
PIC Simulation of SPT Hall Thrusters: High

Power Operation and Wall Effects

by

Kay Ueda Sullivan

Submitted to the Department of Aeronautical and Astronautical
Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautical and Astronautical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

@ Massachusetts Institute of Technology 2004. All rights reserved.

A uthor.... ....... -a ; . ............ . . . .

Department of Aeronautical and Astronautical Engineering
y14, 2004

Certified L. ..........
Manuel Martinez-Sanchez

Professor

Certified by...............

Accepted by........... ..........

Thesis Supervisor

....................
Oleg Batishchev

Research Scientist
Thesis Supervisor

Edward M. Greitzer
H.N. Slater Professor of Aeronautics and Astronautics

Chair, Committee on Graduate Students

AERO

MASSACHUSETTS INS E
OF TECHNOLOGY

JUL 01 2004

URARIES



AI



PIC Simulation of SPT Hall Thrusters: High Power

Operation and Wall Effects

by

Kay Ueda Sullivan

Submitted to the Department of Aeronautical and Astronautical Engineering
on May 14, 2004, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautical and Astronautical Engineering

Abstract

The fully kinetic Hall Thruster simulation built by [1] and used by [2] is further refined
and used to obtain results for the P5 SPT Hall thruster at 3kw and 5kw operation.
Performance data agree well with experiments [3], although very low values of anoma-
lous diffusivity must be used for convergence. Particle temperatures and plasma po-
tentials in the chamber are similar to experimental results, although charged particles
and peak ionization rates are found further upstream than is observed experimentally.
Electron transport mechanisms and the magnetic field configuration are analyzed for
their physical consistency and effect on particle placement. Electron mobility rates
are found to be physical although the reason for high Hall parameter is still unclear.
Strong magnetic mirror effects, that are not reported in experimental data, are found
in the simulation. Meanwhile, two sputtering models are added to the simulation and
tested. A yield model based on [4]'s theories and implemented with [5]'s functions is
found to agree well with experimental yield data for 300eV to 1000eV sources, but
produces small yields at thruster operating conditions.
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Chapter 1

Introduction

1.1 Hall Thrusters

Hall thrusters are a type of electrostatic rocket engine characterized by the use of

appropriate electric and magnetic fields to accelerate ions from a low density plasma

while trapping the electrons with the ExB force. In brief, electrons are emitted by

an external cathode and drift azimuthaly around an annular discharge chamber while

slowly diffusing toward the anode. A low density gas, usually Xenon, is pumped into

the chamber from the anode and ionized by the circulating electrons. The resulting

ions, which are not magnetized due to their higher mass, are accelerated by the axial

electric field to produce thrust.

Hall thrusters are low thrust engines, less than IN, and have typically been used

for station keeping in Earth orbit. Consequently most current designs are optimized

for specific impulses between 1500 and 2000s. There is interest in developing Hall

thrusters that will operate efficiently at higher specific impulses, particularly for use

in interplanetary missions. Hall thrusters may show more durability and are less

complicated mechanically than the gridded Ion engines that currently fill the 3000 to

4000s niche. The key, however, is efficiency and lifetime. Unlike chemical propulsion,

the exhaust speed and specific impulse possible in electrostatic thrusters is theoreti-

cally limited only by the speed of light and the size of the power plant. In practice,

however, the degradation of thruster components through heating and erosion limits
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the lifetime of high power Hall thrusters.

1.2 Project Objectives

While Hall thrusters have been used in orbit for decades, a detailed understanding

of their internal physics is still developing. Computer simulation is proving to be

an important tool in this research area. Simulations are able to model regions of

the plasma that are difficult to probe experimentally, and a simulated thruster is

cheaper to redesign. Under funding from NASA, we are developing a full particle-

in-cell simulation of SPT and TAL Hall thrusters. When complete, the developed

simulations will serve as both a research tool and a design aid.

1.3 A Brief History of Code Development

The simulation used in this research was built by James Szabo, using the mini-TAL

Hall thruster geometry to test the initial model. Szabo obtained performance results

that were within 30% of the mini-TAL's experimental performance, and he was able

to redesign the thruster numerically to increase thrust and efficiency. Most of the

code features described in chapter 2 remain unchanged from what is presented in [1].

Vincent Blateau used the simulation to identify the effect of increased anode

voltage on the mini-TAL's efficiency. He later made several modifications to the

code, notably to the Poisson solver, cathode model, sheath calculation, and diffusions

model, with hopes of successfully modelling the P5, an SPT Hall thruster [2]. Blateau

was able to obtain convergence and reasonable performance data only with very low

diffusivity, although the internal densities, temperatures, and ionization strengths

still differed significantly from experiments.

16



1.4 Outline of Research

Starting where [2] left off, this research attempts to more accurately simulate the P5

SPT Hall Thruster, validate the existing physical models, and introduce a sputtering

model for eventual use in lifetime estimations. Better P5 results, presented in chapter

3, are obtained after returning to Szabo's anomalous diffusion model with a slightly

reduced Hall parameter. Chapter 4 goes into more detail on the anomalous diffusions

changes as well as presenting an analysis of the entire electron transport mechanism

of the simulated P5. Chapter 5 reports the discovery of strong magnetic bottling in

the supplied magnetic field, and the effects of changing the magnetic field on the P5

simulation. Finally, chapter 6 describes the two sputtering models added to the code

and some preliminary results from both models.
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Chapter 2

PIC Code Structure

2.1 Basic Structure

This simulation is a fully particle-in-cell simulation; electrons, ions, and neutrals

are all represented as particles. Three dimensions of velocity and two of position are

modelled. The thruster is axisymmetric, therefore azimuthal motion is projected back

into the radial-axial (z-r) plane. The simulation region is a 2D slice of the thruster

starting at the centerline and encompassing the chamber and part of the plume. The

cathode is not directly simulated.

2.1.1 Particle Motion

Electrons and ions are moved each iteration using a leapfrog method. The charged

particles are moved a half time step in the electric field, then a full time step in the

magnetic field, and then another half time step in the electric field. The time step is

approximately one third of the electron plasma time or one third of the electron gyro

time, whichever is smaller.

After the electromagnetic motion is calculated, collisions are applied. First and

second ionization of neutrals, electron-neutral scattering, electron-neutral excitation,

ion-neutral scattering, ion-neutral charge exchange, second ionization of ions, and

anomalous electron collisions are modelled. The anomalous collisions are used to

19



model the additional Bohm diffusion observed in plasmas. Coulomb collisions were

tested in the original model, but were found to have negligible effects and were turned

off [1].

The probability of a collision is determined by an exponential decay model. The

probability of a particle with collision frequency v undergoing at least one collision

in time dt is P = 1 - e 'd. A collision event occurs if a random number is less than

the probability of a collision. The collisions frequency is calculated using the collision

cross-section, the fast particle's velocity, and the slow particle density interpolated to

the fast particle's location. If a collision occurs, a second random number is compared

to each type of collisions frequency, ionization, scattering, etc., to determine which

type of collision is implemented.

2.1.2 Poisson Solver

The electric potential is found by solving Poisson's equation, V2 > = p/eo, on a control

volume around each grid node. Due to the higher mesh distortion in the P5, Blateau

modified the solving algorithm to use an 8-sided polygon about each node as the

control volume cross-section [21. The TAL model used only a 4-sided polygon. The

field is solved for the whole grid by using an iterative Successive-Over-Relaxation

technique on the above conditions. At some boundary nodes the full set of equations

do not need to be solved. At the anode the potential is the anode voltage. On the

free space boundary, the potential is set to -10V or the normal electric field is set

to zero, whichever results in the less negative potential. At the dielectric walls, the

internal electric field normal to the wall is neglected.

2.1.3 Magnetic Field

Because the self-induced magnetic field is negligible compared to the applied field

from a Hall thruster's coils, the simulation uses only a constant magnetic field. This

field is precompiled using a Maxwell-type generator and interpolated to the simulation

grid upon startup.

20



2.1.4 Numerical Tricks

To speed up the code, which in a true simulation would suffer from extreme stiff-

ness due to the very fast electron time scale, three numerical tricks are used. First,

superparticles are modelled instead of real particles. Each charged particle in the

simulation actually represents N real ions or electrons. Simulated neutrals have vari-

able sizes greater than or equal to one superparticle to account for the much higher

neutral densities in the chamber. The superparticle size N is determined by the de-

sired number of particles per cell, which is in turn based on computation time and

statistics.

Second, the time and length scales of electromagnetic phenomena are modified

by introducing an artificial permittivity 7. The artificial permittivity decreases the

plasma frequency and increases the Debye length. However, the Debye length must

remain smaller than about half the chamber for electromagnetic effects to occur on

relatively the correct scale, and once the plasma time drops below the cyclotron time,

no added benefit is gained.

Third, the heavy particle mass is reduced by a factor f = MjXer > 1. This
Xesimulated

increases the velocities of the heavy particles by V, allowing ions to exit the simula-

tion region in fewer time steps. In order to maintain the ion density and energy fluxes

at their nominal values, the neutral mass flow, the ionization current, and collision

cross-sections with heavy particles are also increased by /f.

2.1.5 Wall Sheath Fix

The sheath is determined self-consistently by accumulating the charges from impact-

ing ion and electrons. Due to their higher-than-normal velocity but normal density,

the ion number fluxes to the walls will be too high by V/f. This causes the sheath

to weaken, and more low energy electrons are lost to the wall than in the actual

thruster. Blateau identified that this energy loss was not important in the short-

chambered TAL, but became a significant source of error in the P5 geometry [2]. He

compensates for the weakened sheath by implementing a logical sheath. The differ-
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ence between the theoretical and actual sheath magnitudes is computed. Any electron

at the dielectric with energy less than -eK(A#real - A/comP) is specularly reflected

instead of being accommodated to the wall, where

kTe ITe+Tm-
In(.654-) (2.1)

e Te me

6. 5 7 kTe (2.2)

and

kT ITe+Ti 1 m-
A~comP " e ln(0.654 * 1) (2.3)

e Te f(2.e
1 kT

~ (-6.57 + - ln(f))- k- (2.4)
2 e

To maintain the current balance to the wall, an electron with E > A# real in the

vicinity of the wall impact is chosen to impact on the wall instead. This reflects the

fact that in the actual plasma, only these high energy electrons can reach the wall,

while in the computational plasma, with its weaker sheath, lower energy electrons

can also reach the wall.

If at the end of an iteration there are not enough high energy electrons to match

all wall collisions, the coefficient K is multiplied by 0.95 and the remaining collisions

are "forgotten". The lack of high energy electrons indicates that the estimated sheath

is too strong. The coefficient K serves to reduce the analytical sheath strength.

2.1.6 Cathode Model

The cathode is not included in the simulation region, therefore fluxes through the

free space boundary must account for the injected electrons. The current cathode

model was developed by Blateau [2]. Neutrality is maintained along the free space

boundary by injecting electrons with a half-Maxwellian distribution in cells with

positive potential. Boundary cells with negative potential are left alone. Electrons

hitting the upper free space boundary are reflected with an energy loss to simulate
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collisions with the walls at the end of the magnetic field lines.

2.2 Anomalous Diffusion

In [6], Blateau used a direct random walk method for simulating anomalous diffusion.

As reported there, the simulation only converged for very low values of diffusion.

Performance characteristics for that case were within 15% of experimental data, but

the electron temperature, in particular, was surprisingly high. A 2D test of the

diffusion model, however, showed that it was not producing mobility, and that it

artificially heated the electrons to temperatures as high as 100eV. Re-examination

of the original diffusion model showed that it was capable of producing equal to or

greater than the expected mobility. Results described here use the original anomalous

diffusion model from [1] with a Hall parameter of 400. A more detailed examination

of the diffusion model is presented in chapter 4.

2.3 P5 Geometry

The P5 is an SPT-type Hall thruster developed at the University of Michigan, Ann

Arbor [7]. Of particular interest for this study are the wall materials and thruster

dimensions. The discharge chamber walls are made of a 50% Boron Nitride (BN)

and 50% Silicon Dioxide (SiO2) ceramic. The inner pole piece guard disk is made

of pure Boron Nitride, although no distinction between the chamber and the guard

disk materials is made in this simulation. The anode and the front outer pole, the

only other solid pieces in the simulation, are composed of stainless steel and iron

respectively. Figure 2-1 shows these features under the 88 by 96 node grid. As

shown, the simulation region extends 4 cm downstream from the chamber exit and

down to the thruster centerline. The discharge chamber is 25mm wide and 38mm

long.
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Chapter 3

P5 Results

3.1 Conditions for Current Runs

The current grid has 88x96 cells. In the center of the chamber, the average cell length

is 0.8mm, and the cell volume is 0.296cm3 . A mass factor of 1000 and an artificial

permittivity of 1600, result in a maximum artificial Debye length of approximately

1mm, which is still much smaller than, for instance, the channel width of the P5

(25mm). The maximum electron plasma frequency and Larmor frequency are both

on the order of 108 Hz, resulting in a time step of approximately 10- 0 s per iteration.

With this time step and mass factor, neutrals take approximately 140,000 iterations to

clear the chamber. The anomalous Hall parameter is set to 400. The radial magnetic

field strength and field lines are shown in figure 3-1. (This field was given to MIT

by the University of Michigan in Anne Arbor.) The peak field strength is adjusted

proportional to - /(V) in order to keep the Larmor radius constant; a procedure that

should produce optimal efficiency in SPT-type Hall thrusters [23.

3.2 Simulation Results

We tested the simulation of the P5 at 3kW and 5kW. Experimental data from James

Haas [3] were used to check results. Haas took extensive measurements at 3kW and

also gave performance data for 5kW operation. All settings except the anode voltage,
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Figure 3-1: Radial Magnetic Field used at MIT

maximum magnetic field, and neutral flow rate were the same between the runs. A

comparison of the simulated and experimental performance data is listed in table 3.1.

Table 3.1: Summary of Code and Experimental Thruster Performance
3kW PIC 3kW Haas 5kW PIC 5kW Haas

Maximum B (G) 290G 250 360 360
Anode Voltage (V) 300 300 500 500
Anode Current (A) 7.5 10 7.4 10
Mass Flow Rate (mg/s) 11.41 10.74 10.83 10.83
Thrust (mN) 180 180 226 240
ISP (s) 1600 1650 2210 2300
Efficiency 0.63 0.48 0.64 0.57
Oscillation Freq (kHz) 6.5 N/A 11.7 11

The code correctly predicts thrust and specific impulse, but under predicts the

anode current by 25% at both power settings. The main oscillation frequency observed

in the plasma, after being corrected for the artificial permittivity, matches the anode

current oscillation frequency observed by Haas.

A more detailed look into the thruster operation shows that most phenomena are

concentrated closer to the anode and over a larger region than expected from the

experimental results. Time-averaged plasma potential simulations, figure 3-3, show a

gradual drop towards the anode, while the probe data, figure 3-2 show a high potential

filling most of the chamber and dropping suddenly near the chamber exit. At 3kW
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the simulated and measured potentials both exhibit a bowing out near the center of

the chamber exit that is much weaker at other voltages. Along the bottom wall, at

both simulation conditions, there is an area of positive charge and an inverted sheath.

This may be due to a lack of particles in the bottom half of the chamber.

Figure 3-2: Experimental Plasma Potential 3kw [3]
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Figure 3-3: Average Plasma Potential 3kw (left) and 5kw (right)

The time-averaged ion density peak, figure 3-5, is of the right magnitude, but

is severely shifted toward the anode compared to the probe data, figure 3-4. The

simulated ion density profile is also much wider than measured experimentally. Haas

shows the ion density peaking at the channel exit and almost immediately dropping off

upstream. The simulation results show medium to high densities filling the chamber

in a fish-like shape. Figure 3-6 shows that the peak ionization is right on top of

the anode. While this is consistent with the density peak near the anode, the peak

ionization region should be near the end of the chamber in the area of maximum
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magnetic field. The peak densities of Xe++ ions is further down stream, figure 3-7,

but the number of Xe++ ions is insignificant compared to the number of Xe+ ions.

Figure 3-4: Experimental Ion Density 3kw [3]
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Figure 3-5: Average Ion Density 3kw (left) and 5kw (right)

The average electron temperatures in the chamber, shown in figure 3-9, are lower

than those observed experimentally, figure 3-8 by about 10eV, but have approximately

the correct shape and concentration. Both the measured and simulated temperatures

are concentrated between 20 and 35mm down the chamber, although the simulated

results are slightly shifted towards the anode.
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Figure 3-7: Average Xe++ Distribution 3kw (left) and 5kw (right)

3.3 Effect of Increased Voltage

The results at 500V very closely resemble those at 300V. The plasma potential falls

at relatively the same rate in the channel, figure 3-3. The ion density peak is con-

centrated closer to the anode, but is of a similar magnitude, figure 3-5. The peak

double ion density is doubled but in a similar location, figure 3-7, and still does not

approach the same order of magnitude as the single ion density. The electron tem-

perature is found closer to the outer dielectric wall, and as expected, has increased

with the anode voltage, figure 3-9.
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Figure 3-8: Experimental Electron Temperature 3kw [3]
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3.4 Evolution of density and temperature

Following the operation of the thruster over time shows deep oscillations at a fre-

quency much lower than plasma frequency. The magnitude of these oscillations

shrinks as the anomalous diffusion is reduced and becomes more severe as the anoma-

lous diffusion is increased. Oscillations also become less severe with higher voltage.

Figures 3-10, 3-11, 3-12, 3-13 show ion density profiles at the half-way-to-maximum,

maximum, half-way-to-minimum, and minimum current peaks. When rising, the ions

form the fish-shape seen in the time averages. As the current falls, the ions become

less concentrated, ending in isolated patches of ions at time of minimum current.

The electron temperature, figures 3-14, 3-15, 3-16, 3-17, is out of phase from the

ion density by a quarter cycle. When the current and ion density is rising, the electron

temperature is at a minimum. When the current is falling, the electron temperature
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is at a maximum. The temperature peak approximately corresponds to the axial

location of peak magnetic field magnitude. The temperature in the plume decreases

as the temperature in the chamber increases.

3.5 Discussion

While we have successfully simulated the P5 at 3kw and 5kw operation, several dis-

crepancies exist between our simulation results and experimental results. The major

issues with the full simulation results are the high Hall parameter, an ionization re-

gion located very near the anode, and the collapse of the bottom sheath. Most of

our subsequent work focuses on rooting out the cause of these problems. In [81, we

speculated that either the axial electron mobility was still elevated, despite the re-

duced anomalous diffusion, or that there were unaccounted for mechanisms artificially

enhancing the ionization rates, or that the probe data underestimated the electron

density near the anode. The next two chapters will reexamine the particle transport

mechanisms and simulation inputs for significant improvements to our results.
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Chapter 4

Electron Transport

4.1 Anomalous Diffusion

Anomalous diffusion is modelled via a modification of Bohm's diffusion formula

_kTe

Dano - , eB (4.1)
# eB

where the anomalous Hall parameter /' is chosen parametrically. The current pro-

cedure is to execute additional collisions over and above the number indicated by

the existing densities and cross sections. The frequency Vano of these extra collisions

follows from equating 4.1 to the classical expression

kTe 1 3Dedass = cl/ 2  (4.2)
Me oc 1+#0

where # = W'Q =Wewhere~ = Vano+vclassic) - 1iot

For low collisionallity vtot << we the solution is

0# - ~ #/ (4.3)
2

The anomalous collision frequency is extracted by calculating the classical collision

frequency

Vdassic = Z QfnVe = VXe+ + Vexcite + Iscatter (4.4)
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and subtracting it from the total collision frequency such that

lano = vtot - velassic= - nVe (4.5)

Note that due to the square root term in equation 4.3, /' must be greater or

equal to 2. A stricter limit also exists because the code, as currently implemented,

can only calcuate one collision event per electron per iteration, meaning vtotdt < 1.

The time step is on the order of !Z'-, which after some manipulation leads to the

condition 0' > 2.09. If the stricter condition described in [2], Vtotdt < 10, is used to

reduce the probability of two or more anomalous collisions occuring in one timestep,

the restriction on the Hall parameter becomes 0' > 20.9.

As mentioned in chapter 2, all collision frequencies must be increased by V in

order to be correct relative to the increased ion flux. This is acomplished by replacing

/' with J- and multiplying the classical collision cross sections by ,ff. Taking the
V7i

mass factor into acount effectively increases the lower bound on 0'. Now must be

greater than 2.9. The minimum Hall parameter with a mass factor of 1000 is 66. If

the stricter probability condition is used, the Hall parameter must exceed 660!

The originally recommended 0' parameter is 16, but other researchers [1], [9] have

found that best agreement with performance data in Hall thrusters requires a larger

value, of the order of 64. This value is also supported by direct simulation results

presented by Batishchev [10]. In our numerical work on the P5 thruster, we have

found that even these larger values of /' (which imply a reduced level of anomalous

mobility) are insufficient, and that best performance and oscillation results require

/' r 200 - 400. Figure 4-1 shows computed current versus time for a series of test

runs using different 0' values. It can be seen that lower values of /3' normally lead

to either divergence or extinction of the discharge and to clearly inaccurate average

current in any case.
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Figure 4-1: Anode Current versus Time for Various Hall Parameters.

4.2 Isolated Mobility Tests

In order to investigate this effect, a series of test cases were devised in which the

plasma geometry of the P5 was retained, but most of the dynamics were suppressed.

Heavy particles were frozen in place, the electric field was fixed as a purely axial

and uniform field, and the magnetic field was made uniform and radial. The Poisson

solver was turned off, and a self-consistent sheath was not calculated. A large number

of electrons were tracked in these fields, and their mean axial velocities recorded after

many collisions and many gyrations. The results of these tests were at first surprising,

in that the implied electron cross-field mobility was typically several times greater

than could be calculated from equation 4.2 plus Einstein's relationship A = 1. UponD -kT Uo

closer inspection, it was found that a significant, sometimes dominant, contribution to

the axial displacement was due to secondary electron emission from the ceramic walls.

43



Since the secondary electron is emitted in a random direction, there is an average

displacement against the field associated with these events. Figure 4-2 shows a portion

of a trajectory in which this effect was captured. When the secondary emission was

also artificially suppressed, the computed mobility agreed with the calculation based

on collision frequency, figure 4-3.

end

start

0 5 I Is 2 2A 3 M 4

Figure 4-2: Primary to Secondary Electron Trajectory, inverted electric field

This 'wall conductivity' is, of course, not a new phenomenon, and its existence,

in association with secondary emission or with diffuse scattering from walls has been

postulated in the Russian literature for many years. However, based on estimates

derived from 1D modelling work [11] we had not expected it to be significant, except

perhaps locally in the highest electron temperature region.

4.3 Wall Effects in the Full Simulation

In an attempt to verify the effect of secondary electron emission (SEE) on the full

simulation, runs were preformed with SEE turned off. Based on the isolated tests,

when SEE is eliminated, all other things being constant, anomalous transport should

decrease. We therefore ran with lower anomalous Hall parameters, 200 and 64, to

compensate.
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Figure 4-3: Summary of Electron Cross-Field Velocity. Tested indicates average

simulated axial electron velocity. Calculated velocities are from 1 tot = L , using
simulated collision frequencies and field strengths.

4.3.1 Results

There are few differences between the normal simulation and the simulation without

SEE. Comparing the two cases at a #' = 200, we find the peak electron temperature

is now in the middle of the channel instead of closer to the upper wall, see figure 4-4,

although the temperatures are the of the same magnitude. The particles fill more of

the chamber with no SEE, figure 4-5, but the bottom sheath still collapses, although

at a point further up stream, see figures 4-6 and 4-7.

There is also no indication that the lack of SEE made a significant contribution

to the electron mobility. Due to the complex field geometry, it is difficult to get a

direct measurement of electron mobility, however the anode current is an indicator of

how many electrons travel across the magnetic field lines. The anode current, shown

in 4-8 is nearly identical between runs with the same Bohm coefficient regardless
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of secondary electron emission, however, the anode current may not be the best

indicator of cross-field mobility in our case because the major ionization region is so

far upstream. If the majority of electrons are generated in the ionization region, then

the majority of electrons do not have very far to travel to reach the anode.

4.3.2 Results with Radial B Only

To directly obtain an indicator of electron transport, we calculated the electron mobil-

ity I = in runs using the purely radial magnetic field with and without secondary

electron emission. As described in chapter 5, using a purely radial magnetic field

allowed the particles to fill the entire chamber and a sheath to form along both walls,

although the peak ionization location was unchanged. It also allowed us to easily find

the perpendicular velocity and electric field components in each cell.

The simulated and theoretical electron mobilities are calculated in each grid cell

using data averaged over 80,000 iterations. The simulated mobility is defined as

psim = - The theoretical mobility is made up of two parts, Bohm mobility and

classical mobility. The Bohm mobility is defined as pBohm = $ . The N/f factor is

a consequency of increasing all collision frequencies to keep up with increased heavy

particle fluxes. The mass factor f is equal to 1000 in all of the runs presented here.
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Figure 4-6: Average Plasma Potential with No SEE (left) full 3' = 200 run (right)

The mobility perpendicular to the magnetic field due to classical collisions is defined

as pLasscal = ,"***. Where vtot = vxe+ + vexcite + v1 'catte,. and we is the electron

cyclotron frequency we = -. Because the code does not currently report the total

collision frequency, it must be estimated from vtot = Qtv/fn < ve >. The total

collision cross section, Qt, is approximated by a polynomial fit to experimental data,

see [1]. In the energy ranges of interest here, those polynomials, which are also used

in the code, are

Qt = 1.Oe - 13(0.07588072747894 * E2 - 0.34475940259139 * E * VI5

47

sc20 MoMau&1040k 105 Apr04 I MOMENTS

n

1E+1

0E0
0 2 4 0 8 1

c20no*EE e omras2ndea 106Apr2004 | MOMENIs

10

pN

280
260
240
220
200
1SO
1S0
140

1 20
100

40
20
0

22

0 2 4 a a 1

wd0* -m ug806 2004 I MOMEN

10

pNO

280
260
240
220
200
180
ISO
140
120
100

80
80

40
22

0 2 4 6 a z



* 

-532 

1-U9

-3.221M

-3.6E-
260046

-4.67E4U

di6

n00 $W 1a90k 106 A0 a4 I MAiun

0 1 2 3 4 0 1 2 3 4
ZJcm) Z1CM)

Figure 4-7: Average Charge with No SEE (left) full 3' = 200 run (right)

+ 0.58473840309059 * E - 0.42726069455393 * 5+ 0.11430271021684)cm 2

for E < 2.8eV and

Qt = 1.Oe - 13(-0.00199145459640 * E2 + 0.02974653588357 * E * V'5

- 0.16550787909579 * E + 0.40171310068942 * v5I- - 0.31727871240879)cm 2

for 2.8eV < E < 24.7eV.

Averaging the simulated, classical, and Bohm mobilities over the regions defined

in figure 4-9 (chamber indicates the entire discharge chamber) produces table 4.1.

The bottom region is probably too sparsely populated to give an accurate indication

of the electron velocity there.

Averaging throughout the chamber, the electron transport is governed by the

classical collisions because of the large collisionality near the anode. This is the

region of highest particle densities (of all species) and highest ionization rates. In the

downstream half of the chamber, nearly all of the mobility is accounted for by the

IBohm Including the walls in the averaging region (half chamber w/walls) shows a

slight increase in simulated mobility, around 20%, without a corresponding increase

in either of the theoretical mobilities.

When secondary electron emission is turned off, table 4.2, we see the same pattern
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of behavior. There is a significant increase in the clasical and simulated mobility

in the chamber with no SEE (as compared to table 4.1), despite similar electron
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temperatures, electron velocities, and neutral densities between runs. In areas with

low classical collisionality, i.e. the half chamber and half chamber with walls regions,

there is a 25% decrease in the simulated mobility when SEE is removed, but not

the half decrease observed earlier in the isolated tests. With no SEE there is still

a 20% increase in simulated mobility when including the walls in the half chamber

averaging region. Note that turning SEE off brings the simulated mobility down to

theoretical levels in the bottom and plume regions. The plume region is defined as

the top right corner of the simulation region, or everything that is not the 'bottom'

and the 'chamber'. The half plume regions is as shown in figure 4-9. This strong

effect of SEE is surprising because there are very few electron impacts at all with the

vertical walls, much less SEE, and may indicate a bug in the code.

Table 4.1: Theoretical Bohm and Actual Mobility Averaged over Grid Region (M)

region MBohm Iclassical IBohm + Iclassical /aim

bottom 63.8415 0.4791 64.3206 552.26056
chamber 6.8208 44.4958 51.3166 45.1380

half chamber 5.5012 0.0583 5.5595 6.3367
half chamber w/walls 5.3818 0.0631 5.4450 7.6274

plume 14.4781 0.0154 14.4935 223.0618
half plume 8.8382 0.0100 8.8482 9.8260

Theoretical Bohm and Actual Mobility Averaged over Grid Region no SEE

region MBohm Iclassical /Bohm ± Iclassical /sim

bottom 63.8415 1.1689 65.0104 30.1337
chamber 6.8208 89.6846 96.5054 63.3367

half chamber 5.5012 0.0261 5.5273 4.6640

half chamber w/walls 5.3818 0.0443 5.4261 5.7332
plume 14.4781 0.0040 14.4820 5.1389

half plume 8.8382 0.0043 8.8425 6.2910
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4.4 Discussion

The effects of anomalous diffusion and secondary electron emission were explored for

the full simulation and simplified test cases. While SEE was responsible for half of

the observed electron mobility in simplified tests, secondary electron emission was

not a dominant effect in the full simulation, although its influence could be seen in

areas with low classical collisionality. A possible reasons for the discrepancy in this

regard between the isolated tests and the full runs is that in the full simulation, the

level of secondary electron emissions has a strong influence on the level of classical

collisionality. With ionization suppressed in the earlier isolated tests, elimination of

SEE halved the average axial electron velocity. The doubling of classical collisions

would increase the total mobility, accounting for the transport lost due to no SEE, at

least in regions where high neutral densities could support the increased ionization

and scattering rates. (See appendix A.)

Classical collisions were shown to be the overwhelming mechanism of electron

transport in the near-anode region, while anomalous diffusion was almost solely re-

sponsible for mobility in all other parts of the simulation. We also observed the

limited ability of collisions to produce mobility in areas where either anomalous or

classical collisions resulted in total mobilities on the order of 10s of (ml'). We have

so far, however, failed to identify the reason for the apparent need of an unexpectedly

high #' factor.
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Chapter 5

Examining the Magnetic Field

5.1 Magnetic Mirroring

The main cause for the collapse of the bottom sheath seems to be a lack of particles

impacting on the bottom wall. The first suspect is a magnetic mirroring effect. The

magnetic field lines do curve more severely near the bottom wall than near the top

wall. The fraction of isotropic electrons that can reach the wall is 1-CosO, where

0 is found from the mirroring condition sin6 = vBmin/Bm. Near the exit of the

chamber Bmin = 131G and Bm = 268G, giving a 0 of 440 and an acceptance fraction

of only 0.14. In the center of the chamber, where the magnetic field curvature is

strongest Bmin = 97.3G and Bmax = 305G, giving an acceptance fraction of 0.09.

The vast majority of an isotropic electron population, 90%, is being repelled from the

bottom wall by magnetic mirroring. This explains why there is a lack of particles in

the bottom half of the discharge chamber.

5.2 Simplified Magnetic Field

The simplest way to isolate the influence of the magnetic field curvature, i.e. mirror-

ing, while retaining all other dynamics is to fix the magnetic field as purely radial. We

zeroed the axial component of the old magnetic field and ran a full simulation. With

this method the perpendicular components of velocity, temperature, etc are simply
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the axial and theta components in each cell, and the electric and magnetic fields are

everywhere nearly perpendicular to each other. Contours of the radial component

and the modified field lines are shown in figure 5-1. While this field is physically

inconsistent, since it will not satisfy A - = 0 and A x B = 0, it is acceptable for

the purpose of eliminating the bottling effect. A Hall parameter 400 is used with an

anode voltage of 300V, a mass factor of 1000, and a gamma factor of 40.
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Figure 5-1: Simplified Radial Magnetic Field

The results time-averaged over the start-up oscillation exhibit nice, symmetric

contours where before the bottom section of the chamber lacked particles and the

bottom wall was positively charged, see figure 5-2. The ions and electrons completely

fill the chamber with a symmetric fishtail shape, the only difference between them

being a nearly-electron-free region three cells wide along both walls. Three cells cover

approximately three modified Debye lengths, and using three cells as the sheath width

yields a sheath strength of around 1OV, figure 5-3. Electron temperatures near the

wall range from 3eV along the bottom wall near the chamber exit, and 20eV towards

the center of the top wall, figure 5-4.

This run confirms the ability of the simulation to calculate a sheath on both

walls. The lack of a sheath in previous runs is due to a lack of particles hitting

the wall. The lack of particles is in turn due to the shape of the magnetic field

and magnetic mirroring. The peak ionization region, and therefore the peak charged

particle density, is unaffected and is still near the anode instead of the chamber exit.
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5.3 New Magnetic Field

Upon closer inspection, the magnetic field used thus far in our simulation, figure 3-1,

is not the field reported in [3]. We have recently obtained two new magnetic field files

courtesy of Justin Koo at the University of Michigan Ann Arbor. One of the new fields

is used by Koo in a hybrid-PIC simulation [12] and appears to be identical to the field

reported in [3], figure 5-5. The other, figure 5-6, which covers our entire simulation

region, appearers to correspond to the P5's magnetic field without magnetic screens,
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Figure 5-4: Br only average electron temperature

([13] figure 5.12d case 4). (Note, based on the field lines, the magnetic field we have

been using may correspond to the P5 baseline reported by [13] as figure 5.12d case 1.)

The magnetic field we currently use is slightly different than either. Besides having

a higher peak field strength, 300G versus 180G, which would be easily scalable, the

field lines are completely different. Figure 5-5 has mostly radial field lines with lower

Bmin/Bmax on most lines than figure 3-1. Figure 5-6 has slightly higher Bmin/Bmax

on most lines, implying stronger bottle effects than we currently see, and puts the

minimum B on the upper wall instead of 3 to 5mm away from the upper wall as in

figure 3-1.

5.4 Results without Magnetic Screens

With less curvature to the field lines and simulation results available in [121, we are

very interested in running the simulation with the field pictured in figure 5-5. But

because Koo's field starts 10mm downstream of the anode and does not extend to the

centerline of the thruster, we will have to wait until the larger field can be extrapolated

or obtained from other sources. Meanwhile, in the spirit of exploration, we will run

the second field, figure 5-6, that appearers to correspond to the P5's magnetic field

56

m 70k140k 11 8

10

To (eV)

I

61m

1 2

ziem)



Figure 5-5: Radial Magnetic Field from Koo
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Figure 5-6: P5 Radial Magnetic Field without Magnetic Screens

without magnetic screens.

The P5 field without magnetic screens was run from a neutral filled chamber with

a Hall parameter of 400 and an anode voltage of 300V. The field strength, with a

peak of 190G, was unmodified. The results were very different from the old magnetic

field results at the same settings. First, the startup oscillation took 1.5e-5s to peak

versus 1.5e-6s for the old 0' = 200 case, figure 5-7. Second, there was a strong startup
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oscillation, peak anode current of nearly 50A, which is missing from the old bc400

case. After the startup oscillation, the anode current appears to be heading into

steady-state oscillation of a similar amplitude to the #' = 400 case, but the frequency

is difficult to determine from the current data. Third, the particles more completely

fill the chamber with a more distributed region of peak density, figure 5-8. Fourth,

the non-negativity of the bottom wall is less pronounced resulting in a smaller area

with zero sheath, figure 5-9. The peak ionization region, however, remains right next

to the anode.
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Figure 5-8: Magnetic field without magnetic screens results - average electron density

Figure 5-9: Magnetic field without
in the chamber

magnetic screens results - average plasma potential

5.5 Discussion

Strong magnetic mirroring is responsible for the dearth of particles in the bottom

half of the chamber. The question is, why are similar strong bottling effects not

seen in experimental results. Based on figure 5-5, strong mirroring should occur
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along the entire bottom half of the chamber. One answer would be that the velocity

distributions are re-equilibrating due to collisions and cathode electrons entering the

chamber. The exact effect of re-filling the angular and energy distributions is complex.

An analysis of the interaction between electrostatic and electromagnetic repulsion

from the walls is needed.
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Chapter 6

Sputtering

6.1 Introduction

One of the main goals of this project was to make lifetime predictions for new and

existing thrusters. To this end, we implemented two sputtering models. The first was

a simple yield model that we used to verify the basic functions. The second was a

more complex yield model based on Yamamura's [4] formulas that included a more

realistic ejection angle for the sputtered neutrals.

6.2 Simple Model

In this basic yield model both the chamber walls and the inner pole piece are assumed

to be pure Boron Nitride. Sputtered particles are emitted with the incident ion's

energy and a random velocity direction. The sputtered particles are treated as BN

neutral particles, and allowed to undergo all collisions except ionization collisions.

The sputtering yield formula is taken from [14] which concludes that for energies

less than 100eV all ion-target pairs follow the relation:

S.
Yi = -(Et - 4U8 ) (6.1)

Us

Yi is the sputtering yield for a particular ion-target pair, U, is the sublimation energy
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of the target, Ej is the energy of the incident ion, and Si is the sputtering yield factor

which must be obtained experimentally. A sputtering yield factor Si of 0.01 is taken

from [15], who derived the sputtering coefficient from experimental data taken by

[16]. The sublimation energy of Boron Nitride is estimated to be 5eV, based on the

sublimation energies of Boron and Nitrogen, table 6.1.

This model is an improvement on the basic sputtering idea that at low energies the

yield, the number of expelled atoms per incident ion, is proportional to the energy of

the incident ion, or Y = K(E - ET). K is a constant. E is the incident ion's energy,

and ET is the threshold energy. From experiments with 117 different ion-target

combinations, [14] determines the factor 4U, approximates the sputtering threshold

energy and K = S/U,. This model has no angular dependance because, based on

the work of [17], [14] concludes that the threshold energy has a very small angular

dependance and the total yield has no angular dependance for energies less than 6

times the threshold energy or 24 times the sublimation energy. For higher energies,

[14] observes angular dependencies mostly coinciding with Sigmund [18], on whose

theories Yamamura's model is partially based.

6.3 Yamamura Model

A more sophisticated sputtering model uses functions taken from Cheng [5] to im-

plement the Matsunami normal yield and Yamamura angular yield models [4]. The

chamber walls and the inner pole piece are treated as 50% Boron Nitride 50% Silicon

Dioxide, but because the needed coefficients are not available for this ceramic, sput-

tering is performed for elemental Boron, Nitrogen, Silicon, and Oxygen separately.

The chemical element to be sputtered by any particular incoming ion is chosen at

random, with each element having an equal probability.
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6.3.1 Yamamura Normalized Angular Yield

In heavy-ion sputtering the threshold ion is dependant on incidence angle in the form

Y(6) Cos_ [ 1 - (Eth/ E)1/2 cos 0 (6.2)
Y(0) 1 - (Eth/E)1/2

The threshold energy in this case is not yet understood, therefore [4] recommends

using a formula similar to light-ion sputtering

Y(0) = cos-lfexp[-f coso0,pt(cosO-l - 1)] (6.3)
Y(0)

letting the exponent f include the effect of the angular threshold energy.

f =f,(1 + 2.5 )

= 1 - (Eth/.,/E)2

Ethang = 1.5L.q[1 + 1.38(M 1/M 2 )h|2

= 4M1M 2 /(M1 ± M2 )2

The exponent h is 0.834 for light-ion sputtering, M 2 > M 1 , and is equal to 0.18

for heavy-ion sputtering, M 2 < M 1 . f,, the Sigmund f, is given for many different

ion-target pairs in [4] as is the angular threshold energy, Ethang

The optimum incidence angle, O64t, is the angle which gives the maximum yield.

For heavy-ion sputtering

0Opt = 90 deg -286.0, 0 '.4 5  (6.4)

The parameter @ relates to surface channelling. It is a function of 1, and is tabulated

in [4] for E = 1eV.
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6.3.2 Yamamura Normal Yield

The normal yield, Y(E) must be known to determine the angular yield from the

above normalized formulas. [4] recommends using the third Matsunami formula

Y(E) = P ± " [1 - (Eth./E)1 /2]2. 8  (6.5)
1 + 0.35Usse(E)

E is the LSS reduced energy defined as

e = E/EL

M1 + M 2 Z1 Z2e 2

M2 a

a = 0.4685( 1 )
Z12/3 + Z22/3

Z1 and Z2 are the atomic numbers of the incoming ion and the target material re-

spectively. The threshold energy is this time

Ethn.orm= U,[1.9 + 3.8(M 1 /M 2) + 0.314(M 2/M 1 )124 ] (6.6)

The normal threshold energy, the parameter P, EL, and the sublimation energy U,

are tabulated by Yamamura, table 31 in [4], but the LSS elastic stopping cross section

see and see must be calculated from

Se(E) = ke1/2 (6.7)

3.441 /clog(E + 2.718)

" 1 + 6.355/V + e(-1.70 8 + 6.882fi)

The inelastic coefficient k is a function of the atomic numbers and masses of the

ion and target, and is tabulated by [4].

6.3.3 Low Energy Approximation

When E < Eth f goes to infinity, therefore an approximation to the yield must be

made for low energies. The method employed by Cheng, is to linearly extrapolate
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Table 6.1: Parameters Used in Yamamura Equations
element name Silicon Boron I Nitrogen Oxygen J

P 13.66 5.231 8.625 18.7
EL(eV) 5.913e5 4.526e5 5.105e5 5.228e5

k 0.112 0.102 0.107 0.107
Ethnarm(eV) 91.16 277.3 184.6 86.04

U,(eV) 4.63 5.77 4.92 2.6
f, 1.8 1.7 1.72 1.76

4(leV) 0.0978 0.1099 0.073 0.0845

Etha.,(eV) 95.24 308 198.9 91.58
pseudoE(eV) 150.0 640.0 385.0 161.0

absE(eV) 91.3 280.0 180.0 85.0

the yield from 0 yield at the normal threshold energy to the yield at some pesudo-

threshold energy where the Yamamura formulation still gives reasonable results.

All the inputs to the above equations that can be precomputed as well as / for

1eV are listed for each target element in table 6.1.

6.3.4 Neutral Ejection Velocity

Sputtered neutrals are ejected with the incoming ion's energy and a direction based

on the ion's energy and impact angle. The outgoing direction is statistically selected

based on the cumulative distribution functions

and

F 1 9)= 2 12 1 2 1 3 11-xF1 (01) = 2 [-x2 1 cCos {x2 + (- X- x + -) In[ 1 ]}]1 - c cos 0 2 4 2 2x 1 + x

1 2- sin 6 sin 6 1 sin4
F2 (#) = [4 -8( ]

27r 1 - e ECos 07 (61)

(6.9)

(6.10)

where x = sin01, E = K, 0 is the ion's angle perpendicular to the wall, 01 is exit

angle perpendicular to the wall, and # is the exit angle in the plane of the wall. The

full derivation of these distribution functions is in [5].
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6.4 Model Validation

The only experimental data we have found so far for BN and BNSiO2 sputtering by

Xenon at energies near what we see in the P5 is from [16]. [16] presents data from

a 350eV, 500eV, and 1000eV ion source. These ion energies are still several times

higher than what we expect to hit the wall in the simulation due to inefficiencies and

a weak sheath.

The simple model is compared to [16]'s data by directly calculating the yield

in Matlab at 350V, 500V, and 1000V. The results are shown in figure 6-1. The

simple model over predicts the yield by a factor of 6. Note that the simple model is

designed for energies less than 100eV, and its angular independence is not valid for

energies greater than 120eV (6 times the threshold energy 6 x 4U, = 6 x 4 x 5 =

120eV), therefore this comparison may not be fair. It may be that we are still under

predicting the threshold energy, or that the sputtering yield coefficient is incorrect.

Either way, our confidence in the simple model is low. With more tweaking to match

experimental data, reducing the sublimation energy to 20eV (threshold energy of

80eV) for example, the simple model could be a quick way of getting an estimate of

the total yield averaged over all angles. With the more accurate Yamamura model

already implemented, however, there seems little reason to continue with the simple

model.

The Yamamura model is compared to [16]'s data by building a test harness around

Cheng's C functions. Ions at 10 through 700eV over angles 0 to 90 degrees are fed

to the model. The results, shown in figure 6-2, are a bit more difficult to interpret

because the Yamamura model calculates the yield for each element in the wall material

while [16] tests the BN, SiO2 , and BNSiO2 compounds.

One failure of the Yamamura implementation comes from having to sputter each

element separately. [16] finds that BN is preferentially sputtered, even though it has

a lower yield separately, and controlls the overall yield of the BNSiO2 ceramic. We

choose the sputtered element randomly before calculating the yield, therefore the

total yield is just the average of the elemental yields. Figure 6-3 shows the supposed
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Figure 6-1: Yield Curve for Simple Sputtering Model

BN, SiO2 , and BNSiO2 yields along with the [16] data. The Yamamura model

results are very close to the experimental data at angles near normal incidence, and

over predict the yield by only a factor of 7 at the peak. The Yamamura results and

[16]'s data both show the same trend with impact angle with maximum yield between

600 and 70* from normal.

6.5 Full Simulation Sputtering Results

Both the simple and Yamamura models were run at anode voltages of 300 and 500

for 8 to 10 thousand iterations, or 4.4e-7s of simulated time. The Yamamura model

was also run at 700V. Other than the addition of sputtering, simulation settings were

the same as reported for the 3kW and 5kW runs in chapter 3. The runs were started

from the end of the 3kw startup plasma oscillation.

In 4.4e-7s there were at least 15,000 ion impacts at 3kW and at least 20,000 ion

impacts at 5kw, mostly along the top wall in both cases. No sputtered neutrals were

reported for either model at 3kW. At 5kW, only 1 sputtered neutral was reported

for 23,981 ion impacts with the Yamamura model, and 3 sputtered neutrals were
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reported for 27,297 ion impacts with the simple model. This corresponded to a

yield of 4.16997e-05 and 1.10e-04 sputtered particles per ion respectively. The final

Yamamura run, at 700V anode voltage, saw 34,535 ion impacts and 8 sputtered

neutrals for a yield of 2.32e-04. The simulated yields are plotted along with selected

predicted yields from the above section, figure 6-4.

6.6 Discussion

In our brief tests so far, all that can be said is that most ions are below threshold for

either model at 3kw, 5kw, and 7kw settings. Longer runs are needed to fully evaluate

the models, particularly the velocity at which sputtered neutrals are ejected. It may

be beneficial to adjust the absolute threshold energies used by the Yamamura model.

At the low energies we seem to be observing, small changes in threshold energies

can results in large changes in yield. In addition, the weak sheath is reducing the

incoming ion energy and angle, AVh~ Te instead of 5Te, and a correction in the

code should be implemented. A record of the actual ion incident angles and energies

should also be added for model evaluation and thruster design purposes.
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Comparing Yamamura Model and Simple Model to 5kW Simulation Results
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Chapter 7

Conclusions and Future Work

We successfully simulated the P5 at 3kw and 5kw operating conditions. While the

simulation results showed a few deviations from the probe data reported by [3], par-

ticularly in the placement of peak densities, we are confident that the basic physical

models in the simulation, (particle motion, collisions, transport, Poisson solver), are

correct. The major questions remaining are why must we use such a large Hall pa-

rameter, 200 to 400 instead of the classical value of 16, and why is the peak ionization

near the anode instead of the axial location of maximum magnetic field.

Testing the electron transport mechanisms from several angles confirmed that

the simulated electron mobility agreed with the theoretical mobility based on the

simulated collision frequencies. Secondary electron emission from the walls had a

strong effect on electron transport apparently by increasing the number of electrons

capable of ionizing and hence the ionization and excitation rates in the simulation.

While total mobility remained nearly constant when SEE was removed, the relative

contributions of classical collisions, anomalous collisions, and wall effects changed.

Magnetic mirroring was discovered to have a stronger effect on the simulation

than what had been reported experimentally. Further testing is needed to determine

why. The mirroring appeared to be independent of the electron transport question,

although the collisions and wall effects that produce mobility also influence the ob-

served velocity distribution functions.
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7.1 Future Work

Suggestions for further study are

" Conduct straight field mobility testing with varying Hall Parameter. Check

that the total collisions/mobility decreases with increasing Hall Parameter in

the full simulation. Currently we observe increasing classical collision rates with

increasing Hall Parameter. Classical Collision rates should be independent of

Hall Parameter.

" Run the full simulation and "straight" magnetic field with the logical sheath

off. The logical sheath was never fully tested. After a bit more thinking,

and particularly in light of the SEE findings, we do not believe the electron

energy loss needs correcting. Electron energy loss to the walls is FeW = 'e2 kTe

where Fe = "e e-5 is the electron number flux to the sheath. While Fe

is elevated due to the smaller sheath strength #, all other energy loss/gain

mechanisms, i.e. ionization collisions, motion up the potential well to the anode,

are accelerated by the same factor 4f, therefore the electron temperature should

remain constant with varying mass factor without any extra intervention in the

code.

" Obtain electron velocity distribution functions paying particular attention to

ratio of perpendicular and parallel components for mirroring. To explain the

strong effect of magnetic mirroring in our simulations, which is not seen in

experiment, we should determine

- How similar are the mean time between randomizing collisions and the

time to travel between channel walls?

- Do the velocity distributions "refill" in both energy and angle?

- If so what is the dominant factor in reintroducing high vg electrons to the

simulation? New cathode electrons? Collisions?
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- Examine effect of secondary electron emission from the walls on the elec-

tron velocity distribution functions. In the no SEE runs presented here,

particles appeared to fill the chamber more completely.

" Perform high power runs.

* Implement a correction on the ion energy hitting the wall due to the weakened

sheath. Test the Yamamura sputtering model in longer runs and at higher

power. If the sputtering yield is still very low, investigate adjusting the threshold

conditions. Compare results to erosion measurements from other SPT Hall

thrusters, for example [19] or [20].

" Explore different cathode conditions. The energy at which electrons are in-

jected to the free space boundary was never fully tested. The cathode could be

included in the simulation region by assuming a 12-o-clock position azimuthaly

and placing the cathode at the top of the grid, or by assuming a center core

cathode. Busek has high power thrusters with a center cathode, from where

experimental data could be obtained for comparison.

* Check free space and centerline collisions for bugs.

" Remove obsolete functions and thoroughly debug the software. This may have

to wait until the parallel code is running reliably. The code is currently too

messy to be tested by direct reading, and too slow to make careful incremental

testing practical.

" Investigate recent diffusion work by Cappelli [21], which suggests different dif-

fusion rates in the chamber and plume. While we have already observed the

interplay of classical and anomalous collisions in different regions of the simu-

lation, Cappelli's work may shed light on our choice of Hall parameter.

* Implement an accommodation coefficient other than 1 for neutrals at the wall.
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Appendix A

Effect of SEE on Classical

Collisions

While we do not have an accurate report of the total collision frequency executed

in the code, we do have an output file that claims to report, in unknown units, the

three ionization frequencies and the excitation collision frequency. If these data can

be trusted, what we notice is a significant increase in the classical collision frequencies

when SEE is reduced. The doubling of the estimated classical mobility in the chamber,

table 4.2, when secondary electron emission is turned off supports this finding. Figures

A-1, A-2, A-3, A-4 illustrate the relative number of ionization and excitation collisions

occurring with and without secondary electron emission with a Hall Parameter of 200.

All reported frequencies more than double when SEE is removed.

In retrospect, the reason behind the increased ionization is straight forward. Log-

ically, reducing SEE has the same effect on electron losses to the walls as increasing

the sheath strength. Assuming the ion flux to the wall is unaffected, no SEE reduces

the positive charge accumulation on the wall resulting in fewer electrons necessary

to reach equilibrium. This in turn results in more high energy electrons available for

other processes like ionization.
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Figure A-1: Neutral to Single Ionization Rate with #' = 200(left)#' = 200 noSEE
(right)

Figure A-2: Neutral to Double Ionization Rate with /' = 200(left),3' = 200 noSEE
(right)
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