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ABSTRACT

This thesis consists of five related essays which explore new approaches to help design
successful and profitable new products. The primary focus is the front end of the process where
the product development team is seeking improved input from customers and improved ideas for
developing products based on that input. Essay 1 examines whether carefully tailored ideation
incentives can improve creative output. The influence of incentives on idea generation is studied
using a formal model of the ideation process. A practical, web-based, asynchronous “ideation
game” is developed, allowing the implementation and test of various incentive schemes. Using
this system, an experiment is run, which demonstrates that incentives do have the capability to
improve idea generation, confirms the prediction from the theoretical analysis, and provides ad-
ditional insight on the mechanisms of ideation. Essay 2 proposes and tests new adaptive question
design and estimation algorithms for partial-profile conjoint analysis. The methods are based on
the identification and characterization of the set of parameters consistent with a respondent’s an-
swers. This feasible set is a polyhedron defined by equality constraints, each paired-comparison
question yielding a new constraint. Polyhedral question design attempts to reduce the feasible set
of parameters as rapidly as possible. Analytic Center estimation relies on the center of the feasi-
ble set. The proposed methods are evaluated relative to established benchmarks using simula-
tions, as well as a field test with 330 respondents. Essay 3 introduces polyhedral methods for
choice-based conjoint analysis, and generalizes the concept of D-efficiency to individual adapta-
tion. The performance of the methods is evaluated using simulations, and an empirical applica-
tion to the design of executive education programs is described. Essay 4 generalizes the existing
polyhedral methods for adaptive choice-based conjoint analysis by taking response error into ac-
count in the adaptive design and estimation of choice-based polyhedral questionnaires. The va-
lidity of the proposed approach is tested using simulations. Essay 5 studies the impact of Utility
Balance on efficiency and bias. A new definition of efficiency (M-efficiency) is also introduced,
which recognizes the necessity to match preference questions with the quantities used in the ul-
timate managerial decisions.
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Chapter 1: Idea Generation, Creativity, and Incentives

Abstract

Idea generation (ideation) is critical to the design and marketing of new products, to mar-
keting strategy, and to the creation of effective advertising copy. However, there has been rela-
tively little formal research on the underlying incentives with which to encourage participants to
focus their energies on relevant and novel ideas. Several problems have been identified with tra-
ditional ideation methods. For example, participants often free ride on other participants’ efforts
because rewards are typically based on the group-level output of ideation sessions.

This paper examines whether carefully tailored ideation incentives can improve creative
output. I begin by studying the influence of incentives on idea generation using a formal model
of the ideation process. This model identifies conditions under which it is efficient to simply re-
ward participants based on their contributions, and other conditions under which it is not. I show
that in the latter case, the group’s output can be improved by rewarding participants for their im-
pact on the other participants’ contribution. I then develop a practical, web-based, asynchronous
“ideation game,” which allows the implementation and test of various incentive schemes. Using
this system, I run an experiment, which demonstrates that incentives do have the capability to
improve idea generation, confirms the predictions from the theoretical analysis, and provides ad-

ditional insight on the mechanisms of ideation.



1. Introduction

Idea generation (ideation) is critical to the design and marketing of new products, to mar-
keting strategy, and to the creation of effective advertising copy. In new product development,
for example, idea generation is a key component of the front end of the process, often called the
“fuzzy front end” and recognized as one of the highest leverage points for a firm (Dahan and
Hauser 2001).

The best known idea generation methods have evolved from “brainstorming,” developed
by Osborn in the 1950’s (Osborn 1957). However, dozens of studies have demonstrated that
groups generating ideas using traditional brainstorming are less effective than individuals work-
ing alone (see Diehl and Stroebe 1987 or Lamm and Trommsdorff 1973 for a review). One cause
identified for this poor performance is free riding (Williams et al. 1981, Kerr and Bruun 1983,
Harkins and Petty 1982). In particular, participants free ride on each other’s creative effort be-
cause the output of idea generation sessions is typically considered at the group level, and par-
ticipants are not rewarded for their individual contributions. This suggests that idea generation
could be improved by providing appropriate incentives to the participants. Note that this free rid-
ing effect is likely to be magnified as firms seek input from customers (who typically do not to
have a strong interest in the firm’s success) at an increasingly early stage of the new product de-
velopment process (von Hippel and Katz 2002).

Surprisingly, agency theory appears to have paid little attention to the influence of incen-
tives on agents’ creative output. On the other hand, classic research in social psychology sug-
gests that incentives might actually have a negative effect on ideation. For example, the Hull-
Spence theory (Spence 1956) predicts an enhancing effect of rewards on performance in simple
tasks but a detrimental effect in complex tasks. The reason is that rewards increase indiscrimi-
nately all response tendencies. If complex tasks are defined as tasks in which there is a predispo-
sition to make more errors than correct responses, then this predisposition is amplified by re-
wards. Similarly, the social facilitation paradigm (Zajonc 1965) suggests that, insofar as incen-
tives are a source of arousal, they should enhance the emission of dominant, well-learned re-
sponses, but inhibit new responses, leading people to perform well only at tasks with which they
are familiar. McCullers (1978) points out that incentives enhance performance when it relies on

making “simple, routine, unchanging responses,” (p. 14) but that the role of incentives is far less




clear in situations that depend heavily on flexibility, conceptual and perceptual openness, or
creativity. McGraw (1978) identifies two conditions under which incentives will have a detri-
mental effect on performance: “first, when the task is interesting enough for subjects that the of-
fer of incentives is a superfluous source of motivation; second, when the solution to the task is
open-ended enough that the steps leading to a solution are not immediately obvious.” (p. 34)

In this paper I examine whether carefully tailored ideation incentives can improve crea-
tive output. In Section 2, I study the influence of incentives on idea generation using a formal
model of the ideation process. In Section 3, as a step towards implementing and testing the con-
clusions from Section 2, I present a practical, web-based, asynchronous “ideation game,” which
allows the implementation and test of various incentive schemes. Finally, in Section 4, I describe
an initial experiment conducted using this system. This experiment demonstrates that incentives
do have the capability to improve idea generation, is consistent with the predictions from the
theoretical analysis, and provides additional insight on the mechanisms of ideation. Section 5

concludes and suggests some possibilities for future research.
2. Theoretical Analysis

The goal of this section is to develop a theoretical framework allowing the study of idea
generation incentives. One characteristic of ideas is that they are usually not independent, but
rather build on each other to form streams of ideas. This is analogous to academic research, in
which papers build on each other, cite each other, and constitute streams of research. Let us de-
fine the contribution of a stream of ideas as the moderator’s valuation for these ideas (for sim-
plicity I shall not distinguish between the moderator and his or her client who uses and values the
ideas). The expected contribution of a stream of ideas can be viewed as a function of the number
of ideas in that stream. Let us assume that the expected contribution of a stream of n ideas is a
non-decreasing, concave function of n, such that each new idea has a non-negative expected
marginal contribution and such that there are diminishing returns to new ideas within a stream.
Note that the analysis would generalize to the case of increasing, or inverted U-shaped, returns.
(This might characterize situations in which the first few ideas in the stream build some founda-
tions, allowing subsequent ideas to carry the greatest part of the contribution.)

The model proposed here is based on Kuhn’s notion of an “essential tension” between

convergent thinking and divergent thinking (Kuhn 1977, Simonton 1988). Divergent thinking



involves changing perspectives and trying new approaches to problems, while convergent think-
ing relies on linear and logical steps and tends to be more incremental. Kuhn claims that “since
these two modes of thought are inevitably in conflict, it will follow that the ability to support a
tension that can occasionally become almost unbearable is one of the prime requisites for the
very best of scientific research.” (p. 226)

Although Kuhn’s focus is the history of science, his insights apply to idea generation. If
several streams of ideas have been established in an idea generation session, a participant has a
choice between contributing to one of the existing streams, and starting a new stream. If he or
she decides to contribute to an existing stream, he or she might have to choose between contrib-
uting to a longer, more mature stream, and a newer, emerging one. If we assume that each stream
of ideas reflects a different approach to the topic of the session, then the problem faced by the
participant can be viewed equivalently as that of deciding which approach to follow in his or her
search for new ideas.

I assume that some approaches can be more fruitful than others, and that the participant
does not know a priori the value of each approach but rather learns it through experience. He or
she then has to fulfill two potentially contradictory goals, reflecting Kuhn’s essential tension:
increasing short-term contribution by following an approach that has already proven fruitful, ver-
sus improving long-term contribution by investigating an approach on which little experience has
been accumulated so far.

For example, let us consider a group of participants generating ideas on “How to improve
the impact of the UN Security Council?” (which was the topic of the experimental sessions re-
ported in Section 4). Let us assume that at one point in the session, two streams of ideas have
emerged: a long stream, composed of ten ideas, all approaching the topic from a legal standpoint,
and a shorter stream, with only two ideas, both approaching the topic from a monetary stand-
point. Each participant then has to decide whether to search for new ideas following a legal, or a
monetary approach to the topic. The legal approach has already proven fruitful, whereas the

monetary approach is more risky but potentially more promising.
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This problem is typical in decision making and is well captured by a representation
known as the multi-armed bandit model (Bellman 1961)". For simplicity, let us first restrict our-
selves to a two-armed bandit, representing a choice between two approaches A and B. Let us as-
sume that by spending one unit of time thinking about the topic using approach A (respectively
B), a participant generates a relevant idea on the topic with unknown probability ps (respectively
pg). Participants hold some beliefs on these probabilities, which are updated after each trial. Note
that starting a new stream of ideas can be viewed as a special case in which a participant tries an
approach that has not been used successfully yet.

Let us complement this classical multi-armed bandit model by assuming that when N4

trials of approach A have been made, a proportion p , of which were successful, then the next

idea found using approach A has contribution &r”*** (similarly for approach B). This assumption
captures the fact that new ideas in a stream have diminishing marginal contribution (0<a<1 by
assumption). In the context of our previous example, this assumption implies that the third idea
following the monetary approach is likely to have a greater marginal contribution than the elev-
enth idea following the legal approach, which increases the attractiveness of the riskier monetary
approach.

Some problems (like mathematical problems or puzzles) have objective solutions. Once a
solution has been proposed, there is usually little to build upon. Such topics would be repre-
sented by a low value of a. On the other hand, many problems considered in idea generation are
more “open-ended” (trying to improve a product or service) and are such that consecutive ideas
refine and improve each other. Such situations correspond to higher values of a. The parameter a
could also depend on the preferences of the user(s) of the ideas. For example, the organizer of
the session might value many unrelated, rough ideas (low a), or, alternatively, value ideas that
lead to a deeper understanding and exploration of certain concepts (high a).

To analyze the tension in ideation, I first identify and characterize three stages in the idea
generation process. Next I consider the simple incentive scheme consisting of rewarding partici-
pants based on their individual contributions, and show that although it leads to optimal search

when a is small enough, it does not when a is large. For large a, this suggests the need for incen-

' Bandit is a reference to gambling machines (slot machines) that are often called one-armed bandits. In a
multi-armed bandit, the machine has multiple lever (arms) and the gambler can choose to pull any one of them at a
time.
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tives that interest participants in the future of the group’s output. I next show that, although such
incentives allow aligning the objectives of the participants with that of the moderator of the ses-
sion, they might lead to free riding. Avoiding free riding requires further tuning of the rewards
and can be addressed by rewarding participants more precisely for the impact of their contribu-

tions.

Three stages in the idea generation process

Let us consider a two-period model, in which a single participant searches for ideas, and
study the conditions under which it is optimal to follow the approach that has the higher versus
the lower prior expected probability of success. For simplicity, I shall refer to the former as the
“better-looking approach” and to the latter as the “worse-looking approach.”

I assume that the prior beliefs on p4 and pp at the beginning of period 1 are independent
and such that ps~Beta(nys, nar) and pg~Beta(ngs, ngr), with nas, nar, ngs, n3p21.2 The corre-
sponding expected probabilities of success are p , =E(pa)=nas/Na; p, =E(pp)=nps/Np, where Ny=
nas + nar and Np= ngs + npr can be interpreted as the total number of trials observed for A and B
respectively prior to period 1.3 For these assumptions the variance of the beliefs is inversely pro-
portional to the number of trals.

Two effects influence this model. First, if the uncertainty on the worse-looking approach
is large enough compared to the uncertainty on the better-looking approach, it might be optimal
to choose the worse-looking approach in period 1 although it implies a short-term loss. In par-
ticular, if the expected probability of success of the uncertain, worse-looking approach is close
enough to that of the more certain, better-looking approach, a success with the worse-looking
approach in period 1 might lead to updated beliefs that will make this approach much more ap-
pealing than the currently better-looking one.

For example, let us assume that the better-looking approach at the beginning of period 1,

B, has a very stable expected probability of success which is around 0.61. By stable we mean that

2 These beliefs can be interpreted as corresponding to a situation in which the participant starts with some
initial prior uniform beliefs on p, and pp (pa~Beta(1,1) and pg~Beta(1,1)) and observes, prior to period 1, nss-1 suc-
cesses for A, ny~1 failures for A, ngs-1 successes for B, and ng1 failures for B. Because beta priors are conjugates
for binomial likelihoods (Gelman et al. 1995), the posterior beliefs after these observations (which are used as priors
at the be%inning of period 1) are ps~Beta(n,s, nar) and pg~Beta(ngs, ngr).

The uniform prior can be can be interpreted as resulting from the observation of one success and one fail-
ure for each approach.
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it will be similar at the beginning of period 2 whether a success or failure is observed for this ap-
proach in period 1 (Np is very large). Let us assume that the worse-looking approach, A, has an
expected probability of success of 0.60 at the beginning of period 1. However a success with this
approach would increase the posterior probability to 0.67 while a failure would decrease this
posterior probability to 0.50.* Then, playing B in period 1 would lead to a total expected contri-
bution of 0.61+0.61=1.22 (ignoring discounting for simplicity). Playing A in period 1 would lead
to an expected total contribution of 0.60+0.60*0.67+0.40*0.61=1.25 (play A in period 2 iff it
was successful in period 1), which is higher.

Second, if the number of trials (and successes) on the better-looking approach gets large,
this approach becomes over-exploited (due to the decreasing marginal returns) and it might be-
come more attractive to choose the worse looking approach: although the probability of success
is lower, the contribution in case of success is higher.

Let us define (we define similar quantities for B):

e ST(A) the expected contribution from period 1 obtained by choosing approach A in period
1 (ST stands for short-term).

e LT(A) the expected contribution from period 2, calculated at the beginning of period 1, if
A is played in period 1.

By definition, it is optimal to play B in period 1 if and only if ST(B)+LT(B) >
ST(A)+LT(A). If B is such that p, > p, , then ST(B)>ST(A) unless B has been over-exploited and
ST(B)<ST(A). The following propositions characterize three stages in the idea generation proc-
ess, labeled exploration, exploitation, and diversification. If B has been over-exploited, diversifi-
cation is optimal and A should be played in period 1. When B has not been over-exploited yet,
then if a is small enough, the exploitation of B is always optimal. In this case, exploring A would
be too costly: at the same time as the participant would learn more about p4, he or she would also
heavily decrease the attractiveness of this approach. On the other hand, when a is large enough,

then if A is uncertain enough compared to B, the exploration of A might be optimal in period 1.

* These probabilities would result from Ny=5, n,s=3, nap=2, implying that p 4 =3/5 and that p , after a suc-
cess is updated to 4/6.
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Exploration is characterized by a short-term loss incurred in order to increase long-term contri-

bution.

Proposition 1a: For all p,, Na, a<1, for all p , close enough to p , such

that p, < Dy, if B has been over-exploited (ST(B)SST(A)), then diversification is optimal

in period 1.

Proposition 1b: For all p,,Na, for all a close enough to 0, for all p , close enough

to p,such that p, < p,, if B has not been over-exploited (ST(B)>ST(A)), then the exploi-

tation of B is optimal in period 1.

Proposition 1¢: For all py, Na, for all a close enough to 1 such that a<1, for

all p , close enough to p, such that p,, < p,, there exists 0<Np* <Np** (0<Vp**<Vp*)
such that

o The exploitation of B is optimal if Ng<Ng* (Var(pg)>Vg*).
e The exploration of A is optimal if Ng*<Npg<Np** (Vg**<Var(pg)<Vp*).

e Diversification is optimal if Ng**<Np (Var(pg)<Vp**).

The proofs to the propositions are in Appendix 1. Note that the above propositions focus
on the more interesting case where the expected probabilities of success of the two approaches
are close.

The identification and characterization of these three stages provides a useful background
for the study of idea generation incentives. In particular, short-term focus is optimal in the diver-
sification and exploitation stages, such that participants trying to maximize their own contribu-
tions behave as if they were maximizing the group’s output. In the exploration stage, however,
participants have to forego some short-term contribution in order to increase the group’s future
output. In this case problems arise if participants are not given incentives to internalize the influ-

ence of their present actions on the future of the group.
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Rewarding participants for their individual contributions

Consider the incentive scheme that consists of rewarding participants based on their indi-
vidual contributions. In practice, this could be operationalized by having an external judge rate
each idea sequentially, and rewarding each participant based on the ratings of his or her ideas.
This scheme is probably among the first ones that come to mind, and addresses the free-riding
issue mentioned in the introduction. There are also many situations in which individual contribu-
tion is likely to be the most sophisticated metric available. It is then useful to identify some con-
ditions under which basing incentives on this metric leads participants to behave in a way that
maximizes the group’s total contribution, and conditions under which it does not.

Let us introduce a second participant into the model. Assume that, at each period, both
players simultaneously choose one of the two approaches. At the end of period 1, the outcomes
of both players’ searches are observed by both players, and players update their beliefs on p4 and
p3.5 . Each player’s payoff is proportional to his or her individual contribution, i.e., to the sum of
the contributions of his or her ideas from the two periods. The contribution of the group is equal
to the sum of the contributions of each player. Note that a applies equally for both players, such
that if a player finds an idea using a certain approach, the marginal return on this approach is
equally decreased for both participants. The assumption that players independently choose which
approach to follow and then share the output of their searches is probably more descriptive of
electronic ideation sessions (in which participants are seated at different terminals from which
they type in their new ideas and read the other participants’ ideas) than it is of traditional face-to-
face sessions. As will be seen later, electronic sessions have been shown to be more effective
than face-to-face sessions (Gallupe et al. 1991, Nunamaker et al. 1987).

Let us consider the subgame-perfect equilibrium (SPE) of the game played by the partici-
pants, as well as the socially optimal strategy, i.e., the strategy that maximizes the total expected

contribution of the group.

5 Equivalently, we could assume that players report the outcome of their 7=1 search only if it is successful,
by submitting a new idea. In this case if a player does not submit an idea at the end of period 1, the other player can
infer that her search was unsuccessful. Finally, we could interpret this assumption as meaning that “success” and
“failure” correspond to “good” and “fair” ideas, and that both types of ideas are worth submitting.
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Low-a case (rapidly decreasing returns)

When a is low, the marginal contribution of successive ideas following the same ap-
proach diminishes quickly. I this case, exploration is never optimal, which lowers the value of
group interactions. Consequently, actions that are optimal for self-interested participants trying
to maximize their own contributions are also optimal for the group. This is captured by the fol-

lowing proposition:

Proposition 2: For all Ny, Np, there exists a* such that O0<o<a*=forallp,, p,

such that p, < pyandp, is close enough to p,, if participants are rewarded based on

their own contributions, then a strategy (x,y) is played in period 1 in a SPE of the game

iff it is socially optimal.

High-a case (slowly decreasing returns)

When a is close to 1, there are situations in which exploration is optimal. However, ex-
ploration results in a short-term loss suffered only by the explorer, and a potential long-term
benefit enjoyed by the whole group (participants are assumed to share their ideas). There are then
some cases in which it is socially optimal that at least one player explores in period 1, but no
player will do so in any SPE of the game. This is illustrated by the following proposition when

o=1:

Proposition 3: If a=1, then for all p,, for all p , < p, close enough to p ,, there
exists Naiow<Nanigh (Viow<Vhign) such that if Np is large enough (Var(pg) low enough), then

®  Na<Nupigh (Var(pa)>Viow) implies that it is not socially optimal for both players to

choose B in period 1 (at least one player should explore)

®  Naww<Na<Nanigh (Viow<Var(pa)<Vhign) implies that both players choose B in pe-

riod 1 in any SPE of the game (no player actually explores)
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Interesting participants in the future of the group’s output

Proposition 3 demonstrates a potential misalignment problem when building on ideas
matters, that is, when the marginal returns to subsequent ideas are high. In order to overcome this
problem, participants should be forced to internalize the effect of their present actions on the fu-
ture of the other participants’ contribution. To study the dynamic nature of the incentives implied
by this observation, let us consider a more general framework, with an infinite horizon, N par-
ticipants, and a per-period discount factor J. Assume that participant i’s output from period ¢, y;,

has a probability density function f{' y, | x;, ..., Xy, s(¥;+) oy 1.1 ) » Where Xj; is participant j’s
action in period 7, and that participant i’s contribution from period 7 is C;i=C((y;,) jo1 yr=1.,) -

The two-armed bandit model considered earlier is a special case of this general model.
Interesting participants in the group’s future output allows aligning the incentives, but it
might also lead to free-riding. To illustrate this, let us consider the incentive scheme that consists
of rewarding a participant for his or her action in period ¢ according to a weighted average be-
tween his or her contribution in period ¢ and the other participants’ contribution in period t+1 S

More precisely, player i receives a payoff for his or her action in period ¢ proportional

to[y.C, +(1- y).é'.z C,,n]. Letus call S(y) such a scheme. We have the following proposition:

J#i

Proposition 4: In any infinite horizon game with discount factor 6<1, S(y) aligns the ob-
Jectives of the moderator and the participants for any form of the contribution and output func-

tions iff S(y) is equivalent to a proportional sharing rule in which player i receives a payoff for

his or her actions in period t proportional to Z C,.
i

Intuitively, in period # participant i gets, in addition to a share of C;; as a reward for his or

her actions in period ¢, a share of the other participants’ contribution from period ¢ (Z C;,/)asa

Jj#i
reward for his or her actions in period #-1. However, the fact that this reward is attributed to his

or her action in period #-/ is irrelevant in period ¢, since this action has already been taken. Hence

8 Proposition 4 would also hold with a weighted average between the participant’s contribution in period ¢
and a discounted sum of the other participants’ contribution in subsequent periods.
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the scheme is equivalent to giving the participant in period ¢ a reward equal to a weighted aver-
age between his or her contribution in period ¢ and the other participants’ contribution in the
same period.

The equivalence to a proportional sharing rule in this example illustrates how group in-
centives align the objectives at the same time as they introduce free riding (Holmstrom 1982),
even in a dynamic setting. In particular, although the objective function of the participants is
proportional to that of the moderator, it is possible for a participant to be paid without participat-
ing in the search. This imposes a cost on the moderator.

More precisely, let us assume that at each period, players have an option not to search for
ideas, or to search at a per-period cost c, and that the first-best level of effort is for all the players

to perform a search at each period. Then if the reward given to participant i at period ¢ is equal

to ,B.Z C,, , B has to be high enough for the incentive compatibility (IC) constraints of the par-
j

ticipants to be satisfied (i.e., such that each participant is willing to search in each period). In this
case free riding forces the moderator to redistribute a higher share of the created value to the par-

ticipants.7

Rewarding Participants for their Impact

In order to address free riding while still aligning the objectives, one option is to reward
each participant more precisely for that part of the group’s future contribution that depends di-
rectly on his or her actions, i.e., for his or her impact on the group. In particular, the following
proposition considers a modification of the above scheme that rewards participant i for his or her
action in period ¢ based on a weighted average between his or her contribution in period ¢, and
the impact of this action on the group’s future contribution (let us denote such a scheme by
S’(y)). Under this alternative scheme, the objectives of the participants remain aligned with that
of the moderator, because the only component removed from the participant’s objective function
is not under his or her control, and free riding is reduced, because a participant does not get re-
warded for the other participants’ contribution unless it is tied to his or her own actions. This re-

duces the share of the created value that needs to be redistributed to the participants. (The impact

7 Note that I assume that the moderator’s valuation for the ideas is high enough compared to c, such that it
is possible and optimal for him or her to induce the participants to search in each period.
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of participant i’s action in period ¢ is defined here as: Z o "’A(t,f)Z[C i - j-(i,1)] where

T=t+1 J#l
C jz(i,1) is the expected value of Cj; obtained when y; is null and all players maximize the

group’s expected output at each period, and A(t,7)= §".(1-8)/(5 — 67) is such that
7-1

> At,7) = 1for all  and 7).

t=1

Proposition 5: S°(1/2) is such that the objectives of the participants are aligned with that
of the moderator, and the total expected payoffs distributed in the session are lower than under a

proportional sharing rule.

Summary of this section

e Three stages can be defined in the idea generation process: exploration, exploitation and
diversification.

e  When the marginal contribution of new ideas following the same approach decreases
quickly, exploration is never optimal and rewarding participants based on their individual
contributions leads to optimal search.

e When the marginal contribution of new ideas following the same approach decreases
slowly, exploration can be optimal and rewarding participants based on their individual
contributions leads to suboptimal search.

e In the latter case, the group’s output can be improved by rewarding each participant
based on a weighted average between his or her individual contribution and his or her

impact on the group’s contribution.

This last result can be translated into a testable hypothesis. First, let us note that this re-
sult, like the others summarized above, assumes that all participants search for ideas at each pe-
riod. Hence the different incentive schemes should be compared holding participation constant.
The following hypothesis, which will be examined in the experiment in Section 4, is then suffi-

cient for the result to hold:
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Hypothesis: For a given level of participation, if the marginal contribution of new ideas
following the same approach is slowly diminishing, the total contribution of the group is greater
if participants are rewarded jor their impact than it is if they are rewarded for their individual

contributions.

The application and test of the insights from this theoretical analysis necessitate an idea
generation system that is compatible with the incentive schemes considered in this section, i.e.,
which allows the measurements necessary to their implementation. Moreover, for the theoretical
results to be managerially relevant, groups generating ideas using this system should perform
better when incentives are present than when they are not, and perform better than groups or in-
dividuals generating ideas with other established methods. In particular, this idea generation sys-
tem should not inhibit, and possibly enhance participants’ creative abilities. Section 3 proposes a

particular system.
3. An Ideation Game

I now describe an incentive-compatible “ideation game* that allows testing and imple-
menting the insights derived in Section 2. In this game, participants score points for their ideas,
the scoring scheme being adjustable to reward individual contribution, impact, or a weighted av-
erage of the two. The design of the game is based on the idea generation, bibliometric, and con-
tract theory literatures. Table 1 provides a summary of the requirements imposed on the system

and how they were addressed.

Table 1
Ideation game — requirements and corresponding solutions

Requirement Proposed solution
Address “Production Blocking” Asynchronous
Address “Fear of Evaluation” Anonymous

Objective measures
Mutual monitoring
Measure contribution and impact Ideas structured into trees

Prevent cheating Relational contract
Mutual monitoring
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Addressing “fear of evaluation” and “production blocking”

Although the primary requirement imposed on this idea generation system is to allow im-
plementing and testing the incentive schemes treated in Section 2, it should also be compatible
with the existing literature on idea generation. In particular, two main issues have been identified
with classical (face-to-face) idea generation sessions, in addition to free riding (Diehl and
Stroebe 1987). The first one, “production blocking,” happens with classical idea generation ses-
sions when participants are unable to express themselves simultaneously. The second one, “fear
of evaluation,” corresponds to the fear of negative evaluation by the other participants, the mod-
erator, or external judges. These two issues have been shown to be reduced by electronic idea
generation sessions (Gallupe et al. 1991, Nunamaker et al. 1987), in which participation is asyn-
chronous (therefore reducing production blocking) and in which the participants are anonymous
(therefore reducing fear of evaluation). The online system proposed here is anonymous and
asynchronous as well. In particular, participants create (or are given) an anonymous login and
password, and log on to the idea generation session at their convenience (the session lasts typi-

cally for a few days).

Measuring the contribution and the impact of participants

One simple way to measure the contribution and impact of participants would be to have
them evaluated by external judges. However, this approach has limitations. First, it is likely to
trigger fear of evaluation. Second, the evaluation criteria of the moderator, the judges and the
participants might differ. Third, it increases the cost of the session. The proposed ideation game
instead adopts a structure that provides objective measures of these quantities. These objective
measures do not require additional evaluation, are computed based on well-stated rules, and offer
continuous feedback on the performance of the participants.

Bibliometric research suggests that the number of ideas submitted by a participant should
be a good measure of his or her contribution, and that his or her number of “citations” should be
a good measure of his or her impact (King 1987). The proposed structure adapts the concept of
citation count from the field of scientific publications (which are the focus of bibliometry), to
idea generation. An example is provided in Figure 1. Ideas are organized into “trees,” such that
the “son” of an idea appears below it, in a different color and with a different indentation (one

level further to the right). The relation between a “father-idea” and a “son-idea” is that the son-
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idea builds on its father-idea. More precisely, when a participant enters a new idea, he or she has
the option to place it at the top of a new tree (by selecting “enter an idea not building on any pre-
vious idea”) or to build on an existing idea (by entering the identification number of the father-
idea and clicking on “build on/react to idea #...””). Note that an idea can have more than one
“son,” but at most one “father” (the investigation of more complex graph structures allowing
multiple fathers is left for future research). The assignment of a father-idea to a new idea is left
to the author of the new idea (see below how incentives are given to make the correct assign-

ment).

Figure 1
Example of an ideation game

~(idea #77) dperry. The Secunty Council will never have power as long as TOPIC: How can the impact of the UN security counal be increased?

there exist P s who have 1 1ves to go against UN orders. We . i
" L Lo 7 h
need to set up incentives in such a way that it is disadvantageous to the US test?, y°"R e 0 points
(and other superpowers) to dc so ecompute View the rules of the Game

-(idea #79) dsc: One problem with this approach 1s How will we ever
be able to get the US to cede sower to the UN? We can't credibly get
countnes to agree to destroy (and not rebuild) ther arms, for example There
15 no way to enforce this| . - — — .

-(idea #81) Jrerry hoys about gwmg the UM seouity < suncil a j Enter an idsa not building on any previous idea ) @
steckpie of weapons or an armed ferce (separate from any natien) thar tt
could uze t enforce it's order 7 .

-(idea #84) d.c: I fal to see how we could set it up so that React to / build on idea # : @
people would want to serve in the UN's armed forces rather than in the
armed forces of their own country?
-(idea #36) dperry Indeed, The prestige of the armed
forces of the UN would need to precede it's strong buildup. But perhaps we
could start with paying these soldiers a lot!

-(idea #136) dsc: One problem with this approach is that
giving weapons to the UN itself seems a little like a band-aid approach to the
problem. Giving the UN the weapons, while keeping true decision making
power (which is directly tied t> economic power) doesn't really change the
scope of the "game.” We need to devise a strategy that aims to ft up the
smaller tries - while reducing the ive of more powerful countnees to
intimidate others. One thought (though admuttedly difficult to implement)
would be to tax the more powerful countnes based upon their stockpile of
weapons and redirect those funds to lesser developed nations.

-(idea #138) dperry: In parhcular, any treaty that 1s
agreed upon would have to nclude agreements that tied together each
tri decisions, deci: to buld weapons of mass
destruction, and decisions to exploit other countries. The US sort of does this
imphcitly when it gives aid to nountries to deter them from bemg
hostile/building weapons. But perhaps making the agreement unform across
all nations would improve the viability of the UN. -

The impact of an idea y can then be measured by considering the ideas that are lower than
y in the same tree. In the experiment described in the next section, impact was simply measured
by counting these “descendant” ideas. More precisely, participants rewarded for their impact
scored one point for each new idea that was entered in a tree below one of their ideas. For exam-
ple, if idea #2 built on idea #1, and idea #3 on idea #2, then when idea #3 was posted, one point

was given to the authors of both idea #1 and idea #2. Participants rewarded for their own contri-
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butions scored one point per idea. The exploration of alternative measures is left for future re-
search.

If a participant decides to build on an idea, a menu of “conjunctive phrases” (e.g. “More
precisely”, “On the other hand”, “However”...) is offered to him or her (a blank option is also
available), in order to facilitate the articulation of the links between ideas. Pretests suggested that

these phrases were useful to the participants.

Preventing cheating

Although this structure provides potential measures of the contribution and impact of the
different participants, if the scoring system were entirely automatic and if no subjective judgment
were ever made, participants could “cheat” by simply posting irrelevant ideas in order to score
unbounded numbers of points. Consequently, some level of subjective judgment seems inevita-
ble. These judgments, however, should keep fear of evaluation to a minimum, and limit costly
interventions by external judges. This is addressed by carefully defining the powers of the mod-
erator of the session. First, the moderator does not have the right to decide which ideas deserve
points. However, he or she has the power to expel participants who are found to cheat repeatedly,
i.e., who submit ideas that clearly do not address the topic of the session or who wrongly assign
new ideas to father-ideas. This type of relation between the participants and the moderator is
called a “relational contract” in agency theory. In this relationship the source of motivation for
the agent is the fear of termination of his or her relation with the principal (Baker at al. 1998,
Levin 2003). In the present case, if the moderator checks the session often enough, it is optimal
for participants to only submit ideas which they believe are relevant.

In order to reduce the frequency with which the moderator needs to check the session,
this relational contract is complemented by a mutual monitoring mechanism (Knez and Simester
2001, Varian 1990). In particular, if participant i submits an idea which is found to be fraudulent
by participant j, then j can “challenge” this idea.® This freezes the corresponding stream of ideas
(no participant can build on a challenged idea), until the moderator visits the session and deter-
mines who, between i and j, was right.” The participant who was judged to be wrong then pays a

fee to the other participant. The amount of this fee was fine-tuned based on pretests and was set

® In the implementation used so far, participants cannot challenge an idea if it has already been built upon.
® The idea is deleted if j was right.
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to 5 points in the experiment. This mechanism is economical because it reduces the frequency
with which the moderator needs to visit the session, without increasing its cost, since challenges
result in a transfer of points between participants (no extra points need to be distributed). Beyond
the cost factor, another argument in favor of having participants monitor each other is the finding
by Collaros and Anderson (1969) that fear of evaluation is greater when the evaluation is done
by an expert judge rather than by fellow participants. Note that in equilibrium, there should be no
challenges, because participants should only submit relevant ideas and challenge irrelevant ideas.

Indeed, in the experiment, there was only one challenge.

Practical implementation

This ideation game was programmed in php, using a MySQL database. Its structure and
the instructions were fine-tuned based on two pretests. The pretests used participants from a pro-
fessional marketing research/strategy firm. One pretest addressed an internal problem (improving
the workspace) and a second pretest addressed an external problem (how to re-enter a market).

In the implementation, the moderator also has the ability to enter comments, either on
specific ideas or on the overall session. Participants also have the ability to enter comments on
specific ideas. This allows them, for example, to ask for clarification or to make observations
that do not directly address the topic of the session. The difference between comments and ideas
is that comments are not required to contribute positively to the session, and are not rewarded.

Finally, note that the implementation choices (e.g., amount of the fee in case of a chal-
lenge), although determined by the pretests, are likely to be improved with further experimenta-

tion.
4. Experiment

The experiment presented in this paper has two primary goals. The first goal is to test
whether incentives have the power to improve the output of idea generation sessions. Recall that
some research in social psychology suggests that incentives will have a negative influence on
performance. The second goal is to verify the hypothesis, stated in Section 2, that under certain
conditions, the total contribution of the group can be improved by rewarding each participant for
the impact of his or her contribution, as opposed to his or her own contribution. This experiment

also allows studying further the influence of incentives on the dynamics of idea generation.
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Experimental design

The experiment used the ideation game described in the previous section, and had three
conditions. The only difference between conditions was the incentive system, that is, the manner
in which points were scored in the game. Each participant was randomly assigned to one idea
generation session, and each idea generation session was assigned to one of the three conditions
(all participants in a given session were given the same incentive scheme). The points scored
during the session were later translated into cash rewards. Recall that the hypothesis derived in
Section 2 relies on two assumptions: an equal level of participation, and a slowly diminishing
marginal contribution. The latter is implied by the systematic measures of contribution and im-
pact used in this experiment, which value all ideas equally. The former was addressed by cali-
brating the value of points in the different conditions based on a pretest, such that participants in
all conditions could expect similar payoffs,'®

A total of 78 participants took part in the experiment over a period of 10 days, signing up
for the sessions at their convenience. Three sets of parallel sessions were run (one session per
condition in each set), defining three “waves” of participants.'' Each session lasted up to five
days, and within each wave, the termination time of the three sessions was the same.'?

The first condition (the “Flat” condition) was such that participants received a flat reward
of $10 for participation. In this condition, no points were scored (points were not even men-
tioned).

In the second condition (the “Own” condition), participants were rewarded based exclu-

sively on their own contributions, and scored one point per idea submitted (each point was worth

$3).

'°In this pretest, a group of approximately 15 employees from a market research firm generated ideas on
“How can we better utilize our office space?”. Points were scored using the same scheme as in the “Impact” condi-
tion. Although points were not translated to monetary rewards in this pretest, participants found the game stimulat-
ing and felt directly concerned with the topic, resulting in 40 ideas submitted. Calibration was done conservatively,
such that based on the pretest, participants in the “Flat” condition should expect slightly higher payoffs than partici-
pants in the “Own” condition, who in turn should expect slightly higher payoffs than participants in the “Impact”
condition.

' The first wave consisted of the first 36 participants who signed up and had 12 participants per condition,
the second wave consisted of the following 20 participants, with 7 participants in the “Flat” and in the “Own” condi-
tions and 6 in the “Impact” condition, and the last wave consisted of the last 22 participants, with 8 in the “Flat”
condition, and 7 in the “Own” and “Impact” conditions.

"2 This termination time was usually driven by budget considerations. Messages were posted on the “Im-
pact” and “Own” sessions informing the participants that the session was over. The “Flat” sessions were not inter-
rupted, but only the ideas submitted before the termination of the other sessions were taken into account.
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In the third condition (the “Impact” condition), each participant was rewarded based
exclusively on the impact of his or her ideas. Participants scored one point each time an idea was
submitted that built on one of their own ideas (see previous section for the details of the scoring
scheme). One interpretation of this scoring rule could be that participants scored one point for
each “citation” of one of their ideas. Each point was worth $2 for the first two waves of partici-
pants; the value of points was decreased by half to $1 for the last wave. The results for the third
wave were similar to those for the first two waves; hence the same analysis was applied to the
data from the three waves.

In order to provide a strong test of the hypothesis that incentives can improve idea gen-
eration, an engaging topic, as well as some motivated participants, were selected. In particular,
the topic was: “How can the impact of the UN Security Council be increased?” (note that the ex-
periment was run in March 2003, at the time of the US-led war in Iraq), and the participants were
recruited at an anti-war walkout in a major metropolitan area on the east coast, as well as on the
campus of an east coast university.

Three graduate students in political science in the same university (naive to the hypothe-
ses) were later hired as expert judges, and were asked to evaluate independently the output of the

sessions on several qualitative criteria (the judges were paid $50 each for their work).

Verification of the theoretical hypothesis

As noted earlier, participants in this experiment were rewarded as if all ideas were
equally valued by the moderator (there was no discounting of ideas depending on their position
in a tree). More precisely, participants were rewarded as if the value of the parameter a from
Section 2 was equal to 1, i.e., as if contribution was measured by the number of ideas.

With a=1, the theoretical hypothesis proposed at the end of Section 2 suggests that the to-
tal number of ideas should be higher when participants are rewarded for their impact (measured
by their number of “citations”), than when they are rewarded for their number of ideas. Note the
counter-intuitive nature of this prediction: in the “Own” condition, although participants are try-
ing to maximize their number of ideas and know that the other participants in the group have the
same objective, they produce fewer ideas than the participants in the “Impact” condition who are

rewarded for their impact on the group. The intuition behind this prediction is that participants
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who are rewarded for their number of ideas are less likely to explore new approaches, which
leads to less inspiring ideas, which leads to fewer ideas in total.

The data are consistent with this prediction: compared to the “Own” condition, partici-
pants in the “Impact” condition submitted significantly more unique ideas (p-value<0.05), *
where the number of unique ideas is defined as the number of ideas minus the number of redun-
dant ideas (an idea is classified as redundant if it was judged as redundant by any of the three

judges).

Other quantitative results

Both the quantitative and qualitative results are summarized in Table 2. The quantitative
results are averaged across participants.

Compared to the “Own” condition, participants in the “Impact” condition not only sub-
mitted significantly more unique ideas, they were also significantly more likely to submit at least
one unique idea (p-value<0.04), submitted significantly more unique ideas conditioning on sub-
mitting at least one (p-value<0.02), and submitted ideas that were on average 76% longer. Par-
ticipants in the “Own” condition, in turn, performed better than participants in the “Flat” condi-

tion, although not significantly so on all metrics."*
Quality ratings
The qualitative results reported in Table 2 were obtained by averaging the ratings of the

three judges.'® The ratings were found to have a reliability of 0.75'® (Rust and Cooil 1994),

which is above the 0.7 benchmark often used in market research (Boulding et al. 1993).

1> One cannot assume that the number of ideas submitted by different participants are independent, since
participants are influenced by the ideas submitted by the other members of their group. An endogeneity issue arises,
because the number of ideas submitted by participant i depends on the number of ideas submitted by participant j,
and vice versa. In order to limit this issue, a regression was run with the number of ideas submitted by participant i
as the dependent variable, and three dummies (one per condition) as well as the number of ideas that were submitted
by the other members of participant i’s group before he signed up as independent variables. This last independent
variable is still endogenous, but it is pre-determined, leading to consistent estimates of the parameters (Greene
2000).

14 p-values below 0.18, 0.17, and 0.041 respectively for the number of unique ideas, for the proportion of
participants who submitted at least one unique idea, and for the number of unique ideas given that at least one was
submitted.

!> All ratings, except for the number of star ideas, are on a 10-point scale.

' For each measure and for each judge, the ratings were normalized to range between 0 and 1. Then ratings
were classified into three intervals: [0;1/3[, [1/3;2/3[, and [2/3;1].
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The sessions in the “Impact” condition were judged to have a larger overall contribution,
more “star” ideas (i.e., very good ideas), more breadth, depth, and to have ideas that on average
were more novel, thought-provoking and interactive (interactivity is defined here as the degree to

which a “son-idea” builds on its “father-idea” and improves upon it).

Hence the results suggest that incentives do have the capacity to improve idea generation,

and are consistent with the hypothesis formulated in Section 2.

Table 2
Results
Impact Own Flat

Quantitative results
Number of unique ideas per participant 4.6 2.3 0.8
Proportion of participants who posted at least one unique idea 68% 54% 48%
Number of unique ideas given that at least one 6.8 4.3 1.6
Number of words per idea 79.3 44.9 45.6
Qualitative ratings
Total contribution 5.8 47 3.6
Number of star ideas 6.2 3.3 1.7
Breadth 6.1 5.3 3.2
Depth 6.8 4.6 3.6
Novelty 5.6 5.2 4.4
Thought-provoking 5.8 5.2 4.0
Interactivity 7.3 4.7 3.2

* = Impact significantly larger than “Own” as 0.05 level. T = Own significantly larger than Flat at 0.05

level.

Reconciling the results with the social psychology literature

As was mentioned in the introduction, the social psychology literature seems to predict
that incentives are more likely to hurt idea generation. This prediction relies in great part on the
observation that idea generation is not a task in which there exist easy algorithmic solutions,
achievable by the straightforward application of certain operations. McGraw (1978) contrasts

tasks such that the path to a solution is “well mapped and straightforward” with tasks such that
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this path is more complicated and obscure. He argues that incentives are likely not to help with
this second type of tasks, but notes that “it is nonetheless possible for reward to facilitate per-
formance on such problems in the case where the algorithm (leading to a solution) is made obvi-
ous” (p. 54). Perhaps such facilitation might have happened in the present experiment. In particu-
lar, the structure of the ideation game might have made the mental steps leading to new ideas

more transparent, allowing the participants to approach the task in a more “algorithmic” manner.

Incentives and motivation

Table 2 indicates that fewer participants in the “Flat” condition submitted at least one
idea. Further analysis suggests that this might be due to a lower level of motivation of these par-
ticipants. More precisely, 100% of the participants who submitted at least one unique idea in the
“Flat” condition did so in the first 30 minutes after signing up, versus 65% for the “Impact” con-
dition and 64% for the “Own” condition. In particular, 18% (respectively 21%) of the partici-
pants who submitted at least one idea in the “Impact” condition (respectively the “Own” condi-
tion) did so more than three hours after signing up. This is consistent with the hypothesis that all
three conditions faced the same distribution of participants, but that when incentives were pre-

sent, participants tried harder to generate ideas and did not give up as easily.

Dynamics of the sessions

The study of the dynamics of the ideation sessions, although not directly testing the theo-
retical predictions from Section 2, provides additional insight on the influence of incentives on
the idea generation process. These exploratory analyses also provide direction for future re-
search.

First, I study whether the quantitative results are due to participants posting more ideas at
each visit, or visiting the session more often. Both the “Impact” and “Own” conditions give clear
incentives to submit more ideas at each visit. In addition, we might expect participants in the
“Impact” condition to have been more concerned with the evolution of the session, leading to
more frequent visits. In the experiment, the time at which each idea was submitted was recorded.
Let us then define “pockets” of ideas such that two successive ideas by the same participants are

in the same pocket if they were submitted less than 20 minutes apart.'’ Table 3 reports the aver-

"7 Similar results were obtained when defining pockets using 10 or 30 minutes.
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age number of ideas per pocket for the participants who posted at least one idea, as well as the
average number of pockets. Consistent with our predictions, participants in the “Own” and “Im-
pact” conditions submitted significantly more ideas at each of their visits to the session compared
to participants in the “Flat” condition. Furthermore, participants in the “Impact” condition visited

the session significantly more often.

Table 3
Dynamics
Impact Own Flat
Number of ideas per pocket 2.9* 2.3 1.2
Number of pockets per participant 2.6** 1.6 1.2

*significantly larger than “Flat,” p<0.1
**: significantly larger than “Flat,” p<0.03

Next, I study how incentives influenced the overall number of ideas submitted in the ses-
sion as a function of time. Figure 2 (corresponding to the first wave of participants - the graphs
for the other two waves having similar characteristics) shows that the process in the “Impact”
condition is S-shaped, whereas the process in the “Flat” condition tends to be smoother. '® The
process in the “Own” condition is somewhat intermediary between these two extremes.

In order to better understand the shapes of these graphs, it is useful to plot similar graphs
at the individual level. These graphs suggest that the differences in shape of the aggregate graphs
reflects the fact that participants in the “Impact” condition relied more heavily on group interac-
tions. In the “Impact” condition, the individual processes have the same characteristics as the ag-
gregate graphs (period of inactivity followed by a period of high activity which finally stabi-
lizes). The periods of high activity start at similar times for the different participants of a session,
which accounts for the shape of the aggregate graphs. On the other hand, the groups in the “Flat”
condition displayed no particular structure: participation is spread throughout the session and

participants appear to be largely independent, resulting in smooth aggregate graphs.

'8 Time on the x axis is the total cumulative time spent by participants in the session when the idea was
submitted, divided by the number of participants. For example, if an idea was posted at 5 pm, and at this time two
participants had signed up, one at 2 pm and one at 3 pm, then the reported time is [(5-2)+(5-3)]/2=2.5 hours. A sim-
pler measure of time, the total clock time elapsed since the first participant signed up, gives similar qualitative re-
sults.
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Figure 2
Number of ideas as a function of time
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In conclusion, the study of the dynamics of the sessions indicates that incentives do not
only influence the quantity and the quality of the ideas submitted, but also the manner in which
they are submitted. This is reflected by both within- and between-participant patterns. The theo-
retical study of these patterns could be addressed in future research, for example by extending

the model proposed in Section 2.

Limitations and alternative explanations

The hypothesis from Section 2 assumes that participation in the “Own” and “Impact”
conditions was similar, i.e., participants spent comparable amounts of time searching for ideas.

If this assumption were not true, then this variation might provide an alternative explana-
tion for the results. Three effects, potentially testable with future experiments, might lead to such
alternative explanations: a non-monetary effect, an indirect incentives effect, and a direct incen-
tives effect. A non-monetary effect might attribute higher participation in the “Impact” condition
to a greater level of stimulation, resulting from richer interactions between participants. The indi-
rect incentives effect is based on the hypothesis that, if ideas in the “Impact” condition were

more inspiring, participants would be able to generate more ideas in the same amount of time,
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making participation more attractive. The direct incentives effect hypothesizes that the expected
payoff per idea was perceived as higher in the “Impact” condition. In particular, although the
monetary value of points was calibrated to equate the expected payoff per idea in the two condi-
tions, the calibration was based on a pretest using a different topic, and did not take into account
participants’ subjective beliefs.

The non-monetary and indirect incentive effects would also advocate the use of impact as
an incentive, but for different theoretical reasons. Further experiments could identify their mag-
nitudes, providing direction for future theoretical research. For example, one might control the
amount of time spent by the participants on the task by running the sessions in a laboratory. The
third effect would make the comparison of the “Impact” and “Own” conditions problematic and
cast some doubt on the validity of rewarding participants for their impact. In order to address this
concern, another experiment could be run, in which the number of points earned by an idea in the
“Impact” condition is bounded. For example, if ideas in this condition score points only for the
first five subsequent ideas in the tree, and if the monetary value of a point is five times higher in
the “Own” condition, then the expected payoff per idea is objectively lower in the “Impact” con-

dition than it is in the “Own’" condition.
5. Summary and Future Research

In this paper, I propose a quantitative framework for the study of a mostly qualitative
topic, idea generation, with a focus on the effect of incentives. I first derive an analytical model
of the idea generation process. Based on this model, I identify conditions under which rewarding
participants for their individual contributions induces desirable actions, and other conditions un-
der which it does not. In the latter case, performance can be improved by rewarding each partici-
pant for the impact of his or her contribution. I then develop an incentive compatible “ideation
game,” which allows implementing the insights from the theoretical analysis and testing some of
the predictions. Finally, I show experimentally that incentives have the capability to improve
idea generation, in a manner consistent with the theory.

Several opportunities for future research can be identified in addition to the ones men-
tioned throughout the paper. First, it might be interesting to extend the theoretical model and take
into account other dimensions of idea generation than the choice of which approach to follow.

Second, it might be useful to generalize the experimental findings using different topics, and
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other (potentially subjective) measures of the contribution and impact of the participants. Third,
although the experimental findings in this paper are consistent with the theoretical prediction,
they do not test the causal relationship between the speed of diminishing returns and the validity
of rewarding impact, which could be addressed by additional experiments.

Finally, it would be interesting to identify conditions under which incentives are more
likely to enhance or inhibit idea generation, as well as conditions under which the ideation game
presented here is more or less likely to enhance participants’ creativity. More generally, future
research might examine how the experimental findings reported in this paper relate to classic re-
sults in social psychology. In a different paper (author 2003), I attempt to address these ques-
tions using major recent work in idea generation (Goldenberg et al. 1999a, Goldenberg et al.
1999b, Goldenberg and Mazursky 2002). In particular, there exist at least two opposing views
regarding which cognitive skills should be encouraged in ideation sessions. The first view is that
participants should be induced to think in a random fashion. This widely held belief, based on the
assumption that anarchy of thought increases the probability of creative ideas, has led to the de-
velopment of ideation tools such as brainstorming (Osborn 1957), Synectics (Prince 1970), and
lateral thinking (De Bono 1970). In contrast, recent papers suggest that structure, and not ran-
domness, is the key to creativity (Goldenberg et al. 1999a). This structured view, according to
which creativity can be achieved through the identification and application of some regularities
in previous creative output, has led to systematic approaches to idea generation. Two important
examples are inventive templates (Goldenberg et al. 1999b, Goldenberg and Mazursky 2002),
and TRIZ (Altshuller 2000). In author 2003, I try to shed some light on the apparent contradic-
tion between these two views, and to identify conditions under which each one of them is more

likely to be valid. I then show how this analysis applies to the questions mentioned above.
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Appendix : proofs of the propositions

Let us define (we define similar quantities for B): ST(A)= aPNa b, the expected payoff
from period 1 obtained by choosing approach A in period 1; S, = a”**' (p,N, +1)/(N , +1)
the expected payoff from period 2 obtained by playing A in period 2 given that A was played in
period 1 and was successful; F, =’ p, N, /(N , +1) the expected payoff from period 2 ob-
tained by playing A in period 2 given that A was played in period 1 and was unsuccessful;
LT(A)= p,.max{S,,ST(B)} +(1- p, ).max{F,,ST(B)} the expected payoff from period 2, calcu-

lated at the beginning of period 1, if A is played in period 1.

Proof of Proposition la:

First, note that N4 and Np are restricted to integer values, and that p, € [1/Na,(Na-1)/Na]
and p, € [1/Np,(Np-1)/Ng)]. Let us first show that for all p,, Ny, for all a<1, for all p, close
enough to p, such that p, < p,, ST(B)SST(A) = Ng>N4. ST(B) is decreasing in Ng. When
Da=DPy,ST(B)>ST(A) if Ng=N,-1. By continuity, this is also true for p , close enough to p, such
that p, < p, , hence ST(B)<ST(A)=> Ng>Ny.

Then we have ST(B)<ST(A) = Sg<Sa. To see this, note that $3<S, <
a’ e (pyN, +1)/(N, +1) <a’™ (p,N, +1)/(N, +]) &

a? e po+at™Nt (1= p,)/(Ny +D<a”M . p,+a’ ™ (1-p,)/(N,+1) &
a’™e (1= p,)/(Ng +1) <a®™ (1-p,)/(N, +1) and ST(B)SST(A) < ST(B)SST(A),
a? e <o 1—p<1—p,, Ng>Na=ST(B)SST(A), py> P, -

Then, when ST(B)<ST(A), there are 2 cases:

e  Su<ST(B). This implies Sp<SAa<ST(B)<ST(A). Then LT(A)>ST(B) and LT(B)=ST(A) and so
ST(B)+LT(B)=ST(B)+ST(A)<ST(A)+LT(A).

e S,>ST(B). Then LT(A)> p, .Sa+(1- p, ).ST(B) and LT(B)= p, .max{Ss,ST(A)}+(1-
P)-ST(A)

(because Fp<ST(B)<ST(A)). Then ST(A)+LT(A)>ST(B)+LT(B) if ST(A)+ p , .Sa+(1-
D4).ST(B)>ST(B)+ p, .max{Sg,ST(A)}+(1- p,).ST(A)& D, .(Sa-ST(B)) > p, .(max{Sp,ST(A)}-
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ST(A)) < p,(Sa-ST(B))= p, .(Se-ST(A)) (because S,>ST(B)) <

P, Lo (p,N, +D)(N, +D—a’™ py12 Pyl (pyNy +D/(Ny +D ]

P b e aPe p (PN, +D)(N, +D+ pyl> o pyla(ppNy + D/ (N +D+ Pyl &=
a.(p,N, +D/(N, +1)+ pp=a.(p;Ny +1/(Ny +1) + p, (because ST(B)SST(A)) &

Py = Pazl(psNy +D/(Ny +1) = (p,N, + D/ (N, + D] = (PN + D/ (N +1D) =

(PN, +DJ(N, +Dor{ (p;N, +D/(Ng +1)> (p,N, +D/(N, +Dand (p,N, +1/(N, +1)-

P.>(PsN,z +1)/(Ng +1)- py }, which is satisfied because (p,N, +1)/(N, +1)-

o~

PNz +D)/(Ny+1)-py & A-p,)/(N, +1)>(1- py)/(Ny +1) & py > p,and Ng>Na.

Proof of Proposition 1b:

Forall p,, p, <Py, Na, let Ng'=min{Np: p5.N,>p,.N,}.If a is small enough, then
Ng>Np' = ST(A)>ST(B). Indeed, ST(A)>ST(B) & a’™*.p,>a?"" .p, < o' <p, [p,
& aPrNemPaNa <1/N, (because p, >1/N4 and p,<1) <a<a’ where a’ is such that PN a PN 2N,
Then ST(B)>ST(A)= N3<Ns’ => p,.N,<p,.N,. Then if a is small enough, we have S4<ST(B)

and F4<ST(A)<ST(B), which implies LT(A)=ST(B). Then since ST(A)<LT(B), we have
ST(A)+LT(A)<ST(B)+LT(B).

Proof of Proposition 1c:

Given p, , Ngmust be such that 1< pp.N, < Np-1, i.e., Np must be at least as large as
max{1/p,,1/(1-pp) }=Ng™". Let us show that for all p,, , for all Ny, for all a close enough to 1

such that a <1, for all p, close enough to p, such that p, < p,, we have the following:

1.ST(B)>ST(A) for Ng=Np"™" and Nlim ST(B)<ST(A)
B

—>400

2. Nlim LT(B)<LT(A)

g—>+eo

3.ST(B) is monotonically decreasing in Np
4.LT(B) is monotonically non-increasing in Np
5.ST(B)=ST(A) implies LT(B)<LT(A)
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These conditions imply that there exists Np™"<Np'<Np** such that Npg>Np** <>
ST(B)<ST(A),ST(B)+LT(B)-[ST(A)+LT(A)] is decreasing in Np, negative for Ng>Npg**, positive
for NB<NBI , and so by continuity and monotonicity there exists Ng* such that Np*<Ng** and
such that ST(B)+LT(B)-[ST(A)+LT(A)] is non-negative for Ng<Np* (exploitation), non-positive
for Np*<Np<Np** (exploration) and negative for Ng>Ng** (diversification). Note that if
ST(B)+LT(B)<ST(A)+LT(A) for N5=Nz"™", then Ng*<Ns"™".

Let us prove conditions 1 to 5:
1) for Ng=Ng"", ST(B)=q?*""" Py >ST(A)=a?*"+ p, for all a<l and p, close enough to p,, and
lim ST(B)=0<ST(A).

Np—>w
2) When Nj goes to +o, the limits are: LT(B)=ST(A)=a’*" D4 LTA)=p,.S,+(1-p,).F,
=g PN Pa(PyNy(@=1)+ N, +a)/(N,+1)<LT(B) because p, .Na.(a-1)+Na+a<Ns+1
3) istrivial
4) First let us note that Sp is decreasing in N because N, — a?*"**'is positive and decreasing
in Np, and so is N, = (pz.N; +1)/(N, +1) (the derivative of this last function with respect to N
is (p, —1)/(N, +1)*). Next we have: S, < F, & N, >N} =a/(1-a).p,). If a>
Ps-N,/(ps.N, +1) then Ns< N, in which case Ng>Nj = F, =a”"* . p,N,[(N, +1)
<0(’7”N‘{5.f78 <ST(A)=a™"+.p,if p, close enough to p,.

Then we have 4 cases:
o ST(A)>Fp>Sp: LT(B) is constant in Np
e ST(A)>Sg>Fp: LT(B) is constant in Np
o Sg>ST(A)>Fg: LT(B)= py.S,; +(1— p, ).ST(A)is decreasing in Np because Sp is

o Sp>Fs>ST(A): LT(B)= py.Sy+(1— py).Fy=a’"* p, (Ny.(.py +1—- pp)+@)/(N, + 1) and

dLT(B)/ON, =
ps-In(a).a’™e (N, +1)—a?Ne | . R als | . .
De N, (a.p, +1— +)+ prla.py +1—
(NB+1)2 Py (Ny.(a.pg Pg) ) NB+1PB( Ps Ps)

which is of the same sign as: (p,.In(@).(Ny +1)=1D.(Ny(@.ps +1-py)+a)/(Ny + D+
(a.pp +1- pg) which is equal to 0 when a=1, and which is of the same sign, when a close to 1

(using a Taylor’s series expansion), as — p,. N, +(1+ pyN)/(N, +1)=2.p, <
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1-2.p,+N, /(N +1)<0. So LT(B) is non-increasing in Np if o close enough to 1 and p, close
enough to p,.

5) The proof is similar to that of proposition 1: ST(B)=ST(A)=> Ng>N4 and Sp<Sa. Then if
a close enough to 1, S4>ST(A)=ST(B) for all p, € [1/N4,(Na-1)/Nal, and ST(A)+LT(A)>
STBHLTB) & p, —p,>a.[(psNy +D/(N, +1)~(p,N, +1)/(N, +1)] which is satisfied for

a<l and p, > p,.

Proof of proposition 2:

Let us assume that if both players find an idea using the same approach in a given period,
then we determine randomly which player submits his or her idea first. This is equivalent to hav-
ing player’s expected payoff equal to (a"+ o Heph+ a".p.(1-p) if n ideas have been submitted
using the approach at the beginning of the period and if the probability of success is p. Recall
that p, and p, are respectively in [1/N4,(Na-1)/N4] and [1/Np,(Np-1)/N3]. Since the lower (resp.
upper) bounds of the intervals above are strictly positive (resp. strictly smaller than 1), there ex-
ists a small enough such that in period 2 both players will play the approach with the smallest
number of successes so far (no matter what the expected probabilities are, they cannot counter-
balance the effect of the discount rate). In the special case in which the two approaches have the

same number of successes, then players will choose different approaches if p , is close enough
to p, (because choosing the same approach leads to much lower payoffs if « is small enough).

Let us first consider the case Ny>Np. Then if p, is close enough to p, , nsa>nss. Let us
show that if a is small enough, then the only SPE is for both players to play B in period 1, and
this is also socially optimal:

e BR(B)=B:(a"* +a"*™)[2.E(p,’) + & E(p,.(1- py)) + LT(B,B)>a"*.p, + LT(A,B)

for a small enough if (if a is small enough then any term discounted by more than " is
negligible): ST(B,B)+E((1-p‘3)2).ST(B,B|nFB+2)> (1- py).ST(B,B | ngy +1) where ST(B,B)=
(1+@).E(p3)/2+E(p,.(1- p,)) is the expected instantaneous payoff divided by o™ if players
play (B,B) and ST(B,B|nsg+1) is the similar quantity if both players play (B,B) after a failure in
B. This inequality holds because ST(B,B)+E[(1-p3)2].ST(B,B|an+2)>ST(B,B)
>ST(B,B|npg+1)>(1- p,).ST(B,B|n.,; +1)
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e BR(A)=B: as above, this is true for a small enough if p, + (1- p,).ST(B,B|n., +1)
>0+ST(B,B) which holds because p, + (1- p;).ST(B,B|n.,; +1)> p,>ST(B,B)

e (B.,B) is socially optimal if a small enough because it is more likely that at least one idea
will be found using B if both players play B in period 1.

The same argument applies to the case N4<N3, in which case nsa<ngs if p , is close

enough to p, .

Proof of proposition 3:

Let us consider the subgame perfect equilibrium of the game that consists in choosing
which approach to play at t=1 and ¢=2.

In period 2, players each play the approach with the highest expected probability of suc-
cess.

In period 1:
If player 2 plays A at t=1, then player 1 gets:
By playing A:

. n,,+2 . n,.+1 . A
PA+E(Pi).maX{AfS 2,p;g}+21'5(17A~(1—1!7,4))~IT1?:1X{1\]"S 2,PB}+E((1-IJA)2)-PB

A A
n,.+1 n +1 =n
By playing B: Pt P4 meaX{]\;S+1 NBS }+pA 1- PB)maX{NS+1 NBS+1}
nape +1 n
+(A=p)p.B—td-p,)(- max BS
(I-ps)-Ps N, +1 (I-py)( pB) {N 1 N, +1}

If player 2 plays B at =1, then player 1 gets:

N, +1 ng +1 ng +1 ng

By playing A: p, + p,.p,.max{ } Da-(1= ppg).max{ }

Ny+1'Ny+ N,+1 N, +1
Rge +1 n
+(1=p).pp—2—+(01- 1- max Bs
(1=p,)-pg N, +1 (1= p,)-(1- pp). {N SN, +1}
By playing B:
+2 . Mg+l _n
Ps+ E(pp). NB+2+2E(pB (1- PB))-max{pA,;;+2}+E((1—p3 )2).max{p,,,——~—NB"i2}

Let us consider the following condition: p, <(ras+I1)/(Na+1) (a).
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For all p,< p,and N4 such that (a) is satisfied, if Np is large enough (the beliefs on ban-

dit B are stable enough), then we have that the following conditions are sufficient for both play-

ers to choose B at t=1 in any SPE of the game and for it not to be socially optimal:

e BR(B)=B:p, + p,.(n +)/(N, +D)+(1U=p,).ps < Pg+ Pp© Pp—Ps>
Pallngs +D/(Ny+1) = Pyl (B)

¢ BR(A)=B: py+(p,.ny +D/(N, +D+(1= Py )ps> Pat E(p,°)-(ns +2)/(N, +2)+
2E(p (L= p))-max{py,(nas +D/(N, + 2} + E(1=p,)*)-Ps (1)
If p,>(nas+1)/(Na+2) (c) then (1) becomes: ps-p, >E(p ) (ps-Ny+2)/(N, +2)
~E(pa’)-Py = ba- (BN, + D/ (N, + D+ oy ()
If p,<(nas+1)/(Na+2) (c’) then (1) becomes: py+ P .45 + )/(N,+D)+(1~-Dpy)-Pg

> P, +E(p,)(n +2)/(N, +2)+2E(p, (- p))-(ns +D/(N, +2)+ E((1- PPy Dy — P>

+1 ne+1l n,+l ne+2 nyt+l
E(p. —p)(las ™2 _ 5 yyp (LasTo_Tas +E(p?).(Ras T2 Tas
(Pa= PG =B T Pully 3~y ) PRy TN
. s . n Lo Myl ny+l
The right-hand side is smaller than p,.[(n,; +1)/(N, +2)— p,] because p,.( - )+
N,+2 N,+1

nAS+2_nAs+1) A Ny +1 +E(PA2)

E(p)( Pa
N,+2 N,+2 (N,+1.(N,+2) N,+2

1 2 ~ ﬁA.NA+1 - 2y _ A2, & A _
(E —p £a7la” y=0because E =p;+p,([1- N,+D=
N,,+2( (PA) = Pa Nl ) (P )=Pa+Pa=py)/(N,+1)

PPN, +D/(N,+1) (Var(pa)=p,.(1- P4)/(N, +1)). So the condition holds if
Pal(nys +D/(N,+2) = Ppl<py — b, (©)

e A-B socially better than B-B: p,+ py+2.p,.(n,s +D/(N, +D+2.(1—= p,).pz>4.Pp
& Pp= Py <2Ppl(ngg +D/(N, +1D = p,] (d)

e We’ll also be using the following, when (c) is satisfied (A-A is socially better than B-B):
2.5, +2E(P2).(P,N, +2)[(N, +2)+2.(1= E(p})).py > 4Dy & Py~ Pa<
PiLBAN, +2/(N,+2) = byl (@)

Let us consider the following conditions:

ﬁB<(ﬁANA+1)/(]VA+1)@NA<(l_ﬁ3)/(ﬁ8—ﬁA) (@
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ﬁA'NA-l—]‘ 2—ﬁa/ﬁ,4_f73

b (EAA B Y<py—pa N, >— —— (b)

Pal N, +1 Pa)<Pa= P Y7 py/Pa—14 Dy Da

Py > (PN +D/(Ny+2) & Ny >A=2.p,)/(Ps — Pa) (©)

NA<(]-2'133)/(133—13A) (C,)

N . . 3—p /P, —2.D

25, [(p, Ny +DJ(N, D)= p,1> by = Pp & Ny <— Ps/Ps “-Pp_ (d)
pB/pA_1+2'(pB_pA)

L R R 2(1=p, )pi=2.ps—Da) .

b b < BN+ 2Ny +2)=py] & N, <2 PaIPa“ 2Py ZPa) ()

(PB_PA)-(1+PA)

. . . 3-2p./p, —2.p

PA-[(PA'NA"'D/(NA +2)_p3]<p3 ~Pa <=>]VA > N ~ pB/pAA pf (e)
Pu/Da—1+(Ps—DPs)

A p,.N,+2 . D.N,+1 . .

pB"pA>E(pA2 )&—J"__—E(pAz)-pa_PA'pA A + (f)

N, +2 —N—A—ﬁ‘ Pa-Pe
(a),(b),(c),(d), (f) as well as (a),(b),(c’),(d),(e) are sets of sufficient conditions. Let us
consider p,such that(p, — p,) = y(1- py) with y small enough such that the numerators in (d)
and (d’) are positive.
Let us look at the first set of conditions (a),(b),(c),(d’), (f):

(f) imposes a lower bound on Nj.
) e Ni-(ﬁs —Pa +E(Pi)-i)a —Da-Ps _E(pj)'ﬁA + ﬁi)"‘
N, [3.(ps - pat E(pi)-ﬁg — DaPs)— E(Pf\)-i’A +Da— 2-E(Pf21) + 216/24] +

2-(1’5/3 + E(P,i)-i’g - ﬁA'ﬁB —E(p,«za)) >0

2y be the value of N, defined by (d’). Then (f) and (d’) can be satisfied

A2

Let NAmaJC:QfL____
y.(1+ py)

simultaneously when y small enough if (E(p )= pi when y—0):

2.p2.(1= py).(1= Py + P2+ p2)+ Py(l= ps).(1=2.p,) >0 & 1= pg > Owhich is satisfied for

ps<1. 1/yis the value of N4 defined by (a). Then (f) and (a) can be satisfied simultaneously

when y small enough if: (1= p,).(1—= P, + p3)+ Py.(1= P).(1=2.p,) >0 & 1- p; >0 which is sat-

isfied for p,<l1. (b) and (a) can be satisfied simultaneously if: — 2_A pB/pAA_ pBA
Py/Pa—1+ D5 = P4
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1_ﬁ3_(ﬁ3/ﬁ,4_1)

— = £l A <(- p,)/(ps — b,) which is satisfied. (c) and (a) can be satisfied simul-
Ps—DPat(Bs/Pa—1)

taneously because (1-2.p,)/ (P, — p) <= p,)/(Ps — P4). (b) and (d’) can be satisfied simul-

L-y/Ps__2Pa=2¥
y.(+Yp,) .+ p})
1 2p;

A2

- <
1+1p, 1+p;

taneously if

which is satisfied for y small enough if

& pr+2.p,—1>0=p, > ~1++/2. (c) and (d’) can be satisfied simultane-

1-2.p, - 2pi -2y
y.(1=py)  y.(1+p})

ously if: which is satisfied for y small enough if (1-2.p,)/(1- p,)<

2p2/(+ Pl @ pi+2.p,~1>0 < p, > ~1++/2. So (a),(b),(c),(d"), (f) can be simultaneously
satisfied if p, >—-1++/2.
Now let us look at the other set of sufficient conditions (a),(b),(c’),(d),(e): first, (¢’) im-

plies (a) so we can ignore (a). Then (e) and (c’) can be satisfied simultaneously

if: 3_2ﬁ8/ﬁA_2'ﬁB =1"2-ﬁ3—2(ﬁ3/.5,4—1)<1_2'ﬁ3
ﬁB/ﬁA_l_i-(ﬁB_ﬁA) (i)B_ﬁA)+(ﬁB/ﬁA_1) ﬁB_ﬁA

, which holds. (e) and (d) can be

3_2133/13‘4_2-133 < 3_ﬁ3/f’A_2‘ﬁB
ﬁ’B/ﬁA_1+(ﬁB——ﬁA) ﬁB/ﬁA—l_’-z(ﬁB_f’A)
o U=P)2=27/p) =1 _ (=p)2~7/b)
A-pp)yA+1p,)  A=pyy.(2+1/p,)
Y2-p, 1
(1_133)-(1+1/ﬁ3) 2+1/1A73
l_J//ﬁA < Z_Y/ﬁA
y.A+Yp,) v.Q2+1/p,)

satisfied simultaneously if:

which is satisfied for y low enough if

& py>—1/(2.p,) which is true. (b) and (d) can be satisfied

simultaneously if which is satisfied for y low enough

. 1 1
if — < ~
1+1/p, 1+1/2.p,

(1—ﬁ3)-(1—7’/ﬁA) < 1"21.53
(l_ﬁB)‘y'(l-'-l/ﬁA) }/-(1_133)

which holds. (b) and (c’) can be satisfied simultaneously if:

L _1-2p,

- =B o —p2-2.p,+1>0
1+1/p3 (I-pg) ? ?

which is satisfied for y low enough if:

& py<-1+42.
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So we have that (a),(b),(c’),(d),(e) can be satisfied if p, <—1+ V2.
So we have that for all p,, for all p, close enough to p, there exists Najow<Nanign such

that if Np is large enough, then Najon <Na<Nanign implies that both players choose B at t=1 in any
SPE of the game but that this is not socially optimal. Finally, note that if Na<Napigs then it is not

socially optimal for both players to choose B.

Proof of proposition 4:

At period ¢, player i receives (1— }/).z C, from period (¢-1), and y.C, directly from pe-

Jj#i
riod 7. Then his or her expected discount payoff in period ¢ is:

EL(=-7).3.C,+ 20" [7.C,+(1-9)8y.C.,,] ] =

J#i T=t J#i

E[y[yY 67" .Co )+ (1= Q.67 (D C M=E[ D67 Lyly . +(1-).Y.C, 1]
=t T=t J#i =t J#i

which is proportional to the moderator’s objective function only if y=1/2, in which case the par-

ticipant’s revenue from period ¢ is proportional to the group’s contribution in period z.

Proof of proposition 5:

Under S°(1/2), Participant i’s payoff in period t is proportional to 7(i,7)=C;.+

Ziﬂ(r,mc = C . i,0]= C,-,+Z(§/1(t,r)).c e Ziﬂ(z,r)ﬁ LLD=Cat Y C,

j#i 1=l j#i =1 j#i t=1 i
7-1 - 7-1
- Z le(t, 7).C,, (i,t) because Z A(t,7) =1. The last term being a constant, the objectives are

J#i =1 =1

aligned. Also if a proportional sharing rule ,Bz C |, is such that participants search in each pe-
j

riod, then the participants also search in each period under S’(1/2) with the same 8 (what matters
is the difference between the payoff obtained from searching and the payoff obtained from not

searching, which is unaffected), and the total payoff distributed is lower.
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Chapter 2: Fast Polyhedral Adaptive Conjoint Estimation

Abstract

We propose and test new adaptive question design and estimation algorithms for partial-
profile conjoint analysis. Polyhedral question design focuses questions to reduce a feasible set
of parameters as rapidly as possible. Analytic center estimation uses a centrality criterion based
on consistency with respondents’ answers. Both algorithms run with no noticeable delay be-
tween questions.

We evaluate the proposed methods relative to established benchmarks for question design
(random selection, D-efficient designs, Adaptive Conjoint Analysis) and estimation (Hierarchical
Bayes). Monte Carlo simulations vary respondent heterogeneity and response errors. For low
numbers of questions, polyhedral question design does best (or is tied for best) for all tested do-
mains. For high numbers of questions, efficient Fixed designs do better in some domains. Ana-
lytic center estimation shows promise for high heterogeneity and for low response errors; Hierar-
chical Bayes for low heterogeneity and high response errors. Other simulations evaluate hybrid
methods, which include self-explicated data.

A field test (330 respondents) compared methods on both internal validity (holdout tasks)
and external validity (actual choice of a laptop bag worth approximately $100). The field test is
consistent with the simulation results and offers strong support for polyhedral question design.

In addition, marketplace sales were consistent with conjoint-analysis predictions.
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1. Polyhedral Methods for Conjoint Analysis

We propose and test (1) a new adaptive question design method that attempts to reduce
respondent burden while simultaneously improving accuracy and (2) a new estimation procedure
based on centrality concepts. For each respondent the question design method dynamically
adapts the design of the next question using that respondent’s answers to previous questions. Be-
cause the methods make full use of high-speed computations and adaptive, customized local web
pages, they are ideally suited for web-based panels. The adaptive method interprets question de-
sign as a mathematical program and estimates the solution to the program using recent develop-
ments based on the interior points of polyhedra. The estimation method also relies on interior
point techniques and is designed to provide robust estimates from relatively few questions. The
question design and estimation methods are modular and can be evaluated separately and/or
combined with a range of existing methods.

Adapting question design within a respondent, using that respondent’s answers to previ-
ous questions, is a difficult dynamic optimization problem. Adaptation within respondents
should be distinguished from techniques that adapt across respondents. Sawtooth Software’s
Adaptive Conjoint Analysis (ACA) is the only published method of which we are aware that at-
tempts to solve this problem (Johnson 1987, 1991). In contrast, aggregate customization meth-
ods, such as the Huber and Zwerina (1996), Arora and Huber (2001), and Sandor and Wedel
(2001, 2002) algorithms, adapt designs across respondents based on either pretests or Bayesian
priors.

ACA uses a data-collection format known as metric paired-comparison questions, and re-
lies on balancing utility between the pairs subject to orthogonality and feature balance. We pro-
vide an example of a metric-paired comparison question in Figure 1. To date, aggregate cus-
tomization methods have focused on a stated-choice data-collection format known as choice-
based conjoint (CBC; e.g. Louviere, Hensher, and Swait 2000). Polyhedral methods can be used
to design either metric-paired-comparison questions or choice-based questions. In this paper we
focus on metric-paired-comparison questions because this is one of the most widely used and
applied data-collection formats for conjoint analysis (Green, Krieger and Wind 2001, p. S66; Ter
Hofstede, Kim, and Wedel 2002 p. 259). In addition, metric paired-comparison questions are

common in computer-aided interviewing, have proven reliable in previous studies (Reibstein,
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Bateson, and Boulding 1988: Urban and Katz 1983), provide interval-scaled data with strong
transitivity properties (Hauser and Shugan 1980), provide valid and reliable parameter estimates
(Leigh, MacKay, and Summers 1984), and enjoy wide use in practice and in the literature (Wit-
tink and Cattin 1989). We are extending polyhedral methods to CBC formats (Toubia, Hauser,
and Simester, 2003).

Our goal is an initial evaluation of polyhedral methods relative to existing methods under
a variety of empirically relevant conditions. We do not expect that any one method will always
out-perform the benchmarks. nor do we intend that our findings be interpreted as criticism of any
of the benchmarks. Our findings indicate that polyhedral methods have the potential to enhance
the effectiveness of existing conjoint methods by providing new capabilities that complement

existing methods.

Figure 1
Metric Paired-Comparison Format for I-Zone Camera Redesign

Option B

1 Step
lermanei

Because the methods are new and adopt a different estimation philosophy, we use Monte
Carlo experiments to explore their properties. The Monte Carlo experiments explore the condi-
tions under which polyhedral methods are likely to do better or worse than extant methods. We
demonstrate practical domains where polyhedral methods show promise relative to a representa-
tive set of widely applied and studied methods. The findings also highlight opportunities for fu-
ture research by illustrating domains where improvements are necessary and/or where extant

methods are likely to remain superior.
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We also undertake a large-scale empirical test involving a real product — a laptop com-
puter bag worth approximately $100. Respondents first completed a series of web-based con-
joint questions chosen by one of three question design methods (the methods were assigned ran-
domly). After a filler task, respondents in the study were given $100 to spend on a choice set of
five bags. Respondents received their chosen bag together with the difference in cash between
the price of their chosen bag and the $100. We compare question design and estimation methods
on both internal and external validity. Internal validity is evaluated by comparing how well the
methods predict several holdout conjoint questions. External validity is evaluated by comparing
how well the different conjoint methods predict which bag respondents later chose to purchase
using their $100.

The paper is structured as follows. We begin by describing polyhedral question design
and analytic center estimation for metric paired-comparison tasks. Detailed mathematics are
provided in Appendix 1 and open-source code is available from http://mitsloan.mit.edu/vc. We
next describe the design and results of the Monte Carlo experiments. Finally, we describe the
field test and the comparative results. We close with a description of the launch of the laptop

bag, a summary of the findings, and suggestions for future research.
2. Polyhedral Question Design and Estimation

We begin with a conceptual description that highlights the geometry of the con-
joint-analysis parameter space. We illustrate the concepts with a 3-parameter problem because
3-dimensional spaces are easy to visualize and explain. The methods generalize easily to realis-
tic problems that contain ten, twenty, or even one hundred product features. Indeed, relative to
existing methods, the polyhedral methods are proposed for larger numbers of product features.
By a parameter, we refer to a partworth that needs to be estimated. For example, twenty features
with two levels each require twenty parameters because we can scale to zero the partworth of the
least preferred feature. Similarly, ten three-level features also require twenty parameters. Inter-
actions among features require still more parameters.

Suppose that we have three features of an instant camera — picture quality, picture
taking (2-step vs. 1-step), and styling covers (changeable vs. permanent). If we scale the least
desirable level of each feature to zero we have three non-negative parameters to estimate, u;, us,

and u3, reflecting the additional utility (partworth) associated with the most desirable level of
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each feature.'”” The measurement scale on which the questions are asked imposes natural bound-
ary conditions. For example, the sum of the partworths of Camera A minus the sum of the part-
worths of Camera B can be at most equal to the maximum scale difference. In practice, the
partworths only have relative meaning and so scaling allows us to impose a wide range of
boundary conditions, without loss of generality. Therefore, in order to better visualize the algo-
rithm, we impose a constraint that the sum of the parameters does not exceed some large number
(e.g., 100). Under this constraint, prior to any data collection, the feasible region for the parame-
ters is the 3-dimensional bounded polyhedron in Figure 2a.

Suppose that we ask the respondent to evaluate a pair of profiles that vary on one or more
features and the respondent says (1) that he or she prefers profile C; to profile C; and (2) pro-
vides a rating, a, to indicate the strength of his or her preference. Assuming for the moment that
the respondent answers without error, this introduces an equality constraint that the utility asso-

ciated with profile C; exceeds the utility of C, by an amount equal to the rating. If we define
il = (u,u,,uy)" as the 3x1 vector of parameters, Z, as the 1x3 vector of product features for the
left profile, and Z, as the 1x3 vector of product features for the right profile, then, for additive
utility, this equality constraint can be written as Z,ii—Z,u =a . We can use geometry to character-
ize what we have learned from this response.

Specifically, we define x=Z,—Z, such that ¥ is a 1x3 vector describing the difference be-
tween the two profiles in the question. Then, Xii=a defines a hyperplane through the polyhedron

in Figure 2a. The only feasible values of # are those that are in the intersection of this hyper-
plane and the polyhedron. The new feasible set is also a polyhedron, but it is reduced by one di-
mension (2-dimensions rather than 3-dimensions). Because smaller polyhedra mean fewer pa-
rameter values are feasible, questions that reduce the size of the initial polyhedron as fast as pos-

sible lead to more precise estimates of the parameters.

% In this example, we assume preferential independence which implies an additive utility function. We can
handle interactions by relabeling fzatures. For example, a 2X2 interaction between two features is equivalent to one
four-level feature. We hold to this convention throughout the paper.
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Figure 2
Respondent’s Answers Affect the Feasible Region

u, Uy
intersection of

a-o0<xi<a+o
and u; + u, + uz; < 100

u;+u, + uz; < 100

U Us

(a) Metric rating without error (b) Metric rating with error

However, in any real problem we expect a respondent’s answer to contain error. We can
model this error as a probability density function over the parameter space (as in standard statis-
tical inference). Alternatively, we can incorporate imprecision in a response by treating the
equality constraint xu =a as a set of two inequality constraints: a—d<Xu<a+dJ . In this case, the
hyperplane defined by the question-answer pair has “width.” The intersection of the initial poly-
hedron and the “fat” hyperplane is now a three-dimensional polyhedron as illustrated in Figure
2b.

When we ask more questions we constrain the parameter space further. Each question, if
asked carefully, will result in a hyperplane that intersects a polyhedron resulting in a smaller
polyhedron — a “thin” region in Figure 2a or a “fat” region in Figure 2b. Each new question-
answer pair slices the polyhedron in Figure 2a or 2b yielding more precise estimates of the pa-
rameter vector u .

We incorporate prior information about the parameters by imposing constraints on the pa-
rameter space. For example, if u,, and u; are the medium and high levels, respectively, of a fea-
ture, then we impose the constraint u,, < u;, on the polyhedron. Previous research suggests that

these types of constraints enhance estimation (Johnson 1999; Srinivasan and Shocker 1973). We
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now examine question design for metric paired-comparison data by dealing first with the case in
which subjects respond without error (Figure 2a). We then describe how to modify the algorithm

to handle error (e.g., Figure 2b).

Selecting Questions to Shrink the Feasible Set Rapidly

The question design task describes the design of the profiles that respondents are asked to
compare. Questions are more informative if the answers allow us to estimate partworths more
quickly. For this reason, we select the respondent’s next question in a manner that is likely to
reduce the size of the feasible set (for that respondent) as fast as possible.

Consider for a moment a 20-dimensional problem (without errors in the answers). As in
Figure 2a, a question-based constraint reduces the dimensionality by one. That is, the first ques-
tion reduces a 20-dimensional set to a 19-dimensional set; the next question reduces this set to an
18-dimensional set and so on. After the twelfth question, for example, we reach an 8-
dimensional set: 8 dimensions = 20 parameters — 12 questions. Without further restriction, the
feasible parameters are generally not unique — any point in the 8-dimensional set (polyhedron) is
still feasible. However, the 3-dimensional set might be quite small and we might have a very
good idea of the partworths. For example, the first twelve questions might be enough to tell us
that some features, say picture quality, styling covers, and battery life, have large partworths
while other features, say folding capability, light selection, and film ejection method, have very
small partworths. If this holds across respondents then, during an early phase of a product de-
velopment process, the product development team might feel they have enough information to
focus on the key features.

Although the polyhedral algorithm is designed for high-dimensional spaces, it is hard to
visualize 20-dimensional polyhedra. Instead, we illustrate the polyhedral question design
method in a situation where the remaining feasible set is easy to visualize. Specifically, by gen-
eralizing our notation slightly to g questions and p parameters, we define a as the gx1 vector of
answers and X as the gXp matrix with rows equal to X for each question (recall that X is a 1xp
vector). Then the respondent’s answers to the first g questions define a (p-q)-dimensional hy-

perplane given by the equation Xi =d . This hyperplane intersects the initial p-dimensional poly-

hedron to give us a (p-g)-dimensional polyhedron. In the example of p=20 parameters and g=18
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questions, the result is a 2-dimensional polyhedron that is easy to visualize. One such 2-

dimensional polyhedron is illustrated in Figure 3.

Figure 3
Choice of Question (2-dimensional slice)

(x,a) (x,a)

4 ’

(x,a")

/
%

(a) Two question-answer pairs (b) One question, two potential answers

Our task is to select questions that reduce the 2-dimensional polyhedron as fast as possi-
ble. Mathematically, we select a new question vector, X, and the respondent answers this ques-
tion with a new rating, a. We add the new question vector as the last row of the question matrix
and we add the new answer as the last row of the answer vector. While everything is really hap-
pening in p-dimensional space, the net result is that the new hyperplane will intersect the 2-
dimensional polyhedron in a line segment (i.e., a 1-dimensional polyhedron). The slope of the
line will be determined by X and the intercept by a. We illustrate two potential question-answer
pairs in Figure 3a. The slope of the line is determined by the question, the specific line by the
answer, and the remaining feasible set by the line segment within the polyhedron. In Figure 3a
one of the question-answer pairs (¥, a ) reduces the feasible set more rapidly than the other ques-
tion-answer pair (X’,a”). Figure 3b repeats a question-answer pair (% ,a ) and illustrates an al-

ternative answer to the same question (x,a”).
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If the polyhedron is elongated as in Figure 3, then, in most cases, questions that imply
line segments perpendicular to the longest “axis” of the polyhedron are questions that result in
the smallest remaining feasible sets. Also, because the longest “axis” is in some sense a bigger
target, it is more likely that the respondent’s answer will select a hyperplane that intersects the
polyhedron. From analytic geometry we know that hyperplanes (line segments in Figure 3) are
perpendicular to their defining vectors (¥ ). Thus, we can reduce the feasible set as fast as possi-
ble (and make it more likely that answers are feasible) if we choose question vectors that are par-
allel to the longest “axis”. For example, both line segments based on X in Figure 3b are shorter
than the line segment based on X’ in Figure 3a.

If we can develop an algorithm that works in any p-dimensional space, then we can gen-
eralize this intuition to any question, g, such that g<p. After receiving answers to the first ¢
questions, we could find the longest vector of the (p-q)-dimensional polyhedron of feasible pa-
rameter values. We could then ask the question based on a vector that is parallel to this “axis.”
The respondent’s answer creates a hyperplane that intersects the polyhedron to produce a new

polyhedron. We address later the cases where respondents’ answers contain error and where g>p.

Centrality Estimation

Polyhedral geometry also gives us a means to estimate the parameter vector, # , when
q<p. Recall that, after question g, any point in the remaining polyhedron is consistent with the
answers the respondent has provided. If we impose a diffuse prior that any feasible point is
equally likely, then we would like to select the point that minimizes the expected error. This
point is the center of the feasible polyhedron, or more precisely, the polyhedron’s center of grav-
ity. The smaller the feasible set, either due to better question design or more questions (higher g),
the more precise the estimate. If there were no respondent errors, then the estimate would con-
verge to its true value when g=p (the feasible set becomes a single point, with zero dimensional-
ity). For g>p the same point would remain feasible. As we discuss below, this changes when
responses contain error.

This technique of estimating partworths from the center of a feasible polyhedron is re-
lated to that proposed by Srinivasan and Shocker (1973, p. 350) who suggest using a linear pro-
gram to find the “innermost” point that maximizes the minimum distance from the hyperplanes

that bound the feasible set. Philosophically, the proposed polyhedral method makes maximum
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use of the information in the constraints and then takes a central estimate based on what is still
feasible. Carefully chosen questions shrink the feasible set rapidly. We then use a centrality es-
timate that has proven to be a surprisingly good approximation in a variety of engineering prob-
lems. More generally, the centrality estimate is similar in some respects to the proven robustness
of linear models, and in some cases, to the robustness of equally-weighted models (Dawes and
Corrigan 1974; Einhorn 1971, Huber 1975; Moore and Semenik 1988; Srinivasan and Park
1997).

Interior-Point Algorithms and the Analytic Center of a Polyhedron

To select questions and obtain intermediate estimates the proposed heuristics require that
we solve two non-trivial mathematical programs. First, we must find the longest “axis” of a
polyhedron (to select the next question) and second, we must find the polyhedron’s center of
gravity (to provide a centrality estimate). If we were to define the longest “axis” of a polyhedron
as the longest line segment in the polyhedron, then one method to find the longest “axis” would
be to enumerate the vertices of the polyhedron and compute the distances between the vertices.
However, solving this problem requires checking every extreme point, which is computationally
intractable (Gritzmann and Klee 1993). In practice, solving the problem would impose notice-
able delays between questions. Also, the longest line segment in a polyhedron may not capture
the concept of a longest “axis.” Finding the center of gravity of the polyhedron is even more dif-
ficult and computationally demanding.

Fortunately, recent work in the mathematical programming literature has led to extremely
fast algorithms based on projections within the interior of polyhedrons (much of this work started
with Karmarkar 1984). Interior-point algorithms are now used routinely to solve large problems
and have spawned many theoretical and applied generalizations. One such generalization uses
bounding ellipsoids. In 1985, Sonnevend demonstrated that the shape of a bounded polyhedron
can be approximated by proportional ellipsoids, centered at the “analytic center” of the polyhe-
dron. The analytic center is the point in the polyhedron that maximizes the geometric mean of
the distances to the boundaries of the polyhedron. It is a central point that approximates the cen-
ter of gravity of the polyhedron, and finds practical use in engineering and optimization. Fur-

thermore, the axes of the ellipsoids are well-defined and intuitively capture the concept of an
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“axis” of a polyhedron. For more details see Freund (1993), Nesterov and Nemirovskii (1994),
Sonnevend (1985a, 1985b), and Vaidja (1989).

Polyhedral Question Design and Analytic Center Estimation

We illustrate the proposed process in Figure 4, using the same two-dimensional polyhe-
dron depicted in Figure 3. The algorithm proceeds in four steps. We first find a point in the inte-
rior of the polyhedron. This is a simple linear programming (LP) problem and runs quickly.
Then, following Freund (1993) we use Newton’s method to make the point more central. This is
a well-formed problem and converges quickly to yield the analytic center as illustrated by the
black dot in Figure 4. We next find a bounding ellipsoid based on a formula that depends on the
analytic center and the question-matrix, X. We then find the longest axis of the ellipsoid (diago-
nal line in Figure 4) with a quadratic program that has a closed-form solution. The next ques-
tion, X, is based on the vector most nearly parallel to this axis. A formal (mathematical) descrip-
tion of each step is provided in Appendix 1.

Analytically, this algorithm works well in higher dimensional spaces. For example, Fig-
ure 5 illustrates the algorithm when (p — g) = 3, where we reduce a 3-dimensional feasible set to
a 2-dimensional feasible set. Figure 5a illustrates a polyhedron based on the first g questions.
Figure 5b illustrates a bounding 3-dimensional ellipsoid, the longest axis of that ellipsoid, and
the analytic center. The longest axis defines the question that is asked next which, in turn, de-
fines the slope of the hyperplane that intersects the polyhedron. One such hyperplane is shown
in Figure 5c. The respondent’s answer locates the specific hyperplane. The intersection of the
selected hyperplane and the 3-dimensional polyhedron is a new 2-dimensional polyhedron, such
as that in Figure 4. This process applies (in higher dimensions) from the first question to the p™
question. For example, the first question implies a hyperplane that cuts the first p-dimensional
polyhedron such that the intersection yields a (p — 1)-dimensional polyhedron.

The polyhedral algorithm runs extremely fast. We have implemented the algorithm for
the web-based empirical test described later in this paper. Based on this example, with ten two-
level features, respondents noticed no delay in question design nor any difference in speed versus

a fixed design. For a demonstration see the website referenced earlier.
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Figure 4
Bounding Ellipsoid and the Analytic Center (2-dimensions)
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Inconsistent Responses and Error-Modeling

Figures 2, 3, 4, and 5 illustrate the geometry when respondents answer without error.
However, real respondents are unlikely to be perfectly consistent. It is more likely that, for some
q < p, the respondent’s answers will be inconsistent and the polyhedron will become empty.
That is, we will no longer be able to find any parameters, 4 , that satisfy the equations that define
the polyhedron, Xii =d . Thus, for real applications, we extend the polyhedral algorithm to ad-
dress response errors. Specifically, we adjust the polyhedron in a minimal way to ensure that
some parameter values are still feasible. We do this by modeling errors, 8 , in the respondent’s
answers such that @46 < Xi<a+46 (recall Figure 2b). We then choose the minimum errors such
that these constraints are satisfied. This same modification covers estimation for the case of g >

p. Appendix 1 provides the mathematical program (OPT4) that we use to estimate i and & .

The algorithm is easily modified to incorporate alternative error formulations, such as least-
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squares or minimum sum of absolute deviations, rather than this “minimax” criterion.*” Explora-

tory simulations suggest that the algorithm is robust to the choice of error criterion.
Figure 5

Question design with a 3-Dimensional Polyhedron
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(a) Polyhedron in 3 dimensions (b) Bounding ellipsoid, analytic center, and longest
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T

2-dimensional hyperplane
(perpendicular to the longest
axis of the ellipsoid)

(c) Example hyperplane determined by question vector and respondent’s answer

To implement this policy for analytic center estimation, we use a two-stage algorithm. In
the first stage we treat the responses as if they occurred without error — the feasible polyhedron
shrinks rapidly and the analytic center is a working estimate of the true parameters. However, as

soon as the feasible set becomes empty, we adjust the constraints by adding or subtracting “er-

% Technically, the minimax criterion is called the “eo-norm.” To handle least-squares errors we use the “2-
norm” and to handle average absolute errors we use the “1-norm.” Either is a simple modification to OPT4 in Ap-
pendix 1.
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rors,” where we choose the minimum errors, ||5 || , for which the feasible set is non-empty. The

analytic center of the new polyhedron becomes the working estimate and 4 becomes an index of
response error.”’ As with all of our heuristics, the accuracy of our error-modeling method is
tested with simulation. While estimates based on this heuristic seems to converge for the do-
mains that we test (reduce mean errors, no measured bias), we recognize the need for further ex-

ploration of this heuristic, together with the development of a formal error theory.

Addressing Other Practical Implementation Issues

Implementation raises several additional issues. Alternative solutions to these issues may
yield more or less accurate parameter estimates, and so the performance of the polyhedral meth-
ods in the validation tasks are lower bounds on the performance of this class of methods.

Product profiles with discrete features. In most conjoint analysis problems the

features are specified at discrete levels, as in Figure 1. This constrains the elements of the x
vector to be 1, -1, 0, or 0, depending on whether the left profile, the right profile, neither profile,
or both profiles have the “high” feature, respectively. In this case we choose the vector that is
most nearly parallel to the longest axis of the ellipsoid. Because we can always recode multi-
level features or interacting features as binary features, the geometric insights still hold even if
we otherwise simplify the algorithm.

Restrictions on question design. For a p-dimensional problem we may wish to

vary fewer than p features in any paired-comparison question. For example, Sawtooth Software
(1996, p. 7) suggests that: “Most respondents can handle three attributes after they’ve become
familiar with the task. Experience tells us that there does not seem to be much benefit from us-
ing more than three attributes.” We incorporate this constraint by restricting the set of questions
over which we search when finding a question-vector that is parallel to the longest axis of the
ellipse.

First question. Unless we have prior information before any question is asked, the
initial polyhedron of feasible utilities is defined by the boundary constraints. If the boundary

constraints are symmetric, the polyhedron is also symmetric and the polyhedral method offers

*! By construction, & grows (weakly) with the number of questions, g, thus a better measure of fit might be
mean error, the error divided by the number of questions — an analogy to mean-squared error in regression.
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little guidance for the choice of the first question. In these situations we choose the first question
for each respondent so that it helps improve estimates of the population means by balancing how
often each feature level appears in the set of questions answered by all respondents. In particu-
lar, for the first question presented to each respondent we choose feature levels that appeared in-
frequently in the questions answered by previous respondents.

Question design when the parameter set becomes infeasible. Analytic center es-

timation is well-defined when the parameter set becomes infeasible, but question design is not.
Thus, in the simulations we use a random question design heuristic when the parameter set is in-
feasible.”? This provides a lower bound on what might be achieved.

Programming. The optimization algorithms used for the simulations are written
in Matlab and are available at the website cited earlier. We also provide the simulation code and

demonstrations of web-based applications. All code is open-source.
3. Monte Carlo Simulations

Polyhedral methods for conjoint analysis are new and untested. Although interior-point
algorithms and the centrality criterion have been successful in many engineering problems, we
are unaware of any prior application to marketing problems. Thus, we turn first to Monte Carlo
experiments to identify circumstances in which polyhedral methods may contribute to the effec-
tiveness of current methods. Monte Carlo simulations offer at least three advantages for the ini-
tial test of a new method. First, they facilitate comparison of different techniques in a range of
domains such as varying levels of respondent heterogeneity and response accuracy. We can also
evaluate combinations of the techniques, for example, mixing polyhedral question design with
extant estimation methods. Second, simulations resolve the issue of identifying the correct an-
swer. In studies involving actual customers, the true partial utilities are unobserved. In simula-
tions the true partial utilities are constructed so that we can compare how well alternative meth-
ods identify the true utilities from noisy responses. Finally, other researchers can readily repli-

cate the findings. However, simulations do not guarantee that real respondents behave as simu-

2 Earlier implementations, including the field test, used ACA question design when the parameter set be-
came infeasible. Further analysis revealed that it is better to switch to random question design than ACA question
design when the parameter set becomes infeasible. Fortunately, this makes the performance of polyhedral question
design in the field test conservative.
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lated nor do they reveal which domain is likely to best summarize field experience. Thus, fol-
lowing the simulations, we examine a field test that matches one of the simulated domains.

Many papers have used the relative strengths of Monte Carlo experiments to study con-
joint techniques, providing insights on interactions, robustness, continuity, feature correlation,
segmentation, new estimation methods, new data-collection methods, post-analysis with Hierar-
chical Bayes methods, and comparisons of ACA, CBC, and other conjoint methods. Although
we focus on specific benchmarks, there are many comparisons in the literature of these bench-
marks to other methods (see reviews and citations in Green 1984; Green, Krieger, and Wind
2001, 2002; Green and Srinivasan 1978, 1990; Hauser and Rao 2003; Moore 2003.)

We test polyhedral question design versus three question design benchmarks and analytic
center estimation versus Hierarchical Bayes estimation. The initial simulations vary respondent
heterogeneity, accuracy of respondent answers, and the number of questions. In a second set of
simulations we also consider the role of self-explicated responses and vary the accuracy of self-

explicated responses.

Respondent Heterogeneity, Response Errors, and Number of Questions

We focus on a design problem involving ten features, where a product development team
is interested in learning the incremental utility contributed by each feature. We follow conven-
tion and scale to zero the partworth of the low level of a feature and, without loss of generality,
bound it by 100. This results in a total of ten parameters to estimate (p = 10). We anticipate that
the polyhedral methods are particularly well-suited to solving problems in which there are a large
number of parameters relative to the number of responses from each individual (¢ < p). Thus,
we vary the number of questions from slightly less than the number of parameters (g = 8) to
comfortably more than the number of parameters (g = 16).

We simulate each respondent’s partworths by drawing independently and randomly from
a normal distribution with mean 50 and variance o, truncated to the range. We explored the
sensitivity of the findings to this specification by testing different methods of drawing part-
worths, including beta distributions that tend to yield more similar partworths (inverted-U shape
distributions), more diverse partworths (U-shaped distributions), or moderately diverse part-
worths (uniform distributions). Sensitivity analyses for key findings did not suggest much varia-

tion. Nonetheless, this is an important area for more systematic future research. By manipulat-
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ing the standard deviation of the normal distribution we explore a relatively homogeneous popu-
lation (o, = 10) and a relatively heterogeneous population (o, = 30). These values were chosen
because they are comparable to those used elsewhere in the literature, because they result in
moderate-to-low truncation, and because their range illustrates how the accuracy of the methods
varies with heterogeneity.

To simulate the response to each metric paired-comparison (PC) question, we calculate
the true utility difference between each pair of product profiles by multiplying the design vector

by the vector of true partworths: X1 . We assume that the respondents’ answers to the questions

equal the true utility difference plus a zero-mean normal response error with variance afw . The

assumption of normally distributed error is common in the literature and appears to be a reason-
able assumption about PC response errors (Wittink and Cattin 1981 report no systematic effects
due to the type of error distribution assumed). We select response errors, comparable to those
used in the literature. Specifically, to illustrate the range of response errors we use both a low

response error (o, = 20) and a high response error (o, = 40).” For each comparison, we simu-
late 500 respondents (in five sets of 100).

Question Design Benchmarks

We compare the Polyhedral question design method against three benchmarks: Random
question design, a Fixed design, and the question design used by Adaptive Conjoint Analysis
(ACA).** For the Random benchmark, the feature levels are chosen randomly and equally-
likely. The Fixed design provides another non-adaptive benchmark. For g > p, we select the (g =
16) design with an algorithm that seeks the highest obtainable D-efficiency (Kuhfield, Tobias,
and Garratt 1994). Efficiency is not defined for g < p, thus, for g = 8, we follow the procedure
established by Lenk, et. al. (1996) and choose questions randomly from an efficient design for ¢
= 16.

We choose ACA question design as our third benchmark because it is the industry and

academic standard for within-respondent adaptive question design. For example, in 1991 Green,

B Response errors in the literature, often reported as a ratio of error variance to true variance (heterogene-
ity), vary considerably. In our case, the “respondent’s” answer, a, is the difference between the sum of the u’s.

Thus the variance of a is a multiple of 0‘3 . For our situation, the percent errors vary from 8% to 57%.

% Beginning in this section we capitalize the question design and estimation methods for easy reference.
We retain lower case for generic descriptions.
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Krieger and Agarwal (p. 215) stated that “in the short span of five years, Sawtooth Software’s
Adaptive Conjoint Analysis has become one of the industry’s most popular software packages
for collecting and analyzing conjoint data,” and go on to cite a number of academic papers on
ACA. Although accuracy claims vary, ACA appears to predict reasonably well in many situa-
tions (Johnson 1991; Orme 1999).

The ACA method includes five sections: an unacceptability task (that is often skipped), a
ranking of the features, a series of self-explicated (SE) questions, the metric paired-comparison
(PC) questions, and purchase intentions for calibration concepts. The question design procedure,
has not changed since it was “originally programmed for the Apple II computer in the late 70s”
(Orme and King 2002). It adapts the PC questions based on intermediate estimates (after each
question) of the partworths. These intermediate estimates are based on an OLS regression using
the SE and PC responses and ensure that the pairs of profiles are nearly equal in estimated utility
(utility balance). Additional constraints restrict the overall design to be nearly orthogonal (fea-
tures and levels are presented independently) and balanced (features and levels appear with near
equal frequency).

To avoid handicapping the ACA question design in the initial simulations, we simulate
the SE responses without adding error. In particular, Sawtooth Software asks for SE responses
using a 4-point scale, in which the respondent states the relative importance of improving the
product from one feature level to another (e.g., adding automatic film ejection to an instant cam-
era). We set the SE responses equal to the true partworths, but discretize the answer to match the
ACA scale.

Our code was written using Sawtooth Software’s documentation together with e-mail in-
teractions with the company’s representatives. We then confirmed the accuracy of the code by

asking Sawtooth Software to re-estimate partworths for a small sample of data.

Estimation Benchmark

The two estimation methods are the Analytic Center (AC) method described earlier and
Hierarchical Bayes (HB) estimation. Hierarchical Bayes estimation uses data from the population
to inform the distribution of partworths across respondents and, in doing so, estimates the poste-
rior mean of respondent-level partworths with an algorithm based on Gibbs sampling and the

Metropolis Hastings Algorithm (Allenby and Rossi 1999; Arora, Allenby and Ginter 1998; John-
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son 1999; Lenk, et. al. 1996; Liechty, Ramaswamy and Cohen 2001; Sawtooth Software 2001;
Yang, Allenby and Fennell 2002). For ACA question design, Sawtooth Software recommends
HB as their most accurate estimation method (Sawtooth Software 2002, p. 11). For this initial
comparison, for all question design methods, we use data from the SEs as starting values and we
use the SEs to constrain the rank-order of the levels for each feature (Sawtooth Software 2001, p.
13).%

Criterion

To compare the performance of each benchmark we calculate the mean absolute accuracy
of the parameter estimates (true vs. estimated values averaged across parameters and respon-
dents). We chose to report mean absolute error (MAE) rather than root mean squared error
(RMSE) because the former is less sensitive to outliers and is more robust over a variety of in-
duced error distributions (Hoaglin, Mosteller and Tukey 1983; Tukey 1960). However, as a prac-
tical matter, the qualitative implications of our simulations are the same for both error measures.
Indeed, except for a scale change, the results are almost identical for both MAE and RMSE.

This is not surprising; for normal distributions the two measures differ only by a factor of
Qm"?.

The results are based on the average of five simulations, each with 100 respondents. To
reduce unnecessary variance among question design methods, we first draw the partworths and
then use the same partworths to evaluate each question design method. The use of multiple

draws makes the results less sensitive to spurious effects from a single draw.
4. Results of the Initial Monte Carlo Experiments

We begin with the results obtained from using eight (g = 8) paired comparison questions.
This is the type of domain for which Polyhedral question design and Analytic Center estimation
were developed (more parameters to estimate than there are questions). Moreover, within this
domain there are generally a range of partworths that are feasible, and so the polyhedron is not
empty. In our simulations the polyhedron contains feasible answers for an average of 7.97 ques-

tions when response errors are low. When response errors are high, this average drops to 6.64.

%5 Another version of Sawtooth Software’s HB algorithm also uses the SEs to constraint the relative part-
worths across features. We test this version in our next set of simulations. This enables us to isolate the impact of
the paired-comparison question design algorithm.
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Table 1 reports the MAE in the estimated partworths for a complete crossing of question
design methods, estimation methods, response error, and heterogeneity. The best results (lowest
error) in each column are indicated by bold text. In Table 2 we reorganize the data to indicate
the directional impact of either heterogeneity or response errors on the performance of the ques-
tion design and estimation methods. In particular, we average the performance of each question
design method across estimation methods (and vice versa). To indicate the directional effect of

heterogeneity we average across response errors (and vice versa).

Table 1
Comparison of Question Design and Estimation Methods for g= 8
Mean Absolute Errors

Homogeneous Population Heterogeneous Population
g}:seiztri‘on Estimation Re::c‘;:se Re;;%r:\se Re::c‘:'lse Re:rlg;‘we
Error Error Error Error
Random AC 16.5 241 15.9 21.7
HB 8.1 10.2 19.8 22.2
Efficient Fixed AC 13.7 22.9 14.3 21.0
HB 7.8 10.3 20.4 225
ACA AC 14.9 242 16.1 221
HB 8.3 9.8’ 23.9 22.9
Polyhedral AC 10.7 20.9 12,5 19.7
HB 7.8 9.9 20.6 222

Smaller numbers indicate better performance.

"For each column, lowest error or not significantly different from lowest (p < 0.05). All others are
significantly different from lowest.
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Table 2
Directional Implications of Response Errors and Heterogeneity for g =8
Mean Absolute Errors

Homogeneous Heterogeneous Low Response High Response

Population Population Error Error
Question design
Random 14.7 19.9 15.1 19.5
Efficient Fixed 13.6 19.5 14.0 19.1
ACA 14.3 21.2 15.8 19.8
Polyhedral 12.3 18.4 12.9° 18.2°
_Estimation i -
AC 18.5 17.9 14.3 22.1
HB 9.0 21.8 14.6 16.2°

Smaller numbers indicate better performance.
*For each column within question design or estimation, lowest error or not significantly
different from lowest (p < 0.05). All others are significantly different from lowest.

Question Design Methods

The findings indicate that when there are only a small number of PC questions, the Poly-
hedral question design method performs well compared to the other three benchmarks. This
conclusion holds across the different levels of response error and heterogeneity. The improve-
ment over the Random question design method is reassuring, but perhaps not surprising. The
improvement over the Fixed method is also not surprising when there are a small number of
questions, as it is not possible to achieve the balance and orthogonality goals that the fixed
method seeks.

The comparison with ACA question design is more interesting. Further investigation re-
veals that the relatively poor performance of the ACA method can be attributed, in part, to en-
dogeneity bias, resulting from utility balance — the method that ACA uses to adapt questions. To
understand this result we first recognize that any adaptive question design method is, potentially,
subject to endogeneity bias. Specifically, the gth question depends upon the answers to the first
g-1 questions. This means that the gth question depends, in part, on any response errors in the
first g-1 questions. This is a classical problem, which often leads to bias (see for example Judge,

et. al. 1985, p. 571). Thus, adaptivity represents a tradeoff: we get better estimates more quickly,
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but with the risk of endogeneity bias. In our simulations, the absolute bias with ACA questions
and AC estimation is approximately 6.6% of the mean when averaged across domains. This is
statistically significant, in part, because of the large sample size in the simulations. Polyhedral
question design is also adaptive and it, too, could lead to biases. However, in all four domains,
the bias for ACA questions is significantly larger than the bias for Polyhedral questions (1.0% on
average for AC). The endogeneity bias in ACA questions appears to be from utility-balanced
question design; it is not removed with HB estimation. While further analyses of endogeneity
bias are beyond the scope of this paper, they represent an interesting topic for future research. In
particular, it might be possible to derive estimation methods that correct for these endogeneity

biases.

Estimation Methods

For homogeneous populations, Hierarchical Bayes consistently performed better than
Analytic Center estimation, irrespective of the question design method. The performance differ-
ences were generally large. Hierarchical Bayes estimation uses population-level data to moder-
ate individual estimates. If the population is homogenous, then, at the individual level, the ratio
of noise to true variation is higher and so moderating this variance through population-level data
improves accuracy. However, if the population is heterogeneous, then reliance on population
data makes it more difficult to identify the true individual-level variation and Analytic Center
estimation does better. For a heterogeneous population, the combination of Polyhedral question
design and Analytic Center estimation was significantly more accurate than any other combina-
tion of question design or estimation method (Table 1).

The findings also suggest that Hierarchical Bayes is relatively more accurate when re-
sponse errors are high, while Analytic Center estimation is more likely to be favored when re-
sponse errors are low. The reliance of Hierarchical Bayes on population-level data may also ex-
plain the role of response errors. If response errors are large, much of the individual-level vari-
ance is due to noise. Population-level data are less sensitive to response errors (due to aggrega-
tion) and so reliance on this data helps to improve accuracy. On the other hand, when response
errors are low, the polyhedron stays feasible longer and the Analytic Center method appears to

do a better job of identifying individual-level variation.
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Additional Paired-Comparison Questions

Although polyhedral methods were developed primarily for situations with only a rela-
tively small number of questions, there remain important applications in which a larger number
of questions can be asked of each respondent. To examine whether the potential accuracy advan-
tages of polyhedral methods for low g leads to a loss of accuracy at high g, we re-examined the
performance of each method after sixteen paired-comparison questions (g = 16).

Recall that the Polyhedral method is only used to design questions when the polyhedron
contains feasible responses. For low response errors the polyhedron is typically empty after 8
questions, while for high response errors this generally occurs at around 6 or 7 questions. Once
the polyhedron is empty we choose questions randomly. Because the Polyhedral question design
method is only responsible for around half of the questions we use the label, “Poly/Random.”

The findings are reported in Table 3, which is analogous to the previous Table 2. They
reveal the emergence of Fixed question design methods in some domains. Asking a larger num-
ber of questions results in more complete coverage of the parameter space. This increases the
importance of orthogonality and balance — the criteria used in efficient Fixed question design.
With more complete coverage, the ability to customize questions to focus on specific regions of
the question space becomes less important, mitigating the advantage offered by adaptive tech-
niques.

However, even after sixteen questions there remain domains in which Polyhedral ques-
tion design can improve performance. The Poly/Random method appears to be at least as accu-
rate as the Fixed design when the population is homogenous and/or response errors are high. Its
advantage for low g does not seem to be particularly harmful for high g, especially for high re-
sponse errors. Table 3 also suggests that Analytic Center estimation remains a useful estimation
procedure when populations are heterogeneous and/or response errors are low. We note that this
result is consistent with Andrews, Ansari, and Currim (2002, p. 87) who conclude “individual-
level models overfit the data.” They test OLS rather than the Analytic Center method and do not

test adaptive methods.
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Table 3
Directional Implications of Response Errors and Heterogeneity for g = 16
Mean Absolute Errors

Homogeneous Heterogeneous Low Response High Response

Population Population Error Error
Question design
Random 12.1 14.3 10.4 15.9
Efficient Fixed 10.3 13.1° 8.8 14.6
ACA 12,5 18.1 135 17.2
Poly/Random 9.2" 15.2 10.4 14.0
Ctmetonweog B Ut )
AC 13.9 12,5 9.9 16.4
HB 8.2 17.9 11.6 14.4

Smaller numbers indicate better performance.
*For each column within question design or estimation, lowest error or not significantly
different from lowest (p < 0.05). All others are significantly different from the lowest.

In summary, our Monte Carlo experiments suggest that there are domains in which Poly-
hedral question design and/or Analytic Center estimation improve the accuracy of conjoint
analysis, but there are also domains better served by extant methods. Specifically,

e Polyhedral question design shows promise for low number of questions, such as the fuzzy
front-end of product development and/or web-based interviewing.

e For larger numbers of questions, efficient Fixed designs appear to be best, but
Poly/Random question design does well, especially when response errors are high and
populations are homogenous.

e Analytic Center estimation shows promise for heterogeneous populations and/or low re-
sponse errors where the advantage of an individual-respondent focus is strongest.

e Hierarchical Bayes estimation is preferred when populations are more homogeneous and

response errors are large.
5. The Role of Self-Explicated Questions

Hybrid conjoint models refer to methods that combine both compositional methods, such
as self-explicated (SE) questions, and decompositional methods, such as metric paired-

comparison (PC) questions, to produce new estimates. Although there are instances in which
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methods that use just one of these data sources outperform or provide equivalent accuracy to hy-
brid methods, there are many situations and product categories in which hybrid methods improve
accuracy (e.g., Green 1984).

An important hybrid from the perspective of evaluating polyhedral methods is ACA - the
most widely used method for adaptive metric paired-comparison questions. While ACA’s ques-
tion design algorithm has remained constant since the late 1970s, its estimation procedures have
evolved to address the incommensurability of the SE and PC scales. Its default estimation pro-
cedure relies on an ordinary least squares (OLS) regression that weighs the SE and the PC data in
proportion to the number of questions asked (Sawtooth Software 2002, Version 5).26 We label
the current version “weighted hybrid” estimation and denote it by the acronym WHSE (the SE
suffix indicates reliance on SE data). Sawtooth Software also incorporates the SE responses in
their Hierarchical Bayes estimation procedure by using the SEs to constrain the estimates of
partworths both within a feature and between features to satisfy the ordinal conditions imposed
by the SE data. For example, if a respondent’s responses to the SE questions indicate that pic-
ture quality is more important than battery life, then the Hierarchical Bayes parameters are re-
stricted to satisfying this condition. We denote this algorithm with the acronym HBSE to indicate
that the SE responses play a larger role in the estimation.

We also create a polyhedral hybrid by extending AC estimation to incorporate SE re-
sponses. To do so, we introduce constraints on the feasible polyhedron similar to those used by
HBSE. For example, we impose a condition that picture quality is more important than battery
life by using an inequality constraint on the polyhedron to exclude points in the partworth space
that breach this condition. When the polyhedron becomes empty, we extend OPT4 to incorpo-
rate both the PC and SE constraints. We distinguish this method from the Analytic Center
method by adding a suffix to the acronym: ACSE.

To compare WHSE, HBSE, and ACSE to their purebred progenitors, we must consider
the accuracy of the SE data. If the SE data are perfectly accurate, then a model based on SEs
alone will predict perfectly and the hybrids would be almost as accurate. On the other hand, if

the SEs are extremely noisy. then the hybrids may actually predict worse than methods that do

% Earlier versions of ACA either weighed the scales equally (Version 3) or selected weights to fit purchase-
intention questions (Version 4).
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not use SE data. To examine these questions, we undertook a second set of simulation experi-
ments.

To simulate SE responses we assume that respondents’ answers to SE questions are unbi-
ased but imprecise. In particular, we simulate response error in the SE answers by adding to the

vector of true partworths, i , a vector of independent identically-distributed normal error terms
with variance o2, . We simulate two levels of SE response error — low error relative to PC re-
sponses (o, =10) and high error relative to PC responses (o, =70), truncating the SEs to a 0-to-

100 scale.”” We expect that these benchmarks should bound empirical situations. Recall that in

the first set of simulations we assumed no SE errors (o, =0), but discretized the scale. For con-

sistency, we also use a discrete scale when there are non-zero SE errors. Based on these SE er-
rors, we redo the simulations for each level of PC response errors and heterogeneity.

We summarize the results with Table 4 for lower numbers of questions (g = 8), where we
report the most accurate question-design/estimation methods for each level of response error and
heterogeneity. For ease of comparison, the earlier results (from Table 1) are summarized in the
column labeled “Initial Simulations.”

There are three results of interest. First, when the SEs are more accurate than the PCs,
then the hybrids do well. In this situation, the PC question design method matters less: Polyhe-
dral, Fixed, and Random hybrids are not significantly different in accuracy. Second, the insights
obtained from Tables 1-3 for population-level versus individual-level estimation continue to
hold: HB or HBSE do well in homogeneous domains while AC or WHSE do well in heterogene-
ous domains. Third, when the SEs are noisy relative to the PCs, then the hybrid methods do not
do as well as the purebred methods. Indeed, we expect a crossover point at some intermediate
level of relative accuracy.

Table 4 also highlights the emergence of WHSE in some domains.”® Of the hybrids
tested, WHSE is the only method that makes use of the interval-scale properties of the SEs.

These metric properties appear to help when the “signal-to-noise ratio” is high (more variation in

%7 For high SE errors truncation is approximately 50%; for low SE errors truncation is approximately 0%
and 11%, respectively, for low and high heterogeneity. This is consistent with our manipulation of high vs. low
information content of the SEs.

2 If WHSE were not available, Polyhedral ACSE is best for low response errors and Polyhedral HBSE is
best for high response errors. These results suggest that there is room for future research on how best to incorporate
SE data with AC estimation.
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true partworths, less error in the SEs). This result suggests that other methods which use inter-
val-scaled properties of the SEs should do well in these domains — a topic for further hybrid de-
velopment (e.g., Ter Hofstede, Kim, and Wedel 2002).

In summary, as in biology, where genetically-diverse offspring often have traits superior
to their purebred parents, heterosis in conjoint analysis improves predictive accuracy in some
domains. Furthermore, Polyhedral question design remains promising in these domains and
many of the insights from our earlier simulations still hold for hybrid methods. Finally, we ex-
pect and obtain analogous results for larger numbers of questions (g = 16). We could identify no

additional insight beyond Tables 1-4.

Table 4
The Impact of Self-Explicated (SE) Questions (g = 8)

Heterogeneity Response Errors Initial Simulations Relatively Accu- Relatively Noisy
(no SEs) rate SEs SEs
Homogeneous Low error Polyhedral HB Polyhedral HBSE Polyhedral HB
Fixed HB Fixed HBSE Fixed HB
Random HBSE
High error Polyhedral HB Polyhedral HBSE Polyhedral HBSE
ACA HB Fixed HBSE
Random HBSE
Heterogeneous Low error Polyhedral AC Polyhedral WHSE Polyhedral AC
Fixed WHSE
Random WHSE
High error Polyhedral AC Polyhedral WHSE Polyhedral AC
Fixed WHSE
Random WHSE

6. Empirical Application and Test of Polyhedral Methods

While tests of internal validity are common in the conjoint-analysis literature, tests of ex-

ternal validity at the individual level are rare.”® A search of the literature revealed four studies

that predict choices in the context of natural experiments and one study based on a lottery choice.

¥ Some researchers report aggregate predictions relative to observed market share. See Bucklin and Srini-
vasan (1991), Currim (1981), Green and Srinivasan (1978), Griffin and Hauser (1993), Hauser and Gaskin (1984),
McFadden (2000), Page and Rosenbaum (1989), and Robinson (1980).
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Wittink and Montgomery (1979), Srinivasan (1988), and Srinivasan and Park (1997) all use con-
joint analysis to predict MBA job choice. Samples of 48, 45, and 96 student subjects, respec-
tively, completed a conjoint questionnaire prior to accepting job offers. The methods were com-
pared on their ability to predict actual job choices. First preference predictions ranged from 64%
to 76% versus random-choice percentages of 26-36%. In another natural experiment, Wright
and Kriewall (1980) used conjoint analysis (Linmap) to predict college applications by 120 fami-
lies. They were able to correctly predict 20% of the applications when families were prompted
to think seriously about the features measured in conjoint analysis; 15% when they were not.
This converts to a 16% improvement relative to their null model. Leigh, MacKay and Summers
(1984) allocated 122 undergraduate business majors randomly to twelve different conjoint tasks
designed to measure partworths for five features. Respondents indicated their preferences for ten
calculators offered in lottery. There were no significant differences among methods with first-
preference predictions in the range of 26-41% and percentage improvements of 28%. The au-
thors also compared the performance of estimates based solely on SE responses and observed
similar performance to the conjoint methods.

In this section, we test polyhedral methods with an empirical test involving an innovative
laptop-computer carrying bag. Our test differs from the natural experiment studies because it is
based on a controlled experiment in which we chose pareto sets of product features. At the time
of our study, the product was not yet on the market and so respondents had no prior experience
with it. The bag includes a range of separable product features, such as the inclusion of a mo-
bile-phone holder, side pockets, or a logo. We focused on nine product features, each with two
levels, and included price as a tenth feature. Price is restricted to two levels ($70 and $100) — the
extreme prices for the bags in both the internal and external validity tests. We estimated the
partworths associated with prices between $70 and $100 by linearly interpolating. A more de-
tailed description of the product features can be found on the website cited earlier in this paper.

Because ACA is the dominant industry method for adaptive question design, we chose a
product category where we expected ACA to perform well — a category where separable product
features would lead to moderately accurate SE responses. We anticipate that SE responses are
more accurate in categories where customers make purchasing decisions about features sepa-
rately by choosing from a menu of features. In contrast, we expect SE responses to be less accu-

rate for products where the features are typically bundled together, so that customers have little
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experience in evaluating the importance of the individual features. If Polyhedral question de-
sign and/or estimation does well in this category, then, based on Table 4, we expect it to do well

in categories where SE responses are less accurate.

Research Design

Subjects were randomly assigned to one of the three conjoint question design methods:
Polyhedral (2 cells), Fixed, or ACA. We omitted Random question design because the Fixed
question design method dominates Random design in Tables 2 and 3. After completing the re-
spective conjoint tasks, all of the respondents were presented with the same validation exercises.
The internal validation exercise involved four holdout metric paired-comparison (PC) questions,
which occurred immediately after the sixteen PC questions designed by the respective conjoint
methods. The external validation exercise was the selection of a laptop computer bag from a
choice set of five bags. This exercise occurred in the same session as the conjoint tasks and
holdout questions, but was separated from these activities by a filler task designed to cleanse

memory (see Table 5).

Table 5
Detailed Research Design

Row Polyhedral 1 Fixed Polyhedral 2 ACA
1 Self-explicated Self-explicated
2 Polyhedral Fixed Polyhedral ACA

paired comparison  paired comparison  paired comparison  paired comparison
3 Internal validity task Internal validity task Internal validity task Internal validity task
4 Purchase intentions Purchase intentions
5 Filler task Filler task Filler task Filler task
6 External validity External validity External validity External validity
task task task task
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Conjoint Tasks

Recall that ACA requires five sets of questions. Pretests confirmed that all of the features
were acceptable to the target market, allowing us to skip the unacceptability task. This left four
remaining tasks: ranking of levels within features, self-explicated (SE) questions, metric paired-
comparison (PC) questions, and purchase intention (PI) questions. ACA uses the SE questions to
select the PC questions, thus the SE questions in ACA must come first, followed by the PC ques-
tions and then the PI questions. To test ACA fairly, we adopted this question order for the ACA
condition.

The Fixed and Polyhedral question design techniques do not require SE or PI questions.
Because asking the SE questions first could create a question-order effect, we asked only PC
questions (not the SE or PI questions) prior to the validation task in the Fixed condition. To in-
vestigate the question-order effect we included two polyhedral data collection procedures: one
that matched the Fixed design (Polyhedral 1) and one that matched ACA (Polyhedral 2). In
Polyhedral 1 only PC questions preceded the validation task, while in Polyhedral 2, all of the
questions preceded the validation task. This enables us to (a) explore whether the SE questions
affect the responses to the PC questions and (b) evaluate the hybrid estimation methods that
combine data from PC and SE questions.*

The complete research design, including the question order, is summarized in Table 5.
Questions associated with the conjoint tasks are highlighted in green (Rows 1, 2 and 4), while the
validation tasks are highlighted in yellow (Rows 3 and 6). The filler task is highlighted in blue
(Row 5). In this design, Polyhedral 1 can be matched with Fixed; Polyhedral 2 can be matched
with ACA.

Internal Validity Task: Holdout PC Questions

Each of the question design methods designed sixteen metric paired-comparison (PC)
questions. Following these questions, respondents answered four holdout PC questions — a test
used extensively in the literature. The holdout profiles were randomly selected from an inde-

pendent efficient design of sixteen profiles and did not depend on prior answers by that respon-

30 Although the SE responses are collected in the Polyhedral 2 condition, they are not used in Analytic Cen-
ter estimation or Polyhedral question design. However, they do provide the opportunity to test hybrid estimation
methods.
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dent. There was no separation between the sixteen initial questions and the four holdout ques-

tions, so that respondents were not aware that the questions were serving a different role.

Filler Task

The filler task was designed to separate the conjoint tasks and the external validity task.
It was hoped that this separation would mitigate any memory effects that might influence how
accurately the information from the conjoint tasks predicted which bags respondents chose in the
external validity tasks. The filler task was the same in all four experimental conditions and com-
prised a series of questions asking respondents about their satisfaction with the survey questions.

There was no significant difference in the responses to the filler task across the four conditions.

External Validity Task: Final Bag Selection

Respondents were told that they had $100 to spend and were asked to choose among five
bags. The five bags shown to each respondent were drawn randomly from an orthogonal frac-
tional factorial design of sixteen bags. This design was the same across all four experimental
conditions, so that there was no difference, on average, in the bags shown to respondents in each
condition. The five bags were also independent of responses to the earlier conjoint questions.
The price of the bags varied between $70 and $100 reflecting the difference in the anticipated
market price of the features included with each bag. By pricing the bags in this manner we en-
sured that the choice set represented a Pareto frontier, as recommended by Elrod, Louviere, and
Davey (1992), Green, Helsen and Shandler (1988), and Johnson, Meyer and Ghosh (1989).

Respondents were instructed that they would receive the bag that they chose. If the bag
was priced at less than $100, they were promised cash for the difference. In order to obtain a
complete ranking, we told respondents that if one or more alternatives were unavailable, they

might receive a lower ranked bag. The page used to solicit these rankings is presented in Figure
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6.°! At the end of the study the chosen bags were distributed to respondents together with the
cash difference (if any) between the price of the selected bag and $100.

Self-Explicated and Purchase Intention Questions

The self-explicated questions asked respondents to rate the importance of each of the ten
product features. For a fair comparison to ACA, we used the wording for the questions, the
(four-point) response scale, and the algorithm for profile selection proposed by Sawtooth Soft-
ware (1996). For the purchase intention questions, respondents were shown six bags and we
asked how likely they were to purchase each bag. We adopted the wording, response scale and

algorithms for profile selection suggested by Sawtooth Software.

Figure 6
Respondents Choose and Keep a Laptop Computer Bag
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*! We acknowledge two tradeoffs in this design. The first is an endowment effect because we endow each
respondent with $100. The second is the lack of a “no bag” option. While both are interesting research opportuni-
ties and quite relevant to market forecasting, a priori neither should favor one of the three methods relative to the
other; we expect no interaction between the endowment/forced-choice design and PC question design and leave such
investigations to future research. However, the forced choice design might add noise to the most-accurate method
relative to less-accurate methods. This would make it more difficult to achieve significant differences and is, thus,
conservative. Pragmatically, we designed the task to maximize the power of the statistical comparisons of the four
treatments. The forced-choice also helped to reduce the (substantial) cost of this research.
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Subjects

The subjects (respondents) were first-year MBA students. They were not informed about
the objectives of the study, nor had they taken a course in which conjoint analysis was taught in
detail. We received 330 complete responses (there was one incomplete response) from an e-mail
invitation to 360 students — a response rate of over 91%. Pure random assignment (without quo-
tas) yielded 80 subjects for the ACA condition, 88 for the Fixed condition, and 162 for the Poly-
hedral conditions broken out as 88 for the standard question order (Polyhedral 1) and 74 for the
alternative question order (Polyhedral 2).

The questionnaires were pretested on a total of 69 subjects drawn from professional mar-
ket research and consulting firms, former students, graduate students in Operations Research,
and second-year students in an advanced marketing course that studied conjoint analysis. The
pretests were valuable for fine-tuning the question wording and the web-based interfaces. By the
end of the pretest, respondents found the questions unambiguous and easy to answer. Following
standard scientific procedures, the pretest data were not merged with the experimental data.
However, analysis of this small sample suggests that the findings agree directionally with those

reported here, albeit not at the same level of significance.

78




Figure 7
Example Screens from Questionnaires
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(c) Metric paired-comparison (PC) question (d) Self-explicated (SE) questions
Additional Details

Figure 7 illustrates some of the key screens in the conjoint analysis questionnaires. In
Figure 7a respondents are introduced to the price feature. Figure 7b illustrates one of the di-
chotomous features — the closure on the sleeve. This is an animated screen that provides more
detail as respondents move their pointing devices past the picture. Figure 7¢ illustrates one of
the PC tasks. Respondents were asked to rate their relative preference for two profiles that var-
ied on three features. Both text and pictures were used to describe the profiles. In the pictures,
features that did not vary between the products were chosen to coincide with the respondent’s

preferences for feature levels obtained in the tasks such as Figure 7b. The format was identical
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for all four experimental treatments. Finally, Figure 7d illustrates the first three self-explicated
questions. The full questionnaires for each treatment are available on the website cited earlier in
this paper. We note that some of these website improvements (e.g., dynamically changing pic-
tures) are not standard in Sawtooth Software’s implementation, thus, our tests should be consid-
ered a test of ACA question design (and estimation) rather than a test of Sawtooth Software’s

commercial implementation.
7. Results of the Field Test

To evaluate the conjoint methods we calculated the Spearman rank-order correlation be-
tween the actual and observed rankings for the five bags shown to each respondent.’> We report

the results in Table 6 using the same benchmark methods that we used for the Monte Carlo simu-

lations.
Table 6
External Validity Tests: Correlation with Actual Choice
(Larger numbers indicate better performance)
After 8 Questions After 16 Questions
: Fixed Polyhedral 1 Fixed Polyhedral 1
Methods without SE data Questions Questions Questions Questions
Analytic Center (AC) 0.51 0.59 0.62 0.68
Hierarchical Bayes (HB) 0.53 0.57 0.61 0.64
Sample size 88 88 88 88
ACA Polyhedral 2 ACA Polyhedral 2
Methods that use SE data Questions Questions Questions Questions
WHSE Estimation 0.66 0.68 0.68 0.72
ACSE Estimation 0.63 0.70 0.65 0.71
HBSE Estimation 0.64 0.73 0.65 0.74
Sample size 80 74 80 74

%2 As an alternative metric, we compared how well the methods predicted which product the respondents
favored. The two metrics provide a similar pattern of results and so, for ease of exposition, we focus on the correla-
tion measure. There are additional reasons to focus on correlations. First-choice prediction is a dichotomous variable
highly dependent upon the number of items in the choice set. In addition, it provides less power because it has
higher variance than the Spearman correlation, which is based on a rank order of five items.
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In the simulation analysis we had the luxury of large sample sizes (500 respondents) and
we were able to completely control for respondent heterogeneity. Although the sample sizes in
Table 6 are large compared to previous tests of this type, they are small compared to the simula-
tion analysis. As a result, none of the differences across methods are significant at the 0.05 level
in independent-sample t-tests. However, these independent-sample t-tests do not use all of the
information available in the data. We also evaluate significance by an alternative method that
pools the correlation measures calculated after each additional PC question. This results in a to-
tal of sixteen observations for each respondent.

To control for heteroscedasticity we estimate a separate intercept for each question num-
ber. We also controlled for respondent heterogeneity in the randomly-assigned conditions with a
null model that assumes that the ten laptop bag features are equally important. If, despite the
random assignment of respondents to conditions, the responses in one condition are more consis-
tent with the null model, then the comparisons would be biased in favor of this condition. We
control for such potential heterogeneity by including a measure describing how accurately the
equal-weights (null) model performs on the predictive correlations. The complete specification
for this model is described in Equation 1, where r indexes the respondents and g indexes the
number of PC questions used in the partworth estimates. The ’s and f3’s are coefficients in the
regression and & iS an error term.

16 M-1

D Correlation,, = Zanuestionq + Z B.Method, +y EqualWeights, +¢,,

q=1 m=1

The Question and Method terms refer to dummy variables identifying the question and
method effects. The EqualWeight variable measures the correlation obtained for respondent r
between the actual rankings and the rankings obtained from an equal weights model. Under this
specification, the f coefficients represent the expected increase or decrease in this correlation
across questions due to Method m relative to an arbitrarily chosen base method. Positive (nega-
tive) values for the f coefficients indicate that the correlations between the actual and predicted
rankings are higher (lower) for Method m than the base method.

We further control for potential heteroscedasticity introduced by the panel nature of the
data by calculating robust standard errors (White 1980). We also estimated a random effects

model, but there were almost no difference in the coefficients of interest. Moreover, the Haus-
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man specification test favored the fixed-effects specification. The findings are summarized in

Table 7.

Table 7
External Validity Tests: Conclusions from the Multivariate Analysis

Without SE Questions With SE Questions
Comparison of Estimation Methods
Fixed Questions HB > AC
Polyhedral 1 Questions AC >> HB
ACA Questions WHSE > HBSE > ACSE
Polyhedral 2 Questions HBSE >>> WHSE > ACSE
Comparison of Question design Methods
AC Estimation Polyhedral 1 >>> Fixed
HB Estimation Polyhedral 1 >>> Fixed
WHSE Estimation Polyhedral 2 > ACA
ACSE Estimation ‘ Polyhedral 2 >> ACA
HBSE Estimation Polyhedral 2 >>> ACA

Method m > Method n: Method m is more accurate than Method n but the difference is not significant.
Method m >> Method n: Method m is significantly more accurate than Method n (p<0.05).
Method m >>> Method n: Method m is significantly more accurate than Method n (p<0.01).

Comparison of Estimation Methods

We compare the accuracy of the different estimation methods by comparing the findings
in Table 6 within a column (for a specific set of questions) and looking to Table 7 for signifi-
cance tests. This comparison holds the question design constant and varies the estimation
method. For those experimental cells that were designed to obtain estimates without the SE
questions, Hierarchical Bayes and Analytic Center estimation offer similar predictive accuracy
for Fixed questions, but Analytic Center estimation performs better for Polyhedral questions.

If SE responses are available, the preferred estimation method appears to depend upon
both the question design method and the number of PC responses used in the estimation. For
Polyhedral questions HBSE performs extremely well for low numbers of PC questions, perhaps
due to its use of population level data. However, increasing the number of PC responses yields

less improvement in the accuracy of HBSE relative to WHSE. After sixteen questions all three
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estimation methods converge to comparable accuracy levels, suggesting that there are sufficient
data at the individual level to provide estimates that need not depend on population distributions.
When using PC questions designed by ACA, WHSE out-performs HBSE, albeit not significantly

SO.

Comparison of Question Design Methods

The findings in Table 6 also facilitate comparison of the question design methods. Com-
paring across columns (within rows) in Table 6 holds the estimation method constant and varies
the question design. The findings favor the two conditions in which the Polyhedral question de-
sign was used. When the SE measures were not collected, the Polyhedral question design
yielded significantly (p<0.01) more accurate predictions than the Fixed design. This holds true
irrespective of the estimation method.

When SE responses were collected, the Polyhedral question design was more accurate
than ACA across every estimation method, although the difference was not significant for
WHSE. Detailed investigation reveals that for every estimation method we tested, the estimates
derived using the Polyhedral questions outperform the corresponding estimates derived using

ACA questions after each and every question number.

The Incremental Predictive Value of the SE Questions and of PC Questions

In this category, Table 6 suggests that hybrid methods that use both SE and PC questions
consistently outperform methods that rely on PC questions alone. Thus, in this category, the SE
questions provide incremental predictive ability. We caution that the product category was cho-
sen at least in part because the SE responses were expected to be accurate. The simulations sug-
gest that this improvement in accuracy may not be true in all domains.

We also evaluate whether the PC responses contributed incremental accuracy. Predic-
tions that use the SE responses alone (without the PC responses) yield an average correlation
with actual choice of 0.64. This is lower than the performance of the best methods that use both
SE and PC responses and comparable at g = 16 to those methods that do not use SE responses
(see Table 6). We conclude (in this category) that the sixteen PC questions provide roughly the
same amount of information as the ten SE questions and that, for methods that use both, the PC

data add incremental predictive ability. This conclusion is consistent with previous evidence in
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the literature (Green, Goldberg, and Montemayor 1981; Huber, et. al. 1993, Johnson 1999;
Leigh, MacKay, and Summers 1984).

The Internal Validity Task

We repeated the analysis of question design and estimation methods using the correlation
measures from the internal validity (holdout questions) task. Details are in Appendix 2. The re-
sults for internal validity are similar to the results for external validity. However, there are two
differences worth noting. First, while HBSE predicted better than WHSE for Polyhedral ques-
tion design in the choice task, there was no significant difference in the holdout task. Second,
while Polyhedral question design was significantly better than Fixed design for the choice task,

there were no significant differences for the holdout task.

Question Order Effects: Polyhedral 1 versus Polyhedral 2

Polyhedral 1 and Polyhedral 2 varied in question order; the SE questions preceded the PC
questions in Polyhedral 2 but not in Polyhedral 1. Otherwise, both methods used the same ques-
tion design algorithm — an algorithm that does not use SE data. Nonetheless, question order
might influence the accuracy of the PC responses. If the SE questions “wear out” or tire respon-
dents, causing them to pay less attention to the PC questions, we might expect that inclusion of
the SE questions will degrade the accuracy of the PC responses. Alternatively, the SE questions
may improve the accuracy of the PC questions by acting as a training or “warm-up” task which
helps respondents clarify their values, increasing the accuracy of the PC questions (Green,
Krieger and Agarwal 1991; Huber, et. al. 1993; Johnson 1991).

By comparing the two experimental cells we investigate whether the prior SE questions
affected the accuracy of the respondents’ PC responses. The predictive accuracy of the two con-
ditions are not statistically different (t = -0.05 for AC estimation, the preferred estimation method
from Tables 1 and 7). This suggests that by the sixteenth question any wear out or warm-
up/learning had disappeared. However, there might still be an effect for the early questions.
When we estimate performance of AC estimation using a version of Equation 1, the effect is not
significant for external validity task (t = 0.68), but is significant for the internal validity task (t =
2.60). In summary, the evidence is mixed. There is no evidence that the SE questions improve
or degrade the accuracy of the PC questions for the choice task, but they might improve accuracy

for the hold out task. Further testing is warranted. For example, if the first cut of the polyhedron
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is critical, then it is important that the first PC question be answered as accurately as feasible.
The use of SE questions might sensitize the respondent and enhance the accuracy of the first PC
question. Alternatively, researchers might investigate other warm-up questions, such as those in

which the respondent configures an ideal product (Dahan and Hauser 2002).

Summary of the Field Test

In the field test, Polyhedral question design appears to be the most accurate of the tested
question design methods. When SE data are available, the most accurate estimation methods
were the HBSE and WHSE hybrids. If SE data were unavailable, the most accurate estimation
method was AC for Polyhedral questions and HB for Fixed questions.

To compare the field test to the simulations, we must identify the relevant domain. For-
tunately, estimates of heterogeneity and PC response errors are a by-product of the Hierarchical

Bayes estimation and we can use HB to estimate SE errors. These estimates suggest high levels

of heterogeneity (o = 29) and PC response errors (O';C = 43), but moderately low SE response

errors (0'12,0 = 18). When SEs are unavailable, the simulations predict that in this domain: (1)

Polyhedral question design should be better than Fixed for both estimation methods, (2) AC
should be much better than HB for Polyhedral questions, (3) AC should remain better than HB
for Fixed questions, but the difference is not as large. The significant findings in Table 7 are
consistent with (1) and (2). Contrary to (3), HB is better for Fixed questions, but not signifi-
cantly so.

For accurate SEs, the simulations predict that in this domain: (4) Polyhedral questions
will remain strong for hybrid estimation methods, but the differences among question design
methods will be less for hybrid methods than for purebred methods, (5) hybrid estimation meth-
ods will outperform the purebred methods, and (6) WHSE will outperform ACSE (in the detailed
simulation data for this domain HBSE also outperforms ACSE). Predictions (4), (5), and (6)
hold true in the field test.

It is always difficult to compare field data to simulations because, despite experimental
controls, there may be unobserved phenomena in the field test that are not captured in the simu-

lations. However, the two type of data are remarkably consistent, albeit not perfectly so.
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8. Product Launch

Subsequent to our research, Timbuk?2 launched the laptop bags with features similar to
those tested including multiple sizes, custom colors, logo options, accessory holders (PDA and
cellular phone), mesh pockets, and laptop sleeves. Timbuk2 considers the product a success — it
is selling well and is profitable. We now compare the laboratory experiment and the national
launch. However, we do so with caution because the goal of the field test was to compare meth-
ods rather than to forecast the national launch. By design we used a student sample rather than a
national sample, offered only two color combinations, and did not offer the large size bag. Fur-
thermore, one tested feature, the “boot,” was not included in the national launch because produc-
tion cost (and feasibility) exceeded the price that could be justified. One feature, a bicycle strap,
was added based on managerial judgment.

There were five comparable features that appeared in both the field test and the national
launch. With the above caveats in mind, the correlation of the predicted feature shares from the
conjoint analyses with those observed in the marketplace was 0.9, which was significant. (By
feature share we mean percent of customers who chose each of the five features.) Predictions
with various null models were not significant. Unfortunately, these data do not provide suffi-
cient power to compare the relative accuracies of the methods nor report correlations to more

than one significant figure.
9. Conclusions and Future Research

Recent developments in math programming provide new methods for designing metric
paired-comparison questions and estimating partworths. The question design method uses a
multidimensional polyhedron to characterize feasible parameters and focus questions to reduce
the size of the polyhedron as fast as possible. The estimation method uses the analytic center to
approximate the center of the polyhedron. This centrality estimate summarizes what is known
about the feasible set of parameters. Our goals in this paper were to (1) propose practical algo-
rithms using polyhedral methods, (2) demonstrate their feasibility, (3) test their potential in a va-
riety of domains, (4) compare their theoretical accuracy relative to existing methods, and (5)
compare their predictive accuracy relative to existing methods in a realistic empirical situation.

The field test was designed to match one of the theoretical domains that was favorable to existing
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methods. The overall conclusion is that polyhedral methods are worth further development, ex-

perimentation, and study. Detailed findings are summarized in Table 8.

Table 8
Detailed Summary of Findings

Feasibility

e The Polyhedral question-design method can design questions in real time for a realistic num-
ber of parameters.

e The Analytic Center estimation heuristic yields real time partworth estimates that provide
reasonable accuracy with little or no bias.

Monte Carlo Experiments

e Polyhedral question design shows the most promise for lower numbers of questions where it
does well in all tested heterogeneity and response-error domains.

e Fixed question design remains best for larger numbers of questions, but Poly/Random does
well for homogeneous populations and high response errors.

e AC estimation shows promise for heterogeneous populations and low response errors; HB
performs well when the population is homogeneous and response errors are high.

e When self-explicated (SE) data are available and relatively noisy:
o Polyhedral question design continues to perform well.
o Purebred estimation methods may be preferred.

e When SE data are available and relatively accurate:
o Question design is relatively less important.
o For homogeneous populations, HBSE is the best estimation method.
o For heterogeneous populations, WHSE is the best estimation method.

External-Validity Experiment

e The field test domain had high heterogeneity and PC response errors, and moderately low SE
response errors. The findings are consistent with the Monte Carlo results in this domain.

e Polyhedral question design shows promise irrespective of the availability of SE data. This is
true for all tested estimation methods.

e When SE data are unavailable, Analytic Center estimation is a viable alternative to Hierar-
chical Bayes estimation, especially when paired with Polyhedral question design.

e When SE data are available, existing hybrid estimation methods (HBSE and WHSE) appear
to outperform the ACSE hybrid.

Product Launch

e The laptop bags were launched to the market, but we must be cautious when evaluating pre-
dictive accuracy because there were many differences between the empirical experiment and
the market launch. In addition, there were insufficient data for relative comparisons.

e With these caveats, the conjoint analyses correlate well with the marketplace outcome.
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We are encouraged by the performance of polyhedral methods in the Monte Carlo and
external-validity experiments. We feel that with further research new algorithms based on poly-
hedral methods have the potential to become easier to use, more accurate, and applicable in a

broader set of domains. We close by highlighting some of the opportunities.

Theoretical Improvements

Error theory. Our proposed heuristic (OPT4) provides a practical means by which to

use the Analytic Center to obtain partworth estimates from noisy data. Although the maximum

error, & , is likely to increase with the number of questions, the mean error, & /g, is likely to de-
crease. Furthermore, the Analytic Center estimates appear to be unbiased, except when there is
endogeneity in question design. However, we have not yet developed a formal proof of either
hypothesis. More generally, it might be possible to derive the error-handling heuristics from
more-fundamental distributional assumptions.

Algorithmic improvements for question design. There are a number of ways in which
Polyhedral question design might be improved. For example, the proposed algorithm reverts to
random selection when the polyhedron becomes empty (around g = 8 when p = 10). We might
explore algorithms that use relaxed constraints (OPT#4) after the initial polyhedron becomes
empty. Multi-step look-ahead algorithms might yield further improvements.

Improved hybrid estimation. Analytic Center estimation appears to do quite well when
self-explicated (SE) data are not available or when SE data are relatively noisy. However, when
the SE data are relatively accurate, existing methods are better. In particular, for some domains a
method that directly exploits the metric properties of the SEs seems to be best. We proposed
ACSE as a natural way to mix AC estimation with SE constraints, but there might be other
methods that make better use of the metric properties of the SEs. Table 4 also suggests that SE
metric properties might be useful with Hierarchical Bayes hybrids, such as the Ter Hofstede,
Kim, and Wedel (2002) algorithm.

Complexity constraints. Evgeniou, Boussios, and Zacharia (2002) demonstrate that
“Support Vector Machines” (SVM) can improve estimation by automatically balancing complex-
ity of the partworth specification with fit. These researchers are now exploring a hybrid between

Analytic-Center and SVM estimation for stated-choice data — an exciting development that can

88




deal with non-linearities in polyhedral specifications. We might also extend the algorithm in
Appendix 1 to incorporate complexity considerations directly either by using relaxed constraints

(thick hyperplanes as in Figure 2b) or the direct use of OPT4 in the definition of the hyperplanes.

Monte Carlo Experiments

Addressing the ‘“why.” Our heuristics are designed to obtain better questions by reduc-
ing the feasible polyhedron as rapidly as possible. In an analogy to the theory of efficient ques-
tions, e.g., D-efficiency, this heuristic focuses the next question on that portion of the parameter
space where we have the least information. Future Monte Carlo experiments might test this hy-
pothesis or identify an alternative explanation. Such theory might lead to further improvements
in the algorithm.

Learning and wear-out. The comparison of question order (Polyhedral 1 vs. Polyhedral
2) suggests that the SE questions might increase the accuracy of the paired-comparison questions
by acting as warm-up questions. This is an example of the more general issue that response er-

rors might depend upon g. For example, exploratory simulations, usingo,. = ki + k2 g, suggest

that learning (positive k>) causes mean absolute error (MAE) to decline more rapidly as the
number of questions, g, increases. Wear out (negative k) yields a U-shaped function. Other
simulations might explore further many behavioral issues affecting response accuracy
(Tourangeau, Rips and Rasinski 2000).

Interactions. Analytic Center estimation is a by-product of Polyhedral question design.
Tables 1, 6, and 7 suggest that there might be interactions among question design and estimation
methods in terms of MAE or predictive ability. Although none of these interactions were sig-
nificant in our data, interactions are worth further exploration. For example, while AC does well
when the SE data are unavailable or relatively noisy, ACSE does not do as well for relatively ac-
curate SE data.

Other domains. Our simulations explore heterogeneity, response error, and the number
of questions. We made a number of decisions such as the manner in which we specified hetero-
geneity (normally distributed with mean at the center of the range) and response error (normally
distributed with no bias). Initial simulations suggested that the results were not sensitive to these
assumptions, but more systematic exploration might identify interesting phenomena that we were

not able to explore. Simulations for extremely large p or ¢ might also yield new insight.
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Other criteria. We chose MAE as our evaluative criteria. Exploratory simulation sug-
gested that root mean squared error (RMSE) appeared to be proportional to MAE. We might
also explore other criteria such as predictive accuracy (analogous to Table 6), the dollar value of
product features (Jedidi, Jagpal and Manchanda 2003; Ofek and Srinivasan 2002), or the incre-

mental explanatory power of each question and question type.

Empirical Tests in Other Categories

Known applications. Polyhedral methods are beginning to diffuse. Sawtooth Software,
Inc. now offers a polyhedral option to its ACA software, Harris Interactive, Inc. has begun initial
testing, and National Family Opinion, Inc. is exploring feasibility. Sawtooth Software has com-
pleted an empirical test of internal validity using a Poly/ACA question design algorithm (Orme
and King 2002). In their data, on average, the ACA portion chose 63% of the paired-comparison
questions. They observed no significant differences between the methods after g = 30. We have
not been able to obtain for their application estimates of heterogeneity, PC response error, SE
response error, or performance for low gq.

Other product categories. We choose a category with separable features. In this cate-
gory, the SE data were relatively accurate and, thus, the ACA benchmark was not handicapped.
This domain matched one of the 3x2x2 classes of categories in Table 4 and the empirical data
were consistent with the Monte Carlo data. We hypothesize that the Monte Carlo experiments
are consistent with the eleven other classes of categories, but further empirical tests might ex-

plore this hypothesis further.
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Appendix 1: Mathematics of Fast Polyhedral Adaptive Conjoint Estimation

Consider the case of p parameters and g questions where g < p. Let u; be the ik parameter
of the respondent’s partworth function and let # be the px1 vector of parameters. Without loss
of generality we assume binary features such that u; is the high level of the j" feature and con-
strain their values between 0 and 100. For more levels we simply recode the & vector and im-
pose constraints such as u,, < u,. We handle such inequality constraints by adding slack vari-
ables, vy, = 0, such that u, = u,, + vu,. Let r be the number of externally imposed constraints, of

which r’<r are inequality constraints.

Let zZ,, be the 1xp vector describing the left-hand profile in the i" paired-comparison

question and let 7, be the 1xp vector describing the right-hand profile. The elements of these

vectors are binary indicators taking on the values 0 or 1. Let X be the gxp matrix of X, =7, —Z,

fori =11to q. Let a; be the respondent’s answer to the " question and let @ be the gx1 vector of

answers fori = 1 70 g. Then, if there were no errors, the respondent’s answers imply Xu=a. To
handle additional constraints, we augment these equations such that X becomes a (g+r)Xx(p+r’)
matrix, a becomes a (g+r)X1 vector, and i becomes a (p+r’)X1 vector. These augmented rela-
tionships form a polyhedron, P = {ii e RP*" | Xii=a, i >0}. We begin by assuming that P is
non-empty, that X is full-rank, and that no j exists such that ;=0 for all & in P. We later indi-

cate how to handle these cases.

Finding an Interior Point of the Polyhedron

To begin the algorithm we first find a feasible interior point of P by solving a linear pro-
gram, LP1 (Freund, Roundy and Todd 1985). Let ¢ be a (p+r’)x1 vector of 1’s and letObe a
(p+r’)x1 vector of 0’s; the y;’s and O are parameters of LP1 and y is the (p+r’)x1 vector of the
y;’s. (When clear in context, inequalities applied to vectors apply for each element.) LP1 is given
by:
ptr

(LP1) max ) y;, subjectto: Xi=6a, 6O2>1, u

j=1

v
=i
v
Ol
<
IA
LY}
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If (i°,5",0") solves LP1, then /" is an interior point of P whenever 3" >0. If there

are some y;’s equal to 0, then there are some j’s for which u=0 for all u € P. If LP1 is infeasible,

then P is empty. We address these cases later in this appendix.

Finding the Analytic Center

The analytic center is the point in P that maximizes the geometric mean of the distances

from the point to the faces of P. We find the analytic center by solving OPT1.

p+r'

(OPT1) max Y In(u,), subject to: Xi=a, >0
=

Freund (1993) proves with projective methods that a form of Newton’s method will con-
verge rapidly for OPT1. To implement Newton’s method we begin with the feasible point from
LP1 and improve it with a scalar, ¢, and a direction, d , such that i +od is close to the optimal
solution of OPT1. (d is a (p+r’)x1 vector of d;’s.) We then iterate subject to a stopping rule.

We first approximate the objective function with a quadratic expansion in the neighbor-
hood of i .

(Al) pfln(uj +dj)=mzrlln(uj)+[§(ﬁ——d—’z—]

' j=1 j=1 A\ 2uj

If we define U as a (p+r’)X(p+r’) diagonal matrix of the u;’s, then the optimal direction
solves OPT2:

(OPT2) max é7U'd—(%)d"Ud , subject to: Xd =0

Newton’s method solves OPT1 quickly by exploiting an analytic solution to OPT2. To
see this, consider first the Karush-Kuhn-Tucker (KKT) conditions for OPT2. If 7 is a (p+r’)x1
vector parameter of the KKT conditions that is unconstrained in sign then the KKT conditions
are written as:

(A2) Ud-U'e=X"z

(A3) Xd =0

Multiplying A2 on the left by XU?, gives Xd - XU =XU>X "7 . Applying A3 to this equa-

tion gives: — XUé=XU*X"% . Since Ué=ii and since Xii=a, we have —a = XU°X" 7. Because

98




X is full rank and U is positive, we invert XU*X" to obtain 7 = -(XU’X")"@. Now replace Z in
A2 by this expression and multiply by U” to obtain d = i — UX'(XU*X")"a.
According to Newton’s method, the new estimate of the analytic center, #’, is given by

i@'=ii+0od=U@E+aU'd). There are two cases for a. If ||U"c7"<% , then we use =1 because
i is already close to optimal and € +aU “'d>0. Otherwise, we compute ¢ with a line search.
Special Cases

If X is not full rank, X Ux’ might not invert. We can either select questions such that X is

full rank or we can make it so by removing redundant rows. Suppose that X, is a row of X such

=T 094G+ -T . _NOgtr - q+r .
that [ =3 """ B . Thenif a,=> "  Pa, ,weremove %, .1f a,#> "  PBa,, then Pis

empty and we employ OPT4 described later in this appendix.
If in LP1 we detect cases where some y;’s = 0, then there are some j’s for which u;=0 for
all 4 e P. In the later case, we can still find the analytic center of the remaining polyhedron by

removing those j’s and setting u; = O for those indices. If P is empty we employ OPT4.

Finding the Ellipsoid and its Longest Axis

If  is the analytic center and U is the corresponding diagonal matrix, then Sonnevend

(1985a, 1985b) demonstrates that E C P C E,,, where, E = {ii | Xi=a, J(ﬁ—ﬁ)rﬁ‘z(ﬁ—ﬁ)ﬂ }
and E,,, is constructed proportional to E by replacing 1 with (p+r’). Because we are interested
only in the direction of the longest axis of the ellipsoids we can work with the simpler of the
proportional ellipsoids, E. Let g=ii—#, then the longest axis will be a solution to OPT3.

(OPT3) max g'g subject to: g'U 2g<l, Xg=0

OPT3 has an easy-to-compute solution based on the eigenstructure of a matrix. To see

this we begin with the KKT conditions (where ¢ and y are parameters of the conditions).

(A4) g=9U g+X"y
(A5) #(g"Ug-1)=0
(A6) g’U %<1, Xg=0, ¢=20
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It is clear that g"U 2g =1 at optimal, else we could multiply g by a scalar greater than 1
and still have g feasible. It is likewise clear that ¢ is strictly positive, else we obtain a contradic-
tion by left-multiplying A4 by g7 and using Xg=0 to obtain g”g =0 which contradicts
g'U 2g=1. Thus, the solution to OPT3 must satisfy g=¢U 2g+X"7, 8'U 2g=1, Xg=0, and ¢

> 0. We rewrite A4-A6 by letting I be the identify matrix and defining 7=1/¢and &=-7/¢.

(A7) U2-ng=X"d
(A8) g'Ug=1
(A9) Xg=0, ¢>0

We left-multiply A7 by X and use A9 to obtain XU 2g=XX"&. Since X is full rank, XX"
is invertible and we obtain @=(XX")™ XU ~*g which we substitute into A7 to obtain
U2-X"(xxT)' XU *)g=ng . Thus, the solution to OPT3 must be an eigenvector of the ma-
trix, M= (U *-X"(xx")"' XU ). To find out which eigenvector, we left-multiply A7 by
g" and use A8 and A9 to obtain 73" g =1, or g"g =1/ where 17>0. Thus, to solve OPT3 we

maximize 1/ by selecting the smallest positive eigenvalue of M. The direction of the longest
axis is then given by the associated eigenvector of M. We then choose the next question such

that X ,, is most nearly collinear to this eigenvector subject any constraints imposed by the ques-
tionnaire design. (For example, in our simulation we require that the elements of X, be -1, 0,

or 1.) The answer to X,,, defines a hyperplane orthogonal to ¥, .

g+l
We need only establish that the eigenvalues of M are real. To do this we recognize that
M =PU 2 where P = (I - X'(XX")'X) is symmetric, i.e., P=P". Then if 7is an eigenvalue of M,
det(PU % -nl)=0, which implies that det[T (U "'PU ' —nI)U '] = 0. This implies that 77is an
eigenvalue of U 'PU ', which is symmetric. Thus, 7is real (Hadley 1961, 240).
Adjusting the Polyhedron so that it is non-Empty
P will remain non-empty as long as respondents’ answers are consistent. However, in any

real situation there is likely to be g < p such that P is empty. To continue the polyhedral algo-

rithm, we adjust P so that it is non-empty. We do this by replacing the equality constraint,
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Xii =a , with two inequality constraints, Xi<d+d and Xi>ad—-o , where & is a gx1 vector of
errors, o; , defined only for the question-answer imposed constraints. We solve the following
optimization problem. Our current implementation uses the eo-norm where we minimize the

maximum ¢, but other norms are possible. The advantage of using the co-norm is that (OPT 4) is

solvable as a linear program.

(OPT4) min ||§““ subject to: Xi<d+d, Xiza-&, iz0,

At some point such that g > p, extant algorithms will outperform OPT4 and we can
switch to those algorithms. Alternatively, a researcher might choose to switch to constrained re-
gression (norm-2) or mean-absolute error (norm-1) when g > p. Other options include replacing
some, but not all, of the equality constraints with inequality constraints. We leave these exten-

sions to future research.
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Appendix 2: Internal Validity Tests for Laptop Computer Bags

Table A2.1. Correlation with Actual Response

After 8 Questions After 16 Questions
Methods without SE data ¢ ie "QUECERT Qlestons  Questions.
Analytic Center (AC) 0.65 0.69 0.80 0.79
Hierarchical Bayes (HB) 0.70 0.67 0.76 0.72
Sample size 88 87 88 87
Methods that use SE data nggtfgns Pglgg:t(iigilf nggt'it‘ms Pgllilz:t(i’(:ﬁlsz
WHSE Estimation 0.77 0.81 0.81 0.84
ACSE Estimation 0.74 0.78 0.77 0.84
HBSE Estimation 0.76 0.80 0.78 0.82
Sample size 80 71 80 71

The missing observations reflect respondents who gave the same response for all four
holdout questions (in which case the correlations were undefined).

Table A2.2. Conclusions from the Multivariate Analysis

Without SE Questions With SE Questions
Comparison of Estimation Methods
Fixed Questions HB > AC
Polyhedral 1 Questions AC >>> HB
ACA Questions WHSE > HBSE >>> ACSE
Polyhedral 2 Questions WHSE > HBSE > ACSE
Comparison of Question design Methods
AC Estimation Polyhedral 1 > Fixed
HB Estimation Fixed > Polyhedral 1
WHSE Estimation Polyhedral 2 >>> ACA
ACSE Estimation Polyhedral 2 >>> ACA
HBSE Estimation Polyhedral 2 >>> ACA
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Chapter 3: Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis

Abstract

Choice-based conjoint analysis (CBC) is used widely in marketing for product design,
segmentation, and marketing strategy. We propose and test a new “polyhedral” question-design
method that adapts each respondent’s choice sets based on previous answers by that respondent.
Individual adaptation appears promising because, as demonstrated in the aggregate customiza-
tion literature, question design can be improved based on prior estimates of the respondent’s
partworths — information that is revealed by respondents’ answers to prior questions. The algo-
rithm designs questions that quickly reduce the set of partworths that are consistent with the re-
spondent’s choices. Recent polyhedral “interior-point” algorithms provide the rapid solutions
necessary for real-time computation.

To identify domains where individual adaptation is promising (and domains where it is
not), we evaluate the performance of polyhedral CBC methods with Monte Carlo experiments.
We vary magnitude (response accuracy), respondent heterogeneity, estimation method, and ques-
tion-design method in a 4x2* experiment. The estimation methods are Hierarchical-Bayes esti-
mation (HB) and Analytic-Center estimation (AC). The latter is a new individual-level estima-
tion procedure that is a by-product of polyhedral question design. The benchmarks for individ-
ual adaptation are random designs, orthogonal designs, and aggregate customization. The simu-
lations suggest that polyhedral question design does well in many domains, particularly those in
which heterogeneity and partworth magnitudes are relatively large. We close by describing an
empirical application to the design of executive education programs in which 354 web-based re-
spondents answered stated-choice tasks with four service profiles each. The findings confirm the
feasibility of implementing polyhedral CBC methods with actual respondents, test an important

design criterion (choice-balance), and provide empirical data on convergence.
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1. Introduction

Choice-based conjoint analysis (CBC) describes a class of techniques that are amongst
the most widely adopted market research methods. In CBC tasks respondents are presented with
two or more product profiles and asked to choose the profile that they prefer (see Figure 1 for an
example). This contrasts with other conjoint tasks that ask respondents to provide preference
ratings for product attributes or profiles. Because choosing a preferred product profile is often a
natural task for respondents consistent with marketplace choice, supporters of CBC have argued
that it yields more accurate responses. CBC methods have been shown to perform well when

compared against estimates of marketplace demand (Louviere, Hensher, and Swait 2000).

Figure 1

Example of a CBC Task for the Redesign of Polaroid’s I-Zone Camera

B ‘0035“'00

Here is a newset of four cameras. Remember: The features of these options have changed.
Click 02 the white squara below to tell uswhich of the cameras, if any, that you would be wiliing
to purchase.

Camera M Camera N Camera P Camera Q

8 Price $34.99 $24.99 $34.99

DEER, Picture Removal Manual Automatic Automatic

& Picture TLaking v 2 Step 1 Step 2 Step
| None of
Styling Covers Changeable Permanent Permanent these

cameras.

ﬂ&n Picture Quality Qption B Option A Option B

@%8) Camera Opening glide Open Fixed Fixed

,:@: Light Selection 3 settings Feedback 3 settings

1 would purchase:

(dick only one) D -~ O

Click on the feature icons for a reminder.

e, :
(RN

oy Tl

)

Important academic research investigating CBC methods has sought to improve the de-

sign of the product profiles shown to each respondent. This has led to efficiency improvements,
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yielding more information from fewer responses. Because an increasing amount of market re-
search is conducted on the Internet, new opportunities for efficiency improvements have arisen.
Online processing power makes it feasible to adapt questions based on prior responses. To date
the research on adaptive question design has focused on adapting questions based on responses
from prior respondents (“aggregate customization”). Efficient designs are customized based on
parameters obtained from pretests or from managerial judgment. Examples of aggregate cus-
tomization methods include Huber and Zwerina (1996), Arora and Huber (2001) and Sandor and
Wedel (2001).

In this study we propose a CBC question design method that adapts questions using the
previous answers from that respondent (“individual adaptation”). The design of each choice task
varies according to that respondent’s selection from prior choice tasks. The approach is moti-
vated in part by the success of aggregate customization, which uses the responses from other re-
spondents to design more efficient questions. The algorithm that we propose focuses on what is
not known about partworths (given the respondent’s answers to prior questions) and seeks to re-
duce quickly the set of partworths that are consistent with the respondent’s choices. To achieve
this goal we focus on four design criteria: non-dominance, feasibility, choice balance, and sym-
metry. In later discussion we also describe an analogy between the proposed algorithm and D-
efficiency.

After data are collected with these adaptive questions, partworths can be estimated with
standard methods (aggregate random utility or Hierarchical Bayes methods). As an alternative,
we propose and test an individual-level estimation method that relies on the analytic center of a
feasible set of parameters.

Our proposal differs in both format and philosophy from the other individual-level adap-
tive conjoint analysis (ACA) methods. We focus on stated-choice data rather than ACA’s metric
paired-comparisons and we focus on analogies to efficient design rather than ACA’s utility bal-
ance subject to orthogonality goals. Polyhedral methods are also feasible for metric-paired-
comparison data (Toubia, Simester, Hauser and Dahan 2003). However, as will become appar-
ent, there are important differences between the metric-paired-comparison algorithm and the al-
gorithm proposed in this paper.

The remainder of the paper is organized as follows. We begin by reviewing existing

CBC question design and estimation methods. We next propose a polyhedral approach to the
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design of CBC questions. We then evaluate the proposed polyhedral methods using a series of
Monte Carlo simulations, where we hope to demonstrate the domains in which the proposed
method shows promise (and where existing methods remain best). We compare performance
against three question design benchmarks, including an aggregate customization method that
uses prior data from either managerial judgment or pretest respondents. Because we expect that
individual-adaptation is most promising when responses are accurate and/or respondents are het-
erogeneous, we compare the four question design methods across a range of customer heteroge-
neity and response error domains, while also varying the estimation method. We then describe
an empirical application of the proposed method to the design of executive education programs
at a major university. The paper concludes with a review of the findings, limitations, and oppor-

tunities for future research.
2. Existing CBC Question Design and Estimation Methods

To date, most applications of CBC assume that each respondent answers the same set of
questions or that the questions are either blocked across sets of respondents or chosen randomly.
For these conditions, McFadden (1974) shows that the inverse of the covariance matrix, X, of the

MLE estimates is proportional to:
J; J; J;
M) T =RY 3G - Y iR B - Y AR
i k=1

where R is the effective number of replicates; J; is the number of profiles in choice set i; g

is the number of choice sets; Z;is a binary vector describing the i profile in the i™ choice set;

and P;; is the probability that the respondent chooses profile j from the i™ choice set. Without
loss of generality, we use binary vectors in the theoretical development to simplify notation and
exposition. Multi-level features are used in both the simulations and the application.

We can increase precision by decreasing a measure (norm) of the covariance matrix, that
is, by either increasing the number of replicates or increasing the terms in the summations of
Equation 1. Equation 1 also demonstrates that the covariance of logit-based estimates depends
on the choice probabilities, which, in turn, depend upon the partworths. In general, the experi-
mental design that provides the most precise estimates will depend upon the parameters.

Many researchers have addressed choice set design. One common measure is D-

efficiency, which seeks to reduce the geometric mean of the eigenvalues of £ (Kuhfield, Tobias,
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and Garratt 1994)." If & represents the vector of the partworths, then the confidence region for
maximum likelihood estimates (i ) is an ellipsoid defined by (i - i Y= —it), Greene (1993,
p. 190). The length of the axes of this ellipsoid are given by the eigenvalues of the covariance
matrix, so that minimizing the geometric mean of these eigenvalues shrinks the confidence re-
gion around the estimates.

Because efficiency depends on the partworths, it is common to assume a priori that the
stated choices are equally likely. For this paper we will label such designs as “orthogonal” effi-
cient designs. Arora and Huber (2001), Huber and Zwerina (1996), and Sandor and Wedel
(2001) demonstrate that we may improve efficiency by using data from either pretests or prior
managerial judgment. These researchers improve D-efficiency by “relabeling,” which permutes
the levels of features across choice sets, “swapping,” which switches two feature levels among
profiles in a choice set, and “cycling,” which is a combination of rotating levels of a feature and
swapping them. The procedures stop when no further improvement is possible.? Simulations
suggest that these procedures improve efficiency and, hence, reduce the number of respondents

’

that are necessary. Following the literature, we label these designs as “aggregate customization.’

Estimation

In classical logit analysis partworths are estimated with maximum likelihood techniques.
Because it is rare that a respondent will be asked to make enough choices to estimate partworth
values for each respondent, the data usually are merged across respondents to estimate popula-
tion-level (or segment-level) partworth values. Yet managers often want estimates for each re-
spondent. Hierarchical Bayes (HB) methods provide (posterior) estimates of partworths for in-
dividual respondents by using population-level distributions of partworths to inform individual-
level estimates (Allenby and Rossi 1999; Arora, Allenby and Ginter 1998; Johnson 1999; Lenk,
et. al. 1996). In particular, HB methods use data from the full sample to iteratively estimate both
the posterior means (and distribution) of individual-level partworths and the posterior distribu-
tion of those partworths at the population-level. The HB method is based on Gibbs sampling and
the Metropolis Hastings Algorithm.

Liechty, Ramaswamy, and Cohen (2001) demonstrate the effectiveness of HB for choice
menus, while Arora and Huber (2001) show that it is possible to improve the efficiency of HB

estimates with choice-sets designed using Huber-Zwerina relabeling and swapping. In other re-
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cent research, Andrews, Ainslie, and Currim (2002, p. 479) present evidence that HB models and
finite mixture models estimated from simulated scanner-panel data “recover household-level pa-
rameter estimates and predict holdout choice about equally well except when the number of pur-

chases per household is small.”
3. Polyhedral Question Design Methods

We extend the philosophy of customization by developing algorithms to adapt questions
for each respondent. Stated choices by each respondent provide information about parameter
values for that respondent that can be used to select the next question(s). In high dimensions
(high p) this is a difficult dynamic optimization problem. We address this problem by making
use of extremely fast algorithms based on projections within the interior of polyhedra (much of
this work started with Karmarkar 1984). In particular, we draw on the properties of bounding
ellipsoids discovered in theorems by Sonnevend (1985a, 1985b) and applied by Freund (1993),
Nesterov and Nemirovskii (1994), and Vaidja (1989).

We begin by illustrating the intuitive ideas in a two-dimensional space with two product
profiles (J; = 2) and then generalize to a larger number of dimensions and multichotomous choice
(the simulations and the application are based on multichotomous choice.) The axes of the space
represent the partworths (utilities) associated with two different product attributes, u; and u;. A
point in this space has a value on each axis, and will be represented by a vector of these two
partworths. The ultimate goal is to estimate the point in this space (or distribution of points) that
best represents each respondent. The question-design goal is to focus precision toward the points
that best represent each respondent. This goal is not unlike D-efficiency, which seeks to mini-
mize the confidence region for estimated partworths. Without loss of generality we scale all
partworths in the figures to be non-negative and bounded from above. Following convention, the
partworth associated with the least-preferred level is set arbitrarily to zero.>

Suppose that we have already asked i-/ stated-choice questions and suppose that the
hexagon (polyhedron) in Figure 2 represents the partworth vectors that are consistent with the
respondent’s answers. Suppose further that the /™ question asks the respondent to choose be-

tween two profiles with feature levels Z, and Z,,. If there were no response errors, then the re-

spondent would select Profile 1 whenever (zi1;- zi2r) us + (ziz2 — zi22) u2 =0; where z;¢ refers to the

1™ feature of zij and us denotes the partworth associated with the 1™ feature. This inequality con-
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straint defines a separating line or, in higher dimensions, a separating hyperplane. In the absence
of response errors, if the respondent’s true partworth vector is above the separating hyperplane
the respondent chooses Profile 1; if it is below the respondent chooses Profile 2. Thus, the re-
spondent’s choice of profiles updates our knowledge of which partworth vectors are consistent

with the respondent’s preferences, shrinking the feasible polyhedron.

Figure 2
Stated Choice Responses Divide the Feasible Region

Hexagon represents
current feasible set

o Chbdée profile 1.

Choose profile 2

/

separating hyperplane

Selecting Questions

Questions are more informative if they reduce the feasible region more rapidly. To im-
plement this goal we adopt four criteria. First, neither profile in the choice set should dominate
the other profile. Otherwise, we gain no information when the dominating profile is chosen and
the partworth space is not reduced. Second, the separating hyperplane should intersect with and
divide the feasible region derived from the first i-1 questions. Otherwise, there could be an an-
swer to the i™ question that does not reduce the feasible region. A corollary of these criteria is
that, for each profile, there must be a point in the feasible region for which that profile is the pre-

ferred profile.
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The i™ question is more informative if, given the first i-/ questions, the respondent is
equally likely to select each of the J; profiles. This implies that, a priori, the answer to the "
question should be approximately equally likely — a criterion we call “choice balance.” Choice
balance will shrink the feasible region as rapidly as feasible. .For example, if the points in the
feasible region are equally likely (based on i-1 questions) then the predicted likelihood, 7;, of

choosing the 7™ region is proportional to the size of the region. The expected size of the region

2

after the i™ question is then proportional to E§=lﬂu ,

which is minimized when 7z; = 4 Arora
and Huber (2001, p. 275) offer a further motivation for choice balance based on D-efficiency.

For two product profiles, the inverse covariance matrix, £, is proportional to a weighted sum

of z,(1-7;), which is also rnaximized for 7; =7.

The choice-balance criterion will hold approximately if we favor separating hyperplanes
that go through the center of the feasible polyhedron and cut the feasible region approximately in
half. This is illustrated in Figure 3a, where we favor bifurcation cuts relative to “sliver” cuts that
yi‘eld unequal sized regions. If the separating hyperplane is a bifurcation cut, both the non-

domination and feasibility criteria are satisfied automatically.

Figure 3
Comparing Cuts and the Resulting Feasible regions

u, u;
less robust
‘sliver” cut

l elongated feasible region :. . /- .f

!

more robust short-axis cut

T {ong-axis
more robust cut
bfurcation cut \

u, Uy

(a) bifurcation cuts (b) short- vs. long-axis cuts

However, not all bifurcation cuts are equally robust. Suppose that the current feasible re-

gion is elongated, as in Figure 3b, and we must decide between many separating hyperplanes,
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two of which are illustrated. One cuts along the long axis and yields long thin feasible regions
while the other cuts along the short axis and yields feasible regions that are more symmetric.
The long-axis cut focuses precision where we already have high precision, while the short-axis
cut focuses precision where we now have less precision. For this reason, we prefer short-axis
cuts to make the post-choice feasible regions reasonably symmetric. We can also motivate this
criterion relative to D-efficiency. D-efficiency minimizes the geometric mean of the axes of the
confidence ellipsoid — a criterion that tends to make the confidence ellipsoids more symmetric.
For two profiles we favor non-dominance, feasibility, choice balance, and post-choice
symmetry if we select profiles such that (a) the separating hyperplanes go through the center of
the feasible region and (b) the separating hyperplanes are perpendicular to the longest “axis” of
the feasible polyhedron as defined by the first i-/ stated choices. To implement these criteria we

propose the following heuristic algorithm.
Step 1 Find the center and the longest axis of the polyhedron based on i-I questions.

Step 2 Find the two intersections between the longest axis and the boundary of the poly-

hedron.

Each intersection point is defined by a partworth vector and the difference between these
vectors defines a hyperplane that is perpendicular to the longest axis. Because respondents
choose from profiles rather than partworth vectors, we need a third step to identify profiles that

yield this separating hyperplane:

Step 3 Select a profile corresponding to each intersection point such that the separating

hyperplane divides the region into two approximately equal sub-regions.

The basic intuition remains the same when we extend this heuristic algorithm to more
than two profiles (J; > 2), although the geometry becomes more difficult to visualize (some hy-
perplanes become oblique, but the regions remain equi-probable). We first address this generali-
zation and then describe several implementation issues, including how we use utility maximiza-

tion to select the profiles in Step 3.
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Selecting More than Two Profiles

In a choice task with more than two profiles the respondent’s choice defines more than
one separating hyperplane. The hyperplanes that define the i" feasible region depend upon the
profile chosen by the respondent. For example, consider a choice task with four product profiles,
labeled 1, 2, 3, and 4. If the respondent selects Profile 1, then we learn that the respondent pre-
fers Profile 1 to Profile 2, Profile 1 to Profile 3, and Profile 1 to Profile 4. This defines three
separating hyperplanes — the resulting polyhedron of feasible partworths is the intersection of the
associated regions and the prior feasible polyhedron. In general, J; profiles yield Ji(Ji—1)/2 pos-
sible hyperplanes. For each of the J; choices available to the respondent, J; -1 hyperplanes con-
tribute to the definition of the new polyhedron. The full set of hyperplanes, and their association
with stated choices, define a set of J; convex regions, one associated with each answer to the
stated-choice question.

We extend Steps 1 to 3 as follows. Rather than finding the longest axis, we find the (J/2)
longest axes and identify the J; points where the (Ji/2) longest axes intersect the polyhedron. If J;
is odd, we select randomly among the vectors intersecting the (Ji/2)™ longest axis. We associate
profiles with each of the J; partworth vectors by solving the respondent’s maximization problem
for each vector (as described next). Our solution to the maximization problem assures the hy-
perplanes go (approximately) through the center of the polyhedron. The approximation arises
because we design the profiles from a discrete attribute space. They would pass exactly through
the analytic center if the attribute space were continuous.

It is easy to show that such hyperplanes divide the feasible region into J; collectively ex-
haustive and mutually exclusive convex sub-regions of approximately equal size (except for the
regions’ “indifference” borders, which have zero measure). Non-dominance and feasibility re-
main satisfied and the resulting regions tend toward symmetry. Because the separating hyper-
planes are defined by the profiles associated with the partworth vectors (Step 3) not the part-
worth vectors themselves (Step 2), some of the hyperplanes do not line up with the axes. For J; >
2 the stated properties remain approximately satisfied based on “wedges” formed by the J;-1 hy-
perplanes. Later in the paper we examine the effectiveness of the proposed heuristic for J; = 4.
Simulations examine overal] accuracy and an empirical test examines whether feasibility and

choice balance are achieved for real respondents.
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Implementation

Implementing this heuristic raises challenges. Although it is easy to visualize (and im-
plement) the heuristic with two profiles in two dimensions, practical CBC problems require im-
plementation with J; profiles in large p-dimensional spaces with p-dimensional polyhedra and (p-
I)-dimensional hyperplane cuts. Furthermore, the algorithm should run sufficiently fast so that
there is little noticeable delay between questions.

The first challenge is finding the center of the current polyhedron and the Ji/2 longest
axes (Step 1). If we define the longest “axis” of a polyhedron as the longest line segment in the
polyhedron, then we would need to enumerate all vertices of the polyhedron and compute the
distances between the vertices. Unfortunately, for large p this problem is computationally intrac-
table (Gritzmann and Klee 1993); solving it would lead to lengthy delays between questions for
each respondent. Furthermore, this definition of the longest axes of a polyhedron may not cap-
ture the intuitive concepts that we used to motivate the algorithm.

Instead, we turn to Sonnevend’s theorems (1985a, 1985b) which state that the shape of
polyhedra can be approximated with bounding ellipsoids centered at the “analytic center” of the
polyhedron. The analytic center is the point that maximizes the geometric mean of the distances
to the boundaries. Freund (1993) provides efficient algorithms to find the analytic centers of
polyhedra. Once the analytic center is found, Sonnevend’s results provide analytic expressions
for the ellipsoids. The axes of ellipsoids are well-defined and capture the intuitive concepts in
the algorithm. The longest axes are found with straightforward eigenvalue computations for
which there are many efficient algorithms. With well-defined axes it is simple to find the part-
worth vectors on the boundaries of the feasible set that intersect the axes (Step 2). We provide
technical details in an Appendix.

To implement Step 3 we must define the respondent’s utility maximization problem. We
do so in an analogy to economic theory. For each of the J; utility vectors on the boundary of the

polyhedron we obtain the j™ profile, 7, by solving:

(OPT1) max Z;ii; subjectto:  Z;¢ <M, elements of Z;€{0,1}

where #;is the utility vector chosen in Step 2, ¢ are “costs” of the features, and M is a

“budget constraint.” We implement (approximate) choice balance by setting ¢ equal to the ana-
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lytic center of the feasible polyhedron (#,_, ) computed after the first i-1 questions. At optimality
the constraint in OPT1 will be approximately binding, which implies that 7z, | = 7,u,, = M for

all k #j. It may be approximate due to the integrality constraints in OPT1 (elements of

Z;;€{0,1}). This assures that the Ji(J—1)/2 separating hyperplanes go (approximately) through

the analytic center. The binding constraints are all bifurcations which tends to make the regions
approximately equal in size. Finally, we also know that the solution to OPT1 ensures that each
of the separating hyperplanes pass through the feasible polyhedron because each profile is pre-
ferred at the utility vector to which it corresponds.

Solving OPT1 for profile selection (Step 3) is a knapsack problem which is well-studied
and for which efficient algorithms exist. M is an arbitrary constant that we draw randomly from
a compact set (up to m times) until all profiles in a stated-choice task are distinct. If the profiles
are not distinct we use those that are distinct. If none of the profiles are distinct then we ask no
further questions (in practice this is a rare occurrence in both simulation and empirical situa-
tions).

OPT]1 also illustrates the relationship between choice balance and utility balance — a cri-
terion in aggregate customization. In our algorithm, the J; profiles are chosen to be equally
likely based on data from the first i-/ questions. In addition, for the partworths at the analytic
center of the feasible region the utilities of all profiles are approximately equal. However, utility
balance only holds at the analytic center, not throughout the feasible region. Thus, while, a pri-
ori, the profiles are equally likely to be chosen, it will be rare that the respondent is indifferent
among the profiles. Hence, choice balance is unlikely to lead to respondent fatigue and we ob-
served none in our empirical application.

We illustrate the algorithm for J; = 4 with the two-dimensional example in Figure 4. We
begin with the current polyhedron of feasible partworth vectors (in Figure 4a). We then use
Freund’s algorithm to find the analytic center of the polyhedron as illustrated by the black dot in
Figure 4a. We next use Sonnevend’s formulae to find the equation of the approximating ellip-
soid and obtain the Ji/2 longest axes (Figure 4b), which correspond to the Ji/2 smallest eigenval-
ues of the matrix that defines the ellipsoid. We then identify J; target partworth vectors by find-
ing the intersections of the Ji/2 axes with the boundaries of the current polyhedron (Figure 4c).
Finally, for each target utility vector we solve OPT1 to identify J; product profiles. The J; prod-
uct profiles each imply J;-1 hyperplanes (illustrated for Profile 1 in Figure 4d). If the respondent
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chooses Profile 1, this implies a new smaller polyhedron defined by the separating hyperplanes.

As drawn in Figure 4d, one of the hyperplanes is redundant; this is less likely in higher dimen-

sions. Were we to draw all Ji(Ji-1)/2 = 6 hyperplanes, they would divide the polyhedron into

mutually exclusive and collectively exhaustive convex regions of approximately equal size. We
continue for g questions or until OPT1 no longer yields distinct profiles.
Figure 4
Bounding Ellipsoids and the Analytic Center of the Polyhedra
Sonnevend
ellipsoid
. Second longest Axis
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(c) Partworth values on boundary of polyhedron

(d) Cuts imply region associated with profile
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Incorporating Managerial Constraints and other Prior Information

Previous research suggests that prior constraints enhance estimation (Johnson 1999;
Srinivasan and Shocker 1972). For example, self-explicated data might constrain the rank order
of partworth values across features. Such constraints are easy to incorporate and shrink the fea-
sible polyhedron. Most conjoint analysis studies use multi-level features, some of which are or-
dinal scaled (e.g., picture quality). For example, if us, and up, are the medium and high levels of
feature f, we add the constraint, ug, < ug, to the feasible polyhedron.5 We similarly incorporate

information from managerial priors or pretest studies.

Response Errors

In real questionnaires there are likely response errors in stated choices. When there are
response errors, the separating hyperplanes are approximations rather than deterministic cuts.
For this and other reasons, we distinguish question selection and estimation. The algorithm we
propose is a question-selection algorithm. After the data are collected we can estimate the re-
spondents’ partworths with most established methods, which address response error formally.
For example, polyhedral questions can be used with classical random-utility models or HB esti-
mation. It remains an empirical question as to whether or not response errors counteract the po-
tential gains in question selection due to individual-level adaptation. Although we hypothesize
that the criteria of choice balance and symmetry lead to robust stated-choice questions, we also
hypothesize that individual-level adaptation will work better when response errors are smaller.

We examine these issues in the next section.

Analytic-Center (AC) Estimation

The analytic center of the i™ feasible polyhedron provides a natural summary of the in-
formation in the first i stated-choice responses. This summary measure is a good working esti-
mate of the respondent’s partworth vector. It is a natural byproduct of the question-selection al-
gorithm and is available as soon as each respondent completes the i™ stated-choice question.
Such estimates might also be used as starting values in HB estimation, as estimates in classical
Bayes updating, and as priors for aggregate customization.

Analytic-Center estimates also give us a means to test the ability of the polyhedral algo-

rithm to implement the feasibility and choice-balance criteria. Specifically, if we use the i AC
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estimate to forecast choices for g > i choice sets, it should predict 100% of the first i choices
(feasibility) and (1/J;) percent of the last g — i choices (choice balance). When J; does not vary
with i, the internal predictive percentage should approximately equal [i + (1/J,)(g-i))/q. We ex-
amine this statistic in the empirical application later in the paper.

We can give the AC estimate a statistical interpretation if we assume that the probability
of a feasible point is proportional to its distance to the boundary of the feasible polyhedron. In
this case, the analytic center maximizes the likelihood of the point (geometric mean of the dis-
tances to the boundary).

AC estimates each respondent’s partworth vectors based on data only from that respon-
dent. This advantage is also a disadvantage because, unlike Hierarchical Bayes estimation, AC
estimation does not use information from other respondents. This suggests an opportunity to im-
prove the accuracy of AC estimates by using data from the population distribution of partworths.
While the full development of such an AC algorithm is beyond the scope of the paper, we can
test its potential by using the (known) population distribution as a Bayesian prior to update AC
estimates. We hypothesize that AC estimates will be less accurate (relative to HB) when the re-
spondents are homogeneous, but that this disadvantage can be offset with the development of an
AC Bayesian hybrid.

Incorporating Null Profiles

Many researchers prefer to include a null profile as an additional profile in the choice set
(as in Figure 1). Polyhedral concepts generalize readily to include null profiles. If the null pro-

file is selected from choice set i then we add the following constraints: z,i <z Vj,k #iwhere

7, denotes the profile chosen from choice set & (given that the null profile was not chosen in

choice set k). Intuitively, these constraints recognize that if the null profile is selected in one
choice set, then all of the alternatives in that choice set have a lower utility than the profiles se-
lected in other choice sets (excluding other choice sets where the null was chosen). Alterna-
tively, we can expand the parameter set to include the partworth of an “outside option” and write
the appropriate constraints. After incorporating these constraints the question design heuristic
(and analytic-center estimation) proceed as described above. We leave practical implementation,

Monte Carlo testing, and empirical applications with null profiles to future research.
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Metric-Paired-Comparison Questions

Polyhedral methods are also feasible for metric-paired comparison questions. In particu-
lar, Toubia et al. (2003) propose a polyhedral method for metric paired-comparison data that also
uses Sonnevend’s ellipsoids. However, metric-pair and the CBC formats present fundamentally
different challenges resulting in very different polyhedral algorithms. For example, each metric-
pair question defines equality constraints which reduce the dimensionality of the feasible poly-
hedron. In the CBC algorithm the inequality constraints do not reduce the dimensionality of the
feasible polyhedron. Furthermore, the metric-pairs polyhedron becomes empty after sufficient
questions. The metric-pairs algorithm must revert to an alternative question selection method
and the metric-pairs analytic-center algorithm must address infeasibility. In the CBC algorithm,
the polyhedron always remains feasible. Moreover, because the metric-pairs algorithm identifies
the partial profiles directly, the utility-maximization knapsack algorithm is new to the CBC algo-

rithm.

Summary

Polyhedral (ellipsoid) algorithms provide a means to adapt stated-choice questions for
each respondent based on that respondent’s answers to the first i-7 questions. The algorithms are
based on the intuitive criteria of non-dominance, feasibility, choice balance, and symmetry and
represent an individual-level analogy to D-efficiency. Specifically, the polyhedral algorithm fo-
cuses questions on what is not known about the partworth vectors and does so by seeking a small
feasible region. Choice balance, symmetry, and the shrinking ellipsoid regions provide analogies
to D-efficiency which seeks questions to minimize the confidence ellipsoid for maximum-
likelihood estimates.

While both polyhedral question design and aggregate customization are compatible with
most estimation methods, including AC estimation, the two methods represent a key tradeoff.
Polyhedral question design adapts questions for each respondent but may be sensitive to re-
sponse errors. Aggregate customization uses the same design for all respondents, but is based on
prior statistical estimates that take response errors into account. This leads us to hypothesize that
polyhedral methods will have their greatest advantages relative to existing methods (question
design and/or estimation) when responses are more accurate and/or when respondents’ part-

worths are more heterogeneous. We next examine individual-level adaptation and AC estima-
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tion with Monte Carlo experiments.
4. Monte Carlo Experiments

We use Monte Carlo experiments to investigate whether polyhedral methods show suffi-
cient promise to justify further development and to identify the empirical domains in which the
potential is greatest. Monte Carlo experiments are widely used to evaluate conjoint analysis
methods, including studies of interactions, robustness, continuity, attribute correlation, segmenta-
tion, new estimation methods, and new data-collection methods. In particular, they have proven
particularly useful in the first tests of aggregate customization and in establishing domains in
which aggregate customization is preferred to orthogonal designs. Monte Carlo experiments of-
fer several advantages for an initial test of new methods. First, with any heuristic, we need to
establish computational feasibility. Second, Monte Carlo experiments enable us to explore many
domains and control the parameters that define those domains. Third, other researchers can read-
ily replicate and extend Monte Carlo experiments, facilitating further exploration and develop-
ment. Finally, Monte Carlo experiments enable us to control the “true” partworth values, which
are unobserved in studies with actual consumers.

However, Monte Carlo experiments are but the first step in a stream of research. As-
sumptions must be made about characteristics that are not varied, and these assumptions repre-
sent limitations. In this paper we explore domains that vary in terms of respondent heterogene-
ity, response accuracy (magnitude), estimation method, and question-design method. This estab-
lishes a 4x2° experimental design. We encourage subsequent researchers to vary other character-

istics of the experiments.

Structure of the Simulations

For consistency with prior simulations, we adopt the basic simulation structure of Arora
and Huber (2001). Arora and Huber varied response accuracy, heterogeneity, and question-
design method in a 2° experiment using Hierarchical Bayes (HB) estimation. Huber and Zwerina
(1996) had earlier used the same structure to vary response accuracy and question-design with
classical estimation, while more recently Sandor and Wedel (2001) used a similar structure to
compare the impact of prior beliefs.

The Huber-Zwerina, and Arora-Huber algorithms were aggregate customization methods

based on relabeling and swapping. These algorithms work best for stated-choice problems in
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which relabeling and swapping are well-defined. We expand the Arora and Huber design to in-
clude four levels of four features for four profiles, which ensures that complete aggregate cus-
tomization and orthogonal designs are possible. Sandor and Wedel included cycling, although
they note that cycling is less important in designs where the number of profiles equals the num-
ber of feature levels.®

Within a feature Arora and Huber choose partworths symmetrically with expected magni-
tudes of - £, 0, and + B . They vary response accuracy by varying B. Larger B’s imply higher
response accuracy because the variance of the Gumbel distribution, which defines the logit
model, is inversely proportional to the squared magnitude of the partworths (Ben-Akiva and

Lerman 1985, p. 105, property 3). For four levels we retain the symmetric design with magni-

tudes of - B, -1 B, 1B, and B. Arora and Huber model heterogeneity by allowing partworths
to vary among respondents according to normal distributions with variance, o-fg. They specify a

coefficient of heterogeneity as the ratio of the variance to the mean. Specifically, they manipu-

late low response accuracy with B =0.5 and high response accuracy with = 1.5. They ma-
nipulate high heterogeneity with o3/ 8 = 2.0 and low heterogeneity with o3/ 8=0.5. Given

these values, they draw each respondent’s partworths from a normal distribution with a diagonal
covariance matrix. Each respondent then answers the stated-choice questions with probabilities
determined by a logit model based on that respondent’s partworths. Arora and Huber compare
question selection using root mean squared error (RMSE). For comparability, we adopt the same
criterion and, in addition, report three more intuitive metrics.

We select magnitudes and heterogeneity that represent the range of average partworths
and heterogeneity that we might find empirically. While we could find no meta-analyses for
these values, we did have available to us data from a proprietary CBC application (D-efficient
design, HB estimation) in the software market. The study included data from almost 1,200 home
consumers and over 600 business customers. In both data sets /3 ranged from approximately —
3.0 to +2.4. We chose our high magnitude (3.0) from this study recognizing that other studies
might have even higher magnitudes. For example, Louviere, Hensher and Swait (2000) report
stated-choice estimates (logit analysis) that are in the range of 3.0 and higher.

After selecting f for high magnitudes, we set the low magnitude B to the level chosen by

Arora and Huber. In the empirical data, the estimated variances ranged from 0.1 to 6.9 and the
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heterogeneity coefficient varied from 0.3 to 3.6." To approximate this range and to provide
symmetry with the magnitude coefficient, we manipulated high heterogeneity with a coefficient
of three times the mean. Following Arora and Huber we manipulated low heterogeneity as half
the mean. We feel that these values are representative of those that might be obtained in practice.
Recall that, as a first test of polyhedral methods, we seek to identify domains that can occur in
practice and for which polyhedral methods show promise. More importantly, these levels illus-
trate the directional differences among methods and, hence, provide insight for further develop-

ment.

Experimental Design

In addition to manipulating magnitude (two levels) and heterogeneity (two levels) we
manipulate estimation method (two levels), and question-design method (four levels). The esti-
mation methods are Hierarchical Bayes and Analytic Center estimation. The former is well-
established and incorporates information from other respondents in each individual estimate.
The latter is the only feasible method, of which we are aware, that provides individual-level es-
timates using only information from that respondent. The question-design methods are random,
orthogonal designs with equally-likely priors, aggregate customization (Arora-Huber), and poly-
hedral methods. To simulate aggregate customization, we assume that the pretest data are ob-
tained costlessly and, based on this data, we apply the Arora-Huber algorithm. Specifically, we
simulate an orthogonal “pretest” that uses the same number of respondents as in the actual study.
For the orthogonal design we adopt the Arora-Huber methods as detailed in Huber and Zwerina
(1996, p. 310-312).

We set g = 16 so that orthogonal designs, relabeling, and swapping are well-defined. Ex-
ploratory simulations suggest that the estimates become more accurate as we increase the num-
ber of questions, but the relative comparisons of question design and estimation for ¢ = 8 and for
g = 24 provide similar qualitative insights.® For each combination of question design method,

estimation method, heterogeneity level and magnitude level we simulated 1,000 respondents.9

Practical Implementation Issues

In order to implement the polyhedral algorithm we made two implementation decisions:
(1) We randomly drew M up to thirty times (s = 30) for the simulations. We believe that the ac-

curacy of the method is relatively insensitive to this decision. (2) Because, prior to the first ques-
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tion, the polyhedron is symmetric, we selected the first question by randomly choosing from
among the axes.

Other decisions may yield greater (or lesser) accuracy, hence the performance of the
polyhedral methods tested in this paper should be considered a lower bound on what is possible
with further improvement. For example, future research might use aggregate customization to
select the first question. All polyhedral optimization, question selection, and estimation algo-
rithms are described in the Appendix and implemented in Matlab code. The web-based applica-
tion described later in this paper uses Perl and Html for web-page presentation. All code (and

the orthogonal design) are available at mitsloan.mit.edu/vc and is open-source.

Comparative Results of the Monte Carlo Experiments

Table 1 reports four metrics describing the simulation results in a table format similar to
Arora and Huber: root mean square error (RMSE); the percentage of respondents for whom each
question design method has the lowest RMSE; the “hit rate,” and the average correlation be-
tween the true and estimated partworths. The hit rate measures the percentage of times each
method predicts the most-preferred profile and is based on 1,000 sets of holdout profiles. We
use italic bold text to indicate the best question design method for each estimation method within
an experimental domain (and any other methods that are not statistically different from the best
method). Tables 2a and 2b summarize the best question design method and the best estimation
method, respectively, for each metric in each domain. The entries in Tables 2 correspond to the
best overall method (question design X estimation) for each domain.

For comparability between estimation methods we first normalized the partworths to a
constant scale. Specifically, for each respondent, we normalize both the “true” partworths and
the estimated partworths so that their absolute values sum to the number of parameters and their
values sum to zero for each feature. In this manner, the RMSEs can be interpreted as a percent
of the mean partworths. Within an estimation method, subject to statistical confidence, this scal-
ing does not change the relative comparisons among question design methods. This scaling has
the added advantage of making the results roughly comparable in units for the different manipu-
lations of magnitude (response accuracy) and heterogeneity. This scaling addresses two issues.
First, Analytic-Center estimation is unique to a positive linear transformation and thus focuses on

the relative values of the partworths — as required by many managerial applications. Second, un-
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scaled logit analyses confound the magnitude of the stochasticity of observed choice behavior
with the magnitude of the partworths. Our scaling enables us to focus on the relative part-
worths. For volumetric forecasts, we recommend the methods proposed and validated by Lou-
viere, Hensher, and Swait (2000). These methods are well-documented and reliable and have

been proven appropriate for matching disparate scales.

Table 1
Monte Carlo Simulation Results

Magnitude and

Heterogeneity RMSE Percent Best Hit Rates Correlations
Mag  Het Qg::igﬁ" HBE AC HB AC HB AC HB  AC
Low High random 0.8928 1116 26.9' 17.2 0.538 0508 0.656'  0.506
orthogonal  0.904 0950 21.7 22.1 0540 0526 0.651  0.569
customized 0.883' 0993 276 269 0.548' 0539 0.660' 0553
polyhedral 0928 0.880' 23.8'  33.8' 0.527 0.538" 0632 0.609
Low Low random 1.027 1206 219 16.5 0.421 0403 0589  0.446
orthogonal 0.964" 1.012' 296" 289 0.438' 0425 0.629' 0535
customized 1.018 1086 287 37.9' 0.423 0.436' 0589 0.523"
polyhedral  1.033  1.103 19.6 16.7 0.418  0.403  0.587  0.509
High High random 0595 0.812 235 15.0 0.6277 0584 0813  0.666
orthogonal  0.815 0871 43 5.8 0590 0.581 0715  0.646
customized 0611  0.891 319 10.0 0.630' 0581 0802 0626
polyhedral  0.570' 0.542' 403" 69.2' 0.626' 0.636' 0.819" 0.760"
High Low random 0.446  0.856 31.8 16.3 0750 0.632 0.903  0.676
orthogonal  0.692 0824 238 11.7 0.668  0.626  0.804  0.680
customized 0769  1.012 188 10.1 0612 0558 0698  0.570

polyhedral  0.418' 0.571" 46.6' 61.9' 0761 0704 0.912' 0.798

T Best or not significantly different than best at p <0.05. Note that lower values of RMSE reflect in-
creased accuracy, while higher values on percent best, hit rates, and correlations denote increased ac-
curacy.
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Table 2a
Comparison Summary for Question Design

Magnitude Helt‘:rict)yge-- RMSE % Best Hit Rates Correlations
Random Random
Low High Customized Polyhedral Customized Orthogonal
Polyhedral Customized
Orthogonal Orthogonal
Low Low Orthogonal Customized Customized Orthogonal
High High Polyhedral Polyhedral Polyhedral Polyhedral
High Low Polyhedral Polyhedral Polyhedral Polyhedral
Table 2b
Comparison Summary for Estimation
Magnitude Heterogeneity RMSE % Best Hit Rates  Correlations
. AC
Low High HB AC HB HB
AC AC
Low Low HB HB HB HB
High High AC AC AC HB
High Low HB HB HB HB
Question Design Methods

As hypothesized, polyhedral question design performs well in the high magnitude (high
response accuracy) domains. For these domains, polyhedral question design is best, or tied for
best, for all metrics and for both estimation methods. These domains favor individual-level adap-

tation because the design of subsequent questions is based on more accurate information from
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the previous answers. When magnitudes are low, the greater response error works against indi-
vidual adaptation and polyhedral question design does not do as well.

The impact of heterogeneity is more complex. We expect individual-level adaptation to
perform well when respondents are heterogeneous. When both magnitudes and heterogeneity
are high, conditions favor polyhedral question design and it performs well. In this domain, the
accuracy of the data enables individual-level adaptation to be efficient. However, for low magni-
tudes the disadvantages of high response errors appear to offset the need for customization (high
heterogeneity). In this domain, polyhedral question design is best only for AC estimation, per-
haps because the two polyhedral methods are complementary — polyhedral question design
shrinks the feasible region rapidly making AC estimation more accurate. We expect low hetero-
geneity to reduce the need for customization and low response accuracy (low magnitude) to work
against deterministic customization. In this domain, as predicted, polyhedral methods do not do
as well as orthogonal and aggregate customized designs.

Perhaps one surprise in Table 1 is the strong performance of random designs relative to
orthogonal designs — especially for HB estimation and when either magnitudes or heterogeneity
are high. We believe that this relative performance can be explained by two phenomena. First,
orthogonal designs are optimal only when the partworths are zero. For higher magnitudes or-
thogonal designs are further from optimal (Huber and Zwerina 1996; Arora and Huber 2001).
For example, when we compute D-errors for orthogonal and random designs in the high magni-
tude domains, the D-errors are higher for orthogonal questions than for random questions. Sec-
ond, HB uses inter-respondent information effectively. As Sandor and Wedel (2003) illustrate,
multiple designs are more likely to contribute incremental information about the population. The
accuracy of random designs relative to fixed, orthogonal designs is consistent with simulations of
differentiated designs as proposed by Sandor and Wedel (2003).

Finally, we note three aspects of Table 1. First, Table 1 replicates the Arora-Huber simu-
lations when the domains and metric are matched — Arora and Huber use HB and report RMSE.
In the Arora-Huber simulations, aggregate customization is superior to orthogonal designs when
magnitudes are high and when heterogeneity is high. Second, there are ties in Table 1, especially
for the low magnitude and high heterogeneity domain, perhaps because high heterogeneity fa-
vors customization while low magnitudes make customization more sensitive to errors. Even

when we increase the sample size to 1,500 (for RMSE) we are unable to break the ties. In this
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domain, for most practical problems, question design appears less critical. Third, performance

varies slightly by metric, especially when there are ties and especially for low magnitudes.

Estimation Methods

The findings in Table 1 also facilitate the comparison of estimation methods. We have
already noted that AC performs well when matched with polyhedral questions for high heteroge-
neity. In most other domains (and for most metrics), HB is more accurate. In theory, the advan-
tages of HB come from a number of properties, one of which is the use of population-level data
to moderate the individual-level estimates (shrinkage). We expect this to be particularly benefi-
cial when the population is homogenous, because the population-level data provide more infor-
mation about individual preferences in these domains. This is consistent with Table 1, and may
help to explain why AC’s relative performance improves when the population is more heteroge-
neous.

Before we reject AC estimation for the domains in which HB is now superior, we inves-
tigate the theoretical potential to improve AC by replacing the AC estimate with a convex com-

bination of the AC estimate and the population mean (shrinkage). If we knew the population

mean (), its variance (0'/23 ), and the accuracy of AC (RMSE), then classical Bayes updating

provides a formula by which to implement shrinkage. To test shrinkage, we use the known
population mean, its variance, and the RMSE from Table 1. With these values we compute a
single parameter for each domain, o, with which to weigh the population mean. Using these
theoretical o's, a convex combination of AC and the population mean provides the best overall
estimate in all four domains — RMSEs of 0.863, 0.871, 0.510, and 0.403, respectively, the last
three are significantly best at the 0.05 level. In practice, we do not know ., so we must estimate
it from the data. Optimal estimation is beyond the scope of this paper, but surrogates, such as
using either HB or classical logit analysis to estimate o, should perform well.

We conclude that AC shows sufficient promise to justify further development.

Summary of Monte Carlo Experiments

We summarize the results of the Monte Carlo experiments as follows:
e Polyhedral question design shows the most promise when magnitudes are high

(response errors are low).
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e If magnitudes are low (response errors are high) it may be best not to customize
designs; fixed orthogonal questions appear to be more accurate than polyhedral or
customized methods.

e HB estimation does well in all domains.

e AC estimation performs well when matched with polyhedral question design and
when heterogeneity is high.

e AC estimation shows sufficient promise to justify further development. Prelimi-
nary analysis suggests that a modified Bayesian AC estimate is particularly prom-

ising if an optimal means can be found to estimate a single parameter, c.

Like many new technologies, we hope polyhedral question design and analytic-center es-

timation will improve further with use, experimentation, and evolution (Christensen 1998).
S. Application to the Design of Executive Education Programs

Polyhedral methods for CBC have been implemented in at least one empirical applica-
tion. We describe this application briefly as evidence that it is feasible to implement the prd-
posed methods using actual respondents. Furthermore, the data provide empirical estimates of
magnitude and heterogeneity, enable us to test the feasibility and choice-balance criteria, and
provide insight on the convergence of AC and HB estimates. Because the managerial environ-
ment required that we implement a single question-design method, we cannot compare question-

design methods in this first “proof-of-concept” application.

Feature Design and Sample Selection for the Polyhedral Choice-Based Conjoint Study

The application supported the design of new executive education programs for a business
school at a major university. The school was the leader in twelve-month executive advanced-
degree programs with a fifty-year track record that has produced alumni who include CEOs,
prime ministers, and a secretary general of the United Nations. However, the demand for
twelve-month programs was shrinking because it has become increasingly difficult for execu-
tives to be away from their companies for twelve months. The senior leadership of the school
was considering a radical redesign of their programs. As part of this effort, they sought input

from potential students. Based on two qualitative studies and detailed internal discussions, the

127



senior leadership of the school identified eight program features that were to be tested with con-
joint analysis. The features included program focus (3 levels), format (4 levels), class composi-
tion (3 levels of interest focus, 4 age categories, 3 types of geographic focus), sponsorship strat-
egy (3 levels), company focus (3 levels), and tuition (3 levels). This 47x3% is relatively large for
CBC applications (e.g., Huber 1997, Orme 1999), but proved feasible with professional web de-
sign. We provide an example screenshot in Figure 5 (with the university logo and tuition levels
redacted). Prior to answering these stated-choice questions, respondents reviewed detailed de-

scriptions of the levels of each feature and could access these descriptions at any time by clicking

the feature’s logo.

Figure 5
Example Web-Based Stated-Choice Task for Executive-Education Study

EXECUTIVE PROGRAMS

Please choose

Please examine the following four progrars, each described by their features and tuition. Of these four programs, which do you prefer? Click
on the circle below the program you would MOST prefer. Click the 'Next' button to continue to the next question.

FEATURES PROGRAM A PROGRAM B PROGRAM C PROGRAM D

53 Program Focus Tech-Driven Enterprise Global Enterprise Innovative Enterprise Tech-Driven Enterprise
Program Format Full-Time Residential Flexible weekend on-line
Classmates' Background General Management Tech, Management 50 - 50 mix General Management
m Classmates' Age 30 - 35 years 35 - 40 years 30-40 years 35 - 45 years
Classmates' Geographic Comp. 75% North American 75% International 50 - 50 mix 759% North American
Classmates' Org. Sponsorship.  Company Sponsored Self Sponsored 50 - 50 mix Company Sponsored

[EE Classmates' Company Size Small Companies Large Companies Mix of large and small Small Companies
[®] program Tuition
ol c 1 «

NEXT2w

After wording and layout was refined in pretests, potential respondents were obtained
from the Graduate Management Admissions Council through their Graduate Management Ad-
missions Search Service. Potential respondents were selected based on their age, geographic lo-
cation, educational goals, and GMAT scores. Random samples were chosen from three strata —
those within driving distance of the university, those within a short airplane flight, and those

within a moderate airplane flight. Respondents were invited to participate via e-mails from the

128




Director of Executive Education. As an incentive, respondents were entered in a lottery in which
they had a 1-in-10 chance of receiving a university-logo gift worth approximately $100.

Pretests confirmed that the respondents could comfortably answer twelve stated-choice
questions (recall that the respondents were experienced executives receiving minimal response
incentives). Of those respondents who began the CBC section of the survey, 95% completed the
section. The overall response rate was within ranges expected for both proprietary and academic
web-based studies (Couper 2000; De Angelis 2001; Dillman et. al., Sheehan 2001)."® No signifi-
cant differences were found between the partworths estimated for early responders and those es-
timated for later responders. The committee judged the results intuitive, but enlightening, and
adequate for managerial decision-making. Based on the results of the conjoint study and internal
discussions, the school has redesigned and retargeted its twelve-month programs with a focus on
both global leadership and innovation/entrepreneurship. Beginning with the class of 2004, it is

adding a new, flexible format to its traditional offerings.

Technical Results

The data provide an opportunity to examine several technical issues. First, we estimate
the magnitude and heterogeneity parameters using HB. We obtained estimates of magnitude
(B) that ranged from 1.0 to 3.4, averaging 1.5. The heterogeneity coefficient ranged from 0.9 to
3.2, averaging 1.9. These observed magnitude and the observed heterogeneity coefficients span
the ranges addressed in the Monte Carlo simulations.

Hit rates are more complex. By design, polyhedral questions select the choice sets that
provide maximum information about the feasible set of partworths. If the Analytic-Center (AC)
estimates remain feasible through the twelfth question they obtain an internal hit rate of 100%
(by design). They remained feasible and this internal hit rate was achieved. This hit rate is not
guaranteed for HB estimates, which, nonetheless, do quite well with internal hit rates of 94%.
As described earlier in this paper, we can examine internal consistency by comparing the hit

rates based on AC estimates from the first i questions to their theoretical value, [i +312- i)]/12 )

The fit is almost perfect (adj. R? =0.9973), suggesting that polyhedral question design was able
to achieve excellent choice balance for the respondents in this study. Because these internal hit
rates are not guaranteed for HB, we plot the hit rates for both estimation methods in Figure 6a.

On this metric, HB is more concave than AC doing better for low i, but less well for high i.
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To gain further insight we adopt an evaluation method used by Kamakura and Wedel
(1995, p. 316) to examine how rapidly estimates converge to their final values. Following their
structure, we compute the convergence rates as a function of the number of stated-choice tasks
(i) using scaled RMSE to maintain consistency with Arora and Huber (2001) and with the Monte
Carlo simulations. From question 3 onward, AC and HB are quite close achieving roughly equal
convergence. HB does less well for i = 1 and 2, most likely because individual-level variation
(in a population with moderately high heterogeneity) counterbalances the benefit to HB of the

population-level data.

Figure 6
Empirical Hit Rates and RMSE Convergence for Executive-Education Study
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Based on this initial application we conclude that adaptive polyhedral choice-based ques-
tions are practical and achieve both feasibility and choice-balance. Analytic-Center estimation
appears to be comparable to HB and is deserving of further study, perhaps with the Bayesian hy-

brids suggested earlier in the text.
6. Conclusions and Research Opportunities

Research on stated-choice question design suggests that careful selection of choice sets
has the potential to increase accuracy and reduce costs by requiring fewer respondents, fewer
questions, or both. This is particularly true in choice-based conjoint analysis because the most

efficient design depends upon the true partworth values. In this paper we explore whether the
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success of aggregate customization can be extended to individual-level adaptive question design.
We propose heuristics for designing profiles for each choice set. We then rely on new develop-
ments in dynamic optimization to implement these heuristics. As a first test, we seek to identify
whether or not the proposed methods show promise in at least some domains. It appears that
such domains exist. Like many proposed methods, we do not expect polyhedral methods to
dominate in all domains and, indeed, they do not. However, we hope that by identifying promis-
ing domains we can inspire other researchers to explore hybrid methods and/or improve the heu-
ristics.

While polyhedral methods are feasible empirically and show promise, many challenges
remain. For example, we might allow fuzzy constraints for the polyhedra. Such constraints
might provide greater robustness at the expense of precision. Future simulations might explore
other domains including non-diagonal covariance structures, probit-based random-utility models,
mixtures of distributions, and finite mixture models. Recently, Ter Hofstede, Kim, and Wedel
(2002) demonstrated that self-explicated data could improve HB estimation for full-profile con-
joint analysis. Polyhedral estimation handles such data readily — hybrids might be explored that
incorporate both self-explicated and stated-choice data. Future developments in dynamic opti-
mization might enable polyhedral algorithms that look many steps ahead.

We close by recognizing research on other optimization algorithms for conjoint analysis.
Evgeniou, Boussios, and Zacharia (2003) propose “support vector machines (SVMs)” to balance
complexity of interactions with fit. They are currently exploring hybrids based on SVMs and

polyhedral methods.
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Endnotes

1. This is equivalent to maximizing the p™ root of the determinant of £*. Other norms
include A-efficiency, which maximizes the trace of Z_l/p, and G-efficiency, which maximizes
the maximum diagonal element of >

2. The Huber-Zwerina and Arora-Huber algorithms maximize det ™' based on the mean
partworths and do so by assuming the mean is known from pretest data (or managerial judg-
ment). Sandor and Wedel (2001) include, as well, a prior covariance matrix in their calculations.
They then maximize the expectation of det ™', where the expectation is over the prior subjective
beliefs.

3. In the application described later in the paper we use warm-up questions to identify the
lowest level of each feature (a common solution to this issue).

4. For J; profiles, equally-sized regions also maximize entropy, defined as -Z; 7log7z;.
Formally, maximum entropy is equal to the total information obtainable in a probabilistic model
(Hauser 1978, Theorem 1, p. 411).

5. In the theoretical derivation we used binary features without loss of generality for no-
tational simplicity. An ordinal multi-level feature constraint is mathematically equivalent to a
constraint linking two binary features.

6. In the designs that we use, the efficiency of the Sandor and Wedel algorithm is ap-
proximately equal to the efficiency of the Huber and Zwerina algorithm.

7. There was also an outlier with a mean of 0.021 and a variance of 0.188 implying a het-
erogeneity coefficient of 9.0. Such cases are clearly possible, but less likely to represent typical
empirical situations. Researchers who prefer a unitless metric for heterogeneity can rescale us-
ing the standard deviation rather than the variance. For our two-level manipulation, directional
differences are the same.

8. The estimates at g = 16 are approximately 25% more accurate than those at g = 8 and
the estimates at g = 24 are approximately 12% more accurate than those at g = 16.

9. The simulations are based on ten sets of one hundred respondents. To reduce unneces-

sary variance, the same true partworths for each of the 1,000 respondents are used for each ques-
tion design method.
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10. Couper (2000, p. 384) estimates a 10% response rate for open-invitation studies and a
20-25% response rate for studies with pre-recruited respondents. De Angelis (2001) reports
“click-through” rates of 3-8% from an e-mail list of 8 million records. In a study designed to
optimize response rates, Dillman, et al. (2001) compare mail, telephone, and web-based surveys.
They obtain a response rate of 13% for the web-based survey. Sheehan (2001) reviews all pub-
lished studies referenced in Academic Search Elite, Expanded Academic Index, ArticleFirst,
Lexis-Nexis, Psychlit, Sociological Abstracts, ABI-Inform, and ERIC and finds response rates
dropping at 4% per year. Sheehan’s data suggest an average response rate for 2002 of 15.5%.
The response rate in the Executive Education study was 16%.
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Appendix: Mathematics of Polyhedral Methods for CBC Analysis

This appendix is designed to be self-contained. Related math programming involved in
finding an interior point, the analytic center, and the Sonnevend ellipsoid are presented in detail
by Toubia et. al. (2003) in their metric-pairs algorithm. We include the modified math pro-
gramming formulations here for completeness. We caution readers that there are important dif-
ferences between the stated-choice formulations as detailed in this paper and the metric-pair
formulations presented by Toubia, et. al. The stated-choice algorithm and the knapsack problem
obviously do not arise in the metric-pairs setting.

Definitions and Assumptions

It is helpful to begin with several definitions:

Uy the /" parameter of the respondent’s partworth function where us> 0 is the high level of
the /" feature (we assume binary features without loss of generality) and Z/’;] u, =100
4 the number of (binary) features
u the px1 vector of parameters

r the number of externally imposed constraints, of which r’ < r are inequality constraints.

the 1xp vector describing the j” profile in the i choice set, where j=1 indexes the re-
spondent’s choice from each set

X the g(J-I)xp matrix of X;=z,-Zz, fori =1 to g and j =2 to J (to simplify notation, we
drop the i subscript from J;).

Inequality constraints are incorporated by adding slack variables. For example if there are
multiple levels and u,, < uy, then uy, = uy, + Vi With vy, > 0. If there were no errors, the respon-
dent’s choices would imply Xii >0 where 0 is a vector of 0’s. We add slack variables and aug-
ment # such that Xi =0. We incorporate the additional constraints by augmenting these equations
so that # and X include r’ additional slack variables and r additional equations. This forms a
polyhedron, Pcpe = { @ e RP*D* | Xii=a, & > 0} where @ contains non-zero elements due to

the external constraints. We begin by assuming that Pcpc is non-empty, that X is full-rank, and
that no j exists such that us = 0 for all & in Pcgc.

Interior Point Math Program

To find a feasible interior point, solve the following linear program (see Freund, Roundy
and Todd 1985):
prq(J-1)+r’ -
max ny, subjectto: Xu=6a, 621, u=2y=20, y<e
f=1
where € is a vector of 1’s. Let (ii*,5",0") denote a solution. If 5" >0, then 6" is an
interior point of Pcgc. If y; =0, then us= 0 for all i € Pcpc. If the linear program is infeasible,

then Pcpc is empty.
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Analytic Center Math Program

Solve the following math program:
prq(J=D+r' -
max Y In(u;), subjectto: Xi=d, >0
f=

We do so using an algorithm developed by Freund (1993) that begins with the feasible

point #° that was found earlier. At each iteration we set #'"' =i’ +a'd’ where d'is found us-

ing the following quadratic approximation of the objective function:

p+tq(J-D+r' p+q(J-D)+r' p+q(J=)+r' d} drfz
ty _J

I ORPISE SR S

f=1 f=1 f=1 U U

If U is a diagonal matrix of the u's’s, then d' solves:

max e (U")'d-(4)d"(U")?d, subject to:  Xd =0

Using the Karush-Kuhn-Tucker (KKT) conditions, d' =i’ (U)X [X(U' PX")" a . 1f
| @U")™"d" || <0.25, &' is already close to optimal and we set o’ =1. Otherwise we find the opti-

mal o with a line search. The program continues to convergence at & .

If Pcpc is empty we employ the error modeling procedure in Toubia, et. al. (2003). Note
however that Pcgc will not be empty if CBC questions are chosen with the polyhedral algorithm.
If X is not full rank, X(U' )ZXT might not invert. There are two practical solutions: (1) select ques-
tions such that X is full rank or (2) make X full rank by removing redundant rows (see Toubia, et.
al. 2003). If when searching for feasibility we identify some f’s for which u;= 0 for all i € Pcpc,
we can find the analytic center of the remaining polyhedron by removing those f’s and setting uy
= 0 for those indices.

The Longest Axes of the Sonnevend Ellipsoid

If u is the analytic center and U is the corresponding diagonal matrix, then Sonnevend
(1985a, 1985b) demonstrates that E C Pepe © Epags-1)+ Where, E = {4

| Xii =a, J (i —u)"U (i —it) <1} and E,4q.1)+, is constructed proportional to E by replacing 1
with (p+q(J-1)+r’). Because we are interested only in the direction of the longest axes of the
ellipsoids, we can work with the simpler of the proportional ellipsoids, E. Let g =ii i, then the
longest axis is a solution to:

max 3’ g subjectto: 37U <1, Xg=0

Using the KKT conditions, the solution to this problem is the eigenvector of the matrix,
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(U™ -X"(XXT)" XU ™), that is associated with its smallest positive eigenvalue. The

direction of the next longest axis is given by the eigenvector associated with the second smallest
eigenvalue, etc.

Selecting Profiles for Target Partworth Values

We select the values of the ;s for the next question (i = g+1) based on the longest

axes. Each axis provides two target values. For odd J we randomly select from target values

derived from the [(J+1 )/2]th eigenvector. To find the extreme estimates of the parameters, i;;, we

i
solve for the points where i@, =i + @, 8, ,ii,, =i — 8, ,l,, =i + O, §,,and ii,, =i —,§, in-
tersect Pcpe (the generalization to J # 4is straightforward). For each « we do this by increasing
o until the first constraint in Pcgc is violated. To find the profiles in the choice set we select, as
researcher determined parameters, feature costs, ¢, and a budget, M. Without such constraints,

the best profile is trivially the profile with all features set to their high levels. Subject to this
budget constraint, we solve the following knapsack problem with dynamic programming.

(OPT1) max Z;u; subject to:  Z;

;€ <M , elements of z;,€{0,1}

For multi-level features we impose constraints on OPT1 that only one level of each fea-

ture is chosen. In the algorithms we have implemented to date, we set & = & and draw M from a
uniform distribution on [0, 50], redrawing M (up to thirty times) until all four profiles are dis-
tinct. If distinct profiles cannot be identified, then it is likely that Pcpc has shrunk sufficiently
for the managerial problem. For null profiles, extend the constraints accordingly, as described in
the text.
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Chapter 4: Non-Deterministic Polyhedral Methods for Adaptive Choice-Based

Conjoint Analysis

Abstract

Polyhedral methods have been introduced recently both for metric paired-comparison
conjoint analysis (Toubia, Simester, Hauser and Dahan 2003) and for choice-based conjoint
analysis (Toubia, Hauser, Simester 2004). Although these methods appear promising in simula-
tion tests as well as in field experiments, they systematically underestimate response error. In
particular, polyhedral questionnaires are typically designed as if responses contained no error.

In this paper I generalize the polyhedral method for choice-based conjoint analysis intro-
duced by Toubia et al. (2004), and allow response error to be taken into account in the design as
well as the estimation of the conjoint questionnaire. More precisely, I consider a hypothetical
process in which each conjoint question would be randomly discarded with a positive probabil-
ity. With this process, the posterior distribution on the partworths is a mixture of uniform distri-
butions supported by polyhedra. I generalize the design criteria of choice balance and post-
choice symmetry to mixtures of polyhedra. The deterministic polyhedral method of Toubia et al.
(2004) becomes a special case in which the mixture contains only one distribution.

I use simulations to test the validity of this non-deterministic approach. The simulations
suggest that when response error is high, the non-deterministic approach improves both polyhe-

dral question selection and polyhedral estimation.
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1. Introduction

Polyhedral methods have been introduced recently both for metric paired-comparison
conjoint analysis (Toubia, Simester, Hauser and Dahan 2003) and for choice-based conjoint
analysis (Toubia, Hauser, Simester 2004). These methods appear promising in simulation tests as
well as in field experiments. They are based on a new approach to conjoint analysis, relying on
the identification of feasible sets of parameters consistent with the respondent’s answers.

However one major limitation of the polyhedral methods introduced so far is their treat-
ment of response error. In particular, response error is systematically underestimated, and poly-
hedral questionnaires are typically designed as if responses contained no error. Consequently,
simulation experiments suggest that polyhedral methods are most useful when response error is
low, while other methods appear better when response error is high.

In this paper I offer another interpretation of the polyhedral method for choice-based con-
joint analysis introduced by Toubia et al. (2004). This new interpretation allows generalizing the
method to take response error into account. The “deterministic” method of Toubia et al. (2004)
becomes a special case of the broader set of methods introduced in this paper.

The paper is structured as follows. In Section 2, I briefly review the deterministic polyhe-
dral method of Toubia et al. (2004). In Section 3, I extend this method to take response error into
account. I test the performance of the new method in Section 4, using simulations. Section 5

concludes and suggests avenues for future research.
2. Basic polyhedral methods for Choice-Based Conjoint Analysis

In this section I briefly review the method proposed by Toubia, Hauser and Simester
(2004).

Choice-based Questions as sets of constraints

Toubia et al. (2004) propose viewing the answers to a choice-based conjoint question-
naire as a set of inequality constraints. In particular, if the vectors x; and x, represent the j™ and
k™ alternatives in a choice question, and if the vector U represents the respondent’s partworths,
then the respondent’s utility for alternatives j and k are respectively x;.U + ¢; and xx.U + &, where
¢ and ¢ represent response error. The respondent will choose alternative j over alternative k only

if (xj- x).U + (gj-&x) = 0. Each choice between J alternatives can be represented by a set of (J-1)
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such inequality constraints on U and &. The overall information available on U and ¢ is repre-
sented by the following set of constraints: X.U + &> 0, U>0, e’.U = 100 where X represents all
the binary comparisons implied by the conjoint questionnaire, U > O results from setting to O the
partworth of the lowest level of each attribute, and e is a vector of 1’s (¢’.U = 100 is a scaling

constraint that is imposed without loss of generality).

Polyhedra as feasible regions

Consider the following optimization problem:
Minimize ||¢||
subjectto: X.U +&>0,U>0,e’.U =100

This optimization problem reflects a typical minimum distance estimation procedure.
However, this problem usually does not have a unique solution. (Non-uniqueness of the solution
is more likely if the number of choice questions is moderately low compared to the number of
parameters.) In this case, the optimal ¢ is equal to 0 and the set of solutions in U is defined by
Q={U.X.U>0,U>0,e’.U =100}. The method of Toubia et al. (2004) relies on the observation
that £2 is a well-known, well studied mathematical object called a polyhedron. As noted earlier,

this polyhedron represents all U that are feasible when there is no response error (¢ = 0).

Question design

Let £2; be the polyhedron corresponding to the feasible region after question k. The next
feasible polyhedron $£2.; will be defined by the intersection of £2; and the set of points satisfying
the constraints corresponding to the (k + 1)* question. Let us assume that the (k + 1)* question
consists of a choice between J alternatives. Potential answers to the question divide 2 into J col-
lectively exhaustive and mutually exclusive subpolyhedra .Qk+11, .Qk+12 e .Qk+1', , such that £2.; is
equal to .Qk,qi if and only if the respondent chooses alternative j in question (k + 1). Toubia et al.
(2004) adopt two criteria when designing choice questions (they mention two additional criteria,
which are implied by choice balance):

Choice balance: .Qk,ql , .Qk+12 yeus .Qk,,lj should be of similar sizes.

Post-choice symmetry: .Qk+11 , .Qk+12 . .Qkﬂl should be as spherical as possible.
ymmetry p
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The first criterion minimizes the expected size of the next feasible polyhedron £y,

while the second criterion makes uncertainty on U similar in all dimensions. These two criteria

are operationalized by the two following principles:

Principle 1: A respondent with a utility vector equal to the center of £ should be
indifferent between all J alternatives.

Principle 2: .Qk+11 s .Qk+12 been .Qk.,.]J should divide 2 along its longest axes.

Toubia et al. (2004) implement these principles by adopting the following procedure, re-

peated for all questions k:

a.

Compute the analytic center of £2;, ACy. The analytic center is the point that maximizes
the geometric mean of the distance to the boundaries of the polyhedron.

Approximate €2 by an ellipse Ex centered at ACy using Sonnevend’s (1985a, b) theo-
rems.

Find the J/2 longest axes of Ej (if J is odd find the (J+1)/2 longest axes).

Define U’...U” as the intersections between the longest axes of the ellipse Ey and the
polyhedron £2;.

Solve the J following knapsack problems (j = 1...J):

Maximize x.U¥

subject tox. ACy <M

where M is a randomly drawn constant.

The solutions to these knapsack problems, x| el , are the alternatives presented in the

next choice question.

In the above procedure, Principle 1 is approximately satisfied by using x.ACy < M as the con-

straint in the Knapsack problems in step e (at optimality the constraints will be approximately

binding, resulting in x*!.U ~ x**.U ~... x*/.U ~ M). Principle 2 is approximately satisfied by

choosing U'...U” as the intersection between the polyhedron and the longest axes of its approxi-

mating ellipse.
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Estimation

Choice-based conjoint questionnaires designed by a polyhedral method can be estimated
using any estimation procedure. The question-selection procedure provides an alternative esti-
mate after question k — the analytic center of the feasible polyhedron, ACk. (Analytic Center
estimation can be applied to any set of choice questions, and is not restricted to polyhedral ques-

tionnaires.)

Performance

Toubia et al. (2004) evaluate the performance of both their question selection algorithm
and of Analytic Center (AC) estimation, using the same simulation design as Arora and Huber
(2001). This 2x2 design varies response accuracy and respondent heterogeneity. Polyhedral
question selection is compared to randomly generated questions, orthogonal designs, and aggre-
gate customization designs (Huber and Zwerina 1996, Arora and Huber 2001). Analytic center
estimation is compared to hierarchical Bayes.

The results of the simulations can be summarized as follows (see Tables 1 to 3 in Toubia
et al. 2004 for details):

e Polyhedral question selection achieves an improvement over traditional methods when
response error is low. However it does not perform better than traditional methods when
response error is high.

e Analytic center estimation does not perform as well as hierarchical Bayes when the popu-
lation is homogeneous, achieves similar performance when heterogeneity is high and re-
sponse error is high, and achieves superior performance when heterogeneity is high and
response error is low.

The fact that the polyhedral methods (question selection as well as estimation) proposed
by Toubia et al. (2004) perform relatively better when response error is low might be due to their
deterministic nature. In particular, recall that the definition of the polyhedron relies on the as-
sumption that there is no response error. In the next section I attempt to improve those methods

by developing a more general framework that allows taking response error into account.

144




3. Taking response error into account

Polyhedra and probability density functions

Let 2 be a polyhedron. Let us define Pg as the uniform probability density function sup-
ported by £2:

Pox)=0ifx ¢ Q

Po(x) = Po(y) for all (x,y) € &°

If we assume a flat (uniform) prior on U, if £ is our feasible polyhedron, and if we as-
sume that there is no response error, it is easy to show that Pg is the posterior distribution of U.
In particular, the posterior distribution is O for all points outside of the polyhedron, and it is pro-
portional to the prior distribution for all points inside the polyhedron.

Hence, the center of the feasible polyhedron can be interpreted as the posterior expected
value of U. More importantly, minimizing the size of the polyhedron can be viewed as minimiz-
ing the posterior variance of U, and making the feasible polyhedron as spherical as possible can

be viewed as making the posterior variance of U similar in all dimensions.

Introduction of response error

One question

Let £ be the initial polyhedron defined by the identifying constraints {U >0, e’.U =
100}. For ease of exposition, let us first consider the special case in which we present the re-
spondent with only one choice question between J alternatives. Without loss of generality, let us
assume that the respondent chooses alternative 1. Let £2; be the intersection of £y with the set of
points satisfying the constraints corresponding to the selection of the alternative 1. £2; would be
the new polyhedron under the deterministic approach of Toubia et al. (2004).

Suppose now that instead of systematically adding the constraints corresponding to the
respondent’s choice, we were to take them into account only with probability a, and to simply
ignore the question with probability 1- a. In this case, our next feasible polyhedron would be £2;
with probability a, and it would remain £2y with probability 1- a. Our posterior distribution on U
would then be a mixture of two distributions, aPg; + (1- a)Pgy.

I later explore how response error can be captured by appropriately choosing the parame-

ter a. Ignoring a question is different from assuming that the respondent made an error on this
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question. Let us denote by a’ the probability that the respondent’s choice actually matches his or
her truly preferred alternative. a will be chosen as a function of &’ such that ignoring the question
with probability (1- a) will be approximately equivalent (i.e., lead to the same posterior distribu-

tion) to assuming that the respondent made an error with probability (1- a’).

Generalization to multiple questions
Let us now generalize the procedure to longer questionnaires. Let us still consider a proc-
ess that ignores each question with probability (1- a). After k questions, the distribution of U
would be:
Zws P,
filU)= T 1)

where the summation is over all subsets s of {1...k}. In particular, a set of constraints can
be associated to each subset s of questions, resulting in a polyhedron £2; and a corresponding dis-

k¥l is the probability that s would be the subset of ques-

tribution Pg,. The weight w; = a*l(1- @)
tions taken into account in this hypothetical process (|s| is the number of elements in s). We set
wy = 0 if the polyhedron £2; is empty.33

The deterministic approach is a special case of Equation 1, in which a = 1.

More complex priors

We have assumed so far that the prior was uniform and characterized by the distribution
Pgqo corresponding to the polyhedron £2p = {U: U > 0, ’.U > 100}. However, any mixture of
polyhedra could be used to characterize the initial prior. For example, a normal prior on U could
be approximated by a mixture of uniform distributions with increasingly large supports and small

weights.

Estimation

An estimate of U is provided by:

3 This is why we have to normalize the weights in Equation 1 and divide them by wa . If w, were not

s

set to 0 when the polyhedron is empty, then Equation 1 would simply be f{U )= Ews P, .

S
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EWSAC s
U= ’E— where AC; is the analytic center of £2;.
w

N
A

Question design

The two basic principles for question selection used by Toubia et al. (2004) can be ap-
plied to the non-deterministic framework proposed here. In particular, a respondent with a utility
vector equal to the posterior expected value of U after question & should be approximately indif-

ferent between the alternatives in the (k+1)* choice set. In addition, the mixtures of polyhedra

associated with each alternative in this choice set should divide the initial mixture EWS.Qs along

S
its “longest axes.” This raises the issue of defining and computing the longest axes of a mixture

of polyhedra.

Longest axis of a mixture of polyhedra

Let v, be the longest axis of the polyhedron £2. Intuitively, the longest axis of the mix-

ture Zws £ _should be aligned with the longest axes of the most likely polyhedra in the mixture.

More precisely, the longest axis should capture, or “summarize,” the directions of the most likely

polyhedra in the mixture. I define the longest axis of the mixture of polyhedra as the vector v*

that maximizes wa.( v,y )? . (This expression is a norm on the set of inner products {vy’.v};.)

Let us define V as the 2* x p matrix (p being the dimension of U) obtained by stacking the
transposed longest axes of each polyhedron in the mixture (each row of V is a transposed longest

axis). Let us define IT as the 2" x 2% diagonal matrix with elements corresponding to the probabili-

ties associated with each subset (i.e., IIi;=w;). We have: Ews.( v('v )2 = v’ *V’*[T*V*p_ The

s

vector v* maximizing Zws .(v,'v )’ is then simply the eigenvector associated with the largest

eigenvalue of V’*IT*V. (This matrix being symmetric, positive semi-definite, its eigenvalues are
all real and non-negative.) I simply define the second longest axis as the eigenvector associated

with the second largest eigenvalue, and so on and so forth. By construction, the longest axes are
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orthogonal to one another, as they are in the case of a single ellipse. (The procedure just defined

is analogous to factor analys:s.)

Detailed algorithm

Question selection is summarized as follows:

2w AC,
>,

a. Compute U=

b. Approximate each polyhedron in the mixture by an ellipse and compute the correspond-
ing longest axis v;.
Find the J/2 longest axes of the mixture (if J is odd find the (J+1)/2 longest axes)

d. Define U”...U” as the intersections between the longest axes of the mixture and the poly-
hedron 2y = {U: U>0, e’.U > 100}

e. Solve the following J/ knapsack problems (j = 1...J):

Maximize x.U"

subject to x. U <M
where M is a randomly drawn constant.>
f. The solutions to these problems, x| e , are the alternatives presented in the next

choice question.

Practical Implementation

When k questions have been asked to the respondent, the distribution of U is a mixture of
2k polyhedra. As k gets large, the computation of the analytic centers and longest axes of each
polyhedron in the mixture takes too long to solve between questions in a web-based setting.
However aspects of the structure of the problem can be exploited to reduce the amount of com-
putations required between questions.

First, it is unnecessary to compute the analytic centers and longest axes of all 2% poly-
hedra in the mixture after question k: if the analytic centers and longest axes of the polyhedra

involved after question (k-1) have been saved, the computation of only 2F" additional polyhedra

* In the simulations in this paper, M was drawn up to 30 times, until all solutions to the Knapsack problems
were different. If all solutions to the Knapsack problems were similar after 30 draws, the questionnaire stopped. If
there were only K < J different solutions after 30 draws, these K options were the alternatives presented to the re-
spondent.
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is required. Indeed, the set of 2k polyhedra can be divided into those in which question £ is ig-
nored and those in which it is taken into account. The analytic center and longest axis of any
polyhedron in which question k is ignored have already been computed before question k was
asked, and can hence be reused.

Second, the computation of the analytic center of a polyhedron involves two steps, one of
which can almost always be bypassed in our case. The first step consists in finding an interior
point of the polyhedron by solving a Linear Program; the second step consists in applying New-
ton’s method using the interior point as a starting point. After question &, the polyhedron £2/;.
obtained by taking all k questions into account is a subset of all the other polyhedra in the mix-
ture. Hence the analytic center of £2...x is an interior point of all these polyhedra. This can be
exploited by first computing the analytic center of £24;.. i and using it as a starting point in New-
ton’s method for the other polyhedra. This appears to reduce by a factor of approximately two
the time required for the computation of the analytic centers.

Despite these simplifying techniques, the computations required between questions
quickly becomes too time consuming. To address this issue, I approximate the distribution of U
by a mixture of a subset of the 2 polyhedra. In particular, I sort the probability weights w; in de-
creasing order and compute the analytic centers and longest axes of the polyhedra starting with
the most likely ones, until a preset computing time limit is reached. In the following simulations,
this time limit was 1 second.

More precisely, if Simi if the subset of polyhedra used to approximate the mixture, then

2w AC,

U in step a above is approximated withie-g'"""T—, and the longest axis of the mixture in step ¢
w

SESlimit

is approximated by the vector maximizing Ews.( v v )?, instead of Zws.( v,('v ).
sESlimit s

Computation of a
This paper introduces response error by considering a process in which each question
would be ignored with probability (1-a). This process was adopted because it is congruent with

polyhedral methods. A more direct introduction of response error would result in a mixture of

convex and non-convex sets for which no convenient approximation is known.
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However, our choice of a should make this process equivalent to one in which there ex-
ists response error and we adjust our posterior distribution accordingly. For example, we should
be more likely to ignore a question when response error is larger (i.e., @ should be smaller). The
link between a and response error should also reflect the fact that ignoring a question is different
from recognizing that the respondent made an error on this question. An error from the respon-
dent does tell us that the selected alternative is not the one with the highest “true” Utility, which
in itself is informative.

We now derive the appropriate a. Let a,’ be the probability that the respondent selected
his or her truly preferred alternative in question k. For simplicity, let us consider a particular

noise structure in which the respondent chooses his or her “truly” preferred alternative with

I-a,
probability a;’ and chooses each other J-1 alternatives with equal probability 7 Ik . Note that in

the following simulations, choices were made according to the logistic probabilities, making this
assumption an approximation.* Let p(U) be the mixture of uniform distributions corresponding
to our prior distribution on U before question k. Applying Bayes’ rule, the posterior distribution

of any vector U is proportional to a;’p(U) if U is consistent with the answer to question k and it

(1-a,).p(U)

is proportional to T if U is inconsistent with that answer. Both posterior densities are

proportional to p(U) and the ratio is:

(2) (—J]—]()fi
Let us now consider the process introduced in this paper in which we ignore question k

with probability 1- ax. The posterior distribution of U is then the mixture ayp2(U) + (1- ax)p(U)

where p,(U) is the posterior distribution obtained if the prior is p(U) and if the constraints corre-

sponding to question k are taken into account. In particular, p2(U) = 0 if U is outside of the corre-

sponding feasible region £2, and is equal to p(U) / P(2) where P(Q)= ~f)(U )dU if U is in . The
Q

a,.p(U)

posterior of a point U consistent with the answer to question k is then P(Q)

+(1-0, )p(U).

35 In real situations both this assumption and the assumption of logistic probabilities are approximations,
and which one better describes actual consumer choices is an empirical question.
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The posterior of a point U inconsistent with that answer is (1- ox)p(U). Both posterior densities
are again proportional to p(U), and the ratio is now equal to:

a,/P(R)+(1-0a,)
I-a,

3)

Let us consider the average case in which P(£2) = 1/J, which is the target probability dic-
tated by the choice balance criterion (Principle 1). With P(£2) = 1/J the ratios (2) and (3) are

equal if:

@ J.akl-i-(oltk- a, ) _ (JI-—IO)[.;Cak Sa, = J.;z,i;l
If ay satisfies Equation 4 and if choice balance is satisfied, then ignoring question k with
probability (1-ax) would yield the same posterior distribution as realizing that the respondent
made an error on question & with probability a;’.*® In the case where P(2) is different from 1/J,
i.e., choice balance is not achieved, the two processes will be only approximately equivalent.
For simplicity, in the simulations reported in this paper, I chose the same o for all respon-
dents and all questions. In particular, a parameter &’ was estimated based on a pretest, and o was

computed as a function of a” according to Equation 4.

a’ was computed using the following procedure:

a. An estimate of the population mean of U, U ,,, , was obtained based on a pretest (100 re-

pop
spondents assigned to an orthogonal design in the simulations).
b. A set of R random questions (R = 100 in the simulations) was generated and the logistic

probabilities based on U »op Were computed for each question. (probabilities p,l ...p¢ cor-

responded to the J alternatives of the r™ question). The probability that the respondent

chose his or her truly preferred alternative on question r was a,’= max{ p,’... p’ }. An

R
was obtained as ( Za', VR

r=1

initial estimate of a’, Q'

ini °

36 Equation 4 assumes that ;" > 1/J, i.e., the choice question is informative.
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c. N respondents (N =100 in the simulations) were simulated, all with U =0 pop using o

18, -1

J-1

was estimated as in step b.

in Equation 1. For each respondent, the logistic probabilities were saved. a’

Note that step b was necessary because an initial value of a was required in order to de-
sign the questions in step c. In theory, step ¢ should have been repeated until convergence, i.e.,
until the value of a’ used to design the questionnaires was the same as the one obtained from the
choice probabilities. However, the value of a’ obtained from the choice probabilities did not ap-
pear to be very sensitive to the one used to design the questionnaires, and only one iteration was
performed in the simulations. Thus, the simulations will understate the performance of an algo-
rithm that is repeated until convergence.

Note also that the pretest information required by this procedure is the same as that re-
quired by traditional aggregate customization (Huber and Zwerina 1996, Arora and Huber 2001).

This facilitated the comparison between the two methods.

4. Simulations

Design

The design of the simulations reported in this section was similar to that adopted by
Arora and Huber (2001) and Toubia et al. (2004). As in Toubia et al. (2004), the number of fea-
tures was 4, the number of levels per feature was 4, and the number of alternatives per choice set,
J, was 4. This allowed designing orthogonal designs using the procedure described by Arora and
Huber (2001). As in prior studies, the partworths of the four levels came from a normal distribu-
tion with mean — §, - /3, f/3, and f respectively, and with standard deviation op (the covariance
between partworths was 0). The magnitude of the partworths (influencing the level of response
error) was controlled by the parameter 5, with high magnitude represented by = 3, and low
magnitude by f =0.5. The heterogeneity of the population was controlled by the ratio Uﬁz/ﬂ,
which was set to 3 in the case of high heterogeneity, and 0.5 in the case of low heterogeneity. For
each combination of magnitude and heterogeneity, I simulated 10 sets of 100 respondents.

In addition to manipulating magnitude (two levels) and heterogeneity (two levels), I also

varied question design (5 different question selection methods) and estimation (3 different esti-
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mation methods). More precisely, for each simulated respondent, I considered five sets of ques-
tions:
1. A random design
2. An orthogonal design
3. A design obtained by aggregate customization, using swapping and relabeling (Arora and
Huber 2001).
4. A questionnaire designed by the deterministic polyhedral method of Toubia et al. (2004).
A questionnaire designed by the non-deterministic polyhedral method proposed in this
paper.
For each respondent, each set of questions was estimated by
1. Hierarchical Bayes (using the 100 respondents in the corresponding set).
2. The deterministic AC estimation method of Toubia et al. (2004).
3. The non-deterministic AC estimation method proposed in this paper.
Note that both aggregate customization and the non-deterministic polyhedral method de-
scribed in this paper require a prior estimate of the population mean. For each of the 10 sets of
respondents, this was provided by the population estimate obtained when running hierarchical

Bayes on the orthogonal designs.

Results

I compare the methods on their ability to recover respondents’ true utility vectors. Table
1 reports the root mean squared error (RMSE) achieved by each combination of question design
and estimation method. Tables 2 and 3 summarize the best question-design method and the best
estimation method, respectively. For comparability between estimation methods, I normalized
the partworths to a constant scale. Specifically, for each respondent, I normalized both the true
partworths and the estimated partworths so that their absolute values summed to the number of
parameters and their values summed to zero for each feature (Toubia et al. 2004). This scaling
addresses two issues. First, polyhedral estimation is unique to a positive linear transformation
and thus focuses on the relative values of the partworths. Second, unscaled logit analyses coun-
found the magnitude of the stochasticity of observed choice behavior with the magnitude of the

partworths.
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Question-design methods

Not surprisingly, taking response error into account is more useful to polyhedral methods
when response error is higher. In particular, when response error is high (low magnitude) and
heterogeneity is high, non-deterministic polyhedral questions coupled with non-deterministic AC
estimation outperform deterministic polyhedral questions. However, when response error is large
and heterogeneity is low, although non-deterministic AC estimation outperforms deterministic
AC estimation, deterministic and non-deterministic polyhedral questions coupled with non-
deterministic AC estimation achieve similar performance, and do not perform as well as or-
thogonal designs coupled with non-deterministic AC estimation.

When response error is low (high magnitude), the performance of non-deterministic
polyhedral questions is usually slightly lower than that of deterministic polyhedral questions.
However, non-deterministic polyhedral questions still outperform the other question-design
methods, with any of the three estimation methods.

I hypothesize that the difference in performance between deterministic and non-
deterministic polyhedral questions in the low response error cases is due to the fact only a subset
of the polyhedra in the mixture was considered (see “practical implementation”). Future re-
search might explore the sensitivity of performance to this approximation, and allow isolating the
benefits of the conceptual framework proposed in this paper from the limitations introduced by
implementation choices. Certainly with improved computer speed and memory (Moore’s Law)

the need for this approximations will disappear.

Estimation methods

Toubia et al. (2004) note that deterministic AC estimation performs better (relative to hi-
erarchical Bayes) when heterogeneity is high. Their simulations also reveal that it performs bet-
ter when response error is low (magnitude is high). Table 1 indicates that, when response error is
high, deterministic AC estimation can be significantly improved by taking error into account. In
particular, non-deterministic AC estimation outperforms both deterministic AC estimation and
HB estimation in the low magnitude / high heterogeneity and in the low magnitude / low hetero-
geneity conditions.

When response error is low (high magnitude), non-deterministic AC estimation does not
always perform as well as deterministic AC estimation. As with question-design methods, the

difference in performance between deterministic and non-deterministic AC estimation when re-
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sponse error is low is possibly due to the approximations in the implementation of the non-

deterministic method.

Table 1
Simulation Resulits

RMSE
Magnitude Heterogeneity Question Design HB Deterministic Non-deterministic
AC AC
Low High Random 0.746 0.878 0.672
Orthogonal 0.751 0.771 0.620
Customized 0.696* 0.831 0.635
Polyhedral — 0.801 0.712* 0.646
Deterministic
Polyhedral — 0.874 0.998 0.604*
Non deterministic
Low Low Random 0.864 1.151 0.782
Orthogonal 0.775* 0.898* 0.708*
Customized 0.796 0.993 0.776
Polyhedral — 0.867 0.941 0.746
Deterministic
Polyhedral — 0.855 1.224 0.750
Non deterministic
High High Random 0.540 0.667 0.670
Orthogonal 0.697 0.824 0.696
Customized 0.503 0.813 0.760
Polyhedral — 0.478* 0.393* 0.459*
Deterministic
Polyhedral - 0.489 0.415 0.463*
Non deterministic
High Low Random 0.380 0.664 0.662
Orthogonal 0.647 0.813 0.699
Customized 0.383 1.008 0.893
Polyhedral — 0.328* 0.427* 0.461
Deterministic
Polyhedral —- 0.325* 0.445 0.444*

Non deterministic

* Best or not significantly different from best at p < 0.05.The comparisons are done across question designs

for each estimation method and for each combination of Magnitude / Heterogeneity

155



Table 2
Comparison Summary for Question Design

Magnitude Heterogeneity Lowest RMSE

Low High Non-deterministic Polyhe-
dral

Low Low Orthogonal

High High Deterministic Polyhedral

High Low Deterministic Polyhedral /

Non-deterministic Polyhe-
dral
Table 3

Comparison Summary for Estimation

Magnitude Heterogeneity Lowest RMSE
Low High Non-deterministic AC
Low Low Non-deterministic AC
High High Deterministic AC
High Low HB

Summary of the simulation results

The simulations suggest that:

e Taking response error into account improves the performance of polyhedral question
selection when response error is high and heterogeneity is high. However the
improvement requires coupling non-deterministic polyhedral question design with non-
deterministic AC estimation.

Taking response error into account improves the performance of polyhedral estimation
when response error is high. In this case, non-deterministic AC estimation also outperforms hier-

archical Bayes estimation.
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5. Conclusions and Future Research

In their conclusion, Toubia et al. (2004) note: “...many challenges remain. For example,
we might allow fuzzy constraints for the polyhedra.” In this paper I attempt to address this chal-
lenge by generalizing their approach and allowing response error to be taken into account in the
design as well as the estimation of polyhedral questionnaires. One difficulty comes from the ne-
cessity to deal only with convex polyhedra, which would not be satisfied if response error were
introduced directly. Instead, I consider a hypothetical process in which each conjoint question
would be randomly discarded with a positive probability. With this process, the posterior distri-
bution on the partworths is a mixture of uniform distributions supported by polyhedra. The de-
terministic polyhedral method becomes a special case in which the mixture contains only one
distribution. I generalize the criteria of choice balance and post-choice symmetry used by Toubia
et al. (2004) to mixtures of polyhedra. The probability of discarding a question is chosen such
that the hypothetical process under consideration yields a posterior distribution that is approxi-
mately equal to the one obtained if response error were directly taken into account.

I use simulations to test the validity of this non-deterministic approach. The simulations
suggest that when response error is high, the non-deterministic approach improves both polyhe-
dral question selection and polyhedral estimation.

There are many exciting areas for future research. I suggest two compelling directions.
First, in the current implementation, the prior distribution of the partworths (before the beginning
of the questionnaire) is uniform. It would be interesting to explore more sophisticated priors, in
particular mixtures of uniform distributions that approximate more complex distributions. Sec-
ond, although the simulations are promising, it is an important future direction to validate the

method using a field experiment. This work has begun.
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Chapter 5: Properties of Preference Questions: Utility Balance, Choice Balance,

Configurators, and M-Efficiency

Abstract

This paper uses stylized models to explore efficient preference questions. The formal
analyses provide insights on criteria that are common in widely-used question-design algorithms.
We demonstrate that the criterion of metric utility balance leads to inefficient questions, absolute
biases, and relative biases among partworths. On the other hand, choice balance for stated-
choice questions (the analogy of utility balance for metric questions) can lead to efficiency under
some conditions, especially for discrete features. When at least one focal feature is continuous,
choices are imbalanced at optimal efficiency. This choice imbalance declines as responses be-
come more accurate and non-focal features increase. The analysis of utility- and choice-balance
provide insights on the relative success of metric- and choice-based adaptive polyhedral methods
and suggest future improvements.

We then use the formal models to explore a new form of data collection that has become
popular in e-commerce and web-based market research — configurators. We study the stylized
fact that questions normally used as warm-up questions in conjoint analysis are surprising accu-
rate in predicting consumer behavior that is relevant to e-commerce applications. For these ap-
plications, new data suggest that warm-up questions are, perhaps, more useful managerially than
paired-comparison tradeoff questions. We examine and generalize this insight to demonstrate
the advantages of matching tradeoff, configurator, and “range” questions to the relevant manage-
rial decisions. This further generalizes to M-efficiency (managerial efficiency), an alternative
criteria for question design algorithms. Designs which minimize D-errors and A-errors may not
minimize Mp- and M-errors which measure precision relevant to managerial decisions. We

provide examples in which simple modifications to question design increase M-efficiency.
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1. Motivation

Preference measurement is crucial to managerial decisions in marketing. Methods such
as conjoint analysis, voice-of-the-customer methods, and, more recently, configurators, are used
widely for product development, advertising, and strategic marketing. In response to this mana-
gerial need, marketing scientists have developed many sophisticated and successful algorithms to
select questions efficiently. For example, Figure 1 illustrates two popular formats that have been

studied widely.

Figure 1
Popular Formats for Conjoint Analysis
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(a) Metric paired-comparison format (laptop bags) (b) Stated-choice format (Executive Education)

For the metric-pairs format (Figure 1a) questions can be selected with efficient designs,
with Adaptive Conjoint Analysis (ACA), or with polyhedral methods (Kuhfield, Tobias, and
Garratt 1994; Sawtooth 2002; Toubia, Simester, Hauser, Dahan 2003). For the stated-choice
format (Figure 1b), recent advances adapt questions based on pretests, managerial beliefs, or
prior questions and do so either by selecting an aggregate design that is replicated for all subse-
quent respondents or by adapting question design for each respondent (Arora and Huber 2001;
Huber and Zwerina 1996; Johnson, Huber and Bacon 2003; Kanninen 2002; Sandor and Wedel
2001, 2002, Toubia, Hauser, and Simester 2003). These question-design methods are used with

a variety of estimation methods (regression, Hierarchical Bayes estimation, mixed logit models,
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analytic center approximations, and hybrid methods) and have proven to provide more efficient

and more accurate data with which to estimate partworths.

Figure 2
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Recently, as preference measurement has moved to web-based questionnaires, e-

commerce firms and academic researchers have experimented with a new format in which re-

spondents (or e-commerce customers) select features to configure a preferred product. The best-

known e-commerce example is Dell.com (Figure 2a); however, the format is becoming popular

on many websites, especially automotive websites (e.g., kbb.com’s auto choice advisor, ve-

hix.com, autoweb.com). For marketing research, configurators are known variously as innova-

tion toolkits, design palettes, and user design formats. They have been instrumental in the design

of flavorings for International Flavor and Fragrance, Inc (Figure 2b), new truck platforms for
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General Motors (Figure 2c), and new messenger bags for Timbuk2 (Figure 2d). (Figures from
Dahan and Hauser 2002; Thomke and von Hippel 2002, Urban and Hauser 2003; von Hippel
2001). Respondents find configurators easy to use and a natural means to express preferences.
However, because configurators focus on the respondents’ preferred product, they have only
been used to estimate partworth estimates when respondents are asked to repeat the tasks with
varying stimuli (e.g., Liechty, Ramaswamy and Cohen 2001).

In this paper, we examine question design for all three forms of preference measurement:
metric pairs, stated choices, and configurators. We use formal modeling methods to examine
key properties that have been used by the algorithms proposed to date. With these models we
seek to understand basic properties in order to help explain why some algorithms perform well
and others do not. These models also provide insight on the role of configurators in preference
measurement and indicate the strengths and weaknesses of this new form of data collection rela-
tive to more-standard methods. The models themselves are drawn from empirical experience
and represent, in a stylized manner, the basic properties of question design.

The formal models also provide insight on the relationship of question design to manage-
rial use suggesting, for example, that some measurement formats are best for developing a single
product, some for product-line decisions, and some for e-commerce decisions. These insights
lead to revised managerial criteria (Ma-error and Mp-error).

The paper is structured as follows:

We examine first the concept of utility balance as applied to the metric paired-
comparison format and demonstrate that this criterion leads to both bias and inefficiency for that
format. This analysis also lends insight on recent comparisons between ACA and polyhedral
methods (Toubia, et. al. 2003).

e We then examine a related concept for the stated-choice format. The literature often

labels this concept “utility balance,” but, for the purpose of this paper, we label it
“choice balance” to indicate its relationship to stated-choice data. Our analyses indi-
cate that, unlike utility-balance for metric data, choice balance for stated-choice data
can lead to improved efficiency under some conditions. In other cases, optimal effi-
ciency requires unbalanced choices. Our analyses both reflect insights from recent al-
gorithmic papers and provide new insights on how choice balance changes as a func-

tion of the characteristics of the problem.
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e We then examine data that suggests that configurator questions provide more useful
information for e-commerce decisions than “tradeoff” questions (Figure 1). We ex-
plore this observation with a stylized model to suggest how question formats are best
matched to managerial decisions. These insights generalize to M-efficiency.

We define our scope, in part, by what we do not address. Although we draw experience
from and seek to provide insight for new algorithms, algorithmic design is not the focus of this
paper. Nor do we wish to enter the debate on the relative merits of metric-rating or stated-choice
data. For now we leave that debate to other authors such as Elrod, Louviere and Davey (1992) or
Moore (2003). We study both data formats (and configurators) and use formal models to gain
insights on all three forms of preference questions. We do not address hierarchical models of
respondent heterogeneity, but rather focus on each respondent individually. We recognize the
practical importance of hierarchical models, but abstract from such estimation to focus on other
basic properties. The recent emergence of individual-specific question designs and/or differenti-
ated designs suggest that our insights should extend to such analyses (Johnson, Huber, and Ba-
con 2003; Sandor and Wedel 2003; Toubia, Hauser, and Simester 2003). But that remains future

research.
2. Efficiency in Question Design

Before we begin our analyses, we review briefly the concepts of efficient question de-
sign. The concept of question efficiency has evolved to represent the accuracy with which part-

worths are estimated. Efficiency focuses on the standard errors of the estimates. Let p be the
vector of partworths to be estimated and f) the vector of estimated partworths. Then, if f) is (ap-
proximately) normally distributed with variance X, the confidence region for the estimates is an

ellipsoid defined by (p - f))'Z"l (p— 1:)) , Greene (1993, p. 190).7 For most estimation methods,

2 depends upon the questions that the respondent is asked and, hence, an efficient set of ques-
tions minimizes the confidence ellipsoid. This is implemented as minimizing a norm of the ma-
trix, . A-errors are based on the trace of X, D-errors on the determinant of X, and G-errors on

the maximum diagonal element. Because the determinant is often the easiest to optimize, most

%7 In practice, X is unknown and is replaced with its estimated value. For simplicity we assume that X is
known, which should change neither the insights nor the results of our analyses.
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empirical algorithms work with D-efficiency (Kuhfeld, Tobias, and Garratt 1994, p. 547). G-
efficiency is rarely used.

Because the determinant of a matrix is the product of its eigenvalues and the trace is the
sum of its eigenvalues, A-errors and D-errors are often highly correlated (Kuhfeld, Tobias, and
Garratt 1994, p. 547, Arora and Huber 2001, p. 274). In this paper we use both, choosing the cri-

terion which leads to the most transparent insight. In some cases the results are easier to explain

if we work directly with =™ recognizing det(Z) = [det(Z™)]™ .
3. Utility Balance for the Metric Paired-Comparison Format

The metric pairs format (Figure 1a) is widely used for commercial conjoint analysis
(Green, Krieger, Wind 2001, p. S66; Ter Hofstede, Kim and Wedel 2002, p. 259). Although the
format has been used academically and commercially for over 25 years, its most common appli-
cation is in the adaptive component of ACA (Green, Krieger and Agarwal 1991, Hauser and
Shugan 1980, Johnson 1991).%

Metric utility balance is at the heart of ACA. With the goal that “a difficult choice pro-
vides better information for further refining utility estimates,” “ACA presents to the respondent
pairs of concepts that are as nearly equal as possible in estimated utility (Orme 1999, p. 2;
Sawtooth Software, 2002, p. 11, respectively).” This criterion has appeal. For example, in the
study of response latencies, Haaijer, Kamakura, and Wedel (2000, p. 380) suggest that respon-
dents take more time on choice sets that are balanced in utility and, therefore, make less error-
prone choices. Green, Krieger and Agarwal (1991, p. 216) quoting a study by Huber and Hansen
(1986) ascribe better predictive ability “to greater respondent interest in these difficult-to-judge
pairs.” Finally, Shugan (1980) provides a theory to suggest that the cost of thinking is inversely
proportional to the square of the utility difference. There are clear advantages in terms of re-

spondent interest, attention, and accuracy for metric utility-balanced questions.

38 The trace of a matrix does not necessarily equal the inverse of the trace of the inverse matrix, thus an
empirical algorithm that maximizes the trace of = does not necessarily minimize the trace of . However, the ei-
genvalues are related, especially when the eigenvalues of Z are similar in magnitude, as they are in empirical situa-
tions.

% For example, Dr. Lynd Bacon, AMA’s Vice President for Market Research and Executive Vice President
of NFO Worldgroup confirms that metric pairs remain one of the most popular forms of conjoint analysis. Sawtooth
Software claims that ACA is the most popular form of conjoint analysis in the world, likely has the largest installed
base, and, in 2001, accounted for 37% of their sales. Private communications and Marketing News, 04/01/02, p. 20.
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However, recent simulation and empirical evidence suggests that alternative criteria pro-
vide question designs that lead to more accurate partworth estimates (Toubia, et. al. 2003). Fur-
thermore, adaptation implies endogeneity in the design matrix, which, in general, leads to bias.
Thus, we explore whether or not the criterion of metric utility balance has adverse characteris-
tics, such as systematic biases, that offset the advantages in respondent attention. We begin with

a stylized model.

A Stylized Model

For simplicity we consider products with two features, each of which is specified at two
levels. We assume further that the features satisfy preferential independence such that we can
write the utility of a profile as an additive sum of the partworths for the features of the profile
(Keeney and Raiffa 1976, p. 101-105; Krantz, et. al. 1971). Without loss of generality, we scale
the low level of each feature to zero. Let p, be the partworth of the high level of feature 1 and
let p, be the partworth of the high level of feature 2. For these assumptions there are four pos-

sible profiles which we write as {0, 0}, {0, 1}, {1, 0}, and {1, 1} to indicate the levels of features

1 and 2, respectively. With this notation we have the true utilities given by:

u(©0,0)=0 u(1,0)=p; u(0,1) =p, u(l, 1) =p; +p>

For metric questions in which the respondent provides an interval-scaled response, we

model response error as an additive, zero-mean random variable, e. For example, if the respon-
dent is asked to compare {1, 0} to {0, 1}, the answer is given by a, = p, — p, +e. We denote
the probability distribution of e with f(e). We denote the estimates of the partworths, estimated

from responses to the questions, by p,and p, .
Adaptive (Metric) Utility Balance

Without loss of generality, consider the case where2p, > p, > p, >0 such that the off-

diagonal question ({0,1} vs. {1,0}) is the most utility-balanced question. We assume that this
ordinal relationship is based on prior questions. We label the error associated with the most util-
ity-balanced question as e, and label errors associated with subsequent questions as either e; or
e>. We now consider an algorithm which adapts questions based on utility balance. Adaptive

metric utility balance implies the following sequence.
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First question: D —P,=p,—Dp,te,
Second question: Di=p te if en<P>— D (Case 1)

py=pyte, if w2 P2~ P (Case 2)
Suppose that e, = p, — p,, then:

E[p,]=p, +Ele;]=p,
E[p,]1= E[p,]+ p, _p2+E[eub|eub2p2_pl] = p,+Ele,le,2p,—p] > p

Suppose that e, < p, — p, , then:

E[p,]=p, +Ele]=p,
E[p,]= E[l’51]+Pz_P1_E[eub|eub<P2—P1] = p2—E[eub|eub<p2_p1] > P,

Thus, under both Case 1 and Case 2, one of the partworths is biased upwards for any
zero-mean distribution that has non-zero measure below p; - pi.

The intuition underlying this proof is that the second question in the adaptive algorithm
depends directly on the random error — a direct version of endogeneity bias (Judge, et. al. 1985,

p. 571). We demonstrate how to generalize this result with a pseudo-regression format of
p=(X'X)(X'@)=p+(X'X)"' X'¢, where dand & are the answer and error vectors and X is
the question matrix. Then the second row of X depends on the magnitude of e, relative to p; - p1.
Specifically, the first row of X is [1,-1] and its second row can be written as [b, I-b] where b = 1

if errors are small and b = 0 if errors are large. The bias, B, is then given by the following equa-
tion where k=1 or 2.

1) E[B]= E(X'X)" X'e] = E([(l—:)eu,, +ek}) _ E({(l—b)eub])
—ve, t+e,

Equation 1 illustrates the phenomenon clearly: b = 1 if e, is small (more negative) and b
= 0 if e, is large (more negative), hence either p, or p, is biased upward. These arguments gen-
eralize readily to more than two features and more than two questions. The basic insight is that
the errors from earlier questions determine the later questions (X) in a systematic way — the es-

sence of endogeneity bias.
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Relative Bias

Bias alone does not necessarily impact managerial decisions because partworths are
unique only to a positive linear transformation. Thus, we need to establish that the bias is also
relative, i.e., the bias depends on the magnitude of the true partworth. Because the bias is pro-

portional to e, we need to show that —3%7 Ele, |e,, = p, — p,1<0 to demonstrate that bias is

greater for smaller (true) partworths than it is for larger (true) partworths. We do so by direct

differentiation in the Appendix. Thus, we can state the following proposition.

Proposition 1. For the stylized model, on average, metric utility balance biases
partworths upward and does so differentially depending upon the true values of the part-
worths.

When we expand the adaptive questions to a more complex world, in which there are
more than two features, the intuition still holds; however, the magnitude of the bias depends
upon the specific manner by which metric utility balance is achieved and on the accuracy of the
respondent’s answers. As an illustration, we built a 16-question simulator for a two-partworth
problem in which, after the first question, all subsequent questions were chosen to achieve metric
utility balance based on partworths estimated from prior questions. Based on 6,000 regressions
each, biases ranged from 1% for relatively large true partworths to 31% for relatively small part-
worths.*® To examine the practical significance we cite data from Toubia, et. al. (2003) who
simulate ACA question design for a 10-partworth problem. In their data, biases were approxi-
mately 6.6% of the magnitudes of the partworths at eight questions when averaged across the

conditions in their experimental design. The biases are significant at the 0.05 level.
The Effect of Metric Utility Balance on Efficiency

Although metric utility balance leads to bias, it might be the case that adaptation leads to

greater efficiency. For D-errors, minimizing the determinant of X is the same as maximizing the

determinant of £™'. For metric data, Z™' = X' X (for appropriately centered X). From this ex-

“* The simulator is available from http://mitsloan.mit.edu/vc. The simulator is designed to demonstrate the
phenomenon; we rely on Toubia, et. al. (2003) for an estimate of the empirical magnitude. The simulator chooses x;
uniformly on {0,1] and x, based on utility balance. The absolute values of the response errors are approximately half
those of the dependent measure. The magnitude of the bias changes if the response errors change, but the direction
of the bias remains.
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pression we see two things immediately. First, as Kanninen (2001, p. 217) and Kuhfeld, et. al.
(1994, p. 547) note, for a given set of levels, efficiency tends to push features to their extreme
values. (These statements assume that the maximum levels are selected to be as large as is rea-
sonable for the empirical problem. Levels which are too extreme risk additional respondent error
not explicitly acknowledged by the statistical model used in question design. See Delquie 2003).

Second, perfect metric utility balance imposes a linear constraint on the columns of X be-
cause Xp =0. This constraint induces X’X to be singular. When X’X is singular, the determinant

will be zero and D-errors increase without bound. Imperfect metric utility balance leads to
det(X’X) = 0 and extremely large D-errors. A-errors behave similarly. Thus, greater metric util-

ity balance tends to make questions inefficient.*!

Insights on the Relative Performance of Metric Polyhedral Methods

The analysis of metric utility balance provides insights on the relative performance of
metric polyhedral methods. Metric polyhedral methods focus on asking questions to reduce the
feasible set of partworths as rapidly as possible by solving an eigenvalue problem related to Son-
nevend ellipsoids. These ellipsoids focus questions relative to the “axis” about which there is the
most uncertainty. Polyhedral methods do not attempt to impose metric utility balance. In algo-
rithms to date, polyhedral methods are used for (at most) the first n questions where n equals the
number of partworths. However, metric polyhedral methods also impose the constraint that the
rows of X be orthogonal (Toubia, et. al. 2003, Equation A9). Thus, after n questions, X will be
square, non-singular, and orthogonal ( XX 'e< I implies X' X o< [ ).** Subject to scaling, this or-
thogonality relationship minimizes D-error (and A-error). Thus, while the adaptation inherent in
metric polyhedral methods leads to endogenous question design, the orthogonality constraint ap-
pears to overcome the tendency of endogeneity to increase errors. Toubia, et. al. (2003) report at
most a 1% bias for metric polyhedral question selection, significantly less than observed for

ACA question selection.

! The simulator cited in the acknowledgements section of this paper also contains an example in which
metric utility balance can be imposed. The more closely utilities are balanced, the worse the fit.

%2 Orthogonal rows assume that XX’=o where o is a proportionality constant. Because X is non-singular,
X and X’ are invertible, thus X’XX’X" = aX’X"' = X'X = al.
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Summary

Metric utility balance may retain respondent interest and encourage respondents to think
hard about tradeoffs, however, these benefits come at a price. Metric utility balance leads to
bias, relative bias, and lowered efficiency. On the other hand, the inherent orthogonality crite-
rion (rather than utility balance) in metric polyhedral methods enables metric polyhedral question
design to achieve the benefits of adaptation with significantly less bias and, apparently, without

reduced efficiency.
4. Choice Balance for the Stated-Choice Format

In the stated-choice format (Figure 1b), two profiles that have the same utility will be
equally likely to be chosen, thus choice balance is related to utility balance. However, because
the underlying statistical models are fundamentally different, the implications of choice balance
for stated-choice questions are different from the implications of metric utility for metric paired-
comparison questions.

Choice balance is an important criterion in many of the algorithms used to customize
stated-choice questions. For example, Huber and Zwerina (1996) begin with orthogonal, level-
balanced, minimal overlap designs and demonstrate that swapping and relabeling these designs
for greater choice balance increases Dy-efficiency. Arora and Huber (2001, p. 275) test these
algorithms in a variety of domains with hierarchical Bayes methods commenting that the maxi-
mum Dp-efficiency is achieved by sacrificing orthogonality for better choice balance.* Orme
and Huber (2001, p. 18) further advocate choice balance. Toubia, Hauser, and Simester (2003)
use choice-balance to increase accuracy in adaptive choice-based questions. Finally, the concept
of choice balance is germane to the principle, used in the computer adaptive testing literature,
that a test is most effective when its items are neither too difficult nor too easy, such that the
probabilities of correct responses are close to 0.50 (Lord 1970).

To understand better why choice balance improves efficiency while metric utility balance
degrades efficiency, we recognize that, for logit estimation of partworths with stated-choice data,
="' depends upon the true partworths and, implicitly, on response error. Specifically, McFadden
(1974) shows that:

s D,-efficiency recognizes that X depends on the true partworths. See Equation 2.
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J J; J,

(2) = REZ(?@, -3 5B B(F, - D 5P

i=l j=1 k=1 k=1
where R is the effective number of replicates; J; is the number of profiles in choice set i; g
is the number of choice sets; X;is a row vector describing the " profile in the i™ choice set; and

Pj; is the probability that the respondent chooses profile j from the i™ choice set.

Equation 2 has a more transparent form when all choice sets are binary, in particular:

(3 = Ri (55:'1 - 55['2)' Pil (1- Pn)(}il - 55,'2) = Ri‘-ji'Rl(l - Pil)di
i=1 i=1

where d . is the row vector of differences in the features for the i choice set. In Equa-

tion 3 it is clear that choice balance (P;;—Y2) tends to increase a norm of £~'. However, the

choice probabilities (P;;) are a function of the feature differences (J . ), thus pure choice balance

may not maximize either the determinant (or the trace) of ™.

First recognize that the true choice probabilities in the logit model are functions of the
utilities, J,.ji . If we hold the utilities constant, we also hold the choice probabilities constant.
Subject to this linear utility constraint, we can increase efficiency without bound by increasing
the absolute magnitudes of the d ;’s. This result is similar to that for the metric-pairs format; the
experimenter should choose feature differences that are as large as reasonable subject to the lin-
ear constraint imposed by d . P and subject to any errors (outside the model) introduced by large

feature differences (Delquie 2003).

Kanninen (2002) exploits these properties effectively by selecting one continuous feature
(e.g. price) as a focal feature with which to manipulate d . D, while treating all remaining features

as discrete by setting them to their maximum or minimum levels. She reports substantial in-
creases in efficiency for both binary and multinomial choice sets (p. 223).

Kanninen uses numerical means to select the optimal levels of the continuous focal fea-
ture. We gain further insight with formal analysis. In particular, we examine the optimality

conditions for the focal feature, holding the others constant. For greater transparency we use bi-
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nary questions and the trace of ' rather than the determinant.** The trace is given by:
K
(4) trace(T™) = izcz,ipﬂ (1-P)
i=1 k=1
If we assume, without loss of generality, that the focal feature is the K™ feature, then the

first-order conditions for the focal feature are:

K —
5) dy = ( P . d; j(f—lz—Pz—J for all i
k=1

where dy is the level of the k™ feature difference in the i™ binary question.

We first rule out the trivial solution of d, =0 for all k. Not only would this imply a
choice between two identical alternatives, but the second-order conditions imply a minimum. A
slightly more interesting case occurs when perfect choice balance is already achieved by the K-1
discrete features. We return to this solution later, however, in the focal-feature case it occurs
with zero probability (i.e., on a set of zero measure). The more interesting solutions for a con-
tinuous focal feature require that d;x be non-zero and, hence, that P, # P, . Thus, when dix can
vary continuously, Equation 5 implies that optimal efficiency requires choice imbalance.

There are two equivalent solutions to Equation 5 corresponding to a right-to-left switch

of the two alternatives. That is, the sign of dijx must match the sign of P, — P,. Thus, without

loss of generality, we examine situations were dix is positive (see Appendix). We plot the mar-
ginal impact of dix on trace( >7!) for illustrative levels of the non-focal feature difference.*’ Fol-
lowing Arora and Huber (2001) and Toubia, Hauser and Simester (2003), we use the magnitude
of the partworths as a measure of response accuracy — higher magnitudes indicate higher re-
sponse accuracy. Figure 3 illustrates that efficiency is maximized for non-zero focal feature dif-
ferences. Figure 3 also illustrates that the optimal level of the focal feature difference depends
upon the level of the non-focal features and upon the magnitude.

Choice balance ( P, — P, ) is a non-linear function of the feature differences. Nonethe-

less, we can identify the systematic impact of both non-focal features and response accuracy. In

* For a focal feature, the trace and the determinant have related maxima, especially if all but the non-focal
feature are set to their minimum or maximum values.

* For low magnitudes, the partworths of both feature are set equal to 1.0 in these plots. For high magni-
tudes they are doubled. The low level of the non-focal feature (absolute value) is 1.5. The high level is 3.0.
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particular, formal analyses reveal that choice balance increases with greater response accuracy

and with greater levels of the non-focal feature differences. We formalize these insights in two

propositions. The proofs are in the Appendix.

Proposition 2. As response accuracy increases, choice balance increases and
the level difference in the focal feature decreases.

Proposition 3. As the levels of the non-focal features increase, choice balance

increases.
Figure 3
Optimal Efficiency and Choice Imbalance
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Quantal Features

In many applications, all features are binary — they are either present or absent. Exam-
ples include four-wheel steering on automobiles, cell-phone holders on laptop bags, and auto fo-
cus on cameras. In these cases, the focal-feature method cannot be used for maximizing effi-
ciency. However, discrete-search algorithms are feasible to maximize a norm on ™'. Arora
and Huber (2001) and Sandor and Wedel (2001) provide two such algorithms. Sandor and

Wedel (2002) extend these concepts to a mixed logit model.

An interesting (and common) case occurs when the experimenter limits the number of

features that vary, perhaps due to cognitive load (Sawtooth Software 1996, p. 7; Shugan 1980).
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For a given number of binary features (1), Zk d is fixed. In this case, it is easy to show that

Equation 4 is maximized when choices are as balanced as feasible.*® This same phenomenon

applies when the researcher requires that all features vary.

Insights on the Relative Performance of Choice-based Polyhedral Methods

Like metric polyhedral methods, choice-based polyhedral methods rely upon Sonnevend
ellipsoids. However, for stated-choice data, respondents’ answers provide inequality constraints
rather than equality constraints. Rather than selecting questions vectors parallel to the longest
axis of the ellipsoid, choice-based polyhedral methods use the ellipsoid to identify target part-
worths at the extremes of the feasible region. The choice-based algorithm then solves a utility
maximization (knapsack) problem to identify the features of the profiles. The knapsack problem
assures that the constraints go (approximately) through the analytic center of the region. This
criterion provides approximate a priori choice balance. (By a priori we mean that, given the
prior distribution of feasible points, the predicted choices are equal.) In this manner, the algo-
rithm achieves choice balance without requiring utility balance throughout the region. Utility
balance only holds for the analytic center of the region — a set of zero measure.

The applications of choice-based polyhedral methods to date have focused on discrete
features implemented as binary features. For discrete features, choice balance achieves high ef-
ficiency. For continuous features, Proposition 2 suggests algorithmic improvements. Specifi-
cally, the knapsack problem might be modified to include trace(Z™") in the objective function.
However, unlike a knapsack solution, which is obtained rapidly, the revised math program may

need to rely on new, creative heuristics.

Summary

Choice balance affects the efficiency of stated-choice questions quite differently than
metric utility balance affects metric paired-comparison questions. This, despite the fact that
choice balance is related to ordinal utility balance. If at least one feature is continuous, then that

feature can be used as a focal feature and the most efficient questions require choice imbalance

“® If there are a maximum number of features that can be non-zero rather than a fixed number, it is possible,
although less likely, that a maximum will might occur for less than the maximum number of features. This case can
be checked numerically for any empirical problem. Nonetheless, the qualitative insight holds.
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(and non-zero levels of the focal feature). However, we show formally that more accurate re-
sponses and higher non-focal features lead to greater choice balance. If features are discrete and
the number which can vary is fixed, then choices should be as balanced as feasible. Finally, this
analysis helps explain the relative performance of stated-choice polyhedral methods and aggre-

gate customization methods.

5. Configurators

In Sections 3 and 4 we explored two popular formats for preference questions suggesting
that, for the metric paired-comparison format, utility balance led to bias, relative bias and ineffi-
ciency while, for the choice-based format, choice balance could be efficient for discrete features
but not necessarily for continuous focal features. We now explore a relatively new format, con-
figurators, in which respondents focus on the features one at a time and are not asked to compare
profiles in the traditional sense. Neither utility balance nor choice balance apply to configurators.
Nonetheless, analysis of this new format leads to insights that generalize to all three question
formats and helps us understand which format is most efficient in which situations.

In configurators, respondents are typically given a price for each feature level and asked
to indicate their preferences for that price/feature combination (review Figure 2). Configurator
questions are equivalent to asking the respondent whether the partworths of the features (pi’s)
are greater than or less than the stated prices. These data appear quite useful. For example,
Liechty, Ramaswamy and Cohen (2001) use ten repeated configurator measures per respondent

to estimate successfully hierarchical Bayes probit models.

Stylized Fact: Warm-up Questions do Surprisingly Well in Predicting Feature Choice
Figure 4 presents an empirical example. In data collected by Toubia, et. al. (2003), re-
spondents were shown five laptop bags worth approximately $100 and allowed to choose among

those bags. Various conjoint methods based on metric paired-comparison questions collected

prior to this task predicted these profile choices quite well.
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Figure 4
Warm-up Questions are Effective Predictors of Configurator Tasks
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Before completing the metric paired-comparison task, in order to familiarize respondents
with the features, respondents answered warm-up questions. They were asked to indicate the
preferred level of each feature. Such warm-up questions are common. We re-analyzed Toubia,
et. al.’s data in two ways. One conjoint estimation method did not use the warm-up questions.
The other conjoint estimation method included monotonic constraints based on the warm-up
questions.47 One month after the initial conjoint-analysis questionnaire, the respondents were
recontacted and given a chance to customize their chosen bag with a configurator. Figure 4 plots
the ability of the conjoint analyses to predict configurator choice as a function of the number of
metric paired-comparison questions that were answered.

For both predictive criteria, the ability to predict configurator choice is surprising flat
when initial warm-up questions are included. (Predictions are less flat for forecasts of the choice
of five laptop bags, Toubia, et. al. 2003, Table 6.) For configurator predictions, the nine warm-
up questions appear to provide more usable information than the sixteen paired-comparison
questions. This empirical observation is related to observations by Evgeniou, Boussios, and
Zacharia (2003) whose simulations suggest the importance of ordinal constraints. While, at first,

Figure 4 appears to be counter-intuitive, it becomes more intuitive when we realize that the

*7 In the method labeled “with initial questions,” the warm-up questions where used to determine which of
two feature levels were preferred (e.g., red or black). In the method labeled “without initial questions,” such order-
ing data were not available to the estimation algorithm. In this particular plot, for consistency, we use the analytic-
center method of Toubia, et. al., however, the basic insights are not limited to this estimation method.
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warm-up questions are similar to configurator choice and the paired-comparison questions are
similar to the choice among five (Pareto) profiles. We formalize this intuition with our stylized

model.

Stylized Model to Explain the Efficiency of Warm-up Questions

For transparency assume metric warm-up questions. This enables us to compare the
warm-up questions to paired-comparison questions without confounding a metric-vs.-ordinal
characterization. We consider the same three questions used previously, rewriting e, as e, for
mnemonic exposition of paired-comparison tradeoff questions. Without loss of generality we

incorporate feature prices into the definition of each feature. We assume p, > p, >0, but need

not assume2p, > p, as we did before. The three questions are:

Q) pi=pite
(Q2) Pr=p,te,
(Q3) ﬁ1‘ﬁ2:p1 —p, te,

We now consider stylized estimates obtained from two questions. In our stylized world
of two features at two levels, Q1 and Q2 can be either metric warm-up questions or metric
paired-comparison questions. Q3 can only be a metric paired-comparison question. Assuming
all questions are unbiased, we examine which combination of questions provides the greatest
precision (efficiency): Q1+ Q2, Q1+Q3, or Q2+Q3.

Consider feature 1. Because feature price is incorporated in the feature, if p, = 0, then
feature choice is correctly predicted if p, is non-negative. (We use similar reasoning for feature
2.) Simple calculations (see Appendix) reveal that the most accurate combination of two ques-
tions is Q1+Q2 if and only if Prob[e, 2— p, ] > Prob[e, +¢,2— p,]. Since~- p, is a negative

number, these conditions hold for most reasonable density functions. For example, in the Ap-
pendix we demonstrate that, if the errors are independent and identically distributed normal ran-

dom variables, then this condition holds.

Proposition 4. For zero-mean normally distributed (i.i.d.) errors, the warm-up
questions (Q1+Q2) provide more accurate estimates of feature choice than do pairs of
questions that include a metric paired-comparison question (Q3).
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Intuitively, metric warm-up questions parse the errors more effectively than tradeoff
questions when the focus is on feature choice rather than holistic products. The questions focus
precision where it is needed for the managerial decisions. We provide a more formal generaliza-
tion of these concepts in the next section. The intuition does not depend upon the metric proper-
ties of the warm-up questions and applies equally well to ordinal questions. We invite the reader
to extend Proposition 4 to ordinal questions using the M-efficiency framework that is explored in

the next section.
6. Generalizations of Question Focus: M-Efficiency

The intuition drawn from Proposition 4 suggests that it is best to match preference ques-
tions carefully to the managerial task. For example, metric warm-up questions are similar to
configurator questions and may be the most efficient for predicting feature choice. On the other
hand, tradeoff questions are similar to the choice of a single product from a Pareto set. Estimat-
ing partworths from tradeoff questions may be best if the managerial goal is to predict consumer
choice when a single new product is launched into an existing market. We now examine this
more general question. We begin with the stylized model for two questions and then suggest a

generalization to an arbitrary number of questions.

Stylized Analysis: Matching Question Selection to Managerial Focus

With metric questions (and preferential independence) we can ask one more independent
question, which we call a “range” question.*® We then consider three stylized product-

development decisions.
(Q4) P+ Pp,=p t+p,te,

Launch a single product

The product-development manager has one shot at the market and has to choose the sin-
gle best product to launch, perhaps because of shelf-space or other limitations. The man-
ager is most interested in the difficult tradeoffs, especially if the two features are substi-
tutes. The manager seeks precision on p, — p,.

Launch a product line (platform decision)

* Such questions are feasible with a metric format. They would be eliminated as dominated alternatives in
an ordinal format such as stated-choice questions.
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The product-development manager is working on a platform from which to launch multi-
ple products, perhaps because of synergies in production. The manager is most interested
in the range of products to offer (the breadth of the platform). The manager seeks preci-
siononp, +p,.

Launch a configurator-based e-commerce website

The product-development manager plans to sell products with a web-based configurator,
perhaps because of flexible manufacturing capability. However, there is a cost to main-
taining a broad inventory and there is a cognitive load on the consumer based on the com-

plexity of the configurator. The manager seeks precision on p;and on p, .

For these stylized decisions we expect intuitively that we gain the most precision by
matching the questions to the managerial decisions. Table 1 illustrates this intuition. For deci-
sions on a single product launch, we gain the greatest precision by including tradeoff questions
(Q3); for decisions on product lines we gain the greatest precision by including range questions
(Q4), and for decisions on e-commerce we gain the greatest precision by focusing on feature-
specific questions (Q1 and Q2). These analytical results, which match question format to mana-
gerial need (for metric data), are comparable in spirit to the empirical results of Marshall and
Bradlow (2002) who examine congruency between the formats of the profile and validation data
(metric vs. ranking vs. choice) in hybrid conjoint analysis. Marshall and Bradlow’s analyses
suggest that profile data require less augmentation with self-explicated data when they are con-

gruent with the validation data.

Table 1
Error Variances Due to Alternative Question Selection

Tradeoff Questions Range Questions Feature Focus
Single-product launch o 36 20°
Product-line decisions 30° o 20°
. 3 2 3 2 2
e-Commerce website -2- c -5 o o

178




M-Efficiency

The insights from Table 1 are simple, yet powerful, and generalize readily. In particular,

the stylized managerial decisions seek precision on Mp where M is a linear transform of p . For

example, if the manager is designing a configurator and wants precision on the valuation of fea-
tures relative to price, then the manager wants to concentrate precision not on the partworths per
se, but on specific combinations of the partworths. We indicate this managerial focus with a ma-
trix, M., where the last column corresponds to the price partworth. This focus matrix provides

criteria, analogous to D-errors and A-errors, by which we can design questions.

1 0 .. -1

o1 .. -1
M, =

0 .. 1 -1

M-Efficiency for Metric Data

We begin with metric data to illustrate the criteria. For metric data, the standard error of
the estimate of Mp is proportional to =, = M(X'X)™"'M"' (Judge, et. al. 1985, p. 57). By defin-
ing efficiency based on X,, rather thanX, we focus precision on the partworths that matter most

to the manager’s decision. We call this focus managerial efficiency (M-efficiency) and define

M-errors as follows for suitably scaled X matrices.

Mp-error = gdet(M (X' X)"'M")'""

Mj-error = gtrace(M(X'X)"'M')/n

The managerial focus affects D-errors and A-errors differently. Mp-error is defined by

the determinant of the modified covariance matrix and, hence, focuses on the geometric mean of
the estimation variances (eigenvalues). All else equal, the geometric mean is minimized if the
estimation variances are equal in magnitude. On the other hand, M-error is defined by the trace
of the covariance matrix and, hence, focuses on the arithmetic mean of the estimation variances.
Thus, if the manager wants differential focus on some combinations of partworths and is willing

to accept less precision on other combinations, then Ma-errors might be a better metric than Mp-

CITOTS.
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To illustrate M-efficiency, we provide an example in which we accept higher A- and D-
errors in order to reduce M4- and Mp-errors. Consider an orthogonal array, X. For this design,
X’X = 1215, where I5 is a 6x6 identify matrix. The orthogonal array minimizes both D-errors and
A-errors. It does not necessarily minimize either Mp- or Ma-errors as we illustrate with the five-

feature configurator matrix, M..

10000 -1
01000 -1
M,=[0 01 00 -1
00010 -1
0000 1 -1

To increase M-efficiency, we perturb X, X,, closer to M M while maintaining full
rank. We choose Xj such that X, X,, =8l + (1- f)M M ] where orand f are sca-

lars, € [0,1], and o is chosen to maintain constant question “magnitudes.”® By construction,

Xy is no longer an orthogonal array, hence both A-errors and D-errors will increase. However,

Ma- and Mp-errors decrease because Xy is more focused on the managerial problem. For exam-

 Recall that efficiency criteria tend to push feature levels to the extremes of the feasible space. Thus, to
compare different designs we must attempt to keep the “magnitudes” of the features constant. In this example, we
implement that constraint by keeping the trace of X,,’X), equal to the trace of X’X. Our goal is to provide an exam-
ple where M-efficiency matters. We can also create examples for other constraints — the details would be different,
but the basic insights remain.
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ple, with B = 4/5, M-errors decrease by over 20%; Mp-errors decrease, but not as dramatically.
Larger £'s turn out to be better at reducing Mp-errors, but less effective at reducing M-errors.

Decreases in Ma-efficiency are also possible for square M matrices. However, we cannot
improve Mp-errors for square M matrices, because, for square M, the question design that mini-
mizes D-error will also minimize Mp-error. This is true by the properties of the determinant:
det(Z,, ) = det(M(X’X)"'M’) = det(M)det((X Xy hydet(M’) = det(M)det(M) det(X’X)") =
det(M’M)-det((X ’X)‘]). As an illustration, suppose the manager wants to focus on configurator
prices (as in M,), but also wants to focus on the highest price posted in the configurator. To cap-
ture this focus, we make M square by adding another row to M., [1 11 1 1 -1]. To decrease Mx-
error we unbalance X to make price more salient in the question design. For example, a 40% un-
balancing decreases M-errors by 5% with only a slight increase in Mp-errors (<1%).

We chose these examples to be simple, yet illustrative. We can create larger examples
where the decreases in M-errors are much larger. Our perturbation algorithms are simple; more
complex algorithms might reduce M-errors further. M-efficiency appears to be an interesting

and relevant criterion on which to focus future algorithmic development.

M-Efficiency for Stated-Choice Questions

The same arguments apply to stated-choice questions. The M-efficient criteria become
either the determinant (Mp-error) or the trace (Ma-error) of M(Z’PZ )'1 M’ where Z is a probabil-
ity-balanced X matrix and P is a diagonal matrix of choice probabilities. See Arora and Huber
(2001, p. 274) for notation. As in Section 4, there will be a tradeoff between choice balance and
the levels of focal features. For M-errors, that tradeoff will be defined on combinations of the

features rather than the features themselves.

Summary of Sections 5 and 6

Configurator questions, based on analogies to e-commerce websites, are a relatively re-
cent form of preference questions. Empirical data suggest that such questions are surprisingly
good at predicting feature choice, in large part because they focus precision on managerial issues
that are important for e-commerce and mass customization. This insight generalizes. Intuitively,

precision (efficiency) is greatest when the question format is matched to the managerial decision.

181



Ma-errors (and Mp-errors) provide criteria by which match format to managerial relevance.
These criteria can be used to modify question-design algorithms.

There remain the challenges of new algorithmic development. Existing algorithms have
been optimized and tested for D- and D,-efficiency. However, Figure 4, Table 1, and the con-

cept of M-errors have the potential to refocus these algorithms effectively.

7. Summary and Future Research

In the last few years great strides have been made in developing algorithms to select
questions for both metric paired-comparison preference questions and for stated-choice ques-
tions. Algorithms have been developed for a wide range of estimation methods including regres-
sion, logit, probit, mixed logit, and hierarchical Bayes (both metric and choice-based). In some
cases the algorithms focus on static designs and in other cases on adaptive designs. This existing
research has led to preference questions that are more efficient and more accurate as evidenced

by both simulation and empirical experiments.

Summary

In this paper, we use stylized models to gain insight on the properties of algorithms and
the criteria they optimize. The models abstract from the complexity of empirical estimation to
examine properties transparently. In key cases, the stylized models provide insight on empirical
facts. While some of the following insights formalize that which was known from prior algo-
rithmic research, many insights are new and provide a basis for further development:

e Metric utility balance leads to relative biases in partworth estimates.

e Metric utility balance is inefficient.

e Choice balance, while related to utility balance, affects stated-choice questions
differently than utility balance affects metric questions.

e When features are discrete and the number of features which can vary is fixed,
choice balance is a component of optimal efficiency.

e Otherwise, optimal efficiency implies non-zero choice balance.

e Asresponse accuracy and/or the levels of non-focal features increase, optimal ef-

ficiency implies greater choice balance.
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Warm-up (configurator) questions are surprisingly accurate for predicting feature
choice because they focus precision on the feature-choice decision.

This concept generalizes. Tradeoff, range, or configurator questions provide
greater efficiency when they are matched to the appropriate managerial problem.
M-errors provide criteria by which both metric and stated-choice questions can be
focused on the managerial decisions that will be made based on the data.

Simple algorithms (perturbation and/or unbalancing) can decrease M-errors effec-

tively.

The formal models also provide a theory with which to understand the accuracy of re-

cently proposed polyhedral methods. Specifically,

Metric polyhedral methods appear to avoid the bias and inefficiency of utility bal-
ance by maintaining orthogonality while focusing questions where partworths es-
timates are less precise.

To date, stated-choice polyhedral methods have been applied for discrete features.
Hence, their use of approximate choice balance makes them close to efficient.
However, stated-choice polyhedral methods for continuous features might be im-

proved with algorithms that seek non-zero choice balance.

Future Research

This paper, with its focus on stylized models, takes a different tack than recent algo-

rithmic papers. The two tacks are complementary. Our stylized models can be extended to ex-

plain simulation results in Andrews, Ainslie and Currim (2002), empirical results in Moore

(2003), or to explore the efficient use of self-explicated questions (Ter Hofstede, Kim and Wedel

2002). On the other hand, insights on utility balance, choice balance, and M-efficiency can be

used to improve algorithms for both aggregate customization and polyhedral methods. Finally,

interest in configurator-like questions is growing as more marketing research moves to the web

and as e-commerce managers demand marketing research that matches the decisions they make

daily. We have only begun to understand the nature of these questions.
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Appendix

Relative Bias Due to Metric Utility Balance

Proposition 1. For the stylized model, on average, metric utility balance bi-
ases partworths upward and does so differentially depending upon the true val-
ues of the partworths.

Proof. In the text we have already shown that one of the partworths is biased up-

wards for any zero-mean distribution that has non-zero measure below p, — p,. We

must now demonstrate that - Ele,, |e,, 2 p, — p,1>0for p, — p, 20 with density func-

ub"'

tions which have non-zero density below p, — p,. We differentiate the integral to obtain:

d d
a-p“l“ Ele,le,2p,—p] = é_p:[ -E-px eubf(eub)deh/ -Ewl fle, )deubi|

_ ([, Fewrden o= s (=20~ ( [, ewf(eu)des ) (o= p)

([, Fende,)

-0 -F(p,-p)p, — p,)f(p,—p)—Ele, |e, 2 p, — pIl1- F(p, — p)1f (P, — P) <0
[1-F(p,-p)

where the last step recognizes that both terms in the numerator are negative

whenever f (e, ) has density below p, — p, and p, — p, >0. When p, = p,, the second

term is still negative.

Choice Balance vs. Magnitude and Non-focal Features

9 K
From Equation 3 in the text we know that trace(X™) = ZZd;P[I (1-P,). Be-

i=1 k=1
cause this function is separable in i, we focus on a single i and drop the i subscript. Re-

writing P, in terms of the partworths, p, and allowing m to scale the magnitude of the
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partworths, we obtain for a given i, T = trace,(Z™') = Zd / (€™ + e +2). We as-

-1
sume, without loss of generality, that p, >0 and y,_, = z p.d, £0. Define
k=1

s, =y d} andlet d, be the optimal d, .

Lemma 1. For p, >0 and y,_, <0, d; 20.

Proof. Assume d, <0. If a’ = pd; +y,, <0, then trace” =
(dZ + s ) (™ + e™™ +2). Consider d =(-a" —y,_)/ py >0 such that
a” =-a’ >0. This assures that the denominator of the trace stays the same. Now
Id,*:|>|(—a* - yK_,)/pKl > |(a* - yK—l)/pK‘ = |d,*<| because both a”and y,_, are of the

same sign. Thus, the numerator of the trace is larger and the denominator is unchanged

and we have the result by contraction. In the special case of y,_, =0,

trace(d, ) = trace(—d, ) , hence we can also restrict ourselves to d, 2 0.

Lemma 2. For p, >0, y._, <0, then the trace has no minimum in d, on (0, ).

Proof.

T'(dy) = [2d, (" +e™™ +2) =Y dimpy(e™? —e ™)) /(e + e +2)" =
h(d,)/b(d,). Then, T'(dy)=0=> h(dy)=0 and T"(dy) =h'(d)/b(dy). T"(dy)
will have the same sign as

h(dy) = 2e™ + e +2)+2d,.mp, (" - ey - 2depK(e'"‘2’—’ — e )

- dim’py (€"® + ™). Cancel the second and third terms. Using the FOC gives
W(dy)=Y dimp (€™ -y dy = dim’pi(e™? +eP). Thus, h'(dy) and
H= (e'”‘i’—’ ) mdy py (e +e '"d’-’) have the same sign. Because d 2> 0by

assumption, the FOC imply that e™® —¢™® >0, hence mdp >0. If md,p, =1, then H
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sumption, the FOC imply that "V _ gmP >0, hence méfy >0. If md,p,=1,then H<
Oandsois T"(dy). If md,p, <1, then mc?f)<1 because y,_, <0. Thus,

e® <e™ <¢' hence H<e~1-2md,p,. Thus, H<0if md, p, >(e—1)/2. Call
hy=(e~1)/2. If md,p, <h,,then 0<mdp <h, and H <e" —1-2md, p,, which is

negative if md . p, > h, > (e™ —1)/2. Forall hin (0,1], we have (e" —1)/2>h, so by

recursion we show that H <0 if md, p, > h, and h,converging to zero.

Proposition 2. As response accuracy increases, choice balance increases and
the level difference in the focal feature decreases.

Proof. Assume p, >0 and y,_, <0 without loss of generality and rewrite
T =u(dy,m)/v(dy,m)where u(dy,m)y=> d?, v(dy,m)=("" +e™ +2). For
m, >0, dy(m,) satisfies f =u’/u=v'/v=g. The numerator, u, does not depend upon

m. Taking derivatives yields v'/v=mp, (e'"‘?‘-’ —e )/(e'”‘i’_’ +e ™ 4 2) and

IV’ /v)/om=

(™ ™) +mpydp(e™® +e " )][e™® +e ™ +2]-mp,dp(e™® ")’

(€™ e 1 2)?

We rearrange the numerator to obtain the following expression:
P (™ — e Y™ 4 ¢ 12) 4 2mp  dp(e"™ +e"P )+ 4mp . dP , which is positive
because m(?f) >0 and ¢™® —¢™™® >0as proven in Lemma 2. Hence, v'/v is increasing
in m. Thus, g(dy(m,),m,)> g(dy(m,),m,) for m, >m_, which implies
fdy(m,),m) = f(de(m,),m,) =g(dy(m,),m,)<g(dy(m,),m). Hence,
T'(dy(m,),m)<0.

We have shown that at m = m_, the derivative to T with respect to d; is negative
at dy(m,). By Lemma 2, it is non-positive for all d, >d(m,). Thus,

dy (m)<d ,*((mo) which proves the second part of the proposition. Because
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Ve tde(m)pe >0, v +di(m)p,>0,and y, <0, we have

0<y,, +de(m)py <Yy, +dy(m,)p,, which proves the first part of the proposition.

Proposition 3. As the levels of the non-focal features increase, choice balance

increases.

Proof. We now consider changes in the non-focal features. In this case, m scales

the non-focal features but does not scale d, . Thus,

T =(m*y,, +d2)[(e™1Px 4 g~ ™rtdkPe) 4 3y - We again rewrite

T =u(d,,m)/v(d,,m). Caution, the definitions of u and v (and f and g) are within the
proofs and vary between the two propositions. Lemmas 1 and 2 still hold because the

proofs follow the same principles. Thus, w.l.o.g., we have p, >0, y,_, <0 which im-
plies that d; >0 and that my,_ +d,p, >0. This is true for any m>0.

Let m, > 0, then the FOC imply f(dy,m,)=v'/v=u'lu=g(d,,m,). Let
m, =m, +dm, and consider a d, =d (m,)+dd, such that utility is unchanged:
a’(m)y=m,y, +de(m)p, =(m,+dm))y. +(dy(m,)+dd;)p,. Solving we obtain
dd, =—dm,y,_ ! p, . For reference call this Expression 1. Differentiating w.r.t. d
gives f(dy.,m,)=py(e” —e ) /(e” +e* +2). Becausea is unchanged we have
flde(m,)+dd,m,+dm,)= f(dy(m,),m,).

Differentiating u w.r.t. d,, gives: g(dy,m,)=2dy /[(m>s,_ +dy ). Further dif-
ferentiation gives dg(dy,m,)/9d, =(2m>s,_, —2d;})/(m*s;_ +d;)* and
og(dy,m,)/om= —4dyms,_ /(m*s, , +d,)*. Consider dm, >0. Using Taylor’s
Theorem, ignoring higher order terms because dm, and, hence, dd are differentials:
g(dy +dd,,m, +dm,)) = g(d,,m,)+
Qm?s,  —2d3)/(m2ss  +d¢)dd, —adgm,s,_, I(m’s,_, +d) dm,. Expression 1
implies G, = g(dy +dd, ,m, +dm,)— g(dy,m,) is of the same sign as

G, =—4d,(m))m s, —(2m’s,, —2d(m,))yc, ! py. Because y,_ <0,
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G, <—4d,(m,)ym,s,_, —2m’s,_y,_, | px . Further, G, is of the same sign as

G, ==2dy(m)py —m,yc, <—(m,y,, +di(m,)p,)<0. Thus, for dm, >0 we have
fldy(m)+dd,,m, +dm,)) = f(dy(m,),m,)=g(d(m,),m,)

> g(dy(m,)+dd,,m, +dm,). Thus, if we increase m, while adjusting d to maintain
the same level of choice balance (constant a*), T’<0. Hence,
0<dy(m,+dm,)<dy(m,)+dd, and 0<a (m,+dm,)<a (m,). Thus, choice balance
increases.

Relative Efficiency of Configurator Questions for E-commerce Decisions
Lemma 3. If ¢,, ¢,, and e, are zero-mean, i.i.d. normally distributed , then

Prob[e, 2— p, ] >Prob[e, £e,2—p, 1fork=1, 2.

Proof. If the errors are independent and identically distributed zero-mean normal

random variables with variances, o , then, for p, 20, the comparison reduces to the fol-

lowing equation where f(¢|0) is a normal density with variance . Let e, =e,te,.

s+ [felorde 24+ [feloNDrder & [fle,loVde > [fer|oNDyde with 20

P P
To demonstrate that the last expression is true, we let I = J: f (e, Iaﬁ)de =

I exp(—e®/ 40'2)/(03/27; )de . Change the variables in the integration setting g = e/ V2.

Then,

1= f e exp(—g*/20%) l(o27)dg < J: exp(—e? /20°%) (o270 )de = f fle, |o)de.

The conditions for p, <0 yield equivalent conditions.

Proposition 4. For zero-mean normally distributed (i.i.d.) errors, the warm-
up questions (Q1+Q2) provide more accurate estimates of feature choice than do
pairs of questions that include a metric paired-comparison question (Q3).
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Proof. With Q1+Q2 or Q1+Q3, the error in estimating p, is based directly on
e, and the probability of correct prediction is Prob[ e, 2— p,]. With Q2+Q3 we obtain
p, by adding Q2 and Q3 and the error in estimating p,is based on e, +¢,. The probabil-
ity of correct prediction is Prob[ e, + e, 2— p,]. Thus, for Feature 1, Q1+Q2 and Q1+Q3
are superior to Q2+Q3 if Prob[e, 2— p,] > Prob[ e, + ¢, 2~ p, ]. For Feature 2, similar
arguments show that Q1+Q2 and Q2+Q3 are superior to Q1+Q3 if Prob{e, 2— p, ] >
Prob[e, —e, 2— p,]. Thus, Q1+Q2 is superior to Q2+Q3 and Q1+Q3 if the condition in
the text holds. Finally, by Lemma 3 this condition holds for zero-mean, i.i.d., normal er-

rors.
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