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Abstract

Cardiovascular system identification is a potentially powerful approach for intelligent
patient monitoring of cardiovascular function. Rather than merely recording hemody-
namic signals, the signals are mathematically analyzed so as to provide a dynamical
characterization of the physiologic mechanisms responsible for generating them. The
fundamental aim of this thesis is to develop and evaluate cardiovascular system iden-
tification methods based on a test bed of data generated from a forward model of the
cardiovascular system whose dynamical properties are known.

To this end, we developed a computer model of the human cardiovascular system
which includes a lumped parameter model of the heart and circulation and a model
of the short-term cardiovascular regulatory system continuously disturbed by resting
physiologic perturbations. The short-term regulatory system consists of arterial and
cardiopulmonary baroreflex systems and a direct neural coupling mechanism between
respiration and heart rate. The resting physiologic perturbations include respiratory
activity and stochastic disturbances to total peripheral resistance (TPR) and heart
rate representing, for example, autoregulation of local vascular beds and higher brain
center activity. We demonstrated that this model emulates experimental data in terms
of steady-state pulsatility, limiting static behavior, and low frequency hemodynamic
variability.

We first evaluated the performance of a previously developed cardiovascular sys-
tem identification method against the forward model. The method involves the anal-
ysis of fluctuations in heart rate, arterial blood pressure (ABP), and instantaneous
lung volume in order to characterize quantitatively important physiologic mechanisms
including, for example, the heart rate baroreflex. From this analysis, we inferred that
the cardiovascular system identification results derived from experimental data are
likely to reflect the actual system dynamics of underlying physiologic mechanisms.
We then introduced novel identification methods for quantifying TPR baroreflex dy-
namics from only fluctuations in cardiac output and ABP and for monitoring steady-
state changes in TPR from only the ABP waveform. We demonstrated the efficacy
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of these identification methods with respect to forward model generated data and a
preliminary set of experimental data. The results of this forward model-based anal-
ysis motivate the experimental validation of the cardiovascular system identification
methods considered in this thesis.

Thesis Supervisor: Richard J. Cohen
Title: Whitaker Professor of Biomedical Engineering
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Chapter 1

Introduction

When one considers modeling the cardiovascular system, one usually envisions con-

structing a model based on physical principles that is capable of generating realistic

data (e.g., pressures, volumes, and flow rates). This type of modeling approach, which

we refer to as forward modeling, is a useful tool for developing an understanding of

cardiovascular physiology. One may also consider an inverse modeling approach in

which models are built from measured data. This type of modeling approach, in the

context of the cardiovascular system (or any dynamical system for that matter), is

referred to as system identification. System identification specifically deals with the

mathematical estimation of dynamical transfer function models relating measured

system input and output data [47,79].

1.1 Cardiovascular System Identification

Over the past two decades, our laboratory has considered modeling the cardiovascular

system using the methods of system identification (see, for example, [1,4,6,8,9,16,17,

56-59,67,75,76]). We have particularly focused on the fluctuations in cardiovascular

signals about their mean values at frequencies below the mean heart rate (~1 Hz) and

on the time scales of seconds to minutes. These hemodynamic fluctuations reflect the
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interplay between perturbations to the cardiovascular system and the dynamic, com-

pensatory response of the regulatory system which is governed predominantly by the

autonomic nervous system [4]. A system identification analysis of such fluctuations

in multiple cardiovascular signals may thus provide a quantitative characterization

of the autonomic regulatory mechanisms (as well as other physiologic mechanisms)

responsible for the couplings between the signals. The characterization is in terms of

a set of transfer functions which represents a "snapshot" of the cardiovascular state

of the individual from whom the data is obtained. The number of transfer func-

tions in the set reflects the degree of detail of the picture and is determined by the

number of signals considered for analysis. That is, if n signals are analyzed, then it

is possible to identify n(n - 1) causal transfer functions. System identification may

potentially play a central role in the clinical management of patients with autonomic

neuropathies (e.g., diabetics and heart failure patients) by providing a powerful means

for tracking these patients' cardiovascular states over time so as to guide therapy on

an individualized basis.

To this end, we have previously developed a cardiovascular system identification

method for the analysis of fluctuations in noninvasively measured heart rate, arte-

rial blood pressure (ABP), and respiratory activity (in terms of instantaneous lung

volume, ILV) in order to characterize quantitatively the physiologic mechanisms re-

sponsible for the couplings between these signals' [59]. There are six possible causal

transfer functions relating the measured fluctuations; however, we consider the es-

timation of only those four which represent physiologic mechanisms. Two of these

physiologic transfer functions represent the distinct feedforward and feedback path-

ways of the closed-loop relationship between heart rate and ABP. That is, the transfer

function relating heart rate fluctuations to ABP fluctuations (feedforward) reflects the

'ABP is measured at the finger with the Finapres technique [38], while ILV is measured with a

two-belt chest-abdomen inductance plethysmograph.
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mechanical properties of the heart and vasculature, while the transfer function relat-

ing ABP fluctuations to heart rate fluctuations (feedback) represents the autonom-

ically mediated heart rate baroreflex. The other two physiologic transfer functions

are the open-loop couplings of ILV fluctuations to heart rate fluctuations and ILV

fluctuations to ABP fluctuations. The former transfer function represents the direct

autonomically mediated coupling between respiration and heart rate, while the latter

transfer function reflects the mechanical effects of respiratory-induced intrathoracic

pressure changes on ABP fluctuations.

As with any system identification method, our method essentially involves three

steps: data collection, transfer function estimation, and model validation. In the

next three paragraphs, we describe each of these steps at a conceptual level. See

Section 5.1 for a more detailed presentation of the method.

In order to obtain a complete characterization of each of the above physiologic

mechanisms, system identification requires that the measured input signals are "per-

sistently exciting" of high enough order [47,79]. This means that the input signals

are sufficiently uncorrelated and contain at least as many frequency components as

the number of parameters of the system to be identified. Thus, independent white

inputs are ideal but are sometimes not possible to implement in practice as is the case

here. However, during the data collection period, we incorporate a protocol in which

subjects are instructed to breathe on cue to a sequence of randomly spaced auditory

tones while controlling their own tidal volume in order to maintain normal ventila-

tion [8]. This random-interval breathing protocol results in an ILV signal with spectral

power over a significantly wider frequency range as compared to that obtained from

spontaneous breathing. It is also important to recognize that the random-interval

breathing protocol described here represents only a relatively small deviation from

normal physiologic conditions. This is in contrast to other techniques for the quantifi-

cation of autonomic regulatory mechanisms which perturb the cardiovascular system
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in a highly nonphysiologic manner in order to elicit a compensatory response [51,52].

Without a doubt, the physiologic mechanisms responsible for cardiovascular regu-

lation are highly complex, capable of exhibiting both nonlinear and time-varying phe-

nomena. However, when a subject is following our random-interval breathing protocol

and is otherwise at rest, we have found that the fluctuations in the measured signals

are sufficiently small such that the transfer functions relating the fluctuations can

be linearized about the mean values of the signals (operating point)2 . We also have

found that, during these stable experimental conditions, the statistical properties of

the measured fluctuations do not change much over the short data collection period.

Hence, we consider the estimation of linear, time-invariant (LTI) transfer function

models. We particularly consider AutoRegressive Moving Average (ARMA) models,

a specific class of LTI models that are completely characterized by a finite set of

adjustable parameters. This type of model permits the imposition of causality which

is a necessary condition to identify distinctly the feedforward and feedback transfer

functions relating two signals obtained in closed-loop (e.g., heart rate fluctuations

and ABP fluctuations) [87]. Since ARMA models are linear in their parameters, we

utilize the convenient, analytic methods of linear least squares for the estimation of

the four physiologic transfer functions [47,79].

For the purposes of model validation, we have evaluated our cardiovascular system

identification method during the conditions of pharmacological autonomic blockade,

postural changes, and diabetic autonomic neuropathy [57,59]. We found that these

three conditions altered the transfer function estimates in a manner consistent with

known physiologic mechanisms. This suggests that the transfer function estimates

may reflect actual physiologic mechanisms.

2 In a previous study [17], our laboratory found that second-order nonlinear models only provide

a modest improvement in accounting for the heart rate fluctuations observed during these stable

experimental conditions with respect to linear models.
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1.2 Motivation

The validity of the precise dynamical properties of the physiologic transfer function

estimates from our cardiovascular system identification method may be addressed

through experimentation. To this end, it is necessary to establish, in a manner inde-

pendent of system identification, gold standard transfer functions against which the

estimates may be evaluated. For example, let us consider the experimental validation

of the transfer function representing the heart rate baroreflex coupling ABP fluctu-

ations to heart rate fluctuations. In order to measure experimentally this transfer

function, the closed-loop relationship between ABP and heart rate must be opened.

This could be done by ablating the atrioventricular node of the heart and pacing the

ventricle. However, this type of experiment could only be done in an animal and

requires some sophistication. Hence, before proceeding with such an experiment, it

would seem prudent to evaluate first the estimated transfer functions with a forward

model of the cardiovascular system whose dynamical properties are known. Provided

that this theoretical evaluation is a success, animal experimentation would then be

further justified. It is also possible that validation through such an animal experi-

ment is not feasible, because it is based on the assumption that the cardiovascular

state and/or operating point do not change from the stable experimental conditions of

system identification data collection to the open-loop conditions of the experimental

preparation. That is, demonstrating the validity of the estimated transfer function

dynamics may only be possible on theoretical grounds.

A forward model of the cardiovascular system would also provide a means to

analyze the sensitivity or resolving power of our cardiovascular system identification

method. That is, we would be able to determine how much the dynamical properties

of the forward model would have to be altered before we would see a corresponding

change in the transfer function estimates. Since precise control of the dynamical

properties of an animal preparation is not possible, this protocol could not be as
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effectively carried out in an experiment.

Certainly, the major limitation of such an analysis is that the results are only

as meaningful as the extent to which the forward model coincides with the actual

cardiovascular system. This limitation can be attenuated, at least to some extent,

by determining the robustness of the results over a set of forward models. This

set may naturally arise from a nominal forward model either through the inclusion

of additional parameters (increased complexity) or simply through the variation of

its parameters. For example, the identification of the heart rate baroreflex could

be analyzed as a function of a parameter reflecting the degree of nonlinear system

dynamics.

A forward model of the cardiovascular system would also provide a convenient test

bed of data which would facilitate the development of new identification methods that

could be incorporated with the cardiovascular system identification method so as to

provide a more detailed picture of cardiovascular state. We are particularly inter-

ested in the development of a practical identification method for the quantitative

characterization of the total peripheral resistance (TPR) baroreflex which requires

only the additional measurement of beat-to-beat left ventricular flow rate (cardiac

output, CO). This signal may be obtained noninvasively in humans via a Doppler

ultrasound technique3 [29]. The TPR baroreflex is mediated by the a-sympathetic

branch of the autonomic nervous system [51, 52] and is believed to be significantly

involved in the orthostatic intolerance commonly seen in patients with autonomic

neuropathies [6,19]. The characterization of this regulatory mechanism would nicely

complement the characterization of the heart rate baroreflex, which is mediated by

both the ,3-sympathetic and parasympathetic branches of the autonomic nervous sys-

tem [2]. Hence, the expanded cardiovascular system identification method would

3 1t is also possible to measure CO on a beat by beat basis in humans with a thoracic impedance

technique [70]; however, the accuracy of this method is suspect.
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provide a more comprehensive, clinically useful picture of the integrity of the auto-

nomic nervous system. Of course, the additional CO measurement would also provide

a convenient means for monitoring steady-state changes in TPR through the ratio of

mean ABP to mean CO. However, the Doppler ultrasound measurement requires an

expert operator and consequently, may not always be available. Hence, we are also

interested in the development of an identification method for tracking steady-state

changes in TPR from only the ABP waveform.

It should be noted that the general notion of analyzing inverse modeling methods

based on physical models of the cardiovascular system is not novel to the cardiovascu-

lar research community. For example, investigators have previously utilized complex,

forward models of the systemic circulation in order to evaluate the estimation of

lumped parameters representing TPR and systemic arterial compliance [15,26].

1.3 Specific Aims

There are four specific aims of the research presented in this thesis. They are listed

as follows:

1. To build a computer model of the human cardiovascular system for the purposes

of analyzing practical system identification methods.

2. To evaluate the cardiovascular system identification method described in Sec-

tion 1.1 with respect to this forward model in terms of accuracy, robustness,

and sensitivity.

3. To develop and evaluate a practical identification method for the quantitative

characterization of the TPR baroreflex which requires only CO and ABP mea-

surements based on the forward model and to consider a complementary analysis

with experimental data.
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4. To analyze an identification method for tracking steady-state changes in TPR

which requires only the ABP waveform against the forward model as well as a

preliminary set of experimental data.

1.4 Thesis Organization

This thesis is divided into two parts. Part I deals with the development of a forward

model of the cardiovascular system, while Part II deals with the analysis of cardiovas-

cular system identification methods based on data generated from the forward model.

Part I specifically includes Chapters 2 and 3. In Chapter 2, we present a set of for-

ward models of the heart and circulation and demonstrate that the nominal model

in the set behaves reasonably in terms of pulsatile and limiting static behaviors. In

Chapter 3, we describe the regulatory system model along with a model of physio-

logic perturbations which are incorporated with the heart and circulation model and

demonstrate that this overall model of the cardiovascular system is capable of gen-

erating realistic short-term, low frequency hemodynamic fluctuations in signals that

may be measured noninvasively. Part II encompasses Chapters 4-7. In Chapter 4, we

describe the system identification data analysis tools, which are based on the analytic

methods of linear least squares estimation (see Section 1.1), that are utilized in the

following three chapters. In Chapter 5, we evaluate the cardiovascular system iden-

tification method introduced in Section 1.1 in terms of its accuracy, robustness, and

sensitivity against data generated from the forward model. In Chapter 6, we present

the development and evaluation of identification methods for the quantitative char-

acterization of the TPR baroreflex which require only CO and ABP measurements

based on the forward model. This chapter also includes a complementary analysis of

experimental data. In Chapter 7, we analyze an identification method for monitoring

steady-state changes in TPR from only the ABP waveform based on forward model
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generated data and a preliminary set of experimental data. Finally, in Chapter 8, we

summarize the major results of this thesis work and present potential future studies.
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Part I

Forward Modeling
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Chapter 2

Heart and Circulation

It would be virtually impossible to construct a model of the heart and circulation

which could account for its complete spectrum of dynamical behaviors. One must

settle to build a model which can provide only a simplified picture of the heart and

circulation. Our general philosophy in modeling the cardiovascular system is one of

minimal modeling. That is, we seek a model that is capable of accounting for the

particular behaviors that we are interested in with minimal complexity.

In modeling the heart and circulation, the major simplifying assumption that we

make is that it can be represented by a lumped parameter model. This type of model is

not capable of exhibiting distributed behaviors, such as pulse reflections in the arterial

system, but rather only what one might think of as the average behavior of each lump.

Since we are primarily interested in accurately accounting for hemodynamic behavior

at frequencies below the mean heart rate, this type of average behavior seems to be

adequate for our purposes. Fortunately, numerous lumped parameter models of the

heart and circulation have been developed (see, for example, [5,11,23,31,84]), ranging

in complexity from extremely simple consisting of a few parameters (e.g., RC circuit

model in Figure 6-3) to highly complex containing hundreds of parameters.

In this chapter, we present a set of lumped parameter models of the heart and
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circulation of increasing complexity. The data generated from this set in concert with

the models of the short-term regulatory system and resting physiologic perturbations

described in Chapter 3 represent the test bed against which the identification meth-

ods in Part II are assessed. We begin here by describing a relatively simple lumped

parameter model that has been previously developed which serves as the basis for the

least complex model in the set, the nominal model (Section 2.1). Then, we present

our modifications to this previously developed model which are geared towards im-

proving the model in terms of the behaviors in which we are specifically interested

(Section 2.2). Next, we present the parameter values and describe the computer im-

plementation of the resulting nominal model (Section 2.3) and demonstrate that this

model is capable of behaving reasonably in terms of both pulsatile and static behaviors

(Section 2.4). We conclude the chapter by presenting a set of more complex models

which are derived through modification of the nominal model and motivated particu-

larly by a robustness analysis of the identification methods considered in Chapters 6

and 7 (Section 2.5).

2.1 Nominal Model: CVSIM

Our nominal model of the heart and circulation is based on CVSIM which was origi-

nally developed at MIT as an aid in teaching cardiovascular physiology [23]. CVSIM

is shown in Figure 2-1 in terms of its electrical circuit analog. Here, charge is anal-

ogous to blood volume (Q, ml), current, to blood flow rate (q, ml/s), and voltage,

to pressure (P, mmHg). Thus, the capacitors may be interpreted as blood volume

containers with compliances (C), while the resistors may be thought of as conduits for

viscous blood flow with resistances (R). CVSIM consists of six compartments which

represent the left and right ventricles (1, r), systemic arteries and veins (a, v), and

pulmonary arteries and veins (pa, pv). Each compartment consists of a linear capaci-

28



tor and a linear resistor which share a single node. Each capacitor is parametrized by

a dead volume (Q0 , a nonzero volume at zero pressure) as well as a compliance. That

is, the static constitutive relationship for each of the capacitors is given as follows:

Qi= C% (Pi - Pi") i (2.1)

where the subscript i denotes any of the six compartments (1, r, a, v, pa, pv). The ref-

erence pressure is ground for the systemic circulation compartments and intrathoracic

(th) pressure for the ventricle and pulmonary circulation compartments since they re-

side in the thorax. The compliances of the ventricles vary periodically over time (t)

according to the ventricle model of Suga and Sagawa [80,81] (see Section 2.3.1) and

are responsible for driving the flow of blood. The model is linear with the exception

of four ideal diodes which represent the ventricular inflow and outflow valves and

ensure uni-directional blood flow.

Figure 2-1 Electrical circuit analog of CVSIM [23].
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Rr Ir(t)
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q1 (t) R1

Pa(t)

CVSIM was built for the purpose of teaching, which requires a simple, readily

understandable model. It is remarkable that the simple model in Figure 2-1 is capable

of accounting for a substantial amount of the dynamical behaviors exhibited by the
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cardiovascular system. We choose CVSIM as the basis of our heart and circulatory

model, because its level of simplicity, in terms of its number of compartments, seems

to be about right for the particular cardiovascular system identification methods that

we analyze in Part II. However, several of its other simplifying assumptions are

acceptable for our modeling purposes as well.

For example, the CVSIM heart and circulatory model does not include compart-

ments representing the atria. The atria only play a significant role in hemodynamics

during high heart rates, such as those obtained during exercise [23]. Moreover, the

effect of the atria can be partially accounted for by adjusting some of the compliance

and resistance values of the other compartments. Another example is that CVSIM

neglects the inertial effects of blood flow' which play a role in, for example, produc-

ing the dicrotic notch of the central arterial blood pressure (ABP) wavelet. Inertial

effects are most important in the low resistance pulmonary circuit and even here, it

is probably only a second-order effect [23]. Furthermore, the system identification

methods that we analyze in Part II do not consider measurements in the pulmonary

circulation and so error here is probably more acceptable. Yet another example is

that CVSIM assumes that all of the compartmental elements are linear. In reality,

none of these elements are perfectly linear over their entire dynamical range. How-

ever, when considering dynamical behaviors over only the limited physiologic range

as is the case here, this simplification becomes quite reasonable for most but not all

of the elements.

'However, in Section 2.5.2, we do consider modeling inertial effects in the arterial system in order

to assess the robustness of the identification method introduced in Chapter 7 against peripheral

arterial pressure waveforms.
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2.2 Nominal Model: Nonlinear Elements

The systemic venous and pulmonary arterial resistances are believed to be signifi-

cantly nonlinear even over their more limited physiologic range. In Sections 2.2.1

and 2.2.2, we describe more accurate, nonlinear models of these elements which are

incorporated in CVSIM. We also include, in Sections 2.2.3, the motivation for and

description of a nonlinear model of the time-varying ventricular compliances.

2.2.1 Systemic Venous Resistance

The large systemic veins entering the thoracic compartment are collapsible vessels.

That is, these vessels are completely closed when their reference (external) pressure

is larger than their internal pressure, while they are fully open when their internal

pressure is larger than their external pressure. Systemic venous collapse may occur

under normal physiologic conditions, probably during the early diastolic filling phase

of the right heart. The pressure-flow rate properties of the collapsible veins can be well

modeled with a Starling resistor, which is a thin-walled, nonelastic, collapsible tube

in a pressure chamber. A complete, dynamical analysis of the properties of a Starling

resistor is quite involved. However, a simple, steady-state analysis of its pressure-flow

rate relationship has proven to be quite useful [66]. Consider that the pressure in

the chamber is Pc(t), and the inflow and outflow pressures of the collapsible tube

(both defined just outside the pressure chamber) are Pin(t) and Pnt(t), respectively.

Then, the following three quantitative statements summarize the results of the simple

steady-state analysis:

4(t) = 0 Pc(t) > Pin(t) > Pout(t) (2.2)

W = PinW - Pc(W Pi(t) > Pc(t) > Pout(t) (2.3)
R

4( = P Pou(t) Pin(t) > Pout(t) ;> Pc(t), (2.4)
Rt
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where 4(t) is the flow rate through the collapsible tube with resistance R. The first and

third statements are very intuitive. They respectively indicate that there is no blood

flow when the tube is completely closed and that blood flow is governed by Poiseuille's

law when the tube is fully open. However, the second statement, which is referred

to as the vascular waterfall effect, is most interesting. In this case, the pressure near

the outflow end of the collapsible tube cannot be greater than the chamber pressure,

because this pressure would then be transmitted to the lower outflow pressure. On

the other hand, the pressure cannot be less than the chamber pressure, because the

larger inflow pressure would be transmitted to this pressure. So the pressure near

2the outflow end of the tube can be considered to be equal to the chamber pressure2

Thus, the flow rate through the outflow end of the collapsible tube is independent

of the pressure gradient (Pc(t) - Pout(t)) analogous to the waterfall effect. Rather,

the flow rate is controlled by modification of the outflow area of the tube (Torricelli's

principle), with larger areas providing for greater flow rates.

It is important to note that the flow rate in this model cannot be arbitrarily

increased by decreasing outflow pressure. Since the chamber pressure of the collapsible

veins is about 0 mmHg, this model accurately accounts for the experimental finding

that blood flow to the right heart cannot be increased by suctioning (negative heart

pressures; see Section 2.4.2). We incorporate a Starling resistor with a chamber

pressure of 0 mmHg in place of the linear systemic venous resistor (R, in Figure 2-1)

of CVSIM to account for the collapsible systemic veins.

2.2.2 Pulmonary Arterial Resistance

The pulmonary capillaries are collapsible vessels as well with alveolar pressure con-

sidered to be their external pressure. However, the simple Starling resistor model is

2A more complete, dynamical analysis would certainly demonstrate fluttering around the chamber

pressure.
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not sufficient to account for the pressure-flow rate characteristics here, because hydro-

static effects contribute significantly in the low pressure pulmonary circuit and must

be taken into account as well. We can better understand these effects by conceptu-

alizing the lungs as a large number of parallel Starling resistors, arranged vertically,

one on top of the other as in Figure 2-2. Let us consider that these parallel resistors

extend to about 10 cm below and 20 cm above the pulmonary artery and vein 3 , the

respective reservoirs from which each of the resistors receive and empty blood. Hence,

the inflow and outflow pressures of each Starling resistor is dependent on its vertical

position relative to the pulmonary artery and vein which are respectively at pressures

Ppa(t) and Pp,(t). For example, the inflow and outflow pressures of the Starling resis-

tors at the top of the lungs are considerably lower than Pa(t) and Pp,(t), the inflow

and outflow pressures of the Starling resistors located at the level of the pulmonary

artery and vein. On the other hand, the inflow and outflow pressures of the Starling

resistors located at the bottom of the lungs are considerably higher than Pa(t) and

P ,(t). However, the alveolar pressure (Pa,(t)), the chamber pressure of each Star-

ling resistor, is hardly influenced by hydrostatic factors and can be considered to be

essentially constant regardless of vertical position. This conceptual picture leads to

the notion of three zones of blood flow in the lungs [32] which correspond to the three

quantitative statements characterizing blood flow in Starling resistors presented in

Section 2.2.1. That is, at the top of the lungs, there may be no blood flow (zone 1),

in the middle of the lungs, the blood flow is governed by the vascular waterfall effect

(zone 2), and at the bottom of the lungs, the blood flow is governed by Poiseuille's

law (zone 3).

The conceptual picture here also leads to a simple but accurate pressure-flow rate

relationship characterizing blood flow in the lungs. To this end, let us assume that

each of the Starling resistors are of equal resistance and are equidistant with vertical

3These are typical values for an adult human [32].
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Figure 2-2 Conceptual picture of the pulmonary arterial resistance model where
each of the boxed resistors represent Starling resistors with chamber pressure Pagi(t).
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distance Ah between each resistor. Then, given that the lumped resistance of the

entire lung is Rpa, the resistance of each resistor may be given by -Rpa, where the

30 represents the entire vertical height of the lungs in cm. Let us further assume the

lungs to be an infinite number of parallel Starling resistors, that is, Ah -i 0. Then,

the differential flow rate (ddpa(t, h)) as a function of vertical distance with respect to

the pulmonary artery and vein (h) in the lungs may be given as follows:

0 Palv (t) > Pa (t) - Pq ;> Ppv (t) - Pq1330 - 1330

d4Fa(t, h) P ()-- P t -Pal() dh Ppa(t) - > Paiv(t) > Ppv(t) - (2.5)1pv,'30Rpa 1330 13{ P(t) -PPvWd h Ppa (t) - q ;> PaPv (t)30Rpa 1330 1330 , P th

where dh is the differential vertical distance between Starling resistors, p, the density
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of blood, is equal to 1.06 g/cm3, and g gravity is equal to 980 cm/s 2. Now, we

may integrate the differential flow rate over the entire vertical height of the lungs as

follows:

f 2 0  fh1 Ppa(t) ~P( h2 Ppa(t) - P av(t)

4pa(t) = dipa(t, h)=] =t) dh + a0dh
_10 _10 30Ra h1  

3 0Rpa

(2.6)

which results in the following nonlinear, lumped pressure-flow rate relationship:

Ppa (t) - Ppv(t) Ppa(t) - Palv(t) P 2 h -(3pa ((h + 10) + 2- hi) - _2 A-hl30Rp 30Rpa 79800RPa

(2.7)

where

1330
h13= (Ppv(t) - Pav v(t)), (2.8)

P9

h2 = 1330 (Pa(t) - Pav(t)), (2.9)
P9

with the restriction that -10 < h1 < h2 < 20. Note that h, and h 2 denote the vertical

boundaries of the three zones of blood flow, with h, being the boundary between zones

2 and 3 and h 2 , between zones 1 and 2. These boundaries are determined from the

flow rate conditions in Equation (2.5).

This model is essentially the same as that presented by Permutt et al. [65]. These

investigators demonstrated that this simple model was capable of explaining exper-

imental data reported in the literature. For example, they showed that the model

was able to account for the experimental finding that the pulmonary artery pressure

is relatively constant over a large range of flow rates. We incorporate this nonlinear

model in place of the linear pulmonary arterial resistor (Rpa in Figure 2-1) of CVSIM.

2.2.3 Time-Varying Ventricular Compliance

Although the pressure-volume relationship of the ventricle changes continuously through-

out systole and isovolumic relaxation, ventricular performance is determined by only
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the pressure-volume relationships at the end of systole and during diastolic filling.

These two pressure-volume relationships have a fairly wide linear range, but nonlin-

earities in these relationships have been reported in the literature as well. In particu-

lar, it has been shown that the isolated dog ventricle becomes stiffer with increasing

volume during diastolic filling in such a manner that measured diastolic pressure-

volume pairs have been fitted with growing exponential curves convex to the volume

axis [27,82]. Certainly, these findings confirm our intuition that the ventricle cannot

possibly fill to arbitrarily large volumes during diastole. That is, it must have a max-

imum volume. On the other hand, the end-systolic pressure-volume relationship has

been generally considered to be linear ever since the pioneering experiments of Suga

and Sagawa in isolated dog left ventricles [54,80,81]. These investigators particularly

found this pressure-volume relationship to be linear up to about 180 mmHg. They

were not able to explore the relationship at higher pressures because these conditions

led to frequent arrhythmias. Certainly, this relationship must eventually saturate,

since the ventricle could not possibly generate arbitrarily large pressures. However, it

is not necessarily clear whether the saturation begins at volumes less than the diastolic

volume limit in isolated dog left ventricles. Studies in smaller, puppy left ventricles,

which are less susceptible to arrhythmias, have demonstrated saturation in the end-

systolic pressure-volume relationship at high pressures and that the saturation does

indeed begin at volumes within the diastolic volume limit [22,82]. Furthermore, sev-

eral studies have recently demonstrated a contractility-dependent curvilinearity in

this relationship over smaller volume ranges [14,41,54].

The exclusion of the ventricular nonlinearities results in gross inaccuracies when

considering the cardiac pumping capacity at the limits of its operating range; how-

ever, only the limiting behavior of the ventricles plays an important role in this regard

with the precise curvature of these relationships contributing little4. Furthermore, the

4The pressure-volume relationships of the remaining circulatory compartments undoubtedly in-
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end-systolic and diastolic pressure-volume relationships are, at least to first approxi-

mation, linear over the physiologic volume range. Although it was not necessary for

our purposes, we incorporate simple, essentially piece-wise linear pressure-volume re-

lationships as in Figure 2-3 in place of the perfectly linear ventricular compliances of

CVSIM. The upper curve in each plot is the end-systolic pressure-volume relationship,

while the bottom curve is the diastolic pressure-volume relationship. The curves in

between represent the remaining ventricular pressure-volume relationships during the

systole and isovolumic relaxation. Similar end-systolic and diastolic pressure-volume

relationships have been previously implemented in a model of the dog heart [73]. In

the context of our original purpose, these relationships will clearly indicate the im-

portance for consideration of changes in operating point during the interpretation of

linear system identification results.

Figure 2-3 Models of the nonlinear, time-varying pressure-volume relationships for
the (a) left ventricle and (b) right ventricle. The parameters characterizing these
models are largely from [32].

(a) (b)

250 250

200 200

__150 160

E E

100 100

50 50

0 o 150 200 250 0 so 100

In order to implement the models of the ventricles in Figure 2-3, the pressure-

volume relationships must be differential with respect to time and thus cannot be

clude nonlinear limits as well; however, their role in limiting hemodynamic behavior is small with

respect to the nonlinear ventricular limits.

37



perfectly piece-wise linear. As mentioned above, the curves in between the end-

systolic and diastolic pressure-volume curves are irrelevant in determining ventricular

output and are chosen only to satisfy this implementation requirement. In particular,

each member of the family of ventricular (both right and left) pressure-volume curves

is mathematically represented by the sum of a linear term and the integral of a shifted

and scaled hyperbolic tangent function as follows:

Yir(t) = a,,r(t)x(t) + 0,,(t) J 1 + k(t) )), 0 < x(t) 1, (2.10)

where k=50 and characterizes the transition rate of the hyperbolic tangent function

and xO,(t) and 1i,,(t) respectively denote the shift and scale factor of the hyperbolic

tangent and are defined as follows:

x0 (t) = (2.11)
',r1 M+ a,r(t)'

,r(t) = 1j - ax,(t) . (2.12)

S I+e- ' () C3

The solution to the above integrals is given as follows:

fx(t) t ) 1 ek(x(t)x?,(t))

+ dxt = x(t) + -ln .1 + ekx?,r ) (2.13)
fo 1 + e- kt(*x(t)M) M+k I + e* kx,"(

In these equations, yi,r(t) and x(t) respectively represent normalized ventricular trans-

mural pressure and volume. That is, we may obtain the actual, unnormalized ven-

tricular pressure and volume with the following relationships:

Pi,r(t) = P ayi,r(t) + Pth(t), (2.14)

and

Qi,r(t) = (Q1,r - Q,,)X(t) + Q1,, (2.15)
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where AP,""ax and Qmnx are respectively the maximum ventricular end-systolic pres-

sure and diastolic volume5 . Note that each pressure-volume curve (at a fixed time)

is parametrized by only a single parameter aj,r(t). This parameter is responsible for

determining the breakpoint, the concavity or convexity, and the slope of the initial

linear portion of each curve and is given as follows:

max _ QO

alr (t) = Ci,r 1 ,r (2.16)
'r Cr(t) jAP" p

where Cl,r(t) represents the linear, time-varying ventricular compliance (see Sec-

tion 2.3.1). Thus, the initial slope and breakpoint cannot be independently set.

However, this is not a problem as we see in Figure 2-3 that the choice of the ini-

tial slope of the end-systolic pressure-volume relationship does not compromise the

location of the breakpoint which is at a pressure of about 180 mmHg for the left

ventricle.

It should be noted that volume cannot be analytically expressed as a function of

pressure here. Hence, we must resort to implementing a numerical search method

to find the volume associated with a given pressure. However, this is not much of

an encumbrance for the following reasons: each of the pressure-volume curves is a

one-to-one function over the interval of interest (see Equation 2.10); the interval is

small; and a good initial guess of the volume is available from the previous ventricular

volume (see Section 2.3). The final reason allows us to utilize effectively the extremely

fast Newton's method which has quadratic convergence properties [69].

The pressure-flow rate relationship of nonlinear ventricular element presented here

may be determined by simply taking the derivative of the above pressure-volume

relationship with respect to time. However, since the resulting relationship is quite

involved, we include it in Appendix A.

5Although intrathoracic pressure is considered in this chapter to be a fixed constant (see Sec-

tion 2.3.1), we treat it in Equation (2.14) and in subsequent equations more generally as a function

of time. The rationale for this is made clear in the following chapters
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Since we are interested in minimal modeling and the presence of a systolic pressure

limit over the relevant volume range in large ventricles is questionable, it is interesting

to consider whether the diastolic volume limit alone could reasonably account for

limiting cardiac pumping behavior. In fact, this has been previously shown to be

possible from a qualitative standpoint [20]. However, we have found that, in order

to obtain quantitatively reasonable behaviors (see Section 2.4.3), the end-systolic

pressure limit is necessary as well. One may also deduce this by the following "back

of the envelope" calculation. The pressure and volume of the normal adult human left

ventricle at the end of systole are respectively about 100 mmHg and 40 ml [32]. Hence,

assuming a perfectly linear end-systolic pressure-volume relationship and neglecting

the dead volume, the slope of this relationship is about 2.5 mmHg/ml. If we assume

that a typical human is able to double his/her normal stroke volume (80 ml) through

just the Frank-Starling mechanism (without enhancement in contractility), then the

maximum end-diastolic volume would be about 200 ml. An isovolumic contraction at

this volume would thus generate a systolic pressure of about 500 mmHg. However,

peak systolic pressures usually range from only about 250 to 300 mmHg [32]. Hence,

in order to obtain quantitatively reasonable behaviors, an end-systolic pressure limit

must be included.

2.3 Nominal Model Implementation

The first step towards the computer implementation of the nominal heart and circula-

tory model described in Sections 2.1 and 2.2 is to formulate the dynamical equations

that govern the model. The equations may be conveniently formulated in terms of a

state-space description, a set of coupled, first-order differential equations whose known

quantities are considered to be the model parameter values and unknown quantities,

the pressures, volumes, and flow rates of the model as functions of time. The time
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evolution of these unknown quantities may be determined by using well established

numerical integration techniques for solving state-space equations. These algorithms

require as an input the initial conditions of the unknown quantities (initial state).

In Sections 2.3.2-2.3.4, we present the formulation of the state-space equations, the

determination of initial conditions, and a description of the employed numerical inte-

gration method. But first, in Section 2.3.1, we present the numerical values that are

assigned to the parameters characterizing the nominal model.

2.3.1 Parameter Values

The parameter values of the original CVSIM model are based on solid experimental

evidence and permit reasonable steady-state pulsatile behavior [23]. However, we

reconsider the assignment of a numerical value to R, which, due to the omission of

the right atrium, simultaneously represents the small right ventricular inflow resis-

tance and the relatively large systemic venous resistance6 . Hence, the choice of R,

amounts to a trade-off between accurately modeling right ventricular filling dynamics

and systemic venous return dynamics. In the original CVSIM model, R, was cho-

sen such that the systemic venous return dynamics were modeled accurately at the

complete expense of the right ventricular filling dynamics. As a consequence, the

original CVSIM model is grossly inaccurate in terms of dynamical behavior over the

range of heart rates considered by the identification methods in Part II. We therefore

modify the original value assigned to R so as to improve the dynamical performance

of the model over this heart rate range without completely compromising the sys-

temic venous return dynamics (see Section 2.4.5). We also adjust the original values

assigned to Cr(t) and Q1 in order to permit reasonable steady-state pulsatile and

static behaviors (see Section 2.4). Table 2.1 summarizes the modified version of the

6Although Rpv similarly represents both the left ventricular inflow resistance and the pulmonary

venous resistance, these resistances are nearly the same.
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original CVSIM model parameter values that are assigned to the nominal heart and

circulatory model. The numerical values representing the ventricular pressure and

volume limits are determined largely from [32].

Compartment C, ml Q0 , ml Qmax, ml APmax, mmHg R u (P- )
mmHg ___ml_(PC)

1 0.4-10 15 270 260 0.006

a 1.6 715 - 1.0

v 100.0 2600 - 0.02 (0)

r 1.2-12.5 15 235 70 0.003

pa 4.3 90 - - 0.09 (Paiv (t) = 0)

pv 8.4 490 - 0.01

System Parameters: T =5/6 s

Pth(t) =-4 mmHg

Qtotal = 5000 ml

Table 2.1: Summary of the nominal heart and circulation model parameters. A
chamber pressure (P,) accompanies resistance in the case of Starling resistors. For
the original CVSIM model, Cr=1.2-20 ml/mmHg, Q'-2500 ml, Rv=0.05 mmHg-s/ml,
and Rpa=0.08 mmHg-s/ml.

Table 2.1 includes the range of compliance values that the ventricles assume over

their initial linear range during the cardiac cycle. The equation reflecting the precise

time evolution of these values during the cardiac cycle that is incorporated in our

model is similar to that of the original CVSIM model. In particular, this equation

is completely parametrized by the minimum and maximum compliance values (end-

systolic (es) and end-diastolic (ed) compliances, respectively) and the cardiac cycle
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duration (T) and is given in terms of elastance (E, reciprocal of compliance) as follows:

r , - ) (1 -cos(" 7 ti))) + t1 < t <t +T

Ei,r(t)= 1) (1+ cos( 2 r(tj-, +T))+ ti+T t<ti+Ti,.r
Ts 1,

ced ti + Ti <; t < ti+1

(2.17)

where the subscript i denotes the beginning of the ith cardiac cycle which starts with

systole, Ce,"'ed = C,,(tes,ed), and T, and Ti, respectively represent the time period

of systole and isovolumic relaxation for a given cardiac contraction. These latter

two parameters may be determined from T through the following two relationships:

T, = 0.3vT and Ti,. = T,/2. Hence, the time period of diastolic filling (Td) is given as

follows: Td = T - 0.45v/T-. Figure 2-4 illustrates the time evolution of E,,.(t) based

on this equation for one cardiac cycle.

Figure 2-4 Time evolution of the elastance values that the left (red) and right (blue)
ventricles assume over their initial linear range during a cardiac cycle.
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We finally provide the derivative of Ei,,(t) with respect to time, which is necessary
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for model implementation (see Appendix A), as follows:

2TCl's -C7)sin("- T, ti <5 t < ti + TS

dt = #- ({ - .) sin(2 1(-{+±T) ti +Ts < t < ti +Tir (2.18)

1 0 ti + Ti < t < ti+1

2.3.2 State-Space Description

We call upon basic circuit theory to formulate the governing equations of the nominal

model. In particular, we apply Kirchoff's Current Law (KCL) to each of the six nodes

of the model and utilize the constitutive relationships for a resistor, capacitor, and

the nonlinear elements presented in Section 2.2 to obtain the following state-space

description:

dP (t) fQ1M-Q074 M-1MI ,M +dPth (t) (.9
dt dt

dPa(t) _ Q1(t) - 4a(t) (2.20)
dt Ca

dPv(t) _ a(t) - 4v (t) (2.21)
dt C

dPr (t) f (Qr(t) - Q , 4v(t) - 4r(t), Cr(t), ... ) + dPth(t) (2.22)
dt dt

dPpa(t) _ 4(t) - cipa(t) dPth(t) (2.23)
dt Cpa dt

dPv(t) _ 4pa(t) - 4pv(t) dPth(t) (2.24)
dt CPV dt
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where f(-) is given in Appendix A, and

41t = I P(t) > Pa(t)

0 otherwise

.a (t Pa(t) - Pv(t)
(a(t ) = P Ra

R P (t)> Pr (t

4V~t = l' PV(t) > 0 >

0 otherwise

~ "M P r (t ) >P
4 R, Pr (t) (>

0 otherwise

Pp(0PI PPV(t) > P

0 otherwise

(2.25)

(2.26)

) > 0

Prt M

t )

(t)

(2.27)

(2.28)

(2.29)

with 4pa(t) given in Equations (2.7)-(2.9).

The six compartmental pressures are state variables which succinctly summarize

all the past dynamical information necessary for determining future time evolution.

That is, if we know what the six pressures are at time t0 , then we may determine

the time evolution of these pressures, as well as the volumes (through Equation (2.1)

and a numerical search for the ventricular volumes) and flow rates (through Equa-

tions (2.25)-(2.29) and Equations (2.7)-(2.9)) of the model, for all t > t0 . This may be

realized with a computer by discretizing Equations (2.19)-(2.24) and integrating these

equations at each ensuing discrete time step in an iterative fashion. But, before we

present the precise numerical integration technique that we employ, we first describe

a method for determining an initial set of pressures.

2.3.3 Initial Conditions

The six initial pressures are determined from the approach implemented by the origi-

nal CVSIM model [23]. This approach considers the average pressures in the systemic
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and pulmonary compartments and the end-diastolic pressures in the ventricular com-

partments, for a given set of model parameters, to be a reasonable choice for the

initial pressures. These pressures, as well as the end-systolic pressures in the ventric-

ular compartments, are determined from the solution of a system of linear equations

which are formulated based on conservation laws during static model conditions (e.g.,

static linear capacitors are considered to be open-circuits). The system of linear equa-

tions are given as follows:

Cid(Pied-Pth) - Cis(PIf - Pth)

= Cd(Pd - Pth) - Crs(Ps - Pth) (2.30)
pes _ Pa

Ts I R (2.31)
R1

=T a - (2.32)
Ra

p _ ped
=Td V (2.33)

Qttt ~ti= TsdPe - Ph) + a2.34Pt) CP

Pe - P t(

Equaion r23)(.6 may betogt2fa.epeetngtecnsrain )ffo

=TP~ -" Pp (2.35)
Rpa

v _ ped
=Td PP Rp ( 2.36 )

Qtotal Qotal a I - P ) + CaPa - Ptof) + C Pv

+ie pr(pd - f th e Pth) + C E(P i Pth). - (2.37)

Equations (2.30)-(2.36) may be thought of as representing the conservation of flow

rate in which the average stroke volume generated by each ventricle (as determined by

the difference in end-diastolic volume and end-systolic volume; Equation (2.30)) is set

equal to each other as well as the average volume of blood that passes through each of

the six resistors during a cardiac cycle (as determined by the product of the average

flow rate with the time period of flow in the cardiac cycle; Equations (2.31)-(2.36)).

Equation (2.37) may be thought of as a conservation of volume equation in which

the sum of the compartmental volumes responsible for generating pressure (stressed
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volume) must equal the total stressed blood volume'.

Since our modified CVSIM model incorporates nonlinear elements, this system

of linear equations is no longer strictly applicable. However, these equations are

a reasonable approximation to our modified model, especially with regard to the

equations reflecting the static performance of the ventricles which are essentially

linear for most sets of considered model parameters. Hence, we utilize this relatively

simple approach to obtain a reasonable set of initial pressures.

2.3.4 Numerical Integration

The numerical integration technique that we employ is the same fifth-order Runge-

Kutta method with adaptive step size that is implemented by the original CVSIM

model (see [23,69] for a detailed description of the algorithm). The adaptive step

size feature implies that the pressures, flow rates, and volumes determined from inte-

gration are nonuniformly sampled in time with fine sampling during systole in which

the system dynamics are fast (especially ventricular outflow which is characterized

by short time constants of 0.002 s) and coarse sampling during diastole when the sys-

tem dynamics are slower (ventricular outflow diodes are open). This type of almost

optimal sampling scheme has proven to perform well in terms of accuracy and speed.

We utilize this numerical integration technique for the computer implementation of

all the variants of the nominal model considered in this thesis. Hence, in order to de-

scribe the computer implementation of each of these variants, we need only to specify

the governing state-space equations and a linear system of equations whose solution

provides an initial set of pressures.

7 Since one-third of the the systemic arteries reside in the thoracic compartment, the reference

pressure of the systemic arterial compartment is given here as }LPth.
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2.4 Nominal Model Validation

We now demonstrate that the nominal model of the heart and circulation presented

in Sections 2.1-2.3 is capable of exhibiting reasonable hemodynamic behaviors. We

begin, in Section 2.4.1, by illustrating the steady-state, pulsatile waveforms generated

by the model. Then, in Sections 2.4.2 and 2.4.3, we describe a static analysis of the

systemic circulation model and the heart-lung unit model and show that the results of

these analyses compare well with experimental data. Next, in Section 2.4.4, we discuss

how the static analyses may also be useful for the purposes of teaching. Finally, in

Section 2.4.5, we present an analysis of the effect of heart rate changes on steady-

state left ventricular flow rate (cardiac output, CO) in order to demonstrate the

validity of model dynamics particularly over the range of heart rates considered by

the identification methods in Part II.

2.4.1 Pulsatile Analysis

The original CVSIM model generates three pulsatile waveforms (pressure, volume,

and flow rate) for each of its six compartments. These waveforms, in the steady-state,

were shown to be similar to catheterization data published in the literature [23]. We

reiterate that by similar, we mean that the gross or average waveforms are about the

same, while details from, for example, distributed or inertial effects are neglected. The

nominal heart and circulatory model presented here also generates pulsatile pressure,

volume, and flow rate waveforms for each of its six compartments. These waveforms

(Figures 2-5 and 2-6), despite the modifications made in Sections 2.3.1 and 2.2, appear

to be essentially the same as the waveforms generated by the original CVSIM model.

The most significant difference is that the right ventricular waveforms here more

accurately reflect rapid diastolic filling due to the modification of the original CVSIM

parameter values. However, these modifications would substantially alter the pulsatile
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waveforms if we were to consider a set of parameter values that would move the model

operating point to the limits of its dynamical range. The modifications also have a

pronounced effect on low frequency changes in the pulsatile waveforms. For example,

the low frequency changes in Pla(t) would be damped due to the incorporation of the

nonlinear pulmonary arterial resistor.

Figure 2-5 Time evolution of pressures, volumes, and flow rates generated by the
nominal heart and circulatory model.
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2.4.2 Static Analysis of the Systemic Circulation Model

The systemic circulation may be considered in electrical terms as a two-terminal

device in which one terminal is represented by the right atrium and the other, by the

aorta. A meaningful static analysis of the systemic circulation may then amount to the
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Figure 2-6 (a) Left ventricular and (b) right ventricular pressure-volume loops gen-
erated by the nominal heart and circulatory model.
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determination of its static "i-v" characteristics at these terminals. In hemodynamic

terms, this involves determining the effects of the mean aortic pressure and mean right

atrial pressure on the mean flow rate, while the parameters of the systemic circulation

are held constant. We specifically consider the static, two-terminal analysis of Guyton

of which experimental results are readily available in the literature [32,33].

Guyton's analysis essentially involves the determination of the influence of mean

right atrial pressure on mean flow rate to the right heart (venous return), while the

parameters of the systemic circulation are maintained. Since one of the maintained

parameters is the mean systemic pressure (PMs, total stressed blood volume of the

systemic circulation normalized by the total systemic compliance), mean aortic pres-

sure is completely specified from mean venous return and mean right atrial pressure.

Hence, a plot of mean venous return as a function of mean right atrial pressure, which

is referred to as Guyton's venous return curve, completely characterizes the systemic

circulation for a given circulatory state. Figure 2-7a illustrates averaged, experimen-
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tal venous return curves from 12 control dogs and 14 dogs in which the circulatory

state was maintained by total spinal anesthesia and continuous epinephrine drip [33].

The curves show that as the mean right atrial pressure decreases, the mean venous

return increases. This is expected, since the mean right atrial pressure acts as a back-

ward force on the veins impeding blood flow into the right heart. However, the mean

venous return eventually plateaus as mean right atrial pressure decreases to zero due

to systemic venous collapse (see Section 2.2.1).

Figure 2-7 (a) Averaged venous return curves obtained from dog preparations during
control conditions and total spinal anesthesia with continuous epinephrine drip [33].
(b) Model venous return curve obtained from the model preparation in Figure 2-8.
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In order to perform Guyton's analysis on the model, we must first define suitable

terminals as the model does not have a right atrium. We choose the two bold nodes

in Figure 2-1 as these terminals. The bold node labelled P"ra"n(t) is the location of

where the right atrium would be if we had included it in the model. The pressure at

this node is defined as follows:

P 6ra"(t) = {P M(t)

Pr(t)
(2.38)

P(t) < Pr(t)

Pr M) > PV W)
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Analogous to actual right atrial pressure, this pressure reflects the backward force

impeding blood flow into right heart; however, it overestimates actual right atrial

pressure with the extent of overestimation increasing with heart rate. With the two

terminals defined, we are now left with the design of the model experiment.

We are interested in a meaningful analysis of the static terminal characteristics of

the systemic circulation which would permit the determination of the mean venous

return in the intact circulation from the mean right atrial pressure. However, since

Guyton's analysis involves maintaining Pns, this precludes the possibility of perform-

ing a model experiment on the intact circulation. We must instead consider a model

experiment in which a controllable load is applied to the terminals of the systemic

circulatory model. Since the systemic circulatory model is nonlinear, it is important

to realize that the venous return curve that we obtain will be dependent on the type

of load that is chosen. Hence, we consider a load that closely resembles the load

seen by the systemic circulation in the intact circulation. The model in Figure 2-8

depicts our model preparation for performing Guyton's analysis. Since pulmonary

ABP is fairly constant (Section 2.2.2), the load here is quite close to that seen in the

intact circulation. Note that the independent current source here serves to keep Pm,

precisely constant by pumping into the systemic circulation what ever is pumped out.

The state equations governing the model in Figure 2-8 are given by Equations (2.20)-

(2.22) and Equations (2.26)-(2.28) with 4,(t) and constant Ppa substituted for 41(t)

and Ppa(t), respectively. Here, Ppa is specifically chosen to be the nominal end-systolic

pulmonary ABP of the intact circulation. The initial set of pressures are determined
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Figure 2-8 Model systemic circulation preparation for determining Guyton's venous
return curve where a box indicates a nonlinear element (Sections 2.2.1 and 2.2.3).
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CV(t)
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through solution of the following linear system of equations:

C~edpedes Pe8pes pa
- Pth) - Cr 8(Pr - Pth) = Ts r p (2.39)

Rr

=TdPV p (2.40)

=Ta - P (2.41)
Ra

CaPa + CvPv = (Ca + Cv)Pms, (2.42)

where Ppa and P.s are known parameters and pd, as opposed to Per is again con-

sidered to be the initial right ventricular pressure. Equations (2.39)-(2.41) reflect

conservation of flow rate analogous to Equations (2.30)-(2.36), while Equation (2.42)

ensures that the mean systemic pressure is initially set to Ps. The experiment may

then be performed by simply adjusting Crd in order to vary Pra"(t) and measuring

the mean qv(t).

Figure 2-7b shows that the resulting venous return curve from the model exper-

iment qualitatively matches the actual experimental result in Figure 2-7a. From a

quantitative point of view, aside from the mean right atrial pressure being overesti-
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mated, the venous return curve appears to be somewhat enhanced with respect to

extrapolated human values from animal experimentation [32]. It turns out that if we

assigned the original CVSIM parameter values to the nominal heart and circulatory

model, we would have a more quantitatively accurate venous return curve. How-

ever, the small sacrifice made here permits more realistic dynamical behavior (see

Section 2.4.5).

Although we have incorporated a piece-wise linear model of the collapsible veins

(Section 2.2.1), we obtain a smoothed venous return curve from our model. This

smoothing is due to the monotonically increasing fraction of time that the collapsible

vein model spends in the waterfall condition as the mean right atrial pressure decreases

(Section 2.2.1). However, the smoothing in the venous return curve of Figure 2-7a

is probably also due to the monotonically increasing number of collapsible veins in

the waterfall condition as mean right atrial pressure decreases as well as smooth

pressure-flow rate curves characterizing each of the collapsible veins.

2.4.3 Static Analysis of the Heart-Lung Unit Model

The heart and pulmonary circulation may be considered to be a single pumping

unit responsible for providing oxygenated blood to the systemic circulation. This

pumping unit, which is referred to as the heart-lung unit, may also be thought of

in electrical terms as a two terminal device with the terminals again being the right

atrium and aorta. The pressure in the right atrium is considered to be the input

pressure (preload) to the heart-lung unit, while the pressure in the aorta is the output

pressure (afterload) against which the unit pumps. A static pressure-flow rate analysis

of this pumping unit would amount to determining the simultaneous effects of mean

aortic pressure and mean right atrial pressure on mean CO (aortic flow rate), while

the parameters of the heart-lung unit are held constant.

Figure 2-9a illustrates the averaged, experimental result from 25 dogs in which the
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parameters of the heart-lung unit were held constant by surgical elimination of reflex

control [36]. This result clearly shows the limiting behavior of the heart-lung unit in

terms of a maximum aortic flow rate and a maximum aortic pressure against which

the unit can pump blood. The plot also indicates that the mean aortic flow rate is

essentially independent of mean aortic pressures up to about 180 mmHg. Within this

aortic pressure limit, the plot of mean aortic flow rate as a function of mean right

atrial pressure, which is referred to as Guyton's CO curve, completely characterizes

static terminal flow rate behavior of the heart-lung unit [32].

Figure 2-9 (a) Averaged family of CO curves obtained from 25 dog heart-lung prepa-
rations in which reflex control was eliminated surgically [36]. MAP and MRAP re-
spectively denote mean aortic and right atrial pressures. (b) Model result obtained
from model preparation in Figure 2-10.
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In order to perform this analysis on our model, we again consider the two bold

nodes in Figure 2-1 as the two terminals of the heart-lung unit. We obtain com-

plete control of the pressures at these terminals, by removing the systemic arterial

and venous capacitors from our model and replacing them with independent volt-

age sources as in Figure 2-108. The state equations characterizing the model here

'The choice of this preparation was again based on obtaining a load which nearly resembles that
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are given by Equations (2.19), (2.22)-(2.24) and Equations (2.7)-(2.9),(2.25), (2.28)-

(2.29) with constant Pa and P, in place of Pa(t) and P,(t), respectively. The initial

set of pressures are determined through solution of the system of linear equations

given by Equations (2.30)-(2.31), (2.33)-(2.36) in which Pa and P, are assumed to

be known and the end-diastolic ventricular pressures are again considered to be the

initial ventricular pressures.

Figure 2-10 Model heart-lung preparation where a box indicates a nonlinear element
(Sections 2.2.1 - 2.2.3).
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The static analysis may then be performed by varying the two independent voltage

sources and calculating the resulting mean q1(t). These voltage sources permit precise

control of Pa but not Pura". However, it is possible to set this latter pressure to a

desired value with arbitrary accuracy by simply adjusting P, according to the well-

known bisection method [69]. This method essentially involves first choosing two

values of P, which bracket the P, that produces the desired mean "right atrial"

pressure and then halving the bracket in an iterative fashion until the desired accuracy

is reached.

seen in the intact circulation.
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Figure 2-9b shows the results of this model experiment. From a qualitative point

of view, this result matches fairly well with the experimental result in Figure 2-9a.

From a quantitative point of view, aside from the mean right atrial pressure being

overestimated, the results appear to be somewhat depressed with respect to extrap-

olated human values from animal experimentation [32]. This slight depression offsets

the somewhat enhanced venous return curve in Section 2.4.2 so as to provide reason-

able hemodynamic values during normal operating conditions (see Section 2.4.4).

2.4.4 Guyton's Analysis

Guyton's CO and venous return curves provide a complete static characterization

of the state of the heart and circulation, and their intersection provides the mean

CO and right atrial pressure that would result at this state. These curves provide

a useful tool for understanding the factors controlling CO. [32]. For example, if

one knows how a particular factor (e.g., heart rate) alters the curves, then one can

easily understand how this factor influences CO as well as mean right atrial pressure.

Figure 2-11 illustrates that the intersection of the model CO and venous return curves

obtained from the heart-lung unit and systemic circulation at their nominal states

indeed predicts the actual mean CO and mean "right atrial" pressure resulting from

the intact circulation at this nominal state. Figure 2-11 also illustrates how a decrease

in heart rate from its nominal value of 72 bpm to 50 bpm would change the mean CO

and "right atrial" pressure. Although these model curves slightly deviate from human

curves extrapolated from animal experimentation [32], importantly, the alterations

in the model curves in response to changes in cardiovascular state, such as that

illustrated in the figure, are reasonable (see Section 2.4.5). Thus, the nominal heart

and circulatory model may also serve as an improved tool for teaching hemodynamics.
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Figure 2-11 Model examples of Guyton's CO and venous return curve analysis [32].

The blue curves represent the nominal cardiovascular state, while the red curve reflects

how the CO curve would change in response to a decrease in heart rate from 72 bpm

to 50 bpm. The intersections of these curves represent what < 41 > and < P"ra" >

would have been in the intact circulation of the same state. For example, from the

nominal, intact circulation, mean 1 = 5.25 1/min and mean Pra" = 3.82 mmHg.
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2.4.5 Analysis of Heart Rate Effects on CO

We now demonstrate the validity of the dynamical properties of the model through

an analysis of the effect of heart rate changes on steady-state CO. Figure 2-12a il-

lustrates experimental data obtained from an anesthetized dog preparation in which

mean CO is plotted as a function of heart rate. These data demonstrate that CO

increases with heart rate until the heart rate is sufficiently fast such that the dias-

tolic filling time compromises stroke volume. From Guyton's point of view, the data

demonstrate that heart rate is able to increase CO through enhancement of the CO

curve until the venous return curve is saturated. Figure 2-12b illustrates that the

corresponding data, which is obtained from the nominal model (blue trace) through

the variation of T, emulates the experimental data particularly at heart rates less
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than ~100 bpm. At higher heart rates, the model is not as accurate with respect to

experimental data due to its enhanced venous return curve. In Figure 2-12b, we also

include the corresponding data obtained from the model with the original CVSIM

parameter values (red trace). Since these parameter values were geared towards the

accurate representation of the venous return curve, the red trace emulates the ex-

perimental data at heart rates greater than ~100 bpm. However, the red trace is

grossly inaccurate for heart rates less than ~100 bpm, because the parameter val-

ues completely sacrifice the performance of the heart-lung unit. Although it is not

possible to emulate perfectly the experimental data in Figure 2-12a over the entire

heart rate range without a right atrium, the nominal heart and circulatory model

appears to be quite adequate particularly over the range of heart rates considered by

the identification methods in Part II.

Figure 2-12 (a) Experimental data reflecting the effects of heart rate on steady-
state CO. The data are obtained from an anesthetized dog preparation during atrial
pacing [10]. (b) Forward model data reflecting the effects of heart rate on steady-
state CO for the nominal parameter values of Table 2.1 (blue trace) and the original
CVSIM parameter values (red trace). These data are obtained through variation of T
only up to heart rates of 150 bpm, since the forward model is not expected to behave
appropriately at very high heart rates due to the omission of atria.

(a) (b)

OiginNominal Parameter Values

6095-

50 100 150 200 250
Atriol pacing rote (beats/man) so s 0 8 9 0 110 120 130 140 1

Nmnl Param nte ates in

59



2.5 Set of Robustness Models

In this section, we present a set of more complex heart and circulatory models which

are derived through modification of the nominal model. The modifications that we

specifically consider are geared towards more accurately representing the systemic

arterial compartment which invariably involves increasing its complexity. The per-

formance of the cardiovascular system identification method analyzed in Chapter 5 is

relatively insensitive to the forward modeling of the systemic arterial compartment;

however, this may not necessarily be the case for the identification methods consid-

ered in Chapters 6 and 7. Hence, the specific purpose of this set of more complex

models is to assess the robustness of the latter identification methods against more

realistic systemic arterial compartments. In Section 2.5.1, we first present a nonlin-

ear systemic arterial compliance model. Then, in Section 2.5.2, we describe a linear,

third-order model of the systemic arterial compartment which may also incorporate

the nonlinear model.

2.5.1 Nonlinear Systemic Arterial Compliance

The nonlinearity of the lumped systemic arterial compliance has been extensively

investigated (see, for example, [13,30, 34,46]). These studies have generally demon-

strated that the systemic arterial compliance decreases significantly with large in-

creases in ABP. For example, consider Figure 2-13 which illustrates the pressure-

volume relationships characterizing human aortas obtained at autopsy [34]. The data

here not only implies the consideration for differential compliances but also leads to

the intuitive notion of a maximum volume that the systemic arterial compartment

can hold. The data in the figure further demonstrate the well known concept that the

systemic arterial compliance decreases with age. However, we are primarily interested

in these pressure-volume relationships only over the more limited range considered
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in cardiovascular system identification, in which case, a linear systemic arterial com-

pliance seems to be a reasonable first-order approximation. In fact, an identification

method that we present in Section 6.2.4 is based on this very assumption of linearity.

Hence, we consider here a nonlinear systemic arterial compliance model against which

the robustness of this identification method may be assessed.

Figure 2-13 Pressure-volume relationships of aortas obtained from humans of vary-
ing ages at autopsy [34].
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The nonlinear model of the systemic arterial compliance that we implement for

our robustness analysis is mathematically represented in terms of its pressure-volume

relationship as follows:

Qa(t) = (Q"'aX - Ql)(1 - e-"(t)) + QO, (2.43)

where Q"' represents the maximum possible systemic arterial volume and 5 is a

positive constant. We may determine the differential compliance as a function of
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ABP by taking the derivative of this equation with respect to Pa(t), which results in

the following equation:

Ca(Pa(t)) = 6(Q'max - QO)e-jPa( t). (2.44)

Note that the compliance in this model does indeed decrease with increasing ABP. In

fact, the functional form of this equation has been previously considered to charac-

terize the lumped systemic arterial compliance [30,46]. The extent of nonlinearity is

reflected in the curvature (K(Pa(t))) of the pressure-volume relationship which may

be determined by taking the second derivative of Equation (2.43) with respect to

Pa(t) and is given as follows:

K(Pa(t)) = -j 2 (Qrax - QO)e-Pa( t). (2.45)

The model here is parametrized by three variables (Q'nax, Q', and 6) which provide

the minimum degrees of freedom necessary to set the volume, differential compliance,

and differential curvature of the pressure-volume relationship at a given operating

point ABP to desired values. This may be specifically accomplished by simply in-

verting Equations (2.43)-(2.45), which results in the following set of equations:

j = (2.46)
Cd

Q Qdma Cd (2.47)
Kd

C2 KdPs Kd Pa

Q =Qd-+ Le Cd (1-e d), (2.48)
Kd

where the subscript d denotes the desired values and the superscript sp is an abbre-

viation for setpoint (operating point). Hence, the model here may provide a useful

tool for assessing the independent influences of variations in volume, compliance, or

curvature on the identification method.
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As we have stated, the primary motivation for the model here is to investigate the

robustness of the identification method presented in Section 6.2.4 against nonlinearity

which may be characterized by the curvature. Curvature has been experimentally

investigated in open-chest anesthetized dog preparations in terms of the percentage

change in systemic arterial compliance over the cardiac cycle (with respect to the

maximum compliance during the cardiac cycle) which was estimated to be about

5-15% [46]. In the model, this percentage change in compliance may be expressed
i PPmathematically as 1 - e Cd , where PP represents the pulse pressure of the cardiac

cycle. Hence, we now have a simple prescription for performing a robustness analysis

against realistic curvatures. In particular, we consider the percentage change from

5% to 25% (assuming error in the experimental estimates) in increments of 10%.

The expression representing the percentage change is altered by only adjusting Kd

while holding Qd = CaPl + Q0 and Cd = Ca, where Ca and Q' represent the linear

parameter values provided in Table 2.1 and PaP represents the setpoint ABP given

in Table 3.1'. Figure 2-14 illustrates the resulting pressure-volume and differential

compliance curves which are utilized for the well controlled robustness analysis in

Section 6.4. Note that the form of the curves in Figure 2-14a resemble that in Figure 2-

13.

The state equations governing the heart and circulatory model with the nonlin-

ear systemic arterial compliance here are given by Equations (2.19)-(2.24) in which

Equation (2.20) is replaced by the following equation:

dPa(t) _ 41(t) - 4a(t)
dt 6(Q"ax - QO)e-Pa(t). (2.49)

This equation is determined from the derivative of Equation (2.43) with respect to

t and KCL. The initial set of pressures may also be determined from solution of

Equations (2.30)-(2.37) in which the systemic arterial compliance is considered to be

9PP may be approximated from the average pulse pressure generated by the linear systemic

arterial compliance model.
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Figure 2-14 (a) Nonlinear pressure-volume relationships of the systemic arteries
along with (b) their corresponding differential compliance curves against which the
identification method presented in Section 6.2.4 is assessed.
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2.5.2 Third-Order Systemic Arterial Compartment Model

The arterial pulse contour changes significantly as we consider it at different points in

the arterial system. In particular, as we move further away from the heart, the systolic

upstroke becomes steeper, more narrow, and achieves a greater maximum pressure,

while a hump in the diastolic downstroke becomes more prominent10 . These changes

are due to wave phenomena supported by the distributed nature of the arterial sys-

tem. Despite this fact, our nominal, lumped parameter model of the systemic arterial

compartment provides an accurate representation of the pulse contour at the aorta

(with the exception of the high frequency dicrotic notch). This may be explained by

0The high frequency components of the pulse contour also diminish (e.g., dicrotic notch) as

we move further away from the heart due to viscous effects. However, these effects are generally

considered to be relatively small in the arterial system.
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arguments made by Noordergraaf [60] as follows. The arterial system is a branching

collection of tapered vessels with varying elastic properties. A wave reflection can

occur not only at its point of termination (systemic microcirculation which repre-

sents a high impedance load responsible for positive wave reflections ) but also at

any point within the arterial system where its properties change (e.g., change in ves-

sel compliance or vessel bifurcation). The complexity of the reflection sites as well

as their varying distances from the aorta result in reflected waves with large phasic

differences which generally tend to mitigate the cumulative effects of these waves (de-

structive interference). However, the large phasic differences become less significant

when considering reflected waves with long wavelengths (manifested as low frequency

temporal changes in the ABP waveform). Thus, these waves add constructively and

are actually felt by the aorta. The important point is that these wavelengths are long

with respect to the dimension of the arterial system such that the arterial system

behaves as a single blood reservoir (capacitor). Noordergraaf's arguments also allow

us to conclude that our lumped parameter model provides an accurate representation

of the low frequency components of peripheral arterial pressures, even though it is

not valid for the high frequency pulsatile components.

Since the identification methods in Part II primarily consider only low frequency

fluctuations, our nominal model of the systemic arterial compartment seems to be

adequate for any particular site in the arterial system. However, we present an

identification method in Chapter 7 that considers the pulsatile components as well.

In order to evaluate the application of this method to peripheral ABP waveforms

(which are more readily available from measurement), we include here a model of

the systemic arterial compartment that is capable of emulating these waveforms.

Since the construction of distributed models is beyond the scope of this thesis, we

must resort to a more complex, lumped parameter model. Fortunately, such models

have proven to be able to account for much of the peripheral arterial pulse contour,
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especially their diastolic portions [18,60]. As will be implied in Chapter 7, accurate

representation of the diastolic portion of the peripheral ABP waveform is most critical

for our purposes.

As we have discussed, from the perspective of the aorta, the systemic arterial

compartment appears to consist of a single, lumped capacitor. However, from the

perspective of a peripheral artery, the blood is stored throughout the arterial sys-

tem, from the large, elastic arteries to the smaller, muscular arteries. Hence, we

particularly consider the lumped parameter model in Figure 2-15 which consists of

two capacitors reflecting the central, elastic (e) and peripheral, muscular (m) arter-

ies separated by an inductor (L) representing the inertial effects of moving blood

between these compartments. This model has previously been demonstrated to rep-

resent accurately the diastolic portions of the radial arterial pulse [18]. Furthermore,

the model here is intuitively pleasing in terms of its limiting behaviors. The model

exhibits sustained oscillations when Ra -* oc. Theoretically, this is what one might

expect in the actual distributed arterial system, because the wave at its terminal

point would be reflected back perfectly with an infinite impedance load. This theory

is supported by experimental studies in which the magnitude of the diastolic hump

was found to increase with peripheral resistance [18]. Additionally, the model behaves

like a single lumped capacitor with compliance (Ce + Cm) in parallel with a resistor

as the considered frequencies tend to zero.

The precise dynamics of the model may be determined from its characteristic

equation which is given as follows:

1 2Ce±Cm 1
S+ A2 + m A + 1 =0. (2.50)

RaCm CeCmLe RaCeCmLe

Hence, the impulse response (h(t)) characterizing this model as well as the diastolic

decay may take on three different forms depending on the roots of the characteristic

equation. However, only one of these three forms has proven to reflect accurately the
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Figure 2-15 Third-order model of the systemic arterial compartment for the purposes
of emulating peripheral ABP waveforms.

q1(t) 4e(t) 4a(t)

Pe(t) PNt) AP(t)

Le Ra

Ce Cm

diastolic decay [18] and this form is given as follows:

h(t) = A1e7 + 2jA 2 je icos(wit + LA 2 ), (2.51)

where the unknown terms here may b

The governing state equations of I

dPe(t)

dt
dPm(t)

dt
d4e(t)

dt

e determined from the model parameters [18].

the model in Figure 2-15 are given as follows:

_ 41(t) - 4et) (252)
Ce

S4e t) - a(t) (2.53)
Cm

Pe(t) - Pm(t) (2.54)
Le

where

By substituting Equations (2.52)-(2.54) for Equation (2.20) and Equations (2.55)-

(2.56) for Equation (2.25)-(2.26), we have the complete set of state equations char-

acterizing the entire heart and circulation which incorporates the model here. Since

an inductor is equivalent to a short-circuit under static conditions, we may utilize

Equations (2.30)-(2.37) to determine the initial set of pressure with Ca = Ce + Cm.
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We particularly consider the following parameter values: Ce=1.4 5 ml/mmHg,

Cm=0.15 ml/mmHg, Le=0.025 mmHg/(ms - s2), QO = C -Q', and Q' = QO -QO

These parameters are chosen to emulate the reflections in the diastolic portion of

the Finapres ABP waveform (Figure 2-16). As can be seen from this figure, the

transformation from central arterial pulse contour (Pe(t)) to peripheral arterial pulse

contour (Pm(t)) resembles that seen in the actual distributed system. We finally note

that the nonlinear arterial compliance model in Section 2.5.1 may be incorporated in

the linear model here particularly in place of the large, central arterial compartment

in order to model simultaneously the nonlinear arterial compliance and peripheral

ABP waveform.

Figure 2-16 (a) Finger artery pressure obtained with the Finapres from a human
subject. (b) Model-generated central arterial pressure Pe(t) and peripheral arterial
pressure Pm (t). Note that the model heart rate was set to 50 bpm here in order to
match the human data.
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Chapter 3

Cardiovascular Regulatory System

and Perturbations

The identification methods that we consider in Part II largely involve the analysis

of resting hemodynamic fluctuations at frequencies below the mean heart rate using

the techniques of linear least squares estimation. Since these techniques only consider

the second-order statistics of the measured system input-output data [47,79] (see Sec-

tion 4.2), we require a model that is capable of exhibiting reasonable low frequency

hemodynamic variability in terms of power spectra, the frequency domain character-

ization of second-order statistics. However, by itself, the nominal model of the heart

and circulation presented in Chapter 2 cannot at all account for hemodynamic fluctu-

ations below the mean heart rate. These fluctuations are due to ongoing physiologic

perturbations to the cardiovascular system disrupting homeostasis and the dynamic,

compensatory response of the regulatory system. In this chapter, we consider model-

ing the cardiovascular regulatory system and resting physiologic perturbations such

that the power spectra of the hemodynamic fluctuations at frequencies below the

mean heart rate are reasonably represented. However, little is generally known about

the precise nature of these power spectra with the exception being the spectra of
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those few signals which are readily available from measurement (see Section 3.1.2).

Hence, we must resort to constructing a model with the specific aim of reasonably

representing the low frequency spectral content of readily available signals and with

the assumption that the low frequency spectral content of the remaining model sig-

nals will also be reasonably accounted for as a consequence. The extent to which the

assumption actually holds may not be so critical, since we are interested in practical

identification methods in Part II which require only readily available signals. As dis-

cussed in Chapter 1, these signals include arterial blood pressure (ABP), heart rate,

instantaneous lung volume (ILV), and left ventricular flow rate (cardiac output, CO).

We begin this chapter by providing relevant background material concerning car-

diovascular regulation and low frequency hemodynamic variability (Section 3.1). We

then present our model of the short-term cardiovascular regulatory system (Sec-

tion 3.2) followed by our model of the ongoing physiologic perturbations that occur

during resting conditions (Section 3.3). We next summarize the major properties of

our complete, nominal model of the cardiovascular system which consists of these

two models together with the nominal heart and circulatory model of Chapter 2

(Section 3.4). We conclude this chapter by demonstrating that the forward model

generated power spectra indeed resembles experimental human data (Section 3.5).

3.1 Background

We present here background material concerning cardiovascular regulation and low

frequency hemodynamic variability which essentially provide the rationale for the

models of the short-term regulatory system and resting physiologic perturbations

presented in Sections 3.2 and 3.3. In particular, we first provide a brief description

of the relatively well understood cardiovascular regulatory system (Section 3.1.1).

We then summarize some of the relevant findings in the literature related to less
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understood low frequency hemodynamic variability which reveal some insight into

the nature of resting physiologic perturbations as well as regulatory system dynamics

(Section 3.1.2).

3.1.1 Cardiovascular Regulation

Cardiovascular regulation is a highly complex process aimed at maintaining home-

ostasis largely through multiple feedback and control systems. Regulation occurs at

both local (intrinsic control) and global (extrinsic control) levels. Intrinsic control

involves the regulation of local vascular resistance by each individual tissue bed in or-

der to match local blood flow rate to metabolic demand. This autoregulatory scheme

would not be realizable if ABP, which may be considered to be the pressure gradient

across each tissue bed, were not held constant. Extrinsic control, in fact, involves the

regulation of ABP as well right atrial pressure (and/or volume). The mechanisms

responsible for extrinsic control depend on the specific time scales considered. In

the short-term (seconds to minutes), negative feedback mechanisms mediated by the

autonomic nervous system play the principal role'. These feedback systems include

the arterial and cardiopulmonary baroreflex arcs which regulate ABP and right atrial

pressure through the modulation of, for example, total peripheral resistance (TPR)

and heart rate (see Section 3.2.1 and 3.2.2). Another of these feedback systems is

the arterial chemoreflex arc which is also responsible for regulating ABP; however, it

only plays a significant role during periods of hemodynamic stress (e.g., ABP below

80 mmHg). The baroreflex systems contribute little to cardiovascular regulation in

the long-term (hours to days), because they will eventually adapt to the pressure lev-

els to which they are exposed. Rather, on these longer time scales, extrinsic control

'There are also negative feedback mechanisms mediated by fast acting hormonal systems; how-

ever, we assume their contribution to short-term regulation is small as compared to the autonomic

nervous system.
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is mediated by negative feedback hormonal systems which regulate pressures mainly

through modulation of extracellular fluid volume. The renin-angiotensin-aldosterone

system is the principal hormonal system involved over these longer time scales. As

will be discussed in Section 3.1.2, this system seems to play some role in short-term

regulation as well. For a complete treatment of cardiovascular regulation, see, for

example, [10,32].

3.1.2 Low Frequency Hemodynamic Variability

Power spectral analysis of resting heart rate and ABP has been extensively investi-

gated over the past 25 years (see, for example, [1,2,4,37,40,61,68]) and has provided

much of the current knowledge on the dynamical nature of resting physiologic per-

turbations to the cardiovascular system as well as the regulatory system 2. Three

prominent peaks (centered at frequencies of -0.02 Hz, ~0.1 Hz, and ~0.2 Hz) have

been identified in the power spectrum of short-term, resting heart rate and ABP (be-

low the mean heart rate frequency), but one or more of these peaks may not be present

in a given spectrum [2,37]. As will be discussed below, the mechanisms responsible for

eliciting these peaks, particularly the two lower frequency peaks, have not been fully

elucidated. However, the dynamical roles of the parasympathetic and #-sympathetic
2 By itself, power spectral analysis cannot distinguish between the physiologic perturbations and

the regulatory system dynamics. Hence, it is rather limited in terms of providing an understanding of

the mechanisms responsible for generating low frequency hemodynamic fluctuations. However, when

utilized in conjunction with experimental interventions (e.g., pharmacological autonomic blockade

and pacing) as is the case in most of the investigations described in this section, power spectral

analysis can provide such an understanding. As discussed in Section 1.1, system identification is

the preferred approach for understanding the mechanisms responsible for eliciting low frequency

hemodynamic variability, because it can distinguish regulatory system dynamics from physiologic

perturbations during nearly normal physiologic conditions. In fact, system identification methods

are now beginning to receive increased recognition in this regard [61].
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nervous systems in eliciting the heart rate peaks have been explained to some extent

through an experiment conducted in our laboratory which utilized pharmacologic

autonomic blockade in conscious dogs [2]. In this experiment, administration of a

parasympathetic blocker (glycopyrrolate) completely abolished the highest frequency

peak and partially diminished the two lower frequency peaks. The additional admin-

istration of a 3-sympathetic blocker (propranolol) completely abolished the two lower

frequency peaks. The administration of propranolol alone partially diminished only

the two lower frequency peaks. Hence, as mentioned in Section 1.2, the parasympa-

thetic and 3-sympathetic nervous systems are exclusively responsible for governing

heart rate. These two systems may be thought of as lowpass filters with the sympa-

thetic filter having a lower cutoff frequency (<-0.15 Hz versus -0.5 Hz). That is,

the parasympathetic system is able to respond more quickly to its inputs than the

relatively sluggish sympathetic system.

The highest frequency peak, which is relatively well understood, is elicited by

respiratory activity whose rate is normally high enough such that only the parasym-

pathetic nervous system is excited [2]. This peak is centered at the respiratory fre-

quency and has been found to move with shifts in the respiratory rate [37]. Of course,

during random interval breathing, respiratory activity excites both parasympathetic

and #-sympathetic nervous systems eliciting fluctuations in heart rate and ABP over

a significantly wider frequency range [8,59]. In a study conducted in our laboratory in

atrially paced conscious dogs, it was found that ABP fluctuations at the respiratory

frequency were substantially diminished suggesting that ABP fluctuations due only

to respiratory induced intrathoracic pressure variations are relatively small [1]. Sev-

eral distinct physiologic mechanisms are believed to be responsible for mediating the

heart rate fluctuations at the respiratory frequency. These fluctuations are referred to

as respiratory sinus arrhythmia, the phenomenon in which heart rate increases with

inspiration and decreases with expiration. The mechanisms include the baroreflex

73



systems which are excited by the intrathoracic pressure changes and a direct neural

coupling mechanism between respiration and heart rate. Our laboratory has found,

through cardiovascular system identification, that this latter mechanism plays a sig-

nificant role in short-term cardiovascular regulation in humans (see Section 3.2.3) [59].

The two lower frequency peaks are less understood but are generally considered

to be due to vasomoter activity perturbing TPR and thus exciting the autonomically

mediated baroreflex systems [1, 2, 43]. This belief is supported, but not proven by,

numerous studies, some of which are described below.

Several studies have implicated these low frequency peaks to thermoregulatory

mechanisms inducing fluctuations in vasomoter tone [43,48]. For example, fluctua-

tions in skin blood flow, heart rate, and ABP were found to be diminished in humans

in a cool environment [48]. In the study described above in atrially paced conscious

dogs, low frequency ABP fluctuations were not attenuated indicating that these fluc-

tuations are not caused by heart rate fluctuations [1]. This study also demonstrated

that, with pharmacologic blockade of the renin-angiotensin system in addition to the

atrial pacing, low frequency fluctuations in ABP substantially increased. Although

the dynamics of the renin-angiotensin system are relatively slow, it still appears to

play a role in short-term regulation through possibly contributing to the establish-

ment of the system operating point. Perhaps because it is quite conceivable that

the relatively sluggish thermoregulatory system may play a similar role in short-

term regulation, the investigators of this study hypothesized a different mechanism

for the generation of low frequency fluctuations : "Local vascular beds regulate local

resistance to match flow to demand. The renin-angiotensin system plays a role in con-

trolling the resultant variability in peripheral resistance, whereas residual variability

is compensated for by the heart rate variation through the baroreceptor reflex."

Studies in conscious dogs and cats under conditions of hemodynamic stress, such

as hemorrhage, have revealed prominent 0.05 Hz oscillations in ABP and heart rate
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which are referred to as Mayer waves [6,50]. In a study conducted in our labora-

tory in conscious, hemorrhaged dogs, Mayer waves were concluded to be dependent

on sympathetic activation, because these oscillations were not elicited during base-

line conditions and were present during hemorrhage with and without pharmacologic

parasympathetic blockade [50]. In this study, heart rate variations at 0.05 Hz were

considered to be due to the arterial baroreflex system as heart rate was found to

lag ABP, a result that is corroborated by a simple computer study [49]. This latter

study also demonstrated that system resonance in the TPR baroreflex feedback loop

could be responsible for these oscillations. However, it has been hypothesized that

a central oscillator or rhythmic smooth muscle contraction in systemic arteries could

be responsible as well [6]. In perhaps a similar vein, the mid-frequency peak in hu-

mans is usually only seen upon standing in which prominent -0.1 Hz oscillations in

heart rate and ABP are elicited [68]. It has been demonstrated through computer

simulation that this "posture" peak could also reflect the resonance in feedback loop

between ABP and TPR [24]. A common mechanism responsible for both the 0.05 Hz

fluctuations in hemorrhaged dogs and the -0.1 Hz oscillations in standing humans

seems quite possible, but may not be probable [50], through increased sympathetic

activity.

These studies demonstrate that low frequency ABP fluctuations are not due to

heart rate; however, they do not necessarily imply that low frequency heart rate

fluctuations are due exclusively to ABP. In fact, we have recently found, through

cardiovascular system identification (see, for example, Figure 5-3), significant low fre-

quency fluctuations in heart rate which are not attributable to (linearly independent

of) ABP as well as random-interval respiratory activity [3, 59]. It is possible that

these fluctuations may be due to the cardiopulmonary baroreflex system; however,

since respiratory activity is strongly linearly correlated with right atrial pressure, this

is probably not entirely the case. Hence, we hypothesized that these fluctuations

75



may also be due to other factors such as higher brain center activity. It should be

noted that none of these studies preclude stroke volume variations as a potential

mechanism for inducing low frequency ABP fluctuations. Such variations could, for

example, occur through fluctuations in systemic venous dead volume.

Power spectral analysis of long-term fluctuations in heart rate and ABP have

revealed fractal behavior (1/f ', a near 1) on a log-log scale [40,44,58,77]. For exam-

ple, the power spectra of 24 hour heart rate recordings from healthy human subjects

have demonstrated 1/f' (a ~ 1) behavior over four decades of frequency (~ 10-5

to 10-1 Hz) [40, 77]. It is quite possible that this behavior was not seen in higher

frequency bands because of the frequency response of short-term cardiovascular reg-

ulatory mechanisms. Fractal behavior, in which small events occur more frequently

than large events, implies scale invariance. That is, heart rate and ABP (at fre-

quencies below the mean heart rate) signals appear the same regardless of the time

scale considered. This type of behavior is exhibited by a wide variety of physical

systems, ranging from electrical resistors to earthquakes [58]. The mechanisms re-

sponsible for the fractal behavior of most of these systems, including the long-term

cardiovascular regulatory system, are unknown which may lead one to consider the

possibility of a single unifying mechanism linking these seemingly different systems.

In a recent study from our laboratory, potential mechanisms responsible for fractal

behavior in long-term cardiovascular regulation were investigated [58]. In particular,

linear regulatory mechanisms coupling ABP, heart rate, cardiac output, and ILV in

conscious sheep were not found to be responsible for 1/f behavior. The investigators

of this study hypothesized that diffusive mechanisms associated with neural or local

hormonal regulatory processes may be responsible.
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3.2 Short-Term Regulatory System

Since we are interested here in accurately accounting for low frequency hemodynamic

fluctuations on the time scale of second to minutes, we need only to consider modeling

the short-term regulatory system. Fortunately, modeling the short-term extrinsic con-

trol system has been extensively investigated as well (see, for example, [23,55,84]). We

particularly choose the short-term extrinsic regulatory system of CVSIM as the basis

for our model here [23]. The CVSIM regulatory model provides for negative feedback

regulation of ABP via a simple dynamical arterial baroreflex system which behaves

essentially linearly when excited by small perturbations. Although this model, which

is based on experimental data from our laboratory [9], has been shown to generate

reasonable hemodynamic behaviors in terms of steady-state closed-loop gain, dynam-

ical response to step inputs, and stability, the simple model cannot possibly account

for all the dynamical behaviors of the actual arterial baroreflex arc. This highly

sophisticated system has been shown to exhibit complicated nonlinear behaviors in-

cluding, for example, hysteresis [51]. However, such complex behaviors are usually

elicited during extreme experimental conditions as opposed to the stable experimental

conditions of cardiovascular system identification data collection. Furthermore, non-

linear models have been shown to only provide a modest improvement with respect

to linear models in accounting for heart rate fluctuations observed from such stable

conditions [17]. Hence, this largely linear dynamical model seems to be adequate for

our purposes.

The CVSIM regulatory model also provides a convenient framework for the in-

corporation of models of the cardiopulmonary baroreflex arc and the direct neural

coupling mechanism between respiration and heart rate. These three models together

constitute our model of the short-term extrinsic regulatory system. In Sections 3.2.1-

3.2.3, we present each of these models with the nominal values of the parameters

that characterize them and describe their implementation. Although our heart and
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circulatory model lumps each of the individual tissue beds of the systemic circulation

into a single resistor (Ra), we also present a zeroth-order model of intrinsic control in

Section 3.3.2.

3.2.1 CVSIM Arterial Baroreflex

The CVSIM regulatory model is based on the conceptualization of the arterial (Ar)

baroreflex arc as the feedback system illustrated in the block diagram of Figure 3-1.

The feedback system is aimed at tracking a setpoint ABP (PP) through the following

sequence of events. The baroreceptors (pressure sensors located in the aortic arch and

carotid arteries) sense ABP and then relay this information via autonomic afferent

fibers to the autonomic centers in the brain. Here, the autonomic nervous system

(ANS) compares the deviation between the sensed pressure and P/P (error signal)

with zero and then sends commands via autonomic efferent fibers to the heart and

systemic circulation to adjust cardiac output (CO) and TPR such that the resulting

ABP will keep the error signal near zero. CO and TPR are specifically adjusted

through the control of the following four heart and circulatory parameters: heart rate

(F(t)), ventricular contractility (in terms of Cfe(t))3, QO(t) (which alters ventricular

preload), and Ra(t) (TPR). These four model parameters are no longer considered to

be constant, so we write them here and henceforth with the argument t.

We now describe the contents of each of the three blocks of the feedback system in

Figure 3-1 and include a description of model implementation which involves filtering

signals at higher sampling rates than that of the filter. It is important that no or

little effective aliasing results from this filtering process, because the effective system

dynamics responsible for data generation would be difficult to determine which would

'Although the maximum systolic pressure may increase with contractility, for simplicity, we only

consider autonomic control of C," (t) which will vary the ventricular end-systolic pressure-volume

relationships in terms of the slope of its linear portion as well as its shape (see Section 2.2.3).
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Figure 3-1 Block diagram of the feedback system representing the CVSIM arterial
baroreflex arc [23].
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impede our identification analysis in Part II [62]. Although the CVSIM arterial

baroreflex implementation performs reasonably in this regard, we describe a modified

version of this implementation below which further reduces aliasing effects.

The frequency response of autonomically mediated cardiovascular regulatory mech-

anisms is bandlimited at frequencies less than the mean heart rate [23], while pulsatile

ABP is bandlimited at frequencies about ten times the mean heart rate. This im-

plies that it would be computationally inefficient for the model baroreceptors to sense

ABP at each and every integration step (see Section 2.3.4). The model instead senses

average Pa(t) over the most recent 0.25 s interval every 0.0625 s (P(n), where n

here and henceforth denotes discrete-time at a sampling period of 0.0625 s). The

anti-alias filtering here (averaging) is implemented via Backward Euler integration

and delays the output by 0.125 s. It should be noted that the average integration

step is ~0.005 s which results in about a magnitude reduction in computation for

the chosen sampling period here. We could have considered an even larger sampling

period which could still satisfy our implementation goals here, but this would require

a more sophisticated anti-aliasing filter which would be more difficult to implement.

Hence, the baroreceptor block in Figure 3-1 may be viewed as a type of decimator.

The block representing the autonomic nervous system is a nonlinear, dynamical
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mapping between the coarsely sampled error signal (e(n) = Pa(n) - PIsP) and the

four more finely sampled controllable parameters of the heart and circulatory model.

This block specifically consists of four analogous, parallel branches each of which are

responsible for controlling one of these parameters. Each of these branches includes

three sub-blocks arranged in series as in Figure 3-2.

Figure 3-2 Block diagram of one of the four parallel branches comprising the ANS
block in Figure 3-1.

e(n) Static esat (n) p(n)+ G s(n) A X(n) X(n) Interpolator X(t)

The first sub-block is a static, nonlinear mapping which represents the ubiqui-

tously reported arterial baroreflex saturation characteristic [51]. The precise mapping

employed is given as follows:

esat(n) = 18atan (e(.) (3.1)k18J
This mapping indicates the limiting behavior of autonomic nervous control. That is,

the controllable parameters cannot be adjusted to arbitrarily large or small values.

The middle sub-block consists of a dynamical, LTI filter followed by a summer. In

particular, the filter represents an autonomically mediated effector mechanism which

indicates how the model decides to adjust each of the controllable parameters based

on the history of eat(n). The filter is specifically defined by a linear combination of

two unit area impulse responses, one (p(n)) of which characterizes the fast, parasym-

pathetic limb of the autonomic nervous system and the other (s(n)), the slower,

sympathetic limb (both a- and 1 -sympathetic sublimbs). Figure 3-3 illustrates p(n)

and s(n) along with their magnitude squared Fourier transforms. The sum of the

weighting constants (Gp, G,) represents the static gain of the LTI filter. The output
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of the filter, which is the mandated change in the controllable parameter (AX(n),

where X denotes any of the four parameters and A henceforth denotes "change in"),

is subsequently summed with a predefined, setpoint value (XP) in order to obtain

the value of the controllable parameter (X(n)) at the ensuing coarse time step. The

nominal static gain values of each of the filters as well as all the setpoint values are

provided in Table 3.1. Although the a- and ,3-sympathetic sublimbs are both char-

acterized by s(n), we indicate in the table which particular sublimb is considered to

be associated with each sympathetic effector mechanism. This allows us to model,

for example, the effects of propranolol which selectively blocks the /-sympathetic

sublimb by simply setting the appropriated gain values to zero.

It follows then that the last sub-block must be a type of interpolator. In particular,

in this sub-block, the controllable parameter values at each integration step (X(t))

are determined from X(n) through linear interpolation. However, linear interpolation

is a noncausal filtering operation which requires the next sample, that is, X(n + 1).

Hence, we may implement this filter by introducing a delay of 0.0625 s. In order for

the effective filter delay to mimic that of the impulse responses in Figure 3-3, the

0.0625 s delay together with the delay of 0.125 s from the baroreceptor block must

be nullified. This may be taken care of by implementing these impulse responses

advanced in time by 0.1875 s.

Of course, the heart and circulation block in Figure 3-1 may consist of any of the

set of models presented in Chapter 2. However, since these models are only capable

of handling a fixed heart rate, the block also includes an integral pulse frequency

modulation (IPFM) model of the sinoatrial node [7]. This intuitive model provides

a simple, nonlinear mapping from heart rate to the times of onset of ventricular

contraction. In particular, the IPFM model here uses the Backward Euler method to

integrate F(t) (in units of bps) over time until the integral is equal to one. At this

point, the ventricle initiates contraction through Equations (2.17)-(2.18) (in which
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Figure 3-3 (a) Parasympathetic effector mechanism impulse response p(n). (b)
Parasympathetic effector mechanism magnitude squared Fourier transform IP(f)12.
(c) Sympathetic effector mechanism impulse'response s(n). (d) Sympathetic effector
mechanism magnitude squared Fourier transform IS(f)12. These impulse responses
are derived from experimental dog data obtained from a study conducted in our
laboratory [9]. The estimated impulse responses from the experimental data actually
characterized the influence of autonomic input (both vagal and -sympathetic) to
the sinoatrial node on heart rate. The investigators of this study argued that the
o-sympathetic effector mechanism probably has similar system dynamics to s(n).
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T,i = 0.3VTi_, where the subscript i denotes the ith beat), the integral is set to

zero, and the integration is repeated.

In order to demonstrate that the effective system dynamics resulting from the

above implementation are largely known (aliasing is negligible), we performed the

following simple test. We first generated Pa(t) and F(t) from our nominal heart

and circulatory model in conjunction with a perfectly linear version of the arte-

rial baroreflex model in which the static saturation mapping (first sub-block in Fig-
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X(t) XG'' G^ GC G

F(t), bps 1.2 -0.017 -0.017 (3) 0 (0) 0

Ces(t), mmI"' 0.4,1.2 0.009,0.028 (/) 0 0 (/) 0r mmHmme

Ra(t), "m"g-s 1.0 -0.011 (a) 0 -0.065 (a) 0

Q0(t), ml 2600 26.5 (a) 0 90.0 (a) 0

Pressure setpoints: psP =94 mmHg

P!; rl)= 7.8 mmHg

Table 3.1: Summary of the nominal parameters values characterizing the arterial
(Ar) and cardiopulmonary (CP) baroreflex models. For a given row, the units of
the gain values are the ratio of the units of the corresponding X(t) to mmHg. The
specific sympathetic sublimb (a or /) corresponding to each weighting value of s(n) is
provided in parentheses. These values are taken from CVSIM [23] with the following
exceptions. The setpoint pressures are determined from the average pressures in the
uncontrolled model (see Figure 2-5), while the gain values of F(t) and Cj',(t) are
increased by 33% as explained in Section 3.3.3.

ure 3-2) was removed4 . We then estimated the nonuniformly sampled F(t) through

the continuous-time convolution of linearly interpolated Pa(t) - PaP with h(t) =

-0.017s(t) - 0.017p(t), where s(t) and p(t) are linearly interpolated, scaled versions

of the impulse responses in Figure 3-3 with the scale factor being 16 (uniform sam-

pling frequency) and their weightings are from Table 3.1. Since the resulting predicted

heart rate (Fre(t)) and the actual heart rate (Fact(t)) are nearly identical (see Fig-

ure 3-4), the effective system dynamics from model implementation are characterized

by the impulse response defined above.

4F(t) varies here due to the transient set up by the initial conditions.
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Figure 3-4 The blue trace, Fact(t), is generated by the model, while the red trace,
Fp,,e(t), is predicted as described in the text. The fact that these two signals are nearly
identical suggests that the baroreflex implementation results in minimal aliasing and
the effective system dynamics are essentially known.
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3.2.2 Cardiopulmonary Baroreflex

The less understood cardiopulmonary (CP) baroreflex are can also be conceptualized

with a feedback diagram similar to that in Figure 3-1 except the sensed pressure here

is generally considered to be the transmural pressure in the right atrium. Hence, our

model implementation of this baroreflex system is essentially the same as that of the

arterial baroreflex system presented in the previous section. The major difference in

implementation is that the model pressure that is sensed is specifically P"ra" (t-Pth(t),

which we henceforth refer to as "right atrial" transmural pressure (P2,, (t), RATP).

We also implement the following static saturation mapping for this baroreflex system:

esat(n) = 5 atan e(). (3.2)

This mapping as well as the nominal static gain values, which are also provided in

Table 3.1, are from [35].
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The table indicates that the cardiopulmonary baroreflex control of contractility

and heart rate are both omitted in the nominal model. Contractility control is ne-

glected simply due to a lack of available data. On the other hand, data addressing

the issue of heart rate control in humans do exist but are controversial [52]. In dogs,

the nature of the cardiopulmonary baroreflex control of heart rate is generally agreed

upon. That is, heart rate increases with right atrial pressure (positive static gain),

the so called Bainbridge reflex [10, 52]. For example, in one study in which the rela-

tive roles of the cardiopulmonary and arterial heart rate baroreflex systems in dogs

were examined, the static gain of the former reflex system was found to be about -3

times that of the latter reflex system with no nonlinear interaction reported between

the two systems [72]. However, the Bainbridge reflex has yet to be found in humans.

Consequently, some investigators believe it to be absent in humans [52], while others

think that confounding influences on heart rate due to other reflex systems render it

difficult to measure. In contrast to the Bainbridge reflex, in a recent study in humans,

investigators reported heart rate to decrease with increasing right atrial pressure (neg-

ative static gain) as well as increasing ABP [25]. These investigators specifically found

the static gain of the cardiopulmonary heart rate baroreflex to be approximately +2

times that of the arterial heart rate baroreflex with no nonlinear interaction between

the two systems. However, the investigators of another study in humans interpreted

similar data through a nonlinear coupling argument. In particular, these investigators

reported that reductions in right atrial pressure and/or volume augment the arterial

heart rate baroreflex [64]. Given that it is not even clear whether the static gain of

cardiopulmonary baroreflex control of heart rate is positive or negative, we choose to

set it to zero in our nominal model'. From Table 3.1, we finally note that if Pr,, (t)
5 1t should be noted that presence or absence of cardiopulmonary baroreflex control of heart

rate may play a critical role in the performance of the cardiovascular identification method. In

Section 5.4.1, we analyze the robustness of this method over a range of static gain values of the

cardiopulmonary heart rate baroreflex..
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increases, the reflex model will cause Ra(t) to decrease (negative gain value) which

will in turn result in a further increase in PIra,, (t). Hence, unlike the arterial baroreflex

model, the model here is not solely geared to track P"Ira, (t). Rather, since an increase

in Pra" (t) will increase Pa(t) within a few beats through CO, the cardiopulmonary

baroreflex model here is also aimed at contributing to Pa(t) regulation.

In addition to the conclusions in [64] described above, other experimental studies

(e.g., [51]) have found the arterial and cardiopulmonary baroreflex systems to be

nonlinearly coupled. These studies have particularly demonstrated that a substantial

drop in right atrial pressure leads to an increase in the static gain of the arterial

baroreflex system (see Section 6.1). Since this pressure does not vary over such

wide ranges during the relatively stable experimental conditions of cardiovascular

system identification data collection, we neglect modeling nonlinear interactions here.

Furthermore, other studies, as described above, have not reported any nonlinear

interactions between the two reflex systems.

3.2.3 Neural Coupling Between Respiration and Heart Rate

Our laboratory has been interested in the quantitative characterization of the direct

neural coupling mechanism between respiration and heart rate [59, 76,83]. As dis-

cussed in Section 1.1, our approach has been based on a system identification analysis

of fluctuations in physiologic signals which include instantaneous lung volume (ILV)

and heart rate. Our characterization of this mechanism is in terms of an LTI impulse

response relating ILV fluctuations (independent of ABP fluctuations) to heart rate

fluctuations. There are two important features of the estimated dynamics of this

impulse response. The first feature is that the impulse response is noncausal [59,83]

indicating that heart rate changes actually anticipate changes in ILV. The second

feature is that the impulse response may be well represented by a linear combina-

tion of two other estimated impulse responses, one of which represents the effects of
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parasympathetic activity on heart rate and the other, sympathetic activity on heart

rate [83].

Our model of the direct neural coupling mechanism, which contributes to the

respiratory sinus arrhythmia phenomenon, is now readily apparent. In particular, we

define an impulse response relating ILV fluctuations to heart rate fluctuations as a

linear combination of s(n) and p(n) in Figure 3-3, each of which are advanced in time

by 1.5 s to account for the noncausality. The weighting values are taken from [59]

and are -0.0002 bps/ml for s(n) and 0.00012 bps/ml for p(n). These values indicate

that upon inspiration there is a withdrawal of parasympathetic activity followed by

a withdrawal of a-sympathetic activity. In order to implement this model, we must

develop a model of an ILV signal (Q1s(t)). In Section 3.3.1, we describe such a model

in terms of continuous-time functions. Thus, for the purposes of implementation,

which may be achieved prior to the determination of the pressures, volumes, and flow

rates of the cardiovascular model, we first generate Q1s(t) and sample it analogously to

the baroreceptor block in Figure 3-1 (Qts(n)), and then after filtering6, we interpolate

the output AF(n) analogously to the last sub-block in Figure 3-2 in order to obtain

AF(t) due to the direct neural coupling mechanism.

3.3 Resting Physiologic Perturbations

In contrast to the heart and circulation and the short-term regulatory system, a

relatively small number of models of resting cardiovascular perturbations have been

developed for the purposes of eliciting and analyzing low frequency hemodynamic

variability (see [24, 49]). This is perhaps due to the limited understanding of these

perturbations. In this section, we present models of three exogenous physiologic per-

turbations which are motivated by published experimental findings summarized in
6 The filtering may be achieved by convolving Q.r(n) with -0.0002s(n) + 0.00012p(n) and then

shifting the output back in time by 1.5 s.
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Section 3.1.2 and describe their implementation. In particular, in Section 3.3.1, we

describe the incorporation of a model of random-interval (and fixed-rate) breathing

into the forward model. Then, in Section 3.3.2, we present a simple model of TPR fluc-

tuations reflecting the autoregulation of local vascular beds. Finally, in Section 3.3.3,

we describe the inclusion of 1/f heart rate fluctuations into our model.

3.3.1 Respiratory Activity

In this section, we present models of Q1,(t) during both fixed-rate and random-interval

breathing so that the direct neural coupling mechanism between respiration and heart

rate in Section 3.2.3 may be implemented. However, as mentioned in Section 3.1.2,

respiratory activity also perturbs the cardiovascular system through mechanically

induced changes in intrathoracic pressure (see voltage sources in Figure 2-1). We

thus conclude this section with a simple model of human ventilatory mechanics which

maps Q1s(t) to Pth(t).

During fixed-rate or metronome breathing, Q1s(t) strongly resembles a sinusoid.

Hence, a simple, yet accurate, model for such a signal is given as follows:

Q+(t = Qfr+ 1 - cos , (3.3)Ql~) f 2 ( Tr )

where Qjr, the functional residual volume of the lungs, is set to 2200 ml, Qt, the

tidal volume, is set to 500 ml, and T, the respiratory period is set to 5 s [45, 85].

The model here may also be considered to represent normal, spontaneous breathing

which, at least to first approximation, appears to be sinusoidal as well. The purpose

of this simple model is made evident in Sections 3.3.3 and 3.5. It should be noted

that sinusoidal models of respiratory activity have been previously considered [24,49].

In our random-interval breathing protocol, the period of each respiratory cycle

is determined from the outcome of an independent probability experiment governed

by a modified exponential probability density function which allows the respiratory
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period to range from one to 15 seconds with a mean of five seconds [8]. The subjects

are allowed to control their tidal volume so that normal ventilation is not disrupted.

Equation 3.3 also serves as the basis for a model of Q1s(t) resulting from this protocol.

In particular, each respiratory cycle is defined to be one period of the sinusoid in this

equation with the period determined from an experimental outcome of the probability

experiment. The tidal volume of each respiratory cycle is chosen such that the alveolar

ventilation rate from random breathing is identical to that from metronome (met)

breathing. Alveolar ventilation rate, which is the flow rate of air from the atmosphere

to the alveoli, may be defined as a continuous function of time as follows:

4aiv(t) = ,QtU)Qds tj < t < tj +Tr(j), (3.4)
Tr(j)

where Qds, the dead space (no alveoli) in the airways (air), is set to 150 ml [85] and

the argument j denotes the jth respiratory cycle while the subscript j denotes the

commencement of the jth respiratory cycle. That is, 4alv(t) is a stepwise, continuous

process in which the duration of each step is given by the respiratory period. Since

the tidal volume and respiratory rate are constant during fixed-rate breathing (Equa-

tion (3.3)), the alveolar ventilation rate is constant overall time (4111 = 70ml/s). The

following model of Q1n(t) generated by our random-interval breathing protocol with

jai(t) = 411t results:

qmet Tr(i) + Qs 27r(t - tjQiU(t) = Qfr + qav T Cos , ) t< t < ti + Tr (j),

(3.5)

where

1
Tr(j) = 1 - ln(1 - x(j)(1 - e-2.92)) (3.6)

0.2083

with x(j) being the outcome of the jth independent probability experiment defined

by a uniform distribution ranging between zero and one [8].
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The mapping from Q1,(t) to Pth(t) is based on the simple model of ventilation

illustrated in Figure 3-5 in terms of its electrical circuit analog. The electrical com-

ponents may be interpreted similarly to those in Figure 2-1 by considering air here

rather than blood (see Section 2.1). Hence, the resistor may be thought of as a con-

duit for airflow from the atmosphere to the lungs and vice versa, while the capacitor

may be interpreted as an air volume container representing the lung compartment.

This compartment is parametrized by a dead volume as well as a compliance simi-

lar to Equation (2.1). Given this constitutive relationship along with the governing

differential equation characterizing the model, Pth(t) may be determined from Q1"(t)

through the following equation:

Pth(t) = Paiv(t) - C-(QIU(t) - QI), (3.7)

where

Paiv(t) = -Rair+ Q(t) (3.8)
dt

with Rair = 0.0026 (mmHg-s)/ml, Clu = 252.5 ml/mmHg, and Q0 = 1190 ml [45].

Note, from Equations (2.7)-(2.9) and Equations (2.19)-(2.24), that Paive(t) and the

derivative of Equation (3.7) is necessary for model implementation. The derivative

of this equation is given as follows:

dPth(t) 1d2 d
= -Rtr 2tuff Olnt).(3.9)

dt di2  C idt

3.3.2 Autoregulation of Local Vascular Beds

Autoregulatory processes controlling local vascular resistance not only influence cen-

tral hemodynamic variables, such as ABP and CO, through TPR but are influenced

by these hemodynamic variables as well. However, our systemic microcirculatory

model is lumped into a single parameter Ra(t) and little is known about the system
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Figure 3-5 Model of ventilatory mechanics in terms of its electrical circuit analog.
As mentioned in Section 2.2.1, Patm(t) = 0 mmHg.

dQ jut)
dt

R air Palv(t)

C lu

Pth(t) 0

dynamics characterizing autoregulatory processes. Hence, we resort to developing a

simple model representing the fluctuations in Ra(t) due to the cumulative effects of

the autoregulation of local vascular beds which is based on a stochastic framework

and neglects input influences from all hemodynamic variables. To this end, consider

all the tissue beds of the systemic microcirculation as a set of N parallel, variable

resistors with N large. In terms of our heart and circulatory model, this may be

thought of as decomposing or unlumping Ra(t) into such a set of resistors. Let the ith

variable resistor in the set have conductance Gi (t), which may be modeled probabilis-

tically in terms of a density function. The mean of the probability density function

for a fixed time is equal to - ml/(mmHg-s) so that the mean lumped conductance is 1

ml/(mmHg-s), while the variance is set to the arbitrary value of -. (ml/(mmHg-s))2 ,

where U2 is any nonzero, finite value. We assume that each variable resistor in the set

may be characterized by this probability density function and that the conductance

value of each resistor is independent of the conductance values of the other variable

resistors. Then, by the Central Limit Theorem, Ra(t), for a given time, may be es-

sentially characterized by a Gaussian cumulative distribution function with a mean

of 1 (mmHg-s)/ml and variance or2 ((mmHg-s)/ml) 2 [28].

Although the assumption of independence of each of the conductance values seems

somewhat reasonable, the time evolution of Ra(t) due to autoregulatory processes

cannot be independent over time. That is, Ra(t) here is not a white noise process,
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but rather a highly colored process. Unfortunately, the precise frequency response

characteristics of autoregulatory processes is largely unknown; however, experimental

data from isolated dog skeletal muscle suggest that these processes are relatively

slow with a half-power bandwidth <~0.05 Hz [10]. Furthermore, provided that the

hypothesis that autoregulatory processes are responsible for the -0.1 Hz posture peak

in humans (see Section 3.1) is indeed correct, then these processes must be somewhat

significant near this frequency. Hence, a zeroth-order model of the fluctuations in

Ra(t) about its mean value due specifically to autoregulatory processes, which we

henceforth refer to as nR (t), may be considered to be a Gaussian white noise process

with zero mean and variance or that is bandlimited to 0.1 Hz.

We implement this simple model as follows. A vector of independent Gaussian

random variables with zero mean and variance a' is generated. This vector, which is

considered to be a discrete-time process at a sampling period of 0.0625 s, is filtered

with the following finite impulse response function:

0.2sinc(0.27rn) -960 < n < 960
h(n) = ,(3.10)

0 otherwise

whose frequency response is bandlimited to 0.1 Hz. Then, the filtered signal (na(n))

is interpolated as described in the last sub-block in Figure 3-2 arriving at nRa (t)

which is considered to be an additive, exogenous disturbance to Ra(t). Finally, we

note that u 2 is considered to be a free parameter whose value is chosen based on a

set of experimental data as described in Section 3.3.3.

3.3.3 1/f Heart Rate Fluctuations

As discussed in Section 3.1.2, ABP and respiratory activity (which is strongly cor-

related with RATP) are not the only factors responsible for perturbing heart rate.

Other factors, which may include higher brain center activity impinging on the au-

tonomic nervous system, most likely play a significant role in the generation of heart
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rate fluctuations as well. Certainly, the development of a physical model of these

largely unknown factors is not feasible. However, it is well known that heart rate

fluctuations demonstrate fractal behavior over at least four decades of frequency in

which the highest frequency decade is within the frequency band considered by the

identification methods in Part II. For these reasons, we consider here the introduction

of 1/f heart rate fluctuations as an additive, exogenous perturbation to our nomi-

nal model. Since heart rate fluctuations have been found to be almost exclusively

governed by the autonomic nervous system [2], we particularly consider a 1/f exoge-

nous disturbance as an input to a filter characterized by the parasympathetic and

sympathetic (-sympathetic sublimb) impulse responses in Figure 3-3.

Model implementation here is similar to that described in Section 3.3.2. A discrete-

time, 1/f process is generated at a sampling period of 0.0625 s (WF(n)). Instead of

filtering WF(n) with the impulse response in Equation (3.10), it is convolved with

h(n) = 12s(n) + 12p(n). (The two weighting values here are arbitrarily chosen, and

as will be made evident below, are not important as long as they are the same.) The

filtered process (nF(n)) is interpolated as described by the last sub-block in Figure 3-

2 arriving at nF(t) which is considered to be the additive, exogenous disturbance to

F(t). All that is left is to describe the simulation of the 1/f process.

Several methodologies for the generation of 1/f processes have been developed

[42,58,74]. We consider here the conceptually simple method in which a 1/f process

is simulated by passing a white noise process through an ARMA filter whose bode plot

is nearly 1/f over the frequency range of interest [42,74]. The filter design strategy is

actually quite simple. Real-valued poles and zeros are chosen in an alternating fashion

such that a 1/f process may be approximated as illustrated in Figure 3-6. Note that

the filter design method here can achieve a 1/f bode plot with arbitrary accuracy

simply through the inclusion of additional pole-zero pairs. We are interested here in

designing a filter whose bode plot is 1/f over four frequency decades ranging from
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10-4 Hz to 1 Hz. We consider the placement of one pole-zero pair per a decade (four

pole-zeros pairs overall) as described in [42,74]. This pole-zero placement scheme has

been demonstrated to deviate from true 1/f behavior by at most ~5% [42,74]. The

resulting frequency location of the poles (Fp) and zeros (Fz) are given as follows:

F - 10 -3.5+i 0 < i K 3 (3.11)

F, = 1 0 -3.25+i 0 < i < 3. (3.12)

Figure 3-6 Pole-zero placement strategy for the design of an ARMA filter with nearly

1/f bode plot. The blue line indicates the desired 1/f bode plot, while the red line

indicates the approximation given one pole-zero pair per decade. Adapted from [74].
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Since the amplitude of the 1/f process may be set to any value through the

adjustment of the variance of the white noise process, we simply assign a scale factor of

unity to the continuous-time filter here. In order to implement this filter, we must first

discretize it as described in [21]. We particularly utilize the bilinear transformation

which maps stable, continuous-time poles and zeros to stable, discrete-time poles and
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zeros [62]. The bilinear transformation, which is equivalent to trapezoidal integration

in the time domain, is given as follows:

1 1 - rFT,
f = 2, (3.13)27r 1+wrFT8 '

where f is the discrete-time pole or zero and T, is the sampling period. It can be

shown that the bilinear transformation warps the high frequencies [62]. That is, the

high frequency content of the filter is not preserved after transformation. However,

if the bandwidth of the continuous-time system is small with respect to the sampling

frequency (oversampling), then the entire frequency response will be preserved. This

is the case here in which the bandwidth of the frequency response is <1 Hz, while,

from above, the sampling frequency is 16 Hz (T,=0.0625 s). The discrete-time filter

defined here may now be convolved with a vector of independent Gaussian random

variables of zero mean and variance A2 in order to arrive at WF(r) -

Like ao2 , A2 is considered to be a free parameter. The values of these two pa-

rameters are chosen such that the model power spectra match experimental power

spectra determined from a set of data previously obtained from 12 NASA astronauts

breathing at a fixed-rate of 0.25 Hz in the standing posture. The data set consists

of continuous, noninvasive measurements of heart rate and finger ABP (Finapres) as

well as ECG-derived ILV (which is uncalibrated) for each subject. The properties of

this particular data set suit our purposes here quite well. The fixed-rate breathing

protocol ensures that the two lower frequency peaks are not corrupted by respira-

tory activity. The standing posture is in accord with our model of the pulmonary

arterial resistance described in Section 2.2.2. Additionally, this posture allows us to

demonstrate that the model exhibits a system resonance that resembles the "posture"

peak (see Section 3.5). Finally, given the tremendous inter-subject variability in spec-

tra [2,61], it seems more reasonable to consider a number of subjects rather than a

single subject. For example, we could choose a subject who may have spectra that

are unlike any other subject. This may render our identification analysis in Part II
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less meaningful.

The specific procedure for choosing the parameter values based on this data set

is as follows. We compute the mean of the power in three nonoverlapping frequency

bands of heart rate and ABP over the group of 12 subjects (see Table 3.2). (The

method for computing the spectra is described in Section 4.4.) The free parameters,

a.2 and A2 , are then tuned such that the power in these frequency bands for F(t)

and Pa(t) are near their respective human mean values. It should be noted that we

also increased the static gain values of the arterial baroreflex impulse responses which

manipulate F(t) and Cfe(t) by 33% from their original CVSIM values in order to

satisfy reasonably this matching procedure (see Table 3.2). Based on this procedure,

we set or-= 0.035 (mmHg-s)/ml and A = 0.00008 bps. It is important to realize that

the values of these parameters significantly influence the results of the identification

analysis in Part II. Hence, in Part II, we actually consider a range of values for these

parameters which includes the nominal values determined here.

F(t) Power, bpm2  Pa(t) Power, mmHg 2

Frequency Bands, Hz Model Humans Model Humans

0.00-0.04 7.2 t 2.0 5.8 ± 3.5 3.9 ± 0.6 4.2 ± 3.0

0.04-0.15 4.1 t 0.8 5.7 ± 3.3 8.4 ± 2.0 8.0 t 4.1

0.15-0.40 1.9 ± 0.1 0.9 ± 0.5 2.9 ± 0.2 1.4 ± 0.5

Table 3.2: The mean and standard deviation of the power in three low frequency
bands of heart rate and ABP as determined from experimental human data and the
nominal model. The experimental values are determined from a set of 12 subjects as
described in the text, while the model values are computed from 10 different model
realizations with 4,(t) = 70 ml/s.
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3.4 Nominal Model Summary

In Section 3.5, we demonstrate the validity of the nominal model of the cardiovascular

system presented in Chapter 2 and Sections 3.2 and 3.3 in terms of the power spectra

of the signals analyzed in Part II. But first, in this section, we summarize the major

components of the nominal model as follows:

1. The heart and circulation is a lumped system consisting of six compartments

representing the left and right ventricles, the systemic arteries and veins, and

the pulmonary arteries and veins.

2. The short-term regulatory system includes arterial and cardiopulmonary barore-

flex systems as well as a direct neural coupling between respiration and heart

rate.

(a) The arterial baroreflex system senses ABP and adjusts the following pa-

rameters: heart rate, left and right ventricular contractility, systemic ar-

terial resistance (TPR), and systemic venous dead volume.

(b) The cardiopulmonary baroreflex system senses the effective RATP and

adjusts the following parameters: TPR and systemic venous dead volume.

(c) The controllable heart and circulatory parameters are specifically manip-

ulated through fast (parasympathetic) and/or slow (sympathetic) effector

mechanisms as follows:

i. Heart rate: both -sympathetic and parasympathetic

ii. Left and right ventricular contractility: -sympathetic

iii. TPR: a-sympathetic

iv. Systemic venous dead volume: a-sympathetic

3. The resting physiologic perturbations include respiratory activity, autoregula-

tion of local vascular beds, and a 1/f process.
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(a) Respiratory activity impinges on the heart and circulation through in-

trathoracic pressure (reference pressure of the ventricle and pulmonary

compartments) via a simple ventilatory system as well as the direct neural

coupling mechanism.

(b) The autoregulation of local vascular beds is represented by an exogenous

bandlimited white disturbance added to TPR.

(c) The 1/f process is introduced as an exogenous input to both f-sympathetic

and parasympathetic effector mechanisms which outputs a disturbance to

heart rate.

The block diagram in Figure 3-7 illustrates how these major components specifi-

cally fit together to form our nominal model of the cardiovascular system. The data

generated from this model (and variants of it) are the test bed against which the

identification methods in Part II are assessed.

3.5 Nominal Model Validation

We now demonstrate that the low frequency power spectral content of the signals

considered in Part II indeed resemble experimental data obtained from standing hu-

mans breathing according to a fixed-rate protocol. Although we are most interested

in emulating cardiovascular system identification data, we again consider a fixed-rate

breathing protocol, because random-interval breathing obscures the fluctuations due

to other resting physiologic perturbations. That is, we could probably account for, to

a large extent, the spectra with only a respiratory perturbation; however, we know

that other physiologic perturbations are also present [59]. Since there is tremendous

inter-subject variability in hemodynamic spectra, we first considered demonstrating

that the model spectra resembles the mean spectra of the 12 NASA astronauts (see

Section 3.3.3). However, averaging may smear out the spectral peaks, as they are not
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Figure 3-7 The block diagram illustrates how the three models described in Chap-
ter 2 and Sections 3.2 and 3.3 fit together to form our nominal model of the cardiovas-
cular system. p, a, and /, which are respectively abbreviations for parasympathetic,
a-sympathetic, and 13 sympathetic, indicate which effector mechanisms are involved
(if any) in each of the blocks.
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necessarily centered at the same frequencies for each subject. We instead resort to

demonstrating that the model spectra resemble spectra from an individual astronaut.

This does not seem so unreasonable if we keep in mind that the power in the three

spectral bands reflects the average over the group of astronauts (see Section 3.3.3).

Figure 3-8 illustrates that the model power spectra of Q1,(t), F(t), and Pa(t)

at frequencies below the mean heart rate indeed resemble spectra obtained from an

astronaut. (As pointed out in Section 3.3.3, the methods for computing these spectra

is described in Section 4.4.) Differences at the respiratory frequency in the figure and

in Table 3.2 may be attributed to the fact that the astronaut(s) here did not precisely
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follow the fixed-rate breathing protocol as well as discrepancies in tidal volume which

was unknown in the astronauts (see Section 3.3.3). Figure 3-8 also demonstrates

that the model spectra exhibits a spectral peak at -0.07 Hz which is near the center

frequency of the "posture" peak in humans. Since the exogenous perturbations at this

frequency were broadband, this peak indicates a system resonance in the model. This

result supports the simple computer simulation of Deboer [24] which demonstrated

that the "posture" peak could be due to a system resonance. Deboer specifically

implicated the system resonance to the arterial baroreflex system controlling TPR.

In order to elucidate fully the mechanisms responsible for the mid-frequency peak

of the significantly more complicated model here, a complete analysis of the closed-

loop system dynamics is necessary. This analysis is beyond the scope of the thesis.

However, based on a few simple simulation experiments in which the gain values of

open-loop effector mechanism were varied, we have found that the mid-frequency peak

is substantially diminished in the absence of the arterial baroreflex systems controlling

systemic venous dead volume as well as TPR. That is, both these mechanisms are

involved in eliciting the mid-frequency peak.

Unfortunately, due to technical difficulties, the standing posture makes it very

difficult to obtain the reasonably accurate Doppler ultrasound CO measurement. We

instead resort to the Doppler measurement obtained while a subject is tilted upright

(30' with respect to the supine posture) for our comparison. Figure 3-9 illustrates that

the model spectrum of 41(t) (at frequencies below the mean heart rate) reasonably

resembles spectra obtained from an individual subject. It is important to realize

that we did not build our model or choose its parameters such that this particular

spectra would match experimental data. This gives some credence to our assumption

that the low frequency spectral content of the remaining model signals have been

somewhat accounted for as a consequence of reasonably representing the spectra of

the aforementioned signals.
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Figure 3-8 Power spectra of respiratory activity (normalized to unity power), heart
rate, and ABP (at frequencies below the mean heart rate) as generated from the
nominal model and a single standing human breathing at a fixed rate of 0.25 Hz. The
model spectra are determined from the average of 10 different model realizations with
4aiv (t) = 70 ml/s.
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It should be noted that it is also necessary to demonstrate the validity of the cross-

spectra between each of these signals. This essentially amounts to demonstrating

that the transfer functions which characterize the couplings between the signals are

consistent with those determined from experimental data. However, this has been

virtually taken care of by the very construction of the model which was based largely

on physiologic findings published in the literature.
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Figure 3-9 Power spectra of CO (at frequencies below the mean heart rate) as
generated from the nominal model and a single human breathing normally and tilted
upright 300 with respect to the supine posture. The model spectrum is determined
from the average of 10 different model realizations with 4,,,,(t) = 70 ml/.

Nominal Model
350-

300-

250-

200-

150

100LJ-

50

C0 0.1 0.2 0.3 0.4 0.5
frequency [HzJ

50

Human Subject

0 0.1 0.2 0.3 0.4 0.5
frequency [Hz]

102

350 r

300

250

W 200

.f150

1 -

- L



Part II

System Identification
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Chapter 4

Data Analysis

In this part, we consider data generated from the forward model of Part I as a test

bed for the evaluation of the cardiovascular system identification method introduced

in Section 1.1 (Chapter 5) and the development and analysis of novel, practical iden-

tification methods for quantifying the total peripheral resistance (TPR) baroreflex

(Chapter 6) and monitoring steady-state changes in TPR (Chapter 7). But first, in

this chapter, we describe the data analysis techniques that are employed by these iden-

tification methods. We begin, in Section 4.1, by introducing the AutoRegressive Mov-

ing Average (ARMA) model which is a specific class of linear, time-invariant (LTI)

input-output models that is completely characterized by a finite set of adjustable

parameters. The ARMA model structure is sufficiently complex to account for the

dynamics of many LTI systems yet simple enough to permit relatively straightfor-

ward parameter estimation from measured system input-output data. In Section 4.2,

we describe ARMA parameter estimation based on the analytic methods of linear

least squares assuming that the model order, the number of parameters necessary

to characterize the system, is known. Then, in Section 4.3, we discuss model order

selection and present the specific algorithm that we implement. We conclude, in Sec-

tion 4.4, with a description of a method for estimating power spectra based on the
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data analysis techniques described in the previous three sections.

4.1 ARMA Models

Since we consider the identification of systems with up to two inputs in Chapters 5-7,

in this section, we introduce the dual-input ARMA difference equation model with

output y(t) and inputs ui(t) and u2(t) as follows:

I fi f2

y(t) = aiy(t - i) + b1,ju1(t - i) + b2,i2(t - i) + e(t), (4.1)
j=1 i=si i=S2

where e(t) is an unobserved disturbance (residual error) that is assumed to be a

white noise process (see Section 4.2.2) which may represent measurement noise and/or

unmeasured system inputs. The a and b coefficients are respectively referred to as

the autoregressive (AR) and moving average (MA) parameters, while the summation

limits I, sj , fj (j = 1, 2) encompass the model order. We point out two important

features of the ARMA difference equation here. The first feature is that the difference

equation is linear in its coefficients which implies that parameter estimation may be

achieved analytically through linear least squares (see Section 4.2.1). The second

feature is that strict causality between the system inputs and output may be imposed

by virtue of setting sj = 1 (j = 1, 2) which is necessary for the reliable identification

of open-loop systems operating in closed-loop (see Section 4.2.4).

The transfer functions characterizing the input-output relationships of Equa-

tion (4.1) may be made evident by applying the delay operator notation (q-ix(t) =

x(t - i), where x(t) is an arbitrary discrete-time signal) to this equation and rear-

ranging terms as follows:

B 1 (q-1) B 2 (q 1 ) 1
y(t) = A(q-1) u1 (t) + A(q- 1) u2 (t) + A(q1)e(t), (4.2)
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where

A(q- 1 ) = 1 - q (4.3)
i=1

B i(q-') = ~ q- j = 1, 2. (4.4)
Z=sj

The delay operator form here may be interpreted similarly to the z-transform and

hence, the fractional quantities relating the two input signals to the output signal

are referred to as transfer function operators. Equation (4.2) suggests that the AR

parameters are solely responsible for representing the influence of the unobserved

disturbance on the output (actual error), while both the MA and AR parameters

are responsible for characterizing the transfer functions relating the system inputs to

output. The fact that the actual error and the transfer functions are not represented

independently is not too much of a restriction, because the MA model order may al-

ways be increased to compensate for the AR parameters. Since the transfer functions

relating the system inputs to output include poles as well as zeros, ARMA models

are capable of representing infinite-order impulse responses. Finally, we note that,

under certain circumstances, the ARMA model is capable of approximating systems

even when e(t) is a colored process. In particular, let e(t) = _' w(t), where w(t)

is a white noise process. Then, by substituting this relationship into Equation (4.2)

and rearranging terms, the following system results:

A'(q-1 )y(t) = B'(q~')ui(t) + B'(q~1 )u 2(t) + w(t), (4.5)

where

A'(q-) = D(q-) A(q-1) (4.6)
C(q-1)

B (q- 1) = D(q-') Bj(q-1) j = 1,2. (4.7)
C(q-1 )
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Hence, this system may be represented by an ARMA model provided that A'(q- 1)

and Bj(q- 1) (j = 1, 2) may be approximated by finite polynomials in z which is

possible if 1 is strictly stable. We, in fact, consider such an approximation inC(q-)

Section 6.2.4.

4.2 Parameter Estimation

From Equation (4.1), we see that the identification of ARMA models from measured

system input-output data requires both the selection of the model order as reflected by

the summation limits as well as the estimation of the parameter values once the model

order has been selected. In this section, we describe parameter estimation assuming

that the model order is known based on the well established methods of linear least

squares. We first present, in Section 4.2.1, the analytic linear least squares solution

corresponding to the ARMA model structure. Then, in Section 4.2.2, we analyze

the performance of the linear least squares solution as the measured data samples

tend to infinity (N -+ oc). The purpose of this asymptotic analysis, which is largely

from [47], is to provide the necessary conditions for reliable estimation and a means

for estimating the uncertainty in the least squares solution. Next, in Section 4.2.3, we

present a frequency domain interpretation of least squares estimation that is useful

for understanding the performance of the cardiovascular system identification method

(see Section 5.5). The material of this section is also largely from [47]. Finally, in

Section 4.2.4, we present the requirements for reliable parameter estimation when the

measured system input-output data are obtained from closed-loop operation which is

the case for most of the identification methods considered in the following chapters.
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4.2.1 Linear Least Squares Solution

In order to present the analytic, linear least squares solution corresponding to the

ARMA model of Equation (4.1), we rewrite this equation in vector-product notation

as follows:

y(t) = #(t)9 + e(t), (4.8)

where

OT(t) = [y(t - 1) ... y(t - 1) ui(t - s 1 ) - 1 -i(t - fi) u 2 (t - 82) ... U2 (t - f2)] (4.9)

T= [ai ... a, bl, , , *.. bi,f1 b2 ,8 2 - - b2 ,f2j- (4.10)

Now, let y(t), #(t) pairs over the interval 1 < t < N be available from measurement.

Then, the solution to the least squares problem is given by the vector 0 that minimizes

the mean-squared residual error e(t) over this interval. This may be mathematically

stated as follows:

= argemin sZ2(t, ), (4.11)
t=1

where

&(t, 9) = y(t) - OT#(t) 0 (4.12)

and is the residual error corresponding to a particular choice of 0. Note that 0(t)

here may be thought of as a vector of measured input data from which the present

value of the output y(t) is predicted.

An analytic solution for 0 may be derived from the orthogonality principle which

states that the residual error corresponding to the least squares solution is orthogo-

nal to the input prediction data [79]. That is, there is no more information in the

prediction data that can be squeezed out to reduce further the mean-squared residual
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error. The theorem may be mathematically stated as follows:

I N

(Net 1) 0. (4.13)
t=1

For the ARMA model structure, this equation specifically implies that E(t, 9) is a

white noise process that is uncorrelated to the system inputs. By substituting Equa-

tion (4.12) into Equation (4.13) and solving for 9, the linear least squares solution

results as follows:

1  N N

( N -(t) OT(t) Nj1 q (t) y(t), (4.14)
t=1 t=1

that is, provided that the indicated inverse exists.

4.2.2 Asymptotic Analysis

In order to analyze the performance of the linear least squares solution of Equa-

tion (4.14), we assume that the measured y(t), #(t) pairs are actually related accord-

ing to the following linear system:

y(t) = OT(t)9 0 + eo(t), (4.15)

where 0 may be thought of as the actual solution which is sought by linear least

squares estimation and eo(t) = e(t,9o). Then, we may substitute Equation (4.15)

into Equation (4.14) and rearrange terms arriving at the following equation:

0-0 {= $ 0(t) OT (t) }(t) eo(t). (4.16)

If $ - 9o is regarded as a random vector, then the performance of 9 with respect

to 00 may be characterized statistically through, for example, the mean vector and

covariance matrix of 9 - 0. It is difficult to compute such statistics for arbitrary

values of N; however, when N -+ oo, the computation becomes tractable. To this
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end, we assume that y(t) and 0(t) are jointly wide-sense stationary and ergodic with

respect to second-order moments such that, as N -+ o,

9 - o - {E #(t) qT(t)}l Eq#(t) eo(t) with probability one, (4.17)

where E(-) denotes the expectation operator. If 9 - 9o -+ 0 as N -+ oo, then 9 is an

asymptotically unbiased estimate of 00. This is possible provided that the following

two conditions hold:

1. {E 0(t) OT(t)} exists

2. E 0 (t) eo (t) = 0.

The first condition will hold if u1 (t) and u2(t) are sufficiently uncorrelated and contain

as many frequency components as the dimension of 9. In this case, the measured input

data are said to be persistently exciting of order equal to the dimension of 0. Thus, it

is ideal for ui(t) and u2 (t) to be independent, white processes. The second condition

will hold if the prediction data is uncorrelated with the actual residual error. This is

not a surprising condition when one considers the orthogonality principle.

We may quantify how fast 9 converges to 0 through the covariance matrix of the

random vector in Equation (4.16). Assuming that the two conditions hold, then, as

N - o,

2

E(- - 0)(0 - OO)T - {E#(t)q#T(t)} with probability one, (4.18)

where _2 is the variance of eo(t). If the residual error is Gaussian distributed (which

seems quite possible here due to Central Limit Theorem arguments), then the covari-

ance matrix here achieves the Cramer-Rao bound which is defined to be the minimum

possible error covariance for all unbiased estimators. That is, 9 converges to 0 as fast

as is possible for unbiased estimators. We note that regardless of the distribution of

the residual error, 9 - 9o may be shown, through Central Limit Theorem arguments,
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to be asymptotically Gaussian distributed with a mean vector of zeros and covariance

matrix as given above. Hence, the statistics here provide a complete characterization

of the performance of 0 provided that N is sufficiently large and the two conditions

above are valid.

Finally, we note that an estimate of the covariance matrix of -0 may be derived

based on Equation (4.18) as follows:

1-N 62 N-
E -0)(0_ -0)T N L..t= 1 tT

E(O N N ~t=1 (.9

This estimate provides a measure of uncertainty in the linear least squares solution.

It is also useful to have a measure of the uncertainty in the transfer functions which

are completely determined from this solution. Our laboratory has developed an ap-

proximate, linear mapping between the uncertainty in 0 and the uncertainty in the

resulting transfer functions in the form of impulse responses from which a covariance

matrix for the impulse response estimates may be simply derived [67]. Note that,

since the mapping is linear and the parameter estimates are approximately Gaus-

sian distributed, it is possible to compute confidence intervals associated with the

estimated impulse responses.

4.2.3 Frequency Domain Interpretation

We may obtain useful insight into the performance of the transfer function estimates

determined from 6 by considering the least squares problem of Equation (4.11) in the

frequency domain. To this end, we again assume that N -+ oc such that the least

squares problem may be stated as follows:

1 P
9 = arg min EE2 (t, 9) = - 1,(w, 0)dw, (4.20)

0 27r _

where I2(w) heretofore represents the power spectrum of a discrete-time signal x(t),

and the second equality is from the definition of the power spectrum. We rewrite
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the sequence e(t, 0) given in vector-product form in Equation (4.12) here in delay

operator notation as follows:

e(t, 9) = A(q- 1, )y(t) - B1 (q- 1, 9)ui(t) - B 2 (q 1 , 9)u2 (t). (4.21)

In order to evaluate the performance of the transfer function estimates, we assume

that the measured input-output signals are actually related according to the following

system:

y(t) = G1,o(q- 1 )ui(t) + G 2,o(q- 1 )u 2 (t) + vo(t), (4.22)

where Gio(q- 1) and G2,o(q- 1 ) may be thought of as the actual transfer function

operators and vo(t) represents the actual disturbance to y(t). Note that the system

here depicts a general dual-input, LTI system which may be approximated with an

ARMA model. By substituting Equation (4.22) into Equation (4.21) and analytically

computing 4,(w, 9) assuming that ui(t), u2(t), and vo(t) are orthogonal, we arrive at

the following frequency domain interpretation of the least squares problem:

.1 f Bi(eiw,9) 2
9 = arg min - f A(esw, )2 G1,o(ei") -, ' A 2 (w) (4.23)

0 27r _I A (ejw, 0)
jw B2(es' 9 ) 2 Aew9

+ G2,(ej) -A(ew, 9) U2 (W) + DVo (W) dw.

This equation suggests that, in the frequency domain, the least squares problem is

weighted such that the fit between the actual and estimated transfer functions is

favored at the frequencies in which the quantity JA(eiw, 9) 21uj (w) (j = 1, 2) is large.

Since jA(ew, 9)12 is an estimate of the inverse power spectrum of vo(t), this quantity

may be thought of as the model signal-to-noise ratio (SNR) and is useful for predicting

the reliability of the transfer function estimates at a given frequency.

4.2.4 Closed-Loop Systems

We now present the requirements under which the two conditions of Section 4.2.2

will be valid when the measured system input-output data are obtained from closed-
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loop operation which is the case for most of the identification methods considered

in the following chapters. To this end, let us assume that the measured data are

actually generated according to the following coupled, single-input ARMA difference

equations:

t fy
y(t) = 3aiy(t - i) + biu(t - i) + ey(t) (4.24)

i=1 i=sy
i1f

u(t) = ciu(t - i) + diy(t - i) + e.(t). (4.25)
i1i=s"

For this data generation scheme, the second condition will hold provided that two

requirements are satisfied [87]. The first requirement is that ey(t) and e,(t) are white,

uncorrelated processes. The second requirement is that there is at least one delay term

in the closed-loop system, that is, sy > 0 and/or s, > 0. Fortunately, most physical

systems meet this latter requirement. It has also been demonstrated in [87] that

satisfying the first requirement is sufficient for the first condition to hold as well.

We note that the frequency domain interpretation of the least squares problem

in Equation (4.23) is not valid for input-output data obtained from closed-loop op-

eration, because the inputs are no longer orthogonal to the disturbance. However,

the model SNR is still useful for predicting the reliability of the transfer function

estimates at a given frequency.

4.3 Model Order Selection

Although ARMA parameter estimation based on linear least squares is straightfor-

ward, model order selection is more complicated. If the model order is chosen to

be too high (overparametrization), then the particular noise realization along with

the system dynamics characterizing the measured input-output data will have been

modeled. On the other hand, if the model order is chosen to be too low (under-

parametrization), then there will not be enough degrees of freedom to account for
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the system dynamics coupling the measured input-output data. Model order selec-

tion involves finding an appropriate balance between overparametrization and under-

parametrization usually by choosing a set of candidate model orders and comparing

each candidate in the set based on some criterion so as to select the best model or-

der. In Section 4.3.1, we briefly review the popular approaches for comparing models.

Then, in Section 4.3.2, we present a specific model order selection algorithm, which

utilizes one of these approaches to compare an intelligently chosen set of candidate

models, that is implemented by the identification methods of following chapters.

4.3.1 Approaches for Comparing Models

Model comparison may be facilitated by defining a criterion which quantifies model

performance. The mean-squared residual error is a popular example of such a cri-

terion. Ideally, models may then be compared in terms of this criterion on a fresh

set of data (testing set) that is exclusive of the data considered for identification

(training set). That is, the mean-squared residual error may be computed from the

actual output data of the testing set and that predicted from the application of the

model estimated from the training set to the input data of the testing set. This

approach is referred to as cross-validation [47]. However, based on the asymptotic

analysis in Section 4.2.2, it is often desirable to utilize all the available input-output

data for the training set. In this case, it is not valid to compare models simply in

terms of the estimated mean-squared residual error, because this criterion would favor

overparametrization as the fit between the input-output data is always improved by

increasing the model order. However, it is reasonable to assume that the improvement

in fit is insignificant when an increase in model order results in overparametrization.

Based on this assumption, two general methods have been developed for the case

in which a training set of data is only available [47]. The first general method is

based on statistical hypothesis testing which provides a framework for determining if
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the estimated mean-squared residual error is significantly reduced by increasing the

model order. The second general method is based on the establishment of information

criteria (e.g., Aikaike's Information Criterion and Final Prediction Error; see [47,79])

which provide a measure of model performance by combining, in some functional form,

the estimated mean-squared residual error with a penalty factor for the number of

parameters. An example of an information criterion, known as Rissanen's Minimum

Description Length (MDL), is given as follows:

MDL(k) = {+ k N ) N Ye(t,)2, (4.26)
t=1

where k is the number of model parameters (dimension of the vector 9). The MDL

criterion may be implemented for model comparison by calculating the MDL value

(which requires 9) for a set of candidate models and choosing the model in the set

with the smallest MDL value. That is, the MDL criterion favors the model that best

fits the data with the fewest model parameters possible. We, in fact, implement the

MDL criterion in this manner as described in the next section.

4.3.2 ARMA Parameter Reduction Algorithm

In considering a set of candidate ARMA models to compare, one often defines a

maximal model which is overparametrized to the extent that it is believed to contain

the actual parametrization of the system in question. One may then compare all the

reduced models within this initial maximal model in order to find the best model.

However, if gaps are permitted between the parameters (e.g., bi,1 4 0, b2,1 = 0, b3,1 /

0), then the number of comparisons that must be made becomes intractable even

for modest maximal models. Such gaps have been found to be present in biological

systems particularly in regards to the MA parameters. Hence, we utilize an ARMA

parameter reduction algorithm which chooses, in an intelligent manner, a small set

of candidate models from an initially chosen maximal model [67].
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The basic idea behind the algorithm is that the relative likelihood of each pa-

rameter of the maximal model in being a member of the actual parametrization is

reflected by it associated SNR value - defined here to be the ratio of the absolute

value of the parameter estimate to the standard deviation of the parameter estimate

as determined from Equation (4.19). For example, if the SNR is large for a particular

parameter, then that parameter is likely to be within the actual parametrization.

However, it is not valid to compare the relative likelihood of the AR and MA param-

eters in being members of the actual parametrization with the SNR as defined here.

Consider, for example, a change in the static gain of the actual transfer function re-

lating the measured system input to output. In this case, the actual parametrization

is not altered; however, the SNR of the MA parameters are changed, while the SNR

of the AR parameters is essentially the same. Therefore, such a comparison between

AR and MA parameters would not be consistent under changes in actual static gain.

Based on the description here and in Section 4.3.1, the ARMA parameter reduction

algorithm may be summarized as follows:

1. Select a maximal model that is believed to include the actual parametrization.

2. Decrease the AR parameters one at a time beginning with a, (see Equation (4.1))

in order to create a candidate set of reduced models.

3. Choose the candidate reduced model in the set with the minimum MDL value

(computed from least squares solution $) as the reduced model.

4. Compute the SNR for each MA parameter of the reduced model.

5. Remove the MA parameters one at a time beginning with the MA parameter

with the lowest SNR value in order to create a candidate set of minimal models.

6. Choose the candidate minimal model in the set with the minimum MDL value

(computed from least squares solution 9) as the selected model.
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In order to handle signals with different units, we note that the measured data

should be prescaled such that the energy of each signal is the same. Although the

selected model from this algorithm is not guaranteed to achieve optimality in terms

of the minimum possible MDL value, the algorithm has been demonstrated to reduce

the corruption due to noise in the transfer function estimates.

4.4 AutoRegressive Spectral Estimation

The data analysis tools presented in Sections 4.1-4.3 may be utilized for power spectral

estimation as well. To this end, consider a special case of the ARMA model in

Equation (4.1) which includes only the AR parameters as follows:

y(t) = aiy(t - i) + e(t), (4.27)
i=1

where e(t) is again assumed to be a white noise process with variance Y2 . The power

spectrum of y(t) may be determined analytically from this equation as follows:

H(en) = m (4.28)
11 - E_=1 aje-jwj'

Hence, we may identify the model of Equation (4.27) according to the parameter

reduction algorithm described in Section 4.3.2 in order to obtain 4,(w) from Equa-

tion (4.28). This approach is referred to as AutoRegressive spectral analysis and is

the preferred approach for resolving spectral peaks [53].
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Chapter 5

Cardiovascular System

Identification

With the data analysis tools established in Chapter 4, we are now ready to present

our forward model-based analysis of the cardiovascular system identification method

introduced in Section 1.1. The aim of this analysis is to make some useful inferences

about the performance of the method with respect to experimental data. We begin

this chapter by revisiting the cardiovascular system identification method in order

to describe the details of the identified physiologic mechanisms as well as the data

analysis (Section 5.1 which is adapted from [59]). We then present our procedure

for evaluating this method with the forward model described in Part I (Section 5.2)

and based on this procedure, assess the performance of the cardiovascular system

identification method against the nominal forward model (Section 5.3). As discussed

in Section 1.2, the results of this assessment are only as meaningful as the validity of

the nominal forward model. Hence, we next assess the performance of the cardiovas-

cular system identification method against a set of robustness models which reflect

our uncertainty in the relevant properties of the nominal forward model (Section 5.4).

The cardiovascular system identification method is appealing because it provides a
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potential means to track changes in a patient's cardiovascular state over time so as

to provide an individualized guidance for therapy. We thus follow the robustness

analysis with an assessment of the sensitivity or resolving power of the method in

detecting changes in the relevant properties of the forward model (Section 5.5). We

conclude by summarizing the major results of the chapter specifically in terms of

inferences made about the performance of the method with respect to experimental

data (Section 5.6).

5.1 Cardiovascular System Identification Revisited

Recall that our cardiovascular system identification method involves the analysis of

fluctuations in noninvasively measured heart rate, arterial blood pressure (ABP), and

instantaneous lung volume (ILV) in order to characterize quantitatively the phys-

iologic mechanisms responsible for the couplings between the signals. Figure 5-1

illustrates the model upon which the method is based. The model includes five phys-

iologic coupling mechanisms relating these signals: CIRCULATORY MECHANICS,

HR BAROREFLEX, SA NODE, ILV-+HR, and ILV-+ABP.

CIRCULATORY MECHANICS represents the relationship between cardiac con-

traction and the generation of the ABP waveform. The input to CIRCULATORY

MECHANICS is the pulsatile heart rate (PHR) signal which is defined to be a train of

unit-area impulses occurring at the times of contraction of the ventricles (Figure 5-2,

middle trace). PHR may be constructed from the times of occurrence of the QRS

complexes in the electrocardiogram (ECG). The output from CIRCULATORY ME-

CHANICS is the pulsatile ABP signal. The CIRCULATORY MECHANICS transfer

function represents the ABP wavelet generated by a single cardiac contraction. CIR-

CULATORY MECHANICS is determined by the contractile properties of the heart

as well as the mechanical properties of the great vessels and the peripheral circula-
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Figure 5-1 Cardiovascular system identification model depicting the physiologic
mechanisms responsible for the couplings between fluctuations in heart rate, ABP,
and ILV [59].

NHR

1BAROREFLEXI

Heart Rate

Tachoram

t (Autonomic Activity)

Instantaneous
Lung Volume SA

(ILV) Arterial Blood
Pulsatile Pressure

Heart Rate (ABP)
(PHR)

ICIRCULATORYMECHANICS

N*B

tion. CIRCULATORY MECHANICS may also encompass the reflex adjustment of

vascular mechanical properties mediated by the a-sympathetic and renin-angiotensin

systems (total peripheral resistance (TPR) baroreflex).

HR BAROREFLEX represents the autonomically mediated baroreflex coupling

between fluctuations in ABP and fluctuations in heart rate. Here heart rate is rep-

resented by the heart rate tachogram (HR) rather than PHR. HR is defined to be a

stepwise continuous process (Figure 5-2, bottom trace) whose value corresponds to

the reciprocal of the current inter-beat interval for the time period corresponding to

the duration of that interval. Unlike PHR, HR has no periodic component at the

mean heart rate frequency and is closely related to the net autonomic input signal

121



Figure 5-2 Derivation of PHR and HR from the ECG [59].
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modulating sinoatrial node activity. SA NODE represents the coupling between HR

and PHR. The SA NODE in this model is an "integrate and fire" device, such a device

precisely relates the input HR to the output PHR. Since the dynamic characteristics

of the SA NODE are predefined in this model, the SA NODE is not identified from

the experimental data. However, it is important to recognize that the SA NODE is

a nonlinear element of this model.

ILV-+HR represents the autonomically mediated coupling between respiration and

HR. ILV-+HR is responsible for mediating respiratory sinus arrhythmia. ILV-+ABP

represents the mechanical effects of respiration on ABP due to the alterations in

venous return and the filling of intrathoracic vessels and heart chambers associated

with the changes in intrathoracic pressure.

In addition to the five coupling mechanisms, the model incorporates two perturb-

ing noise sources, NHR and NABP. NHR represents the fluctuations in HR not caused

by fluctuations in ABP or ILV. Such fluctuations may result, for example, from auto-

nomically mediated perturbations driven by cerebral activity. NABP represents fluc-
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tuations in ABP not caused by PHR or fluctuations in ILV. Such ABP fluctuations

may result, for example, from fluctuations in TPR as tissue beds adjust local vascular

resistance in order to match local blood flow to demand or from beat-to-beat fluctua-

tions in stroke volume. Other physiological inputs, exclusive of baroreceptor and lung

volume feedback mechanisms, could contribute to NABP through fluctuations in TPR

mediated by the a-sympathetic system or possibly the renin-angiotensin system and

other mediators of TPR. The perturbations represented by NHR and NABP as well

as the variability in ILV are responsible for driving all fluctuations in HR and ABP

through the coupling mechanisms. NHR and NABP are not directly measured quanti-

ties. They represent the residual variability in HR and ABP once one subtracts out

the components of variability caused by the fluctuations in each case in the other two

measured signals.

The model in Figure 5-1 (except for SA NODE which is a predefined, nonlinear

"integrate and fire" device) is mathematically represented by a pair of dual-input,

ARMA difference equations of the following form:

m n P

HR(t) = j aiHR(t - i) +( biABP(t - i) + E ciILV(t - i) +WH R(t) (5.1)
i=1 i=1 i=p

q r s

ABP(t) = ( di ABP(t - i) + e PHR(t - i) +( fiILV(t - i) + WABp(t),
i=1 i=1 I~s

(5.2)

where WHR and WABP are noise terms referred to as residual errors'. The AR and

MA parameters of these two equations, which completely characterize the transfer

properties of the coupling mechanisms and the power spectra of the perturbing noise

sources (see Section 4.1), are estimated from continuous records of ECG, ABP, and

'Note that Equations (5.1) and (5.2) impose causality between ABP and heart rate which are

related in closed-loop. This is a necessary condition for the distinct identification of HR BARORE-

FLEX and CIRCULATORY MECHANICS (see Section 4.2.4).
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ILV signals (initially digitized at 360 Hz to ensure accurate QRS detection) obtained

during the random-interval breathing protocol described in Sections 1.1 and 3.3.1.

In particular, transfer function estimation is performed in two stages correspond-

ing to the two equations. In the first stage, the parameters characterizing the HR

BAROREFLEX and ILV-fHR transfer relations in Equation (5.1) are estimated with

the ARMA parameter reduction algorithm described in Section 4.3.2 (maximal model:

m = 10 , n = 5, p' = -5 ,p = 5) from approximately six minute segments of zero-

mean HR, ABP, and ILV at a sampling frequency of 1.5 Hz 2 . However, in the second

stage, the parameters characterizing the ILV-+ABP and CIRCULATORY MECHAN-

ICS transfer relations are identified in a multi-step manner in order to accommodate

for the different bandwidths of the two transfer relations. The ILV-+ABP transfer

relation may be well characterized by the use of ILV and ABP signals sampled at 1.5

Hz. However, the CIRCULATORY MECHANICS transfer relation requires a wider

bandwidth to describe the relationship between PHR and the pulsatile ABP signal.

Therefore, signals sampled at 90 Hz were first used to determine the CIRCULATORY

MECHANICS transfer relation based on the following equation:

q r S

ABPo(t) - di ABP9o(t - i) + ( e PHR(t - i) + f ILVo(t - i) +WABP (t),

=1 i=1 i=s'

(5.3)

where the subscript 90 is used to differentiate these signals from their counterparts

sampled at 1.5 Hz. The parameters of Equation (5.3) are estimated with the ARMA

parameter reduction algorithm (maximal model: q = 10 , r = 35, s' = 0 , s = 15)

from 90 second segments of data with the means included (see Section 7.1). Although

parameters reflecting ILV-*ABP are identified as well, an improved characterization

2 The continuous-time HR, determined from the ECG as described in Figure 5-2, is effectively

sampled to 1.5 Hz with an anti-aliasing filter whose impulse response is a unit-area boxcar of 4

second duration. However, the anti-alias filtering here is performed in a manner more efficient than

convolution as described in [7].
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may be achieved by using a narrower bandwidth matched more closely to that of

the true transfer relation as follows. First, the component of ABP due only to PHR

(ABPPHR) is calculated using an approximately six minute segment of PHR3 and the

newly found parameters as follows:

q r

ABPPHR(t) ~ diABPPHR(t - i) + eiPHR(t - i). (5.4)
i=1 i=1

This portion is subtracted from the corresponding segment of the ABP 90 signal to

arrive at the component unexplained by PHR (ABPPHR). That is,

ABPp-R(t) = ABPo (t) - ABPPHR(t). (5.5)

ABPPHR and the corresponding ILV90 are decimated to 1.5 Hz and the parameters

characterizing the ILV-*ABP transfer relation are then determined based on the

following single-input ARMA equation:

U V

ABPHR(t) = ) gABPPH R(t - i) + hiILV(t - i) + WABP(t). (5.6)
i=1 i=V'

The parameters of this equation are estimated with the ARMA parameter reduction

algorithm (maximal model: u = 10, v' = 0, v = 10) from zero-mean data.

To summarize, identification of the parameters of Equation (5.1) provides an ac-

curate characterization of both transfer relations that it describes, because the band-

widths of the two transfer relations are closely matched. Identification of the param-

eters of Equation (5.2) may result in inaccurate characterizations of one of the two

transfer relations it describes, because the bandwidths of the transfer relations are
3Since the approximately six minute segment of data includes the 90 second segment used for

identification, the assumption here is that the transfer properties of CIRCULATORY MECHANICS

changes little over approximately six minutes of stable experimental conditions. We could have

avoided making this assumption by identifying CIRCULATORY MECHANICS with approximately

six minute segments of data. However, given its relatively wide bandwidth, 90 second segments are

sufficient. On the other hand, estimation of the narrower bandwidth ILV-*ABP requires the longer,

approximately six minute segment of data.
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not closely matched. Improved characterizations of the transfer relations described

by Equation (5.2) may be attained with a multi-step identification procedure as de-

scribed above.

From Equation (4.2), the perturbing noise sources, NHR and NABP, in the closed-

loop model may be computed with the estimated AR parameters and residual errors

according to the following difference equations:

m

NHR (t)= aiNHR(t - i) + WHR(t) (5.7)
i1

U

NABP (t) = iNABP(t - i) + WABP(t). (5.8)
i=1

Thus, NHR and NABP represent the actual perturbations added to the HR and ABP

signals respectively and are referred to as the actual errors. Power spectra of the

perturbing noise sources are then determined according to Equation (4.28).

A typical cardiovascular system identification result for a healthy, standing subject

is shown in Figure 5-3. The transfer function estimates are depicted in their time do-

main form of impulse responses (mean±standard deviation; see Section 4.2.2). These

results represent a snapshot of the cardiovascular state of the subject. As an example,

let us consider the impulse response estimate characterizing the transfer properties

of HR BAROREFLEX. This impulse response represents the response of HR due to

a unit-area impulse of ABP given at time zero while ILV is held constant. Here,

HR immediately decreases and then returns to baseline demonstrating the expected

negative feedback dynamics. A detailed discussion of each of the remaining estimates

as well as the effects of posture, pharmacologic autonomic blockade, and diabetic

autonomic neuropathy on each of the estimates may be found in [57,59].

Before we move on to describing our procedure for evaluating the cardiovascular

system identification method against the forward model, we first comment on three

issues unique to the application of the method to forward model generated data.
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Figure 5-3 Cardiovascular system identification results for a standing human subject
from [71].
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First, in deriving the heart rate signals, it is not possible to determine the times

of ventricular contraction via R-wave detection, since the electrical activity of the

heart is not modeled here. However, this is not necessary, because these times are

precisely known by virtue of forward model implementation. Second, as described in

Section 2.3.4, the forward model outputs nonuniformly sampled signals. These signals

are uniformly sampled by first linearly interpolating them to form continuous-time

processes and then sampling them at 90 Hz (anti-aliasing filter: boxcar of - second

duration and unit-area). Finally, although we do not consider measurement noise to

be too important here (see Section 6.4), we add zero-mean, white noise to each of

the relevant signals (effective RR intervals, 90 Hz ABP and ILV) with a standard

deviation of one percent of the standard deviation of the signal that it is corrupting.

The purpose here is to make the data rich enough particularly for implementation of

the ARMA parameter reduction algorithm to 90 Hz data.

5.2 Evaluation Procedure

In order to assess the performance of the cardiovascular system identification method

against forward model generated data, we first establish, in a manner independent of

system identification, the impulse responses and power spectra in the model of Fig-

ure 5-1 which characterize the forward model. These impulse responses and power

spectra may then be regarded as the gold standard or the actual cardiovascular system

identification results against which the estimates may be compared. Such a compar-

ison may be facilitated by defining a scalar quantity, or statistic, which reflects how

closely each estimate (vector quantity) matches its corresponding gold standard. In

this section, we describe procedures for establishing the actual cardiovascular system

identification results (Section 5.2.1) and for comparing the estimates with this gold

standard based on a scalar, statistical quantity (Section 5.2.2).
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5.2.1 Actual Cardiovascular System Identification Results

Our general procedure for determining the actual cardiovascular system identifica-

tion results characterizing the forward model is quite intuitive. Recall, from Equa-

tions (5.1) and (5.2), that each of the impulse responses reflects the output response

to a unit-area impulse input at time zero while the fluctuations in the other input

and perturbing noise source are set to zero. Hence, in defining each actual impulse

response, we apply an impulse input to the forward model while setting the fluc-

tuations in the other identification input and perturbing noise source to zero and

measure the output response. Now recall, again from these two equations, that each

of the perturbing noise sources represent the output fluctuations while the fluctua-

tions in the two identification inputs are set to zero. So, in defining each of the actual

power spectra of perturbing noise sources, we hold the identification inputs constant,

measure the relevant signal, and compute its power spectrum.

This general procedure for determining the gold standard is utilized in Section 6.3

as well. It should be noted that, in some cases, the general procedure for determining

the actual system identification result is not necessary, since the result is predefined

by virtue of forward model implementation. However, in some other cases, determi-

nation of the gold standard by our general procedure requires altering the dynamics of

the forward model from those dynamics responsible for generating the data analyzed

by system identification. Consider, for example, the consequences of setting HR con-

stant as implied above. In these cases, we should expect some deviation between the

estimate and the corresponding gold standard to be artifactual as a consequence of

our imperfect procedure for determining the gold standard4 . The fact that our inde-

4One may argue that artifactual deviation may also occur as a consequence of the general pro-

cedure not being restricted to linear dynamics which is in contrast to the system identification

methods considered in this thesis. However, we do not regard this type of deviation as an artifact

of the imperfect procedure for determining the actual system identification results. Rather, we view
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pendent means for determining actual system identification results sometimes requires

nonphysiologic operating conditions emphasizes the power of system identification in

quantifying physiologic mechanisms during near normal operating conditions.

In the next six paragraphs, we describe the specific procedure for establishing each

of the actual cardiovascular system identification results in the model of Figure 5-1.

This description also includes signal processing such that the actual results are sam-

pled analogously to the corresponding estimates which is required by the comparison

statistic presented in Section 5.2.2.

The actual CIRCULATORY MECHANICS impulse response, which represents

the ABP wavelet that results from a single ventricular contraction, is established

through the superposition principle. That is, the forward model is first executed for

n ventricular contractions and then n-I ventricular contractions, and the difference in

the ABP waveform resulting from each of these executions is defined to be the actual

CIRCULATORY MECHANICS impulse response5 . In particular, the forward model

is first executed for n ventricular contractions while n& (t) is set to zero and Q1 (t)

and F(t) are held constant. The resulting nonuniformly sampled Pa(t) is resampled

to 90 Hz as described at the end of Section 5.1. Then, under the same conditions,

the forward model is executed for n - 1 ventricular contractions. The resulting Pa(t),

which is resampled to 90 Hz, is subtracted from its corresponding waveform of the first

execution to arrive at the actual CIRCULATORY MECHANICS impulse response.

The actual HR BAROREFLEX impulse response is not simply determined by the

application of an impulse of ABP to the forward model due to the complications of

feedback effects on ABP. Rather, we first isolate HR BAROREFLEX from closed-

this deviation as a true source of estimation error which specifically reflects the extent of validity of

our linearity hypothesis (see Section 1.1).
5The superposition technique, as opposed to the application of a single ventricular contraction

to the forward model, avoids initial condition complications provided that n is chosen to be large

enough such that the initial condition effects have died out.
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loop operation and then apply the impulse. In particular, HR BAROREFLEX of the

forward model is defined by the cascade combination of the static saturation mapping

of Equation (3.1) followed by an LTI impulse response defined by a linear combination

of the parasympathetic and sympathetic filters in Figure 3-3 with weighting factors

provided in Table 3.1 at a sampling frequency of 16 Hz. Since we identify the HR

BAROREFLEX impulse response at a sampling frequency of 1.5 Hz, we do not apply

a true 16 Hz discrete-time impulse to this cascade system. We instead apply an

input that resembles an impulse whose bandwidth is approximately 0.5 Hz and area

is the standard deviation of the ABP fluctuations analyzed by cardiovascular system

identification (UABP). The functional form of this "impulse" is given as follows:

2ABpe (5.9)
T(1+ e )2'

where n again represents discrete-time at a sampling frequency of 16 Hz, and T, which

reflects the bandwidth of the "impulse", is set to 0.256. The resulting output is then

normalized by UABP and resampled from 16 Hz to 1.5 Hz arriving at the actual HR

BAROREFLEX impulse response.

The actual ILV-+HR impulse response of the nominal forward model is already

defined by virtue of its implementation. In particular, this LTI impulse response is

defined by a linear combination of the aforementioned parasympathetic and sympa-

thetic filters with weighting factors provided in Section 3.2.3. This impulse response

is simply resampled from 16 Hz to 1.5 Hz resulting in the actual ILV- HR impulse

response.

The actual ILV-+ABP impulse response is determined by applying an impulse of

Q1,(t) to the forward model while nRa (t is set to zero and F(t) is held constant. Due

'The functional form here is the first derivative of the hyperbolic tangent function. This form is

chosen for all impulse inputs applied to the forward model in this thesis, because it is differentiable

which is, in some cases, a necessary requirement for implementation. Although, differentiability is

not an implementation requirement here.
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to reasons described above, the precise input applied here is given as follows:

-t

Q1n(t) = cive +Qr (5.10)
T(l + e-)2

where O-ILV is the standard deviation of the ILV fluctuations analyzed by cardiovas-

cular system identification and T = 0.25. Note, from Equations (3.7) and (3.9), that

implementation here requires the first and second derivatives of Equation (5.10) as

well. The resulting nonuniformly sampled Pa(t) from the application of the input is

resampled to 90 Hz, normalized by o7Lv, and then decimated to 1.5 Hz with its mean

removed arriving at the actual ILV-+ABP impulse response.

The actual NHR perturbing noise source of the nominal forward model is given

simply by nF(t). The power spectrum of this signal may also be determined by virtue

of its forward model implementation. In particular, the power spectrum is given

by the product of the power spectra of the 1/f process (wF(t)) and the magnitude

squared frequency response of the filter again defined by a linear combination of the

sympathetic and parasympathetic impulse responses with weighting factors provided

in Section 3.3.3. Since the signal wF(t) is generated by passing a white noise process

through an LTI filter with an approximate 1/f magnitude squared frequency response

(see Section 3.3.3), its power spectrum is simply given by the product of the variance

of the white noise process (A2 ) with this magnitude squared frequency response.

The actual NABP perturbing noise source of the forward model is determined by

executing the forward model while F(t) and Q1 ,(t) are held constant and only n& (M

is active. The resulting nonuniformly sampled Pa(t) is resampled to 90 Hz and then

decimated to 1.5 Hz with its mean removed arriving at the actual NABP perturbing

noise source. Then, the power spectrum of this signal is computed by autoregressive

spectral estimation (see Section 4.4). This procedure is actually repeated for 10

different realizations of forward model data, with the average power spectrum over

these 10 realizations defined to be the actual power spectrum of NABP-

132



Figure 5-4 illustrates the actual cardiovascular system identification results char-

acterizing the nominal forward model as determined by the procedure described here.

5.2.2 Statistic for Comparison

In this section, we define a scalar quantity statistic which reflects how closely each

vector quantity estimate resulting from the application of the cardiovascular system

identification method to forward model generated data resembles its corresponding

gold standard as established in the previous section. The motivation for defining

such a statistic is to provide a compact means for evaluating each estimate in order

to facilitate the evaluation of the cardiovascular system identification method partic-

ularly when considering its performance as a function of parameters characterizing

the forward model (see Section 5.4).

As discussed in Section 4.2.2, each of the impulse response estimates are actually

random vector quantities. That is, each estimate is not simply a deterministic quan-

tity but rather a stochastic quantity characterized by a mean vector and a covariance

matrix reflecting its uncertainty. The corresponding gold standard, on the other hand,

is a deterministic vector. Let us refer to the estimate as vector x with mean vector

, and covariance matrix Ax and its corresponding gold standard as vector xO. Then,

our scalar comparison statistic, which we refer to as the normalized mean squared

error (NMSE), is defined as follows:

E(x - xo)T (x - xo)NMSE(xx o) = T 100%
ExO xoLFx (5.11)

trace(,Ax ) (2 - x 0 )T(. - x 0 )=- + -100%,
xxo ± xi'xo

where E(.) is again the expectation operator and trace(.) is the operator which sums

the diagonal elements of its matrix argument. The NMSE may be thought of as rep-

resenting the percentage error between the estimate and its respective gold standard.
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Figure 5-4 Actual cardiovascular system identification results characterizing the
nominal forward model. These results are determined independently of system iden-
tification.
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For example, if the estimate were given by xo with no uncertainty, then according

to the NMSE, there would be 0% deviation between the estimate an gold standard.

That is, a perfect estimate with 0% error. If, on the other hand, the estimate were

given by a vector of zeros with no uncertainty, then there would be 100% deviation

between the estimate and gold standard according to the NMSE. That is, no estimate

(impulse response of zeros) would result in 100% error. Note that the NMSE also

penalizes the estimate for uncertainty as reflected by Ax. In the case of the power

spectral estimates in which no measure of uncertainty is available, the matrix Ax is

assumed to be a matrix of zeros. Hence, the NMSE for the power spectral estimates

actually represents a lower bound percentage error.

Although the impulse response estimates include measures of uncertainty in terms

of covariance matrices, these uncertainty measures are estimates themselves. Hence,

in order to account more accurately for the estimation error variance, in this chapter

as well as Chapters 6 and 7, we calculate the NMSE of the estimates for 20 differ-

ent realizations of forward model generated data and report the resulting mean and

standard deviation.

Of course, the cost of the compactness provided by the NMSE statistic, or any

other scalar statistic for that matter, is some loss of information. That is, the NMSE

does not tell the whole story about how well the estimate matches its gold standard.

For example, the NMSE may not be a good indicator of the accuracy of the static

gain (the area of the impulse response or equivalently the value of frequency response

at the DC frequency) of the impulse response estimate with respect to that of its

gold standard. Perhaps, the most comprehensive way to evaluate the estimate is

by plotting the mean estimate with its associated standard deviation along side the

gold standard as a function of time or frequency. We, in fact, present such plots

as well throughout this chapter and the next. Again, in order to account more

accurately for the estimation error variance, we report the average estimate over
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20 different realizations of forward model generated data along with the associated

standard deviation.

5.3 Nominal Forward Model Analysis

We are finally ready to assess the performance of the cardiovascular system identifica-

tion method against forward model generated data. In this section, we first consider

the method with respect to the nominal forward model. Figure 5-5 shows the re-

sulting cardiovascular system identification estimates along with their corresponding

gold standard. The results here indicate that the physiologic mechanisms estimated

by the cardiovascular system identification method agree quite well with the actual

system dynamics of the nominal forward model.

The results of Figure 5-5 are summarized in Table 5.1 in terms of the NMSE of

each of the estimates. In comparing the NMSE results with the figure results, we

note that the relative NMSE values are a good indicator of which estimates more

closely resemble their corresponding gold standard based on visual inspection of the

figure. That is, larger NMSE values correspond to deviations between estimates and

corresponding gold standards which appear visually larger. However, the absolute

NMSE value may be a bit misleading. For example, what one may consider to be a

large percentage error (e.g., 51% for HR BAROREFLEX) actually turns out to be

quite a reasonable estimate based on visual inspection of the figure. Hence, NMSE

results must be considered with some caution. We finally again note that some of the

error in the estimates, particularly ILV- ABP and NABP may be attributed to the

imperfect gold standard (see Section 5.2.1).
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Figure 5-5 Cardiovascular system identification estimates (red denotes mean and
dashed red denotes standard deviation) with gold standard (blue) as determined
from 20 different realizations of data generated by the nominal forward model.
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Cardiovascular System Identification Result NMSE [%]

CIRCULATORY MECHANICS 13+4

HR BAROREFLEX 51+15

ILV-fHR 47±11

ILV-ABP 56+7

NH1R 55±38

NABP 65+32

Table 5.1: NMSE results (mean standard deviation) of the cardiovascular system
identification estimates in Figure 5-5.

5.4 Robustness Analysis

The intent of the research described in this chapter is to analyze forward model

generated data so as to make some useful inferences about the performance of the

cardiovascular system identification method with respect to experimental data. The

extent to which the dynamical properties of the forward model resemble those of

the actual cardiovascular system determines the validity of any inferences that are

made. Although we spent a great deal of effort developing a nominal forward model

of the cardiovascular system that is capable of emulating experimental low frequency

hemodynamic variability (see Part I), the model cannot possibly be perfect especially

when one considers that the dynamical properties of the actual cardiovascular system

are not completely understood. Hence, there is some doubt in drawing conclusions

about how the cardiovascular system identification method performs on experimental

data based only on the nominal forward model analysis of the previous section. In

order to attenuate this doubt so as to make more reasonable inferences, we now

consider the analysis of the cardiovascular system identification method against a set

of robustness models which reflect our uncertainty in the relevant properties of the
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nominal forward model. Of course, this analysis is only meaningful provided that the

set of robustness models includes the system dynamics of the actual cardiovascular

system. That is, the performance of the cardiovascular system identification method

over a non-physiologic range does not permit experimental data inferences. Hence,

we only consider the robustness of the cardiovascular system identification method

against those properties of the forward model in which we have uncertainty but, at

the same time, have at least some knowledge based on experimental data of the range

of system dynamics or parameter values that characterize it.

Perhaps the major source of uncertainty in the relevant properties of the nominal

forward model involves the system dynamics responsible for manipulating heart rate.

We particularly have some doubt in the validity of this aspect of the nominal forward

model in regards to the omission of the cardiopulmonary heart rate baroreflex, the

extent of arterial baroreflex saturation, and the relative contribution of the 1/f distur-

bance to heart rate fluctuations. These properties have been addressed to some extent

in the literature; however, uncertainty remains either due to controversial experimen-

tal data or great inter-subject variability (see Sections 3.1.2, 3.2.2, and 3.3.3 as well

as [17,51,52]). Altering the parameters of the forward model which characterize each

of these properties may substantially affect the cardiovascular system identification

results of the previous section, especially in regards to HR BAROREFLEX, ILV-+HR,

and NHR. We recognize that nonstationarities, other types of nonlinearity excluding

baroreflex saturation, and correlated perturbing noise sources (see Section 4.2.4) may

also influence the cardiovascular system identification results. However, the station-

arity property of the nominal forward model seem quite tenable given that the data

are considered over short time periods during stable experimental conditions; other

types of system nonlinearities are poorly understood as compared to the ubiquitously

reported arterial baroreflex saturation; and there are no experimental data available

regarding the extent and manner of correlation between the perturbing noise sources.
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In this section, we analyze the robustness of the HR BAROREFLEX, ILV-+HR, and

NHR estimates against the presence of a cardiopulmonary heart rate baroreflex (Sec-

tion 3.2.2), the extent of arterial baroreflex saturation (Section 5.4.2), and the size of

the 1/f heart rate disturbance (Section 5.4.3).

5.4.1 Cardiopulmonary Heart Rate Baroreflex

We now consider the robustness of the HR BAROREFLEX, ILV-+HR, and NHR es-

timates against the inclusion of a cardiopulmonary heart rate baroreflex which is

omitted in the nominal forward model by virtue of setting its static gain value to zero

(see Table 3.1). Of course, inclusion of this reflex may be achieved by simply adjusting

its static gain value to non-zero values. We do not consider any nonlinear interac-

tion with the arterial heart rate baroreflex, because, as discussed in Section 3.2.2,

such interaction seems to be insignificant during the relatively stable experimental

conditions of cardiovascular system identification data collection.

Before we proceed with this robustness analysis, we note that our gold standard

for the NHR power spectrum as established in Section 5.2.1 is no longer valid with

the presence of a cardiopulmonary heart rate baroreflex. Recall from this section

that the actual NHR perturbing noise source is simply given by the 1/f additive

heart rate disturbance. However, also recall from Section 5.1 that NHR represents the

fluctuations in HR not attributable to ABP and ILV. Hence, the actual NHR in the

presence of the cardiopulmonary heart rate baroreflex should encompass fluctuations

due to "right atrial" transmural pressure (RATP) as well as the 1/f additive heart rate

disturbance. We instead experimentally determine the actual NHR power spectrum

as follows. In order to keep ABP constant, we consider the forward model with the

systemic arterial capacitor replaced by a DC voltage source set to Ps (see Table 3.1)7.

71n order to implement this change, we must modify the state-space equations characterizing the

heart and circulation. In particular, we remove Equation (2.20) from the state-space equations as
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We then execute this modified forward model with Q1a(t) held constant. The resulting

nonuniformly sampled F(t) is resampled to 90 Hz and then decimated to 1.5 Hz with

its mean removed arriving at the actual NHR perturbing noise source. The power

spectrum of this signal is computed analogously to the actual NABP power spectrum

as described in Section 5.2.1. Again note that the procedure here requires alteration

of the system dynamics of the forward model.

Figure 5-6a-c shows the NMSE results of the HR BAROREFLEX, ILV-fHR, and

NHR estimates as a function of the ratio of the static gains of the cardiopulmonary

to arterial heart rate baroreflexes. The range of this ratio is chosen based on the

discussion in Section 3.2.2. Note that a negative ratio indicates a Bainbridge type

of cardiopulmonary baroreflex, while a positive ratio indicates a type of cardiopul-

monary baroreflex which contributes to ABP regulation. The results indicate that

the ILV-fHR impulse response estimate is most significantly and adversely influenced

by the presence of the cardiopulmonary heart rate baroreflex. This implies that the

almost all the RATP fluctuations are accounted for by ILV. This is not too surpris-

ing especially given that intrathoracic pressure, the reference pressure of the "right

atrium", precisely follows ILV through the ventilatory model in Figure 3-5. In addi-

tion, these respiratory induced intrathoracic pressure fluctuations induce fluctuations

to "right atrial" pressure itself.

From Figure 5-6a, we see that the HR BAROREFLEX impulse response estimate

is not effected by a positive ratio of the static gains of the cardiopulmonary to arte-

rial heart rate baroreflexes. However, for a negative ratio, the estimate is adversely

effected but not as significantly as the ILV->HR impulse response estimate (consider

NMSE standard deviation). We believe that this discrepancy between positive and

the model is only parametrized by five states now, and replace Pa(t) in Equations (2.25) and (2.26)

with PjP. In regards to the linear system of equations utilized to determine the initial conditions,

we remove Equation (2.37), and replace Pa(t) in Equations (2.31) and (2.32) again with P/P.
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negative ratios is due to the size of ABP fluctuations. In contrast to the positive

ratio which results in tighter ABP regulation, the negative ratio leads to sufficiently

large ABP fluctuations such that contribute somewhat to the generation of RATP

fluctuations.

Figure 5-6 NMSE results (meanistandard deviation) of the (a) HR BAROREFLEX,
(b) ILV-+HR, (c) NHR, and (d) redefined ILV-+HR estimates as a function of the
ratio of the static gains of the cardiopulmonary to arterial heart rate baroreflexes.
The results are determined from 20 different realizations of forward model generated
data.
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Figure 5-6b illustrates that the ILV- HR estimate becomes progressively worse

with respect to its corresponding gold standard as defined in Section 5.2.1 with in-

creasing absolute static gain of the cardiopulmonary heart rate baroreflex. However,

this does not necessarily imply that the estimate is less useful for large absolute static

gain values. On the contrary, the estimate is quite meaningful regardless of the static

gain value of the cardiopulmonary heart rate baroreflex provided that we redefine

our gold standard as the heart rate response to an impulse of ILV while ABP is held
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constant. This impulse response would not only encompass the direct neural coupling

mechanism but the cardiopulmonary heart rate baroreflex as well. We may establish

this redefined, actual ILV-+HR impulse response as follows. We apply an impulse

of Q1,(t) to the forward model with a voltage source in lieu of the systemic arterial

capacitor as described previously while nF(t) and nRu (t) are set to zero. The actual

impulse input is given by Equation (5.10). The resulting nonuniformly sampled F(t)

is resampled to 90 Hz, normalized by -ILV, and then decimated to 1.5 Hz with its

mean removed arriving at the redefined actual ILV--HR impulse response.

Figure 5-6d shows the NMSE results of the ILV-±HR estimate with respect to this

new gold standard again as a function of the ratio of the static gain values of the car-

diopulmonary to arterial heart rate baroreflexes. These results demonstrate that the

estimate, when considered with respect to the new gold standard, is essentially inde-

pendent of the static gain of the cardiopulmonary heart rate baroreflex. The results

here suggest that when considering the ILV-+HR impulse response identified from

experimental data, it is probably more accurate to interpret the estimate analogously

to the gold standard as redefined here.

5.4.2 Arterial Baroreflex Saturation

The static nonlinear mapping in Equation (3.1) characterizes the degree of arterial

baroreflex saturation for the nominal forward model. This mapping provides an

upper bound on the deviation between sensed ABP and its setpoint pressure so that

the manipulated variables cannot be controlled to arbitrary values. The maximum

deviation permitted by this mapping is ~-28 mmHg. This pressure is approximately

equal to the range of ABP over which the mapping differs from true linearity by

only -10%, that is, the linear ABP range. However, experimental data from one

study indicate that the linear ABP range may actually be only -10 mmHg [51]. The

discrepancy between these data and the nominal static saturation mapping, which
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was presumably based on experimental data [24], could be due to significant inter-

subject variability. This explanation is supported by the experimental data in [51]

which suggest that the degree of arterial baroreflex saturation varies, at least to

some extent, with setpoint ABP and age. We therefore consider the robustness of

the HR BAROREFLEX, ILV-+HR, and NHR estimates against more narrow linear

ABP ranges. We vary this range simply through the adjustment of the parameter

of Equation (3.1) (set to 18 for the nominal model) with the linear range, as defined

here, given by the product of the parameter and .2

Figure 5-7 shows the NMSE results of the HR BAROREFLEX, ILV-fHR, and

NHR estimates as a function of the linear ABP range of the static saturation curve.

These results indicate that only the HR BAROREFLEX estimate is significantly

and adversely affected by increasing degrees of saturation, a result that was not

necessarily obvious prior to the analysis here. Furthermore, the deviation of the

NMSE from its nominal value only becomes significant when the extent of saturation

is no longer substantiated by the experimental data in [51]. Hence, provided that

arterial baroreflex saturation is the only significant nonlinearity, then the assumption

that the fluctuations in cardiovascular system identification data are small enough

such that the couplings between the fluctuations are related linearly seems quite

tenable.

5.4.3 1/f Heart Rate Fluctuations

The unmeasured 1/f additive heart rate disturbance nF(t) represents the noise of the

first stage identification problem considered by the cardiovascular system identifica-

tion method in which the parameters characterizing HR BAROREFLEX, ILV-+HR,

and NHR are estimated. The relative contribution of this disturbance with respect

to the HR fluctuations due to ABP and ILV fluctuations reflects the signal-to-noise

ratio (SNR) of this identification problem. This relative contribution, specifically in
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Figure 5-7 NMSE results (meanistandard deviation) of the (a) HR BAROREFLEX,
(b) ILV-+HR, and (c) NHR estimates as a function of the linear ABP range (as defined
in the text) of the static saturation curve. This pressure range is approximately equal
to the maximum deviation in sensed ABP with respect to its setpoint pressure that is
permitted by the static saturation curve. The results are determined from 20 different
realizations of forward model generated data.
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tions, has been reported to be 0.31t0.14 based on experimental data obtained from

humans breathing randomly [17]. However, this value was estimated from only five

subjects. Because of the great inter-subject variability in low frequency hemodynamic

fluctuations (see Section 3.3.3), there is some uncertainty in this value. Hence, we

now consider the robustness of the HR BAROREFLEX, ILV-+HR, and NHR esti-

mates against the ratio of the standard deviation of rnF(t) to the standard deviation

of F(t) which is varied in the forward model simply through adjustment of A2 (see

Section 3.3.3).
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Figure 5-8 shows the NMSE results of the HR BAROREFLEX, ILV->HR, and

NHR estimates as a function of the ratio of the standard deviation of nF(t) to the

standard deviation of F(t). These results indicate that the estimates do not signifi-

cantly change from the nominal ratio of 0.49+0.07 up to a ratio of -0.6. That is, the

estimates are reliable for a ratio up to the experimentally estimated average ratio plus

two standard deviations. Furthermore, we may expect somewhat better reliability in

these estimates from experimental data than is indicated by the nominal forward

model analysis, since the nominal ratio is over one standard deviation greater than

the experimentally estimated average ratio.

Figure 5-8 NMSE results (mean±standard deviation) of the (a) HR BAROREFLEX,
(b) ILV-+HR, and (c) NHR estimates as a function of the ratio of the standard devi-
ation of nF(t) to the standard deviation of F(t). The results are determined from 20
different realizations of forward model generated data.
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5.5 Sensitivity Analysis

We have repeatedly emphasized throughout this thesis that the ultimate potential of

cardiovascular system identification is to provide a clinician with a means to track

changes in a patient's cardiovascular state over time so as to guide therapy. An anal-

ysis of the sensitivity or resolving power of the method is germane to the realization

of this potential. This type of analysis involves determining the extent by which

the relevant parameters characterizing the forward model are required to change in

order to detect a corresponding change in the cardiovascular system identification

estimates. In this section, we specifically consider a sensitivity analysis of the auto-

nomically mediated estimates, HR BAROREFLEX, ILV-+HR, and NHR, in detecting

changes in the static gain parameters of the forward model reflecting parasympa-

thetic and 3-sympathetic activity (see Table 3.1). It should be noted that we also

consider, in Chapter 7, a sensitivity analysis of a modified version of CIRCULATORY

MECHANICS in detecting steady-state changes in TPR.

Figure 5-9a and b show the sensitivity results to changes in parasympathetic and

/3-sympathetic function in terms of the estimated versus actual percentage change in

the static gains of the autonomically mediated impulse responses, where percentage

change here is with respect to the nominal static gain values8 . These results indicate

that a change of 25% in the static gain of the actual HR BAROREFLEX impulse

response is required in order to detect reliably a change in the static gain of the

corresponding estimate. On the other hand, a 25% change in the static gain of the

actual ILV-+HR impulse response is not sufficient to detect reliably a change in the

static gain of the corresponding estimate.

Based on our experience with experimental human data [57, 59], we have found

8 For simplicity, we neglect the standard deviation of the estimates in establishing the sensitivity

results of Figures 5-9, 5-10, and 7-2. However, we account for the error variance by analyzing 20

different realizations of forward model generated data.
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that the absolute peak amplitude of the impulse response estimates seems to be quite

reliable in detecting changes in autonomic function. Figure 5-9c and d show the

sensitivity results in terms of the estimated versus actual percentage change in the

absolute peak amplitude of the autonomically mediated impulse responses. Since we

vary the static gains of the impulse responses simply via scaling, the actual percentage

change in the static gain of the impulse responses is equal to the actual percentage

change in the absolute peak amplitude. The results indicate substantial improvement

in sensitivity in regards to the ILV-+HR estimate and improvement in regards to

HR BAROREFLEX. In particular, as small as a 10% change in the absolute peak

amplitude of the actual ILV-+HR impulse response is sufficient to detect reliably a

change in the absolute peak amplitude of the corresponding estimate.

The substantial improvement in the sensitivity of the ILV- HR impulse response

here may be explained by considering the spectral content of ILV. It turns out that the

ILV fluctuations are not sufficiently broadband to extend to the very low frequencies

near DC, a result that is not too surprising when one considers the probability density

characterizing the initiation times for a respiratory cycle (see Section 3.3.1). It now

becomes evident as to why the static gain of the ILV-fHR impulse response estimate,

which reflects the DC frequency of the estimate, is not reliable, while the absolute peak

amplitude, which reflects the wider bandwidth parasympathetic filter (see Figure 3-

3), is quite reliable (see Section 4.2.3). On the other hand, the ABP fluctuations have

significant low frequency content due to the system resonance at -0.07 Hz which

explains why the static gain of the HR BAROREFLEX impulse response is reliable.

Figure 5-10 illustrates the sensitivity results in terms of the estimated and actual

percentage change in total, low frequency (0-0.15 Hz), and high frequency (0.15-0.4

Hz) power of the NHR spectra. These results emphasize the superior reliability of the

high frequency components of the estimates, a result that is not at all surprising when

one considers the 1/f character of the unmeasured disturbance (see Section 4.2.3).
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Figure 5-9 Sensitivity results (red trace; mean±standard deviation) in terms of es-
timated versus actual percentage change in the (a) static gain of ILV-+HR, (b) static
gain of HR BAROREFLEX, (c) absolute peak amplitude of ILV-+HR, and (d) abso-
lute peak amplitude of HR BAROREFLEX. The percentage change is with respect
to the nominal values. The results are determined from 20 different realizations of
forward model generated data. The blue trace denotes the identity line.
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Note that the high frequency power of NHR is just as sensitive a measure of parasym-

pathetic function as the absolute peak amplitude of ILV-+HR. However, we believe

that this absolute peak amplitude may be a better measure of parasympathetic func-

tion, because the perturbing noise source NHR, unlike ILV-+HR, is not normalized

for inputs (e.g., higher brain center activity).

From experimental human data [57,59], we have found the absolute peak ampli-

tude of ILV-+HR to be the most sensitive measure of autonomic function, followed

by the power of the NHR spectra (especially the high frequency power), the absolute

peak amplitude of HR BAROREFLEX, and the static gain of HR BAROREFLEX. In

contrast, we have never found the static gain of ILV-+HR to be predictive of changes
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Figure 5-10 Sensitivity results (red trace; mean±standard deviation) in terms of
estimated versus actual percentage change in the (a) total power, (b) low frequency
power (0.0-0.15 Hz), and (c) high frequency power (0.15-0.4 Hz) of the NHR spectra.
The percentage change is with respect to the nominal values. The results are deter-
mined from 20 different realizations of forward model generated data. The blue trace
denotes the identity line.
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in autonomic function. The fact that the more precise analysis here retrospectively

predicts the sensitivity of the estimates determined from experimental human data

helps confirm the validity of the low frequency hemodynamic fluctuations generated

by the forward model during random-interval breathing.

In addition to the static gain and absolute peak amplitude of the impulse response

estimates, a third scalar parameter that we have considered for detecting autonomic

changes in experimental human data [57, 59], referred to as the characteristic time

parameter, is defined as follows:

0 x kTslh(k||
whee hk i(5.12)

Ek=_c, Jh(k)| '

where h(k) is the estimated impulse response and Ts is its sampling period. Changes
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in this parameter essentially reflect shifts in balance between parasympathetic and

/-sympathetic function. For example, simply scaling the impulse response, as we

have done here, does not change the characteristic time because there is no shift in

balance in the activity of the two autonomic limbs. Based on the interpretations

made here, we expect the ILV-+HR impulse response estimate to be unable to mea-

sure true shifts in balance through the characteristic time parameter, because only

the parasympathetic limb can be estimated accurately. However, we do expect the

characteristic time parameter of the HR BAROREFLEX impulse response estimate

to be a somewhat sensitive measure of true shifts in balance between parasympathetic

and /-sympathetic function. The validity of these expectations is supported by our

analysis with experimental human data [57,59] in which only the characteristic time

parameter of the HR BAROREFLEX impulse response estimate was found to be

sensitive to changes in autonomic function.

5.6 Summary

Based on the results of the forward model-based analysis of the cardiovascular system

identification method in this chapter, we now draw inferences to the performance of

the method with respect to experimental data as follows:

1. Each of the cardiovascular system identification estimates is likely to reflect the

system dynamics of actual physiologic mechanisms.

2. The ILV-fHR impulse response estimate encompasses both direct neural cou-

pling and cardiopulmonary heart rate baroreflex mechanisms.

3. Arterial baroreflex saturation and the relative contribution of the HR fluctu-

ations independent of ABP and ILV fluctuations are unlikely to affect signifi-

cantly the autonomically mediated estimates.
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4. The absolute peak amplitude of the ILV-+HR impulse response estimate is a

very sensitive measure of parasympathetic function.

5. The HR BAROREFLEX impulse response estimate is a reasonably sensitive

measure of both parasympathetic function (through the absolute peak ampli-

tude, static gain) and #-sympathetic function (through the static gain) and

consequently, shifts in balance between the two autonomic limbs (through char-

acteristic time).
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Chapter 6

TPR Baroreflex Identification

From CO and ABP

In Chapter 5, we validated our previously developed cardiovascular system identifi-

cation method against the forward model of Part I. As a first step towards extending

this method, we now consider the practical identification of the total peripheral re-

sistance (TPR) baroreflex. By TPR baroreflex, we refer to the feedback pathways

of the arterial and cardiopulmonary baroreflex arcs which respectively couple arterial

blood pressure (ABP) fluctuations to TPR fluctuations (arterial TPR baroreflex) and

right atrial transmural pressure (RATP) fluctuations to TPR fluctuations (cardiopul-

monary TPR baroreflex). In this chapter, we specifically present the analysis of two

identification methods which require only left ventricular flow rate (cardiac output,

CO) and ABP signals for the quantitative characterization of physiologic coupling

mechanisms which encompass TPR baroreflex dynamics.

We begin with a brief review of some of the previously employed approaches for the

quantification of the peripheral resistance baroreflex in humans which motivate the

research described in this chapter (Section 6.1). We then provide a detailed presenta-

tion of the two practical identification methods (Section 6.2). Next, we establish the
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gold standard forward model results for the two identification methods (Section 6.3),

and based on these results, assess their performance against the forward model (Sec-

tion 6.4). Finally, we complement this forward model analysis by considering the two

identification methods with respect to experimental human data (Section 6.5).

6.1 Previous Approaches

Over the past 40 years, there have been numerous studies which have investigated

the role of the arterial and cardiopulmonary peripheral resistance baroreflex systems

in humans [51, 52]. These studies have essentially involved perturbing the systems

in a highly nonphysiologic manner in order to elicit a reflex peripheral resistance re-

sponse. Two of the most commonly employed techniques for perturbing the systems

have been the neck chamber and lower body negative pressure (LBNP). The neck

chamber technique, which is used to study the arterial baroreflex, involves stimula-

tion (or inhibition) of the carotid baroreceptors with suction pressure (or positive

pressure) produced by a device placed on the neck. The LBNP technique involves

the application of suction pressure to the lower body in order to simulate gravita-

tional shifts of blood. This technique has been used to analyze the cardiopulmonary

baroreflex which is considered to be exclusively perturbed when the suction pressure

applied to the lower body is small (> -20 mmHg) [52].

Using these types of techniques, many studies have addressed the influence of

the arterial and cardiopulmonary baroreflex systems on regional circulations of hu-

mans. For example, one study concluded that the arterial baroreflex plays a more

important role in modulating peripheral resistance in the splanchnic bed, while the

cardiopulmonary baroreflex is more critical in manipulating peripheral resistance in

skeletal muscle [39]. Another study demonstrated that significant inhibition of the

cardiopulmonary baroreflex actually induces an increase in the gain of arterial barore-
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flex system manipulating peripheral resistance in skeletal muscle [86]. That is, the

two baroreflex systems are nonlinearly coupled.

Several studies have also analyzed the role of the arterial baroreflex in the ma-

nipulation of TPR. Although a significant role has been more clearly demonstrated

in animal preparations (e.g., [72,78]), there is some controversy over this role in hu-

mans. In particular, some studies have found no change in TPR after stimulating

the carotid baroreceptors, while other studies have found a decrease in TPR after

stimulation [51]. Nevertheless, arterial baroreflex manipulation of TPR is generally

considered to play a significant role in the maintenance of ABP in humans via the

a-sympathetic nervous system [32,51].

Unfortunately, most of the previous studies only provide indirect or incomplete

evidence of the role of the baroreflex systems in manipulating peripheral resistance

in humans. In particular, the conclusions of many of these studies is based on the

premise that the baroreceptors under study were exclusively perturbed; this was

unlikely to be the case in most, if not all, the studies [51]. Additionally, the previous

studies provide little dynamical information, nor do they explain the integrated role

of the two baroreflex systems during normal physiologic conditions. However, system

identification may provide a viable means to distinguish each baroreflex system as

they are being simultaneously perturbed during the near physiologic experimental

conditions of random-interval breathing.

6.2 Identification Methods

If the fluctuations in ABP, RATP, and TPR were readily available from measurement,

the development of a TPR baroreflex identification method would be straightforward.

However, in practice, the direct measurement of TPR fluctuations is not possible. In

order to circumvent this limitation, in Section 6.2.1, we describe, at the conceptual
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level, two identification strategies which require only CO, ABP, and RATP signals.

Although it is possible to obtain RATP in humans via a central venous catheter and

esophageal balloon, these measurement techniques are invasive and typically do not

reliably account for RATP fluctuations on a beat by beat basis. Consider, for example,

the consequences of swallowing with respect to an esophageal balloon measurement.

However, it is possible to measure fluctuations in CO and ABP noninvasively and

reliably in humans with, for example, Finapres and Doppler ultrasound1 techniques,

respectively (see Sections 1.1 and 1.3). Hence, in Section 6.2.2, we consider left

ventricular stroke volume (SV) fluctuations (which may be obtained from the CO

measurement 2) as a surrogate for RATP fluctuations in order to adapt each of the

two strategies to require just CO and ABP signals. Finally, in Sections 6.2.3 and 6.2.4,

we present the details of two identification methods based on the adapted strategies

including the physiologic mechanisms to be identified and data analysis techniques.

6.2.1 Two Identification Strategies

The first strategy that we consider for TPR baroreflex identification is the most ob-

vious. This strategy, which we refer to as direct identification, consists of two steps.

The first step deals with the estimation of TPR fluctuations from other measur-

able signals, namely CO and ABP (see Section 6.2.3). The second step involves the

analysis of the fluctuations in ABP, RATP, and estimated TPR (TPR) in order to

identify the two TPR baroreflex mechanisms depicted in the model in Figure 6-1.

This model is derived from the TPR manipulation scheme of the nominal forward

'To be precise, it is possible to measure the relative fluctuations in CO with respect to its mean

value using a Doppler ultrasound technique [29].
2 This requires the determination of heart rate fluctuations from the CO measurement. Although

this is realizable, in practice, it is easier to determine heart rate fluctuations from the ECG. We, in

fact, choose this latter approach in this chapter while maintaining that the identification methods

considered here may be implemented with only CO and ABP measurements.
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model (see Figure 3-7). Ar TPR BAROREFLEX specifically represents the feedback

pathway of the arterial baroreflex arc responsible for coupling ABP fluctuations to

TPR fluctuations, while CP TPR BAROREFLEX represents the feedback pathway

of the cardiopulmonary baroreflex arc responsible for coupling RATP fluctuations to

TPR fluctuations. The model also includes a perturbing noise source NTPR which

is not measured and represents the fluctuations in TPR not attributed to the TPR

baroreflexes such as autoregulation of local vascular beds.

Figure 6-1 Model depicting the direct identification strategy. The model represents
the feedback mechanisms responsible for the couplings between the fluctuations in
ABP, RATP, and TPR.

Ar TPR
ABP ' BAROREFLEX

N TPR TPR

PAT_ 10. CP TPR
RATP 'BAROREFLEX

The second strategy that we consider for TPR baroreflex identification, which we

refer to as indirect identification, extracts information pertaining to the TPR barore-

flex essentially through its correlation with other measurable signals. The advantage

of this strategy over the direct identification strategy is that it is not hampered by

the imperfect estimation of TPR fluctuations (see Section 6.2.3). However, as de-

scribed in the next paragraph, in contrast to the direct identification strategy, the

physiologic coupling mechanisms of the indirect identification strategy do not isolate

TPR baroreflex system dynamics.

The indirect identification strategy specifically involves the analysis of the fluc-

tuations in CO, RATP, and ABP in order to identify the physiologic mechanisms

illustrated in the model in Figure 6-2. The model includes two coupling mecha-

nisms, CO-+ABP and RATP->ABP. CO-4ABP represents the transfer properties

relating CO fluctuations to ABP fluctuations which encompass both systemic arte-
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rial tree dynamics and the arterial TPR baroreflex. That is, CO fluctuations directly

induce ABP fluctuations through the systemic arterial tree which in turn excites

the arterial TPR baroreflex arc. RATP- ABP represents the transfer properties re-

lating RATP fluctuations to ABP fluctuations which encompass these two distinct

physiologic mechanisms as well as the cardiopulmonary TPR baroreflex. In particu-

lar, RATP fluctuations induce TPR fluctuations through the cardiopulmonary TPR

baroreflex which in turn induces ABP fluctuations through the systemic arterial tree

thus exciting the arterial TPR baroreflex arc. The model also incorporates a perturb-

ing noise source N'BP which is not measured and represents the fluctuations in ABP

not attributed to CO and RATP fluctuations. These fluctuations may be due to, for

example, autoregulation of local vascular beds.

Figure 6-2 Model depicting indirect identification strategy. The model relates cou-
plings between the fluctuations in CO, RATP, and ABP. These couplings encompass
the arterial and cardiopulmonary TPR baroreflexes as well as systemic arterial tree
dynamics.

CO CO -ABP

N+ABP ABP

RATP RATP -+ ABP

In order to obtain a more precise, quantitative understanding of the system dy-

namics characterizing each of the physiologic mechanisms in Figure 6-2, we develop

a dynamical equation relating the fluctuations in CO, RATP, and ABP based on the

governing equations of the nominal forward model as follows. Since C, in the nominal

forward model is large relative to Ca (see Table 2.1), P,(t) may be assumed to be neg-

ligible with respect to Pa(t) (see Figure 2-1). Hence, the model in Figure 6-3 provides

an even more simple representation of the systemic circulation of the nominal forward

model. The model also includes an ideal current source which represents the outflow
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rate of the left ventricle. The following nonlinear, differential equation characterizes

this model:

d Pa(t)
41(t) = Ca-dPa(t) + a(t) (6.1)dt Ra (t )

Figure 6-3 Simple RC circuit model of the systemic circulation assuming that C, >>
Ca. The ideal current source represents the left ventricle.

Pa (t)

q1 (t) R a(t) C a

By removing mean values from this equation, normalizing it by the mean left ven-

tricular flow rate, and neglecting second order terms, the following linear, dynamical

equation results:

A 41(t) d A Pa (t) APa (t) A Ra M)- RaCa - + (6.2)
q1 dt Pa Pa Ra

where, if we let X(t) represent any of the three signals in Equation 6.1, then X and

A respectively denote the mean value of X(t) and its relative fluctuations with

respect to its mean value. This linear, constant coefficient differential equation may

be equivalently written as a sum of convolutions as follows:

A = Mh(T) - dT + h(T) AR(tT) dr (6.3)
Pat) Aq, T) Ra

where

1 ~
h(t) - l-a eac$a t > 0 (6.4)

RaCa
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and completely characterizes the systemic arterial tree dynamics. We may discretize

this equation by choosing the sampling interval T, such that the two inputs of the

equation are essentially constant over the interval. The following sum of discrete-time

convolutions results:

APa(k) 0A4(k -) ARa(k - i)
a hT,(i) + hT,( Ra, (6.5)

where k is discrete-time and hT, (k) is given by

(k+I1)T,

hT,(k) = S h(T)dT. (6.6)
JkT,

We may rewrite Equation (6.5) more compactly with the delay operator notation

introduced in Section 4.1 as follows:

A Pa(k) _1 AM,(k) ARa(k)
= H(q )-- + H(q1 ) (6.7)

Pa q1 Ra

where

H(q- 1 ) = hT, (0) + hT, (1)q-' + hT(2)q 2 + - (6.8)

and is referred to as the transfer function operator reflecting systemic arterial tree

dynamics.

From Figure 3-7, the equation governing the manipulation of the relative fluctu-

ations in TPR in the nominal forward model may be given as follows:

ARa(k) _ Pa 1 APa(k) p Cr, 1 AP3 a,, (k) +nRa(k) (6.9)
=A(q~ ) - + C(q) + -- 69

Ra Ra Pa Ra P3ra Ra

that is, provided that the fluctuations in the signals are sufficiently small. In this

equation, the transfer function operators A(q- 1 ) and C(q-') respectively character-

ize the arterial and cardiopulmonary TPR baroreflexes defined in terms of impulse

responses in Figure 3-3 and Table 3.1, while nRa (k) represents the additive TPR dis-

turbance as defined in Section 3.3.2. Note that the two transfer function operators
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and TPR disturbance as defined in Sections 3.2 and 3.3 must be resampled here in

order to accommodate the different sampling interval.

By substituting this equation into Equation (6.7) and rearranging terms, the fol-

lowing dynamical equation relating the relative fluctuations in CO, RATP, and ABP

results:

AJa(k) H (q1) -- + H2 (q 1) AnPr,,a (k) + H1(q 1 ) n (k) (6.10)
Pa q P ra,, Ra

where

H1 (q-') H(q) (611)
1 - IA(q-1)H(q- 1)

fC(q-')H (q-')
H2(qa) - 1, (6.12)

1 - kA(q-1)H(q-)

The transfer function operators, H 1(q-') and H2 (q~1), precisely reveal the intercon-

nections of the systemic arterial tree dynamics and the arterial and cardiopulmonary

TPR baroreflexes which characterize CO-+ABP and RATP-+ABP in Figure 6-2, re-

spectively. Note that the last term in Equation (6.10) represents the perturbing noise

source N'BP in Figure 6-2.

Equations (6.10)-(6.12) not only provide us with a precise, quantitative under-

standing of the system dynamics characterizing the physiologic mechanisms in Fig-

ure 6-2, but they also indicate the recipe for recovering information pertaining to

the arterial and cardiopulmonary TPR baroreflexes from the transfer function opera-

tors representing these physiologic mechanisms. In particular, the transfer properties

characterizing the cardiopulmonary TPR baroreflex may be completely recovered as

follows:

_ Ra H2(q-1)
C(q ) - . (6.13)

Pra, (q
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The static gain of the arterial TPR baroreflex (A(q- 1 = 1)) may be determined as

follows:

A(q-= 1) Ra HI(q 1  (6.14)
Pa H(q- 1 = 1)

where, from Equations (6.4) and (6.6), H(q- 1 = 1)=1. It may be possible to re-

cover dynamical information characterizing the arterial TPR baroreflex by assuming,

for example, that the bandwidth of H(q~1 ) is much greater than the bandwidth of

A(q-1) 3 . That is, H(q- 1 ) ~ 1 over the bandwidth of A(q- 1 ).

6.2.2 SV as a Surrogate for RATP

We now consider SV fluctuations as a surrogate for RATP fluctuations so as to adapt

the direct and indirect identification strategies to require only CO and ABP signals.

This consideration is motivated by the experimental result in Figure 2-9 which demon-

strates that, in the steady-state, SV is determined exclusively by RATP provided that

mean ABP is less than -180 mmHg. Moreover, we hypothesize that the fluctuations

in RATP are largely responsible for the fluctuations in SV as well. That is, SV fluc-

tuations are largely indicative of RATP fluctuations. This hypothesis is based on the

following arguments. Since ventricular contractility changes little during stable ex-

perimental conditions (see Table 3.1), the two major determinants of SV fluctuations

are fluctuations in left atrial pressure (preload) and ABP (afterload). However, left

31t should be noted that Equation (6.10) may also be formulated as an AutoRegressive Moving

Average eXogenous input (ARMAX) equation [47,79]. This equation is more sophisticated than

an ARMA equation in that it models the unobserved output disturbance with moving average as

well as autoregressive parameters. It turns out that both A(q- 1 ) and C(q- 1 ) may be completely

recovered from the parameters of this formulation. Hence, one may consider identification of the

physiologic mechanisms in Figure 6-2 based on an ARMAX formulation. However, in contrast to

the identification of ARMA parameters, the estimation here is not analytic and requires a numerical

search.
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atrial transmural pressure fluctuations are largely determined by RATP fluctuations,

since the diastolic filling time effects on venous return are small (see Figure 2-12) and

pulmonary ABP is essentially constant (see Section 2.2.2). Hence, SV fluctuations

may be considered to be essentially determined by ABP and RATP fluctuations.

Provided that the fluctuations in these three signals are sufficiently small, we may

relate these fluctuations with the following discrete-time, LTI equation:

ASV(k) = b(i)APRa,, (k - i) + d(i)APa(k - i), (6.15)
i=1 i=o

where SV(k) may be thought of as a sampled step-wise continuous process whose

value is the SV of the current inter-beat interval for a duration of that interval.

The impulse responses b(t) and d(t) respectively reflect the heart-lung unit and left

ventricular systolic dynamics. Provided that Pa < 180 mmHg, the static gains of b(t)

and d(t) are respectively ~ Cd and ~0. A measure of the size of d(t) may be obtained

from its absolute peak amplitude which is given by Cf", as the impulse response

immediately drops to -C,'8 at time zero. However, Cf" actually represents an upper

bound on the absolute peak amplitude since this value becomes significantly smaller

when low sampling rates are considered which is the case here due to smoothing

effects.

We may rewrite Equation (6.15) more compactly with delay operator notation

(see Section 4.1) as follows:

ASV(k) _ Pta,,) _1 APtg,( Pa _ APa(k)
)= Bq 1 + =--D(q ) - (6.16)

SV 37 Ptrl, SV 7a

where we have also normalized the signals by their mean values and scaled the transfer

function operators to offset the normalization. Importantly, the static gain relating

relative fluctuations in RATP to relative fluctuations in SV is normalized to one.

Assuming that B(q~ 1) is invertible, we may solve this equation for the relative fluc-
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tuations in RATP as follows:

APt2a,(k) SV 1 ASV(k) _ Pa D(q- 1) APa(k) (6.17)

Pila" Elia,, B(q-1) SV P"ra, B(q-1) Pa

Since the absolute peak amplitude of d(t) << 1 for low sampling rates (see Table 3.1)

and the standard deviation of the relative fluctuations in SV and ABP are about

the same, we neglect the last term of this equation arriving at the following LTI

equation which suggests that the relative fluctuations in SV are indicative of the

relative fluctuations in RATP:

APr a,(k) SV 1 ASV(k)

P"Irl" Ptra,, B(q-1 ) SV

We note that the transfer function operator relating the relative fluctuations in this

equation is noncausal with a static gain of one.

6.2.3 Direct Identification Method

We are now ready to present the details of two methods for TPR baroreflex identifi-

cation which are based on the two identification strategies adapted to utilize SV fluc-

tuations in lieu of RATP fluctuations. We first describe, in this section, the method

based on the adapted direct identification strategy which we will henceforth refer to

as the direct identification method. Figure 6-4 illustrates the model upon which the

method is based. The model includes two physiologic coupling mechanisms, Ar TPR

BAROREFLEX and SV-+TPR, and a perturbing noise source NTPR. SV-+TPR

reflects the transfer properties relating SV fluctuations to TPR fluctuations which

encompass two distinct physiologic coupling mechanisms, INVERSE HEART-LUNG

UNIT and CP TPR BAROREFLEX, according to the block diagram in Figure 6-

5 derived from the substitution of Equation (6.18) into Equation (6.9). INVERSE

HEART-LUNG UNIT specifically reflects the transfer properties relating SV fluctua-

tions to RATP fluctuations which encompass what may be thought of as the inverse
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left ventricular, pulmonary, and right ventricular dynamics. Although the dynamics

of SV- TPR do not isolate CP TPR BAROREFLEX, the static gain of SV-+TPR is

equivalent to that of CP TPR BAROREFLEX provided that relative fluctuations in

the input and output signals with respect to their mean values are being considered.

For a description of the remaining physiologic mechanisms of the model in Figure 6-4,

see Section 6.2.1.

Figure 6-4 Direct identification model depicting the feedback mechanisms responsi-
ble for the couplings between the fluctuations in ABP, SV, and TPR.

Ar TPR
ABP BAROREFLEX

N TPR + TPR

SV N SV-- TPR

Identification of the transfer properties of the two coupling mechanisms and the

power spectrum of the perturbing noise source in Figure 6-4 is performed similarly to

the first stage of the previously developed cardiovascular system identification method

(see Section 5.1). In particular, the model in Figure 6-4 is mathematically represented

by the following linear, dual-input ARMA difference equation:
p q r

TPR(t) = diTPR(t - i) ( e ABP(t - i) + ( fTSV(t - i) + WTPR(t), (6.19)
i=1 i=1 i=o

where WTPR is the residual error term. The AR and MA parameters completely

specify the impulse responses characterizing the two coupling mechanisms (see Sec-

tion 4.1) and are estimated with the ARMA parameter reduction algorithm (maximal

model: p=5, q=5, r=5; see Section 4.3.2). From Equation (4.2), the perturbing noise

source is completely characterized by the residual error term and the AR parameters

and may be computed as follows:

P
NTPR(t) = ZdiNPR(t - i) + WTPR(t)- (6.20)

i=1
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The power spectrum of the perturbing noise source may be determined according to

Equation (4.28). The analysis here utilizes six minute segments of zero-mean ABP,

SV, and TPR normalized by their mean values and sampled at 0.5 Hz. This sampling

frequency is chosen based on the bandwidths of the arterial and cardiopulmonary

TPR baroreflexes of the forward model (see Figure 3-3). The three signals utilized

for identification here are obtained from continuous records of CO and ABP signals

at a nonuniform sampling frequency (mean of ~200 Hz; see Section 3.2.1) for forward

model data and a uniform 100 Hz sampling frequency for experimental human data

as follows.

Figure 6-5 Block diagram of SV->TPR indicating the distinct physiologic mecha-
nisms that it encompasses and their interconnection.

INVERSE RATP
SV HEART-LUNG UNIT CP TPR BAROREFLEX TPR

The method that we consider for determining TPR from CO and ABP signals

is based on the simplified systemic circulation model of Figure 6-3. By integrating

Equation (6.1), the governing differential equation of this model, over intervals (t, <

t < t 2 ) in which Ra(t) varies little, we may obtain Ra(t) as a function of Pa(t), 41(t),

and Ca as follows:

I t2Pard
Ra(t) = t2  1  P a() t 1 < t < t 2. (6.21)

ft2 4(T)dT - y(Pa(t 2 ) - Pa(ti))

Note that the numerator of this equation represents the average ABP over the in-

tegration interval, while the denominator represents the average flow rate through

Ra(t) - the difference in average left ventricular flow rate and the average flow rate

through Ca - over the integration interval. Since Ca is assumed to be unknown, Ra(t)

may not be accurately determined for arbitrary integration intervals. However, by

choosing the integration interval such that the average flow rate through Ca is small,
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it may be possible to recover adequately Ra(t) through the following equation:

t 4 ft Pa(T)dT

This may be achieved by choosing the integration interval such that t2 - ti >> Ca4.

Since the bandwidth of Ra(t) is small with respect to the bandwidth of the systemic

circulation, we expect that it is possible to choose integration intervals in this manner

in which Ra(t) varies little.

Choosing the specific integration interval is a trade-off between keeping the aver-

age flow rate through Ca small (large integration interval) and recovering relatively

higher frequency information in Ra(t) (small integration interval). For approximately

fixed integration intervals, we may attenuate the average flow rate through Ca by

specifically considering integration over an integer number of cardiac cycles. In this

way, Pa(ti) is more likely to be near Pa(t2 ) in Equation (6.21). In contrast, con-

sider the average flow rate through Ca for this approximately fixed interval if Pa(ti)

happens to be the systolic pressure of a cardiac cycle and Pa(t2) happens to be the

diastolic pressure of another cardiac cycle. Hence, our specific procedure for imple-

mentation is as follows. We first estimate a value for TPR for each cardiac cycle

by performing the integration in Equation (6.22) (numerical trapezoidal integration)

over the interval which includes the five previous and five subsequent cardiac cycles 5.

4 A second method could be based on choosing the integration interval such that Pa (ti) = Pa (t 2 )

which would precisely zero out the average flow rate through Ca [6]. However, based on a forward

model analysis, we have found this method to perform significantly better than the first method

only when the ABP and CO signals are obtained at the same site in the arterial system. That is,

the second method would not improve the estimation of TPR fluctuations when flow rate and ABP

are respectively made available from the left ventricle and the finger as in Section 6.5. Furthermore,

in practice, we expect the second method to be less robust to measurement noise as compared to

the first method. Based on these considerations, we do not consider the second method here.
5 In the nominal forward model, this integration interval is on average -9 s, while Ca is 1.6

ml/mmHg.
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We then form a step-wise continuous process whose value corresponds to the esti-

mated TPR value of the current cardiac cycle for the time period of that cycle (see

formation of HR in Figure 5-2). We finally sample the step-wise continuous process

to 0.5 Hz with an anti-aliasing filter whose impulse response is a unit-area boxcar of

4 s duration arriving at the TPR utilized for identification. The ABP and SV signals

that are utilized for identification are similarly processed. In particular, the signals

are determined for each cardiac cycle by respectively averaging and integrating the

finely sampled ABP and CO signals over the five previous and five subsequent cardiac

cycles. Then step-wise continuous processes are analogously formed and sampled to

0.5 Hz.

6.2.4 Indirect Identification Method

We now describe the details of the method based on the similarly adapted indirect

identification strategy which we will henceforth refer to as the indirect identification

method. Figure 6-6 illustrates the model upon which the method is based. The

model includes two physiologic mechanisms, CO-+ABP and SV-+ABP, and a per-

turbing noise source N'ABP. SV-+ABP reflects the transfer properties relating SV

fluctuations to ABP fluctuations which encompass four physiologic coupling mecha-

nisms, INVERSE HEART-LUNG UNIT, SYSTEMIC ARTERIAL TREE, Ar TPR

BAROREFLEX, and CP TPR BAROREFLEX, according to the block diagram in

Figure 6-7a derived from the substitution of Equation (6.18) into Equation (6.10).

SYSTEMIC ARTERIAL TREE specifically reflects the transfer properties coupling

CO fluctuations to ABP fluctuations as well as TPR fluctuations to ABP fluctua-

tions. The dynamics of SV- ABP do not isolate RATP-4ABP; however, provided

that relative fluctuations in the input and output signals with respect to their mean

values are being considered, the static gain of SV-+ABP is equivalent to that of

RATP--ABP. Hence, the static gains of the Ar TPR BAROREFLEX and CP TPR
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BAROREFLEX may still be recovered from the physiologic coupling mechanisms in

Figure 6-6. We also include in Figure 6-7b a block diagram depicting the intercon-

nection of the distinct physiologic mechanisms encompassed by CO- ABP which is

based on Equations (6.11). For a description of N' see Section 6.2.1 as well as

Equation (6.10).

Figure 6-6 Indirect identification model relating couplings between fluctuations in
CO, SV, and ABP.

CO a CO -- ABP

N'ABP + ABP

SV SV -- ABP

The transfer properties of the two coupling mechanisms and the power spectrum

of the perturbing noise source in the model in Figure 6-6 are identified according to

the following linear, dual-input ARMA difference equation:

SU V

ABP(t) = gi ABP(t - i) E hiCO(t - i) + 1 jiSV(t - i) + W'BP M (6.23)
i=1 i=O i=O

where W" is the residual error term. Parameter estimation and signal processing

here are performed similarly to the direct identification method including the choice

of maximal model order (see Section 6.2.3).

6.3 Actual Identification Results

In order to evaluate the direct and indirect identification methods against the forward

model, we must first establish their gold standard results in a manner independent

of system identification. We first consider the establishment of the actual direct

and indirect identification impulse responses (Ar TPR BAROREFLEX, SV-+TPR,
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Figure 6-7 Block diagram of (a) SV-+ABP and (b) CO-±ABP indicating the inter-
connections of the distinct physiologic mechanisms that they encompass.

(a)

SV

(b)

CO ABP

CO-+ABP, and SV-*ABP). To this end, we define the impulse responses charac-

terizing each of the four sub-blocks in the block diagrams of Figures 6-5 and 6-7

for the forward model. These four sub-blocks include: Ar TPR BAROREFLEX,

CP TPR BAROREFLEX, SYSTEMIC ARTERIAL TREE, and INVERSE HEART-

LUNG UNIT. We may then establish the actual SV-+TPR, CO-+ABP, and SV-*ABP

impulse responses by simply interconnecting the four defined impulse responses ac-

cording to the block diagrams. In the following paragraph, we describe the specific

procedures (see Section 5.2.1) for establishing the actual impulse responses charac-
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terizing each of the sub-blocks.

The actual Ar TPR BAROREFLEX and CP TPR BAROREFLEX impulse re-

sponses are established analogously to the actual HR BAROREFLEX impulse re-

sponse as described in Section 5.2.1. However, the actual impulse responses here

are decimated to 0.5 Hz from 16 Hz and scaled for the consideration of relative

fluctuations (see Equation (6.9)). The actual SYSTEMIC ARTERIAL TREE im-

pulse response is defined essentially by virtue of forward model implementation. In

particular, the continuous-time version of this impulse response is defined in Equa-

tion (6.4). This continuous-time impulse response is simply sampled to 90 Hz accord-

ing to Equation (6.6) and then decimated to 0.5 Hz to arrive at the actual SYSTEMIC

ARTERIAL TREE impulse response. The actual INVERSE HEART-LUNG UNIT

impulse response is established based on Equation (6.17). We first determine the ac-

tual impulse response b(t) (reflected by the transfer function operator B(q 1 ) in this

equation) from the uncontrolled, unperturbed heart-lung model in Figure 2-10. This

model permits the fluctuations in ABP to be set to zero through the voltage source

Pa as well as the application of an approximate impulse or step of RATP through the

voltage source P,. The voltage source Pa is simply set to the mean ABP of the iden-

tification data, while the voltage source P, is initially set to a value which achieves

the mean RATP of the identification data. The value of P, is then stepped up to

a value which achieves the mean RATP plus one standard deviation as determined

from the identification data. The appropriate values of P, are determined from the

bisection method as described in Section 2.4.3. We measure the response of 41(t) to

this step input and integrate this signal over each cardiac cycle in order to obtain an

SV beat sequence which is converted into a uniformly sampled time series at 0.5 Hz

through the formation of a step-wise continuous process. The zero-mean, uniformly

sampled signal is then normalized by the standard deviation of RATP as determined

from the identification data and differentiated so as to arrive at the desired b(t). We
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next invert this impulse response and scale it according to Equation (6.18) arriving

at the actual INVERSE HEART-LUNG UNIT impulse response.

Figure 6-8 Actual direct identification results characterizing the nominal forward
model. These results are determined independently of system identification.
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We now consider the establishment of the actual direct and indirect identification

power spectra of the perturbing noise sources (NTPR and N'ABP). The actual NTPR

perturbing noise source of the forward model is simply n& (t). The forward model

generates n& (t) by passing a Gaussian white noise process of zero-mean and variance

.2 through the LTI filter in Equation (3.10). Hence, the actual power spectrum is

given by the product of the magnitude squared frequency response of this filter and .2

normalized for relative fluctuations (see Equation (6.9)). The actual N'ABP perturbing

noise source is defined according to Equation (6.10) as the actual NTPR perturbing

noise source passed through the actual CO-+ABP impulse response. Hence, the

actual power spectrum of N'BP may be determined simply from the product of the

magnitude squared frequency response of the actual CO-+ABP impulse response and

the actual power spectrum of NTPR. Figures 6-8 and 6-9 illustrate the resulting actual

direct and indirect identification results for the nominal forward model.
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Figure 6-9 Actual indirect identification results characterizing the nominal forward
model. These results are determined independently of system identification.
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6.4 Forward Model Analysis

With the gold standard results established, we may now analyze the performance of

the direct and indirect identification methods against forward model generated data.

However, before we proceed with this analysis, we first reconsider the validity of two

properties of the nominal forward model which play a critical role in the performance

of the identification methods.

The first property is the signal-to-noise ratio (SNR) of TPR fluctuations which

is defined to be the ratio of the standard deviation of the actual TPR fluctuations

due to the baroreflexes to the standard deviation of the actual TPR fluctuations due

to the unobserved TPR disturbance. It turns out that the value of this property is

only ~0.25 for the nominal forward model. That is, for every part of TPR fluctua-

tions due to the baroreflexes, there are about four parts due to the unobserved TPR

disturbance. This SNR value is sufficiently small such that reliable identification is

not possible even when the fluctuations in ABP, RATP, and the actual TPR signals
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from the nominal forward model are considered for analysis. As we discussed in Sec-

tion 3.3.2, the standard deviation of the TPR disturbance is chosen such that the

model spectra resembles spectra of experimental human data, particularly at the low

frequency range (0.04-0.15 Hz). However, it is possible to set the standard devia-

tion of this disturbance, and consequently the SNR of TPR fluctuations, to arbitrary

values, while maintaining reasonable spectra, through the introduction of a distur-

bance to Q (t) which may reflect systemic venous dead volume fluctuations due to,

for example, fast acting hormonal systems. In the nominal forward model, this dis-

turbance may, for example, induce ABP fluctuations, and consequently heart rate

fluctuations, through SV fluctuations. This is consistent with experimental findings

which have hypothesized TPR fluctuations, but have not precluded SV fluctuations,

in the genesis of low frequency ABP and heart rate fluctuations (see Section 3.1). It

is also possible to alter the SNR and maintain reasonable spectra by adjusting other

parameters of the forward model including, for example, the static gains of the ar-

terial and cardiopulmonary TPR baroreflexes. Although experimental data do exist

suggesting, at least to within some range, the values of these static gains [23], there

are no experimental data indicating the size of the unobserved TPR disturbance and

hence the SNR of TPR fluctuations.

The second property is measurement noise which is neglected in the nominal for-

ward model. This seems more reasonable for the analysis of the cardiovascular system

identification method in Chapter 5, because the signals which the method analyzes

are obtained easily and reliably in practice. However, the direct and indirect iden-

tification methods require the beat by beat measurement of CO which is somewhat

difficult to obtain in practice. Consequently, measurement noise is an important

factor here.

Based on these considerations, we assess the performance of the direct and indi-

rect identification methods against data generated from the forward model with the
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following adjustments. We arbitrarily set the SNR of TPR fluctuations to a value of

~56 by decreasing the nominal standard deviation of the TPR disturbance. In order

to maintain realistic spectra, we introduce a disturbance to QOV(t) whose power spec-

trum is the same as that of the TPR disturbance except with a standard deviation of

3.125 ml. Finally, we add zero-mean, white noise to the CO and ABP beat sequences

determined by averaging the 41(t) and Pa(t) signals generated by the forward model

over each cardiac cycle. The standard deviation of the additive CO noise is set to

25% of the standard deviation of the CO beat sequence, while the standard deviation

of the additive ABP noise is set to 12.5% of the standard deviation of the ABP beat

sequence. We also add zero-mean, white noise to the effective RR interval sequence

with a standard deviation of 12.5% of the standard deviation of the effective RR

intervals.

Figures 6-10 and 6-11 respectively illustrate the direct and indirect identification

estimates along with their corresponding gold standards from the forward model gen-

erated data. We present the coupling mechanisms in terms of their step responses in

order to indicate the performance of the estimates in terms of static gains (asymptotic

values of the step responses) as well.

Figure 6-10 illustrates striking deviations between the direct identification esti-

mates and their respective gold standards. In particular, the estimated dynamics are

much faster than the gold standard dynamics and the estimated Ar TPR BARORE-

FLEX step response indicates a positive feedback arterial TPR baroreflex. That is,

TPR increases in response to an increase in ABP. These deviations prompt us to re-

consider the direct identification method. The intent of this method is to analyze the
6 Jt turns out that an SNR value >~3 is sufficient for reliable identification when ABP, RATP,

and the actual TPR of the forward model are considered for analysis. The validity of the SNR

value of -5 may be evaluated, at least to some extent, by applying the identification methods to

experimental data (see Section 6.5) and examining the standard deviation of the resulting estimates

which are indicative of the SNR.
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Figure 6-10 Direct identification estimates (red denotes mean and dashed red de-
notes standard deviation) with gold standard (blue). The coupling mechanisms are
shown in terms of their step responses. The estimates are determined from 20 different
realizations of forward model generated data.
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relative fluctuations in ABP, SV, and TPR in order to characterize the physiologic

mechanisms responsible for coupling these signals. The relative fluctuations in these

signals are related in the forward model according to the following relationship:

P 1 APa(k)
RA(q )
Ra Pa

SV C(q- 1) ASV(k)

Ra B(q 1 ) SV

which is derived from the substitution of Equation (6.18) into Equation (6.9), How-

ever, from Equation (6.22), the fluctuations in TPR are essentially estimated accord-

ing to the following equation:

Pa(k)
Ra(k) SV(k) - F(k)

(6.25)

By removing mean values from this equation, normalizing it by Ra, and neglecting
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second order terms, the following relationship results:

ARa(k) APa(k) _ ASV(k) _ AF(k)
-- . (6.26)

Ra Pa SV F

Hence, the method for the estimation of TPR fluctuations imposes a nonphysiologic

relationship between the relative fluctuations in ABP, SV, and TPR. That is, this

equation would erroneously suggest that the Ar TPR BAROREFLEX and SV-+TPR

step responses are step functions scaled by one and minus one, respectively.

Hence, the direct identification problem essentially has two solutions as indicated

by Equations (6.24) and (6.26). Therefore, one may assume that this problem is

ill-conditioned. However, this is not the case here due to the inclusion of measure-

ment noise which tends to favor the solution of Equation (6.26). In fact, as the size

of the measurement noise is increased, the estimated Ar TPR BAROREFLEX and

SV-+TPR asymptotic step response values respectively tend towards one and minus

one. This tendency is less marked for SV-+TPR perhaps due to the fact that relative

fluctuations in SV deviate from the relative fluctuations in CO by the relative fluctu-

ations in heart rate. On the other hand, when measurement noise is excluded (which

is not a realistic scenario as discussed above), reliable estimation of the static gains of

Ar TPR BAROREFLEX and SV- TPR is achieved. This indicates that TPR is more

reliable at very low frequencies which is as expected' (see Section 6.2.3). However, if

we increase the maximal model order of the ARMA parameter reduction algorithm

when there is no measurement noise, the direct identification problem becomes ill-

conditioned. We explain this different result as follows. Equation (6.26) is not quite

an adequate second solution here due to the heart rate fluctuations which are not

considered by the direct identification method. However, when the maximal model

order is large, there are enough past values of ABP and SV to account for these heart

rate fluctuations which renders Equation (6.26) to be an adequate solution. Although

7The relative fluctuations in TPR deviate by 56 4% from the relative fluctuations in the actual

TPR generated by the nominal forward model.
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the asymptotic value of the estimated SV-+TPR step response seems to be fairly reli-

able even in the presence of measurement noise, consider the consequences if the very

low frequency heart rate fluctuations were relatively small as might be the case if the

data were collected while the subject was in the supine posture.

Figure 6-11 Indirect identification estimates (red denotes mean and dashed red
denotes standard deviation) with gold standard (blue). The coupling mechanisms
are shown in terms of their step responses. The estimates are determined from 20
different realizations of forward model generated data.
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On the other hand, Figure 6-11 demonstrates that reliable indirect identification

is generally achieved. We provide in Table 6.1 the corresponding NMSE results for

the indirect identification estimates. The table includes the NMSE for the asymptotic

step response value (static gain) estimates as well which is defined as follows. Again

let us refer to the impulse response estimate as vector x with mean vector i and

covariance matrix Ax and its corresponding gold standard as vector x0 . Then, the

static gain for the estimate and gold standard are respectively given by y = T, Ei xi
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and yo = T, E xo,j, where T, is the sampling period, and the NMSE is defined here

as follows:

E(y - yo)2NMSE(y, yo) = 2 100%
Ey;0 

(6.27)T2(S-yo) 2

TS2sum(Ax) (Q-y)
= y2 + 2 -100%,

where E(-) is again the expectation operator and sum(.) is defined to be the operator

which sums the elements of its matrix argument.

Impulse Response/Power Spectrum Static Gain

Indirect Identification Results NMSE [%] NMSE [%]

CO-+ABP 47±7 30±10

SV--+ABP 238t44 47±18

N'BP 651±222 --

Table 6.1: NMSE (meantstandard deviation) results of the indirect identification
estimates in Figure 6-11.

The results of the figure and table indicate that the estimated SV-+ABP step

response, and perhaps as a consequence N' do not resemble adequately their re-

spective gold standard in terms of dynamics. We hypothesize that this is due to the

no delay property of the closed-loop relationship between SV fluctuations and ABP

fluctuations. That is, SV fluctuations influence ABP fluctuations through the com-

pliance properties of the aorta, while ABP fluctuations simultaneously influence SV

fluctuations through afterload effects. As discussed in Section 4.2.4, reliable identi-

fication is not possible when the data are obtained in closed-loop with no delay in

both the feedforward and feedback pathways. However, importantly, this simultane-

ous interaction between ABP and SV fluctuations is an immediate, high frequency

effect (see Figure 6-11). Consequently, the static gain of the estimate is relatively
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unaffected. We also note that some of the discrepancy between the SV-+ABP esti-

mate and its gold standard may be attributed to the fact that SV fluctuations are not

perfectly determined by RATP fluctuations (see Section 6.2.2). This may explain, at

least to some extent, why the downward deflection of the estimated step response is

somewhat underestimated. We also note that the low frequency relative fluctuations

considered by the indirect identification method are sufficiently small such that the

results here are robust against all the nonlinear arterial compartments of Figure 2-14.

6.5 Experimental Data Analysis

We now present the application of the direct and indirect identification methods to

experimental data. The data analyzed here specifically include approximately five

minute segments of noninvasively measured CO (Doppler ultrasound technique) and

ABP (Finapres) signals obtained from ten healthy human subjects in the supine

posture during random-interval breathing.

Figure 6-12 illustrates the resulting group average direct identification estimates.

Importantly, the estimates here are similar to the direct identification estimates ob-

tained from data generated by the forward model (see Figure 6-10). Without the

forward model analysis of the previous section, one might have been tempted to

interpret the estimate of the Ar TPR BAROREFLEX step response as a positive

feedback mechanism perhaps representing the cumulative effects of the autoregula-

tion of local vascular beds. However, because of the forward model analysis, we

consider this estimate, along with the estimate of the SV- TPR step response, to be

artifactual as a consequence of the method for estimating TPR fluctuations. Based

on the experimental results here together with the forward model-based results in the

previous section, we conclude that quantification of the arterial and cardiopulmonary

TPR baroreflexes is not reliable with the direct identification method as described in
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Section 6.2.3. However, if the relative fluctuations in TPR could be estimated with a

different approach (see Section 7.2), then reliable estimation may be possible.

Figure 6-12 Direct identification estimates (red denotes mean and dashed red de-
notes standard deviation) from experimental human data. The coupling mechanisms
are shown in terms of their step responses. The estimates are determined from ten
healthy subjects.
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Figure 6-13 illustrates the resulting group average indirect identification estimates

which are also similar to the corresponding estimates obtained from data generated by

the forward model (see Figure 6-11). The static gain values of the Ar TPR BARORE-

FLEX and CP TPR BAROREFLEX, as determined from the indirect identification

estimates (see Section 6.2.1) are respectively -1.79 and -1.56. These values indicate

that a 10% increase in ABP would result in a steady-state decrease in TPR of 17.9%

due to the arterial TPR baroreflex, while a 10% increase in RATP would result in a

steady-state decrease in TPR of 15.6% due to the cardiopulmonary TPR baroreflex.

In the forward model, the static gains of the Ar TPR BAROREFLEX and CP TPR
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BAROREFLEX are set to -1.09 and -0.56, respectively. The duration of time for the

estimated CO-+ABP step response to reach its asymptotic value is ~30 s, while this

time duration is ~40 s for the forward model. However, we do not hold much stock in

the estimated dynamics of the SV-+ABP step response which initially appear to be

faster than expected somewhat like the corresponding estimate from forward model

generated data. Hence, the estimates derived from the application of the indirect

identification method to experimental human data compare favorably to the dynam-

ics of the forward model which are based on independent experimental data. Because

the indirect identification method is generally reliable with respect to the forward

model generated data as well, we conclude that this method may provide a relatively

convenient tool for obtaining quantitative information pertaining to the arterial and

cardiopulmonary TPR baroreflexes in humans. Therefore, we believe that it would

be worthwhile to explore the experimental validation of the indirect identification

method (see Chapter 8).
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Figure 6-13 Indirect identification estimates (red denotes mean and dashed red de-
notes standard deviation) from experimental human data. The coupling mechanisms
are shown in terms of their step responses. The estimates are determined from ten
healthy subjects.
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Chapter 7

TPR Estimation From ABP

Waveform

In Chapter 6, we developed a promising total peripheral resistance (TPR) barore-

flex identification method that requires beat by beat measurements of left ventricular

flow rate (cardiac output, CO) and arterial blood pressure (ABP) which may be

obtained noninvasively in humans via Doppler ultrasound and Finapres techniques,

respectively. With these measurements, steady-state changes in TPR may also be

conveniently monitored through the ratio of mean ABP to mean CO. However, as

discussed in Section 1.2, the Doppler ultrasound technique requires an expert operator

and may not always be available. On the other hand, reliable, beat by beat measure-

ment of CO is not necessary for tracking steady-state changes in TPR. In fact, TPR

is usually monitored clinically with a CO measurement obtained from thermodilution

which essentially involves the injection of cold saline in the right atrium and the mea-

surement of temperature downstream in the pulmonary artery [10]. CO may then be

calculated by applying the conservation of mass principle. However, this technique

requires a venous puncture, assumes that the cold saline has been thoroughly mixed

with the blood, and is implemented over a relatively short time interval such that
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mean CO may not be adequately determined. Due to the difficulties in the mea-

surement of CO, investigators have attempted to monitor TPR from only the ABP

waveform by fitting an exponential to the diastolic decay portion of an ABP wavelet

(e.g., [12,46]). The time constant estimated from this fit is assumed to represent the

dominant time constant of the systemic arterial tree (TD) - the product of mean TPR

and the lumped arterial compliance - which would permit the monitoring of TPR,

provided that arterial compliance is relatively static. However, the diastolic decay

portion of the peripheral ABP wavelet is significantly corrupted by pulse reflections

(see Section 2.5.2) such that an exponential decay is usually impossible to discern

visually. Although the diastolic decay portions of the central ABP wavelet are rela-

tively free of pulse reflections, they are also somewhat corrupted due to the dicrotic

notch denoting aortic valve closure. Consequently, an exponential fit here may only

be possible for sufficiently low heart rates such that the dynamics responsible for the

dicrotic notch have vanished. Furthermore, central ABP may only be obtained by

invasive measurement techniques.

In this chapter, we analyze a novel method based on system identification which

may permit the reliable estimation of TD from an ABP waveform obtained at any

point in the arterial system despite the presence of pulse reflections (or the dicrotic

notch). We begin by describing the method at the conceptual level and then present

some of the details of data analysis (Section 7.1). We next evaluate the performance

of the method against data generated from the forward model (Section 7.2) as well

as a preliminary set of experimental data (Section 7.3).

7.1 Identification Method

As we have discussed, pulse reflections corrupt the peripheral ABP waveform such

that an exponential decay during diastole is usually impossible to discern visually.
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However, since pulse reflections largely corrupt the waveform on short time scales

within about a cardiac cycle (high frequencies), the waveform on longer time scales

(low frequencies) is relatively unscathed thus reflecting only TD. Hence, it should be

possible to estimate accurately TD by analyzing the ABP waveform over long time

scales. To this end, we have developed a method which is based on the identification

of the CIRCULATORY MECHANICS impulse response (see Section 5.1). Recall

that this impulse response represents the ABP wavelet that would result from a

single ventricular contraction. Hence, the tail end of the diastolic decay of the es-

timated CIRCULATORY MECHANICS impulse response resembles an exponential

from which TD may be determined as the faster pulse reflections have vanished.

The CIRCULATORY MECHANICS identification method was originally designed

to provide a means to remove the pulsatile component from ABP while preserving

ABP variation due to instantaneous lung volume (ILV). We modify the identification

method in order to tailor it to the purpose here of estimating TD. In particular, we

consider a single-input identification problem where the input is the PHR signal'

(see Section 5.1) adjusted such that the area of each of its impulses is set to the

pulse pressure (PP) of the ensuing beat (PHRpp), and the output remains as ABP.

This modification improves the fit between PHRep and ABP which would presum-

ably provide a more accurate estimate of TD. It is not necessary to include ILV as

an additional identification input here, because its influence on ABP is completely

encompassed by PHRep. Figure 7-1 provides a pictorial representation of the mod-

ified identification problem and the subsequent exponential fit. Note that the peak

amplitude of the impulse response here, referred to as CIRCULATORY MECHAN-

ICS', is approximately equal to one. This is in contrast to the peak amplitude of

the CIRCULATORY MECHANICS impulse response estimate determined from the

' Although we construct PHR from the ECG (see Figure 5-2), it is possible to derive a PHR signal

from the ABP waveform.
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original method which is approximately equal to the mean PP (see Figure 5-3).

Figure 7-1 Pictorial representation of identification method for determining TD from
an ABP waveform obtained at any point in the arterial system. The data illustrated
here are generated from the forward model with the third-order systemic arterial
compartment of Figure 2-15.
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The CIRCULATORY MECHANICS' impulse response may be identified accord-

ing to the following linear, single-input ARMA difference equation:

m n

ABP(t) = a ABP(t - i) + biPHRpp (t - i) +W''I pW(t) (7.1)
i=1 i=1

where W'" is the residual error term. The parameters, which completely character-

ize the impulse response, are estimated from 90 second segments of PHRep and ABP

signals sampled at 90 Hz (see Section 5.1) with the ARMA parameter reduction algo-

rithm of Section 4.3.22. The maximal model is given as follows: m=10 and n=42/HR,

where HR is in units of bps. The value of n here is determined empirically based on

a forward model analysis. This value indicates that, for higher heart rates, fewer MA

parameters are required to characterize reliably the CIRCULATORY MECHANICS'

impulse response.

2Since the longer time scale information in ABP almost exclusively reflects T>, it may be worth-

while to consider prefiltering the signals in order to amplify its energy at the lower frequencies.

In theory, this would essentially weight the least squares identification problem such that the fit

between the identification input and output at these frequencies would be favored.
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We estimate TD by fitting an exponential to the identified impulse response over

the interval from two to four seconds as depicted in Figure 7-1. We choose to start the

interval at two seconds, because the faster pulse reflections are sufficiently attenuated

by this time. On the other hand, the diastolic portions of the ABP waveform also

include an infinite time constant. That is, if the heart were stopped, ABP would not

decay to zero but rather to the mean systemic pressure (see Section 2.4.2). The contri-

bution of this time constant, which is initially small, becomes increasingly significant

with time. Consequently, we limit the interval to four seconds. In Appendix B, we

describe the details for the determination of the mean and standard deviation of the

TD estimate.

Before we proceed with the forward model analysis, we consider the identification

problem here at the conceptual level for the case in which the heart rate is fixed. In

theory, there would be two impulse responses which solve the identification problem in

this case. One of the solutions is depicted in Figure 7-1 and is the impulse response

that we desire. The other impulse response solution is essentially a single ABP

wavelet with two discontinuities, one from zero to about the diastolic pressure at

time zero and the other from about the diastolic pressure to zero at the time of

end-diastole. Fortunately, the former impulse response is the unique solution when

the identification problem is solved with linear least squares estimation. Since this

estimation technique can only identify dynamics at frequencies present in the input

and output data, the high frequency discontinuities of the latter impulse response

solution cannot be identified. Hence, linear least squares identification here is a well

conditioned problem. We further note that if the means of PHRep and ABP were

removed, in theory, there would be an infinite number of impulse response solutions.

However, linear least squares estimation again provides a unique impulse response

solution which is approximately a single ABP wavelet minus its diastolic pressure

(that is, no discontinuities; see [57,59]). This, of course, is not the solution that we
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desire.

7.2 Forward Model Analysis

We are now ready to assess the performance of the identification method against ABP

waveforms generated by the forward model. We specifically evaluate the method in

terms of its ability to estimate TD as well as steady-state changes in TPR. We also

consider a preliminary analysis of the method in terms of its potential to measure

changes in TPR on short time scales.

The gold standard value of TD in the forward model may be simply determined

from the product of the average Ra(t) over the segment of analyzed data and Ca. In

order to quantify how closely the TD estimate derived from the identification method

matches its gold standard value, we again call upon the NMSE which was first in-

troduced in Section 5.2.2. Let TD denote the estimate with mean ' and standard

deviation aTD, while TD,O represent the corresponding gold standard. Then, the NMSE

may be defined here as follows:

NMSE(TD, TD,O) - E(D - TD, 100%(
ET 2 DO(7.2)

__ U7D2 \iD - TD,0 2rD(. + TDO 100%.
2+ 2

TD, TD,O

The NMSE result (meantstandard deviation) as determined from 20 different

realizations of the ABP waveform generated from the nominal forward model dur-

ing random-interval breathing is 4.9t0.5%. The estimate here slightly overestimates

its gold standard perhaps due to the small contribution of the infinite time con-

stant in the ABP waveform (see Section 7.1). Although the method performs quite

well, the nominal model does not include pulse reflections, the dicrotic notch, or

any other system dynamics which emulate such corruptions to the diastolic portions

of the ABP waveform. Hence, we heretofore consider the method against the ABP
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waveform generated from the forward model with the nominal systemic arterial com-

partment replaced by the third-order systemic arterial compartment of Figure 2-15.

Figure 2-16 demonstrates that the latter compartment emulates the peripheral ABP

waveform. The resulting NMSE value (meantstandard deviation), determined again

with random-interval breathing for 20 different realizations of the ABP waveform,

is 4.3+0.5%. This result demonstrates the potential efficacy of the method in teas-

ing out TD from the longer time scale information in the ABP waveform despite the

presence of higher frequency dynamics corrupting the diastolic decay of each ABP

wavelet.

Although the systemic arterial compliance decreases with increasing ABP and age

(see Figures 2-13 and 2-14), it is believed to be essentially constant over a fairly wide

range of ABP and on the time scale of hours to days. Hence, the following equality

holds to the extent that this belief is true:

TPR2 - TPR1 _ TD, 2 - TD,1 (7.3)
TPR1  TD,1

where TPRi and rD,i denote steady-state values determined from the ith segment

of data. This equation indicates that tracking TD is equivalent to tracking TPR in

terms of steady-state, relative changes. For example, an estimated 10% steady-state

increase in TD would indicate the same percentage increase in TPR.

We now evaluate the sensitivity of the identification method in detecting steady-

state, relative changes in TPR when the equality here holds (constant arterial com-

pliance). We again consider the analysis of the ABP waveform generated from the

forward model during random-interval breathing in which the steady-state value of

TPR is adjusted by increasing and decreasing the parameter RP (see Table 3.1) by

5% and 10% with respect to its nominal value. Figure 7-2 illustrates the results in

terms of the estimated steady-state percentage change in TPR as determined from

the TD estimate versus the actual steady-state percentage change in TPR. The figure

demonstrates that the identification method is quite sensitive, able to detect steady-
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state changes in TPR < 5%. Note that the identification method appears to be more

accurate in terms of estimating relative changes in TPR than in estimating TD. The

reason for this is that the overestimation of TD due to the presence of the infinite time

constant in the ABP waveform is essentially canceled out when considering relative

changes (see Equation (7.3)).

Figure 7-2 Sensitivity results (red trace, meantstandard deviation) in terms of
estimated versus actual percentage change in steady-state TPR with respect to the
nominal values. The results are determined from 20 different realizations of data
generated by the forward model with the third-order systemic arterial compartment
of Figure 2-15. The blue trace denotes the identity line.
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Certainly, the results of Figure 7-2 would be adversely affected if there were a

change in the systemic arterial compliance as well. The extent of such a change, which

may be due to a multitude of factors (e.g., disease, change in mean ABP, degree of

systemic arterial compliance nonlinearity), is highly variable, and its influence on the

performance of the identification method in predicting steady-state relative changes

in TPR may be best addressed with experimental data (see Section 7.3).

It turns out that, in the forward model, pulsatile variability alone is sufficient for

obtaining a good estimate of TD provided that the heart rate is not too close to the

resonant frequency of the third-order systemic arterial compartment (-150 bpm). As
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a consequence, the rD estimate is quite reliable even when only ten second segments

of data are considered for analysis. This may signify the importance of the role of

the DC component (more precisely, a continuum of frequencies near DC as finite data

records are considered) of the ABP waveform in the reliable estimation of TD. Since

this component is relatively large in terms of energy, least squares identification will

accurately estimate the CIRCULATORY MECHANICS' impulse response at the DC

frequency so as to minimize the energy of the residual error. Hence, we may expect,

through continuity arguments, that the low frequency range of the impulse response

is also accurately modeled including ~0.1 Hz which is the half-power bandwidth

reflected by the gold standard TD.

We have demonstrated with the forward model that it is possible to tease out TD

from long time scale information in an ABP waveform which is mostly corrupted on

shorter time scales. However, the third-order systemic arterial compartment of the

forward model provides only a first-order approximation of the distributed effects of

the arterial tree. Consequently, it may not be reasonable, for example, to conclude

that ten seconds of the ABP waveform are sufficient to estimate reliably TD from ex-

perimental data. Hence, it is important to evaluate the identification method against

data generated from experimental data or data generated from a forward model which

more accurately reflects the distributed effects of the systemic arterial tree (e.g., [63]).

The latter data may be necessary when considering the identification method in terms

of estimating relative changes in TPR on short time scales (e.g., < 10 seconds) as

there are no experimental means to measure such rapid changes directly.

Before we proceed with an assessment of the identification method against a pre-

liminary set of experimental data, we propose another approach based on the identi-

fication method here for estimating the relative changes in TPR on short time scales

which may be more accurate and computationally efficient than simply considering

the analysis of short segments of the ABP waveform. The motivation here stems
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from system identification applications. Consider, for example, the potential of this

approach in regards to the direct identification method of Section 6.2.3.

Figure 7-3 Power spectrum of N"BP determined from the application of the iden-
tification method to the ABP waveform generated from the forward model with the
third-order systemic arterial compartment in which Ra(t) is varied sinusoidally at
0.05 Hz.
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The method specifically considers the actual error resulting from the application

of the identification method to long segments of the ABP waveform. From Equa-

tion (4.2), the actual error (N"BP) is defined as follows:

m
N"Bp = - a Ni t - i) W"(7.4)

i=1

Since PHRpp essentially encompasses all the variability in ABP due to CO, we claim

that the low frequency content (< 0.1 Hz) of N"Bp represents ABP fluctuations

due only to TPR fluctuations. This claim assumes that the arterial compliance and

the systolic portion of each ABP wavelet is essentially constant over this frequency

range. In order to test this claim, we introduced a sinusoidal variation to Ra(t) at

a frequency of 0.05 Hz (while all other mechanisms manipulating Ra(t) were set to

zero) in the forward model and computed the resulting power spectrum of NA'BP (see

Equation (4.28)) which is illustrated in Figure 7-3. The fact that most of the power
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of the N"BP spectrum is centered at 0.05 Hz supports our claim. Now consider the

block diagram in Figure 7-4 which is based on Equations (6.3) and (6.4). Based on

this block diagram, it may be possible to recover the relative fluctuations in TPR by

deconvolving the low frequency fluctuations in N"BP with !-e '.

Figure 7-4 Block diagram depicting potential method for recovering relative fluctu-
ations in TPR from N"BP and CIRCULATORY MECHANICS'.

PHR ,1, I e-tD
tD

-- ABP

TPR e-t/5C N''

D

7.3 Experimental Data Analysis

In order to evaluate the performance of the identification method against experimental

data, we must first establish a gold standard result. It may be somewhat difficult

to obtain an independent, experimental measurement of TD; however, it is relatively

easy to determine independently steady-state TPR through the ratio of mean ABP

to mean CO. Hence, we evaluate the identification method against experimental data

in terms of estimating steady-state, relative changes in TPR.

We first consider evaluation against a preliminary set of experimental data ob-

tained from six intensive care patients. For each of the patients, an ABP waveform

obtained from the insertion of a catheter in the radial artery and a CO measurement

obtained from thermodilution are available for two different time periods in which

the steady-state value of TPR has been altered. Figure 7-5 illustrates the estimated

steady-state change in TPR as predicted by the identification method versus the gold

standard steady-state change in TPR as determined by the ratio of mean ABP to CO.

The results indicate a positive correlation (line of best fit: y = 0.8x+2.8) between the

195



Figure 7-5 Comparison of the estimated steady-state change in TPR as predicted
by the identification method with the gold standard steady-state change in TPR as
determined by the ratio of mean ABP to thermodilution CO for six intensive care
patients (red x). The dashed red trace denotes the line of best fit, while the blue
trace denotes the identity line.
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estimated and gold standard steady-state TPR change. Since the reliability of the

measurement of mean CO through thermodilution is questionable, it is possible that

much of the discrepancy here may be attributed to the imperfect gold standard.

Therefore, it is necessary to compare the identification method with data that

includes the gold standard CO measurement which is obtained by applying a flowme-

ter to the aorta. Certainly, this measurement technique can only be considered for

animals. Figure 7-6 illustrates such data obtained from a single dog in the control

condition and after the administration of phenylephrine - a pharmacological vasocon-

strictor which increases steady-state TPR. The ABP waveform here is obtained from

the insertion of a catheter in the brachial artery, while CO is specifically obtained with

an electromagnetic flowmeter applied to the aorta. Table 7.1 provides the results as

determined from the gold standard and the identification method. The identification

method not only compares quite favorably to the gold standard in terms of predict-

ing the steady-state change in TPR due to the phenylephrine administration, but
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Figure 7-6 Experimental ABP and CO data obtained from a single dog during
control conditions and after the administration of phenylephrine. The ABP data is
obtained from the insertion of a catheter in the brachial artery, while CO is obtained
from an electromagnetic flowmeter applied to the aorta.

Control Phenylephrine
200 200

180 180

160 160

140 140

E
120 120A A120

60'
0 20 40 60 80

100

80

60L0 20 40 60 80

300[

250

200

150

100

50

-5010 20 40 60 80
Time [s]

0 20 40 60 80
Time [s]

also provides values of rD which are consistent with those reported in the literature

(e.g., [12,46]). The promising preliminary results here, as well as in Section 7.2, mo-

tivate a full scale experimental study for the evaluation of the identification method

in which the procedure outlined in Figure 7-6 is repeated for a large set of animals.
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Method First Data Segment Second Data Segment ATPR
___ ___ __ ___ ___ ___ ___ __ ___ ___ ___ ___ __ TPR

ABP 2.4 mmHg-s 2.8 mmHg-s +17%
CO ml ml

T - 0.9±0.0 s 1.1±0.0 S +22%

Table 7.1: Comparison between the estimated steady-state change in TPR as pre-
dicted by the identification method with the gold standard steady-state change in
TPR as determined by the ratio of mean ABP to CO for the dog data in Figure 7-6.
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Chapter 8

Conclusions

Cardiovascular system identification is a potentially powerful approach for intelligent

patient monitoring of cardiovascular function. Rather than merely recording hemody-

namic signals, the signals are mathematically analyzed so as to provide a dynamical

characterization of the physiologic mechanisms responsible for generating them. The

research presented in this thesis deals with the development and evaluation of practi-

cal cardiovascular system identification methods based on data generated by a forward

model of the cardiovascular system whose dynamical properties are precisely known.

In this chapter, we summarize the major results of this research (Section 8.1) and

present potential future studies that stem from these results (Section 8.2).

8.1 Summary

In Part I (Chapters 2 and 3), we presented a computer model of the human cardio-

vascular system geared towards the accurate representation of those signals that are

analyzed by the identification methods considered in Part II. The model includes

three major components: a heart and circulation, a short-term regulatory system,

and resting physiologic perturbations.

In Chapter 2, we described the heart and circulation which is a lumped parameter
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model consisting of six compartments representing the left and right ventricles, the

systemic arteries and veins, and the pulmonary arteries and veins. We demonstrated

that this model is capable of reasonably emulating experimental data in terms of

steady-state pulsatile, limiting static, and dynamical behaviors.

In Chapter 3, we presented models of the short-term regulatory system and resting

physiologic perturbations. The short-term regulatory system consists of arterial and

cardiopulmonary baroreflex systems as well as a direct neural coupling mechanism

between respiration and heart rate. The arterial baroreflex system maintains arterial

blood pressure (ABP) through the control of heart rate, contractility, total periph-

eral resistance (TPR), and systemic venous dead volume, while the cardiopulmonary

baroreflex system senses the effective right atrial transmural pressure (RATP) of the

heart and circulation and manipulates TPR and systemic venous tone. The resting

physiologic perturbations include fixed-rate or random-interval respiratory activity, a

stochastic disturbance to TPR reflecting autoregulation of local vascular beds, and a

1/f stochastic disturbance to heart rate representing variability not attributable to

the arterial baroreflex system or respiration (e.g., higher brain center activity). We

demonstrated that these two models in concert with the heart and circulatory model

emulate experimental hemodynamic variability at frequencies below the mean heart

rate on short time scales of seconds to minutes.

In Part II (Chapters 4-7), we considered data generated from the forward model

of Part I as a test bed for the evaluation of a previously developed cardiovascular

system identification method and the development and analysis of novel, practical

identification methods for quantifying the TPR baroreflex and monitoring steady-

state changes in TPR. In Chapter 4, we described the data analysis techniques that

are employed by these identification methods.

In Chapter 5, we evaluated the performance of the previously developed cardio-

vascular system identification method against forward model generated data. This
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method involves the analysis of the fluctuations in heart rate, ABP, and instanta-

neous lung volume in order to characterize quantitatively two autonomically me-

diated coupling mechanisms, two mechanically mediated coupling mechanisms and

two perturbing noise sources which are responsible for generating these fluctuations.

Based on the forward model-based evaluation, we inferred that the cardiovascular

system identification estimates obtained from experimental data are likely to reflect

the actual system dynamics of underlying physiologic mechanisms and provide a very

sensitive measure of parasympathetic function and a reasonably sensitive measure of

,3-sympathetic function.

In Chapter 6, we introduced two identification methods which require only left

ventricular flow rate (cardiac output, CO) and ABP signals for the quantitative char-

acterization of physiologic coupling mechanisms that reveal arterial and cardiopul-

monary TPR baroreflex dynamics. The first method, referred to as the direct iden-

tification method, involves estimating TPR fluctuations from essentially the ratio of

ABP to CO. The second method, referred to as the indirect identification method,

involves extracting information pertaining to the TPR baroreflex essentially through

its correlation with CO and ABP. We evaluated the performance of these two iden-

tification methods against forward model generated data. We found that the direct

identification estimates were corrupted by a nonphysiologic relationship between the

identification inputs and output imposed by the TPR estimation method. However,

we found the indirect identification estimates to reveal useful information pertaining

to TPR baroreflex dynamics. We also considered a complementary analysis of the

two identification methods with respect to experimental human data. The estimates

from this analysis appeared similar to those derived from forward model generated

data. We therefore concluded that only the indirect identification estimates may truly

reveal the TPR baroreflex.

In Chapter 7, we presented a novel method for monitoring steady-state changes
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in TPR from only the ABP waveform. The method involves estimating the dias-

tolic decay time constant from long time scale information in the ABP waveform via

system identification. This method circumvents problems associated with measuring

the time constant directly from the diastolic portion of an ABP wavelet (e.g., pulse

reflections corrupting peripheral ABP). We demonstrated that the method could ac-

curately estimate the diastolic decay time constant from the ABP waveform generated

from the forward model despite the presence of short time scale dynamics in the wave-

form emulating pulse reflections. We also included a preliminary investigation of the

performance of the method in predicting steady-state changes in TPR against exper-

imental data in which simultaneous measurements of CO and peripheral ABP were

available. The results of this investigation were promising.

8.2 Future Studies

A principal motivating factor for the forward model-based analysis considered in this

thesis is to initiate carefully thought out experimental studies which have a reasonable

chance for success. We list the potential future studies that we consider to be most

important as follows.

1. Experimental validation of indirect TPR baroreflex identification method. Al-

though it would be very difficult to establish experimentally gold standard indi-

rect identification step responses, the asymptotic step response values in terms

of the static gains of the arterial and cardiopulmonary TPR baroreflexes may be

obtained according to a relatively straightforward animal experiment described

in [72]. The experiment involves perturbing mean ABP and mean RATP over

a narrow range by varying ventricular pacing rate through a pacemaker and

atrioventricular block and blood volume through hemorrhage or saline infusion.

Provided that ABP, RATP, and CO are obtained from measurement, the static

202



gains may then be established from a multiple regression analysis in which mean

ABP and mean RATP are regressed on mean TPR as determined from the ratio

of mean ABP to mean CO. The CO and ABP signals required by the indirect

identification method may be obtained prior to this experiment during condi-

tions of sinus rhythm and normal blood volume while the animal is ventilated

with a manual resuscitation bag according to the random-interval breathing

protocol (see Section 3.3.1). Then, the asymptotic step response values esti-

mated from the indirect identification method may be evaluated against their

corresponding gold standard values. As discussed in Section 1.2, the experi-

mental procedure proposed here assumes that the cardiovascular state and/or

operating point has not been altered from one experimental condition to the

next.

2. Modification of indirect identification method to require only ABP. Since a beat

by beat CO measurement is not always available, it would be useful to develop

a TPR baroreflex identification method that requires only ABP. It may be

possible to modify the indirect identification method to require only ABP by

considering the relative fluctuations in PP as a surrogate for relative fluctuations

in SV. This modified indirect identification method may be most effectively and

conveniently evaluated against experimental human data (see Section 6.5) by

considering the estimates determined from the original indirect identification

method as the gold standard.

3. Validation of identification method for monitoring TPR from ABP waveform.

The ideal experimental protocol for evaluating the identification method in

terms of monitoring steady-state TPR changes would require an animal prepa-

ration in which measurements of a peripheral ABP waveform and flowmeter

CO are obtained before and after the administration of a pharmacologic inter-
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vention that alters mean TPR. In a preliminary investigation, we evaluated the

identification method based on data obtained from such an experiment protocol

for a single dog (see Section 7.3). However, this protocol needs to be repeated

for a larger set of animals. In Section 7.2, we described two potential meth-

ods for estimating TPR changes on relatively short time scales from the ABP

waveform. Since it is not possible to measure directly TPR fluctuations, these

two methods must be evaluated with respect to a forward model in which the

distributed nature of the systemic arterial tree has been more accurately mod-

eled. It may also be possible to modify the direct TPR baroreflex identification

method to incorporate either of these time constant-based methods which would

circumvent the problem related to estimating TPR fluctuations from essentially

the ratio of ABP to CO. However, it is possible that systemic arterial compli-

ance nonlinearity could preclude reliable direct identification. Note that this

modification may also be conveniently evaluated against experimental human

data (see Section 6.5) in which the static gains of the indirect identification

estimates are considered to be the gold standards.

It is our hope that the research presented in this thesis stimulates the realization

of such experimental validation studies and ultimately leads to the establishment

of system identification as a clinical approach for intelligent patient monitoring of

cardiovascular function.
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Appendix A

Nonlinear Ventricular

Pressure-Flow Rate Relationship

In this appendix, we present the pressure-flow rate relationship of the nonlinear, time-

varying ventricular model in Section 2.2.3. This relationship is determined simply

from the derivative of the pressure-volume relationships characterizing the nonlinear

model with respect to time. However, the pressure-flow rate relationship that results

from differentiation is quite involved and is thus included here.

We may rewrite the ventricular pressure-volume relationship in terms of normal-

ized pressure (y(t)) and volume (x(t)) which is given in Section 2.2.3 as follows:

y(t) = a(t)x(t) + 0(t)-y(x(t), t), (A.1)

where a(t) and 3(t) are defined in Equations (2.16) and (2.12) and

7(X(t), 0) = X M) + IIn a (x (t), t) .(A.2)

Note that we omit the subscripts 1, r here and henceforth for the clarity. The functions

a(x(t), t) and b(t) are defined as follows:

a(x(t), t) = 1 + e k(x(t)-xO(t)), (A.3)
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b(t) = 1 + ekx0(t)

Applying the product rule for differentiation to Equation (A.1) results in the following

equation:

+ da(t) x(t)dt + N (t)dy(x(t), t) + d3(t)xM, ),dt dt

dx(t) _ 1 dQ(t)
dt Qmax - Qo dt

da(t) _ Qmax - Q0 dE(t)
dit APmax dt

dx(t)

dt
+

b(t) da(x(t),t) - a(x(t), t) db(t)

ka(x(t), t)b(t)

da(t) y(1, t) - (1 - a(t)) dy_,')
dt dt

_y(l, t)2

The derivatives in Equation (A.8) not previously defined are given as follows:

da(x(t), t)

dt
= -k dx(t) _ x 0 (t) e-k(x(t)-x(t))

dt dt

db(t) = k eX(t ekxO()
dit dt

with

dx0(t) _ -1 da(t)
dt (1+a(t))2 dt

The unnormalized pressure-flow rate relationship is then given as follows:

dP(t) - APmax dy(t) + dPth(t)
dit dit dit

By defining

I dE(t) max - Q0, APmax)
'/(t) dt

_ pmax dy(t)
dt

we may rewrite Equation (A.13) as follows:

=f (Q(t) - Q, dQ(t)
dt

1 dE(t) max - QO, APrax) + dPth(t)

'E(t)' dt dt
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dy(t) =
dt

a(t) dx(t)
di

where

(A.5)

dy(x(t), t)

dt

d3(t)
dit

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A. 13)

f(Q(t) - QO,
dQ(t)

dt

dP(t)
dt

(A.14)

(A.15)

(A.4)



Appendix B

Estimation of TD

In this appendix, we describe the calculation for the mean and standard deviation of

the TD estimate from the CIRCULATORY MECHANICS' impulse response estimate

(see Section 7.1). Let h(t) denote the mean of this impulse response estimate. Then,

the mean TD estimate may be determined from the least squares fit of an exponential

to h(t) according to the following equation:

-t

h(t) = Ae'D+ w(t) 2 < t < 4, (B. 1)

where A and TD are parameters to be estimated by minimizing the energy of w(t).

This equation is nonlinear in its parameters and consequently, the minimization may

only be achieved with a numerical search method. However, since h(t) > 0, we may

log transform this equation as follows:

ln(h(t)) = ln(A) - t + e(t), (B.2)
TD

where w(t) is assumed to be small with respect to Ae5. Now, by letting a = L and

= ln(A), the following equation results:

ln(h(t)) = / - at + e(t), (B.3)

where a and 3 are now the parameters to be estimated by minimizing the energy of

e(t). This equation is linear in its parameters, and the least squares solution may be
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determined analytically. To this end, we rewrite Equation (B.3) in vector product

form as follows:

ln(h(t)) = qT (t)9 + e(t), (B.4)

where

T = [1 -t] (B.5)

OT = [ a]. (B.6)

Then, from Equation (4.14), the least squares solution (9) here is given as follows:

0= #(t) #T(t) 0(t) ln(h(t)), (B.7)

with the mean of the TD estimate equal to .

We now derive the standard deviation of the TD estimate as follows. Suppose

h(t) is perturbed by a small quantity Ah(t). Then, according to a Taylor series

approximation, we may rewrite Equation (B.7) as follows:

= (t) OT(t) E # (t) ln(h(t)) + .'t) } (B.8)

Now, assume that the true solution to Equation (B.4) is given by 9 = 0o and the

resulting error (eo(t)) is a zero-mean, white noise process with standard deviation a,

which may be determined as follows:

eo(t) = ln(h(t)) - OT (t)90. (B.9)

Then, after substituting this equation into Equation (B.8) and rearranging terms, the

following equation results:

9 -00= #(t) #T (t) (t) eo(t) + h(t) (B.10)
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Assuming that e0(t) is orthogonal to , the covariance matrix of this vector may

be given as follows:

A0 =E(O 00)(0 - o0)T (B.11)

= (t) OT(t) ( E(Ah(t) sh(s) s)T{ )

+ Ore #(t) OT(t)

where E(-) denotes the expectation operator. This equation indicates that the un-

certainty in the TD estimate is due to the uncertainty in the CIRCULATORY ME-

CHANICS' impulse response estimate and the uncertainty in the exponential fit.

From another Taylor series approximation, ATD ~ -. Hence, the standard devia-

tion of the TD estimate may be given by - /Ao(2, 2). Note that E(Ah(t)Ah(s)) may

be determined from the covariance matrix of h(t) (see Section 4.2.2), while -e may

be estimated from the standard deviation of the process obtained by substituting $

for 0 in Equation (B.9).
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