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ABSTRACT

A motivation exists to formulate and implement new tools and methodologies to address
the problem of congestion in the National Airspace System (NAS). This thesis presents a
novel methodology for allocating aircraft among En Route flight levels as a means to
mitigate air traffic congestion and stakeholder operating costs. The core of the
methodology is a decision-aiding tool comprised of a Mixed-Integer Linear Program
(MILP) that is solved using a an A* Search-based Branch & Bound framework. Two
metrics, measuring cumulative delay reduction and fuel burn savings, are used to
benchmark the performance of the methodology. A combination of these two metrics is
also explored as a means to minimize overall airline operating costs.

A subsection of the Northeast Corridor is modeled and forms part of the analytic structure
used to quantify the potential benefits of the proposed methodology. Simulations are
generated from these models in order to gain an understanding of the benefits as they
relate to varying NAS conditions. The following scenarios were modeled: 1) A baseline
single jetway corridor, 2) Reduced Vertical Separation Minimum (RVSM), 3) Miles in
Trail (MIT) restrictions on corridor traffic, and 4) the merging of Terminal Area air
traffic with En route air traffic. Thus, this research also provides a preliminary,
quantitative measure of the delay reduction, fuel burn savings and operating cost savings
possible under each scenario, within a NAS corridor setting.

Results indicate that 8.5 minutes of delay reduction per flight can be achieved when
minimizing air traffic delay. Similarly, 16.47 kg/min of fuel burn savings per flight can
be achieved when minimizing air traffic fuel burn. Instituting RVSM procedures result in
an additional 45% of delay reduction. Imposing MIT restrictions result in a 41% loss of
delay reduction savings. These results were obtained for corridor simulations of 30
minutes in duration. Finally, the methodology is shown to be effective for use as a
decision-aiding tool to merge air traffic streams.

Thesis Supervisor: John-Paul Barrington Clarke
Title: Assistant Professor of Aeronautics and Astronautics
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1. Introduction

Delays in the National Airspace System (NAS) are a source of unnecessary cost to three

primary stakeholders: airlines, passengers, and air transportation-dependent businesses.

Furthermore, a significant increase in the magnitude of delays within the next decade

under the current air traffic control infrastructure is indicated in numerous industry

forecasts. Thus, if the current air traffic control infrastructure is not modified in any

significant way, there exists a need to develop and implement new tools to address the

problem of congestion in the NAS.

A novel methodology for allocating aircraft among En Route flight levels is proposed in

this thesis as a means to mitigate En Route air traffic congestion and thereby reduce

stakeholder operating costs. The algorithmic basis of the resulting decision-aiding tool is

a Mixed-Integer Linear Program (MILP) that utilizes an Artificial Intelligence-based

search heuristic.

The potential benefits of such a decision-aiding tool was determined though the

simulation of air traffic operations in a section of the NAS that is known for its

significant levels of congestion and delay.

1.1 Problem Statement

Air transportation in the U.S. economy represents 3% of the Gross Domestic Product, or

a total economic contribution of $273 billion in 1998 [Kostiuk, et al, 1998]. Furthermore,
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these economic figures increase in relevance when considering the significant growth

forecasted for the air traffic industry. Estimates include:

" An annual growth of 2.5% in U.S. aircraft operations. [Boeing, 2001]

e An annual growth of 3.9% in U.S. domestic enplanements (543 million in 1997 to

821 million in 2009). [Boeing. 2001]

" An increase of approximately 2,500 jets to accommodate the 43% increase in the

number of enplanements between 1999 (5,236 jets) and 2008 (7,737). [ATA,

1999]

e An increase of approximately 250% in daily delay hours, from 2,710 hours in

1998 to 9,605 hours in 2008. [ATA, 1999]

Air traffic congestion represents a problem that is estimated to cost the aviation industry,

passengers, and shippers approximately $5 billion per year [Boeing, 2001]. This cost can

be further segregated into a $3 billion impact upon direct airline operating costs and a $2

billion impact upon the value of collective passenger time. Given the enormous growth

potential in air transportation, the cost of delays in the system is also expected to grow.

Thus, the forecasted growth in air traffic demand, aircraft operations, and emplanements

will further exacerbate NAS congestion and the resulting economic cost.

With this expected level of network congestion and the need for a safe, reliable, and

robust NAS, the Federal Aviation Administration (FAA) has initiated a 10-year initiative

referred to as the Operational Evolution Plan (OEP), with the primary goal of increasing

NAS capacity. Four of the commitments outlined in the OEP include [CAASD, 2003]:

16



" Match airspace designs to demands.

" Collaborate to manage congestion.

" Reduced Vertical Separation Minimums (RVSM)

e Accommodate user preferred routing.

It is important to note that these commitments are specifically tailored to increasing En

Route NAS capacity because airborne delays are the second largest contributor to

congestion in the network, as illustrated in Figure 1-1 [ATA, 1999].

Previous solution methodologies have relied on framing the problem in a way that has

ignored the short-term dynamics of the system. In many of the models and decision

aiding tools that have been developed to address the problem of En Route congestion,

Delay Time
(15 Minutes or More)
April - August 1998

Taxi-Out
52%

Taxi-In
7%

Airborne
24%

Figure 1-1: Distribution of Delay Time
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traffic has been modeled at the strategic level. That is, the traffic in the network is

abstracted and modeled as flows. For example, in 2000, the FAA introduced an initiative

to reduce flight delays caused by convective weather through the use of two strategic

elements: Traffic Flow Management (TFM) and Collaborative Routing (CR).

Evans best summarizes the properties and shortcomings of this approach as it relates to

reducing delays caused by convective weather:

"This strategic approach has been quite successful in improving operations in

many cases. However, in congested airspace, the inability to forecast convective

weather impacts requires a complimentary tactical decision support capability

[Evans, 2001]"

Essentially, Evans argues that there is a need to address the issue of air traffic

management from a tactical, real-time perspective. In other words, there is a need to

command aircraft individually in order to address congestion in those areas requiring the

immediate attention of controllers.

The intent of this thesis is to determine the extent to which the tactical rerouting of

aircraft among the available En Route flight levels can maximize airspace efficiency,

minimize system congestion, and minimize stakeholder operating costs. To that end, a

model of a representative, congested subset of the NAS was developed and used to

determine the cost savings afforded by a decision-aiding model which tactically allocated
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aircraft to flight levels. The analysis also provides a qualitative basis for determining

whether decision-aiding tools can and should be developed.

1.2 A Representative Example: The Northeast Corridor

Several areas within the NAS are severely congested. In fact, the FAA has identified

seven so-called "choke points" as illustrated in Figure 1-2. During instances of severe

congestion, the effects of these choke points propagate throughout the NAS and

ultimately stress the whole air traffic system because of its interconnected and dependent

nature. The most notorious of these areas is the "Northeast Corridor," which

encompasses the East Coast of the United States from the Mid Atlantic to Northeast

regions. Due in no small part to its geography and urban density, the Northeast Corridor

has often been cited as the busiest air traffic area in the world [ATC, 2000]. Thus,

because this airspace has a natural proclivity to congestion, the Northeast Corridor is an

ideal and relevant candidate to model in this research. Two expected benefits of

modeling the Northeast Corridor include:

1. A generalized methodology capable of mitigating delays in the other parts of the

NAS.

2. A system-wide benefit resulting from the reduced congestion in this particular

parcel of airspace.
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Figure 1-2: The Seven National Choke Points

1.2.1 Characteristics of the Northeast Corridor

As its name implies, the Northeast Corridor is a parcel of airspace where because of

various constraints, traffic is restricted to a long but narrow corridor. There are 3 primary

factors responsible for the corridor:

* The linear alignment of the major urban centers along the East Coast.

" The high population density within these urban centers.

" The presence of restricted military airspace over the Atlantic Ocean.

The geography of the largest urban centers along the East Coast is shown in Figure 1-3.

As shown in the figure, the major urban centers lie along a line or corridor, stretching

from Washington D.C. to Boston, MA. Another feature to note is the relative proximity

20
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Figure 1-3: Major Population Centers from Mid-Atlantic to Northeast Regions

of the major urban centers to one another. The impact of this latter observation is that a

significant amount of the air traffic in the given airspace will be in the so-called

"transition phase" of flight, when the aircraft are ascending from and/or descending to the

major airports along the East Coast.

The high population density of the major urban centers also drives the traffic density.

There exists an intuitive and strong correlation between airport activity and population

21



size in the area around an airport. Simply stated, a large population living in proximity to

a major airport (or set of airports) typically begets a large magnitude of air traffic

traveling to and from that airport (or set of airports). To illustrate this relationship, Table

1-1 lists the population sizes of the top 10 metropolitan areas from the year 2000 Census,

ranked from most populous to least populous [USCB, 2003]. The most important point

to note from these rankings is that 4 of the top 10 population centers reside within the

geographical area of the corridor, suggesting a proportionally higher quantity of traffic

within the corresponding area of the NAS.

Given the constraints imposed by the geography and population density, one might

expect that a viable alternative would be to route air traffic over the Atlantic Ocean.

However, as illustrated by Figure 1-4, that option is precluded in all three relevant Air

Routing Traffic Control Centers (ARTCCs) because of restricted airspace situated off the

East Coast. For example, a third of the airspace controlled by the Washington ARTCC

Table 1-1: 10 Highest Populated U.S. Metropolitan Areas (2000)
Metropolitan Area Population

New York - Northern New Jersev - Long 21,199,865

Los Angeles - Riverside - Orange County 16,373,645

Chicago-Gary - Kenosha 9,157,540

Washington - Baltimore 7,608,070

San Francisco - Oakland - San Jose 7,039,362

Philadelphia - Wilmington - Atlantic City 6,188,463

Boston - Worcester - Lawrence 5,819,100

Detroit - Ann Arbor - Flint 5,456,428

Dallas - Fort Worth 5,221,801

Houston - Galveston - Brazoria 4,669,571
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resides above the Atlantic Ocean. However, the Instrument Flight Rule (IFR) High

Altitude Map presented in Figures 1-5 & 1-6 illustrates that the area immediately off the

East Coast is restricted airspace that can only be used by military aircraft [FAA, 2002].

Thus, no commercial aircraft can be routed over the area under normal circumstances.

The map illustrates the resulting feature that all of the commercial jet routes are confined

to an area bounded by the East Coast. Further perusal of the map and the jet routes

illustrates the existence of a corridor as many of the jet routes serving the different urban

centers are clustered closely together in parallel lines.

Figure 1-4: Northeast Corridor ARTCCs
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The final piece of evidence supporting the existence of the congested corridor is

illustrated in Figure 1-7, which is a depiction of the airports that exceeded the 20,000

hours threshold in annual delays in 2000 [FAA, 2001]. As illustrated in the figure, all of

the major airports over the geographic region from Washington D.C. to Boston, MA

exceeded the given threshold. No other region in the NAS of comparable geographic size

demonstrates this magnitude of delay-plagued airports.

This concentration of delays illustrates the inter-dependency among all of the relevant

major airports. Air traffic operating between any two cities within the corridor must

compete for limited air space resources with the rest of the corridor traffic. Thus, delays

that arise in the interior points of this corridor tend to readily propagate throughout the

rest of the corridor [ATC, 2000]. For example, if there are delays due to heavy traffic

heading into one of the New York airports, the trailing flights headed to other

destinations, such as Providence or Boston, have no choice but to suffer these delays as

well.

24



Figure 1-5: IFR High Altitude Map (New York - Boston)
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Figure 1-6: IFR High Altitude Map (Washington - Philadelphia)
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Figure 1-7: Airports Exceeding 20,000 Hours of Annual Aircraft Delay in 2000

1.2.2 Representing Air Space Corridors as Two-Dimensional Models

The IFR High Altitude Map clearly shows the presence of several, parallel jet routes that

can be used by the traffic in the Northeast Corridor. Given this corridor geometry, there

is a natural motivation to reduce the dimension of the problem to mitigate system

complexity. That is, rather than basing the model on latitude, longitude and altitude, the

model may be based on range and altitude only. This reduction in the problem dimension

significantly reduces the computational complexity of the mathematical models

developed to solve the problem.
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Despite the multiple, parallel jetways depicted in the IFR High Altitude Map, a 2-

dimensional model is justified by the following two observations:

e Jet Routes are used to handle the inflow/outflow of traffic to/from specific

locations.

e There may be times when weather conditions shut down portions of the airspace

such that only one jet route is used to funnel air traffic through the corridor.

The first observation is a fundamental aspect of the inherent structure of the NAS. That

is, because of the high volume of traffic, many jetways are defined as one-way routes or

are used for traffic into or out of a specific terminal area. The second phenomenon

occurs when inclement weather prohibits the use of one or more jetways, and even in

instances of lower traffic loads, the remaining available jetways are congested.

1.3 Previous Work

The FAA has focused on solving the problem of NAS congestion via Collaborative

Decision Making (CDM) [Thedford, et al., 1999]. This approach is based on the belief

that a system-wide optimum will be achieved if users have common situational awareness

via access to real-time data on current and predicted estimates of weather, traffic flow,

and airport capacities. That is, in such an interconnected and open environment, users

will be able to tell beforehand whether their selfish policies will result in a congested

network. One such example is the scenario where all airlines prefer the same rerouting

option around an area of inclement weather, thereby inadvertently congesting the

associated routes.
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1.3.1 Collaborative Decision Making

As the name suggests, CDM is a paradigm where NAS users, essentially the airlines and

control centers, all have access to real-time NAS information and can collaborate to make

mutually acceptable decisions of greater overall benefit. The CDM process is comprised

of the following three components, all tailored to alleviating delays in the NAS:

e Ground Delay Program Enhancements (GDP-E)

e Initial Collaborative Routing (ICR)

e National Airspace System Status Information (NASSI)

The motivation behind GDP-E is simple and predicated upon the fact that holding an

airplane on the ground, rather than in the air, is a more cost-effective option when certain

destination airports are, or are predicted to be, operating at capacity. This tool became

operational in September 1998 and relies on an accurate prediction of capacity at the

major airports. While it is an extremely useful tool in curtailing future congestion in

many instances, it does not alleviate an already-congested airspace.

In the case of ICR, traffic management specialists at various control centers share real-

time traffic flow information with the Airline Operation Centers. This is the primary tool

used in establishing rerouting decisions, especially in times of inclement weather and/or

congestion. Of the three CDM tools, this is the most similar one in terms of the scope of

this thesis in that the goal is to increase NAS efficiency via traffic rerouting. This

capability is currently available in the following centers: Boston, New York, Washington,

29



Indianapolis and Cleveland high altitude centers, as well as New York Terminal Radar

Approach Control (TRACON), and the Air Traffic System Control Center (ATSCC) in

Washington, D.C.

Finally, NASSI is a tool used to disseminate a wider range of information relating to the

operational status of the NAS to all users. Example information may include the runway

visual range at the major airports or the status of Special Use Airspace. While not a

particularly relevant tool in actively alleviating a currently congested airspace, it

functions as somewhat of a preventative measure.

1.3.2 Autonomy in Air Traffic Control

Although no research has been carried out on altitude assignment as a means to reduce

congestion, the methodology does leverage on the research in the area of conflict-

directed, sector-based En Route traffic rerouting [Pallottino, et al., 2002]. Furthermore,

the decision model ultimately developed as part of the work in this thesis is inspired, in

part, by the trajectory-based modeling and optimization of multi-vehicle systems

[Vanderbie, 2000].

1.4 Thesis Scope and Goal

This document is divided into the following remaining chapters:

e The analytic structure is developed in Chapter 2.
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e Background on MILP techniques is presented in Chapter 3 for readers who are

not familiar with them.

" Similarly, background on search heuristics is presented in Chapter 4.

e The MILP decision model is presented in Chapter 5.

* The results of the analysis are presented and discussed in Chapter 6.

" Conclusions and suggestions for future work are offered in Chapter 7.
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2 Research Approach

As mentioned in the previous section, one goal of this research is to produce a framework

that can evaluate everything from the achievable problem size to how the output from the

decision model changes when various input parameters change. Thus, a sound analysis

structure is vital to this research. The development of this structure, which is depicted in

Figure 2-1, is described in this section.

The development begins with the modeling of the air traffic on several chosen jetways in

the Northeast Corridor using Enhanced Traffic Management System (ETMS) Data. The

result of this first part of the analysis is a statistical summary of aircraft types and speeds

BADA
Data

ETMS
Data

NAS
Jetways

Flight

Set of
Scenarios

Simulation
Results

Figure 2-1: Analysis Architecture
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as a function of flight levels. The resulting aircraft types, along with Base of Aircraft

Data (BADA) are then used to model the corridor traffic. BADA is a performance and

operating procedures database of 186 different types of aircraft. The result from this

second part of the analysis is the definition of a flight envelope and a set of altitude-

dependent minimum fuel burn speeds for each aircraft used in the simulation. This

output is used in conjunction with the statistical traffic distributions to model a variety of

scenarios. Each scenario describes a possible and interesting corridor traffic distribution.

The result of this third part of the analysis is a set of scenarios that will serve as input for

the final component of the analysis framework: the decision model. The decision model

is a MILP, detailed in Chapter 5, which is used to determine the optimal redistribution of

corridor traffic for each scenario. The output of the decision model provides a measure

of the benefits of redistributing the corridor traffic using metrics that will be defined later

in this chapter.

2.1 Traffic Modeling

In order to formulate representative simulations of corridor traffic, traffic level

distributions must first be derived from a real source of air traffic data. The source for

the distributions used in this research is ETMS data. ETMS is a system used by ARTCC

Traffic Management Specialists to evaluate the current and projected state of the NAS.

Specifically, the system provides real-time information including, but not limited to:

flight position, flight speed, altitude, destination, and waypoint sequence. The trajectory

information is updated every two minutes and is stored for both real-time decision-aiding

tools and future analyses. One such tool is Monitor Alert, which provides controllers and
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strategic flow managers a prediction of the areas in the NAS where air traffic demand

will exceed capacity.

The data that is described below was used to formulate the traffic models used in the

ensuing simulations. Specifically, these models include Probability Density Functions of

aircraft true air speed as a function of aircraft type for corridor traffic. The analysis used

to derive these models is presented in detail in this section.

2.1.1 Data Source

The data, obtained from the Volpe National Transportation Systems Center, contains the

flight listing and trajectory information for all commercial aircraft in the NAS. Note that

General Aviation and Military air traffic were already filtered out from this data. The

data includes traffic from the following dates: October 15, 2000; October 16, 2000;

October 21, 2000; October 28, 2000; October 30, 2000.

2.1.2 Filtering ETMS Data

A filter was used to extract only those aircraft flying in the Northeast Corridor. This

filter was designed using a combination of geographical, direction and temporal filters.

A second filter was used to extract only those aircraft on a prescribed jetway. The output

from these filters was used to generate the statistical distributions of corridor traffic on

the specific jetways ultimately chosen as the basis of the simulations.
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2.1.3 Exploiting Fundamental Air Space Structure

As shown in Table 2-1, northbound and southbound traffic are segregated into discrete

altitudes [FAA, 2003]. Thus, rather than considering a continuous range of altitudes,

established En Route flight levels were used as the basis to describe traffic in the ensuing

modeling and simulations.

2.1.4 Choosing Representative Jetways

The two airways chosen for the analysis in this thesis are illustrated in Figure 2-2. The

first jetway, J42, is used primarily as a northbound feeder into LaGuardia Airport.

Northbound Terminal Area Traffic from the Washington D.C. area airports also transition

into this jetway. The second jetway, J191, is used as a northbound/southbound feeder

into/from Newark International Airport. Note that the two jetways are essentially parallel

to each other and do not intersect.

2.1.5 Jetway Statistics

The percentage of each aircraft type using Jetway J42 and Jetway J191 are shown in

Tables 2-2 and 2-3, respectively. Note that the aircraft type "other" consists of a variety

of aircraft types, none of which individually account for more than 2% of the jetway

Table 2-1: Cruising Altitudes in Class A Airspace

Magnetic Ground 18,000' MSL to FL 290 FL 290 and Above

0 - 179 Odd 2000' Intervals 4000' Intervals Begin at FL 290

180 - 359 Even 2000' Intervals 4000' Intervals Begin at FL 310
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traffic. Thus, only the following aircraft types were modeled in the simulation:

e Boeing 737 (All variants)

e Boeing 757 (All variants)

" McDonald Douglas MID80/MD88/MD90/Boeing 717

e Airbus A318/A319/A320

e Embraer EMB-145

Figure 2-2: Jetway Samples
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The set of percentages listed in Tables 2-2 and 2-3 were used to generate aircraft during

subsequent simulations. For example, when generating an aircraft type for a particular

simulation of J42, there was a 42.7 % chance that it will be a Boeing 737, a 10.5% chance

that is was a Boeing 757, and so on.

Table 2-2: J42 Aircraft Model Distributions

Aircraft Type 10/15/00 10/15/00 10/15/00 10/15/00 10/15/00 Totals %

Boeing 737 101 91 141 132 108 573 42.7

Boeing 757 21 24 33 33 30 141 10.5

Boeing MD80/88/90/717 48 33 76 79 43 279 20.8

Airbus A318/A319/A320 13 9 24 25 11 82 6.1

Embraer EMB-145 22 17 17 17 22 95 7.08

Other 25 27 44 47 28 171 12.8

Totals 230 201 335 333 242 1341

Table 2-3: J191 Aircraft Model Distributions

Aircraft Type 10/15/00 10/15/00 10/15/00 10/15/00 10/15/00 Totals %

Boeing 737 99 118 130 128 109 584 43.55

Boeing 757 26 32 34 30 31 153 11.41

Boeing MD8O/88/90/717 67 51 76 76 60 330 24.61

Airbus A318/A319/A320 19 15 26 25 17 102 7.61

Embraer EMB-145 20 22 21 24 23 110 8.20

Other0- 33 35 38 41 39 186 13.87

Totals 264 273 325 324 279 1465
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The reader is also directed to Appendix I, which consists of all of the flight speed

histograms for each aircraft type and flight level. Superimposed on each histogram is the

normal distribution. The parameters of the normal distribution, namely the Mean and

Standard Deviation of the True Air Speed (TAS), were used to generate an initial TAS

for each aircraft. These parameters are listed in Tables 2-4 and 2-5.

No statistics were determined for Miles in Trail (MIT) spacing. This is due to the low

traffic loading observed on the specified jetways. In fact, the maximum number of daily

flights on all the jetways in the Northeast Corridor was 2201 flights, observed on October

28, 2000. This is a very low number of aircraft given the number of operational hours in

Table 2-4: J42 Flight Level-Specific TAS Distributions (kts)
Boeing Boeing Airbus Boeing Embraer

737 757 A320 MD80 EMB-145

Flight
t C t CY It 0Y It0 t

Level

190 398 43 0 0 414 27 371 39 392 68

210 417 30 0 0 0 0 0 0 394 43

230 394 69 0 0 0 0 0 0 400 43

250 429 33 0 0 0 0 0 0 421 28

270 442 27 0 0 0 0 454 48 412 59

290 456 30 480 27 466 17 0 0 460 42

330 455 26 447 89 473 22 471 34 464 52

370 460 41 476 29 468 15 460 21 496 70

410 0 0 475 10 0 0 0 0 525 14
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Table 2-5: J191 Flight-Specific TAS Distributions (kts)

Boeing Boeing Airbus Boeing Embraer

737 757 A320 MD80 EMB-145

Flight

p Y C t Cp a Cp a C
Level

190 396 47 0 0 400 27 360 43 387 67

210 421 46 0 0 0 0 0 0 389 51

230 404 63 0 0 0 0 0 0 397 38

250 438 31 0 0 463 22 0 0 414 29

270 457 36 0 0 0 0 0 0 410 64

290 456 33 482 23 464 20 0 0 463 45

330 454 27 436 90 470 21 472 34 469 49

370 464 40 477 27 468 14 461 21 508 77

410 0 0 474 24 0 0 0 0 490 25

a day, the number of total jetways in the corridor, the multitude of Eastbound/Westbound

jetways, and the number of available flight levels.

2.2 Aircraft Modeling

In the second step of the modeling process, a detailed performance analysis was

performed for the most common aircraft types that were identified. The result of this

analysis was the definition of a flight envelope for each aircraft model, consisting of the

maximum and minimum true air speeds specified for every flight level. In addition, the

minimum fuel bum speed was identified for each aircraft on each flight level.
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2.2.1 Performance Modeling

The Base of Aircraft Data (BADA), revision 3.3, was used to model aircraft performance.

The European Organization for the Safety of Air Navigation has compiled this database,

which incorporates the performance and operating procedures for 186 different aircraft

types. Therefore, the most relevant data, the minimum and maximum altitude-dependent

true airspeed was the first data referenced. These airspeeds reflect the typical operating

limits and not the absolute bounds of the designed flight performance.

The minimum airspeed was specified as a Calibrated Air Speed (CAS), which is altitude-

independent. This value yields the minimum TAS for any specific altitude via the

following equation:

vl =S 2 P 1+ ( 
V001s _ 0 I nCsa y 1 1 {j2

" U pp P 2 ( PO)1sa

(y-1)

y
where:

v1 - Minimum True Air Speed (Altitude-Dependent)

vM - Minimum Calibrated Air Speed (Altitude-Independent)

P - Air Pressure

(PO)ISA - Standard Atmosphere Sea-Level Pressure (101,325 Pa)

P - Air Density

(p )A - Standard Atmosphere Sea-Level Density 1.225 km

y - Isentropic Expansion Coefficient for Air (1.4)
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The one notable assumption in the conversion from the minimum CAS value to the

minimum TAS value is the specification of standard atmospheric conditions, which is

standard practice in many performance analyses.

The maximum airspeed was specified as a Mach number, which is also altitude-

independent. This value yields the maximum TAS for any specific altitude via the

following equation:

v A Ma = M T
where:

vmaX - Maximum True Air Speed (Altitude - Dependent)

Mm - Maximum Mach Number (Altitude - Independent)

a -Speed of sound

R -Real Gas Constant for Air (287.04 m Ks2)

T - Temperature

Unlike the minimum and maximum TAS, the minimum and maximum longitudinal

acceleration limits were specified uniformly for all aircraft and flight levels as:

ax =2.0 ps

amin = -2.0 fps

These values were defined in a generic sense in order to reflect the limits necessary to

ensure passenger safety and comfort [Nuic, 23].

With the altitude-dependent minimum and maximum speeds defined for each aircraft, the

altitude-dependent minimum fuel bum speeds were then determined. The first step in
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this part of the analysis was to identify the cruise conditions, as illustrated in the Free

Body Diagram in Figure 2-3. The Free Body Diagram establishes the following

dynamics equations:

L=W =mg

T=D

where:

L - Lift

W - Weight

m - Mass

T - Thrust

One notable observation regarding these equations was the specification of static cruise

conditions. In order for these relationships to relate to the present analysis, they were

expressed as a function of the aircraft TAS. This was accomplished using the following

fundamental aerodynamic relationships:

D T

V

W

Figure 2-3: Free Body Diagram

43



L= pSCL AS
2
1

D =-pSCDV s
2

CD = CDO +CD, CL

where:

S - Wing Area

CL -Coefficient of Lift

CD -Coefficient of Drag

CDO - Zero - Lift Coefficent of Drag

CD2 - 2 "d Order Coefficient of Drag

Substituting these equations for Lift and Drag into the dynamics previously derived from

the Free Body Diagram results in the following expression for Thrust as a function of

TAS:

1
T = -pSC V2s

2

2m 2g 2CD
+ pSV2

pSs

Finally, given this expression for Thrust, the final step in calculating the fuel burn as a

function of TAS was to define the Thrust Specific Fuel Consumption (TSFC) equation, as

follows:

TSFC =7 =Cf,

f = rqTCfC

1I+

=CR C
+VTAS

C h

where:

TSFC (r/) - Thrust Specific Fuel Consumption

f - Fuel Bum Rate

Cf, - Fuel Correction Factor 1
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Ch, - Fuel Correction Factor 2

C - Cruise Fuel Correction Factor

Thus, when the TAS-specific expression is substituted for the Thrust T in this last

expression, the result is an analytic equation for the fuel bum rate as a function of TAS.

However, the derivative of this function does not yield an expression that can be solved

analytically. Therefore, the TAS corresponding to the minimum fuel bum was calculated

numerically. These results, as well as the results from the rest of the performance

analysis, are summarized in the following section.

2.2.2 Performance Analysis Results

The minimum TAS, maximum TAS and minimum fuel bum TAS values are listed in

Appendix II for each aircraft and flight level in the model. In addition, the maximum

operating altitude h,, , minimum CAS CASi,, , and maximum Mach Number M,,,- of each

aircraft are also listed. The altitude-dependent fuel burn curves for each aircraft are

illustrated in Appendix III.

2.3 Scenario Modeling

The final step in the modeling process was to define the scenarios that would be

simulated. Three specific cases, along with a baseline case, were defined:

" The Single Jetway En Route Scenario (a.k.a. The Baseline Case)

" The Single Jetway Merging Traffic Scenario
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e The Reduced Vertical Separation Minimum (RVSM) Scenario

" The Miles In Trail Restrictions (MIT) Scenario

2.3.1. The Single Jetway En Route Scenario (a.k.a. The Baseline Case)

In this scenario, all traffic was high level En Route traffic on a single jetway.

Specifically, the traffic on Jetway J191, the main feeder into Newark Airport, was

simulated. The main utility of this scenario was that it serves as the default analysis or

baseline case. That is, this type of scenario was used to explore the solution properties of

the decision model. Such properties include the maximum problem size and the solution

quality. Both of these terms will be defined during the development of the decision

model.

2.3.2 The Single Jetway Merging Traffic Scenario

While the network structure of the Northeast Corridor does not contain a significant

amount of merging jetways, there are several Terminal Area boundaries where Terminal

traffic from the lower altitudes are merged with En Route traffic from the higher

altitudes. For this case, the traffic on Jetway J42, which serves as an outflow for the

Washington D.C. Terminal Area traffic, was simulated. This scenario was developed to

determine whether the routing logic could merge the intersecting traffic streams.
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2.3.3 The Reduced Vertical Separation Minimum Scenario

This scenario was developed to determine the benefit of introducing a new flight level in

a congested corridor. This idea results from the notion that current surveillance

technology is sophisticated enough to allow controllers to maintain a comparable level of

safety with a reduced vertical separation standard. Traffic on a congested Jetway J42 was

simulated.

2.3.4 The Miles In Trail Restrictions Scenario

This final scenario was developed to determine whether the routing logic was capable of

readjusting traffic that is suddenly subject to MIT restrictions that require a greater

longitudinal separation among aircraft. For example, if corridor traffic density is on the

order of the nominal 5 miles of separation, then it is important that the methodology

determine a solution after controllers impose an MIT restriction of 10 miles. Such a

situation would occur when inclement weather develops within the corridor, thus

requiring a greater amount of separation between aircraft.

2.4 Analysis Objectives and Metric Definitions

The final component needed to completely define the research approach were the metrics

used to assess the results from the ensuing simulations. This is equivalent to defining the

objective used to allocate flight level resources to corridor traffic in the simulations. The

first and perhaps most obvious objective candidate was to minimize traffic delay.

However, there is a fundamental relationship between aircraft flight time and aircraft

performance that argues in favor of minimizing aircraft fuel burn as an alternative
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objective. Thus, a second fuel bum objective was developed. A third, mixed objective,

composed of a linear combination of aircraft delay and aircraft performance was also

defined.

2.4.1 Cumulative Delay Reduction

Minimizing the cumulative corridor traffic delay, or maximizing the network throughput,

requires the routing of aircraft through the network while ensuring that each flight

remains within its flight envelope. Namely, this requires that its commanded speed lies

within the minimum and maximum true air speed on the flight level for which it is

ultimately rerouted to.

However, using flight delay as the optimization parameter potentially results in traffic

redistributions that are prohibitively expensive for airlines. Using this objective to

reroute the traffic results in configurations where individual aircraft are commanded to

speeds as close as possible to their altitude-dependent maximum true air speed. In

addition, because the maximum true airspeed does not correspond to the minimum fuel

burn speed, more fuel is consumed.

The apparent stakeholder preference for optimizing with respect to fuel bum begs the

following question: why consider the use of cumulative delay reduction as the objective?

However, the use of cumulative delay reduction is still very useful in that it can serve as

the basis of analyzing the properties of the decision model. That is, sensitivity analyses

can be carried out to gauge what effects varying certain parameters have on the resulting
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flight level allocation. Perhaps the most applicable use to the stakeholder lies in the fact

that it can serve as a means to measure any additional and available capacity. Finally, it

can be used to quantitatively analyze the effect of instituting RVSM tunneling in the

corridor.

Thus, the cumulative delay reduction objective was the metric used to answer the

following fundamental research questions:

e How much available capacity exists in a given corridor scenario?

e What is the practical problem size limitation for the decision model?

" How does the redistribution change when other factors change?

" What are the quantitative benefits of tunneling in a given corridor scenario?

2.4.2 Cumulative Fuel Burn Reduction

Consider that fuel burn often represents the metric used to gauge aircraft performance

because it has a direct impact upon airline operating costs. Further consider that the

coupling between fuel burn and flight time is complex due to the occasional trade-off in

optimizing for one at the expense of the other. This coupling is obvious when

considering the causality of flight time upon fuel burn: a longer flight time necessitates a

greater fuel burn. Indeed, delays incur both fuel bum and time penalties on an aircraft.

However, solely considering this relationship may result in the incorrect presumption that

minimizing flight time implicitly minimizes fuel burn as well. The assumption is invalid

because minimizing flight time for a fixed distance requires the aircraft to maintain

higher speeds in steady, level flight during the cruise segment. This reduction in flight
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time, along with the associated higher flight speed may require a larger fuel burn rate due

to the fact that summing the fuel burn rate over the total flight time does not guarantee a

net fuel burn saving for every expedited flight profile.

The assumption must be adjusted so as to consider the impact of aircraft performance. In

particular, a given aircraft model operates optimally at a given altitude-speed

combination as illustrated in the generalized thrust required versus flight speed profile in

Figure 2-6. Notice the specification of two distinct optimization points on the curve. The

minimum of the curve represents the optimal operating point for the purpose of

minimizing fuel bum per unit time (i.e. endurance), while the other designated location

represents the optimal operating point for the purpose of minimizing fuel burn per unit

distance (i.e. range). In order to explain the relevance of this latter point on the curve,

consider the definition of the Thrust Specific Fuel Consumption (TSFC) parameter,

which is a measure of the fuel bum rate:

dmfei

TSFC = dt , where:

dmfl dt - Fuel Flow Rate

T - Thrust Pr oduced by Engines

giving the following for the fuel burn rate:

dm ei dt = TSFC x T
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As shown, the dependent variable is only the thrust, T. Thus, the minimization of the

fuel bum per unit time is achieved simply via the minimization of the required thrust, as

illustrated in Figure 2-4.

On the other hand, consider how this defining equation changes when considering the

fuel bum over an incremental range dR:

TSFC fudmeu lt

dR TxdR
dm TSFC xTT

Sdm =dR = TSFC X-dV V

The dependent variable in this case is TR/V . The minimization of fuel bum per unit

distance, illustrated in Figure 2-6, is achieved by the value that represents the one and

only line tangent to the fuel bum curve.

Therefore, if optimizing over a fixed period of time, minimizing the fuel burn with

TR

Vendurance Vrange

Figure 2-4: Typical Thrust vs. Flight Speed Curve
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respect to time is the objective definition that should be considered when redistributing

corridor traffic. In addition, considering the aforementioned fact that engine performance

itself varies with altitude, there exists a preferred design altitude of maximum aircraft

performance and thus, minimum aircraft operating cost from the perspective of the

airlines. Indeed, this is the objective chosen when optimizing with respect to fuel burn.

Thus, the cumulative fuel bum objective was used to answer the following fundamental

research questions:

e How does the redistribution change when other factors change?

* How severely is the rest of the corridor traffic penalized in terms of operating

costs?

2.4.3 Metric Costs

The cost of delaying any given flight is listed in Table 2-11 for each aircraft model.

These values were used to associate a monetary value for the delay reductions determined

in the simulations [Malconian, 2001].

Similarly, the fuel cost of delaying any flight is established using the latest market price

for Kerosene-Type Jet Fuel in the Northeast: $0.85/gallon [DOE, 2003]. With the density

of Kerosene-Type Jet Fuel given as 3.1 kg/gallon, this cost can be alternatively expressed

as $0.27/kg.
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2.4.4 Mixed Strategies

Thus far, two separate objectives have been mentioned:

" Minimization of cumulative aircraft delay

e Minimization of cumulative aircraft fuel bum

However, the optimal strategy may involve some combination of these two basic

objectives because airlines incur costs both as a function of their operations as well as the

degree of delays. That is, the optimum objective strategy from the perspective of the

airlines may involve some combination of optimizing with respect to fuel burn and delay.

Thus, mixed strategies that consider both objectives were also explored in order to

ascertain how the distribution changes as a function of the relative weight given to each

of the objectives.

The mixed strategy objective is expressed as follows:
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Table 2-6: Delay Costs per Block Hour
Aircraft Model ($/minute)

Boeing 737 $1874

Boeing 757 $2316

Boeing MD80 $1835

Airbus A320 $1959

Embraer EMB 145 $1498



objective =Cdel, x D+Cf,,,l burnx F,where:

Cdelay -Cost of Flight Delays

Cpe, burn -Cost of Aircraft Fuel Bum

D -Cumulative Flight Delay

F -Cumulative Aircraft Fuel Bum

objective = Costdely x Cumulative Delay + Costfuelbrn x Cumulative Fuel Burn

The costs used in the objective function are those listed in the previous section, namely

the Delay Costs per Block Hour and the Cost of Kerosene-Type Jet Fuel.

Thus, a mixed strategy was used to answer the following fundamental research question:

* What are the total cost savings that aircraft in the corridor can achieve if the

mixed strategy objective is used?

Defining the metrics is the first step in developing the final stage in the Research

Approach: the decision model. However, the development of the decision model requires

a deep knowledge of Integer Programming Techniques. Thus, the next two chapters will

provide the necessary background for developing the last piece of the Research Approach

presented here.
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3 Integer Programming

As the name suggests, Integer Programming problems optimize over feasible sets of

integer variables. Unlike many problems in Linear Programming, where the feasible sets

of variables are continuous, Integer Programs are typically very difficult to solve in

practice. Many Integer Programs are exponentially complex in the number of variables

and/or constraints present and often fall under a category of problems referred to as being

NP-Hard. The absence of any efficient general algorithm for this category of problems is

a primary topic of Applied Mathematics research and often motivates the development of

analysis techniques for specific problem instances, as is the case with this research.

In the first section of this chapter, three common techniques used to solve Integer

Programming problems are explored and the potential benefits and drawbacks of each

one are discussed. The resulting complexity of the chosen technique is shown to

fundamentally involve the efficient solution of an associated search problem. Therefore,

in the second section of this chapter, several techniques used to solve search problems are

discussed within the context of subsequently developing an efficient search algorithm

within the core of the final analysis structure.

3.1 Integer Programming Techniques

The fundamental difficulty in solving Integer Programs arises from the disjoint nature of

the feasible set of integers in the optimization model. A cursory comparison to the
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solution techniques commonly used to solve Linear Programs offers a way in which to

ascertain this difficulty. Consider that many of the techniques used to solve Linear

Programs take advantage of the guarantee that the optimal solution exists at a corner

point. Thus, techniques like the Simplex Method work by systematically moving from

extreme point to extreme point until encountering one point such that the cost of moving

away from it in any feasible direction results in a higher objective function cost.

Fundamentally, this type of approach depends on a feasible set representation consisting

of a bounded polyhedron that is convex. Convexity of the feasible region is defined as:

Definition 3.1 A Set S c 91" is convex if for any x, y E S, and any X E

[0,1], we have Xx + (1-X)y E S.

The importance of this property can be explained with the aid of Figure 3-1. Set S is

convex, while set T is not. The optimal solution for both sets for a given cost vector c

exists at the point of tangency with each set. Notice that only one such point exists for

the convex set S, while two such points exist for the non-convex set T. Thus, the impact

of convexity on solution quality is derived from the fact that while convex sets contain

only one global optimum for a given cost vector, there is no such guarantee for non-

S T

C C Y

y

Convex Set Non-Convex Set

Figure 3-1: Set Convexity Example
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convex sets. For problems characterized by a non-convex feasible region, each local

extreme must be considered before the global optimum can be identified. This is the crux

of the fundamental difficulty in solving Integer Programs: the feasible region is disjoint

and thus, non-convex.

With this property in mind, three of the most common techniques used to solve Integer

Programs involve:

" Cutting Plane Methods

e Integer Duality Theory

e Branch and Bound

3.1.1 Cutting Plane Methods

Cutting Plane Methods solve a sequence of linear programs until an integer solution is

found. This integer solution is guaranteed to represent the optimal integer solution to the

original integer program [Bertsimas and Tsitsiklis, 1997]. Let an integer program be

denoted by I as follows:

I : minimize c'x

subject to

Ax = b

x E Z

In addition, let the following linear program, denoted by L, represent the relaxation of I:
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L: minimize c'x

subject to

Ax = b

x > 0

Using these definitions, a basic cutting plane algorithm proceeds as follows:

1. Solve the linear programming relaxation, L, of the integer program, L The

solution is denoted as x.

2. If x is an integer solution, then stop. This value corresponds to the optimal

solution to L

3. If x is not an integer solution, then add a linear inequality constraint to L that all

integer solutions to I satisfy, but x does not.

4. Go to step 1.

At each iteration, the algorithm generates a constraint that the non-integer solution x'

violates. Thus, in subsequent iterations, the algorithm does not generate x' ever again.

The manner in which the cutting plane algorithm works is illustrated in Figure 3-2. The

original feasible region is depicted as the shaded polygon, with the set of feasible integer

solutions represented by all the pairs of integer points residing within this region. The

first three steps of a generic cutting plane method are illustrated. The initial iteration

results in the non-integer solution x1 . Thus, a linear inequality is generated and added to

L, effectively pruning out x1 from the feasible space of subsequent iterations. Note that in

making the cut, none of the integer solutions in the feasible integer space were pruned.

The non-integer solution x2 is generated in the second iteratation. Again, a linear
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Figure 3-2: Cutting Plane Example

inequality is generated and added to L, pruning x2 from the feasible space of subsequent

iterations.

Note that the algorithm continues generating cuts until one is generated in which the

resulting feasible region has an integer extreme point. Thus, the performance of the

algorithm is seen to depend on the nature of the cutting heuristic used to generate the

cuts. One such method is the Gomory Cutting Plane Algorithm, which was the first

finitely terminating algorithm developed for integer programs [Bertsimas and Tsitsiklis,

1997].

3.1.2 Integer Duality Theory

One of the fundamental foundations for linear programming theory involves the concept

of the Dual Problem. The Dual Problem is an alternative representation to a linear
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program that can be used to find the optimal solution when the original representation is

characterized by a notoriously difficult, complex and highly coupled constraint set. The

foundation of Duality Theory is predicated on a property known as Strong Duality, which

can be stated as follows:

Definition 3.2 If a linear program has an optimal solution, so does its dual, and

the respective optimal costs are equal [Bertsimas and Tsitsiklis, 1997].

In essence, the dual problem is what results from "relaxing" some or all of the constraints

that characterize the feasible region of the original linear program. To relax a constraint

means to remove the constraint from the constraint set, thus effectively increasing the

feasible region to include previously infeasible solutions. Thus, a penalty is now

associated with these solutions rather than dismissing them from consideration, as before.

In order to better explain the nature of the dual problem, consider the following Linear

Program L:

L: minimize c'x

subject to

Ax = b

x 0

Finding a feasible solution to L may entail significant computational effort, as the feasible

region defined by the constraint set may be very complex in nature. Often, a high degree

of coupling between the variables is the main culprit. As such, consider the ramifications

of relaxing the constraints in L:
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minimize c'x + p'(b - Ax)

subject to

x > 0

The first observation of importance is that the feasible region of this relaxed problem is

larger than that of the original linear program. As such, the optimal objective function

value of this problem could be lower than the original linear program, despite the penalty

p associated with choosing previously infeasible solutions. The importance of this last

statement is that the solution to this relaxed problem is guaranteed to be a lower bound on

the optimal objective function value, denoted as c'x*, of the original linear program:

g(p) = min[c'x+ p'(b- Ax)] c'x*+p'(b - Ax) = c'x*
x O

g(p) c' x

This property is known as Weak Duality. Thus, intuition suggests that the objective of

the relaxed problem should be maximized so that the gap between its optimal solution

and the optimal solution to the original linear program is decreased. This results in the

definition of the dual problem D:

D: maximize min[c Ix + p'(b - Ax)]

-maximize p'b +min (c'- p' A) x

m0, if c'- p'A >0}

D: maximize p'b

subject to p'A c
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Finally, the aforementioned property of strong duality guarantees that this gap vanishes,

resulting in the equality of the objective function values for L and D.

In the case of an integer program, there is no property tantamount to the Strong Duality

property for linear programs. That is, the optimal solution to the dual of an integer

program is not guaranteed to return the optimal solution of the original integer program.

However, the dual of an integer program does exhibit the property of weak duality.

Namely, the dual provides a lower bound on the optimal solution of the integer program.

This property is useful because the solution to the dual can be used to calculate the

bounds used in other integer programming methods, such as Branch & Bound. In fact it

has been shown that the following ordering holds among the integer program z1p, its

linear relaxation z, , and its dual ZD :

ZLP < ZD < ZIP

Thus, the dual provides a tighter lower bound on the optimal value to the integer program

than that obtained by simply solving the linear relaxation.

3.1.3 Branch and Bound

In absence of any formal knowledge of the more sophisticated Integer Programming

techniques that have been developed, the most intuitive approach involves the

enumeration and solution of all feasible integer combinations of the set of variables. This

is especially obvious in the case where the integer variables take on the form of binary

62



decision variables. As illustrated in Figure 3-3, for the example of xi,x 2 E 10,1}, this is

equivalent to searching the whole tree of solutions that characterizes the entire feasible

integer space.

However, even in the case of binary decision variables, the set of all possible

permutations grows explosively at the rate of 2"n, where n is the number of variables.

Thus, simply exploring the entire feasible integer solution space is deemed impractical

for all but the smallest problem instances. Such a method could be rendered tractable if it

could avoid solving a large number of these permutations, especially when considering

the fact that each solution instance has the potential to represent a bound on the optimal

solution. This is the crux of the Branch and Bound method used to solve integer

programs.

Central to the Branch and Bound method is the decomposition of the problem into a

So: x1 E{O,1},
x2 E{O,1I

So

Si: x1=0, S2: x1=1,

x 2 E(O,1) I 1 S2 X2 E{O,1}

"s 3) S 4 S6

S3: xi=O, S4: x1=O, S5: xi=1, S6 : x 1=1,

x 2=0 x2 =1 x2=0 x2=1

Figure 3-3: Branch & Bound Example
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sequence of subproblem instances that are used to efficiently update the bound on the

optimal solution. As illustrated in Figure 3-3, each subproblem represents a portion of

the feasible integer space. For example, the subproblem S, is defined as the solution

space where x, = 0 and x2 is a free variable. Note that there exists a certain measure of

freedom in how exactly a subproblem is defined.

One crucial aspect that makes the Branch and Bound method attractive is the notion that

each subproblem need not be solved to optimality. Rather, only a lower bound on the

subproblem solution is needed. Therefore, one popular approach used to obtain a lower

bound involves solving the linear relaxation of the subproblem instance. Referring again

to the example of Figure 3-3, assume that the linear relaxation of the subproblem instance

S1 returns an optimal solution such that x2 = 0.5. One subsequent suproblem instance S3

can be defined by imposing the additional constraint x2  0 to the original constraint set.

Similarly, an alternate subproblem instance S4 may be defined by imposing the

constraint x2 >1 . These two alternatives represent the branching that takes place when

exploring the space of feasible integer solutions.

Because this simple example uses binary decision variables, both of the subsequent

subproblem instances are guaranteed to return a solution such that x2 is integer. This is

not the case for integer variables in general. However, the key notion is that if both

subproblem instances are assumed feasible, at least one of the branches is guaranteed to

define a subproblem instance for which the linear relaxation will return an integer

solution for x2. That is, one of these constraints will force subsequent linear relaxation
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solutions to an integer bound, which represents the new, lowest cost solution point for x2.

The other will not, but its subproblem instance may still represent a node that will be

further branched in the exploration of the solution space.

Whether either of these subproblem instances serves as a root node for further branching

depends on the objective value of their linear relaxation, which was previously shown to

be a lower bound on its integer objective function value. The sufficiency of calculating

the subproblem lower bound, bi, is based on the fact that it can be used to prune certain

portions of the feasible solution space when used in concert with an updated value for the

upper bound, or best estimate, of the solution to the integer program. That is, at any

point during the search, there is a best estimate value, U, of the optimal objective value of

the integer program. The value is an upper bound on the optimal value, since further

searching may produce a better value. Thus, if b, <U and bi is integer, then the upper

bound is updated so that U = b and the space branching from subproblem i remains in the

search space left for further exploration. Conversely, if b U then no further

exploration of the space branching from subproblem i need be explored. This statement

is based on the observation that the algorithm has already identified an alternate portion

of the solution space that is guaranteed to provide a better bound on the objective

function value of the original integer program.

Using these observations, a basic Branch and Bound algorithm can be constructed as

follows:

1. Set U to be an arbitrarily large number
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2. Repeat steps 3-9 until the active subproblem list S is empty

3. Select an active subproblem Si

4. If Si is infeasible, then omit it from further consideration

5. If Si is feasible, then compute bi

6. If bi U , then omit it from further consideration

7. If b, < U and bi is integer, then set U = bi

8. If b, < U and bi is non-integer, then branch Si into two further subproblem

instances which are added to the list of active subproblem instances

9. Return to step 2

10. Return U

Note that during the course of the Branch and Bound procedure, there exists an active list

of subproblem instances to be explored. Thus, another measure of freedom in the

implementation of the procedure is how the search space is explored. This issue boils

down to the matter of a search and the performance of the algorithm. This topic is

explored in subsequent sections.

66



4 Search Methods

The relevance of search heuristics when used within the context of solving non-convex

optimization problems was introduced in the previous section. An in-depth discussion of

the most commonly used search heuristics and how they can be used to solve integer

programs using a Branch & Bound implementation is presented in this chapter. In

general, all search heuristics can be classified either as a uniformed or informed search

method. Examples of both categories of searches are presented and compared.

4.1 Uninformed Search Methods

Knowledge can be acquired in one of two ways: by experience or by estimation. More

strictly, the former process results from the transitions that a goal-based agent has already

undertaken. The agent is privy to its current location in the solution space relative to

where the process began as well as to the sequence of transitions that it undertook in

arriving there. This knowledge, coupled with the ability to identify the goal state, allows

the agent to test whether the current state is the goal state and bases its next transition on

this collection of information. Such a search is called uninformed because there is no

knowledge as to the "value" of the current state relative to the goal state, and thus, no

manner in which to base the impending transition decision on what the expected "value"

of the next state will be. However, it is often the case that a problem may harbor some

discernable structure, which may then be used in deciding which uninformed search

heuristic to implement. Example heuristics presented here include:

e Depth First Search
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e Breadth First Search

* Uniform Cost Search

4.1.1 Depth First Search

Several stages of a search tree during the course of a Depth First Search are illustrated in

Figure 4-1. This search heuristic explores the node furthest down along all of the

available branches. Therefore, when the problem at hand involves a goal state that can be

described by a large number of possible configurations, then the Depth Fist Search should

be applied. The reason for this is that a focused search along one region of the solution

space would most likely encounter a goal state using minimal computational effort.

4.1.2 Breadth First Search

On the other hand, when the nodes in a search space are not expected to spawn a great

number of nodes, then the argument can be made to explore the solution space in a more

0-
00

*0

10

o3Q

Figure 4-1: Depth-First Search Illustration
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uniform manner. This is the basis of the Breadth First Search, the first several stages of

which are illustrated in Figure 4-2. Note that the Breadth First Search operates by

exploring and expanding the last node on each branch in the search tree. Thus, the search

expands the branches of the search tree uniformly, resulting in the exploration of an

increasing fraction of the solution space.

4.1.3 Uniform-cost Search

The Uniform-cost Search falls under the Uninformed Search category as its search

strategy is unilaterally dictated by the "cost" of the search path undertaken thus far. That

is, it always formulates a search path of minimal cost until it reaches a goal state. The

goal state reached is guaranteed to be the least-cost solution by virtue of the minimal cost

nature of the strategy and can be proved in a very informal manner. Simply put, if there

exists a less costly goal, the path would have been constructed to reach it because of the

mantra of the strategy: always expand the minimal cost path. This proof enforces the rule

that a path must monotonically increase. Equivalently, this means that the cost of

transitions must always assume a non-negative value. Without such a requirement the

0 0

1 2 1 2

3 Q6

Figure 4-2: Breadth-First Search Illustration
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search could never produce the least-cost goal state without exploring the whole search

tree.

An example of how the Uniform-cost Search operates is illustrated in Figure 4-3. In the

first step of the strategy the expansion of node 2 is chosen over nodes 1 and 3 because of

the lower path cost of going from node a to node c versus the other two available paths.

Of particular importance is the classification of nodes 1, 2, and 3 as "fringe nodes"

because of the fact that they represent the set of nodes used in determining the transition

strategy. While this point seems trivial during the first step, it is a subtle yet powerful

expression of the parent-child node mapping inherent in the search tree and is best

rationalized in the description of the subsequent transition provided in the example. After

expanding node 2, the fringe node set is comprised of nodes 1, 3, 4, 5, and 6.

Considering the cost of the paths so far, and assuming that none of the states reached is a

goal state, the next transition involves an expansion of node 1 since the path to node 1 is

the now the minimum cost path. After the second transition, the fringe node set is

comprised of nodes 3, 4, 5, 6, 7, 8, and 9.

Based on this simple example involving only two transitions, the explosive growth in the

computational complexity of the Uniform-cost search is readily observed. That is, the

ignorance of any estimate of the value of the fringe nodes relative to the goal state, the

Uniform-cost search is deemed NP Hard due to the non-polynomial computational

complexity of obtaining the solution.
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Figure 4-3: Uniform-cost Search Illustration

4.2 Informed Search Methods

Any search instance could benefit immensely from information about the set of possible

future states. The information need not definitively lead to the goal state; rather it should

be some useful estimate of the necessary sequence of transitions. This is the foundation

of the class of Informed Search Methods. The benefit of implementing an informed

search is the marked decrease in computational complexity that it affords. One such

method is detailed here: the A* Search.
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4.2.1 A* Search

Basing the transition policy solely upon the strategy to minimize the cost to the goal,

without regard to the cost of the search thus far is known as a greedy search. This kind of

search is neither complete nor optimal. That is, there is no guarantee that the search will

terminate, or that it will converge upon the lowest cost goal state because of the unilateral

dependence on the goal-seeking heuristic.

However, a search methodology that combines the benefits of a greedy search heuristic

with the completeness and optimality guarantees of a uniform-cost search would

represent an ideal search strategy. One such example is the A* Search, whose behavior

will be illustrated via example. The A* Search heuristic is composed by summing the

path cost of the transition policy thus far with a greedy, forward-looking heuristic:

f(n) = g (n) + h(n), where:

g(n) = Path cost thus far

h(n) = Path cost estimate to goal via n

The former component represents the Uniform-cost Search portion of the heuristic while

the latter component represents the greedy search portion of the heuristic. Such a

composition takes advantage of the natural segregation of knowledge into experience-

based and estimation-based.

An example problem that demonstrates the benefits and completeness of the A* Search is

illustrated in Figure 4-4. In the example, the goal consists of finding the optimal route to

node 2 from node 0. The mapping between nodes represents the distance between two
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800 253
1 1 178

4 2 0
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101
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Figure 4-4: A* Search Example Mapping

adjacent nodes, while the table lists the straight line "distance" from each node to node 2.

The example can be rationalized as a simple shortest path problem where the nodes

represent intermediate towns between the departure town and the destination town. The

mapping is representative of the mileage incurred on the roadways between two towns,

while the tabulated data is representative of the straight-line geographical distances. The

former can be used in composing the Uniform-cost Search portion of the heuristic while

the latter can be used in composing the Greedy Search portion of the heuristic. The

search strategy resulting from the A* Search is illustrated in Figure 4-5.

Proving the completeness of the A* Search is performed in a similar fashion to the

previous proof for the Uniform-cost Search. The intuition is very similar: a

monotonically increasing path will eventually increase until it has converged upon a goal

state. However, proving the optimality of the solution requires a more formal proof.

Assume there exists an optimal goal state G and a sub-optimal goal state G2.
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Furthermore, assume that G2 was returned by the A* search. The development that

follows will prove that the A* search can never return G2, thereby guaranteeing

optimality. Consider that at an arbitrary time during the search there exists a node n that

is on the optimal path to G. The existence of such a node is guaranteed unless the path

has been completely explored, in which case the A* Search would have already

encountered goal state G. At this juncture, it should be noted that monotonic heuristics

fall under the more general category of admissible heuristics, which simply require that

the heuristics never overestimate the cost of reaching a goal state:

f* f (n), where:

f* =actual path cos t to goal state G

f (n) = estimated path cos t to goal state through n

Next, assume that a path to G2 is chosen over the further exploration beyond node n,

which implies:

f(n) f(G 2 )

Combing these two inequalities yields:

f* f (G)

Because G2 is a goal state, the estimate part of the A* heuristic is equal to zero, resulting

in:

h(G 2) = 0

->f (G2)=z- g(G2)

.-.- f* >- g(G2)
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This last constraint asserts that the path cost to goal G2 is cheaper than the path cost to

goal G, contradicting the original assumption that goal G is the optimal state. Thus, the

A* Search is always guaranteed to return the optimal goal state.

The resulting analysis framework in this research uses the A* Search because of its

potential to markedly reduce the computational complexity in terms of time and memory

of the logic developed for the simulations. The critical element in successfully

implementing the A* Search in this application is to define an appropriate admissible

heuristic for the Branch & Bound procedure used in the process of solving the MILP.

The resulting heuristic is described in the next section since it requires the intuition

gained from defining the MILP.
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5 MILP Decision Model

Having provided a background for Integer Programming methods in previous sections,

the intention in this section is to develop the model used for the subsequent analyses.

The model is a MILP with binary decision variables used to establish both traffic

sequencing and flight level allocation. A decomposition of the binary decision variables

into two distinct sets is presented and shown to substantially reduce problem complexity.

The complete model is then summarized and an analytical discussion is provided in order

to demonstrate that the model is computationally tractable.

5.1 Set Definitions

The following two sets are used to develop the model:

N -Set of aircraft in the network

M -Set of available flight levels

The set N is obvious in its definition and requires no further explanation. However, the

set M may change depending on the situation being analyzed. While the set of feasible

flight levels was previously defined when discussing the characteristics of the En Route

corridor, defining M as such may not be necessary or even sufficient in some cases. For

example, if the analysis at hand involves the characterization of the tunneling

phenomenon previously discussed, then an extra flight level needs to be added to the set

of available flight levels. In addition, a fair assumption may be to assume that if each

flight level is congested to the same degree then only a subset of the available flight
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levels need be studied in order to derive any possible improvement on a per-flight basis.

This assumption constitutes one of the questions explored within the body of this

research.

5.2 Input Parameters

The following parameters define a particular problem instance and are input into the

model:

T - Time horizon over which the optimization is performed

s - Minimum separation standard between aircraft (5 nm = 30380.5 ft)

xo, - Initial range position of each aircraft i e N

vo, - Initial longitudinal speed of each aircraft i E N

vk -Maximum speed on each flight level k N for each aircraft i c N

vi -Minimum speed on each flight level k eN for each aircraft i E N

a_ - Maximum longitudal acceleration for all aircraft (2 fps)

an -Minimum longitudal acceleration for all aircraft (-2 fps)

5.2.1 Time Horizon Input Parameter

As previously discussed, optimization problems involving vehicle dynamics often use a

discretized time interval set, resulting in the modeling of each dynamic variable at each

interval. The resulting complexity of these representations is a function of the

discretization of the given time set T. While this may not be a problem in a single

vehicle problem because of the continuous nature of all of the variables involved, it

becomes prohibitively complex in any problem with a significant degree of integer

variables.
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Fortunately, the great deal of structure fundamentally inherent in the problem at hand

enables an alternate, computationally tractable formulation. Consider that the mechanism

that air traffic controllers use when monitoring and controlling network traffic consists of

issuing a command flight level and speed to each aircraft. That is, a flight is instructed to

maintain a certain speed and to transition to a specific flight level. Thus, the controller is

interested in the final aircraft state, rather than the particular dynamics and kinematics

states that the aircraft will go through in the given time. This argument is valid with the

implicit understanding that controllers are mindful of basic aircraft performance limits

and thus do not issue commands that can not be satisfied by the aircraft.

Similarly, the modeling of the problem at hand can be designed such that the

optimization is performed by manipulating the final, "command" states for each aircraft.

Specifically, these include the final aircraft flight level and speed distributions. As with

the real world case, all commands issued to the aircraft in the network conform to

stipulated performance capabilities and safety requirements.

5.2.2 Initial Position and Speed Parameters

As previously discussed, the corridor structure considered here is 2-dimensional in

nature, and requires the definition of only two position coordinates: range and flight

level. The initial range, x0 , can be specified from any arbitrary origin. It is assumed that

all aircraft are in static, level flight; thus only the initial longitudinal speed, v0 , must be

defined.
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5.2.3 Performance Input Parameters

The maximum and minimum aircraft speeds, v', and v'., respectively, are both flight

and flight-level specific. Thus, this representation accounts for the significant variations

in performance that each aircraft experiences at different flight levels. However, note

that the longitudinal accelerations are independent of aircraft type and flight level. These

limits are a realistic representations of limits used to ensure passenger safety and comfort

in all commercial flights.

5.3 Variables

The following variables are used to optimize the problem:

x,,i e N - Range at time horizon T

Vi e N - Longitudinal speed at time horizon T

ai , i c N - Command accelertion used to speed-up/slow-down flight

yi e N, j E N - Sequencing binary decision variable
k

zi E N, k e M - Flight Level binary decision variable

f ,i e N - Aircraft Fuel Bum (used only when optimizing w.r.t. fuel bum)

5.3.1 Kinematics Variables

The range and velocity, x, &v, respectively, are the values that characterize the position of

each flight in the network at the time horizon T. The acceleration, a,, is used to achieve

these values. Thus, the main benefit of using the time horizon representation is made

clear at this juncture; rather than having to consider the range and speed for each flight at
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each time t in a time-discretized representation, only the final range and speed are

considered. This reduces the problem complexity by the number of time intervals used to

define the discretized interval T: x,&v, versus x, &v,1 , where 1 is the number of time

intervals in T. This is a valid formulation so long as attention is paid to maintaining the

appropriate separation standards among all aircraft in the airspace. This stipulation will

be satisfied when formulating the separation standards as part of the constraint set.

5.3.2 Flight Level and Flight Sequencing Binary Decision Variables

Two sets of binary decision variables are defined, with z, used to assign aircraft i to

flight level k and y, used to sequence aircraft j ahead of aircraft i (x; > xi). For

example, if Flight 1 is assigned to Flight Level 3, then z' = l and z =OVk E M k # 3. In

addition, if Flight 1 is instructed to go ahead of Flight 2 (i.e. xi > x2) then y21 =1 and

Y1 =0. Note that these variables establish a sequencing order only when Flight 1 and

Flight 2 are both instructed to go to the same Flight Level. If Flight 1 and Flight 2 are

instructed to go to different Flight Levels, then these variables do not provide any sense

of sequencing.

Decomposing the mathematical decision structure in this way decreases the complexity

of the resulting formulation from O(n 2m) to O(n 2) in the number of variables. Consider

that an alternate formulation may instead group these two decisions into one binary

decision variable, y'. Referencing the example given above: If Flight Level 1 and Flight

Level 2 are both commanded onto Flight Level 3, with x1 >x2 then y 1 =1 and y =0o
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Also note that y =0Vjc N,Vk E M and yiJ =0VjE N,Vk E M . However, the nature

of this binary decision variable is such that it must be used to impose a strict sequencing

order. That is, whereas y 1 signifies that Flight j is further ahead in range than Flight i,

y must be used to signify that Flight j is directly ahead of Flight i on Flight Level k. The

significance of this distinction can be appreciated by comparing the complexity of both

representations: the order of this latter representation is O(n 2m) in the number of

variables, while the order of the formulation chosen is O(n 2) in the number of variables.

The fundamental reason why a strict sequencing decision variable such as y need not be

used is based on the definition of the variables xi and the subsequent enforcement of

separation among flights, which together infer a degree of sequencing. If xi > x1 , then it

is enough to enforce x- x 1 , where 5 is the longitudinal separation standard, among

only those flights that are commanded onto the same flight level rather than among all of

the flights in the network. In addition, the use of binary decision variables of the form

y lead to the definition of a far greater complex constraint set. A proper defense of this

statement is deferred until the definition of the constraint set.

5.4 Objective Function Definitions

The fact that the analysis is based on the definition of two distinct metrics begs the

definition of two distinct objective functions. Specifically, one objective will be used to

minimize cumulative network delay, while the other will be used to minimize the
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cumulative fuel burn in the network. As previously argued, the utility of the former

metric is that it can be used both as a means to gauge how much additional capacity can

be "recovered" from the current corridor conditions and as a means to establish a

foundation to analyze the properties of the solution and its sensitivity to changes in

various parameters. The latter metric is more representative of what the real-world

objective of an aircraft in the network might be: to minimize the operating costs of the

aircraft by minimizing the fuel expended.

5.4.1 Cumulative Delay Minimization Objective Function

Having specified a time horizon T over which to optimize, the minimization of delay for

a specific flight i involves the maximization of its range x, at T. That is, the minimization

of delay for any given flight over a fixed distance is equivalent to maximizing the

distance traveled in a fixed interval of time. These two representations are equivalent

because they express the same fundamental objective in the network: to increase

throughput. In addition, to increase throughput equitably in this formulation equates to

maximizing the total distance traveled within T for each aircraft in the network with equal

emphasis. In other words, no preference is overtly given to one aircraft over another.

Therefore, the mathematical representation of this objective can be expressed succinctly

as follows:

max xi
iE N
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5.4.2 Cumulative Fuel Burn Minimization Objective Function

The difficulty in minimizing with respect to fuel burn resides in the quadratic nature of

the fuel burn as a function of flight speed that was previously discussed. However, this

function is convex in nature and can be approximated using a convex set of piecewise

linear functions. The property of convexity is illustrated in Figure 5.1 and is defined as

follows:

Definition 5.1: A function f : I-> 91is convex if Vx, ye , 91',and VA E [0,1]:

f (Ax+(1-A) y) Ax + (1- A) y

As Figure 5.1 illustrates, the property of convexity is fulfilled if the chord between any

two points on the given function always resides tangent to or above the function.

Thus, the quadratic fuel burn function for each flight level can be approximated via the

use of a piecewise linear function of the form illustrated in Figure 5.2. The number of

segments that comprise the linear approximation is a design choice with a greater number

of segments resulting in a higher-fidelity model of the function. For the flight level-

dependent fuel burn functions considered in this research, linear approximations

y

x

Figure 5-1: Example of Function Convexity
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A

Figure 5-2: Piecewise Convex Linear Approximation

consisting of four segments were chosen and found to be approximations of sufficient

fidelity.

The linear approximations were found as solutions to the following LP formulation:

min Z1y, -y,' =min Iy,
ie N iEN

subject to:

y, - y,* y.,V i N

yi - yi -< yl,,Vi c N

a,x, +b, = yi ,V i e N,
a 2xi +b 2 = yi,Vi e N 2

a 3 Xi +b 3 = yi,Vic N3

a4x +b 4  yi,Vi e N 4

Where the following definitions apply:
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Sets:

N - Set of all air speed values i

NI - Set of air speed values for segment 1

N 2 -Set of air speed values for segment 2

N 3 - Set of air speed values for segment 3

N 4 -Set of air speed values for segment 4

Parameters:

y- Quadratic fuel burn value at air speed i

x, - True air speed i

Variables:

y, - Linear approximation fuel burn value at air speed i

a, - Slope of segment i

bi - Y-intercept of segment i

y, - Dummy variable for y, - y

The resulting maximum error value for two and four segment approximations between

points on every fuel bum profile model is listed in Table 5-1. Note the dramatic

reduction in error when using a four-segment approximation rather than a two-segment

Table 5-1: Maximum Linear Approximation Error (%)

FL190 FL230 FL270 FL310 FL350 FL390 FL430

B737 2.42 2.24 2.29 2.71 2.43 2.38 2.78
Four ________ ___

B757 1.94 2.31 1.92 2.14 2.07 2.08 2.50
Segments

A320 3.26 2.97 3.01 2.56 2.39 2.21 2.18

B737 9.89 9.02 9.53 11.29 9.67 10.66 10.83
Two__ _

B757 8.21 7.56 8.10 7.08 6.86 6.51 4.94
S e g m e n ts 1 0 .9 6 1 8..9.5

A320 10.96 11.78 10.52 9.31 9.63 8.58 6.51
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approximation. The coefficient values for the four segments of each fuel burn curve are

provided in Appendix IV.

With the piecewise linear convex function defined and f, defined as the fuel burn rate of

aircraft i, then the objective function that minimizes the cumulative fuel burn is defined

as follows:

min fi
iE N

However, this objective function alone does not define the quadratic fuel burn since this

variable is optimized over a set of four piecewise linear convex relationships on each

flight level. In other words, the right function f; = aiv, + bi must be used in the

optimization procedure. This is accomplished by introducing additional constraints and

is discussed in the definition of the constraint set in the subsequent section.

5.5 Constraint Set Definition

Many considerations are used to define the set of feasible rerouting solutions.

Specifically, the dynamics and performance limits of each flight are considered when

defining the set of feasible kinematics values. Separation constraints are used to ensure

that there is sufficient spacing among the aircraft routed onto the same flight level.

Combinatorial constraints are used to define the feasible set of flight sequencing on each

flight level. Finally, when the objective involves the minimization of the cumulative fuel
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bum, the additional constraints formulated in order to approximate the fuel bum function

as a piecewise linear convex function are imposed.

5.5.1 Flight Dynamics Constraints

These constraints enforce the kinematics relationship between range, flight speed and

acceleration. They are stipulated for each aircraft at the time horizon T as follows:

Tv, = x - x0,, Vi e N

Tai = vi - voi Vie N

The range and flight speed at T are directly related by the first constraint while the flight

speed at T and the command acceleration are directly related by the second constraint.

Therefore, taken together, these two constraint equations relate the range at T and the

command acceleration and relegate any direct definition between these two variables

unnecessary and superfluous.

5.5.2 Performance Constraints

These constraints establish the performance envelope for each aircraft. They are

stipulated for each aircraft as follows:

vi C(1-, ViE N,ke M

vi - zVi N,ke M

a. amin =-2 fps,Vi e N

a a = 2fps,Vi e N
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The first two constraints are defined for each aircraft and flight level permutation and are

used to establish the flight level-dependent minimum and maximum flight speeds for

each aircraft. C is an arbitrarily large constant used to program the selective logic

necessary to stipulate the correct flight speed bounds. The manner in which the logic

operates can be illustrated via a simple example. If aircraft 1 is ultimately routed onto

flight level 3, then z1  land zi O,Vk E M jk # 3. Therefore:

v1  C(--z +v =C(1-1)+v 3  =v 3

1 mxMaX 1  max1

v I vin, = -C +in,, = vmin

v 5 C(1- z )+vk,1 , =C(-0)+v , =C+vk,,Vk E M I k # 3

v, C(1-z )+v ,i, =-C(l-0)+vk, -C+vk ,Vke M Ik # 3
i nmini mn1

In essence, all permutations of the flight speed constraints for all flight levels other than

flight level 3 are rendered vacuous for aircraft 1. The only flight speed constraints that

are ultimately enforced for aircraft 1 are the two minimum and maximum flight speed

constraints corresponding to flight level 3.

The last two performance constraints are aircraft and flight level independent and reflect

the limits imposed by satisfying passenger safety and comfort for commercial flights.

Essentially, they reflect the notion that lateral accelerations in commercial flight should

not exceed 2 feet per second [Nuic, 2000]. These values are derived from the BADA

User Manual previously referenced in the discussion of the fundamental performance

modeling.
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5.5.3 Flight Sequencing Constraints

These constraints establish the set of feasible aircraft sequencing for each flight level.

They are stipulated as follows:

z, =1,Vie N
keM

y+ yg =1,Vi EN, Vje N |i # j

y1 =O,Vie N

The first constraint stipulates that each aircraft should be routed onto exactly one flight

level. The second constraint stipulates that between each pair of aircraft i andj, aircraft i

is in front of aircraft j or aircraft j is in front of aircraft i. In essence, this constraint is

used to guard against the infeasible situation characterized by the routing of one aircraft

both in front and behind another aircraft. The third constraint stipulates that an aircraft

cannot be routed in front or behind itself.

5.5.4 Longitudinal Separation Constraints

These constraints establish the necessary longitudinal spacing among aircraft in the

corridor. They are stipulated as follows:

x, -x, -C(3-z, -k - yj)+s,Vi c N,Vj c N,Vk e M

As with the case of the performance constraints, the manner in which the logic operates

can be illustrated via a simple example. If aircraft 1 and aircraft 2 are both ultimately

routed onto flight level 3, with aircraft 2 routed ahead of aircraft 1, then zi =1, z =21,

y2 =1 and zk = O,i =1& 2,Vk c M Ik # 3. Therefore:
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x 2 -x 1  -C(3-z -z' -y, 2 )+s = -C(3-1-1-1)+ s = s

x1 -x 2  -C(3-z -1 z'Y12)+S =-C(1-0-0-0)+s- =-C+s,VkE M |k #3

In essence, all permutations of the separation constraints for all flight levels other than

flight level 3 are rendered vacuous for the aircraft 1-aircraft 2 flight pair. The only

sequencing constraint that is ultimately enforced for the aircraft 1-aircraft 2 flight pair is

the one corresponding to the sequencing of flight 2 ahead of flight 1, when both flight 1

and flight 2 are ultimately routed onto flight level 3.

5.5.5 Fuel Burn Constraints

These constraints define the flight level dependent piecewise convex linear fuel burn

functions that are used with the fuel burn minimization objective. They are stipulated as

follows:

f, -C(1- z,) +a kv + b, Vi E N, je {1,2,3,4},Vk e M

As with the case of the longitudinal separation constraints, the manner in which the logic

operates can be illustrated via a simple example. If aircraft 1 is ultimately routed onto

flight level 3, then Z' =1 and Z = 0, Vk E M I k # 3. Therefore:

f C(1-_4Z) a 3V +b' =-C(1-1)+aU31V+b 3 a 3Vi-bA3

f,2 C(1- Z) + a'v + b' = -C(1 -1) + a v + b 3, = alv + d b 3
f 2 12 2 1 12V2 12 122 1

f _ -C(1- z )+aav 2 + b3 = -C(1-1)+aiv2 +b 3 = a v2 +b3

f -C(1-z)+av 3 +b=-C(1-1)aiv3 +b3 - a133v3 +b3

f>-C(1- z 3 )+a 3 i+b 3 = -C(1-1)+av+ b = a3 v +b 3
1- 41 44 14 144 14 14 4 14
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Note that by forcing f, to be the maximum value of the four piecewise linear convex

functions, the correct linear fuel bum approximation is enforced. In addition, note that no

constraints on any other flight levels are enforced:

f, -C(1-z') )+ a'v+ bt = -C(1 -0) + a'vv+ bi

=a 1kv, +b -C+,Vie N, jE {1,2,3,4},Vk E M Ik # 3

5.6 Summary Model

The resulting model is summarized here for the benefit of the reader:

max Y xi or min I f
ie N is N

subject to:

Tv, = xi -xO,,Vi E N

Tai =vi -voi ,Vie N

v1 <C(1-z )+v ,Vie N,ke M

v, C(1- z, ) +v, ,V Vi E= N, k E M

a. 2 a,,i= 2 fps,Vi e N

a, a,. =-2fps,V i e N

zi =1,Vi E N
kEM

y. +y-1 =1,Vie N, Vje NIi# j

yii =0, Vi E N

x, -xj >-C(3 - z -y)+s,ViE N,VjE N,Vke M

f _ -C(1 - z7 )+ a i + bk , Vi e N (for fuel burn objective only)

f _ -C(1 - z ) +akVi + b , Vi E N (for fuel burn objective only)

fi 2 -C(1- z,)+ akvi + bk3, Vi E N (for fuel burn objective only)

f, -C(1- -z )+ akv +b,4, Vi e N (for fuel burn objective only)
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5.7 Analysis of Model Complexity

As previously asserted, the optimization model is O(n 2) complex in the number of

variables due to the number of binary decision variables yj. In addition, the optimization

model is O(n2M) complex in the number of constraints due to the number of separation

constraints. However, a number of the flight sequencing constraints serve to mitigate the

complexity of the ensuing branch and bound search by fixing the values of certain

variables. Consider that when assigning a value to the binary decision variable yj in the

midst of the branch and bound search, the particularly strong constraint

yj + y, =1, Vi e N, Vj E N I i # i acts to fix the associated variable yji. Thus, the result

n2-
is that the search is mitigated on the order of O( 2n). Finally, the very strong

2

constraint yj = 0, Vi E N acts to mitigate the search on the order of O(n).

The variation in complexity as a function of a growing number of variables and

constraints is listed in Table 5-2. The numbers in the table reflect the exact number of

variables and constraints for a particular case and were calculate using the following

equations:

variables = n 2 +nm+4n

constraints = n2 m+ n2 + 2nm + 6n

Based on the representative sample problem sizes in Table 5.2, the problem complexity

stays well within the limits of the problem sizes presently considered computationally

tractable [Magnanti, 2003]. However, more germane is the question of whether these
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problem samples can be solved using a reasonable amount of memory with commonly

available computational hardware? This question is answered as part of the subsequent

analysis.

5.8 Branch & Bound Development

With the MILP defined, the Branch & Bound procedure may now be detailed. As

previously mentioned, the Branch & Bound algorithm uses an A* Search in finding the

solution to the MILP. Thus, the description of an admissible heuristic is necessary and

now possible given the formal problem definition.

5.8.1 The Admissible Heuristic: Using Greedy Flight Level Allocations

The condition that defines an admissible heuristic is that it never overestimates the cost to

the goal state from any other state. Consider what a state represents in this problem

formulation: a partial solution. Remember that during the Branch & Bound procedure,
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Table 5-2: MILP Formulation Complexity Analysis
Number of Variables Number of Constraints

Flight Levels (m) Flight Levels (m)

Aircraft (n) 3 5 7 3 5 7

10 170 190 210 520 760 1000

20 540 580 620 1840 2720 3600

50 2850 6300 6450 10600 15800 21000

100 10700 10900 11100 41200 61600 82000



the integrality of only a subset of the integer variables is maintained in the solution of the

relaxed LP representation. Therefore, at any point of the Branch & Bound search, a

subset of the simulation traffic has been assigned to a discrete flight level because the

integrality of its corresponding binary decision variables, yi1 and z', have been enforced,

while the rest of the traffic has not. The following example, Figure 5-3, serves to

illustrate this point. In the example, the state s represents the case where aircraft i has yet

to be sequenced onto any flight level. In other words, no decision has been made on

where to place aircraft i in the airspace, and thus, its corresponding flight level binary

decision variables Z,4 have not been integer thus far. Suppose now that it is time to

enforce the integrality of the flight level binary decision variable z', corresponding to

aircraft i being placed on flight level k. Therefore, two nodes branch out from this state:

One corresponding to placing aircraft i on flight level k z =1 and another corresponding

to aircraft i not be placed on flight level k zi = 0.

Integer solutions so far: zik E I

O zikE R

t u

zi = 0 zi =1

Figure 5-3: Solution State Space Illustration
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In this regard, the definition of the flight level binary decision variables z' is fortuitous.

Consider that an admissible heuristic can be formulated by solving a partially relaxed

MILP where the sequencing binary variables yi, are relaxed while the integrality of the

flight level binary decision variables z, is maintained. This problem represents the case

where the separation standards have been relaxed and do not factor in how the traffic is

allocated among the flight levels. Thus, this problem is greedy in nature: which flight

level does aircraft i prefer strictly from a performance standpoint? Consider that the

admissibility of the heuristic is based on the Weak Duality Theorem for integer

programs: a relaxed problem never overestimates its integer counterpart. Furthermore,

consider that the complexity in solving this sub problem is only O(nm), driven by the

order of the flight level binary decision variables z'. Solving this MILP sub problem at

each node provides an efficient means to compute the estimated cost to the goal state and

is admissible in nature. Thus, this is the admissible heuristic used in the A* Search of the

solution space that is performed during the Branch & Bound procedure.

5.8.2 Sub-optimal Solutions

An additional method used to mitigate the complexity of the MILP involves truncating

the search performed in the Branch & Bound procedure. This method is based on the

collective experience of the optimization community with regard to many other examples

of large scale, complex MIELPs [Magnanti, 2003]. That is, obtaining the optimal IP

solution may be an intractable problem, but a feasible IP solution might be obtained

efficiently and within an acceptable degree of error. However, how can the feasible IP
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solution be judged to be within an acceptable degree of error if it can never be compared

to the optimal IP solution? Again, the Weak Duality Theorem provides an answer.

Consider that the optimal LP value is guaranteed to never overestimate the optimal IP

value: z, z,. Furthermore, consider that any feasible IP value is guaranteed to never

underestimate the optimal IP value: z > z,. Thus, the following relationships among

these three values hold: z,, s z,, s z . Therefore, if a feasible IP value lies within a

reasonable range of the relaxed LP value, then the feasible IP value as it relates to the

optimal IP values is guaranteed to reside within this bound as well. Solving the LP

provides an upper bound estimate on the degree of error between the feasible IP solution

and the optimal IP solution.

Therefore, in implementing this mitigation procedure, the following questions should be

addressed in the final analysis:

* How does the upper bound estimate of the error change when other parameters

are changed?

e What is the minimum amount of computations (i.e. earliest truncation point) that

result in an accepted degree of error?

The first question is relevant in establishing the properties of the simulation solutions.

The second question is relevant in determining whether a real-time decision-aiding tool

can ever be implemented that is based on the methods developed in this chapter.
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6 Results

The results of the simulations are presented in this chapter. The results that establish the

properties of the formulation are presented in Section 6.1. The utility of the A* Search in

the Branch & Bound implementation is quantitatively defined and is used to establish the

truncation point in the search. The variation in solution time versus problem size is

presented in order to establish the formulation as tractable for practical problem sizes.

Finally, the variation in the solution quality versus the optimization horizon is presented

in order to demonstrate its impact on the solution.

The results for the scenarios defined in Chapter 2 are presented in Sections 6.2 - 6.5. A

baseline improvement in delay and fuel bum savings is established for the single jetway

scenario. The quantitative impact of instituting RVSM is presented. Finally, the effects

of instituting MIT restrictions and merging traffic streams are presented.

The results of using a mixed strategy to reallocate traffic are presented in Section 6.6.

This metric represents optimization with respect to minimizing overall operating costs

and is compared with the baseline delay and fuel bum savings.

6.1 Establishing Model Properties

The various properties of the framework previously discussed are established in this

section. These properties are explored using the delay minimization metric because the
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hardest set of constraints, namely the separation standard constraints, is common to each

of the formulations.

6.1.1 Benchmarking A* Search Utility

The Weak Duality Theorem was used to demonstrate the fact that the LP solution could

be used to establish a maximum error bound on a feasible IP solution as it relates to the

optimal IP solution. This bound is referred to as the "solution gap." The solution gap

versus the number of nodes visited in the problem search space for a representative

problem size of 5 Flight Levels and 30 Aircraft are illustrated in Figure 6-1. Results are

presented for both a Depth-First Search and A* Search in the Branch & Bound

implementation. For up to 10,000 nodes in the search space, the A* Search provides a

bound half as large as the Depth First Search. From the figure the fundamental drawback

C.,

S10ANqqIqq o-o
20 --
0

0 - --

0 2000 4000 6000 8000 10000

Nodes Expanded

--+-A* Search -&- Depth-F irst Search

Figure 6-1: Solution Gap vs. Search Space Size
(5 Flight Levels, 30 Aircraft)
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in using an Uninformed Search Method within the context of a Branch & Bound

implementation is seen: the search can get "stuck" on one solution for especially large

problems, as is the case here.

Based on this result, a bound on the solution search space was established. Five hundred

simulations were randomly generated, each with a varying number of flight populations

(25-75) and flight levels (3-5) in order to establish the following two results:

* The Branch & Bound implementation can be truncated by establishing a

maximum node limit of 5,000 nodes.

" Using this node limit, the Branch & Bound implementation will return a feasible

IP solution that is within 4.5% of the optimal IP solution.

6.1.2 Establishing Problem Size Limit

As discussed in Chapter 5, the problem size is driven by the order of the sequencing

binary decision variables and grows with order O(n 2). The variation in solution time as a

function of the problem size is shown in Figure 6-2. These results were generated from

500 simulations for each data point, with the search truncated at 5,000 nodes. The linear

scaling proves that solving the admissible heuristic as presented in Chapter 5 does not

bog down the computation. In other words, the admissible heuristic does not grow

exponentially as the problem size increases. These results were generated using a Sun

Blade 100 workstation with a 500 MHz UltraSPARC-Iie CPU. The result of the problem

size analysis in terms of the number of simplex iterations is illustrated in Figure 6-3.
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Figure 6-3: Simplex Iterations vs. Problem Size

This representation is platform-independent and can be used to estimate the

computational time when using a different processor.
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However, in order to establish that these computation times provide adequate results, the

variation in the solution gap as a function of the problem size must be explored. The

variation in the solution gap as a function of increasing problem size is illustrated in

Figure 6-4. Note that the solution gap grows linearly to approximately 10% when

solving problem instances of 50 aircraft. This trend suggests that sub-optimal feasible

solutions of worse value are obtained as the problem size grows. However, simulations

show that increasing the search space size does not result in any appreciable

improvement. Thus, rather than suggesting solutions of poorer value, the trend can be

explained by considering the definition of the solution gap, which is the difference

between the LP value and the feasible IP value. Consider again that the LP value is the

solution to a problem where the separation standards have not been enforced. In other

words, the LP value represents the greedy solution. Also consider that as the problem

size increases, there are a greater number of constraints imposed on the traffic, due to the

16
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Figure 6-4: Solution Gap vs. Problem Size

103



separation constraints, and that it grows on the order of O(n2rm). Therefore, it can be

reasoned that the LP solution constitutes a bound of greater optimism as the problem size

grows and that the optimal IP solution is closer to the feasible IP solution than the

solution gap would indicate. Indeed, if the optimal IP solution were assumed to reside at

the center of the bound, then there would only be a maximum error of 5% for problem

sizes of 50 aircraft.

Given this discussion, it may be concluded that:

e The solution time increases linearly with time.

" For a maximum error of 10%, the maximum problem size is 100 aircraft.

6.1.3 Horizon Sensitivity Analysis

The arbitrary nature of the horizon parameter suggests that its impact upon the solution

should be explored. The variation of the solution gap as a function of the time horizon is

illustrated in Figure 6-5 for 500 simulations, using a mean separation of 5 miles. The

trend suggests that feasible IP solutions of poorer value are obtained for shorter time

horizons. Similar to the discussion in the previous section, the role that the LP solution

plays in establishing the bound must be considered.

Tighter separation constraints result from smaller optimization horizons. That is, for the

cases here, where aircraft are already spaced so closely together, time is crucial in

allowing the network to develop slack. As the horizon is increased, the optimal speed of
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Figure 6-5: Solution Gap vs. Horizon

the aircraft distribution approaches that obtained by the LP solution. That is, after

enough time, enough slack will be created in the network, so that the separation

constraints become less binding. In fact, if the horizon is increased to a large enough

value, then the ensuing solution will simply represent the LP solution. Thus, for the sake

of the simulations, horizons of 30 minutes will be used, unless specified otherwise. The

justification for this value is based upon the fact that the aircraft in the network would

travel far beyond the boundaries of the corridor if a larger horizon is chosen.
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6.2 Single Jetway Scenario Results

The results presented in this section are for the nominal scenarios involving a single

jetway, modeled after Jetway J5 1, which was detailed in Chapter 2. The delay reductions

and fuel burn savings resulting from the simulations are presented.

6.2.1 Delay Reduction

The distribution of delay reduction is illustrated in Figure 6-6 for 500 simulations. Note

that the delay reduction is normalized with respect to a horizon of 30 minutes. The

simulations were randomly generated, using 3-5 Flight Levels and 25-50 aircraft in each

instance. The following results were derived from the analysis:

e An average of 8.5 minutes of delay reduction per flight is achieved in a congested

network.

" For each aircraft model, an average cost savings per flight of:

1. B737: $15938.95

2. B757: $19,698.29

3. MD80: $15,607.24

4. A320: $16,661.90

5. EMB-145: $11,907.43

It is important to note that the savings presented here and in the rest of the section reflect

what can be theoretically achieved only over the horizon and should not be extrapolated

over the remainder of the time each flight spends in the cruise phase. For example, it is
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Figure 6-6: Single Jetway Delay Reduction

incorrect to assume that a flight with a cruise phase of 60 minutes will, on average, save

17 minutes of delay savings (i.e. 2 x 8.5 minutes). The reason for this is that the

optimization is carried out over a finite horizon, in this case 30 minutes, over which a

particular traffic configuration and set of operational constraints are defined. In a sense,

the optimization tries to "push" the flow as much as possible over the given time frame.

Thus, the horizon is seen as just a convenient benchmark for which the value of the

optimization can be assessed. This argument holds for all of the results presented in this

section.

In the future, a more rigorous approach may entail applying this optimization

methodology over a simulation window so that the total potential savings can be gauged

for all flights within the window.
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6.2.2 Fuel Burn Savings

The distribution of fuel burn rate savings is illustrated in Figure 6-7 using the same 500

simulations. As with the delay reduction, the fuel burn rates can be normalized over the

optimization horizon to yield the amount of net fuel savings. The following results were

derived from the analysis:

" An average fuel burn rate reduction of 16.47 kg/min per flight is achieved in a

congested network.

* An average savings of 159.4 gallons of fuel, resulting in $135.50 of cost savings,

is achieved per flight.

a,

a,
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40
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Figure 6-7: Single Jetway Fuel Burn Savings
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6.3 RVSM Scenario Results

The results of introducing a new flight level in a congested network are presented below.

The same 500 randomly generated simulations from the previous section were used as the

basis for this analysis. The delay reductions and fuel bum savings resulting from the

simulations are presented.

6.3.1 Delay Reduction

The distribution of improvement in delay savings is illustrated in Figure 6-8 for the case

when RVSM is instituted. A substantial increase in the average delay savings is

illustrated in the figure. This result agrees with the intuition that adding an additional

300
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Figure 6-8: RVSM Delay Reduction
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flight level can be an effective method of reducing corridor congestion. The following

results were derived from the analysis:

" An average improvement of 45% over the default delay optimization case.

" An average of 12.3 minutes of delay reduction per flight is achieved in a

congested network.

6.3.2 Fuel Burn Savings

The distribution of improvement in fuel burn rate savings when instituting RVSM over

the default fuel burn optimization case is illustrated in Figure 6-9. From the figure, it is

seen that no net fuel burn savings are realized by instituting RVSM. This result agrees

with the expectation based on the performance analysis in Chapter 2. Namely, the fuel
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bum optimization speed is well below the maximum aircraft speed, and thus, the aircraft

do not need to be accelerated a great deal, as is the case in minimizing the delay.

Therefore, the slack in the network is not a driving factor in reconfiguring the jetway

traffic. This intuition is supported by the results in the figure.

6.4 MIT Restriction Scenario

The effect of imposing an MIT restriction upon the traffic in a congested network was

also investigating. The same 500 randomly generated simulations from the previous

sections were used as the basis for this analysis. For these solutions, only MIT

Restrictions of 10 miles resulted in a feasible solution. Thus, for higher MIT restrictions,

the network could not accommodate the traffic while ensuring enough separation among

all aircraft. The delay reductions and fuel burn savings resulting from the simulations are

presented below.

6.4.1 Delay Reduction

The distribution of delay reduction is presented in Figure 6-10 for 500 simulations.

Intuitively, imposing an MIT restriction is expected to reduce the delay savings when

compared to the default delay optimization case. This is because a greater separation

must be maintained among the corridor aircraft. This intuition is supported by the results

in the figure, as the amount of delay reduction is significantly lower than that achieved in
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the default delay reduction optimization case previously

were derived from the analysis:

e An average of 5 minutes of delay reduction per

network when imposing an MIT restriction of 10

" An average loss of -41% minutes of delay

optimization case.

presented. The following results

flight is achieved in a congested

miles.

savings over the default delay

6.4.1 Fuel Burn Savings

The distribution of fuel burn rate savings is illustrated

simulations that were generated in previous sections.

reduction, there is no intuitive expectation for how the
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160
140
120
100
80
60
40
20

0

in Figure 6-11 for the same 500

Unlike the case for the delay

fuel burn rate should vary under

9 09 1 >9 -1.
09 49 79 ab 49

Bins (minutes)
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such conditions. The figure indicates that a severe fuel burn penalty is imposed upon the

aircraft. The following results were derived from the analysis:

0 An average fuel burn rate reduction of 8.63 kg/min per flight is achieved in a

congested network when imposing an MIT restriction of 10 miles.

* An average loss of -48% kg/min of fuel burn rate savings over the default fuel

burn optimization case.

6.5 Merging Traffic Scenario

The results of merging climbing traffic into the overhead En Route traffic are presented

in this section. In contrast with the previous scenarios, the main interest in this scenario

is qualitative: can the decision model successfully merge traffic? For this analysis, 500
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simul'ations were randomly generated, using 3-5 Flight Levels and 25-50 aircraft in each

instance.

The model was able to merge the traffic successfully in every simulation. The

distribution of delay reduction is illustrated in Figure 6-12. Note the slight shift in the

histogram when compared to the baseline case in Figure 6-6. This shift occurs because

without use of the decision logic, the climbing traffic would have to wait for "gaps" to

occur in the overhead traffic before it can be merged onto the higher flight levels. The

following results were derived from the analysis:

. The decision logic can be used to merge traffic streams safely.
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Figure 6-12: Merging Traffic Delay Reduction
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* An average of 9.5 minutes of delay reduction per flight is achieved in a congested

network when merging traffic streams.

6.6 Mixed Strategy Results

The results of using a mixed objective function metric to redistribute the corridor traffic

are presented in this section. This corresponds to an objective that minimizes overall

operating costs. The same 500 randomly generated simulations from the previous

sections were used as the basis for this analysis. The distribution of cost savings is

illustrated in Figure 6-13. Note that the histogram illustrates that these costs are about a

third of the values obtained from simply using delay reduction as the objective function

metric. This observation is expected when considering the quadratic increase in fuel burn

as a function of flight speed. Thus, a trade-off point between delay reduction and fuel

bum savings can be identified. The following results were derived from the analysis:

e An average cost savings of $5,552.98 per flight.

" A trade-off point that corresponds to a value that is 65% of the baseline delay

reduction and 57% of the baseline fuel bum savings.

" An average of 5.5 minutes of delay reduction per flight.

* An average of 9.46 kg/min of fuel bum rate savings per flight.
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7 Conclusions and Recommendations

A methodology for alleviating congested En Route airspace was developed in this thesis.

The proposed research approach is novel because the problem is developed within a

tactical context, thereby capturing the short-term dynamics that cause congestion in a

corridor setting. The methodology resulted in the development of a decision-aiding tool

which used an A* Search-Based Branch & Bound procedure to solve a MILP formulation

of the problem. Decomposing the integer variables in the MILP formulation mitigated

the potential barrier posed by the computational complexity of the methodology.

Running multiple simulations of a portion of the Northeast Corridor over a variety of

different scenarios validated the approach. A summary of the key conclusions is

presented here.

7.1 Conclusions

The following results were achieved for an optimization horizon of 30 minutes:

* The Branch & Bound implementation has been shown to provide a feasible IP

solution that is within 4.5% of the optimal IP solution. Furthermore, the A*

Search heuristic is an efficient method that allows large problem instances

consisting of approximately 100 aircraft to be solved within a reasonable time.

Therefore, the MILP presented in this thesis can be further developed as a basis

for a real-time decision-aiding tool for reallocating traffic in NAS corridors.
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" When delay is used as the objective function metric, an average of 8.5 minutes of

delay reduction per flight is achieved in a congested network. For each aircraft

modeled, this value results in the following cost savings per flight:

o B737: $15,938.95

o B757: $19,698.29

o MID80: $15,607.24

o A320: $16,661.90

o EMB-145: $11,907.43

e When fuel burn is used as the objective function metric, an average fuel burn rate

reduction of 16.47 kg/min per flight is achieved in a congested network. This

value results in an average fuel savings of 159.4 gallons of fuel per flight,

resulting in $135.50 of cost savings per flight.

e When an RVSM program is instituted and delay is used as the objective function

metric, an average of 12.3 minutes of delay reduction per flight is achieved in a

congested corridor. This value represents an average improvement of 45% over

the default delay optimization case.

" When an MIT restriction of 10 miles is imposed and delay is used as the objective

function metric, an average of 5 minutes of delay reduction per flight is achieved

in a congested corridor. This value represents an average loss of -41% minutes of

delay savings over the default case when no MIT restrictions have been imposed.
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* When fuel burn is used as the objective function metric, an average fuel burn rate

reduction of 8.63 kg/min per flight is achieved in a congested corridor. This value

represents an average loss of -48% kg/min of fuel burn rate savings over the

default fuel burn optimization case.

" When a mixed objective function metric is used, an average cost savings per flight

of $5,552.98 is achieved. This value represents the trade-off point between delay

reduction and fuel bum savings. This value corresponds to 65% of the baseline

delay reduction and 57% of the baseline fuel burn savings. An average of 5.5

minutes of delay reduction per flight is achieved in a congested corridor. In

addition, an average of 9.46 kg/min of fuel burn savings per flight is achieved in a

congested corridor.

e The decision logic can be used to merge traffic streams safely.

7.2 Recommendations

The work presented here represents only the first step in researching the issue of air

traffic congestion within a tactical context. As mentioned within this thesis, most, if not

all of the previous approaches neglected the short-term dynamics of the system either

because the computational complexity was believed intractable or because previous

researchers believed the problem to be strategic in nature. Given the advances in the field
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of Applied Mathematics as well as the computational power of computer processors

today, the implication that can be taken away from this thesis is that future work tailored

to mitigating En Route traffic congestion should seek to model the tactical aspect of the

problem as well as the strategic aspect. A summary of the recommendations leveraged

from the experience gained during the course of this research is presented here.

" As the flight level histograms in Appendix I illustrate, more data samples of the

corridor traffic are needed. Thus, more ETMS data must be acquired, filtered and

sampled in order to guarantee that the models used to create the simulations are

faithful representations of the traffic distributions in the NAS.

" A dialogue with En Route controllers should be established in order to ascertain

how the NAS becomes congested. The results from the ETMS data filtering

demonstrate that a minimum of 60 miles of separation exists between aircraft for

each of the five days sampled. Either the data is incomplete or a better

understanding of the NAS constraints is in order.

" A stronger constraint set formulation would allow the implementation to be used

for far larger problem instances. Attention should be specifically paid to

reformulating the separation constraints, which act to reduce the efficacy of the

LP that is used as the criterion to bound the Branch & Bound search. Further

research into the area of scheduling problem formulations could potentially yield

a stronger formulation.
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e The MILP should be adapted to handle a three-dimensional airspace

configuration. This would increase the potential efficacy of the methodology that

has been developed.
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Appendix I Flight Speed Histograms
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Appendix 11 Aircraft Performance Summary

11.1 Boeing 737

hMO = 45,000 ft

CAS,,i, = 340kts

M,. = 0.82

139

Table 1.1: Boeing 737 Flight Envelope

Flight Level Min TAS Max TAS Min Fuel Burn TAS

ft kts Kts kts

19000 181 506 290

23000 193 498 310

27000 207 490 335

29000 222 481 355

33000 239 473 380

37000 260 470 415

41000 285 470 455



11.2 Boeing 757

hmo = 42,000 ft

CAS,nif = 350kts

M,. = 0.86
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Table 1.2: Boeing 757 Flight Envelope

Flight Level Min TAS Max TAS Min Fuel Bum TAS

ft Kts kts kts

19000 206 530 285

23000 220 522 305

27000 235 513 325

29000 252 505 350

33000 271 496 375

37000 295 493 410

41000 323 493 450



11.3 Boeing MD80/MD88/MD90/717

hmo = 37,000 ft

CA S,,,, = 340kts

Mp,,. = 0.84

141

Table 1.3: Boeing MD80/MD88/MD90/717 Flight Envelope

Flight Level Min TAS Max TAS Min Fuel Bum TAS

ft kts kts kts

19000 215 518 270

23000 230 510 287

27000 245 501 307

29000 262 493 330

33000 280 484 355

37000 304 482 385



11.4 Airbus A318/A319/A320

hMo = 39,000 ft

CAS,,,,, = 350kts

M,,m = 0.82
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Table II.4: Airbus A318/A319/A320 Flight Envelope

Flight Level Min TAS Max TAS Min Fuel Bum TAS

ft kts kts kts

19000 197 506 255

23000 210 498 270

27000 225 490 290

29000 241 481 315

33000 259 473 340

37000 282 470 370



11.5 Embraer EMB-145

hM( = 41,000ft

CA S,,n =335kts

MM,,a = 0.85
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Table 11.5: Embraer EMB-145 Flight Envelope

Flight Level Min TAS Max TAS Min Fuel Burn TAS

Ft kts kts kts

19000 188 524 263

23000 201 516 280

27000 214 507 303

29000 230 499 325

33000 246 490 347

37000 268 488 365

41000 292 488 377
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Appendix Ill Fuel Burn Analysis Figures

111.1 Boeing 737
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111.2 Boeing 757

Figure 111-2: Boeing 757 Fuel Bum Analysis
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111.3 Boeing MD80/MD88/MD90/B717

Figure 1II-3: MD80/MD88/MD90/B17 Fuel Bum Analysis
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111.4 Airbus A318/A319/A320

Figure III-4: Airbus A318/A319/A320 Fuel Burn Analysis
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111.5 Embraer EMB-145

Figure II-5: EMB-145 Fuel Burn Analysis
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Appendix IV Piecewise Linear Convex Fuel

Burn Approximations

Four linear functions comprise the approximation of the fuel burn curves, each of the
following form:

fuel bum=a, x TAS + b,,ie {1,2,3,4}

Figure IV. 1 illustrates how each linear function relates to the different regions of the
original fuel burn function.

Fuel
Burn

L

a'a'
a'
a'
a'

a'1

2

4

3

TAS

Figure IV. 1 Generic 4 Segment Linear Approximation
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IV.1 Boeing 737

Table IV.1 Boeing 737 Linearized Fuel Bum Coefficients
FL 90 FL230 FL270 FL290 FL330 FL370 FL41 0

A1 -0.3438 -0.322 -0.2879 -0.2959 -0.2626 -0.2574 -0.2286
B1 130.8125 131.6027 129.5795 137.5302 135.4557 141.9857 141.8255
A2 -0.0833 -0.0814 -0.077 -0.0743 -0.0686 -0.0657 -0.0593
B2 70.9167 72.6714 73.68 75.4857 76.2857 78.7286 80.0429
A3 0.07 0.0686 0.0651 0.0641 0.0583 0.0581 0.0543
B3 26.45 26.1714 26.7911 26.3653 28.08 27.3375 28.3429
A4 0.1825 0.1758 0.1701 0.1607 0.1491 0.1375 0.1295
B4 -14.05 -15.1209 -16.768 -16.6453 -15.0384 -13.9375 -14.5011

ax error % 2.4155 2.2355 2.2907 2.7084 2.4316 2.3792 2.7752
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Figure IV.2: Boeing 737 Linearized Fuel Bum
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IV.2 Boeing 757

Table IV.2 Boeing 757 Linearized Fuel Bum Coefficients

FL 90 FL230 FL270 FL290 FL330 FL370 FL410
a1 -0.341 -0.329 -0.2889 -0.3169 -0.244 -0.2497 -0.2336
1 135.5087 138.4207 134.7875 147.8952 134.6308 143.6517 146.9318

a2 -0.0985 -0.0965 -0.0878 -0.0831 -0.0819 -0.074 -0.0727
b2 80.9496 82.6322 82.5039 83.5976 85.9962 86.56 89.8091
a3 0.0813 0.0822 0.0714 0.0714 0.065 0.0624 0.0637
b3 29.7118 28.1255 30.7571 29.5143 30.9 30.636 28.4295
a4 0.2218 0.2073 0.1952 0.1814 0.1679 0.1555 0.1371
b4 -20.1818 -19.4091 -19.3616 -18.3357 -16.9676 -16.845 -12.7143

max error (%) 1.9404 2.3107 1.9243 2.1384 2.0715 2.0811 2.502
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Figure IV.3: Boeing 757 Linearized Fuel Burn
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IV.3 Boeing MD80/MD88/MD90/717

Table IV.3 Boeing 4D80/MD88/DM90/717 Linearized Fuel Bum Coefficients
FL1 90 FL230 FL270 FL310 FL350 FL390 FL430

a1 -0.1801 -0.1735 -0.1739 -0.1534 -0.1472 -0.1402 -0.1174
1 81.5171 83.511 87.3519 86.0588 88.5149 91.6444 89.7826

a2 -0.0386 -0.0376 -0.038 -0.0387 -0.0389 -0.0429 -0.0356
D2 48.982 50.2096 52.015 53.935 56.0362 60.0314 60.3323
a3 0.017 0.025 0.021 0.0209 0.0246 0.0278 0.0282
b3 33.965 32.0661 33.7168 34.2765 33.4822 32.8128 33.2222
a4 0.1602 0.157 0.1454 0.137 0.1287 0.121 0.1084
b4 -11.1521 -12.8399 -11.0688 -10.4348 -9.7069 -9.5737 -6.5046
max error % 3.8864 3.5781 3.4093 3.7468 3.3751 2.9192 2.2226
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Figure IV.4: Boeing MD80/MD88/MD90/717 Linearized Fuel Bum
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IV.4 Airbus A318/A319/A320

Table IV.4 Airbus A318/A319/A320 Linearized Fuel Bum Coefficients
FL190 FL230 FL270 FL310 FL350 FL390 FL430

al 0.184 -0.3766 -0.3483 -0.305 -0.2188 -0.2022 -0.1644
b1 0.0009 117.8938 117.275 113.325 96.1995 97.0175 91.1273
a2 -0.06 -0.0604 -0.0572 -0.0517 -0.0474 -0.0452 -0.0467
b2 48.8 49.9025 50.3194 49.9917 49.9196 50.7189 52.8667
a3 0.0467 0.0403 0.0383 0.0417 0.0405 0.0357 0.0358
b3 21.6 22.7028 22.6083 20.5917 20.0371 20.79 19.448
a4 0.1647 0.1513 0.14 0.13 0.1188 0.1075 0.0923
b4 -16.16 -15.0063 -14.5 -14.3 -13.2706 -12.6125 -9.3462

max error (%) 3.2609 2.9689 3.0055 2.5641 2.394 2.2074 2.1766
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Figure IV.5: Airbus A318/A319/A320 Linearized Fuel Bum
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IV.5 Embraer EMB-145

Table IV.5 Embraer EMB-145 Linearized Fuel Burn Coefficients
FL 90 FL230 FL270 FL310 FL350 FL390 FL430

31 -0.0873 -0.0798 -0.0759 -0.084 -0.0695 -0.069 -0.0617
32.5863 32.4955 33.1256 36.6851 34.8883 36.9182 37.179

a2 -0.0244 -0.0244 -0.0246 -0.0205 -0.0231 -0.0194 -0.0189
22 19.3636 20.0186 20.8099 20.5035 22.1302 22.0423 23.0657
a3 0.0196 0.0174 0.0183 0.0177 0.0163 0.0169 0.0167
23 7.6995 8.3316 7.9418 8.0898 8.5458 8.27 8.2699
a4 0.0639 0.0605 0.057 0.0538 0.0518 0.0485 0.0445
:4 -6.9099 -6.7561 -6.572 -6.3506 -6.7142 -6.5922 -6.0144
max error (%) 2.821 2.659 2.4161 2.3237 2.2376 1.9547 2.0399
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Figure IV.6: Embraer EMB-145 Linearized Fuel Burn
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