDT refers to
planned departure time, and ADT refers to actual departure time. PAT refers to planned
arrival time and AAT refers to actual arrival time. The turn time is the time between the
arrival of the aircraft at the gate and the time this aircraft is ready for the next flight.
The minimum turn time is the least time possible to turn an aircraft. If PTT,; is the
planned turn time between flight 7 and flight j, and MTT is the minimum turn time,
then the slack is the difference between planned turn time and minimum turn time, that

is,

PTTy; = PDT; — PAT, (3.1)

and

Slack;; = PTT,; — MTT. (3.2)
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TDD relers to total departure delay, comprised of independent departure delay (IDD)
and propagated delay (PD). PDy;, the delay propagated from flight i to flight 5 if both

flights are lown by the same aircraft, can be determined as follows:

P.Dij = I'Ili—'.‘i.)((zjf]l)z - Slack,-j, 0) (33)

TAD, the total arrival delay, is also comprised of two parts, namely, propagated delay
(PD) and independent arrival delay (TAD).

3.3 Modeling the Robust Aircraft Maintenance Rout-

ing Problem

As discussed above, delays may propagate along aircraft routes, but appropriately located
slack between two consecutive flights can prevent delay propagation. One extreme case
is 1f each flight were flown by one airplane, then there would be no delay propagation.
Of course this is not possible in reality because airplanes are so expensive that airlines
have only a lmited number of them. To be cost effective, airlines try to fly as many
flights as possible with the available fleet of aircraft. Even so, it is possible to "dampen”
and reduce propagated delay and overall flight delays by intelligently routing the aircraft,
allocating slack optimally to absorb the delay propagation as much as possible. This idea
1s to add slack where advantageous, while reducing slack where it is less needed.

Figure 3-2 illustrates the idea. Assume that flight f; and fQight f; are in the same
route (string) s;, and flight f, and flight f, are in the same route (string) ss. According
to historical data, assume that we know flight f; is delayed, as shown in the figure,
on average to the position of f{. This delay is longer than the slack between flight f;
and flight f3, causing delay to propagate from flight f; to flight f;,and causing flight f3
to be delayed or cancelled if the delay is too long. As a result, passengers connecting

from flight f3 to other flights will more likely be disrupted. Our goal is to consider the
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historical delay datal in selecting aircraft routes, so that the delay and/or cancellation of
flight f3 and the resulting passenger disruptions can be reduced. To illustrate, assume
that historical data shows that on average flight f, arrives on time. Then, a better way
to construct the aircraft routes is illustrated in the "new routing” shown in the Figure
3-2, that is to put flight f; and flight f4 in the same route and flight f, and flight f; in
another route. The effect is to add more slack after flight f; to mitigate the downstream
effects.

This problem can be solved separately for each fleet type. Because delays propagate
along the aircraft routes, it is difficult to use leg-based models to track delay propagation.
Thus, a route-based model is a more appropriate model for this problem.

We present in this section a string-based formulation for robust aircraft maintenance
routing problem. A string is defined to be a sequence of connected flights that begins and

ends at maintenance stations (not necessarily the same one). A string has the following

properties (Shenoi (1996) [71]):
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The origin of the first flight and the destination of the last flight in the sequence

are maintenance stations for that Heet;
The destination of a flight is the origin of the next flight in the sequence;

The flying time and clapsed time of the sequence does not exceed the maximum

time-between-maintenance limits required by law and by airlines;

The sequence satisfies any additional constraints imposed by the airline, such as

maximum flying time per day, etc.;

The starting time of the string is the starting time of the first flight in the sequence;
the ending time of the string is the maintenance ready time of the last flight in the
sequence for that fleet, where the maintenance ready time of a flight is defined as
the time that the aircraft flying that flight will be ready after it has been serviced
with an A-check.

Because the maintenance routing problem will be solved one or two months before

the actual schedule inception date, the exact operational information including possible

delays and disruptions is not known. We minimize the total ezpected propagated delay,

meaning that the resulting routes might not minimize propagated delays for operations

everyday, but should reduce propagated delay overall.

3.3.1 Time-Space Network

The underlying network structure of our model is a directed time-line network (see Figure

3-3), with the arc set representing the set of flights and the set of ground variables.

The nodes in the graph correspond to either the departure or arrival of a flight. Arcs

representing ground variables connect consecutive nodes at a single location, with a wrap-

around arc connecting the first and last event at a location. Count line is an arbitrarily

chosen point of time to count the number of aircraft on the ground and in the air.
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Figure 3-3: An Example of a Time-line Network Involving Two Airports

3.3.2 Determining Delays for Feasible Routes

One difficulty in modeling propagated delay is that both propagated delay and total
arrival delay are a function of routing. While we have the historical data for propagated
delay and total arrival delay for each flight based on existing routings, we do not have
propagated delay and total arrival delay data for most of the feasible routes that have
not been previously realized. Therefore, these delays in the historical data cannot be
used directly to determine the objective function coefficients. Independent arrival delay,
however, is not a function of routing. From historical data, the independent arrival delays
can be calculated for each flight by tracking the routing of each individual aircraft. Given
any feasible route, the total arrival delays and propagated delays of flights on this route

can be generated using historical data as described below:
Algorithm 1 generate delay data
1. Determine propagated delays (PD) in the historical data:
PD;; = max(TAD; — slack;;,0)
2. Determine independent arrival delays (IAD) for each flight from historical data:
TAD; =TAD; — PDy;
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3. Determine total arrwal delay (TAD) and PD for each flight of any routing:

o For the first flight on each string, TAD = IAD

3.3.3 Delay Distribution

We determine the distribution of delay with historical data from Airline Service Quality
Performance (ASQP) database. The ASQP database provides flight information for all
domestic flights served by jet aircraft by major airlines in the U.S. (those generating
revenues of §1 billion or more annually). This database is available to the general public.
ASQP provides the following flight operation information for each flight: planned depar-
ture time and arrival time, actual departure time and arrival time (including wheels-off
and wheels-on time, taxi-out and taxi-in time, airborne time) and airplane tail number.
For cancelled flights, reasons for cancellation and airplane tail number are not available.

We analyzed possible distributions for total arrival delays, including Normal, Expo-
nential, Gamma, Weibull, Lognormal, etc. The arrival delays are usually strongly asym-
metric. There are cases in which flights arrive early (the arrival delays are negative), but
most, flights arrive on time or late (the arrival delays are equal to or greater than Z€ro).
More specifically, most flights arrive around the scheduled arrival time, with very few of
them arriving very early {more than 20 minutes), and some arriving very late (more than
one hour). Therefore, the natural candidates for the arrival delay distributions are the
Gamma, Lognormal and Weibull distribution.

SAS was used to estimate the parameters and calculate the test statistics. The X2
test and/or the Kolmogorov test were used to determine if the total arrival delays follow
a specific distribution. We found that the log-normal distribution is the best fit among

all possible distributions listed above.

Irom the Table 3.1, we can see that if a significant level 0.01 is chosen, the null

hypothesis is accepted for 84% of all flights, implying that the actual arrival delays for
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a=0.05 a=0.01
Num of Num of flights % of Num of flights % of
flights with Hp accepted | total flights | with Hp accepted total flights
1448 1002 69% 1223 84%

Table 3.1: Test Results for HO: Total Arrival Delays Follow Lognormal Distribution.

84% of the flights follow a lognormal distribution. For these flights, the shape parameters
are usually less than one and location parameters are less than 0.

A variable z is lognormally distributed if y = In(z) is normally distributed with ”1n”
denoting the natural logarithm. The general formula for the probability density function

(PDF) of the lognormal distribution is:

3 {In z79)2
(4 202

flz) = @ —0ovar (3.4)

where o is the shape parameter, # is the location parameter, and m is the scale

parameter. Fxamples of the lognormal PDFs are shown in Figure 3-4 (Engineering
Statistics ITandbook (2002) [36]).

A location parameter simply shifts the graph left or right on the horizontal axis. For
these examples, the location parameter & = 0. Shape parameters allow a distribution to
take on a variety of shapes, depending on the value of the shape parameter. Many prob-
ability distributions are not a single distribution, but are in fact a family of distributions.
This is due to the distribution having one or more shape parameters. For example, the
shapes of the Weibull distribution include an exponential distribution, a right-skewed
distribution, and a relatively symmetric distribution. The effect of the scale parameter
is to squeeze or stretch the PDFs.

The distribution parameters can be obtained using Maximum Likelihood Estimation
(MLE) given historical delay data and new routing information. MLE is probably the
most general and straight-forward procedure for finding estimators. A MLE estimator is
the value of the parameters for which the observed sample is most likely to have occurred.

For details of MLE, readers are referred to Ben-Akiva and Terman (1985) [15], Pindyck
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3 Slgna = 2

Figure 3-4: Examples of the Lognormal Probability Density Function

and Rubinfeld (1997) [63].
The maximum likelihood estimates for the scale parameter, m, and the shape para-

meter, o | are

7 = exp(@), and

\/2:z 1(ln :L‘2 ) —4)? ,

where

If the location parameter is known, it can be subtracted from the original data points
before computing the maximum likelihood estimates of the shape and scale parameters.
Many commercial software such as SAS can automatically estimate the parameters based

on the sample data.
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3.3.4 Formulation of the Robust Aircraft Maintenance Routing
Model

Let S be the set of feasible strings and F be the set of flights. We denote the set of
ground variables as G, the set of strings ending with flight 4 as S, and the set of strings
beginning with flight ¢ as S;". We have one binary decision variable x, for each feasible
string s. We have ground variables denoted by y, which are used to count the number of
aircraft on the ground at maintenance stations. Tet pd;; be the delay propagated from
flight ¢ to flight 7 if flight ¢ and flight 7 are in string s. Let ag equal 1 if flight 7 is in
string s, and equal 0 otherwise. Ground variables Y; 4 €qual the number of aircraft on
the ground before flight ¢ departs at the maintenance station from which flight ¢ departs,
and ground variables y: 4 €qual the number of aircraft on the ground after flight ¢ departs
at the maintenance station from which flight 1 departs; Ground variables Yo €qual the
number of aircraft on the ground before flight 7 arrives at the maintenance station, and
ground variables yj,a equal the number of aircraft on the ground after flight 4 arrives at
the maintenance station. 7, is the number of times string s crosses the count f1me, a point
i time at which aircraft are counted, p, is the number of times ground arc g crosses the
count time, and /V is the number of planes available.

The Robust Aircraft Maintenance Routing model (RAMR) is written as follows.

min B0} (> pd3;)a,) (3.5)

s€S (i,7)es
Subject to
Zaiszs =1 VieF, (3.6)
s€8
d mi—yatul,=0  VieF, (3.7)
SES':'
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—st—y[_a-}—yfa=0 ViGF; (38)

SES;”

D rEs+ > peyg < N, (3.9)

s€S geG

1y, >0 Vge&G; (3.10)

zs €{0,1} Vse§ (3.11)

The objective is to minimize the expected total propagated delay of selected strings.
The first set of constraints are cover constraints that ensure each flight is in exactly one
string. The second and third sets of constraints are flow balance constraints, ensuring
that the number of aircraft arriving at and departing from a location are equal. The
fourth constraint is the count constraint to ensure that the total number of aircraft in
use at count time 7' (and thus at any point in time) does not exceed the number of
aircraft in the flcet. The last two sets of constraints force the number of aircraft on the
ground to be non-negative and the number of aircraft assigned to a string to 0 or 1.
Because variable y, is a sum of binary z variables, the integrality constraints on the y

variables can be relaxed, as discussed in Hane et al. (1995) [42].

3.4 Solution Approach
3.4.1 Overview of the Solution Approach

The robust aircraft maintenance routing (RAMR) problem is a stochastic discrete op-
timization problem. There is extensive literature addressing variants of this problem
type. For a detailed literature review, the reader is referred to Kleywegt et al. (2001)

[52], in which they also propose a Monte Carlo simulation-based approach for solving
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these problems. Their method is particularly applicable for the case that the expected
value function in the objective cannot be written in closed form and/or its values cannot
be easily calculated. Our model, however, is a stochastic discrete optimization problem
without random variables in the constraints, and with an expected value function that
can be calculated easily as explained in Section 3.4.9.

The objective function can be re-written as follows:

man[Z zs X ( Z pd;,)] = mians x B[ Z pdy;] =

(i,7)es (i.4)es

min Y (z, x > Elpds]) (3.12)

ses {id)es

Therefore, the objective function in original formulation 3.5 can be replaced by 3.12.
The RAMR formulation is a deterministic mixed-integer linear program with a large num-
ber of 0-1 variables. For realistic problems, the complete generation of the correspond-
ing instance, let alone its solution, requires prohibitive amounts of time and memory.
The problem can be solved, however, using a branch-and-price approach. Branch-and-
price 1s branch-and-bound with a linear programming relaxation solved at each node of
the branch-and-bound tree using column generation. This is a non-trivial extension of
branch-and-bound because the LP at each node of the enumeration tree has to be solved
using implicit enumeration methods such as column generation, and the branching rules
should not make the column generation pricing problem difficult to solve. This approach
is particularly good for integer programming problems with huge numbers of variables. Tt

works best when negative reduced cost columns can be generated (the pricing problem)

without examining all variables (Barnhart et al. (1998) [9], Martin (1999) [59]).

3.4.2 Objective Function Coefficient
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As shown in Section 3.3.3, we model total arrival delays using the lognormal distribution,
and the distribution parameters cap be obtained using Maximum Likelihood Estimation
given historical delay data and new routing information. Based on it, the expected
propagated delay for a flight pair can be determined as follows.

We know from Equation 3.3 in Section 3.3.3 that PDyj = max(TAD, — Slack;;,0).
To simplify the notation, let y represent PDy;, T represent TAD;, ¢ represent Slack;;,
we have y = max(z — ¢, 0), where z follows a lognormal distribution with the probability

density function f(z) described in Equation 3.4 . Because ¢ is a constant and can be

captured by location parameter 8, we have y = 9(z) = max(z, 0).

E(PDy) = Bly) = B(g(z)) = [* 9(z) f(z)dz
(n 22842

= 0+oo :L‘f(l‘)d:E = 0+Oo .’L‘ﬁﬁdﬂ?.
The expected propagated delays can be calculated as follows:

E)=(- @(%El))(e +mete?), (3.13)

where ®(-) is the Cumulative Distribution Function of a standard normal distribution,
—:132/2
e

which is calculated from the expression $(k) = f_;"m ~7=dz. The values of ®(-) can be

obtained in a normal distribution function table and by many commercial software.

3.4.3 Branch-and-Bound

Branch-and-bound is a divide-and-conquer method of solving integer programs (IP)
(Bradley et al. (1977) [20]). This method first relaxes the integrality constraints of
the IP, and solves the resulting linear program (LP). This LP is referred to as the root
node of the branch-and-bound enumeration tree. If the optimal TP solution has no frac-
tional values, the solution Is optimal. Otherwise, the fractional solution is eliminated

using a, branching rule, that is, a set of constraints that partitions the feasible integer
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polyhedron into mutually exclusive subdivisions. This creates two new nodes in the enm-
meration tree, and an LP is solved at each of these nodes. If the LP is infeasible, then
the corresponding IP must be infeasible, thus this node is fathomed. If the LP optimal
solution 1s not better than the current best integer solution, this node is fathomed, be-
cause exploring this branch will not improve the IP solution. If the LP optimal solution is
integral and better than the current best integer solution, then this node is fathomed and
the current best integer solution is updated. If the LP optimal solution is fractional but
the solution is better than the current best integer solution, this node is kept and further
exploration is needed from this node, because exploring this branch might improve the

IP solution.

3.4.4 LP Relaxation

Column generation is used to solve the linear programming relaxation of the RAMR
problem, because it is impractical to explicitly enumerate all feasible strings. Starting
with only a subset of variables (the corresponding problem, called the restricted master
problem), the column generation algorithm that solves the pricing problem determines
a set of optimal dual values to compute the reduced costs of nonbasic variables that
might improve the solution. Variables with negative reduced cost should be added to the
restricted master problem. The restricted master problem and the pricing problem need
to be solved repeatedly until no variables have negative reduced costs. The steps to solve

the LP relaxation are summarized as follows:
Algorithm 2 LP relazation of RAMR

1. Create initial feasible solution, form the restricted master problem (RMP), a LP

with a restricted subset of the variables.
2. Solve the RMP to find an optimal primal and dual solution.

3. Solve the pricing problem. If one or more variables with negative reduced cost are

wdentified, add them to the RMP and go to step 2; else stop: the LP is solved,
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Figure 3-5: An Example of a Connection Network

3.4.5 The Pricing Problem
ds = Z(M)E s Lvdfj] represents the total propagated delay along string s. Let ; be
corresponding to the count constraint, A; be the dua] variable corresponding to the flow

balance constraint for string s beginning or ending with flight 4, The reduced cost of a

string s beginning with flight m and ending with flight 7, is:

d—s=ds—Zai5m—T35—-/\m+)\n.

Barnhart et a]. (1998) [6] show that the pricing sub-problem of their string-based
maintenance routing model can be cast @S a constrained shortest path problem in a

connection network. An example of a connectjon network is shown in Figure 3-5. For

for more details.
Figure 3-5 shows g connection network with three airports, A, B, and C, and four
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flights numbered 1 through 4. There are three connection arcs, Cia, Cp3 and csy. Suppose
airports A and C are maintenance stations. Examples of possible strings are string s;:
fs — csa— fy and string sy fi —cip — fo — oo — fa — e — fu.

For our model, the pricing problem cannot be cast as a shortest path problem. The
reason is that ds (= Z(i’j)e s E[pd};]) cannot be assigned to each connection arc because
the propagated delay for each pair of flights depends on which strmg they belong to.
For example (see Figure 3-5), in string si: f3 — caq — fy, if flight f3 is delayed for 30
minutes(this delay is "independent delay", because flight f3 is the start flight of this
string and there is no delay propagated into flight f3), there will be a 20 minute delay
propagated to {light f; assuming the slack between these two flights is 10 minutes. If
flight f; and flight f, belong to sa: fi — 1y — f2 — o3 — f3 — ¢34 — f4, and there is a 10
minute delay propagated from flight f; to flight fs, then the delay of flight f; is increased
to 40 minutes. In contrast, there will be a 30 minute delay propagated from flight f3 to
flight fy (the total delay for flight f3 is 40 minutes, but the slack between flight f3 and
fa 1s 10 minutes).

We propose an approximate way to solve the pricing problem without explicitly eval-
uating the reduced cost for each possible string. We construct a connection network by
assigning each component of ~ 3" a,,m — r;6 — A, + A, to flight arcs and connection
arcs. We solve shortest path problems for all OD pairs of the network. If the costs for all
shortest paths are greater than or equal to zero, then no columns have negative reduced
cost, because d is greater than or equal to zero, by definition. Thus, no columns will
be added and the LP problem has been solved optimally. If the costs for some shortest
paths are less than zero, then we add these costs to d,. If the resulting total costs are less
than zero, then the corresponding columns will be added to RMP. Otherwise, no columns
will be added. We cannot claim optimality of the LP at this step because there might
be unidentified paths with cost less than zero. Although this method does not guarantee
optimality of its solutions, but is tractable because it doesn’t require the enumeration of

all variables.
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3.4.6 1IP solution

An integer solution to the robust aircraft maintenance routing problem can be obtained
by using a special branching strategy called “branching on follow-ons” (Ryan and Foster
(1981) [68], Barnhart et al. (1998) [6]). As proved in Barnhart et al. (1998) [9], this
strategy will generate optimal integer solutions to the problem. We summarize this

strategy as follows:
Algorithm 3 Branching on Follow-ons

1. If the solution is not fractional, the current maintenance routing problem is solved.
If the solution is fractional, identify a fractional string s; with 0 < z,, < 1. Denote

the sequence of flights in s; as f1, fa, f3, ..., fac1, fr.

*

2. There must be another string s, containing flight f; but not fisince 0 <z, < 1
and each flight must be covered exactly once, and because the LP solution cannot

contain two identical variables.

3. Define S, as the set of strings with each string containing fight Ji followed by f7,,,

and let Sk be the set of strings containing flight f7 and/or flight fivi, and f is

not followed by f}, ;. We create left and right branch as follows:

¢ On the left branch, we force flight ff to be followed by flight fi, with
Y se s, s = 1. To ensure the pricing subproblem generates strings satisfy-
ing this rule, we eliminate from the connection network all arcs connecting
flight f} to any flight other than flicht f* +1 and all arcs connecting to flight

13

21 from any flight other than fight f;.

¢ On the right branch, we do not allow flight f7 to be followed by flight f* ,
that is, we require that D ose spTs = 1. To ensure the pricing subproblem
generates only strings satisfying this rule, we eliminate from the network all

arcs connecting flight f to flight f7,.
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Network | Num of flights | Num of strings
N1 20 7,909,144
N2 59 614,240
N3 97 6,354,384
N4 102 01,730,736

Table 3.2: Characteristics of Four Maintenance Routing Problems.

3.5 Proof-of-Concept

3.5.1 Underlying Networks

Table 3.2 presents the characteristics of four different maintenance routing problerns, each
represents a different fleet type. Column Num of strings represents all possible strings
for each network. Although the number of flights in ecach fleet is relatively small, the

number of possible strings is very large.

3.5.2 Data and Validation

We have the July and August 2000 data for a major U.S. airline consisting of:

e ASQP data: provides the following flight operation information for each flight:
planned departure time and arrival time, actual departure time and arrival time
(including wheels-off and wheels-on time, taxi-out and taxi-in time, airborne time)

and airplane tail number
e Airline data: include number of passengers on each itinerary.

To validate our model, we build the model based on historical information, and gen-
erate aircraft routes, and then apply these routes to future operations. Suppose that we
were at the end of July 2000, and we need to determine the aircraft routes for next month,
August 2000. Thus, we estimate the objective function coefficients (propagated delays)
based on July 2000 operational data, we solve our RAMR model to obtain aircraft routes

that will be use for next month (August 2000}, and then calculate the delays and the
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Network | Old PD | New PD | PD reduced | % of PD reduced
N1 5723 4001 1632 29%
N2 3553 13R88& 2165 61%
N3 7128 3217 3011 55%
N4 9152 7108 4321 47%
Total 25556 15804 12029 47%

Table 3.3: Propagated Delays Based on July 2000 Data.

number of passenger misconnections based on the new routing solution from our model

and exsting routing from historical data. Finally we compare these numbers.

3.5.3 Computational Results

In this section we present results obtained by applying our robust maintenance routing
model to data sets representing July and August 2000 operations of a major U.S. air-
lines. Our solution algorithm is implemented in C++ and CPLEX 6.5 on a HPC 3000

workstation.

Delay Analysis

The results based on July 2000 data are listed in Table 3.3. Column Old PD indicates
the propagated delay in minutes in the historical data, column New PD indicates the
propagated delay in minutes for our routing solution, column PD reduced indicates the
reduction in minutes of propagated delay resulting from our new routing solution, and
column % of PD reduced indicates the percentage reduction in propagated delay. On

average, our routing solution can reduce total propagated dclay for the four networks by

47%.

Our model parameters are determined using the July 2000 data, thus these results do
not represent the value of our model when used in real-life setting in which the actual

delays are unknown. In practice, the model will be built using historical data, and then
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Network | Old PD | New PD | PD reduced | % of PD reduced
N1 6749 4923 1826 27%
N2 4106 2518 1558 38%
N3 &919 4113 4806 54%
N4 14526 0921 6940 48%
Total 34300 21505 15130 44%

Table 3.4: Propagated Delays Based on August 2000 Data.

P-delay [ (0,30] [ (30,60] | (60,90] | (90,120] | >120 | >0
Old [ 48% [ 18% | 12% | 05% |0.% | 9.1%,
New | 2.6% | 0.9% | 0.7% | 02% | 0.6% |35.0%

Table 3.5: Distribution for propagated delays.

will be applied to future operations. Consistent with this, we applied our July 2000
routing solution to August 2000 and obtained the results presented in Table 3.4. On
average, the RAMR model reduced total propagated delay in August by 44%.

The distributions of propagated delays for both the actual aircraft routings and our
routings using August 2000 data for the four networks are summarized in Table 3.5.
" (a,b]” indicates that the propagated delay is greater than a minutes and less than or
equal to b minutes. The row Old represents the percentage of flights with propagated
delay in specified ranges in historical data (what actually happened with the airline’s
aircraft routings), the row New represents the percentage of flights with propagated
delay in specified ranges based on our new routing solution. These results show that our

routing solution reduce number of flights with delay propagation in each time window.

The distributions of total delays for existing routing and new routing using August.
2000 data for the four networks are summarized in Table 3.6. The Department of Trans-
portation (DOT) defined on-time rate (delay less than 15 minutes) increases 1.6%, while
the 60 and 120 minutes on-time rate (delay less than 60, and 120 minutes respectively)
are also improved. The reduction in the number of flights suffering long delay should
help to reduce the number of passengers and crews who have to be re-accommodated and

reduce the number of flight cancellations.
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Total delay on-time rates
>15 min | >60 min | >120 min | 15 min | 60 min | 120 min
Old | 22.3% 7.9% 2.9% 7% | 92.1% | 97.1%
New | 20.7% 6.9% 2.6% 79.3% | 93.1% | 97.4%

Table 3.6: Distribution for Total Delays and On-time Performance.

Airlines Northwest | Continental | Delta | TWA [ Southwest
On-time rates | 79.2% 77.7% 77.3% | 76.7% | 76.2%
Rank 1 2 3 4 5

Table 3.7: On-time Performance Rank for U.S. Major Airlines.

The on-time performance defined by DOT is an important indicator of airlines’ per-
formance and level of service and is publicly available, thus has significant impact on
airlines’ image. In August 2000, the 15 minute on-time performance for major U.S. air-
lines is shown in Table 3.7 (We only list the top five) (Bureau of Transportation Statistics
[22]). A 1.6% increase of the on-time rates can improve the rank of any of these listed
airlines. Most notable, it would move the second place airline, Continental, into first

place.

Impact on Passengers

In our data, the average delay for disrupted passengers is approximately 419 minutes
while the average delay for non-disrupted passengers is approximately 14 minutes (Bratu
and Barnhart (2002)[21]). These lengthy delays cause tremendous revenue loss and oper-
ational challenges. Hence, we investigated the effect of our routing solution on passenger
disruptions. We compare the number of disrupted passengers based on the existing rout-
ings and the our routings. To do so, we compute the number of disrupted passengers
using a simple, approximate method. The first step is to re-generate the departure and

arrival data for each flight:

Algorithm 4 Re-generate the actual departure and arrival time for each flight for each

day
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1. Determine independent departure delays (IDD) and arrival delay (IAD) for each
flight from historical data:

» IDD; =TDD;—0OLD PDy;, IAD; =TAD;—OQOLD _ PDij where OLD _PD,;
is the propagated delay based on existing routings, and can be determined by

FEquation 3.3
2. Determine New_ TDD and New_ TAD according to new routings:

* For the first flight j on each string: New_ TDD; = IDD;, and New TAD,;

o For all other flights: New_TDD; = IDD;+NEW PD,;, and New_ TAD; =
ITAD;j+NEW _PDy; where NEW _PDy; is the propagated delay based on our

routings.
3. Determine the actual departure and arrival time of each flight for the our routings:

o The New_ACTj = PDTJ + NE’LU_ TDDJ

o The New_AAT; = PAT; + New_TAD;

The next step, calculating the number of disrupted passengers for a given routing

solution, is achieved as follows:

 Passenger disruptions are calculated at the flight level. If a fight is cancelled, all

passengers on that flight are disrupted.

Suppose flight A is followed by flight B and both flights are operated, if ADTy —
AATy < Ty, where Ty, is the minimum connecting time for a passenger, then

all passengers connecting from flight A to flight B are disrupted.

e For those flights without ASQP records, we don’t have the data for the actual
departure and arrival time. Therefore, we count only the disrupted passengers

with connections for which both flights have ASQP records.
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Network | Total num of D-pax | D-pax reduced | D-pax reduced (%)
N1 986 147 14.9%
N2 1070 79 7.4%
N3 1463 161 11.0%
N4 3323 355 10.7%
Total 6842 742 10.8%

Table 3.8: Results on Disrupted Passengers.

* Passengers are only counted as disrupted once. If a passenger is disrupted on any
flight leg of his/her itinerary, that passenger is not counted ag disrupted on any

other flight legs.

We use the above method to estimate the number of disrupted passengers for both
the historical routing and our routing for August 2000. The results are surmmarized in

Table 3.8.

Column D-paz reduced represents the number of disrupted passengers reduced by
using our routing solution, column Total num of D-par represents the total number of
disrupted passengers caused by flight delays (not by flight cancellations) for the historical
routing, and column D-paz reduced (%) represents the percentage reduction in disrupted
passengers. On average the RAMR routing reduces by about 11 percent the number of
disrupted passengers caused by flight delays.
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Chapter 4

Flight Schedule Retiming to Reduce

Passenger Missed Connections

4.1 Passenger Delay and Disruption

As described in Chapter 1, flight delays and cancellations, leading to other flight, crew
and passenger delays and disruptions, have increased significantly from 1995 to 2000.
Recall, a passenger is "disrupted" if his or her planned itinerary is infeasible because one
or more flights in the planned itinerary is cancelled or there is insufficient time for him
or her to connect between flights. Studies show that the level of service experienced by
passengers is correlated with airline profitability. For example, Flint (2000) [39] tries to
make this point in his report stating that America West "found itself at the bottom of
the DOT Consumer Report" in 1999, and "...business load fell 2 points in the second
half of 2000, ... This contributed to a 98% fall in annual profits".

In this same time period, passenger dissatisfaction increased dramatically. From
1995 to 2000, the number of passenger complaints per 100,000 passengers for major U.S.
airlines increased from 0.76 to 2.98 (almost 4 times) (Bratu and Barnhart (2002) [21]).

Passenger delay and disruption are the main factors behind these complaints. Bratu and
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Ave. delay | % Pax | % Total pax delay
Disrupted pax 419 min 1% 51%

Nondisrupted pax | 14 min 96% 49%
All pax 31 min
Flights 16 min

Table 4.1: Tlight and Passenger Delays.

Barnhart (2002) [21] compute flight delays and passenger delays in August 2000 using
data from a major U.S. airline. As shown in Table 4.1, the average flight delay is 16
minutes, while the average delay for passengers is 31 minutes. This table also shows
that the average delay for disrupted passengers is 419 minutes while the average delay
for nondisrupted passengers is only 14 minutes. Thus, while disrupted passengers are
only a small proportion of all passengers (4%), they account for more than half of the
total passenger delay minutes. Bratu and Barnhart (2002) [21] further estimate that the
disrupted passengers represent on average 86.3% of the passengers who experience more
than 4 hours arrival delay at their destination. These numbers show the significance of
disrupted passengers.

While short delays, such as the average delay of 14 minutes, are not good, they are
acceptable for most passengers. The delay experienced by disrupted passengers, however,
are excessive. Significantly reducing disrupted passengers will lead to large reductions in
overall passenger delay and to reductions in the "most critical" part of passenger delay.
Moreover, models to minimize number of disrupted passengers are much simpler than
those to minimize total passenger delays.

Figure 4-1 illustrates some definitions related to passenger disruption. In this chapter,
we consider disrupted passengers to be those passengers who miss their connections
because of flight delays. As defined in Section 3.2, PDT refers to planned departure
time, and ADT refers to actual departure time. PAT refers to planned arrival times, and
AAT refers to actual arrival time. MCT refers to the minimum connecting time needed
by a passenger to connect to the next flight in his or her itinerary. In reality, MCT may

vary for different passengers, as both the distance between arrival and departure gates
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and the walking speed of the individual passengers can vary significantly. In the planning
stage, however, we only have the forecasted number of passengers for flights and do not
have the characteristics of these passengers, nor the gate locations of each flight. Thus,
we assume that MCT is a constant for all passengers. PCT refers to planned connecting
time, and ACT refers to the actual connecting time. Slack is the difference between the
planned connecting time and the minimum connecting time. The relationships between

these definitions are summarized as follows.

PCT = PDT — PAT, (4.1)

Slack = PCT — MCT, (4.2)
and

ACT = ADT — AAT. (4.3)

For any connecting passenger, he/she will be disrupted if

ACT < MCT. (4.4)

4.2 Modeling Idea

Although many passengers are disrupted, causing significant losses to airlines and pas-
sengers, no existing planning models attempt to reduce passenger disruptions. Here, we
present our flight schedule retiming model to minimize the number of passenger missed
connections. In this section, we describe the basic idea of this model.

Figure 4-2 illustrates the idea of our flight schedule retiming model. Assume that in
a month there are 100 passengers connecting from flight f, to flight f;. The solid lines

with arrows represent flights, and the head of the arrow represents the arrival time plus
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Figure 4-1: Definitions Related to Passenger Disruption

the 30 minute minimum aircraft turn time. We assume that the minimum connecting
time for passengers is also 30 minutes. Suppose according to historical data, flight f, is
frequently delayed to the position of fj with probability 0.3. Hence, the probability of a
misconnection from flight f; to flight f; is 0.3, and on average, there are 0.3 x 100 = 30
passengers missing this connection. In the planning stage, if we move the departure
time of flight f; to a later time represented by f;, then even if flight f, is delayed to the
position of f,, passengers are not disrupted. Suppose flight f; is sometimes delayed to the
position of f, with probability 0.2. Now the probability of a misconnection from flight f,
to flight f3 is 0.2, and there are 0.2 x 100 = 20 passengers missing this connection, even
if light f3 is in the position of f3. Thus, by moving the departure time of flight f3 to a
later time, 10 connecting passengers are saved from disruptions. If we just consider flight
J2 and flight f5, another solution to reach the similar effect is to move the departure
time of flight f; to an earlier time, as shown by the position of fo. However, if there is
a flight f1, as shown In the figure, with passengers connecting to flight f;, and flight f;

is also [requently delayed, then moving the departure time of flight f, to the position of
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J3 might increase the total number of disrupted passengers,

As shown in Figure 4-1, if the slack is “eaten” by flight delay, passengers connecting
between two flights will be disrupted. Adding more slack can be good for connecting
passengers, but can result in reduced productivity of the fleet. The challenge then is to
determine where to add this slack so as to maximize the benefit to passengers without
requiring additional aircraft to fly the schedule. Moving flight departure times provides
an opportunity to allocate slack to reduce passenger disruptions and maintain aircraft
productivity. In practice, flight departure times are adjusted in small time windows
beginning several weeks before the flights’ departure up until the day of departure.

Levin (1971) [55] was the first to propose the idea of adding time windows to feet
routing and scheduling models. In that paper, time windows were modeled by allowing
departure times to occur at discrete intervals within the time window. Desaulniers et
al. (1997 )[35] presented two formulations for the fleet assignment and aircraft routing
problem with time windows, and building on the fleet assignment model developed by
Hane et al. (1995) [42], Rexing et al. (2000) [65] presented a fleet assignment model that
simultaneously selects departure times. Klabjan et al. (1999) [48] apply a similar idea
to crew scheduling, and develop a crew scheduling model with time windows.

If we just consider passenger connections, more slack can result in fewer disrupted
passengers. However, in practice, there are constraints on how much the departure times
can be moved. If the departure times are moved too far from their original times, the
demand for these flights can change. In addition, too much slack can require extra aircraft
and crew, resulting in significant additional costs.

The time window, specifying how much time a given flight can be shifted, can be
modeled with a simple extension of the basic flight network. By placing copies of a flight
arc at specified intervals within that flight’s time window and requiring only one of the
flight arc copies to be used, we model the choice of flight departure time. Because the
scheduled time of some flights is more flexible than others, the width of each time window

is a parameter that can be different for every flight. Moreover, the interval between copies
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Figure 4-2: Tllustration of Flight Schedule Retiming

1s another parameter, one that can impact the tractability of the model and quality of
the solution. To guarantee that flights are allowed to depart at any time within the time
window, copies should be placed at one-minute intervals. However, it will be shown in
Section 4.7 that using a narrow interval instead of a broader one causes an explosion in
the problem size, but often fails to generate a substantially better solution.

By mtelligently selecting flight departure times to optimize passengers’ connecting
time, the number of disrupted passengers can be reduced. We define a robust schedule as
a planned schedule that, over a long time, minimizes the number of disrupted passengers
in the operation.

To achieve this robust schedule, we will select flight departure times, given relatively
small departure time windows, and solutions to the first three steps of the airline schedule
planning process, namely, flight schedule design, fleet assignment and aircraft routing.
Different fleet assignment and maintenance routing solutions cause differences in how

delays propagate and passengers are disrupted. This can be illustrated using the same
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example shown in Figure 4-2. Suppose we solve the re-timing problem first, then solve the
fleet assignment and maintenance routing problems. Based on historical data, flight f;
was often on-time, and flight f, was delayed with various probabilities as described before.
If flight f» is retimed to the position of f3, and the fleet assignment and maintenance
routing problems are re-solved, likely creating different aircraft routes, delays for these
flights will also change. As a result, if flight f, is delayed frequently, then moving flight
Jf2 to the position of f; is not the best choice anymore. Instead, flight f; should be moved
to the position of f3.

If this schedule retiming is done after solving fleet assignment and maintenance rout-
ing, this problem is avoided. Hence, in our work, we consider the fleet assignment and
maintenance routes as fixed, and ensure that any schedule retiming solution does not

violate the fleeting and routing solution.

4.3 Flight Schedule Retiming Models and Their Prop-

erties

4.3.1 A Connection-based Flight Schedule Retiming Model

We define a variable for each pair of flights with connecting passengers (see Figure 4-3).
We have one binary decision variable f;, for each flight ¢ copy n, which is equal to one
if flight ¢ copy 7 is selected, and zero otherwise; one binary decision variable :Lf;” for
the connection between flight i copy n and flight j copy m, which is equal to one if the
connection between flight ¢ copy n and flight j copy m is selected, and zero otherwise.
Let dpf,;n be the number of disrupted passengers between flight 7 and flight ; if flight ¢
copy n and flight j copy m are sclected. We denote the set of all flights as F', the set
of all flights with connecting passengers as F'C, the set of all flights to which passenger

connecting as /7, the set of all flights from which passenger connecting as F¥. Let N; be

the number of copies generated for flight 7. We denote the set of Aights with passengers
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connecting from flight 7 as € (i), then |C*(7)] is the number of flights with passengers
connecting from flight i. Similarly, we denote the set of flights with passengers connecting
to flight 7 as C7(¢), then |C~(i)| is the number of flights with passengers connecting to
flight 2. Our objective is to minimize the expected total number of disrupted passengers,

subject to the following constraints:

1. For each flight, exactly one copy must be selected.

2. For each connection, exactly one copy will be selected, and this selected copy must
connect the selected flight-leg copies. For example, in Figure 4-3, if flight ¢ copy 2
and flight j copy 3 are selected, then the copy of the connection from flight i copy
2 to flight j copy 3 must be selected, that is, wf; =1.

3. The current fleeting and routing solutions can not be altered.

Objective Function

The objective function of our retiming model to minimize the expected number of dis-

rupted passengers can be written as:

winf | Y S ariretr| cmin 350 Y S alp x mlapde

i€ FO neN; je O+ (1) meN; ic FO neN; jeCH (i) meN;

In order to compute E [dpz”;"], we need to know the distribution of dpf’,,";1 , the number
of disrupted passengers connecting from flight leg i copy n to leg 7 copy m, for all flight
legs 7 and j and all copies n and m. We assume that if the difference between the actual
departure time of flight 7 and the actual arrival time of flight ¢ is less than the minimnm
connecting time, all passengers connecting from flight ¢ to flight j are disrupted. Based

on this, the distribution of dpf,zn is a binary distribution, namely
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. Cis with probabilit
aly =4 pemYE (45)
0  with probability 1 — p

where ¢;; is the number of passengers connecting from flight i to flight 5. Probability p

is determined as follows:

p = prob(ADT;,, — AAT,, < MCT), (4.6)

where ADT;,, is the actual departure time of flight j if copy m is selected, and AAT; ,
15 the actual arrival time of flight i if copy 7 is selected. As described in Chapter 3, once
the robust aircraft maintenance routing problem is solved, the distribution of ADT and
AAT for each flight leg can be determined. Then the £ [dp';';" ] can be determined for each

connection between two flights.

Model Formulation
The Connection-Based Flight Schedule Retiming Model (CFSR) is written as follows.

min Y Y Y N &7 < ElapiT (4.7)

IEFO neN; jeC+ (i) meN;

subject to

Z fin=1 Vi F¢ (4.8)
TlEN,;
YD AT =1 VieF°jcCti) (4.9)
neN; meN;
N at=fin Vi€ FOneN,je (i) (4.10)
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Figure 4-3: Illustration of the Variable Definition

Y @il =fim Vi€ FLmeN,icC () (4.11)
nenN;

fin€{0,1} Vie F neN; (4.12)

zin €{0,1} Vi€ F°ne N, jeC*(),me N, (4.13)

The objective function minimizes the expected total number of disrupted passengers.
Constraints 4.8 are cover constraints, in conjunction with the integrality requirements
of variable f (the constraints 4.12) ensure that for each Right exactly one copy will be
selected. Constraints 4.9 in conjunction with the integrality requirements of variable z
(the constraints 4.13), ensure that for each connection exactly one copy will be selected.
Constraints 4.10 and 4.11 jointly ensure that variables f and s are selected consistently.
As we explained above, this problem will be solved after solving the fleet assignment

and aircraft maintenance routing problems. Therefore, we need to add constraints to
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Figure 4-4: Example: How to Keep Current Routing Solution

maintain the current fleeting and routing solution, which is discussed next.

Enabling the Current Fleeting and Routing Solution

To maintain the current fleeting and routing solution while selecting flight departure
times, we must ensure that the time for each aircraft to turn always exceeds the minimum
turn time. For example, in Figure 4-4, suppose that flights 1 and 2 are in an aircraft
route. If the time between the arrival of flight copy fi7 and the departure of flight copy
fa,1 is less than the minimum turn time, then flight 1 copy 7 and flight 2 copy 1 cannot
be selected together, implying that xf% must equal zero. In general, for any pair of flight
legs 2 — j in an aircraft route, we can keep the current routing solution feasible by forcing

:L‘Z;n = 0, if the time between the arrival of flight copy fi, and the departure of flight
copy fjm 18 less than the minimum turn time. This can be easily implemented by setting
to zero the upper and lower bounds for each z variable corresponding to a connection

violating the minimum turn time requirement.

71



Model Properties

In this section, we analyze the model properties. Specifically, there are some constraints
in this formulation can be eliminated or relaxed. In fact, the second set of constraints
can be eliminated, because constraints 4.8, 4.10, 4.11 and 4.12 imply them. It is also not
necessary to enforce the constraints 4.13,the integrality of the connection variables, as

shown in the following.

Theorem 1 The constraints ) . n. EmeNj :L;’;” =1,Vie F° j € Ct(i) in the CFSR

model are redundant and can be eliminated.

Proof. Consider any pair of flights ¢; and j; such that flight 7, is followed by flight

J1 1n an aircraft routing. From 4.10, we have:

Z 33511::1” = fil,navn < Ni1:

mEle

which implies

2. D@m= fam

neN;, ’I‘J‘LE]\y’j;1 REN,;I
Together with ZneNil fiim = 1, this implies that for any pair of flights 4; and 7; in

sequence 1n an aircraft route,

>, D =1

’H,EN,;I mEle

Hence, constraints 4.9 are redundant and can be relaxed. m
Theorem 2 The integrality of the connection variables 4.13 can be relazed.

Proof. Let us consider flights 4; and 7; such that flight i, is followed by flight 7; in
an aircraft routing, We will show that constraints 4.8, 4.10, 4.11, 4.12 and a relaxation

of constraints 4.13 imply the satisfaction of the integrality requirements for z.
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Constraints 4.8 and 4.12 ensure that, for every fight, exactly one copy will be selected.

Suppose copy m; of flight 7; and copy m; of flight j, are selected, then

fom =1 fiyn=0,Vn ¢ N;, and n # ng;
Jimy =15 fum = 0,Ym € N, and m # m,.

From constraints 4.10, we have

Vn€ Ny andn#ny, fij,=0= Z I

i1,m
m.ef\fjl

Because z > 0, this implies

" =0,Yn € N;, and n# n,, m € Ny,.

Similarly, we have

jl:m
i1,m

Ti'n =0,Vn € Ny, Ym € N, and m # my,

which implies

Z _'1:‘;’11”::1=07 Vn € | i1

meN;, ,;m#EmM]

and

Y dmeo

me Nj ym¥#m,

Thus, together with constraints 4.10, we have:



. . -Ilm
fi,’rbl — 1 - § : ‘T"gl,ﬂq
mEle
__ SJ1mm E : 1,1
- 1—2'71 T + '7:1?1 M1
mEle m¥Emy

j1,m1
71,11

Hence, for any pair of flights 4, and ;

'™ =1 and 2™ =0, ¥n € N;; and m € Ny, and n # ny or m # my.

i1,m1 i1,m

|

For an integer programming problem, even a relatively small number of additional
binary variables can greatly impact the tractability of the problem. By relaxing the
integrality of the connection variables, we reduce significantly the number of binary
variables.

The CFSR model can be re-written equivalently by replacing 4.13 with:
0< <1 VieF°neN,jeC(i),me N, (4.14)

4.3.2 The Aggregate Connection-Based Model

The relationship between the variables z and the variables 3 can be modeled in different
ways, leading to different,but equivalent models, with different properties. One way to
model the relationship between the variables z and ¥ is to aggregate constraints 4.10 and
4.11 in the CFSR model. Instead of considering the relationship between z and ¥ for
cach pair of flights with connecting passengers, we consider the relationship for a flight
and all other flights with passengers connecting to or from this flight. This Aggregated
Connection-based Flight Schedule Retiming Model (ACFSR) is formulated as:
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mlnzz Z Z’L‘ x Bldpl

e FO neN; jeC +(3) me N;

subject to

fin Vi€ F° neN;

2. > Ar=[ct)

FJECH () mEN;

Yo > dr =0 fim Vie Flme N

e = (7) nEN;

fin€{0,1} Vi€ F° nec N

0< 2™ < Vie FOn € N;,jeCti),me N,

i,n —

This model, as shown below, is equivalent to CFSR.

Theorem 3 ACFSR model is equivalent to CFSR model.

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Proof. We first prove that the constraints 4.10 and 4.11 are equivalent to the con-

straints 4.17 and 4.18.
Simply aggregating the > N = finm, over all § € C*(7), we obtain

o> Ir =0t fin, Vi € FOn e N,

JECT(EYMEN;

imply the constraints 4.17 and 4.18.

Next, we show that any f and x satisfying 4.17 also satisfy 4.10:
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If fi» = 0, we have .I“Z’;n =0,Vj € C(i),m € N;, according to constraints 4.17 and
s

0. Hence, for any flight leg 7 € C*(4), we have

Z J—Z,;n - fi,n:Vi € Fo,’n» € N,

mEN]-

According to constraints 4.17, if f; , = 1, then

2. Y av=lcri).

JjeCT(i)meN;

Because z]," € {0,1}, we have D omen; Tt #m =1, Vj € C*(i). This implies

Y @l = fin Vi€ FOne N,
meEN;
Similarly, any f and z satisfying 4.18 also satisfy 4.11.
Because the constraints 4.10 and 4.11 are equivalent to the constraints 4.17 and 4. 18,
and all other constraints and the objective function are the same in both models, ACFSR

model is equivalent to CEFSR model. m

4.3.3 The Disaggregate Connection-based Model

An alternative retiming model disaggregate constraints 4.10 and 4.11 and consider each
individual connection copy. The model, the Disaggregate Connection-Based F light Sched-
ule Retiming Model (DCFSR), is formulated as follows:

mlnz Z Z Z EldpT (4.21)

i€ FO neN; jeCt (i) meN;

subject to

Y fin=1 VieFC (4.22)

neN;
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2 fin + fim — Vie FO ne N,je Ot (i),me Ny

fin€{0,1} Vic F° neN;

0< o <1 Vie FOne Ny,jeCt(),me N,

This model, as shown below, is also equivalent to CFSR.

Theorem 4 DCFSR model is equivalent to CFSR model.

(4.23)

(4.24)

(4.25)

Proof. We first prove that the constraints 4.10 and 4.11 are equivalent to the con-

straints 4.23.

Consider any pair of flights ¢; and j, with connecting passengers. Combining Y

1 with ZmeN 7™ = f;, » implies that, for any solution of CFSR,

1,7

DD T =Y fan

nenN; mE]\f neN;

Moreover, for any copy n, of flight 4; and copy m; of flight j;, we have

_ 1 1,77
filynl +fj17m1 - § , I—L!m § :Tzl,n )

meN; nenN;

and

2 ' E Ji,m 1,711 1,77
filu'nl +fjl)m1 xtl,’ +"I:Z]_ n1 1+$fl Ji

neEN; meN;

Thus, for any solution to CFSR, we have that

".Cljll ;Til = fll 1 +f_71 my 1,V’l:] € Fo,n] € Ngl,j] e C'+(Z'1),m1 e Nj].

neN; fi1,n

Next, we show that any integer solution satisfies 4.23 also satisfies 4.10 and 4.11.
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Both CFSR and DCFSR models ensure that, for each flight, only one copy is selected.
Without losing generality, assume that f;, , = 1, Sy = 1, then fj mam, = 0,Ym, €

Ny, and fi) nsn, = 0,Vn1 € N;,. According to constraints 4.23 |, we have

le'?llj;l:-'l/]- 2 f'i']:‘nl + fj],ml - 1 - 1.

: : . 1,71 Jimy Jumo _
In conjunction with 0 < #]!7" < 1, we have Tin, = land ;7 = 0, Vo # n,

or m # my,because this is a minimization problem with positive objective function

coefficients. For flight ¢,copy n;, and flight §;, we have

j1,m _, J1.my 1,
Z 'Tt?l :m - 1’-%?1:7!1 + Z l_zl:nl

’ITLENJ mENj ymAmy

= 1 = fz‘;,nl-

For flight 4; copy n # n4, and flight 7,, we have firntn, = 0 and

lllm I
Z '1-1?1.717&”1 = 0.
meN;

‘lelm —

nenN; “iy,n

Thus, we have ) N zfll;n = fiin, for any copy n. Similarly, we have >
firm, for any copy m.

Because the constraints 4.10 and 4.11 are equivalent to the constraints 4.23, and all
other constraints and the objective function are the same in both models, ACFSR model

is equivalent to CFSR model. m

4.4 Sizes of Models

We compute the sizes of CFSR, ACFSR, DCFSR models for a major US airline with
2,044 flight legs and 76,641 itineraries. Suppose that 7 copies are generated for each

flight leg with 5 minute intervals (7 copies correspond to a 30 minute time window) and
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Models | Num. of Var. | Num. of Integer Var. | Num. of Constraints
CEFSR 1,216,180 14,308 345,436
ACFSR 1,216,180 14,308 30,660
DCFSR 1,216,180 14,308 1,203,916

Table 4.2: Comparasion of the Problem Sizes for Flight-Based Formulations.

on average every flight leg has passengers that are connecting to 12 other flights legs
(This is typical for this airline). The sizes of the models are summarized in Table 4.2.
As expected, compared to CFSR, model, ACFSR model has far fewer constraints and
DCFSR model has far more.

4.5 Quality of the bounds of the models’ LP Relax-
ations

"The LP relaxation of integer or mixed integer programming problems is a lower bound on
the optimal solution value. In a Branch-and-bound algorithm, the quality of this lower
bound is very important. The sharper the bound, the better the algorithm. In fact, the
quality of this bound can greatly impact the computational performance of the solution
algorithm, especially when solving a large-scale problem.

We first define the strength of LP relaxations. Consider two LP relaxations A and B
of two minimization integer programming formulations. A4 is at least as strong as B, if

Za £ Zp, where 7 is the objective function value.

Theorem 5 The LP relazation of CFSR is at least as strong as that of ACFSR, and

can be stronger in some instances.

Proof. First, we show that the LP relaxation of CFSR is at least as strong as that
of ACFSR. We define the following two polyhedra, which are the feasible sets of the L.P
relaxations for CFSR and ACFSR:
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Pérsr = {(x, 1) EneN. fin =1, Vi € F°;
ZmGN] n = fin, Vi € FO, n e N, g€ Ct();
S one: Tim' = Fim, Vi € FIm € Nji € C (5);
0< fin<l VieFYnch;
<gZw<l Vi€ FOneN,je ), me N,)
Pifrsn = {(x, )] ZﬂeN fin=1, Vie F¢;
> ject) ZmENJ in =|CT@)) fin Vi€ F°neN;
Eiec—(j) Yonen, Tim = C” D fim YieF me Ny;
0<fin<l VieF¢ neN;

0<adm <1 Vie FOneN,jeC (i), me N}
It is straightforward to show that any feasible solution in Phfsr is feasible for

Pirsp-Simply ageregate the constraints

3 T = i Vi€ FOne Nyj e O (i)

meN;

over all 7 € C*(i) and the constraints

Y &l = fim Vi€ Flime Nyie C(5)

nenN;

over all 1 € C7(j) in Pfgp to obtain the corresponding constraints in PiEor Let
ZEEsr and Z5ELgr denote the optimal solution values of the LP relaxations of CFSR,
and ACFSR respectively. The objective function for both minimization models is the

same, and Pilo, C PiSoon, it follows that

Lp
ZACFSR < ZCF‘SR

Next, we show that the LP relaxation of CFSR can be stronger than that of ACFSR

for some instances. Consider a network with four flights {,4, 7, and k, each with two
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Figure 4-5: A Network to Prove Bounds of LLP Relaxations of CFSR and DCFSR

Connection | {y,7; | l,49 | lo,11 | I3, 19
E[DP)™ |8 2 10 |8
Connection | 41,51 | i1, 72 | 79,71 | 22, 72
E[DPZ [6 |3 |8 |6
Connection | i1, ky | 21, ko | ig, k1 | 29, ka2

E[DPI™] |2 1 3 2

Table 4.3: The Expected Numbers of Distupted Passengers.

copies (See Figure 4-5). The expected numbers of disrupted passengers between each

pair of flights are summarized in Table 4.3.

B2
1,2 1

and all other z =0, fi; = f;, = fr, = 1, fi, = fi, = 0.5 and all other f = 0. The

An optimal solution for the LP relaxation of ACFSR is a:'l‘f = a:H = 0.5, :L'f’f =z

optimal solution value is 10. This solution, however, is infeasible for CFSR. In fact,the
optimal solution for CFSR is f;, = fi, = f;, = fi, = 1, x?'} = :L{f = a:f} = l,and all

other variables equal zero. The corresponding optimal solution value is 12. =

Theorem 6 The LP relazation of CFSR is at least as strong as that of DCFSR and can
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be stronger in some instances.

Proof. First, we show that the LP relaxation of CFSR is at least as strong as that of
DCFSR. Denote the feasible set of the LP relaxation of DCFSR as follows:

Pilrse = {(x,1)| Sowen fin =1, Vi€ FY
DT> fin+ fim—1 Vi€ FOneN,jeCH(i),me N
0< fin<l Viie FO,ne N
0<am <1l Vi€ FOneN,jeCt(E),me N}

Consider any pair of flights i, and j; with connecting passengers. Combining Y ome N, fign =

1 with 3 ™ = fi,,» implies that, for any feasible solution to the CFSR LP,

mEN; i,n

D2 wmw =) fun=1

neN; meN; neN;

Moreover, feasible solution to the CFSR LP satisfies

_ E : 1,10 E : 1,171
f'il,nl + fj1,m1 - Tgl:m + "L‘gl,n

meEN; nen;

Considering these, we get

i ) § : § j1,m fromy J1my
fllx’"«l + .f_’h,m] S ‘rghn +CIZ31’”1 =1 + 'ril,n:[ )

nEN; meN;

Thus,for any feasible solution to the CFSR LP, we have that

T > foom + Sium — 1, Vi € FO,n € Nyyj € CH(i),m € N;.

i1,m1

Thus, Phfsg C PhErsn- Z55rsr denote the optimal solution value of the DCFSR

LP relaxation. Similar to the proof of Theorem 5, both CFSR and DCFSR have the
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same LP objective function, hence:
LP LP
Zborsr S Zopsh-

Next, we show that the LP relaxation of CFSR can be stronger than that of DCFSR
for some instances. Consider a network with two flights ¢ and j, each with two copies and
passengers are connecting from flight 7 to flights j. A solution with fi; = fis = f;, =
fj2 = 0.5 and all z = 0 is feasible for ACFSR, the corresponding solution value of the LP
relaxation of DCEFSR is zero, an optimal solution. This solution, however, is infeasible for
the LP relaxation of CFSR, because % =0# fi, =05 An optimal solution

= fin and In

meN;

for the LP relaxation of CFSR must have some z > 0, because N,
such that f;, > 0. This leads to a solution value greater than zero, because the objective
function coefficients are positive. m

Note that if we add the constraints 3 .\ ZmeN m = 1 to DCFSR model, the
bound can be improved. These results show that the CFSR model is dominates the
DCFSR model. It has a LP relaxation that is at least as strong or stronger than that
of the DCFSR. model and it has same number of variables and many fewer constraints.

Therefore, we implement only the CFSR and the ACFSR models.

4.6 Solution Approach

4.6.1 Overview of the Solution Approach

The CFSR and ACFSR formulations are deterministic mixed-integer programs with a
large number of variables. For practical problems, complete generation of all variables
will require prohibitive amounts of time and memory. Thus we solve these problems

using branch-and-price(see Section 3.4 for a detailed description).
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4.6.2 Branching Strategy

After solving an P relaxation at a node of the branch—and—bound tree, we must decide

which branching constraints should be added. We branch, based on the Cover constraintg:

D fin=1 viepe

nen,
Building on the results of Hane et 5], (1995) [42], we employ special ordered set branching
in which we divide the set of variables Jin for each flight leg  into two sets, We force
the sum of the variables in the first Set to equal one oy one branch and the sum of
the variables in the second set, to €qual one on the other branch, For fleet assignment

problem, Hane et 5] (1995) [42] show that this is a more effective branching strategy

associated with constraints 4.9 in CF SR, 7T,f n be the optima) dual variables associated

with constraints 4.10 and 7™ be the optimal dual variables associated with constraints
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4.7 Proof-of-Concept

4.7.1 Underlying Networks

For the computational experiments with our retiming models, we combine the four net-
works (described in Table 3.2) to form one network with a total of 278 flights. because
there are many passengers connecting to or from this network, we also consider flights
in the full airline network to or from which passengers using the flight legs in the 278
flight network connect. For these additional flights, we fix the current schedule. The
total number of flight legs considered in this expanded network is 1067.

4.7.2 Connection Variables

There are many variables and constraints associated with flights without copies. It would
be good to generate variables only for ﬁighﬁs with copies, which can reduce the problem
size significantly. In fact, we can just generate variables only for flights with copies, by
adding objective function coefficients to f variables. Let O(7) be the set of flights without
copy but with passengers connecting out from flight 4, I(7) be the set of flights without
copy but with passenger connecting into flight 7. Let dp;, be the number of disrupted
passengers assoclated with flight 7 copy n, and these passengers are either connecting
into Hlight ¢ from another flight without copy or connecting out from flight i to another
flight without copy. Let dpf}m k € O(z) be the number of disrupted passengers connecting
from flight ¢ copy n to flight & without copy; dp;™, k € 1(i) be the number of disrupted
passengers connecting from flight £ with copy to flight ¢ copy n. Then we have

APy = Z dpf,n+ Z dp}™.
)

keO(i) kel(s

The objective function can be re-written as follows:

min Z l’Z:Z% X E[dpi!’;n] + Zfi,n x E[dpL,n]

1,7,5,m i,n
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Because E[dp; ] is a constant for each flight ¢ copy n, we can determine it off-line before

solving the problem.

4.7.3 Data and Validation

We have the July and Augnst 2000 data for a major U.S. airline consisting of:

e ASQP data: provides the following flight operation information for each flight:
planned departure time and arrival time, actual departure time and arrival time
(including wheels-off and wheels-on time, taxi-out and taxi-in time, airborne time)

and airplane tail number

e Airline data: include number of passengers on each itinerary.

To validate our model, we build the model based on historical information, and gen-
erate schedules and apply them to future operations. Suppose that we were at the end
of July 2000, and we need to determine the schedule plans for next month, August 2000.
We use our robust aircraft maintenance routing model (see Chapter 3) to obtain routing
solution and delays for each flight are then determined based on this routing solution
(recall that propagated delays are a function of routing). Based on these, the expected
number of disrupted passengers for each connection copy is estimated using July 2000
data as described in Section 4.3.1. The sample average of the number of disrupted pas-
sengers is used as an approximation of the mean. Then we solve our flight schedule
retiming models to obtain the final flight departure times for August 2000. Hence, given
these routings and flight leg departure times generated from our model based on July
2000 data and delay information, we calculate the numbers of disrupted passengers for
August 2000 based on the new schedule generated by our model and the existing routing

from the historical data. We then compare these numbers.
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Models | Num of constraints | Num of variables | Num of non-zeros
ACFSR 1,990 27,013 54,320
CFSR. 7,506 27,013 59,836

Table 4.4: Comparasion of the Sizes of the RFRS Model and the RAFRS Model.

Models | Value at node 0 | Optimal value | Num of nodes searched | Time to solve

ACFSR 10,437 10,899 >43,590 (out of memory) | > 386,756 sec

CFSR 10,899 10,899 1 13 sec

Table 4.5: Comparasion of the Strength of the CFSR Model and the ACFSR Model.

4.7.4 Computational Results

The results obtained by applying our flight schedule retiming models to the network of a
major U.S. airline (described in Section 4.7.1)are presented below. Problems are solved

using CPLEX 6.5 on a HPC 3000 machine with 1G RAM.

Sizes and Bounds

First, we compare the size of the CFSR and ACFSR models. Using a 30 minute time
window allowing flights to depart at most 15 minutes earlier or later than originally
scheduled, we generate copies for flight arcs every five minutes, for a total of 7 copies in
each flight leg’s time window. The numbers of constraints, variables and non-zeros in the
CFSR and ACFSR models, shown in table 4.4, are consistent with our earlier analysis.
Also consistent are the results reported in table 4.5. The LP bound of the ACFSR model
is very loose, with a very fractional solution. After searching 43,590 nodes in the branch-
and-bound tree, solution algorithm fails to find an optimal solution because of memory
limitations. In contrast, the LP relaxation of the CFSR model is very tight. For this
problem instance, an optimal solution is found at the root node of the branch-and-bound
tree. For the same data, the ACFSR model did not find an optimal even after a runtime

of 5-days, while the CFSR, model found an optimal solution within 13 seconds.
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Time window Old D-pax | New D-pax D-pax reduced | D-pax reduced (%)
+15min(7 copies) 17,459 10,899 6,560 37.6%
+10min(5 copies) 17,459 12,070 9,389 30.9%
+5min(3 copies) 17.459 14,069 3,390 19.4%

Table 4.6: Effects of Retiming on Numbers of Disrupted Passengers (July 2000 Data).

Misconnections and Time Window Width

We also determined the number of passenger misconnections that can be avoided through
retiming. The results are presented in Tables 4.6 and 4.7. Time Window indicates the
total amount time (in minutes) flight legs are allowed to shift and the number of copies
of flight legs generated in this time window. For example, +£15min(7 copies) represents
each flight leg to depart at most 15 minutes earlier or later than originally scheduled.
Because we generate copies for flight arcs every five minutes, there are 7 copies in this
time window. Old D-pex indicates the total number of passenger misconnections in the
original schedule and New D-paz indicates the number of passenger misconnections in
our new schedule. D-paz reduced and D-paz reduced (%) indicate the difference in the
number (and percentage) of passenger misconnections between the old and new schedule.
Note that, in our computational experiment, we consider only those passengers whose
itineraries have at least one flight leg included in the subnetwork with 278 flights. The
disruption status of all other passengers 1s unchanged by our retiming solution.

For July 2000 data, allowing flight leg departures to shift within 30 minute time
windows (15 minutes earlier or later), the total percentage of passenger misconnections
is reduced by 37.6% using our new schedule rather than the original schedule. Moreover,
even if time windows are reduced to 10 minutes, about 20% fewer passengers miss their
connections,

There is a caveat associated with these results, because our model parameters are
determined using the July 2000 data. The above results are not replicatable in practice
because they rely on perfect knowledge of relevant future events. In practice, models must

be built using historical data, and then applied for future operations. Thus, we take our
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Time window | Old D-pax | New D-pax | D-pax reduced | D-pax reduced (%)
+15min(7 copies) 18,808 11,348 7,460 39.7%
+10min(5 copies) 18,808 12,732 6,076 32.3%
+5min(3 copies) 18,808 15,042 3,766 20.0%

Table 4.7: Effects of Retiming on Numbers of Disrupted Passengers (August 2000 Data).

retiming decisions based on July 2000 data and apply them to the August 2000 flight
network. Our results are summarized in Table 4.7. If flight departure times are allowed to
shift in a thirty-minute time window, about 40% fewer passengers miss their connections.
A twenty-minute time window reduce the number of passenger misconnections by over

30%, while a ten-minute time window reduce it by 20%.

Effects of Minimum Connection Time

All the previous results are based on the assumption that the minimum connection time
for passengers is 30 minutes. We summarize the effects of connection time and time
window width on the numbers of passenger misconnections in Tables 4.8 and 4.9. Using
July 2000 data and retiming the minimum connection time equal 20 and then 25 minutes,

the results are summarized as:

1. The numbers of passenger misconnections for both the actual and retimed schedules
are reduced, for all time window widths. This is an expected result given the
definition of a disrupted passenger (in Section 4.1). If the required connection time

1s shortened, a passenger is more likely to make his/her connection.

2. With shortened connection times, the percentage reduction in the number of pas-
senger misconnections in the retimed schedule is reduced. This likely follows
because many of the disrupted passengers in the original schedule misconnection
by more than 30 minutes and hence are unrecoverable through these retiming mod-
els. Nonetheless, there is a reduction in the number of passenger misconnections

between 10% to 30%, even with these "short" time windows and connection times.
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r-Time window | Old D-pax | New D-pax | D-pax reduced | D-pax reduced (%)
T15min(7 copies) 14,199 9,866 4,333 30.5%
+10min(5 copies) 14,199 10,778 3,421 24.1%
F5min(3 copies) 14,199 12,026 2,173 15.3%

Table 4.8: 25 mnute Minimum Conne

ction Time (July 2000 Data).

Time window Old D-pax | New D-pax D-pax reduced [ D-pax reduced (%)
F15min(7 copies) 12,090 9,148 2,942 24.3%
+10min(5 copies) 12,090 9,812 2,278 18.8%
+5min(3 copies) 12,090 10,767 1,323 10.9%

Table 4.9:

90 minute Minimum Connection Time (July 2000 Data.).

For August 2000 data, we obtained similar results presented in Tables 4.10 and 4.11,
for our routing and retiming decisions based on July data. There is a significant
reduction in the number of passenger rmisconnections (from 15% to 33% for 25 minute
minimum connection times, and between 12% to 97% for 20 minute minimum connection

tirae).

Effects of Copy Interval

For given time window width, another parameter to determine is the optimal number
of copies to generate for each flight leg, that 1s, the optimal time interval between flight
copies. These results are obtained by assuming a 30 minute minimum connection time

and based July 2000 data.

In Table 4.12, we provide results of our analysis 1n which we assumed a minimurm of

Time window | Old D-pax | New D-pax | D-pax reduced | D-pax reduced (%)
F15min(7 copies) 15,102 10,144 4,958 32.8%
+10min(5 copies) 15,102 11,237 3,865 25.6%

T 5min(3 copies) 15,102 12,753 2,349 15.6%

Table 4.10: 25 minute Minimum Connection Time (August 2000 data).
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Time window Old D-pax | New D-pax | D-pax reduced | D-pax reduced (%)
+15min(7 copies) 12,724 9,275 3,449 27.1%
+10min(5 copies) 12,724 10,054 2,670 21.0%
+5min(3 copies) 12,724 11,107 1,617 12.7%

Table 4.11: 20 minute Minimum Connection Time {(August 2000 data).

Time window Num of constrs | Num of vars | Num of non-zeros | Increase
+15min(7 copies) 7,506 27,013 59,836 1.0
+15min(31 copies) 32,514 507,253 1,040,236 174
+10min(5 copies) 5,422 14,085 32,320 1.0
+10min(21 copies) 22,004 234,213 485,856 15.0

+5min(3 copies) 3,338 5,325 13,140 1.0
+5min(11 copies) 11,674 65,373 139,876 10.6

Table 4.12: Comparison of the Problem Sizes (5 min minute copy interval vs. 1 minute
copy interval).

Time window Old D-pax | New D-pax | D-pax reduced | Improve (%)
F15min(7 copies) | 17,450 10,800 | 6,560 (37.6%) 0.0
+15min(31 copies) 17,459 10,865 6,094 (37.8%) 0.52%
+10min(5 copies) 17,459 12,070 5,389 (30.9%) 0.0
+10min(21 copies) | 17,459 12,056 5,403 (30.9%) 0.26%
+5min(3 copies} 17,459 14,069 3,390 (19.4%) 0.0
+5min(11 copies) 17,459 14,058 3,401 (19.5%) 0.28%

Table 4.13: Comparison of numbers of Disrupted Passengers (5 minute copy Interval vs.
1 minute copy Interval).
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connection time of 30 minutes and varied the flight leg copy interval in time windows
of various width. Increase indicates the factor increase in the numbers of non-zeros
in the model compared to a base case with 5 minute copy interval. In Table 4.13,
Improve indicates the percentage reduction in the number of disrupted passengers, again
compared to a 5 minute copy interval. Generating copies for flight legs every minute
results in dramatically increased problem sizes and modest benefit. By placing copies
more sparsely, we improve model tractability considerably and obtain solutions that are
nearly as good.

Given this result, we consider the case of using longer copy intervals of 15 minutes for
a 30 minute time window and 10 minutes for a 20 minute time window. The results are
summarized in Tables 4.14 and 4.15. Generating fewer copies further reduce problem size,
while achieving about the same number of disrupted passengers as achieved for shorter
copy intervals. This is because in most cases the model selects flight copies that either
represent the original departure time or push the flight departure time as far as possible.
This is what we expect. Imagining that for two flights with passenger connecting, the
model will push the departure time of the first flight to an earliest possible time and
the departure time of the second flight to a latest possible time, which provides more
connecting time for passengers.

In summary, if the problem size is a concern (sometimes just loading a large-scale
problem to a computer may be impossible because of memory limitations), then by
generating copies at a broad interval (15 or 10 minutes depending on the time window),
we can solve a much smaller problem and still obtain good solutions. Of course, if the
problem size is not a concern, for example, when using our RFRS model and the problem

instance 1s moderate, then narrower time interval will lead to more savings.

Estimating the Impact on Passenger Delays

In this section, we estimate roughly the impact of our model on total passenger delays.

As shown in Table 4.1, the dclay experienced by disrupted passengers is 51% of total
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Time window Num of constrs | Num of vars | Num of non-zeros | Increase
£15min(7 copies) 7,506 27,013 59,836 4.6
+15min(3 copies) 3,338 5,325 13,140 1.0
£10min(5 copies) 5,422 14,085 32,320 2.5
+10min(3 copies) 3,338 5,325 13,140 1.0

Table 4.14: Comparasion of the Problem Sizes (5 min, 10 min, 15 min intervals).

Time window Old D-pax | New D-pax | D-pax reduced | Improve
+15min(7 copies) | 17,459 10,899 6,560 (37.6%) | 0.76%
F15min(3 copies) | 17,459 10949 | 6,510 (37.3%) | 0.0
+10min(5 copies) | 17,459 12,070 5,389 (30.9%) | 0.33%
+10min(3 copies) 17,459 12,088 5,371 (30.8%) 0.0

Table 4.15: Comparasion of the Results (5 min, 10 min, 15 min Intervals).

passenger delays (in minutes). In applying our model and assuming the minimum con-
necting time ’for passengers 1s 30 minutes; flight copies are generated every five minutes
within 30 minute time window; and every disrupted passenger is delayed for 419 minutes,
the average delay for disrupted passengers; then a reduction of about 40% in the total
number of disrupted passengers leads to roughly 20% decrease in total passenger delay.
Moving from thirty to twenty-minute time window reduces the decrease in delay minutes
to roughly 16%, while a ten-minute time window achieve a reduction of roughly 10%.
Importantly, our models especially reduce delays for passengers who would otherwise be
excessively delayed, that is, disrupted. As stated earlier, the average delay for nondis-
rupted passengers is only 14 minutes while the average delay for disrupted passengers is

419 minutes.
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Chapter 5

Extensions

5.1 Integrated Robust Aircraft Maintenance Rout-
ing and Fleet Assignment

"The string-based model proposed by Barnhart et al. (1998) [6] can solve fleet assignment
and maintenance routing problems at the same time. Similarly, one extension for our
robust aircraft maintenance routing model is to adopt it to solve integrated fleet assign-
ment and maintenance routing. Adding fleeting decisions provide more feasible strings,
potentially leading to an improved solution with reduced delay propagation. However,
although the financial benefit of aircraft maintenance routing is very limited, the feet
assignment costs are very significant. Therefore, when solving integrated fleet assignment
and maintenance routing, it is inappropriate to minimize delay propagation without con-
sidering flect assignment costs. Instead, one can estimate the costs for delay propagation,
add them to the cost of fleet assignment, and minimize total cost. However, the cost for
delay propagation is hard to determine accurately. Applying an idea similar to that
proposed by Rosenberger et al. (2001) [67], we present two integrated models for robust
aircraft maintenance routing and fleet assignment.

The notation we use here is the same as used in Section 3.3.4 except the following.
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Let K be the set of fleets and G* be the set of ground variables for fleet type k. We
have one binary decision variable =¥ for each feasible string s, which is equal to 1 if this
string is flown by fleet type k; and O otherwise. ¢! is the cost (both operating and spill)
of flying string s with feet type k. We have ground variables, denoted 4*, which are used
to count the number of aircraft of fleet type & on the ground at maintenance stations.
Ground variables Y, ék and y:f equal the number of aircraft of fleet type & on the ground
just before and after, respectively, flight i departs. Similarly ground variables Ys, ,;k and
y:’r C’Lk equal the number of aircraft of fleet type & on the ground just before and just after
flight ¢ arrives. r¥ is the number of times string s with feet type k crosses the count
time; p'; is the number of times ground arc g with fleet type k crosses the count time;
and Ny is the number of planes available for fleet type k. pu:i;“j’-C is the delay propagated
from flight 7 to flight j if flight ¢ and flight j are in string s and string s is assigned to
fleet type k. pd” is an upper bound on the total expected propagated delay, and Y is

an upper bound on the total fleet assignment and aircraft routing cost.

The string-based integrated fleet assignment and aircraft maintenance routing model

(SFAMMR) is written as (Barnhart et al. (1998) [6]):

min Z Z ckak (5.1)

ke K ses

Subject to

YN wab=1 vier, (5.2)

ke K scS
Yo ab—yt4rulf=0 vieFRkek; (5.3)
565‘?’
=Y -y l4yi=0 VieFkek, (5.4)
SES;
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dorkab+ Y phk < NF O Vke K (5.5)

SES geEG
ySEO VgeGF ke K: (5.6)
£ e€{0,1} VscSkekK. (5.7)

The first set of constraints are the cover constraints, forcing every flight to be con-
tained in exactly one string, and hence assigning each flight to exactly one fleet type.
The second and third set of constraints are the aircraft flow balance constraints for each
fleet. The fourth set of constraints are the fleet count constraints that ensure the number
of aircraft used in each fleet type is not more than that available.

Let X be the set of feasible solutions satisfying the above constraints. Two integrated
models for robust aircraft maintenance routing and fleet assighment are presented as

follows.

min Z Zc’;mf (5.8)

keK se8

Subject to

S Y Elpie < 59

k€K s€S (i,j)€s

e X. (5.10)

In this model, we minimize the total fleet assignment and maintenance routing costs
but constrain the total expected propagated delay to pdY, an upper bound on total
propagated delay. Our next model minimizes the total expected propagated delay and

constrains fleet assignment and maintenance routing costs to ¢V, an upper bound.
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min Y > (zhx > Blpds)) (5.11)

keK sc8 (i,4)es

Subject to

Z Zc’;x’; <Y (5.12)

ke K sc§

zeX. (5.13)

The upper bound pd” can be obtained by

pd” = (1+48)25" (5.14)

where d is a small positive parameter value; and Z;’;li“ is the minimum expected propa-

gated delay. Z;,’;i“ can be obtained by solving the following problem:

min 3 Y N ElpdiFlat (5.15)

kEK s€S (i,7)es

Subject to

T e X. (5.186)
The upper bound ¢¥ can be obtained by

Y = (1 + ¢) Zmin (5.17)

where € is a small positive parameter value; and Z™® is the minimum fleet assignment
and maintenance routing cost. It can be obtained by solving the SFAMMR model.

By controlling the values of ¢ and €, we can find robust fleet assignment and main-
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tenance routing solutions within specified ranges of the minimum costs or the minimum
total expected propagated delay. These models can be solved using the same approach

as proposed in Section 3.4.

5.2 Robust Aircraft Maintenance Routing with Time
Window

In solving aircraft maintenance routing problems, allowing flights to be rescheduled within
a small time window might produce a more robust routing solution, one that further
reduces delay propagation. To model this, the string-based model with copies of each
flight leg can be used.

The notation we use here is the same as that in Section 3.3.4 except that there are
many more string variables, with potentially several strings containing the same flight
legs, but different copies. Let a;, equal one if flight 7 copy n is in string s; and equal
zero otherwise, then an extension of the robust maintenance routing model presented in

Chapter 3 is described as follows.

min B() Y pdz.) (5.18)

SES (i,5)€s

Subject to

Z Z a;,Ts =1 VieF, (5.19)

S€ES5 neN;
Y -y tyl,=0  VieF (5.20)
sES;"
— Y T =Y.ty =0 VieF, (5.21)
s€S5]”
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erxs + Zpgyg < N,; (5.22)

s€S g€eG

Y920 Vgei, (5.23)

z,€{0,1} VYse§ . (5.24)

One difficulty of this model is that adding flight copies has an explosive effect on
the number of strings. For example, consider a string consisting of four flight legs. For
each flight leg, there are five copies generated including the original one. In this case,
there are 51 = 625 distinct strings, each containing the same set of flight legs. To reduce
problem size, begin by observing that many of these copies of a string have the same
propagated delay, because they have the same connection times. To illustrate this, let’s
take a look at a simple example. Suppose there is one string that consists of two flights
(see Figure 4-4), and each flight has 7 copies. Then there are 7 x 7 = 49 strings with the
same flight legs. Among these strings, many have the same delay propagation because
the time between the two flight legs, that is the planned aircraft turn times is the same
for some strings. For example, the string consisting of copy 1 of flight leg 1 and copy 1
of flight leg 2 has the same turn time as the one consisting of copy 2 of flight leg 1 and
copy 2 of flight leg 2. For this string, there are 6 +5+4+34+24+14+54+4+342+1 =36
copies that are duplicate for our purpose. This means there are only 49 — 36 = 13 coples
that have different values of propagated delays. In fact, we can prove that for any string

consisting of two flight legs, each with n copies, the number of different strings is

nt =y i—d 4 (5.25)

We can also determine the number of different strings consisting of more than two flights.

We can integrate robust maintenance routing with time windows with flect assign-
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ment, to add more robustness into the schedule plan. Likely, such a model will have
tractability issues when solving large-scale problems. Research in this direction should
focus on better formulations of the problem and/or new ways to reduce probler size and

exploit problem structure.

5.3 Fleet Assignment with Time Window and Pas-
senger Disruption Considerations

Rexing et al. (2000) [65] propose the idea of allowing flight leg departure time to be
rescheduled within small time windows simultaneously with fleet assignment. They de-

velop a model called the Fleet Assignment Model with Time Windows (FAMTW). It can

lead to reductions in fleet assignment costs in two ways:

e a more appropriate aircraft type might be assigned to a flight leg because more

aircraft connections are possible.

e aircraft can be utilized more efficiently, which can result in fewer aircraft required

to fly the schedule.

They report annual savings of 23.9 million to 46.2 million dollars if twenty-minute
time windows are allowed and 35.0 million to 77.7 million dollars if forty-minute time
windows are allowed. Furthermore, by removing slack between flight connections, the
schedule can be flown with two fewer aircraft, and fleet assignment cost is still less than
the cost based on the original schedule. Obviously, the savings are significant, but one
of the main sources of the frequent delays and disruptions in airline operations is that
the schedule is planned very tightly, without sufficient slack to recover effectively from
disruptions.

Recall in Chapter 4, we minimize the number of disrupted passengers by adding a time
window for each flight. Tntegrating this model and the FAMTW model allows fleeting

decisions to be affected by their impact on passenger disruptions. The difficulty is in
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dtermining the costs of passenger disruptions. Passenger disruptions result not only in
re-accommodation costs but also costs associated with loss of goodwill. Thus, similar to
what we have done in Section 5.1, we present the [ollowing two integrated models for
balancing fleet assignment costs with improvements in passenger travel times.

Let’s first define some new variables. Let O be the set of airports, K be the set of
different fleet types, T be the sorted set of all event (departure or arrival) times at all
airports, CL(k) be the set of flight legs that pass the count time when Aown by fleet type
k, and I(k,o,t) and O(k,0,t) be sets of flights arriving and departing respectively from
arrport o at time ¢ for fleet type k. fi,x is the binary variable that takes on value 1 if
copy 7t of flight ¢ is covered by fleet type k, and 0 otherwise. c¢;, is the cost of assigning
fleet type & to flight 7 copy n. Uk,o+ and Y, o4~ are the variables that count the number
of aircraft of fleet type k at airport o just after and just before time ¢ respectively; Yk,o,t,
are the variables that count the number of aircraft for Heet type & at airport o at the

count time %,,.

The FAMTW model (Rexing et al. (2000), [65])can be written as follows:

min Z Z Z CimgSink (5.26)

ieF kEK neN;

Subject to

SN fine=1 VieF (5.27)

neN; ke K

rot=+ D D fink—Ueotr— 3. Y finkx=0 VkeK,o0€0,teT (528)

i€l(k,0,t) nEN; i€ O(k,0,t) REN;

D kot t Y.0Y fink SN, VkEK (5.29)

el i€ECL(k) nEN;
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fi,n,kte{oyl} VEEF,TZEN“’%EK

Yeot =0 Ve K oeO,teT.

(5.30)

(5.31)

The first set of constraints are cover constraints, ensuring that each fight leg is

assigned to exactly one departure time(that is, flight leg copy) and one fleet type. The

second set of constraints are aircraft flow balance constraints, ensuring aircraft balance

at each location for each fleet type. The third set of constraints are the count constraints,

which ensure that the assignment does not require more aircraft than that available.

Let Y be the set of feasible solutions that satisfy all the above constraints.

Two

integrated models for robust scheduling and fleet assignment are presented as follows.

Subject to:

min Z Z Z C'i,n,kfi,n,k

i€F k€ K neN;

S Y Y sl < i

1EFO neN; jeCH(i) meN;

Z cn Zf%nk V’L'GFO,TLEAQ;Q'EC"'(@');

meEN; ke K

Yodt=N"fim Vi€ Flme N;ieC(j);

nenN; ke K

0< a2l <1 Vie F°neN,jeCi),me N,

in

fey
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(5.33)

(5.34)

(5.35)

(5.36)

(5.37)



In this model, we minimize the fleet assignment cost but constrain the expected
number of disrupted passengers to not exceed an upper bound dpV. Constraiuts 5.34 and
5.35 reflect the relationship between z variables and f variables. The upper bound dp¥

1s defined as

dp¥ = (1 + §)Zmn (5.38)

where Zg;i“ is the minimum expected number of disrupted passengers without considering
the cost for fleet assignment, obtained by solving the model presented in Chapter 4. § is
a small positive parameter value.

Our next model minimizes the expected number of disrupted passengers and limit

fleet assignment costs to an upper bound ¢¥.

min Y Y Y S EldpTalm (5.39)

i€ FO neN; jeC+ (i) meN;

Subject to:

Z Z Z Cisnefimp < ¥ (5.40)

ieF ke K neN;
Yoo =) fin Vi€ F°neN,jeCH) (5.41)
meN; ke K
Y= "fim VicFlmeNieC () (5.42)
neN; ke K
0Lzl <1 Vi€ F°neN,jeCti),me N; (5.43)

The upper bound ¢ is defined as
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¥ = (14 ¢)Zmn (5.45)

where Z™" is the minimum fleet assignment cost obtained by solving the FAMTW model.
€ 1s a small positive parameter value.

Some of the techniques proposed in Rexing et al. (2000) and Hane et al. (1995)
to reduce problem size for fleet assignment might not be useful for the above models.
For instance, we should be very careful when deleting flight copies even if they have
the same fleet assignment costs because these copies might lead to different numbers of
passenger disruptions. According to Rexing et al. (2000) [65], for a network with 2037
flights and 7 fleet types, if 20 minute time windows are allowed and copies are generated
every 5 minutes, their problem had 105,524 rows, 155,219 columns, and 363,542 non-zero
elements before applying any techniques to reduce problem size. Hence, problem size for
FAMTW is large, but not prohibitive. The basis for this statement is our experience,
reported in Table 4.12, in solving a flight schedule retiming problem with 32,514 rows,
507,253 columns and 1,040,236 non-zero elements.
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Chapter 6

Summary and Future Research

Directions

6.1 Summary

In airline operations, delays and cancellations of flights are common phenomena. Because
passengers, crews and aircraft are interdependent, especially in hub-and-spoke networks,
delays and cancellations of flights often cause delays and disruptions for crews and pas-
sengers. Crew and passenger delays and disruptions can then cause further flight delays
and disruptions.

Fundamentally, there are two approaches to address this problem. One is to reschedule
flights, crews and passengers after disruptions occur; and another is to build robust plans
by considering possible delays and disruptions. A more robust plan can reduce delays
and disruptions during operations.

In Chapter 2, we first show that building robustness into flight schedules is a difficult
task and requires innovative ideas and methodologies. We review methodologies for
robust planning in airline schedule planning and other application domains. We provide

various definitions of robustness in the context of airline schedule planning, and present
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a Iramework for robust airline schedule planning. We categorize robust airline schedule
planning methods proposed in the literature within this framework. Moreover, we identify
some open research topics that can also fit into this framework.

One of the difficulties of building robust airline schedule planning models is that it
is hard to balance the trade-off between schedule robustness and costs. In fact, it 1s
difficult to determine the value of schedule robustness. In our research, we look for ways
to develop robust airline schedule planns without significantly added costs. As a case
in point, in Chapter 3 we present a robust aircraft maintenance routing model and its
solution approach. Because flight delays propagate along an aircraft’s route, our model
minimizes delay propagation by intelligently routing aircraft. Using data from a major
US airline, we show that this method can generate robust maintenance routes that can
reduce propagated delays by more than 40%, improve 15-minute on-time rates by 1.6%
and reduce the number of disrupted passengers by approximately 10%.

In Chapter 4, we present another approach, flight schedule retiming, to build robust-
ness into airline schedules without significantly increasing costs. Our idea here is to allow
flight departures to be rescheduled within small time windows in order to reduce the
number of passengers who miss their connections because of flight delays. Our approach
places slack in the schedule where it is more advantageous to passengers. We present
various ways to model this problem and discuss their relative strength and weaknesses.
Using data from a major US airline, we show that our method generates schedules that
can reduce the number of disrupted passengers by as much as 40%.

In Chapter 5, we describe possible some extensions to the models we proposed in
Chapter 3 and 4. The robust aircraft maintenance routing model can be extended
to solve integrated fleet assignment and robust aircraft maintenance routing problems
using either of the two models we present. We also present two models extending our
flight schedule retiming models to incorporate fleet assignment decisions, in an attempt
to further reduce passenger disruptions, without substantive increase in fleet assignment

costs. These integrated models will likely enhance the performance of airline schedules
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and 1mprove passenger travel times.

6.2 Directions for Future Research

Examples of future research directions are described below.

6.2.1 Adding Weights to Objective Function Coefficients

Our models presented earlier minimize the expected total number of propagated delays
and passenger misconnections. We treat all propagated delays the same no matter how
they are distributed and which flights they impact, and treat all passenger misconnections
the same whether they are business travelers or not. In practice, airlines might want to
protect certain flights and passengers that are important to them. In this case, various
welghts can be added to the objective function coefficients. For example, in RAMR
model, we could add higher weights for longer delays, because longer delays might cause
far more serious downstream delays and disruptions; we counld add higher weights for
delays propagated to hubs; we could also add higher weights for delays propagated to
flights with many business passengers. In our flight schedule models, we could add
higher weights for passenger misconnections involving business passengers or international

fights.

6.2.2 Considering Variance in Objective Functions

Although our models minimize the expected values, it is equally important to consider
variances. lf variances are very high, then airlines might incur many disruptions and high
costs to recover even if their plans minimize expected costs. One approach is to minimize
the expectation plus a constant times the variance. This constant can be viewed as a

parameter to balance the expectation and variance.
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6.2.3 Crew Considerations

In our models, impacts on crews are not considered explicitly. Crew scheduling, however,
1s very important in airline schedule planning, because crew cost is the second largest cost
among all operation costs for airlines and crew delays and disruptions have impact on
flight and passenger delays and disruptions. One way to take crew into consideration is
to use simulation to evaluate the impacts of our models on crews. Another approach is to
consider robust aircraft maintenance routing and flight schedule retiming when solving
crew scheduling problems. Cohn and Barnhart (2003) [31] solve an integrated model
for aircraft maintenance routing and crew scheduling without considering the possible
delays and disruptions in the operations. We could develop an integrated model for

robust aircraft maintenance routing and crew scheduling,

6.2.4 Applications to Airline Operations

Although the models presented in this dissertation are developed for planning, they might
also be used in airline operations with some changes. For example, the flight schedule
retiming approach can be used to determine the exact flight departure times when delays
and disruptions occur to minimize passenger misconnections. In this case, the objective

function coeflicients are exact numbers instead of expected value.

6.2.5 Using Simulation to Evaluate Schedules

Simulation is a good way to evaluate comprehensively the future performance of schedule
plans in operations. We can use or develop a simulator to further test schedules generated
by our models. In order to do it, the simulator must be accurate and consider all the
components of an airline’s operations such as recovery of aircraft, crews and passengers.
In fact, one challenge is to foresee how recovery will take place, because different recovery

policies will give different performance results even for the same schedule.
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6.2.6 Fleet Assignment with Minimum Expected Cost

Conventional feet assignment models do not consider extra costs incurred during irreg-
ular operations. In airline operations, when delays or disruptions occur, airlines often
swap aircraft between flights to recover and reduce added costs cause by these delays or
disruptions (Yan and Tu (1997) [82]). Costs associated with this swap include costs for
switching gates and/or switching crew members, extra spill costs, etc.. To generate a
fleeting solution that can facilitate recovery, one can build a model to minimize expected
costs. An example is a two-stage stochastic programming model with recourse that min-
imizes fleet assignment costs plus the expected cost of future recovery actions caused by

disruptions in the original schedule.

6.2.7 Fleet Assignment Under Demand Uncertainty

Demand is considered to be an constant input for each flight or itinerary in the conven-
tional fleet assignment models. However, demand is a random variable and it is very
difficult to forecast demand accurately. Without considering demand uncertainty, actual
load factors can be lower than expected, leading to excess capacity and operating costs, or
higher than expected, leading to overloading costs. Therefore, existing flect assignment
models can be improved by considering demand uncertainty.

Barnhart et al. (2001) [10] develop an itinerary-based fleet assignment model to
improve FAM models (Hane et al. (1995) [42]) by more accurately determining spill
costs (the lost revenue due to inability of airlines to accommodate total demand). A
two-stage stochastic programming model could be built to consider demand uncertainty.
The first stage would be to determine fleet assignment, based on expected spill costs.
The second stage would be to determine passenger flows; however, solving such model
for a large-scale real-life problem might be very challenging, because the itinerary-based
fleet assignment model already has very large size. Another alternative is to model the
demand uncertainty in the Subnetwork-based Fleet Assignment (Barnhart et al. (2001)
[7], Lohatepanont (2001) [56]). This model can capture fleet assignment cost as accurately
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as the itinerary-based model without compromising tractability. Hence, it is suitable for
further developing integrated models.

In addition, most of the general robust planning methodologies discussed in Section
2.2.1 have been used successfully to solve various problems under demand uncertainty.
We believe these methodologies can also be applied to fleet assignment under demand

uncertainty.

6.2.8 Aircraft Routes with Swap Opportunities

Ageeva (2000) [2] proposes to build aircraft routes that intersect more than once within
a certain time window. This allows controllers more flexibility to swap planes during
operations. She generates a set of optimal or near-optimal routing solutions, then selects
the one with most swap opportunities. In fact, it is not necessary to require pairs of
routes to intersect twice in order to provide a swap opportunity. If two routes intersect
once but have the same number of days left before required maintenance, then there is a
swap opportunity. To develop this further, one could develop a model to maximize the
number of swap opportunities. One idea is to define a variable for each pair of strings,
then the number of swap opportunities can be determined for this pair of strings. Such
a model might be intractable with a prohibitively large number of variables. Thus, new
modeling ideas and solution approaches that exploit special structure of the problem are

needed.

6.2.9 Aircraft Routes with Short Cycles

Rosenberger et al. (2001) [67] present a string-based model to generate routes with
short cycles. Such routes are less sensitive to flight cancellations than those without
short cycles. They determine a lower bound for the number of short cycles using the hub
connectivity of a fleet assignment and maintenance routing. They define hub connectivity
as the number of legs in a route that begins at a hub, ends at a different hub, and only

stops at spokes in between. Then they present a model to minimize hub connectivity.
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Another idea is to develop a string-based model to maximize directly the number of short,
cycles, because once a string is built, the number of short cycles can be easily calculated.
One problem with this idea, however, is that the pricing problem can not be cast as a

shortest path problem.
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