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Abstract

Capillary-break-up measurements of viscoelastic polymer solutions are performed us-
ing a Capillary Breakup Extensional Rheometer (CABER). The device consists of two
coaxial plates which are used to form and hold a liquid bridge of the test fluid. An
axial step strain is applied to the fluid by raising the top plate and the elongated fluid
thread then evolves towards breakup under the combined action of viscous, elastic
and capillary forces. The test fluids used in the present study are a series of diluted
polystyrene Boger fluids ('PS025' and its dilutions) and a new polystyrene Boger
fluid (labelled 'MV1') comprising of a lower molecular weight solute. This fluid is
less susceptible to gravity, and allows us to observe the coil-stretch transition of high
molecular weight polymers. The persistent dependence of the measured relaxation
time on concentration, even in the dilute regime predicted from theory, is demon-
strated both experimentally and numerically. Indeed, numerical simulations of the
evolution of the stress contributions and of the radius using a single mode FENE-P
model based on the one-dimensional analysis of Entov and Hinch for transient ex-
tensional flows are compared to the experimental observations of the radius of the
liquid filament. Below a critical dilution, the stress in the necking thread is carried
solely by the solvent with no appreciable contribution from the polymer chains, and
the dynamics of the necking process change appreciably. A sensitive force transducer
is also added to the CABER. This allows us to measure the initial tensile stress re-
sulting from the axial step strain. Existing one dimensioned models for analyzing
capillary breakup measurements have assumed this to be identically zero. However
recent similarity solutions for viscoelastic models have shown that in fact the force is
not zero but monotonically decays towards zero at the same necking rate as the fila-
ment radius. We present the first experimental measurements of this small but finite
(? O(10- N)) tensile force and show that indeed it decays with similar dynamics to
the measured radius.

Thesis Supervisor: Gareth McKinley
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

This study is in keeping with a general study of polymer solutions by extensional

rheometry. The Capillary Breakup Extensional Rheometer (CABER) described in

chapter 3 is a device which has already been used to determine the relaxation times

of polymer solutions, but only in order to scale them with the molecular weight of

the polymer chain M,. It is discussed for example by Anna et al. ([AMO1] and

[AMN+01]). Nevertheless, such a study has never been done to scale the relaxation

times with the concentration of polymer in very dilute solutions. The following study

takes an interest in very dilute Biger fluids and the evolution of the relaxation times

with the concentration. Both experimental and numerical methods are used to de-

termine the relaxation times.

Concerning a numerical simulation of the behavior of a visco-elastic fluid during

a CABER experiment, several papers such as [EH97] propose a set of equations to

explain the phenomena we observe. These equations are implemented in a Matlab

code in chapter 4. The goal is to explain the behavior of the visco-elastic fluids

experimentally observed in chapter 3. Yet there is a parameter of the code that we

need to guess: the initial axial stress in the filament AO is unknown. First, it will

be stated as equal to 1, as if there were no deformation. This value is obviously not

satisfying and Anna proposed a formula for Az in [AM01]. It is also possible to

measure the initial stress and it is done in chapter 6. This parameter has a great

impact in the shape of the numerical simulation of visco-elastic fluids.
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Chapter 1. Introduction

Finally, the effects of gravity are often neglected when dealing with such small

volume of visco-elastic fluids as in CABER experiments. We can nonetheless observe

a drainage during the necking of the liquid filament. Since we do not know exactly

the importance of the gravity in our experiments, it is interesting to make a fluid less

susceptible to gravity and too run experiments with it.
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Chapter 2

Literature review

2.1 Strain-rate tensor in a liquid filament

A fluid configuration of interest is a liquid filament formed by loading a sample

between two horizontal plates and applying a step strain (as shown in figure 2-1).

This will be the reference configuration for the Caber (Capillary Breakup Extensional

Rheometer) experiments (section 3.1).

Figure 2-1: Liquid filament bridge is formed between two plates after application of a

step strain.

The liquids then selects the dynamics such that the capillary, viscous and elastic

stresses balance each other [MTOO]. Bazilevsky et al. [BER01] show that the pressure

in the droplets at the end of the filament is lower than the pressure within the filament.

21



As a result the fluid flows to the droplets. This necking is geometrically modeled by

a cylinder of fluid connected to two horizontal fixed end plates (figure 2-2).

Z L

Figure 2-2: Model of a liquid filament bridge during necking process as a regular

cylinder.

For a fixed volume of liquid, two equal droplets take up less surface area than a

cylinder. Therefore, according to the Rayleigh instability, a cylinder is not a stable

configuration and leads naturally to the thinning of the filament as observed experi-

mentally [Egg97]. This thinning is then modeled as steady simple elongational flow

corresponding to the following equations [Ren94]:

Vr = 2-Er
2

VO = 0,

v2i = Ez,

(2.1)

(2.2)

(2.3)

where z is along the length of the filament, r is the radius and e is the elongational

strain rate. Differentiating these expressions gives the velocity gradient:

&r

0

0

0

a9v6 + Vrr 0O r

0

0

0

av
az

The strain rate tensor is:

I
22
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Chapter 2. Literature review

V / +(Vv)=

where e is the elongational strain rate defined

height R by [BAH87]:

0

0

by

0 0

-e 0

0 2e

the radius of the filament at mid-

2 dR
= 2dR(2.4)

R dt'

because of the radial boundary condition vr (r = R) = 9, where v, is given by the

equation 2.1. This kind of flow is discussed in numerous papers including those of

Doyle et al. [DSMS98], Entov [Ent99], Rasmussen and Hassager [RH99], and Bach

et al. [BARH03].

2.2 Newtonian fluid

For a newtonian fluid, the total stress in the radial direction (7rr) and axial direction

(?Tzz) is given by [LM94]:

I7rr = po+ ;7s. rr-,

1Tzz = po + 7s7zz 0.

(2.5)

(2.6)

po is the atmospheric pressure, q, is the viscosity and o is the surface tension. The ax-

ial stress is equal to zero because each end of the filament is attached to the relatively

quasi-static large droplets. The elongational stress is then:

1TE = ?Tzz - ?Trr = =70 -.
R*

(2-7)

Integrating this equation with equation 2.4 yields:

o-t
R(t) = Ro -- t,

6,
(2.8)

23
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where Ro is the radius at initial time (corresponding to the end of the step strain)

[KS99]. The decrease of the radius for a newtonian fluid is then linear in time.

In this model, the stress along the z-axia is assumed euqal to zero. This assumption

is not exact and so this theory does not correlate well with the experimental data.

A correction factor X has to be added as discussed in [MTOO]. The equation 2.8

becomes:

R(t) = Ro - (2X - )t (2.9)
677,

This numerical factor X is discussed in various papers including those of Eggers

[Egg93] & [Egg97], Papageorgiou [Pap95] and Renardy [Ren95]. The value used for

viscous Newtonian fluids is X = 0.7127 [Pap95].

2.3 Viscoelastic fluid: Kinetic theories

Some usual references on bead-spring kinetic theories for dilute polymer solutions

include articles and books by Bird et al. [BAHC87], Larson [Lar88], Rouse [Rou53]

and Zimm [Zim56]. A viscoelastic fluid is a non-newtonian fluid with viscous and

elastic properties. Experimental and theoretical achievements in rheology allowed a

hierarchical description of the fluid microstructure that can be systematically reduced

in dimensionality (coarse grained) [MS02]. A summary of this process is given by the

figure 2-3.

The more 'coarse-grained' level consists in modeling the macromolecules of a poly-

mer solution as Finitely Extensible Non-linear Elastic (FENE) dumbbells [dG97] &

[BAHC87]. The dumbbells are two beads attached by a spring which is linear for

small displacements. The FENE model is a multi-mode constitutive model existing

under several variants. As described in [Keu97], the classic approximation by Peter-

lin (FENE-P model) is the one which is used most commonly to describe viscoelastic

fluids: it consists in pre-averaging the non-linear spring law. This model is described

in further detail in section 4.1. In the following sections are given the equations of

two simpler models which will be used in the study: the Kuhn Chain model and the

Zimm theory.

24
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Chapter 2. Literature review 2.3. Viscoelastic fluid: Kinetic theories

- FENE Dumbbell Const. Eqn.

p (nk 8T) _

De =AzO

- Bead-Spring Chain (Rouse/Zimm)

i= 1, 2,... M ~ 225

Kramers' (Freely-Jointed)
Bead-Rod Chain

N - (n /15)= 2885
a ~12.3 1

L = Rmax (R2 )eq - 93

o Freely-Rotating Bead-Rod Chain
(Kuhn & Kuhn, Flory R.I.S.)

{(R 2 = C..nl
2

C. = 10

e Primary Chemical Structure

n =(2M,/Imo)= 43,300
l=1.54A

data for Polystyrene; M., ~ 2.25 x 106 g/mol.

Figure 2-3: Coarse graining in the hierarchy of microstructural modeling for dilute

polymer solutions, extracted from [MS02].
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2.3. Viscoelastic fluid: Kinetic theories Chapter 2. Literature review

2.3.1 Kuhn Chain

The simplest model replaces the polymer chain by a freely-rotating bead-rod chain:

this is the Kuhn chain. This simple model allows to calculate approximations for

some of the parameters of the polymer solution.

Relaxation time

One can convert molecular information from a real hydrocarbon macromolecule into

the parameters describing a Kuhn chain of statistically equivalent freely-rotating rigid

rods. Within this framework, a simple expression for the longest relaxation time is

[HLL03]:

A=1 [g~kM,Arv = (2.10)
((3v) NAkBT' 

where v is the excluded volume parameter from the Zimm theory, ( is the Riemann

zeta function ((3v) = EZ j 1/isvand [,q] is the intrinsic viscosity. The intrinsic vis-

cosity is a parameter defined as a limit value when the concentration goes to zero:

] = lim o o [BAHC87]. For the empirical Mark-Houwink-Sakurada equation:

[i] = K.Mw"-1, (2.11)

where K is a scale parameter. The value of the excluded volume exponent for SM

Boger fluids has been found to be v = 0.53 t 0.015 [AMN+01]. Solomon and Muller

([SM96a] and [SM96b]) determined the following numerical values for fluids similar

to the test fluids: [,q] = 4.2 x 10~ 5Mw.59L/g with Mw expressed in g/mol. Thus, the

equation 2.10 provides theoretical values for the longest relaxation times, referred as

AIv in what follows.

Other physical parameters

The diluteness of the fluid is determined by examining the coil overlap concentration

C*:

c* = RN (2.12)
4/3,rR3NA'
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where R9 is the radius of gyration [Gra80]. At this concentration c*, the polymer

chains do not overlap when at rest. If c < c*, the solution is considered as diluted.

Consequently, from the Kuhn chain model, one can deduce the expression of the

coil overlap concentration:

3 (mo ~3/21
c* = (2.13)47rNA jCoo, 1 M1/2,

where Coo = 10 is the characteristic ratio of chain, m, is the mass of the monomeric

repeat unit, j = 2 is the number of carbon-carbon bonds obtained from each monomer

and 1 = 1.54A is the carbon-carbon bond length.

The finite extensibility parameter L2 is defined as a ratio of the maximum length

of the chain to a characteristic length. For dilute solutions and by conventional

definition, the characteristic length used is one third of the mean square size of the

chain (R 2 ) /3. Then, the finite extensibility parameter is given by the equation 2.14:

j x 0 8 162 M W-v)z

T = 3(j ~ MM". (2.14)

The geometric factor sin (tan-' V2-) = 0.816 corresponds to a tetrahedrally-bonded

carbon-carbon bond angle.

From the Einstein relation for viscosity of a dilute suspension, the total viscosity

mo can be expressed as the following function of the solvent viscosity q and the volume

fraction #:

no - a7s 1 + #0+0(02) , (2.15)

mo = 77s(1 + const. x c). (2.16)

c is the concentration and the constant term is equal to [77] + 0(c). For a dilute

solution, the Taylor-series expansion yields the following expression:

o = Is (1 + c[q] + k"[] 2c2 + ...), (2.17)
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where k" is the Huggins constant and [q] is the intrinsic viscosity defined in equation

2.11. For dilute solutions where [71]c << 1, the expression of the total viscosity will

be calculated from the simplified equation 2.18:

7o = 7S (1 + c[7]). (2.18)

2.3.2 Zimm model and sinusoidal linear viscoelastic response

A more 'coarse-grained' level consists in modeling the polymer chain by a Spring-

Bead chain: this is the Rouse theory. Adding hydrodynamic interactions leads to the

Zimm theory. Within this framework, the relaxation time of the 4th is expressed as a

function of the longest relaxation time A2 according to the equation 2.19:

Ai = A, (2.19)

where o-~ -1.4 x (h*). 78 and h* is the hydrodynamic interaction parameter, equal

to 0.25 for a theta solvent [Lar88].

In the experimental section of this work we use a time-sinusoidal signal applied

on a sample of fluid in the linear region of response. The response of the sample is

then measured and allows to calculate a relaxation time [Tan99] as we will see later

(section 3.3.1). Let considerate a sinusoidal shear strain as input signal:

-= exp(iwt). (2.20)

The shear stress response is:

r = 8exp(iwt). (2.21)

Substituting in the form of the viscoelasticity relation for compressible materials given

by Pipkin [Pip86] yields:

&eiwt = iw G(t - t')eiwt'dt'. (2.22)

The complex modulus G* defined as &/I is then given by:
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G* = iW j G(s)e-"'ds = G'+ iG", (2.23)

where G'(w) is the storage modulus and G"(w) is the loss modulus. We can also

define the complex viscosity 7* = -/' by:

11G* G"1 G'
G- G - .' (2.24)

r/' is the dynamic viscosity and it is equal to the steady-flow Newtonian viscosity for

a Newtonian fluid. As w -+ 0, the zero-shear rate viscosity is:

r/0 = G(s)ds. (2.25)
0

For the Rouse-Zimm model, the expressions of the storage modulus, the loss modulus

and the zero-shear rate viscosity are respectively given by the two following equations:

cNAkTNm (Azw) 2

G' = r" = M E i2 (2 +o> + (Azo) 2 ' (2.26)

G = 7'w = r/sW + CNAkTN A, (2.27)
M _ j2(2+0) + (Azw)2'

cNAkT Nm 1 (2.28)r1o = 77s + M Az E 2, 22
i=1 2o

with Nm the number of modes.

2.4 Non-dimensional numbers

Several dimensionless numbers can characterize the behavior of non-newtonian fluids

in free surface flows. The numbers introduced here will be used extensively in the

next chapters.

* Ohnesorge number: it evaluates the importance of viscous effects over inertial

effects in free surface flows. It is defined by:

Oh = 7" (2.29)
h --VpcrR'(.9
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where no, p, - and R are respectively the zero-shear viscosity of the fluid, its

density, its surface tension and the radius of the liquid filament at mid-height in

the case of a Caber experiment (section 3.1). It can also be seen as a Reynolds

number

Oh pvR (2.30)

where the velocity is v = -/rho. This velocity corresponds to the speed of the

linear decrease of the liquid diameter of a Newtonian fluid as given by the

equation 2.8.

" Deborah number [Rei69]: it is the dimensionless deformation rate computed as

the ratio of the relaxation time of the fluid by the characteristic time of the

experiment. Considering the time it would take for the filament to break if

there were only inertial forces as the characteristic time, the definition of the

Deborah number is
A

De = . (2.31)
pR3|/~

Hence, the ratio of these two numbers leads to an 'Elastocapillary number'

which gives the relative effects of elastic forces over viscous forces:

De _Ao-Oh - -.R (2.32)Oh 77,R

* Bond number: this dimensionless number describes the competition between

gravity, which causes the filament to sag and drain, and surface tension, which

acts to maintain the cylindrical shape of the filament. It is defined by the

equation 2.33:

Bo = pgR 2 (t) (2.33)
07

where R is the mid-height radius of this filament. This number is a measure of

the axial asymmetry of the initial static fluid column about its mid-plane.

* Capillary number: it gives the relative effects of viscosity versus surface tension

and is defined by equation 2.34.

Ca = u (2.34)a-
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where U is the imposed velocity. It is then the ratio of u, where v = o/7jo

is the velocity defined for the Ohnesorge number. In the following study, a

characteristic velocity is U = iR where e is the strain rate.
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Chapter 3

Effects of concentration

3.1 Capillary Breakup Extensional Rheometer

3.1.1 Apparatus

The experiments are run using the Capillary Breakup Extensional Rheometer (CABER)

made by the Cambridge Polymer Group (www.campoly.com). The instrument char-

acterizes the flow of test liquids in extension. There are two plates in contact with

the liquid. They are both 6mm in diameter (2Ro = 6mm). At the beginning of an

experiment, the gap between the plates is set to be 3mm, corresponding to a sample

of fluid of about 90pL. Then, the bottom plate is held stationary and the top plate

moves vertically, applying a step strain to the fluid and stretching it to a final height

of 13mm. The applied strain is at a rate as close as possible to a step with the current

setup. This instrument can be seen on figure 3-1.

A laser micrometer measures the radius of the liquid filament over time as it

breaks under capillary force (seen on figure 3-2). It has an accuracy of 5 - 10pm

and a resolution of 20pm. The experimental setup is controlled using the CABER

software version 3, written in LabVIEW. The data acquisition is done through a

National Instrument 1200 DAQ card.

The layout of the experiment setup is presented in figure 3-3 [Par03]. The data

from the micrometer travels through the Caber control box and the DAQ card, while
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Linear
Motor

Top
Cylinder

Bottom
Cylinder

Figure 3-1: Solidworks drawing of the Caber.

the data from the linear motor reaches the computer by going trough the motor

control box.

3.1.2 Running Caber

Running the Caber program first leads to the checking of the correct voltage for the

laser micrometer. Then, the motor takes several minutes to calibrate to the given

geometry and asks for the desired initial gap. For all the experiments, an initial gap

of Lo = 3mm is used. The test performed is triggered test and you have to choose the

duration of the experiment and the sample rate. The user can now choose the strike

time, which is the length of time the linear motor takes to raise the top cylinder. To

perform a step strain experiment, 50ms (the shortest duration allowed by the motor)

is inputted. The top cylinder then lowers, allowing operator to load about 90pL of

sample, as shown on figure 3-4. Finally, the top cylinder raises to the final height.

The whole process is explained in further detail in [Par03].

The video images of the experiments are recorded using a Cohu camera, model

MS12. The experiments are lit from the back using an electroluminescent light sheet.
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Laser

Receptr

Figure 3-2: A laser micrometer measures the thickness of the filament.

3.2 Summary of fluids

The test fluids are Boger fluids consisting of high molecular weight polystyrene

(M = 1.877 x 106g/mol) and styrene oil. A Boger fluid is a dilute solution com-

posed of low concentrations of high molecular weight polymer dissolved in highly

viscous Newtonian liquid. The material properties of the reference test fluid called

PS025 are discussed more in depth in [AnnO0]. The solvent used for the test fluids

is oligomeric styrene (Piccolastic A5 Resin) from Hercules. At 250C, the material

has a density of 1026kg/m 3 and a surface tension of 0.0378N/m measured with a

Kruss Digital Tensiometer K1OST [Ten95]. To form PS025, 0.025wt.% of polystyrene

is dissolved in the styrene oil. The other test fluids are dilutions of PS025 in order to

obtain concentrations as weak as 0.000025wt.%. For the test fluids, the ratio of the

weight concentration over the coil overlap concentration c* (from equation 2.13 with

Co= 10, j = 2, m, = 104 g/mol and 1 = 1.54A) is given on table 3.1. For our fluid,

c* = 9.4 x 10- 4 g/cm3 = 0.091wt.%.

All of the ratios are far less than 1, indicating that the fluids are dilute.
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Figure 3-3: Diagram of the Caber experiment setup.

Figure 3-4: Cylinders after a fluid sample has been loaded.

3.3 Summary of experiments

3.3.1 Characterization of the fluid by shear rheology

AR 1000 by TA Instruments is a controlled stress rheometer [Rhe96]. It is used to

measure the shear viscosity and the relaxation time of the seven test fluids obtained

by successive dilutions of PS025 and exposed in table 3.1. All of the tests are run

using cone fixtures with the tip truncated (figure 3-5). The properties of the cone

used in the following experiments are gathered in table 3.2.
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Fluid PS025 PS008 PS0025 PS0008 PS00025 PS00008 PS000025

c/c* 0.273 0.0873 0.0273 0.00873 0.00273 0.000873 0.000273

Table 3.1: Ratio of the weight concentration and the coil overlap concentration c* for

the test fluids.

Fluid LR
9

Figure 3-5: Cone and plate rheometer.

fluid (extracted from [ParO3]).

(r & R)

The shear rate is constant throughout the

Steady shear flow: shear viscosity

A steady flow experiment is chosen with a specified range of stress. The cone rotates

to achieve the given shear stress (typically between 0 and 1.2s-') and the rheometer

software computes the shear viscosity according to:

37
?shear - 27tg3 (3.1)

where T is the torque on the plate, R is the radius of the cone and = w/0 is the

shear rate [Mac94]. The results are plotted in figure 3-6. It allows to determine the

zero-shear viscosity r/o for each fluid, as given in table 3.3.

Angle 0 [deg : min: sec] 1 : 59 : 41

Radius R [mm] 40

Truncation [pm] 50

Table 3.2: Cone Properties
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54
52

i50

;48-

46 --E- PS 025
-m-PS 008

4 PS 0025
44 - PS 0008

42 - PS 00025
-X- PS 00008
-+- PS 000025

40 -~
2 3 4 567 2 3 4 567

0.1 1
Shear rate [1/s]

Figure 3-6: Viscosity of diluted fluids as a function of shear rate.
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Oscillatory shear flow: relaxation time

The same cone is used to determine the relaxation times of the fluids. Several fre-

quency sweeps are performed at various strains to cover the maximal range possible,

roughly between 0.01 and 628rad/s. Let us consider a small-amplitude oscillatory

shear flow: -y(t) = y, sin(wt). The shear rate is:

S= you sin(wt). (3.2)

The shear stress response is given by:

T2 = G'(w)-yo sin(ot) + G"(w)yo cos(wt), (3.3)

where G' and G" are respectively the storage modulus and the loss modulus introduced

in section 2.3.2.

Then, for each fluid a plot of storage modulus G' and loss modulus G" is obtained.

Thanks to the Zimm theory (section 2.3.2), these points can be fitted. Shear rheology

allows thus to calculate the relaxation time ASR, as shown on figure 3-7 for PS025.

When the dilution increases, the in-phase part of the signal becomes too weak

to be correctly analyzed. This can be seen for example on figure 3-8 for PS00008

(0.00008wt.% polystyrene). Therefore, it is impossible to fit the experimental data

and then to calculate the relaxation time for fluids whose concentration is 0.00025%

in weight or below.

The results of these experiments are in table 3.3.

PS025 JPS008 PS0025 PS0008

Zero-Shear Viscosity ro [Pa.s] 49.0 55.7 52.0 52.0

Solvent Viscosity r, [Pa.s] 45.5 55.3 51.7 51.9

Relaxation time ASR [s] 5.02 1.85 3.97 2.49

Table 3.3: Results of shear rheology for the test fluids.
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Figure 3-7: Experimental values of storage and loss moduli fitted using Zimm theory

for PS025 at 25 0 C

3.3.2 Caber experiments

Experiments have been run using the Caber with the seven test fluids (PS025 diluted

up to 0.000025wt.%). The "step strain experiment" is performed in 50ms. This is

the fastest the cylinder can open. The software returns the data collected by the laser

micrometer: it consists in giving the value of the radius of the liquid filament as a

function of time. A way of fitting the radius evolution data is to use a derived model

interpretation. The expression given by McKinley (2000) is as follows:

R(t) = A - Bt + Ce-Dt(34)

with D = 1/3Az. Therefore, it is possible to measure the longest relaxation time Az

by fitting the experimental data and extracting the value Az = 1/3D.
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Figure 3-8: Experimental values of storage and loss moduli fitted using Zimm theory

for PS00008 at 250C

All these experiments are run at room temperature which could vary between

20'C and 240C. In order to have consistent results, one needs to shift all the results

to a given temperature (chosen here to be 254C) using a correction method: the time-

temperature superposition ([Tan99] or [BAHC87]). From the equation 2.24 given in

section 2.3.2, it can be seen that all the relaxation times A have the same dependence

on temperature. We can then define a function aT(T) such as:

A(T) _ (T)

aT(TO) = = ,(T) (3.5)
ATo 77(To)'

where To is the arbitrary reference temperature. The shift factor aT(To) has been

successfully fitted by the semi-empirical Williams-Landel-Ferry equation:

-c0(T -To)

ln(aT) = - (3.6)
c4+(T -TO)'
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in which c, and ci are experimentally determined constants [WLF55]. This equation

is widely discussed by Ferry in [Fer80]. With the cone and plate rheometer AR1000

described in section 3.3.1, it is possible to perform a temperature ramp, for example

between 20'C and 35 0C and to measure the temperature-dependence of the viscosity.

Then, this plot is fitted with the model of equations 3.5 and 3.6 as shown on figure

3-9 with the example of PS025. The WLF model fits very accurately with the exper-

imental data. Knowing the relaxation time at the temperature of the experiment, we

can then know it at any temperature thanks to the equation 3.5. It yields a natural

scaling for the time scale t/aT(To) which allows us to compare the different exper-

iments. The re-scaled experimental data for the text fluids is in figure 3-10 a) and

b).

. Experiments
0.0 -

I--0.5

CU
-1.0

-1.5

-2.0

-2 0 2 4 6 8 10 12
T-To (To=23 C)

Figure 3-9: Temperature-dependence of the viscosity of PS025 and fitting with WLF

model. cl = 19.47 i 0.97 and ci = 90.31 ± 4.95.

In figure 3-10 a), we can characterize two different types of behaviors. The most

concentrated fluid (PS025) shows mainly an exponential decrease, typical for a non-

newtonian fluid. The beginning and the end of the stretching correspond to a linear

decrease as can be seen better in figure 3-10 b). The most diluted fluids show a

predominantly linear decrease in radius, which is a characteristic behavior for fluids
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Figure 3-10: a) Logarithmic plot of the radius decrease as a function of time for the

test fluids. b) Linear plot of the radius decrease as a function of time for the test

fluids.
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dominated by viscous forces. We try to explain this phenomenon in the next section.

One can also note that PS025 takes a much longer time to break. Then, it tends to

suggest that for concentrations such as 0.008wt.% and below, test fluids behave more

like Newtonian fluids during capillary break-up.

The results in terms of relaxation times derived by fitting of the experimental data

and re-scaling are gathered in table 3.4.

3.3.3 Comparison with Kuhn Chain and Zimm models

The values for the relaxation times obtained by extensional rheology (AER) can be

compared to the relaxation times obtained by shear rheology with the Zimm theory

(AsR) and by the equation 2.10 for the Kuhn Chain (Arv), as shown on table 3.4.

Conc. [wt.%] 0.025 0.008 0.0025 0.0008 0.00025 0.00008 0.000025

AER [s] 4.17 1.98 1.98 1.97 1.95 1.86 1.80

ASR [s] 5.02 1.85 3.97 1.49

Arv [s] 3.14 3.14 3.14 3.14 3.14 3.14 3.14

Table 3.4: Comparison of longest relaxation times given by Zimm fitting, WLF fitting

and Kuhn chain theory.

Experimentally, we note a dependence of the relaxation time to the concentration

of polymer in the fluid. According to the Kuhn chain model for dilute solutions, it

should not depend on it (figure 3-11).

3.3.4 Profile of the filament

During Caber experiments, the form of the liquid filament bridge changes with time

as it necks under the contributions of capillary, viscous and elastic stresses (equation

4.4). The caber is equipped with a micrometer which follows the evolution of the

radius of liquid (section 3.1). It is also possible to record a movie of the thinning of

the filament with a MS12 Cohu CCD camera. After an extraction of frames with the

software Adobe Premiere 5.0, the edge of the filament is found by image analysis: it is
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Figure 3-11: Relaxation time ontained by extensional rheology as a function of the

ratio c/c* for the test fluids. These values have to be compared with the relaxation

time obtained by the Kuhn Chain model XIV.

performed with the code Caber Edgefinder by Christian Clasen4 written in Labview

by Dr C. Clasen. The figure 3-12 shows an initial image and the output given by

the Labview code. A plot superimposing the successive edges of the filament gives a

qualitative idea of the behavior of the fluid (figures 3-13 and 3-14). In the absence

of laser micrometer with the Caber, this image could also be used quantitatively.

The sampling of the software gives a point every 50[pm on the vertical axis, and the

accuracy on the determination of the radius (radial measurement) should be about

the same. Nevertheless, the fluids we use are transparent and a frame extracted from

a movie is very often blurred. Then it is very difficult to digitize a precise shape.

We note that the measurements of the radius extracted with this method are always

smaller than the "real" values taken from the CABER data acquisition. This method

is less reliable than the direct measure of the radius by the laser beam, but it gives a

good idea of the form of the filament and of the behavior of the fluid.
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I

0
R[mm]

Figure 3-12: Frame of a movie showing a liquid filament during the Caber experiment

and digitized edge of this filament. The picture is taken right at the beginning of the

necking process for the visco-elastic fluid PS025.
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Figure 3-13: Digitized edges of PS025 during a Caber experiment. The step of time

between two profiles is 20s.
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Figure 3-14: Digitized edges of Glycerol and PS008 during a Caber experiment. The

step of time between two profiles for glycerol and PS008 is respectively 50ms and 5s.
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3.4 Interpretation

Elastic versus viscous effects:

As discussed in section 2.3.1, the theoretical values of the longest relaxation time

A, and of the total viscosity of the solution qo = n7 (1 + c[u]+...) are known. Then, we

immediately can derive the ratio of the Deborah number over the Ohnesorge number

De/Oh to obtain the elasto-capillary number:

De _ Au (3.7)
Oh yoRo
De _ 1 [g]o-M.* e -a MW(3.8)
Oh C(3v)' NAkBTRo(1 hc

According to the definition of these two dimensionless numbers, this ratio gives a

measure of the relative size of elastic and viscous effects in the fluid. If this ratio is

greater than one, the elastic effects are dominant; should it be otherwise, the fluid is

dominated by viscous effects. The experimental data compared to the values obtained

by shear rheology and Zimm fitting is summarized in figure 3-15.

These points are perturbed by the fact that the initial radius varies randomly

from an experiment to another. Nevertheless, the two sets of experiments do en-

able us to see that the more concentrated fluid (0.025wt.% polystyrene) has a ratio

De/Oh clearly greater than 1. For all of the other fluids, this ratio is around 1, i.e.

considerably smaller. We have then two different types of behavior: a fluid dominated

by elastic effects (PS025) and three fluids more or less clearly dominated by viscous

effects. This explains what we observed in figure 3-10, i.e. a viscolelastic behavior

of PS025 with a long phaes of exponential decrease of the radius, and a behavior

dominated by viscous effects for all of the other fluids, with a predominantly linear

decrease of the radius.
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Figure 3-15: Ratio of elastic over viscous effects as a function of the polymer concen-

tration for shear rheology experiments and extensional rheology experiments. These

results are for the fluids PS025, PS008, PS0025 and PS0008.

49

3.4. Interpretation



3.4. Interpretation Chapter 3. Effects of concentration

50

3.4. Interpretation Chapter 3. Effects of concentration



Chapter 4

Caber simulation

4.1 Single-mode FENE fluid

4.1.1 Main equations

Analyzing the viscoelastic liquids in terms of a single-mode FENE fluid yields the

following derivation, as discussed in Entov and Hinch for multi-mode FENE fluids

[EH97]. Let consider an uniform cylindrical filament of radius R(t) being squeezed

by surface tension. The radius decreases according to the law R = -!eR, where e is
the strain-rate of the axisymmetric extensional flow. The upper convected derivative

of the deformation tensor A obeys to the following equation:

A = [fA - I], (4.1)

with A the relaxation times and f = 1 the FENE factor for a finite extension

L. trA = Azz + Arr+ A00 = Azz + 2Arr

The axial deformation and the radial deformation of the FENE mode respectively

satisfy the equations:

z= 2 - (fAAzz - 1), (4.2)

A rr Ar - -A fArr - 1). (4.3)

The evolution of the liquid filament is given by the balance between capillary, viscous
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and elastic stresses according to equation 4.4:

a- d lnR
- - 3ds -2 + (r-zz - Trr), (4.4)R dt)

where r, = [Tz - Trr] = Gf(Azz - Ar) is the normal stress difference for a single-mode

FENE fluid and G = nkBT = cNAkBT/M is the elastic modulus.

At early times, the viscous response of the solvent is not negligible for dilute

polymer solutions. Hence, the initial value of the axial stretch at the end of the

imposed stretching and beginning of capillary thinning has to be chosen non-equal to

zero. Entov and Hinch [EH97] agreed on the importance of initial stress to determine

the initial conditions when comparing their computations with the experiments of

Liang and Mackley [LM94]. Taking this into account, Anna and McKinley [AM01]

proposed the following equation for the initial axial deformation:

AO -ao- 27, (4.5)ZZ GR GAz'

The polymeric stretch subsequently grows exponentially according to Azz (t) = A02e2t/ 3A2

This growth rate explains why a right choice for the initial value is crucial in a nu-

merical simulation. The other initial condition is that of an undeformed material:

Arr(t = 0) = 1.

4.1.2 Numerical solutions

A simulation of a filament thinning has been done for several concentrations of poly-

mer fluid. The simulated fluid was styrene oil with, respectively 0.025, 0.008, 0.0025,

and 0.0008% of polystyrene in weight. The simulation code is written in Matlab. The

inputs of this code are the relaxation time (derivated from the Kuhn theory trough

equation 2.10), the solvent viscosity, the solution viscosity and some physical param-

eters (surface tension o-, density p, finite extensibility L 2). Typical inputs are given

in table 4.1. The initial axial deformation is arbitrarily chosen: A02 = 1 .The results,

compared to the experimental data, are gathered in figure 4-1.

The less diluted fluid PS025 clearly does not behave as the more diluted: the
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4.1: Inputs used for numerical simulations: physical

to be simulated.

characteristics of the four

breakup time (divided by the relaxation time of the fluid) is much longer and the

filament necking looks exponential, whereas other fluids seem to behave more or

less like Newtonian fluids (fast breakup time, linear necking). These two different

behaviors can be qualitatively perceived on the pictures showing the necking process

for fluids whose concentrations are respectively 0.025wt.% and 0.008wt.% (figures 4-2.

The force balance during the filament stretching, corresponding to equation 4.4,

is shown on figures 4-3 and 4-4 respectively for a moderately diluted solution (PS025)

and a highly diluted solution (PS0025). The different stretching behaviors stated in

figure 4-1 are clearly explained by these two force balances: in the case of the less

diluted fluid, the elastic stress increases and finally equilibrates the capillary stress,

while the viscous stress tends to a constant value 3?,q ~ 2q,/A, as in elasto-capillary

thinning the necking filament selects a natural scale e 2/(3A) [AM01]. In the case

of the more diluted fluid, capillary stress is balanced by viscous stress. Then, the fluid

behaves like a simple viscous fluid and the radius of the filament decreases linearly

as for a Newtonian fluid. This confirms what is observed in figure 4-1.
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Fluid PS025 PS008_1 PS0025 PS0008

A [s] 5.02 1.85 3.97 2.49

Solvent visc. q, [Pa.s] 45.5 55.3 51.7 51.9

Total visc. qo [Pa.s] 49 55.7 52 52

Surf. tension o [mN/m] 38 38 38 38

Density p [kg/m 3 ] 1026 1026 1026 1026

Extensibility L2 4606 4606 4606 4606

Table

fluids

Chapter 4. Caber simulation 4.1. Single-mode FENE fluid
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Figure 4-1: Simulated behaviors of the fluids described in table 4.1.

4.2 Asymptotic behaviors of an elastic fluid

4.2.1 Visco-capillary (VC) balance

Our main assumption is of strong surface tension o-/R >> G, what is justified by the

weak polymer concentrations we consider. At early times, it means that we start with

no elastic stress. We then have a balance between only capillary forces and viscous

forces due to the solvent viscosity. The equation of the force balance reduces to:

= 3, e. (4.6)
R

The radius satisfies then the differential equation 4.7:

dR o-
-d = - -t (4.7)

dt 6,

Integrating this equation yields linear time dependence: R(t) = R1 - ' t. This is the

behavior we usually observe with Newtonian fluids. Capillary stress is then given by:

R Ro - ' t* (4.8)
6'rls
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a)

Os 23s 46s 70s
b)

Os 5s 10s 15s

Figure 4-2: a) Filament necking for a moderately diluted solution of 0.025wt.%

polystyrene in styrene oil (PS025 described in table 4.1). b) Filament necking for

a diluted solution of 0.008wt.% polystyrene in styrene oil (PS008 described in table

4.1).

The polymer chain stretching yields an increase of the elastic stress, which eventually

becomes comparable to the capillary and viscous stresses. Viscous stress then drops

with the strain-rate in order for the elastic stress not to increase beyond the capillary

stress.This phase change leads to the elasto-capillary part of the filament necking.

4.2.2 Elasto-capillary (EC) balance

In this limit, the force balance satisfies the following equation:

z - Trr). (4.9)
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Figure 4-3: Force balance during stretching for a moderately diluted solution (PS025:

0.025wt.% polystyrene in styrene oil described in table 4.1).

We focus our study here on deformations smaller than the finite extension limit

(Az << L2 ). We assume that deformations are important (Az >> 1) and FENE

factors are taken equal to 1 (Hookean model). Equation 4.1 gives in this case:

dinAzz dlnR1
A +4 = .

dt dt A (4.10)

The axial deformation equation can be integrated as:

z( Ro 4

Azz (t) = Az k\ -Rt) e-/ (4.11)

The elastic stress is rzz = G(fAzz - 1) ~ GAz So the balance of the stresses 4.9

becomes:

= GA (RN 1
4 e-t/

R \R (4.12)

This finally gives exponential time dependence for the radius:
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Figure 4-4: Force balance during stretching for a highly diluted solution (PS0025:

0.0025wt.% polystyrene in styrene oil described in table 4.1).

R (GAO Ro e
R(t) = Ro e n

o-
(4.13)

EC stress balance is then expressed by the following equation:

or 01 t (.4
R= -r = Ro RoGA(f , 1/3 e * ('.14)

A good approximation of the time when the phase change occurs is given by the

intersection between the asymptotic VC and EC behaviors. As the deformation keeps

increasing, the finite extension limit L has finally an effect on the necking. This can

be represented by a third asymptotic behavior iof the fluid.

4.2.3 Fully Extended (FE) limit

Viscous stress is then a difference of large xiumbers and the system of equations 4.1

becomes very stiff. Once the viscous stress is small, we have a balance between
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capillary and elastic stresses. FENE factors are no longer taken equal to 1. trA =

Azz + Arr + Ao ~ Azz as Azz >> Ar, r 1 At the late times of finite extension, the

rate of increase in the deformation is negligible. Thusm the solution of 4.1 can be

approximated to the steady-state solution:

2eAZZ= f Azz. (4.15)

So, the solutions are:

f 2eA, (4.16)

2 1
Azz= L2(1 2,) (4.17)

The elastic stress is rz = G(fAz, - 1) ~ 2GAL 2 e. The FENE fluid is now behaving

like a suspension of rigid rods, with an effective viscosity 7* such as 37* = 2GAL 2.

Hence, as in VC behavior, the radius has linear time-dependence:

R(t) = (t, - t) (4.18)

where tb is the (unknown) time when the filament breaks.

The stress balance is then given by:

o- 677*
-i = . (4.19)
R tb - t

Therefore, for a numerical simulation based on these equations, we expect three con-

secutive asymptotic behaviors for the radius as a function of time: linear, exponential

and linear again.

4.3 Comparison with numerical solutions

The main goal here is to find a criteria on parameters, such as the finite extensibility

L or the molecular weight of the polymer diluted in the viscous solvent Mw, to

determine whether or not we can observe the Non-Newtonian behavior of a given

fluid with Caber experiments.
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4.3.1 Correspondence between numerical integrations and

asymptotic results

Numerical simulations are run using the same parameters as in section 4.1.2 for the

fluid PS025. They are recalled in table 4.2.

Concentration [wt.%] 0.025

Solvent viscosity , [Pa.s] 45

Surface tension - [mN/m] 38

Density p [kg/rn3 ] 1026

Table 4.2: Inputs for simulations of stress balances of a polymer solution.

FENE-P model ! = 3r, 2d ) + (Tr2 - Trr)

Visco-capillary balance 01

Elasto-capillary balance e3
Ro~ RoA)

Fully Extended limit _ with r * = GA L 2

Table 4.3: Main equations of the asymptotic approach. Recall from section 4.2.

The results of the simulations for four different molecular weights are done on

figure 4-5. This figure represents the balance of stresses for the fluids during the

process of filament necking, and the three asymptotic behaviors described in section

4.2. The main equations of this problem are recalled in table 4.3.

For all the fluids, the three asymptotic behaviors match pretty well with the

numerical data. So, it allows to explain the process of necking and the successive

balances of stresses in the filament of fluid. At first, the elastic stress is negligible

compared to viscous and capillary stresses. The numerically-computed capillary stress

follows the asymptotic VC part (equation given in table 4.3 and dashed red line on

figure 4-5), and the numerically-computed elastic stress is smaller of several orders of

magnitude. The fluid behaves as a Newtonian fluid and the radius of the filament of

fluid decreases linearly with time. This statement is true for every molecular weight.
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Figure 4-5: Simulated balance of stresses and asymptotic approximations for a solution

of polystyrene with a concentration of 0.025wt.% polystyrene in styrene oil (described

in table 4.2). The molecular weight of the polymer is successively taken equal to

7.65 x 105 g/mol, 1.1 x 106 g/mol, 1.877 x 106 g/mol and 107 g/mol.
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Then, the elastic stress grows up and finally becomes dominant over the viscous

stress: the numerical simulation matches with the EC part (equation given in table

4.3). It can be approximated by a balance between capillary and elastic stresses only.

This part of the curve corresponds to an exponential decrease of the radius of the

filament of liquid as e-3. The slope of the asymptotic curve (the dashed blue line

on figure 4-5)corresponds to the simulation for large values of the molecular weight

(M. = 10' g/mol). For smaller values of molecular weight, like M" = 7.65 x 10

g/mol or even M,,= 1.1 x 106 g/mol, the polymer chains are shorter. They are

more quickly fully extended. The balance between capillary and elastic stress is too

short to be clearly observed, and so the numerical curves are never parallel to the

asymptotic estimate. For M, = 1.877 x 106 g/mol, the slope of the numerical data is

not exactly the same as the slope of the asymptotic line. The difference comes from

the neglected term in the equation 4.20:

dlnAzz dlnR _ 1 1
A +4 - . (4.20)

dt dt A\ A(2

This additional term modifies the slope of the simulation and explains why the simu-

lation and the estimate are never parallel in that case. This elasto-capillary balance

has been exaggerated on figure 4-5 by superimposing a plot of the numerical simula-

tion with an infinite extensibility L. This is the part we want to be able to observe

with the Caber because we can extract the relaxation time from its fitting.

As seen before, the extensibility is finite and finally the curve adopts the fully

extended (FE) asymptotic behavior (dashed green line on figure 4-5) in the cases of

the three smallest molecular weights. The radius decrease in this part of the filament

necking is once again linear and corresponds to the equation given in table 4.3. For

M_ = 107 g/mol, the chain is much longer and therefore it is never fully extended. So

the numerical simulations remain very well described by the elasto-capillary balance.

Thanks to the simulations run to plot the figure 4-5, we see that, depending on

the molecular weight of the polymer, the EC part is more or less stressed. Clearly,

it will be easier to observe it when the molecular weight is big enough. The limit

of observability seems to be around M, = 1.1 x 106 g/mol. For smaller values, the
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EC part is too short. The three asymptotic regimes appear as a good description of

the phenomena involved in the filament necking. They also allow to find a criterion

on the molecular weight for the observation of the elasto-capillary regime during the

necking of a filament of liquid in the Caber. Nevertheless for two different reasons

this does not appear as an instrument of prediction of the phenomena. First, the EC

estimate predicts the slope of the numerical integrations, but its origin depends on the

initial axial deformation A' which is unknown. The intersection between the dashed

red and the dashed blue lines on figure 4-5 does not give the point where the regime

changes as we wish. Then, the estimate of the fully extended limit is plotted backward

in taking the value of the break-up time tb from the numerical results (equation 4.19).

There are formulas which predict this value, but their accuracy has not yet be proved

([EH97]).

4.3.2 Observation of the Non-Newtonian behavior

Just after the step strain by the Caber, the radius of a filament of fluid is typically

around 2mm. The accuracy of the laser micrometer which measures this radius on the

Caber is 10pm. Therefore, the observable range on the Caber data is no more than

two orders of magnitude. If we want to find a criteria to determine if the exponential

decrease of the radius is visible for a Caber experiment with a given fluid thanks to

numerical simulations, we then have to restrain to two orders of magnitude for the

radius.

Characteristic time scales

During the necking, two phenomena with different time scales are in competition and

the appearance of Non-Newtonian effects depends on the ratio of these time scales.

The polymer chain reacts in a time of the order of the relaxation time A and it is the

source of non-newtonian effects. The viscous effects of the solvent define a natural

time scale ' 5Ro. The ratio is then:
0'
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A (4.21)
rj8Ro/c-

The ratios of these characteristics times of the simulated fluids are gathered in table

4.4:

Molecular weight [g/mol] 7.65 x 101 1.1 x 106 1.877 x 106 107

0.315 0.562 1.313 18.78

Table 4.4: Ratio of the characteristic time scales for different molecular weights of

the polymer.

Variation of the solvent viscosity

Decreasing the solvent viscosity r/ for everything else taken constant yields a decrease

of the characteristic viscous time described in section 4.3.2. Nevertheless, the Kuhn

chain theory states that the relaxation time of the chain A is proportional to the

solvent viscosity (equation 2.10). Hence, the parameter 6 defined in the section 4.3.2

does not change when the solvent viscosity changes. According to previous comments,

a variation of viscosity does not help the observation of the Non-Newtonian part of

stretching (EC part described in section 4.2.2). We can observe this phenomenon on

the following simulated curves of the radius as a function of real time (figure 4-7). As

shown on figure 4-6 for M, = 1.877 x 106 g/mol, the curves superimpose if plotted

as as a function of the adimensional time t/A. Therefore for a given molecular weight

of the polymer, all the curves on figure 4-7 are self-similar and the value of the radius

for which there is the transition between VC and EC remains the same.

According to the figure 4-7, the exponential decrease of the radius is observable

in the given conditions (table 4.2) only for polymers with a molecular weight bigger

than about 106g/mol. This statement is in good agreement with the conclusion of

the section 4.3.1.
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Figure 4-6: Radius decrease for solvent viscosity of 1, 5, 25 and 45 Pa.s as a function

of the reduced time t/A for a solution of polystyrene described in table 4.2 with a

molecular weight of M, = 1.877 x 106 g/mol.

4.3.3 Conclusion

The numerical simulations led with Matlab can be explained by three successive

balances of stresses corresponding to three phenomena easily explained. It also allows

us to qualitatively determine in advance if a polymer solution will demonstrate a

visible Non-Newtonian behavior. A more quantitative way which is in good agreement

with the simulations is the ratio of characteristic times J (section 4.3.2). It seems that

the exponential decrease of the radius is observable for 6 being equal or greater than

1. The more 6 is big, the easiest will be the observation of the exponential part.

Finally, we also noticed that a variation of the solvent viscosity can not be used to

facilitate the observation of the elasto-capillary part, as its effects in the relaxation

time and the viscous time are perfectly opposed.
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Figure 4-7: Radius decrease for different solvent viscosities (1, 5, 25 and 45 Pa.s) as

a function of real time. The fluid characteristics are given in table 4.2.
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Chapter 5

Characterization of New Elastic

Test Fluid

In the previous study of the visco-elastic fluid PS025 and its derivatives, we have

neglected the gravity in the force balance (equation 4.4). Nevertheless, the profile of

the filament during the necking process let appear a gravitational sag on the bottom

plate of the CABER. It is then interesting to run the CABER experiments with a

visco-elastic fluid less susceptible to gravity. The preparation and the characterization

of such a fluid are exposed in the following part.

5.1 Gravitational effects

As seen in section 2.4, in filament stretching rheometry several dimensionless groups

can characterize an experiment. The Bond number is given by the equation 2.33.

It describes the competition between gravity and surface tension. This number is

a measure of the axial asymmetry of the initial static fluid column about its mid-

plane. Another dimensionless group is the capillary number Ca. It expresses the

competition between viscous forces and surface tension, and it is given by equation

2.34. For Newtonian fluids at least, the capillary number is a measure of the stability

of the slender fluid filament as it is stretched. Viscous forces tend to stabilize the

cylindrical shape, while surface tension acts to destabilize the shape by causing the
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diameter to rapidly decrease until the filament breaks apart. The ratio of the Bond

number to the capillary number is then important because it reveals the competition

between gravitational and viscous forces during stretching:

Bo pgR0 51
Ca qoco

A large value of this ratio indicates that a significant amount of fluid drains below

the mid-plane of the filament during stretching. If Bo/Ca is large enough, it leads to

an additional correction term in the force balance of the form:

pgoV pg3V (5.2)

where 3V is the extra volume below the mid-plane. The evolution of this incremen-

tal volume with time is a complicated function of surface curvature and cannot be

computed analytically even for a Newtonian filament. But this term can become

important for large enough Bo/Ca values, and then equation 5.2 has to be taken

into account. The experimental conditions for which gravitational sagging will be-

come important can be estimated using dimensionless quantities. Since gravitational

forces begin to dominate when Bo/Ca approaches unity, equation 5.1 can be used to

compute a critical strain rate below which sagging becomes important:

6(T) pgR0
esag(T) = RoaTTTO (5.3)

where aT is the Williams-Landel-Ferry shift factor [Tan99]. The condition 5.3 leads

to a critical Deborah number, Desag , which depends only on temperature, material

properties and test geometry:

Desag(T) = A(TO) pgRo T" (5.4)
,qO T

Values of Desag can be evaluated for each filament stretching rheometer and for test

fluids at the reference temperature, To. Comparing the Deborah number for a given

experiment to Desag will determine if sagging effects are important. Deborah numbers

greater than Desag are expected to be less affected by sagging.

Gravitational sagging is a particularly important constraint in filament stretching

devices if one wishes to explore experimentally the coil-stretch transition in dilute
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polymer solutions at Deborah numbers of De ~ 0.5. For a dilute polymer solution

described by the Zimm theory, the longest relaxation time may be expressed by the

equation 2.10.

The critical Deborah number for sagging can thus be written in the compact form:

Desag - ApgR0  [M pgR (5.5)
7o ((3v)NAkBT (1 + [r7]c)

For the solution to be considered dilute we require [7]c < 1, which places an up-

per bound on the denominator. We know the numerical expression for the in-

trinsic viscosity of the typical solution that we use ([SM96a] and [SM96b]): [77] =

4.2x 10- 4 MO.5 9dL/g. Taking typical values of p = 1026kg/m 3 , To = 298K, Ro = 3mm

and requiring Desa, 0.5, equation 5.5 can be reduced to:

1.3 x 10MI-59 < 0.5 (5.6)

We would therefore need to use polymers with molecular weights less than M_ K

765000g/mol in order to explore the coil-stretch transition in the absence of appre-

ciable gravitational sagging.

5.2 Preparation of the fluid

To fulfill the previous condition, we prepare a Boger fluid consisting of polystyrene

and styrene oil. An adequate polystyrene is P6022-S from Polymer Source Inc. Its

molecular weight is M = 750000g/mol and it is therefore under the limit of observa-

tion of the coil-stretch transition. 0.594g of polystyrene are first dissolved in toluene

by mixing. The resulting solution is added to 789.52g of styrene oil with a density of

p = 1026kg/m 3 . The higher volatility of toluene compared to styrene oil is then used

to evaporate it in a vacuum oven. The characteristics of the final polymer solution

called MV1 are gathered in the table 5.1.

The coil overlap concentration c* is derived from the equation 2.13.
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MV1_I PS025

Density p [kg.m- 3 ] 1026 1026

Surface Tension a [N.m-1] 0.038 0.038

Concentration c [g.L 1 ] 0.772 0.257

Ratio c/c* 0.50 0.273

Table 5.1: Physical parameters of the polymer solution MV1 prepared to observe the

coil-stretch transition, and comparison with the visco-elastic fluid PS025 defined in

chapter 3.

5.3 Properties of the fluid

The properties of this fluids will be determined by the same process as to find those

of PS025 described in section 3.3. Then, we first concentrate on the shear rheology

and later we will use extensional rheology.

5.3.1 Shear rheology: cone and plate rheometer

As described in section 3.3.1, the fluid MV1 is tested with a cone and plate rheometer.

The properties of the cone are given in table 3.2. From steady shear flow experiments

and oscillatory shear flow experiments, we can extract the dependence of viscosity

with the shear rate (figure 5-1) and the storage and loss moduli fitted with the Zimm

model (figure 5-2).

The zero-shear viscosity is thus found to be rlo = 53.5 Pa.s.

From the value of the zero-shear viscosity, the Kuhn Chain theory can be used to

evaluate the solvent viscosity r/ and the longest relaxation time A2 through equations

2.18 and 2.10. The results, compared to the values obtained by Zimm fitting of figure

5-2 are in table 5.2.

5.3.2 Extensional rheology: Caber

A series of experiments in extensional rheology has been led. As in section 3.3, the

device used for these experiments is the Capillary Breakup Extensional Rheometer
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Figure 5-1: Viscosity of the polymer solution MV1 as a function of shear rate at 250C,

and comparison with PS025.
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Figure 5-2: Experimental values of storageand loss moduli fitted using Zimm theory

for MV1 at 25'C
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MV1J PS025

Zero-shear viscosity r/o [Pa.s] 53.5 49

Solvent viscosity from Kuhn Chain /sK {Pa.s] 48.8 46.4

Solvent viscosity from Zimm theory r/z [Pa.s] 48.5 45.5

Longest relaxation time from Kuhn Chain AzK [s] 0.78 3.14

Longest relaxation time from Zimm theory Azz [s] 1.04 5.02

Table 5.2: Physical parameters of the polymer solutions MV1 and

from shear rheology experiments at 25 0C.

PS025 calculated

(Caber). The result of these experiments is shown in figure 5-3: as expected the ra-

dius of the viscoelastic solution decreases exponentially in the elasto-capillary regime

(section 4.2.2). Fitting this part allows to calculate the longest relaxation time of the

polymer, since the radius decreases as e-/ 31. (equation 4.13).

This experiment is run at the air temperature of 18.50C. Therefore, the relaxation

time obtained by the exponential fit has to be adjusted with the Williams-Landel-

Ferry shift factor introduced in section 3.3.2 in order to know the relaxation time

at the reference temperature (25 0C). The result is a relaxation time Azc = 1.09 s.

Finally, the longest relaxation times determines with the Kuhn Chain model, the

Zimm theory and the Caber fitting are in table 5.3.

Relaxation time [s]

Kuhn Chain model 0.78

Zimm theory 1.04

Caber fitting 1.09

Table 5.3: Longest relaxation time of the polymer solution MV1 from three different

models at 250C.

The agreement is very good between the different models. This polymer solution

behaves as the visco-elastic fluid simulated in section 4.1.2. Finally, we can plot the

profile of the filament during the necking thanks to the method introduced in section

3.3.4 (figure 5-4).
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Figure 5-3: Radius decrease during a Caber experiment and exponential fit for the

polymer solution MV1 at T = 18.50C on a linear scale (a) and an exponential scale

(b).
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Figure 5-4: Digitized edges of MV1 during a CABER experiment.

between two successive profiles is equal to 9 seconds.

The step of time

On figure 5-4, the gravitational sagging is still visible, even if we made this fluid

to be less susceptible to gravity. Nevertheless, the asymmetry between the droplet

on the top plate and the droplet on the bottom plate seems less important than for

PS025, as expected.
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Chapter 6

Force transducer integration

In the numerical simulations of the Caber experiments (chapter 4), the initial axial

deformation A' remains an unknown parameter. It had be assumed to be equal to

1 for the needs of the simulation, this value corresponding to the absence of initial

deformation. Nevertheless, as we will see in the following section, a way to have a

direct measure of this quantity is given by measuring the force on a plate during a

Caber experiment. We will then replace the bottom plate of the Caber by a Force

Transducer.

6.1 Force on the bottom plate of a Caber

The force balance in filament stretching rheometers has been studied by Szabo and

McKinley [SM03] or Bhattaccharjee et al. [BNMS03]. During a Caber experiment,

the bottom plate remains stationary and the top plate accelerate upwards. It is

then obvious to choose the bottom plate as arbitrary frame of reference. The force

measured on the bottom plate is a normal force composed of the viscous force, the

capillary force, the elastic force (in the case of a viscoelastic fluid) and the gravity. It

is given by the following equation:

FN = 2 (t) + 7ruR(t) + rp7rR2(t) - pg7r RLo (6.1)3'q~~R2(t ~ T~R2 (2
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= Fv+F,+FE + F. (6.2)

In this equation, e is the strain rate, R(t) is the radius of the liquid filament, rF is the

normal stress difference, Ro is the initial radius of liquid (basically, it is the radius of

the plate) and Lo is the initial gap between the plates. This force balance is valid as

well for the stretching as for the stress relaxation. The origin of time is chosen to be

when the stretching is done and the two plates are held stationary. For the measure,

the reference of the force is given when the sample of fluid is loaded in the Caber.

So the gravity is 'tared' and is not taken into account in the experiments. In the

following, the force measured on the bottom plate obeys to the equation 6.1 where

the gravity has been removed.

6.1.1 Elongation

The top plate of the Caber goes up linearly with time. So its speed is constant

vplate and the gap L between the plates is such as: L(t) = Lo+ vplatet. Then, according

to Pearson and Connelly [PC82], the strain rate is given by:

V vlate _ Vplate/Lo (6.3)
L 1+Vpiatet/Lo(

As the Caber 'opens' in 50 ms between Lo = 3 mm and Lf = 13 mm, it is easy

to calculate the strain rate at the end of the stretching process (at a time arbitrary

chosen as t = 0-). We obtain so- = 15.38 s-. The liquid radius at the end of this

process obeys to:

R(0-) = Roe-26 (6.4)

= 1.78 mm. (6.5)

It is now possible to calculate the force on the bottom plate at t = 0-. The contri-

bution is the different forces at t = 0~ are as follows:

FV(0~) = 2.07 x 10-2 N (6.6)

Fc(0-) = 2.12 x 10~4 N (6.7)
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The total force measured on the bottom plate of the CABER at t = 0- is: FN(O0)

2.09 x 10-2 N. This corresponds to a mass greater than 2 g, which is out of range

for the Force Transducer we use, as given in the table 6.1. So the signal measured on

the bottom plate will necessarily saturate.

6.1.2 Stress relaxation

Initial part:

When the top plate stops, the filament of fluid starts necking according to the de-

scription given in chapters 3 and 4. The force measured on the bottom plate remains

the force given by the equation 6.1, without the gravity term. Nevertheless, right af-

ter the stretching the radius of the liquid filament is linearly time-dependent (section

4.2) and obeys the equation:

-t
R(t) = R(0+) - , (6.8)

where R(0+) = R(0-) is the radius at the beginning of the relaxation. By definition

(equation 2.4) the strain rate is:

S 2dR 
(6.9)

Rdt

(6.10)
37,R

At t =0+, the value of the strain rate is then: + = 3? 0 =0.158 s-'. The

expression of the force measured on the bottom plate is then:

FN = 27r ( - (6.11)
677,

The decrease of the force is also linear with time.

Elasto-Capillary balance:

According to the asymptotic behaviors described in section 4.2.2, the radius of visco-

elastic fluids decreases exponentially as e-t/3A. The elastic stress is -F,2 = G(fA22 -

1) ~ GAzz = GA'zet/ 3A and the radius is R(t) = R, (GAzRi/-) e-t/3A, wihere Ri is
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the value of the radius at the beginning of the elasto-capillary phase. For the force

measured on the bottom plate it yields:

FN= FV + Fo-+ FE (6-12)

with

27r/ GA2 2/3 2

Fv = 2 R e ,3 A (6.13)

F, = grR(eaX, (6.14)

G R 2/3
FE 7rGAOzRi (Ge 3a1 (6.15)

The visoucs force decreases faster than the elastic and the capillary force. Then, if we

assume that the dynamics is given only by the elasto-capillary balance, the decrease

of the force measured on the bottom plate FN is exponential. Fitting this part of the

data provides an estimation of the initial stress A' as we will see in section 6.3.2.

6.2 Experimental setup

6.2.1 General overview

The Caber has already been described in section 3.1. Its bottom plate is now replaced

by a plate in Delrin plastic (McMaster-Carr Supply Company) attached to an Aurora

Scientific 405A Force Transducer (figure 6-1). The radius of the plate is 3.175 mm.

To keep the symmetry between the plates and having the same surface of contact on

the top and the bottom plate, a 1 mm-thick plate is glued on the original top plate

of the Caber (figure 6-2).

The acquisition of the data given by the laser micrometer of the Caber is done

trough a National Instrument 1200 DAQ Card, as explained in section 3.1. The

output of the Force Transducer System is connected to a National Instrument BNC-

2110 connector block. The data is then transmitted to a computer and analyzed by

the Labview routine Analog input (ryeh mod) written by Roger Yeh.
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a)

Figure 6-1: Picture of the experimental setup for the Caber with Force Transducer.

I 1mm

2Ro=6.35mm L(t)

Force Transducer

Figure 6-2: Drawing of the experimental setup for the Caber with Force Transducer.
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6.2.2 Calibration

The 405A Force Transducer has a full scale of ±1 g. The design is based on two

variable displacement capacitors formed from cantilevered, quartz beam. The load is

attached to the active beam while the other beam acts as a reference. This system

nullifies most ambient vibrations and electrical interference. Its output is in Volts, so

it has to be calibrated to convert the output into grams. The static calibration shown

in figure 6-3 consists in getting the voltage indicated for different weights varying

from 20 mg to 1 g. The experimental points have been fitted to get the slope of the

response.

1 0 x 1 0
3 Curve Fit: y = a+bx

with a = -12.025 ± 0.0031 mV
8. b = 10.032 0.012 mV/mg

E
6

4-
0

> 2

0 200 400 600 800 1000

Mass [mg]

Figure 6-3: Static calibration of the Force Transducer.

The Force Transducer has also to be dynamically calibrated: a weight removal

yields the time of response of the transducer. It has been found to be about 30 ms

(figure 6-4).

Because of the fact that the Caber does not present a closed area for the exper-

iments, the Force Transducer is subject to the noise due to the draught. Then, it

seems Utopian to hope having a better precision than 10-2 V on a measurement. It

corresponds to a precision in mass of 1 mg. Finally, the characteristics of the 405A
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Figure 6-4: Transient response of the Force Transducer.

Force Transducer are gathered in table 6.1:

Force Transducer 405A

Range [± grams] 1

Resolution [gram] 10-3

Maximum overload force [gram] 10

Sensitivity [volt/gram] 10.032

Step Response Time [ms] 30

Table 6.1: Characteristics of the 405A Force Transducer after calibration.

6.3 Results and interpretation

6.3.1 Experimental results

Several Caber experiments have been run with the fluids described previously in this

study: styrene oil, a diluted solution of high molecular weight (PS025, section 3.2)

and a solution of polystyrene with lower molecular weight (MV1, chapter 5). The

results of these experiments in terms of force measured by the Force Transducer are
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reported in figure 6-5.
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The sample rate of the data acquisition is 500 points per
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Time [s]

20 25 30

0 5 10 15 20 25 30
Time [s]

Figure 6-5: Force on the bottom plate during a Caber experiment (linear and logarith-

mic scale).

In the figure 6-5, the time t = 0 corresponds to the end of the stretching. The

two plates are held stationary and the strain rate drops from do- to io+. Then

the viscous force drops and explains the fast decrease of the force just after t = 0.

In the following part of the curve, the fluids behave as Newtonian fluids and the
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Chapter 6. Force transducer integration

radius decreases linearly, as expected (equation 6.11). The force for visco-elastic fluids

(PS025 and MV1) shows an exponential time-dependence, which is clearly visible in

figure 6-5 with the logarithmic scale. Neglecting the viscous force in this part, the

exponential dependence can be fitted by the equations 6.14 and 6.15 to extract A'z.

If the exponential fit is oe-t/14, then 3 = 3 x A, where A is the relaxation time of the

solution, and Az is solution of the following equation:

GAiGA RR GA ZRi 2 /3

ruR i 1 e-t/3) + 7rGAzR 22/3 e-t/3 A - ae-/ . (6.16)

All the variables of this equation are given parameters, except AO and A, which can

easily been derived.

6.3.2 Comparison with the model and the numerical simula-

tion

Initial stress

An exponential fit of the elasto-capillary part of the force data yields a value of the

initial stress A' which is the ultimate goal of the experimental setup with the Force

Transducer. It has been done on the data of the two visco-elastic fluids PS025 and

MV1. The results are in the table 6.2. The slope of the exponential fit gives an

estimation of the relaxation time of the polymer solutions. As this parameter has

already been calculated by several methods, it represents a test of validity of the

present method.

Fluid PS025 MV1

A 49.7 8.09

Relaxation Time AF [s] 4.83 1.82

Table 6.2: Initial stress A2z and relaxation time obtained by exponential fit of the

force measured on the bottom plate of the CABER.

Having an estimate of the initial stress allows to run the numerical simulations
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exposed in chapter 4 with a good initial condition.

Cabersimu ultim and its inputs are in table 6.3. We

of the force on the bottom plate of the Caber.

Table 6.3: Inputs for the numerical simulation of

plate of the CABER.

The Matlab code used here is

can then simulate the decrease

the force measured on the bottom

Numerical simulations

Running the Caber-simulating code previously described in chapter 4 yields the figure

6-6.

0~ 4

- 1(y

5 10 15

Time [s]

10~

0

0-

20 25 30

Figure 6-6: Comparison between the force measured experimentally on the bottom

plate of the Caber and the numerical simulation for the visco-elastic fluids PS025 and

MV1, and for two different initial stresses A0,.

The total force measured on the bottom plate of the Caber right after the stretch-
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Fluid PS025 MV1

Density p [kg/m 3 ] 1026 1026

Surface tension o [N/m] 0.038 0.038

Zero-shear viscosity ro [Pa.s] 49.4 53.5

Concentration c [g/cm3] 0.0002565 0.000772

Molecular weight M, [kg/mol] 1877 750

Initial radius R1 [m] 2 x 10-3 2 x 10-3

Initial axial stress AO 49.7 8.09

PS 025 - Exp.
-Simu Azz=497

\im Az

I I- -x Exp.
-- Sim Azz=8.os

- e - -Simu Azz=1

5 10

Time [s]
15 20

6.3. Results and interpretation

.4

2
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ing (time t = 0+) can be calculated from three different methods: reading the exper-

imental data after a time t = tstretching + 2 X ttransient response = 50 ms + 2 x 30 ms,

reading the simulated curve for t = 0, and evaluating the equations given at the

beginning of the chapter (section 6.1) at t = 0+. This gives the table 6.4. The simu-

Fluid PS025 MV1

FN-exp [N] 4.64 x 10-4 4.49 x 10-4

FN-num [N] 4.25 x 10-4 4.26 x 10-4

FN-an [N] 4.25 x 10-4 4.25 x 10-4

Table 6.4: Initial forces on the bottom plate of a Caber: experimental, numerical and

analytical values.

lation of the decrease of the force looks quite good in the case of the fluid PS025. The

improvement due to a better choice of the initial elastic stress A2, is clear. For MV1,

the simulated force has the good order of magnitude but not the good behavior. It

could come from an inaccuracy in the determination of A'S because the experimental

data approaches the instrumental limit of 10- N.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

PS025 and MV1 were the fluids studied in the current research. Simultaneously, they

were compared to the Newtonian solvent of these solutions: the styrene oil. The

experimental study of PS025 and its derivatives in chapter 3 proved a dependence

of the relaxation time of the solution with the concentration of the fluid, even for

very diluted polymer solutions. This scaling is a new step in the study of polymer

solutions and it is at variance with the classic models such as the Kuhn Chain, which

predict a non-dependence with concentration (equation 2.10). Thanks to numerical

simulations based on a single mode FENE-P model (chapter 4), we were able to

break down the necking of a visco-elastic filament during a CABER experiment into

three successive asymptotic behaviors: a visco-capillary part, an elasto-capillary part

and finally a fully extended limit. Then, we established a criterion on the molecular

weight of the polymer M, through a characteristic time scale 6 = to observe the

Non-Newtonian behavior of a Boger fluid (section 4.3.2). We also made another visco-

elastic fluid, called MV1, with a polymer of smaller molecular weight. As explained

in section 5.1, it aimed at testing a fluid less susceptible to gravity. Indeed, even if

we did not consider the gravity in the dynamics of fluids such as PS025, we know

from observation, and edge recognition methods (section 3.3.4), that the filament of

liquid is subject to gravitational sagging. Profiles of the new fluid MV1 such as figure
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5-4 proved its weaker dependence with gravity. Finally, in the previous numerical

simulations, the initial axial stress A' was an unknown that we had to guess. It was

then fixed at 1, even if we already knew that this value was wrong. Integrating a force

transducer to the CABER allowed to measure directly A'2, and then to use a better

value. It clearly improves the correspondence of experimental data and numerical

simulation, as shown in figure 6-6. A graphical summary of the current research in

the case of the visco-elastic fluids PS025 and MV1 is exposed in figures 7-1 and 7-2.

7.2 Future Work

7.2.1 Technical issues

The experimental setup CABER + Force Transducer is not optimal. The incompati-

bility between the DAQCard-1200 data acquisition card and the BNC-2110 connector

board explains why we had to use two different computer for the CABER and the

Force Transducer. This raises the problem of the synchronization of the two signals.

This would be better to use directly the CABER software for the force data with

the free channel already devoted to the Force Transducer in the CABER software. It

would also be very useful to have a CABER with a controlled temperature. It would

reduce the number of experimental data we need to fit, and it would avoid the use of

shift factors such as the Williams-Landel-Ferry shift factor (section 3.3.2).

7.2.2 Simulation issues

An improvement for the simulation would be to use a multi-mode FENE-P and not a

single mode FENE-P model as done in the current research. The Matlab code used for

the CABER simulations offers already the possibility of working with several modes.

Thus, the numerical simulations of the force decrease and of the evolution of the force

during CABER experiments would maybe fit better with the experimental data. At

the beginning of the necking, the difference in the shape between experimental data

and numerical simulation (as can be seen in figure 7-1) may be solved in the case of
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Figure 7-1: Experimental data and simulation of the evolution of the radius and the

force during a CABER experiment for PS025. On the step strain imposed the initial

gap and the final gap betwwen the plates are'respectively Lo = 3 mm and Lf = 14 mm.
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Figure 7-2: Experimental data and simulation of the evolution of the radius and the

force during a CABER experiment for MV1. On the step strain imposed the initial

gap and the final gap betwwen the plates are respectively Lo = 3 mm and Lf = 14 mm.
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a multi-mode model.

According to the the FENE-P model based on one-dimensional analysis by Entov

and Hinch, the logarithmic plot of the force versus the radius during a CABER

experiment should be linear: the force monotonically decays towards zero at the same

necking rate as the filament radius. A simulation of the forces obeying to Giesekus and

FENE models has been recently performed by Fontelos and Li [FL04]. Nevertheless,

no experimental study has ever demonstrated this behavior. The figure 7-3 is then the

first to present experimental data of this kind. The main part of the curves presented

for the viscoelastic fluids PS025 and MV1, and the Newtonian solvent (Styrene Oil)

are linear. As expected, this clearly shows that the force and the radius decay at the

same rate. This is not the case right after the stretching, as the viscous force drops

due to the the sudden drop of the strain rate (section 6.1). The data here is limited

by the minimum force we can measure with our experimental setup: as indicated in

section 6.2.2, the minimum force we can measure is F = 10-5 N. The minimum

radius that we can measure (R = 20 jm) is not constraining here. Clearly, there

is an issue with MV1. It could come from the fact that the fluid drains during the

necking process. Then, the gravitational force which had been "tared" in the force

balance is too small to balance the real contribution of the gravity. It would explain

why the force keeps being constant when the radius decreases.

This field presents interesting features for a future work.

91

Chtapter 7. Conclusion and Future Work 7.2. Future Work



7.2. Future Work Chapter 7. Conclusion and Future Work

10-2

10-3

-' 10

10~

10~

0.1
R/Ro

Figure 7-3: Plot in log-log scale of the force measured on the bottom plate of the

CABER as a function of the radius of the liquid filament.
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