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Abstract
Given a set of n points with a matrix of pairwise similarity measures, one would like to
partition the points into clusters so that similar points are together and different ones
apart. We present an algorithm requiring only matrix exponentiation that performs
well in practice and bears an elegant interpretation in terms of random walks on a
graph. Under a certain mixture model involving planting a partition via randomized
rounding of tailored matrix entries, the algorithm can be proven effective for only a
single squaring. It is shown that the clustering performance of the algorithm degrades
with larger values of the exponent, thus revealing that a single squaring is optimal.
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Chapter 1

A Clustering Algorithm

1.1 Introduction

Similarity-based clustering partitions a set of points given a matrix of pairwise simi-

larities and finds application in many important problems. One motivating example

is clustering web search results. A search for "jaguar" may return numerous pages

relevant to either the car or the cat. Given counts of links between pairs of pages as

an indicator of similarity, one would like to group the car results together and the

cat results together. In the most general form, we are given a set of n points and a

matrix M, where Mij gives the distance or similarity between points i and j. The goal

is to partition the points such that similar points are grouped together and different

points apart.

For example, Kannan, Vetta, and Vempala define a bi-criterial measure of

cluster quality in which the number of clusters is to be minimized while maximizing

the minimum cluster conductance [9]. This reflects a desire to keep the number of

groups small, while maintaining a high degree of similarity within each group.

Previously, Papadimitriou, et. al., proved theoretical guarantees for classifying

documents to the correct topic under certain assumptions about topic purity and

term overlap, via spectral methods[13]. Azar, et. al., undertake a similar task, but
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Figure 1-1: Dumbbell

introduce a more general data mining model[l]. In a different vein, Drineas, et.

al., give an approximation algorithm for clustering points in Euclidean space so as

to minimize the sum of distances squared to each cluster center by first solving a

continuous relaxation of the problem using the SVD [5].

1.2 Example

The above graph shows a "dumbbell", in which there are 2 cliques connected by an

edge. Partitioning into clusters of high connectivity would yield each of the 2 cliques

as a cluster. More generally, each of the parts could be somewhat less densely con-

nected, and the bridging edges could be somewhat more numerous, but still sparse

relative to the connectivity within each part.

We would like an algorithm that could classify the vertices into the desired

clusters with good probability, for suitable ranges of intra- and inter- cluster edges.

1.3 The Algorithm

We propose the following algorithm for clustering a set of n points with pairwise

similarities. For a symmetric matrix M, let Mk denote the k-th row(or column) of

Mt.
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Naturally, this leads to the question of how to select the values in steps 1 and

2. In fact, the very effectiveness and performance of the algorithm hinges on using

the right t, and depending on t, the right e. We give theoretical results to show that

we can correctly cluster for t=2 so long as a certain probability gap under a certain

generative model for A is Q(+). In fact, t=2 turns out to be the optimal value of t in

some sense, and we demonstrate that the required gap only becomes larger for greater

t. We support our theoretical results with experimental evidence. It is important to

note that this algorithm is independent of any generative model and is applicable to

any arbitrary matrix of similarities A, for any measure of similarity, generated from

any(possibly randomized) process.

1.4 The Random Walk Connection

We have exhibited an algorithm that aims to cluster via only matrix exponentia-

tion. For only t=2, we will demonstrate correct learning of a hidden partition in

expectation for a probability gap of Q( 1/4). Experimental evidence indicates that

7

Algorithm

Input: A symmetric A encoding the pairwise distances between nodes

Output: A partitioning of the nodes into clusters

1. Select some appropriate exponent t

2. Select some appropriate threshold e

3. Compute At

4. For each pair of nodes i,j

* if 1[A~ - Alj12 < , then i and j are in the same cluster

* else, i and j are in different clusters



the clustering capability improves initially for larger values of t, but then degrades

beyond a certain point. This is expected as one might see by considering a transition

matrix M derived from a graph.

It is well known that for any unit vector x corresponding to start position,

xTMt gives the probabilities of being at a node i after t steps of a random walk on

the graph, where each step selects an out-going edge with probability proportional to

the edge weight. Moreover, as t - oc, 7r = xTMt gives the stationary distribution,

and ri = deg(i) where deg(i) is the degree(sum of incident edge weights) of i, and m2m 

is the total weight of all edges [11]. Thus, for t large enough, our algorithm merely

elucidates the differences in degrees, which sheds little light on the actual clusters,

unless nodes from different parts have significantly different degrees.

As may be suggested by the above, there is a pleasing interpretation of the

algorithm in the context of random walks. Viewing A as a transition matrix and

letting ej be the unit vector with 1 in the i-th position, At = eTAt gives the probability

distribution on the position of a random walk starting from node i after t steps. From

this we see that the algorithm makes a pairwise grouping decision based on the L2

distance between the probability distributions after t steps of random walks starting

from i and j in order to classify nodes i and j as being similar or different. As discussed

above, for very large values of t, all probability distributions will be very close to each

other, but as proven for t=2 and experimentally suggested for other reasonably small

values of t, the probability distributions of pairs of nodes from the same cluster will

converge quicker than those of pairs from different clusters. This is the phenomenae

that the algorithm exploits to recover the partitioning.
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Chapter 2

Performance Guarantees

We approach this problem from the viewpoint of learning planted partitions from a

mixture model. A mixture model is a partitioning of a set of nodes into clusters. Pairs

of nodes from the same cluster have an edge between them with probability q, and

pairs from different clusters have an edge with probability p, where q > p.

Let A be an n by n matrix of Bernoulli random variables, and A = E[A] be

the matrix of expectations. The mixture model may be represented by an n by n

matrix of random variables A with expectation matrix A, where Aij = q for (i,j) in

the same cluster, and Aij = p for (i,j) in different clusters. A has k distinct rows

corresponding to the existence of k different clusters. The randomized rounding of A

preserves symmetry: Aij = Aji. For convenience, we denote the cluster of a node i

by IF(i). WLOG, A is a block diagonal matrix, and IF(i) will refer to the cluster of i

or the matrix block of i depending on context.

We receive as input an instantiation of the matrix of random variables A spec-

ified by the mixture model. Henceforth, we will refer to both the matrix of random

variables and its instantiation as A, and it should be clear from the context which is

intended. Given this input matrix, our goal is to partition the rows so that a pair of

rows are placed in the same partition if and only if they belong to the same cluster.

In other words, given A, recover .
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The clustering is easy to see in the expected matrix A. However, we are not

given A, but rather a perturbed version of A through randomized rounding. Fortu-

nately, this graph is not entirely random, as the desired partitions have been "planted"

in some sense, by setting the probabilities appropriately according to the mixture

model. Intuitively, we see that larger values of q-p make the partitions easier to

learn, as larger gaps cause similar points to be better connected relative to dissimilar

points. Similarly, larger values of n make learning easier as we have more samples to

learn from.

Previous work have made use of this mixture model or special cases of it.

Boppana gave a spectral algorithm for the problem of graph bisection on randomly

generated graphs, though he requires the solution to a convex optimization problem

[3]. Blum and Spencer k-color a randomly generated k-colorable graph so long as

p > n - l . They also consider a semi-random model in which a graph generated by an

adversary is subject to a small probability of toggling an edge [2]. Condon and Karp

partition a random graph into k equal parts, minimizing the number of edges across

parts with high probability, so long as q - p > n-2½+ [4]. Jerrum and Sorkin resolve

an open problem of Boppana and Bui by optimally bisecting a random graph with

high probability so long as q - p = Q(n6- 2), 6 < 2, via simulated annealing [8].

Finally, McSherry presents an algorithm to learn a hidden partition in a ran-

dom graph with high probability so long as q - p = Q( ). The procedure involves

a randomized splitting of the columns into two parts and projecting on to the top

singular vectors of each part to preserve certain independence properties.

Here, we give a simpler algorithm involving only matrix exponentiation that

performs reasonably well even for a single squaring of A. We show that in fact, t=2

is the optimal exponent, and that larger values of t only asymptotically degrade the

performance.

10



Ultimately, we will provide the following guarantee:

Theorem. For t=2, the algorithm correctly clusters 1 - 5 of the rows with probability

at least , so long as q-Pl > 2()
2'n¥

We consider the special case of k equal sized blocks of size s each. We will

show in a later section that the case of unequal blocks does not deviate too far from

the case of equal blocks, and the asymptotics of the performance guarantees given

remain the same so long as the minimum block size smin is a constant fraction of n.

2.1 Preliminaries

Lemma 1. Let A be an n by n block diagonal matrix of k equal sized blocks of size s

each, where Aij = q when @(i) = @(j), and Aij = p when (i) (j). If q > p > O,

then A has k non-zero eigenvalues: a largest eigenvalue of sq + (n - s)p, and an

eigenvalue of (q - p)s with eigenspace of dimension k-1.

Proof. First we will prove that A has rank k. Clearly it has at most rank k as

there are only k distinct rows. Suppose A has lesser rank. Let wi be the length

n vector in which every entry is p except for the i-th block of s entries, which are

q. We can find constants ci, not all zero, such that Eik1 ciwi = 0. This implies a

series of k equations ciq + p j cj-cip 0. Summing these k equalities, we get

q Ei ci + (k - 1)p Ei ci = 0. If 1i ci f 0, then this gives q = -(k - 1)p. Otherwise,

WLOG, cl 0 and we get cq - cp = O = q = p. Both cases violate q > p > 0 and

so A has rank k.

Let A be an eigenvalue of A, and v the corresponding eigenvector. Av = Av #

Avi - ps Tjoi vj + qsvi > vi = PX-s jAi vj . For convenience, let a = q . Then,

Ei i = i a Ejvi j = Ei a(k- 1)vi = a(k- 1) Ei vi. Thus, Ei vi = a(k- 1) Ei i,

and so either a(k - 1) = 1 or Ei vi = 0.
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If a(k - 1) 1, then ps(k-1) = 1 = = s(q + p(k - 1)) sq + (n - s)p.A-qs

This is just the row sum of every row and corresponds to the eigenvector of all ones.

Otherwise, if Ei vi = 0, then vi = P-qs (-vi). Since v is an eigenvector, vi is non-

zero for some i and this gives A = (q - p)s. The eigenspace of (q - p)s consists of

the solution space of >i vi = 0 which has dimension k-1. Since A has rank k, the

remaining eigenvalues are all 0. Note that if p=O0, it is easy to see that every non-zero

eigenvalue has value ps. o

Now, we prove a result bounding the deviation of the eigenvalues A(A) from

A(A). Let A1, A2, A3, ... be the eigenvalues of A in order of descending magnitude, and

vl, v2, v 3... be the corresponding eigenvectors. Similarly, Aj and j for A. Throughout

the paper, MI will denote the spectral 2-norm of the matrix M, and it is well known

that IMI = A1(M).

Lemma 2. Let A and A be matrices with non-negative eigenvalues. Then, Ai -Ail <

JA - Al

Proof. By the Courant-Fisher theorem, where x and wj are n dimensional vectors,

Ai = min max xTAx
{wj} I11=1

j=l..i-l(z,wj)=O

< max xTAx
Ix=1

(x,vj )=O

= maxxT( A - A)x + maxxTAx
Ix1=1 Ixl=1

(x,vj)=O (x,vj)=O

< A(A- A) Ai

= i - A- i < A- Al.

An analogous proof applied to A instead of A gives Ai - Ai < IA - Al, and therefore

lAi -Ai l IA- Al. o

The following theorem is a classical result of Furedi and Komlos. See [6] for a

proof.
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Theorem 3. Let aij, i > j be independent (not necessarily identically distributed)

random variables bounded with a common bound K. Assume that for i > j, the aij

have a common expectation and variance a2. Define aij for i < j by aij = aji.

If ,u = O, then IAI < 2auv/ + 50Kn log n with probability at least 1 - for large

enough n.

Corollary 4. jIi - Ail < 4av with high probability(whp), for large enough n.

Proof. We apply Theorem 3 directly to the matrix A - A, where K=1 to see that

IA - Al 2V/ + 50n logn < 4a/n# with probability at least 1 - for large

enough n. Then, from Lemma 3, we obtain lAi - Ail < - Al 4cav whp, for

large enough n. E

2.2 Proof of Main Theorem

We now proceed to show the clustering capability of the algorithm under this mixture

model for t=2. The strategy will be to show that the deviation of A' from A' is small

relative to the distance between A and A}, where i and j belong in different blocks.

If so, then even after perturbation, rows from different clusters should remain well

separated for large enough n. Specifically, if l At - At112 < 6, and IIAt - Atll 2 > 166,

then

IlAi - Ai2j 2 < (Ai, - AIll + IAi2 - AtII)2 < 46

and

lA, - Aj12 > (IAi - Ajl - IAi - A ll- I -Aj - AI) 2

> (446 -V- r_6)2

46

for il, i2 from the cluster of i and jl from a different cluster j. Thus, if we choose

e = IIAt - A1I2/4 > 46 to be our threshold in the algorithm, then we can cluster
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correctly in expectation.

First, we present a lemma that shows how block structure is preserved.

Lemma 5. Let A be a block diagonal matrix with equally sized blocks of size s, with

entries of qa within the blocks, and Pa without. Let B be a matrix with the same block

structure and corresponding entries qb and Pb. Then, AB has the same block structure

with corresponding entries qab = sqaqb + (n - )Papb and Pab = sqapb + sqbpa + (n-

2S)papb.

Proof. Let @(i) be the block corresponding to index i. It is clear from (AB)ij =

,k AikBkj = Zk AikBjk that (AB)ij = sqaqb + (n - )paPb when @(i) = T(j), and

(AB)ij = sqapb + sqbpa + (n - 2)Papb when (i) 4 T(j). This gives the lemma. 

The following theorem calculates the separation between the rows of At from

different blocks. In some sense, this is the expected separation between two rows

belonging to different clusters.

Theorem 6. lA - A Ij2 = 2(q - p)2t(n/k) 2t- l , where 4(i) # I(j)

Proof. By Lemma 5, At has the same block diagonal structure as A. Let qt and Pt

denote the entries inside and outside of the blocks of At, resp., so that ql - p = q -p.

We proceed inductively to show that qt - Pt = (q - p)tst-1. By Lemma 5,

qt = sqt-lq + (n - s)ptlp, and

Pt = sqt-lP + spt-lq + (n - 2 s)Pt-lp = spqt-l + (sq + (n - 2s)p)pt-_

= t - qt = s(q-p)qt- + (sp -sq)pt-1

= s(q - )qt-i - s(q - p)Pt-i

= s(q - p)(qt-1 - Pt-l)

= (q p)tst-l

14



by the inductive hypothesis.

Thus we know the gap qt - pt in general, and this is all we need for the

separation: At- At 2 = 2s(qt _ pt)2 = 2(q - p)2 ts 2 t-l = 2(q - p)2t(n/k) 2t-1.

It is easy to see that IA$ - A12 = 0 when 4T(i) = (j), and that IIA - A112 >

2(q _ p)2ts2t-1, where smin is the size of the smallest block.

The next lemma shows that, relative to the separation between rows from

different clusters in A2, the deviation of Ak from Ak is small in expectation. Thus,

the "error" from perturbation is bounded.

Lemma 7. Ell A2 - Aj2l2 < 2q2n2

15
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Proof.

EIA2 - A 12 = E ( &il lm - ail am) 2]

Z= ZE [(&iilalm ) - ailaaim) (&il12M - ai2a2m)
m 11,12

the product terms in the expectation are dependent when 11 = 12

OR if m z i and (11, 12) = (m, i) or (i, m)

E E E[aill m - aillallm]E
m 11512

(/1 ,/2)e(mi)

+ E E[(eailalm- ailalm)2 ]

m 11=12

+ E E[(aildalm-ail a
mfi

( ,l1,2 )=(m,i)or(i,m)

Note that a&lj = alm only when m=i

[aiil2al2m - ail2 al2 m]

lm)(ail2&12m - aiI2al2m)]

(ail - ail-) (ai2 - ai2) +lalaiam + ailalm]
11 12 m 1

+2 E E[(aimamm -aimamm) (aiiim - aiiaim)]
moi

ail,(1- ail)ail2(1- ai2)- ai2(1- ai) 2 + E[ail2&m]
11,12 1 m 1

--255 ailalmE[ail&lm] + 55 aa2 2
m I m I

2 2
+2 aiiammaim - 2 aiiammaim + aiiammaim

mfi

We are now in position to expand out all of the expectations.

16



- Za2(1 - ail)2 + E E ailalm

-2( E ala2m - ai + E
m I I 1

+2 E aiiammaim(1 - aim)
mAi

m 1

a Z Z 2 2
ail) + ailm

m I

-Zai(- ai()2
l

+ 5 - ailalm
m I

+ E ail( -ail)

m I

2-' 2 3 ai-EC 2a2- ailalm - ail)

+2[(E aiiammaim(1 - aim)) - ai(1 - aii)]
m

= (sq(1 - q) + (n - s)p(1 - p)) 2 _ (sq2 (1 _ q)2 + (n - s)p 2 (1 - p) 2 )

+(sq + (n - s)p)2 + sq(1 - q) + (n - s)p(i - p) - (sq2 + (n - s)p2)2

-2(sq3(1 - q) + (n - s)p3(1 - p))

+2(q2(sq(1 - q) + (n - s)p(l - p)) - q3(1 - q))

The n2 terms dominate, and we may upper bound for n large enough by

ignoring the subtracted (sq2 + (n - s)p2)2 term and the terms linear in n:

EIA 2 - A i12 < (sq(1 - q) + (n - s)p(l - p)) 2 + (sq + (n - s)p)2

< 2(sq + (n- s)p) 2

< 2q2n2

L]

We are now ready to prove the main theorem.

Theorem 8. For t=2 and some fraction > 0, the algorithm correctly clusters 1 -

of the rows with probability at least , so long as Iq-pj > p l)2 n -4~~~~~n~

17
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Proof. Simply let t=2 and = (q - p)4 (n/k) 3 /2. Define a good row to be one

for which IIA? - A21l < 4q2n2/6. Since E[A? - A2] < 2q2n2 by the above lemma,

Pr[row i is good] > 1 - 6/2 by applying Markov's Inequality to the bad event. Thus,

in expectation, at least 1 - 6/2 of the rows are good. Again, by a Markov bound

applied to the number of bad rows, at least 1- 6 of the rows are good with probability

at least 2. Now, we see that all the good rows will be classified correctly if 4q2n2 /6 <

c/2 = (q - p)4 (n/k) 3 /4, which is equivalent to Iq - P > 2v( ) . Thus, we can
n[

correctly cluster 1 - 6 of the points with probability at least given this probability

gap. O

2.3 Optimality of t=2

Unfortunately, further powering of A does not improve the clustering. In fact, we

show that the gap requirement asymptotically increases due to a rapidly growing

error. Specifically, we prove the following lemma:

Lemma 9. E[IJAI - A~i]2] = ::(n 2 t- 2 ) for all constant t > 2.

Proof.

E[IIAt - Atl 2]
n

- E [(At-Atj)2]
j=l
n

= Z(E [(At)2] - 2E [At] A' + (At)2)
j=l
n

E [A kl * t-Ai Akl* A
j=l kl,... ,kt-l,kl,... ,k_lEC[n]

2t- 2

- Z S (BE [Akl * At 1 JAk * A. t
-j=l 2E A ] Ak A, +l, Ak... A 1 Ak ... [n]2t-

[ .. A ]t ... t )

18
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Observe that the above expression is a polynomial in n of degree at most 2t- 1. Also,

the number of summands in the inner sum for which {k l,... kt 1 , k, .. , k_l = 1

is at most (7n)12t- 2 = (n'). Hence, to compute the coefficient of n2t- 1 in the above

it suffices to consider only tuples (kl,... , kt_, k,... , k'_1 ) for which

I{kl,.. ,kt l, k , . , ktl}l = 2t- 2

In this case though, the expectations split completely so that the inner sum vanishes.

It follows that the above is a polynomial in n of degree at most 2t -2. To compute the

coefficient of n2t-2, it suffices to consider tuples (kl,... , ktl, k,.. ., k{_l) for which

{kl,... , kt-, k,.. ., kil [} = 2t - 3, i.e., there is exactly one repetition.

Observe that the inner sum is always positive, so the above is at least:

n

j=l I{ki,... ,kt-,k,... ,kl}l=2t-3, k=ki

... At At....... [A... At~_~,E [Aitkl AklijAikk A_ Ak k_

which simplifies to

n Ant /ntnt At At At,E (Aitkl - (Aik1)2)Akk2 . . . t-ij 2 -t
j=l Il{kl,...,kt-l,k,...,k[_~}l=2t- 3, kl=kl

As long as p, q > 0 and max{p(1 - p), q(1 - q)) = (1), each term in the inner sum

is a positive constant. There are (2t-3)(2t- 3)! = e(n 2t- 3) tuples for which kl = k,

so we have E[iA - Afll 2] = Q(n 2t-2), which completes the proof. C1

The lemma implies that the gap requirement q - p is Q () 2, which is clearly

optimal for t=2. This is supported by experimental evidence presented later.

19



2.4 Blocks of Different Sizes

Here, we justify the earlier claim that it suffices to consider blocks of equal sizes,

and that blocks of different sizes do not alter the asymptotics of the performance

guarantee by more than constant factors, so long as the minimum block size smin is

a constant fraction of n. For the separation, we have previously seen that

IAi -A'j 112 > 2(q - p) t 2t -1

It remains to consider the error for unequal blocks.

result about a certain monotonicity property.

We begin by proving a

Lemma 10. Let A be the usual symmetric block diagonal matrix of expectations de-

fined previously. Let B be the matrix obtained by symmetrically inserting a row and a

column of fractional(probability) entries into A. Then, ElA - A I[2 < Elit - BfII2,

where A and B are the randomized roundings of A and B, resp., preserving symmetry.

Proof. WLOG and for notational convenience, we may assume that we are inserting

the last row and column. Let bij be the (ij) entry of B and similarly bij for B. Define

b = bii1bixi2...bit_j, and similarly b. Analogously define b' and b' for the set of indices

i, 2, t,-- l'

= EE ( E iil bili2 ...bitl - biibili2.

i l,...,it- E[ n+l ]

j i ,...,it-lE[n+l] i,...,i t-_lE[n+l]

= E jj a, E (-)b) (b'-b')
ix,...,it-lC[n+l]" " 1 E[n+l]

= E S 5 (b- b)(b'-b') + 

= EliA- AJ12 + EE 5 (b - b)(b'- b')
j iieS

2bitl)

ZE (- b)( -b')
j i,ieS

where S is the set of tuples for the indices i and i' where at least one index

20
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has value n+1. It remains to show that the second summand in the last equation is

nonnegative.

ES , (b-b)(bi-b')
j i i'ES

= E E[bb'- bb'- b' + bb']
j i,i'ES

= 5 E[bb'] - E[bb'] - E[bb'] + E[bb']
j i,i'ES

> Z 5 E[b]E[b'] - E[b]b' - bE[b'] + bb'
j i,i'ES

= 5 5 (E[b] - b)(E[b'] - b')
j i,i'ES

> 0.

since E[bb'] > E[b]E[b'] and E[b] - b > 0 for our Bernoulli variables. O

Let A be the original expectations matrix of unequal blocks. Let C be the

matrix obtained from A by contracting each block to size smin, and let B be obtained

by expanding each block to size Smax. Note that we can symmetrically insert rows

and columns to obtain B from A, and A from C. From the above lemma, we deduce

that the errors increase monotonically:

Ellf- C l ElIA'- 2A'1 < EB- BtlI

We know that the errors for equal sized blocks are polynomials in n of degree

< 2t. Therefore,

Smax) Ell C-Cll 2 > ElBit _ Btl2

Smin i 

Since s,mi is a constant fraction of n, Smax = 0(1). If t is also a constant, then this

shows that the error for C is within a constant factor of the error for B, and hence the

error for the matrix A of unequal blocks is also within a constant factor of the error

for C, the matrix with equal blocks of size mi,. This yields the following theorem:

Theorem 11. Let A be a symmetric block-diagonal matrix of expectations of unequal

21

i-e -



blocks, where smin is a constant fraction of n. Let C be obtained from A by contracting

each block to size sin. Then, for some constant r depending on the constant t,

El it- Al 12 < rEllct - cll12

From this theorem, we may conclude that the asymptotics of the performance

guarantees are unaffected by taking unequal blocks, and that the algorithm continues

to work in this more general setting, for constant values of t.
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Chapter 3

Experiments

The experimental evidence is encouraging and indicates some interesting behavior.

First, we would like to examine the performance of the algorithm for different values

of the power t. We generate the matrix A from the matrix A via randomized round-

ing preserving symmetry as specified by the mixture model with q=0.45, p=0.05, and

N=200 nodes divided evenly into 4 clusters. The success of the algorithm is mea-

sured by the percentage of the (N) pairwise relationships(classified as same cluster

or different) that it guesses correctly. Note that a score of 75% is not impressive and

corresponds to the case where every node is classified to its own cluster. In the other

extreme, a score of 25% corresponds to the case in which all of the nodes are classified

to the same cluster. The results are shown in figure 3-1, percentage correct against t.

Notice that the results basically conform to theoretical expectations, but the

algorithm seems to perform unusually well for t=3. We find this to be purely a matter

of constant factors, as the power of q in the leading coefficient for the error of t=3 is

larger than the corresponding power for t=2. Were q in our experiment much closer

to 1 than 0.45, this effect would not be observed.

In addition, we would like to see how performance varies with probability gap,

and to verify our intuition that clustering should become easier with larger gaps. We

again instantiate the mixture model with N=200 nodes divided evenly into 4 clusters

23

$--·-CI- ----



0 3 6 9 12 15

Figure 3-1: percentage correct vs t

and p=0.05. We plot the percentage correct for t=3 against varying probability gaps

in figure 3-2.

In this paper, we provide theoretical guarantees for the case of t=2. We show

that this is in fact the optimal case, and that the performance degrades with larger

values of t. The algorithm is inherently weaker and does not achieve McSherry's

bound of O(n A). However, our algorithm is elegant and simple, compared to the more

complicated SVD computation and random splitting used in McSherry's procedure.

Furthermore, matrix exponentiation runs in O(n2.3 7) time using the theoretically best

algorithm, and in O(n2 7) time using the more practical and often used Strassen's

algorithm. This is significantly faster than the O(n 3 ) time required to compute the

SVD and thus our algorithm should be well suited to large data sets where the gap

requirement of Q( 1 ) is easily satisfied and running time is a major consideration.
n4
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probability gap
(q-p)

Figure 3-2: percentage correct vs gap
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