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Abstrabt

While continuous optimization methods have been widely used in statistics and data
mining over the last thirty years, integer optimization has had very limited impact
in statistical computation. Thus, our objective is to develop a methodology utilizing
state of the art integer optimization methods to exploit the discrete character of data
mining problems. The thesis consists of two parts: The first part illustrates a mixed-
integer optimization method for classification and regression that we call Classifica-
tion and Regression via Integer Optimization (CRIO). CRIO separates data points
in different polyhedral regions. In classification each region is assigned a class, while
in regression each region has its own distinct regression coefficients. Computational
experimentation with real data sets shows that CRIO is comparable to and often
outperforms the current leading methods in classification and regression. The sec-
ond part describes our cardinality-constrained quadratic mixed-integer optimization
algorithm, used to solve subset selection in regression and portfolio selection in asset
allocation. We take advantage of the special structures of these problems by imple-
menting a combination of implicit branch-and-bound, Lemke’s pivoting method, vari-
able deletion and problem reformulation. Testing against popular heuristic methods
and CPLEX 8.0’s quadratic mixed-integer solver, we see that our tailored approach
to these quadratic variable selection problems have significant advantages over simple
heuristics and generalized solvers.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Professor of Operations Research
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Chapter 1
Introduction

In the last twenty years, the availability of massive amounts of data in electronic form
and the spectacular advances in computational power have led to the development of
the field of data mining (or knowledge discovery). A simple definition for data mining
is the process of extracting meaningful information — i.e., patterns and relations ~ from
the data set, commonly using statistical and computer science techniques, in order
to build a predictive model that can be used to accurately predict behaviors in the
future.

Data mining techniques have been utilized and have been successful in a vast
range of application areas, such as marketing, finance, health care, and artificial
intelligence. For example, a catalog company many want to ship their promotions
only to customers with high probability of response. Health care practitioners may
want to develop a model to detect the potential of cancer in patients, given their
physiological and genetic information. Recently, significant work has been done in text
classification to detect and remove spam in emails. In all of these areas, practitioners
want to utilize the enormous amounts of historical data, which may potentially be
rich with hidden information, to aid them in making more focused, accurate decisions
in the future.

Key differences between data mining and traditional statistical inference tech-
niques are the scale of the data sets, computational requirements and the drivers of

the prediction model. In traditional statistical inference tools, statisticians tested
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their hypothesis on the data under several assumptions {(e.g., distributional assump-
tions). Often, only a few observations are available in the data set, and thus one
cannot adequately capture the underlying characteristics of the data without any as-
sumptions. In contrast, there is an abundance of data as well as computational power
in data mining problems. This marriage between the size of the data set and com-
putation power is the key ingredient and motivation to data mining. Distributional
assumptions are no longer necessary to infer relationships in the data, and there is

no need to restrict the model into traditional statistical frameworks.

In addition, the main criterion of data mining practitioners is prediction accuracy.
Due to the abundance of data, a small random fraction of the data set can be set aside
for model validation. After a prediction model is constructed, what is important is
its prediction accuracy on the validation data set. Regardless of the hypothesis and
assumptions, the prevailing model is the model that has superior prediction in future
data points. Thus, there is less emphasis on statistical and geometric theory, and

more importance on the accuracy and robustness of the prediction.

Clearly, with this shift in focus from statistical frameworks to optimal predictions,
most data mining problems lend themselves to be modelled as optimization problems.
For example, in classification problems, we minimize the total misclassification error.
In regression, we minimize the total squared or absolute error. The problems often
exhibit discrete characteristics as well. For example, in binary classification, data are
often separated into disjoint regions, which can be modelled as a complex assignment
problem. In variable/feature selection, a proper subset of the variables are chosen
that gives the best predictive fit to the daté. This property makes these problems

good candidates for modelling as discrete optimization problems.

Continuous optimization has had quite a presence in data mining, as well as tra-
ditional statistics. Some notable applications are support vector machines in machine
learning, linear least square regression, logistic regression and maximum likelihood es-
timators. However, in comparison, integer optimization has had very limited impact.
The statistics community has long recognized that many data mining problems can

be formulated as integer optimization problems [1], however, the belief was formed
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in the early 1970’s that these methods are not tractable in practical computational
settings. As a result, the applicability of integer optimization methods to statistical

problems has not been seriously investigated.

The objective in this thesis is to develop a methodology utilizing state of the
art integer optimization methods to exploit the discrete characteristics of data min-
ing problems. Chapters 2 and 3 describe new techniques for solving classification
and regression problems, which we call Classification and Regression via Integer Op-
timization (CRIO). CRIO solves these problems by merging current methodologies
with integer optimization. CRIO is able to capture complex, discrete behaviors of the
data, and thus improve on prediction accuracy due to the modelling power of integer
optimization. It further alleviates the misconception of the intractability of integer
optimization, by solving these problems in reasonable and comparable times to the

existing popular methods.

Chapter 4 introduces new solution algorithms for solving variable selection prob-
lems - a crucial issue in data mining. One of the difficulties of having such large
amounts of data, is that often we are given variables or features that.#re not essential
in the development of an accurate prediction model. Not only is using all the available
variables computationally costly, it also increases the variance of the predicted value
(i.e., reduces robustness in its prediction). The more variables the model depends on,
the more noisy its estimation. Thus, clearly we want to be able to select a subset
of the variables that are critical for the prediction model. However, this makes it a
very difficult combinatorial problem. Currently, data mining practitioners use simple
greedy heuristics to make these variable selections, but often such a myopic selection
strategy gives us a subset of variables that are far from optimal. In the last chapter,
we develop an algorithm tailored towards variable selection problems with quadratic
costs — a criteria function that occurs frequently in the context of data mining (such
as total squared error and expected variance). From computational experimentations,
our methods are successful in finding good feasible solutions within practical time. In
certain cases, they also solve the problems faster than generic commercial quadratic

mixed-integer optimization software.
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The structure of the thesis is as follows:

Chapter 2: Classification via Integer Optimization We present the bi-
nary classification problem and the current state of the art methodologies for
solving it. We then elabofate on our approach that combines the use of mixed-
integer optimization, clustering and continuous optimization to effectively solve
classification problems. Finally, we compare the performance of CRIO against

the current methods and illustrate some computational results.

Chapter 3: Regression via Integer Optimization First we introduce the
problem of multivariate regression, along with the current leading methods. We
~ then discuss the regression component of CRIO that solves regression problems
using mixed-integer optimization, clustering and nonlinear transformations. Fi-
nally, we compare the predictive accuracy of CRIO against the current methods

and illustrate some computational results.

Chapter 4: Quadratic Variable Selection via Integer Optimization We
present the quadratic variable selection problem and discuss notable works in
this area. We then elaborate on our method that formulates this problem as a
quadratic mixed-integer optimization problem with cardinality constraints, and
our algorithm that efficiently solves these problems using a combination of im-
plicit branch-and-bound, Lemke’s method, variable deletion and re-formulation.
Finally, we introduce two applications, variable selection in regression and port-

folio selection in asset management, and illustrate computational results.

We view our contributions as follows;

1. To show that CRIO is a promising method for classification and regression
that matches and often outperforms other state of the art methods on widely

circulated real data sets.

2. To illustrate the computational advantage of using implicit branch-and-bound

and Lemke’s method to solve quadratic variable selection problems. In subset
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selection in regression, our methodology significantly improves the goodness of
fit criterion compared to popular heuristic methods, while remaining solvable
in practical time. It also had faster node to node computation time compared
to an explicit branch-and-bound formulation solved by CPLEX 8.0. Also, the
combination of implicit branch-and-bound and Lemke’s pivoting method sig-
nificantly reduces total computation time compared to using barrier method to

solve continuous relaxation of the subproblems.

. Most, importantly, we bring to the attention of the statistics and data mining
community the view that integer optimization can have a significant impact on
statistical computation, and thus motivate researchers to revisit old statistical
problems using integer optimization. Similarly, we hope that the Operations
Research community would view Data Mining as a rich area for applying various

Operations Research tools and concepts.
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Chapter 2

Classification via Integer

Optimization

In classification problems, we are given n data points (x;,v;), ; € R%, v; € {0,1} and
i=1,...,n, where ax; are called ezplanatory Uariable’s and y; are called class variables.
Though we focus only on binary classification, our approach can easily be extended to
multiple class classification problems. We want to parfition the explanatory variable
space to separate Class 1 and Class 0 points, so that given new data points with
unknown classes, we can predict their class with great accuracy. The challenge is to
construct a model that is sophisticated enough for good predictions, yet simple and
robust enough to be generalizable for future data points.

The current leading methods for classification can be grouped into two groups:
demsmn tree and separating hyperplane methods. CART [9] and C5.0 [36] are ex-
amples of the former. CART (Classification And Regression Trees) recursively splits
the data along a variable into hyper-rectangular regions in a locally optimal manner .
C5.0 is another popular method which is similar in spirit to CART. CART has been
one of the most popular classification tools, especially in the business setting, due
to its simplicity and fast solution time. Its main shortcoming is its fundamentally
greedy approach and its limitations of partitioning the space only into rectangular
regions.

Support vector machines (SVM) [20], [28], [43], are an example of the separating
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hyperplane methods. In its simplest form, SVM separates points of different classes by
a single hyperplane or a simple nonlinear function. More sophisticated SVM methods
map the data points via a nonlinear transformation to a higher dimensional space
and use continuous optimization methods to separate the points of different classes.
Although this nonlinear kernel method has proven effective, it is difficult to intuitively
visualize the separator in the original explanatory variable space.

The classification component of CRIO overcomes the shortcomings of CART and
SVM by partitioning points into disjoint polyhedral regions in a globally optimal

manner. The following gives a geometric overview of our methodology.

2.1 The Geometry of the Classification Approach

Given n data points (@, 1), z; € R% 4 € {0,1} and i = 1,...,n, we want to partition
R4 into a small number of regions that only contain points of the same class. Consider
for example the points in Figure 2-1. Figure 2-2 illustrates the output of CRIO.

In the first step, we use a mixed-integer optimization model to assign Class 1 points
into K groups! (K is a user defined parameter), such that no Class 0 point belongs in
the convex hull of a Class 1 group?. Clearly, we want to keep K small (typically less
than five) to avoid over-fitting. Given the presence of outliers, it might be iﬁfeasible‘to
use K groups (see Figure 2-3). For this purpose, we further enhance the mixed-integer
optimization model by enabling it to eliminate a pre-specified number of outliers.
Having defined K groups at the end of this phase, we use guadratic optimization
methods to represent gfoups by polyhedral regions — an approach inspired by SVI\/fs.
Finally, we eliminate redundant faces of these polyhedra by iteratively solving linear
optimization problems. After the final sets of polyhedra are defined, we classify a
new point xq as Class 1, if it is contained in any of the K polyhedra, and as Class 0,

otherwise. In order to reduce the dimension of the mixed-integer optimization model

"We use the word group to mean a collection of points, while we use the word region to mean a

polyhedron that contains a group.
2We group Class 1 points instead of Class 0 points, without loss of generality, throughout the

paper.
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Figure 2-2: The output of CRIO.

and thus reduce computation time, we preprocess the data so that points form small

clusters using a clustering algorithm (see Figure 2-4).

21



500 T e T, T T o T —T T T T
o
i " ° ;
450 o o
®
400 x OD ©
L o
x 1
> s
b x|
350 A % - = L~
[} >
| le] x X x
300 x B x N
= » x x
= = %
[ x
N 250 = . x x 1
= k3
=
200 [~ -
4
150} ° o
o
o
100 < i
" o © o
50 |- © © SRS}
Qo
o) 1 'l Q 1 1 Il 1 Q L o) 1 (o
0 50 100 180 200 250 300 aso 400 450 500

x1

Figure 2-3: Ilustration of outliers in the classification data. Points A and B are Class 0
outliers,

500 —r 1= 5
[ TR, T T o —T T P e . T
- s s - -5 /e ol -
2 ~ - / oA f / “ o\
450 o~ \O \‘ 4 -1
x N\ — o \ / / /
AN ] \ - o | o_ 7 | s
400 s / / N ~ - O
lx / / *x \ N — i
\ l 7 x x|
350 3 / \ /T s p
/ ( V4 w ></ \x[ ~ [/
— / x ¢ fx - =T
aor <y / / PRN 1
~ / x / \ » \ ‘T TEN - |
/ | NI ~
N 250 [fx ™ !« //"\ \ ~ \x/ ! x ® /’ 7
\\ « l N S x/ NOX \ ™~ ——
~N X/ ' -
200 T -— / — N
- T — \—1/
L —_— o ~ o) §
150 // o™ \\ ~ L
/ // ~ o \\
10Q / ~ Q - T — -
Ve . ~ 2 R
50 \ © e \\\ \\ °© o0 |
- - /
o L e < /l 1 Y I iq\/ 1 \r\ L 0
a 50 100 150 200 250 300 350 400 450 —~ — 500
x1 )

Figure 2-4: Data points are grouped into small clusters in z-space.

In the following sections, we present our methods first for binary and then multiple

class classification problems. As outlined in Section 2.1, we first assign both Class 1
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and Class 0 points into clusters (Section 2.3), then ‘assign Class 1 clusters to groups
via the use of a mixed-integer optimization model that also detects outliers (Section
2.4). Section 2.5 presents the methodology of assigning polyhedra to groups, and
Section 2.6 summarizes the overall algorithm for binary classification. Section 2.7
extends these methods to multiple-class classification problems. Finally, Section 2.8
presents some theoretical stability results for our method. We start by presenting the
basic mixed-integer optimization model in Section 2.2, which forms the basis of our

final approach.

2.2 The Mixed-Integer Optimization Model

The training data consists of n observations (@;,v;), i = 1,...,n, with =; € R and
yi € {0,1}. Let mg and m; be the number of Class 0 and Class 1 points, respectively.
We denote Class 0 and Class 1 points by ®? 1 = 1,...,mp, and &}, i = 1,...,my,
respectively. Let My = {1,...,mo}, My ={1,...,m;} and K = {1,...,K}.

We want to partition Class 1 points into K disjoint groups, so that no Class 0
point can be expressed as a convex combination of these points. Let G be the set
indices of Class 1 points that are in Group k, where | J, .z Gx = M) and Nier Gu = 0.
Thus, we require that the following system is infeasible, for all i € My and k € K:

D N = al, (2.1)

JEGy

Sy =1,

JEGL
Aj 20, j€Gh.

From Farkas’ lemma, System (2.1} is infeasible if and only if the following problem is

feasible:

p'z] +q <0, (2.2)

Pz +q=>0, jeGs
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We consider the optimization problem:

Zk; = maximize € (2.3)
subject to p'x? +q < —¢,
px;+q=>0, jEG,

0<e< 1

If z,; > 0, System (2.2) is feasible and thus Problem (2.1) is infeasible. If 2;; = 0,
System (2.2) is infeasible and thus Problem (2.1) is feasible, i.e., =¥ is in the convex
hull of the points @}, j € Gx. We add the constraint ¢ < 1 to prevent unbounded
solutions. Note that Problem (2.3) seeks to find a hyperplane p'z + g = 0 that

separates point «{ from all the Class 1 points in Group k.

We want to expand Problem (2.3) for all kK € K and 1 € M,. If we knew which

group each Class 1 point belonged to, then we would consider:

Z = maximize ) (2- 4)
subject to  pj @) + gy < —6, i€ Mok € K,
Phi®; + qei 20, i€ Mok € K;j € Gy,

<1

In order to determine if we can assign Class 1 points into K groups such that z > 0,

we define decision variables for k € K and j € M;:

1, if mjl is assigned to Group k, (i.e., 1 € Gi), (2.5)

A,j = i
0, otherwise.

We include the constraints p}c,im; + ki > 0 in Problem (2.4) if and only if ax,; = 1,
ie.,

Pii; + Qi 2 Mak; — 1),
where M is a large positive constant. Note, however, that we can re-scale the variables
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Py ; and gxq by a positive number, and thus we can take M =1, i.e.,
Py + Qi 2 iy — 1.

Thus, we can check whether we can partition Class 1 points into K disjoint groups
such that no Class 0 points are included in their convex hull, by solving the following

mixed-integer optimization problem:

z* = maximize ) (2.6)
subject to P;c,ifl?? + gk < -0, iceMykekK,

PhoiTi+ Gei 2 ak;— 1, 1€ Mok € K;je M;,

K
D a, =1, i€ M,
k=1
§<1,
Qg € {0, 1}.

If z* > 0, the partition into X groups is feasible, while if z* = 0, it is not, requiring

us to increase the value of K.

2.3 The Clustering Algorithm

Problem (2.6) has Kmo(d + 1) + 1 continuous variables, Km, binary variables, and
Kmg + Kmgmy + m; rows. For large values of mg and m;, Problem (2.6) hecomes
expensive to solve. Alternatively, we can drastically decrease the dimension of Prob-
lem (2.6) by solving a hyperplane for clusters of points at a time instead of point by
point.

We develop a hierarchical clustering based algorithm that preprocesses the data
to create clusters of Class 0 and Class 1 points. Collections of Class 0 (Class 1)
points are considered a cluster if there are no Class 1 (Class 0) points in their convex
hull. If we preprocess the data to find Ky Class 0 clusters and K Class 1 clusters,
we can modify Problem (2.6) (see Formulation (2.9) below) to have K Ky(d + 1) + 1

Ay
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continuous variables, K /X binary variables, and Kmqg + K Kom; + K rows.

The clustering algorithm applies the hierarchical clustering methodology (see [24])
where points or clusters with the shortest distances are merged into a cluster until the
desired number of clusters is achieved. For our purposes, we need to check whether
a merger of Class 0 (Class 1) clusters will not contain any Class 1 (Class 0) points
in the resulting convex hull. We solve the following linear optimization problem to

check whether Class 1 clusters r and s can he merged:

d* = maximize ) . (2.7)
subject to plal +q; < -6, 1€ My,

pa+¢ =6 jEC UC.

where C. and C, are set of indices of Class 1 points in Clusters r and s, respectively.

If 6* > 0, then Clusters r and s can merge, while if 4* = 0, they can not since
there is at least one Class 0 point in the convex hull of the combined cluster. The
overall preprocessing algorithm that identifies clusters of Class 1 points is as fol-
lows:

1; Initialize: K :=mq, k:=0.

2: while k < K do

3:  Find the clusters with minimum pairwise distance — call these r and s.
4:  Solve Problem {2.7) on Clusters r and s.

5 if 6* =0 then

6: k=k+1

7. else
8: Merge Clusters r and s.
o: K.=K-1k:=0.

10: k=k+1.

In the start of the algorithm, each point is considered a cluster, thus K = m,;. On

Line 3, the minimum pairwise distances are calculated by comparing the statistical
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distances® bhetween the centers of g the clusters — known as the centroid method,
We define the center of a cluster as the arithmetic mean of aJ] the points that belong
to that cluster. In the merging step on Line 4, these centers are updated. Finding
clusters for Class follows similarly.

After we have Ky and K, clusters of Clags 0 and Class 1 points, respectively, we
run a modified version of Problem (2.6) to assign the K, Class | clusters to & groups,
where K < K} < my. Let Ky={1,... , Ko} and K, = {L,..., K}, Let C?P, te Ky,
be the set of indices of Class points in Cluster ¢ and C! , ¢ Ky, be the set of

indices of Clags 1 points in Clyster 1, We define the following binary variableg for

re€K;and k¢ &

1, if Cluster 7 ig assigned to Group £,

0, otherwise.

problem for clusters:

maximize J (2.9)
subject to Pl + g, < =0, ieyte Kok e R,

pjc,tw} + Qe > o, — L, teKgre ?l;k € 7?;]' eCl

K
Zak,r=17 T‘Efi,
k=1
Qi r € {O, 1}.

Group £, Le., G} = \U .

{rlog, =1}

®Given a collection F of points, the statistical distance between points @ € F C pd and z ¢
F € R% is defined as

is the sample variance of the jth coordinate of gJ] points in £, Statistical distance is a



2.4 Elimination of Outliers

In the presence of outliers, it is possible that we may need a large number of groups
— possibly leading to over-fitting. A point can be considered an outlier if it lies
significantly far from any other point of its class (see Figure 2-3 for an illustration). In
this section, we outline two methods that remove outliers: (a) based on the clustering

algorithm of the previous section, and {b) via an extension of Problem (2.9).

Outlier Removal via Clustering

The clustering method of Section 2.3 applied on Class 0 points would keep outlier
points in its own cluster without ever merging them with any other*Class 0 cluster.
Thus, after Ky clusters are found, we can check the cardinality of each of the clusters
and eliminate those with very small cardinality — perhaps less than 1% of mq. Such

a procedure can similarly be done on Class 1 points.

Outlier Removal via Optimization

Figure 2-3 illustrates how outlier points can prevent CRIO from grouping Class 1
points with small K, i.e., Problem (2.9) can only return a trivial solution where
d=0, py; =0, gr; = 0 and a;;’s assigned arbitrarily. We want to modify Problem
(2.9) to eliminate or ignore outlier points that prevent us from grouping Classl 1 points
into K groups.

One possible approach is to assign a binary decision variable to each point, so that

it is removed if it is equal to 1, and not removed, otherwise. Such a modification can
be theoretically incorporated into Formulation (2.9), but the large increase in binary

variables can make the problem difficult to solve.

We propose a different approach that modifies Problem (2.9) to always return a
partition of Class 1 points so that the total margin of the violation is minimized.

Problem (2.10) is such a model, where €} and ej are violation margins corresponding
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to Class 0 and Class 1 points, respectively. The model is as follows:

Mo ]
minimize Z €& + Z € (2.10)
i=1 =1
subject to Ph T+ Gy < —1+ ¢, icChteKokekK,

P + Qe = —M + (M + Dag, — ¢}, te KpykeK;rcKy;jedl,

2!

K
Zak,r=1, re Ky,
k=1

Ok,r € {Oa 1}7 6? 2 D; EJI' Z 01

where M is a large positive constant.

As in Problem (2.9), the first constraint of Problem (2.10) requires Pl 5 + Gy
to be strictly negative for all Class 0 points. However, if a point ¥ can not satisfy
the constraint, Problem (2.10) allows the constraint to be violated, i.e., p} ,&] + g
can be positive if ¢} > 1. Similarly, Problems (2.9) and (2.10) require p}, ,@} + g to
be nonnegative when a;;’,. = 1 and arbitrary when az, = 0. However, (2.10) allows
p;c,tmjl. + gk to be negative even when ay, = 1, since the second constraint becomes
pjc‘t:njl. +qr: > 1— ejl. when a; . = 1, and the left-hand-side can take on negative values
if ¢ > 1. Thus, by allowing €] and €} to be greater than 1 when necessary, Problem

(2.10) will always return K Class 1 groups by ignoring those points that initially

1

prevented the groupings. These points with € > 1 and €; > 1 can be considered

outliers and be eliminated.

2.5 Assigning Groups to Polyhedral Regions

The solution of Problem (2.10) results in K disjoint groups of Class 1 points, such
that no Class 0 point is in the convex hull of any of these groups. Our objective in
this section is to represent each Group k& geometrically with a polyhedron F,. An

initially apparent choice for Py is to use the solution of Problem {2.10), i.e.,

P, = {x € RY| Pri® > —qre, k € Kt € Ky}
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Motivated by the success of SVMs (see [43]), we present an approach of using
hyperplanes that separate the points of each class such that the minimum Euclidean
distance from any point to the hyperplane is maximized. This prevents over-fitting
the model to the training data set, since it leaves as much distance between the

boundary and points of each class as possible.

Our goal is to find a hyperplane
7r,’,c)tw = Qs

for every Group %, k € K, of Class 1 points and for every Cluster ¢, t € K, of Class
0 points such that all points in Cluster ¢ are separated from every point in Group %
s0 that the minimum distance between every point and the hyperplane is maximized.

The distance, d(x, 7wy, 0y ), between a point 2 and the hyperplane 7} . = oy, is

kdl
7]’

/
d(T, Ty, ) = where v = @ — ay,.

Thus, we can maximize d(x, 7xy, o) by fixing |y] and minimize Imell® = 7y,

thus solving the quadratic optimization problem: . ‘ -

minimize L (2.11)
subject to m @ <oy —1, i€ CP,

N
’n';c,thlA > Qg + 1, jE G

We solve Problem (2.11) for each ¢ ¢ K, and &k € K, and find KK, hyperplanes.

Thus, for each Group k the corresponding polyhedral region is
Po={z eRY m} & > ay,, t € Ko}, (2.12)

The last step in our process is the elimination of redundant hyperplanes in the rep-

resentation of polyhedron P given in Eq. (2.12). Figures 2-5 and 2-6 illustrate this
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procedure. We can check whether the constraint
T 1o 2 Okt (2.13)

is redundant for the representation of P by solving the following linear optimization

problem (note that the decision variables are x):

Wty = Minimize Tkt : (2.14)
subject to T T 2 Qg te Ko\ {ta},

!
Tr.'c,tgm 2 aklo - 1

We have only included the last constraint to prevent Problem (2.14) from becoming
unbounded. If wiy > oy, then the Constraint (2.13) is implied by the other
constraints defining P, and thus it is redundant. However, if wgs, < oy, then
Constraint (2.13) is necessary for describing the pelyhedron P;. To summarize, the

following algorithm eliminates all redundant constraints:

1. fork =1t K do
2: for tp = 1 to Ky do

3: Solve Problem (2.14).
4 if wiy, 2> agy, then
5: Eliminate Constraint ‘rr}c’tozc > Otk tg-

2.6 The Overall Algorithm for Classification

The overall algorithm for classification is as follows:

1. Preprocessing: Use the clustering algorithm outlined in Section 2.3 to find
clusters. Eliminate clusters with cardinality less than 1% of rng (m;) for Class

0 (Class 1) clusters.

2. Assign Clusters to Groups: Solve the mixed-integer optimization problem

(2.10) to assign clusters of Class 1 points to groups, while eliminating potential
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3. Assign Groups to Polyhedral Regions: Solve the quadratic optimization
problem (2.11) to find hyperplanes that define the polyhedron of each Class 1

group.

4. Eliminate Redundant Constraints: Remove redundant constraints from

the polyhedra following the algorithm outlined in the end of Section 2.5.

After CRIO determines the non-redundant representations of the polyhedra, the
model is used to predict the class of new data points. If the point lies in any of
the K polyhedra, we label the point as a Class 1 point. If the point is not contained
in any of the polyhedra, then we label the point as a Class 0 point.

2.7 Classification with Multiple Classes

We have only discussed binary classification problems so far, but the method can
easily be extended to data sets with multiple classes by iteratively solving a binary
classification problem. Suppose we have a data set with C classes, with N, being the
set of indices of class 7 points, i = 1,2,...,C. The following algorithm classifies such

a data set:

1: forc=1to C do
2. Let My = N,, and M = U N,

i=c+1,...,C
3:  Solve the binary classification problem using the method described in Section

2.6.

Thus, this algorithm finds polyhedra that separates Class 1 points from points
of Class 2 through C, Class 2 points from points of Class 3 through C, etc. To
classify a new point, we check whether it is contained in any Class 1 polyhedron, and
if it does, we label the paoint Class 1; otherwise, we check whether it is contained in
any Class 2 polyhedron. If it is not contained in any of the Class 1 through C' — 1
polyhedra, then we label it a Class C' point. From computational experimentation,
the method worked best when the classes are ordered in ascending cardinality, i.e.,

|N1I < |N2| < e L |N()|
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2.8 Stability Results for CRIO

As discussed in the previous sections, it is critical that a prediction method have
strong prediction accuracy on the given data set, but it must also be robust to the
randomness in the data. The prediction model would have no value even if it has good
prediction accuracy on a particular sample of the data set, but fails on others. Thus,
we want our algorithm to be stable —i.e., it’s prediction error should not significantly
vary with different random samples of the data.

The classification component of CRIO dealt with robustness by removing potential
outliers via the clustering heuristic, allow small margins of error in its partition and
maximize the minimum distance between the points and the the boundary of the
points. Computational experimentations show that the variance on the prediction
accuracy, when using different random samples of the training, validation and testing
set, are relatively small (see Table 2.2). This seems to suggest that there exists
bounds on the variability of its prediction error. In this section, we explore concepts
of stability presented in the Machine Learning literature by Bousquet and Eliseeff [8].

We further extend these results to particular scenarios in CRIO.

Stability in Classification Algorithms

Randomness in classification can be attributed to two sources : one due to the random
sampling of the training set, and the other due to measurement error. We focus on
the former type, referred to as the sampling randomness. There has been éigniﬁcant
work in the machine learning community in formalizing the measure of stability and
~ generalization in terms of changes in the training set data. Specifically, (8] gives
stability bounds for popular learning algorithms, such as regularized SVMs, when
one data point is removed or replaced in a training set.

We first introduce some notation. Let S = {z; = (Z1, 1), ., Zm = (Lm, ym)} be
a training set of size m. The data set, Z = X x Y, is sampled i.i.d. from an unknown
distribution D. We also look at a modified training set, S, where 8™ = S\ {z;}. Let
A be the algorithm that constructs a mapping Ag : X — Y using S as the training
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set, i.e., Ag predicts the y-value for a given =, where Ag(x) = § is the predicted
value using S as the training set, and Agn:(x) is the predicted value using S™ as the
training set.

Let the accuracy of the prediction be measured by the cost functionc: ¥ x ¥ —
R*. If Ag(x) is the predicted value and y is the true value, then the cost of the
prediction is ¢{As(z),y). In classification, this cost function is often an indicator
function, i.e., ¢(y,y) = 1is § # y and ¢(g,y) = 0 when § = y. In the language of
machine learning, one also defines a losg function, which measures the prediction loss
of using the mapping As on data point z = (x,y). Let £ be a loss function where
Y Ag, z) = c(As(z),y). This is defined mainly for notational purposes.

Ideally, a prediction algorithm wants to minimize the following criteria:
R(A,S) = E,[¢(4s, z)]

which is a random variable with respect to the sampling 5. This measure of error
is known as the generalization error or the true error, which represents the expected
error of the algorithm A on the training set 5. However, we can only approximate
this value since the distribution D is unknown. Assuming that the points in the set

are selected i.i.d, the most common surrogate to the true error is the empirical error,

Remp, defined as

T
Remp(4,8) = — ;E(AS, z;).
Repmp can be viewed as the sample average error of using algorithm A on training set 3,
and is often the criteria that is minimized in a prediction algorithm. Clearly, however,
Remp can only give an optimistic approximation of R(4,S) since it is biased on the
given sampled data set. Thus, an algorithm that simply minimizes the empirical error
may have a true error that is significantly worse (which is the case of over-fitting).
The goal of data mining models is prediction accuracy on future data sets, and not
optimizing the fit on the given training set. Thus, we want to construct an algorithm
whose empirical error does not depart significantly from the true error. Such an

algorithm has to accept a greater number of training errors for it to be stable, but

N
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these errors will be compensated hy greater generalization.

The following notion of stability is used to construct bounds on R — Remp:

Definition 1 (Uniform Stability) An algorithm A has uniform stability § with re-
spect to the loss function £ +f

6(As,.) — 8 Agns, )| < 8, VS, Vi,Vz € Z. (2.15)

An algorithm is considered stable if § = O(L).

Notice that for A to have uniform stability, this bound~on the change in loss
function needs to hold for every possible training set and future data points. There
are weaker versions of stability that do not consider samples and data points that
occur with probability 0. However, uniform stability allows us to get tighter bounds

on the empirical error of an algorithm, as illustrated in the following theorem:

Theorem 1 (Bousquet & Elisseeff) Let A be an algorithm with uniform stability
3 with respect to a loss function £ such that 0 < £(Ag,z) < M, for all z € Z and
all sets S. Then, for any m > 1, and any € € (0,1), the following bounds hold with

probability at least 1-€ over the random draw of the sample S':

Int
R S Remp + 2/6 + (mﬁ + M) 277; 1 (216)
which yields:
Pg[R — Romp > € +20] < e (2.17)
S[ emp €+ ﬂ = exp 4mﬁ+M .

Let us measure the stability of the classification component of CRIO. We use the
same notation as in previous sections, namely, Lo is the number of Class 0 clusters,
CP is the I*" Class 0 cluster, K is the number of Class 1 groups and m; is the number
of Class 1 points. To be consistent with traditional machine learning notation, let us
use y = —1 as the class label for Class 0 points, i.e., the class labels are Y = {-1,1}.

Let Ag be the real-valued classification function for CRIO that predicts the class of

a point @ by sign(As(z)) (ie., if Ag(x) > 0, = § = sign{As(=x)) = +1. Otherwise,
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¥ = sign(Ag(x)) = ~1). Recall, that CRIO classifies a point as Class 1 if jt is
contained in one of the K polyhedra, £, defined by the set of linear SVMs that
Separate the Ly Class 0 clusters from the gth Class 1 group. If & is not contained in
any of the polyhedra, then it is classified as a Class ( point. For notationa] simplicity,
let us initially assume that K =1,

Let AL(z) := T - oy be the resulting hyperplane that Separates Class 0 Clyster
! from the Class 1 group.  From Section 2.5 ang the definition of As and AL if
A(x) > 0 for all !, then Ag(x) > ¢ r 3,0 = 1,..., Ly, such that Ak(z) < o,
then Ag(x) < 0. We can clearly set As(x) .= :rlnmL0 Ab(x), however, ff)r Purposes of

theoretical analysis, we define As as follows:

Ast@) == S b))

(4]

lal,...,Ln
where
0, ifa> g,
pla) = .
a, ifa<g.

: 1 . . e
Clearly, sign [ —. E p(Afg(:v) = sign { min Als(:ﬂ) s0 both definitions are

Ly i i=1...L,
the same for oy prediction purposes.

There are three possible scenariog when a point, Z; is removed from the training

set:

L. x; is a Clags | point, and jtg removal does not change the cluster membership

of the remaining\ Class 0 points, and

3. The remova] Z; changes the clyster membership of the remaining points,

Lemma 2 and Corollary 1 give bounds to [As(z) - Agnif far the first two cases,



membership of the Class 0 points, then:

2

3 2”— VS Ve ¢ X, (2.18)

|AS ZT)— ASm‘ T 0 )
@) =A@l 2 e my)

S —
Lo ,_

where & is such that ||z| < k, Vo € X.

Proof: Removing z; from the training set will not affect the allocation of the Class
1 points to their groups, which are constructed by the mixed-integer optimization
model. It may, however, change the faces of the polyhedron P, which has up to
Lo faces (since there are Ly Class 0 clusters), denoted as Ak(x) above. From our

definition, we have:

1

[As(@) = Aso()] = |7= D7 plds(@) =+ > plAgu(@)|, )
0 =1, Lo 01=1,.. Lo
1
< 1 Y lo(As(x)) — p(Ake (@)
i=1,....Lo
< Li Z |A (@) — Abri(x)|  (Since.p(.) is clearly 1-Lipschitz)
0 9=1,,Lo

AL (z) are derived by linear SVMs and using the result from [8], we have

2
! AL -~
[AS(m) AS”*(:B” = 2(|Ol()’ _|_m1)

a.

Corollary 1 Suppose the point ; removed from S is a Class 0 point and A corre-
sponds to the classification algorithm of CRIO. If the removal of ®; does not change

the cluster membership of the remaining Class 0 points, and if ®; € Clo(z.), then

K,2

< . VS.Va e X. 2.19
| < SLagey, T+ m) (2.19)

|A5(LE) — Asm(m)

Proof:  Assuming that the cluster assignments of the remaining points do not
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change, then removing x; will effect only Agi)(m). Result (1) follows from the proof
for Lemma 2 [.
Finally, we extend Lemma 2 and Corollary 1 to whenK > 1:

Corollary 2 Under the conditions given in Lemma 2 or Corollary 1, we have

2

i <
|As(x) — Asri(x)] < max Z 2o (0 1G] (2.20)

Lo

where Gy, are the set of Class 1 points in Group k.

Proof: Suppose A" is the linear SVM that separates Class 0 Cluster { from Class 1

Group k, and let A§ = £ Z p(AL(x)) (i.e., A% is the same as Ag when k& = 1). If
1=1,..,.Lg

Ag is the classification function, then Ag{x) > 0 if 3k, such that @ € P,. Otherwise,

Ag(x) < 0. Thus, we set Ag(x) := maxp—1,. K A¥. From Lemma 2 and Corollary 1,

we get the following:

|As(@) = Agri()] < | max Af(z) - max Agn(z)

< max|Ag(z) — Agni()]

K;Z

. <
\ S B 2, LT+ IGH)

a.
When the cost function ¢(.,.) is an indicator function, we can only show trivial
cases of stability due to the discontinuity of the loss function. Thus, we modify the

cost function to the following continuous function:

1, if gy < 0,
H@y) =9 1-, ifo<gy <y, (2.21)
0, otherwise,

where 7 is a predetermined constant. We similarly define £,(Ag, z) = cy(As(z), ).
ey (9, y) is %—Lipschitz with respect to its first argument, which give us the following

lemma:
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Lemma 3 Under the conditions of Corollary 2 and using the cost function (2.21),

we have the following result for all training set S and all z:

2

1 K
£(As,z}) — £(Agn, L — —_— 2.22
I( s ) ( 5N Z)| vLo kfﬁ?&(l:%h 2(|C'?|+le|) ( )
Proof: From definition,
[{(As, z) — l(Asn, z)] < |ey(As(x),y) — cy(Asri (), )l
1
< ~|As(z) - Asri(z)

A
|

1 %
ax —_—
Ly fl e l=§Lo 2(|C| + my)

Lemma 3 comes close to stating that the CRIO has uniform convergence 3, where
8= (l\m) However, the lemma does not ‘cover the scenario when the removal of
a point changes the cluster memberships. In most cases, removing a point would
not significantly change cluster membership when running hierarchical Clustering of
Section 2.3. For example, when the variance or spread of the points ina given cluster
is relatively small and the cardinality large, removing a single point from this cluster
will not affect the existing clusters. Also, removing a point from a cluster of large
variance and small cardinality will also not change the clusters. However, in the lt?ss
extreme cases, it is difﬁcult to construct any stability bounds. This is characteristic
of clustering algorithms in general. Although there has been significant work on
stability bounds for supervised learning algorithms [8, 14, 13|, we have not found any
theoretical studies on cluster stability in terms of sampling randomness. IHowever,
empirical tests and intuition Suggest that bounds on the classification function should
not differ significantly from Equation 2. Once we can show that |[Ag(x) — Agri(x)| <

£ = O(1\m) under scenario 3, then we can show an exponential bound for CRIO

using Theorem 1 with M = 1 and m = mg + ™.
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2.9 Computational Results

N
N

We tested the classification component of CRIO on real data, and compared their
prediction accuracy against the softwares CART? and SvmFu®. Each data set was
split into three parts — the training’ set, the validation set and the testing set. The
training set, comprised of 50% of the data, was used to develop the model. The
validation set, composed of 30% of the data, was used to select the best values of
K, Ky and K;. Finally, the remaining points are in the testing set, which ultimately
decides the accuracy of the model. This set is put aside until the very end, after the
parameters of the model are finalized. The assignment to each of the three sets was
done randomly, and this process was repeated three times.

CART wuses the validation set for pruning its initial decision tree built by the
training set alone. The test set is classified using this final tree. For SvmFu, linear,
polynomial (with degree 2 and 3) and gaussian kernels were all tested, as well as
different cost per unit violation of the margin. The kernel and parameters resulting
in the best validation set accuracy was chosen to classify the testing set.

We solved all optimization problems (mixed-integer, quadratic and linear) using

CPLEX 7.1° [12] running in a Linux environment.

Classification Data

We tested our models on five real data sets found on the UCI data repository 7. The
“Cancer” data is from the Wisconsin Breast Cancer databases, with 682 data points
and 9 explanatory variables. The “Liver” data is from BUPA Medical Research Ltd.,
with 345 data points and 6 explanatory variables. The “Diabetes” data is from the
Pima Indian Diabetes Database, with 768 data points and 7 explanatory variables.

The “Heart” data is from the SPECT heart database, where we combined the given

4CART is a product of Salford Systems, http://www.salford-systems.com.

5SvmFu is a freeware developed by Ryan Rifkin from MIT that 1mplements SVMs with
linear, polynomial and gaussian kernels. It can be downloaded from hitp://five-percent-
nation.mit.edu/SvmFu/.

SCPLEX 7.1 is a product of ILOG http://www.ilog.com/products/cplex/

Thttp://www.ics.uci.edu/~mlearn/MLSummary.html
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training and testing set to get 349 data points and 44 explanatory variables. The
“Iris” data determines the type of iris, given the plant’s physical measurements, and
has 150 data points, 4 explanatory variables and 3 classes. The “Cancer”, “Liver”,
“Diabetes” and “Heart” involve binary classification, while the “Iris” data set involves

classification with three classes.

Results

Table 2.1 summarizes the classification accuracy of CART, SvmFu and CRIO for
the five data sets. Each sub-panel in Table 2.1 corresponds to a data set. Each
data set was partitioned using random sampling into training, validation and testing
set, and we illustrate the average of these partitions. The columns labelled “Train”,
“Validation” and “Test” illustrate the percent of the training, validation and testing
set, respectively, that the models correctly classified.

In all data sets, CRIO was significantly more successful than CART, with predic-
tion accuracy up to 13% higher in the testing set. CRIO outperformed SvmFu in the
“Liver” and “Diabetes” data sets, with prediction accuracy up to 10% higher. In the
“Cancer” and “Iris” data set CRIO and SvmFu had the same performance, and in
the “Heart” data set SvmFu outperformed CRIO. Most importantly, the impact of
CRIO was greatest in the data sets that tend to be difficult to classify for the current
methods (“Liver” and “Diabetes”). CRIO runs in practical running times of under
half a minute for all data sets on a personal workstation.

The paramefer M of Problem (2.10) was set to 1000 for all of our experiments.
Both the values of Ky and K ranged from 1 to 3 in “Cancer” and “Heart”, 4 to 8
in “I.ris” and 8 to 12 in “Liver” and “Diabetes”. “Cancer”,“Heart” and “Iris” used
K =1 group for all three cases, “Liver” used up to K = 2 groups and “Diabetes”
up to K = 3 groups. We feel that CRIO’s ability, via mixed-integer optimization, to
categbrize the points in more than one region may explain the prediction accuracy of
CRIO in the “Liver” and “Diabetes” data sets.

Table 2.2 illustrates the standard deviation of the prediction accuracy across all

the partitions. We use it to give us a rough empirical picture of the stability of
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Cancer Train (%) | Validation (%) | Test (%)
n—682,d=09

CART 95.37 03.83 95.41
SvmFu 97.07 96.41 98.79
CRIO 97.26 96.90 08.79
E‘le; t5.d—¢ | Train (%) | Validation (%) | Test (%)
CART 76.93 68.97 63.33
SvmFu 80.43 70.23 64.76
CRIO 73.06 74.43 71.43
E)llib;ggf =8 Train (%) | Validation (%) Test_ (%)
CART 83.20 71.27 69.05
SvmFPu 80.99 71.74 70.56
CRIO 80.12 79.42 77.06
Heart Train (%) | Validation (%) | Test (%)
n=340,d = 44

CART 83.37 76.93 74.18
SvmFu 100.00 88.46 86.38
CRIO 99.81 83.65 81.69
Iris Train (%) | Validation (%) | Test (%)
n=150,d = 4

CART 97.78 96.30 91.11
SvmFu 98.67 08.52 96.67
CRIO 99.56 97.04 96.67

Table 2.1: Prediction accuracy rates of CART, SvmFu and CRIO. n is the number
of data points, and d is the number of explanatory variables.

the algorithms, as discussed in Section 2.8. Although, the size of the data set and
the number of random partitions are too small to construct statistical measure of
error and confidence intervals, it shows that there are no large deviations in the
prediction error for all models. For the most part, it reflects the theoretical findings
that SVMs are more stable to sampling randomness than CART [38, 20| (again, the
major discrepancies are probably due mainly to the size of the data set). It also

shows that the variability of CRIO’s predictions are comparable to those of SVMs,
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Cancer Train Validation| Test
CART 2.15 0.64 0.84
SvmFu 0.00 0.69 0.00
CRIO 1.19 1.58 0.42 )
Liver Train Validation| Test
CART 10.83 1.67 9.07
SvmFu 16.95 7.29 8.12
CRIO 3.31 5.35 3.78
Diabetes | Train Validation| Test
CART 3.66 10.38 13.78
SvmFu 17.15 10.03 5.60
CRIO 1.10 4.30 2.30
Heart Train Validation| Test
CART 15.13 14.35 4.53
SvmFu 0.00 6.00 4.95
CRIO 0.33 5.09 7.04
Iris Train Validation| Test
CART 1.54 1.28 1.92
SvmIu 0.00 1.28 3.33
CRIO 0.77 1.28 3.33

Table 2.2: Standard deviation of prediction accuracy of CART, SvmFu and CRIO.

as the results in Section 2.8 suggested. Interestingly, the standard deviation of CRIO
is significantly lower than those of CART and SVM in the “Liver” and “Diabetes”
data sets. Those two data sets had large value for K than others, thus would be more
prone to over-fitting. By the poor predictions of CART and SVM, perhaps the low
variance of CRIO implies under-fitting of the first two methods, and that CRIO with
K =2 and K = 3 are good fits for “Liver” and “Diabetes”, respectively.

2.10 Conclusion

The classification component of CRIO represents a new approach for solving clas-
sification problems. It combines the use of clustering techniques to alleviate the
computational burden, pinpoints outliers before and during the model building step
and uses linear and nonlinear optimization methods to construct polyhedral regions

that define borders for each class. The key difference and advantage, however, is the
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use of mixed-integer optimization models that are able to capture discrete behaviors
in the data set.

The effective combination of these techniques allows CRIO to overcome some of
the shortcomings of the current leading methods of CART and SVM. Unlike CART,
CRIO is able to partition the explanatory variable space in a globally optimal manner,
and not limited to hyper-rectangular regions. CRIO expands the concepts of linear
SVMs in to general polyhedral regions, without utilizing nonlinear kernels. Although
gaussian kernels have been shown to be very effective in separating the training set
data, it is often seen to over-fit (even when cross validation is used) and difficult
to intuitively visualize. Most importantly, the computational results of Section 2.9
illustrates the predictive powers of CRIO, especially on the data set “Liver” and
“Diabetes” which the other methods had the most difficulty predicting.

Clearly, there are several follow-up works that can be done to improve CRIO’s
performance on classification problems. We would like to further test on larger data
sets to see the scalability of CRIO in both the number of data points and dimen-
sion. It would be interesting to compare any differences in its predictive performance
compared to SVMs which have been known to be successful in higher dimensions.
Also, as we will touch upon in Chapter 4, variable selection is a key issue in both
clagsification and regression. As the size of the data sets become larger, not all of
the available explanatory variables are necessary in the model. To add robustness
and simplicity to the model, we may want to find ways to effectively and efficiently

implement this variable selection process.
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Chapter 3

Regression via Integer

Optimization

In a classical regression setting, we are given n data points (x;, y;), but y; can take any
real value, i.e. y; € R, and is referred to as the predicted or target variable. We wish
to find a simple mapping from the explanatory variables to the predicted variable, so
that given new sets of explanatory variables, we can accurately predict their target

values.

Two popular methods in regression are CART and Multivariate Adaptive Regres-
sion Splines (MARS). The regression component of CART similarly splits the space
into hyper-rectangular regions, but assigns a constant predicted value to each of the
regions. It is, thus, essentially fitting a step-wise function to the data points. MARS
similarly partitions the explanatory variable space, but fits one dimensional linear
splines to each region, while maintaining continuity of the predicted values among
neighboring regions. Again, the main shortcomings of both CART and MARS is its

greedy approach in constructing the different regions.

Similar to the classification component, the regression component of CRIO sep-
arates the explanatory variable space in a globally optimal manner via the use of
mixed-integer optimization. For each region, it finds a linear mapping that minimizes

the total absolute error. The following gives a geometric overview of our approach.
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3.1 The Geometry of the Regression Approach

In a classical regression setting, we are given n data points (@;, i), x; € R% y; € R and
i=1,...,n. We wish to find a linear relationship between =; and y,, i.e., y; ~ B'=z;
for all i, where the coefficients 8 € R? are found by minimizing ¥ 7 (1 — 3'®;)? or
> iy lyi — B'xy| (for notational simplicity, we assume that the first element of every
vector @; is equal to 1, so f; corresponds to the intercept term). CRIO seeks to find
K disjoint regions P, C R% and corresponding coefficients 3, € R% k = 1,... K,
such that if 2y € P, our prediction for yo will be o = B,2o. Figure 3-2 illustrates

the output of CRIO, given the points in Figure 3-1 where z; € R.

CRIO first solves a mixed-integer optimization model to assign the n points into
K groups (where K is a user-defined parameter). In addition, the mixed-integer
optimization is further enhanced to detect and eliminate outlier points in the data
set (see Figure 3-3). In contrast, traditional regression models deal with outliers after
the slopes have been determined, by examining which points contribute the most to
the total prediction error (see [39], [40]). This procedure can often be deceiving since
the model is heavily influenced by the outlier points. After the points are assigned
to the X groups, we determine the coefficients 3, that best fit the data for Group
k, for k = 1,..., K, and define polyhedra Py to represent each group using linear
optimization methods. After the coeficients and polyhedr‘a are defined, we predict
the yp value of a new point &g as we outlined earlier. CRIO does not in fact create
a partition of R%, so it is possible that a new point @ may not belong to any of
the P.’s . In such a case, we assign it to the region P, that contains the majority
among its F' (a user-defined number) nearest neighbors in the training set, and make
the prediction g = Blxy. Similarly to the classification model, we preprocess the
data by clustering them into small clusters to reduce the dimension and thus the

computation time of the mixed-integer optimization model (see Figure 3-4).

In summary, CRIO has a common approach to both problems of classification

INote that in classification, the regions Py also do not form a partition of R¢, but if a point xgo
belangs to any of the regions Py, we classify it as Class 1, and if it does not belong to any of the
regions Py, we classify it as Class 0.
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Figure 3-2: The output of CRIO, where the regression coefficient or slope is different for
“the two regions.

and regression: (a) Preprocess data by assigning points to clusters to reduce the

dimensionality of the mixed-integer optimization problems solved next; (b) Solve
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Figure 3-4: Data points clustered in (z, y)-space.

a mixed integer-optimization problem that assigns clusters to groups and removes

outliers. In the case of regression the model also selects the regression coefficients
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for each group; (c) Solve continuous optimization problems (quadratic optimization
problems for classification and linear optimization problems for regression) that assign
groups to polyhedral regions.

In the following sections, we present in detail our approach for regression. For pre-
sentation purposes, we start in Section 3.2 with an initial mixed-integer optimization
model to assign points to groups, which, while not practical because of dimensionality
problems, forms the basis of our approach. As outlined in Section 3.1, we first assign
points to clusters (Section 3.3), then assign clusters to groups of points {Section 3.4),
which we then represent by polyhedral regions P, (Section 3.5). In Section 3.6, we
propose a method of automatically finding nonlinear transformations of the explana-
tory variables to improve the predictive power of the method. Finally, we present the

overall algorithm in Section 3.7.

3.2 Assigning Points to Groups: An Initial Model

The training data consists of n observations (x;,1;), 1 = 1,...,n, with ; € R? and
y, ER. Welet N={1,...,n}, K={1,...,K} and M be a large positive constant.
We define binary variables for k € K and i € N:

1, if x; assigned to Group &,
Ui =

0, otherwise.

The mixed-integer optimization model is as follows:

minimize - Z d; (3.1)
i=1
subject to & = (yi — Biwi) — M(1 —ar:), k€ K;i€ N,

6 > —(yi — Brws) — M(1 —ay,), ke K;i€N,
K

A Zak-i=11 ’l:EN,

k=1
ar; € {0,1}, & > 0.
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From the first and second constraints, §; is the absolute error associated with point
x;. If ap; =1, then &; > (yi — Brxi), 8 > —(y — B, x:), and the minimization of &;
sets d; equal to |y; — Bx;|. If ar,; = 0, the right-hand-side of the first two constraints
becomes negative, making them irrelevant since §; is nonnegative. Finally, the third
constraint limits the assignment of each point to just one group.

We have found that even for relatively small n (n = 200), Problem (3.1) is difficult
to solve in reasonable time. For this reason, we initially run a clustering algorithm,
similar to that of Section 2.3, to cluster nearby ®; points together. After L such
clusters are found, for L €« n, we can solve a mixed-integer optimization model,

similar to Problem (3.1), but with significantly fewer binary decision variables.

3.3 The Clustering Algorithm

We apply a nearest neighbor clustering algorithm in the combined (z,y) space, as
opposed to just the o space, in order to find L clusters. .Speciﬁcally, the cluster-
ing algorithm initially starts with n clusters, then continues to merge the clusters
with points close to each other until we are left with L clusters. More formally, the
clustering algorithm is as follows:
1: Initialize: k =n. C;={i},i=1,...,n.
2: while ! < L do
3:  Find the points {@;,y) and (x;,v;), ¢ < j, with minimum pairwise statistical
distance. Let [(1) and [(j) be the indices of the clusters that (xz;,y;) and (x;,v;)
currently belong to, respectively.
40 Add Cluster I(j)’s points to Cluster (2}, i.e., Cys) := Ciy U Cyyy.
5:  Let the pairWise statistical distance between all the points in Cj;y be oco.
6: l=1[-1.
In the clustering algorithm for classification problems (Section 2.3), we merged
clusters who had centers of close proximity. However, in the present clustering al-
gorithm, we merge clusters which contains points of close proximity — known as

the single-linkage methods. Computational experimentations showed that this latter
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method of clustering suited the regression problem better.

3.4 Assigning Points to Groups: A Practical Ap-

proach

Although we can continue the clustering algorithm of the previous section until we
find K clusters, define them as our final groups, and find the best 3, coefficient for
each group by solving separate linear regression problems, such an approach does
not combine points in order to minimize the total absolute error. For this reason,
we use the clustering algorithm until we have L, L > K, clusters and then solve a
mixed-integer optimization model that assigns the L clusters into K groups in order
to minimize the total absolute error. Another key concern in regression models is the
presence of outliers. The mixed-integer optimization model we present next is able
to remove potential outliers by eliminating points in clusters that tend to weaken the

fit of the predictof coefficients.

Let C),l € L =1{1,...,L}, be Cluster /, and denote {() as x;'s cluster. Similarly
to Problem (3.1), we define the following binary variables for & € K U {0} and | € L:

1, if Cluster [ is assigned to Group k&,
el = (3.2)
0, otherwise.

We define £ = 0 as the outlier group, in the sense that points in Cluster [ with

ao; = 1 will be eliminated. The following model assigns clusters to groups and allows
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the possibility of eliminating clusters of points as ontliers:

minimize Z 8 (3.3)
i—1
subject to & = (y; — Brx:) — M(1 —arywy), k€ K;i €N,
6,‘ 2 —(y,;—ﬂ;cwi)—M(l—ak’g(i)), kEE,Z EN,

K
Zak,l =1, le L,
k=0
L
Z lcllao,l < p\Nli
=1

ak,l S {O, 1}, 5,' 2 0,

where M is a large positive constant, and p is the maximum fraction of points that

can be eliminated as outliers.

From the first and second set of constraints, d; is the absolute error associated to
point a;. If ayyq) = 1, then & > (y; — By, 8 = — (v — Byx:), and the minimization
of §; sets it equal to |y; — Bywil. If agyy = 0, the first two constraints become
irrelevant, since 4, is nonnegative. The third set of constraints limits the assignment
of each cluster to just one group (including the outlier group). The last constraint

limits the percentage of points eliminated to be less than or equal to a pre-specified

number p. If ay; = 1, then all the points in Cluster [ are assigned to Group %, ie.,

Gk = U Cl.

{Uak, =1}

Problem (3.3) has KL binary variables as opposed to Kn binary variables in
Problem (3.1). The number of clusters L controls the tradeoff between quality of the
solution and efficiency of the computation. As L increases, the quality of the solution
increases, but the efficiency of the computation decreases. In Section 3.8 we discuss

appropriate values for K, L and p from our computational experimentation.
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3.5 Assigning Groups to Polyhedral Regions

We identify K groups of points solving Problem (3.3). In this section, we establish a
geometric representation of Group k by a polyhedron F.

It is possible for the convex hulls of the K groups to overlap, and thus, we may not
be able to define disjoint regions of P that contains all the points of Group k. For
this reason, our approach is based on separating pairs of groups with the objective
of minimizing the sum of violations. We first outline how to separate Group k& and

Groups r, where k < r. We consider the following two linear optimization problems:

minimize Z € + Z € (3.4)
' 1EGK lEG,
subject to pp.® —qur < —1+€, 1€ Gy,
p;clrwl — Gk, 2 1- €1, l € GT‘»
p;c,re 2 1’

Eizo, 6520,

and

minimize Z € + Z € (3.5)

i€G leGr
subject to P, % —qrr < —1+¢€, @€ Gy,
Pir®l— Ger>1—¢, l€G,,

plk:,re S _11

& >0, =0,
where e is a vector of ones.

Both Problems (3.4} and (3.5) find a hyperplane p} @ = g, that softly separates
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points in Group k from points in Group r, i.e., points in either group can be on
the wrong side of this hyperplane if necessary. The purpose of the third constraint
is to prevent getting the trivial hyperplane p;, = 0 and g, = 0 for the optimal
solution. Problem (3.4) sets the sum of the elements of p,,. to be strictly positive
and Problem (3.5) sets the sum of the elements of p;, to be strictly negative. Both
of these problems need to be solved since we do not know a priori whether the sum
of the elements of the optimal non-trivial py . is positive or negative 2, The solution
of the problems that results in the least number of violated points is chosen as our
hyperplane.
After we solve Problems (3.4) and (3.5) for every pair of groups, we let

Py ={x|ppx < qri,i=1,.... k=1, px>qui=k+1,. .. K} (3.6)

After Py is defined, we recompute 3, using all the points contained in Py since it is
possible that they are different from the original G}, that Problem (3.3) found. We
solve a linear optimization problem that minimizes the absolute deviation of all points

~in Py to find the new 3,.

3.6 Nonlinear Data Transformations

In order to improve the predictive power of CRIO, we augment the explanatory vari-
ables with nonlinear transformations. In particular, we consider the transformations
z2, logz and 1/z applied to the coordinates of the given points. We can angment
each d-dimensional vector &; = (#i1,...,%iq) With w?,j, log x4, /25, 7 =1,...,4,
and apply CRIO to the resulting 4d-dimensional vectors, but the increased dimensi\on
slows down the computation time. For this reason, we use a simple heuristic method
to choose which transformation of which variable to include in the data set.

For 5 = 1,...,d, we run the one dimensional regressions: (a) (z:;,%:), t € N, with

2If the optimal non-trivial p, . is orthogonal to e, then we would not be able to find that vector
with either formulation. However we will obtain a hyperplane that is slightly perturbed from the
optimal, which suffice for our purposes
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sum of squared errors equal to f; 1, (b) (z?’j,yi), 1 € N, with sum of squared errors
equal to f;a, (c) (logzi;,v:), ¢ € N, with sum of squared errors equal to f;3, (d)
(1/2i4 %), ¢ € N, with sum of squared errors equal to fia. If fia < fj1, we add zZ;
and eliminate z; ;. If f;3 < f;1, we add log z;; and eliminate z; ;. If f;4 < f;1, we
add 1/z; ; and eliminate z; ;. Otherwise, we do not add any nonlinear transformation

to the data set.

3.7 The Overall Algorithm for Regression

The overall algorithm for regression is as follows:

1. Nonlinear transformation: Augment the original data set with nonlinear

transformations using the method discussed in Section 3.6.

2. Preprocessing: Use the clustering algorithm to find I <« n clusters of the

data points.

3. Assign Clusters to Groups: Solve Problem (3.3) to determine which points

belong to which group, while eliminating potential outliers,

4. Assign Groups to Polyhedral Regions: Solve the linear optimization prob-
lems (3.4) and (3.5) for all pairs of groups, and define polyhedra as in Eq.
(3.6).

5. Re-computation of 3’s: Once the polyhedra P, are indentified, recompute

B3, using only the points that belong in P.

Given a new point oy (augmented by the same transformations as applied in the
training set data), if 2y € P, then we predict gy = B, xo. Otherwise, we assign z,
to the region P, that contains the majority among its F' nearest neighbors in the

training set, and make the prediction gy = B.xg.
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3.8 Computational Results

We tested the regression component of CRIO on three real data sets found on the
UCI data repository and compared the results to commercial softwares of CART [9]
and MARS [17]%. Similar to the experiments on the classification data sets in Section
2.9, each of the regression data was split into three parts, with 50%, 30% and 20% of
the data used for training, validating and testing, respectively.

We used the validation set for CRIO to fine tune the values of parameters K, L
and p of Problem (3.3). In CART, we use the validation set in the pruning step to
prevent over-fitting of the initial tree. In MARS, we use the validation set to choose
the appropriate maximum number of basis functions. Also, we adjusted the running

time versus accuracy parameter in MARS to maximize accuracy over running time.

Regression Data

The “Boston” data, with 13 explanatory variables and 506 observations, is the Boston
housing data set with dependent variable being the median value of houses in the sub-
urbs of Boston. The “Abalone” data, with 8 explanatory variables and 4177 observa-
tions, attempts to predict the age of an abalone given its physiological measurements.
Finally, the “Auto” data, with 5 explanatory variables and 392 observations, is the
auto-mpg data set which determines the miles-per-gallon fuel consumption of an au-

tomaobile, given the mechanical attributes of the car.

Results

Table 3.1 illustrate the results of CART, MARS and CRIO for each data set. In
addition, we ran MARS on the transformed data used in CRIO, creating MARS-
transf. MAE is the mean absolute error and MSE is the mean squared error.

CRIO chose K = 2 for all data sets, L = 3 and 4 for “Boston” and “Auto” and
L =10-14 for “Abalone”, and o = 1 and 2% for all data sets. We commented earlier

that it is possible for a new point not to be contained in any of the polyhedra F,. We

3MARS is a product of Salford Systems, http://www salford-systems.com
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Boston Train Validation Test
n="506,d =13 | MAE MSE | MAE MSE | MAE MSE
CART 1.883 | 8.121 | 2.840 | 17.746| 2.984 | 21.057
MARS 2.346 | 10.363| 2.536 | 11.750| 2.600 | 15.810
MARS-transf 2.283 | 9.907 | 2.463 | 11.391| 2.543 | 14.543
CRIO 2.171 | 11.508| 2.554 | 13.882] 2.337 | 14.197
Abalone Train Validation Test
n=4177,d=8 | MAE MSE | MAE MSE | MAE MSE
CART 1.387 | 4.676 | 1.577 | 5.655 | 1.628 | 5.978
MARS 1.492 | 4.263 | 1.663 | 6.518 | 1.552 | 6.127
MARS-transf 1.507 | 4.373 | 1.552 | 4.690 | 1.540 | 4.525
CRIO 1.506 | 4.594 | 1.515 | 4.880 | 1.469 | 4.376
Auto-mpg Train Validation Test
n=2392,d=25 MAE MSE | MAE MSE | MAE MSE
CART 1.397 | 4.898 | 2.444 | 11.350| 2.435 | 12.784
MARS 1.898 | 6.282 | 2.176 | 9.098 | 2.127 | 8.433
MARS-transf 2.084 | 7.386 | 1.884 | 7.029 | 1.922 | 8.101
CRIO 1.765 | 6.936 | 2.133 | 9.200 | 2.051 | 7.851

Table 3.1: Results of models CART, MARS, MARS-transf and CRIO on “Boston”,
“Abalone” and “Auto” data sets. n is the number of data points, and d is the number
of explanatory variables.
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found this to be an extremely rare case for all the data sets, but when it did occur,
we assigned the point to the region that contains the majority of F' = 11 nearest
neighbors. The nonlinear transformation step did improve the model, sometimes
significantly, and log was the most commonly used transformation for each data set.
The run times of CRIO for “Boston” and “Auto” is comparable to CART and MARS,
taking couple CPU seconds on average. CRIO takes up to 13 minutes to solve for

“Abalone”, which is a significantly larger data. set.

CRIO clearly outperformed both CART and MARS in the testing set accuracy.
To our surprise, it had better MSE values although our model minimized the total
absolute error, whereas CART’s and MARS’ goodness-of-ﬁt criterion is proportional
to the squared error. Compared to CART, CRIO had up to 21.7% lower mean absolute
error and 38.6% lower mean squared error. Although MARS was more accurate than
CART on average, CRIO still had up to 10.1% lower mean absolute error and 28.6%

lower mean squared error.

We used MARS-transf to assess whether the reason of CRIO’s superior perfor-
mance was the nonlinear transformation of the variables or the mixed-integer opti-
mization methodology. It is clear that MARS-transf improves upon MARS, but it is
also clear that CRIO’s performance is not only due to the nonlinear transformation.
CRIO still has up to 8.1% lower mean absolute error and 3.6% lower mean squared
error compared to MARS-transf.

Table 3.2 illustrates the standard deviations of the prediction for CART, MARS
and CRIO on all three data sets. The number of data points and partitions are too
small to make accurate measures of error and confidence intervals, but it helps to give
a rough idea on the stability of each model across different training set partitions. Tt
does not seem as though one method dominates over others, except in the “Boston”
data set. However, this is mainly due to the measurement error in the data set. The
response variable for “Boston” is cut off at 50 —i.e., even if the actual value is greater
than 50, it was recorded as 50. This contributed to large errors for both CART and
CRIO, but MARS successfully handles these clipped data points. Thus, the existence
of these clipped data points in the training set greatly affects the prediction results
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Boston Train Validation Test
MAE MSE | MAE MSE | MAE MSE
CART 0.147 1 0.598 | 0.392 | 7.374 | 0.244 | 6.993
MARS 0.159 | 1.793 | 0.072 | 0.832 | 0.280 | 2.749
MARS-transf | 0.144 1 1.324 { 0.122 | 1.110 | 0.250 | 2.400
CRIO 0.066 | 1.295 | 0.088 | 2.958 | 0.321 | 6.798
Abalone Train Validation Test
MAE MSE | MAE MSE | MAE MSE
CART 0.042 | 0.317 | 0.030 | 0.358 | 0.060 | 0.392
MARS 0.069 | 0.355 | 0.045 | 2.987 | 0.125 | 3.358
MARS-transf | 0.059 | 0.273 | 0.040 | 0.219 | 0.110 | 0.654
CRIO 0.054 | 0.295 | 0.035 | 0.130 | 0.085 | 0.454
Auto-mpg Train Validation Test
MAE MSE | MAE MSE | MAE MSE
CART 0.397 | 2,132 | 0.175 | 1.959 | 0.110 | 1.362
MARS 0.092 | 0.328 | 0.099 | 0.793 { 0.242 | 1.959
MARS-transf | 0.151 | 0.835 | 0.255 | 2.091 | 0.157 | 0.966
CRIO 0.057 | 0.649 | 0.191 | 1.226 | 0.112 | 0.847

Table 3.2: Standard deviation of the prediction of CART, MARS, MARS-transf and
CRIO on “Boston”, “Abalone” and “Auto” data sets.

for CART and CRIO, but less so for MARS.

3.9 Conclusion

As in classification, the regression component of CRIO is a new approach to solve
regression problems. It combines the use of nonlinear transformation of the explana-
tory variables, single-linkage clustering in the combined = and y space to speed com-
putation as well as detect outliers, and mixed-integer optimization to partition the
explanatory variable space. Unlike, popular regression packages of CART and MARS,
CRIO partitions the explanatory variable space in a globally optimal manner so that
the total absolute error is minimized. We believe that this globally optimal partition
provided by the mixed-integer optimization model, combined with transformations
ar}d clusterings , is the key reason for CRIO’s success. Most notably, it had up to
38% and 28% lower m\ean squared error in the the testing set compared to CART
and MARS, respectively.
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Another significant advantage of using integer optimization in regression is its
ability to remove outliers a priori and during the model creation step. In traditional
regression, data points are often labelled as outliers by observing high residuals after
the regression model is fit. However, the outlier points have already heavily influenced
or leveraged the regression line. Also, unlike popular outlier elimination methods that
can only detect one outlier point at a time, the clustering heuristic combined with the
mixed integer optimization model is able to remove multiple outlier points at once.
The traditional regression methods, that observes the diagonal element of the “hat”
matrix, cannot capture outliers that come in clusters [39].

These preliminary results encourage us to explore further extensions to our regres-
sion model. As mentioned in the previous chapter and further discussed in Chapter
5, subset selection is a key problem in regression. We would like to incorporate the .
variable selection techniques of Chapter 5 to CRIO, which currently uses all of the
explanatory variables. Also, our current model does not guarantee continuity of our
prediction function at the borders of the K regions. The continuity condition can
be incorporated in the optimization model, but will make the solution time for the
integer optimization problem significantly longer. Since continuity may improve the
prediction stability of the algorithm, it is an extension that warrants further investi-

gation.
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Chapter 4

Quadratic Variable Selection via

Integer Optimization

In this chapter, we discuss a new method for solving quadratic variable selection
problems, which we define as quadratic optimization problems that limit the number
of variables one can use in the solution, and its direct application to subset selec-
tion in regression and portfolio selection in asset allocation. We take advantage of
the special structures of these problems by impleménting a combination of implicit
branch-and-bound, Lemke’s pivoting method, variable deletion and problem reformu-
lation. Unlike the previous two chapters where we introduced new models for solving
data mining problems, this chapter presents are new solution methodology for solving

data mining problems with this particular structure.

A quadratic variable selection problem has the following form:

- . . minimize iz'Qz + c'z, - (4.1)
subject to Az < b,
|supp(z)| < K,
T > i, 4 € supp(ax),

0Lz <u, Vi
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where Q@ € R**? is symmetric positive semi-definite, ¢ € R¢, A € R™*¢, b ¢ R™,
a; € (0,1], u; is the nonnegative upper bound of z;, K is some positive integer and
supp(x) = {i|z; # 0}. The second set of constraints, referred to as the cardinality
constraint, and the third set of constraints, referred to as the lower bound constraints,
introduce discreteness to the problem, making this a quadratic mixed-integer opti-
mization problem. Unlike linear integer optimization, quadratic mixed-integer opti-
mization problems have received little attention due to the difficulty of re-optimizing
the relaxed quadratic subproblems in a branch-and-bound setting. Our approach

attempts to overcome this computational problem.

It is possible to introduce binary inclusion variables, z; (where z; = 1 if and only
if z; > 0, and 2 = 0 if and only if z; = 0), and express the cardinality constraint as
>z < K and the lower bound constraint as z; > ;2. However, this doubles the
number of variables and makes the continuous relaxation significantly harder to solve.
In Bienstock’s implicit branch-and-bound algorithm algorithm [6], the cardinality
constraint is replaced by a surrogate constraint > .(z;/u;) < K, and the z variables
are branched on directly — i.e.,, when branching down on z;, z, is set to 0, and
when branching up on z;, we ensure z; > «;. However, [6] still solves the quadratic
relaxation using gradient methods that have difficulty starting from an infeasik\)le
point. Also, it only considers the case where o; = 0 for all <. McBride and Yormark
[30] extends the implicit enumeration concept for linear pure integer optimization
[19] to solves a pure 0-1 quadratic optimization problem. [30] uses Lemke’s pivoting

algorithm that enables them to restrict variables to 0 or 1 without adding constraints.

We present a general method to solve Problem (4.1) that combines the use of
implicit branch-and-bound, Lemke’s method (27, 11], variable deletion and simple re-
formulation techniques to overcome the computational obstacles. Section 4.1 elabo-
rates on this general methodology for solving cardinality constrained quadratic mixed-
integer optimization problems. We further tailor our method to solve two important
problems in Statistics and Finance: subset selection in regression and portfolio selec-

tion in finance.
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Subset Selection in Regression

In traditional multivariate regression, we are given n data points (x;,y), «; € RY,
y; € R, and we want to find 3 € R? such that >, (y; — #}3)? is minimized. This has
a closed-form solution, 8 = (X'X)"!1X'Y, where X is a n by d matrix with =; as

its i*" row, and Y is a n-dimensional vector with y; as its th element.

* Often, however, statisticians only want to use a small subset of the variables,
mainly for robustness purposes (i.e., to limit the variace of the predicted Y) and
perhaps due to the high cost of obtaining data for large numbers of variables [31, 40, 1].
Beale et al [2], Hockings and Leslie [21] and Furnival and Wilson [18] are works that
use pivoting and branch-and-bound techniques to search for subsets with the best
regression “fit” (e.g., minimum total sum of squared errors) for subsets of all sizes.
Narula and Wellington [32] solves linear mixed-integer optimization problems that

finds a subset of K variables (K < n) that has the minimum total absolute error.

The above exact enumeration methods, however, have been deemed impractical
for large problems (e.g., n > 30) to be solved in practical time [40]. Currently, simple
greedy heuristics, such as forward, backwards and stepwise regression, are the most

commonly used methods to choose which variables to include and exclude [31, 40].

We solve the problem of choosing a subset of K variables that minimizes the total
sum of squared errors to optimality, by modelling it as a unconstrained, free-variable
version of Problem (4.1). We will show that our implicit branch-and-bound pro-
cedures, together with efficient computation of the optimal objective value at each
node, finds solutions that significantly out-performs forward regression, in terms of
total sum of squares, within few seconds. Section 4.2.1 elaborates on our method,
and Section 4.3.1 illustrates the performance of our approach compared to forward

regression heuristic and an explicit branch-and-bound procedure.

Optimal Portfolio Selection Problem
The problem of constructing a portfolio of n stocks that minimizes the variance, while
ensuring that the expected rate of returns is greater than a given threshold, can be

formulated as a convex quadratic optimization problem. Often, however, transaction
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costs and other overhead expenses lead small investors to invest in only a small num-
ber of the total possible stocks. Such limited diversification constraints, along with
fixed transaction costs and minimum transaction levels, present discrete constraints

and variables to the quadratic problem (see for example Bertsimas et al. [4]).

Given the difficulty of solving quadratic integer optimization problems, such a
portfolio problem have commonly been approached in one of two ways. The first
approach is approximating the problem to a simpler form. For example, Sharpe
[41, 42] approximates the quadratic expected variance function by a linear and piece-
wise linear function. Jacob [22] similarly linearizes the quadratic objective function,
and further assumes equal weights across assets to formulate the problem as a pure 0-
1 problem. Patel and Subrahmanyam [35] simplify the covariance matrix of the rates
of return and shows how the resulting portfolio problem with fixed-transaction costs
can be solved efficiently. The second approach uses heuristics to find strong feasible
solutions. Mansini and Speranza [29] solves a linear mixed-integer optimization based
heuristic, and Blog et al [7] introduces a dynamic programming based heuristic that
often finds the optimal solution. Chang et al [10] illustrates genetic algorithm, tabu

search and simulated annealing approaches for the problem.

There has been, however, significant efforts in finding exact algorithms to ef-
ficiently solve the discrete portfolio problem. Owens-Butera [34] extends the im-
plicit branch-and-bound techniques of Bienstock to limited diversification portfolios.
Jobst et al [23] implements FortQP as the quadratic soiver, and solves portfolio prob-
lems with minimum transaction levels, limited diversification and roundlot constraints
(which requires investing in discrete units) in a branch-and-bound context. FortQP

uses an approach similar to the simplex method to solve the quadratic problem.

We propose to solve portfolio problems with limited diversification, fixed-transaction
costs and minimum transaction levels via implicit branch-and-bound, Lemke’s pivot-
ing method, variable deletion and reformulation. We elaborate on our methodology

in Section 4.2.2 and illustrate computational results in Section 4.3.2.
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4.1 General Methodology

In a branch-and-bound setting, we solve the continuous relaxation of Problem (4.1)
vi;::m Lemke’s me{:hod, then choose a branching variable x,, When branching down, we
update the subsequent subproblem by deleting the data associated to z,, and when
branching up, we reformulate the problem or modify Lemke’s method so that z, > a,.

The continuous relaxation we solve at each node has the following form:

minimize z'Qx + c'z, (4.2)
subject to Az <b,

x>0,

where the cardinality constraint and lower bound constraints are removed. We
do not replace the cardinality constraint with Bienstock’s surrogate constraint [6],
> (@i/wi) < K, because u; is unknown in the subset selection problem and the con-
straint is dominated by a constraint in Az < b in the portfolio selection problem.
The lower bound constraint, x; > o, for z; positive, are enforced either by the re-
formulation procedure in the branching up step or implicitly enforced by Lemke’s
method. Section 4.1.1 describes the use of Lemke’s method to solve Problem (4.2) in
the context of branch-and-bound. Section 4.1.2 illustrates the procedure for updating
the subproblem after the branching variable is deleted, and Section 4.1.3 describes
our reformulation procedure and Lemke's method with lower bounds to enforce the
lower bound constraint without adding new constraints or changing the structure of

the problem.

4.1.1 Lemke’s Method as Underlying Quadratic Optimizer

We use Lemke’s pivoting method to optimize the continuous relaxation of the sub-
problem at each node. This method was originally developed to solve linear com-
plementarity problems (of which quadratic programs are a special case) via pivoting

akin to the simplex method. As with the dual simplex method in linear optimization,
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each node.

The Linear Complementarity Problem

A linear complementarity problem (LCP) is the following: Given 7 € R” and M ¢
R™ " find z ¢ pn and w € R" guch that,

Z20,w >0, (4.4)
2w =), ‘ (4.5)

The above problem is referred to as LCP(q, M ). A vector z is called Jeasible if it
satisfies Fquationg (4.3) and (4.4), and complementary if it satisfieg (4.5). A vector =

that is both feasible and complementary is called an equilibrium point or g solution of

'The pajr z; and w; are called complementary pairs,
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Now, suppose we have the following quadratic optimization problem:

minimize iz'Qx + 'z (4.7)
subject to Az < b,

xz >0,

where Q € R¥*9, A € R™*% and b € R™ are given. For positive semi-definite matrix
Q, the KKT conditions for (4.7), which are necessary and sufficient for finding global

minima, are as follows:

c+Qx+ Ay —u=0,

y'(b— Ax) =0,
w'a =0,
x,y,u > 0. (4.8)

where y € R™ and u € R? are the dual variables. By introducing another variable

v € R™, (4.8) can be written as:

u=c+ Qx+ Ay,
v=>b- Az,
T, Yy, u,v =0,

z'u=0,y'v=0. (4.9)

The system in (4.9) can be represented as an LCP(q, M) with

c Q A
q= , M = , (4.10)
b —A 0
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and z and w of (4.3)-(4.5) as

In order to speak of bases and basic variables, let us first re-write (4.3) as

Inw — Mz = q, or [In,—M] “l=q

z
where I, is an n-dimensional identity matrix. We can find a feasible solution to
Equations (4.3)-(4.4), by selecting n linearly independent columns of [Im -M ],
forming the basis B, such that B~!q > 0. To further get a complementary solution
to Equations (4.3)-(4.5), the basis contains z; if and only if w; is not in the basis, and
vice versa. Let 3 be the set of indices of z that are in the basis. Then the associated
complementary basis, B, is such that:

M, i e
B, = i M iEp (4.11)

where B is the i** column of B and e; is an unit vector with the " element equal
to 1. The goal of Lemke’s method is to find such a complementary basis, B, such

that B~'q > 0. The following section elaborates on this methodology.

Lemke’s Method

Given g and M and some user-defined covering vector h € R™, where h > 0, Lemke’s
method solves LCP(q, M) via series of pivot operations. First, it checks whether

q > 0, in which case z = 0 and w = q is a solution. Otherwise, it augments
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LCP(q, M) to
w=gq-+hzxn+Mz2>0 z>0 2>0 2zw=0. (4.12)

Akin to the dual simplex method, we need to start the algorithm with a comple-
mentary basis that does not necessarily satisfy the nonnegativity constraint (4.4). A
simple default basis 1s to have all the z variables be nonbasic and w be basic. We
then set the auxiliary variable zg to the smallest positive value such that w > 0 when
z=0,ie., zo = max;(—¢/h;),i =1,...,d. Thus, zzw; =0,1=1,...,n and 2z > 0,
and zp is pivoted into the basis in place of w,., where r = argmax(—¢/h;). Such
a point is called an almost complementary point for the augmented problem (4.12).
The algorithm follows a path from one almost complementary basic solution to the
next [26], until zg is pivoted out to be a nonbasic variable or LCP(g, M) is shown to
be infeasible.

After the initial pivot, there are exactly one complementary pair that are both
nonbasic variables (for all other pairs, one of the complement is basic and the other
is nonbasic). Such a pair is called the nonbasic pair. In each iteration, one of the
nonbasic pair just became nonbasic via the previous pivot. Its complement can thus be
increased to a positive value and maintain the almost complementary condition. This
complement, called the driving variable, is increased until one of the basic variables
becomes zero. This basic variable that blocks further increase of the driving variable
is called the blocking variable. The driving variable enters into the basis in place of

the blocking variable which becomes nonbasic. This process is repeated until either
1. zp becomes the blocking variable, or
2. We fail to find a blocking variable.

In the first case, zg is pivoted out of the basis and set to 0. Thus, we have a basis
that is both feasible and complementary for the original problem. If we encounter
" the second case, we can show that the original linear complementarity problem and

thus the quadratic optimization problem (4.7) is infeasible.
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The user-defined covering vector, h € R", is set to the default value of A; =
1, ¢=1,...,n. Although, h; need only to be all strictly positive, it has been shown
that diHerent choices of h can greatly effect the number of pivots for some instances
of the problem. Smart selection of the covering vector is a problem on its own and
needs further investigation. Assuming that the Problem (4.12) is nondegenerate (an
assumption that can be relaxed with certain lexicographic pivoting rules discussed
in section 4.9 of [11]), Lemke’s method is a finite algorithm, since there are only
finite number of complementary bases. Also, given that the matrix @ is positive
semi-definite, the value of z; monotonically decreases at each pivot. Appendix A

elaborates on these and other properties of the Lemke’s method.

At

Lemke’s Method in the Context of Branch-and-Bound

As in linear mixed-integer optimization, we want to be able to resolve a new sub-
problem starting with the basic solution resulting from the parent subproblem. In
the linear case, the dual simplex method can easily start- from an infeasible basis,
and thus is key to solving each subproblem efficiently. The same is true for Lemke’s
method, which can start from an infeasible complementary basis. The following de-
scribes this resolve procedure.

Suppose Q, 21, & and b are the input data for the current subproblem (4.2), and
M and § are constructed according to (4.10). At an intermediary pivot step, with B
as the complementary basis and IN' as the nonbasic columns of M, the full tableau

would look as follows:
[QB ‘ I _MB] y

where gz = B™'g and Mp = —B™'N. This tableau is pivoted until the auxiliary
variable zg is pivoted out of the basis. As in the revised simplex method, we maintain
B~! Mg and gg at each pivot iteration. Suppose Lemke’s method terminates
with B*, N* and thus M% = —B*"!N* and g = B"'q. The solution to this
subproblem is thus =; = g, if 2; is the B(¢)* basic variable, and z; = 0 if z; is

nonbasic.
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When constructing the subsequent subproblem after branching, all or some of the
data (namely, Q, A, & and or 5) may be modified. Let M and g correspond to M
and g, respectively, using the modified data. Also, let B and IN be the basis and the
nonbasic columns, respectively, after the modification. To solve the next subproblem,
we want Lemke's method to start with B as its initial complementary basis, instead
of its default basis. Empirical testing shows that starting from the previous basis
dramatically reduces the total number of pivots required to pivot out the auxiliary
variable zg. In this case, Lemke’s initializes with M B= _B 'Nand ap = _B—_lij.
Since recomputing the inverse basis and the matrix inultiplication to compute M B
is expensive, Section 4.1.2 and 4.1.3 describes methods to update the new inputs

efficiently after branching down and up, respectively.

4.1.2 Branching Down

When branching down on zs, we delete all the data associated to x, for the subse-
quent subproblems and update the basis accordingly. We chose to delete the variable
instead of explicitly adding the constraint zy = 0 to prevent increasing the size of the
subproblem as well as for numerical stability purposes. We will show that in most
cases, the inverse of the new basis can be efficiently derived from the inverse of the
old basis by using elementary row operations.

Let us assume that z, is a basic variable in the previous solution (note that if z,
is a nonbasic variable, we can apply the following methodology for its complementary
variable, w,, which must be a basic variable). We delete the column and row of
B corresponding to @, and the column and row of IN corresponding to its dual
variable wg, where B is the basis and IV are nonbasic columns of the solution to the
subproblem of the parent node (i.e., if z, is the i** basic variables, then we delete the
i** column and s row of B. Similarly for w, and IN). Although we can get the new
inverse of the basis simply by inverting the modified basis, calculating the inverse can
be a significant bottleneck. Instead, we calculate the new inverse from the previous
inverse using elementary row operations.

Suppose, for notational purposes, that the column and row needed to be deleted
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in B are the last column and first row, and B € R™*", go that:

g |Bre V| pa_ Uj"" vl
B Bco! U Ucol

where B and U are n— 1 by n— 1 upper-left submatrices of B and B~1, respectively,
Beot, Brow, Ucor and U,y are (n — 1)-dimensional column vectors, and v and u are
scalars. We know that:
B_lB — Uraw,E + U-B'row’ [_Jjowchol + uv _ I-n.
UB + UcolB'r'ow’ U—Bcol + UUcol
Thus we get
UB=1I,_1—UsBrow - (4.13)

Since U1 Brow' is a rank one matrix, we can execute linear number of elementary
row operations to the matrix I,_1 — UgorBrow' to get I, 1. Let E be the matrix

representing those operations. Then if B is invertible, then EU is the inverse matrix

of B.

In the previous section, we stated that we use M g = -B 'Nas input to Lemke’s.
We avoid this matrix multiplication via similar elementary row operations. Suppose
N are the nonbasic columns and Mp = —B™!N at termination of Lemke’s at the
parent node. Again, let us assume that the column corresponding to w,-in IN is the
last one. Then,

Urow' © | [Nrow' P Mpow' w

Mg = —-B !N =- _ e = . ,
U Ucal N Ncal N M Mcol

N

where N and M are n—1 by n~ 1 upper-left submatrices of IN and M p, respectively,

and Neot, Nyow, Meor and Mo, are (n — 1)-dimensional column vectors, and p and
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w are scalars. Again, we know that:
~UN =M + Uy Ny o'
Since EU = B, the new M 5 matrix will be
" Mg=EM +U,uN,.). (4.14)

There are several cases that need to be checked before executing the above proce-
dures. Most critically, if B is singular, then E may be undefined. In such a case, we
stz;rt Lemke’s rr;ethod from scratch with the initial basis, B, equal to I,_;. Clearly,
this is not the only solution to this problem, but the scenario occurred rarely enough
in practice so that this method was adequate for our purposes. Also, we assumed
that we deleted the first row and n** column from B , B!, N and Mz. The general
case can be easily modified to this special case.

To update qg, we delete the s element of ¢, giving us €. Suppose g5 = B7lq
c

at the termination of Lemke’s method, where q= . Again, assuming that s = 1,
b

we have:

s _ Urow'  u | |g.
95 = . =B lq = :m _|

UF: U Ucol ]
where g and g is the (n — 1) lower subvector of g g and g, respectively and ¢, = c,.
Similarly to M g, we get:

Qparp = E(QB - q.sUcol.')- (415)

LU Decomposition of the Basis

In computational experimentations, we saw that maintaining B! during Lemke’s
method was costly in terms of runtime. Also, from Equations (4.14) and (4.15), we
only require to know one column of B! to update M and q. Thus, instead of
explicitly maintaining B™!, we calculate the LU decomposition of the basis B at the

termination of Lemke’s method, and use it only to derive the required column of B!,
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We use Crout’s algorithm to construct the LU decomposition of B, and derive
the s** column of B~" using backsubstitution [33]. If x, is the i** basic variable, then
we get U,y by deleting the #** element of the the column. Given B, N and U, we
can update M and q according to Equations (4.14) and (4.15), respectively.

4.1.3 Branching Up

When a; > 0 in Problem {4.1), we need to ensure that z, > . in the subsequent
subproblems when branching up on z,. We present two potential methods to maintain
this condition: one using reformulation and the other by modifying Lemke’s method

to deal with nonzero lower-bounds.

Branch Up by Reformulation

We avoid explicitly adding the constraint x, > «, by replacing @ by y, where y; = z;,

for i # s and y, = z; — a;. The A matrix stays the same, but the right-hand-side
vector b and the cost vector ¢ need to be updated accordingly.

The original constraints were:

ZA_jwj + Az, <b
j8

where A ; is the j** column of matrix A. Replacing z, with y, + a, gives us

ZA'jyj + A‘Sys S b-— asA.s-
i

Thus, the new right hand side would be b=b—a,A,.
The objective function is also modified to
1 , ,
E(y + ases) Q(y + ases) +c (y + Ofses)
which simplifies to
1
J¥'Qy+ey+Co
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where &€ = c+a,;Q , and Cy = %asrs+a§sts is a constant. The reformulated problem

is thus:

minimize 1y’ Qy + &'y (4.16)
subject to Ay < B,

y =0,

which is in the same format as Problem (4.2). If B is the basis corresponding to the

solution of the parent node, then gz is modified to

c
gp=B""

o

If we have the LU decomposition of the basis instead of the entire inverse matrix,

¢
then @ can similarly be calculated by backsubstitution of the vector | _|. Note that
b

M need not be updated.

Lemke’s Method with Lower Bounds

Another approach to enforce the lower bound, z; > «,, without adding the constraint
is to modify the Lemke's method to deal with nonzero lower bounds. Just like in
simplex method with lower and upper bounds, the pivoting step can easily be altered
if some basic variables have nonzero lower bounds. In a pivot step, we want to increase
the value of the driving variable from zero to some positive number, while ensuring
that all of the variables remain larger than its lower bound. The basic variable that
hits its lower bound first is the blocking variable and would be pivoted out of the
basis. Thus, the only modification required is in determining the blocking variable.
When branching up on z,, we need to update the lower bound of that variable for
all subsequent subproblems,so that the Lemke’s method would prevent z, from being
less than o, when pivoting in a variable. At the termination of Lemke’s method, if a

branched-up variable is nonbasic, it’s value would equal its lower bound.
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Using this modified Lemke’s method, we do not need to update the vector g as
in the previous section. However, when branching down on subsequent nodes, we
need to check whether curreritly nonbasic variable has been branchéd up. If U is
the set of variables that are branched up and N BV are the set of variables that are
currently nonbasic, then when updating the g vector as in Equation (4.15), ¢, will
equal ¢, -+ ZI@‘EUHNBV ;X 4, since T; = o, for 1 € UN NBV and thus the data need
to be updated accordingly.

4.1.4 Additional Algorithmic Ideas within Branch and Bound

To reduce the total number of nodes in the branch-and-bound tree, we introduce
heuristics to find strong upper bounds and stop branching after branching up K

variables.

Heuristic for Upper Bounds

We use the heuristic similar to those in [6] and [23] at the root. Let z* be the
solution of the continuous relaxation at the root, and G = {i|z; has one of K +
W largest absolute value out of all n variables }, where W is a user-defined small
positive integer such that |G| = K+ W <« d. We then set all z; = 0 where
¢ € {1,...,n} \ G and branch exclusively on variables z; where j € (7, and also

limit the number of nodes to examine.

Solving Subproblem after Branching up X Variables

After branching up on K variables, the remaining variables must be zero in order to
be feasible for Problem (4.1). However, conventional branch-and-bound procedures
would continue branching down the tree, until all of the variables are branched. We
can halt all branching once we branch up K variables, then solve Problem (4.1) only
on the K branched up variables. This saves considerable computation time, éspecially

if there are many variables yet to be branched.
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4.2 Applications of Quadratic Variable Selection

Problems

We focus on applying the methodology described in Section 4.1 to the K-subset
selection problem in regression and optimal portfolio selection in Section 4.2.1 and

4.2.2, respectively.

4.2.1 Subset Selection in Regression

Suppose we are given n data points (z;, 1:), «; € R?, y; € R, and we want to choose
K variables (K < d) that minimizes the total sum of squared errors. We formulate

this problem as:

minimize (Y — X8)(Y — X3) (4.17)
subject to |supp(B)| < K.

When the cardinality constraint is relaxed, the optimal objective value is Y'Y —
Y'X'(X'X) 1 X'Y, thus we clearly do not need to run the Lemke’s method. The
mailn computational work is in the branch down procedure. There are, however,
regression problems that have linear constraints with respect to the coefficients. We
would use the general methodology in such cases, but let us focus on the unconstrained
regression for now.

When branching down on z,, we delete the s** row and column of X'X, and
the inverse (X'X)™! is updated as illustrated in Section 4.1.2. To further alleviate
computation, we set v = X'Y & R? at the root node. Thus, deleting z, corresponds
to deleting the s* element of v. Thus, there is no need to multiply X’ and Y in

subsequent nodes — we simply need to delete corresponding elements from v. The

optimal objective value of a given node is then:

Y'Y -7(X'X)"'w.
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where X’X and T are the updated X’X and v, respectively. Thus, to calculating
the objective requires only matrix-vector multiplications. There is n\o need to up&ate
the subproblem when branching up, since the optimal solution of the parent node
is optimal for the next node. Section 4.3.1 illustrates computational results of our

approach.

AN

4.2.2 Portfolio Selection

Investors often aim to construct a portfolio of at most .K stocks that matches a
benchmark portfolio comprised of n stocks (K < n) as closely as possible, while
minimizing transaction costs and limiting the total investment change within each

industry sector. This problem can be represented by the following formulation:

minimize —r'z + 3(x — z8)'S(x — zP) + Z t, (4.18)
i€supp(iL)
subject to |Z(:r:l —zP) < q, v,
€S

n

St

i=1

|supp(w)| < K,

7 > o, i € supp(z),
z; > 0, Vi,

‘where X is the covariance matrix of the rates of return, 7 is the benchmark weight
for stock %, r is a n—dimensional vector of the expected rates of return, «; is the
minimum transaction level of stock 4, ¢; is the fixed transaction cost of trading stock
i, and S is the set of indices of stocks in sector {. The first constraint limits the total
change in the portfolic weights in sector | to be less than some ¢;. The second set
of constraints ensures that the weights sum up to 1,7and the third constraint limits
investing up to K stocks. The fourth set of constraints implies that if we invest in
stock ¢, then @; must be at least oy. Clearly, Problem (4.18) is in the form of Problem

(4.1) and can be solved using our methodology.
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We rewrite Problem (4.18) as

minimize —%@+ T 5T+ E t; + Cy, (4.19)
i€ supp(T)
subject to Z T; <€+ Z:E?,
i€S, i€ Sy
-y mga-)
1ES) i8]

St
i=1
|supp(z)| < K,
T; 2 04, 1€ Supp(m)7

aT; 2 01 V’L,

where # = 7 + XaP and C, = %mB'SmB is a constant. The key difference between
Problem (4.19) and Problem (4.1) is the term for fixed transaction cost, 3 ;e upp(a) t>
in the objective value, but our general approach in Section 4.1 can be easily extended
to deal with this term. Suppose we introduce binary variables z; € {0,1}, such that

z = 1 if and only if z; >0and 2z, =0 if and only if z; = 0. Then we can formulate
Problem (4.19) as

) N

minimize —#'z + s2'Zz + 'z, (4.20)
subject to E z; < e+ E mf,
1ES) =
E T, <€ — x?,
: IES) €8]

k]

=1
o] _>__ o2, Vi,
T § Zi, V1.
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The solution to this relaxation will result in z; = z; in the optimal solution, thus we
can simply substitute z; for z;, and eliminate the need to introduce the variables z.
Also, we do not include the surrogate constraint since it is always dominated by the
constraint » ' z; = 1.

At a given node, let I be the set of indices of variables that have not yet been
branched, U be the set of indices of variables that are branched up, and D be the set
of indices of variables that are branched down (i.e., FUU U D = {1,...,n} ). Also,
let §(i) be a mapping from set of current variables to the set of original variables,
where z; in the current subproblem corresponds to Ts(;y in the original problem (this
data tracking is necessary due to variable deletion). The subproblem to solve at the

current node is:

f(z) = minimize Z (e; — )z + Z —Fy + o2 )z + %m’Em, (4.21)

s(i)eF 8(i)el
subject to Z T < 6+ Z:E Z i,
5(1 €85 1€ 1eS,NU
—ZmiSEz—Z$i+ZO@,
d(i)es, 1€8) ieSNU
T -
Sam1-Y
i=1 icl
T; 2 O

If x* is the optimal solution of the above problem, then the true objective value is |
f@*) + Y ev e+ Dieu(3our + a?Qy;) + Ci, and the solution is @ where Toy =
7 + asg), if 6(3) € U, z54) = 0, if 8§(4) € D, and xsqy = z} otherwise.

We solve Problem (4.21) using Lemke’s method described in Section 4.1.1, and
branch down and up on a variable as in Section 4.1.2 and 4.1.3, respectively. Section

4.3.2 illustrates the computational results of this method.

Heuristic Tailored to Portfolio Selection

When K is relatively large (i.e., K > 100), solving even for the subset of variables,

G C {x1,...,z4}, can become computationally difficult. Since the goal of this root
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heuristic is to find a good feasible solution quickly, we may limit |G| to be smaller
than K — perhaps 10% of the total number of variables. Unlike in the subset selection
problem in regression, where solutions to most subproblems have no nonzero values,
the nonnegativity constraints and the fixed costs make the solution to the portfolio
problems have substantial number of variables equal to zero. Thus, the cardinality
constraint in the optimal solution may not necessary be tight. Also, although the set
of variables in the optimal solutidn may not coincide with our choice of G, we see
that diminishing the size of our root problem gave us good feasible solutions, as we

illustrate in Section 4.3.2.

4.3 Computational Experimentation

We describe our computational experimentation on subset selection and portfolio
selection problems in Section 4.3.1 and 4.3.2, respectively. Each section gives the
performance results of our methods compared to alternative approaches, and describe

the advantages and weaknesses of our method.

4.3.1 Results for Subset Selection

We compared our implicit branch-and-bound method of solving subset selection with
forward regression and an explicit branch-and-bound model solved by Cplex 8.0 !
[12]. Forward regression is a greedy heuristic that adds each variable that reduces
the residual error the most, given the variables already chosen, i.e., the first variable
chosen, (1), minimizes 3, (y; — 2;;0;)*. The next variable minimizes ", (% — z:,06;)?,
where §; = y; — z;,1)8) and (1) is the regression coefficient for z(1) found in the pre-
vious step. This step is repeated until K variables are chosen [31]. We used CPLEX
8.0’s quadratic mixed-integer optimizer to solve Problem (4.17) by introducing bi-
nary inclusion variables z;, replacing the cardinality constraint by > . z; < K and
adding constraints 3; > —Mz; and §; < Mz;, where M is some large positive num-

ber. We found that setting M = 100 was sufficiently large to solve our generated

1CPLEX 8.0 is a product of ILOG http://www ilog.com/products/cplex/
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Forward ImplicitBnB CplexMIQP

d K n RSS CPU sec  # nodes RSS | CPUsec # nodes RSS
20 10 100 4,464 0.016 263 2,176 0.096 197 2,176
20 5 100 9,819 0.010 224 6,765 0.118 227 6,765
50 40 500 47,755 0.914 1,023 2,156 | 10402 15679 2,156

50 20 500 | 125520 | 34.226 08,365 55753 | 54.204 50,037 60,597
100 80 1000 | 383,666 | 60.000 18623 16,806 | 60.000 16,723 692,896
100 50 1000 | 386,922 | 60.000 23,291 115388 | 60.000 19,222 528,067
100 20 1000 | 696,772 | 60.000 68,000 541,950 | 60.000 18,825 570,801

Table 4.1: Results for Subset Selection. d is the number of variables, K is the size of
the selected subset, n is the number of data points and RSS is the residual sum of
squares.

problems effectively. CPLEX 8.0 uses a pivoting method similar to Lemke’s method
to solve the relaxation problem at each node. It does not, however, delete variables
nor reformulate the problem during branching.

For each n (the number of observations), d (the number of total variables), and
K (the size of the desired subset), we randomly generated instances of X and S,
and set Y = X3 + €, where ¢; ~ N(0,1) for each ¢. For each problem size, we
generate five such instances and averaged the pefformances of the methods over all of
them. We also set the time limit to 60 CPU seconds. Qur implicit branch-and-bound
and CPLEX’s branch-and-bound search procedure were set depth first search, and
branches on the variable with maximum absolute value first. Table 4.1 illustrates the

performance results of our model, forward regression and CPLEX.

The columns “Forward”, “ImplicitBnB”, and “CplexMIQP” corresponds to the
results of the forward regression, our method, and CPLEX, respectively. We did not
record the running time for forward regression, since the simple heuristic was able to
solve all the instances in a fraction of a second. The column labelled “CPU sec” is the
total CPU time required to solve the problem up to 60 CPU seconds. “ImplicitBnB”
solved all the instances to optimality except for d = 100. “CplexMIQP” hit the 60
CPU limit before getting a provable optimal solution for all instances with d = 100,
and four instances with d = 50,K = 20. The column labelled “nodes” is the total
number of nodes in the branch-and-bound tree at termination, and “RSS” is the best

total sum of squared errors for subsets of size K found. Both the number of nodes
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Forward ImplicitBnB CplexMIQP
d K n RSS # nodes best node RSS #nodes hest node RSS

50 40 500 24,116 183 0 1,075 55,300 55,358 1,075
50 20 500 111,735 | 710,243 17,657 56,708 | 915159 892052 56,708
100 80 1000 | 326,914 | 257,003 74,186 14,234 | 992,506 987,366 365,582
100 50 1000 | 555,370 | 779,800 2,840 128,036 | 1,086,256 0 737,592
100 20 1000 | 862,900 | 1,959,170 8,202 624,438 | 1,006,151 0 657,418

Table 4.2: Results for Subset Selection with 3600 CPU seconds. d is the number of
variables, K is the size of the selected subset, n is the number of data points and RSS
is the residual sum of squares.

and RSS were rounded to the nearest integer.

"It is apparent from Table 4.1 that the optimization approaches significantly im-
proves upon the forward regression in terms of residual sum of squares, even when
they do not solve to provable optimality. “ImplicitBnB” is also finds strong feasible
solutions significantly faster than the explicit branch-and-bound formulation solved
by CPLEX, mainly because the former takes great advantage of the special structure

of Problem (4.17), which does not require introducing binary variables.

Even for several hundred variables, the overall node-to-node computation time in
our model takes a fraction of a CPU second. Also, the heuristic in Section 4.1.4 often
finds the optimal objective value at the root. The story does not seem to change
when using longer running times. Table 4.2 illustrates results when our method and
CPLEX are run for 3600 CPU seconds (note: these were run on similar but different
data sets that those of Table 4.1). The column labelled “best node” refers to the
node that found the best feasible solution. Although CPLEX was now able to solve
problems with n = 50 to optimality (though not always provable optimality) within
3600 CPU seconds, the solutions are found significantly later than by our method.

The main bottleneck, however, is the number of nodes needed to prove optimality.
Even when the heuristic finds the optimal solution at the root, the branch-and-bound
tree can grow to several million nodes to prove optimality, even for moderate sized
problems (e.g. d = 50). The main factors preventing significant pruning of the tree
are the free variables and the lack of constraints. A subproblem solution almost

always has all non-zerc variables.
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4.3.2 Results for Portfolio Selection

We tested our approaches described in Section 4.2.2 against two alternative meth-
ods. One method uses CPLEX’s quadratic barrier method to solve the relaxation
problem (4.21}), and the second uses CPLEX’s quadratic mixed-integer solver to solve
the explicit integer formulation, as in Problem (4.20). We also tested reformula-
tion versus using Lemke’s method with lowerbounds when branching up. Again, for
each n (number of total assets), S (number of sectors), and K (the upper bound on
diversification), we generated five random instance of Problem (4.18) and averaged
the results. All branch-and-bound procedures were set to depth first search, branch
up first and branch on variable with maximum absolute value. Tables 4.3 and 4.4

illustrates the results.

“LemkeRef” is the combination of Lemke’s method and implicit branch-and-bound
using reformulation when branching up. “LemkeLB” is the same, but uses Lemke’s
method with lowerbound instead of reformulation. “Barrier” is also implemented with
implicit branch-and-bound, but uses CPLEX'’s barrier method to solve the continuous
quadratic optimization problem. Finally, “CplexMIQP” is the result of using using
CPLEX quadratic mixed-integer solver. All four methods were run for a total of 120
CPU seconds. The column labelled “nodes” is the average of the total number of
nodes each method explored, “best node” is the average of the node where the best
feasible solutions were found, and “UB” is the best feasible objective value found

within the time limit.

Table 4.3 runs all four methods without running any heuristic methods to find a
good feasible solution, whereas Table 4.4 runs such a heuristic once at the root. For
“LemkeRef”, “LemkeLB” and “Barrier”, we ran the heuristic described in Section
4.1.4 for at most 30 CPU seconds after the root is solved. For every instance, we ran
the heuristic using X = 0.1n and |G| = K +10. We were not able to put a time limit
on the heuristic for CplexMIQP, which ran until Cplex deemed it had an acceptable
upperbound. When the size of K was relatively large (K > 0.1n), this heuristic ran

for at most 10 CPU seconds, whereas it can last over 100 CPU seconds when n is
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LemkeRef LemkelLB
n K S nodes best node UB nodes best node UB
100 50 10| 17486.20 16227.80 28.26 | 16092.20 16039.60 28.46
100 10 4 | 26937.20 8345.40 18.83 | 27231.40 8329.40 18.83
200 1000 10| 2936.60 2024.80 142.80 | 2952.80 2933.80 142.73
200 20 4 6924.80 1281.00 38.73 | 6913.20 1281.00 38.73
500 200 10 142.20 - - 142.40 - -
500 100 10 161.60 126.20 159.71 164.40 137.80 159.68
500 50 4 63.80 44.00 91.06 64.20 46.40  90.89
Barrier CplexMIQP

n K S nodes best node UB nodes best node UB
100 50 10 { 4526.80 4472.00 44.51 | 119697.00 76987.00 19.02
100 10 4 | 5686.00 1678.20 19.57 | 58530.20 12736.60 18.49
200 100 10| 751.20 729.40 150.57 | 30188.60 30062.80 &1.86
200 20 4 | 1284.00 656.20  39.77 7236.80 1245.60  38.73
500 200 10 30.80 - - 4864.00 4812.60 345.46
500 100 10 33.20 - - 782.60 398.00 158.68
500 50 4 35.40 - - 226.40 140.40  90.89

Table 4.3: Results for portfolio selection, without Heuristic, solved until 120 CPU
seconds. m 1s the number of variables, K is the size of the selected subset, S is the
number of sectors (Problem 4.18), “UB” is the best feasible solution found, “best
node” is the node where “UB” was found and “nodes” is the total number of nodes

explored.
9in

large (n > 200) and K is small compared to n (e.g., K = 0.1n).

The node to node runtime of “LemkeRef” and “LemkeL.B” were statistically the
same, thus avoiding reformulation did not seem to gain significant running time. Since
the computational characteristics of both methods were ‘very similar, we will refer to
both methods as “Lemke” from here on end. Both pivoting methods, “Lemke” and
“CplexMIQP”, are significantly faster than “Barrier” for every instance. Although
the relative difference in the total number of nodes explored did decrease as the
problem size increased, the advantage of interior point methods in large dimensions
over pivoting methods did not compensate the latter’s advantage in solving from the

previous solution. For example, for problems that would take an average of 400 pivots
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LemkeRef LemkeL.B
n K 5 nodes best node UB nodes hest node UB
100 50 10 | 14235.80 0.00 12.93 | 13998.40 0.00 12.93
100 10 4 | 23926.40 0.00 14.87 | 23858.00 0.00 14.87
200 100 10| 2501.00 0.00 32.90 | 2490.60 0.00 32.90
200 20 4. | 6248.80 58.60 34.87 | 6232.80 58.60 34.87
500 200 10 117.80 0.00 83.93 119.40 0.00 83.93
500 100 10 132.80 - 0.00 80.40 134.00 0.00 80.40
500 50 4 47.20 0.00 81.53 47.00 0.00 81.53
Barrier CplexMIQP
n K S nodes best node UB nodes best node UB
100 50 10 | 4029.40 2678.20 36.36 | 116468.20 70551.00 18.68
100 10 4 |4166.40 0.00 15.66 | 58410.40 12736.60 18.49
200 100 10| 485.40 0.00 34.51 | 18533.20 7800.80 52.84
200 20 4 916.40 58.60 35.58 6937.00 1245.60 38.73
500 200- 10 24.60 - - 1098.00 0.00 138.83
500 100 10 27.00 - - 1097.40 0.00 140.29
500 50 4 27.40 - - 146.40 103.20 91.14

Table 4.4: Results for portfolio selection, with running Heuristic, solved until 120
CPU seconds.n is the number of variables, K is the size of the selected subset, S is
the number of sectors (Problem 4.18), “UB” is the best feasible solution found, “best
node” is the node where “UB” was found and “nodes” is the total number of nodes

explored.

Oin
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to solve from scratch, any intermediary node would require only about 5 pivots to
resolve the subproblem of that node. Also, the pivoting methods always gives a basic
feasible solution to the quadratic problem. Thus, it is guaranteed to give the solution
to the relaxation with the minimum support, unlike the interior point method. Since
many of the instances generated and most real world problems do not guarantee
positive definiteness (only positive semi-definiteness) in the quadratic matrix, this
difference can be another significant advantage.

It is clear that the node to node computation time of “CplexMIQP” is faster than
“Lemke” for most instances. However, the relative difference significantly decreases
as K becomes small relative to n. For example, when K = 0.5n, the difference in
number of nodes explored is about a factor of 10, whereas when K = 0.1n, it reduces
to a factor of 2 to 3. For the case when n = 200 and K = 20, the total computation
time of “Lemke” and “CplexMIQP” are about the same. We believe that the gap
gets closer when K is small, since “Lemke” takes advantage of the special structure of
Problem (4.18) more than the explicit formulation can, which becomes increasingly
important and thus advantageous as the K becomes smaller. The story does not
change when we significantly increase the running time. Table 4.5 are the results
for running our method with Lemke's with lower bounds and CPLEX for 3600 CPU
seconds.

Running the heuristic, even for just 30 CPU seconds, brought significant improve-
ment to our models in terms of finding good feasible solutions. Again, we tailored
our heuristic to the special structure of the problem. .Using |G| small enough so that
Lemke’s method can run sufficiently fast allowed us to find a good feasible solution

quickly.

Y

N

4.4 Conclusion

Our tailored approaches for solving quadratic variable selection problems in statistics
and finance show computational advantages over general mixed-integer optimization

formulation and significantly better solution quality than simple heuristic methods.
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Lemke CplexMIQP
n K 5| nodes best node UB | nodes best node UB

500 200 10| 6,100 0 83.93 | 49,720 0 138.83
500 100 10| 5,960 0 80.40 | 55,183 0 140.29
500 50 4 | 13,828 0 80.01 | 15,078 7995  89.34

Table 4.5: Results for portfolio selection, with root Heuristic, solved for 3600 CPU
seconds.

For subset selection in regression, the optimization based approaches were able to
find the subset of variables with significantly better fit than the forward regression
heuristic. Also, since we took advantage of the special structure of the problem, our
implicit branch-and-bound formulation had faster node-to-node running times than

CPLEX's quadratic mixed-integer solver.

For the portfolio selection problem, the combination of implicit branch-and-bound
and Lemke’s method has significantly faster running times compared to using the
barrier method to solve the continuous quadratic optimiz.;tion problem. The key
bottleneck for eflicient quadratic mixed-integer optimization has been the inability
of interior point methods to start at infeasible points. Although they are undoubt-
edly more effective in solving high dimensional quadratic optimization problems than
pivoting methods started from scratch, the pivoting methods can re-solves each sub-

problem more efficiently at each node of the branch-and-bound tree.

CPLEX’s quadratic mixed-integer solver has a more sophisticated pivoting and
branch-and-bound implementation, yet our tailored approach compensates for our
lack of software engineering prowess. Our root heuristic finds good upper bounds
quickly, and our variable deletion, reformulation and modified Lemke’s method up-
dates each subproblem without increasing the size of the problem. With further im-
provements in implementation (e.g., regarding data structures, decompositions, and
memory handling), we believe our methodology will have comparable node-to-node

running times.

There are several potential followup work to our model. We implemented all of

our branch-and-bound procedures using depth-first-search, due to the ease of pro-
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gramming. Although we can find good upper bounds faster with this approach, we
often get stuck in a local subtree. Also, with large number of nodes, we cannot utilize
best lower bounds effectively, since the root relaxation would be the lower bound for
a large majority of the nodes we explore. There is also merit in investigating other
principal pivoting techniques other than Lemke’s. The main drawback of Lemke'’s
method is the lack of choice in the driving variable. Alternative pivoting methods,
though more difficult to start, have the flexibility of choosing amongst several driv-
ing variables, akin to the simplex method. It also does not augment the LCP, thus
not introducing an auxiliary variable and column. These properties may allow us to
converge faster to the solution.

Finally, we would like to expand the applications of our methodologies. For exam-
ple, we can extend the regression problem to those with linear constraints. There may
be bounds on the value of the regression coefficients, and limitations on the changes
in the regression coefficients in time-series regression [5]. We would be able to use
our general methodology to solve this combined subset selection and constrained re-
gression problem. Also, we can clearly extend our methodologies to general quadratic

mixed-integer optimization as well.
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Chapter 5

Conclusions

Classification, regression and variable selection are key problems in data mining.
Classification and regression are particular types of prediction problems, arising in
numerous fields, includ\ing marketing, finance, healthcare and artificial intelligence.
Variable selection is a more general tool, where the essential variables are selected in
prediction or optimization problems.
~Due to the importance of these problems and their inherent difficulty, a large
range of work has been done in developing algorithms from both the statistics and
computer science community. Many of these have been successful and popular, in-
cluding those discussed in this thesis, however, there seems to be a tradeoff between
prediction accuracy, robustness, complexity and computation time. Since classifica-
tion, regression and variable selection all exhibit complex combinatorial properties,
a large portion of the existing methodologies solve them using simple heuristics. For
the most part, developers in this community believe that integer optimization models
are intractable, and are also unfamiliar with modelling problems as integer programs.
Our main goal in this thesis is to introduce integer optimization in the context of
data mining, and illustrate its effectiveness and practical efficiency. CRIO incorpo-
rated existing methods with integer optimization models to solve classification and
regression problems. Our quadratic variable selection method uses a combination of
implicit branch-and-bound and Lemke’s method to solve variable selection problems

in regression and portfolio selection. Both CRIO and our quadratic variable selection
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solver are able to solve these problems comparably and often significantly better than
the current state-of-the-art tools, under practical running times.

The key components of CRIO include: (1) Clustering methods to reduce di-
mensionality; (2) Nonlinear transformations of the variables to improve predictive
power; (3) Mixed-integer optimization methods to simultaneously group points to-
gether and eliminate outlier data; and (4) Continuous optimization methods (linear
and quadratic optimization) to represent groups by polyhedral regions. We feel that
the key advantage of CRIO is its use of mixed-integer optimization that allows us
to partition the data in a more globally optimally manner compared to the current
leading methods. We may further experiment on the various clustering approaches,
and formalize parameter selection.

Our quadratic variable selection solver efficiently solves variable selection in regres-
sion and portfolio selection problems. The combination of implicit branch-and-bound,
Lemke’s method, variable deletion and reformulation all contribute to keep the prob-
lem size small and minimize the computation time. On the subset selection problem,
our approach found good feasible solutions faster than running CPLEX on the explicit
formulation, and its average error was significantly better than the forward regres-
sion heuristic. On portfolio selection problems, our approach was consistently faster
than using barrier method to solve the continuous quadratic programming problem,
and comparable to CPLEX’s quadratic mixed-integer solver. Future work will entail
experimentations with different pivoting methods, matrix decomposition and varia-
tions in node selection strategies. Also, this method can clearly be extended to solve
general quadratic mixed-integer optimization problems.

More generally, our preliminary work is strong evidence of integer optimization
as a powerful and practical tool for statistical computing. It is able to capture char-
acteristics in data that continuous optimization and heuristic methods cannot. Also,
with appropriate tailored formulations, we are able to solve these integer optimiza-
tion problems in practical time. We hope these encouraging results will motivate the
statistics and data mining community to re-examine the potential of integer opti-

mization methods in their fields.

9



Appendix A
Lemke’s Method

Chapter 4 gave a general outline of Lemke’s method for solving linear complemen-
tarity problems. This appendix provides deeper theoretical properties of the algo-
rithm, including its guarantee to solve convex quadratic optimization problems in
finite time. Lemke’s method and special properties of LCPs have been studied at
great length [11, 15, 26], thus the results we illustrate can be attributed to several
independent sources. However, since many of them deal with general LCPs, there is
no single source that gives a comprehensive and cohesive picture of Lemke’s method
on quadratic optimization problems. For that reason, we present a summary of the
key properties of Lemke’s method specifically for solving convex quadratic optimiza-
tion problems. We assume throughout the entire section that our problem is nonde-
generate. [11] and [15] show these results hold for the degenerate case when using
lexicographic formulation.

The following is the key result:

Theorem 4 Let q and M be constructed from the conver quadratic optimization
problem (4.7) using Equation (4.10). Lemke’s method solves LCP(q, M) in finite
time, t.e., if the QP is feasible Lemke’s terminates with the optimal solution. Other-

wise, it indicates that the problem 1is infeasible.

We construct the proof for Theorem 4 by series of lemmas. The following links

the solutions of convex quadratic optimization problems to that of LCPs using the
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KKT condition.

Lemma 5 A solution LCP(q, M ) with q and M as in Equation ({.10) has one-to-
one correspondence with the optimal solution to the QP (4.7). Also, LCP(q, M ) 1is
infeasible if and only of the QP is infeasible.

Proof: The KKT conditions are necessary and sufficient for finding optimal
solutions to convex quadratic optimization problems with linear constraints (notice,
this is the global optimum due to convexity). Again, Equation 4.9 are the KKT

x
equations for the QP (4.7). Thus, if z = is a solution for Equation (4.9), then =

Y
is an optimal solution for the QP (4.7). Conversely, if 2 is an optimal primal solution

T

and y the optimal dual solution for QP (4.7), then z = is a solution to Equation
Y

(4.9). Thus, Equation (4.9) is infeasible if and only if the QP (4.7) is infeasible. O

From Lemma 5, if we can show that Lemke’s method solves LCP(q, M), then it
solves the convex quadratic optimization problem. We now focus on how Lemke’s
method can be guaranteed to solve LCP(q, M).

There are two possible scenarios when Lemke’s method terminates:
1. zp is pivoted out of the basis, or
2. no blocking variable is found in the last pivot.

If Lemke’s terminates with the first scenario, it is clear that it has found a solution
to the LCP. At each pivot (subsequent to the initial one when 2z, was pivoted into the
basis), the complementarity condition (4.5) and the nonnegativity constraint (4.4)
are satisfied. However, the basic solutions at each pivot satisfies the linear equalities
of the augmented problem (4.12) but not Equation (4.3) since z > 0. Thus, when
2o 18 pivoted out of the basis, then z = 0 and now the basic solution satisfies the
condition for the original problem represented by Equations (4.3)-(4.5).

Before discussing the implications of the second scenario, let us define secondary

rays in the context of the augmented problem:
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Definition 2 (Secondary Rays) Suppose (w*, 2*, 2} ) is a basic complementary so-
lution to the augmented LCP(q + dzy, M ). The vectors(w, Z,%) # 0 is a secondary

ray associated with this basis, if for every A > 0 :

(w* + Mb) = q + d(z3 + %) + M(z* + A%),
w* + Aw > 0,
z¥+ Az >0,
z25 + Az = 0,

(w* + AD) (z* + AZ) = 0.

In other words, we can move in the direction (0, Z, Zy) from the basic complementary
point (w*, z*, z5) arbitrarily far and still satisfy conditions for LCP(q + dzy, M).

Lemma 6 describes a certificate for infeasibility for general LCPs.

Lemma 6 For any square matric M and vector q, if there exists » > 0 such that

M'r <0 and ¢'r <0, then LCP(q, M ) is infeasible.

Proof: We show this by contradiction. Suppose there exist a solution w and z to

LCP(q, M). Thus,
g=w-Mz 22Zw=0 w>0,z>0.
Multiplying the linear equality by r, we get
gr=wr—2Mr <.

However, M'r < 0 and z > 0, thus —z'M'r > 0, which implies w'r — 2/M'r > 0,
a contradiction. 0

We use the properties of secondary rays and Lemma 6 to show infeasibility of
LCP(gq, M) when Lemke’s method terminates with the second scenario. Note, that

M succeqQ since we are concerned only convex quadratic optimization problems, i.e.,
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_ Q Al lx
Q*>0,= M 0since 22 Mz = [:1:’ y'] =x'Qx >0, Vz.

—-A 0 Yy
Lemma 7 If Msucceq0 and Lemke’s method cannot find a blocking variable, then

the original LCP(q, M ) is infeasible. . ‘ -

Proof: In a pivot step, we increase the value of a nonbasic variable (the driving
variable) from zero to some positive number until a basic variable decreases to zero.
If there is no blocking variable, we can increase the driving Yariable arbitrarily large
while maintaining feasibility and complementarity. Thus, the basic ray associated to
this pivot must be a secondary ray by definition.

Suppose (w0, Z, Z) is this secondary ray, and the current basic complementary
solution was (w, z, zy). Clearly, 2z, > 0, else we would have-a solution to LCP(q, M).
We show that Z is such that Z > 0, M'Z < 0 and ¢'2 < 0 and use Lemma 6 to prove
infeasibility of LCP(q, M).

From the definition of secondary rays and some algebraic manipulation, we have:

W = di, + MZ, (A1)

wz=0, §z=0, W

zZ=0.

Further, we show that Z # 0, by contradiction. Suppose Z = 0. Since (w, £, %) #
0, this implies % > 0 (otherwise @ = d%, = 0). Thus, @ = dZ%;, > 0 (since d > 0),
and from the complementarity condition above, w'z = 0, = z = 0. From the
nondegeneracy assumption, this implies that we terminated with the initial basis
since a basis cannot repeat (i.e., the path of almost complementary points cannot
have a cycle). However, in the initial basis, there was exactly one choice of driving
variable to increase. Thus, Z corresponding to this basic ray must have a positive
element. Thus, z # 0.

With Z # 0, we have the following:

0, (from (A.1))

—0'z =5 dz+ 2 Mz



Since we are given that M = 0, we get:

—5dzZz=2MZz2 >0,

= 5d'Z <0,

= Z =0, (sinced'Z >0 due to 2),
=Z Mz =0,

= M2z =-M'Z (from positive semi-definiteness of M).

Since Zp = 0 = @ = Mz = —M'z. Thus, we have M’z < 0 from the nonnegativity
of w.

All that is left to show is ¢'Z < 0, as illustrated below:

q=w— Mz —dz,
- qZ=wi-2M3- nd3,
=—2'M'Z ~ 2od'Z (form complementarity),
=2 M2z~ zd'Z (from M » 0),
= 2w — zd'2  (from % = 0),

= ’“Zodri < 0.

Thus, Z corresponding to the secondary ray gives a certificate of infeasibility for
LCP(q, M). O

From Lemma 6 and 7, we see that Lemke’s method terminates with either a
solution to the LCP (and thus the QP) or indicates that the LCP (and thus the QP)
is infeasible. Under the\ nondegeneracy assumption, the algorithm is finite since there
are only finite numbers of complementary bases and bases cannot repeat.

Finally, we conclude with the following result:

Lemma 8 Given M = 0, z, decreases monotonically with each pivot step of the

Lemke’s method on LCP(q, M ).
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Proof: [15] shows this result for all M € P, (matrices with nonnegative principal

minors), but we summarize the result just for the positive semi-definite case.

We denote the set of basic variables at the {** pivot as ', and 8!, 38%,...,8" is
the pivot sequence that Lemke’s method followed. Also, let z(3') be the z value

corresponding to the basis 3.

First, we show that zp(8!) > z(8), for all k= 1,... k. Suppose, A is the first
basis where z(3') > z(8'), 1 < | < k. Recall that z(8!) was selected so that
g + z0(8')d > 0, and the corresponding basis was such that ' N {z1,...,2.} = 0.
However, ! is a solution to the augmented LCP where zy = (%) > 2(8'). Thus,

B* = 3, which is a contradiction due to nondegeneracy.

\ —

Second, we show that z0(8') > 2(8%) >,...,> %(B¥). Suppose, A" is such that

z0{0") > 20(4!). From the mean value theorem, there exist 7, 1 < j <, such that:
Z* = An(F) + (1= Nzo(8) = pao(B87) + (2 — p)z0(8Y), y

where A € [0,1] and p € [0,1]. Let (w?, 27) be the solution corresponding to 47, and

define (w, Z) and (w, Z) as

W= w4+ (1 — Nw?,
z2=229"1+(1-N)z2,

W = pw+ (1 - p)ut,

z=pz"1 4 (1 -p)h

Thus, (10, Z) and (W, Z) are two distinct nondegenerate complementary solutions

for LCP(q + Z*d, M). This implies



Multiplying both sides by (2 — 2)/, we get
(w—w)(z—2)=(z—2z)M(z - 2).

We see that (0 — @) (2 — 2) = —@'2 — w'Z < 0. Also, since M = 0, = (£ —
Z)M(Z — Z) > 0. Thus, we get
'z (A.2)

However, note that supp(®) N supp(Z) # 0 and supp(Z) N supp(w) # O since j # I
and bases do not repeat. Thus, from nonnegativity and (A.2), we get a contradiction.

O
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