
MIT Sloan School of Management
Sloan Working Paper 4188-01

eBusiness@MIT Working Paper 114
October 2001

AUTOMATED NEGOTIATION FROM DECLARATIVE
CONTRACT DESCRIPTIONS

Benjamin Grosof, Daniel M. Reeves, Michael P. Wellman

This paper is available through the Center for
 eBusiness@MIT web site at the following URL:

http://ebusiness.mit.edu/research/papers.html

This paper also can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:

http://papers.ssrn.com/abstract_id=290099

http://papers.ssrn.com/abstract_id=290099
http://ebusiness.mit.edu/research/papers.html

Publishing Information:

Grosof, Benjamin, Reeves, Daniel M., Wellman, Michael P., “Automated Negotiation
from Declarative Contract Descriptions”, Proc. Fifth International Conference on
Autonomous Agents, May 28-June 1, 2001.

Automated Negotiation from Declarative Contract
Descriptions

Daniel M. Reeves Michael P. Wellman
University of Michigan Artificial Intelligence Lab.
1101 Beal Avenue, Ann Arbor, MI 48109 USA
ai.eecs.umich.edu/people/{dreeves,wellman}/

fdreeves,wellmang@umich.edu

Benjamin N. Grosof
MIT Sloan School of Management
50 Memorial Drive, Rm E53-317

Cambridge, MA 02142 USA
www.mit.edu/~bgrosof/

bgrosof@mit.edu

ABSTRACT
Our approach for automating the negotiation of business
contracts proceeds in three broad steps. First, determine
the structure of the negotiation process by applying general
knowledge about auctions and domain-speci�c knowledge
about the contract subject along with preferences from po-
tential buyers and sellers. Second, translate the determined
negotiation structure into an operational speci�cation for
an auction platform. Third, map the negotiation results to
a �nal contract. We have implemented a prototype which
supports these steps, employing a declarative speci�cation
(in Courteous Logic Programs) of (1) high-level knowledge
about alternative negotiation structures, (2) general-case
rules about auction parameters, (3) rules to map the auction
parameters to a speci�c auction platform, and (4) special-
case rules for subject domains. We demonstrate the exi-
bility of this approach by automatically generating several
alternative negotiation structures for a previous domain:
travel-shopping in a trading agent competition.

1. INTRODUCTION
One form of commerce that can bene�t substantially from

automation is contracting, where agents form binding, agree-
able terms, and then execute these terms. The overall con-
tracting process comprises several stages, including broadly:

1. Discovery. Agents �nd potential contracting partners.

2. Negotiation. Contract terms are determined through
a communication process.

3. Execution. Transactions and other contract provisions
are executed.

In this work we are concerned with bridging these three
stages, and primarily with the process by which an auto-
mated negotiation mechanism can be con�gured to support

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AGENTS’01,May 28-June 1, 2001, Montréal, Quebec, Canada.
Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

a particular contracting episode. We begin by presenting
a shared language with which agents can de�ne the scope
and content of a negotiation, and reach a common under-
standing of the negotiation rules and the contract implica-
tions of negotiation actions. Note that we are concerned
here with the de�nition of negotiation mechanisms and not
the negotiation strategies employed by participating agents,
though in designing a mechanism one must consider the pri-
vate evaluation and decision making performed by each of
the negotiating parties.
Our prototype system for automated contracting is called

ContractBot.1 By starting from a formal description of a
partial contract|describing the space of possible negotia-
tion outcomes|ContractBot automatically generates con-
�guration parameters for a negotiation mediator (auction)
platform. Then, by monitoring the individual auction re-
sults, it generates a �nal, executable contract.
Section 2 gives an overview of our approach to automated

contracting. Section 3 provides background on auction-
based negotiation. Section 2.3 frames the overall process of
automated contract negotiation and shows how rules gener-
ated during the negotiation process can be combined with
the partial contract to form an executable �nal contract. In
Section 4, we discuss in detail how the language is used to
infer parameters for con�guring the negotiation|that is, pa-
rameters for a set of auctions-. We focus on a Trading Agent
Competition [15] as an example domain (Sections 5 and 6).
Finally, in Section 7, we discuss details of our prototype.

2. CONTRACTBOT FRAMEWORK
The central question in con�guring a contract negotiation

is, \What is to be negotiated?" In any contracting context,
some features of the potential contract must be regarded as
�xed, with others to be determined through the contracting
process. At one extreme, the contract is fully speci�ed, ex-
cept for a single issue, such as price. In that case, the negoti-
ation can be implemented using simple auction mechanisms
of the sort one sees for speci�ed goods on the Internet. The
other extreme, where nothing is �xed, is too ill-structured
to consider automating in the current state of the art.
Most contracting contexts lie in between, where an iden-

ti�able set of issues is to be determined through negotiation.

1A complete version of the prototype, including rule-
sets required for the examples described in this paper, is
available at http://ai.eecs.umich.edu/people/dreeves/
contractbot/.

Naturally, there is a tradeo� between exibility in consid-
ering issues negotiable and complexity of the negotiation
process. But regardless of how this tradeo� is resolved, we
require a means to specify these issues so that we can au-
tomatically con�gure the negotiation mechanisms that will
resolve them. That is, we require a contracting language.
Our approach uses a form of logic-based knowledge repre-

sentation to represent contracts and extends this language
to express and reason about partial contracts. The partial
contract, or contract template, describes possible negotiable
parameters and how they are interrelated, along with meta-
level rules about the negotiation and about individual auc-
tions. It combines all this with rules from agents about
their constraints and preferences over the possible negotia-
tion structures. From implications of the rules, it generates
the appropriate auctions and determines the auction param-
eters. Transactions in the auctions generate additional rules,
which produce results for the �nal contract. As part of this
new framework, our approach allows for reuse of the infor-
mation in multiple stages of the contracting process.

2.1 Contracting Language
That our language must support all three stages of con-

tracting (discovery, negotiation, and execution) is one ar-
gument for adopting a declarative approach. \Declarative"
here means that the semantics say which conclusions are
entailed by a given set of premises, without dependence on
procedural or control aspects of inference algorithms. In
addition to exibility, such an approach promotes standard-
ization, human understandability, and information reuse.
Traditionally, contracts are speci�ed in legally enforce-

able natural language (\legalese"), as in a typical mortgage
agreement. At the other extreme are automated languages
for restricted domains (e.g., Electronic Data Interchange).
In these, most of the meaning is implicit in the automated
representation. We are in the sparsely occupied middle
ground, aiming for considerable expressive power but also
considerable automatability.
We adopt as our underlying representation of contracts

sets of business rules expressed as Courteous Logic Programs
(CLPs) [7, 8]|a language well-suited to expressing busi-
ness contracts. The rules must specify the goods and ser-
vices to be provided, along with applicable terms and con-
ditions. Such terms include customer service agreements,
delivery schedules, conditions for returns, usage restrictions,
and other issues relevant to the good or service provided.

2.2 Configuring Auctions
ContractBot con�gures auctions based on rules about the

contract and about the negotiation, as well as general back-
ground knowledge about auction con�guration itself. This
background knowledge (described in detail in Section 4) in-
cludes rules de�ning:

1. The process of generating suites of auctions for ne-
gotiation of multiple parameters, and for aggregating
agent preferences about which auctions to generate.

2. Behavioral elements of individual auctions [17], and
relationships among these elements.

3. Means of specifying these behaviors for a particular
auction platform.

Contract Template

Rules
Implementing
Agreement
("proto-contract")

Negotiation-level
Rules

Executable Contract

Transaction
Facts (buyer,
seller, price, qty,
other attributes)

Rules
Implementing
Agreement
("proto-contract")

Negotiation
Mechanism

Figure 1: Overall contracting process, partial to
complete contract.

To con�gure a set of auctions for a particular domain, we
incorporate additional rules from the contract template and
from potential buyers and sellers. These rules, combined
with the background knowledge about auction con�gura-
tion, are used to infer the actual auction parameters for a
suite of auctions that will implement the chosen negotiation
structure.

2.3 Overall Contracting Process
The contract template is essentially a declarative descrip-

tion of the space of possible negotiation outcomes, with ad-
ditional rules for inuencing the structure of the negotiation
and how it will be con�gured. As shown in Figure 1, the con-
tract template comprises rules that will implement the �nal
agreement (the proto-contract), along with rules describing
the contract issues to be negotiated (the \negotiation-level
rules").
The proto-contract refers to facts and conditions regard-

ing mechanics of the deal (e.g., payment and delivery) and
ancillary agreements such as return policies or provisions
for failure of one party. It is the part of the contract that
carries over unchanged into the �nal contract, and which
combines with the facts output by the negotiation mecha-
nism to result in an executable ruleset that implements the
agreement. We point out, however, that this distinction
need not be sharp. In fact, an important advantage of our
rule-based representation language is the ability to re-use
rules and reason about them on di�erent levels. Rules in
the proto-contract that implement some aspect of the �nal
deal may also be used in determining an appropriate negoti-
ation mechanism. For example, time constraints on delivery
may dictate auction �nal clearing times.
The negotiation-level rules address both questions of what

is to be negotiated, and how. Rules describing ways that
the contract issues may be partitioned into separable com-
ponents de�ne the space of possible goods to be negotiated
at auction. Rules referring to policies for negotiating in-
dividual components de�ne the auction behaviors for the
corresponding goods.
The key step in this process|bridging the discovery phase

(the partial contract) and the negotiation phase (set of auc-
tions)|is the con�guration of the negotiation mechanism
based on inference from the contract template and rules sub-
mitted by agents.
After ContractBot con�gures and generates the suite of

auctions, it monitors the auctions, waiting for transactions.
Each transaction generates a fact specifying which aspect of

the contract the transaction pertains to, who the buyer and
seller were, and the price and quantity. The proto-contract
contains rules that make use of such transaction facts once
they are �lled in. A typical rule in the proto-contract might
be to say that the amount paid by agent X to agent Y is
the sum of the prices in all transactions in which X bought
from Y minus the sum of transactions in which Y bought
from X.
Finally, after the set of auctions are con�gured and run

and the negotiation phase is complete, we can automatically
enter the execution phase by generating the �nal contract as
a function of the proto-contract and the auction results. The
actual execution of �nal contracts is the subject of previous
work [8].

3. AUCTION-BASED NEGOTIATION
Mechanisms for determining price and other terms of an

exchange are called auctions. Although the most familiar
auction types resolve only price, it is possible to de�ne mul-
tidimensional generalizations that resolve multiple issues at
once. This can range from a simple approach of running
independent one-dimensional auctions, to more complicated
approaches that directly manage higher-order interactions
among the parameters.
Auctions have proved a popular medium for Internet com-

merce.2 Although typical consumer-oriented online auctions
support simple negotiation services, business-to-business dy-
namic trade applications have begun to exhibit advanced
capabilities previously found in research systems. For ex-
ample, some commercial auction platforms support the con-
�gurability characteristic of the Michigan Internet Auction-
Bot [16],3 and several integrate auctions with other com-
merce facilities, as demonstrated by an IBM auction proto-
type [9].
Although multidimensional mechanisms are more compli-

cated, and not yet widely available, we expect that they will
eventually provide an important medium for automated ne-
gotiation. In particular, combinatorial auctions allow bid-
ders to express o�ers for combinations of goods, and deter-
mine an allocation that attempts to maximize overall sur-
plus. We are aware of one prototype system that o�ered
general combinatorial auctions over the Internet [13]. Mul-
tiattribute auctions, typically employed in procurement, al-
low speci�cation of o�ers referring to multiple attributes of
a single good [3].
Whether a multiattribute auction, a combinatorial auc-

tion, or an array of one- or zero-dimensional auctions4 is
appropriate depends on several factors. Although a full dis-
cussion is beyond the scope of this paper, we observe that
these factors can bear on any of:

� The coherence of auction con�gurations. For example,
if some attributes are inseparable (say, size and color
of a good), then it makes no sense to treat them as
separate goods in a combinatorial auction.

� The expected performance of auction con�gurations.
For example, if parameters represent distinct and sep-

2As of this writing, eBay alone has over �ve million concur-
rently running auctions.
3http://auction.eecs.umich.edu
4A zero-dimensional auction is one that determines only
price. A one-dimensional auction determines price and
quantity.

arable contract options, then they could be handled
either by separate or combined auctions. If the options
are considered by negotiating agents to be substitut-
able, then separate auctions will likely work well [10].
If they are complementary, then combining them may
prove advantageous.

� The complexity of auction con�gurations, for both the
mechanism infrastructure and participating agents.

In Sections 4.1 and 5 we give examples of the support that
the current ContractBot provides for reasoning about the
above criteria and choosing among alternative negotiation
mechanisms.

4. COURTEOUS LOGIC PROGRAMS FOR
GENERATING AUCTIONS

In addition to instance-speci�c rules from the contract
template, our con�guration process employs three sets of
rules encoding background knowledge about the space of
possible negotiation mechanisms.

4.1 Auction Configuration
The Auction-Con�guration ruleset de�nes the process of

collecting all possible attribute combinations for negotiable
components, and generating auctions for each point in this
space.5 It generates valueTuple predicates for every com-
bination of attribute values, noting which component each
belongs to. It then creates an auction for each of the value
tuples, and the parameters for those auctions inherit from
the parameters for the parent component. In addition to
determining the set of auctions for a particular component,
Auction-Con�guration helps determine how to partition the
negotiation into components. For example, as part of the
inference for determining priorities for each of several pos-
sible components we compute a \user interest score" which
is the total number of users interested in the component, or
zero if there is not at least one buyer and one seller:

<m> userInterestScore(?Component, ?N) <-
numBuyers(?Component, ?NB) AND
numSellers(?Component, ?NS) AND
?N is ?NB + ?NS.

<high> userInterestScore(?Component, 0) <-
numSellers(?Component, 0).

<high> userInterestScore(?Component, 0) <-
numBuyers(?Component, 0).

In the rule example above, the arrow (\<-") indicates \if"
and the \?" pre�x indicates a logical variable. Rule labels
are speci�ed with angle brackets (< >). The syntax is de-
scribed in detail in the documentation for IBM Common-
Rules [1], the implementation of Courteous Logic Programs
we employ. Also included in Auction-Con�guration are rules
governing the priorities of other rules. It is from these pri-
ority rules that we know, for example that the rule labels
in the excerpt above have priority such that setting a score
to zero when there are no buyers or sellers overrides setting
the score to the sum of the number of buyers and number of
sellers (the rule label \m" refers to medium or default prior-
ity which is less than \high"). Conict resolution in CLPs
is discussed in detail in previous work [7].
5More advanced auction types (Section 3) will allow for al-
ternative ways to handle multiple attributes.

4.2 Auction Space
Auction-Space provides basic knowledge about the para-

metrization of the space of possible auction mechanisms,
as well as defaults for auction parameters and constraints
among them. The parametrization is motivated by that
employed by the AuctionBot [16] and by an extended and
generalized parametrization in more recent work [17]. The
default values for parameters are labeled as lowest priority
rules so that parameters inferred based on speci�c aspects
of a negotiation will take precedence. For example, the fol-
lowing rules specify that by default, any auction should have
multiple buyers and one seller, and that ties for winning bids
should be broken by �rst-in/�rst-out.

<lowest> auction(multipleBuyers, true).
<lowest> auction(multipleSellers, false).
<lowest> auction(tiebreaking, fifo).

We also specify conditional default parameters. For ex-
ample, if we know that an auction has a single buyer then,
by default, it should have multiple sellers. (Note that con-
ditional defaults have higher priority than defaults.)

<verylow> auction(?ID, multipleSellers, true) <-

auction(?ID, multipleBuyers, false).

Constraints are similar to conditional defaults except that
they have overriding priority. For example, if there is a
bidding rule that says one must beat the current quote, then
this implies that the bid mustmeet the quote (i.e., a greater-
than rule implies a greater-than-or-equal rule).

<highest> auction(?ID, meetQuote, true) <-
auction(?ID, beatQuote, true).

The negotiationType predicate is used in a contract to
aggregate auction parameters and specify how to negotiate
particular components. Auction-Space maps such directives
to more speci�c auction features. Note that negotiation-
Types can entail other negotiationTypes but that the in-
ference must propagate conclusions to auction predicates
eventually. For example, negotiationType(continuous)
implies, among other things, negotiationType(continu-
ousClears) which in turn implies auction(quoteMode,bid).
One particularly useful feature of Auction-Space is that

it encodes several well-known auction types. For example,
specifying a negotiation type of \CDA" is all that is nec-
essary to infer all the characteristics of a Continuous Dou-
ble Auction [5]|chronological matching, continuous quotes
(bid-ask) and clears, double-sided, and discrete goods.

<m> auction(?ID, matchingFunction, earliestTime)
AND negotiationType(?ID, continuous)
AND negotiationType(?ID, double)

AND auction(?ID, divisible, false)
AND auction(?ID, quoteMode, bidAndAsk)

<- negotiationType(?ID, cda).

The conict resolution that CLP provides is also useful
here. For example, it allows specifying that an \Amazon-
style" auction is just like \eBay-style" except that Amazon
auctions do not close until ten minutes of inactivity have
passed.6

6Incidentally, this di�erence turns out to have a marked
e�ect on agent strategies. [12]

Figure 2: An example of an inheritance hierarchy
encoded in the Auction-Space ruleset.

<ebay> auction(?ID, matchingFunction, mthPrice) AND
auction(?ID, multipleBuyers, true) AND
auction(?ID, multipleSellers, false) AND
negotiationType(?ID, revealAll) AND
...
auction(?ID, finalClearMode, fixed)

<- negotiationType(?ID, ebay).

negotiationType(?ID, ebay) <-
negotiationType(?ID, amazon).

<amazon> auction(?ID, finalClearMode, inactivity)

AND auction(?ID, finalClearInactivityInterval, 600)
<- negotiationType(?ID, amazon).

overrides(amazon, ebay). /* Amazon rule is an
exception */

In our implementation we include additional rules for the
case of the standard English auction as a more general type,
and include eBay as a special case. The result is a three-level
hierarchy, shown in Figure 2.

4.3 Auction Server Mapping
Based on parameters concluded from Auction-Space, we

need to drive a speci�c auction server. AuctionBot-Mapping
is a particular set of rules for deriving AuctionBot parame-
ters from the generalized and extended parametrization pro-
vided by Auction-Space. Separating the server-speci�c rule-
set allows for great exibility in inferring negotiation mecha-
nisms, allows us to cope elegantly with shortcomings in the
AuctionBot parametrization, and facilitates connection of
ContractBot to alternative auction platforms.

4.4 Domain-specific Rules: Widget Example
Consider a simple contract involving only one component

(a widget) with only one attribute (quality) with two possi-
ble values (regular and deluxe).

component(widget).

attribute(widget, quality).
possValue(quality, regular).
possValue(quality, deluxe).

The possible values are not tied to the widget component
because in general they might apply to more than one com-
ponent in the contract. The following general rule creates
possValue/3 rules for each component based on the gen-
eral possValue/2 rules and the components that have been
declared:

possValue(?Component, quality, ?Q) <-

component(?Component) AND possValue(quality, ?Q).

Negotiating for a widget means determining multiple at-
tributes (price, quantity, and quality) but the current Auc-
tionBot supports only single-dimensional auctions (negoti-
ating price and quantity). One (rather brute-force) method
for dealing with this is to simply create an array of single-
dimensional auctions, one for each point in attribute-value
space.7 The following rule enumerates all the points in at-
tribute-value space for all components.8 In this simple ex-
ample, only two points will be enumerated, one for each pos-
sible value of the single attribute of the single component, a
widget:

valueTuple(?Component, [?Quality]) <-
possValue(?Component, quality, ?Quality).

Note that \[?Quality]" represents a list with a single
element (a variable representing a value for the \quality"
attribute). The above rule creates a valueTuple/2 fact for
every possible way to assign values to the attributes of a
component.
Next, we provide general information about the negotia-

tion of widgets. These facts are used by Auction-Space to
generate the full set of auction parameters for widget auc-
tions. (In this case, most of the parameters will be default
values.)

negotiationType(widget, continuous).

negotiationType(widget, double).
negotiationType(widget, revealAll).

At this point, we have inferred the auction parameters
for widgets and we have enumerated the valueTuples for the
auctions we need to create. We now combine those steps to
explicitly create the auctions and have each of them inherit
its parameters from those derived for widgets in general.
For every valueTuple, we infer a makeAuction/1 fact which

takes a list (thought of as an ID) and tells our prototype to
create an actual auction. We also infer a parent/2 fact for
every valueTuple.9 This tells us the component that each
auction belongs to.

makeAuction([?Component, ?Values]) AND
parent([?Component,?Values], ?Component)

<- valueTuple(?Component, ?Values).

Finally, we specify the auction parameters for each created
auction|simply the parameters that we derived in general
for the component that the auction belongs to (its parent).

auction(?ID, ?Attr, ?Val) <-

parent(?ID, ?Component) AND
auction(?Component, ?Attr, ?Val).

7Note that this places quite a burden on agents|for exam-
ple, if they would value either a regular or a deluxe widget
and place bids for both, they assume the risk of being stuck
with redundant items.
8The rules for enumerating points in attribute-value space
are generalized and included in the background knowledge
encoded in Auction-Con�guration. This speci�c rule is pre-
sented for illustration and would not actually be necessary
in specifying a contract template with ContractBot.
9Inferring the set of auctions from the valueTuples, as well as
inheritance of parameters from parent components, is done
automatically in the Auction-Con�guration ruleset. So the
remaining rules also would be unnecessary in a contract tem-
plate with our implementation.

When the inference concludes, there will be two auctions
created: \widget: quality= regular" and \widget: qual-
ity= deluxe". For each auction, 27 distinct auction param-
eters will be inferred via Auction-Space and AuctionBot-
Mapping. Note that since these auctions derived from the
same parent component (widget), their parameter values are
identical.

5. THE TAC DOMAIN
In July 2000 at the International Conference on Multia-

gent Systems,10 the University of Michigan hosted a trad-
ing agent competition (TAC), in which software agents de-
veloped by participating teams competed in a challenging
market game [15]. In TAC, agents aim to assemble travel
packages for designated clients, buying and selling travel re-
sources through various types of auctions implemented by
the Michigan Internet AuctionBot. TAC features three ba-
sic travel goods: ights (de�ned by day and destination|
inbound or outbound), hotels (de�ned by day and qual-
ity), and entertainment tickets (de�ned by day and type
of event). Each type of good is mediated by a di�erent kind
of auction. Flights sell at randomly uctuating prices, dic-
tated by a �xed-price seller. Hotels are sold in a variant of
an ascending English auction. Agents buy and sell enter-
tainment tickets in a continuous double auction, much like
trading securities in a stock exchange.
The TAC example Contract Template included with Con-

tractBot is a ruleset that generates the partitioning (among
a space of possible partitionings) of a travel package con-
tract into the goods described above. It also generates, from
a high-level description in the contract template, the auc-
tion con�gurations used in the competition. In Section 6
we demonstrate a key result: how alternative structures for
the negotiation can be derived, based on rules plausibly con-
tributed by parties interested in the negotiation.

5.1 Contract Template: Proto-Contract about
Payments and Utilities

The �rst thing the TAC contract template speci�es is
a proto-contract. As described in Section 2.3, the proto-
contract is the subset of the contract template that, when
combined with the rules coming out of the negotiation mech-
anism, form the �nal, executable contract. A typical rule for
a proto-contract (see Section 2.3) that we have included in
the TAC example is inferring the total amount that a given
agent owes another agent after the negotiation, by aggregat-
ing transaction facts from completed auctions:

transact(?Agent1, ?Agent2, ?Component, ?AVList,
?Pay12, ?Qty).

More speci�c to TAC, we include rules in the proto-con-
tract to infer the utility that a travel agent receives from its
transactions, according to the de�nition of the TAC game.11

As in the payment example, this is a straightforward com-
putation as a function of the transaction facts.
Following is a part of the utility calculation specifying

that a client's utility is a function of whether it was able

10and again in 2001 at the ACM Conference on Electronic
Commerce
11A utility calculation would probably not make sense in a
proto-contract in the real world, but in the TAC game, the
utility is used externally to evaluate agents' performance.

to procure a trip, its deviation from its ideal travel dates,
and its bonuses for staying in the nice hotel and seeing the
entertainment it wanted:

<high> clientUtility(?Client, 0) <-
feasibleTrip(?Client, false).

<m> clientUtility(?Client, ?U) <-
feasibleTrip(?Client, true) AND

travelPenalty(?Client, ?TP) AND
hotelBonus(?Client, ?HB) AND
funBonus(?Client, ?FB) AND
?U is 1000 - 100 * ?TP + ?HB + ?FB.

Note that although the complete ruleset for utility calcu-
lation is not given, all of the above predicates can be in-
ferred from transaction facts generated by ContractBot as
it monitors the auction results. The TAC example contract
template then includes rules to infer a travel agent's utility
in the competition by summing the utilities of its clients and
subtracting its expenses.

5.2 Contract Template: Possible Components
and Attributes

The �rst thing the TAC contract template speci�es after
the proto-contract is the possible values for the attributes of
the goods. For example, the following facts set the possible
types of entertainment events:

possValue(entertainment, type, baseball).
possValue(entertainment, type, symphony).

possValue(entertainment, type, theatre).

After specifying the domains for the attributes, there are
several sections of rules corresponding to possible compo-
nents of the TAC domain. These give the attributes of each
of the components, as well as specify negotiation-level rules.
For example, the following rules specify that ights have two
attributes|type (inbound or outbound) and day.

attribute(flight, type).
attribute(flight, day).

possValue(flight, day, ?Val) <-
possValue(day, ?Val).

Note that the possible values for ight types were enumer-
ated in separate rules. The possible values for ight days are
inferred from the globally de�ned day values, declared with
possValue/2 predicates (similar to quality values for wid-
gets in Section 4.4).
Another possible component is the bundle of two ights

into a round-trip.

attribute(roundflight, dayin).
attribute(roundflight, dayout).
<m> auction(roundflight, ?Param, ?Val) <-

auction(flight, ?Param, ?Val).

Two attributes for roundflight components are speci�ed,
and they inherit their domains from the globally de�ned do-
main for possible days. The individual auction parameters
for round-trip ights are inherited from those inferred for
one-way ights.
Figure 3 illustrates some of the possible components spec-

i�ed in the TAC contract template and the next section
shows how ContractBot chooses between these alternative
con�gurations.

Figure 3: Some alternative ways to structure the
TAC negotiation: (a) the actual TAC con�guration,
(b) bundling round-trip ights and blocks of hotel
rooms, and (c) bundling everything into a compre-
hensive travel package.

6. ALTERNATIVE NEGOTIATION STRUC-
TURES: TAC EXAMPLE

One of the most interesting features of ContractBot is its
ability to reason about alternative negotiation structures by
stating relationships between the possible components and
incorporating rules from participating agents.
The example TAC Contract Template includes buyer, sel-

ler, and auctioneer rules which are consistent with the sce-
nario in the actual TAC game. There are travel agents in-
terested in buying any of the atomic components, and who
would also be interested in buying various bundles, such as
round trip ights and blocks of hotel rooms. The travel
agents are also interested in selling entertainment tickets as
well as buying them. The only other sellers are the air-
line, who is only willing to sell one-way ights, and the ho-
tels, who will sell rooms either individually or in blocks.
The auctioneer prefers fewer auctions and more users. It
makes this explicit by specifying a perAuctionCost and a
perUserCredit. ContractBot will choose a consistent set of
components that minimizes

#users � perUserCredit �#auctions � perAuctionCost:

Although the hotel seller is willing to sell either blocks of
hotels or individual nights, having a high perAuctionCost
leads to the structure shown in Figure 3 (a). This is because
the hotelblock component has more attributes (firstnight
and lastnight) than hotel (which has only one \night" at-
tribute), resulting in more auctions and therefore a higher
cost. Section 4.1 discusses some of the component scoring
rules that drive this inference. As described in the wid-
get example (Section 4.4), the Auction-Con�guration rule-
set will infer multiple auctions for each good. In the TAC
example, assuming four days, there will be 4 � 2 = 8 ight
auctions|one for every combination of day and type (in-
bound or outbound)|and similarly for hotels which have
two types (good or bad). Entertainment tickets have three
types (baseball, symphony, or theatre) and so 4 � 3 = 12
auctions are created.
Note that the buyer/seller rules include several travelers

who are interested in buying complete travel packages (see
Figure 3 (c)). This structure is not inferred, however, be-
cause there are no agents willing to sell travel packages (as
well as the prohibitive perAuctionCost). By adding rules
such as

Figure 4: How ContractBot uses its auction knowl-
edge to turn a partial contract into a complete, exe-
cutable contract. The large arrows represent inputs
and outputs of the system. The �nal stage of ex-
ecuting a �nal contract is the subject of previous
work [8].

seller(hypotheticalSeller,travelpackage).
perAuctionCost(0).

ContractBot will instead infer a single component with six
attributes (arrive, depart, hoteltype, ent1day, ent2day,
ent3day). The sizes of the domains of these attributes are
4, 4, 2, 5, 5, and 5, respectively, and would require 392
auctions.12

Without a perAuctionCost, the following rules are the
minimal set necessary to choose a bundling of ights into
round trips, hotel rooms into contiguous blocks, and enter-
tainment into packages of three events.

buyer(traveler1, roundflight).
buyer(traveler2, hotelblock).
buyer(traveler1, entpackage).
seller(airline1, roundflight).
seller(hotel1, hotelblock).

seller(agent3, entpackage).

These rules will (trivially) infer the structure shown in
Figure 3 (b). Various other partitionings of the contract into
bundles can be inferred similarly by adding or removing po-
tential buyers and sellers for the various possible components
and adjusting the cost of additional auctions and credit for
additional buyers and sellers.

7. PROTOTYPE IMPLEMENTATION
Figure 4 depicts the overall process of turning a con-

tract template along with rules from agents into a �nal con-
tract, and then an executed deal. At the heart of this pro-
cess are the three sets of background knowledge discussed
in Section 4|Auction-Con�guration, Auction-Space, and
AuctionBot-Mapping. ContractBot.clp wraps these rule-
bases together along with miscellaneous utilities (util.clp)
and Prolog (XSB) [2] queries that drive the inference.
The inference engine itself is actually written as a series of

Perl scripts that ow a set of input rules and the background

12Less than 4000 since infeasible packages|e.g., departure
before arrival|are not inferred.

knowledge through CLP and Prolog. The main Contract-
Bot executable accepts arbitrary CLP rules (generally the
contract template and buyer/seller rules) on standard input
and combines these rules with the background knowledge
speci�ed in contractBot.clp. This conglomeration of CLP
input is fed into the Courteous Compiler, a component of
IBM CommonRules which compiles CLP into ordinary Pro-
log. This Prolog code is combined with the queries speci�ed
in contractBot.clp and fed into the XSB Prolog engine.
It is these queries that generate the output that the fol-

lowing modules need in order to interact with the Auction-
Bot. For example, to generate the list of auctions to be
created, contractBot.clp makes a query which writes a list
to standard output containing all the auction IDs for which
there is a makeAuction fact entailed by the knowledge base.
These facts are generated by Auction-Con�guration for ev-
ery point in attribute space for every component inferred.
Components, in turn, are inferred from the contract tem-
plate and from rules from agents.
The output of the Prolog queries amounts to a list of auc-

tions and parameter values for each auction. The list of auc-
tions and parameter settings are fed to the create-auctions
module which connects to the AuctionBot via the Mathe-
matica implementation of the AuctionBot Agent Commu-
nication Protocol13 and creates the auctions. The list of
auctions is also sent to the auction-watcher module which
monitors the speci�ed auctions and composes the corre-
sponding transaction facts (see Sections 2.3 and 5) when-
ever a transaction occurs on AuctionBot in an auction rele-
vant to the contract. Finally, the transaction facts are con-
catenated with the proto-contract from the original contract
template to form an executable contract which can itself be
fed through an inference engine to execute the terms of the
deal [8].

8. DISCUSSION AND FUTURE WORK
We have given a new approach to automatically bridg-

ing the three stages of contracting: discovery, negotiation,
and execution. In particular, this encompasses three new
contributions: (1) we use a declarative contracting language
to represent information pertinent to all three aspects of
contracting, (2) our approach relates all 3 aspects to each
other and enables the same information to be used in mul-
tiple stages, and (3) we have shown the exibility of this
approach by implementing a prototype (ContractBot) and
generating alternative negotiation structures for a travel do-
main (TAC).
Our approach addresses several research questions regard-

ing practical automation of the contracting process. First,
how can we represent information to allow automatic in-
ference of negotiation structures? Second, how can we au-
tomatically specify negotiations in a way that will closely
drive a realistic automated platform? Third, how can we
use auction results to form a �nal contract?
In our prototype, we use Courteous Logic Programs to

represent (1) partial contracts, (2) additional rules about the
negotiation process from buyers and sellers, (3) background
knowledge about how to structure negotiation mechanisms
and con�gure individual auctions, and (4) �nal, executable

13Mathematica was chosen for its clean implementation of
the protocol and its convenient LISP-like handling of the
auction and parameter lists.

contracts. Using rules in this language, from the contract
template and from potential buyers and sellers, we �rst infer
the basic structure of the negotiation mechanism by apply-
ing background knowledge encoded in Auction-Con�gura-
tion. We then use the Auction-Space knowledge base to
infer a general set of parameters for each of the auctions
supporting the negotiation. The AuctionBot-Mapping rule-
set translates this into an operational speci�cation for the
Michigan Internet AuctionBot. Finally, we combine rules
generated by auction transactions with rules in the proto-
contract of the contract template, to form a �nal contract
which itself is executable using rule-based techniques.
Our prototype can generate sets of auctions correspond-

ing to a multicomponent, multiattribute negotiation, and
supports reasoning about alternative ways to decompose a
contract into multiattribute components. In future work,
we would like to extend AuctionBot as well as our ontology
in ContractBot to support richer negotiation mechanisms.
We currently handle multiple attributes of a component by
creating an array of auctions, one for every combination of
attribute values. This is not tractable for larger numbers of
attributes and needs to be augmented with multiattribute
and/or combinatorial auctions. As we add additional nego-
tiation mechanisms to AuctionBot, we will be able to add
more sophisticated background knowledge about how to op-
timally structure a negotiation according to the criteria dis-
cussed in Section 3. To extend our ability to handle the exe-
cution phase of contracting, we will generalize our knowledge
representation to express Situated Courteous LPs. Situated
logic programs [6] use beliefs to drive procedural APIs.
One piece of future work outside of ContractBot itself will

involve writing agents that participate in the infrastructure
we've developed. This is an extremely rich area for analyzing
complex agent strategies since an agent using ContractBot
must not only know how to bid intelligently in a vast space
of negotiation mechanisms, but also intelligently contribute
rules to inuence which negotiation mechanism is chosen.
Further issues for future work include meshing more closely
with other aspects of contracts, e.g., transactions, payments,
negotiation and communication protocols [4] [11], and sup-
plier selection [14].

Acknowledgments
This work was supported by IBM's University Partnership
Program while the third author was at IBM. Hoi Chan of
IBM played a key role in development of CommonRules. We
would also like to thank Bill Walsh, Terence Kelly, David
Parkes, Ed Durfee, Bill Birmingham, and Rachel Rose for
helpful discussions and comments in earlier stages of this
work.

9. REFERENCES
[1] IBM CommonRules. http://www.research.ibm.com/

rules/commonrules-overview.html.

[2] The XSB Programming System.
http://xsb.sourceforge.net/.

[3] F. Branco. The design of multidimensional auctions.
RAND Journal of Economics, 28:63{81, 1997.

[4] A. Dan, D. Dias, T. Nguyen, M. Sachs, H. Shaikh,
R. King, and S. Duri. The coyote project: Framework
for multi-party e-commerce. In Seventh Delos
Workshop on Electronic Commerce, Lecture Notes in
Computer Science, Vol. 1513. Springer-Verlag, 1998.

[5] D. Friedman and J. Rust, editors. The Double Auction
Market. Addison-Wesley, 1993.

[6] B. N. Grosof. Building Commercial Agents: An IBM
Research Perspective. In Proceedings of the Second
International Conference and Exhibition on Practical
Applications of Intelligent Agents and Multi-Agent
Technology (PAAM97), April 1997.

[7] B. N. Grosof. Prioritized conict handling for logic
programs. In J. Maluszynski, editor, Logic
Programming: Proceedings of the International
Symposium (ILPS-97), pages 197{211, Cambridge,
MA, USA, 1997. MIT Press.

[8] B. N. Grosof, Y. Labrou, and H. Y. Chan. A
declarative approach to business rules in contracts:
Courteous logic programs in XML. In ACM
Conference on Electronic Commerce, pages 68{77,
Denver, 1999.

[9] M. Kumar and S. I. Feldman. Internet auctions. In
Third USENIX Workshop on Electronic Commerce,
pages 49{60, Boston, 1998.

[10] P. Milgrom. Putting auction theory to work: The
simultaneous ascending auction. Journal of Political
Economy, 108, 2000.

[11] N. H. Minsky and V. Ungureanu. A mechanism for
establishing policies for electronic commerce. In 18th
International Conference on Distributed Computing
Systems (ICDCS), May 1998.

[12] A. E. Roth and A. Ockenfels. Last minute bidding and
the rules for ending second-price auctions: Theory and
evidence from a natural experiment on the internet.
Technical report, May 2000. http:
//www.economics.harvard.edu/~aroth/alroth.html.

[13] T. Sandholm. eMediator: A next generation electronic
commerce server. In Fourth International Conference
on Autonomous Agents, Barcelona, 2000.

[14] P. Szekely, B. Neches, D. P. Benjamin, J. Chen, and
C. M. Rogers. Controlling supplier selection in an
automated purchasing system. In AAAI-99 Workshop
on Arti�cial Intelligence in Electronic Commerce
(AIEC-99), Menlo Park, CA, USA, 1999.

[15] M. P. Wellman, P. R. Wurman, K. O'Malley,
R. Bangera, S.-d. Lin, D. Reeves, and W. E. Walsh.
Designing the market game for a trading agent
competition. IEEE Internet Computing, 5(2), 2001.

[16] P. R. Wurman, M. P. Wellman, and W. E. Walsh. The
Michigan Internet AuctionBot: A con�gurable auction
server for human and software agents. In Second
International Conference on Autonomous Agents,
pages 301{308, Minneapolis, 1998.

[17] P. R. Wurman, M. P. Wellman, and W. E. Walsh. A
parametrization of the auction design space. Games
and Economic Behavior, 35, 2001.

