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Abstract

We present a methodology for deriving robust airline schedules that are not vulnera-
ble to disruptions caused by bad weather. In this methodology, the existing schedule
is partitioned into independent sub-schedules or layers — prioritized on the basis of
revenue — that provide airlines with a clear delay/cancellation policy and may en-
able them to market and sell tickets for flight legs based on passenger preference for
reliability.

We present three different ways to incorporate degradability into the scheduling
process: (1) between flight scheduling and fleet assignment (degradable schedule par-
titioning model), (2) with fleet assignment (degradable fleet assignment model), and
(3) with aircraft routing (degradable aircraft routing model). Each problem is mod-
eled as an integer program. Search algorithms are applied to the degradable aireraft
routing model, which has a large number of decision variables.

Results indicate that we can successfully assign flight legs with high revenue itineraries
in the higher priority layer without adding aircraft or changing the schedule, and dif-
ferentiate the service quality for passengers in different priority layers. Passengers in
the high priority layers have much less delay and fewer cancellations than passengers
in low priority layers even during the bad weather. In terms of recovery cost, which
includes revenue lost, operational cost saving and crew delay cost, degradable airline
schedules can save up to $30,000 per day. Degradable airline schedules have cost sav-
ing effect, especially when an airport with a high capacity reduction in bad weather
is affected by bad weather.

Thesis Supervisor: John-Paul B. Clarke
Title: Associate Professor, Department of Aeronautics and Astronautics
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Chapter 1

Introduction

When any part of a system fails to work properly, it often affects the performance of
the entire system. One approach to increase system robustness is to design systeins
with independent sub-systems that may be operated independently. By partitioning
the system into independent sub-systems, we are able to isolate the impact of poor
performance in any one sub-system, and restrict any errors to the sub-system where
it originally occurred. Independent sub-systems allow us to differentiate the level of
performance for each sub-system simply by prioritizing them.

A degradable system is defined as a system which is composed of several indepen-
dent sub-systems, and each sub-system has been assigned a different priority. The
idea of a degradable system can have various applications, such as those in telecomn-
munication, scheduling, or transportation. A performance criterion for prioritizing
depends on the application area and needs of users. In this thesis, we apply this
concept to the airline industry in order to explore the implementation possibility and

potential advantages of a degradable system with different levels of reliability.

The structure of the paper is as follows: In the rest of this chapter, we state the
problem and propose a solution. We introduce the concept of degradable airline
scheduling, and define different cases that we will discuss for the rest of the thesis.
In Chapter 2, we present the integer programming models for each case defined. In

Chapter 3, we provide the details of a prototype application of our models to a rep-
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resentative U.S. domestic network airline. Solution approaches used for each case are
presented in Chapter 4, followed by a discussion of the model results and simulation
results in Chapters 5 and 6, respectively. The sensitivity analysis is presented in

Chapter 7. We then review our results and discuss further research in Chapter 8.

1.1 Background

The capacity of an airport is, in large part, a function of the prevailing weather
conditions at that airport. When the visibility around an airport is good, the pilot of
an aircraft may request a visual clearance, and if approved, aircraft operations may
then be conducted according to visual flight rules (VFR). Under VFR, which have no
formal separation requirements, the pilot is responsible for maintaining an appropriate
separation from the preceding aircraft. When the visibility around an airport is poor,
however, all aircraft operations must be conducted according to instrument flight
rules (IFR). Under IFR, the air traffic controller is responsible for ensuring that the
separation between the aircraft under his/her control is never less than pre-determined
conservative minima. Because the separation required under IFR is greater than that
typically observed under VFR, the capacity under IFR is therefore less than the
capacity under VFR.

Airport capacity is also a function of wind speed and direction. For example, at
an airport with independent parallel runways in one direction and a single runway in
the perpendicular direction, a shift in wind direction of 90 degrees can cause a 50%
reduction in arrival capacity and a similar reduction in departure capacity.

Whatever the cause, when airport capacity is reduced, airlines must delay or cancel

flight legs to ensure that aircraft and crew are in position for later flights.

The impact of delays and cancellations on airlines and passengers can be signifi-
cant. When flight legs are delayed, airlines incur the cost of the extra fuel that is
burned during airborne delays or while aircraft wait on the airport surface with their

engines running. In addition, airlines must pay crews for the extra time that they
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spend waiting on aircraft during delays in the air or on the ground. Because fuel
and labor costs are two of the major costs incurred by an airline, delays can have
significant financial ramifications. For example, it is estimated that the major US
carriers currently lose as much as two billion dollars per year because of delays and
cancellations [52].

Delays and cancellations can also have a significant negative impact on passen-
gers. From a passenger’s perspective, the most critical consideration is the difference
between the scheduled and the actual arrival time at his/her ultimate destination.
This ‘final arrival delay’ occurs because the last (or only) flight leg in an itinerary is
delayed or cancelled, or because a connection between flight legs has been missed due
to the delay or cancellation of one or more prior flight legs in their itinerary. What-
ever the cause, this late arrival can result in considerable financial and personal loss
to a passenger, and can also result in loss of goodwill toward the airline in question.
Thus, both from a passenger and an airline perspective, it is very important to make

airline operations as robust as possible to disruptions.

The traditional approach to dealing with such disruptions is to re-schedule aircraft
and crew each time a disruption occurs. Because airlines must simultaneously consider
changes to aircraft routings, crew schedules, and passenger itineraries, this approach
is computationally challenging. Thus, airline recovery decision are most often made
by airline operations controllers using heuristics that are based on years of experience.
Even with these computational challenges, many researchers have developed airline
recovery algorithms with the objective of the optimization models underlying these
algorithms being to minimize the changes in schedule and/or minimize the delay and
cancellation cost. Examples of these models are described below.

Yan and Tu [55] used a multi-commodity network flow model to reschedule multi-
fleet aircraft routing to minimize the delay and cancellation cost. Bard et al. [6] used
a minimum cost network flow problem to find aircraft routings that would minimize
delay and cancellation cost. Thengvall et al. [53][54] built a multi-commodity network

model for schedule recovery following a hub closure. This model allows not only

15




cancellations and delays but also ferry flights and substitutions between fleets. They
solved the problem with various objective functions, including minimizing cancellation
and delay cost, and maintaining as much of the original routing as possible. Lettovsky
[43] extracted a subset of the schedule for rescheduling to find a new crew schedule
that would disturb the current schedule as little as possible. Heuristics to solve
optimization models and extract a workable subset of the schedule are developed
in order to get a recovery solution in real time. On the other hand, Bratu [15]
focused more on passenger part. He proposed on-line models and algorithms to reduce

passenger disruption and delays by cancelling and delaying flight departure.

However, even with the recent advances in the capabilities of recovery models, there
is still one aspect of the airline recovery problem that will be difficult to overcome. At
the time when the recovery decision is being made, airlines do not know the amount
of delay that each passenger is willing to accept. Therefore, the existing solution
can not be certain to minimize passenger displeasure. Even if the preferences of
passengers were known, the mathematical model required to allocate delay as part of
the recovery problem would be intractable, as the number of passengers far exceeds
the number of aircraft and the number of crew. Thus, passengers will continue to feel

that airlines are not being responsive to their needs.

A more proactive approach is to create airline schedules that intrinsically isolate
or dampen the impact of disruptions so that any single delay or cancellation does
not impact broadly the operations of the airline network. This may be achieved
by creating schedules that are either easily recoverable from or less susceptible to
schedule disruptions caused by bad weather or equipment failures. Therefore the
fundamental step in this approach is to identify how the characteristics of a schedule

affect the robustness of that schedule.

Ageeva and Clarke [3] introduced the idea that the flexibility and, by extension,
the robustness of an airline schedule can be improved by increasing the number of

overlapping routes in the solution to the aircraft maintenance routing problem so that
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aircraft can be easily swapped when disruptions occur. They recognized that much of
the difficulty in deciding whether to switch an aircraft from its pre-assigned routing to
another routing in order to cover a flight leg was due to the requirement that, in the
resulting solution, the routings for all aircraft must include a maintenance opportunity
before their next scheduled time for maintenance. They then postulated that the
difficulty of the problem could be reduced if each aircraft routing “overlapped” at
least twice with another aircraft routing between each maintenance visit. Chebalov
and Klabjan [17][41] suggested a similar approach to the problem of crew scheduling
where the robustness of a crew schedule would be improved if the opportunities for the
switching of crews were increased. Rosenberger et al. [47] presented an optimization
model that reduces the true operating cost of a schedule by incorporating the likely
costs of rerouting or canceling a flight into the fleet assignment problem. Later
they suggested a cancellation policy based on routes instead of individual flight legs.
Building many short cycles in the schedule provides more robust aircraft rotations,

which improve operation [48].

1.2 Degradable Airline Schedule

In this thesis, we introduce and develop the concept of degradable airline scheduling.
A degradable schedule is one that is divided into several independent sub-schedules,
or layers, and each layer has a different level of importance. The fundamental premise
behind degradable airline schedules is that it is possible to simultaneously increase
the robustness of an airline’s operation and segment the product that is offered to
passengers based on reliability, and thereby change the way airline tickets are sold.
Specifically, the degradable airline schedule (1) is robust in response to disruptions
due to weather at or around airports, (2) has itineraries with different reliability
levels, (3) provides passengers with a mechanism to select flights based on their own
preference for reliability, (4) provides airlines with a mechanism to increase customer
satisfaction, and (5) provides the flexibility required to more easily respond to changes

imposed on the airline by air traffic control.
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A schedule that is partitioned into independent sub-schedules or layers is robust
under disruptions for two reasons. First, because the aircraft routings within each
layver are independent of the aircraft routings in other layers, a delay or cancellation
within a layer can only impact flight legs within that layer and will not propagate to
other layers. Thus, the impact of a delay or cancellation is limited, even if nothing is
done to adjust the schedule. Second, because fewer flight legs, aircraft routings, and
crew schedules are affected by a given delay or cancellation, re-optimization of the

airline’s operations is simpler and thus more effective.

The partitioning of the schedule also serves as a mechanism to assign different
reliabilities to itineraries. The specifics of this mechanism are as follows: If layers are
prioritized, and the order in which delays and cancellations are assigned to layers is
the reverse of the order of priority, the priority of a layer becomes a proxy for the
relinbility of the itineraries and flight legs within that layer. If, further, the highest
priority layer is designed to be operable in bad weather, an airline can “protect” the
itineraries in the highest priority layer from capacity reductions due to bad weather.

The concept of differentiating service quality based on customer preference for
reliability has been discussed for some time regarding the problem of electricity dis-
tribution. For example, Fumagalli et. al [26] suggested a reliability insurance scheme
for the distribution of electricity to customers who require different levels of relia-
bility. Specifically, they showed that consumers valued, and were willing to pay for,
reliability insurance. They also showed that the addition of reliability insurance im-
proved the overall customer satisfaction and increased the profit margin of the service
provider. These findings are consistent with the often used axiom in customer service
that overall satisfaction with a service provider is improved if consumers are provided
with a product, or level of service, that is well matched to what they need, or perhaps

more importantly, what they are willing to pay for.

This property of the degradable schedule also provides a mechanism for passengers

to incorporate into their decision their delay threshold and their ideas about which
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itinerary to purchase. If passengers know what the levels of reliability of the itineraries
are, they will have the information they need to weigh this information against cost,
departure time, arrival time, travel time, ticket restrictions, and all the other factors
that passengers currently consider. Thus, if ticket prices are also a function of the
layer of the corresponding itineraries, passengers will be able to signal their preference
through the price they are willing to pay. If the schedule is constructed in such a
way that passengers know the reliability of the itineraries they are considering before
they purchase their ticket, and the ticket prices reflect the reliability of the itineraries
in question, then passengers will have a clear expectation of service quality and an
economic mechanism for choosing their preference levels of reliability. This ability to
simultaneously improve overall customer satisfaction and increase the profit margin
of the service provider could be very beneficial to an industry that is noted for small
profit margins in the best of times, and large losses in the worst of times. The
challenge, then, is to develop a schedule in which the reliability of different itineraries
can be quantified and guaranteed.

As previous research has shown, customer satisfaction is primarily a function of
the difference between the expected quality of service and the perceived quality of
service, not the quality of service itself [25]. Thus, by providing passengers with an
accurate estimate of the delay they can expect when the weather deteriorates, the
difference between the actual delay and the expected delay will be smaller, and their
dissatisfaction will be reduced. This may also lead to increased revenues since it can
be argued that customers will be willing to pay more for a service that has distinct

benefits to them relative to existing operations.

In addition to the potentially enhanced customer satisfaction and increased revenue,
the degradable airline schedule also provides flexibility required to more easily respond
to changes in the air traffic control environment. Specifically, the clear prioritization
of flight legs within the schedule is consistent with many of the market-based schemes
that have been proposed for the allocation of capacity in the U.S. national airspace

system. In fact, the priority for all flights in each airline’s schedule can be used as
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the basis for the airport capacity auctions that have been proposed by both Milner

[43] [45] and Hall [35] as mechanisms to efficiently allocate limited capacity.
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1.3 Incorporating Degradability into the Schedul-
ing Process

Because of its complexity and size, the airline scheduling problem is often decomposed
into several smaller problems, solved in four sequential steps [34]. As Figure 1-1 shows,
the four steps in the airline scheduling process are: flight scheduling, fleet assignment,

aircraft routing, and crew scheduling.

‘ Flight Scheduling

l

Fleet Assignment

l

Aircraft Routing

1

Crew Scheduling

Figure 1-1: Airline Scheduling Process

Flight scheduling is usually done well in advance of the time that a flight occurs,
and is based on marketing considerations, the planned flights of competitors, and
internal airline considerations such as operating costs and network structure. The
resulting flight schedule is a set of flights; each is composed of one or more flight
legs. Each flight is characterized by a flight number, origin, destination, scheduled
departure time, and scheduled arrival time. Given the flight schedule, a specific fleet
type is assigned to each flight leg using fleet assignment models. Since each fleet type
has a certain capacity and operating cost, an airline must decide on the fleet type for
each flight leg based on predicted passenger demand, its given capacity, its operating
cost, and the number of aircraft available. Once the fleet type for each flight leg is
decided, atrcraft routing models are used to assign specific aircraft to flight legs hased
on maintenance constraints while ensuring that each flight leg is flown by exactly

one aircraft. Aircraft routing is solved for each fleet type, and different maintenance
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stations and maintenance requirements are applied for each fleet type. Finally, in crew
scheduling, specific cockpit and cabin crews are assigned to each flight leg based on
the crew’s qualifications to operate different fleet types, and on workplace regulations
such as how many hours a person may pilot an aircraft and how many people must

make up the crew for a particular fleet.

Much of the recent work in airline scheduling has focused on improving schedule op-
timality by combining two or more steps in the airline scheduling process. Rexing et.
al [46] introduced the idea of adding time windows to the fleet assignment problem so
that departure times can be adjusted if small adjustments will increase the optimal-
ity of the solution. This approach incorporates a component of the flight scheduling
problem (i.e. setting the departure time of flights) into the fleet assignment problem.
Clarke et. al [19] introduced maintenance and crew consideration into fleet manage-
ment. Barnhart et al. [7] solved fleet assignment with aircraft routing. Cohn and
Barnhart [21] combined crew scheduling with aircraft routing, including maintenance
considerations. Cordeau et al. [22] also solved aircraft routing and crew scheduling
simultaneously. Lohatepanont and Barnhart [44] integrated schedule design and fleet

assignment.

As Figure 1-2 shows, the concept of degradable scheduling could be introduced into
the airline scheduling process (a) between the flight scheduling and fleet assignment,
(b) in combination with fleet assignment, and (c) in combination with aircraft routing.

Degradable Schedule Partition Model (D-SPM) is used to assign flight legs to dif-
ferent layers. Given the flight schedule, D-SPM simply partitions the schedule into
several sets where each set of scheduling satisfies balance constraints. Fleet assign-
ment, aircraft routing, and crew scheduling are completed for each layer. Degradable
Fleet Assignment Model (D-FAM) is used to solve degradable airline scheduling and
fleet assignment models simultaneously. Instead of only deciding which layer the
flight leg should be in, D-FAM also decides which fleet type should be used as well.

Aircraft routing and crew scheduling are completed separately for each fleet-layer
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Flight Scheduling

Flight Scheduling

Flight Scheduling

D - SPM

Fleet Assignment

D - FAM

!

L

Aircraft Routing

Y

Fleet Assignment

)

Aircraft Routing

Crew Scheduling

/

Y

Crew Scheduling

Crew Scheduling

Figure 1-2: Potential Locations for Degradable Airline Scheduling

network. Degradable Aircraft Routing Model (D-ARM) is designed to solve degrad-
able airline scheduling and aircraft routing simultaneously given the chosen flight
schedule and fleet assignment. D-ARM builds a route for each aircraft by connecting
the sequence of flight legs with the same fleet type, and then assigns the route to
a proper layer. There are pros and cons of each model. We can add more robust-
ness, or degradability, to the model as we consider degradable scheduling earlier in
the planning process. However, this may restrict the fleet assignment and/or aircraft

routing, thus result in higher operating cost. In this thesis, with a given schedule, we

only solve fleet assignment and aircraft routing, but not crew scheduling.
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Chapter 2

Modeling Approaches

In the ideal degradable schedule, itineraries would be assigned to layers in order of
importance; that is, the set of itineraries in any layer would be the same as the set of
itineraries derived by ranking itineraries in order of importance and then partitioning
them into layers. This would be easy to achieve for a purely point-to-point airline
that has non-stop flights between every origin and destination, and only sells tickets
for single flight leg itineraries. In this case, each itinerary would have a unique flight
leg, and assigning flight legs to layers in order of importance would give the ideal

degradable schedule.

In reality, all airlines have itineraries with more than one flight leg; that is, passen-
gers connect through an intermediate or hub airport. Thus, each flight leg will have
passengers who are traveling on different itineraries. The importance of a flight leg
will not be fully correlated with the importance of any one itinerary alone. In decid-
ing the layer in which to put a flight leg, it is necessary to consider the importance

of all the itineraries that use that flight leg.

Because the size of a layer is determined by the number of flight legs in that
layer, the number and importance of itineraries in each layer will not be equal to
the number and importance of itineraries in the ideal schedule. Given, also. the

very practical consideration that a single flight leg might be carrying passengers on a
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hundred itineraries, the problem becomes a multi-attribute set partitioning problem,
as we are seeking to assign the desired number of flight legs to each layer while

simultaneously assigning itineraries to layers in order of importance.

This class of problem is often solved by trading off one attribute against the other.
However, in this case, the number of flight legs in each layer is of paramount im-
portance because (a) the number of flight legs in the protected layer cannot exceed
the maximum number of flight legs that can be operated in bad weather, and (b)
layers with limited number of flight legs may not have feasible fleet assignment or
aircraft routing solutions. Thus, we address this problem by setting a constraint on
the maximum size of every layer except the least important layer, and then maxi-
mizing the “weighted” importance of the itineraries in the schedule. However, this
approach presents us with two challenges. The first is to decide on the appropriate
measure of importance. The second is to determine the appropriate weighting scheme

for itineraries as a function of their layer.

There are many possible measures of importance. One can imagine the importance
of an itinerary being a function of the number of frequent flyers who use that itinerary.
One can also imagine that the revenue an itinerary provides to the airline is an
appropriate measure of importance. If we assume that revenue is an indication of
importance, the multi-attribute set partitioning problem becomes the problem of
assigning the desired number of flight legs to each layer while simultaneously assigning
itineraries to layers in order of revenue. The ideal solution would have the highest
revenue itineraries in the first or most important layer, the next highest revenue
itineraries in the second layer, and so on. Given the considerations described above,

our objective is to maximize the weighted revenue of the itineraries in the schedule.

While it is possible to develop a myriad of different weighting schemes, the most
important property of any scheme is that the weighting increases monotonically as
the importance of the layer increases. Thus, for simplicity, we chose the rank of the

layer as the basis for our weighting scheme. Specifically, we decided that the revenue
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of an itinerary that is in the most important layer would get full weight because
this itinerary would be protected from capacity reductions, while the revenue of an
itinerary in the least important layer would be given significantly less weight, if any,
because this itinerary would be one of the first to be delayed or cancelled when the
weather deteriorates. The revenue of an itinerary in a layer between the most and
least important layers is given a weight that is proportional to the position of its
layer in the ranked order of layers because the itinerary would be partially protected
from capacity reductions. The level of protection is related to the position of the
layer relative to the most and least important layers. Thus, in the remainder of the
paper, the term “protected revenue” is used to describe the weighted revenue of the

itineraries in the schedule.

As presented in Chapter 1, there are three different ways to incorporate the degrad-
ability into the scheduling process. The integer programming models for each case
are presented below. The first model, the degradable schedule partitioning model (D-
SPM), is designed to solve the degradable airline scheduling problem before solving
the fleet assignment and aircraft routing problems. The second model, the degradable
fleet assignment model (D-FAM), is designed to simultaneously solve the degradable
airline scheduling problem and the fleet assignment problem. The third model, the
degradable aircraft routing model (D-ARM), is designed to simultaneously solve the

degradable airline scheduling problem and the aircraft routing problem.

2.1 Degradable Schedule Partitioning Model

The degradable schedule partitioning model is developed using a daily time-line net-
work in which the time and the airport is modeled as a node. each flight leg is modeled
as a directed “flight arc” between nodes, and the time that an aircraft spends at an
airport is modeled as a directed “groﬁnd arc.” Because the degradable schedule par-
titioning model is designed to solve the degradable airline scheduling problem before

solving the fleet assignment and aircraft routing problems, we do not have to consider
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fleet assignment costs or aircraft maintenance constraints. We recognize that this may
lead to sub-optimal or even infeasible fleet assignments and aircraft routings, but we
believe that in a very large airline, where the numbers of flight legs and aircraft are
numerous, the loss in optimality, in terms of the estimated profit after planning, will
be small relative to the gain in robustness and thus the reduction in recovery costs

during operation.

We define sets, decision variables, parameters, indicator variables as follows:

Sets
N = the set of nodes, representing times and airports, indexed by n, m
F = the set of flight arcs indexed by nm
G = the set of ground arcs indexed by nm
A = thesetofarcs, A=FUG
O = the set of overnight arcs indexed by nm, O C A
I = the set of itineraries indexed by ¢
K = the set of layers, {1--- K}, indexed by k

Decision Variables
gk = 1,if arc nm is in layer k Vnm € F
0, otherwise Vnm ¢ F
the number of airplanes on the ground on arc nm is in layer & Vnm € G

2k = 1, if the itinerary i is in layer k and k > k

S

0, otherwise

Indicator Variable
6L, = 1, if flight arc nm is in itinerary i

0, otherwise

Parameters
W = number of aircraft available
K = number of total layers
K = number of protected layers, K<K
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vF = revenue of itinerary ¢, if itinerary is in layer 1,
revenue ‘lost’ when itinerary ¢ is moved from layer £ to k + 1

zk<=k1 Uf > Zk<:k2 Uzk Vk and \\7/]\31 < kQ

C), = number of operations scheduled at hub A per a day
0, = maximum percentage of capacity reduction in bad weather at hub h
S¥ = number of flights allowed in layer k

Yk < K and S* < min(1 — 6,)

Three things are important to note: First, the definition of z¥ is similar to the

approach taken by Bertsimas and Stock Patterson [13] to deal with problems where
there is a potential for fractional solutions. In their paper, they define the binary
decision variable as whether the flight arrives at the sector by time ¢, instead of at
time t. In this way, the decision variable has value zero until t — 1 and value one
from t, whereas it has only one ¢ that has value one in the latter case. In the D-SPM
model, the decision variable values are reversed. The decision variable has value one
for & < k and has value zero for £ > k. For example, if itinerary i is in layer 3, =/,

22, z3 will have a value of one and other variables for ¢ will be zero.

Second, because layer 1 is the most important layer in the network, all the
itineraries in layer 1 are “protected” because that layer is operable in bad weather.
For a schedule with two layers, all the revenue of an itinerary is “lost® when that
itinerary is moved from layer 1, the protected layer, to layer 2, the unprotected layer.
For a schedule with many layers, the revenue that is lost when an itinerary is moved
from layer &k to layer k + 1 is a fraction of the total revenue for that itinerary, as
the likelihood that a flight leg in layer k is delayed or cancelled is lower than the
likelihood that a flight leg in layer k£ + 1 is delayed or cancelled.

Third, Cj, is the number of operations scheduled at hub h per a day and 6, is
the maximum capacity reduction in bad weather at hub & from historical data. Thus
Ch(1—6) gives the minimum number of operations an airline can have at hub A even

in bad weather.
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Given the definitions above, the degradable schedule partitioning model (D-SPM)

can be formulated as

max ZZ@fzf (2.1)
ik

s.t. STk, <SP VE<K (2.2)
nmeF
Stak =1 VYnmeF (2.3)
k
Zrﬁm—szsz VYneN,Vke K (2.4)
SN NSah.<Ci(1-6,) VheH (2.5)
k<K nmeF n3h
SN ak <w (2.6)
keK nmeO
F>ak 6 VYnmeF Viel Vke K (2.7)
2F > VE< K (2.8)
b € Zt VYnmeG,Vke K (2.9)
ok €{0,1} VnmeF Vke K (2.10)
e {01} Viel VkeK (2.11)

The objective function (2.1) maximizes the protected revenue. The constraints (2.2)
ensure that the number of flight legs in each layer does not exceed the desired number
of flight legs, S*, in that layer. The constraints (2.3) are cover constraints ensuring
that each flight leg is in exactly one layer. The constraint (2.4) is a conservation of flow
constraint, which ensures that the number of aircraft at an airport does not increase
or decrease over time. The constraints (2.5) ensure that, at each hub airport, the
number of operations in protected layers is less than the capacity of the hub airport
in bad weather. The constraint (2.6) is a count constraint ensuring that the number
of aircraft used in the model is less than or equal to the number of available aircraft.
The constraints (2.7) and (2.8) are used to identify the layer in which an itinerary is
located. The constraint (2.7) forces z¥ to have a value of one if any of its constituent
flight legs are in layer k. The constraint (2.8) makes z a step variable. For example,
if there are 4 layers and an itinerary ¢ has two flight legs, one in layer 1 and one

in layer 3, from (2.7), z! and 2z} will have value one. In that case, (2.8) forces 2}
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to be one as well. In fact there is no constraint for z}; however, from the nature of
the objective function, v¥ always has negative value for k > 1. and it will make the
23 value zero. In this way, we consider the itinerary to be in ‘the least important
layer” of its constituent flight legs when they are not assigned to the same laver.
The constraints (2.9), (2.10), and (2.11) are for integrality of decision variables. The

decision variables for flight legs are binary variables, and the decision variables for

ground arcs can have any non-negative integer value.

2.2 Degradable Fleet Assignment Model

The degradable fleet assignment model is also developed using a daily time-line net-
work. The major difference and the challenge of D-FAM is that we combine two
optimizations — minimizing fleet assignment cost and maximizing degradable airline
scheduling value. Although both optimizations use dollars as the measure, they can-
not be combined because the fleet assignment value is an actual cost to the airline
while the degradable airline scheduling value is merely a value that is proportional to
the revenue of the itineraries an airline would protect by having a degradable airline

schedule, which is not the actual revenue or profit an airline makes.

When there are two objective functions, f;(z) and fo(r), one way to handle them
is to simply combine them as a single objective function. This approach works only
when fi(z) and fy(x) have the same measure with the same scale. If two functions
use the same measure but different scale or different measure which is convertible to
each other, we can use the weighted sum of two functions, f(z) + afz(x), instead.
However, the question remains as to how to pick the right value of a.

Another technique is to put one of the functions as a constraint to optimize another
function. First, we optimize over f;(z) only, and get the optimal value f;(x). Then we
optimize over fo(x) with an additional constraint, which is f;(x). The value for f,(x)
is bounded by (1 + €)f{(z), where ¢ > 0. After we optimize over fo(z) for various

permutation values for fy(z), we can have a graph showing the trade-off between
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fi(z) and fo(z).

In D-FAM, we use the latter approach. D-FAM is solved in two stages. In the
first stage, the Fleet Assignment Model (FAM) is solved to obtain the minimum
fleet assignment cost, Z*, without degradable airline scheduling constraints. In the
second stage. we use the same objective function as D-SPM to maximize the protected
revenue, as well as all constraints for FAM and D-SPM. In addition, we have one more
constraint for the objective function value of FAM, the fleet assignment cost. In that
additional constraint, some positive increase of the minimum FAM value from the
first stage is used as an upper boundary for FAM cost for D-FAM. Details for each

stage are described in the following subsections.

2.2.1 Basic Fleet Assignment Model

The Basic Fleet Assignment Model consists of the objective function that minimizes
the fleet assignment cost such that 1) all flights are flown by exactly one fleet type,
2) the aircraft flow is balanced, and 3) only the number of available aircraft is used.

Or, mathematically, FAM can be formulated as follows:

Sets
N = the set of nodes, representing times and airports, indexed by n,m
F = the set of flight arcs indexed by nm
G = the set of ground arcs indexed by nm
A = thesetofarcs, A=FUG
O = the set of overnight arcs indexed by nm, O C A
P = the set of different fleet types indexed by p

Decision Variables

Tomp = L, if arc nm € A is assigned to fleet typep e P Vnm € F
0, otherwise Vnm € F

number of airplanes on the ground on arc nm Vnm € G
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Parameters
Cnmyp = cost of flight nm it flect type p is assigned
0,ifnmeG
W, = the number of aircraft in fleet type p, Vp € P
min Z chm,pxnm,p (2.12)
nmeF peP
st Y Tamp=1 VnminF (2.13)
pEP
Z;rﬁm-Z:rfnn:O Vne N, Vpe P (2.14)
meN meN
> Tomp<W, VpeP (2.15)
nme0
Tomp € ZT VYnm € G, Vp € P (2.16)
Tpmy € {0,1} Vnm e F, Vpe P (2.17)

The constraints (2.13) are cover constraints ensuring that each flight leg is covered
once and only once by a fleet type. Constraints (2.14) are conservation of flow con-
straints ensuring the number of aircraft coming in to each airport is the sanie as the
number of aircraft going out of the airport. Constraints (2.15) are count constrailts
ensuring that only the available number of aircraft of each fleet type is used iu the
assignment. The constraints (2.16) and (2.17) are for integrality of decision variables.

The objective function (2.12) is to minimize the total cost.

The objective function coefficient c,,, is the summation of all costs of flight nm
flown by fleet type p. The cost includes operating cost and spill cost. Variations
on fleet assignment models and approaches were introduced by Hane et. al [36],
Rushmeier and Kontogiorgis [49], Clarke et. al [19], Berge and Hopperstad [12],
Kontogiorgis and Acharya [42], and Abara [2]. Barnhart et al. [10] showed that the
fleet assignment model can be improved even more using an itinerary-based model.

In our model, we use one of the earliest and simplest models. The cost is calculated
as the sum of the operating cost, which includes fuel, maintenance, crew cost for each
fleet type, and spill cost, which is the summation of fares for passengers who cannot

get served because of limited fleet capacity. We assume that there is no recaptured
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revenue, and each flight leg in an itinerary has the value of the whole itinerary.

2.2.2 Multi-criteria Optimization

In D-FAM, we not only have two objective functions; we also have two decisions to

make in selecting a fleet type and layer. Once we solve a FAM, as described in the

previous section, we have the minimum FAM cost, Z*. The objective function from

the first stage, Z*, is an input for D-FAM in the second stage. The D-FAM formulation

for maximizing the protected revenue while assigning a fleet type and layer to each

Hight and the FAM cost is not greater than the given permutation of Z*. D-FAM is

basically a combination of FAM and D-SPM. The objective function is the same as

D-SPM. The constraints consist of all constraints for fleet assignment feasibility and

degradable airline scheduling feasibility. In addition, there is a constraint for FAM

cost. We define the following:

Sets

N

o 9 0O 2 QO M

the set of nodes, representing times and airports, indexed by n,m
the set of flight arcs indexed by nm

the set of ground arcs indexed by nm

the set of arcs, A =FUG

the set of overnight arcs indexed by nm, O C A

the set of different fleet types indexed by p

the set of itineraries indexed by ¢

the set of layers indexed by k

Decision Variables

i?k

nm,p

= 1, if arc nm is assigned to fleet p and in layer £

0, otherwise

= 1, if itinerary ¢ is in layer k and k > k

0, otherwise

Indicator Variable
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%
5nm

Parameters

Cnm.p

B S

Ch
On
Sk

Z*

1, if flight arc nm is in itinerary ¢

0, otherwise

cost of flight nm if fleet type p is assigned

0,ifnmeG

the number of aircraft in fleet type p, Vp € P

number of total layers

number of protected layers, K<K

revenue of itinerary ¢, if itinerary is in layer 1,

revenue ‘lost” when itinerary ¢ is moved from layer k to & + 1
ekt V> e vfVE and  VE! < K2

number of operations scheduled at hub A per a day

maximum percentage of capacity reduction in bad weather at hub A
number of flights allowed in layer &

Sk < K and S* < min(1 — 6,)

the minimum FAM cost without considering degradable airline scheduling
obtained from a simple FAM in the first stage

permutation parameter for Z*

The only difference in the sets between D-SPM and D-FAM is P, the set of different

fleet types. The decision variable z is the same as in D-SPM. The decision variable

z is defined simply by combining the decision variables in D-SPM, z¥  and the

nm)?

decision variables in FAM, z,,,,, ,. Given the definitions above, the degradable schedule

partitioning model (D-FAM) can be formulated as

max Z Z ob ek (2.1%)

! k
st Yy b, <SY Vk< K (2.19)
pEP nmeF
>N ak,=1 YnmeF (2.20)
Pk
Soak =32k, =0 YneN VkeK, VpeP (2.21)
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S Y i, <G(l-6) YheH (2.22)

k<K pEP nmeFn3h

S>> b, <W, VpeP (2.23)
ke K nmeO
>3 xﬁmypéflm Vonme F,Yiel Vke K (2.24)
peP
2> vE< K (2.25)
ST compTamp < ZF(14€) (2.26)
nmeF peP keK
1'im‘p €Z" YnmeG, Vke K, VpeP (2.27)
Tomp €{0,1} Vnme F, Vke K, Vpe P (2.28)
Fe{0,1}) Viel, VkeK (2.29)

The objective function (2.18) is exactly the same as D-SPM. The constraints (2.19)
and (2.22) ensure degradable scheduling feasibility. That is, they ensure that the
number of flight legs in each layer does not exceed the desired number of flight legs
in each layer regardless of its fleet type, and the number of operations at the hub
airports in protected layers does not exceed the airport capacity in bad weather at
the hub. The constraints (2.20), (2.21), and (2.23) ensure both FAM and D-SPM
feasibility. The constraint (2.20) is a cover constraint, now defined for both fleet type
and layer. The constraints (2.21) are the conservation of flow constraint for each fleet
type and each layer. The constraints (2.23) are counting constraints for the number of
aircraft used for each fleet type. The constraints (2.24) and (2.25) are used to identify
the layer in which an itinerary is located. They are the same as D-SPM as well. The
constraint (2.26) links the trade-off between FAM cost and D-SPM value. For given
¢, D-FAM will decide the optimal fleet and layer assignment to maximize the total
protected revenue. The constraint (2.27), (2.28), (2.29) ensure the integrality of the
decision variables.

When D-FAM is solved for different e values, a graph of the results describes the
trade-off between FAM cost and DAS value.
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2.3 Degradable Aircraft Routing Model

The degradable aircraft routing model (D-ARM) has major differences from D-SPM
or D-FAM. First, we use entire aircraft maintenance routings or ‘routes’ as decision
variables instead of individual flight legs. Second, D-ARM is developed using a 3-

day-long time-line network, instead of a daily network.

A route is defined as a sequence of flight legs which lasts for three days, and satisfies
flow balance and maintenance requirements. By requiring that each route stops at
a maintenance station at least once in three days, we guarantee the maintenance for
every aireraft at least once in every five days. The routing variables can be classified
as composite variables, introduced by Cohn [20], which pass some of the problem
complexity to the sub-problem. The flight string model by Barnhart et al. [7] has a
similar idea. The string is defined as a sequence of flight legs that start and end at
(possibly different) maintenance stations, satisfy flow balance, and are maintenance
feasible.

We define the routes using the 3-day long network instead of the daily network.
Each day has the same schedule. However, we have dated operations. In a dated
operation, we can consider maintenance opportunities for individual aircraft. Each
aircraft does not have to repeat the same route which provides more flexibility for
routings. This approach also allows us to apply revenue of different days of the week,
instead of using the average revenue. However, D-ARM does not necessarily capture

all routings in the string model, and vice versa.

We define the following:

Sets
N = the set of nodes. representing times and airports. indexed by n.m
F = the set of flight arcs indexed by nm
GG = the set of ground arcs indexed by nm
A = thesetofarcs, A=FUG

37




= the set of overnight arcs indexed by nm, O C 4
= the set of itineraries indexed by 14

= the set of fleet types indexed by p

the set of layers, {1--- K}, indexed by k

= the set of routes indexed by r

= the set of days, {1, 2,3}, indexed by d

O 0w RN N - O
il

Decision Variables
y¥ = 1,if route r is in layer k

0, otherwise

28 = 1, if the itinerary i is in layer k and k > k

.

0, otherwise

Indicator Variable
5t = 1, if flight arc nm is in itinerary ¢

nm

0. otherwise

vd = 1, if flight arc nm is in day d
0, otherwise
M = 1, if fleet type p is used for route r
0, otherwise
Parameters
W, = number of aircraft available in fleet type p, Vp € P
o = number of flights in the route 7 in day d
adh = number of flights in the route r which depart from hub & in day d
vf = revenue of itinerary ¢, if itinerary is in layer 1,
revenue ‘lost’ when itinerary i is moved from layer k to k + 1
Sheapt 0F > Y 0Pk and VR < k2
C, = number of operations scheduled at hub A per a day
#, = maximum percentage of capacity reduction in bad weather at hub h
S* = number of flights allowed in layer k

Sk < Kand S* < min(1 — 6;)
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Given the definitions above, the degradable aircraft routing model (D-ARM) can

be formulated as:

max

s.t.

PIPILEA
k1
STalyb < S* Vk<KVdeD

> Y =1 YameF
k,r3nm
S alhyk < Cu(1—-6y) VheH. VdeD
kSIA(J'
S SN <W, WpeP
keK r
zf” > Z ykdi Vnm € F, Vi, Vk

Tonm
ranm

K> VE< K
y* e {0,1} Vr, Yk

ke {01} Vi, Vk

(2.35)
(2.36)
(2.37)
(2.38)

The objective function (2.30) maximizes the protected revenue. The constraints (2.31)

ensure that the number of flight legs in each layer does not exceed the desired number

of flight legs, S*, in that layer for each day. The constraints (2.32) ensure that each

flight leg is in exactly one layer. The constraints (2.33) ensure that at each hub

airport, the number of operations in protected layers is less than the capacity of the

hub airport in bad weather for each day. The constraints (2.34) ensure that the

number of aircraft used in the model is less than or equal to the number of available

aircraft. The constraints (2.35) and (2.36) are used to identify the layer in which an

itinerary is located. The constraints (2.37) and (2.38) ensure that decision variables

are binary.
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Chapter 3

Implementation

To illustrate how the idea of a degradable airline scheduling might be implemented in
an airline, we developed a two layer degradable schedule for a representative airline us-
ing each model we developed in Chapter 2. In the following sections, we introduce the
characteristics of the representative airline including its flight schedule, passengers,
itineraries, revenue, and explain how the model parameters for the representative air-
line were derived. We also explain how model tractability was achieved by reducing

the number of decision variables without compromizing on fidelity.

3.1 Prototype Example

The schedule of the representative airline is patterned on the domestic schedule of
a major U.S. airline. The airline in question has three U.S. hub airports: one in
the East, one in the Mid-West, and one in the South. During the time period for
which we had the requisite data, the airline was serving 76 domestic destinations with
265 aircraft (of seven fleet types) and 1,134 flights. On an average day during that
time period, the airline received approximately $12,912,229 in revenue from 66,643
passengers, flying 20,655 itineraries. Of the 20,655 itineraries, 57.8 percent had only
a single flight leg, 41.7 percent had two flight legs, and only 0.5 percent had three

flight legs.
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There are several important points worth noting about this representative airline.
First, its flight schedule is the same as the domestic flight schedule of the major
U.S. airline on which the representative airline is patterned. Thus, the departure and
arrival times for all flight legs are realistic. Second, the representative airline has
a very clear hub-and-spoke network structure. Only six flight legs out of 1,134 are
from non-hub airport to non-hub airport. As will be shown, this unique character-
istic of the airline allows us to develop heuristics for D-ARM. Third, the routings
of the representative airline were developed using the baseline FAM, and an aircraft
maintenance routing model determined by first-come-first-out, basis. These fleet as-
signment and aircraft routing models are the simpliest method applied by airlines.
Thus, the routings in the representative airline are reflective of what an airline of this
size might develop. We assume that the revenue and passengers on each itinerary for
the representative airline are the same as those for the domestic markets of the major

U.S. airline.

3.2 Parameters

There are few parameters in the mathematical formulations of the degradable airline
scheduling models. First of all, we need to decide how many layers we want to protect
and how many lavers we do not want to protect. Given the number of layers, we need
to decide the size of each layer, that is, how many flight legs we allow in each layer.
To decide the size of layers, especially size for protected layers, the capacity at the
hub, and how much it is reduced in bad weather, needs to be calculated. How much

revenue is protected if an itinerary is in each layer need to be decided as well.

Number of Layers

As stated above, the prototype degradable schedule has two layers for the following
reasons. First, this is the minimum number of layers that a degradable schedule can
have, as there must be at least one protected and one unprotected layer. Second,

the fewer the number of layers, the greater the size of the lavers, and therefore, the
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greater the likelihood that each layer has a feasible solution for aircraft routing with
the same number of aircraft. Since we only have two layers, the protected layer will

be labeled as Layer 1, and the unprotected layver will be labeled as Layer 2.

Hub Airport Capacity

While we can easily figure out the number of operations in good weather by examining
the schedule, it is not as easy to determine the number of operations that can be
performed when the capacity is reduced due to bad weather at the hub airports.
Thus, a more detailed analysis of airports observatoins is required.

The FAA Airport Capacity Benchmark Report [5] documents the observed capac-
ity at the 31 busiest U.S. domestic airports under good and bad weather conditions.
Because one of the hub airports was not included in the Airport Capacity Benchmark
Report, we took the capacity information for six spoke airports among the top ten
airports for the airline in question [1], and used it as an estimation for the capacity

reduction rate at the third hub airport in the most conservative way.
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Figure 3-1: Airport Capacity

Figure 3-1 shows the range of capacity for the eight airports considered. I the

figure, there are two bars for each airport. The bar on the left shows the capacity of
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the airport in bad weather. The bar on the right shows the capacity of the airport
in normal weather. The darker area on each bar represents the observed variability
in capacity under each condition. This variability may be explained by the fact
that, while the choice between IFR (applied in bad weather) and VFR (applied in
normal weather) is based on ceiling and visibility conditions, airport capacity is also
a function of the runway configuration in use, which in turn is a function of the wind

direction and speed.

The capacity changes at each airport are summarized in Table 3.1 [24]. As the table
shows, the largest capacity reduction for the airports considered is approximately 40

percent. Thus, we assume the capacity reduction for HUB3 as 40 percent.

Table 3.1: Airport Capacity Reduction

Airport | minimum reduction (%) | maximum reduction (%)
HUB1 5.83 8.94
HUB2 15.22 31.48
CITY1 13.51 15.33
CITY2 22.22 28.28
CITY3 25.42 38.10
CITY4 32.14 38.82
CITYS 24.21 32.32
CITY6 5.95 16.50

Size of the Layers

Having determined the number of layers, the next task was to determine the size of
each layer. Given our goal of protecting the flight legs in the protected layer during
bad weather, the number of flights that can be placed in the protected layer must be
less than or equal to the fraction of the bad weather capacity that the airline might

anticipate. Because airport capacity is allocated to airlines in proportion to their
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share of the total number of operations that are nominally scheduled at any given
airport, we assume that the fraction of the total capacity available to an airline during
bad weather is the same as the fraction of total capacity available to the airline in
normal weather. Thus, the change in airport capacity may be used as a proxy for the

change in the capacity available to the airline.

A complete treatment of capacity constraints on layer size would nominally require
an analysis of the capacity constraints at all the airports an airline serves. However.
the hub-and-spoke nature of the airline in question — only 0.5 percent of flights are
non-stop flights between spoke airports — results in a situation where its operations
are constrained by the capacity at its hub airports. Therefore, instead of considering
the capacity constraints at all the airports in the U.S., we need only to consider the
capacity constraints at the hub airports. From Table 3.1 and the assumption we
made about HUB3. the maximum capacity reduction for each hub is 8.94 percent.
31.48 percent, and 40 percent, respectively. With the most conservative approach, to
guarantee that the flight legs in the protected layer can continue to operate when the

weather deteriorates, the size of Layer 1 must be no more than 60 percent.

Weighted Revenue

For itineraries in Layer 1, it is easy to assume that the revenue protected is the
same as the total revenue for the itinerary since the flight legs in Layer 1 are always
protected and have priorities over flight legs in Layer 2. For itineraries in Layer 2,
the unprotected layer, the protected revenue could be anything between zero and full
revenue. [t could be strictly proportional to the revenue. or include other factors such

as market share.

In this case, for the sake of simplicity, we take the most conservative view and

assume no revenue is protected when the itinerary is not in the protected layer.
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3.3 Reducing the Problem Size

The final consideration is the size of the problem, as this determines both compu-
tation time and memory requirements. To limit the size of the problem, we only
consider itineraries with revenue greater than the average revenue. This decision
greatly reduces the number of itineraries that must be considered without sacrificing
the fidelity of the solution. To support this point, consider the distribution of revenue

for the major U.S. airline on which the representative airline is patterned.

Cumulative Revenue (million $}
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Figure 3-2: Accumulated Itinerary Revenue

Figure 3-2 shows the cumulative average daily revenue for all the itineraries on
an average day for the airline in question. As the figure shows, 8.4 percent of the
itineraries generate 83.9 percent of the total revenue. In fact, only 1,744 itineraries
generate more than the average daily revenue of $626. Among these 1,744 itineraries,
64.8 percent are single flight leg itineraries, and only one itinerary has more than two

flight legs.
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3.4 Model Simplification

Since we only have two layers and we assume that the protected revenue is zero if
an itinerary is in Layer 2, we can simplify our models for this specific case. This
procedure reduces the number of decision variables and the number of constraints,
thus, reduces the problem size.

Instead of defining 2F, we define z as one if itinerary i is in layer 1 and zero
otherwise. That means, if z is zero, that automatically makes the itinerary ¢ to be

in layer 2. The objective function, therefore, can be re-written as follows:

> vz (3.1)

where v; 1s the revenue for itinerary ¢. This is equivalent to the original objective

function,

SN Tkt (3.2)
koo

because v? has value —v}. Also, if 2? has value one, z} also has value one. Thus
the contribution to the objective function is zero. The problem constraints where we
identify the layer in which an itinerary is located can be simplified as well. There are
some variations depending on which model we use. D-SPM, D-FAM, D-ARM, have

a similar constraints structure. In D-SPM, we have:

2>k ot Ynme FYiel Vke K (3.3)
2> k<K (3.4)

The constraint (3.4) is common in all three IP formulations: constraint (2.8) in D-
SPM, constraint (2.25) in D-FAM, and constraint (2.36) in D-ARM. Although the
right hand side of the constraint (3.3) is different depending on how we define the
decision variable, the constraints (2.7), (2.24), and (2.35) all make z¥ value one, if any

of its flight legs in itinerary ¢ is in layer k. Instead, we can simplify them as follows:

z <zl 8 NYnmeFViel. (3.5)

nm - nm
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In constraints (3.5), the right hand side value is one if the flight leg is in the Layer 1

and zero if it is in the Layer 2 by the cover constraints. Since this is a maximization

problem and v; has a positive value, z; would have a value of one if there are no

constraints on it. The constraint (3.5) forces z; value to zero, if any of its flight legs

are in Layer 2.

For D-ARM, we can simplify those constraints as follows:

%< Yy, VYnmeFviel

ranm

In summary, the simplied formulations are as follows:
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(3.17)
(3.18)
(3.19)

(3.20)




(D-ARM)
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Chapter 4

Solution Approaches

In this chapter, solution approaches for D-SPM, D-FAM and D-ARM are presented.
Each model is solved with parameters obtained in Chapter 3, but the approaches
to the solutions presented in this chapter can be applied to problems with different
parameter values.

Based on the layer assignment, we investigated the distribution of itineraries,
revenue, and passengers in these schedules, relative to the nominal schedule for that
airline. Via simulation. we also determined the robustness and delay characteristics

of the degradable schedule, as well as passenger service quality and recovery cost.

D-SPM has a relatively small problem size compared to D-FAM or D-ARM. D-
SPM is directly fed into CPLEX 7.0, using a workstation with 2 CPUs, a 2.4 GHz
processor speed, 1 GB RAM, and 512 KB cache. Branch-and-bound is used as the
CPLEX default setting. Gomory cuts are applied in this setting. The up branch first

strategy as used as a branch-and-bound strategy.

4.1 D-FAM: Multi-criteria Optimization

The solution approach for D-FAM can be summarized as follows:
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BEGIN
Solve FAM. Let Z* be the optimal objective function value.
for each ¢, > 0 do
Set the constraint: FAM value < Z*(1 + ¢€,)
Solve D-FAM
Set Z, = FAM value, X,, = optimal objective function value for D-FAM
end for
Plot a graph for (Z,, X,)
END

For each ¢, the D-FAM is fed into CPLEX. D-FAM has a similar constraint struc-
ture to D-SPM. However, due to a much bigger problem size, at times we only have a
feasible solution one to three percent within an optimal solution. The resulting graph
of the trade-off between daily fleet assignment cost and DAS value is shown in Figure

4-1.

Note that the vertical dotted line on the graph is the Z* value. Since we set € > 0,
all our solutions have a higher FAM cost. The horizontal dotted line is the maximum
DAS value that is the optimal objective function value for D-SPM. The point near
the top right on the dotted line represents the solution with optimal DAS value and
feasible fleet assignment. However, the FAM cost is significantly higher than the
original FAM cost, Z*.

We can observe the trade-off between FAM cost and DAS value. In general, higher
FAM cost generates higher DAS value solution. However, the marginal increase in
DAS value reduces dramatically as the FAM cost gets higher. The point that gives
the highest marginal improvement per FAM cost is the one on the upper left. Rather
than use this point, we picked the (*) point in Figure 4-1, where € is 0.0016. Although
we optimize two objective functions, both of them cannot be treated the same. The
FAM cost is the actual cost an airline has to spend where as the DAS value is the
total protected revenue that may not bring the actual dollars to an airline. For that

reason, we favored points with lower FAM cost.
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Figure 4-1: Trade-off between FAM and DAS in D-FAM

4.2 D-ARM: Search Heuristics

Because the number of possible routes in D-ARM is very large. it is not feasible to
enumerate all the possible routes as variables. Barnhart et al. [7] defined the string as
a decision variable. They used column generation to solve the problem. Barnhart et
al. [8][9] also introduced branch-and-price and branch-and-price-and-cut algorithms
to solve huge integer programs. Cordeau et al. [22] used column generation with
benders decomposition to solve aircraft routing and crew scheduling. Desaulniers et.
al [23] used column generation, and Dantzig-Wolfe decomposition to solve the linear
relaxation of daily aircraft routing where they used branch-and-bound. IToachim et. al
[37] also used the column generation and dynamic programming for the sub-problem.
Klabjan et al. [40][39] solved airline crew scheduling by a column generation type
approach. The authors had a similar obstacle in the aircraft routing. which is the

number of decision variables. Thev add more variables from random generations.




Although there are several variations in the methodologies of the above authors, the
general idea is to start with a subset of variables and add more until we get a near

optimal solution.

We introduce search algorithms for aircraft routing. The search algorithm has
following three steps. First, we get a set of routes that covers the schedule, as an
initial set. Then, we solve D-ARM with the set of routes. Because the given set is
a feasible routing, a feasible solution is guaranteed. This second step assigns routes
to layers and gives us an initial feasible solution to D-ARM. From the initial feasible
solution, a search algorithm is applied to improve a solution.

In this section, we introduce the greedy flight leg pairing algorithm that is used
to generate an initial set of routes. We then solve D-ARM to get an initial feasible
solution to D-ARM, which is then used as the starting point for the two search
algorithms that are developed to improve the solution: repetitive local optimization

and tabu search.

The major difference between column generation and the search algorithms is that,
in the search algorithms, we replace variables with new ones as we inspect more vari-
ables, instead of adding additional variables. This can potentially offer computational

time and memory savings.

4.2.1 Greedy Flight Leg Pairing Algorithm

The objective of the D-ARM is to maximize protected revenue. This is achieved when
as many as possible of the most valuable itineraries are in the most important layer.
If the value of a flight leg is assumed to be proportional to the value of the itineraries
that use that flight leg, the routes that are formed in the most important layer will,
as a matter of course, have the most valuable flight legs in them. Thus, if we assign
equal revenue fractions of an itinerary to its constituent flight legs, and set the value
of a given flight leg equal to the maximum value for all the itineraries that use it, we

can construct routes of high value by connecting flight legs of similar value.
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At first glance, it may appear that we have exchanged one problem - that of
exploring all possible combination of routes —~ for a problem of equal complexity -
that of exploring all possible combination of flight legs. However. we can reduce the
problem size significantly by exploiting the typical hub-and-spoke structure of major
US airlines. Specifically, if we begin by pairing flight legs at spoke airports, where
the number of potential connections is considerably less than at hub airports, we
significantly reduce the number of flight leg pairings that we need to consider. Thus,
although this problem is NP-hard, we find a solution quickly because the problem is

very small in size — the spoke airport with the most flight legs has only 54 operations.

In addition, because the connections at spoke airports drive aircraft utilization,
holding an aircraft on the ground at a spoke airport will effectively take that aircraft
out of use. This occurs because the aircraft will not be in the pool of aircraft at the
hub airport it would have flown to, had it not been held at the spoke airport. Thus,
at the same time, we can ensure that our solution does not require additional aircraft
by constraining the total ground time at each airport to be less than or equal to the

total ground time at each airport in the current routing.

The algorithm has four steps, summarized as follows:

STEP 0: Fix connections for flight legs between spoke airports

STEP 1: At spoke airports: combine flight legs into flight-leg-pairings,
where the constituent flight legs are of similar value

STEP 2: At hub airports: combine flight-leg-pairings into routes where
the constituent flight-leg-pairings are of similar value

STEP 3: Construct 3-day-long routes

In Step 0, we fix the connections for the flight legs between spoke airports. Analysis
of the aircraft routings of a major US airline revealed there were only six such flight
legs out of the total of 1,134 flight legs, and that these flight legs were connected to

each other in three small cycles. Thus, for the sake of simplicity, these connections
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were maintained.

In Step 1, we combine the flight legs into flight-leg-pairings - pairs of flight legs
from a hub airport to a spoke airport and back to a hub airport, where both hubs
may not necessarily be the same. That is, at each spoke airport, we search for the set
of connections for which the flight legs have similar value, and the total ground time
is less than or equal to the total ground time in the current routing. This problem
is modeled as an integer program where ¢ and j are the flight legs arriving at and
departing from the airport, respectively. The decision variable w;; has value one when
the arriving flight leg 7 is connected to the departing flight leg j, and zero otherwise.
The parameters c; and c; are the revenues for flight legs 7 and j, respectively. The
variable t;; is the ground connection time between flight legs ¢ and j. The parameter
T is the total ground time at the airport in the current routing. The integer program

is formulated as follows:

max Y ccwg (4.1)
iy
st Y wy=1 Vj (4.2)
i“’ﬁ =1 Vi (4.3)
J
thwij <T (4.4)
1Zj €{0,1} Vij (4.5)

In the objective function (4.1), we multiply the flight leg revenues c¢; and c;, times
the value of the decision variable. Thus, the value of the objective function increases
significantly when the two highest revenue flight legs are paired together, and so
on. The constraints (4.2) and (4.3) are the cover constraints. The constraints (4.2)
ensure that for each departing flight, there is exactly one arriving flight to which it is
connected. The constraints (4.3) ensure that for each arriving flight, there is exactly
one departing flight to which it is connected. The constraints (4.4) ensure that the
total ground time is less than or equal to the total ground time in the current routing.

The constraint (4.5) ensures that the decision variable is binary.
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Theorem 1 If the total ground time at each airport is not increased. the number of

atreraft does not increase as well.

Proof: Let us show that if the number of aircraft is increased, the total ground time

at that airport is increased.

Suppose the number of aircraft is increased and the total ground time at that
airport is not.

For each airport, we can construct the following graph:

Figure 4-2: Aircraft Flow at an Airport

Let the nodes 1 to n be an event node, which can be either arrival or departure.
Let node 1 be a first arrival after the airport is emptied. Let T; be a time between
event 7 and ¢ + 1 for ¢ < n, and time between event n and 1 for ¢ = n. For a given
routing, let X; be the number of aircraft on the ground between event ¢ and ¢ + 1 for
1 < n, and the number of aircraft on the ground between n and 1 for ¢ = n. Let X,
be N. Note that X; = X,_, + 1, if the event 7 is arrival, and X; = X,_; — 1, if the

event ¢ is departure. The total ground time for this airport is

S TIX. (4.6)
=1

Increasing the number of aircraft by one at any ground arc will increase the number
of aircraft by one for all other ground arcs by the balance constraints. Let X be the

number of aircraft on the ground with an extra aircraft:
ST =S (X +1) =Y T.X, + 3T (4.7)
=1 i=1 i=1 =1
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Since -7 T; is 24 hours, the total ground time for the new routing is strictly greater

than the original total ground time, which contradicts the first statement.

Therefore, if the number of aircraft is increased, the total ground time at that
airport is increased. Thus, if the total ground time is not increased at each airport,
the number of aircraft in that airport is not increased, either. As a result, the total
number of aircraft is not increased.

]
In Step 2, we combine the flight-leg-pairings into routes. We use the same integer
program that is used in Step 1 to build the connections at the spoke airports. The
difference between Step 2 and Step 1 is that in Step 2, we use flight-leg-pairings
instead of flight legs. Because we already have connections at the spoke airports, we

can treat these pairs of flight legs as if they were single flight legs.

In Step 3. we construct routes that are equal to three days in length, to ensure that
the aircraft on each route will be able to meet their required maintenance schedule.
While this may change the connections at the airport where the longer route is broken,
this will not change the total ground time. This approach may overly constrain the
maintenance requirement. While it guarantees the maintenance opportunity at least
once in every five days, some route may have more maintenance opportunities than

required and model does not capture all maintenance feasible routings in the model.

4.2.2 Getting a Initial Feasible Solution

A set of routes which is generated by the greedy flight leg paring algorithm, is fed
into D-ARM in Chapter 2. This can be directly solved by CPLEX due to its small
number of variables. The route is assigned to a layer by D-ARM. As a result, we

assign routes to appropriate layers, thus, all flight legs are assigned in a layer.

Although the greedy flight leg pairing algorithm generates a feasible solution very
quickly, it is a myopic rather than a global approach to grouping flight legs together.
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That is, because we only consider the possible connections at a given airport, we
do not take into account the value of downstream flights. For example, the value
of a route may be higher if an arriving flight ¢ is connected to a departing flight 7,
such that j is not the best connection in terms of the combined value of the single
connection in question. The reason for this is that the combined value of flights ¢, j,
and a flight that is downstream j, is higher than any possible combination that could
be achieved if ¢ were paired with the best departing flight. In addition, even if we
had a solution that globally grouped the flight legs with similar values, this grouping
does not necessarily mean the solution had a better D-ARM value, since we assumed

that the revenue of an itinerary is proportionally divided among its flight legs.

To compensate for this myopia, we develop two search algorithins to hmprove the

initial feasible solution.

4.2.3 Search Algorithms
Repetitive Local Optimization

The simplest way to achieve the better solution is to swap a sequence of flight legs
from a given route with a sequence of flight legs from another route which improves
the objective function value. If we keep swapping the improving pairs until there is
no more improving one, we get a local optimal solution.

The repetitive local optimization is summarized below.
BEGIN

Select an initial z € X and let 2* = z. Set the iteration counter k = 0.
while £ < K do
swapping search algorithm
store solution zy if f(zy) > f(x*),2* « x4
update tabu list algorithm
k =k+1
end while

END
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We use the solution from the greedy flight leg pairing algorithm as an initial
feasible solution. The rou