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Abstract

A micro-fabricated solid oxide fuel cell is currently being designed by the Micro-
chemical Power Team(funded under the Multidisciplinary University Research Initia-
tive(MURI) Research Program). In the current design a plate structure vital to power
generation is exposed to harsh thermal operation conditions, making it susceptible
to structural failure. This thesis investigates the mechanisms of its structural failure,
develops tools and models to understand the mechanisms quantitatively, and gives
suggestions to guide the design process with the models developed.
The thesis begins with a brief overview of the principles of fuel cell operation, their
associated operating conditions, along with a description of how these conditions may
lead to structural failure. Next a representative structure of a portion of a fuel cell
critical to power generation is analyzed, for a given temperature distribution. Differ-
ent temperature distributions across the same structure are also analyzed. Results
from these analyses are then used to provide guidance for the design process. Finally
future directions for research are given.
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Chapter 1

Motivation and Aim

With the current push for clean power, combined with the demand for high power den-

sity (energy per unit mass) portable power, the microchemical power team composed

of members from various departments at the Massachusetts Institute of Technology

is currently exploring different fuel cell designs to meet this need.

Currently there are four types of fuel cells that are under widespread use, with their

designs differing in the choice of their electrolytes. These different electrolytes are

alkaline, acid, molten carbonate and solid oxide. Although these four types of elec-

trolytes may be quite different in their designs, the fuel cells all generate electricity

through a very similar mechanism. Fuel cells generate electricity by the indirect re-

action between a fuel and an oxidant, where the indirect reaction occurs through

an intermediate separation layer, or the electrolyte. The electrolyte is partially cov-

ered by electrodes, and these electrodes provide and capture electrons during the

fuel/oxidant reaction. Overall this electron exchange process manifests itself as an

electric current flowing in the circuit.

A desirable characteristic for a fuel cell is to have a high power to mass ratio, as this

enables portability, and/or high power generation. One technique for increasing this

ratio is by decreasing the mass of the fuel cell, while keeping the power generation

constant. A considerable mass reduction can be achieved through Micro Electro-

Mechanical Systems(MEMS) fabrication technology, since fuel cell features can be

decreased to the micron-scale with accuracy and controllability. A solid oxide fuel

13



SiNx

Fuel Flow

Figure 1-1: Design of SOFC Proposed by Baertsch et al.[3]

cell is suitable for MEMS fabrication, since it uses a solid electrolyte, therefore mak-

ing it the easiest to fabricate and control [12, 25].

The most recent design of a micro-fabricated SOFC proposed by Baertsch et al. [3,

9, 2] is shown in Figure 1-1. The principle of operation of this device is as follows:

With fuel and oxygen flowing over opposite sides of the YSZ electrolyte plate

structure, they react indirectly through the YSZ plate. Electrons are collected at the

electrodes on the YSZ plate, generating a current. The area of the electrode governs

the power generated for a given fuel/oxidant, temperature, and flow rate. Therefore

the YSZ plate is central to power generation. For the fuel/oxidant reaction to oc-

cur, the YSZ plate must be heated up to temperatures of 5000-1000 0C. Such high

temperatures may prove to be structurally detrimental to the YSZ plate structure.

For example, during heating up of the plate structure, if the coefficient of thermal

expansion (CTE) of the substrate is smaller than that of the electrolyte, then the

electrolyte plate structure would expand more than the surrounding substrate. This

will translate to the generation of in-plane compressive stresses within the electrolyte

plate, possibly leading to its buckling and therefore structural failure. Conversely,

14



during heat up, if the CTE of the substrate is larger than that of the electrolyte, in-

plane tensile stresses will be generated, leading to possible failure by brittle fracture.

Realizing that the structural failure of the plate structure hinders electrolyte opera-

tion and therefore power generation, the YSZ plate structure must be designed for

prevention of structural failure. Yet it is equally unacceptable to over-design the

structure, as over-designing will decrease fuel cell efficiency.

The aim of this thesis is to analyze the mechanics issues faced by the candidate fuel

cell design. This consists of the following tasks: 1) Analyze structural stability of the

YSZ plate under various temperature distributions, 2) Develop the necessary tools

to analyze the stability and power generation capability of the YSZ structure, 3) De-

velop design maps for the YSZ structure to indicate possible design regions where

failure could be avoided during the operation of the fuel cell, 4) Assess the power

generation capability of the current design, determining whether it could generate

sufficient power, or if a new design is needed for higher power generation.

The thesis is organized as follows. Chapter 2 provides an overview of the fuel cell

power generation mechanism and outlines a possible fabrication route. Variables af-

fecting YSZ fuel cell performance are described, and the mechanics of the structure in

relation to them is presented. Chapter 3 analyzes the mechanics of the plate under a

uniform temperature distribution. Power generation and heat loss under this temper-

ature distribution are assessed for structurally stable plates. The necessary tools and

design maps are derived for this temperature distribution. Chapter 4 explores the

behavior of the plate when exposed to non-uniform temperature distributions. Tools

are developed, and power generated and heat loss analyzed for these temperature dis-

tributions. Chapter 5 then compares the power generation capabilities of structurally

stable plates for the different temperature distributions plate geometries, to observe

whether one temperature distribution or geometry has an advantage over another. A

conclusion is drawn as to whether there is a need for a completely different design.

Finally Chapter 6 discusses possible topics for future investigations.

15
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Chapter 2

Overview of Fuel Cell Design

An understanding of the operation mechanism, design variables affecting YSZ fuel

cell power generation and the fabrication process is required to provide context for

the results from the mechanics and power generation analyses of the fuel cell.

2.1 Operating Principles of the SOFC

A cross section of a generic SOFC is shown in Figure 2-1.

In the case at hand, the fuel is assumed to be hydrogen and the oxidant to be

oxygen. The solid electrolyte is YSZ, with a porous anode and cathode on either side

of the electrolyte. The YSZ electrolyte is first heated up to its active operation tem-

perature(approximately 600'-8000C). At that temperature, oxygen obtains electrons

from the cathode:

02+ 4e 202-

The oxygen ions then diffuse through the YSZ electrolyte, and the oxygen ions

react with hydrogen molecules on the YSZ/anode interface [25, 12]:

2H2 x 4e + 4H+

The sum of the reactions is the formation of water, and the overall exchange of

17
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Figure 2-1: Generic SOFC Cross Section [25, 12]

electrons from one electrode to another manifests itself as an electrical current.

2.2 Transistion to Micro-Chemical Fuel Cell

The SOFC concept is translated to the micron scale through Micro Electro-Mechanical

Systems(MEMS) fabrication technology. In the proposed design in Figure 1-1, YSZ

is the solid electrolyte. On either side of the electrolyte are a platinum (Pt) anode

and a nickel (Ni) cathode. A layer of silicon nitride (SiN2) is deposited between the

electrolyte and one of the electrodes (the exact structure is a design variable), and

the whole composite plate structure is supported at its periphery by silicon(Si). Note

that Si and SiNX serve no direct part in the generation of electric power; Si is the

underlying support for the entire structure, and the SiNX is present to increase the

stiffness of the YSZ layer.

It is anticipated that the YSZ will be operating at temperatures of 600 0-800 0C, and

that there will be no pressure difference between the fuel and the oxygen. Other

design variables are free for tuning to maximize fuel cell power generation capability.

The design requirements that maximize power generation capability are presented in

18



the next section.

2.3 Design Requirements of the Micro-Chemical

SOFC

Since the YSZ plate structure is responsible for ionic conduction and the overall power

generation, different YSZ structure designs will affect the power generation capability

of the fuel cell. The design requirements that ensures maximum power generation by

the YSZ plate structure are as follows:

The process of ionization of oxygen molecules and their subsequent diffusion through

the YSZ electrolyte begins at the YSZ/cathode interface. The rate at which this pro-

cess occurs depends on the accessibility of the YSZ/cathode interfaces to the oxygen

molecules. Similarly for the anode, the hydrogen molecules need to be able to reach

and access the YSZ/anode interface to react with the oxygen ions, thereby complet-

ing the reaction and the electron transfer process. To increase the rate of both of

these processes and therefore the overall power generation capability of the fuel cell,

the area of the YSZ/electrode interface must be maximized. One way of achieving

this would be to increase the porosity of the electrodes, but this will depend upon

material fabrication and electrical function of the electrodes. Another technique for

approaching the design requirement is to remove the SiN2 support layer to have ef-

fectively one large YSZ composite, as this would free up area available for oxygen

transport [25, 12, 24]. Yet in turn this decreases the stiffness of the composite, mak-

ing it more susceptible to buckling failure.

Returning to the oxygen ion diffusion through the YSZ structure, the rate for this

process to occur and the overall power generated will be increased if the thickness

of the YSZ plate structure is decreased. This is due to the higher ionic conductivity

from a thinner YSZ plate.

Finally the YSZ plate structure is heated by resistive wires to temperatures of 6000-

800 0C. The large temperature difference between the plate temperature and the am-
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Figure 2-2: Fabrication Steps of a Microchemical SOFC [4, 3]

bient temperature would drive heat out of the device, hence decreasing the net power

generated. The design requirement from this concern is therefore to minimize heat

loss out of the YSZ structure.

2.4 Fabrication of Micro-Chemical SOFC

The proposed fuel cell design presented in Figure 1-1 is realized through the fabrica-

tion steps proposed by Baertsch [4, 3] as shown in Figure 2-2.

Starting out with a silicon wafer, a layer of silicon nitride is deposited. Next the

silicon nitride on one side of the wafer is partially etched away. To make openings for

the free-standing YSZ, the remaining unetched side is etched in a manner showed in

Figure 2-2. Heating wires and temperature sensors are deposited on one side of the

wafer. Next a layer of aluminum oxide is deposited on top of the wires and sensors to

increase heat insulation. An electrode layer, a YSZ layer, and another electrode layer

are then deposited over the silicon nitride and the insulated wires. Finally to release

20



the YSZ free-standing plates, the silicon and the silicon nitride layer are etched away.

2.5 Mechanisms for Structural Failure of Micro-

Chemical SOFC

The fabricated Micro-Chemical SOFC is susceptible to structural failure through

various combinations of the following operation and loading conditions:

1. Temperature gradients

2. Absolute Temperatures

3. CTE mismatch between different materials

4. Residual stresses of different materials, developed during their fabrication

5. Long term temperature fluctuations

Four failure modes could occur due to the above conditions: The two failure modes

that require a long time-frame to occur are creep and fatigue, and the other two are

fracture and buckling.

Creep ensues when the material is under stress for a long period of time, and simul-

taneously exposed to a temperature in excess of approximately 1/3 of its melting

temperature [20]. Compressive stresses developed through the operation and loading

conditions could cause creep buckling, and tensile stresses could lead to creep frac-

ture [27]. Fatigue is a failure mode that also occurs over a long time frame, but this

failure mode is characterized by the plate being exposed to fluctuating stresses over

time, caused by fluctuating operation and loading conditions. Since this project is

currently in the trial device fabrication stage, these two failure modes are disregarded

in this thesis.

The failure modes that require immediate attention at this stage of device develop-

ment are fracture and and buckling.

Fracture is caused by large tensile stresses within the plate structure. These tensile
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Extreme Temperature CTE Mismatch Residual Stress
Temperatures Gradients

Failure Modes

Buckling Fracture

Figure 2-3: Flow Chart of Reasons for Failure, and Resulting Failure Modes

stresses could either be initially present in form of residual stress, or they could be

generated through operation and/or loading conditions such as temperature gradi-

ents, CTE mismatches, and temperature changes. Buckling is also caused by residual

stresses, temperature gradients, CTE mismatches and temperature changes, but in

this failure mode the stresses within the plate are compressive.

Considering only failure modes pertinent to this fuel cell development stage, fracture

of the YSZ plate structure is most detrimental to the fuel cell. This is because frac-

ture of the electrolyte would allow direct mixing of fuel and oxygen, giving way to

a possible explosion. Although buckling does not directly affect electrolyte function

since this failure mode only results in electrolyte out-of-plane deformation, significant

bending stresses may develop in the YSZ structure due to this new configuration,

leading to fracture. Therefore both failure modes must be avoided to ensure fuel cell

structural stability.

2.6 Preventative Measures for Structural Failure,

and Their Impact on Design Requirements

Figure 2-4 shows the relation between failure modes and their preventative measures,

and how these preventative measures in turn affect the design requirements.

To illustrate the use of this figure, consider the buckling failure mode. This failure

mode could be prevented by increasing the thickness and/or decreasing the side length
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Figure 2-4: Failure Modes, their Preventative Measures, and their Impact on Design
Variables

of the plate, and/or adding stiffeners to the plate. Yet increasing the thickness of the

plate to avoid buckling would be in conflict with the design requirement of minimizing

plate thickness, and minimizing heat loss (heat loss out of the plate boundary increases

with thickness). Similarly, both decreasing the side length of the plate and adding

stiffeners would go against the requirement of maximizing the YSZ surface area.

Therefore the design of this plate structure is a balance between preventing structural

failure, and at the same time fulfilling the design requirements as much as possible

to maximize fuel cell power generation capability.

2.7 Required Analyses and Tools for Micro-Chemical

SOFC Design

In order to obtain the correct balance between preventative measures and design re-

quirements, tools must be developed to obtain an understanding of the mechanics,

thermodynamics and the power generation of the fuel cell. Since the structural sta-

bility and power generation capability of the YSZ plate structure is crucial to the
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operation of the fuel cell, a representative structure of a YSZ plate is analyzed.

The mechanics and failure of the representative YSZ structure is understood through

the development of analytical models that describe the failure mechanisms of the

plate, and the design variables that are involved. Equipped with these models, the

design process can be streamlined by constructing a design map, indicating design

spaces for which the structure would not fail. Furthermore, safe operating criteria for

the representative structure can then be deduced, therefore aiding the design process.

Power generation of the plate structure is then understood through development of

analytical thermodynamics models, following that of Chan et al. [24]. The heat loss

and the power generation of a representative structure is analyzed. Coupled with

the analytical models developed for the failure of fuel cell plate structures, net power

generation of a fuel cell subject to maintaining structural stability can be assessed.

Although the results give only an order of magnitude estimate on the power genera-

tion capability, it suffices for the purposes of providing an initial design estimate by

which to compare candidate designs.

The four-step analysis procedure, namely safe operating criteria, heat loss, power

generation and net power generation, will then be used all together to construct a

design spreadsheet. Such a spreadsheet will serve the purpose of making the design

process more efficient.

All the analyses and tools mentioned will be developed in the following chapters.
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Chapter 3

Modeling of Micro-fabricated

SOFC: Uniform Temperature

Distribution

Having identified the generic configuration of a micro-fabricated SOFC, the specific

dimensions and geometry of the membrane structure must be determined. To narrow

down the scope of initial design analyses, only elliptical and rectangular plates are

considered, where the criteria for selecting one geometry over another are its resis-

tance to structural failure and its heat loss. To ensure a fair basis for comparison

between these geometries, the in-plane surface areas are set equal at 40000pm 2 for

both geometries(since the in-plane lengths of the YSZ plates proposed by Baertsch

are approximately 200pum [3, 13]). Furthermore, since the exposed in-plane surface

area of the YSZ layer governs the power generation capability of the device, this basis

for comparison has an additional advantage in that it allows the determination of a

particular geometry that maximizes buckling temperature change for the same power

generation capability. Plates of various thicknesses are also considered, but only re-

sults from the same thickness should be compared. Using buckling as the failure

criterion for this analysis, the temperature change from the stress-free temperature

for buckling of different geometries is found analytically. The following are expressions

for the buckling temperature change of elliptical and rectangular plates [23]:
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Buckling Temperature Change for Various Shapes
-----------------.

b In-Plane Surface Area=4x10 4 m 2

t- a - I

0 1 2 3 4 5

Aspect Ratio, a/b

Figure 3-1: Buckling Temperature Change of Ellipses
In-Plane Aspect Ratios and Thicknesses

and Rectangles with Different

1T-.1it2 -74 + 2,y2 +3~
a([+ v) Ay(2 + 1)

AT = T a ( r yt 2

(b Aa(1 + v)

(3.1)

(3.2)

where AT is the temperature change from the stress-free temperature, -y = a/b, T

are constants associated with (a/b) ratios (the aspect ratios of the elliptical plates) [23].
These expressions are plotted in Figure 3-1.

The material properties required within eqn 3.1 and eqn 3.2 are listed in Table 3.1

along with their references. The thermal conductivity of silicon required in subse-

quent analyses is also listed in this table.

Figure 3-1 shows that rectangular plates give the highest temperature change be-

fore buckling, therefore rectangular plates are considered for subsequent analyses.
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Properties of YSZ Values References
Young's Modulus 157GPa [1, 37]

Coefficient of Thermal Expansion 10 x10- 6 /K [1, 37
Poisson Ratio 0.313 [1, 37]

Heat Conductivity 6W/mK [18, 38]
Residual Stress -500MPa [5, 21, 34]

Properties of Silicon Values References
Heat Conductivity 141W/mK [38, 37]

Table 3.1: Material Properties of YSZ and Silicon for Analyses

Although ellipses give a lower temperature change before buckling, circles have the

least perimeter for a given in-plane surface area, therefore leading to the least heat

loss for a given surface area. Furthermore, circular geometries are easier to fabricate

than elliptical geometries. Hence circular plates will also be considered.

The plates will initially be at room temperature, with a residual stress of ores. At

operating conditions, their temperatures will be increased to a uniform temperature

distribution of temperature TOP.

3.1 Rectangular Plates

The use of the four-step analysis procedure will now be illustrated.

3.1.1 Design Criteria Against Failure

Safe Operating Criterion: Buckling of Rectangular Plates

Referring again to Figure 1-1, the approximate in-plane dimensions of the represen-

tative YSZ plate structure in the current design by Baertsch [3, 13] are on the order

of 200pm, and the thickness is on the order of 0.1-1pm, implying that the design falls

within the thin plate mechanics category.

The rectangular plate structure will be idealized as a plate infinite in one dimension,

with two sides rigidly clamped. This is shown in Figure 3-2.

Furthermore, for the time being the material will be considered to be a single
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y

Figure 3-2: Idealized Clamped Rectangular Plate

isotropic material. Other assumptions are: 1) the deflection of the plate is small after

buckling, 2) surfaces normal to the neutral surface prior to buckling are normal to

the neutral surface after buckling 3) stresses perpendicular to the surface of the plate

are approximately zero [36, 221.

Following Jensen [11], the assumed shape of the buckled plate is approximated as

w(x, y) = wo (I + cos

where wo is an unknown displacement amplitude.

This yields a critical stress for buckling of

Eir2t2

o-cr - Er_20_(3.3)12(1 V2 (2

The in-plane stress of the YSZ plate, up, is a sum of the residual stress measured

at room temperature, and the thermally-induced stress resulting from the constrained

expansion of the plate:
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w(x,y)

y

Figure 3-3: Assumed Buckled Shape of Infinite Plate

p ares+ O th

The expression for Uth is [36]

EaAT
Uth = - I

1 -iv

Substituting eqn 3.5 into eqn 3.4 results in

EaAT
p res -

The critical condition for buckling is where o- = Ob,cr.

(3-6)

From a design point of

view, the stress within the plate must never be close to the buckling stress. Therefore

the maximum stress allowed in the plate should only be a fraction of the buckling

stress. This is achieved by introducing a safety factor for buckling, S [22], defined to

be
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(3.7)S = bcri

where S assumes a value larger than 1 [27, 22].

Eliminating o- from eqn 3.6 using eqn 3.7 results in

EaAT E72t2

ares 112S(1-v 2 )12 (3.8)

Rearranging the above equation, the following is the critical temperature change

for buckling of a plate:

ATb= -(1- V) ares
Ea

+ 2+12Sa(1 + v)

Therefore if

ATb > (I -V) res +Ea
(3.10)

the safety limit is crossed, and the structure fails under safety factor considera-

tions. By denoting ( = t/l, or the ratio of thickness to side length of the plate, 3.9

becomes:

E1 - V)
Ea

+ t (2
12Sa(1 + V)

(3.11)

The introduction of the aspect ratio [27, 29] ( will prove to be useful later when

constructing the design map.

Safe Operating Criterion: Fracture of Rectangular Plates

The simplified structure in Figure 3-2 will again be used for consideration of failure

by brittle fracture. Before proceeding with the analytical treatment, it is useful to

first understand how fracture is treated mathematically in this thesis.
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YSZ is a ceramic, and ceramics contain a stochastic distribution of flaws of differ-

ent sizes throughout the material [15, 271. Therefore for a ceramic material there

is no deterministic fracture strength, and only a range for fracture strength can be

provided [27]. Therefore it is more appropriate for the fracture strength to be under-

stood as the probability of fracture for a specific loading condition.

The introduction of Weibull Statistics performed by Turner [35] is as follows:

The following expression is the probability of fracture [8]:

'2 3
Pf (o- V) = 1 - exp + 02) + (3.12)

Vo Uo O-o Uo

In the above equation, Pf is the probability of fracture failure, 1, o2, -3 are the

three principal stresses of the plate, V and -o are the reference volume and stress of

the experiment determining m, the Weibull Modulus.

Since the plate is infinite in the x-direction(or = 0), and assuming that the plate is

sufficiently thin(U3 ~ 0) [22, 26], the following is the probability that the plate does

not fail by fracture, denoted by P,:

V (am
P, = e 0 (3.13)

where o-2 = Or

Letting - = o-, in eqn 3.13, and substituting the resulting expression into eqn 3.6,

the allowable temperature change ensuring a probability of survival from fracture of

P, is

ZATf = -res - o ( jlogPs) r (3.14)
Ea V

Similar to the buckling criteria, if

ATf < I -res - O ( l ogP' ] (3.15)
Ee V

the structure is considered to have failed by fracture.
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Figure 3-4: Design Map Showing Possible Design Region, Buckle Failure Region, and
Fracture Failure Region

Inequalities eqn 3.10 and eqn 3.15 can be used to draw up a design map showing

possible design regions. To do this, two variables need to be chosen as the axes of

the design map. One factor for the choice of variables is that both failure modes

considered, buckling and fracture, should be dependent on each of those variables.

This would allow both failure modes to be placed on a single design map. Another

factor should be that the choice of variable will allow the easier use of the design

map [27]. With both these factors in mind and observing eqn 3.10 and eqn 3.15, a

reasonable choice is to pick temperature change, AT, and residual stress, ores, as the

two axes [27]. If AT is taken to be the y-axis and ares is taken to be the x-axis, a

design map as shown in Figure 3-4 can be drawn using eqn 3.10 and eqn 3.15 .

Using suggestions from Turner [35, 331, more areas in Figure 3-4 are shaded away.

To obtain the possible design region(the triangularly-shaped region in Figure 3-4),

the following further steps were taken [35, 33]:

1. It was stated previously that the plate structure is assumed to be initially at
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room temperature. This corresponds to the line AT = 0. Since the plate

structure is heated to make it operational, it must be the case that AT > 0

under all circumstances. Therefore the region AT < 0 is shaded off.

2. Since it was assumed that the device is at room temperature prior to its oper-

ation(when ares is measured), the initial state of the device on the design map

must necessarily be on the line AT = 0. Inspecting Figure 3-4, there are re-

gions where at the initial state, the structure would already have been fractured.

Therefore the region that should be shaded off is given by the inequality

O-res 0-0 - logP / (3.16)
2V

Although fracture is assessed in this section, it will be disregarded in the rest of

the thesis. The reasoning for this is as follows:

It is a fundamental design requirement that the plate structure be stable after it is

fabricated. Therefore to allow for mechanics analyses for the plate structure in the

first place, the plate structure must not have fractured initially. This assumption is

made throughout the entire thesis. Furthermore, the plate is assumed to be at room

temperature after fabrication, and that it is stable at that particular temperature.

The structure then would only be subjected to a temperature increase to make it

operational, since it was stated previously that AT > 0 at all times. Since AT > 0

and aysz > asi [221, the stresses within the structure could only become more com-

pressive, thus rendering the only relevant failure mode to be buckling.

Although Figure 3-4 identifies design regions where designs are structurally stable,

there is another approach that allows the convenient coupling between stability and

power analyses, and gives way to the construction of a design spreadsheet, therefore

streamlining the design process.

This approach can be understood by considering the following argument:

Eqn 3.8 is a design stability condition for the structure. Out of the three design

variables t, 1 and AT, if two of these variables are chosen, then the third variable
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0

Figure 3-5: Region Shaded Away due to Fracture at Room Temperature
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is determined, and this design possesses structural stability. Since the choice of t is

limited to a small fabrication range of 0.1-1pm, t is chosen to be fixed. It is now

possible to specify a range of AT (= Tp - Troom), and to find the corresponding

maximum I that would ensure structural stability. Rearranging eqn 3.8,

{ 12S(1 E7 2 t 2  (3.17)
12S(1+ v)[EaAT - o-res(1 - v/)]

One concern regarding the validity of eqn 3.17 is the situation where EaAT -

ures(1 - v) < 0. If this were the case, then

EaT - ores(1I - v) < 0

EaAT
S- v Ures < 0

EaAT
- + Ures > 01-i

Noting that

EaAT'
th -

Up Oth ~ ores

up > 0

Therefore EaAT - o-res(1 - V) < 0 implies a tensile state of stress in the plate.

Similarly EaAT - o-res(1 - v/) > 0 means that the plate is in a state of compression.

Since it is impossible for buckling to occur for in-plane tensile stresses, any I could

be chosen and buckling will not occur.

Thus if the plate were under compressive stress(EaAT -ores (1-V) > 0), the value for

I is limited by eqn 3.17; if the plate were under tensile stress(EaAT -ores(1- v) < 0),

any 1 could be chosen (in relation to buckling only). These two conditions and eqn 3.17

will be applied to power analyses and the design spreadsheet to ensure structural
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Free-Standing YSZ T _ YSZ

TO
Sk 2  Troom

Al A2

Figure 3-6: Schematic of Structure for Heat Loss Modeling

stability. Note that eqn 3.17 is the safe operating condition.

3.1.2 Heat Loss of Rectangular Plates

To find the net power generated by the plate structure, heat loss from the plate must

be modeled. It is apparant that heat loss arises due to heat conduction out of the

plate and heat convection from the plate to the fuel/oxygen flowing on either side

of the plate structure. It will be assumed that the dominating mode of heat loss is

conduction out of the sides of the plate; convection of heat from the plate to the

fuel/oxygen will be ignored [35]. Figure 3-6 is a schematic of the structure modeled

for heat loss.

Since the plate is infinite in the x-direction, heat loss is assumed to be one-

dimensional in the y-direction. Figure 3-6 is then approximated by a two-resistor

heat conduction system. The heat conductivity associated with each thermal resistor

is calculated by averaging conductivities between the YSZ and the silicon regions,

and the cross sectional area is the average between the area where heat enters and

exits the resistor. Taking into account the 54.70 etch angle between the silicon and

YSZ, and assuming that the thickness of the silicon is approximately 500pm [35], the

averaged heat conductivities (in W/mK) and areas for each resistor are calculated to
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k1 = kysz Aysz +ks. Asi
Aysz + Asi AYSZ + ASi

0000M71t (n ~Wo flflfl7l'i(n nnu~
kysz + ks 0. 0 1 +( 5 0 0 0 ) 0 0

0.00071t + (0.5)(0.00071)(0.0005) 0.00071t + (0-5)(0.00071)(0.0005)

n n
k2 = kysz + ks<0.0

0.0005±+t 0.0005 + t
(3.18)

Defining the length in the y-direction as #(where it will later be eliminated),

A t13+ (t+0.0005)0A1 2
2

A1  1
,= I(2t + 0.0005)

2

A 2 = (0.0005+t)3
A 2

7W= 0.0005 +t

Assuming that the outermost boundary of the silicon is at room temperature, the

heat loss (in W) from the plate is

2(TB - Troom)
0.00071 + L-1-0.00071

#3(kiAj1/) O(k2A2/#)

2ZTB
0.00071 + L-l-0.00071

0(kiA1/A) (k2A2/0)

ATB

(0.00071 L -1-0.00071kiA1/3 k 2 A2 /#
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ATB

0.00142 + L--0.000711
ki (2t+0.0005) k2 (0.0005+t)

(3.19)

where L is half the side length of the silicon die(assumed to be 5mm [27]), 1 is

half the width of the free-standing YSZ plate, and q is the heat loss per unit plate

area (in W/m 2 ).

3.1.3 Power Generation of Plate Structure

The power per unit area of an SOFC YSZ plate structure is given by the following

expression [24, 37, 39, 10]:

p = i(EO - 7oahm - Tacta - 'Tact,c) (3.20)

where

E0  = RT"P log K
2 F

RTo l
4 F

it 4.27 (1000 )~ -4.41
- = itlO Top

0 e

__2RgTop

=- g"p arcsinh
F

2RgTop
= arcsinh

F

4io

2io)

(p112O Po>
2 2

POH2 P02 /
Open Circuit Potential

Ohmic Potential

Anode Activation Potential

Cathode Activation Potential

Definitions of the symbols in the above list of equations are listed in Appendix A,

and the expression for 1/oe is approximated from the data presented in [30].

The partial pressures for the reaction concerned can be obtained from the following

equation:

1
H2+ --02 H20

2

Therefore PH2 = 1, PO2 = 1/2, PH20 = 1, and the reference pressure po = 1.

Furthermore, the logarithm of the reaction equilibrium constant logK, can be found

71 ohm

Nact,a

rlact,c



from [39], and the following equation approximates the data to a good degree of

accuracy:

logK, = 129025TO-1.25 9 6  (3.21)

Knowing that Top = AT + Troom, therefore

p iR9 (AT + Troom) [129025(AT + Troom)~1.2596]2F
iRg(AT + Troom) 1 0 g2

4F
_ 2t04.27( 1OO -4.41

2i RA(+T Trom
2iRg (AT+±Troom) (i) (3.22)

F

where

$(i) = arcsinh (i) + arcsinh (i)
Since the temperature distribution of the plate is uniform, every point on the plate

has the same value for p.

One additional issue that surfaces is the current that should run through the circuit

that generates the maximum power. Assuming that there are mechanisms adjusting

the current to maximize power generation, for different operating conditions and

different SOFC designs there is a particular current that maximizes power generation.

This current can be found through the following expression, and solving for i:

. = 0 (3.23)

The resulting equation to be solved is a transcendental equation. i can then be

found by the "bisection method" [7].
In subsequent calculations for power generated of an SOFC, only the maximum power

is presented.
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3.1.4 Net Power Generation of a Structurally Stable Rect-

angular Plate

The net power generation of a plate structure is then simply the power per unit area

minus the heat loss per unit area, or

Pnet = p - q (3.24)

Pnet is coupled with the safe operating condition by specifying that t, AT and I in

eqn 3.17 be the same as those in expression for Pnet. This means that Pnet calculated

are those for stable plates.

3.2 Circular Plates

The analyses for circular plates are similar to those for rectangular plates. The four-

step analysis procedure is again carried out.

3.2.1 Safe Operating Criterion: Buckling of Circular Plates

The circular plate modeled in this section is shown in Figure 3-7.

The buckling stress for such a circular plate is [23]

E
Ub,cr = -1.22

1 -v 2
t (2

R
(3.25)

Using eqn 3.6 and eqn 3.7, the largest circular plate radius R with a stress safety

factor S for a particular t and AT is

1.22Et 2  1/2

S(1 + v)[Ea-AT -res(1 - v)] v

(3.26)

3.2.2 Heat Loss of Circular Plates

The schematic of the plate modeled for heat loss is shown in Figure 3-8.
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AT, ares
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Figure 3-7: Schematic of Circular Plate Modeled

AT YSZ/Electrolyte

-Top -Troom Composit e

AT = AT (r, 0)

Silicon Die

RR

AT = 0 AT =Top -Troom = ATB

Figure 3-8: Schematic of Circular Plate Heat Loss Modeling
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Modeling the heat loss as two-dimensional steady state conduction, Laplace Equa-

tion then holds:

82 AT 1 AT 1 82 AT-+ - -+ - = 0
Br2 r Or r 2 902

Assuming that AT(r, 0) = F(r)E(0) [32], the solution is [32]:

(3.27)

1
AT(r,O6) =-(Co+Dologr)+ _1[(Cnrn +

Dn\
n) cos(nO) +

Tn )

The constants Co, Do, An, Bn, Cn and Dn are found through the following bound-

ary conditions [32]:

AT(R,0)

AT(R', 0)

=ATB

-0

The temperature difference distribution is then

A =T(r) = A log
log(R'/R)

(3.29)

The total power loss out of this structure is

BATQ=-kA OAT
Or r=R

(3.30)

In order to use eqn 3.30, k and A must be found. Considering the structure

outside the free-standing YSZ plate, average values of k and A are found through the

following process:

The volume of YSZ outside the free-standing plate is simply Vysz = (7RR' 2 - rR 2)t.

However, to find the volume of silicon, it is first separated into two portions, finding

the volume of each and finally summing them together. The two portions are shown

in Figure 3-9.
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Portion 2

Figure 3-9: Two Portions for Consideration of the Volume of Silicon

The volume of the second portion is (7R'2 - 7r(O.00071) 2)(0.0005). As for the first

portion, the volume is found by integrating the expression for a cone with the limits

shown:

The expression for the cone shown is [31]

X2 + y 2  1/2

(tan54.70)2)

R
tan54. 70

(3.31)

Although the use of an anisotropic wet etch will not result in a conical surface,

nevertheless it is a useful approximation for modeling purposes.

The volume is then

J27r 
.

0 0 0 7 1

0 fRO
Volume

J 0.00071R

zdxdy

1 (r - R)rdrdO
tan54.70

27 ~13
7 F1 (0. 00071)3 -

tan54.70 _5 I
R
-(0.00071)2 +
2

1
R3]

The total volume of silicon, Vsj, is then

Vsi = 3 70 [2(0.00071)3 - 3R(O.00071) 2 + R3 ] + 7[R'2 - (0.00071)2](0.0005)
3(tan54.70)

(3.32)
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The value of k is then

vsz Vsi
k = kysz + ksi

Vsi +vsz Vsi +vysz
(3.33)

The averaged area is

A = 7r[R't + R'(t + 0.0005)] (3.34)

The heat loss during steady state operation can then be found from the following

equation [161:

Q=-kA OAT
Or , R

kAATB
Rlog(R'/R)

The heat loss per unit area of the free-standing YSZ plate is then

kAATB
q7R31log(R'/ R) (3.35)

3.2.3 Power Generation of Circular Plates

Since the circular plate is exposed to a uniform temperature distribution, the power

per unit area for a circle is also given by eqn 3.22.

3.2.4 Net Power Generation of Structurally Stable Circular

Plates

Similar to rectangular plates, the net power generation pnet is also given by eqn 3.24.

The coupling between the net power and the safe operating condition is again achieved

by applying both equations assuming the same R, t and AT.
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Maximum
Temperature

of
Temper atu e

Profile (K)
293
323
373
423
473
523
573
593
613
633
653
673
693
713
733
753
773
788
803
618
833
848
863
878
893
908
923
938

Table 3.2
tribution

Maximum Temperature
Difference from Room Tensile=0,

Temperature of Temperature Cormpressive=1
Profile 4K) at Operation

0 1
30 1
80 1

130 1
180 1
230 1
280 1
300 1
320 1
340 1I
360 1
380 1
400 1
420 1
440 1
460 1
480 1
495 1
510 1
525 1
540 1
555 1
570 1
585 1
600 1
615 1
630 1
645 1

Does MaXimum
Radius Exist, it
yes, Radius of

Plate with Safety
Factor (m)

1.8812364497E-06
1.7641708264E-06
1.6098078432E-06
1.4899614629E-06
1.3934291868-06
1.3135162079E-06
1.2459429111E-06
1,2216905405E-08
1.1988014042E-06
1.1771523956E-06
1.1566354300E-06
1.1371551672E-06
1.1186271428E-06
1.1009762227E-06
1.0841353190E-06
1.0680443147E-06
1,0526491593E-06
1,0415299375E-06
1.0307557918E-06
1.0203092349E-06
1 .0101739958E-06
1,0003349129E-06
9.9077783847E-07
9.8148955338E-07
9.7245769000E-07
9,6367066298E-07
9.5511760682E-07
9.4678831931E-07

q (Wn/2)
0.0000E+00
3.4187E+07
1.08248+08
2.0337E+08
3 1932E+08
4.5589E+086
6.1290E+08
6.8139E+08
7.5312E+08
8.2809E+08
9.0627E+08
9.8767E+08
1.0723E+09
1.1601E+09
1.2511E+09
1.3453E+09
1.4427E+09
1.5178E+09
1.5947E+09
1 .6734E+09
1.7538E+09
1.8361E+09
1 .9201E+09
2.0059E+09
2.0934E+09
2.1827E+09
2.2738E+09
2.3667E+09

: Design Spreadsheet for Circular Plates under Uniform Temperature Dis-

With the four-step analysis procedure performed for both plate geometries, a

comparison between rectangular and circular plates is now possible.

3.3 Comparison between Rectangular and Circu-

lar Plates

Using the non-buckling conditions, expressions for heat loss per unit area, power

generated per unit area and the net power generated per unit area, design spreadsheets

are constructed for uniform temperature distributions over circular and rectangular

plates. These are presented in Table 3.2 and Table 3.3. These design spreadsheets

are then in turn used to assess the power generation and heat loss under uniform

temperature distribution for both plate geometries.

Instead of presenting a single graph and plotting pnet with operation temperature

T0, directly, separate graphs for power generation and heat loss are plotted for clarity.

Figure 3-10 shows that the power per unit area of a rectangle superimposes on that
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Ideal Current (Alm2) p (W/m 2)
0.000434992 2.7564E-04
0.009568839 5.9093E-03
0.544922054 3.2393E-01
11.84723377 6.8108E+00
129.2304993 7.2097E+01
746.8170166 3.9761E+02
2498.178482 1.1400E+03
3600.451279 1 .5043E+03
4862.223434 1.8515E+03
6143.402863 2.1361E+03
7256.22406 2.3226E+03

8023.926544 2.3970E+03
8352.960205 2.3708E+03
8268.527985 2.2724E+03
7884.268951 2,1335E+03
7335.299683 1.9798E+03

6729.0802 1.8273E+03
6278130341 1.7189E+03
5848.144531 1.6175E+03
5446.750641 1.5237E+03
5077.004242 1.4373E+03
4739.025879 1.3582E+03
4431 438446 1.2856E+03
4152.095032 1.2192E+03
3898 542023 1.1582E+03
3668.299103 1.1023E+03
3459.011078 1.0508E+03
3268.453217 1.0033E+03

2.7564E-04
-3.4187E+07
-1.0624E+08
-2.0337E+08
-3.1932E+08
-4.5589E+08
-6.1290E+08
-6,8139E+08
-7.5312E+08
-8,2809E+08
-9.0627E+08
-9 8767E+08
-1 0723E+09
-1.1601E+09
-1.2511E+09
-1.3453E+09
-1.4427E+09
-1.5178E+09
-1.5947E+09
-1.6734E+09
-1.7538E+09
-1.8361E+09
-1.9201E+09
-2.0058E+09
-2.0934E+09
-2.1827E+09
-2.2738E+09
-2.3667E+09



Max imum i
Temperature

of
Temperature

Profile (K)
293
323
373
423
473
523
573
593
613
633
653
673
693
713
733
753
773
788
803
8186
833
848
863
878
893
908
923
938

Does Maximum Side
Tensile=0, Length Exist, if yes, O.5Side

Maximum Temperature
Difference from Room

Temperature of Temperature
Profile (K)

0
30
80

130
180
230
280
300
320
340
360
380
400

440
460
480
495
510
525
540
555
570
585
600
615
630
645

Compressive-1
at Operation

1 .

* 1

Length of Plate with Safety
Factor, or '1m}
1.544623787E-06
1.4485049055E-06
1.3217623389E-06
1.2233602640E-06
1.1441006647E-06
1.0784868421E-06
1.02300434398-06
1.0030914889E-06
9.8429794258E-07
9.6652262587E-07
9.4967679384E-07
9.336821 6582E-07
9.1 846939057E-07
9.0397677800E07
8.9014924427E-07
8.7693742922E-07
8,6429695368E-07
8.5516731214E-07
8.46321 0015S8E-07
8.3774366391 E-07
8.2942193944E-07
8.2134337944E-07
8.1349636771E-07
8.0587005040E-07
7.9845427285E-07
7.9123952270E-07
7.8421687862E-07
7.7737796390E-07

I (W/m11 2)
0.0000E+00
2.5578E+08
7.4747E+08
1,3123E+09
1 .9429E+09
2.6336E+09
3,3800E+09
3.8933E+09
4.0147E+09
4.3440E+09
4 6812E+09
5.0258E+09
5.3780E+09
5N7374E+09
6.1040E+09
6.4775E+09
6.8580E+09
7.1478E+09
7.44148+09
7.7387E+09
8.0396E+09
8.3442E+09
8.6524E+09
8.9641E+09
9.2793E+09
9.5980E+09
9.9201E+09
1.0246E+10

Table 3.3: Design Spreadsheet for Rectangular Plates under Uniform Temperature
Distribution

Power Generated by Circular and Rectangular Plates
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Power Generated per Unit Area by Stable Rectangular and Circular
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Ideal Current (A m2) p(wm2)
0.000434992 2.7564E-04
0.00956884 5.9093E-03
0.544922407 3.2393E-01
11.84722959 6.8108E+00
129.2305089 7.2097E+01
746.8168234 3.9761E+02
2498.175924 1.1400E+03
3600.449092 1.5043E+03
4862.21891 1.8515E+03
6143.407898 2.1361E+03
7256.217782 2.3226E+03
8023.929641 2.39708+03
8352.951068 2.3708E+03
8268.55252 2.2724E+03
7884.283924 2.1335E+03
7335.309434 1.9798E+03
6729.099737 1.82738+03
6278,148192 1.7189E+03
5848.126635 1.61758+03
5446.753584 1.5237E+03
5077.003078 1.4373E+03
4739.031869 1.3582E+03
4431.448936 1.2856E+03
4152.102775 1.2192E+03
3898.547271 1.1582E+03
3668.30495 1.1023E+03

3459.007134 1.05068E+03
3268.461433 1 .0033E+03

Pnetewqt i 2
)

2.7564E-04
-2.5578E+08
-7,4747E+08
-1.3123E+09
-1.9429E+09
-2.6336E+09
-3,3800E+09
-3.6933E+09
-4,0147E+09
-4.3440E+09
-4.6811E+09
-5 0258E+09
-5.3780E+09
-5,7374E+09
-6.1040E+09
-6.4775E+09
-6.8580E+09
-7.1478E+09
-7.44148+09

-7.7387E+09
-8.0396E+09
.8.3442E+09
-8.6524E+09
-8,9641E+09
-9.2793E+09
-9.5980E+09
-9.9201E+09
-1.0246E+10

C

0
n.

-500 -

..... .... ... .... ... -



Heat Loss per Unit Plate Area of Rectangular and Circular Plates
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Figure 3-11: Heat Loss per Unit Area of Stable Rectangular and Circular Plates

of a circle. This is true because power per unit area is independent of geometry.

Furthermore there is an optimal temperature for maximum power generation. There-

fore for a uniform temperature distribution, that plate should be operating at that

particular temperature. To confirm that the values obtained for power per unit area

are in fact correct, the maximum value for power generation per unit area in this

analysis is compared to that of a commercially available SOFC [25, 121, and they are

in agreement within an order of magnitude.

Heat loss per unit area of stable plates are shown in Figure 3-11, and it shows that

the amount of heat loss is detrimental to power generation. For example, for the

temperature where there is maximum power generation for a rectangular plate, the

heat loss is approximately 106 times larger than the power generated. The figure also

shows that choosing a circle instead of rectangle for the plate geometry reduces heat

loss. This is correct because for a given in-plane surface area, circles have the least

perimeter, thus restricting heat loss.

Although a comparison between rectangular and circular plates has been achieved,
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both plate structures failed to achieve the aim of producing a positive net power. One

possible way to decrease this heat loss would be to lower the boundary temperature

in eqn 3.35. However, if the temperature profile were uniform, decreasing the bound-

ary temperature will also decrease the operation temperature, therefore lowering the

power per unit area. Therefore non-uniform temperature profiles of the form where

the temperature at the center of the plate is higher than that at the boundary should

be considered.
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Chapter 4

Modeling of Micro-fabricated

SOFC: Non-Uniform Temperature

Distribution

In this chapter non-uniform temperature distributions will be investigated in an at-

tempt to decrease the conductive heat loss out of the plates. The power generation

capability of rectangular and circular plates will again be found under such temper-

ature distributions.

4.1 Normal Temperature Distribution

The first non-uniform temperature distribution investigated is the normal tempera-

ture distribution. This particular distribution is chosen because it has a simple func-

tional form, along with specifiable temperature maxima location and temperature

decay rate. Although it is true that specifying a particular temperature distribution

initially may not be achievable in practice, the analyses performed for this temper-

ature distribution will nevertheless provide insights into the effects of non-uniform

temperature distributions and also need to develop analysis tools for dealing with

non-uniform temperature distributions.
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AT(x,y)

X

Figure 4-1: Normal Temperature Distribution over a Rectangular Plate (idealized to
be infinite in the x-direction)

4.1.1 Rectangular Plates

Rectangular plates will again be approximated by a plate infinite in the x-direction.

The normal temperature distribution across the rectangular plate is given by the

following expression:

AT(x, y) = ATm e-y 2 2 (4.1)

The temperature distribution over the plate is shown in Figure 4-1.

Safe Operating Criterion: Buckling of Rectangular Plates

To determine the thermal stress resulting from the constrained expansion of the

plate [35, 36], the deformation from the temperature distribution is first calculated,

and through Hooke's Law, the thermal stress is then determined [27].

With A = l/s, the deformation 3 resulting from the normal temperature distribution

is
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f = EYYdy

j eATmey 2 /S 2 dy

SasTmsv/F

= 2 erf(l/s)
aATms V/

- A 2 erf(A)
2

Using Hooke's Law, the stress from the normal temperature distribution is [19, 26]

Uth = yy

=4: Uth

1 - V 1
EaATm s VT_/rf(ISE~A~S i*erf(ljs)
1-v 1 2

E aATm -/fEerf(A)
2(1 - A

Again using eqn 3.6, eqn 3.7 and eqn 3.3, the maximum I that ensures safe oper-

ation is:

E2aTmv/erf (A)ares - 2A(1 - vi)
Er 2 t 2

12S(1 - V2)2

SE7 2 At 2

6S(1 + v)[EaATmv/werf (A)

1/2

- 2A(1 - l)Jesl]

The dimensionless variable A is intepreted as the decay rate of the normal tem-

perature distribution. It is one of the variables that defines the normal temperature

distribution, and is used in lieu of s to simplify calculations.
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Heat Loss of Rectangular Plates

Eqn 3.19 is also used here to describe the heat loss per unit area. However, the

boundary temperature ATB is now given by

ATB me(4.2)

Power Generation of Rectangular Plates

Unlike the previous chapter for uniform temperature distribution where power per

unit area is the same at all points of the plates, the normal temperature distribution

across the rectangular plate means that power per unit area is different at different

locations on the plate. Therefore a single value for power per unit area is required

for the normal temperature distribution in order to compare with the power per unit

area for the uniform temperature distribution. An average power per unit area for a

non-uniform temperature distribution is defined as

Pave = p(AT)dy (4.3)

Using eqn 3.22, Pave is

Pave 1 2 9 25 Rg I ( AT 2 /S 2 + T )-0.25 96 dy

i2Fog ~1 2

lg log2 [_ j'(ATme/ )dy + Toomj
4F _1 0

1 f 104.27 )1000 -4.41
- it- 10 me s /,,2 +Trcom dy

- J AT- Y2 
/sd y + Troom $(i) (4.4)

F Te eo

Therefore
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129025iR 1 A

2F A 0
(ATm e- + Troo-0.25 96 dg

Flog2 AT er f (A) + Troom

I j A 104.27( 1000 -4.41
i2t- 10 A+Tr-m f d(A 0

-2iRg ATmV1-r()To,1)i
F _ 2A -

(4.5)

The integrals presented in the previous expression are computed by numerical

means and using the definition of the Riemann Sum [28].

Since the present power under consideration is the average power Pave, the current

that should run through the circuit to maximize power generation is found by the

following expression:

Pave = 0
9i

(4.6)

Similar to Chapter 3, i is found through the "bisection method" [7].

The Pave for stable structures is found by eqn 4.5 assuming the same AT, t and A as

those in eqn 4.2.

Net Power Generation of Structurally Stable Rectangular Plates

The net power generation pnet is given by eqn 3.24, with p replaced by Pave.

4.1.2 Circular Plates

The normal temperature distribution over a circular plate is assumed to be of the

form

72+Y2 -2 2=AT _ 7,e /8,AT(x, y) = ATe AT(r)

This is shown in Figure 4-2.
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AT(r)

X

Figure 4-2: Normal Temperature Distribution over a Circular Plate

Safe Operating Criterion: Buckling of Circular Plates

The deformation J from AT(r) is [19, 26, 27]

R

6 = a T(r)dr

= aATm j e-r2 /s 2 dr

= a T .,erf (R/s)
2

Denoting A R/s, the stress arising from AT(r) is therefore [19, 26, 27]

9th -- 7rr

E 6
1-v'R

E aATmf, 7rerf(A)
1- V 2A
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Through eqn 3.25, eqn 3.6 and eqn 3.7, the maximum R before buckling failure is

R{ S(1
2.44Et 2A

+ /)[EaATmv/ erf (A) - 2Aores(1
(4.8)

- v)]}

Heat Loss of Circular Plates

Eqn 3.35 provides the heat loss per unit area for a circular plate. For the normal

temperature distribution, the boundary temperature ATB at r = R is

ATB=ATme -A 2 (4.9)

Power Generation of Circular Plates

Again, the normal temperature distribution will give a non-uniform power per unit

area across the circular plate. To find the average power per unit area of the circular

plate, first find the total power of a circular plate with radius R, then divide the total

power by the area rR 2:

fRp(AT(r))rdrdO
0

o rdPa

* Pa

P =

27
i7R2

ve R2 prdr

Substituting eqn 3.22 into the above equation,
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P ave _ 2 12 9 02 5 iRg 1 fR

a 2F R2 0

iR log2 1 R

4F R2 f
( ATme- 2 /* + Troom)rdr

It 1 f 4.27( 1000 -4.41
i21 10 Tme-/ +Troom rdr

R2 ]
2iRg@Q(i) 1

F R 2 (A Tme_,2/2 + Troom)rdr

2
+ Troom>-0 2 96 d,

i Rqlog2 [AT 2

8FA2 m(1 - C- ) + TroomA2

4.27 -4.41
10 s7,Tre- 2+Troom) (d(

R9 ([AT(1 - e
F A2 [AM(

A 2 ) + Troom)}

Net Power Generation of Structurally Stable Circular Plate

The net power generation is given by eqn 3.24, with average power generation given

by eqn 4.11.

4.2 Comparison between Rectangular and Circu-

lar Plates

Two design spreadsheets are again constructed for normal temperature distribution

across circular and rectangular plates. They are presented in Table 4.1 and Table 4.2.

Power generation between uniform and normal temperature distributions are com-

pared by both temperature distributions having the same maximum temperature. For

the choice of A = 1.2, the change in power generation and heat loss due to a change
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Average
Maximum Temperature Temperatur e

Temperature Maximum Temperature Dfferencefrom Differencefrom Does Maximum Radius
of Difference from Room Room Room Tenslie=0, Exist, If yes, Radius of

Temperature Temperature of Temperature Temperature Temperature at Compressive=1 Plate with Safety Factor
Profile (K) Poofile (K) Across Plate () Boundary (K) at Operation (mit)

293 0 0 0 1 1.88E-06
373 80 53.78298615 18.95422069 1 1,67E06
423 130 87.39735249 30 8006083 1 1,578.06
473 180 121.0117188 42.64699656 1 1,48E-06
523 230 154.6260862 54,4933845 1 1.41E-06
573 280 188.2404515 66.33977243 1 1.35E-06
593 300 201.686198 71.0783276 1 1.33E-06
613 320 215.1319446 75.81688278 1 1.30-06
633 340 228.5776911 60.55543795 1 1.28E-06
653 360 242 0234377 6529399313 1 1,26E-06
673 380 255.4691842 90.0325483 1 1.25E-06
693 400 2689149307 94.77110347 1 1.23E-06
713 420 282.3606773 99.50965865 1 1.21E-06
733 440 295.8064238 104.2482138 1 1.19E-06
753 460 309.2521703 108.986769 1 1.18E-06
773 400 322.6979169 113.7253242 1 1.168-06
788 495 332.7822268 117.2792405 1 1.15E-06
603 510 342.8665367 120.8331569 1 1.14E-06
818 525 352 9508466 124.3870733 1 1 13E-06
633 540 363 0351565 127.8409897 1 1.12E-06
848 555 373.1194664 131.4949061 1 1.11E-06
863 570 383.2037763 135.0488224 1 1.10E-06
878 585 393.2880662 138 6027368 1 1 09E-06
893 600 403.3723961 14215686552 1 1.06E-06

06 615 413 5 706 14 57105716 1 1078-06
923 630 423.5410159 149.26448 1 1.06E-06
938 645 433.8253256 152,8184043 1 1.068-6

q (Wrm) Ideal Cuient (Am2) p (WIm2  V
0.0000E+00 0,000435114 2.7564E-04 2.7564E-04
2.3958E+07 0,011966613 7.3266E-03 -2.3958E+07
4.3764E+07 0.051021576 3.0585E-02 -4,3764E+07
6.7242E+07 0.179290771 1.0566E-01 -6.7242E+07
9.4361E+07 0,553894043 320568E-01 -9.4361E+07
1.2509E+08 1.544189453 8.7963E-01 -1 2509E+08
1 3839E+08 2.270507813 1 2860E+00 -1 3839E+08
1.5227E+08 3,295898438 1.8559E+00 -1 5227E+08
1.6671E+08 4.730224609 2 6502E+60 -1 6671E+08
1 8173E+08 6713867188 37409E+00 -1 8173E+08
1.9731E+08 9.436035156 5.2250E+00 -1.9731E+08
2.1346E+08 13.11035156 7.2245E+00 -2.1346E+08
2.3018E+08 18.06640625 9.8924E+00 -23018E+08
2.4747E+08 24.609375 1.3418+01 -2.4747E+08
2.6532E+08 3325195313 1 8032E+01 -2.6532E+08
2,8373E+08 44.53125 2.4011E+01 -2.8373E+08
2.9791E+08 55,078125 2.9586E+01 -2.9791E+06
3.1241E+08 67.67578125 3.6266E+01 -3.1241E+08
3.2722E+08 82.8125 4.4223E+01 -3.2722E+08
3,4235E408 100 78125 5.36368E+01 -3.4235E+08
3.5779E+08 122.0703125 6,4703E+01 -3 5779E+08
3.7355E+08 146.875 7.7611E+01 -3.7355E406
3.8962E+08 175.78125 9.2555E+01 -3. 89628+08
4.0600E+06 20,1796875 1 09718+02 -4 06008+08
4 2270E+08 2475585938 1.2925E+02 -4.2270E+08
4.39728+06 291.2109275 1.51288+02 -4.39728+08
4 571048.08 339.84375 1. 753918E+012 -4.5704E.08

Table 4. 1: Design Spreadsheet for Normal Temperature Distributions over a Circular
Plate

Average Does Maximum
Maximun Temperatur e Side Length Exist,

Temperature Maximum Temperature Difference from if yes, 0.5'Side
of Difference from Room Room Temperature Difference Tensile=0. Length of Plate

Temperature Temperature of Temperatrure Temperature from Room Temperature at Compressive=1 witha Safety Factor,
Profile (K) Profile (K) Across Plate fi) Boundary (Ki at Operation or 2Tm) 3 (WVm2) Ideal Crrernt (Alm

2
) p (W~m

2
) px(Wm1)

293 0 0 0 1 1.54E-06 0.0000E+00 000435114 2.7564E-04 27564E-04
373 0 53.78298389 18.5422069 1 1.38E-06 1.6915E+06 0.020098686 1.2188E-02 -1,6915E+08
423 130 87,39734883 30.80060863 1 1.31E-06 2,9132E+08 0.089836121 5.3221E-02 -2.9132E+08
473 180 121.0117138 42.64699656 1 1.240-06 42493+08 0.322723389 1.8685E-01 -424936+08
523 230 154,6260787 54,4933845 1 1.16E-06 5,6918E+08 1,005554199 5.7064E-01 -5.6918E+08
573 280 188.2404436 66.33977243 1 1.130-06 7.2342E+08 2.813720703 1.56948+00 -72342E+08
593 300 201.8861896 71,0783276 1 1.11E-06 7,8779E+06 4.14428710N 22949E+00 -7.8779E+08
613 320 215.1319356 75.81688278 1 1.10E-06 8,5364E+08 6,030273438 3.3133E+00 -8.5364E+08
633 340 2280576815 6055543795 1 1.08-06 9.2093E+06 6,654785156 4.7265E+00 -9.2093E+08
653 360 242.0234275 85.29399313 1 1.06E-06 9,6964E+08 12,28027344 6.6658E+00 -9.8964E+08
673 380 255.4691735 90,0325463 1 1,05E-06 1,0598E+09 17,2632813 9.2982E+00 -1.05688+09
693 400 268.9149195 94.77110347 1 1.03E-06 1,1312E+09 23.97460938 128336+01 -1.13128+09
713 420 282.3606654 99.50965865 1 102E-06 1 2040E+09 32.91015625 1 7529E+01 -1.2040E09
733 440 295 8064114 104.2482138 1 1,01E-06 1,2782E+09 44.77536063 2.36988+01 -1.27828+09
753 460 3092821574 108.986769 1 9.94E-07 135388+09 60.25390625 3.1709E+01 -1.38368+09
773 480 322.6979034 1137253242 1 9.82E-07 1,4304.09 80.2734375 4.1985E+01 -1.4304E+09
788 495 3327622128 117 2792405 1 9.73E-07 1 467+09 98.828125 51460E01 -1.4887E+09
803 510 342.8665223 120.8331569 1 9.64E-07 1.5478E+09 120.703125 62679E+01 -1.5478E+09
618 525 352,9508318 124.3870733 1 956E-07 1 6076E+00 146,875 7 5851E+01 -1.6076E+09
833 540 3630351413 1279409897 I 9.47E-07 1 668+09 177,34375 91174E+01 -1.6680E+09
848 555 373.1194508 131 4949061 1 9.39E-07 1.7291E+09 2126953125 1.0883E+02 -1,7291E+09
863 570 383.2037602 135.0488224 1 9.31E-07 1 7909E+09 253.125 1.2895E+02 -1.7909E+09
878 585 393.2880697 138.6027388 1 923E-07 1.8534E+09 298828125 1 5164E+02 -1 85348.09
893 600 403 3723792 142,1 56552 1 9166-07 1 9165E+09 350,78125 1,7693E+02 -1.91658+09
908 615 413.4566887 145.7105716 1 9.09E-07 1 9803E+09 408 203125 2.0479E+02 -1 9803E+09
923 630 423.5409982 149264488 1 9.01E-07 2.0447E+09 472,65625 2.3511E+02 -2,0447E+09
938 645 433,6253076 1528184043 1 8.94E-07 2.1097+09 542578125 2.6773E+02 -2,1097E+09

Table 4.2: Design Spreadsheet for Normal Temperature Distributions over a Rectan-
gular Plate
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Power Generated by Circular Plates(A=1.2)
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Figure 4-3: Power Generation of Stable Circular Plates under Uniform and Normal

Temperature Distributions

Power Generated by Rectangular Plates(A=z1.2)
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Figure 4-4: Power Generation of Stable Rectangular Plates under Uniform and Nor-

mal Temperature Distributions



Heat Loss for Circular Plates(A=1.2)
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Figure 4-5: Heat Loss of Stable Circular Plates under Uniform and Normal Temper-
ature Distributions

Heat Loss for Rectangular Plates(A=1.2)
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Figure 4-6: Heat Loss of Stable Rectangular Plates under Uniform and Normal Tem-
perature Distributions
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from uniform to normal temperature distribution is similar for both plate geometries.

Observing Figure 4-3 to Figure 4-6, although the change in temperature distribution

decreases heat loss from the plates, it also causes a decrease in maximum power gen-

erated. This is accounted for by portions of the plate having lower temperatures in a

normal temperature distribution, thus decreasing the power generated in those por-

tions. An ideal temperature distribution would therefore consist of a portion where

the temperature is constant over the plate center to maximize power generation, and

at the boundary the temperature would taper off to close to room temperature to

minimize heat loss. This temperature distribution can be considered to be a hybrid

between the uniform temperature distribution and the normal temperature distribu-

tion, and such a hybrid temperature distribution is considered in the next section.

4.3 Modeling of Micro-fabricated SOFC: Hybrid

Temperature Distribution

The analysis for the hybrid temperature distribution will again be performed for a

rectangular and a circular plate.

4.3.1 Rectangular Plates

The hybrid temperature distribution over a rectangular plate is shown in the following

equation and Figure 4-7:

{ATm, if 0 < y| < Y'
AT(y) =

AMe~ aif ly| > y'

The four-step analysis process is now carried out for this temperature distribution.

Safe Operating Criterion: Buckling of Rectangular Plates

The deformation 5 resulting from this temperature distribution is
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AT(x,y)

x

yI >

Figure 4-7: Hybrid Temperature Distribution over a Rectangular Plate

6 j aAT(y)dy
0

Y/ AT (y-y,)
2

ATmdy + dy
0o y'/

= a ATmy'
l/s-y'/s

+sATm e d(

Denoting A = i/s and A = y'/s,

-> 6 = cATmy'+
,AT a /7 serf (A - A)

2

0-th is then
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E
1-v

Ea
1-v

~ y' ZATmav/irs
[a /Tm- + 2 erf (A -

_ 1 2 1

~ Tm (-) ATm F
+ erf(A-

2A

A)]

A)]

Using eqn 3.6, eqn 3.7 and eqn 3.3, the maximum rectangular plate side length

that avoids buckling is

1 2
{ 12S(1 + v){EaATm[2A +

AEr 2t2  1/2

frerf(A - A)] - 2Aores(1 - v-)}

Similar to the case for a normal temperature distribution, A and A are non-

dimensional variables that define the hybrid temperature distribution. They are used

in place of y' and s to simplify calculation.

Heat Loss of Rectangular Plates

Heat loss of this rectangular plate is again given by eqn 3.19. The boundary temper-

ature of the rectangular plate for this temperature distribution is

ATB

-> ATB

- ATm&e

ATme

= ATme

Power Generation of Rectangular Plates

The average power per unit area is found through the following expression:

Pave = pdy + pdy) (4.14)
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Using eqn 3.22, the above integration results in

A
Pave =

12 9 025iR ( + r)O 2596 iRglog2(AT
2F 4F

- i 2t1 ( si 0 ) -4.41

2iR 9

F

129025iR9 1 fA-A

2F A J
- iRglog2

8FA [ATm 'drerf

m + Troom)(i)]

(ATme + Troom 0. 2 5 9 6

(A - A) + 2ATroom I -

I A- A 4.27( 1000 -4.41
-i2t- 10 s e-c2+Troom

A 0
-iRg,(i) [ATm erf (A - A)

FA
+ 2ATroom (1 (4.15)

Net Power Generation of Rectangular Plates

The net power per unit area is given by eqn 3.24, using the average power calculated

from eqn 4.15.

4.3.2 Circular Plates

The hybrid temperature distribution over a circular plate is given by

f ATm, if 0 <r <r'
A Tr =2

(r-r) 2

ATme 2 if r > r'

The temperature distribution is also shown in Figure 4-8.

Safe Operating Criterion: Buckling of Circular Plates

The deformation 6 of the circular plate associated with the hybrid temperature dis-

tribution is
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AT(r)

X r'

R

Figure 4-8: Hybrid Temperature Distribution over a Circular Plate

R

+ ATe

si/
+ 2 erf(A

The stress from this deformation is then

Uth - rr

E 6
1 - v R
EaAT

- m 2A
2A(1 - v)

_/i2 1(r-r/)2
- drj

- A)]

+ VIerf (A - A)]

Therefore the maximum R that just avoids buckling failure is

64

6 = aAT(r)dr

= a [ATmr'

= aATm r'



2.44AEt 2  1/2

RS(1 + v){EaATm[2A + fi-erf (A - A)] - 2a'resA(1 )

Heat Loss of Circular Plates

The heat loss of this circular plate is given by eqn 3.35. The boundary temperature

in this equation is in turn given by

AT = ATme-2 (4.17)

Power Generation of Circular Plates

Similar to the previous chapter on the average power generation of circular plates, the

average power generated for a circular plate under such a temperature distribution is

given by the following expression:

2
Pave = ( J r'

prdr + fRprdr) (4.18)

The above equation results in
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(___129025iRiiglog2
Pave = 2 25iR (ATm + Troom)-0.25 96  4F GATM + Troom)

((i +~ Troom)
- i2t104.27( AT 1 of0_ )-4.41

2iRg'$(i)1
-Z i (ATm + Troom)F

129025iR9 1 f-A(T _2 + 029+ F 2 (A- me ± Troom)- 2 +9 +I A)d

- iRglog2 {ATm 1-(A-A +Troom(A - A)2 + ATmA erf(A - A) + 2ATroom(A - A)}

S JA- A 4.27( 1000 -4.41

-2st 10 sr-e-( +T-/) (C + A)d(
A2 0

2iR (i){ATm[1 (-A) -A)2+ ATmA erf (A-A)+2AToom(A-A)}
FA 2

(4.19)

Net Power Generation of Circular Plates

The net power generation is given by eqn 3.24 and average power by eqn 4.19.

4.3.3 Comparison between Rectangular and Circular Plates

Two design spreadsheets are presented in Table 4.3 and Table 4.4.

Again, the behavior of the power generated and the heat loss under the hybrid

temperature distribution is similar for both plate geometries: The change from a

normal temperature distribution to a hybrid temperature distribution causes an in-

crease in the maximum power generated. However, the heat loss is higher than that

of normal temperature distribution. This can be explained by understanding that

under a hybrid temperature distribution, more of the plate is at a high temperature

than under a normal temperature distribution. Therefore the size of a plate under a

hybrid temperature distribution must be smaller than one under a normal tempera-

ture distribution for the plate to be stable, increasing the heat loss per unit area of

the plate [35].

Although the analyses performed on two plate geometries under three diffferent tem-
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Aver age
Maximum Temperature Temperature

Temperature Maximum Temperature Differencefrom Differenceffrom Does Maximum Radius
of Difference from Room Room Room Tensile=0, Exist, Ifyes, Radius of

Temperature Temperature of Temperatur e Temperature Temperature at Compressive=1 Plate with Safety Factor
Pr ofile (K) Pr ofile {K) Acr oss Plate (A) Boundary (K) at Oper ation (ImI)

293 0 0 0 1 1.88124E-06
373 80 65.16637101 32.44436041 1 1.65132E-06
423 130 105.8953529 52.72208586 1 1 54428E-06
473 180 146.6243348 7299981091 1 1.45567E-06
523 230 187.3533167 93.27753616 1 1 38076E-06
573 280 228.0822985 113.5552614 1 1.31633E-06
593 300 244 3738913 121 663515 1 1 29297E-06
613 320 260 6654841 129.7774416 1 127082E-06
633 340 276,9570768 137.8885317 1 1 24976E-06
653 360 293.2486696 145 9996218 1 1 22972E-06
673 380 309.5402623 154.1107119 1 1 21061E-06
693 400 325.8318551 162,221802 1 1.19237E-06
713 420 342.1234478 170.3328921 1 1.17492E-06
733 440 358,4150406 178.4439822 1 115822E-06
753 480 374.7066333 186.5550723 1 1.14222E-06
773 480 390.9982261 194.6661624 1 1.12685E-06
700 495 403.2169206 200.74948 1 1.11573E-06
803 510 415.4356152 206.8327976 1 1,104928-06
818 525 427.6543098 212.9161152 1 1.09444E-06
833 540 439.8730043 218.9994327 1 1.08424E-06
848 555 452.0916989 225.0827503 1 1.074328-06
863 570 464.3103935 231.1660679 1 1.06467E-06
878 585 476529086 237,2493855 1 1 05527E-06
893 600 488 7477826 243.332703 1 1 04612E-06
908 615 009854772 2494160206 1 1.0372E-06
923 630 513.1851717 255.993382 1 1.028518-06
938 645 525.4038663 261,5828558 1 1.02003E-06

q (W m
2
) Ideal Cmireril (A I

2
) p (Wrm

2
) p,(WV/mg

2
)

0.0000E+00 0.000435114 0,00027564 2.7564E-04
4.1851E+07 0.047016144 0,02846168 -4 1851E+07
7.7117E+07 0.366973877 0216334406 -7.7117E+07
1.1930E+08 2.07824707 1.198018214 -1.1930E+08
1.6834E+08 9.375 5286205282 -1.6834E+08
2.2418E+08 35.15625 19.44695348 -22418E+08
2.4840E+08 56.93359375 31.27859383 -2*A840E+08
2.7371E+08 89 9414062 49.03309312 -2.73718+08
3 0010E+08 138 28125 7486614343 -3 0010E+08
3 2755E+08 206,8359375 111.1841194 -32755E+08
3.5608E+08 30078125 160.3176967 -3.5608E+08
3,8567E+08 424.8046875 224.063039 -3.8567E+08
4.1634E+08 583.0078125 3032570704 -41634E+08
4,4806E+08 778125 397.5545671 -4.4806E+08
4.8085E+08 1016,210938 505.4179075 -4.8085E+08
5.1470E+08 1292.382813 624,2100346 -5.1470E+08
5,4078E+08 1528.125 718.3407147 -5.4078E+08
5.6746E+08 1785.9375 814.7825766 -5.6746E+08
5.9473E+08 2063.085938 911.5014509 -59473E+08
6.2259E+08 2353.125 1006.318741 -6.2259E+08
6.5104E+08 2657 8125 1097.001474 -6.5104E+08
658009E+08 2964.84375 1181.35921 -6.8009E+08
7.0973E+08 3267.773438 1257.377041 -7.0973E+08
7.3996E+08 3557.8125 1323.333904 -7.3996E+08
7.7078E+08 3823.8281 25 1377.919642 -77077E+08
80218E+08 406796875 1420.326163 -8 0218E+08
8.3418E+08 4268.40625 1450.277517 -8.3418E+08

Table 4.3: Design Spreadsheet for Hybrid Temperature Distributions over a Circular
Plate

Average Does Maximum
Maximum i Temperature Side Length Exist,

Temperature Maximum Temperature Difference from f yes, .'Side
of Difference from Room Room Temperature Difference Tensile-0, Length of Plate

Temperature Temperature of Temperature Temperature fr om Room Temperatur e at Compressive-1 with Safety factor.
Profile (K) Pr ofile (K) Across Plate (Kr Boundary (K) at Oper ation or TIm) q (WAmW) Ideal Current (A4m

2
) , p (WsnIm ps4 (Wimi

2)
293 0 0 0 1 1.544628-06 0,0000E+00 0.000435114 0.00027564 2.75648-04
373 80 65.1663691 i 32.44436041 1 1,355856-06 2,9552E+06 0.07686615 0.04617068 -2.9552E+08
423 130 105.8953498 52.72208566 1 1.26796805 5.1350E+08 0.638580322 0.37315028 -5.1350E+08
473 180 146 6243305 72.99981091 1 1.195218-06 7.5426E+08 3,7109375 2.11306424 -7.5426E+08
523 230 187.3533112 93.27753616 1 1.13378-06 1,0161E+09 16.89453125 9.39472292 -1.01618+09
573 280 228.0822919 113.5552614 1 1 06088-06 1,2975E+09 63,18359375 34.4181541 -1,2975E+09
593 300 244.3738841 121.6663515 1 1,06162E-06 1.4153E+09 101 75781 25 54.9913011 -1,4153E+09
613 320 2606654764 129.7774416 1 1.043438-06 1.5359E+09 158.84375 85.2558268 -1.5359E+09
633 340 2769570687 137,8885317 1 1,026148-06 1,6594E+09 240.8203125 128.003783 -1,6594E+09
653 360 293.248661 145.9996218 1 1 009688-06 1.7857E+09 353.125 185,683176 -1 7857E+09
873 380 309.5402532 154.1107119 1 9,939948-07 1.9146E+09 500.390625 259.756769 -1.9146E+09
693 400 325.8318455 162.221802 1 9 79014-07 2 0462E+09 686328125 350,229428 -2.0462E+09
713 420 3421234378 170.3328921 1 9.6469107 218048+09 916015625 .455512591 -21804+09
733 440 3584150301 178.4439822 1 9.50988-07 2.31728+09 11828125 572.528958 -231728.09
753 460 374.7068223 18.5550723 1 937837807 2.4564E+09 1503.125 696.927128 -2.4564E+09
773 480 390,9982146 194.6661624 1 9.25224607 '2.5982E+09 1851,757813 823,355755 -2.5982E+09
708 495 4032169088 200.74948 1 9.16091507 2.7061E+09 2135,546875 915.915995 -2.7061E+09
803 510 415.435603 206 8327976 1 9.072248-07 2 8153E+09 2421.875 10036401 -2 8153E+09
818 525 4276542972 212.9161152 1 8.98609807 29259E+09 2717.66875 1084.02271 -2.9259E+09
833 540 439.8729914 218.9994327 1 8.90235-07 3,0378E+09 3003.125 1154.61739 -3.0378E+09
848 555 4520916856 225.0827503 1 6.820916-07 3.1510E+09 3274.21875 1214.21781 -3,1510E+09
863 570 464.3103798 231.1660679 1 8.741668-07 3.2655E+09 3515.625 1260 99606 -3.2655E+09
878 585 478.529074 237 2493855 1 8.664516-07 3313E+09 3725.78125 1294.58629 -3.3813E+09
893 600 488.7477683 243.332703 1 8.58937-07 3.4983E+09 3884 765625 1315 12017 -3.4983E+09
908 615 500.9664625 249,4160206 1 8.51615-07 3-6166E+09 400390625 1323 34825 -36166E+09
923 630 513 1851567 255 4993382 1 8.44478E-07 3.7361E+09 406394375 1320.53504 -3,7361E+09
938 645 525.4038509 261 5826558 1 8,37516E-07 38569E+09 4101 5625 1308 29149 -38569E+09

Table 4.4: Design Spreadsheet for Hybrid Temperature Distributions over a Rectan-
gular Plate
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Power Generated by Rectangular Plates with Different
Temperature Distributions(=0.25, A=1.2)
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Figure 4-9: Power Generated for Stable Rectangular Plates under Uniform, Normal
and Hybrid Temperature Distributions

Heat Loss of Rectangular Plates with Different Temperature
Distributions(=0.25, A=12)
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Figure 4-10: Heat Loss for Stable Rectangular Plates under Uniform, Normal and

Hybrid Temperature Distributions
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Power Generated by Circular Plates with Different Temperature
Distributions
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Figure 4-11: Power Generated for Stable Circular Plates under Uniform, Normal and
Hybrid Temperature Distributions
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Distributions

1.80E+10

1.60E+10

1.40E+10

1.20E+10

1.00E+10

8.OOE+09

6.OOE+09

4.OOE+09

2.OOEi09

0.OOE+00

------------------ ---- -- -- ------------ --- -------

------------------------------- --------- ----------- - - - -

--

--------------------------------------- Ad---------------

- -- ... - -- - - -

- -- -- - - -- -- -- -- -- - -- --

0 500 1000 1500 2000 2500

Maximum Temperature of Distribution (K)

--Uniform
Normal

-ybrid

Figure 4-12: Heat Loss for Stable Circular Plates under Uniform, Normal and Hybrid
Temperature Distributions
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perature distributions have suggested pessimistic power generation capabilities for

the current SOFC design(with the heat loss out of the plate larger than the power

generated by approximately 106W/m 2 ), a functioning design can still be realized if a

high degree of thermal isolation can be achieved.
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Chapter 5

Conclusions, and Future

Investigations for Micro-Chemical

SOFC Modeling

From the preceding analyses, it was shown that power generated and heat loss differ

by a factor of approximately 106, with power generated smaller than heat loss. It

is therefore apparent that the current design will not be able to produce net power;

either power generated must be increased or heat loss must be decreased.

As for the geometry of the plates, although circular plates proved to have a lower

heat loss than that of rectangular plates, the heat losses for the two different geome-

tries are nevertheless still comparable(Heat loss per unit area for rectangular plates

is approximately four times that of circular plates, both under uniform temperature

distribution at 800K). Furthermore, the buckling AT for rectangular and circular

plates are also comparable(For plate thickness of 1 micron, buckling AT for rect-

angular plates with aspect ratio of a/b=2.5 differ from that for circular plates by

approximately a factor of 2). Therefore at this stage the only criterion for selecting

the plate geometry is through the ease of fabrication [21]. However, it seems to be

the case that altering the plate geometry will not be sufficient to render pnet positive.

Although the analyses reported a rather pessimistic picture for the current design,

nevertheless a systematic technique is developed in this thesis to solve the coupled
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problem: The initial problem is broken down into analyses of mechanical stability,

heat loss, power generation, and finally the results are integrated together to pro-

vide an evaluation of power generation capabilities of stable designs. This systematic

technique can be adapted to future design analyses and evaluations.

Several topics for future investigation follow from the conclusions drawn previously.

To investigate the possibility of increasing power generation, it is important to note

that the power generation of a YSZ plate is governed by eqn 3.20. It is possible that

for other electrolyte candidates the components in eqn 3.20 are different, and these

other candidates may prove to produce more power than YSZ. Alternatively, the

prospect of heat loss minimization through better insulation or employing non-planar

structures such as tubes should also be investigated for the purposes of increasing

Pnet [14, 9, 25, 12].

The next set of future topics attempts to improve the accuracy of the model. One

topic that must be investigated is the heat generation from the water formation re-

action, as this would make the model much more accurate [17, 6]. Next, confidence

in the models developed can be increased by verifying the material properties used

in the models through experiments. It is well known that the properties of materials

such as YSZ are highly dependent upon processing conditions, therefore there is no

guarantee that the material properties obtained from literature are the same as those

in the model developed [9].

Finally the model itself can be made more useful by interfacing it with the system-

level models. This is because although the fuel cell is the part of the device that

generates power, other aspects of the device such as fuel/oxygen management is also

important to the overall power generation. Therefore the interfacing between the

fuel-cell-level and the system-level models will make the overall design process more

convenient.

72



Appendix A

Nomenclature
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Temperature
AT Temperature change from room temperature

AT Temperature change for buckling
ATf Temperature change for fracture
ATB Temperature difference between the plate

boundary and room temperature
ATm Difference between maximum temperature of

the temperature distribution and room temperature

TOP Operation temperature
TB Boundary Temperature

Troom Room Temperature

Table A.1: Temperature-Related Symbols and Their Definitions

Dimensional/Non-Dimensional Lengths
t Thickness
a Plate length
b Plate width

a/b
w(x, y) Deflection in the z-direction

(Out-of-plane deflection)
wo Arbitrary constant for deflection profile
1 Half of plate side length
L Half of silicon die side length

t/l
Dummy length variable

r Radial coordinate
R Plate radius
s Standard deviation
6 Deformation

y' Length where temperature profile changes
from uniform to normal distribution

r' Radius where temperature profile changes
from uniform to normal distribution

A I/s, R/s
A y'/s, r'/s

Table A.2: Dimension-Related Symbols and Their Definitions
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Material Properties
a Coefficient of thermal expansion
Vi Poisson Ratio
E Young's Modulus
m Weibull's Modulus
k Heat conductivity

o-e Electrical conductivity
io Exchange current density

Table A.3: Material-Properties-Related Symbols and Their Definitions

Stresses
0ores Residual stress

o7b,cr Critical buckling stress

c'th Thermal stress

o-, Plate stress

oo Reference stress

o71 Principal stress in 1-direction

o-2 Principal stress in 2-direction

o-3 Principal stress in 3-direction

Table A.4: Stress-Related Symbols and Their Definitions
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Other Quantities
S Safety factor

Pf Probability of failure

Pe Probability of survival

V0  Reference volume

V Volume

A Area

Q Heat loss
q Heat loss per unit plate area

Eo Open circuit potential

r/ohm Ohmic potential

7iacta Anode activation potential

?'Tact,c Cathode activation potential

PH2  Partial pressure of hydrogen
P0 2  Partial pressure of oxygen

PH2O Partial pressure of water

Po Reference pressure
F Faraday's constant

Rg Gas constant

K, Equilibrium constant
i Current per unit area

p Power per unit area

Pnet p - q

Pave Average power per unit area

Table A.5: Other Symbols Used and Their Definitions
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